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Abstract

This thesis is composed of two parts, which address problems and systems
rather different from each other. The common concept which provides a “leit-
motiv” for the whole work is the electron localization function (ELF). In both
parts of the thesis ELF is used in a nonstandard and innovative way.

ELF is a tool which is becoming these years quite much used in quantum
chemistry; we provide here some of the first implementations to condensed
matter, in particular within a first—principle pseudopotential scheme. We give
evidence that, by focusing on the valence electrons only, one exploits at its best
the spectacular insight provided by ELF into the bonding mechanisms. Notice
that most of the quantum~chemical applications so far are at the all-electron
level.

In the first part of this thesis we deal with bulk solids, surfaces and impuri-
ties. We demonstrate the outstanding performance of ELF in discriminating
between metallic and covalent bonding, without making use of any spectral
information: in fact, ELF is a pure ground-state property. Besides the actual
computations for real materials, we also present a general analytical result in
the framework of N -representability, where the role of ELF was not recog-
nized so far.

In the second part we present possibly the very first application of ELF to a
biochemical problem: namely, the analysis of the hydrogen bond pattern at the
active site of the serine proteases, an important and large family of digestive
enzymes. The ELF analysis clearly reveals that the H-bond between two key
residues present at the active site can be described as a strong covalent inter-
action: i.e. a “low—barrier” hydrogen bond. This finding may be relevant for
the biological function of this class of enzymes, helping shade new light on
the quantum~chemical processes governing the catalytic mechanism.
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Introduction

Localization and its antonym, delocalization, are two words with quite a range
of meanings in chemistry and condensed matter physics. Anyhow, a rigorous
“quantum mechanical” definition of these concepts is necessary to describe and
understand ubiquitous chemical notions such as bonds, lone—pair orbitals, lone
electrons and valence—electron charge distributions.

Standard approaches in quantum-mechanics describe the single particle en-
ergy levels of a many—electron system using molecular orbitals obtained as a com-
binations of atomic orbitals or localized functions. In the case of finite systems, the
use of a localized orbitals basis—set naturally leads to the familiar chemical view
of charge distribution, in terms of bonding electron pairs, lone electron pairs and
localized electrons. These are very useful concepts, though basis—set dependent
and therefore nonunique. Going to infinite—either crystalline, or disordered—
systems, the reduction to localized orbitals is much less trivial, additional prob-
lems arising basically from the use of periodic Born—von Karman (BvK) boundary
conditions, which are almost mandatory to describe condensed systems.

Furthermore, in condensed matter theory, related to a proper definition for
the electron localization there is also the problem of a rigorous interpretation of
“metallicity” or “covalency” of a given bonding region. Metals are often envi-
sioned as containing electrons delocalized throughout the solid, so that the elec-
trons are free to move from one side of the sample to another; at the opposite
extreme we have covalent systems, characterized by the strong localization of va-
lence electron—pairs (the bonding pairs) forming a singlet state. Therefore, local-
ization properties of the wavefunction can be considered as a perspicuous signa-
ture of the bonding character: a purely delocalized state corresponds to a metallic

bond, whereas a localized state implies an insulating nature of the system [1].
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To attempt to better understand electron localization from a theoretical stand-
point, Becke and Edgecombe recently developed the electron localization func-
tion (ELF) [2], which has been widely used in literature to examine localization
in atoms, molecules, and solids [3-7]. The ELF is a pure ground-state property,
and is basis—set independent.

Amongst other appealing virtues, basically two properties make the ELF an
outstanding quantum-chemical tool to analyze the localization and bonding prop-
erties. First of all, its simplicity: an ELF plot is an immediate visualization of
spatial regions of electron localization. It is in fact a dimensionless function—
ranging from zero to one—which is larger where the electrons are more localized,
and smaller where we expect more delocalized bonding. Secondly, the ELF is
a quantitative measure of how the electron distribution—by the effect of Pauli
principle—locally deviates from a “reference bosonic state”, in which the Pauli
statistical repulsion is ideally switched off (keeping the electron density fixed)
and all the electrons lie in the same ground—state orbital.

Through these two features, ELF addresses localization and bonding in a
meaningful and straightforward way: namely, ELF allows us to sharply discrim-
inate between metallic and covalent bonding character, and at the same time to
clearly individuate the spatial domains of electron localization.

The quest for an univocal definition of the “electron localization” is a long—
standing one in chemistry, and the ambition to solve this problem by means of
some property related to the electron density—or by the electron density itself—
was followed for many years. However, all these over—simplified density—based
schemes easily describe the localization pattern present in simple molecules and
covalent bonded solid systems (such as the “prototypical” case of bulk silicon
where the valence charge shows a maximum in the bonding region), but hardly
distinguishes between metallic and covalent bond and even fails to describe local-
ized electrons in much more complicated systems [2, 6].

The novel solution proposed by Becke and Edgecombe [2] takes into account
the pairing of electrons, which is impossible to evaluate from the charge density
alone. The formation of electron pairs is a consequence of fermionic nature of the
electrons or, equivalently, an expression of how strongly the electrons “feel” the

effects of Pauli exclusion principle.
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The ELF is essentially constructed as a suitable measure of the conditional
probability of finding simultaneously two parallel-spin electrons in a neighbor-
hood of each other. This probability is encoded in the off~diagonal elements of
the one-body density matrix (in coordinate space): therefore, the basic message
coming from the ELF is that in order to get a meaningful description of the lo-
calization properties in a multielectron system we have to take into account the
whole one—body density matrix and not only its diagonal (i.e. the density). By
construction the ELF is a functional of charge and kinetic energy density 7(r),
whose expression is given in terms of the one—particle (spin integrated) density
matrix p(r,r’) as: ,

7(r) = —;—Vrvrzp(r,r')

r=r'

Besides ELF, other innovative paths to electron localization and bonding are
explored in the current literature. The most promising of them is probably the ap-
proach based on optimally localized Wannier functions, first pursued by Marzari
and Vanderbilt [8], and on the closely related concept of “localization tensor” [9,
10]. The latter is an integrated quantity (not a function like ELF), and provides
a quantitative measure of the global amount of localization in the ground-state
wavefunction: its main ingredient is once more the one—particle density matrix p.
More precisely, the localization tensor can be expressed as a second moment of p
as:

]‘ ! ! ! /
Ay = I /dr/dr (r —1")o(r — ') glp(r, ") |2

This quantity is finite in insulators and divergent in metals.

In the first part of this thesis (Chapters 1 to 4) we present our applications of
ELF to condensed systems. In Chapter 1 we review the ELF definition and proper-
ties. ELF calculations for a few bulk systems show the perspicuous ELF ability to
mark a clear distinction—without using any spectral properties—between cova-
lent and metallic bonding environments. In Chapter 2 we show a so far unnoticed
connection between ELF, the N-representability problem, and the possibility to
construct a new kinetic energy explicit functional: this was published as Ref. [11].
In Chapter 3 we present the application of ELF to solid surfaces, focussing on
two paradigmatic cases: semiconductor (silicon) and metal (aluminum) surfaces.

For the semiconductor surface, the ELF visualizes the strong rearrangement of



Introduction

the bonding pattern which accompanies the surface reconstruction: this was pub-
lished as Ref. [12]. For the metal surface, the ELF clearly highlights the effect
of local coordination and packing upon the nature of the electron distribution in
the surface region (Ref. [13]). Finally, in Chapter 4 we preseﬁt our application
(Ref. [14]) to disordered systems where a combined analysis of the electronic
charge density distribution and ELF allows to unambiguously classify the differ-
ent kinds of electronic defects (dangling and floating bonds). '



Chapter 1

The Electron Localization Function

Ubiquitous chemical concepts such as “the electron pair” or “the chemical
bonding character” do not univocally correspond to any directly measurable
physical quantity. However, because of their undeniable conceptual utility,
clear and rigorous physical definitions are essential.

For many years the major tools used in investigating bonding at large has
been the analysis of either the electronic charge density or the projected den-
sity of states. Instead, only a few years ago a very powerful tool has been
introduced to deal in a quantitative way with bonding features: this goes
under the name of “electron localization function” (ELF). Several appealing
features make ELF the tool of choice in the study of bonding patterns: ELF
is a pure ground-state property, as the density is, but it “magnifies” by de-
sign the bonding features of a given electron distribution. Furthermore, ELF
is dimensionless, and allows to compare the nature of bonding in different
systems on an absolute scale.

In this chapter we review the ELF definition and its outstanding ability in
discriminating between different bonding features. We first discuss the ef-
fect of the pseudopotential approximation upon the ELF calculations; fi-
nally, we present some benchmark results on simple molecules and paradig-
matic bulk crystals, all of them confirming the same conclusion: namely,
ELF yields very meaningful, easily understandable and visually informative
patterns of the chemical bond.

1.1 Definition and properties

To better understand the electron localization from a theoretical standpoint, Becke Becke and Edgecom-
.. . . be approach: Taylor
and Edgecombe [2] have originally introduced a new scalar function—the elec- expaﬁﬁion of the Iymh.

tron localization function—as a measure of the conditional probability of finding PPt
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an electron in the neighborhood of another electron with the same spin. They
considered the Taylor expansion of the (spherically averaged) parallel-spin pair
probability, that for small distances appears to be quadratic in the interparticle

separation s = |r — r'[:
Lo
P(r,s):§5 D(r)+--- (L.1)

From the pair probability curvature D(r) they defined the ELF, conveniently
ranging from zero to one, that uniquely identifies regions of space where the elec-

trons are well localized:

1
EREER YN (2
The normalization factor Dy (r) is the same quantity as D(r) calculated for the
homogeneous electron gas, introduced in the definition (1.2) as a fully—deloca-
lized reference system.

The simplest form of a wavefunction satisfying the Pauli principle is a single
Slater determinant. In this case, the curvature D(r) of the pair-distribution can be
easily expressed in terms of the occupied orbitals.

Properties By the definition of Eq. (1.2), the regions where the pair probability is low—
that is where an electron has a negligible probability of seeing another electron of
the same spin—are regions where the electrons are strongly loéalized, as occurs in
bonding pairs, lone—electron pairs, or where the unpaired lone—electron of a dan-
gling orbital is localised. In all these cases, the Pauli principle is ineffective, and
the ground wavefunction is nodeless (or loosely speaking “bosonic”), yielding an
ELF equal to its upper bound. Furthermore, since in the homogeneous electron
gas ELF by definition equals 0.5 at any density, values of this order in inhomoge-
neous systems indicate regions where the electrons are highly delocalized, with a
prevalent metallic character.

This function has therefore higher values in regions of space where one ex-
pects bonds and lone pairs to be, and lower values where one expects more de-

" localized bonding: namely, plots of ELF correspond quite well to what chemists
tend to qualitatively think of as “electron spatial localization”.

Kinetic energy for- Savin et al. [3] have proposed another illuminating interpretation of the same
mulation



1.1 Definition and properties

quantity, showing how D(r) can be simply calculated in terms of the local be-
haviour of the kinetic energy density, thus making no explicit reference to the pair
distribution function. The physical idea is basically the following: owing to the
Pauli principle, the ground-state kinetic energy density of a system of fermions is
larger than the one of a system of bosons at the same density [15, 16] and ELF can
be equivalently expressed in terms of the extra contribution to the kinetic energy
density due to the Pauli principle.

This approach is particularly convenient for our solid state context, since we
work in the theoretical framework of density functional theory (DFT)!, where an
explicit calculation of the pair correlation function is totally unfeasible. Working
at the independent—particle level—the Kohn and Sham (KS) level in our investi-
gations—and using the Savin et al. approach, we can express the ELF directly in
terms of the KS kinetic energy density.

. Savin et al. have shown that the curvature D(r) in Eq. (1.2) can be inter-
preted as the Pauli excess kinetic energy density, defined as the difference be-
tween the kinetic energy density and the so—called von Weizsécker kinetic energy
functional [16]:
1|Vn(r)P?

r=r' B 8 n(r) ’ (13)

1
D(I‘) = Q—Vrvr/p(r, I")

where p is the one-body reduced (spin—integrated) density matrix. The von Weiz-
siicker functional provides a rigorous lower bound for the exact kinetic energy
density [16] and is ordinarily indicated as the “bosonic™ kinetic energy, since it
coincides with the ground-state kinetic energy density of a non—interacting system
of bosons at density n(r). Therefore, D(r) is positive semidefinite and provides
a direct measure of the local effect of the Pauli principle. The other ingredient
of Eq. (1.2) is Dy,(r), defined as the kinetic energy density of the homogeneous

electron gas at a density equal to the local density:
3 2
Dy(r) = I6(37r‘2)sn(r)'3'. (1.4)

The Savin et al. reformulation also provides a meaningful physical interpreta-
tion: where ELF is close to its upper bound, electrons are strongly paired and the

electron distribution has a local “bosonic™ character.

I A brief account of the DFT is given in Appendix A.
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It is important to remark how all the ELF plots reported in this work display
vanishing ELF in asymptotic regions, or where the electronic density itself ap-
proaches zero. This is a consequence of the n(r)g denominator, vanishing much
more strongly than the excess local kinetic energy (except the case where D(r) it

is identically zero, as in a two electron atom wavefunction).

1.2 ELF in atoms, molecules and crystals

In this section we present some benchmark calculations on various systems: name-
ly, an isolated pseudo—atom, three molecules where a single, a double, and a triple
covalent bond is present, and finally two paradigmatic bulk crystals. We want to
analyse some typical chemical bonding kinds and demonstrate how ELF portrays
these kinds.

As already stressed, all the calculations presented throughout this thesis were
performed adopting a fully ab initio method, which has become the “standard
model” in modern first—principles studies of simple metals, covalent semiconduc-
tors, simple ionic solids, and many other disparate materials [17]: DFT-LDA in
its KS formulation [18-20], within norm—conserving pseudopotential approxima-
tion [21]. We therefore approximate the kinetic energy of the interacting electron
system with the one of the noninteracting KS one, using in Eq. 1.3 the KS density

matrix:

plr,r) =2) ¢[()e" (), (1.5)

where ¢5(r) are the occupied KS orbitals. Such approximation is expected to

become significantly inaccurate only in the case of highly correlated materials.

1.2.1 ELF and pseudo-atoms

The original ELF definition is an all-electron one, and has the remarkable fea-
ture of naturally revealing the entire shell structure for heavy atoms [2, 5]. Such
a feature is of no interest here, since only one electronic shell (the valence one)
is involved in a pseudopotential framework. This approach is nowadays routinely
adopted in almost all the first—principles descriptions of real crystalline systems,
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C |

0.0 0.5 1.0

Figure 1.1: ELF for an isolated pseudo—atom. The grey-scale is also shown: dark (clear)
regions correspond to large (small) ELF values. The same grey-scale is adopted in all
subsequent contour plots.

but ELF investigations within it have been quite scarce so far. Instead, we are go-
ing to show how neglecting the core electrons and focusing solely on the bonding
electrons notably simplifies the final outcome, with basically no loss of informa-

tion [22] and a much clearer ELF message.

In this section, as a first example, we analyze the case of a single Al pseudo—
atom, quoting for the moment only the effect of the pseudization upon the ELF of
a general isolated atom. In a subsequent chapter, this peculiar behaviour will help

us to understand the bonding pattern occurring at different Al surfaces.

In the spatial regions occupied by core electrons, the pseudo—electronic dis-
tribution shows a depletion and ELF assumes very low values. Outside the ionic
cores, in the regions relevant to chemical bonding, the norm conservation endows
the pseudocharge density with physical meaning, as widely discussed in the mod-
ern pseudopotential literature [17,21]. By the same token of norm conservation,
even the pseudo-orbitals—and hence their kinetic energy density—closely map
the all—electron ones in the bonding regions. The pseudo ELF carries therefore—
in the material of interest here—the same information as the all-electron ELF,
while it removes irrelevant and confusing features due to the inner, chemically

inert, shells.

Al pseudo—atom
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For an all-electron atom [2, 5, 6] each quantum shell is associated to a visible
ELF local maximum, with a clear ELF depletion between two neighboring shells.
For an isolated pseudo—atom we have instead, by construction, only a single va-
lence shell, clearly displayed by a single and very prominent ELF maximum. In
Fxg 1.1 we report our result carried out for the Al atom: in the picture one immedi-
ately remarks the spherical region associated to the ELF maximum (0.91), where
the charge density is almost bosonic. The black cloud in Fig. 1.1 indicates the
strong localization of the single electronic valence shell and, as we will show in
the following, perspicuously distinguishes the free aluminum pseudo-atom from

the crystalline one.

1.2.2 ELF in molecules: covalent single, double and triple bond

As a paradigmatic example of molecular structures analyzed with ELF, we re-
port in Fig. 1.2 the series ethane, ethylene, and acetylene where the differences
between covalent single, double, and triple bonds are clearly visible.

It is well known in literature [6] how the charge density of al.most all molecu-
les is poorly structured. On the other side, all the chemical details of the structures
can be clearly discerned in the ELF representation: in Figs. 1.2 (a)—(c), the C-C as
well as the C—-H bonding regions. The latter are diffuse and also show the position

of the hydrogens.

Furthermore, an increasing contraction of the bonding region along the C-C
axis is observed with increasing bond order. In the case of the ethyne, Fig. 1.2(c),
there is only a localization torus around the bonding line. The maximum of the
electron density is found in the mid point of C~C connecting line, but the high-
est ELF values are found outside: this result, first of all, confirms how a simple
charge density analysis hardly describes all the chemical features of a given elec-
tron distribution. Secondarily, 18 in perfect agreement with the tipical description
of double and triple bonds in terms of o — 7 orbitals.
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(a) (b)

(©

Figure 1.2: ELF three—dimensional isosurfaces with ELF=0.85: (a) ethane, (b) ethylene,
and (c) acetylene. In the ball-and—stick models black and white balls represent, respec-
tively, carbon and hydrogen atoms.

1.2.3 Bulk crystals: metallicity vs. covalency

Detailed ELF analyses have been performed for many systems of chemical inter-
est [4-7]. In a bulk crystal, the most relevant performance of ELF is undoubtely
the ability to shafply discriminate between metallic and covalent bonding. This is
illustrated in the left panels of Figs. 1.3 and 1.4, where we plot the ELF for two

paradigmatic crystalline materials: respectively, silicon and aluminum.
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Si Bulk

Al Bulk

Since the early days of electronic—structure theory, we understand bonding in
simple metals through the paradigm of pseudopotential perturbation theory [23,
24]: the valence electrons behave basically as a free—electron gas in the region
outside the ionic cores. At the opposite extreme, we understand covalent bonding
through the paradigm of the H, molecule, whose electrons are strongly paired in
a singlet state; in a more general case, covalent bond is characterized by “local-
ization” of valence—electron pairs in appropriate regions of space. While charge—
density plots do not help much in discriminating metallic from covalent, the ELF
provides a quantitative measure of “metallicity” vs. “covalency” of a given bond,

or more generally of a given valence region of the system.

In the bulk silicon, one clearly sees the almost black regions in Fig. 1.3 be-
tween nearest-neighbor atoms, whose bonding pattern in this geometry has the
shape of a “zig-zag”chain. In these bonding regions our calculated ELF attains
the maximum value of 0.96, thus indicating that the Pauli principle has little effect.
In agreement with a chemical picture of the covalent bond, we associate these re-
gions to the opposite—spin electron pairs—actually a “bosonic” system-—localized
between every pair of bonded atoms. This is to be contrasted to metallic bonding,
where the valence electrons have a free—electron nature. To make this point better
clear, we take as an example a paradigmatic simple metal: crystalline aluminum,
whose bulk ELF is shown in the left panel of Fig. 1.4 to the same grey scale.
Comparing this plot with that one of silicon in Fig. 1.3 we immediately appre-
ciate the spectacular ELF ability to distinguish in a very clearcut way between
metallic bonding and covalent bonding. The ELF plot in aluminum shows—
outside the core regions—a large grey area, which correspond to a jellium-like
(or Thomas—Fermi) ELF value. Actually, the maximum value attained by ELF
between nearest—neighbor atoms is only 0.61 and—outside the core radii—there
is a widespread grey region, where ELF is almost constant and close to 0.5, thus
indicating the free—electron nature of the valence electrons. The ions cores only
provide an “exclusion region” for electrons (white circles in the plots), but ba-
sically do not alter this jellium-like electron distribution: in this sense, we may

regard the ion cores as a “weak” perturbation [24].

Comparison of the two ELF plots provides therefore the most significant and

perspicuous visualization of the important gualitative difference between the co-
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Figure 1.3: Contour plots for bulk silicon in the [1 lO] crystalline plane. Left panel: ELF;
right panel: pseudocharge density.

DR -

Figure 1.4: Contour plots for bulk aluminum in the [100] crystalline plane. Left panel:
ELF,; right panel: pseudocharge density. The same scale is used as in plot of Fig. 1.1.

valent bond and the metallic one. In the bulk of the two materials the Pauli prin-
ciple plays quite a different role. The other typical tools for analysis, such as
charge—density plots or projected density of states, lack by far a similar sharpness.
As an example, we show the corresponding pseudocharge density plots in the right
panels of Fig. 1.3 (silicon) and in Fig. 1.4 (aluminum). From such figures, hardly

any information about metallicity or covalency can be drawn.

1.3 Bond polarity

ELF is a tool naturally devoted to the qualitative study of ionicity effects upon
the bonding character. We report in Fig. 1.5 our results for a group of covalent
systems and the limiting cases of an ionic compound.

For the zincblende semiconductors in Fig. 1.5, ordered with increasing Phillips
ionicity [25], we have observed effects analogous to those cited in Ref. [7] for sim-

ilar structures. The region of high ELF value becomes increasingly asymmetric
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GaAs nS

MgSe KBr

Figure 1.5: Contour plots of ELF in the [110] plane for different zincblende structures,
ordered with increasing bond ionicity (GaAs, ZnS, MgSe) and an ionic compound (KBr).

and extended, with a clear tendency to concentrate around the more electronng
ative atom. In agreement with Ref. [7], we have also found a good correlation
between the ratio of covalent radii and the distance of the ELF maxima from the
relative nuclei.

The ionic crystal KBr is simply the limiting case of the zincblende sequence,
with each Br atom surrounded by a nearly spherical cloud of high ELF value,
corresponding to the filled valence shell. As expected the ELF topology in the
ionic case is equivalent, for the Br atom, to the isolated—atom case in Fig. 1.1,
with the complete valence shell localized around the nucleus.

It is important to stress also how the ELF is dimensionless, allowing to com-
pare the nature of the chemical bond in different compounds, as the ones in
Fig. 1.5, on an absolute scale. Only within an ELF approach it is possible to

describe the ionicity effects in the bonding regions.



Chapter 2

N -representability, Equidensity
Orbitals, and ELF

In this chapter we provide a novel solution of the N -representability prob-
lem for an extended system, which implies an explicit form for the Kohn—
Sham kinetic energy in terms of the density. Our approach is based on a
periodic coordinate mapping, which transforms a reference uniform sys-
tem into the actual nonuniform one. The kinetic energy density functional
is thus expressed as an explicit functional of the metric tensor. Since N-
representability is enforced, our constructive recipe provides a variational
approximation. Furthermore, we show that our geometric viewpoint is quite
naturally related to the ELF which—as obtained from accurate Kohn-Sham
orbitals in real materials—allow an appraisal of the variational approximate
kinetic energy density functional.

2.1 The N-representability problem

The celebrated basic tenet of density—functional theory [16, 18-20] states that an
exact description of a many—electron system is in principle possible in terms of
a single scalar field, namely the electron density n(r). The Hohenberg—Kohn
theorem [18] (upon which DFT is based) does not provide a constructive scheme:
for any given N, the exact functional is indeed accessible only through the many—
body wavefunction.

The enormous success of DFT resides in approximate schemes which are con-

structive, and do not make explicit recourse to the many-body wavefunction:
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within such schemes, the only wavefunction needed is a wavefunction of non-
interacting electrons, which is uniquely defined by the manifold of the occupied
Kohn—-Sham single—particle orbitals [16, 19,20], or equivalently by the KS one—
body reduced density matrix. The eponymous density functional F'[n], Eq. (2.18)
below, is the sum of a few terms: all of them but one are almost invariably ap-
proximated as explicit functionals of the density. The only term where the density
matrix is actually needed is Ty, the kinetic energy of the noninteracting system,
which is a functional of the density in an implicit way. This qualitative difference
is of course responsible for most of the computer workload in practical calcula-
tions, hindering amongst other things the linear scaling of computations with the
size of the system.

A well known approximate form for the kinetic energy of a system of nonin-
teracting electrons in terms of their density is the Thomas—Fermi (TF) one [26].
We focus here on a different class of approximations, which are—at variance with
TF—variational: this feature is intimately linked to the problem of N -representabi-
lity, which concerns the reconstruction of the antisymmetric many-body wave-
function generating a given density. In fact, even if one can easily construct
an entire family of antysimmetric N-electron wavefunctions corresponding to a
given reasonable density, the energy associated to this trial wavefunctions is far
from being the true ground—state energy, even in the simple case of non interacting
electrons. This happens because fixing the density is not sufficient to restrict the
Hilbert space to an “acceptable” subset of many—body wavefunctions and a very
special attention must be paid to the kinetic energy.

Whenever an approximate 7 coincides with the true kinetic energy of an ar-
bitrary independent—electron wavefunction, then the variational theorem ensures
that it must be no smaller that the exact 7 of the given system. Therefore, the
requisite of NV-representability is equivalent to requiring that 7 obtains from a
density matrix which is idempotent. There is clearly an infinity of idempotent
density matrices, all yielding the same given density: amongst these infinite so-
lutions of the N-representability problem, one searches for the one having the
lowest Ty at the given density.

In order to provide an explicit approximate (and variational) expression for 7

one has, first of all, to provide a constructive recipe which, starting from a given
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density, produces an idempotent density matrix. Explicit solutions of this prob-
lem have been provided by several authors in the literature, amongst whom we
only quote Harriman [27], Zumbach and Maschke [28], and Ludefia and cowork-
ers [29-31]. The solution proposed by Harriman—for the one~dimensional case—
can be simply summarized in the following.

Given a one—dimensional N electron system at density n(r), with
/ dr n(r) = N, (2.1)
-0

one defines an auxiliary function f(z) by the differential equation

df(r) 2w
= (). 2.2)

~ Direct integration of Eq. (2.2) yields:

flr)= %VZ "t n(t). (2.3)

A constructive solution to the N-representability problem is achieved by the de-
termination of an idempotent density matrix whose trace yields the given charge
density. Starting from the condition (2.2) imposed on the auxiliary function f (x),
Harriman proposed the following set of single—particle orbitals ¢ (r) labelled by

an integer “‘quantum number” k:

or(r) = @%—)-e““f(”, ke Z. 2.4)

Notice that the orbitals ¢x(r) have a k—independent density, and are therefore
“equidensity orbitals” in Harriman’s [27] nomenclature. '

By means of Eq. (2.2) one readily demonstrates that these orbitals are or-
thonormal:

/ “argi(e) = [ " 420 gio-ns)

Ulnte ] o.¢]

1 Oodmi(k—z)f(r)df(f)
27 ) —o dr

1 2m )
= %/ df*™ D = 5, (2.5)
Jo

Harriman
tion

construc-
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and complete (provided n(r) does not vanish on a set of finite measure, so that

f(r) is a strictly monotonically increasing function):

Y e(r)gilr) = % n(ryn(r’) > eI O=/001

kEZ kez

_ ?.].VT w3 f(r) — F(r')
27 S(r—r")

= —n(r)—-v-+-=>=3§(r—1r"). 2.6
N agygar =00 ) 26
Thus the Slater determinants
1
D(kl,...,kN) = ﬁdet{gﬁklf“?gbkxv} (27)
with ky,...,ky € Z, and k; # k; for i # j constitute a complete orthonormal

system of N-particle wavefunctions, each of which has a density identical with

the prescribed function n(r).

Zumbach and Masch- An analogous construction in three dimensions [28] is based on the orbitals:
ke construction
n(r A
Pr(r) = —]%—Zek'f<r>+¢<f), k e Z°. (2.8)

In contrast to the one—dimensional case, where the condition (2.2) determines uni-
vocally f(r), the corresponding requirement for the Jacobian in three dimensions
leaves considerable freedom in the construction of the vector f(r). Zumbach and
Maschke [28] have proposed a possible choice, and—once contructed the single—
determinant many-body wavefunction D(k, ..., ky)—have variationally fixed
the phase factor ¢(r), by minimizing the kinetic energy of a system of noninter-
acting particles.

Within our geomet- Starting from a rather different viewpoint, we have proposed [11] an elegant

rical approach it is .. .
poss;ugp to gauge generalization to extended systems of the Zumbach and Maschke construction:

the quality of the
equidensity  orbitals

i?‘tr?g’ ginl;pgoltooking ing electrons in a box of volume V', where periodic (Born-von Karman) conditions

namely, we solve the /V-representability problem for a system of N noninteract-

are assumed at the boundary. Basically, with a simple geometrical approach—
in the same spirit as the one advocated by Gygi [32,33] in electronic structure
calculations—we introduce an orthonormal and complete set of equidensity or-
bitals, analogous to that in Eq. (2.8), that formally solve the /V-representability
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problem. Moreover, our geometric description naturally partitions 75 into the sum
of two terms: very roughly speaking “bosonic” and “Pauli”. These two terms
coincide with the volume integrals of the two local functions which are used in
‘the literature as the main ingredients of the ELF: therefore our solution of the N-
representability problem—as well as the explicit approximate density functional
based upon such solution—is therefore fundamentally linked in a very natural
way to the ELF concept. In particular, the ELF results shown in the first chapter
for real materials help understanding what is good and what is bad in the approx-
imate form of T,. Anticipating here our result, we find that the quality of the
approximation provided by our constructive recipe strongly depends on the kind
of bonding involved in the many-electron system. We give evidence that both the
Zumbach and Maschke recipe [28] and our own one provide a reasonable set of
single—particle orbitals for simple metals in the pseudopotential approximation,

while their quality significantly decrease whenever covalent bonding is present.

2.2 Curvilinear coordinates and N -representability

For a system of independent electrons in a closed-shell configuration the wave-
function is a single determinant: knowledge of the one—particle reduced density
matrix is equivalent to a complete knowledge of the wavefunction. The spin-inte-
grated matrix p(r,r’) is twice a projector, which indeed projects over the (dou-
bly occupied) one—particle orbitals. We consider a system of N electrons in a
box of volume V, obeying periodic boundary conditions. The average density
is g = N/V, the density is n(r) = p(r,r), and the idempotency condition is

written:

/ dr'” p(r,r")p(x", ') = 2 p(r,1). (2.9)
Jv

We start with a homogeneous system of N non-interacting electrons at the
same density ng, for which we use & as a space coordinate. For this system the
canonical orbitals are, by symmetry, the plane waves giki€ /V'V, where k; are the

reciprocal vectors determined by the boundary conditions. By choosing to occupy

Homogeneous system
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the N/2 orbitals of lowest energy, the density matrix is:

N/2

pol€,€') = %Ze"kl(ﬁ*i", | (2.10)
=1

which is obviously idempotent and yields a constant density. In the thermody-
namic limit (N — oo and V' — oo at constant ng) the k; set becomes dense.
Occupying the k-vectors within the Fermi sphere (|k| < kr) Eq. (2.10) yields the

well known electron-gas result:

351(kpl€ — £])
kel —¢'|

Coordinate mapping At this point we introduce a generic curvilinear coordinate precisely of the

po(€,€) =nyg (2.11)

same kind as introduced by Gygi in the field of electronic—structure calculations [32,
33]. We therefore define a twice differentiable invertible map & — r(€), periodic
over V, whose Riemannian metric tensor is:
_orkork
- ogi oLl

Gij (2.12)
Summation over repeated indices is understood throughout. A generic plane wave

of momentum Kk is transformed as:

Lt L doekém
——e"S — i (r) = —=g 1(r)e™S), (2.13)
where g = det{g;;}, and g2 is the Jacobian |0¢ /dr| of the inverse transforma-
tion. The orbitals xi(r), having a k-independent density, are therefore a three—
dimensional generalization of the Harriman’s equidensity orbitals in Eq. (2.4).

The density matrix in the new coordinates is:

p(I‘,I‘I) = PO(&(r):g(rl)) -
2 1 1 N/Q - Iy
= vg“z(r)g"z(r’) Zelkz[g(r)—ﬁ(r il (2.14)
=1

The corresponding transformed density is

n(r) = neg 2 (r). (2.15)
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In the novel coordinates we thus have a nonhomogeneous system, with the same
average density as the homogeneous one, and whose density matrix is idempotent
by construction.

We are now ready to attribute physical content to the above mathematics. Sup-
pose that the density n(r) of an electronic system is given. We then look for a
coordinate transformation & — r(&) which maps the uniform density into the
given density: a necessary and sufficient condition is Eq. (2.15). The solution is
nonunique, since several different maps share the same Jacobian g“%: we will ar-
gue below about an optimal solution, using a variationally adaptive metric in the
sense of Gygi [32,33]. Replacement into Eq. (2.14) yields the explicit form:

2 s X
p(r,r') = —=ni(r)nz( ')Zezkz (r)-&(N] (2.16)

In one dimension the solution of Eq. (2. 15) is unique, and we get here the pe-
riodic analogue of the Harriman construction [27]. In three dimensions, our result
is related to the work of Zumbach and Maschke [28], the differences being that we
deal with periodic systems, and we provide a more general explicit construction.
A coordinate mapping, similar in spirit to the present one (and called “local scal-
ing transformation”), has been previously introduced by Ludefia and coworkers

for spherical atoms [30].

2.3 Density functional

The energy of the electronic system in the external potential vey is written, within
DFT, as [16,20]:

Eln] = /drn ) Vext (T) +F[] (2.17)

Fln] = / dr / dr ’” + Exln), (2.18)

where atomic Hartree units have been used. As aheady anticipated, basically
all the available constructive approximations to DFT provide Fy. as an explicit
functional of the density n(r), while instead the kinetic energy term T is:

1

Ty = - /dr V. Vep(r,r) (2.19)
2 Jv

r=r'

Solution to the N-
representability prob-

lem
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Density—only kinetic
energy functional

The ground electronic energy, Eq. (2.17), is therefore an explicit functional of the
density matrix, which has to be minimized under the constraints of idempotency,
Eq. (2.9), and electron number.

Replacement of our ansatz density matrix, Eq. (2.16), in the above expressions
provides an upper bound to the electronic energy, explicitly expressed solely in

terms of the density and of the metric. The approximate kinetic energy is:

N/2

T, = Z/drwm . (2.20)

Using then Eq. (7) of Ref. [33], the expectation value of the kinetic energy over a

X1 orbital is the sum of two positive terms:

— kik] zy 1 1]

where the “gauge potential” is:

101Ing '

;== 2.22
4 o9& (2.22)

After summing over the N/2 doubly occupied states, we get
Ti[n] = D[n] + Tsn], (2.23)

where the reason for the notations will be clear in a moment.

Using Eq. (2.15), we cast the gauge term as:
: : Vn(r)[?

T dr g3 () Vo) = & [ ar VPO 2.24
aln] = 5 [ drg ) Vot = 5 [ar IS @2

In the latter expression, we notice that the metric formally disappeares from the
gauge term, which is indeed identical to the von Weizsicker energy functional,
appearing also in the definition of ELF, Egs. (1.2) and (1.3). As already stressed
in Chapter 1, this energy coincides with the kinetic energy of a system of non-
interacting bosons in their ground-state, having the given density n(r): with this
specific meaning, we may refer to 7 as to the “bosonic” energy. Our expression
for D[n] as a function of the metric shall therefore be a variational approximation
to the integral of the rrue excess Pauli energy density D(r) of Eq. (1.3).
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The sum over the occupied states in D[n] is most easily evaluated if we assume

a cubic box. If we define Ej as the kinetic energy of the homogeneous system:

N/2
Ey=> |k, (2.25)
: =1
it is then easy to recast D[n] as:
~ E 1 .
Din] = —Q/dr g 2 tr{g"}. (2.26)
3V )y

We further notice that in the thermodynamic limit one has:

3 5
Ey = T(—)Nk% = crVng, (2.27)

where cp = %(?mz)%.

Putting all the previous formulas together and approximating 75 in Eq. (2.18)
with T}, we obtain an approximate F'[n] as an explicit functional of the density and
of the metric tensor. Since the density—owing to Eq. (2.15)—is in turn a function
of the metric tensor, we use the latter as the independent variable. Ultimately, the
electronic energy of the system, Eq. (2.17), is a variational explicit functional of
the metric tensor g% (r). This functional can be regarded as the periodic analogue
of the one of Zumbach and Maschke [28], expressed in more compact form in
terms of a different variable. Furthermore the explicit occurrence of the periodic
metric in the D[n] term makes feasible an adaptive optimization of the metric.
Upon closely following Gygi’s approach [33], the Fourier coefficients of the peri-
odic metric are the natural variational parameters of the problem.

In the trivial case vegq (r) = 0 all of the kinetic energy is due to D[n], since
the density is constant and 7g[n] vanishes. Furthermore the metric is the identity
and the approximate kinetic energy equals the exact one: Ty[n] = Ty[n] = Ej,
Eq. (2.27). The approximate functional F'[n] coincides with the exact one, includ-
ing its exchange—correlation term if the exact electron—gas data [34, 35] are used
therein (as usual). This suggests that the approximate functional should work rea-
sonably well for a system close enough to the electron gas, such as a simple metal

within a pseudopotential scheme.
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Variational —approxi-

mation for the Pauli
excess kinetic energy

density

2.4 Connection with ELF

The experience gained in investigating the ELF in real materials helps understand-
ing the meaning and the limits of the approximate density functional such as the
Zumbach—Maschke [28] one, as well as of the generalization proposed here.

Our explicit ansatz of Eq. (2.16) leads to the Pauli excess energy D[n] of
Eq. (2.26). It is interesting to see the consequences for the ELF, since the ansatz
clearly leads to replacing the Pauli excess energy density, D(r) in Eq. (1.3), with

- E . 1 5 .
D(x) = > 972 te{g7} = zerng g7 trfg 7}, (2.28)
3V 3 _
where the thermodynamic limit, Eq. (2.27), has been used. Considering now the
inequality ,
1. . o ni(r
Lu(g) > faexfg?)E = g7 = 0, 2.9
ng

we get for the approximate Pauli energy density the lower bound:

D(r)>cpn

walen

(r). (2.30)

From Egs. (2.30) and (2.23), we can argue that a single coordinate transforma-
tion satysfing (2.15), applied to the ground—state of an homogeneous system, gives
a kinetic energy equal to its lower bosonic limit plus a term always greater than
the jellium limit. The only way to gauge the quality of our single—determinant
wavefunction is to understand how the true kinetic energy density deviates from
its bosonic lower limit. The ELF is exactly a measure of this deviation, and com-
paring with the ELF definition, Eq. (1.2), one easily realizes that even the optimal
choice of the metric tensor will unavoidably provide values of ELF which are
smaller than 1/2 everywhere. From the ELF plots reported in Chapter 1, it is evi-
dent how in covalent or ionic systems—see, as paradigmatic examples, Figs. 1.3
and 1.5—the kinetic energy, particularly along the bonding direction, reaches its
minimum (bosonic) value. The only systems where the kinetic energy is almost
equal to its Thomas Fermi limit are the bulk metals, Fig. 1.4, where the coordinate
mapping (2.15) should give a good approximation to the true ground-state many

body wavefunction.
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2.5 Conclusions and perspectives

With our work we have shown that a fundamental link exists between N-repre-
sentability, approximate explicit functionals, and ELF. This link emerges very
naturally within the geometric approach upon which our work is based. The same
geometric approach, however, also indicates very clearly the limits of the approx-
imate form of the kinetic energy for real materials which we have found here. In
fact the final considerations of the previous paragraph imply that our constructive
recipe, as well as the previous one of Zumbach and Maschke [28], are a good ap-
proximation only for systems where the bonding is metallic, while it necessarily
overestimates the kinetic energy (and the total energy) whenever covalent bonding
is present. Looking more closely, this major limitation owes to the occurrence of
equidensity orbitals in our ansatz density matrix, Eq. (2.14), which occurrence can
be further traced back to the choice of the uniform electron gas as the reference
system upon which we perform the coordinate transformation.

This naturally suggests the directions for improvements: one should start from
a reference model system other than the uniform electron gas, having instead some
covalent bonding features already built in. Interestingly, the use of a model refer-
ence system designed to reproduce—after coordinate mapping—some desirable
features of the real one has been proposed in the most recent work of Ludefia and
coworkers [30,31]. These authors, however, focus on a spherical atom having
several electronic shells: here instead we are discussing a condensed system with

only one valence shell, within a pseudopotential scheme.






Chapter 3

Crystal Surfaces

For every given solid surface, breaking of periodicity in one dimension will
result in a change in the electronic states near and at the surface, since the
lack of nearest neighbours on one side of the surface atoms causes a sensi-
ble local rearrangement of the surface structure and chemical bonds. From
this point of view bonding at a crystal surface looks like an ideal arena for
an ELF investigation, and we will show in the following how ELF—applied
within a first—principles pseudopotential framework—provides an unprece-
dented insight into the surface bonding mechanisms.

In this chapter we consider two paradigmatic cases, corresponding to the
two very different bonding characters perspicuously visualized via an ELF
approach: namely, the covalent and the metallic bond.

We first consider the bonding pattern of a covalent semiconductor surface—
the Si(001)—in its unreconstructed (truncated bulk) and reconstructed ge-
ometries. Finally, we investigate some surfaces of a paradigmatic sp bonded
metal—namely, Al(110), AI(100), and Al(111)—where the ELF discrimi-
nates in a very sharp, quantitative, way between different kinds of bonding.

3.1 Semiconductor surfaces: the case of Si(001)

The driving mechanism for surface reconstructions of a covalent material is the

tendency of low—coordinated surface atoms to saturate dangling bonds. It is then

obvious that a completely different bonding pattern differentiates the unrecon-

structed (i.e. bulk terminated) surface from the reconstructed one. When several

different reconstructions are compared, these show in turn different bonding fea-

tures.
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Elemental  systems:
the key issue is

metallic vs. covalent
bonding

We present a state—of—the—art thorough investigation about a paradigmatic
case: namely, the silicon (001) surface [12]. Although bonding at a crystal sur-
face can be considered as a natural application for an ELF investigation, we are
aware of only one work, which however is performed at the non-selfconsistent
tight-binding level [36].

We show that the insight into the nature of bonding at the surface is very
accurate and clear when the ELF is analyzed. We demonstrate—through a se-
ries of contour plots in high—symmetry planes—the outstanding ability of ELF
in discriminating between the surface bonds occurring upon dimerizations at the
Si(001) surface, thus providing an unprecedented insight into the physical mech-
anisms which drive the reconstruction. Dangling orbitals and surface bonds are
visualized with a resolution incomparably sharper than by using the current tools,
such as charge—density plots or projected densities of states.

The case study chosen here is possibly the theoretically best known semicon-
ductor surface. Its most relevant features are therefore very well understood in
the literature: in particular, the unreconstructed surface is metallic and the recon-
structed one is insulating [37]. The aim of the present approach is not to demon-
strate anything at variance with the common wisdom. Instead, our aim is to show
how the known features of this surface can be recovered in a simple and meaning-
ful way from an ELF analysis. It is also worth to stress that the ELF does not make
use of the spectrum of the system, while instead is a pure ground-state property.

3.1.1 Technical details

The (001) silicon surface is strongly reconstructed, with several different recon-
structed structures. A relatively simple (2 x 1) reconstruction is formed by surface
atoms moving together in pairs to form dimers. »

The driving force for the dimer formation is the elimination of a dangling bond
from the surface atoms. Each atom of the unreconstructed surface is bonded to
only two neighbours and therefore has two dangling bonds projecting out of the
surface. If the atoms move together in pairs, forming a new bond between them,
then one of these dangling bonds will be eliminated from each member of the
pair. This leads to a considerable energy gain since half of the broken surface
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@ 3rd layer ® 4th layer

Figure 3.1: Side (left) and top (right) views of the (2 x 1) reconstructions of the Si(001)
surface. (a) Buckled—dimer, (b) symmetric—dimer, and (c) ideal (bulk—terminated) sur-
face. The atoms in the first four layers are shown, with symbols as indicated in the figure
bottom. The surface unit cells (shaded areas) are also shown.

bonds are reconstructed. The buckled dimer model is a simple modification of the
dimer model in which each dimer is tilted or “buckled” out of the plane of the sur-
face. We have considered therefore the unreconstructed and the (2 x 1) symmetric
and buckled dimer surfaces, in order to better understand the connection between
surface reconstruction and electronic localization. A schematic side and top view

of these three surfaces is shown in Fig. 3.1.

All the calculation use quite standard ingredients: a plane~wave expansion of
the KS orbitals with a 10 Ry kinetic—energy cut—off, 16 k-points on a Monkhorst
and Pack [38] mesh for the irreducible Brillouin zone integration, and a norm-
conserving pseudopotential in fully non—local form [39]. All our calculations
were performed in a supercell geometry where the surface is modeled by a finite—
size slab periodically repeated in the direction normal to the surface. For the
ideal (bulk terminated) surface we use a unit cell containing 11 layers of atoms

separated by the equivalent of 13 atomic layers of vacuum. For the symmetric and
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buckled dimer (2 x 1) surface, we have reproduced the Roberts and Needs [40]
calculation, using directly their relaxed atomic coordinates.

() (®

Figure 3.2: ELF contour plots for Si(001) bulk terminated surface. (a) Plane orthogonal
to the surface, containing two surface nearest—neighbor atoms: the relative dangling or-
bitals are revealed by the black ELF regions. (b) Plane orthogonal to the dangling bond,
passing through the center of the surface unit cell: the fermionic channel between the two
surface atom has a perfect circular symmetry. In the schematic side view, black balls and
solid lines correspond, respectively, to in—plane atoms and bonds; white balls and dashed
lines to off-plane atoms and bonds.

3.1.2 Results

We show in Figs. 3.2(a) and 3.2(b) the ELF contour plots for the unreconstructed
surface along two non—equivalent planes orthogonal to the surface plane. First of
all, looking at the bulk region in Fig. 3.2, and comparing to the crystalline silicon
in Fig. 1.3 of chapter 1, we see how at only one atomic layer from the surface, the
system has substantially recovered its bulk limit.

Bulk terminated sur- We now move to discuss the surface results. Focussing on the surface region

tface
in Fig. 3.2(a), one notices that the two dangling orbitals are very well visualized
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Figure 3.3: Si(001) bulk terminated (left panel) and symmetric—dimer reconstructed
(right panel). ELF contour plots along surface plane passing through the topmost atoms.

by the ELF plot: every dangling bond is associated to an isolated electron, thus
corresponding to an high ELF value. However, a more striking bonding feature of
the same unreconstructed Si(001) surface is detected when analyzing ELF in the
orthogonal plane, passing midway between two nearest neighbor surface atoms
(Fig. 3.2(b)). There is a grey “fermionic channel”—defined as a region where
ELF is of the order of 0.5—between the two nonbonded atoms: this channel in
the midpoint has a perfect circular section, but it is actually formed by two grey—
ELF strips going round the surface atoms and intersecting at the midpoint, as

clearly shown by a top view (left panel of Fig. 3.3).

The presence of this extended metallic-like system along the unrelaxed sur- Reconstructed surface
face must be connected to the strong surface strain, due to the nonbonded atoms.
As soon as the surface is relaxed and the dimer formation is allowed, there is a
strong surface “bosonization”, associated with a sizeable reduction of the fermionic
channel. This localization effect due to the dimerization process is perspicuously
shown in Fig. 3.3, where the unreconstructed situation is compared to the recon-
structed one, for the symmetric—dimer case. The metallic character of the unre-
constructed surface, and the insulating character of the reconstructed one, are well
documented in the literature [37]. What is remarkable here is that ELF visualizes

such characters without using any spectral information about the system.
Comparing the unreconstructed surface in Fig. 3.3 to the case of a bulk metal,

as in Fig. 1.4 of chapter 1, we recognize, between the two neighbouring surface

atoms, a “typical” metallic bond. Also the dangling orbitals, clearly correspond-
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(a) (b)

Figure 3.4: Si(001) (2 x 1) reconstructed surface: ELF contour plots along plane orthog-
onal to the surface, containing the dimer. (a) Symmetric—dimer surface and (b) buckled—
dimer surface. For the schematic side view, symbols as in Fig. 3.2.

ing in Fig. 3.2(a) to strong localization regions—with an ELF maximum calcu-
lated along the direction passing through the surface atom and orthogonal to the
surface plane equal to 0.9—are commonly associated to the non vanishing density
of states observed in the gap [36,37]. In other words the ELF sharply discrimi-
nates between two very different “metallic environments”: the singly—occupied
localized orbitals responsible for the states in the gap, and the purely metallic
bond, where we observe a predominant Thomas—Fermi electron distribution. This

is not surprising, since for the lone electrons lying in the localized dangling or-
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bitals the Pauli principle is almost ineffective. On the contrary, a metallic bond
is formed by occupation of a fully delocalized orbital where the electron strongly
feels the effect of Pauli principle: therefore, its kinetic energy density sensibly
deviates from its bosonic lower bound, yielding an almost jelliumlike ELF.

A more detailed analysis of the ELF variations induced by re-bonding at the
surface is provided by Fig. 3.4(a) for the symmetric—dimer case and in Fig. 3.4(b)
for the buckled—dimer one, both drawn in the plane passing through the surface
atoms, and to be compared to the analogous plots of Fig. 3.2 for the unrecon-
structed case. In both cases the dimer has a strongly covalent bond character and
is surrounded by a region of high ELF values: such localization effect is clearly
connected to the surface reduced coordination, since the ELF around the isolated

topmost atoms has a more pronounced atomic character.

3.2 Eletron localization at metal surfaces

We investigate here aluminum, which (as already stressed in Chapter 1) as a bulk
material is a paradigmatic jelliumlike metal: cohesion and bonding are dominated
by electron—gas features, where the ions can be considered roughly speaking as
a perturbation. What happens at an Al surface, however, is much less intuitive:
does the surface behave essentially like a jellium surface, or do surface atoms play
a preminent role? Here we investigate this issue and we show how a sharp answer
is provided by an ELF analysis.

We study here three basic choices for the orientation of the Al surface: (110),
(100), and (111), schematically shown in Fig. 3.5. These high-symmetry sur-
' faces have a rather different packing of the surface atoms: this is also visible in
Fig. 3.5, where the same scale has been used for the three surfaces. Some cor-
relation between packing and bonding properties is obviously expected, but what
is surprising is that the three chosen surfaces span the whole range of possibili-
ties, with (110) and (111) being at the two very extreme ends: while the Al(110)
surface prominently displays well characterized Al atoms, Al(111) is essentially a
weakly perturbed jellium surface. The atomiclike vs. jelliumlike character of the
electron distribution is perspicuously shown by the immediate graphical language
of ELF.

Correlation  between
packing and bonding

properties
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In a recent very interesting paper, Fall er al. [41] have investigated the trend
in the Al work function for the same three orientations as considered here. They
provide an explanation of the trend in terms of “face—dependent filling of the
atomiclike p states at the surface”. The ELF is an orbital-independent tool, yet it
provides a concomitant message: we show that there is indeed a face—dependent

filling of the electronic states localized in the surface region.

()

Figure 3.5: Schematic three—dimensional view of aluminum surfaces cut along different
crystal orientations. (a) (110) surface, (b) (100) surface, and (c) (111) surface. Black
balls correspond to topmost atoms, gray balls to second—layer atoms, and (for the (111)
surface) white balls to third-layer atoms.
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Figure 3.6: Al(110): ELF contour plot in two non-equivalent planes containing the top-
most atom and orthogonal to the surface.

3.2.1 Geometry and calculation details

All the calculations in this work use a state—of—the—art set of ingredients: a plane—
wave expansion of the KS orbitals with a 16 Ry kinetic—energy cut—off, a set
of Monkhorst—Pack [38] special points for the Brillouin zone integration, with a
Gaussian broadening of 0.01Ry and a norm—conserving pseudopotential in fully -

non-local form [39]. The calculations for the (111) surface were performed using

Figure 3.7: Al(100): ELF contour plot in two non—equivalent planes containing the top-
most atom and orthogonal to the surface.
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a 9+6 supercell (9 planes of Al, 6 equivalent planes of vacuum) and 37 k—points
in the irreduéible Brillouin zone. The corresponding values used for the (100)
surface are an 8+6 supercell and 46 k—points, and for the (110) surface an 8+8
supercell and 48 k—points. We have preliminarily investigated the effect of surface
ionic relaxation on ELF, and found it negligible. Similar insensitiveness was found
in Ref. [41] upon other surface electronic properties: we therefore present results
for the unrelaxed surfaces. As shown in Fig. 3.5, the three surfaces have a different
packing: the packing increases from Al(110) to AL(100) to Al(111). A measure
of this packing is the number of nearest neighbors in the surface plane, called
coordination in the following: this number is 2, 4, and 6 for the three surfaces,

respectively.

3.2.2 Results

Al(110) In Fig. 3.6 we report two ELF contour plots along two non—equivalent planes
passing through the topmost (twofold coordinated) atom of the Al(110) surface.
Along a direction orthogonal to the surface and passing through the surface atom,

our calculated ELF attains the maximum value of 0.89, thus indicating that the

Figure 3.8: Al(111): ELF contour plot in two non—equivalent planes containing the top-
most atom and orthogonal to the surface.
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(110) (100) (111)

Figure 3.9: ELF contour plots in the plane containing the topmost Al atom for the three
different orientations.

Pauli principle has little effect. Comparing Fig. 3.6 to Fig. 1.1, where the ELF
maximum has the close value of 0.91, we quantitatively see see how much the
surface atom actually behaves as a free-atom in the outer direction. A slightly
different electronic distribution is present at the four—fold coordinated Al(100)
surface in Fig. 3.7. In this case the ELF maximum—along the same direction—
attains the lower value of 0.80 and shows therefore an electron distribution with a
less pronounced atomiclike character.

The almost black regions around the surface atoms in Figs. 3.6 and 3.7 are also
clearly visible in the top views of Fig. 3.9, where the contour plots are drawn in the
outermost atomic plane. In this plane the maxima occur midway between nearest-
neighbors atoms and assume the values of 0.77, 0.74, and 0.67 in order of increas-
ing packing. This decrease of electron pairing shows a trend from covalent—like
to metallic-like bonding between nearest neighboring surface atoms; bonding to
the underlying bulk atoms is instead metallic in all cases.

Finally, in Fig. 3.8 we have the extreme case of the six—fold coordinated
Al(111) surface. The absolute ELF maximum is only 0.73 and lies in a low—
symmetry point, slightly off the outermost atomic plane. Along the direction
orthogonal to the surface and passing through the surface atom, the ELF max-

Al(100)

Al(111)
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imum is only 0.65: this behaviour clearly marks an almost smooth decay from
the bulk—where the electrons exhibit a prevailing jelliumlike distribution—to the
vacuum region. Also in the top view of Fig. 3.9 there is no evidence of electron
pairing between surface atoms, with a wide spread region of almost uniform ELF,
close in value to 0.5. We can therefore summarize the result by saying that the
Al(111) surface is essentially a jellium surface perturbed by the atomic cores, in
a pseudopotential sense [24]: the perturbation obviously originates an “exclusion
region” (white plots within the core radii), but besides this has little effect on the
electron distribution in the bulk and at the (111) surface. '

The values of the maxima in the direction orthogonal to the surface and pass-
ing through the surface atom in the three cases (0.89, 0.80, and 0.65, as reported
above) can be interpreted as a measure of the occupation of the atomiclike states
protruding from the surface. We recall in fact that ELF is identically equal to 1 for
any one— or two-electron system: high ELF values indicate a strong localization
of the wavefunction. Our numbers show an analogous trend as the one pointed out
by Ref. [41], where it is shown that the filling of atomic p, orbitals, protruding
from the surface, decreases indeed with increasing packing, i.e. going from (110)
to (100) to (111).



Chapter 4

ELF at Defects

The immediate graphical language of ELF can be proposed as a unique tool
for investigating bonding in the presence of defects, either in crystals or
in much more complicated systems, such as disordered clusters or amor-
phous materials. In both cases in fact there are over— or under—coordinated
atoms, and often an unambiguous characterization of defects cannot be eas-
ily achieved by simply considering purely geometrical criteria. For these
systems, the ELF yields therefore a meaningful real-space analysis of the
bonding pattern, providing a first-principles characterization of all kinds of
coordination defects.

In this chapter we first consider a perturbed bulk aluminum where we have
substituted two atoms with “virtual” aluminum atoms, having a valence
charge slightly different from the real one. The result that we obtain com-
pares quite well with a first-order calculation on a perturbed jellium. Fi-
nally, we present our study of the coordination defects in amorphous silicon
and hydrogenated amorphous silicon, also in their formation and their evo-
lution upon hydrogenation. An accurate analysis of the valence charge dis-
tribution together with the ELF allows to resolve possible ambiguities in the
bonding configuration, and in particular to identify clearly three—fold (T3)
and five—fold (1) coordinated defects.

4.1 Perturbed crystal aluminum

We have studied the effect of small charge fluctuations on the ELF. Specifically,
we have considered a bulk virtual aluminum atom with a small core charge per-
turbation.

We have carried out this calculation in a supercell geometry (10 Al planes,
75 k-points, with 18 Ry energy cut-off), with two far aluminum atoms having,
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respectively, a positive and a negative core charge fluctuation in order to preserve
the overall charge neutrality. To restrict ourselves to the liner regime, we have
chosen a small charge impurity by varying the core charge of 0.2 e. Given the pre-
dominant jellium-like character in the aluminum valence electronic distribution
(see Fig. 1.4), we expect a strong similarity between the perturbed aluminum and

an ideal jellium in the presence of a small localized charge fluctuation.

(a) (b)

Figure 4.1: ELF differential contour plots for bulk aluminum. Solid (dashed) isolines
correspond to positive (negative) contours around zero. (a) Positive charge fluctuation;
(b) negative charge fluctuation. ELF is visibly almost symmetric in the charge fluctuation:
positive contour lines in (a) correspond to similarly—shaped negative ones in (b).

The results for the perturbed crystal aluminum are shown in Fig. 4.1: thanks
to the linearity in the response, the ELF perturbations are almost equal in modulus
and opposite in sign, yielding an odd function in the perturbation. This result is
consistent with a first—order calculation performed on a jellium.

Considering a uniform system, and indicating with én(r) and 6T (r) respec-
tively the charge and kinetic energy fluctuations in the presence of a small point—
like perturbation, we have a non—vanishing first order term in the ELF written

as:

_ 1 6T(r) 56n(r)
ELF—2(1 T ) (4.1)

The density and kinetic energy fluctuations dn(r) and 6T (r) are linear functions
of the external perturbation: therefore, from Eq. 4.1 the ELF of a perturbed jellium
is a linear function of the perturbation.
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4.2  Amorphous silicon: three-fold and five-fold co-

ordination defects

Amorphous silicbn (a-Si) and hydrogenated amorphous silicon (a-Si:H) are pro-
totypes of disordered covalent semiconductors. Extensive work, both experimen-
tal and theoretical, has been done to study their topological and electronic struc-
ture. Although most of Si atoms are tetrahedrally coordinated, anomalously co-
ordinated configurations can locally occur in pure and hydrogenated amorphous
samples, but—at variance with the case of crystals where coordination defects
can be easily recognized as deviations from the perfect ordered structure—their
identification is not trivial. Hence, one of the most challenging problems in the
amorphous systems is to localize the defects, to classify them and to identify their
peculiar electronic features.

Traditionally, three—fold (73) defects have been considered as the most likely
intrinsic defects in a-Si. The non vanishing density of states (DOS) observed
in the gap has been commonly ascribed for a long time to the “dangling bonds”
corresponding to these defects, and its lowering upon hydrogenation has been
explained with the saturation of dangling bonds by hydrogen [42-49].

More recently, this picture has been debated and revised. In particular the im-
portance of five—fold coordinated (75 or “floating bonds”) in a-Si has been clearly
stated in the theoretical works by Pantelides [50,51] and Kelires and Tersoff [52]
a some years ago, both in terms of their existence and their peculiar role in the
electronic structure. The empirical simulation by Kelires and Tersoff has shown
that 75 atoms have lower energy than 73 atoms, and therefore should be favoured
in general. Also some ab initio molecular dynamics simulations of a-Si structures
show a predominance of 75 defects with respect to T3 [53—55]. Pantelides [50, 51]
argued that 75 and T} are conjugated defects and must be considered on the same
footing, since a bond elongation can transform a T5 + T} structure into a 7 + T4
one, or vice versa an inward relaxation can transform a T, + 73 structure into a
15 4 Ty one; furthermore, he proposed a mechanism for H diffusion based on
floating—bond switching and annihilation/formation of Ts’s through interaction
with H [51], which—at variance with the commonly accepted picture of dangling

bonds hydrogenation—is compatible with the rapid decrease in the number of de-
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fects without any appreciable change in the density of Si-H bonds experimentally
observed at low temperature.

Some of these ideas have been widely used in discussing the geomerrical char-
acterization of defects; their soundness in terms of electronic properties has been
investigated mainly by model calculations [43,44, 56, 57] and more recently by
some first—principles calculations [47,49,57,58]. It remains the necessity of go-
ing beyond a pure geometric approach, with a simple tool that allow us to unam-
bigously characterize the defects.

We focus in the present thesis on a real-space analysis of the bonding pattern
of a-Si and a-Si:H using the simplest tools provided by first—principles electronic
structure calculations: a comparative analysis of the electronic charge density and
of the ELF [14]. We will show in the following how this approach yields a mean-

ingful characterization of all possible coordination defects in silicon clusters.

42.1 Geometry and technical details

For studying the bonding properties in a-Si and a-Si:H we start from some selected
samples generated by other authors [53-55] using Car—Parrinello first—principles
molecular dynamics (CPMD)'. These structures reproduce quite well the experi-
mental pair correlation function and bond angle distribution function using a rea-
sonable number of atoms and hence they are suitable for accurate ab initio stud-
ies. The configurations studied are cubic supercells of side a = 2 ag, where
ao=10.17 a.u. is the theoretical equilibrium lattice parameter of ¢-Si, which also
corresponds—in our calculations—to the optimized density of a-Si and a-Si:H.
The supercells contain respectively 64 Si atoms to describe a-Si [53,54] and 64
Si atoms plus 8 H atoms for a-Si:H [55].

We use state—of—the—art electronic structure methods based on DFT using
norm—conserving pseudopotentials and plane-wave basis set [58]. The CPMD
configurations, aiming mainly at reproducing the structural properties, have been
obtained using a kinetic energy cutoff F.,;=12 Ry and the " point only for Bril-
louin Zone (BZ) sampling. We improve in our calculations the BZ sampling us-
ing 4 inequivalent special k points for self~consistency and 75 k points for DOS.

I A brief review of the Car—Parrinello approach is given in Appendix B.
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Figure 4.2: The inset shows a snapshot from the a-Si configuration including two T}
defects with an intermediate four—fold coordinated atom (I) and other T atoms (not indi-
vidually labelled). For the intermediate four—fold coordinated atom we report, for clarity,
only the two bonds connecting with the Ty defects. The curves are the profile of the
valence charge density along some bonds shown in the snapshot, connecting: two nor-
mally four—fold coordinated atoms (dotted line), a 75 with a Ty at “normal” distance
(short—dashed line), a 75 with a Ty at “longer” distance (long—dashed line), a T5 with I
(dashed—dotted line). “Normal” and “longer” are with respect to the average bond length.
For comparison also the perfect crystalline bond is shown (solid line). In order to filter
out possible unrelevant local fluctuations, the charge distribution is filtered averaging over
small spheres of radius R =0.6 a.u. moving along the bond. The distance is along the ge-
ometrical bond, calculated from one of the two atoms connected; note the different bond
lengths. At variance with the crystalline case, the charge profiles are asymmetric with
respect to the bond center, indicating a partially ionic character of the bond.

These parameters have been chosen as a reasonable compromise between accu-
racy and computational cost. The optimization of the a-Si and a-Si:H structures
with the new computational parameters is accompanied only by small structural
rearrangements, and therefore the mean structural properties are very similar to
those reported by Buda et al. [53,55] and Stich ez al. [54] for the original con-
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figurations. We only report that in a-Si the mean bond length is d ~ 4.47 a.u,,
quite similar to the crystalline one which is 4.40 a.u.. The mean bond angle is
9 ~ 109°, close to the characteristic value of the perfect tetrahedral network. The

location of the first minimum of the radial distribution function defines geomet-

rically the cutoff distance for the nearest neighbours (NN), which turns out to be
Ryn = 5.08 a.u., giving an average coordination number of about 4.03. In a-Si:H
the average Si~Si bond length is the same as in a-Si, but the first peak of the radial
distribution function is more broadened and it is more appropriate to consider a
larger NN cutoff distance, Ryy = 5.49 a.u.. Each His bound to one Si atom with
an average distance dg = 2.95 a.u., very close to the corresponding value in SiHy

molecule.

4.2.2 Results

The standard geometrical analysis based simply on counting the atoms lying in-
side a sphere of radius Ry indicates that the starting configurations have a pre-
dominance of Ty defects and of distorted T} sites. Moreover, the a-Si compu-
tational samples do not contain well defined T3 defects. This feature can be a
consequence of the rapid quench from the liquid states which has been done in
preparing the sample in the molecular dynamics process (since the liquid state
is sixfold coordinated, a rapid quench typically favours over—coordination rather
than under-coordination).

We start analyzing in detail an over—coordinated environment. For the sake of
clarity, we will consider the case of a-Si (in a-Si-H overcoordination can be due to
five Si neighbours, or to four Si and one H, and so on). In our a-Si sample there
are two T} sites close one to each other (labelled A and B in the upper snapshot
in Fig. 4.2), with a sort of interstitial (I) atom connecting them. A charge density
analysis confirms for this configuration the bonding pattern predicted by the geo-
metrical criteria, and helps in characterizing the different types of bonds [54]. We
observe that T sites are accompanied by a valence charge density depletion. The
charge density profiles reported in Fig. 4.2 show in particular that some T5-T4
“long” bonds and the bonds T5~I are characterized by a very small charge den-

sity; hence, they are “weak” and therefore those 75 defects are the best candidates
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to transform into 7 sites after a bond elongation. The asymmetry in the bond
charge profiles indicates that, at variance with the perfect crystalline environment,
the bonds are not perfectly homopolar but have a certain degree of ionicity.

It is useful to compare this “standard” charge density analysis with the study
of ELF. In the case of normal or floating bonds, the ELF does not add much
more informations with respect to the standard charge density analysis. In the left
upper panel of Fig. 4.3 we show the ELF=0.35 isosurfaces for the overcoordinated
environment in a-Si described before. High—value charge density (not shown here)
and ELF isosurfaces are almost similar in their extension and shape. The ELF
isosurface in correspondence to the A-I bond clearly visualizes its bowing (the
isosurface is not perfectly centered on the geometrical bond) and its weakness
(the isosurface is smaller than those on the other bonds).

Adding two hydrogen atoms in the neigbourhood of the 75 sites and allowing
the system to relax, two Si-Si bonds are broken so that the atoms A and B be-
come normally tetrahedrally coordinated, and their fifth NN atoms connect with
the additional hydrogens (snapshot in the lower panel of Fig. 4.3). In this config-
uration all the Si—Si bonds are rather strong (the ELF isosurface between A and
1 is more extended with 1‘espeét to the previous case) and more bulk—like (all the
isosurfaces are more regular in shape). The plots of the density of states (right
panels of Fig. 4.3) show that, at variance with the starting configuration having a
metallic character evidently due to defect induced states in the gap, the final one
is clearly semiconducting.

The combined charge—density and ELF analysis is necessary to identify un-
ambiguously the dangling bonds and to distinguish for instance a 75 + T con-
figuration from a T + 73. Whereas the presence of a covalent bond is indicated
by a region of local maxima of both ELF and charge density, a dangling bond is
identified by a region with high values of ELF but low electronic charge density.
This is evident in Fig. 4.4 (upper panels), where we show a snapshot from a a-Si:H
sample with a T} (labelled A) and a T3 (labelled B) atoms (we have created a dan-
gling bond by removing an hydrogen initially bond to the silicon atom B). Panel
(a) shows charge density isosurfaces, and panel (b) ELF isosurfaces. The absence
of high-value charge density isosurface together with the presence of high—value

ELF isosurfaces in the region between atoms A and B clearly indicate the pres-

Dangling bonds are
evidenced by ELF
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Figure 4.3: Upper panels: a snapshot from the starting a-Si configuration including two
Ts defects (A and B) with an intermediate T}y atom (I). The ELF=0.85 isosurfaces are plot-
ted: it is clearly visible the off-centered position and the small distorted shape between
atoms A and I, indicating the bowing and the weakness of the bond. The total DOS of
the a-Si sample is shown on the right, with electronic states close to the Fermi energy L.
Lower panels: the structure evolved after addition of two H atoms (small white balls, HI
and H2) which have annihilated the T5 defects. All the Si atoms of our sample are now
“normal” T} sites, as shown by the more regular shape of the ELF isosurfaces and by the
vanishing DOS in the gap.

ence of a dangling bond originated from atom B. As expected, this configurations
has a metallic character, with electronic states around the Fermi energy F (panel
(c) of Fig. 4.4).

When the system is allowed to relax, a new bond is formed between the silicon
atoms A and B, as it clear from the panels (d) (charge density) and (e) (ELF). The
final system has still gap states, both because of the T; defect B which is now

formed and because other coordination defects are present in the rest of the a-
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Figure 4.4: Upper panels: a snapshot from a-Si:H with a Ty + T3 structure (atom A and
B respectively). Charge density isosurfaces (n=0.06 a.u.) and ELF=0.85 isosurfaces are
plotted respectively in panels (a) and (b). The dangling bond on atom B is evident by
comparison of the two plots as a region of low charge density but high ELF. The total
DOS of the sample is reported in panel (c): the sizeable DOS around Ejy is due to the
T3 defect and other defects in the sample. Lower panels: a snapshot containing the same
atoms after relaxation, with a new bond formed between A and B atoms giving rise to a
15 + T4 structure. Charge density and ELF isosurfaces are plotted in panels (d) and (e)
respectively, as in the previous case. The new A-B bond is characterized as a region of
high charge density and ELF. The total DOS of the sample is reported in panel (f): gap
states are still present.

Si:H sample. The evolution of this structure from a Ty + T3 into a T5 -+ Ty is
consistent with the picture of Pantelides [50] of the conjugated T3 and T5 sites.
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Introduction

H-bonding is a key interaction for enzymatic structure, dynamics and catalytic
functions, being responsible for the optimal substrate orientation and for the sta-
bilization of the transition state.

In standard textbook descriptions of molecular interactions in enzymes, the
H-bonds are normally classified as “weak” interactions, with an energy contribu-
tion usually estimated as large as 3 kcal/mol [59]. Anyhow, the recent observa-
tions [60—66] of unusually strong H-bonds in gas phase with an energy varying
from 10 to 20 kcal/mol—characterized by peculiar NMR and IR signals, and low
or vanishing barrier to proton transfer—have opened a new avenue for our under-
standing of biological catalysis. Indeed, enzymes could use the strong stabiliza-
tion of this special class of H-bonds for their biological function.

Pauling [67] first suggested that an enzyme might be complementary to the
transition state of a reaction and thereby speed up the reaction by binding the tran-
sition state and lowering the energy of activation along the reaction coordinate.
Not only such a concept of complementary can help explain enzymes quantita-
tively, but also it provides a means of judging the quality of transition state analog
inhibitors [68]. Nowadays, transition state complementary it is well established
in all theories, and efforts are directed to understand the details of the comple-
mentary, whether it be electrostatic, particular bonding modes, or arrangement of
molecules in the active site. ‘

The observation of unusually strong H-bonds is supposed to give an interpreta-
tion to this complementary, and to finally explain the enzyme catalytic efficiency:
namely, during the transition state formation, low—barrier (i.e. short, very strong)
hydrogen bonds—in which the pK, values of the proton donor and acceptor are

matched—are postulated to contribute about 5 orders of magnitude to rate accel-
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eration.

According to this new theory, the enzymatic mechanism is based on a conver-
sion of a “normal” weak hydrogen bond (present in the enzyme-substrate com-
plex) into a strong one by changing the pK, value of the substrate, so that it is
close to that of the enzymatic group to which it is hydrogen bonded.

A usual weak H-bond is essentially electrostatic in origin, and arises from
the stabilizing interaction between the donor-hydrogen dipole and the dipole (or
monopole) of the attractor atom [59]. As the overall donor-acceptor distance is
reduced, and the proton affinities of the two atoms become similar, the H-bond
transforms into a low—barrier H-bond: the bonding character is étrongly covalent
and an extra “resonance—stabilization” energy is released, due to the free hydrogen
hopping between donor and acceptor.

The study of this very special class of H-bonds—uniquely characterized by the
covalent bonding environment—can be considered as an ideal application field
for an ELF investigation: as shown in the first part of this work, the ELF is an
explicit measure for the degree of “covalency” of a given bonding region and its
application to the analysis of the proton jumping occurring at low-barrier H-bonds
sharply describes this kind of interactions [69-71].

In this thesis we provide a contribution in this direction, by analyzing the
H-bond network present at the active site of serine proteases, an important and
large class of enzymes catalyzing the cleavage of specific peptide bonds. The
presence of a low—barrier H-bond between two conserved residues participating to
the catalyzing action (His-57 and Asp-102), is revealed within an ELF approach
in a rather simple and elegant way, shading new light onto the role of this kind
of molecular interaction for the enzymatic process. Our finding, published in
Ref. [69], is in complete agreement with a series of NMR experiments [66, 72—
74] on enzyme-transition state analog complexes.

It is difficult to simulate low—barrier H-bonds with effective potentials, as
the chemical bondsare continuously formed and broken. In contrast, low-barrier
H-bonds are automatically described into an ab initio framework [75-81]. In-
deed, the powerful combination of “standard” molecular dynamics simulation
techniques with accurate density functional-based electronic structure calcula-
tions, makes feasible the study of the reactive processes in the presence of the
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dynamical evolution of the environment. Also the temperature effects, playing a
crucial role in a dynamical phenomena such as the low-barrier H-bond, are natu-
rally included in this approach, having the unique ability to follow a given chem-
ical reaction without any external adjustable parameter, or any other uncontrolled
approximation.

These considerations make the method of choice for the present work—that
18, ab initio molecular dynamics—a useful tool for the theoretical investigation
of biological systems: in the last few years [82-85], the use of first principles
molecular dynamics simulation has opened up a new and exciting research field,

yielding a novel solution to long—-standing problems in biochemistry.






Chapter 5

Proteolytic Enzymes

Enzymes are remarkable molecular devices that determine the pattern of
chemical transformations. The most relevant features of enzymes are their
catalytic power and specificity. Indeed, by utilizing the full repertoire of
intermolecular forces, enzymes bring substrates together in an optimal ori-
entation, to favor the making and breaking of chemical bonds. Upon sub-
strate binding, they catalyze the reactions by stabilizing transition states, the
highest-energy species in reaction pathways. By doing this selectively, an
enzyme determines which one of several potential chemical reactions actu-
ally occurs.

The question of how enzymes greatly enhance the rate of reactions is cen-
tral in biochemistry. The push and pull of electrons and the resulting bond
changes are well understood for many enzymes. However, the larger ques-
tion of general features that enzymes use to produce rate accelerations of
10—10"® has remained a contentious issue. Recently a new explanation for
the “missing” transition state stabilization underlying the catalytic power of
many enzymes has been suggested: under special conditions, a weak “nor-
mal” H-bond in the enzyme-substrate can become a “low-barrier” or short,
strong H-bond. Formation of such a bond can contribute up to 20 kilocalo-
ries per mole to transition state stabilization.

A very important family of enzymes are the proteolytic enzymes (or pro-
teases). These enzymes catalyze the cleavage of peptide bonds in other
proteins. They are present in all forms of living organisms, having many
physiological functions, ranging from generalized protein digestion to much
more specific regulated processes.

In this chapter we briefly overview the main features of the enzymatic ac-
tivity and the connection with the Jow-barrier H-bonds. Then we introduce
the serine proteases, a family of proteolytic enzymes, whose detailed study
is referred to a subsequent chapter. :
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5.1 Enzymatic activity

Catalytic power and Enzymes catalyze biochemical reactions by several orders of magnitude, as re-

specificity

Enzymes accelerate
reactions by stabi-
lizing transition

states

quired by the cell metabolism. They are highly specific towards a given reactant,
usually indicated as the substrate. An enzyme usually catalyzes a single chemical
reaction or a set of closely related reactions. Side reactions leading to the wasteful
formation of by—products rarely occur in enzyme—catalyzed reactions, in contrast
with uncatalyzed ones.

An enzyme, as any catalyst, does not alter the thermodynamical equilibrium
between reactants and products that would apply in its absence and it is rigener-
ated in its original form at the end of the reaction.

A chemical reaction of substrate S to form product P goes through a transition
state TS* that has a higher free energy than either S or P:

S=TSt =P

The transition state is the most seldom occupied species along the reaction path-
way because it has the highest free energy. The Gibbs free energy of activation
AGH | is equal to the difference in free energy between the transition state and the
substrate. With the symbols of Fig. 5.1

Enzymes accelerate reactions by decreasing AGH, the activation barrier of
the reaction. Following the same symbols, in the presence of the enzyme E, the

activation barrier changes as:

The combination of substrate and enzyme creates a new reaction pathway whose
transition state energy is lower than that of the reaction in the absence of the
enzyme (dashed line in Fig. 5.1). Thus enzymes are essentially flexible molec-
ular templates, designed to be complementary to the reactants in their activated
transition state geometry, as distinct from their ground-state geometry. Enzymes
strongly bind to the transition state, greatly increasing its concentration and accel-

erating the reaction proportionately.
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Much of the catalytic power of enzymes is based on the favorable orientations
of the substrates in the enzyme—substrate (E-S) complex. The substrates are bound
to a specific region of the enzyme called the active site. This region contains the
residues that directly participate in the making and breaking of bonds. Although
enzymes differ widely in structure, specificity, and mode of catalysis, a number of

generalizations concerning their active sites can be stated:

1. The active site takes up a relatively small part of the total volume of an
enzyme. Most of the amino acid residues in an enzyme are not in contact
with the substrate. This raises the intriguing question of why the enzymes
are very large molecules. Nearly all the enzymes are made up of more than
100 amino acid residues, with a diameter of more than 25 A.

2. Substrates are bounded to enzymes by multiple weak interactions. The non—

covalent interactions stabilizing the E-S complex are much weaker than co-

TSH
1\

E-S

E-P

Reaction pathway

Figure 5.1: Simplified free energy profile of an uncatalyzed reaction (dashed line) and
the same reaction catalyzed by an enzyme (solid line). The relative free energies of the
substrate S, the transition state TS*, and the product P are shown when free and when
bound to the enzyme E. The reaction is catalyzed by the enzyme when the energy of the
transition state is lowered more upon binding to the enzyme than is the energy of the
substrate. The relative free energies of S, TS, and P when free and when bound depend
on their respective affinities for the enzyme and on the concentration of the enzyme. The
height of the free energy barrier to the catalyzed reaction is given by the free energy
of E-TS! relative to E-S; this difference determines the efficiency of the enzyme. The
free energy of E-S relative to S is determined by the concentrations of E and S and their
affinity; the same considerations apply to E-P and P.

Some key features of
active sites
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valent bonds, and become significant in binding only when numerous sub-
strate atoms can simultaneously come close to many enzyme atoms. Hence,
the enzyme and substrate should have complementary shapes. The direc-
tional character of H-bonds between enzyme and substrate often enforces a
high degree of specificity.

3. Active sites are clefts or crevices. In all enzymes of known structure, sub-
strate molecules are bound to a cleft or crevice.

5.2 Low-barrier H-bonds and enzymatic catalysis

Enzyme catalysis is commonly attributed to tighter binding between the enzyme
and its reactants in the transition state than in initial enzyme—substrate complex.
This statement does not, however, explain how an enzyme can bind an intermedi-
ate or a transition state much more tightly than the substrate.

After several NMR experiments performed on different enzymatic systems,
it has become evident [60-66] that a possible source of the energy can be the
formation of very strong H-bonds to the intermediate, while the corresponding H-
bonds to the substrate are weak. Two factors are responsible for the strengthening
of the H-bond. (i) The donor—acceptor distance is reduced, and any competing
water is squeezed out by the tight fit of the transition state (and ‘any intermediate
that closely resemble it). (if) The proton affinities of the two heteroatoms bridged
by the H-bond are brought to near equality.

Strong H-bonds, which Cleland has called “low-barrier hydrogen bonds”, can
have energies of formation in the gas phase as high as 20 kcal/mol, whereas or-
dinary H-bonds in biological systems are relatively weak (= 3 kcal/mol) [59].
In a weak H-bond the hydrogen is covalently bound to the donor atom, whereas
the interaction with the acceptor is largely electrostatic. When the pK,’s of the
two atoms are similar, the hydrogen can be attached to either one and there is
an energy barrier for the proton transfer. As the distance between the two atoms
becomes closer to each other, the barrier between the two hydrogen positions be-
comes lower and eventually is low enough that the hydrogen can freely move in

the space between the two atoms, and its bonding to both atoms becomes essen-
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tially covalent [69, 70, 86, 87].

From the above considerations, low—barrier H-bonds have been postulated to
stabilize the transition state relative to the ground state. Thus, the H-bond goes
from being a low—energy one in the enzyme—substrate complex, to being a high—
energy (low-barrier) one in the enzyme—transition state complex, and the energy
of the low—barrier H-bond (from 10 to 20 kcal/mol) becomes available to help
facilitate the reaction. Because the environment of an enzyme active site is more
hydrophobic than that in water, low-barrier H-bonds are expected to provide sta-
bilization energies as in the gas phase, which are known to be very large.

This proposed mechanism based on the formation at the active site of low—
barrier H-bonds has been strongly questioned in literature [88-90]. Indeed many
quantum~chemical calculations, pioneered by Warshel and Kollmann [91-94],
seem to suggest that purely electrostatic, rather than covalent, effects are responsi-
‘ble for the catalytic efficiency of the normal H-bonds present at the active site. In’
fact enzymes are depicted as “supersolvents” for the charges during the reactions,
lowering the free energy of the transition state by an electrostatic stabilization due
to a preorganized polar environment in the active site.

In all these calculations—carried out using empirical valence bond or other hy-
brid quantum mechanics/molecular mechanics methods—the H-bond is described
as an electrostatic interaction, handling by the methods of classical electrostatics
all the other effects due to the charge distorsion and polarization. The remaining
effects, such as the charge transfer between proton donor and acceptor, are strictly
quantum mechanical, and are impossible to be simulated within this approach.
In this respect, the use of a fully ab initio approach—as the one presented in the
following chapter—is expected to help shed light on the physical nature of the

low-barrier H-bonds.

5.3 Serine proteases: a family of proteolytic enzymes

Proteolytic enzymes are proteins whose function is to decompose other proteins
by splitting them into fragments. Within the group of proteolytic enzymes, the
serine proteases form an important family whose members are essential to a va-

riety of biological activities: for example, blood coagulation and fibrinolysis, the
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Serine proteases cat-
alyze the hydrolysis
of peptide bonds

release of protein hormones from precursor molecules, the transport of secretory
proteins across membranes, the assembly of macromolecular structures such as
collagen fibers or certain viruses, fertilization, and the control of proteolytic di-
gestion itself.

Serine proteases are arguably one of the most studied class of enzymes and
several excellent review articles [66,73,74,95-103] and books [104-107] were
published in the last decades on this subject. We limit ourselves in the following
only to a brief description of the main features of serine proteases.

The chemical bond cut by the serine proteases is the one that joins amino
acids together to form proteins. This process of protein decomposition mediated

by the serine proteases is the reverse of the process followed in protein synthesis:

0] 0O

I |
R-——C——ITI——R’ + H:0 — R—C—0" + *+H;N—R’.

H

A water molecule (a hydrogen atom and a hydroxyl group) is added for each
peptide bond broken, restoring the amino and carboxyl groups at the site of the
cleavage to their free amino acid form. Each of the fragments produced by the
cutting of the protein is thus a complete peptide, with an amino and a carboxyl
terminus. Under physiological conditions the hydrolysis of peptide bonds will
proceed in the absence of enzymes, but only at an exceedingly low rate because
there is an high energy barrier between the starting materials and the products (if
this were not the case, proteins would spontaneously disintegrate).

The ability to make or acquire amino acids and to link them together in the
correct sequence to form proteins is one of the fundamental talents of the living
cell. Some single—celled organisms, such as bacteria, can synthesize all the re-

quired amino acids from simple nutrients. Higher animals, however, have lost the

V ability to make some of these amino acids and must obtain them from their food

supply. Proteolytic enzymes are essential to this process: without them, it would
take 50 years to digest a meal.

The digestive enzymes are so extensively investigated mostly because they are
easily isolated an purified. Three of them—elastase, trypsin, and chymotrypsin—

are serine proteases. They are originate in the pancreas as zymogens, or inactive
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Figure 5.2: Structure of porcine pancreatic elastase complexed with Ace-Ala-Pro-Val-
difluoro-N-phenylethylacetamide. The active site region enclosed in the box shows, with
a ball-and-stick model, the catalytic triad, the GIn-192 and Gly-193 residues, and the
backbone of the inhibitor (purple line).

precursors, which are secreted into the duodenum. There they are activated by
the cleavage (catalyzed, in turn, by other proteolytic enzymes) of a specific pep-
tide bond. In concert with other enzymes, the serine proteases ultimately reduce
the peptides to individual amino acids, which are absorbed by the intestine and

transported to the sites of protein synthesis.

The digestive enzymes act cooperatively, attacking proteins at different posi-
tions. Elastase, trypsin, and chymotrypsin generally act on bonds in the middle of
the polypeptide chain. These enzymes are similar in several respects: (1) About
40% of the amino acid sequences of the three enzymes are identical. The degree
of identity is even higher (=60%) for residues located in the interior of the en-
zymes. (2) X-ray experiments have shown that their three-dimensional structures

are very similar. (3) All three enzymes have an identical catalytic mechanism.

Elastase, trypsin, and
chymotrypsin
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Acylation

Although similar in structure and mechanism, these enzymes differ markedly
on substrate specificity. Of the three, trypsin is the most selective: it cleaves only
those peptide bonds adjacent to the amino acid units lysine or arginine, which
are relatively large, carry a positive charge and are hydrophilic. Chymotripsin is
somewhat less specific: it hydrolyzes the bonds adjacent to any of several amino
acids that are large but hydrophobic. Elastase acts on bonds adjacent to glycine,
alanine or serine, which are the smallest of the amino acids found in nature. Al-
though the three enzymes cannot cut all peptide bonds, they form a team that can
reduce any food protein to small, soluble fragments.

X-ray studies have shown that these different specificities are due to quite
small structural differences in the binding site. In chymotripsin, a nonpolar pocket
serves as a niche for the aromatic or bulky nonpolar side chain. In trypsin, one
residue in this pocket is different from chymotrypsin: a serine is replaced by an
aspartate. This aspartate in the nonpolar pocket of trypsin can form a strong elec-
trostatic bond with a positively charged lysine or arginine side chain of a substrate.
In elastase, the pocket does not exist, as the two glycine residues lining it in chy-
motrypsin are replaced by the much bulkier valine and threonine.

5.3.1 The catalytic mechanism

The catalytic activity of serine proteases depends on the unusual reactivity of ser-
ine 195. This residue, ordinarily rather unreactive under physiological conditions,
becomes activated by interactions with histidine 57: these two residues are fun-
damental for the enzymatic activity and all the serine proteases are inactivated
if either of these units is chemically altered in any way. The carboxylate group
of aspartate 102, buried in the protein, also is next to histidine 57. These three
residues—Ser-195, His-57, and Asp-102—form the catalytic triad (see Fig. 5.2
for porcine pancreatic elastase).

The commonly accepted mechanism for the catalytic reaction is based on a
two—step process: in the acylation stage of Fig. 5.3(a)—(c), the oxygen atom of
the hydroxyl group of Ser-195 attacks the carbonyl carbon atom of the susceptible
peptide bond (R’~NH-CO-R in Fig. 5.3). The carbon-oxygen bond of this car-
bonyl group becomes a single bond, and the oxygen atom acquires a net negative
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Figure 5.3: Mechanism of hydrolysis catalyzed by serine proteases. Dashed lines indicate
H-bonds; in (b) and (&) the double arrow symbol refers to a low—barrier H-bond. (a)—(c)
Acylation process: a tetrahedral transition state is formed in which the peptide bond is
cleaved. The amine component then rapidly diffuses away, leaving in (c) an acyl-enzyme
intermediate. (d)—(f) Deacylation process: the acyl-enzyme intermediate is hydrolyzed
by water. The deacylation is essentially the reverse of acylation, with water in the role of
the amine component of the original substrate. ,

charge. The four atoms now bonded to the carbonyl carbon are arranged in a tetra-
hedron geometry. The formation of this transient fetrahedral intermediate from
a planar amide group is assisted by the H-bonds between the negatively charged
carbonyl oxygen atom (the oxyanion) and the two main chain amide groups of
Ser-195 and Gly-193. The essential event favouring the formation of the tetrahe-
dral intermediate is the transfer of a proton from Ser-195 to His-57. This proton
transfer is facilitated by the presence of the catalytic triad: Asp-102, forming a
strong H-bond with His-57, precisely orients the imidazole ring of His-57 and
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Deacylation

partly neutralizes the charge that develops on it during the transition state. The
proton held by the protonated His-57 is then donated to the nitrogen atom of
the susceptible peptide bond, which thus is cleaved. The amine component (not
shown in Fig. 5.3(c)) diffuses away, whereas the acid component of the substrate
is esterified to Ser-195.

The next stage, deacylation in Fig. 5.3(d)—(f), begins when a water molecule
takes the place occupied earlier by the amine component of the substrate. Deacy-
lation is the reverse if acylation, with H,O substituting for the amine component.
First, the charge relay network draws a proton away from water. The resulting
OH™ ion immediately attacks the carbonyl carbon atom of the acyl group that
is attached to serine 195. As in acylation, a transient tetrahedral intermediate is
formed. His-57 then donates a proton to the oxygen atom of Ser-195, which then
releases the acid component of the substrate. This acid component diffuses away
and the enzyme is ready for another round of catalysis.



Chapter 6

Serine Proteases: an Ab initio

Molecular Dynamics Study

In serine proteases the H-bond between His-57 and Asp-102, and that be-
tween Gly-193 and the transition state intermediate play a crucial role for
enzymatic function. To shed light on the nature of these interactions, we
have carried out ab initio molecular dynamics simulations on complexes
representing adducts between the reaction intermediate and elastase (one
protein belonging to the SP family). Our calculations indicate the pres-
ence of a low-barrier H-bond between His-57 and Asp-102, in complete
agreement with recent NMR experiments on enzyme—transition state analog
complexes. Furthermore, comparison with an ab initio molecular dynam-
ics simulation on a model of the substrate—enzyme adduct indicates that the
Gly-193~induced strong stabilization of the intermediate is accomplished by
charge/dipole interactions and not by H-bonding as previously suggested.

The outline of this chapter is as follows: we briefly analyze the H-bond
network present at the active site of serine proteases. Then we describe
our structural models of the enzyme-substrate and enzyme—transition state
adducts. Finally, we present and discuss our molecular dynamics results.

6.1 H-bond network in serine proteases

Serine proteases (SP) use the catalytic triad (Ser-195-His-57-Asp-102) to cat-
alyze the hydrolysis of peptides (Fig. 5.3). This occurs through nucleophilic addi-
tion of the 3-hydroxyl group of Ser-195 to the acyl carbonyl of the substrate, with

formation of a negatively charged tetrahedral intermediate (Fig. 5.3b).
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Stabilization of the intermediate is achieved by formation of two H-bond with
the amide groups of Ser-195 and Gly-193 (for the mammalian isoenzymes [951)
or with the amide groups of Ser-195 and the sidechain of Asn-155 (in the case of

bacterial isoenzymes [108]).

Theoretical [92, 109] and experimental [108, 110] studies on wild type and
mutants of a bacterial SP (subtilisin) have shown that Asn-155 is a key residue
for the biological function, in that it provides a stabilization of the transition state
(TS) relative to the ground—state (GS) by as much as = 5 kcal/mol. Curiously, no
correspondent studies on the mammalian isoenzymes have appeared to shed light
on the crucial role of Gly-193'.

A second, important H-bond interaction involve two residues of the catalytic
triad, His-57 and Asp-102. A series of NMR studies on a mammalian [66,72-T74]
and bacterial [112] SP’s and their complexes with inhibitors have indicated the
presence of a low—barrier hydrogen bond (LBHB) linking Ny, of protonated His-
57 with the § carboxyl group of Asp-102 (double arrow in Fig. 5.3b) [66, 72-74].
Approaching of the TS is suggested to facilitate the formation of the LBHB, which
in turn may render N, of His-57 a stronger base for accepting a proton from Ser-
195 in the formation of the intermediate [66,72-74]. As result of this process,
the free energy barrier of TS relative to GS decreases. Ab initio calculations and
neutron scattering experiments have led to the conclusion that the LBHB is very
covalent in nature [87]. Thus, this “resonance-stabilization” energy could supply
much of the energy necessary for enzyme’s catalysis [66,72-74]. However, the
role of this LBHB for the catalytic power of SP’s is object of controversy [89, 90].

From the above considerations it is clear that, in spite of its crucial role, the
nature and the dynamics of hydrogen bonding in active site of SP are not fully
understood. In order to provide a picture of the chemical bonding of these in-
teractions in SP’s, and to relate it to the biological function, we have carried out

ab initio molecular dynamics simulations [69] on models of SP—intermediate and

I'The H-bond with Ser-195 is much weaker than that of Gly-193. Indeed, analysis of selected
SP—transition state analog complexes (entries 1AI8,1VCG,4EST,IGMH, 1SGC,1P03,7GCH of
the Protein Data Bank [111]) shows that 2.8 <d(N(Ser-195)---0) < 3.2 Aand 121° < Z(N(Ser-
195)H--- 0) < 157° and 2.6 < d(N(Gly-193)---0) < 2.9 A and 150° < Z(N(Gly-193)H - --
0) < 160° (H atoms obtained assuming standard bond lengths and bond angles).
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SP-substrate complexes. Anticipating our results, the calculations show that the
LBHB is a strongly covalent interaction and that the dramatic Gly-193—induced
stabilization of the reaction intermediate is due mainly to the electrostatic interac-
tions between the intermediate and the Asn-192-Gly-193 peptide’s unit dipole.

6.2 Computational procedure

6.2.1 Model complexes

Our structural models for the adducts of SP with intermediate (I-SP) and substrate
(S-SP) are based on the X-ray structure of porcine pancreatic elastase complexed
with Ace-Ala-Pro-Val-difluoro-N-phenylethylacetamide (PDB entry: 4EST) [111,
113]. They include the entire catalytic triad, the scissile peptide bond and the
oxyanion hole.

The construction of the complexes is carried out in several steps: i) the termi-
nal N-phenylethylacetamide is replaced by an acetyl group; ii) all hydrogen atoms
of the complex, not present in the X-ray structure, are added assuming standard
bond lengths and bond angles; iii) a shell of 1453 water molecules, including
the crystallographic ones, is added; iv) four chlorine counter ions are added to
ensure neutrality; v) energy minimization is carried out with the AMBER suite
of programs [114] using the AMBER force field [115] (convergence criterion
0.0001 kcal/(mol-A)). In the minimization, no periodic boundary condition are
applied and the electrostatic interactions are calculated assuming a constant di-
electric function € = 1 and without cutoff. The resulting structure is reported in
Fig. 5.2.

The I-SP and S-SP model complexes comprises the entire side-chain of Asp-
102, the imidazole ring of His-57, the Q192G193 peptide linkage and the entire
Ser-195 residue, which in I-SP is covalently bound to the substrate (Fig. 6.1a,b).
His-57 is considered doubly protonated in I-SP and protonated in the § position in
S-SP [116].

Alternative models representing I-SP and S-SP differ from the previous ones
for the substitution of the Q192G 193 peptide link with dimethylammonia (Fig. 6.1
c,d).
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H57

Q192-G193

I1I

D102 S195-1
(c) (d)

Figure 6.1: Model complexes representing I:SP ((a) and (c)), S-SP ((b) and (d)). In (c)
and (d) the Q192G193 peptide unit is replaced by dimethylammonia. H-bonds are de-
picted with dashed lines. Green arrows indicate the scissile carbon atom Cg. The latter is
labeled only in (b) for clarity. Color conventions as follows: black balls represent carbon
atoms, red balls oxygen, blue balls nitrogen, and grey balls hydrogen.

6.2.2 Calculations

The quantum-mechanical problem is solved within the framework of DFT-KS
formulation. The KS orbitals are expanded in a plane-wave basis set, up to an
energy cut—off of 70 Ry. Only valence electrons are considered explicitly, pseu-
dopotentials of the Martins and Troullier [117] being used for the core-valence
electron interaction. BLYP [118, 119] gradient—corrected exchange—correlation
functionals are used. The charge of all the complexes is -1.

We have carried out geometry optimization using the direct inversion in itera-
tive subspace (DIIS) method [120, 121] for both electronic (convergence threshold

set to 10~5) and ionic degrees of freedom (convergence threshold set to 5 - 107%).

DFT-based Car—Parrinello ab initio molecular dynamics simulations are per-
formed at constant temperature, with the atomic trajectories collected over a pe-
riod of 0.6 and 1.0 ps for S-SP and I-SP, respectively. Equations of motion are
integrated with the velocity Verlet algorithm. The fictitious electron mass is 400
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a.u. and the integration timestep is 4 a.u. Constant temperature simulations are
achieved by coupling the systems to a Nosé thermostat [122] at 7' = 300K
with a frequency of 500 cm™!. The terminal hydrogens of Asp-102, His-57, and
Gly-193, corresponding to the C,, Cs and C, respectively, are kept fixed in their
starting position; in S-SP an additional constraint between the O, (Ser-195) and

the substrate carbon of the scissile bond (indicated in Fig. 6.1b as Cg) is imposed.
Calculations including the external electrostatic potential of the whole protein—

water system are also carried out. This potential ®,,.,(r) at the point r is evaluated

as

q)prot(r) = Z [I‘zq‘—lrl (6.1)

where ¢; are the RESP [123] atomic point charges at point r;.

The electrostatic energy AF between to moieties (e.g. the intermediate and
the Q192G193 peptide unit) is calculated as

. qiq;
AE=)" T (6.2)

ij

where the indexes i and j refer to atoms of the two moieties. ¢; and ¢; are the partial
atomic ESP charges [124] and 75 is the interatomic distance. Test calculations are
carried out also using the multipolar expansion of the electrostatic energy up to

the dipolar term:

AFE ~ QI(I)Z — M1 Ez. (63)

where Q; and p; are charge and dipole moments of moiety 1 and ®5 and E5 the
electric potential and the electric field produced by moiety 2, respectively. The

results turn out to be very similar to those obtained with Eq. 6.2.

Binding energies (B.E.’s) are calculated as total energies differences between
complexes in Fig. 6.1 and their forming elements. The B.E. of complexes I and III

could not be determined because of the instability of the intermediate fragment.

All Car—Parrinello calculations presented in this chapter are performed with a
parallel version of the CPMD code, version 3.0h [125].
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Figure 6.2: Molecular dynamics of I-SP: final structure of model I. H-bonds are repre-
sented with dashed lines. Color conventions as in Fig. 6.1.

6.3 Results

In this section, first we analyze structural and electronic features of two models
representing the adduct between serine protease and the reaction intermediate (I
and IIT of Fig. 6.1). Comparison is then made with features of models of the
substrate—enzyme complex (IT and I'V of Fig. 6.1).

6.3.1 The intermediate—enzyme complex

Structurald fheatu- Conformational properties as well as the H-bond network of the complex are fairly
res an cnarge . . . . . . . .
distribution maintained during the dynamics (Fig. 6.2). Consequently, the charge distribution

does not change significantly (with exception of Cg and Ng, corresponding to the
site of bond cleavage), as indicated by the ESP atomic partial charges reported
for several snapshots of the molecular dynamics (Tab. 6.1). Note that the Cg—O
bond of the intermediate is very polarized towards the oxygen, consistently with
the fact that this bond is to be broken in the subsequent step of the hydrolysis.
The presence of the protein field does not affect significantly the charge distri-
bution (Tab. 6.2), suggesting that solvent effects do not play a major role for the
electrostatic interaction at the active site.
H-bond pattern: Asp- During the dynamics, proton hopping occurs between the His-57 and Asp-
102-His-57 102 in the subps time-scale (Fig. 6.3). The presence of a LBHB is completely
consistent with NMR data on an intermediate—serine protease complex, namely
the peptidyl trifluoromethyl ketone—chymotrypsin adduct [72].
As already stressed in the previous chapter, the “signature” for the presence

of a low-barrier H-bond between the two residues is the covalent nature of the
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Time (ps) O,(S195) C(S) N(S) O() N(G193) C(Q192) 0O (Q192)

Init.  -0.511 1.194 -0.802 -0.717  -0.603 0.504 -0.631

0.1 -0509 1202 -0.529 -0.837 -0.733 0.597 -0.649
0.2  -0.46l1 1.022 -0.237 -0.724  -0.646 0.571 -0.630
0.3 -0.328 0.835 0.006 -0.658 -0.556 0.516 -0.631
04 -0342 1.083 -0.193 -0.754  -0.582 0.507 -0.625
0.5 -0372 1.146 -0.201 -0.794  -0.558 0.505 -0.616
0.6 -0407 1233 -0480 -0.829 -0.615 0.578 -0.654
0.7 -0430 1.174 -0311 -0.883  -0.570 0.563 -0.638
0.8  -0.551 1.245 -0.401 -0.843  -0.487 0.478 -0.620
0.9 -0.504 1.124 -0.202 -0.772  -0.503 0.502 -0.634
1.0 -0399 1.074 -0.245 -0.827  -0.593 0.636 -0.694
Average  -0.438  1.121 -0.327 -0.785  -0.586 0.542 -0.638
St. Dev. 0.072  0.112 0.207 0.064 0.064 0.048 0.021

Table 6.1: Selected ESP partial atomic charges of I-SP in vacuo.

Time (ps) 0O,(S195) C(S) N(S) O(S) N(G193) C(Q192) 0O (Q192)

0.1 -0.513 1.154 -0.531 -0.876 -0.646 0.640 -0.750

- 02 -0453 0931 -0.261 -0.677 -0.527 0.595 -0.722
0.3 -0.329 0.649 -0.037 -0.580 -0.410 0.481 -0.692

04 -0381 0961 -0.036 -0.739 -0.430 0.400 -0.644

0.5 -0412 1.000 -0.106 -0.773  -0.358 0.341 -0.611

06 -0482 1270 -0.305 -0.929 -0.460 0.447 -0.657

0.7 -0439 1267 -0.295 -0.932 -0.354 0.504 -0.714

0.8 -0.602 1373 -0.382 -0.843 -0.349 0.462 -0.720

09 -0.606 1.292 -0.221 -0.719 -0.290 0.494 -0.729

1.0 -0493 1.076 -0.308 -0.802 -0.417 0.596 -0.793
Average  -0471 1.097 -0.248 -0.787 -0.424 0.496 -0.703
St. Dev. 0.084 0.208 0.148 0.107 0.097 0.088 0.051

Table 6.2: Selected ESP atomic charges of I-SP in the presence of the protein electrostatic
potential.



74

H-bond pattern: Gly-
193~intermediate

Serine Proteases: an Ab initio Molecular Dynamics Study

1.75

i
8
"
"

Distance (&)

1.05 i

I | 1 l
0 0.2 0.4 0.8 0.8 1
Time (ps)

Figure 6.3: His-57-Asp-102 H-bond in I-SP (complex I): H-Os9(Asp-102) (solid line)
and H-Njy; (His-57) (dashed line) distances plotted as a function of time.

bonding. This corresponds to a quantum mechanical superposition of the two
forms, representing the two possible hydrogen positions: the hydrogen is free to

jump from one atom to the other, leading to great resonance stabilization.

The ELF is the simplest tool at our disposal for a first principles analysis of
the chemical bond and a series of ELF plots along the proton jumping reveals
the strong covalent nature of the LBHB between His-57 and Asp-102. Fig. 6.4
shows the ELF before, during and after the proton transfer from one residue to
the other. The red areas indicate strong localization, i.e. spatial regions where the
Pauli principle has little influence on the electron distribution and the electrons

locally behave as a system of bosons at the same density.

Fig. 6.4a shows the presence of the lone pairs of the aspartate oxygen and of
the strong electron localization along the histidine Ns;—H bond, which indicates
the covalent nature of the bond. During the proton transfer (Fig. 6.4b), the Ns1—H
bond is still very covalent and an incipient covalent Og,—H bond is being formed.
Protonation of Asp-102 establishes a covalent O—H bond: significant portion of
ELF is indeed localized on the H atom (Fig. 6.4c). The formation of the nitrogen
electron lone—pair is also evident from the picture. We conclude that the bonding
in this LBHB is essentially covalent in nature. Similar findings have been reported
in a series of very recent ab initio studies of low—barrier H-bonds in an organic

molecule [70, 87].

The second fundamental H-bond interaction investigated here involves Gly-
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(a)

(b)

(c)

Figure 6.4: His-57-Asp-102 proton transfer: electron localization function (ELF) of
three snapshot during the dynamics. The ELF is represented in a bestfit plane containing
the oxygen, the proton and the imidazole ring, and it ranges from O (blue) to 1 (red).

193 and the intermediate carbonyl oxygen. This H-bond is well maintained during
the dynamics (average O- - -H distance of 1.7(0.1) A). A rough estimation of the
interaction energy based on the electrostatic model of Eq. 6.2, indicate that Gly—
193 stabilizes the intermediate by more than 10 kcal/mol (Tab. 6.3). This value
appears to be too large for a purely electrostatic H-bond interaction [59, 91].

Inspection of the structure reveals that the very large Q192G193 peptide’s unit
dipole (= 4 D [106]) could be also an important factor for intermediate stabi-
lization, as it points towards the negative charge of the intermediate. To extract
the peptide dipolar contribution from the total stabilization energy we construct
a second model complex in which the Q192G193 peptide unit is substituted by
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ESP B.E.
AE (I-SP) (Complex I) -12(4) —
AE (I-SP) (Complex III) -2.6  —
AE (S-SP) (Complex IT) -6(2) -4.2
AE (S-SP) (Complex IV) -2.6  -1.5

Table 6.3: Intermediate — and substrate — Q192G193 peptide unit interactions. Ener-
gies (kcal/mol) are calculated from the electrostatic ESP-based model and from binding
energies (see Computational Section). ESP-based energies of complexes I and II are cal-
culated as average during the dynamics, whereas those of complexes III and IV from the
initial structural model.

dimethylammonia (I in Fig. 6.1c). Tab. 6.3 shows that the resulting stabilization
is much smaller, only few kcal/mol. Thus, we conclude that a large contribution of
the transition state stabilization is due to electrostatic interaction (charge—dipole
interactions).

To study the relevance of the Q192G 193 dipole on the dynamics, an ab initio
molecular dynamics simulation on complex III, where the Q192G 193 peptide unit
is replaced by a dimethylammonia, is performed. Fig. 6.5, which reports structural
properties of the complex, indicate that this complex is very unstable with respect
to the substrate—enzyme complex. Indeed, while the key Gly-193—intermediate
H-bond becomes very weak(Fig. 6.5a), the protonated His-57 transfers a proton
to the intermediate (Fig. 6.5a) and the O, (Ser-195)-Cg bond of the intermediate
breaks. As a result, a double Cg—O(I) bond is formed (as indicated by the decrease
of the bond distance up to the typical value of a carbonyl peptide bond (1.25 Ain
Fig. 6.5b)) and Cg changes it hybridization from sp® to sp®, with formation of the
planar peptide unit (as shown by the increase of the Z(N(I)-Cs-O(I)) angle up to
~ 120° (Fig. 6.5¢)). In conclusion, our calculations suggest that the absence of the
stabilizing Q192G 193 dipole causes the reverse of the reaction, with formation of
the substrate and the original H-bond pattern of the catalytic triad.

6.3.2 The substrate-enzyme complex

Gln-192-substrate in- To estimate the stabilization of the Q192G193 peptide unit’s dipole on the sub-

teractions

strate, we have performed an ab initio molecular dynamics simulation of a model
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Figure 6.5: Molecular dynamics of I-SP: selected structural properties of complex IIT
plotted as a function of time. (a) H(Gly-193)-0(I) (dotted line), Hea(His-57)-O(Ser-
195) (solid line) distances; (b) Cs—O(I) bond length; (¢) N(I)-Cg—O(I) angle.

of the enzyme—substrate adduct (II in Fig. 6.1b).

Fig. 6.6 shows that during the dynamics the two key H-bond interactions are
maintained but no proton transfer occurs. Interestingly, the substrate—protein
interaction energy turns out to be much lower than that of the I-SP complex
(Tab. 6.3). Replacing the Q192G19 peptide with dimethylammonia (complex IV)
causes a drastic decrease of the interaction energy. The latter turns out to be prac-
tically identical to that of complex III (Tab. 6.3). We conclude that the H-bond
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Figure 6.6: H-bonding of S-SP (complex II): H(Gly-193)-O(S) (solid line), Og2(Asp-
102)~H;1 (His-57) (dotted line) distances plotted as a function of time.

interaction are similar in the S-SP and I-SP complexes. In contrast, the electro-
static (charge-dipole) interactions are very different, the I-SP being more stable
by = 6 kcal/mol than S-SP (Tab. 6.3). It is interesting to note that this value com-
pares well with previous quantum mechanical calculations for the Asn-155-TS
stabilization in the bacterial isoenzyme [92, 109]. We conclude that the transition

state stabilization is due mostly to charge—dipole interactions.

For these complexes it has been possible to calculate also the binding energies.
Tab. 6.3 shows a qualitative agreement between binding energies and energies
based on electrostatic model. This validates the use of the electrostatic model for
a qualitative analysis of intermolecular interactions, as it has been done in this

work.

Also in this complex, most of the ESP charges do not vary significantly during
the dynamics and by introducing the electric field of the protein (Tabs. 6.4 and
6.5). Most of the ESP charges turn out to be similar to those of the I-SP complex.
A notable exception is represented by the C~O peptide bond, which in this case is -
much less polarized toward the oxygen. Thus it appears that the protein active site,
and in particular the Q192G193 moiety, is engineered so as to render the scissile

bond more polar in the formation of the transition state.
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Timeb(ps) 0,(S195) C(S) N() 0O(S) N (G193) C(Q192) O (Q192)

Init. -0.468  0.635 -0.352 -0.469  -0.561 0.585 -0.637

0.1 -0473 0.739 -0.527 -0.559  -0.709 0.624 -0.644

02 -0410 0578 -0.259 -0.574  -0.595 0599 -0.635

03 -0.528 0.684 -0.280 -0.595 -0.638 0.605 -0.640

04 -0476 0585 -0219 -0.519 -0.642 0.633 -0.643

05 -0491 0.618 -0.165 -0.577 -0.592 0.630 -0.658

06 -0355 0576 -0.189 -0.549 -0.628 0.616 -0.644
Average  -0.457  0.631 -0.284 -0.549 -0.624 0.613 -0.643
St. Dev. 0.053 0.057 0.114 0.040 0.044 0.016 0.007

Table 6.4: Selected ESP atomic charges of S-SP in vacuo.

Time (ps) 0,(S195) C(S) N(S) O(S) N(G193) C(Q192) 0O(QI192)

Init. -0.331 0.693 -0.474 -0.488 -0.614 0.686 -0.645

0.1 -0.418 0.703 -0.602 -0.552 -0.701 0.745 -0.782

0.2 -0.349 0.492 -0.389 -0.513 -0.574 0.722 -0.768

0.3 = -0477 0.601 -0.356 -0.546 -0.667 0.825 -0.789

04 -0.475 0.561 -0.301 -0.495 -0.650 0.812 -0.765

0.5 -0.455 0.553 -0.262 -0.524 -0.570 0.772 -0.787

0.6 -0.341 0.496 -0.273 -0.497 -0.650 0.775 -0.769
Average -0.407 0.586 -0.380 -0.516  -0.632 0.762 -0.758
St. Dev. 0.060 0.079 0.114 0.023 0.045 0.045 0.047

Table 6.5:

Selected ESP atomic charges of S-SP in the presence of the protein electrostatic

potential.
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6.4 Discussion

Within the very short time-scale here explored, our ab initio molecular dynam-
ics simulations help elucidate important aspects of two key interactions in serine
proteases—reaction intermediate complexes, the His-57-Asp-102 LBHB and the
Gly-193—intermediate H-bonds.

Our calculations are completely consistent with and confirm the existence of a
LBHB between His-57 and Asp-102, which has been observed experimentally
in transition state analog inhibitor complexes [66,72-74]. Furthermore, they
strongly support the proposal of an LBHB—facilitated mechanism [72]. Indeed,
the LBHB turns out to be mostly covalent in nature. The energy supplied by cova-
lent interaction may be crucial to overcome the energy loss due to the compression
of the two residues, which is a prerequisite of the postulated LBHB-based reac-
tion [72].

The second conclusion of our molecular dynamics approach is that, the rather
large Gly-193~induced stabilization of the transition state with respect to the fun-
damental state is not caused by an H-bond with Gly-193, as commonly pro-
posed [95,96]: indeed, the H-bond favors the binding of both substrate and in-
termediate by &~ 2.6 kcal/mol, a value typical of a strong H-bonds in biological
systems [59]. Instead, the negatively charged transition state turns out to be more
stable relative to S-SP by several kcal/mol as a result of the interaction of the neg-
ative charge with the large dipole of the Q192G193 peptide unit. A simulation in
which dimethylammonia replaces the Q192G193 peptide unit confirms the cru-
cial role of the dipole: the absence of the stabilizing charge-dipole interaction
renders the intermediate species unstable. These considerations suggest that site—
directed mutagenesis experiments on the 192 and/or 193 positions might affect
significantly the activity of SP, as the Q192G193 dipole orientation may be not
optimal for transition state stabilization.

Because environment effects may be very important for the chemistry of the
active site of this and other enzymes [91-93, 109], we carry out some of the calcu-
lations in the presence of the electric field of the protein. Our results, summarized
by tables 6.1-6.2 and 6.4-6.5, indicate however that the field appears not to af-
fect dramatically the charge distribution of the I-SP and S-SP complexes. More
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sophisticated models of the protein electric field, which for instance include the
electronic polarizabilities of the protein atoms, are not expected to alter signifi-

cantly the picture.






Conclusions

Since its first introduction in 1990 by Becke and Edgecombe in the context of a
new theoretical definition of localized atomic quantum shells, the electron local-
ization function (ELF) has rapidly become, in the quantum chemical literature, a
very popular tool to analyze localization properties and chemical bonding. The
applications of ELF presented in this thesis to molecules, bulk systems, solid sur-
faces, and impurities, clearly show the unique ELF ability to provide—without
using any spectral information, being the ELF a pure ground—state property—a
meaningful description of the chemical bond for several different classes of mate-
rials.

In particular, the choice of the pseudopotential scheme—which is of univer-
sal use in modern condensed matter theory to eliminate the heavy computational
burden associated to the chemically inert core electrons—makes the ELF message
particularly simple and transparent.

Basically the ELF can be considered as a suitable measure of how the ki-
netic energy density, by the effect of Pauli principle, locally deviates from an
appropriately defined “bosonic” lower bound. We have exploited this feature in a
novel geometric solution to the N -representability problem for an extended sys-
tem, which implies an explicit form for the Kohn—Sham kinetic energy functional
in terms of the density [11]. The ELF is intimately related to this approximate
functional, whose value strongly depends on the nature of the chemical bonding
in the material.

Besides this general analytical result, in this thesis we have also presented
several original applications of ELF in condensed matter systems, as well as to
systems of biological interest.

We have investigated how the ELF portrays the bond rearrangement occurring
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at a crystal surfaces. We have analyzed two paradigmatic cases, corresponding
to the two very opposite bonding characters perspicuously visualized via an ELF
approach: namely, the covalent and the metallic bond. At a semiconductor surface
the electronic system changes its character upon reconstruction: the ELF clearly
describes how electron pairing accompanies rebonding [12]. At a metal surface
the bonding character strongly depends on the local coordination and packing.
The ELF, calculated for surfaces of a typical sp~bonded metal, distinctly reveals
the rearrangement in the electron distribution due to the surface formation and to
the changes in the local coordination [13].

We have also proposed the immediate graphical language of ELF as a unique
tool for investigating bonding in the presence of defects, either in crystals or in
much more complicated systems, such as disordered clusters or amorphous ma-
terials. In particular, we have shown that a combined analysis of the electronic
charge density distribution and ELF allows to unambiguously classify the differ-
ent kind of electronic defects present in amorphous silicon samples [14].

Finally, the ELF has turned out a useful tool even for a typical biochemical
problem, such as the study of the hydrogen bond pattern preseht the active site
of serine proteases, an important and large family of digestive enzymes. Through
an ab initio molecular dynamics study [69], we confirm the existence of “low—
barrier” (1.e. short, very strong) hydrogen bonds between two conserved residues
at the active site and our ELF analysis clearly reveals the strong covalent nature
of these bonds. _

In conclusion, we propose here the immediate graphical ELF language as a
unique tool to understand electron localization and chemical bonding in a wide
variety of physical systems, ranging from simple molecules, to surfaces, impuri-
ties and large biological complexes. In all these systems, the ELF yields a very
meaningful, easily understandable and visually informative analysis of the chem-

ical bonds.
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Appendix A

Density Functional Theory

A.1 Hohenberg—Kohn theorem and Kohn—-Sham for-

mulation

From the microscopic point of view, atoms, molecules and solids consist of inter-
acting ions and electrons, and their properties could be in principle determined by
solving the Schrodinger equation. In practice, this is not feasible, and the solution
of the problem requires several approximations. Firstly, the Born—-Oppenheimer
(or adiabatic) approximation [126, 127] is introduced, which states that, because
of the large difference between electronic and ionic masses, the nuclei can be de-
scribed as fixed charges in the treatment of the electronic problem, so that their
coordinates appear in the Hamiltonian only as parameters. The electrons move
in the “external” potential Vi (r) of the nuclei, following adiabatically their slow
motion and remaining close to the quantum-mechanical ground-state. An N-
electrons system is therefore described by the Hamiltonian (atomic units ared used

throughout):

1 al 1 1 |
- _Z 2 Vet (T - S Al
H 2;V1+; t(rr)_"?;iri_rjl ( )

The density functional theory (DFT) provides an appropriate mathematical
framework for determining the ground—state of a many-electron system, which

is the only required knowledge for the study of a great number of physical prop-
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erties. More details about this theory can be found in several review papers and
books [16,20, 128, 129]. For the present purpose we limit ourselves to the basic
findings.

The DFT is based on the Hohenberg—Kohn theorem [18], which consists of

two statements:

e The external potential V. acting on a system of electrons is determined (up
to an additive constant) by the ground-state electronic charge density n(r)

alone.

As a consequence, also F = (U|H|¥), where ¥ is the N-particle wavefunction,

is a unique functional of n(r), and can be written as:
Eln] = /dr Vet (r)n(r) + F[n), (A2)

where F'[n] does not depend on the external potential, i.e. it is universal.

e The ground-state total energy Egg of the system is the minimum of the

functional E[n] with respect to variations of the electronic charge density
n(r).

In this framework, the determination of the ground-state of the system is reduced

to the minimization of E[n] under the constraint

/dr n(r) = N, , (A.3)
i.e. to the solution of the Euler-Lagrange equation:
—5-[E— /dr ()]—o | (A4)
5 1 n(r)| =0, :

where the Lagrange multiplier . is introduced to impose the condition in Eq. (A.3).
The usual implementation of the DFT is due to Kohn and Sham (KS) [19]
who wrote the electron density in terms of an orthonormal set of N independent

one—particle wavefunctions ¢, the KS orbitals:

N
n(r) = > filtu(r)P?, (A.5)
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where f; are the occupation numbers. In the KS formulation the universal func-
tional F'[n] is then written in the form:

n(r)n(r')

v —

Fn] = Ty[n] + % / drdr’ + Exe[n]. (A.6)
Here Ti[n] is the kinetic energy that a system with density n(r) would have in
the absence of electron—electron interaction. The second term in the r.h.s. of
Eq. (A.6) is the classical (Hartree) electrostatic term. The expression (A.6 defines
the so called exchange—correlation energy Ey., which is the unknown part of the
problem. If we assume the KS orbitals to be our basic variables, the solution
for the Euler—Lagrange equation (A.4) can be found by solving a set of coupled

single—particle Schrodinger—like equation for noninteracting electrons:

(= 577+ Vo) + Vi) +0ld) JUsle) = cti(w), (A
Vies(r)
where: .
Vi(r) = /dr' n(r') , (A.8)
, v — 1/|
0 By
belr) = 575 (A.9)

These are the KS equations, whose solution is found via a self-consistent iterative
procedure: starting from a given set of 1), (r) we determine the density and the
potential Vi g(r), and then we solve the Eq. (A.7) to determine new orbitals 1;(r).
This cycle is repeated, using the new orbitals as input wavefunctions, until the

input and the output orbitals are identical.

A.2 Local Density Approximation

The DFT described above is formally exact but useless for practical purposes,
because all difficulties related to the many-body character of the problem are
still unsolved. They are all contained in the exchange—correlation energy Exc [n],
which is formally well defined by the equation (A.6) but unknown. In order to
apply the theory an appproximation for Ey. [n] is necessary. The most common

and simplest approach is the local density approximation (LDA). It relies on the
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idea of replacing the exchange—correlation energy of a non uniform interacting
electron system with the E[n] computed as if locally it had the same exchange—

correlation energy of a uniform interacting system with the same density:
Bt = / dre ™ [n(x)]n(r), (A.10)

where €22™[n(r)] is the exchange—correlation energy per particle of a homoge-
neous electron gas with density n(r). This quantity depends locally upon the
density at the point r and it has been determined with high accuracy using quari—
tum Monte Carlo simulations [34] which provided the total ground-state energy
of the uniform interactins electron gas at several densities. These energies have
been interpolated by several authors. For our computations we have chosen the
recipe of Perdew and Zunger [130].

The LDA approximation, free of experimental input, is exact only in the limit
of uniform systems, and its application is formally justified for systems with
slowly varying electron density. Somewhat surprisingly, the application of the
LDA approximation to a large variety of systems has shown that this approxima-
tion reproduces satisfactorily many measurable quantities, including ground-state

structures of molecules and solids, vibrational properties, etc.

A.3 Plane-Wave Pseudopotential Method

In the study of infinite solids it is necessary to exploit the crystal symmetry to
circumvent the problem of the infinite number of degrees of freedom. The Bloch
theorem states that in a periodic crystal the electronic wavefunctions are given by
the product of a function having the lattice periodicity times a plane~wave.

In order to solve in practice the KS equations, one can write the KS orbitals in
terms of a suitable finite basis set. A standard choice is that of using plane—waves

(PW), which have the great advantage of being translationally invariant:
wi (I') frumed wn,k (I‘) = Z C’n.,k-i—Gei(kJrG)‘r (A.l 1)
G

where k belongs to the first Brillouin Zone (BZ) of the crystal, G is a reciprocal

lattice vector, and n is the band index. The use of Bloch functions would then
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require the knowledge of the electronic wavefunctions at every point in the first
BZ of the reciprocal lattice. Nevertheless, efficient k-sampling methods have been
proposed by different authors [38, 131, 132], where very restricted sets of “special
points” are taken as representative of the entire zone.

The electronic density is then calculated self-consistently through Eq. (A.5).
For insulating systems at zero temperature the occupation of the Bloch states can
be fixed to two or zero electrons per spin—degenerate state. In metals, a frac-
tional occupation of states at the sampling k-points close to the Fermi energy is
corhmonly introduced to mimic the properties of the Fermi surface. The calcula-
tions reported in this thesis employ the smearing technique [133] to deal with BZ
integration in the presence of a Fermi surface.

The dimension of the PW basis set is determined by fixing the kinetic energy

cut—off, E.,;, through the condition:
1
5]k + GP? < B (A.12)

The choice of a PW basis has the advantage that the matrix elements of the Hamil-
tonian in Eq. (A.7) are particularly simple and that the accuracy of the expansion
can be easily checked and systematically improved by increasing the value of
E oy furthermore, PW’s are independent of the structure of the crystal.

Unfortunately only a very large PW basis is able to accurately reproduce the
rapid spatial variation of the orbitals in the region around the nuclei. However,
the orbitals closer to the nuclei (the core orbitals) are very well localized, ener-
getically well separated from all valence states, and they do not play a role in the
interatomic bonds, i.e. in most properties of the system. These considerations jus-
tify the elimination, from the KS equations, of the degrees of freedom associated
with the core electrons, and only the “chemically active” electrons are explicitly
included in the computation.

The switch from the all-clectron problem to an equivalent problem that in-
volves only the valence electrons is exploited by replacing the nuclear potential
Vixt(r) in the Hamiltonian (A.1), with a smooth pseudopotential describing the
interaction between valence electrons and ionic cores (nuclei + core electrons).
There are many different schemes to generate ionic pseudopotentials from first

principles (see for example [117,134]). Basically, all of them satisfy the follow-
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ing requirements: (i) the lowest pseudo-energy levels are equal to the valence
all-electron energies; (if) each pseudo—wave function coincides with the corre-
sponding all-electron one outside a properly chosen core radius; (iif), the real and
pseudo charge inside the core radius agree for each valence state (as a consequence
of (ii)). This last condition is called norm conservation, and ensures the transfer-
ability of the pseudopotential to different chemical environments [135]. The accu-
racy of the results obtained with norm—conserving pseudopoteﬁtials is compara-
ble with those from all-electron calculations [21, 136]. The price to be payed for
norm conservation is nonlocality, which shows up in the explicit I-dependence of
the radial ionic pseudopotential. A computationally convenient form for the pseu-
dopotential has been introduced by Kleinman and Bylander [39], who pointed out
that a significant reduction of the numerical effort can be achieved if the nonlo-
cality of the potential is not restricted to the angular part, but if also the radial
potential is replaced by a suitable non local separable operator. The Kleinman—
Bylander form must be used with some caution, because in some cases it can lead
to a wrong description of the chemical properties of the system, due to the ap-
pareance of unphysical states in the energy spectrum of the isolated atom. These
spurious ’states, known in literature as ghosts [137], may occur because—due to
the non locality of the radial potential—is no longer guaranteed that the radial
wavefunctions can be ordered in terms of the increasing number of their nodes. In
particular, the nodeless radial pseudo—functions, which are assumed to describe
the relevant atomic states for different angular numbers, are not necessarily the
ground-states of the pseudo—Hamiltonian from which they are obtained.

The description of cases in which the crystal symmetry is broken, as in sur-
faces, quantum-—confined systems, amorphous solids, isolated molecules and so
on, needs the construction of larger cells (“supercells”) that introduce a fictitious
periodicity in the system. The computational cost of DFT ab initio calculations
grows approximately with the third power of the number of electrons. At present,
systems containing up to a few tens of inequivalent atoms can be simulated on big
workstations, while larger supercells with a couple of hundreds of particles are

dealt with by using parallel supercomputers.
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- Ab—initio Molecular Dynamics

B.1 Classical and quantum molecular dynamics

We focus on the ionic degrees of freedom, considering the evolution of the ionic
coordinates, with the aim of simulating dynamical processes and/or of determin-
ing the most stable structures.

Molecular Dynamics (MD) methods have been described extensively by sev-
eral authors [138], and we restrict ourselves to the basic concepts. The time evo-

lution of a system of M classical particles is governed by the Lagrangian:
L=T-V. (B.1)

Usually the kinetic energy T takes the form:
T=> -mmdr (B.2)

where g; and m; are the velocity and the mass of the I-th particle, respectively.
The potential energy V' contains the interesting information regarding the interac-
tions between the particles. Once the expression for V' is given, we can compute

the forces on the particles:
Fr=-VqV, (B.3)

and solve the Newton’s equations of motions, which give the time evolution of the

system.
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The key to an accurate description of system is the set—up of a reliable expres-
sion for a potential V. In the classical molecular dynamics approach, the “real”
potential is modelled by an effective potential containing adjustable parameters
that are fitted to reproduce measured or computed quantities. In many cases of in-
terest, however, these simple models are not able to provide a reliable description
of the “real” potential surface. They fail, for example, to describe the breaking
or forming of bonds, or in the description of systems whose chemical or physical
state changes. An adequate description of these phenomena must explicitly take
into account the electronic structure.

According to DFT, we can calculate the potential V' acting on the ions by

solving the instantaneous electronic problem. In fact, this potential is given by:
V{R}) = mlf}l Bt [{i}, {R}], (B.4)

where Ei; is obtained by adding the potential energy of the ion—ion interaction to
the KS expression for the total energy of the electronic system:

occ

Etot[{wi},{m}]}%Zwi(r)lvwi(r» + / Vi ((r) +

1 [/ ;n(r)n(c’ )

Fhae=r ,;, o )
Therefore, a combined DFT/MD scheme can be implemented where the time evo-
lution of the ions is governed by the potential, free of adjustable parameters, pro-
duced by the DFT electronic structure optimization. An advantage of combining
the two schemes is that parameter—free potentials are general and versatile, and
represent a significant improvement over the potentials fitted to reproduce exper-
imental and/or theoretical data. A molecular dynamics with DFT-based inter-
atomic potentials could be performed in the following way:

(1) begin with a likely configuration of the ions,
(2) solve the KS equations for this ionic configuration,

(3) use the electronic structure and the Hellmann—Feyman theorem [139] to cal-
culate the forces on the ions,
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(4) move the ions according to the classical equation of motion,

(5) take the new ionic coordinates, go to step (2) and continue.

Although this procedure is conceptually possible, it is not practicable. The so-
lution of the electronic—structure problem according to the DFT requires matrix
diagonalization calculations, which must be iterated until the self—consistency is
reached. These computations have a relevant computational burden, and if this
time is multiplied by the number of the ionic configurations visited during the dy-
namical process (of the order of 1044105), it becomes evident that only very small

systems could be studied with this method.

B.2 The Car—Parrinello method

The success of combined DFT/MD calculations is due to a different approach in-
troduced in 1985 by Car and Parrinello [75]. The idea on which the Car—Parrinello
(CP) method is based is to consider a fictitious dynamical system where the ionic
and electronic degrees of freedom are treated on the same footing. This is achieved
associating a fictitious classical kinetic energy to the electronic degrees of freedom
(the KS orbitals 1/;(r)), i.e. adding a kinetic energy term for the electrons in the

Lagrangian of the system. The Lagrangian reads then:

occ

- 3 [l + ZmIRJ Bul{thi}, {R1)] +
+ ZA”(/M )y)j(r)—aij). (B.6)

Here p is the fictitious electron mass, m; are the ionic masses, and A;; are the
Lagrangian multipliers arising from the orthonormality constraint on the i (r),
which must be satisfied at any time ¢ during the dynamical process. The equations

of motion associated with the Lagrangian L are:
- (5 E
pi(x, 1) = DN Z At (x (B.7)

and .
miRr = —VRr, Eiet- (B.8)
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The dynamics is then performed in the following way:
(1) start from a likely ionic configuration,
(2) solve the electron—structure problem, i.e. calculate
%151 Eioi[{i}, {Rr}], (B.9)

(3) compute the forces on ions (Vr, L) and electrons (6, L)

(4) move electronic wavefunctions and ions simultaneously, go to step (3) and

continue.

In other words, the fictitious electronic optimization dynamics and the proper
ionic dynamics are run in parallel: in the same time—step the ions are moved
according to the self—consistent forces, while the electron variables are moved ac-
cording to the energy gradients and constraints. In this way the costly electronic—
structure calculations at every step of the ionic motion are replaced by only one
initial optimization of the electronic wavefunctions and by their relatively inex-
pensive update at each MD step. The fictitious electron dynamics and the as-
sumption p < my prevent energy transfer from the ionic to the electronic degrees
of freedom over the time scale of the simulation, so that the electronic wavefunc-
tion are automatically updated to follow adiabatically the nuclear motion, i.e. they
remain in their ground—state.

Since its establishment, the CP method has extended the range of conven-
tional electronic—structure calculations, and it has been applied to a great variety
of problems. Examples are the determination of physical properties of disordered
systems, the study of relevant dynamical processes in the area of semiconductors,
surface reconstruction, atomic clusters and more. This method, born and tradition-
ally applied in the realm of solid state physiscs, has recently attracted the attention
of the quantum chemists, and it is increasingly used to study chemical reactions
and even biological systems. Further details about this method and its applications

can be read in numerous review articles published in the last decade [76-81].
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