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Introduction

The starting point of this work are some crucial developments in
the theory of Kleinian groups and their interplay with
3-dimensional geometry.

The theory of Kleinian groups goes back to Poincare's work in the
19th century.

The original Poincare's idea was to extend to Kleinian groups his
geometric approach for Fuchsian groups and to develop a
correspondent abstract theory.

As a matter of fact there 1s some analogy between the two cases,
because fundamental polyhedra for Kleinian groups play the saile
role as fundamental polygons for Fuchsian groups; but Poincare's
analysis didn't go very far.

The reason why this attempt had to fail is clear todav: on one side
the theory of Fuchsian groups 1is an algebraic counterpart of
two-dimensional topology, but on the other one Kleinian groups
involve three-dimensional manifolds which are much more complicated
than surfaces. '

In some way, the algebraic theory of groups must also reflect the
complexity of the topological analysis: this is the case and after
one century Poincare's approach has not produced so many results,
for the technical difficulties 'involved in a combinatorial
description of fundamental polyhedra.

More recently some new ideas have provided powerful tools for a
renewed interest in Kleinian groups.

One of the most important ways of constructing new Kleinian groups
is to obtain these groups by combining simpler groups which are
already at hand.

Such a procedure was introduced by Kléin, but only in recent years
Maskit [Mas], has developed this method and has shown its
far-reaching consequences.

For example his first Combination Theorem states conditions under

which, given two Kleinian groups E, and E,, the group F = <E.,E,>



generated by E, and E, is still Kleinian; moreover the theorem
describes the Kleinian structure of F.

A striking result achieved by this way is the classification, up to
similarity, of function groups, that 1is analytically finite
Kleinian groups with one invariant component [Mas].

So large classes of new interesting Kleinian groups can be
constructed by starting from simple groups and applying iteratively
combination theorems.

The leading idea of this work is that the geometrical intuition in
three dimensions explains and renews these results and that in this
setting some generalizations which are not so evident otherwise
look very natural. The reader can easily understand how much I am
indebted to Marden's paper [Mar], even if technical tools and
results are completely different.

To this purpose,we borrow an idea which was introduced in [MMZ1] to
provide a unified theory for finite actions on handlebodies and
surfaces: in this paper the authors show how the fundamental group
of a 3-dimensional orbifold admits a geometric presentation as a
graph of groups &and that this presentation can be used to describe
a certain class of Kleinian groups (virtually <ZIree Kleinian
groups) . Here this approach is revisited and generalized: graphs of
groups are seen as the right formal framework where to develop the
theory of iterative constructions of Kleinian groups by combination
theorems and where to understand the deep interplay between these
theorems and some three-dimensional geometry.

So the ideas of [MMZ1], [Mas] and [Mar] must be considered as the

source of this work.

I want now to explain a little bit more the role of graphs of
groups in 3-dimensional geometry, by an example: Maskit's
classification of geometrically finite function groups [Mas] X.G.2:
Let G and F be geometrically finite function groups. G 1is a
deformation of F iIf and only if G and F have the same signature.
The proof of this result is based on the study of limit sets of F
and G, in three crucial steps:

1) The planarity theorem ([Mas] X.A.6) about regular planar

coverings of topologically finite Riemann surfaces, allows us



to associate a signature (X.E) to each function group.

2) The Jordan theorem ,stating that a surface S 1s planar if and
only 1f every -simple closed curve on S is dividing, implies
that gquasiconformally conjugate function groups have the same
signature (X.D.5)

3) We can find out the set of admissible signatures, by
constructing, through the combination theorems, function groups
with a given signature.

On one hand the three-dimensional point of view gives an intuitive
geometric support to this theorem; on the other one,it suggests
various generalizations, which are not so evident by only looking
at the limit set of function groups: generalized function groups,
for example, are a natural geometric extension of the notion of
function groups, while their characterization as Kleinian groups
(1.4) is a little tricky.
The 3-dimensional counterpart of planarity theorem 1s Dehn Iemma
and Cylinder theorem, in the following sense. For a geometrically
finite function group F uniformizing an orbifold
product-with-handles O = BH*UQ (F)/F, Dehn lemma and Cyvlinder theorem
give us a geometric decomposition of it (see 1.3) along a
collection of discal 2-orbifolds. The signature ([Mas] X.5) of F
corresponds to the graph of groups ([',G) that we associate to the
geometric decomposition of O (2.1).
The topological meaning of the signature is so disclosed by the
three-dimensional picture. As an example, it becomes easy to
understand why quasiconformally conjugate function groups have the
same signature. We prove (see 2.1) that the graph of groups
associated to an orbifold product-with-handles 1s essentially
unique. In fact the singular part of the orbifold
product-with-handles determines, up to some triviality, the
geometric decomposition. In some sense it represents a rigid core
of the decomposition, reproduced by the graph of groups.

In conclusion the interplay with 3-dimensional geometry explains

and renews these previous results on Kleinian groups. Moreover

graphs of groups reveal to be very convenient to state
classification results. The classification is given in fact in

terms of equivalence classes of graphs of groups.



We have also said at the beginning that graphs of groups are a
natural framework to develop a theory of iterative constructions of
Kleinian groups and to study finite actions on some classes of
three-dimensional manifolds. As it will appear evident in a

minute,there is a close connection among these different features.

The first chapter addresses the question of realizing a finite
graph of groups as a Kleinian group, that is to find conditions
under which the fundamental group WI(F,G) of a graph of groups
(I')G) is a Kleinian group (1.3.4 and 1.4.2).

The technigue we use 1is simply to iterate the application of
Maskit's combination theorems, that is to study the conditions
under which Maskit's combination theorems can be applied
iteratively according to the given geometric structure of a graph
(sections 1.1 and 1.2).

Such realizability theorems have a much deeper geometrical meaning
than it looks like at a first sight.

In fact, in stating conditions NO - N4 or similar ones for graphs
of groups, one heavily relies on his geometrical intuition.

So sections 1.3 and 1.4 give realizability conditions for two
classes of graphs of groups: in fact the second class includes the
first one and, in this sense, this is a more general result.

Notice however that, the larger is the class of groups for which we
state realizability, the less are the information we get about the
Kleinian structure of the group we realize.

A similar result, but obtained by different methods, can be found
in [MMZ1], where the authors analyze graphs of groups (I',G) such
that WZ(F,G) is virtually free,that i1s admits a free subgroup of
finite index.This class of graphs of groups is included in our
classes and so their realizability is implied by our realizability
theorems: but, as we have already said, the information about the
Kleinian structure realized is less.

(1.5.1) and (1.6.1) tell us something more: we prove not only that
the classes of graphs of groups satisfying NO-N4 and NO'-N4' are
realizable as Kleinian groups, but we are also able to characterize
the set of Kleinian groups realized.

Function groups are a wide set of Kleinian groups including

elementary groups, Fuchsian groups,basic groups. From the



topological point of view, they naturally arise as fundamental
groups of neighborhoods of compressible surfaces embedded in a
three-dimensional manifold.

The second class of groups we find (section 1.6) include function
groups and as there does not seem to be a specific name for them in
the literature, we have called them generalized function groups.
Actually, from the three-dimensional point of wview, they are a
natural geometric extension of the notion of a function group, even
if this connection is not immediately clear from two dimensional
topology.

So in the first chapter graphs of groups appear as the natural tool
to construct iteratively Kleinian groups and this has a relevant
geometrical meaning.

Notice in fact that, instead of applying combinations theorems for
Kleinian groups, one can prove these theorems by geometrical
arguments as in [MMZ1]. ‘

More precisely, given a graph of groups ([',G) satisfving NO-N4 or
NO'-N4', one can regard a regular neighborhood of [' as an orbifold
whose singular set reproduces the geometric structure of [' and it

turns out that this orbifcld is uniformized by a function group.

Finally I will tell some words about the use of graphs of groups in
an algebrogeometrical theory of finite actions on 3-manifolds. This
idea has been introduced in [MMZ1] for handlebodies. The reascn why
it 1s so efficient 1is that it dincludes in a ni

ice
Riemann-Hurewitz formula, providing a powerful calculus for the
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construction of actions which has been successfully a
various questions in [KM], [Mc], [MMZ2].

A basic gquestion for finite actions 1s the so called Nielsen
realization problem, previously posed for closed surfaces and
solved by Kerchoff [Ke] in 1983. Let'state it for a 3-manifold.

Let M be a 3-manifold and H be a finite group acting
effectively,smoothly and orientation-preservingly on M. The
H-action on M induces a homomorphism TM:H —Q'Out(ﬂl(M)), the group
of outer automorphisms of T,(M). The question 1is: for a given
homomorphism T :H —9'Out(ﬁl(M)), is there a H-action on M as above
which induces it?

For 3-manifolds this 1is not generally true (for example this fact

is shown in [MMZ1l] for handlebodies) .



For almost compact (see 1.5) product-with-handles the solution of
the realization problem is a consequence of 1.5.1.
As a matter of fact, 1if H is a finite group acting on a
product-with-handles M, there 1is a conformal structure on M,
uniformized by a function group, for which H acts conformally. By
this remark, 1.5.1 gives necessary and sufficient conditions for a
group of outer automorphisms of ™M to be induced by a group of
orientation-preserving diffeomorphisms on M (section 3.1).
So 3.1.4 solves the realization problem for almost compact
product-with-handles,by showing that it may have a negative answer.
I repeat that this technique has been introduced in [MMZ1l] for
handlebodies and, from this point of view, this work is a natural
generalization of [MMZ1l] and [MMZ2]. In fact almost compact
product-with-handles include handlebodies and products Sx[0,1],
where S is any finite surface with boundary.
More generally the theorems above turn gquestions about <finite
actions into combinatorial problems involving graphs of groups.
There 1is plenty of applications and the method has been already
successfully used to study, for example, periodic diffeomorphisms
on handlebodies [MMZ1l], equivalence of actions on handlebodies
[KM], actions on nonclosed two-manifolds [MMZ2].
In principle such results could be stated in analogous way for
almost compact product-with-handles. There is really nothing new in
applying those methods to this more general case except that
calculations are a little more messy.
So I have not repeated a parallel analysis and I have confined
myself to a few features in which the study of finite actions on
almost compact product-with-handles turns out to be really
different.
My proposals are:
1) An 1intensive wuse of Euler characteristics 1in finding
admissible graphs of groups (see 3.1.4)
2) A method for studying finite actions which is based on the
symmetry group of the graphs (3.4)
More details about these applications can be found at the beginning

of chapter 3.



The work is organized as follows.

In the first chapter we study sufficient conditions under which
Maskit's theorems can be applied iteratively to graphs of groups
and characterize the set of Kleinian groups realized.

In the second chapter we classify function groups and generalized
function groups in terms of eguivalence classes of graphs of
groups.

In the third chapter we show how one can use graphs of groups to
study finite actions on almost compact product-with-handles, with

some concrete applications.



1 A graph-theoretical approach to Kleinian groups

In this chapter we address the guestion of realizing a finite graph
of groups as a Kleinian group, that is to find conditions undesr
which the fundamental group ﬂg(F,G) of a graph of groups ([,G) is a
Kleinian group (1.3.4 and 1.4.2).

The technique we use 1is simply to iterate the application of
Maskit's combination theorems, that is to study the conditions
under which Maskit's combination theorems can be applied
iteratively according to the given geometric structure of a graph
(sections 1.1 and 1.2).

However it should be noticed that such realizability theorems have
a much deeper geometrical meaning than it looks likes at a first
sight.

As we shall see in a minute this geometrical counterpart is due to
the interplay between the theory of Kleinian groups on one side and
the topology of three-dimensional manifolds on the other one.

In fact, in stating conditions NO - N4 or similar ornss for graphs
of groups, one heavily relies on his‘geometrical intuizion.

So sections 1.3 and 1.4 give realizability conditions for two
classes of graphs of groups: in fact the second class includes the
first one and, in this sense, this is a more general rssulct.

Notice however that, the larger is the class of groups for which we
state realizability, the less are the information we cet about the
Kleinian structure of the group we realize.

A similar result, but obtained by different methods, can be found
in [MMZ1l], where the authors analyze graphs of grouvos ([,G) such
that T, ([',G) is virtually free,that is admits a free subgroup of
finite index. This class of graphs of groups is included in our
classes and so 1its realizability is implied by our realizability
theorems: but, as we have already said, the information about the

Kleinian structure realized is less.



(1.5.1) and (1.6.1) tell us something more: we prove not only that
the classes of graphs of groups satisfying NO-N4 and NO'-N4' are
realizable as Kleinian groups, but we are also able to characterize
the set of Kleinian groups realized.

Function groups are a wide set of Kleinian groups including
elementary groups, Fuchsian groups,basic groups. From the
topoclogical point of view, they naturally arise as fundamental
groups of neighborhoods of compressible surfaces embedded in a
three-dimensional manifold.

The second class of groups we find (section 1.6) include function
groups and as there does not seem to be a specific name for them in
the literature, we have called them generalized function groups.
Actually,from the three-dimensional point of view, they are a
natural geometric extension of the notion of a function group, even
if this connection is not immediately clear from two dimensional
topology.

It is interesting to look at the way we prove that function groups
and generalized function groups are isomorphic to graphs of groups
satisfying NO - N4 and NO'-N4'.In fact it 1s possible to give an
algebraic proof of this result by using the same ideas as in
[MMZ1] .But 1if one <consider the three-dimensional manifolds
corresponding to these groups, then the topological tools give the
same answer at once.

For example, function groups uniformize product-with-handles
(def.1.5.2) and by applying Dehn lemma, one gets a nice
decomposition of these manifolds in pieces and so a nice
presentation of their fundamental group as a graph of groups.This
graph of groups is in a simple normalized form and conditions NO-N4
correspond to the normalized conditions of [MMZ1l].For an analogous
use of topological theorems see [Mar2].

It should be said that, instead of applying combinations theorems
for Kleinian groups, one can prove these results by geometrical
arguments as in [MMZ1].

More precisely, given a graph of groups (I',G) satisfying NO-N4 or
NO'-N4', one can regard a regular neighborhood of [' as an orbifold
whose singular set reproduces the geometric structure of [ and it

- turns out that this orbifold is uniformized by a function group.



The chapter is organized as follows.

In the first four sections Maskit's combination theorems are
applied to the case of graph of groups with cyclic edge groups to
give sufficient conditions for a graph of groups to be Kleinian.

We first analyze the two basic cases, the free product with

amalgamation along a cyclic group (section 1.1) and the
HNN-extension (section 1.2). In these first two sections we state
the starting theorems (1.1.1 and 1.2.1), which are particular cases

of Maskit's combination theocorems, and then we study the technical
conditions under which they can be applied iteratively according
to the given geometric structure of a graph.

In section 1.3 we select a set of sufficient conditions (NO-N4) for
realizing a graph of groups as a function group.

In section 1.4 we select analogous sufficient conditions for a
wider class of graphs of groups containing the previous one.

In sections 1.5 and 1.6 we characterize the sets of Kleinian groups

realized in sections 1.3 and 1.4.

10



1.1 Free products with amalgamation

We first analyze the case of the free product with amalgamation
along a cyclic group. We state the starting theorem (1.1.1la and
1.1.1b), which is a particular case of Maskit's first Combination
Theorem ([Mas] VII.C.2), and then we study the technical
conditions under which it can be applied iteratively according to

the given geometric structure of a graph.

Notation Let G be a Kleinian group and J a cyclic parabolic
subgroup. If J 1is maximal among all torsion-free parabolic
subgroups of G, then we say that J is a maximal cyclic parabolic

subgroup of G.

1.1.1a Proposition ILet E, and E, be two Kleinian groups with a
common maximal finite cyclic subgroup J. Suppose that
1) JﬁEl,JiEZ
2) The two fixed points A,B of the group J on S° are not
limit points of E, and E,.

Then it is possible to realize E,* E, as a Kleinian group F.

proof:
As A 1s not a 1limit point for E, there exists a
neighborhood U of A in the domain of discontinuity Q(Ez) in s?
i.e. g(U) is either equal to U or disjoint from U Vg<E..

The stabilizer of U in E, 1is a finite group and so it
is a finite elliptic group with axis L: so 1t coincides
with J. As a consequence, we can choose a sufficiently small
disk neighborhood U of A in S2, s.t. g(U)NU=0 VgeE,-J
or g€E,-J.

Let now r be the reflection of S$? at dU and define
E,'=rE,r~!. Notice that rJr *=J.So:

E, and E,' are two Kleinian groups with a common maximal
cyclic subgroup J. k = JU 1is a simple closed curve in s?
that divides S? into two closed topological disks B,=clos

U and B,=S°-U. Moreover B, is precisely invariant

11



under J in E;, and B, is precisely invariant under J in
Ez'
To apply Maskit's first Combination Theorem we have still to
prove that the interactive pair (intB,,intB,) is. proper.
As a matter of fact the projection of intB; to Q(El)/E1
has non empty exterior and so any fundamental set D for
E, has non-empty intersection DMB,.
By the first combination theorem, we conclude that the
group generated by E;, and E,' (let's say F) is Kleinian and
that F =E *E,.

g.e.d.

Remark The hypothesis 2) above can be replaced by the following:

2)' One of the two fixed points A,B of the group J on $? is not a

limit point of E, and of E,.

This will be useful in the case that E. is a Euclidean group.

1.1.1b Proposition Let E., and E, be two Kleinian groups with a

common maximal cyclic parabolic subgroup J. Suppose that

1)
2)

J#E ,  JRE,
E, and E, are geometrically finite ([Mas] VI)

Then it is possible to realize E,* E, as a Kleinian group F.

proof:

As E, 1s geometrically finite and J maximal parabolic it
is always possible to find an open <circular disk

B, C CU {00} (resp. B, C Cu {oo}) which is precisely

invariant under J in E, (resp.E,) .

Choose B, and B, with the same diameter. Let

r, Dbe a rotation <carrying B, onto B, and r, the

reflection of S? at OB.. Define

z

E,'= rzrzEzrl‘lr 1

Notice that (r,r,)J(r.r,) -=J and that J 1is still
parabolic and maximal among parabolic subgroups of
E,".We <can apply the first Combination Theorem as for
the finite case, for the proper interactive 9pair

(intB,, (S*~B,)) . qg.e.d.

12



Remark

Let E, i=1,2 be a Kleinian group.Let J, be a finite cyclic subgroup
of order n of E,. Let L, be the oriented axis of J, with endpoints
A, and B;. Let h be a hyperbolic isometry carrying L, onto L,

Then hElh'1 and E, have a common cyclic subgroup J.So E, and E, are
also representable as Kleinian groups and that J; and J,

correspond to the same group J in PSL,(C).

Analogously we have:let E, i=1,2 be a group, J, an infinite cyclic
subgroup. Suppose that E, is a Kleinian group in such a way that
J, 1s a parabolic group, maximal among parabolic subgroups of
E..Then E, and E, are also representable as Kleinian groups in such
a way that J, and J, correspond to the same group J in PSLZ(C), and

J 1s parabolic and maximal among parabolic subgroups of E, and E,.

For iterating this construction to the case of a graph of groups

we need to prove the following

1.1.2a Proposition Let E, and E be two Kleinian groups

satisfying the hypotheses of 1.1.la or 1.1.1b.

Ny

Let K be any finite cyclic subgroup of E, not conjugate to a

subgroup of J with axis M. Then for some realization F of E, *E,

as in 1.1.la (resp. 1.1.1b), the following properties hold:

1) If K is maximal in E,, then it is a maximal cyclic subgroup of
F.

Z2) If an endpoint C of M is not a limit point of E,, then it Is
not a limit point for F.

3) If there are no elements 1in E, acting as reflections on M,

then there are no such elements in F.

Remark The hypothesis 2) of 1.1.l1la can be replaced with 2)': see

the remark after 1.1.1a.

1.1.2b Proposition Let E, and E, be two Kleinian groups

1
satisfying the hypotheses of 1.1.l1a or 1.1.1b. Let K be a subgroup
of E, conjugate to J, with axis M. Then for some realization F of

E *E, as in 1.1.la (resp.1.1.1b) the following properties hold:

13



1) K is a maximal cyclic subgroup of F.

2) If there 1is no element 1in E, or in E, acting as a reflection
on the axis of J,then the endpoints of M are not
limit points for F.

3) If there are no elements 1In E, and in E, acting as
reflections on the axis of J, then there are no elements in F

acting as reflections on M.

Remark We have seen that the hypothesis 2) in 1.1.1la can be
replaced with 2'): see the remark after 1.1.la. This proposition
still goes through except for property 2, where vyou have to
require that A,B (see the notation of 1.1.la) are not limit points

of E, and one of the two is not a limit point of E,.

proof: 1.1.2a - 1); 1.1.2b -1)

Suppose there exists a maximal cyclic subgroup K'C E,* E,
s.t. KCK'. As K' is cyclic, it 1is indecomposable and, by
the Subgroup Theorem, it must be conjugate to a subgroup of
E,. It follows K'=K.

1.1.2a - 2)

Choose a disk U for A like in 1.1.la. The endpoints of
the axis M .0of K are not contained in ¢l U and not even in
any E.-translate of ¢l U as K 1is not conjugate to a
subgroup of J and ¢l U has been chosen in such a way that A
is an isolated singularity.May be we have amalgamated along
a maximal parabolic subgroup J and one endpoint C of K
coincides with the fixed point of J on S$?. But, in this
case, C is a limit point and we are not interested in it
for the proof of the theorem.By the first Combination
Theorem Q(E.)NR = Q(F)NR where R is the complement in S?

of all the E1~translates of cl U.

1.1.2b - 2)

We refer again to the construction in 1.1.la.

If there is no element, say in Eq, acting as a reflection
on L, then we can choose U so small that the endpoint B is
not contained in the closure of E,(U). We apply then the

construction of 1.1.1la to this choice of U.

14



If B is a limit point for F, Vx¢ Q(F) there exists a
sequence {g } g €F s.t. gx —> B. As Q(F)MJU #0, we can
choose x€ JUNQ (E) . By a normal form argument and our choice
of U , we deduce that this does not happen. So B is not a
limit point for this realization F. If there is no element
also in E, acting as a reflection on L we deduce
analogously (for an eventually different realization of F)
that it 1is not a limit point.

If there is one such element ge E,, A is not a limit point
for our realization F as it 1s F-equivalent to B and B¢

Q(F) .

1.1.2a - 3);1.1.2b - 3)

Suppose g€ F acts as a reflection on M. Then g2

leaves M fixed and so it 1is elliptic of finite order.The
group generated by g is cyclic and so 1s indecomposable. By
the Subgroup Theorem it is conjugate to a subgroup K of E,
or E,, let's say E..But K should be a cyclic subgroup of
E.,leaving invariant g(M), which is absurdum.

g.e.d.

An analogous technical lemma must be proved for parabolic

subgroups

1.1.3 Proposition ILet E.,E, be Kleinian groups satisfying the

hypotheses of 1.1.la or 1.1.1b. Let K be any cyclic parabolic

subgroup of E..

Then for some realizations F of E,*E, as in 1.1.1a (resp.l1.1.1b)

the following properties hold:

1) If K is a maximal cyclic parabolic subgroup of E,, then it is
a maximal cyclic parabolic subgroup of F.

2) F is geometrically finite.

Finally we collect here a statement which will be useful in the
third section to ensure that the amalgamated group is a function
group (that 1is an analytically finite Kleinian group with one

invariavt component) .

15



1.1.4 Proposition Let E ,E, be two function groups with a common
finite (resp. parabolic) subgroup J like in 1.1.l1a or 1.1.1b. If
one of the two endpoints of the axis of J (resp. 1f the fixed
point of J on S§?) is in the (resp. the boundary of the) invariant
component of E, and E,, then any realization of E,*E, as a Kleinian

group F like in 1.1.la (resp. 1.1.1b) 1is a function group.

proof: [Mas] page 296/297.

1.2 HNN-extensions

In this section we analyze the case of HNN-extension.Statements and
results are exactly analogous to those of the previous section,
except that one uses the second Maskit's Combination Theorem ([Mas]

VII.E.5).

1.2.1la Proposition Let F be a Kleinian group and J,,J, two

maximal finite cyclic subgroups of the same order.Suppose:

1) If J, and J, ére conjugate there 1s no element in F acting
as a reflection on the axis L, of J,.

2) The fixed points A, B, A, B, of J, and J, on S? are not limit points
for F

Then it is always possible to realize <F,t|tat !=b> as a Kleinian

group, where a and b are any minimal rotations for J, and J,. In the

case J, conjugate to J,, a,b have to satisfy the property that there
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does not exist géFs.t. gag !=b" for some m>0 (such a pair of

generators always exist in view of 1) )

Remark As in the amalgamated case, we can replace hypotheses 1) and

2) above with the following:

1'") J, and J, are not conjugate

2') One of the two endpoints of L, and one of L, is not a limit
point of F.

This will be useful if F is a Euclidean group.

1.2.1b Proposition Let F be a Kleinian group and J,,J, two
maximal parabolic subgroups of F.

Suppose:

1) If J, and J, are conjugate they have singularities of infinite
cyclic type (that 1is we exclude the case of a dihedral
singularity) (for this notion see (Mas] VI.A)..

2) F is geometrically finite.

Then it 1is always possible to realize <F,t|tat !=b> as a Kleinian

roup, where a and b are any minimal rotations for J, and J,.

1.2.2a Proposition Let F be a Kleinian group satisfying the
hypotheses of 1.2.1a or 1.2.1b. Let K be any finite cyclic subgroup
of F not conjugate to a subgroup of J, and J,, with axis M. Then for
some realizations of <F,t| tat *=b> as a Kleinian group F' like in
1.2.1a (resp.1.2.1b)

1) If K is maximal in F then it is maximal in F’

) If an endpoint C of M is not a limit point of F,then 1t 1is

N

not a limit point of F'.
3) If there are no elements 1in F acting as reflections on the

axis M of K, there are no such elements in F'.
Remark Properties 1 and 3 above go through if one replaces the

hypotheses 1 and 2 of 1.2.1la with 1' and 2': see the remark after
1.2.1a.
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1.2.2b Proposition ILet F be a Kleinian group satisfying the
hypotheses of 1.2.l1a or 1.2.1b. Let K be any finite cyclic subgroup
of F conjugate to a subgroup of J, or J,. Then for some realizations
of <F,t| tat i=b> as a Kleinian group F' like in 1.2.la (resp.
1.2.1b)
1) If K is maximal in F then it is maximal in F'
2) If the following additional hypotheses hold:
1) J, and J, are finite
2) J, and J, are not conjugate
3) there are no elements in F acting as reflections on the
axes of J, and J,;
then the endpoints of the axes of J, and J, are not limit
points for F'
3) If the following additional hypotheses hold:
1) J, and J, are infinite
2) J, or J, has singularities of infinite cyclic type;
then the endpoints of the axes of J, and J, are not limit
pcints for F'
4) If there are no elements in F acting as reflections on tias

axis M of K, there are no such elements in F'.

1.2.3 Proposition Let F be a Kleinian group satisfying the

hypotheses of 1.2.la or 1.2.1b. Let K be any cyclic pareabolic

subgroup of F. Then for some realizations of <F,t|tat l=b> as a

Kleinian group F' like in 1.2.la (resp.l1.2.1b), we have

1) If K is maximal among parabolic subgroups of F then K is also
maximal among parabolic subgroups of F' If K has a singularicy
of infinite cyclic type in F, 1t still has such a singularity
in F'

2) F' is geometrically finite.

1.2.4 Proposition Let F be a function group with subgroups JyrJ;
satisfying the hypotheses of 1.2.la (resp. 1.2.1b). If one of the
two fixed points of J, on S? and one of J, (resp.if the fixed points
of J, and of J, on S?) are in the (resp. the boundary of the)
invariant component of F,then any realization of <F,t/tat™!=b> like
in 1.2.la (resp. 1.2.1b) is a function group (in the construction

1.2.1a identify the fixed points with A, and B,).
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1.3 Realization of a graph of groups
as a function group

In this section we select a set of sufficient conditions (NO-N4)
for realizing a graph of groups as a function group. In section
1.5 we will see that these conditions are also necessary, that is
they characterize the set of graphs of groups ([',G) s.t.Wl(F,G) is

a function group.

We recall the usual notations for graphs of groups.

A graph [' consists of a vertex set V([') and an edge set E£([),
together with a free involution e — e' taking each edge to its
reverse edge and a map SO:E(fU —> V([') taking each edge to its
initial vertex. The terminal vertex map is §,:E([7) —2 V(I') and it
is given by Sle=83e'. To each ve V(I') and e€ E(I"), G associates
groups G, and G_, respectively, subject to the constraint that
G,=G_r. For each ec¢ E(I'), G assigns an edge-to-vertex monomorphism
i, G, = Gs,e- In the graph of groups ([',G) a G path is a path

e,....e_  such that im(i ’)=im(ieh1) for 1 £ 1 £ n-1. A G-loop is

e:
& G-path which is a loop (that is, §,e =8.e.), and a closed G-loop

is a G-loop which also satisfies im(i ')=im<ie1) . We will say

en
that two edges e,e'c E(I') are G-equivalent if there is a G-path
€, ....e with e,=e and e =e'. Since each edge is G-equivalent to its
reverse edge, it follows that G-equivalence defines an equivalence
relation on E(I'). For e€¢ E(I') we define the G-component of e to be
the subgraph [, of [' whose edge set E([')) is the G-equivalence

class of e in E(I') and whose vertex set is v(['.) = {SOe'le'eE(Fe)}.

e

A vertex v€ V(Fe) is called a N-vertex 1in Fe if there 1is an edge

e'e E(Te) with SOe'=v and Ng (im(i_,)) #im(i_,) ( Ng, denoting the

o
normalizer in G ) .Finally we will say that a graph of groups ([',G)
is in standard form provided that it satisfies the following two
conditions:

S1 If E, and E, are edges in [' such that $,e,=38,e,, and im(fg,) 1is
then im(f

conjugate into im(f Sim(fg,)

e2) e:)
S2 I'has no trivial edges, where an edge e 1is trivial if im(f,) =

Ggoe and 80e¢ 81e.
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Before stating conditions NO-N4, we need also some preliminaries
about canonical presentations of a group acting discontinuously on

the plane.

A geometrically finite Fuchsian group of the first kind, a
Euclidean group or a finite Kleinian group (that is the groups we
will be concerned about in N1) are isomorphic to a finitely
generated, orientation preserving group acting discontinuocusly on
the plane. So ([Zie] page 35) they have the following canonical

presentation

cdyitiu. ... tou ld M=1(1i<n, h 22) ;
' - - 3 b i
nlksiﬂan—'ﬂ-zgtsustc—luc-l -1 >

From now on we fix a canonical presentation for each non spherical
vertex. Then the elements di (1<€i<n) and s. (1<5<k) are
geometrically minimal rotations in the same direction. We call
these elements canonical generators.

If the vertex group is Fuchsian as above, there are two invariant
circular components of the domain of discontinuity on the sphere
at infinity. We define as the positive component the component S
such that if 1 is the axis of any rotation, the canonical
generator corresponds to a clockwise rotation of S with respect to

1.

(@]

When we construct Kleinian groups according to <the basi
constructions in the proofs of sections 1.1 and 1.2 we use the
positive component.

If the vertex group G 1s a Euclidean group as above, we choose a
canonical ©presentation such that the canonical generator
corresponds to a clockwise rotation of the domain of discontinuity
with respect to the axis of any rotation.

These choices fix the correct way of performing the constructions

of sections 1.1 and 1.2 to obtain a function group.

We can apply iteratively constructions of sections 1.1 and 1.2 to
realize as a function group a graph of groups ([',G) satisfyving the

following conditions:
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NO The graph is in standard form

N1 Every vertex group of G 1s a finite Kleinian group (a
subgroup of S0(3)), a Euclidean group (that is a Kleinian
group with one limit point) or a finitely generated
Fuchsian group of the first kind (that 1is a geometrically
finite Kleinian group that keeps invariant some circular
disk U and such that every point in the boundary of U is a

limit point)

N2 Every edge group of G is cyclic; 4if it is non-trivial it
is maximal cyclic in the adjacent vertex groups. Moreover
if it is infinite we suppose it 1is a parabolic subgroup
in the adjacent vertex groups and maximal among parabolic

subgroups

N3 1) Going around a closed edge-path in G maps a generator of
an edge-group to the same generator
ii) Going along an edge from a non-spherical vertex to
a non-spherical wvertex maps a canonical generator to a

cancnical generator

N4 i) For each ve v(I') s.t. G, is spherical and for each
nontrivial subgroup H of G, there is at most one edge
e¢ E(I') with im(i )= H except that there may be two such
edges if the pair (G, H) 1is isomorphic to
(&,, %), (D, . &,) or (B, Z,
ii) For each G, not spherical and for each nontrivial finite
subgroup H or rankl parabolic subgroup of G there is

at most one edge e¢ E([') with im(i,) =H.

Abuse of language: We will often say ‘'spherical (Fuchsian,
{
Euclidean) vertex' instead of 'vertex with a spherical (Fuchsian,

Euclidean) vertex group'.

1.3.1 Remark A graph of groups (['',G') satisfying NO-N4 satisfies
also
U For each edge e€ E(I') with nontrivial edge-group G,/

X(I',))20 and T'_ contains at most two finite N-vertices

In addition if X(I'))=0 then it has no more than one finite

N-vertex,whereas 1if Fe contains a non-trivial closed G-loop
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then it has no finite N-vertex.
Analogously for each edge e€¢ E([') with nontrivial edge-group

G Fe contains at most two non-spherical vertices.

el
If Fe contains a non-trivial closed G-loop. then it has no
non-spherical vertex). For a non-closed edge path,

initial and endpoints are counted as two different points.
U will be used only in the proof of 1.3.4.

In fact by NO-N1-N2-N4, given an edge e€ E(I') with non-trivial
edge—-group G,/ Pe contains a non-trivial closed G-loop if and only

if it is one of the following types:

;>ﬂ‘ﬂlm::\~ A\/i”/ﬁh‘\\

, b ‘
;\h IDQR::/ E\\—'AAH///

So there are neither N-vertices nor nonspherical vertices.
Moreover )((Fe)=0 (if there are no G-loops) if and only if it is

one of these types:

'nv-v"' 4 ®-1LL9| AR ID‘-,\ A’1 A
o oy
(’“\ 1( 2 3( [3

AU+ Lt
2 o ’/%;

and so Fe has at most one N-vertex. If Fe is a tree, N-vertices or

non spherical vertices may be only endpoints in Fe.
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The algebraic properties of spherical groups enable us to put a
graph of groups ([',G) satisfying NO-N4 in a simplified form (see
condition N5 later), to which constructions of sections 1.1 and
1.2 may be directly applied. To this purpose we need to prove the

following technical result

1.3.2 Lemma Let ([,G) and ([',G) be graphs of groups satisfying NO

- N4. Suppose that there exists a system of 1isomorphisms

X={a(v),a(e)} x(v): G, =2 G V ve V([); x(e): G, —> G, V e€ E([)

S.t.

1) «(e')=x(e) V ec E([)

i1) &X(&,e) (im(f,))=imf, V e€ E([') such that &,e is not spherical

i1ii) if v 1Is not spherical & (v) maps a canonical generator to a
canonical generator.

Then 7, (I,G) = 7, (I,G)

proof: The proof is essentially as in [MMZ1l] page 26.

One shows that there is a system &={x(v),x(e)} of isomorphisms
where x(v): G, —> G V ve V(I'); «(e): G, —> G, V ec E(I') s.t. i)
E(I') the

[§1)
M

holds and which 1is compatible on [, that is V¥

following diagram commutes

G o (80) - _C]
A

N/
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Consider the system « of isomorphisms of the hypothesis. By some

modifications we can construct a new system of isomorphisms &'

such that the property i1i) holds for spherical vertices.

If veé V(I') is a spherical vertex we perform the two operations of

[MMZ1] page 27 which consist of:

a) choice of different isomorphisms betweeen Gg,o and Gg,e for

A spherical vertices

b) modification of all edge-to-vertex monomorphisms Gg,e ~7 Ggge
of some fixed v=8 e spherical, by inner automorphisms of Gg,e-

Observe that operztion b) changes ([',G) but the resulting graph of

groups still satisfies NO-N4 and has the same fundamental group.

We obtain then two graphs of groups ([',G) ([',G) satisfying NO-N4

and a system of isomorphisms & with the properties 1i),iii) and

s.t. 1i) holds for every vertex of ['.

To obtain a system of isomorphisms which is compatible on [’ we

proceed as in [MMZ1l] page 27/29 for all spherical vertices.

The operations I - II - III of [MMZllchange the edge-to-vertex

monomorphisms in (I, G) ﬁezGe'—é G5oe with SCe spherical by inner

automorphisms of Gg,, leading to a graph of groups with the same

fundamental group, satisfying NO-N4.

So we have two graphs of groups ([',G), (I',G) and a system of

isomorphisms & with the properties i),ii),iii) and compatible on

each spherical vertex.

Finally we arrange for compatibility of non spherical vertices.

Consider the case of an edge e€ E(I) s.t. Gs.e+ 1s not spherical and

Gs.e 1s spherical (the case of adjacent non spherical vertices is

easier)

G = G EEEG

—de —e —'%é
/P AN AN

«(4,e)
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By 1ii) ¢ =(£, £, x(8,e) (£,£,, ) x(8,e)”t 1is an automorphism of
im(£,,) . So there exists x¢ im(£,.) s.t. U(x)P =1. We now define
the system &' of isomorphisms on [' to agree with & except that

X' (e)= £t (8 e) £, X' (e')=X"(e)
and we define a new edge-to-vertex monomorphism L'y, = H(x)£,,.The
new graph of groups, as there are no other edges e''#e s.t.
), still satisfies

SOe =SOe’ and imf_., (G

G,..) conjugate to imf_, (G

o
NO-N4 and the system &' of isomorphisms still satisfies
i),411),1iii), 1is compatible on each spherical vertex and on e'.

We repeat this operation V e€ E(I') s.t. §,e is not spherical and we
obtain the thesis (notice that by property iii) of the system &,
the modifications of the graph of groups (I',G') still satisfy
N3ii))

g.e.d.

We have already fixed a canonical presentation £for the non
spherical vertices (see the remark at the beginning of the
section) . This is important to orient coherently the axes of the
rotations of the vertex groups and to be sure to finally obtain,
by a correct application of the constructions of sections 1.1 and

1.2 a function group.

Let us fix now a canonical presentation for each spherical vertex
group 1in such a way that canonical generators correspond to
clockwise rotations of the boundary component with respect to the
axis of the rotation.

In view of these choices the constructions of sections 1.1 and 1.2
are not ambiguous.

The next corollary to 1.3.2 states that, whatever is our choice of
a presentation for spherical vertex groups, we can always suppose
that our graph of groups has the important property that canonical

generators are mapped to canonical generators (N5).

1.3.3 Corollary Let ([,G) be a graph of groups satisfying NO-N4.
Fix a presentation of each spherical vertex group as a Kleinian
group. Then ([',G) is isomorphic to a graph of groups (I',G')
satisfying NO-N4 and
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N5 For every edge A —> B of [ the map 1.1 ! maps a canonical

e

generator to a canonical generator.

proof: We want to apply the previous lemma. Suppose Vv 1s a non
spherical vertex and e€¢ E([') with Soe =v s.t. ie(Ge) is not
spanned by a canonical generator (notice that by N3ii) this
implies that §&,e is a spherical vertex). This means that there
exists g€ Ggge S.L. gj.e(Ge)g'l is a cyclic group spanned by a
uniguely determined canonical generator. Define a new graph of
groups (I',G), with the same underlying graph and the same
edge-to-vertex-monomorphisms except for

io= Wi, i.= i,
(L (g) denotes conjugation by g). The fundamental group of (I',G) is
unchanged and it still satisfies NO-N4.
By repeating this operation V e¢ E(I') as above, we can assume that
we are given with a graph of groups (I',G) satisfying NO-N4 and
s.t. 1f v is a non spherical vertex and e€ E(I') is an edge with 3.e
=v, then i_(G,) 1is a cyclic subgroup of G;,. spanned by a canonical
generator.
Now define a new graph of groups ([',G') with the same underlying
graph and the same edge and vertex groups. Given e€ E([') we define

new edge-to-vertex-monomorphisms i ' in this way:

- if §,e is not spherical

- if d,e is a spherical vertex and 8,e is a spherical vertex,
define as edge-to-vertex-monomorphisms any pair of maps i i 's.t.
1) they satisfy N2 2) i.,i.7' maps a canonical generator of Cspe tO

a canonical generator of Gs1e according to the fixed presentation.

- if SOe is a spherical vertex and 81e is not, 1i_,.(G,) is, by our
construction, a cyclic subgroup of Gg,o generated by a canonical
generator d.
Define new edge-to-vertex-monomorphisms

it =i,

i, i@ = £

where £ is a canonical generator of Ggpe S-t. 1, satisfies N2.
If necessary, we can always put ([',G') in standard form.

By construction ([',G') satisfies NO-N4 and N5 . Moreover ([',G) and
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(I',G') satisfy the hypotheses of 3.2 for the system of
isomorphisms &X={«(v),x(e)}

x(v): G, =™ G, = 1_ vV ve v(IN)

X(e): G, —> G, T 1 vV ee E(IN)

Ge

So (I',Gy and (I',G') are isomorphic.

The main theorem of the section is the following

1.3.4 Theorem Let ([',G) be a finite graph of groups satisfying

NO-N5. Then there exists a function group F s.t. WQ(F,G)EF

We break the proof of the theorem into two part by first
realizing as a function group simpler graphs of groups.

Let us construct these simpler graphs of groups from a given (I',G)
satisfying NO-N5. For any G-equivalence class ['_ e€ E([') we perform

some operations on the graph of groups.

a) If G, is not trivial and I', has two finite N-vertices there is
only one geometric path (in Fe ) between the two vertices (in
fact, by condition U,we have X ([' )>0 ). Choose a pair of edges

{f£,£'} in this path and delete it: that is, consider the graph
of groups (I'',G) where v(I'")y=v(I"), E(I'")=E(I")-{£,f'} and edge
and vertex groups are induced by (I',G) on the subgraph ['' (may
be disconnected) .

If G, is not trivial and Fe has two non spherical vertices)
there is only one geometric path (in [', ) betweeen the two
vertices ( in fact, by condition U,we have X(T§)>O ) . Choose a
pair of edges (f,f'} in this path and delete it: that 1is,
consider the graph of groups (['',G) where V(['")=v(I[),
E(I'")y=E(I")-{£f,f'} and edge and vertex groups are induced by
(I',G) on the subgraph ['' (may be disconnected).

b) If G, is not trivial and ['_ contains a non-trivial closed

G-loop (there may be at most one non-trivial closed G-loop by

U) choose a pair of edges {f,f'} in the loop and delete it.
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After performing these operations we obtain a subgraph ['' of [.

Let (['',G) be the graph of groups induced by restriction of ([',G)

to 't ("', G)

Notations I

Notations II

still satisfies NO - NS5.

Let f€ (E(M-E(I'")) be an edge s.t. §,f=v (eI'") .G,

injects into T, (I'',G) through the map iz ri. where

it G, = G,z is the injective edge monomorphism of
(I')G) and idg,e: Ggoe = T, (['',G) is the natural
inclusion. Let J= g 1:(GC Trl(T',G). We will

call J exterior subgroup of (['',G) with respect to

(I',G).

May be 81f and SOf belongs to different connected
components FA, FB.SO we have two Kleinian grouvs
T, (I',,G), T (I';,G) with maximal cyclic subgroups or g
maximal parabolic subgroups (by ii)) 1.(G;), i.,(G..)
of the same order. Consider for example the finite

case. Set J,= i.,(G.), J,= i.(G,) . ¢=i.i.”* maps J,

isomorphically onto J..Consider the
oriented axis L.(resp.L,) of J, (resp.J,) with
endpoints A,,B.( A,,B,). Let h be a hyperbolic

isometry —carrying L, onto L preserving the

5
orientation of the axis.Then hT , (I ,,G)h"™" and
mT,(['3,G) have a common cyclic subgroup J=
1.(G,). We call hw.(I',,G)h™- the group corresponding
to m,(I",,G) for J.

Notice that N5 ensures that [ (h)$ (whers [ (h)
denotes conjugation by h) 1is the identitv on J. Then

'y ™ 'y is isomorphic to (hm.(I',,G)h™)«. T (I',,G).

1.3.7 Lemma Each connected component of (['',G) can be realized as

a function group H s.t. for any subgroup J exterior with respect

to (I',G), the

following properties hold:

1) J is trivial, maximal cyclic or maximal parabolic in H

i1) J=H

iii) a) If J is not trivial and finite the fixed points of J on

S? are not limit points for H (if the G-egquivalence class of

28



G, in (I',G) contains Euclidean vertices we only require that
one of the twd fixed points is not a limit point for H).
b) H is geometrically finite.

iv) If J is not trivial and finite and the G-equivalence class
of G, in (I',G) contains no N-vertices, then there are no
elements in H acting as reflections on the axis of J.

v) a) If J is not trivial and finite and 51f belongs to the
same connected component of SOf, then one of the two fixed
points of J on S? is in the invariant component of H
b) If J is infinite, the fixed point of J on S? is in the
boundary of the invariant component of H.

vi) a) If J is not trivial and finite and &,f belongs to a
different connected component from 50f,
let's say [", then one of the two fixed points of J on 5% is
in the invariant component of H and the group
corresponding to H* for J, where H* is the realization as a
function group of WQ(F*,G).

b) If J is infinite and 51f belongs to a different connected
component from §,f, let's say I, then the fixed point of J
on S? is in the boundary of the invariant component of H
and the group corresponding to H* for J, where H* is the

realization as a function group of ﬂ}(F*,G).

proof of 1.3.7

By induction on the number of edges and the propositions of

sections 1.1 and 1.2.

proof of 1.3.4:
Let (e,e'} be a pair of edges of E([') deleted in operation a).

Suppose, for example, that &,e and §,e' belong to different

connected components ['.' and I',' of I'' (the other case is
analogous) .
Consider the graph F",V(F")=V(F)E(F")=E(F1')bWe,e'}uE(Tz'); let

(I'",G) the graph of groups induced on the subgraph ['" by (I',G). By
1.3.7 we can realize (Fl’,G) and (Fz’,G) as function groups H;, and
H, s.t. for any subgroup J exterior with respect to (r',G) 1i)-vi)
hold. As a consequence we claim that we can realize (['",G) as a

function group H s.t. for any subgroup J' exterior with respect to
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(I'yG) i)-vi) hold.

First of all H, and the group corresponding to H, for 1i_(G,) =K,
satisfy the hypotheses of 1.1.1, 1.1.4 for the subgroup K. In fact
they follow from i)-vi). So we can use its conclusions.

(I'",G) is realizable as a function group H s.t. for any subgroup J

exterior with respect to ([',G) the following properties hold:

1.1.2-1 implies 1)

1.1.2-2 implies 1ii): notice that J cannot be conjugate
to K)

1.1.2-3 implies iv)

N3 implies v) =-vi)

By iterating the procedure we realize a graph of groups (['?,G)
obtained by (I',G) with operations of type b), as a function group
s.t. 1)-vi) hold. For b-operations we behave in the same way, by
using 1.2.1,1.2.4 and N3i) (which guarantees the <correct
application of 1.2.1,1.2.4).

g.e.d.
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1.4 Realization of a graph of groups as a generalized
function group

In the previous section we have realized as function groups graphs
of groups satisfying conditions NO-N4. As a matter of fact
conditions N3ii) and part of N4 are needed only to ensure that the
realization of the graph of groups as a Kleinian group has an
invariant component. We define now a notion of generalized
function group and state conditions (NO'-N4') under which a graph

of groups 1s realizable as a generalized function group.

Before stating the definition of generalized function group, we
need some preliminaries.

Let F Dbe a geometrically finite Kleinian group with no rankl
maximal parabolic subgroups. Let Ql be a component of the domain
of discontinuity (2(F) and StabQ,CF its stabilizer. Then Stab{). is
a geometrically finite function group with invariant component Q:.
In fact, by [Maskit IT F.8} the invariant compcnent of Stale is
obtained from Q1 by adding a discrete set of points; as there are
no rankl maximal parabolic subgroups and F 1is geometrically
finite, the invariant component coincides with Ql. So Stale is a
finitely generated Kleinian group with one invariant component,
that is a function group. In particular, for each component (' of
the domain of discontinuity ' (F) we can define the structure
subgroups S,....5 of F relative to (' as the structure subgroups
of Stab('.

Now we can state the following:

1.4.1 Definition A generalized function group (g.f.g) 1is a
geometrically finite Kleinian group with no rankl maximal
parabolic subgroups, such that, for each structure subgroup S,
which 1is quasiconformaly conjugate to a Fuchsian group and Iis
relative to a boundary component Q1 of QQ(F), there exists a
component (), which is not F-equivalent to (2, and a structure
subgroup S, relative to (), which is also a structure subgroup of Ql

and 1s conjugate to S, in Stale. Moreover for each Euclidean
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structure subgroup S, relative to (2, there exists a parabolic fixed

point in S2Q(F) which has a stabilizer conjugate to S, in Stale.

Remark The definition above includes geometrically <finite

function groups with no rankl maximal parabolic subgroups.

As a generalization of 1.3.4 we have the following statement:

1.4.2 Theorem Let ([,G) be a finite graph of groups satisfying:

NO'’

NI'

N2

N3’

ii)

i1)

= NO

Every vertex group of G 1s a finite Kleinian group, a
Euclidean group of rank two or a cocompact Fuchsian group

of the first kind.

Every edge group of G is cyclic and if it 1s not trivial it

1s maximal cyclic in the adjacent vertex groups.

= N31i)
Going along an edge from a non spherical vertex to a non
spherical vertex maps a canonical generator to a canonical

generator or the inverse of a canonical generator

= N41i)
For each ve V([) s.t. G, is Euclidean and for each
nontrivial finite subgroup H of G, there is at most one

edge e€ E(I') with im(f_)=H

iii)For each ve Vv([) s.t. G, 1s Fuchsian and for each

nontrivial finite subgroup H of G, there are at most two

edges e€ E(I') with im(f_)=H.

Then (I',G) is realizable as a generalized function group
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1.5 Geometrically finite function groups

We have seen in section 1.3 that any graph of groups ([',G)
satisfying the normalized conditions NO-N4 is the fundamental
group of a geometrically finite function group. The aim of this

section is to prove the converse, that is:

1.5.1 Theorem An abstract group F 1s 1somorphic to a
geometrically finite function group, if and only if there exists a
graph of groups ([ ,G) satisfying the conditions NO-N4 s.t.

T, (I',G)=F

It is possible to give an algebraic proof of this result by using
geometric group theory as in [MMZ1].

But, i1f one consider the three-dimensional objects corresponding
to these groups, the topological tools give the same answer at
once. '

In fact, by applying Equivariant Dehn Lemma and Cylinder Theorem,
one proves that function groups uniformize orbifold-with-handles
(see definition below). Orbifold-with-handles admit a natural
geometric decomposition in simpler pieces and through this
decomposition one gets a nice presentation of function groups as
graphs of groups. For an analogous use of topological theorems see
(Mar?2].

There are many ways in which this decomposition can be done and so
there are many graphs of groups satisfying NO-N4 which can be
associated to a given function group.

The most direct way is to observe that, if F 1is a geometrically
finite function group, O = H’/F is essentially compact, that is
there is a finite set of disjoint two-orbifolds S,....S, s.t., if
we cut O along US,, the resulting orbifold O’ is compact. Moreover

the possible ends of O are known and one sees that T (0') = T, (0).
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O' admits a decomposition in compact simpler pieces and through
this decomposition one gets a presentation of F as a graph of
groups .

Moreover the graph of groups so obtained satisfies the following

conditions which are more restricted than NO - N4:
CO0 = NO

Cl Every vertex group of G 1s a finite Kleinian group (a
subgroup of S0(3) ), a Euclidean group of rank 2 (that 1is &
Kleinian group with one limit point with an abelian subgroup
of rank2) or a cocompact Fuchsian group of the first kind
(that 1is a kleinian group that keeps invariant some circular

disk U and such that every point 1in the boundary of U is a

limit point: moreover U/F is a compact surface)

C2 Every edge group of G 1s finite cyclic;, 1f 1t 1is not trivial

it is maximal cyclic in the adjacent vertex groups

C3 = N3

c4 = N4

We could have stated 1.5.1 also by using conditions CO - C4,
instead of NO - N4. As a matter of fact the first part of the

proof in which, by using combinations theorems, we give a graph
the structure of a Kleinian group, would have been easier.

But the point is that, if we describe F through a simpler graph of
groups (I',G) satisfying CO - C4, a lot of geometric information
about F is lost. As a matter of fact, we know that WI(F,G)EF as an
abstract group, but we don't know nothing about the deformation
class of F as a function group.

The class of graphs of groups satisfying CO - C4 is suitable for
describing function groups F uniformizing compact
product-with-handles Dbut they don't tell anything about the
possible punctures of M = HUQ (F)/F in the general case.

The application of Dehn lemma and Cylinder Theorem we will use 1is,

accordingly, more sophisticated and closer to the approach of
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[Mar2] (but he deals with the torsion-free case).

1.5.2 Definition A product-with-handles 1s a connected,

orientable 3-manifold M s.t. there exists a finite collection of

disks or punctured disks D,....D,  mutually disjoint, with all
boundaries in the same connected component of oM and the property
that, by cutting M along D,....D_  we obtain a collection of
3-manifolds M,....M as follows.

M, 1<isn may be

1) a 3-ball

2) a 3-ball without one diameter

3) a product S X [0,1] where S is a compact, orientable surface
without boundary with genus g>1

4) T2 x [0,1)

5) a product X x [0,1] where X 1is an orientable surface with

punctures and free rank r 22.

by

|-
—
[

This collection of 3-manifolds M,....M and of disks D.....D_

be called a geometric decomposition for M.

We will sometimes use the notion (see chapter 3) of almost compact
product-with-handles. The definition of almost compact
product-with-handles is the same as above, except that 2) and 5)
are not allowed. So the only noncompact elements of a geometric

decomposition are homeomorphic to T? x [0,1).

1.5.3 Definition An orbifold product-with—-handles 1is a
connected, orientable 3-orbifold O s.t. there exists a finite
collection of discal 2-orbifolds (that 1is orbifolds which are
isomorphic to D?/G where D? is the 2-disk and G ia finite subgroup
of SO(2)) or punctured disks D,....D,  mutually disjoint with all
boundaries in the same connected component of dO and the property
that, by cutting O along D,....D_ we obtain a collection of
3-orbifolds O,....0 as follows.

0, 1=isn may be

1) a guotient of B® by a finite linear action (a ballic orbifold)

2) a gquotient of E’UQ(E) by a Euclidean group E (that is a
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Kleinian group with one limit point)
3) a product S X [0,1], where S is a compact hyperbolic 2-orbifold
or a 2-orbifold with some punctures (the case S? with one

puncture is excluded)

This collection of 3-orbifolds O,....0, and of discal 2-orbifolds
D,....D, will be called a geometric decomposition for O. We will

show later (2.1) that this decomposition is essentially unique.
1.5.1 is an immediate corollary of the following

1.5.4 Lemma If F is a geometrically finite function group M =
B’UQ(F)/F is an orbifold product-with-handles.

Notice the following particular case of 1.5.4

1.5.5 Corollary If F is a geometrically finite torsion-free

function group, then M = B’UQ(F)/F is a product-with-handles.

By 1.5.4 we know that, i1f F is a geometrically finite function
group,then M = H3UQ(F)/F is an orbifold product-with-handles, that
is, there exists a collection of mutually disjoint discal
2-orbifolds like 'in 1.5.3. The geometric decomposition of M gives
a presentation of F as a graph of groups ([',G) satisfying N1-N4,
but not necessarily NO (they may have trivial edges). Of course it
is always possible to collapse trivial edges and obtain,
algebraically, a graph of groups in standard form. Something more
is true, that is there exists a geometric decomposition of M such
that the associated graph of groups is in standard form. Suppose
that ee E([') is a trivial edge with 8,e=v, and §,e=v,; moreover let
v, #v, and 1_:G_ —9'6806 an isomorphism. Then there exists a discal
2-orbifold D, (or a punctured disk) in the collection above

corresponding to the edge e which can be ignored. In fact one sees
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that D,....D__;, give still a decomposition of M as in 1.5.3. This is
due to the fact that we have only two possibilities: the
3-orbifold associated to v, in the first decomposition can be a
3-ball with a singular elliptic axis or a 3-ball without one axis.
Whatever 1is the 3-orbifold associated to v, in the first
decomposition, by property N1, we obtain a homeomorphic 3-orbifold
by glueing to it one of these 3-balls. So the collection of discal
2-orbifolds D,....D
orbifold product-with-handles, with associated graph of groups the

gives the same a decomposition of M as an

r-1

graph obtained from ([',G) by collapsing the edge e.

proof of 1.5.4: By Selberg's lemma F has a normal torsion-free
subgroup of finite index H.

Moreover (Q(H) = Q(F) and so H is still a function group.

If F/H =G where G is a finite group, O is isomorphic to M/G where
M = B*UQ(H)/H and M/G is the quotient of M by the action of a
finite group of orientation-preserving diffeomorphisms isomorphic
to G.

Let 0 be the invariant component of H and Q/H =S the correspondent
boundary component of M = HUQ (H)/H. Let I: T,(S) —> 7,(M) the
homomorphism induced by the natural inclusion: as (2 is invariant,I
is an epimorphism.

We have two cases:’

i) I is an iéomorphism

ii) ker I = @.

Let's first analyze the case 1i).

By applying equivariant Dehn lemma, there exists a collection of r
disjoint G-equivariant disks D,....D, s.t. dD.C S Vi 1<isr and kerl
is generated by the boundaries of the disks.

Cut the manifold along these disks: we obtain n 3-dimensional
orientable manifolds M, with one boundary component S, 1<i<m given
by a submanifold of S collapsed along some boundary circles. The
manifolds M, are stabilized by some finite subgroups of G,
Stab,....Stab_. So M can be obtained by glueing the n 3-manifolds
M, along disjoint disks; S can be obtained from S, by removing the
interior of the same disks and by glueing the m pieces S.' obtained
along the boundary circles.

From the point of view of fundamental groups this corresponds to a
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presentation of T,M as a graph of groups ([’,G) with vertex groups
isomorphic to m,M, 1<ism and trivial edge groups; and to a
presentation of T,S as a graph of groups ([},Go) with vertex groups
isomorphic to m,S,' 1=ism and infinite cyclic edge groups.

The map I defined above maps the vertex groups G, of (TO,GC) into
the vertex groups of ([',G) with kernel generated in G, by the
images of the edge groups G, of (FO,GO) with 8Oe:v and maps edge
groups of (I';,G,) to edge groups of (I',G).

As I is an epimorphism, the vertex groups of ([',,G,) are mapped
onto the vertex groups of ([,G).

Then the map J: ™, (S;) — ™, (M) 1£i<n induced by inclusion is an

isomorphism. We are so reduced to case i).

If M; is compact, by [H] th. 10.2, M, is B’ or a product S x [0,1]
where S is a compact orientable surface different from B® and with
no boundary.

As a matter of fact T? X [O;l] is excluded as any rank2 abelian
subgroup of a kleinian group is parabolic.

If M, is not compact and has some non compact ends homeomorphic to
T? x [0,1], we can always choose the embedded end in M. in such a
way that G acts equivariantly on it.

By cutting M, along T2 X {0} we obtain two pieces which are
precisely invariant under the action of G.

So we can reduce to the case in which noncompact ends are not of

this type.

Then by ([Mar2] prop.5.4 V fixed 1 1£i<n there exists a certain
number n; of disjoint tubes T,....T, pairing some punctures on 8Mi
- S, s.t., by removing T, we obtain a collection of products (or

3-balls) N,....N_ where N, = 5. X [0,1] and Sj is a finitely

generated surface with possible punctures. As F is geometrically
finite, we can choose these tubes to be also G-equivariant.

So we conclude thét V fixed i 1<i<n there exists a certain number
n, of disjoint G-equivariant punctured disks D,....D, with ach S,
1<jsn, and s.t., by cutting M, along D, we obtain a collection of
products (or 3-balls) N,....N_ , where N.= S, X [0,1] and Sj is a
finitely generated surface with possiblelpunétures. Notice that Sj
can't be $? or a sphere S? with one puncture as M is irreducible.
Otherwise stated: we can find in M a finite collection of mutually

disjoint disks and punctured disks with all the boundaries in the
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same connected component of oM s.t., by cutting M along them we
obtain a set of 3-manifols N,....N, which are precisely invariant
under the action of finite subgroups of G.
N, may be one of the manifolds 1)-5) listed in 1.5.2.
Now we can conclude the proof of the theorem by studying the
action of finite groups of orientation-preserving diffeomorphisms
on 3-manifolds of type 1) - 5).
If N is a 3-ball and G a finite group acting on it, the action of
G is linear. If N = S x [0,1], then N/G = S' x [0,1], with S' a
compact surface with possible elliptic singularities ([H] theorem
8.1). For the non compact cases, one reduces to the previous case,
with S a compact surface with nonempty boundary, by cutting N, as
F is geometrically finite, along G-equivariant tubes pairing the
punctures of S X {0} with S X (1}.

g.e.d.

We will also use (see chapter 3) the following analogous but more

restricted result:

1.5.6 Theorem An abstract group F Is 1isomorphic to a
geometrically finite function group with no maximal rankl
parabolic subgroups, 1f and only if there exists a graph of groups

(I',G) satisfying the conditions CO-C4 s.t. T, ([,G)=F.

From the geometrical point of view, we have a statement
corresponding to 1.5.5:

1.5.7 Theorem If F is a geometrically finite function group with

no maximal rankl parabolic subgroups, then M = BE*UQ(F)/F is an

almost compact product-with—handles.
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1.6 Generalized function groups

We have seen that any graph of groups ([',G) satisfying the
normalized conditions 1s the fundamental group of a generalized
function group. The aim of this section 1is tc prove the

converse, that 1is

1.6.1 Theorem An abstract group F 1s isomorphic to a generalized
function group if and only 1if there exists a graph of groups (I',G)
satisfying the conditions NO'-N4' such that Wl(F,G)E r.

As in the previous section we state the following

1.6.2 Definition A generalized orbifold product-with-handles

(g.o.p.) 1s a connected orientable 3-orbifold M such that there

exists a finite collection of discal 2-orbifolds D,....D, mutually
disjoint with the property that, by cutting M along D,....D_ we
obtain a collection of 3-orbifolds M..... M as follows.

1

M, 1l<isn may be:

1) A quotient of B® by a finite linear action

2) A quotient of H*UQ(E) by a Euclidean group E with rank two.

3) A product Sx[0,171, where S 1is a compact hyperbolic

two—-orbifold.

1.6.1 is an immediate corollary of the following

1.6.3 Lemma If F is a g.f.g. then M = BEUQ(F)/F is a g.o0.p.

As for orbifold product-with-handles, the geometric decomposition
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of M gives a presentation of mT,M as a graph of groups (I, ¢)
satisfying N1'-N4' and without loss of generality we can suppose

it satisfies also NO'.

proof of 1.6.3 Instead of applying equivariant Dehn lemma like
in 1.5.1, we will wuse, 1in an equivalent way, Dehn lemma for
orbifolds [Tal. Let M = HJQ(F)/F and fix a connected component X
of oM. If ker(i‘:ﬂlZ'—9 T.,M) # 1 (where i denotes an inclusion) we
can apply Dehn lemma for orbifolds [Tal3.4 and find a collection
of disjoint discal 2-orbifolds D,....D_ such that dD,....dD.C X and
they generate keri”. The boundaries oD,....dD, are a system of
dividers for X2 in the sense of [Mas] X.C. We repeat this operation
for any component of OJM and cut M along them. We obtain n
3-dimensional orientable manifolds M; which are almost compact:
they may admit noncompact ends homeomorphic to H/E where E is a
Euclidean subgroup of F of rank two and HC B3 is a horoball
precisely invariant under E. Let M, be one of these manifolds. It

admits one boundary component 2, which is uniformized by a

1
structure subgroup S; of F (relative to some component (2, of (I(F))
acting on its invariant component. As there are no maximal rankl
parabolic subgroups in F, S, cannot be degenerate and is elementary
or gquasifuchsian. If S, 1is elementary and finite, as M is
irreducible, it has only the boundary component Zl and is a ballic
orbifold.If S, 1s a Euclidean orbifold, by 1.4.1, M, =
H3Lﬂ?(81)/sl.lf S, is quasiconformally conjugate to a Fuchsian
group, by 1.4.1, there exists a different boundary component Zz ot

oM such that 1,7(m.2)

n

i,7(m,%,) for some inclusions i. and i,. As

5,1, that M. = ZIX[O,l].

i.7 and i, are injective maps, we conclude, by [MS] and ([Wa] lemma

I

g.e.d.
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2 Some classification results

This part is the core of the thesis. It shows how the use of
3-dimensional topology greatly simplifies the study of Kleinian
groups and gives easily strong classification results.

The crucial example to bear in mind is Maskit's classification of

geometrically finite function groups [Mas] X.G.2:

Let G and F be geometrically finite function groups. G is a

deformation of F 1if and only if G and F have the same signature.

The proof of this result is based on three crucial steps:

1) The planarity theorem ([Mas] X.A.6) about regular planar
coverings of topologically finite Riemann surfaces, allows us
to associate a signature (X.E) to each function group.

2) The Jordan theorem ,stating that a surface $ is planar if and
only if every simple closed curve on S 1is dividing, implies
that quasiconformally conjugate function groups have the same
signature (X.D.5) ’

3) We can find out the set of admissible signatures, by
constructing, through the combination theorems, function groups
with a given signature.

The three-dimensional point of view, on one side sheds a different

light on this theorem and, on the other one, suggests various

generalizations, which are not so evident by only looking at the
limit set of function groups: generalized function groups, for
example, are & natural geometric extension of the notion of
function groups, while their characterization as Kleinian groups

(1.4) is a little tricky.

The first step has been accomplished in chapter 1.
The 3-dimensional counterpart of planarity theorem 1s Dehn lemma
and Cylinder theorem, in the following sense. For a geometrically

finite function group F uniformizing an orbifold
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product-with—handles O = H’UQ (F)/F, Dehn lemma and Cylinder theorem
give us a collection of discal 2-orbifolds and punctured disks
D,....D,, such that, by cutting O along them, we obtain a geometric
decomposition of it (see 1.5). The boundaries oD,....dD_ are &
system of dividers for F. By this way the signature ([Mas] X.5)
(K,t) of F corresponds to the graph of groups (I',G) that we
assoclate to the geometric decomposition of O (2.1).

The topological meaning of the system of dividers is so disclosed

by the three-dimensional picture.

To obtain a classification of geometrically finite function groups,
one has first to prove that guasiconformally conjugate function
groups have the same signature. The nice Maskit'sproof (X.D.3)
relies heavily on the characterizing property of planar surfaces:
every simple closed curve is dividing. On the other hand,in this
section we prove (see 2.1) that a geometric decomposition of an

orbifold product-with-handles is essentially unigue. From the

D

3-dimensional point of view it 1is easy to understand why: tn

singular part of the orbifold product-with-handles determines, u

'3

to some triviality, the arrangement of the geometric decomposition.

In some sense it represents a rigid core of the decomposition.

The final step is constructive: is there any geometrically finite
function group admitting a given signature? The determinaiton of
the class of admissible signatures and the reconstruction of the
corresponding function groups has been done by Maskit. Notice
however that it is much easier to prove that a function group
admits a given signature (X.F) than a given geometric decomposition
(2.1).

In conclusion the interplay with 3-dimensional geometry explains
and renews these previous results on Kleinian groups. Moreover in
this setting, some generalizations which are not so evident by only
analyzing the behaviour of a Kleinian group at infinity, look very
natural (see the section 2.2)

A technical consideration. Graphs of groups reveal to Dbe very
convenient to state classification results. The classification is

given in terms of equivalence classes of graphs of groups.
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This chapter is organized as follows.

In 2.1 we classify geometrically finite function groups in terms of
equivalence classes of graphs of groups satisfying NO-N4 and prove
that this classification is equivalent to Maskit's one.

In 2.2 we prove an analogous result for generalized function

groups.

2.1 Classification of function groups

In this section we classify geometrically finite function groups in
terms of equivalence classes of graphs of groups. As a first step,

we state this equivalence relation.

2.1.1 Definition Two graphs of groups ([',G) and (I"',G")
satisfying NO-N4 are eguivalent, if and only if they have
isomorphic fundamental groups and, once removed all edges with
trivial edge group in E([') and E(I''), they are isomorphic as graphs

of groups (possibly disconnected) .
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Let A be the set of deformations ([Mas] II.J.3) of geometrically
finite function groups, B be the set of equivalence classes of
graphs of groups satisfying NO-N4. We define the map f:A —> B
which associates to each [F] €A the class [([',G)] of any graph of
groups [([',G)] satisfying NO-N4 associated to a geometri
decomposition of M = B3UQ(F)/F as in 1.5.

As we are going to prove, this map is a bijection and classifies

geometrically finite function groups.

2.1.2 Theorem The map f is well defined.

proof:Let F and H be two gquasiconformally-conjugate function
groups. Then 0 = E3UQ(F)/F = B3UQ((H)/H. Let (I',G) and (I'',G') be
two graphs of groups satisfying NO-N4, associated to two geometric
decompositions of 0. If wve V(I') and G, is a nonspherical group,
then, by the properties of the geometric decompositien (1.5.3), v
is associated to a product Sx[0,1], where S is a compact hvperbolic
2-orbifold or a 2-orbifold with some punctures, or a guotient of

H°UQ(E) by a Euclidean group E. In any case there are no open
nontrivial ballic suborbifolds in Sx(0,1] or H3UQ(E)/E. On the
other side, 1if ve V([') is a spherical vertex, it is associated to a
ballic orbifold and the boundary of this orbifold has no common
points with any incompressible boundary component (i.b.c.) of O. In
the first case, if v 1is nonspherical, there exists in O a boundary
component Sx{l} or a noncompact end which has no common points with
the compressible boundary component (c.b.c.) of O. In the second
case, 1f v 1s spherical, there exists a spherical singularity in
the interior of 0. On the other hand, if X 1is an incompressible
boundary component (i.b.c.) of O or a noncompact end, there exists
at least one element O, in the geometric decomposition (see 1.5.3),
which contains some points of 2. By the reasonment above O. cannot
be associated to a spherical vertex (as the boundary of the ballic
orbifolds of the decomposition have no common parts with any i.b.c.
of O0) and so it is associated to a vertex v which is Fuchsian or
Euclidean.In the first case we know that 0O,= 8Sx[0,1] for some
2-orbifold S and that Sx{1} is an i.b.c. of 0. So Sx{l1} =X. In the
second case we know that O.= BE3UQ (E)/E for some Euclidean group E

and that the noncompact end of O, is a noncompact end of dO. So it
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coincides with the given end. Finally for a given nontrivial open
ballic suborbifold of ©, there exists an element O, in the
geometric decomposition of O which contains the singularity in its
interior. O, is associated to a spherical vertex as we have seen
above that only in this case we can find nontrivial open ballic
suborbifolds.

Till now we have proved that:

for any graph of groups ([',G) in standard form associated to a
geometric decomposition of 0O, the number of vertices is fixed and
is determined by the number of i.b.c., the number of noncompact
ends which are distinct from the c.b.c., the number of nontrivial
open ballic suborbifolds. Moreover if (I",H) and (I'',H'") ars
different geometric decompositions of O, then there exists a
natural bijection ¢:V([') — V(I'') such that corresponding vertex
groups are isomorphic.

To analyze the situation for edges, it 1is useful to consider
G-components of ([',G). Each unoriented edge in E(I') is contained in
one and only one G-component. Let [, be a subgraph of [' which is
the G-component of e and (Fe,G) the induced graph of grours.
Suppose G, finite (and not trivial). Then Fe corresponds to a
singular axis in O, which can be closed or have one or two
endpoints. If the axis 1is closed, there are no nonspherical
vertices in.Fe. For example a Fuchsian vertex has an associated
element O. in the geometric decomposition which is a product
Sx[0,1] and any singular axis in this product has an endpoint on an
i.b.c. of O (so it can not be closed). RAnalogous considerations
hold for Euclidean vertices. As spherical vertices are in bijective
correspondence with nontrivial open ballic suborbifolds of 0O, we
deduce that the type and number of vertices in the G-component 1is
uniquely determined by the geometry of the singular structure of Q
(precisely by the type and number of nontrivial open ballic
suborbifolds of a tubular neighbourhood of the singular axis).
Let's now consider the case of an axis with two endpoints. If an
endpoint lies in an i.b.c. of 0, then (Fe,G) has a corresponding
Fuchsian vertex at one end, as we have seen that this is the only
case 1in which the corresponding element O, = Sx([0,1] in the
geometric decomposition of O contains points of i.b.c. of O. The
type of the Fuchsian vertex is determined by this component. Vice

versa, a Fuchsian vertex in (Fe,G) implies that the corresponding
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singular axis has an endpoint in an 1i.b.c. of O. Analogous
considerations show that the singular axis 1is open at one end if
and only if the G-component (I’ ,G) admits one Euclidean vertex at
one end (and its type is determined by the noncompact end). Then,if
the singular axis has an endpoint on the c.b.c., it must correspond
to a spherical vertex at the end of (T?,G). As nonsphericel
vertices in (I'_,G) can appear only at the ends, all other vertices
in it are spherical and ther type and number is determined by the
nontrivial open ballic suborbifolds of a tubular neighborhood of
the singular axis.
Analogous considerations for G-components with infinite edge groups
lead to conclude that, given different geometric decompositions of
O with associated graphs (I',G) amnd (I'',G'), there exists a
bijection « between edges such that & is compatible with ¢ and
corresponding G-components are isomorphic graphs of groups.
These facts are enough to conclude that (I',G) and (I'',G') are
equivalent.

g.e.d.

2.1.3 Remark Notice that, in general, there are many inecguivalent
graphs of groups satisfying NO-N4 which have isomorphic fundamental
groups. This 1is still true even 1if we restrict to the subset of
graphs of groupé satisfyincg C0-C4 and the same eqguivalence
relation. As a matter of fact the technigues of [SW] 7.6 or [Her]
or even a direct analysis, give us the following result:

Let (I',G) and (I'',G'") be two finite graphs of groups with the
following properties:

1) They satisfy C0-C1l-C2-C3

2) w[,6) = ([',G).
Then
i) There exists a bijection «:V(['y—> v(I'') such that

corresponding vertex groups are conjugate

ii) The number of edges of [' and I'' is the same

iii) Let A be the set of G-components of (I',G) and B the set of
G'-components of (I'',G'). Then there exists a bijection P:A —
B such that
- a and P(a) are isomorphic graphs of groups V a€ A

- If a has vertices v,....v_, B(a) has vertices X(v;)...X(v).
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Let B' be the set B minus the equivalence classes of graphs of

groups with a subgraph (2,2,) 2 (2,2,00) .

2.1.4 Theorem f is bijective.

proof: If F and G are two function groups with £ ([F]) = £([G]) =
[(I',G)], then there exist geometric decompositions of M= B*UQ(F)/F
and N= E3UQ (G)/G such that the associated graphs of groups ([',G)
and (I'',G') are isomorphic graphs of groups up to edges with
trivial edge groups. This implies that M =N and so f is injective.

On the other side f 1is surjective, because any graph of groups
(I")G) satisfying NO-N4 is realizable, in view of (1.5), [Mas]
VII.C.2ix) and VII.E.5ix) as a function group F such that
£([F])=[(I',G)] (Notice that the geometrically finite function group
obtained from (2,2,%) _=2° (2,2,%) by the usual procedure is

(2,2,2,2) and that there exist no rbifold-with-handles and

geometric decompositions with associated graph of groups (2,2,¢)
2 (2,2,%)).

g.e.d.

By 2.1.4 geometrically finite function groups are classified in
terms of equivalence classes of graphs of groups. One sees at once
that this classification is equivalent to Maskit's classification
in terms of signatures in the following sense.

K is a marked two-complex consisting of some Riemann surfaces of

finite type R,...R, and some l-cells v,....v, (the connectors). t is
the Schottky number. There are two bijections ¢:(R,....R) —> v(I')
and X: (v,....v,, 1....t+T,-1) —> ({unoriented edges of I}

(T,=number of connected components of K) with the properties:

1) Gg(re) = T, (Ry)

2) IGX(Vi)l = order of v, and lGx(j)' =1

3) The images through ¢ of the endpoints of the connectors v are

the endpoints of X (v).
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2.2 Classification of generalized function groups

In this section we classify generalized function groups (g.f.g.) in
terms of equivalence classes of graphs of groups satisfying NO'-N4'
To state the equivalence relation we need an additional structure
on the graph (a marking).

Let (T,G)‘be a graph of groups satisfying NO'-N4'.

Notation E_([') ={ee E(I'): 5,e is Fuchsian}

2.2.1 pDefinition A marking for ([',G) is a map m: E_(I) —
{-1,+1} with the following properties:
i) Let e E(I') such that Soe =v and 81e =w are Fuchsian vertices.

Then m(e) = *m(e') according if i_,i_"* maps a canonical

al

generator to a canonical generator or the invers of =

1]

canonical generator.
ii) Let e,fe€ E(I') be two edges such that §,e= §,f and 1_(G,)=1.(G,).
If G, =G, # {1}, then m(e) # m(f). '

Consider now the marked graph (I',m). We can associate to (I',m) the
following picture: Vve V(I') which is Fuchsian, draw & rectangle
with an upper and a lower side ( [::]* ) and V ee E(I') such that
60e=v, join e to the upper or lower side according if m(e)=x1. This
picture allows us to reconstruct both the graph [' and the marking
m.

Now cut each rectangle into two rectangles with upper and lower

sides
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We will obtain a finite number of disconnected pictures
corresponding to marked graphs (Fl,ml)....(FS,ms). Fl,...FS are

naturally subgraphs of [.

2.2.2 Definition Let ([',G,m) be a marked graph of groups
satisfying NO'-N4'. Then we associate to it its boundary graphs of
groups (I'),Gy)....(I',,G,) where [', 1<i<s has been defined above and
vertex, edge groups and edge-to-vertex monomorphisms are induced on

I, by (I',G).

At last we are ready for defining equivalence between graphs of

groups satisfying NQ'-N4'.

2.2.3 Definition Two marked graphs of groups ([',G,m) and
(I'',G',m") satisfying NO'-N4' are equivalent if and only if:
1) (I'yG) and (I'',G') are isomorphic graphs of groups once removed

edge with trivial edge group.

2) There exists a bijection b:{(I' ,G,)....(_,G)}—
{(Pl',Gl')....(Fr’,G:‘) } between boundary groups such that
T (F,6) = T, [(b(I,6)]

Remark The condition 2) is needed for fixing the number of edges

with trivial edge group in each boundary graph.

Let A be the set of quasiconformal conjugacy classes of g.f.g., and
B the set of equivalence classes of marked graphs of groups in the
sense 2.2.3,

We define a map £:A — B in the following way.

By 1.5.4 a g.f.g. uniformizes a g.o.p. O. Choose any geometric
decomposition of O and fix a positive boundary component for each
product Sx([0,1], where S 1is a compact 2-orbifold. Pose m(e)==%1
according if the handle corresponding to e is glued to the positive
or negative component. Property ii) of 2.2.1 is verified and, for
any choice of the canonical presentation of Fuchsian vertex groups

in (I',G) compatible with this choice of positive boundary
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components (see 1.3), also property i) holds.
Let f be the map which associates to [F]le A the equivalence class

[(I'/G)] of a marked graph of groups ([',G) constructed as above.

2.2.4 Theorem The map f is well defined.

proof: Let F,G be two quasyconformally conjugate g.f.g..Then M=
H3UQ(F) /F = H%JQ(G5/G and in particular, corresponding boundary
components are homeomorphic. Let D,....D, be a collection of disczal
orbifolds for M like in the definition and let D,....D_  be the
subset of discal orbifolds with boundary in one fixed component S
of dM. The boundaries aDl....aDn are a system of dividers for S in
the sense of ([Mas] X.C. The signature (K,t) for this system of
dividers corresponds to the boundary graph (FH'Gz) of S in the
following sense.

K is a marked two-complex consisting of some Riemann surfaces of

finite type R,...R, and some l-cells v,....v. (the connectors). t is
the Schottky number. There are two bijecticns ®:(Rl....RQ — v(I)
and X: (v,....v,, 1l....t+T,-1) —> (unoriented edges of [}

(T,=number of connected components of K) with the properties:
1) G@(Ri) = Tfl(Ri)
2) ‘GX(VL)‘ = order of v, and lGx(j)l = 1
3) The images through ¢ of the endpoints of the connectors v are
the endpoints of X (v).
The function group corresponding to this signature 1is the subgroup
Stab() of F stabilizing a component (2 of the domain fo discontinuity
of F which covers S (in view of [Mas] II.F.8). Let (' be the
corresponding component of the domain of discontinuity of G and
StabQ' its stabilizer in G. As F and G are quasiconformally
conjugate, Stab() and Stab{Q}' are type-preservingly similar. So, by
[Mas] X.G.2. the corresponding signatures are the same. By the
correspondence above between signatures and graph swe conclude that
corresponding boundary graphs of groups in two different geometric
decompositions of M have isomorphic underlying graphs, once removed
edges with trivial edge group. Let denote by (I',H,m) and (I'',H',m")
the graphs of groups associated to F and G. By corresponding
boundary graphs of groups in (I',H,m) and (['',H',m') are isomorphic

graphs of groups once removed edges with trivial edge group and by
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[Mas] X.D.51i) the isomorphism between F and G maps vertex groups of
(I',G) into vertex groups of (['',G'). So (I',G) and (I'',G') are
isomorphic graphs of groups once removed edges with trivial edge

group.
g.e.d.

Let B' be the set B minus the eguivalence classes of graphs of

groups with a subgraph (2,2,e) =2 (2,2,).

2.2.5 Theorem f is a bijection onto B'.

proof: If F and G are two g.f.g. with f£([F]) = £([G]) = [([',H)],
then there exist geometric decompositions of M=H*UQ (F)/F and
N=E3UQ (G) /G such that the associated graphs of groups ([',H) and
(I"'",H') are isomorphic graphs of groups up to edges with trivial
edge group and corresponding boundary groups are isomorphic as
groups. This implies that M =N and so £ is injective.

On the other hand f is surjective, because any graph of groups
(' H) satisfying NO'-N4' is realizable (1.4) as a generalized
g.f.g. F such that f([F])=[([",H)] (For the graphs (2,2,%) -2
(2,2,%) there are considerations analogous to the function groups

case) .

g.e.d.
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3 Finite actions on product-with-handles

The last part of the thesis includes some geometrical applications
of the previous theorems in the study of 3-dimensional manifolds.
The use of graphs of groups as an algebrogeometrical theory of
actions on handlebodies has been introduced in [MMZ1l]. The theory
includes a Riemann-Hurewitz formula, providing a powerful calculus
for the construction of actions which has been successfully applied
to various questions in (KM], [Mc], ([MMZ2].

A basic question for finite actions is the so called Nielsen
realization problem, previously stated for closed surfaces and
solved by Kerchoff [Ke] in 1983. Let'state it for a 3-manifold.

Let M be a 3-manifold and H be a finite group acting
effectively,smoothly and orientation-preservingly on M. The
H-action on M induces a homomorphism T:H —> Out (T, (M)), the group
of outer automorphisms of T.(M). The question is: for a given
homomorphism MN:H —9'Out(W1(M)), is there a H-action on M as above
which induces it?

For 3-manifolds this is not generally true (for example this fact
is shown in [MMZ1l] for handlebodies) .

For almost compact product-with-handles the solution of the
realization problem is a consequence of 1.5.1.

As a matter of fact, 1if H is a finite group acting on a
product-with-handles M, there is a conformal structure on M,
uniformized by a function group, for which H acts conformally. By
this remark, 1.5.1 gives necessary and sufficient conditions for a
group of outer automorphisms of WlM to be induced by a group otf
orientation-preserving diffeomorphisms on M (section 3.1).

So 3.1.4 solves the realization problem for almost compact
product-with~handles,by showing that it may have a negative answer.

I repeat that this technique has been introduced in [MMZ1l] for
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handlebodies and, from this point of view, this work is a natural

generalization of [MMZ1l] and ([MMZ2]. In fact almost compact

product-with-handles include handlebodies and products Sx[0,1],
where S is any finite surface with boundarv.

More generally the thecrems above turn gquestions about finite

actions into combinatorial problems involving graphs of groups.

There 1is plenty of applications and the method has been already

successfully used to study, for example, periodic diffeomorphisms

on handlebodies [MMZ1], equivalence of actions on handlebodies

[KM], actions on nonclosed two-manifolds [MMZ2].

In principle such results could be stated in analogous way for

almost compact product-with-handles. There is really nothing new in

applying those methods to this more general case except that
calculations are a little more involved.

So I have not repeated a parallel analysis and I have confined

myself to a few features in which the study of finite actions on

almost compact product-with-handles turns out to be really
different.

My proposals are:

1) A more elaborated use of Euler characteristics 1in studyving
admissible graphs of groups (see 3.1.4) satisfying C0-C4, which
lies upon the coexistence of spherical and Fuchsian vertex
groups (3.2)

2) A method for studying finite actions which is based on the

symmetry group of the graphs (3.4).

Finite actions on a fixed almost compact product-with-handles M,
correspond to find all graphs of groups ([',G) satisfying C0-C4 (see
3.1.4) which are admissible for some finite group H, that is such
that there exists an epimorphism ¢: m.(I',G) —> H with kernel K =
Wl(M).

In general, to list all H-admissible graphs is a boring task and
can be practically carried out only for easy cases like finite
abelian groups or for product-with-handles with not too complicated
topology.

However the question of selecting H-admissible graphs for a finite
group H can Dbe addressed by using Euler characteristics (see
3.1.5). We study in wide Ggenerality the set of Euler

characteristics one can define on function groups (3.2).
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They are the counterpart for function groups of the
Riemann—-Hurewitz theorem for Fuchsian groups.

It turns out that the existence of many Euler characteristics make
considerably easier the study of finite actions.

As an almost randomly chosen illustration of the method we address
the following standard gquestion (3.3):

given a compact product-with-handles M, which is the maximal order
|[H| for a finite group H acting smoothly, effectively and

orientation-preservingly on it?

The method of Euler characteristics is practically easy and, at the
same time, powerful enough to extimate, for example, the maximal
order of finite actions on a given a.c.p.. However our geometric
intuition can help us a lot, if we carefully reanalyze the way by
which we have obtained 1.5.4. The purpose of section 3.4 1is to
exhibit another method to study finite actions on a.c.p., which is
based on elementary graph theory.

Let's consider again the framework.

Let M be an a.c.p. and H a finite group acting on M eifectively and
orientation-preservingly. Then there exists a collection of
mutually disjoint H-equivariant disks D,....D_ with the properties
of 1.5.3. The geometric decomposition of M gives a presentation of
T,M as a graph of groups ([',G) satisfying Cl1-C4, not necessarily in
standard form.

As the collection of disks is H-equivariant, the action of H on M

induces an action of H on ["and Vve v{(I') an action of Stab v on the

i}

element of the decomposition corresponding to v. The idea o
section 3.4 is to decompose the study of actions on M and consider
separately finite actions on the graph [' and actions on t
manifolds of the geometric decomposition. By this way we fully
exploit the ambivalent geometro-algebraic meaning of the notion of
graph of groups, by considering both the graph underlying (I',G) and
its vertex groups.

As a matter of fact, an action on a graph [' 1is simply a
representation of H into the symmetry group of the graph and
actions on the manifolds of the geometric decompositicons are much
easier to be studied than actions on M, as they are essentially
actions on surfaces..

Let's fix an a.c.p. M and a finite group H. The set of graphs of
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groups (I',G) satisfying Cl1-C4 has infinite elements. However, by
the remark that the index of a maximal cyclic subgroup in a
spherical group can assume only certain values, we conclude (see
3.4.1 ) that for groups H which have sufficiently high order, we
can restrict, without loss of generality,to graphs of groups with
no spherical vertices, with a few exceptions.

In view of this result, it is easy to list all realizable guotient
orbifolds M/H. As an application of the method, we illustrate the

case of periodic actions.

This chapter is organized as follows:

In section 1 we show how 1.5.1 solves the realization problem for
compact product-with-handles.

In section 2 we construct a two-dimensional vector space of Euler
characteristics on the set of function groups with no rankl maximal
parabolic subgroups.

In section 3 we address the problem of extimating the maximal order
of a finite action on a product-with-handles.

In section 4 we exhibit a method to study finite actions which is

based on elementary graph theory.
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3.1 The Nielsen realization problem for
product-with-handles

In this section we show how 1.5.1 solves the realization problem
for almost compact product-with-handles (a.c.p.).
More precisely, we will use the more restricted results 1.5.6 and

1.5.7.

If H is a finite group acting on an a.c.p. M, there exists a
conformal structure on M, uniformized by a function group, on which
H acts conformally. By this remark, 1.5.6 gives necessary and
sufficient conditions for a group of outer automorphisms of T, (M)
to be induced by a group of orientation-preserving diffeomorphisms

on M. We state this fact as a theorem:

3.1.1 Theorem Let M be an a.c.p.. Given a finite group H and an
abstract kernel NM:G *9‘Out(ﬁl(M)), the following are eguivalent:
a) M 1is realizable (as an orientation-preserving effective
H-action) on M
b) for some extension o with abstract kernel T
1—>m.(M) —2 E~—>H 1
there is a finite graph of groups (I',G) with m.(I',G) = E which

satisfies conditions CO0 - C4.

proof: a) implies b)
Let ¢: H — Diff (M) be a realization of M. Then M/G = O is an

orbifold-with-handles (see 1.5.4) and E= m,0 gives an extension

1 —>TmTM —> 7.0 —2H1
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with abstract kernel M. By 1.5.6 we know that there is a finite

graph of groups (I',G) with m,(I',G) = E, satisfying CO-C4.

b) implies a)

By 1.5.6 E is isomorphic to a geometrically finite function group F
with no rankl maximal parabolic subgroups. As T.,M is a subgroup of
finite index of F it is isomorphic to a function group F' with no
rankl maximal parabolic subgroups . By 1.5.7 B3UQ(F')/F'

is an a.c.p. M' and so H is realizable as & group of conformal

maps on M' for the conformal structure given by the uniformization

n

through F'. By the subgroup theorem F'=T.M = T ,M’' admits a unique
(up to order) decomposition F '= F,*....F_*Z" and so M and M' have
the same number and type of products and the same number of
handles. As they are almost compact, they are homeomorphic.

g.e.d.

Remark Notice that 3.1 does not admit & naive extension to
noncompact product-with-handles M and graphs of groups satisiying
NO-N4. In fact, given an extension 1 —> T, (M) —> E —> HE —> 1
with M noncompact and E =7.([',G) for ([',G) a finite graph of
groups satisfying NO-N4, we can only conclude that the kernel is
realizable (as an orientation-preserving effective G-action) on M',
where M' is a three-manifold with T . (M') = T. (M) (compare also with

(MMZ2]) .

3.1.1 turns questions about finite actions into combinatorial
problems involving graphs of groups.

There 1is plenty of applications. One has to find all graphs of
groups (I',G) satisfying C0-C4 which are admissible for some finite
group H, that 1is such that there exists an epimorphism ¢: WL(F,G)
— H with kernel K = T, (M).

In general, to list all H-admissible graphs is a boring task and
can be practically carried out only for easy cases like finite
abelian groups or for product-with-handles with not too complicated
topology.

However the question of selecting H-admissible graphs for a finite

group H can be addressed by using Euler characteristics.
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We adopt the following definition:

3.1.2 Definition Given a collection of groups A, a map X:A —7 R

is called an Euler characteristic for A 1f 1t satisfies the

following two properties

1) If G,H € A and G =zH ,then X(G) = X (H)

2) If G,H € A and G is isomorphic to a subgroup of finite index j
of H, then X(G) = jX (H)

3.1.3 Remark The definition implies X (&) = 0 if Z € A

Studying Euler characteristics 1is much easier than checking
directly which normal subgroups of finite index a group admits. In
fact, for a fixed M and a finite group H, an H-admissible graph of

groups (I',G) will have to satisfy the following necessary condition

X(m (M) = |HI x 7, ([',G)

L

for any Euler characteristic as above. As we will see, this
considerably restricts the set of graphs of groups candidates for a
finite action.

In the next section we study in wide generality the set of Euler
characteristics one can define on the set of groups which are

fundamental groups of a.c.p..
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3.2 Euler characteristics on function groups

In this section we construct a two-dimensional vector space of
Euler characteristics on the set C of function groups with no rankl

maximal parabolic subgroups.

A standard way of defining an Euler characteristic for the set of
groups A which have finite homological type and are virtually

torsion-free (see e.g. [B] page 247) is

X (A) = X, (-1)'ranky (H,3) if R€A is torsion-free
X (A) = X(B) /(A:B) for any torsion-free
subgroup of finite index

B of A, whers A,BcA

Notice that, if (I',G) is a finite graph of groups such that each

vertex group and edge group is in A, then WZ(F,G) € A and
x(m(I',G)) = Zvé'v’(l“) X(G,) - Zeez(F)X(Ge)
As we are dealing with a restricted subset of A, namely the set C

of groups above, we have a wide variety of definitions of X.

We are interested in the following set:

3.2.1 Proposition Let Xa be an Euler characteristic for the set
A of spherical groups, cocompact Fuchsian groups of the first kind
and the Euclidean groups of rank two. Then
X:C —R
x(n) = x(I',6) = Zoeviry XalG) = ZorXalG)
where (I',G) is any graph of groups satisfying C0-C4 such that
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m, (I'yG)=A, is an Euler characteristic for the set C

3.2.2 Lemma Let Xa be an Euler characteristic for the set A of
trivial groups,cocompact torsion-free Fuchsian groups of the first
kind and the abelian group of rank two.

Let B be the set of groups which are fﬁndamental groups of finite
graphs of groups (I',G) satisfying

1) there are no trivial edges

2) every vertex group 1s in A

3) every edge group is trivial. Then

x:B —R
Xg(h) = XE(F’G) = ZvéV(l") Xa(G,) - ZeéE(F)X@.(Ge)

where (I',G) is any graph of groups satisfying 1-2-3 such that

Wl(F,G)EA, is an Euler characteristic for the set B.

proof: Let's first prove the property 1 of the definition.

If (I',G) and (I'',G") satisfy 1-2-3 and have isomorphic fundamental

groups, by [S-W] lemma 7.6

i) there is a bijection between the vertices of I' and I'' such that
corresponding groups are isomorphic

ii)I" and T'' have the same number of edges

i) and ii), together with 3) imply that x(I",G)= x(I"',G'").

Let us now come to property 2) of the definition of Euler

characteristic. Let (I',G) be & graph of groups satisfying 1-2-3 and

H a subgroup of finite index j of WI(F,G). By the subgroup theorem,

H can be represented as the fundamnetal group of a graph of groups

(I'g/Gy) s.t.

i) the vertices of FO correspond to the double cosets HgA,....HgA
where A,....A are the vertex groups of ([',G) and the
corresponding groups are HNgA g™t 1<i<n.

ii) the edges of Fo correspond to the double cosets HgB,.... HgB_,

where B,....B_ are the edge groups of ([',G) and the
corresponding groups are trivial.
The number of left cosets of H in one double coset HgA, is equal to
the index j, of gﬂHgFVH in A,. If there are n different double
cosets Hg,A,....Hg A, we have that j,+....Jj =J. Moreover V 1<i<n
X,(HNg,A,g,7")=3,X,(A,) as X, is an Euler characteristic and
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HNgA g, € A.
So the Euler characteristic of the n vertex groups corresponding to
Ay s 2 X, (HNG A g ™h =3X, (A) .
An analogous reasonment holds for every vertex and edge in ['. This
concludes the proof.

g.e.d.

As a consequence of the lemma we can prove the proposition

proof of 3.2.1 . Let's first prove property 1 of X_.. If (r, e
satisfies Cl and has finite edge groups, then T, ([',G) is a Kleinian
group. By Selberg’'s lemma it admits a subgroup H of finite index J
which 1s torsion-free. By applying again the subgroup theorem as
above, we obtain that H is representable as the fundamental group
of a graph of groups (Fo'Gc) satisfying 2) and 3) .Moreover we have
the equality

(*) X, (ro) X5 (G0 - EQGEMD)XA<GeC)=ch(F'G)
In general (FO,GO) does not satisfy 1), but we can obtain from it =a
new graph of groups ([',,G,) satisfying 1),2) and 3) such that
ﬂl(F,G)EH. By thé lemma we obtain the property 1) of X_..
The proof of property 2) is the same as in the lemma.

g.e.d.

We can exactly say which is the set of Euler characteristics Xg, in

view of the following

3.2.3 Proposition Let B be a set of groups. Let B,C B be the
subset of torsion-free groups. If every AEB is virtually
torsion-free, then there exists a bijective correspondence between
the set E of Euler characteristics of B and the set E, of Euler

characteristics of EO.

proof: If X:B — R is an element of E,then the restriction of X
to B, is an element of E . Let r:E —> E, be the restriction map. If
r(X,)= r(X,), then V A¢B take a torsion-free subgroup A, of finite

index j. As A€B, X,(A;)=X,(A,) and, by the definition of the Euler
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characteristic we have X, (A)=X,(A).S0 is injective. On the other
side, if X, € E; ,then define X:B —> R in the following way. V A¢B
take a torsion-free subgroup A, of finite index j. As A, lies in B,
then X,(A,) is defined. Put X(A)=jX0(AO). One readily checks that X
is well defined and is an element of E. So r is surjective

g.e.d.

In the particular case of the set of groups A, then the set of
groups A, is given by:

1) the trivial group

2) the rank 2 abelian group

3) the groups Fg= <a b 1[a1,bl]....[ag,bg]=l> g=22

So, by the proposition above, it is equivalent to consider the set
of Euler characteristics on A, . Notice that Fg is a subgroup of
finite index of F, and Z®Z%Z is a subgroup of finite index of itself.
Then the set of Euler characteristics on AC is completely

determined by the following two values

X ({e}) = c
X ({F,})=-d

On the other side any pair of values (c,d)é€ RxR corresponds to an
£1

Euler characteristic for AC (and so for A) de

ined by

1) X({e}l)= c
2) X(Z®%)= 0
3) X({E}) = %/,(2-2g) = d(l-9)

This definition works as 1) is not a subgroup of finite index of 2)
or 3) and we know from the topology that the values X(F_ ) = 2-2g

=

g22 satisfy the property 1i) of the definition of Euler

characteristic.

So we have proved
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3.2.4 Proposition The set of Euler characteristics of C contains

a two-dimensional vector space

Notation An Euler characteristic of C in this space will be

denoted by the pair (c,d).

There are two Euler characteristics for ¢ which are worth to be

noticed: (1,2);(1,1). In fact they have an immediate topological
meaning.

(1,2) 1is the standard virtual Euler characteristic X, ([B] page
247). By the reasonment above it 1is sufficient to verify this

assertion on {e} and F,: X, ({e})=1, as an Eilenberg-Mac Lane space
for {e} is a point and X _(F,) = 2-2g, as an Eilenberg-Mac Lane
space for F, is any compact orientable surface of genus two.

In fact, if we take a graph of groups ([',G) satisfying C0-C4 and
with torsion-free fundamental group, then we know that it is the

fundamental group of an a.c.p. M and we have X (I',G)=X (M) where

(1,2)
X (M) is meant in the topological sense.
Analogously one checks that, in this case, X 1, 4 (M)= l/ZX(Z) where
2 is the compressible boundary component of M. This topological
meaning for (1,1) is occasional: in fact X (Z)=2X (M)- X(Zl) -
X (X)) and X(Z.)= X, 5, (F.), where F. is the indecomposable group

occurring in any decomposition of T, ([,G) as fundamental group- of
s

Ly
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3.3 Upper bounds for finite actions on
product-with-handles

In this section we will address the following question:
given an a.c.p. M, which is the maximal order |H| for a finice
group H acting smoothly, effectively and orientation-preservingly

on 1it?

In view of 3.1.1 the question of finding the maximal order of =
finite group H acting effectively and orientation-preservingly on M

can be addressed by answering the following easier question: given

an Euler characteristic X:C — R, which is, if any, the maximal

negative value X__°~ and the maximal positive value X__~ of X on

X
the set of graphs of groups satisfying conditions CO - C47
In fact, if we know X__~ and X__ °, we can extimate the maximal

order |H|_, of a finite group H acting as above on a fixed M in the

following way:

(Bl = XM /x(T,6)< X (M) / X,

max

where for X__  we choose X_ ., or X_. .~ according if X (M)>0 or
X (M)<0 (we can't obtain any extimate for X (M)=0).

According to the chosen Euler characteristic we can extimate |E|
in terms of the topological Euler characteristic of M, the
topological Euler characteristic of the compressible boundarv

component, and so on...

If M is a handlebody, we can evaluate X ok nax

of C such that the graphs of groups have only spherical vertex
groups. In this case

X (M) =X = k

max

where for xmﬂ we choose ><ﬂ " or X

and k 1s a constant value
aX max N

which does not depend on X.
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The existence of many different Euler char

T a
used in various ways for selecting admissibls grapns

For a fixed M consider the set of values X (M) = Xfﬂ;obtalnea ocv
considering all rossible Euler characteristics cn C. If X 13 tThe
minimal value in the set, realized for a fimsd x. tThis 7ilL e an
extimate for all X. This means that if, Zfor x':C —> R there =2xists
a2 graph of groups ([,G) satisfying NO-N4 suck that X (M) /

x'(",G) > k, then ([,3) can not be an admissible graph Zor a2 Iinitse
action on M.

I=, for a fiwed M, X is the Euler characteristic for [Hi_, and Tois
extimate is realized on the graph of groups ([ ,G), we can also

—wo elements of a2
the sense of the first remark

¢}
ol
(@]
Ity

v

For a given a.c.p. M, X(M) will be a point of the lattice drawn in

the picture.We can extimate [H] as
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[Hlp S IXpM)+x,00 ) / (X () +xZ (M)} =
_ 1
B ><]. (M) } / X max
= 2
o XZ (M) } / X max
where (XHMX,XQMM) is the value (XI(F,G),XZ(F,G)) next to the origin

on the line passing through (0,0) and (X, (M),X,(M)).

Remarks

i) Notice that if M is not a handlebody and, more precisely,
X, (M) 1is not zero, then =X, (M) is the number of handles of
M.

ii) As (X,;,X,) 1s a basis for the vector space of the Euler

characteristics, the extimate above 1is the best that one can
obtain by this way. In fact (c,d) can 5e expressed as (c,d)=
= cX,;+dX,.S0,given a graph of groups (I',G), let (I',,G;) be
the graph of groups such that X, (['),G,)= Xtﬁx and

X, (I, Gy)= X2 . Then

x(I',G) /x ([, G = {cx (I',G)+ ax, (I, 6) } fex ([, G,) +dx, (T, Gy)
= Xl(T,G)/Xl(FO,GO) =, (I'G) /x,(I",,G,) = k € R. This means

that, given (I',G), there exists (I',,G,) such that
x(I",6) /x(I'y,G,) is k: so the best extimate obtainable from
(c,d) is at least k. |

iii) Among all bases available, (X,,%5) is, in some sense,
natural. As spherical groups and cocompact Fuchsian groups
of the first kind are discrete groups acting discontinuously

on the plane, they have a canonical presentation

<a,....bh....n | (a,0b.1....(a,bIh, .. .b= 1;

h,Mi=. h D =1>
which we denote by their signature <g,rlh,....h,.>.Now
X2(<g,rlhl....hr>) =1-gqg - l/2 zléis: (1- l/hi)

for Fuchsian groups, by the
Riemann—-Hurewitz formula

X, (<0, r[h;....h.>) =1-0-1%,%,.. (1-/n)

4
1

for spherical groups.

So they have the same formal expression.

By the last remark, it is not necessary to do any computation for

x? ). In fact we have the following proposition:

: |
evaluating (X __ ., X
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3.3.1 Proposition Let (I',G) be in C. Suppose

i) x (I',G) <0

i1) x, (I', G) + XZ(F,G)>—1/4.

Then there exists (FO,GO) in C with only spherical vertices, such
that x (I, G) + x,(I",G)= x (T, G,) .

proof: If ([',G) has no Fuchsian or Euclidean vertices, choose
(Cy/ Gy = (T, 6).

Suppose that v € V(I') is a Fuchsian vertex. As a first remark,
notice that,in view of ii), Fuchsian vertices of (I',G) have
signature <g=O,3[h1,h2,h3> or <g=O,4|hl,h2,h3,h4> and at least two
values hl,h2=2.

As X, (I",G)<0 there is at least one edge e ¢ E(I') with S,e=v. Let
0.e=v' (possibly v=v').As (I",G) satisfies NO, then G,. is not

isomorphic to . So G, and G,, will have a signature

-
<g=0,nlh,.... hn> where n is 3 or 4 (the case G, = {1} is excluded
because X, (I',G)2-1/, ).

Let's first consider the case n=3 and v different from v'.

Denote by (szGz) the graph <g=0,31h,, h,, hy> h, <g=0,31h,,h,, hg>
<F1'G1)' by remark iii),has the same value X.+X, as

(I',,6,) = <g=0,3|k,, h,, hy> —= <g=0,3|k., b, he> k. 22

Moreover for k,= 2 x1(<g=0,3|2,h2,h3>)>0 and

Xl(<g=0,3|kl,h4,h5>)>0, that is the two vertices are spherical. In
fact X,(<g=0,312,h,,h3>) > -1/, - Xx,(<g=0,312,h,,hs>) + 1/, =1/,
- X2(<g=0,3!2,h4,h5>) = 0.

So, for this case, we can always construct, by using N1 and N2,a

graph of groups (TO,GO) satisfying NO - N4 obtained by modifying
the subgraph (Fl’Gl) in (F2,G2). We are sure that the wvalue X.+X,
does not change and we reduce the number of vertices which are not
spherical by one unit (at least).

Analogous considerations hold for the case n=3 and v =v'.

Suppose finally that v has signature <g=0,4!hl,h2,h3,h4>; then the

graph
(I';,Gy) = <g=0,3|h,, h,, k> —— <g=0,3|h,, h,, k>
has the property that (X, +x,) (I, G) = (X,+X,) (G,) and so we can

reduce to the previous case, by modifying the subgraph consisting
of the single vertex v in (I.,G,).
Notice that the analysis above can be as well applied to Euclidean

vertices.
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As we are dealing with finite graph of groups, we can obtain a
graph of groups (FO,GO) with the required properties, by
iteratively applying the procedure.

g.e.d.

By considering [MMZ1l] prop.7.l1 we have the following general

extimate

3.3.2 Proposition Let H be a finite group of orientation-
-preserving diffeomorphisms of an a.c.p. M which has at least one
handle (that 1is X, (M)<0). Then the order of H is less or egual than
=12 (X, (M) +X, (M) .

ax

M= x (I'G)+ x,(I",G) for some (I',G) with X (

proof: |H| . < (X, M +x,(0} / (X' () +x2
(M) +x2_

max

i
X
m

ax

the proposition above X, ([',G) + X, ([',G) = x.(I',,G,) for some ([

0
in € with only spherical vertices. By [MMZ] prop.7.1. X.(I',,G,)<

e}

—1/Q and so the thesis.

In view of the remarks after 3.2.4, we know that, for an a.c.p.
X M) o+ X, (M) = l/ZX(Z), where ¥ is the compressible boundary
component of M and X is the topological Euler characteristic. So
X, (M) + X, (M) = 1l-g, where g is the genus of 2 .Another appealing

version of the proposition is then:

Proposition Let H be a finite group of orientation- -preserving
diffeomorphisms of an a.c.p. M which has at least one handle (that

is X,(M)<0). Then the order of H is less or equal than 12(g-1).

So stated, the proposition 1s a direct generalization of the
analogous extimate for handlebodies, which can also be proved by
the same methods [(MMZ1] theorem 7.2.

Notice that the corresponding upper bound for finite groups H
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acting on compact hyperbolic surfaces of genus g is |H| £ 84(g-1)
( e.g. [Zie] 15.21).

One can summarize the situation in these terms: the maximal
possible order of a finite group of orientation-preserving
homeomorphisms of an orientable compact bounded surface of
algebraic genus g is 12(g-1). A finite action on a compact bounded
surface of genus g extends, by taking the product with the interval
(0,1], to an action on the 3-dimensional handlebody of genus g.
However the maximal possible order of a finite group of
orientation-preserving homeomorphisms of a handlebody of genus g is
still 12(g-1). Finally, a.c.p. include handlebodies and the uppe:x

bound for finite actions is still the same.

One might wonder 1f there actually exist finite groups H of
orientation-preserving homeomorphisms of an a.c.p. M attaining the
upper bound, that is such that |H| =12(g-1) (where g i1s the genuis
of the compressible boundary component of M) .

The question has been analyzed for compact bounded surfaces [May]
and [MMZ2] and for handlebodies [MMZ1l]. In these cases the answer
is yes. More precisely, the finite groups occurring for compact

bounded surfaces are the surjective images of D,*,D, such that the
surjection is finite-injective ([MMZ1l] page 40). On the other hand,
the finite groups occurring for handlebodies are the surjective

£ Finite-ins i
images of D,*z,D D.*p A D,*g,8, . D.*3-A. for a finite-injective

30 Y3 g3y :
surjection. The groups occurring in this second class do not
coincide with the first ones ([Zim]).

What about a.c.p.?

By (3.1.1) and the table below, the finite groups attaining the
upper bound for a.c.p. are the surjective images ot
(2,2,n) (2,3,n) for a finite-injective epimorphism.

Various guestions arise: are there any finite groups in this set
which are not contained in the previous ones?

Some appealing geometric features about these problems can be found
in [Zim].

We will not study in detail this problem, but 3.3.1 suggest us some

more considerations.

By carefully reading the proof, one deduces all values
(x, (I',6) , x,(I',G) ) C R? with X,+x,>=!/, and X, < 0. For example,
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consider the graph

([4:Gy) = D, =*=D,. We have that x,(I',G,) = -1/, and x,(I,,G,) =0.
The set of graphs (I',G) with X, (I',G) + x,(I',G) = -*/,, associated
to ([';,G,) by the proposition are:

- (2,2,n) ==~ (2,3,n) n>2

- (2,2,2,3)

We are not interested in (2,2,2,3) as X1(2,2,2,3) =0. The wvalues of

the other graphs can be expressed as
(—1/12,0) 2<n%6
(X1,%x2)= {

( =Yon 0 My =50 n>7

In particular, lines in R’ going through these points have angular
coefficients /. n21.

So the maximal order for a finite action on an a.c.p. M can be
obtained only if (X, (M) ,X,(M)) lies on those lines.

From [MMZ] Chart B page 48, we obtain the following complete list
of graphs of groups (I',G) such that X, (I',G) + x,(I',G) > "l/@
X, (I'y6)< 0 and x,(I',G)< 0.

In the last column we have computed the angular coefficient of

lines going through them.

x1(I',6) + Xo(I",G) graph angular coefficient
-/ (2,2,n) = (2,3,n) 026 T/, m21
-1/ (2,2,n) = (2,4,n) n24 "/, m2l
~*/ 5 (2,2,n) = (2,5,n) n24 ¥/, -1 n24
=1/ (2,2,n) — (3,3,n) n23 7/, m21
-/ (2,3,n) = (2,3,n) 026 /. w21
=2/ 44 (2,2,n) == (3,4,n) n23 /., =1 n23
—5/24 (2,3,n) — (2,4,n) n26 **/,, 1 n26
-/ 54 (2,3,5) — (2,4,5) -
-7/ 4 (2,3,n) =™ (3,5,n) n23 2/, =1 023
-/ (2,3,0) — (2,5,n) n26 2/, -1 n26é
=7/ 4 (2,3,4) :_ (2,4,5) -3/,
-~/ (2,3,5) — (2,5,5) -1/ s
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This table should be compared and integrated with the corresponding
table in [MMZ1] 7.2, which lists graphs of groups satisfying CO0-C4
and with X,+X,>-!/,, but with only spherical vertices.

By using this table one can extimate for a given a.c.p. M, the

value |H|_, Dby checking the lines passing through (X,(M),X,(M) )

X
for any graph of groups ([',G) satisfying C0-C4 and with 7. ([',G) =
WIM.

We give a randomly chosen illustration of the method:

3.3.3 Proposition Let M be a product-with-handles with 5 handles
and X, (M) 2-4. Then |H|__ < 30/5(g-1).

proof: By looking at the tables above one finds that there is only

one line passing through a point (=5,-X,) with X, ¢ {-1,-2,-3,-4}.

Precisely the line with angular coefficient 2/5 associated to the
graph (2,3,6)—2—(2,5,6) . But (X,+X,) ((2,3,6) —&— (2.5.6)) = -7/30.

g.e.d.
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3.4 Symmetries of graphs

In this section we exhibit a method to studvy finite actions which
is based on elementary graph theory.

Let M be an a.c.p. and H a finite group acting on M effectively and
orientation-preservingly. Then there exists a collection of

mutually disjoint H-equivariant disks D.....D_. with the properties

~

of 1.5.3. The geometric decomposition of M gives a presentation of
T,M as a graph of groups ([',G) satisfying Cl-C4 not necessarily in
standard form.

Moreover M/H 1s an orbifold-with-handles with a given geometric
decomposition and an associated graph of groups (['',G') satisfying
Ci-C4. As in 1.5 we can always select the collection of disks
D..... D, in such a way that (I'',G') satisfies CO. As the collection
of disks 1is H-equivariant, the action of H on M induces an action
of Hon ' and I'/H = ",

The idea of this section is to decompose the study of actions on M
and consider separately finite actions on the graph [ and actions
on the manifolds of the geometric decomposition. By this way we
fully exploit the ambivalent geometro-algebraic meaning of the
notion of graph of groups, by considering both the graph underlying
(I')G) and its vertex groups.

As a matter of fact, an action on a graph [' is simply a
representation of H into the symmetry group of the graph and
actions on the manifolds of the geometric decompositions are much
easier to be studied than actions on M, as they are essentially
actions on surfaces.

Let's fix an a.c.p. M and a finite group H. The set of graphs of
groups ([',G) satisfying C1-C4 has infinite elements. However, by
the remark that the index of a maximal cyclic subgroup in a
spherical group can assume only certain values, we conclude (see
3.4.1 ) that for groups H which have sufficiently high order, we
can restrict, without loss of generality,to graphs of groups with

no spherical vertices, with a few exceptions.

73



In view of this result, it is easy to list all realizable guotient
orbifolds M/H. As an application of the method, we illustrate the

case of periodic actions.

3.4.1 Proposition Let M be an a.c.p. and H a finite group acting

on 1it. Let TT@4EEH*....FP*ZI, where for 1<i<p F, is the fundamental

group of a compact orientable surface of genus g>0.If rS'H'/6 then

the graph (I'',G') associated to the gquotient orbifold M/H has the

following properties

I) If there exists veV(['') such that H, is a finite group and H,
i1s not Dn for any n#2, then there are no other spherical
vertices.

IT) If there exists veV(['') such that H =D for some n#Z, then
(',G") is

“, G«) <T'“ G\ >
\ ]) n, T‘O’A G‘D) M, ID / Pt p1

o n, m e
C—“«?‘Gﬁ' e % b N T g )

PSP*‘ Fsp

where there are no other spherical vertices except in the

picture.

It will Dbe useful the following analogous proposition, 1f the

symmetry group of the graph is not too large:

3.4.2 Proposition Let M,H, M ,M=F,*....F *Z° as above. Let S be
the maximal number of pairwise I1somorphic groups In the set

..... Fp}. Suppose S21. If r+S—lS‘H‘/6, then the graph of groups

1
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(I'",G") associated to the quotient orbifold M/H has only (if any)

spherical vertices v with G, = Dn n#2.

proof of 3.4.1: Suppose that in (I"',G') there wexists one
spherical vertex veV(['') and let ecE(['') an edge with»60e=v.
Suppose that a =81e is not v. Let A,..... a_ev(l') and Vr..vgeV(F)
the vertices covering a and v; let E,....E, be the edges in E(I[)

covering e. Consider the (possibly disconnected) subgraph /A of [

with V(A) = {(A,....A;V,....V } and E(A) = (E,....E.}.
Suppose that there exists a path p ={p.....p,} in [ such that
1) Sopze{Al""Aa}

2) &anV(ﬂd

3) PEE(/A) Vi 1<i<n.

The image through H of p still satisfies 1) 2) and 3) and there are
at least & different images. Let P be the set of these paths and
their inverses. Let us consider the (possibly disconnected)

subgraph A' of ' with E(A ") =E(/A)U{eeE([') such that there exists

PE P with e€p}; V(A '")={veV([') such that there exists eeE(A') with
8,e=v}. The number of nonseparating edges of /A ' is more than
'H|/1He| - IHI/IH.\,! > IH1/6, contradicting r<!®1/6 except for G,=D,
and s#2.

Then, 1f G, 1s not DS with s#2, as [' 1s connected, there exists

edges Joining V.....V_unless /A' is already connected. But, if
there exists such edges, then the number of nonseparating edges in
[' should be again more than IH[/IHEI - IHI/IHVI and this 1is
excluded.

The only possible solutions are the following

re) .. @ c) F5) .. @6l

NS

(7.8.) v — (.G) (r.c.) — *’Q
Aare

on% “F G =4
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On the other hand the solutions for the case GV=D3 s¥2, are those
listed in II.
g.e.d.

The probf of 3.4.2 1is analogous.

In view of this result, it is easy to list all realizable quotient
orbifolds M/H. As an application of the method, we illustrate the

case of periodic actions.

Let M,H, ([',G),(I"',G') as above, with H a cyclic group. Let a be the

induced action of Hon I' (I'/H =1").

We mark the graph ['' in the following way.

V eeE(I'') we define n=I|H_|. Vvev(['") let e . ...8 ee(I'') be the

totality of edges such that §je,=v 1<i<p. We define the set (n,°,
1

n.-.... nvp)=(|Stabw|,n

v where weV([') 1is any vertex

el""nep)
covering v and Stab means the stabilizer for a. Finally let g be
the genus of the compact orientable surface X with T.2=G,. A
marking for I' is the assignment m(v)=(g,, n/S.... n/®) vev(l).

The action of H on M induces Vwvev([') an action of vas on the
compact orientable surface of genus g with branch points of order

n,....n

n*
c

So, to a given action of H on M, we have assoclated a marked graph
(I'*,m) and a set of cyclic actions.

On the other side, for the same marked graph (['',m), any set of
Z,,-actions on compact orientable surfaces Zv with genus g, and at
least some branch points of order n,/1 .... n®, is induced by a

v
H-action on M, because the action of &, o/ &, 1 1<i<p on the set of
branch points is necessarily cyclic.

Periodic actions on compact orientable surfaces are well-known and
classified ([Yo]) and so the problem of finding all possible
quotient orbifolds which are obtained by a H-action on M is reduced
to the problem of listing all marked graphs (['',m) which can be
constructed by the procedure above.

This easier task 1s readily accomplished (in view of the
propositions above) by studying the symmetries of the graphs [

associated to the geometric decompositions of M.
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Here are some examples

Examples

Let M be an a.c.p.. Let T M=F,*....F_*Z".Consider the set of all
orientation-preserving effective differentiable & -actions on M. We
will answer the following question: which are the 3-orbifolds which

can be obtained as a quotient M/% 2

[

If we suppose rsn/6 we can apply 3.4.1. However this bound can b

M

improved in this case, as we know that the fundamental group of th
2

t

quotient orbifold admits no other spherical vertex groups exce

cyclic ones. In fact it is enough to suppose r<n/2 and the

th

conclusions of the proposition hold as well. Analogously, 1

r+S-1<n/2, we can apply 3.4.2.
First example
WlME F*E*F*Z~
where F is Fuchsian and r<n/2.
By 3.4.2 (I'',G'") has no spherical vertices (because the action of

Z on a 3-ball is equivalent to a cyclic action).

Necessarily we have

(*) r+2 = -/, % %/m(e,)
where e, varies over E(I'"). (I'"',G') may have one, two or three
Fuchsian vertices.
Three vertices
Necessarily we have
(**) m(v) = (g,n) Vvev(['")

where g is determined by F.
So any marked connected graph (['',m) satisfying (*), (**) 1is
realizable in the sense above (maybe the set of periodic actions

corresponding to a given marked vertex is empty) .
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Two vertices

(**) m(v,) = (g,n) m(v,)= (g,7/2) (n divisible by 2)

Any marked connected graph (['',m) satisfying (*), (**) is realizable
in the sense above (maybe the set of periodic actions corresponding

to a given marked vertex is empty).

One vertex

(***) m(v) = (g,n/3) (n divisible by 3)

Any marked connected graph (I'',m) satisfying (*), (**) 1is realizable
in the sense above (maybe the set of periodic actions corresponding

to a given marked vertex is empty).

Second example

1TQ4EF1*....F0*Zr

where r+2<n/2
Suppose that 1 is not isomorphic to E. 1<i#j<p and is Fuchsian.
By 3.4.2 (I'',m) has no spherical vertices and so it has p vertices
ViV such that

(**) m(v,) = (g;,n)
where g, is determined by F,.
Any marked connected graph (I'',m) satisfying (*), (**) is realizable
in the sense above (maybe the set of periodic actions corresponding

to a given marked vertex is empty).
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