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Introduction

By definition a congruence of lines in P™ is a family of lines of dimension (n—1).
The order of a congruence is the number of lines passing through a general point
of P™. Here we are interested in classifying congruences of order one, mainly in P*.

Our present motivation for studying these congruences is linked to some conjec-
tures made by F. L. Zak about non-degenerate projective m-dimensional varieties
X of P*. In particular we report the following conjectures, concerning their j-
normality and the general projections:

CONJECTURE 1. Let i and j be two integers such that i > 1, and j > 0; then

1. HY (P Ix(j)) =0 fori+j < —2—;

n-m—17
2. for i +j = =2 it is possible to classify all the varieties for which
H*(P™,Ix(4)) # 0.

CONJECTURE 2. Let 7 : X — P” be a general projection and k o natural num-
ber. If X' = w(X) is the image of the projection and X, C X' the corresponding
k-tuple locus (i.e. for z' € T,y the set w1 (z') is formed by at least k points), then

1. ¥, is irreducible for r <m + %; ‘
2. for v = m+ Bt it is possible to classify all the varieties for which L, is
reducible.

In the study of the varieties on the boundary of Conjecture 1 (i.e. the varieties
of case (2)) for i = 1, that is the varieties X failing to be 22=2%l normal, it is
expected that they are characterized by the property that through the general point
P ¢ X there is a unique nf”l_l-secant line £p of the variety X, while the variety

m
of —™—_secant lines through P is reducible and consists of nf;f_ 7 components

n-—m-1
intersecting at £p. It is expected that these varieties are the same as the varieties

on the boundary of Conjecture 2 (i.e. the varieties of case (2)) for r =n — 1 (i.e.

k= ﬁq) and, vice versa, the varieties on the boundary of Conjecture 2 are the
same as the varieties on the boundary of Conjecture 1 forn =7+ 1,7 =1 and
ji=k-1

Therefore, studying the varieties on the boundary of these Conjectures, one
is induced to study first order congruences of P", since we have seen that all the
known examples are varieties whose [-secant lines (with [ appropriate integer) give
such congruences.

For example, in the first non-trivial case, é.e. for n = 4 and so k = 2, the
Franchetta’s Theorem says that the only general surface of P4 whose projection to
P® has a reducible curve as its singular locus is the Veronese surface (see [MP97]
for a modern proof of Franchetta’s. Theorem); and in fact the trisecant lines of the
Veronese surface in P* generate a first order congruence of P*: see Theorem 4.26.

Returning to the argument of this Thesis, we see that the first case to be
analysed is the case of congruences of P3; in the spirit of the Zak’s Conjectures, the
most natural way of getting congruences is to consider the secant lines of a non-
planar curve; by the Castelnuovo’s Bound it is easy to see that the only smooth

v




vi INTRODUCTION

irreducible curve of P® which generates a first order congruence is the rational
normal cubic.

Passing to P*, the natural generalization is to consider the family of trisecant
lines of a non-degenerate surface; or more generally, one can consider the (n — 1)-
secant lines of a non-degenerate projective variety of codimension 2 of P".

The systematic study of the congruences of lines of P® was introduced by the
classical school of Kummer, in [Kum?75], and successively developed by many classi-
cal algebraic geometers, such as Reye, Schumacher, Bordiga, C. Segre, Castelnuovo,
Fano, Jessop, Semple e Roth. ‘

More recently, congruences of lines of P? were studied in [Gol85] by N. Gold-
stein, who (as Marletta, see below) classified the congruences from the point of view
of the focal locus. Successively, Z. Ran in [Ran86] studied the surfaces of order one
in the general Grassmannian G(k,n) é.e. families of k-planes of P™ for which the
general (n — k — 2)-space meets only one k-plane of the family. He gives a classifi-
cation of such surfaces, in particular obtaining a modern and more correct proof of
the classification of the first order congruences of lines of P? of Kummer [Kum?75]
and the fact that for n = 3 and for the class greater than three the surface is not
smooth, as conjectured by I. Sols. Another proof of the Kummer’s classification is
given by F. L. Zak and others in [ZILO].

The starting point of the case of P* is an Ascione’s work [Asc97], whose aim
is to classify the projective surfaces of P* with only one apparent triple point, i.e.
he wants to classify the general surfaces whose family of trisecant lines generates
a first order congruence of P4. Unfortunately, his proof of this classification had a
gap, which was filled up by Severi in [Sev01], who found a surface which did not
appear in Ascione’s classification. The congruences of lines in P* were considered
by the Sicilian mathematician G. Marletta. Marletta’s point of view in [Mar09b]
and [Mar09a] is different: he is interested in classifying congruences of lines of P*
of bidegree (1,n) i.e. of order one. He studies in particular the focal locus of a
congruence of lines and classifies the congruence according to the dimension and
number of the irreducible components of this locus. It has, in general, dimension 2
and the case of an irreducible surface is the one of Ascione and Severi.

As for P*, with n > 4, there is a Sgroi’s paper, [Sgr27], in which he begins the
study in P? giving a first coarse classification from the point of view of the focal loci
and some examples. The Marletta’s influence on Sgroi is evident as in other papers
(also published on the “Accademia Gioenia”) of other Sicilian mathematicians of the
period between the two World Wars. It is worth noting that in this period many
other important mathematicians worked at Catania’s University, or more generally
in Sicily, such as Albanese, Bagnera and De Franchis.

This paper studies congruences in the spirit of Marletta’s work by a modern
point of view. In particular we apply the technique of focal diagrams of a projective
flat family and the Schubert calculus to the congruences of lines of order one. We
give some general results and examples in P* and, from these, we deduce Kummer
and Marletta’s classifications in P? and P*.

The first Chapter is devoted to introduce mainly the focal diagram of a farmly
of projective schemes and apply it to the case of congruences of k-planes of P, i.e.
subschemes of G(k,n) of dimension (n — k). The focal locus of a family of schemes
was introduced, classically, by C. Segre, in [Seg88|. More recently, there has been
a renew of interest in this subject, thanks to a C. Ciliberto and E. Sernesi’s work,
[CS92], in which the focal locus is introduced in modern terms, in particular with
the focal diagram. The first Chapter contains also a summary on the Schubert
cycles, the universal bundles and Pliicker embeddings on Grassmannians. The
Chapter ends with the proof of the fact that—in sufficiently general hypotheses—
the general k-plane is tangent to the focal locus.
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The second Chapter treats of first order congruences of lines of P™. After
recalling what is the sequence of degrees, we define the fundamental d-loci. Then, we
prove Proposition 2.3, which is the key ingredient for the “Classification Theorem”
2.8 which gives a first general way of classifying the first order congruences from the
point of view of their fundamental locus. Another important concept introduced in
this Chapter is that of parasitic (n — 2)-plane, i.e. a linear space contained in the
fundamental locus which is not a fundamental (n — 2)-locus. Finally, we give some
general examples of first order congruences: the linear congruences, i.e. general
linear sections of the Grassmannian; congruences which are given by multisecant
lines of some degeneracy loci of maps of vector bundles and, finally, we classify all
the congruences for which the fundamental locus is—set-theoretically—a (n — 2)-
space only. Of these congruences we give a complete description. We finish this
Chapter by giving a degree bound on the'(n—2)-dimensional varieties whose (n—1)-
secant lines give a first order congruence.

In the third Chapter we study first order congruences of lines of P3, applying
what we proved in the preceding chapter. The main result of Chapter 3 is the
following:

THEOREM 0.1. The focal locus of a congruence of lines of P3 of order one can
be: '

1. an irreducible curve, which can be one of the following:

(2) a rational normal curve C3 of P3, in which case the congruence is
given by the secant lines of C*; vice versa the secant lines of a rational
normal curve generate a first order congruence;

(b) a line £, and the congruence is obtained in this way: fiz an isomor-
phism @ between £ and P}, the pencil of planes containing £:

.L,azf-—-HF’};

let PL, be the pencil of lines passing through P and lying in (P); then
the congruence is formed by the lines of the pencils PL as P wvaries in
£i.e. it is UpeePh;

2. a rational curve Cy of degree m1 union a line Cy such that length(CiNCh) =
mi1 — 1; in this case the congruence is gwen by the lines meeting C1 and
Ca,; vice versa, for every rational curve C1 of degree my which possesses a
(my —1)-secant line Cy, the join of C1 and Cy gives a first order congruence;

3. a point, i.e. the congruence is a star of lines.

In particular, in Chapter 3 we first consider the case in which the components
of the focal locus are all focal lines; then we introduce the pure fundamental curve,
i.e. the fundamental locus without focal lines and we analyse first the case in which
this locus is irreducible, then the case in which it is reducible; finally, we prove the
main result, i.e. Theorem 0.1.

Chapter four is devoted to first order congruences of lines of P4; in particular,
after classifying all the cases in which the fundamental locus is—set- theoretlcally——
a plane in Theorem 4.7, we study the four cases corresponding to the possible

splittings of the pure (i.e. without parasitic planes) fundamental locus. In partic-
ular, for the first type—i.e. if the fundamental surface is irreducible—we get the
following result:

THEOREM 0.2. If the fundamental surface F of a first order congruence of lines
of P4, is irreducible general and non-linear, then it can be:

1. a (projected) Veronese surface, which has not parasitic planes; ‘
-2. a projection of a Del Pezzo surface of P®, which has 5 1-parasitic planes;
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3. a projection of a rational normal scroll S1.4 of P® from a line contained in
the 4-subspace generated by the unisecant quartic Cy of the scroll.

The surface F contains 4 parasitic planes, one is the 4-parasitic plane
which contains the quartic curve image of C4, and the other 3 are 1-parasitic.
They are the planes containing the (projection of the) unisecant line Cy and
the couples of ruling lines passing through the 3 singular points of the quartic
plane curve contained in F;

4. a Bordiga surface, i.e. F' is a blow up of P? in 10 points z1,...,Z10 embedded
in P* by the linear system
IDl = |7T*4L—E1 -—Eg — —E]_ol
where 7 : F — P2 is the blow up in the points z1,...,%T10, L is a line in P2

and E; is the fibre of ® over z;. In fact F contains 10 distinct lines and
10 distinct plane cubics such that each line meets a single cubic. It has 10
1-parasitic planes, which are the planes of the 10 plane cubics.
In particular, the congruence is given by the family of the trisecant lines of F.
Vice versa the trisecant lines of one of the above surfaces F', generate a first
order congruence. :

Concerning the second case, after studying the case of the proper intersections
of two surfaces and classifying them in Proposition 4.49, we prove the following
result: : '

THEOREM 0.3. If the fundamental surface of a first order congruence of lines
of P* has, as irreducible components two surfaces, then the congruence is given by
the secant lines of the first surface Fy that meet the second surface Iy also; we have
that:

1. either Fy is a plane, in which case, if none of the singular points of Fy is in

F, then deg Fy € {3,...,8};

2. or Fy is not a plane, in which case Fy is the rational cubic scroll Si s or the

cone Sp 3 and Fy is rational.

If F; is a plane and F; is smooth, we obtain a complete classification:

THEOREM 0.4. If the fundamental surface of a first order congruence of lines
of P* has, as irreducible components two surfaces, a plane Fy and a smooth surface
Fy, then the congruence is given by the secant lines of F1 that meet the plane Fy
also; besides, we have the following possibilities:

1. Fy is a rational quintic with sectional genus 2 (a Castelnuovo surface); Fi

is a blow up of P2 in 8 points x1,...,xs embedded in P* by the linear system
|DI = {7(’*4L— 2E1 -E2 — e —Eg‘
where 7 : Fy — P? is the blow up in the points z1,...,Ts, L is a line in P?

and E; is the fibre of © over z;. Fy intersects Fy along an irreducible conic,
which is the proper transform of a line through two of the 7 simple points of
the blow up, and in fact the secants lines of F1 meeting Fy generate a first
order congruence. Besides we have 7 1-parasitic planes;

2. Fy is a rational sextic with sectional genus 3; Fy is a blow up of P? in 10

points T1,...,T10 embedded in P* by the linear system
|D| := |7*4L — By — Bz — -+ - — Eno]
where 7 : Fy = P? is the blow up in the points T1,...,%10, L is a line in P2

and E; is the fibre of m over z;. Fy intersects Fy along an irreducible cubic,
which is the proper transform of a cubic through 9 of the 10 points of the
blow up and in fact the secants lines of F1 meeting Fy generate a first order
congruence. Besides we have 9 1-parasitic planes;
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3. Fy is a quartic with sectional genus 1 (a Del Pezzo surface); Fy is a blow up

of P? in 5 points T1,...,z5 embedded in P* by the linear system
|D| = |7*3L — Ey — E3 — - -+ — Ex|
where 7 : Fi — P2 is the blow up in the points z1,...,%5, L is a line in

P2 and E; is the fibre of © over z;. Fy intersects Fy along a line, which is
the proper transform of a line through 2 of the 5 points of the blow up and
in fact the secants lines of Fi meeting Fy generate a first order congruence.
Besides we have 5 1-parasitic planes.

4. Fy is the cubic scroll Si 2, and the two surfaces F1 and Fy are in general
position, i.e. they meet in three points. Besides we have 3 1-parasitic planes,
given by the conics of the scroll passing through two by two of the three points
of the proper intersection Fy N Fy;

5. Fy the cubic scroll Sy o; C is the unisecant line of the scroll and Fy is a
general plane containing C.

Vice versa the secant lines of one of the above surfaces F1 meeting its correspondent
surface Fy, generate a first order congruence.

For the third case, after, as usual, classifying the possible proper intersections
and classifying them in Theorem 4.80, we prove the following:

THEOREM 0.5. If the fundamental surface of a first order congruence of lines
of P* has, as irreducible components three surfaces, then the congruence is given by
the lines meeting all of them; we have that at least one of the three surfaces is a
plane and

1. if two of the surfaces are pla.nesv, then the third is rational;
2. if one of the surfaces is a plane, then of the other two, one is a rational
scroll and the other is rational.

Finally, for the last case, after the classification of the proper intersections in
Theorem 4.104, we have the following:

THEOREM 0.6. If the fundamental locus of a first order congruence of lines of
P4 has, as irreducible components, a surface Fy and o curve C, with deg(F1) := my,
deg(C) := my and c := length(F1 N C), then the congruence is given by the lines
meeting both Fy and C; we have that

1. either C C Fy and then:
(a) C is a line and F is a rational surface of degree m1 and, if we suppose
that Fy has only isolated singularities, with sectional genus my —2; or
(b) C is a conic and F} is a projection of a rational normal scroll of type
Sy —2k,26, Withmy > 3, one of its unisecant curves is C and a general
hyperplane through C intersects Fy in C with multiplicity k and in a
line;
2. or C ¢ Fy and then we have:
(a) Fy is a plane, then C is a rational curve such that c=msy —1; or
(b) C is a line and Fy is a rational surface and, if we suppose that b3
has only isolated singularities, with sectional genus mi — 2; besides,
c=mp—1; or
(c) C is a rational curve with a point P of multiplicity me —1 and Fy is a
cone with vertez in P and basis a rational curve and the intersection
of Fy with the plane of C is gwen by my — 1 lines (and so, ¢ >
(my = 1)ma).

If we suppose that C and F; are smooth, we get a finite list of possibilities:
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THEOREM 0.7. If the fundamental locus of a first order congruence of lines of
P* has, as irreducible components, a smooth surface F1 and a smooth curve C, with
deg(F1) := my, deg(C) := mg and ¢ := length(F1 N C), then the congruence is
given by the lines meeting both Fy and C; we have that
1. either C C Fi and then:
(a) F is the rational normal scroll S5 of degree 3 linearly normal in P*,
and C 1s a unisecant conic;
(b) C is a line and Fy is a speciality one rational surface, i.e. we have
the following possibilities (see [Ale92])
(i) Fy has degree eight and it is linked to a Veronese surface in a
complete intersection of a cubic and a quartic. Fy is a blow up of

P? in 16 points T1,...,T16 embedded in P* by the linear system
|D| = |7*6L — 2By — --- — 2E4 — E5 — -+ — Byg|
where 7 : Fy — P2 is the blow up in the points z1,...,%T1s, L is

a line in P? and E; is the fibre of m over z;;

(ii) Fy has degree nine and it lies on a net of quartics; it is given
in the following way: the first and the second adjunctions of Fi
give a canonical sequence of birational morphisms of rational
surfaces ' '

sty s By,

where Sy is canonically a cubic surface in P2. The morphism
fo blows up in three distinct (closed) points T1,T2,z3, while fi
blows up in siz distinct points Za,...,zg. Let K; and Ky be
the inverse images of the canonical divisors of Sy and Sy respec-
tively, the linear system of the hyperplane sections of Fy is given
by v

|H| = |-K - K1 - K3
where K 1is the canonical divisor on Fy;

(111) Fy has degree ten and it is a blow up of P2 in 13 points z1,...,T13
embedded in P* by the linear system
|Dl = I71'*14L - 6E1 - 4E2 — s 4E10 - 2F11 ““E12 - E13|
where 7 : Fy — P2 is the blow up in the points z1,...,213, L is

a line in P2 and E; is the fibre of m over z;;
(iv) Fy is “possibly' ” a speciality one rational surface of degree eleven;
2. or C ¢ Fy and then we have that Fy is a plane and C @ conic meeting in
one point, i.e. c=1.
Vice versa the lines meeting one of the above surfaces F1 and a curve C contained
in it, generate a first order congruence.
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CHAPTER 1

Foundation Material

1. Notations and Definitions

We will work with schemes and varieties over the complex field C. By variety
we mean a reduced and irreducible algebraic C-scheme.
Let us now recall some definitions about families of schemes (see, for example

[CS89)).

1.1. DEFINITIONS. A family of schemes is a triple (F, B,p), where F and B
are schemes and p: F — B is a surjective morphism of schemes (we will suppose,
for simplicity, that the scheme B is irreducible). F is called total space and B
parameter space of the family. We denote with Fy (b € B) the fibre over the
(closed) point b. The fibres of the family are also called the elements of the family;
the family can be identified with {Fs}seB, i.e. the set of its elements.

1.2. DEFINITION. A projective family of schemes (F,B,p), is a family where
F is a closed subscheme of B x P™ and p is the restriction to F of the projection
to the first factor.

We observe that in this case Fy is a projective scheme.
More generally we are interested in projective families of schemes for which we
have that 7 C B x Y, where Y C P™.

1.3. DEFINITION. For dimension of a family we mean the dimension of the
parameter space.

1.4. DEFINITION. A family is said to be flat if Vt € F and p(t) = b, the local
ring O, is flat as an Opp-module.

We recall (without proof) a well known result about flat families:

TueEOREM 1.1. If (F, B, p) is a flat projective family, then all its elements have
the same Hilbert polynomial, i.e.

hilb(F) = g(z)

for a (fized) polynomial q(z) € Qz] independent of b.
The converse is true if the parameter space B is integral.

1. ExAMPLE. The first nontrivial example (and one of the most important
ones) is the family of the linear k-spaces of a fixed P™. This is given by the triple
(Hg,n,G(k,n),p), where G(k,n) is the Grassmann variety,

Hen = {(v,2) € Gk,n) xP" | z € v}

is the incidence variety and p is the restriction of the projection on G(k,n). It can
be shown that this is the universal family of the k-planes of P™: every projective
family (F, B,p) of k-planes of P™ is given by a pull-back of Hj,n via a morphism
B — G(k,n) i.e. thereis a bijection between {¢ | ¢ : B = G(k n)} and {(F, B p) |
(F, B, p), flat family of k-planes of P"}.
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2. Focal Diagram Associated to a Family of Projective Varieties

In this section we will follow [CC93] and [Vio97]. Let § C BXY be a flat (pro-
jective) family of closed subschemes of a nonsingular irreducible projective variety
Y parametrized by an irreducible nonsingular scheme B. Let 7 a desingularization
of G. After possibly shrinking B, we may assume that F is flat over B also. Then,
we have the following diagram:

BxY B v

P J,
B.
And if we restrict ourself to F, we obtain the diagram:
F Iy
d
B.
1.5. DEFINITION. The family is said to be non-degenerate if the map f in the
preceding diagram is dominant.

1.6. DEFINITIONS. A point y € Y is called fundamental point for the family if
its fibre has dimension greater than the dimension of the general one, i.e. if
dim f~(y) > dim B + dimp™*(b) — dim f(F), b€ B.

The locus of the fundamental points is denoted by ®(F).

The scheme defined as the preimage of ®(F) by f, V(f) := f~ (<I>(]-') ), (with
the natural scheme structure defined, i.e. (V(f),f 1 (Os(F))) = A xy (1)(]—’)) is
called subscheme of the fundamental points. '

Now, we can consider the following commutative and exact diagram of coherent
sheaves on F which will be called focal diagram; it was introduced for the first time
in [CS92]:

0

!

TBxy/v)r — Nr/Bxy

! -

0 —— Tg — TBxY[; — N}'/Bxy — )

o] !

Ty 05Ty |»

!

0
this is constructed on the exact sequence defining the normal sheaf of 7 in B x Y.
In the diagram the sheaf 7 pxy/y) is the relative tangent sheaf of B x Y with
respect to Y'; for this we have:

PiTB = Tixy/v) = Hom(Qpyyy v, OBxY)-

The homomorphism 7 is defined by the commutativity of the dlagram, while df is
the differential of the map f.
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1.7. DEFINITION. The map 7 : T(sxy/v)|» = Nr/Bxy is called global charac-
teristic map for the family F.

If we restrict the map = to a fibre Fp, we obtain a morphism
(0 : Tr,p ® Oz(e) = Nz v

—where we define F(b) := f(F;), b € B—which is called characteristic map of the
family relative to b.
Passing to global sections, we obtain a homomorphism of vector spaces:

Tps = HY(F(b), Nr)/v)-
REMARK. We observe that this map is the differential of the functorial map
B — Hilb{®

given by the flat family F, since (see [CS89]) the tangent space to Hﬂb‘{,(m) at the
point F(b) is the first order deformation space of F(b), which can be identified with
HO(F(b), Nrvy/v)-
1.8. DEFINITIONS. The condition
I‘k(7r) < min{rk(’T(Bxy/y)b,), rk(./\/}-/Bxy)}
defines a closed subscheme V(7) of F, which is called subscheme of the foci of the

first order of the family, while F' = f(V (7)) C Y is called locus of the first order
fociinY.

REMARK. From the diagram (if we think of 7(pxy,v)|» and 7= as subsheaves
of Texy|s), it is easy to see that
(1) kerdf = ker.

So, we can think of V(r) and F as the set of branch and ramification points of f
respectively.

From this, we easily obtain:

ProrosITION 1.2. The following claims are equivalent:

1. df has mazimal rank, i.e. it has cokernel of torsion or kerdf =0;
2. w has mazimal rank;
3. V(w) is a closed proper subscheme of F.

PROPOSITION 1.3. The locus of the fundamental points is contained in the locus
of the first order foci.

ProOF. It is a consequence of the fact that F' is the set of the ramification
points of f. O

COROLLARY 1.4. The scheme of fundamental points is a subscheme of the
scheme of the first order foci.

3. Cellular Decomposition and Schubert Cycles

We recall some basic facts (without proofs) about cellular decomposition and
Schubert cycles on the Grassmannians. We follow [GHT78].

Let us consider C* with the (canonical) basis ey, ...,e,. From this we define
the flag V such that

Vi:=<el""7e’i>7 %C%+la 7':1;777'
Then, for every element A € G(k,n) = G(k — 1,n — 1) we have this other flag
ANV, C ANV
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and from this we set:
Wayovap = {A € G(k,n) | dim(AN Voo ppiza;) = 0}
Tt is not hard to see that its (analytic) closure is
Warar = {7 € G(k,n) | dim(A N Vaogpiza) > 6}
It can be shown that these are analytic subvarieties of G(k,n) and the importance
of these is explained by the following

THEOREM 1.5. The integral homology of the Grassmannian of the k-planes of
C*, G(k,n), is torsion-free and is freely generated by the cycles

Oayap = Way-ar]

in real codimension 23 a; (i.e. Oarap € Hinek)-25 a:(G(k,n),Z)), where the
k-tuple ay - - - ay varies in all the nondecreasing sequences of integers between 0 and
n— k. In particular, the homology (and so, by Poincaré duality, the cohomology)
in G(k,n) is analytic.

REMARK. Clearly, the definition of the cycles is independent of the choice of
the flag V; in fact, if we fix another flag W,
Wi C Wita, dim W, = 1,
we can set as before
go(W) = {A € G(k,n) | dim(A N Wp_gti—a;) > i}

and the homology class of this analytic subvariety is independent of the flag chosen,
since we can find a continuous family of linear automorphism of C" taking any flag
into any other.

1.9. DEFINITION. The analytic subvarieties o,(W) are called Schubert cycles
of the Grassmannian.

All this determines the additive structure of the homology (and so, dually, the
cohomology) of the Grassmannian; now we will see how to describe its multiplicative
structure, i.e. how to express the intersection of two (general) Schubert cycles as a
linear combination of other Schubert cycles.

The first formula expresses the intersection of two cycles o, and o in comple-
mentary dimensions, i.e. Y. a; + Y. b; = k(n —k):

2)  #(0a o) = GpTE bR

Then, we have the intersection formulas for the intersection of three cycles o4, 0%

and o, always in complementary dimensions, i.e. Y. a; + > b+ ¢ = k(n —k):

INTERSECTION’S FORMULAS. Let 0q, 04,0, be three Schubert cycles of G(k,n);
then:

1. if we have three indices 0 < a, B,y < k such that a + B+ = 2k + 1, then
#(0a - 0b - 0c)Gkn) =
:{O ifag +bgtcy>n—k
#(Ca—ae * Ob—bp - Ocmcy )G(k-1,n—1) o Ga +bg+cy=n—k;

2. if we have three coefficients aq,bg, ¢y such that aq +bg+cy > 2(n—k) +1,
then

#(00 -0 )G (k) =
0 fa+f+y>k
= #(0a1—1-~aa-—1a¢+1---ak . Jbl—l"'bﬁ—lbg.(.l"'bk .
Toymlovey—leysrce)Ghn—1) o @+ B+vy=k.
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We conclude this exposition with the Pieri’s and the Giambelli’s formulas;
Pieri’s formula expresses the intersection of an arbitrary Schubert cycle with a
special one, i.e. a cycle of the type oq0...0:

Pierr’'s FORMULA. Ifa = (a0---0), then Vb we obtain:

(3) (0q-0b) = Z Oe.
b <ci<bi—1
> ei=a+3 b;

Giambelli’s formula expresses the general Schubert cycle as the sum of products
of special cycles with others which have less indices:

G1aAMBELLI'S FORMULA. Let us consider a Schubert cycle 0q,...q,; then, we
have:

, k
(4) (“1)k0a1---ak = Z Ucnmaj_la,-.;.l—l---a.k——l ‘ O'QJ..*_k“j;
Jj=1 ’

from this, we get the following relation (the Giambelli’s Formula):

UQ] Ua1+1 O'a1+2 v Ua;,-l—k—l
Oas—1 Oay Ogo+1  *°°  Oag+k—2
(5) oy, =det | Tos=2  Tag-1  Oag
Ucu——k-}-l e Ua.k

REMARK. We note that Pieri’s and Giambelli’s formulas give us an algorithm -
for evaluating every intersection of cycles. Besides we can observe that the Chow
ring (or the cohomology ring) of the Grassmannians is generated by the classes of
the special Schubert cycles. '

4. Universal Bundles and Pliicker Embeddings of the Grassmannians

We recall some basic facts (without proofs) about the universal subbundle, the
universal quotient bundle on G(k,n) and the Pliicker embedding of G(k,n). We
follow [GHT78], [Arr96] and [AS92]; in particular, [GH78] for the notations.

Let us consider the product C* x G(k,n); this induces the projection maps on
the two factors:

C* x G(k,n) —2— C»

1|
G(k,n);

the map ¢ defines trivial vector bundle of rank n over G(k,n). By abuse of notation,
we will denote with C* x G(k, n) this trivial vector bundle.

1.10. DEFINITION. We define the universal subbundle S — G(k,n) to be the
subbundle of C* x G(k,n) whose fibre at each point A € G(k,n) is just the subspace
AccC.

It is easy to see that S is a holomorphic subbundle of C* x G(k,n).

1.11. DEFINITION. The quotient subbundle @ := (C* x G(k,n))/S is called
the universal quotient subbundle of G(k,n).

REMARK. Under the identification * : G(k,n) — G(n — k,n), the universal
subbundle of G(n — k,n) corresponds to the dual of the universal quotient bundle
of G(k,n), and likewise @ — G(n — k,n) pulls back to the dual $* =+ G(k,n).
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In particular, if we take k = 1, i.e. if we are on P"~?, the universal subbundle is
the universal line bundle, i.e. the line bundle whose corresponding invertible sheaf
iS O]pn—-l("‘l).

We can associate to the three bundles on G(k,n), C* x G(k,n), S and Q their
locally free sheaves, which will be, respectively, C* ® Og(k,n), S and Q. By what
we have just said, we get the so-called universal ezact sequence:

(6) : 0-—)3-—)CH®OGM,TL)—)Q—+O.

An alternative way of constructing the universal bundles is to consider in
P~1 = P(C") the Euler sequence:
(7) 0 — Opr-1(=1) = C* ® Opn-1 = Tpn-1(=1) = 0

then we pull it back to the incidence variety Hg—1,n—1 C P! x G(k,n) and we
push it forward to G(k,n), we get the universal exact sequence. In particular

(8) S = qp™(Opn-1(-1))
(9) Q = ¢.p"(Tpn-1(-1)),
where, by abuse of notation, p is the projection to P™~.

PROPOSITION 1.6. We have the following canonical isomorphisms of invertible
sheaves on G(k,n):
(10) AVEQ 22 ARS* 2 Og gy (1)

PRrooF. It follows from the universal exact sequence: let us take the highest
exterior powers, we get a perfect paring:

AMRQ @ AFS 2 APC™ @ Og(in) = Oc(k,n)

(see [Har77] for a proof) and so our claim. O

We recall other results:

THEOREM 1.7. The tangent sheaf of G(k,h) is canonically isomorphz’c to the
sheaf Hom(S, Q) = §* ® Q and the canonical sheaf is Wg(kny = Og(k,n)(—n)-

The Plicker embedding of the Grassmannian G(k,n) is the embedding given by
the line bundle L := det(S*) = det(Q)—we recall that the determinant of a bundle
is the highest exterior power. In any case, we shall give the Pliicker embedding
directly. The Plicker map

71 G(k,n) = P(AFCR) = P()-
simply sends a k-plane A = (vy,...,vg) C C* to the multivector v1 A -+ A vg.
It is easy to see that 7 is an embedding, takes every Schubert cycle of the form

o1 into a hyperplane section of 7(G(k,n)) and that 7(G(k,n)) is cut out by a linear
system of quadrics: see, for example [GHT78], page 211.

5. Focal Diagram Associated to a Family of k-planes of P"

We start this section by recalling that G(k,n) is the Hilbert scheme of the flat
families of k-planes of P", see example 1, and so any flat family of k-planes of P”, -
(A, B,p), is given by the pull-back of the universal family H,n by the functorial
map

(11) ¢ : B = G(k,n).
Equivalently, we can give a family of k-planes as a (in general singular) subvariety

B' of the Grassmarinian G(k,n) and then we can take its desingularization B. So,
our family will be the triple (A, B,p) := (¢*Hin, B, D).
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PROPOSITION 1.8. The total space A of a flat family (A, B,p) of k-planes of
P" with B nonsingular is nonsingular.

PRrOOF. It follows from the fact that the total space is the pull-back of the
universal family, that is indeed a vector bundle on the nonsingular variety B. [

1.12. DEFINITIONS. Let us consider now a flat family (A, B, p) of k-planes of
P™ obtained by the desingularization of a subscheme B’ of dimension n — k of the
Grassmannian G(k,n); this family (or better its basis B or also B’) is also called
congruence of k-planes of P™ or, classically, complex of k-planes.

Then, we have
f

AC BxP* —— P"
(12) o

B
where p := py),, f := pg|, and so f(A;) =: A(b) is a k-plane of P" (as before,
Ay = p7H(D)). A

As before, we have the global characteristic map:
A Toxpniy = Na/Bxp»

and the one relative to b:
A) T ® OA(b) _ NA(b)/]pn-

0;’{@% —_— OA(b) (1)71'-’0.
From this description, we obtain

PROPOSITION 1.9. On every fibre Ay of the family, the subscheme of foci V' (X)
either coincides with the whole k-plane Ay or is a hypersurface of Ay of degree n—k.

PROOF. From the preceding isomorphism, we have that the map A(b) can be
seen as a (n — k) X (n — k)-matrix with linear entries on A(b); so the scheme of foci
on Ay is given by the vanishing of the determinant of this matrix, and our claim
follows. |

1.13. DEFINITION. If the k-plane Ap is contained in the scheme of the first
order foci V(A), then it is called focal k-plane.

1.14. DEFINITION. By locus of the second order foci we mean the set of rami-
fication points of g := fly(x).-

REMARK. The fundamental locus is contained in the locus of the second order
foci, since the fibre of g at the points of F' has dimension greater than the general
one. :
It can be easily shown that the locus of the second order foci is the locus of
first order foci of the family given by the scheme of the first order foci V(). If the
family of k-planes does not consist of focal k-planes only, then the family given by
V(A), ie. ®(V(N),V(A),plvny) (and if p(V (1)) is not smooth we will consider its
desingularization) is a family of (k — 1)-dimensional k-linear—i.e. contained in a
k-plane—schemes of degree (n— k) of P™ of dimension dim(p(V (X)), by proposition
1.9.

By recurrence, we could clearly define the loci of higher order foci.
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THEOREM 1.10. Let £ := f(Ay) be a general k-plane of the congruence A. If
the locus of second order foci is properly contained in F, then £ is tangent to the
locus of the first order foci F' at its points LN F.

ProOF. If P € (V(A) N Ap) is a general point, then we have an epimorphism
of vector spaces
dpf : Ta,p = Tr 5Py C Ter 5(P)>
where f(P) is not a second order focus. ,
This induces a surjective morphism on the embedded tangent spaces

(13) dpf:Ta,p = Trysp)-
Since the line A is contained in A, then our thesis follows from the fact that
Ay C Ty p,
and so, £ C Tp z(p)- O

2. ExAMPLE. The most simple example of the preceding Theorem is given in
P2. In this case the congruence is given by a curve C in the dual plane P?* and the
focal locus is the dual curve C* C P2, Theorem 1.10 states then the fact that the
general line of the congruence is in fact tangent to C™.

~ REMARK. If the hypothesis that F must properly contain the locus of second
order foci fails, then nothing can be said: in fact, we have also that F' = ®(A) and,
for example, the map (13) has not maximal rank, i.e. it is not surjective.
We can see a simple example of this:

3. ExaMpLE. The Schubert cycle o(,_2);, which is
Oin—2y1 = {A € G(2,n+1) | dim(ANTz) > 1, dm(ANV, > 2})
={{ e G(1,n) | dim(n¥), £, Cc P},

(i.e. the set of lines contained in a hyperplane and meeting a line); in this case, the
focal locus is given by the line £, and the lines of the congruence simply intersect
it. '



CHAPTER 2

First Order Congruences of Lines of P

Since for the low dimensional projective spaces there is not much to say, we
will suppose, in what follows, that n > 3.

1. Generalities

The starting point is to consider, as we have done in Section 5 of Chapter 1, a
flat family (A, B,p) of straight lines in P, parametrized by a nonsingular scheme
B of dimension n — 1. In this case, if we identify B with its class in the analytic
cohomology of the Grassmannian (and if we identify it with its image B’ via the
map (11)), we have that n — 1 = dim B = codim B, and therefore, by Theorem 1.5
we can write: v

(14) A B = Z A0 (n—1-1)is
=0

where we put v := [25}].

2.1. DEFINITION. We say that the congruence B has the sequence of degrees
(or multidegree, or is a congruence of (v + 1) — degree) (ao,...,a,) if Equation
(14) holds.

The first thing one can say is to explain the geometrical meaning of the sequence
of degrees:

THEOREM 2.1. Let B be a congruence of lines of P™ whose sequence of degrees
is (ag,-..,ay); then a; is the number of lines intersecting a general j-plane and
contained in a general (n — j)-plane of P™.

ProorF. It is an easy consequence of the Schubert calculus; in fact:

U(n——-l—j)j - {A 1S3 G(Q,Tl/ + 1) | dlm(A N V:'H—l) Z 1, dlm(Aﬂ Vn+1_j) 2 2}
={LeG,n) |B#PINnec P}
Then, by the formula (2), we have that:

v
B o(no1—jj = (O GiO(n-1-i)i) * O(n-1-);
=0
= CLj.
4

COROLLARY 2.2. In the hypothesis of the preceding Theorem, we obtain, in
particular, that ,
1. ag is the number of straight lines passing through a general point P € P™;
2. a, is the number of lines contained in o general hyperplane H of P™ and
that intersect a general line of H.

2.2. DEFINITIONS. Classically, ag is called the order of the congruence, and
a, its class. So a first order congruence is a congruence with sequence of degrees

(1,0,1,...,0,,,).
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REMARK. Corollary 2.2 says in particular that the map f : A = P"—which,
we recall, is defined in the Diagram (12)—is generically (a : 1). So, if a > 1, we see
that the family A is non-degenerate; then, by proposition 1.2, df has maximal rank
and so the scheme of first order foci is a proper subscheme of A. We expect that
the map p1|v(n) will be generically (n—1:1) by proposition 1.9, so the “expected”
dimension of the locus of the first order fociis n — 1.

REMARK. We said that the “expected” dimension for F is n — 1, and on a
general line of the congruence the scheme of foci has length n — 1; so, in general,
the “expected” dimension for the fundamental locus is < n — 2, since “in general” it
has dimension less than the focal locus. It can happen that there exists a (n — 2)-
(pure) dimensional scheme which (in general) intersects every line of the congruence
in—at most—n — 1 points, or a scheme of dimension d < n — 2 which intersects
every line of the congruence. These are clearly subschemes of the fundamental locus
of the family, so we give the following

2.3. DEFINITIONS. The fundamental (n — 2)-locus for the congruence A is the
component of the fundamental locus of (pure) dimension (n — 2) which intersects
every line of the congruence (in—at most—n — 1 points); the fundamental d-locus,
with d < n — 2, is the component of the fundamental locus of (pure) dimension d
which intersects every line of the congruence.

PROPOSITION 2.3. If C is a fundamental (n — 2 — j)-locus (with j > 0) for a
congruence A, then the intersection of f~*(C) with a general line of the congruence
is given by a 0-dimensional subscheme of length (at least) j + 1.

PROOF. Since C intersects every line of the congruence, we must have
dim f~}(C)=n -1,

and therefore, if P € C is a genetal point, then dim f~'(P) = j + 1. Assume that
P e A(b), where A(b) is a general line of the congruence.
By proposition 1.2, or, better by formula (1), we obtain that

rk(df]s-1(cy) = tk(Alf-1(c));
we have that
tk(df|f-1c)) =n—2-7
by hypothesis. The closed set
Sir1 = {(P4) € A | tk(df|s-1(c)) Sn—-2-7}
has a natural subscheme structure, which is defined by a Fitting ideal, i.e. the
ideal generated by the (n — 1 — j)-minors of df, see [K1e77]; besides FYC) is a
subscheme of Sj11.

So, f~1(C) N Ay (scheme-theoretically) is a 0-dimensional scheme Z, for which
the matrix A associated to the characteristic map relative to b, A(b), has rank (at
most) (n — 2 — j). This means that the determinant of this matrix has (at least)
(j + 1) roots concentrated in P; in fact, the characteristic polynomial of the matrix
A(B)(P) (i-e. the matrix A(b) calculated in P), has zero as root of multiplicity (at
least) (j + 1), since the kernel has dimension (j + 1). Then, our thesis follows. [

COROLLARY 2.4. If P is a fundamental 0-locus for a congruence A, then A is
the star of lines through P.

PROOF. Since P intersects every line of the congruence, we must have
dim f~*(P)=n -1,

so A = f~1(P); but A will be contained in the star of lines through P, which has
dimension n — 1, so our thesis follows. _ O
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4. EXAMPLE. Consider a non-linear surface S of P4 and let B be the family
of its trisecants lines. B is clearly a flat family. There is a natural surjective map
¢ : AI*P* = B, where AI*(S) C Hilb®(S) is the subscheme of collinear (i.e. which
are contained in a line) triple points (see [Bar87]).

Indeed, AI*(S) = Hilb®(S) X s pey AL’ (P*), so either AI(S) is empty or has
dimension at least three, because dim(AI*P%) = 9. Hence the same conclusion
holds for B, because the general fibre of ¢ is finite (if not, all the trisecants lines of
S are contained in S, and S is a plane).

Moreover, we can exclude that dim(B) > 3. In fact, if it had dimension four,
then for a general point P of S would pass co? lines of the congruence. Therefore,
this would be the join of S and P and so the general secant line would be a trisecant:
this would contradict the trisecant Lemma. ‘

So, if not empty, the family B has dimension three. S is a fundamental surface
and is contained in the fundamental locus. The three secancy points of a general
trisecant line are its three foci.

But, in general, we can also have a focal locus of dimension three, if through
all points of S pass focal lines: in fact, the family of 4-secant lines is empty or
has dimension at least two, because Al*(S) = Hilb*(S) X Hilbs (P4) Al*(P%), and
dim(Al*(P%)) = 12. But clearly a 4-secant line is a fundamental line, so “in
general™i.e. if the family of the 4-secants is not empty—the closure of the union
of 4-secant lines is a focal locus of dimension three.

2. Linear Sections of a Congruence in G(1,n)

We recall (Theorem 2.1) that the class a, of a congruence is the degree of the
scroll generated by the lines of the congruence which belong to a general P*~! (i.e.
as a Schubert cycle, B - 0(n_1-1)»)-

LEMMA 2.5. Let B(C G(1,n)) be a congruence with the sequence of degrees
(ag, - .-, a.); then we have that

v

k
(15) B-or = (3 a:)o(a-mp)-

k= 1=0

PROOF. We have that B = ZZ:O A0 (n—1—i)i and

Ulz{AIdimAﬂV-lzl}
= {£]LNTI#0}

(where IT = P"~2) so, applying Pieri’s formula to the cycle Gr := B- 01, we obtain

v
Gn = (Z Ai0(n—1-i)i) " 01

1=0

= }: ai(0(n-1-4)i - 01)

=0

v
= E a;( E i ‘7%%)
1=0 (n—1-i)<eiy
i<ei, <(n—1—1)
CiytHeCip=n
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v i+1
= Z ai(z O(n—1-4)j)
i=0 j=1

v k
= Z((Z 4i)0(n—k)k)-
k=1 =0
O

PROPOSITION 2.6. Let Vi be the scroll given by the lines of the congruence
which meet a (fized) general (n — 2)-plane IL. Then Vi is a hypersurface of P™ of
degree ) ; Gi.

PROOF. With notation as in Lemma 2.5, note that p(f~*(Vi1)) = Gn-

Since Vi is a hypersurface, to obtain its degree we can intersect it with a general
line and compute the length of the zero dimensional subscheme so obtained, or,
which is the same, calculate the intersection of G with the Schubert cycle op—s,
i.e. the lines which meet a general line; in fact:

Onos = {A|dimANTs >1}
={]2n¢ #0}.

So. from intersection’s formula for complementary Schubert cycles, i.e. formula
k] .

(2), we have
GH c0g = Zai.
=0
O

REMARK. In the case of first order congruences, if £ is a line of the congruence
not contained in Vi1, and P is a point of VaNZ, then P is a focus for the congruence,
since at least two lines of the congruence pass through it.

3. First Order Congruences

From now on we will consider first order congruences; in any case, some of the
results we will obtain will be valid without this hypothesis.

As we have seen in 2.2, a first order congruence is a congruence with sequence
of degrees (1,a1,..-,au), i-e. through a general point of P™ passes only one line of
the congruence.

The first observation, due to C. Segre in [Seg88] is the following:

PROPOSITION 2.7. The fundamental locus of a first order congruence A coin-
cides with the focal locus and has dimension at most n — 2.

PrOOF. The fact that the two loci coincide is a straightforward consequence
of the fact that the map f is generically (1 : 1). Then, the fundamental locus F'
cannot have dimension n — 1; otherwise the subscheme of the first order foci V'(})
would coincide with A, and this would contradict the fact that we have a (1 : 1)
map. O

REMARK. We can also prove the proposition in another way: we can apply the
following ;

ZARISKI'S MAIN THEOREM. Let h: X — Y be a morphism of projective vari-
eties, with Y normal. Then, if b is birational, all the fibres of the morphism h are
connected.

For a proof, see [Har77]. In our case, applying the Zariski’s Main Theorem to
the map f : A — P™ if we have a focal point, i.e. a point through which passes
more than one line, then there will be infinitely many lines through this point.
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Then, we can collect in the next theorem the results of Section 2 of Chapter 2,
in the case of a first order congruence of P™:

THEOREM 2.8. Let A be a first order congruence of P™. Then the focal locus is a

scheme whose components are the fundamental (n—2— j;)-loci C; (withi=1,...,s
and 0 < j; < n —2) for the congruence A. The following relation holds:
8
(16) n—1=> (ji+1).
_ i=1 ‘
PRrROOF. It is a Corollary of proposition 2.3. O

In particular we observe that (apart from the trivial case of a star of lines) in
P?® we can only have curves as fundamental loci, while in P* we can have surfaces
and curves. Besides, from Equation(16) we see that if there is a fundamental curve,
then there must exist a surface also and the general line of the congruence will meet
once the curve and the surface. We will precise these things in Theorems 3.2 and
4.3.

The next lemma is technical and will be used in Theorem 2.10:

LEMMA 2.9. Let B(C G(1,n)) be a (general) congruence with sequence of de-
grees {(ag, ..., a,); then we have that

v v+1—1%
(17) B.oy-01= Z(( Z JOy—5)0(n—i)(i+1))-
‘ i=1 g=1

PRroor. This is, as usual, a calculus with the Schubert cycles on the formula
(15); in fact:

B'U1'01=(B'C’1)'01

v k
= (Z((Z ai)a(n-—k)k)) !
k=1 1i=0
v k
= Z((Z ai)( Z Teiy ciz))
k=1 i=0 n—k<ei,

k<ciy <n—k
Ciy Fcig=n+l

v k k ’
= Z«Z ai><Z O(n—3)(j+1)))
k=1 =0 j=1

v v+1l—1¢

=3 (D) a—§)o(ns)itn)-
i=1 J=1

O

THEOREM 2.10. Let A be a first order congruence, and let II and II' be general
2-planes of P™. Then the complete intersection of the hypersurfaces Vi and Vip
is a (reducible) (n — 2)-dimensional scheme I' whose components are the locus of
fundamental points ®(A) and the scroll ¥ given by the lines of the congruence
meeting I1 and II', which has degree v + Z;’;ll Jav—j.

Proor. First of all, we observe that if a point P of Vi N Vv does not belong
to the scroll 2, then it belongs to the fundamental surface. Indeed in this case

Peint, where £ € G, £ € G, and £ #* £,

—Where, as in the proof of the preceding proposition, Grr and Grv denote the
subvarieties of the Grassmannian corresponding to the two scrolls Vi1 and Vip.
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Since A is a first order congruence and P belongs to two of the lines of A, then it
belongs to infinitely many ones, by proposition 2.7.

Then, if P € F is a general fundamental point, the set of fundamental lines
through P, xp, is a cone of dimension (at least) two, so its intersection with II and
II' will not be empty and therefore P € Vo N V.

Finally it remains to prove that the degree of the scroll is v + }:;;2 jav—j; but
this follows from formula (17):

Gn-Gm =B-o01-01
v+1l-—i

= (( Z J0y—5)0(n—i)(i+1))-
Jj=1

Since the scroll ¥ has dimension (n — 2), to obtain its degree we can intersect
it with a general plane and compute the length of the zero dimensional subscheme
obtained, or, which is the same, calculate the intersection of G - Grv with the
Schubert cycle op_3, i-e. the lines which meet a general plane; in fact:

Ones = {A|dimANVs > 1}

={L|£NP* £ 0}
So, finally, we obtain
v v+1—i | )
Gn -G - on-3 = (Z(( Z 70y—5)0(n—i)(i+1))) " On—3
i=1 j=1
v
Jj=1 .

v—1
=v+ Zja,,_j.
i=1
0

5. EXAMPLE. Let us return to the example 4, adding the hypothesis that S
generates a first order congruence. We suppose that the surface S contains a plane
curve C of degree at least 3. Let n be the plane of C. Then, every line of n7 is a line
of the congruence, all points of 77 are fundamental points and all the lines of n are
focal lines. So 7 is a component of the fundamental surface.

This example motivates us to give the following

2.4. DEFINITION. A (n—2)-plane 7 of P", is called i-parasitic of the congruence

(A, B,p1) (or simply parasitic) if every line
A) € f7H(n)

is contained in the focal scheme V'(\) with multiplicity (at least) 4, with ¢ > 1, but
7 is not met by the general line of the congruence.

COROLLARY 2.11. Let n be a (n — 2)-plane, then the following are equivalents:

1. 1 s an i-parasitic space;

2. for the general line £ of n we have that

deg f(0) =4, dimfTH(E) <2

3. if we identify B with its image in the Grassmannian, the (n — 2)-plane n is
such that its correspondent subscheme p(f~1(n)) 1= on(= 022) is contained
in B with multiplicity i and B is not contained in the hyperplane section of
G(1,n) given by the lines of P™. meeting n;
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4. 7 is a component of the fundamental locus which is not a fundamental (n—2)-
locus (see Definitions 2.3).

REMARK. The definition of parasitic plane for a congruence of lines of P* was
introduced by Ascione in [Asc97], and used in [Mar09b]. Ascione was interested
in classifying the surfaces S with one apparent triple point, i.e. the surface such
that for a general point of P* there passes only one trisecant line of S. Then the
parasitic planes comes out naturally as the components of the fundamental surface
different from S. v

Marletta generalized this concept to general congruences in higher dimensional
spaces, in [Mar27]; besides, he defined an i-parasitic d-plane, with d < (n+1)/2 as
a linear space such that a general line £ of it is of multiplicity ¢ for the congruence
(i.e. deg(f*(¢)) = i). We will not follow Marletta in this, since—at least for
the first order congruences—apart from the linear spaces of codimension. two, the
others are such that the general line of the congruence meets them (i.e. they are
not parasitic in Ascione’s sense).

REMARK. It is clear that a i-parasitic (n — 2)-space 7 is such that f “l(p)isa
component of the focal scheme V(\) with multiplicity 4, then it is a component of
the scheme T of the preceding Theorem of multiplicity 7.

NOTATIONS. From now on, we will denote with 1 the multiplicity of the general
focal (n — 2)-space. We will also set z := 3 4?, where ¢ varies among all the
i-parasitic spaces.

Concerning the case of P?, we must say that the situation is easier, since we do
not have parasitic lines, otherwise, by Corollary 2.11, (2) the parasitic line would
meet the general line of the congruence.

Indeed, we can have focal lines only; in any case, see Section 3 of Chapter 3 for
more details on this point.

2.5. DEFINITION. The union of the components of the fundamental locus F
which are not parasitic spaces is called pure fundamental locus, or, in what follows,
simply fundamental locus.

PROPOSITION 2.12. If F is the pure fundamental locus and 1 is a i-parasitic
space, then F N1 is a hypersurface of 1.

PROOF. F is the pure fundamental locus, so it does not contain 7.

Clearly, if the intersection F'Nn were proper, we would find a (n—4)-dimensional
scheme; but every line of the space 7 is a line of the congruence, so it contains at
least (n — 1) focal points. If we had a (n — 4)-dimensional scheme, we could find a
line of n which would not intersect it, and then 7 itself would generate a first order
congruence, but this cannot happen since we suppose that F' # 0. O

COROLLARY 2.13. In the hypothesis of the preceding proposition, we have that

(18) §= (n‘_‘ 1)

where p = deg(F Nn).

PROOF. A general line £ of the parasitic space  will intersect F' in p points,
so taking the u points (n — 1) by (n = 1) we obtain the formula. O

4. First General Examples of First Order Congruences

Let us start giving some general examples of first order congruences of lines;
first of all, we will analyse the examples which come out from sectlons of the Grass-
mannian G(1,n).
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4.1. Linear sections of G(1,n). In this subsection we will analyse the con-
gruences that come out from linear section of the Grassmannian, i.e. we will con-
sider the so called, classically, linear congruences.

We recall that the Schubert cycle which correspond to a hyperplane section of
(the projective embedding of) the Grassmannian is ¢y, S0, the following technical
lemma gives us the formula for the general intersection of these special Schubert
cycles:

LEMMA 2.14. If £ < n — 1 and we set k := {—é], then the following formula
holds:

koo 1\
(19) ‘7{:2( i >0'(£—i)i

PRroOOF. Let us prove the proposition by induction;

e for £ =1 it is obvious;
o let us suppose it is true for £—1; then, we have that, by inductive hypothesis

kl
- £-2
ZRED 3] G L

=0

where k' := [£51]; then we have to prove formula (19). By Pieri’s formula,
we have '

O-1—4)i " 01 = E Oci,ciy
£—1—-i<ciy
i<ei, <b—1—i
ciyFeip={

_ O'(g._i),; fl—-—1—-1=1
O(e—i)i T O(4—1-4)(i+1) otherwise,

i.e. if £ —1 —1i # i the multiplication behaves as the multiplication in the
develop of the binomial (z + y); in fact we recall that

(yimﬂ—l—i +$iy£—1—i)(m +y) — (miyl—i +yz’ l—i) + (xi+lye—l—i +yi+1$£-—1~i)‘
So, with i from 0 to k, in the formula the develop of oy is equal to the

develop of the binomial, while for 7 between k and £ the develop obviously
vanishes. So formula (19) holds.

O

THEOREM 2.15. IfA is a congruence with sequence of degrees (ag, . .. ,a,), then
B, as subvariety of the Grassmannian has degree

(20) |  deg(B) = }: o (" A 2) .

=0
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ProoF. We recall that oy corresponds to the hyperplane section of the Grass-
mannian; so we have that, by Equation (19)

v

deg(B) = (Z Qi0(n—1-i)i) * 01 -t

1==0

v v -9

= (Z aiU(n—l—i)i) ’(z (nj )J(n—1~j)j)
=0 j=0
Y n-—2

- ;a< z, )

0

A COROLLARY 2.16. 4 (.n —1)-linear section B of the Grassmannian of the lines
of P™ generates a first order congruence A with sequence of degrees

(u+1)—deg(A):(1,...,(”;2),..., <”;2));

in particular, as a subvariety of the Grassmannian, this is a smooth congruence of

degree
“(n-2\°
deg(B) = E i .

=0

This corollary gives us a first non-trivial example of a first order congruence.
Some general results about fundamental varieties of these congruerces are given in
[BM]; but for this, we need a “Bertini Type Theorem:”

BERTINI TYPE THEOREM. Let E and F' be two vector bundles on a variety X
with ranks m and n respectively. Let E*QF be generated by its global sections. Then
for the generic morphism ¢ : E — F Di(¢)(:= {z € X | rk(¢s) < k}) is empty
or has the (expected) codimension (m — k)(n — k) and Sing(Dr(4)) C Dr—1(¢). In
particular, if dm(X) < (m -k + 1)(n —k+ 1) Dy(¢) is smooth for a generic ¢.

See [Ott95] page 27 for a proof of this Bertini type theorem.

THEOREM 2.17. If A is a general linear congruence, then its focal locus is the
degeneracy locus F of a general morphism
(21) ¢: 08" 5 Qpa(2)
of (coherent) sheaves on P™. In particular, F' is smooth if dim(F) < 3.

Proor. In fact, if we start from the Euler sequence for P™ = P(V) twisted by

0 = Qpn(2) = 02" (1) =5 Opa(2) = 0
and we get the global sections, noting that
B0 (1) =2V x V*
and that
HO(Opn(2)) = Sym*(V*)
—where Sym?(V*) denote the symmetric algebra of V*—we obtain that
(22) H°(Qpn(2)) = (A*V)".

From Equation (22) we can interpret a global section of Qp~(2) as a bilinear alter-
nating form on V, or as a skew-symmetric matrix of type (n 4+ 1) X (n + 1) with
entries in the base field.
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Then, the general morphism ¢ defined in (21) is assigned by giving n—1 general
skew-symmetric matrices, A1,...,An—1 and the corresponding degeneracy locus F'
in P” is the set of points P such that

n-1
(23) > XAi[P]=0
i=1
for some (A,...sAn—1 # (0,...,0), and [P] denotes the column matrix of the
coordinates of P.
To interpret F' as the focal locus of a congruence, we consider the Pliicker
embedding of the Grassmannian, see [GH78] or [Har92]:

¥ G(1,n) <= P(A%V).

The (dual) space P(A2V*) parametrizes the hyperplane sections of G(1,n); then a
hyperplane section H is represented by a linear equation in the Pliicker coordinates
Dij:
(24) Do aipij
0<i<j<n
We can associate it a skew-symmetric matrix A := (as;)i=o0,...,n Of order n + 1.
7=0,...,n
2.6. DEFINITIONS. A point P € P is called centre of H if all the lines through

P belong to H. The space P(ker(A4)) results to be the set of centres of H: it is
called the singular space of H.

From this discussion, we see that the focal locus of a linear congruence is the
set of centres of a (general) linear system of dimension n — 2 of hyperplane sections
of the Grassmannian.

From the Bertini type theorem, it follows that the singular locus of F' is empty
if the dimension of F is at most 3; in fact, we have

dim(F)+2=n
<(n-1-n+2+1)n-n+2+1)
= 6.
0

The following result about the focal loci of a linear congruence is proved in
[BM]:

PROPOSITION 2.18. If F is the degeneracy locus of ¢ (defined in (21)) then the
cohomology groups H(Zr(p)), for i > 0, are all zero, except for HY(Zp(n—3)); in
particular, F' is arithmetically Buchsbaum.

Besides, they observed, by the interpretation with the skew-symmetric matri-
ces, that »

PROPOSITION 2.19. If F is the focal locus of a general linear congruence of P7,
then

1. if n is even, Equation (23) has at least one solution and F' is a unirational
variety parametrized by P*%;
2. if n is odd, then the vanishing of the Pfaffian of the matriz of (23) defines
o hypersurface Z of degree (n+1)/2 in P™™2, in which A1,..., An—1 are the
coordinates. Furthermore, if ¢ is general, for a fized point [\ € Z, we find
a line of solutions of equation (23) in F, so that F is a scroll over Z.
In particular F is" always not empty. Finally, in low dimensions, we have the
following results, if the section is general:
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1. ifn =3, F is the union of two skew lines;

if n =4, F is a smooth projected Veronese surface;

3. ifn =5, F is a (rational) 3-fold of degree seven, which is a scroll over a
cubic surface in P3. It is also known as Palatini scroll (see [Ott92]).

o

4.2. Matrices of type (n — 1) x n with linear entries. Following [DP95]
and [DES93], (see also [Pop93]) we construct codimension 2 subvarieties F' C P™
as the determinantal loci of maps between (particular) vector bundles, or—which is
the same—as degeneracy loci of the corresponding morphisms of coherent sheaves.

First of all, we start with an example: ‘

6. EXAMPLE. Let us consider the rational normal curve C of P3; it is well
known that its ideal is generated by the minors of order two of the following catalec-

ticant matrix:
Tg T1 T
A= [T 1 2
1 T2 I3

where o, . .., T3 are the projective coordinates of P3. It is easy to see that a secant
line £ of C has equations h; = he = 0 with:

2 2
hl L= Z/\i.’L'i hg = Z/.Lia:i+1
i=0 i=0

where (Ao : A1 : X2) € P2, i.e. a (R, hs) is a (non zero) linear combination of the
columns of A. :
Then, the secant line £ has, as Pliicker coordinates, the minors of order two of

the matrix
(X A A O
B= (o X M A2>
i.e. we can define a map
é:P? — G(1,3)
which associates the point (Ao : A; : A2) the Pliicker coordinates of the line ¢, i.e.
¢<)\0 . Al : /\2) = (/\g : )\0A1 : Ao)\z H A% - /\0/\2 . )\1A2 H )\g)

So, the family of the secant lines of the rational normal curve is a Veronese surface.

After this example, let us consider the two sheaves 02"V and O27(1) and
a general morphism ¢ € %om((’)g,fn—l),(.’)@f )(1)), whose minors vanish in the ex-
pected codimension 2. In this case, F := V(¢) is a locally Cohen-Macaulay sub-
scheme and the Eagon-Northcott complex [BE75]

0« Or(n) « Ops(n) = A" 1O @ AmORR (1)  OF2(1) <= OF" ™ - 0
is exact and identifies coker ¢ with the twisted ideal sheaf

coker ¢ = Tr(n)
since the shifting term is

n= C]_OR?:}(].) - C]_O@n(n‘—l).

REMARK. Let ¢; and ¢ two elements of Hom((’)%"’”,(’)ﬁf )(1)) whose mi-
nors vanish in codimension 2. Then V(¢;) and V(¢2) lie in the same irreducible
component of the Hilbert scheme (see, for example, [BB90] and [MDP90]).
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Let us return to the Eagon-Northcott complex; in general a mapping cone
between the minimal free resolutions of Og,fn_l) and O$P (1) is a free resolution of
Ir(n). In our case the Eagon-Northcott complex gives us directly a free resolution
of our ideal sheaf:

(25) 0 & Op(n) « Opa(n) + O271) & 081 0

and normalize it; we obtain an exact sequence of type

(26) 0 ¢ Tp « O2(1 —n) L2 0201 (_n) 0.

Riemann-Roch without denominators (see [Ful84a], pages 296-297) gives

(27) 1= i (N pn)) = (O (1 =) = OF" ™ (=),

where i : F < P™ is the inclusion and OZ(1 —n) — (’)gﬁ”_l) (—n) is the difference
in the Grothendieck group.

We can clearly compute the invariants of F' by the formula (27), or, better, by
computing its Hilbert polynomial by its resolution (26). We get

(28) 04 Op(k) & Opa(k) « 087 (k+1—n) ¢ 02"V (k —n) + 0
and then
(29)  hilb(F) = p(k)
(30) = x(Or(k))
(31) = x(Opn(k)) = X(OZ(k + 1 - n)) + x(OF" "V (k = n)
(32) =(nzk>-n(k:1)+(n——1)(z)

From this we obtain:

PROPOSITION 2.20. F is smooth if n < 3. The following formulas hold:
53) aeg(F) = ()

(34) A(F)=1+ 2"; ! (Z)

where w(F') is the sectional genus of F.

PRroOF. The smoothness is a consequence of the Bertini type theorem:
dim(F)+2=n
<(n-1-n+2+1)(n-n+2+1)
= 6.
For getting the formulas, we can consider a 3 dimensional linear section H = P?
of F, i.e. Fy := F'N H; then the Hilbert polynomial (29) becomes
hilb(Fzr) = p(k)
= X(Orx (K))
= x(Ops(R)) = x(OZ (b + 1= n)) + x(OR" " (k = n)

_ <L—]:3) _n<k~§+4>+(n_1)<k—§.+3>

- -é((g)k — 21 + 9n® — Tn).
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So, we obtain that dim(Fg) = 1, (and so dim(F) = n — 2) and
deg(F) = deg(Fn)

()

6
n
5
Finally, the sectional genus is given by

m(F) = g(Fx)

_1+2n~7 )
= 3 5 )

We use now the Liaison of algebraic varieties, studied for the first time in
[PS74]; in particular, we use the results of this article for the Liaison of codimension

i

Il

d

If A;,..., A, are the minors of order (n — 1) of the matrix ¢(—n), then the
equations of a complete intersection X of type (n — 1,n — 1) containing F are

n n
:Z/\iAi , ho ::Z/J"iAz

Then, the ideal sheaf of the scheme F' linked to F via X (:= V(h1, he)) has a free
resolution of the type

0 Tpr 02D (2 — )@ 082(1 —n) L5 087(1 —n) - 0,

where the matrix (—n) is defined as follows:

t¢(—n)

M An
pi ct fn

Y(n) =

The resolution is not minimal, but we can minimize it:

(35) 04 Tp + 02 (2 =) LD 02(=2)(1 _p) 0.
PROPOSITION 2.21. A variety F defined by a resolution as in (26) (i.e. by the
minors of a matriz (n—1) X (n) of linear entries) is linked in a complete intersection

of type (n—1,n—1) to a variety F' defined by the minors of a matriz (n—2)x (n—1)
of linear entries. F' is smooth if n < 6 and the following formulas hold:

(36) deg F' = (” N 1)

(37) (F)_1+239<”;1>

where w(F") is the sectional genus of F'.



22 ‘ 2. FIRST ORDER CONGRUENCES OF LINES OF P™

PROOF. See Proposition 2.20; in fact, if we get a hyperplane section of F', we
get a (n — 2) x (n — 1) of P"~*. The Bertini type theorem gives, in this case
dim(F)+2=n V
<(n-2-n+3+1L)(n-1-n+3+1)
=6.
O

PROPOSITION 2.22. With notations as above, given three general hypersurfaces
of degree n — 1 defined by hy, hy and hs through a general point P € P, let us
consider their intersection I. Then there is a component Fp of I of dimension n—3
and degree ("3*) through P.

PRrOOF. Fix a general point P € P". Let us take A; and hq as above passing
through P; then F and F' are the two components of X := V(h1, hs). Consider
another (n — 1)-tic hs through P and we intersect it with X, we obtain F and
another component F"' of dimension (n — 3) and degree

deg(F") = deg(F") deg(ha)

_ (n-2—1>(n_1)
| =(n—1)23‘-%3.

Besides, F' and F' intersect in a subscheme S := F N F' of dimension (n — 3) and
degree (F N H) - (F' N H)|p,nm, where H is a 3-dimensional linear section, which
is a component of F" not passing through P. We want to find the degree of the
component Fp of F"' through P.

First of all we calculate m(X): if we consider a 3-dimensional linear section
I of X, then X N H is a complete intersection of two surfaces of degree (n — 1);
therefore its genus is (see for example [Har77], page 352)

g(XNH)= %(n——l)z(n—l-l-n—l—él)-}-l
=mn-1)>*n-3)+1
and so m(X) = (n — 1)2(n — 3) + 1. Then, by Propositions 2.20 and 2.21
deg(S) = n(X) + 1 — w(F) — n(F")

=<"—1)2(n—3)+1+1—1—2”"7<”>_1_2_7“_9(11——1)

3 2 3 2
n
2. (1)

So, we obtain that the component Fp of F'' through P has degree

degFp = (n— 12222~ 2. (n)

=(”;1>-2 |

COROLLARY 2.23. With notations as above, if n = 4, then the trisecant lines
of F generate a first order congruence.

O
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ProOF. In fact, a trisecant line £ through P is the variety Fp of the preceding
theorem, since dim(Fp) = 1 = deg(Fp) and, obviously Fp D £, by degree reasons,
as deg(h;) = 3. |

This way of reasoning does not allow to conclude if n > 4.
But, in fact, the (n — 1)-secant lines do generate a first order congruence: for
proving this, we see that the map ¢ give rise to a map

(38) P O@(1 n)y 7 (S*)Q(nal)

where ¢ is obtained by considering the dual of ¢ twisted by 1 and then pulled
back to the incidence variety and finally pushed it forward to G(1,n), i.e. using
notations as in Section 4 of Chapter 1, p = g.p*(¢*(1)).

We can now apply the Eagon-Northcott complex to the morphism of coherent
sheaves on G(1,n), ¢ € Homog, ,,( @(1 ) (8*)8(m=1)) (we follow for the Eagon-
Northcott complex, in this case [GP82], or [Ott95]), getting, since rk(S) = 2
(39) 0 - Sym™*(OF: ) = (812 @ Sym™*(OF] n>) -

= (878 @ SymmHOZE ) -
= AP2((SM)BD) 5 det((S7)2 ) © det(OF )" -
— Op @ det((§*)%" ™) @ det(OF; )" = 0

where B := D,_1(p) and dim(B) = n — 1, i.e. is a congruence. The complex is
exact and identifies coker ¢ with the twisted ideal sheaf

cokerp = Tp(n — 1_)
—where Zp is the ideal sheaf of B in the Grassmannian—since the shifting term
is, recalling (10)
’ n—1=c(57)%Y — 610«;(1 n)”

The Eagon-Northcott complex (39) gives, knowing (10) and some multilinear
algebra

(40) 0 - (’)6((1 ) - (s1)er-1("27)
Ty
— /\ﬂ—z((S*)@(n_l)) -~ Og(Ln) (n - 1) — OB(TL _ 1) 0.

Tensorizing, we get a free resolution of Zp:

(1) 0— 02021 = n) = (S(n - 12T
= A((S(n - 1))®DCF)) 5 ..
= AM2((S(n — 1)80 1) — Ogr my = Op — 0.

We know that the image of B in the Chow ring of the Grassmannian is (see
[GP82], page 7) cn—1(cokerp); then we have to calculate c,—1(Zp(n — 1)). This
Chern class can be calculated also from the free resolution of the ideal sheaf of B:
in fact, we have that, from (41), the Chern class we want is c,—1 (A" 2((S(n —
1))@(n=1))): see for example [Har77], page 431.

Perhaps the easiest way of calculating this Chern class is to apply the Giambelli-
Thom-Porteous formula: see [FP98], page 15; we recall this formula gives the class
in the CHow ring of a degeneracy locus of a map as a polynomial in the Chern
classes of the two bundles:




24 2. FIRST ORDER CONGRUENCES OF LINES OF P"

GIAMBELLI-THOM-PORTEOUS FORMULA. Let E and F be two vector bundles
on a variety X with ranks m and n respectively. Let E* ® F be generated by its
global sections and for the generic morphism ¢ : E — F Dk(¢) has the (expected)
codimension (m —k)(n—k); then the class in the Chow ring of X of Dy(¢) is given
by the formula

(42) [De(¢)] = Ax(c) X is the multiindez )\ == ((n — k)™F)
where ¢ := c(E — F) = c¢(E)/c(F) and Ax(c) is the Schur determinant:

Cn—k Cp—k+1 e Cnt+m—2k—1
Cr—k—1 Cn—k 1 en+m—2k—2
A,\(C) = det
Cn—m+1 v Cn—k—1 ‘Cn—k

From this we get that
[Dn-1(#)] = An-1(c)
= tn-1(OF]  — (7%
= Cn_]_(csaa(n“l)).

The calculation of this Chern class is not too difficult: fist of all, by the universal
exact sequence of the Grassmannian (6)
e(8) = ()7
=s(Q)
—where c and s denote, respectively, the total Chern and Segre classes. but ¢;(Q) =

0;, see [Arr96] and the inverse of a Chern class is given by the formula (see, for
example, [Ful84b})

g 1 0 -+ 0
C2 C1 1
= (~1)det ol
C1 1
CZ - .. e Cl

therefore, applying Giambelli’é formula (5) we get
ei(S) = (-1)foy..1
and, since rk(S) = 2, the total Chern class is
e(S) =1—o01 + 011,
and then
(43) (881 = (1 -0y +011)" L.

To see the order of the congruence B is therefore sufficient to find the coefficient
of op—1 in (43); it is not hard to see, that by Pieri’s formula, the only way to get
0n—1 is from the expansion of o7~ %; then, by formula (19) (or by Corollary 2.16)
we get that B is a first order congruence. So, we get that

THEOREM 2.24. The (n—1)-secant lines of the variety F' defined as above form
a first order congruence B of lines of P™. The congruence B is smooth for general

@
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ProoF. The fact that the family of the (n — 1)-secant lines of the variety F' is
indeed B, can be seen arguing as in the proof of Proposition 2.22, intersecting by
a sufficient number of general h;, in such a way that for the general P € P™ we get
a l-dimensional scheme, i.e. t=1,...,n —1.

The fact that the congruence B is smooth is a straightforward consequence of
the Bertini type theorem: in fact, in this case we have

dim(G(1,n)) = 2n — 2 |
<(n-n+1+1)2n—-2-n+1+1)
= 2n.

O

4.3. First order congruences whose focal locus is a linear space. We
pass now to analyse the first order congruences whose focal locus is linear.

The following theorem characterize the congruences for which, set- theoretically,
the fundamental locus is irreducible and linear. We obtain that there are two
possibilities: set-theoretically, the fundamental locus is either a point or a (n — 2)-
plane only.

NoTATIONS. Let us fix some notations: first of all, £, will be a fixed (n —2)-
plane of P™ and P}n_z the set of hyperplanes containing £,_o. Besides, we will
denote by £%_, the set of all the hyperplanes of £,_s, with ¢, (respectively,
¢%_») a general map from P; _ to £, (respectively, £;_,) and with II,_; a
general element of P; __, while we set I, := P".

Then, we define recursively ¢;, i = 0,...,n — 3 as an i-plane element of

Ory1 (P 1), With IP’I , the pencil of (i +2)-planes containing £;4+1 and contained in
a fixed II;;3, which i 1s a (i + 3)-plane, element of a PP}, ad Pit1 (respectively, @}, ;)
is a general map from P}, i PO Lia (respectively, £7, ;).

Finally, ]P’} is the set of lines through a point £y and contained in a Il;4; € IPK
(and £; contains £5). We observe that £5 = 0 and {] = {1, so we take ¢; = ¢].

THEOREM 2.25. If the focal locus is—set-theoretically—a linear space, then it
is either a point £y, in which case the congruence is a star of lines, or a (n—2)-plane
L._o. In the latter case, the congruence can be constructed as follows there exists
an indez i € {1,...,n — 2} and there exist linear spaces Ln—s,...,%; and maps ¢j,
j=i+1,...,n— 2 and ¢; as above which can be constants or bzmtzanal and (at
least) ¢; is bzratzonal such that

B =Un,_iep} _, Ytasetr_,(ay) "

(44) :
“Uen €¢7yo(Iliys) Ueiesr,, (Mise) Ui, Py, P:bi(m“)‘

Before giving the proof of this theorem, let us see some examples:

1. EXAMPLES. Let us suppose n = 5, and i = 2; then, we suppose that
5 PL o CF C 8 |
qbg:IP’L—-)C'CZz

are birational maps and where, mdeed ¢» is a family of maps, since it varies when
£, varies in C*. Then we have

B = UH46P}3 Uteps (i) UH3EP§2P;2(H3)’

i.e. for each hyperplane II4 containing {3 there‘is a plane {3 of £3 such that Alpm,
is constructed in this way: there is a birational map ¢, between Pj,—the pencil
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of 3-planes of I3 passing through £3—and {5; then the congruence is given by the
stars of lines through the point £y := ¢2(Il3) contained in II3.

If, instead, ¢} is constant, then £ := ¢5(P},) is fixed and the family of maps
¢5 can be interpreted as an isomorphism )

P IP’%2 —+ 4y

-—]P’%2 is the set of hyperplanes containing £,—and the congruence is given as follows:

— 2
B= U, ER%ZIPLM (Tl4)?

i.e. for each flag Iy C I3 C £ there is a point £ := ¢(Il4) and the congruence is
given by the star of lines of through £, and contained in 5.

PRoOOF. From Theorem 2.8 we deduce easily that the linear spaces which gen-
erate a first order congruence are either a point {p , and so, by Corollary 2.4 we
have a star of lines P}.*, or a (n — 2)-plane £n_».

Let us prove the second part of the theorem by induction: for P? the theorem is
trivially satisfied, while cases P® and P* are Theorems 3.5, (1b) and 4.7 respectively.

Let us suppose now that the theorem is true Vi < n — 1; let £,_» be the
fundamental locus for the congruence A; then, if we consider the general point
Q € P™ this determine a general hyperplane II,—; of IP’}n_ ,» and the lines of the
congruence contained in this hyperplane form a first order congruence there, since
for the general point @ of II,_; there passes only one line of A.

Besides, we note that the focal locus of Alnﬂ_1 is contained in £,_o; in fact
it can be either a point £y € £,_s or a (n — 3)-plane £,_3 C II,_;, by inductive
hypothesis.

Then, we have the following possibilities:

1, If for almost every II,_1 we have that the congruence induces a star of lines,
then we can construct a map

. pl
bz Py g lns

which associates to each hyperplane 11, the support £y of its star of lines.
The map ¢,_ cannot be constant since otherwise we have a star of lines of
P", then, we apply Riemann-Hurwitz’s Theorem getting that the image of
$n—2 is rational; besides, it must be generically injective because the degree
of the map is in fact the order of the congruence and we obtain case (44),
withi=n— 2.

2. If for almost every II,_; the congruence induces a congruence of P*"~! with
a focal (n — 3)-plane, then we can construct a map

.l
QS:‘L—Z . an..g - Z:L—Z

which associates the hyperplane II,_; the (n — 3)-plane £,_s which is fun-
damental for the congruence restricted to II,—;. Then, we conclude by the
inductive hypothesis on the II,_; = P15,

|

REMARK. We observe that the case of the star of lines is the case in which
all the maps ¢7 and ¢; are constants. Besides, with this observation, we could
avoid using Theorem 2.8 to prove the statement, since everything would follow by
inductive hypothesis.

We note, finally, that the congruences with ¢ = 1 are particular cases of lin-
ear congruences, since they are given by the intersection of the hyperplane section
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0¢,_, = 01 with hyperplanes o5 = 01 such that ¢ _, D £;. From this we see be-
sides that these congruences are—in general-—non-smooth since they are contained
in a hyperplane tangent section of p(f~*(¢1)).

5. General Formulas and Degree Bounds

We will suppose, throughout this section, that the fundamental (n — 2)-locus
F' C F is not empty and not linear, i.e. if A( ) is a general line of the congruence,
we have that length(F' N A(b)) = length(f~1(F') N Ap). '

NOTATIONS. Assume that 7 is an é-parasitic (n —2)-plane and C' = nN F' is the
hypersurface of n of Proposition 4.8. Then we recall Corollary 2.13 and we denote
with p the degree of C; we have that the Equation (57) continues to hold.

Let Fj, i = 1,...,h be the (n — 2)-dimensional irreducible components of F;
we will denote then with m; the degree of F; and with k; the multiplicity of F;NVg
in Vir. Finally, we denote with s; := length(F; N A(b)), where A(b) is a general line
of the congruence. ’

PROPOSITION 2.26. The following formula holds:

h v
(45) Ssiki <1+ aj
i=1 j=1

ProoF. If we take a line £ of the congruence not contained in F N Vi, then,
intersecting £ with Vir, we obtain a 0-dimensional scheme of length 1 + E;’___l aj,
since, as we have seen in Proposition 2.6, Vi1 has degree 1 + Z;le a;. This scheme
contains the schemes F;N¢ which has support in (at most) s; points, each of them
of length k;, or, in the classical language, we have s; foci of multiplicity k;, and so
the relation is proved. O

PROPOSITION 2.27. The following formula holds:

(46) 1+Z:aJ —m+ka,+u+Zm,,z

t=1 i=1
PrOOF. We recall that, by Theorem 2.10 the degree of Vo N Vv is (1 +
Z;’ 1 a,)z, and its components are the (pure) fundamental locus with multiplic-
ity 21—1 k?m;, the parasmc planes, which give z = 42, and the scroll ¥ which
has degree v + Y ;. 1 i, _j, SO

h v—1
(1+ Zaj)2 =z+ Zkfmi +v+ Zz’a,,_i.
j=1 =1 3=1
O

THEOREM 2.28. If the focal locus F coincides with the fundamental (n — 2)-
locus, it is irreducible and m := deg F', then
(47) n-l<m< (n-1)>%

PROOF. If we substitute formula (45) in this particular case, in formula (46)
we obtain

v—1
(48) (n—1)%%% - K*m —v — Zz’au_i =z >0,
i=1

and since —v — Zf:ll ia,_; < 0, we deduce m < (n — 1)

We have that n — 1 < m by degree reasons, since the congruence is given by
the (n — 1)-secant lines of F'. O
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REMARK. The upper limit is not sharp, at least for smooth (or general) vari-
eties: see Corollary 4.19.



CHAPTER 3

First Order Congruences of Lines in P?

As we saw at the beginning of chapter 2, the first non-trivial case is the one
of the first order congruences of lines of P3, which in this section we will analyse,
obtaining the Kummer’s classical results ([Kum?75]) in a different way from the
other modern proofs of this in [Ran86], [Gol85] and [ZILO].

1. Generalities

We recall what we said in chapter 2, in the case of P3: we consider a flat
family (A, B,p) of straight lines in P3, parametrized by a nonsingular scheme B of
dimension 3. In this case, we can write:

(49) ' B = GgO90 + @1011.

3.1. DEFINITION. We say that B is a congruence of lines of bidegree (ag, a;) if
Equation (49) holds.

Corollary 2.2 in this case means:

THEOREM 3.1. If B is a congruence of lines of bidegree (ag, a1), then

1. ag is the number of straight lines passing through a general point p € P3;
2. ay is the number of lines contained in a general plane of P2.

REMARK. in this case, the “expected” dimension for F' is 2 and for the funda-
mental locus is 1.

7. ExaMpPLE. Consider a curve C of P® and let B be the family of its secant
lines. It is easy to see that B has dimension 2, if C is not a line.

B is clearly a flat family of dimension 2 and C is the fundamental curve for the
family of its secants; in fact it is contained in the fundamental locus.

But, in general, we can also have a focal locus of dimension two, if through all
points of C pass focal lines: in fact, it can be shown that the family of 3-secant lines
is empty or has dimension at least 1. But clearly a 3-secant line is a fundamental
line, so “in general”™—i.e. if the family of the 3-secants is not empty—we have a
focal locus of dimension 2. '

2. First Order Congruences

As we have seen in 2.2, a first order congruence is a congruence of bidegree
(1,a) and through a general point of P3 passes only one line of the congruence.

We recall (proposition 2.7) that the fundamental locus of a first order congru-
ence A coincides with the focal locus and has dimension at most 1 and then, we
can sumimarize what we have just proven: :

THEOREM 3.2. If (A, B,p) is a first order congruence of lines of P2, then its
focal locus can either be

1. a curve (possibly reducible) C' such that every line of the congruence A(b)
will intersect the scheme of the first order foci V(A)(= f~(C)) in a 0-
dimensional scheme of length 2, ’

29
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2. a point, i.e. a star of lines.

REMARK. A more precise statement will be given at the end of this section in
Theorem 3.7.

3. Linear Sections

We recall (Theorem 3.1) that the class a of a congruence is the degree of the
scroll given by the lines of the congruence which belong to a general P? (ie. asa
Schubert cycle, B - 011).

Proposition 2.6 in this case means:

PROPOSITION 3.3. The scroll given by the lines of the congruence which meet
a (fived) general line v is a surface V. of P? of degree a + 1.

REMARK. If £is a line of the congruence not contained in V;,, and we have that -
PeV.n¢

then P is a focus for the congruence, since at least two lines of the congruence pass
through it. ‘

Theorem 2.10 means, in this case:

THEOREM 3.4. The complete intersection of two general surfaces V, and Vi is
a (reducible) curve T whose components are the focal curve C' and (a-+1) lines, i.e.
the lines meeting v and 1'.

REMARK. If a focal line £ := p~1(b) is a component of the focal scheme V(})
with multiplicity 4, then f(£) is a component of the curve I' of the preceding The-
orem of multiplicity 2.

NoTATIONS. From now on, we will denote with ¢ the multiplicity of the general
focal line. We will also set z := 12, where 7 varies among all the focal lines.

3.2. DEFINITION. The curve given by the components of the fundamental curve
C which are not (images of) focal lines is called pure fundamental curve.

The following Theorem characterize the fundamental curves whose components
are lines:

THEOREM 3.5. If the all the components of the fundamental curve C are lines,
then we are in one of the following cases:

1. the fundamental curve is a line and the congruence is as in Theorem 0.1,
(1b);

2. the fundamental curve is given by two skew lines £; and £y and the congru-
ence is given by the lines meeting both 1 and £5.

ProOOF. 1. Let us start with the case in which the fundamental curve is a
line £ only.

First of all, we observe that for every point P € £ we must have only one
pencil of lines—contained in a plane Il p—through it and for every (general)
point @ € P3 there is only a line of the congruence passing through it—say
ro—which passes through a point P € £. So, for every point P € £ there is a
plane IIp and all these planes are distinct; then the map ¢ which associates
IIp to P is a bijection, hence an isomorphism.

2. Then, we pass to the case in which the fundamental curve C' is given by
more than one line: C =4, U---U/¥g.

Let P be a general point of P?; then only one line of the congruence
passes through it—say this line £, with P; =£N¥;, j = 1,...,s—and then
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the intersection of each two planes P; and Pif;, with j # 4,5,k =1,...,s
must be the line £ only. So s = 2 and £; and £, are two skew lines.
0

PROPOSITION 3.6. Ifn is an focal line and C the pure fundamental curve (with
C # 0 and irreducible), then we have that C N1 has length at least three; if p =
length(C N7), then i = (4).

ProoF. The line 7 is a focal line of the congruence, so it will intersect the pure
fundamental curve in at least three points; in fact if the line did not intersect C,
then the line would generate itself a congruence.

C is the pure fundamental curve, so it does not contain 1 and then the funda-
mental points of 7 must be points of C also. A

Taking the p points 2 by 2 we obtain the formula involving i. O

So, we can classify the congruences of lines according to the splitting type of
the fundamental curve C:
THEOREM 3.7. The possible cases of a first order congruence of lines A of P3
are the following:
1. there is an irreducible curve C of P? such that A is given by the lines Ay for
which
length(A, NV(X)) > 2,
where V(A) := f~1(C);
2. A is given by the lines meeting once each of two irreducible curves Cy and
Csy;
3. A is a star of lines.

REMARK. It is clear that the last case is trivial, so it will not be analysed.

3.1. Congruences of the first type. First of all, we will classify the con-.
gruence of the first type. A consequence of proposition 3.4 is the following:

LEMMA 3.8. If C is the pure fundamental curve and it is irreducible, then the
possible cases for the degree of C are:

(50) degC = 3,4.

PROOF. Clearly we have that deg C' > 3 for degree reasons.

If we denote with k the multiplicity of C in the two surfaces V. and V;» of
proposition 3.4 and with m the degree of C, then we deduce, by 3.4 and Bézout,
that ‘

deg(V, N V) = (a+ 1)
=a+1+Km+z
from which, we obtain
(51) k>m = a(a + 1) — z°.

Besides, since a line of the congruence not belonging to the (a+ 1) lines of 3.4 must
intersect the curve C in (at least) two points, we deduce

(52) a=2k-1.
From formulas (51) and (52) we conclude
k(4 —m) — 2k = z° > 0,
from which we obtain the thesis. O

THEOREM 3.9 (Congruences of the first type). The smooth curves which gen-
erate a first order congruence are
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1. the rational normal curve C® of P3, in which case the congruence is given
by the secant lines of C®; this congruence has bidegree (1,3);

2. the fundamental curve is a line (which is a focal line for the congruence)
and the congruence is as in Theorem 0.1, (1b); this congruence has bidegree
(1,1).

Proor. We divide the proof in two steps; first we consider the congruences
given by the secants of a curve; then the congruences for which Vb € B, A()NV(A)
is (at least) a double point.

1. First of all, we consider the case of the secant lines of a curve:
if C is an irreducible curve of degree m, it is clear that it generates a
first order congruence if and only if it has one apparent double point; By
Lemma 3.8 m = 3 or 4 so, applying the Clebsch formula we easily obtain
that the only possibility is to have the rational normal curve cs.
Since this curve has degree three, we have that the bidegree is (1, 3).
2. Then, we pass at the other case: ‘
first of all, we observe that the general line r of the congruence meets
the focal curve C in only a point, otherwise we are in the preceding case.
Then, we have that,—since the congruence has dimension 2—once fixed a
point P € C, the lines of the congruence passing through it form a cone Cp
(with dim Cp = 2). Besides, if we fix a general point @ € P3, the cone QC
given by the join between @ and C must intersect the cone Cp in only a
line, since we have a first order congruence. Then the two cones Cp and QC
are two planes; besides the curve C' is in fact a line £ (clearly £ = Cp N Cpr,
with P, P’ are two general points of the focal curve).
For finishing the proof we can then apply the first part of Theorem 3.5.
This congruence has bidegree (1,1), as it is easily seen if we consider
the lines of the congruence contained in a general plane.

O

COROLLARY 3.10. If the pure fundamental curve is irreducible and not empty,
then we do not have fundamental lines. ‘

REMARK. We could prove the first part of the preceding Theorem in another
way: if C is the curve we search, then C' must have (geometric) genus

ICEDCED B

Whére
sp(sp—1)
§> > 5
PeC

and sp = multc(P).

Then, applying Castelnuovo’s bound (see, for example [ACGHB84]) we obtain
dd-3) o 1 —d+1 if d is even,

2 T f(@#-1)~-d+1 ifdisodd;

and we obtain that d < 3, so our thesis easily follows.

3.2. Congruences of the second type. Then, we will classify the congru-
ence of the second type. :
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NoTaTIONS. First of all, we set that C; and C5 are the irreducible components
of the fundamental curve C, we denote with m; the degree of C; and with k; the
multiplicity of C; in the surface V., j = 1,2.

LEMMA 3.11. If C = Cy U Cy is the fundamental curve, then the following
formulas hold:

(53) E2my + kims = a(a + 1) — «,
(54) : : ki +ky=a+1

PROOF. We prove the two formulas separately:

1. The first formula is obtained as we did in Lemma 3.8, by proposition 3.4
and Bézout:

deg(V, V) = (a+ 1)
=a+1+kim +kima+z
from which, we obtain
E*my + k3ms = a(a + 1) — z.
2. For the second formula, since a line of the congruence not belonging to the

(a + 1) lines of 3.4 must intersect the curve C in (at least) two points, we
deduce

a+1=F +ks.
O

THEOREM 3.12 (Congruences of the second type). The congruence is given by
the lines meeting both a rational curve Cy of degree my, which is the pure funda-
mental curve, and o fundamental line Co, such that length(C; NCs) = my —1 (and
s0 we have that i = (™")). Besides, this is a congruence of bidegree (1,my).

Vice versa, for every rational curve Cy of degree my which possesses a (my—1)-
secant line Cy, the join of C1 and Cy gives a first order congruence.

Proor. Let us denote with Z the (at most) O-dimensional scheme given by
C; N Cy and we set u = length(Z).

Let P be a general point of P3; then the cone given by the join PCj has degree
my; as usual, by Bézout

deg(PCi N PCy) = myma.
Since we have a first order congruence, we obtain:
(55) U =mimy — 1.

It is not restrictive to suppose that m; > ms, so it will be supposed in the following.

First of all, let us suppose that Cj is not a line. Then, if Q is a general point
of C1, there will pass mso(my — 1) secant lines of C through @ meeting C; also;
but these lines will pass through the points of Z, since if one of these lines did not
intersect Z, then this line would be a focal line, and varying these lines when we
vary @ on C1, we would obtain a focal surface. Then we have that

u = (m1 — 1)may,

and by Equation (55) we obtain mg = 1.

So, we obtain that C; is a line, and u = my — 1; projecting Ci from a point of
C, to a plane, we obtain a curve of degree m; with (at least) a point of multiplicity
my — 1, i.e. C is a rational curve.

It remains to consider the case in which m; = mp = 1, and this is the case (2)
of Theorem 3.5. i
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The bidegree is—as usual-—calculated intersecting with a general plane.
If, finally, it is given a rational curve C; of degree m; which has a (m; —1)-secant
line Cy, we can reverse the argument just given. O

4. Singularities of First Order Congruences

1 It is interesting to see which of the congruences found in the previous section
‘ correspond to smooth surfaces in G(1, 3).

THEOREM 3.13. The fundamental loci of the first order congruences in P? for
which B is smooth are the following:

1. F is the rational normal cubic;

2. F is given by two skew lines;

3. F is given by a line and a conic which meet in a point.
Moreover, the corresponding smooth B are:

1. B is a Veronese surface;

2. B is a quadric given by a linear section of the Klein’s quadric;

3. B is a cubic obtained by the Veronese surface projected from a point in-it,

i.e. it is a rational normal scroll of type S12 of degree 3.

Proor. First of all, we analyse the congruences of the first type:

o In the case of the secant lines of the rational normal cubic, it is known that
B, as a subvariety of the Grassmannian is smooth: see, for example [AG93].
o In the case in which we have as focal locus a line £ only, we have that
Vb € B, A(b)N f71(£) is (at least) a double point. This means that the
scheme of focal points V() is a not reduced line.
In particular we can see that the image of V/(}) in the Grassmannian is
a singular point for B C G(1,3), and in fact B is a 3-dimensional tangent
linear section (i.e. contained in the embedded tangent space of the point)
of the Grassmannian. '
We pass then to the congruences of the second type:
o If F'is given by two skew lines or by a line and a conic, it is easy to see that
the congruence is smooth (see, for example, [AS92]).
o Ifinstead F' = CU{ and deg C > 3, then length(CN£) > 2, s0 deg(f~*(4)) >
2 and B is not smooth.
For a proof, that the corresponding B are, respectively, the Veronese surface,
a linear section of the Klein’s quadric and a scroll of type (1,2), see [AS92].
O




CHAPTER 4

First Order Congruences of Lines in P*

1. Generalities

We recall the results of Chapter 2, in the case of P*: we consider a flat fam-
ily (A, B,p) of straight lines in P*, parametrized by a nonsingular scheme B of
dimension 3. In this case, we can write:

(56) B = apo30 + a1021.

4.1. DEFINITION. We say that B is a congruence of lines of bidegree (ag,a1) if
Equation (56) holds.

Corollary 2.2 in this case means:

THEOREM 4.1. If B is a congruence of lines of bidegree (ao,a1), then

1. ag is the number of straight lines passing through a general point p € P*;
2. a1 is the number of lines contained in a general hyperplane of P* and that
intersect a general line of this hyperplane.

REMARK. In this case, the “expected” dimension for F is 3 and for the funda-
mental locus is 2.

In this case, proposition 2.3 means:

ProprosSITION 4.2. If C is a fundamental curve for a congruence A, then the
intersection of f~1(C) with a general line of the congruence is given by a 0-
dimensional subscheme of length 2.

2. First Order Congruences

As we have seen in 2.2, a first order congruence is a congruence of bidegree
(1,a), i.e. through a general point of P* passes only one line of the congruence.

We recall (proposition 2.7) that the fundamental locus of a first order con-
gruence A coincides with the focal locus and has dimension at most 2. We can
summarize what we have proven as follows:

THEOREM 4.3. The focal locus can either be

1. a surface (possibly reducible) F such that every line of the congruence A(b)
intersects the scheme of the first order foci V() (V(A) = f~Y(F)) in a
0-dimensional scheme of length 3,

2. a scheme which is the union of a surface F and a curve C (possibly with
C C F), both met by every line of the congruence,

3. a point, i.e. A is a star of lines.

REMARK. A more precise statement will be given at the end of this section in
Theorem 4.10.

35




36 4. FIRST ORDER CONGRUENCES OF LINES IN P*

3. Linear Sections

We recall (Theorem 2.1) that the class a of a congruence is the degree of the
scroll given by the lines of the congruence which belong to a general P2 (ie. ,asa
Schubert cycle, B - ga1).

Proposition 2.6 becomes, in this case

PROPOSITION 4.4. The scroll given by the lines of the congruence which meet
a (fized). general 2-plane 11 is a hypersurface Vi of P* of degree a + 1. -

REMARK. If £ is a line of the congruence not contained in Vi1, and we have
that
PeVant

then P is a focus for the congruence, since at least two lines of the congruence pass
through it.

As we did in the case of P2, the meaning of Theorem 2.10 in this case is the
following:

THEOREM 4.5. The complete intersection of two general hypersurfaces Vi and
Viv is a (reducible) surface T' whose components are the focal surface F' and the
scroll ¥ given by the lines meeting II and II', which has degree 2a + 1.

We can translate what we said in the general case of P™ about parasitic spaces:

4.2. DEFINITION. A plane n of P* is called i-parasitic of the first order congru-
ence of lines (A, B,p1) (or simply parasitic) if every line

Ab) € F7H(m)

is contained in the focal scheme V() with multiplicity (at least) 7 > 1 and 7 in not
met by the general line of the congruence.

COROLLARY 4.6. Let ) be a plane; then the following are equivalent:
e 7 i an i-parasitic plane;
for the general line £ of n we have that

deg f7H(6) =i dim f7H(f) < 2;;

if we identify B with its image in the Grassmannian, the plane n is such that
its correspondent subscheme p(f~1(n)) 1= on(= 022) is contained in B with
multiplicity i and B is not contained in the hyperplane section of G(1,4)
given by the lines of P* meeting n;

e 7 is a component of the fundamental locus which is not a fundamental 2-
locus.

REMARK. It is clear that a parasitic plane 7 is such that f~1(n) is a component
of the focal scheme V' ()\) with multiplicity ¢, then it is a component of the scheme
T of the preceding Theorem of multiplicity 2.

NoTATIONS. From now on, we will denote with 7 the multiplicity of the general
focal plane. We will also set = := ). i?, where i varies among all the i-parasitic
spaces.

4.3. DEFINITION. The scheme given by the componehts of the fundamental
surface F which are not parasitic planes is called pure fundamental surface, or, in
what follows, simply fundamental surface.

The following theorem characterizes the congruences for which the fundamental
surface is set-theoretically a plane only.
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THEOREM 4.7. If the focal surface is set-theoretically a plane 1, then the con-
gruence A is obtained in one of the following ways:

1. Fiz a rational curve C in n and a birational map @ between C and P}, the
pencil of hyperplanes containing n:

w:C -+ 113’,17;

let P% be the star of lines passing through P and lying in p(P); then the
congruence is formed by the lines of the stars P% as P wvaries in C i.e. it
is UpecP%; besides, if deg(C) = a, then the bidegree of A is (1,a) and
if r is the general line of n, then deg(f~'(r)) = a; the components of the
fundamental locus are 7, which is the fundamental 2-locus and C', which is
the fundamental 1-locus. '

" 2. Fiz a line £ in n and an isomorphism v between £ and IP’}), the pencil of
hyperplanes containing n:

Pl P
let PL be the pencil of planes containing £ and lying in Y(P); if llp is a plane
P

of P}, then we denote with PY;, the pencil of lines of Ilp passing through P:
the congruence is formed by the lines of the pencils IP%IP as P varies in £ and

Ip in P, i.e. it is Upee Un,epy, Phi,; besides, the bidegree of A is (1,1)
and if v is the general line of n, then deg(f~(r)) = 1; n is the fundamental
locus. -

3. Fiz a rational curve C* inn*, the set of lines contained inn, and a birational
map @ between C* and ]P}], the pencil of hyperplanes containing n:

p:C* --» ]P’;,;

let P} be the pencil of planes containing £ and lying in @(£); then V£ € C*
we fiz an isomorphism between £ and P}:

gL — P}

if po(P) is a plane of P}, then we denote with P% the pencil of lines of @y (P)
passing through P: the congruence is formed by the lines of the pencils Ph
as P wvaries in £ and £ in C*, i.e. it is Upes Ugec» Ph; besides, the bidegree
of A is (1,1) and if r is the general line of , then deg(f~(r)) = 1; n is the
fundamental locus.

Proor. First of all we note that, if we consider a general point Q € P* then
this determines a general hyperplane H of IP},, and the lines of the congruence
contained in this hyperplane form a first order congruence, since for the general
point of H there passes only one line of A.

Besides, we note that the focal locus of A|g is contained in 7; in fact it can be
either a point P € 7 or a line £ C 7, by Corollary 2.4 and Theorem 3.5.

Then, we have the following possibilities:

1. If for almost every H we have that the congruence induces a star of lines,
then we can construct a map

¢:IP’,17—>77-

which associates to each hyperplane H the support Py of its star of lines.
The map ¢ cannot be constant since otherwise we have a star of lines of P*.
Then, we apply Riemann-Hurwitz’s Theorem getting that the image C of
¢ is rational; besides, ¢ must be generically injective because the degree of
the map is in fact the order of the congruence and we obtain case (1).




38 4. FIRST ORDER CONGRUENCES OF LINES IN P*

If deg(C) = a, we can in fact calculate the bidegree of the congruence:
the second degree is the number of lines of the congruence contained in a
hyperplane H and meeting a line r of it. But H N7 is a line £5, which meets
C in a points and so the thesis follows.

9. If for almost every H the congruence induces a congruence of P® with a focal
line only, then, this means that, the congruence is given as in Theorem 0.1,
(1b); besides, we have two possibilities: either the line is the same for all
the hyperplanes containing I or it changes:

(a) If the line is the same for all the planes of lP’},, then, by Theorem 0.1,
(1b), we are in case (2).
The second degree of the congruence is the number of lines of the
congruence contained in a hyperplane H and meeting a line r of it
and, as before HNn = fy. But if P € r, then the hyperplane
H :=Pne¢ IP’% contains r, since H N H' = Ply O r. Then our thesis
easily follows.

(b) If the lines vary, then we set the following map

¢:Pp—n*

which associate the hyperplane H the line £, centre of the pencil
of planes defining the congruence. Then, as before, using Riemann-
Hurwitz’s Theorem, we conclude—by Theorem0.1, (1b)—that we are
in case (3).
The same argument as in the preceding case gives the second degree
of the congruence.

|
Proposition 2.12 is, in this case:

PROPOSITION 4.8. If the pure fundamental surface F' is not empty and 7 is a
i-parasitic plane, then F N1 is a curve C of 0.

COROLLARY 4.9. In the hypothesis of the preceding proposition, we have that

(57) - i= <§‘)

where p ;= deg(F Nn).
So, we can classify the congruences of lines according to the splitting type of
the (pure) fundamental surface F:
THEOREM 4.10. The possible cases of a first order congruence of lines A of P*
are the following:
1. There ezists an irreducible surface F of P* such that A is the closure of the
union of the lines Ay such that
length(Ay N f7H(F)) = 3;
2. There ezists two irreducible surfaces Fy and Fy of P* such that A is the
closure of the union of the lines Ay such that
length(Ap N f7H(F1)) =2,
length(Ay N f7H(F2)) = 1;
3. A is given by the lines meeting once each of three irreducible surfaces Fy, Fy
and F3;
4. A is given by the lines meeting once an irreducible surface F and a curve C

(possibly with C C F);
5. A is a star of lines.
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REMARK. In the next sections we will study congruences of the first four cases.
Precisely, in case (1) we will obtain a complete classification, assuming that F' has
only ordinary singularities, while in the remaining cases we will give general results.

4. Congruences of the First Type

In this section we classify the congruences of lines of order one with an irre-
ducible surface F' as a (pure) fundamental surface.

REMARK. Since we have analysed the case in which F is a plane in Theorem
4.7, we will suppose in the following that F' is non-linear. In this hypothesis, it
follows that the congruence is given by the closure of the set of the trisecant lines
of the surface F.

NOTATIONS. Assume that 7 is an 4-parasitic plane and C = n N F' is the curve
of Proposition 4.8. Then Corollary 4.9 continues to hold: if we call 4 the degree of
the curve C, we have that the Equation (57) continues to hold.

We will denote with m the degree of F' and with k the multiplicity of F N Vi
in V.

First of all, we recall some general results. Proposition 2.26 gives

PROPOSITION 4.11. The following formula holds:
(58) 3dk=a+1.

Proposition 2.27 is

ProPOSITION 4.12. The following formula holds:
(59) Em=ad® -z

And so, by Theorem 2.28 (and its proof), we have

COROLLARY 4.13. The following formula holds:
(60) (9—m)k® —6k+1=z >0,
and then the focal surface has degree at most 8.

We recall now some classical definitions:

4.4, DEFINITIONS. A projective variety X of dimension k embedded in P2k+!
is said to have h apparent double points if its general projection to a P2k from a
general point not belonging to the variety itself has h improper double points.

By improper double point we mean a double point of X which is the origin of two
linear branches of X and whose tangent cone consists of two k-planes intersecting
transversally at the point.

REMARK. It is easy to see that the general projection of a projective smooth
surface S embedded in PV, with N > 5 to IP* has, as singularities, only improper
double points. So, we will say that a surface S of PY has ordinary singularities if
it is smooth when N > 5 or has a finite number of improper double points when
N =4.

If we project S to P3, then, by the “General Projection Theorem”, see [MP97],
the projection will have as singularities a curve I', whose singularities are a finite
number of ordinary triple points, which are triple also for S, and a finite number
of pinch points lying on ' (see, for more details about this [MP97] and [GHT78]).

REMARK. In the remaining part of this section, we will make the assumption
that the fundamental surface F' has only ordinary singularities. Under this assump-
tion we will obtain a complete classification.
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We recall now a formula, due to Cayley (for a modern proof see [Bar82]) which
expresses the number of trisecant lines of a curve of P?, meeting a line:

THEOREM 4.14. Let D be a smooth curve of P3, of degree m and with h ap-
parent double points; then the number of trisecants of D which meet a fized line
18

(61) (D) = h(m —2) — (’;)

In particular, if D is a an irreducible curve of genus g, then
-1

(62) #(D) =2<m3 )—g(m—2).

In our situation this gives:

COROLLARY 4.15. Let Cy be a general hyperplane section of the fundamental
surface F. Then, if h is the number of the apparent double points of Crr, we have

(63) a=h(m-2)— (Tg) .
ProPOSITION 4.16. The following formula holds:
(64) k=h-m+2.

PROOF. Since k is the multiplicity of F in Vi, this means that through a
general point P of F there are k lines of the congruence (i.e. trisecant lines of F)
that meet II, and these lines belong to the P? spanned by the point P and the plane
II; in other words, k is the number of trisecant lines of ' belonging to a general P3.

The formula (64) can be obtained by computing the (geometric) genus of the
generic hyperplane section Cy in two ways with the Clebsch formula: the first
by projecting Cr to a plane from a point not belonging to it, and the second by
projecting from P € F to a general plane. we obtain in the first case

m—1
()

in the second case

Eliminating g from these equalities, we get the relation (64). O

REMARK. It is easy to see that the number h of the improper double poihts of
the hyperplane section Cp of the surface F is equal to the degree of the curve T,
which is the singular locus of the general projection of F' to a P®.

PROPOSITION 4.17. The following formula holds:

(65) 6h(m — 5) = (m® + 2m — 6)(m — 5)
PRrOOF. It is obtained from equalities (58), (63) and (64) eliminating a and
k. ' O
COROLLARY 4.18. If m # 5, we have:
(66) h= ﬁ(%'f_z_)_ -1

COROLLARY 4.19. The possible values for the degree of the fundamental surface
F arem =4,5,6.

ProorF. This is due to the fact that for the values m = 3,7,8 we have non-
integer values for h, by formula (66). o

So, the only possible cases to analyse are obtained for m =4, 5,6.
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4.1. Case m = 4. We will prove in Theorem 4.26 that the only irreducible
surface of P* with isolated singularities, whose trisecant lines generate a first order
congruence is the projected Veronese surface.

LeEMMA 4.20. If F is a surface of degree 4, focal surface of a first order con-
gruence, then its hyperplane sections are rational curves. '

Proor. By formula (66) we have that h = 3, so the general hyperplane section
of F is a rational curve Cg; in fact we have that its (geometric) genus is
3-2
=—-3=0.
9= 73
O

We recall now a classical theorem on the surfaces of P4

KRONECKER-CASTELNUOVO’S THEOREM. Let S C P* be an irreducible sur-
face having at most isolated singularities. If the general tangent hyperplane to S
intersects S in a reducible curve, then S is either a scroll or the Veronese surface
in P4,

For a proof, see [MP97].

From this, we can obtain a useful corollary for our situation:

COROLLARY 4.21. Let S C P* be an irreducible surface having at most isolated
singularities and with rational sections; then S is either a projection of a rational
normal scroll or the Veronese surface in P*.

ProOF. For proving this corollary, we will show that we are in the hypotheses
of the Kronecker-Castelnuovo’s theorem. In fact, if P is a general point of S and Hp
a general tangent hyperplane, then we have that Hp D Ts, p, where, as usual, Tg p
is the embedded tangent space. Cy, := Hp NS will be a curve of arithmetic genus
zero and degree n := deg S in Hp = P?, and all the lines of Ts,p passing through P
will be tangent lines in P. So P will be a singular point for Cf,, and then Cy, is
reducible, since if it were irreducible, we would have 0 = po(Cr,) 2> pg(Crp) > 0,
50 0 = pa(Crp) = Pg(CHp), but pa(Crp) = py(Crp) if and only if Cy, were
smooth. So, the surface S is a scroll, and Cp, = C U Fp, where Fp = P! is the
fibre of the scroll at the point P and C is the basis of the scroll; so we have to prove
that C is rational. In fact, we have, by adjunction:

p.(C+ Fp)+1=1
=pa(C) +pa(Fp) + CFp
=p.(CY+0+1

50, pa(C) = 0 and then C is rational. 0O
We will recall now two theorems which will be useful in the following:

THEOREM 4.22. Let S be a surface in P*; if it is contained in a quadric, then
the family of its trisecant lines either is empty or is a congruence of order zero.

PROOF. If £ is a trisecant line of S, then £ is a trisecant of the quadric, so it is
contained in the quadric. O

Before giving the second theorem, we need the definitions of the—so called,
classically—elementary projective characters (see [SR49]):

4.5. DEFINITIONS. The projective characters of a projective surface S of PV
with ordinary singularities are ‘
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oy

{0, which is the length of F NI, where II is a generic (IV — 2)-plane;

2. p1, which is the number of tangents of the general hyperplane section Cg
of S meeting a fixed (IV — 3)-plane contained in the hyperplane (classically,
this is called the rank of S);

3. pg, which is the number of tangent planes which meet a (IV — 2)-plane along
a line;

4. vy, which is the number of tangent planes which meet a (N —4)-plane in (at

least) a point.

REMARK. It is easy to see that these numbers are invariant under a general
projection of the surface to a PM, with M > 3.

The projective characters can be expressed easily in the following way:
PROPOSITION 4.23. Let S be a projective surface of degree m with ordinary
singularities; then ‘
Ho =M
i = deg(C)
H2 = dEg(S*)z
where C}y is the dual variety of the general hyperplane section of S and S* is the
dual variety of S.

" PrOOF. The formulas for up and p; are straightforward from the definitions.
For pg, we can easily see that this number is equal to the number of tangent
hyperplanes belonging to a general pencil of hyperplanes. O

Finally, we can state the second theorem, which expresses some formulas in-
volving projective characters of a surface.

THEOREM 4.24. Let S be a projective surface with ordinary singularities of
degree m, whose general projection to P* has & improper double points and whose
general projection to P* has a double curve I' of degree d with t triple points and h'
apparent double points; then

(67) 2d=m(m —1) — pu,
(68) 26 =m(m — 1) — p — va,
m 1 1
(69) t= (3) — oM+ 5(2#1 + 2p2).

In particular, if S is smooth and connected and if ¢? and ¢y are its Chern numbers
and e its hyperplane class, then

(70) p =3m—e-c,

(71) vy =6m —4e-c; + & —cy,
(72) 29 = C? + ¢y —12m + 8/.1/1 — U,
(73) 2h' = d(d ~m +2) — 6 — 3t.

See, for example [SR49] and [Bar87].

REMARK. It is clear that the number ¢ defined in the preceding Theorem is
the number of trisecant lines of a general projection of S to a P*.

COROLLARY 4.25. The number of trisecant lines of a smooth surface S in P*
passing through a general point of the space is

(14) t:(m;1>—w(m~3)—l—2x—-2,
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where m is the degree of S, 7 its sectional genus and x = x(Og) its Euler-Poincaré
characteristic.

For a proof, see [Aur88].
From this we can classify the first order congruences whose fundamental surface
has degree four and has only isolated singularities:

THEOREM 4.26. The only surface F of degree four with isolated singularities
that generates a first order congruence is the Veronese surface in P4,

Vice versa, the trisecant lines of the projected Veronese surface in P* generate
a first order congruence.

Proo¥. By Corollary 4.21, the possibilities are the projection of the Veronese
surface, which has in fact degree four, and three quartic scrolls, projection of the
rational normal scrolls of degree four in P5, which are the cone on the rational
normal curve of P4, Sy 4, and the two smooth scrolls S; 3 and Sz ».

REMARK. It is an interesting point that the possible surfaces of degree four are
the projections of all the surfaces of minimal degree of P°. For an account on the
varieties of minimal degree and on the rational normal scrolls, see [EH87].

Now, if we project a scroll S of degree four (i.e. all the varieties of minimal
degree but the Veronese surface) of P° from two general points P; and P, (or, which
is the same, from the straight line given by the span of the two points), we obtain ‘
a quadric @ in P3. So, the (general) projection of S from one point P is contained
in the quadric cone given by the quadric @ and the other point P,. (This argument
was suggested by A. Bruno). '

Then the scrolls cannot generate a first order congruence by 4.22.

On the other hand, it is well known that the Veronese surface generates a first -
order congruence, see [Cas91]; in fact, the projection of the Veronese surface in P*
is smooth by Severi’s Theorem and it is of course a rational variety. So, we have
that

m=4
g=0
x=1,

so, applying Corollary 4.25, we obtain the number of trisecant lines

t= (g) —0(4—3)+2—-2

=1

REMARK. Besides, we have also that, for the Veronese variety,
n =2, k=1, z=20
and so we do not have parasitic planes.
4.2. Case m = 5. In this subsection we will prove the following theorem:

THEOREM 4.27. If F is an irreducible surface of P* of degree 5 with ordinary
singularities whose trisecant lines generate a first order congruence, then
1. either F is a projection of a Del Pezzo surface of P°
2. or F is a projection of a rational normal scroll of type (1,4) projected from
a line contained in the linear span of an unisecant curve of degree 4.

First of all we observe that
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PROPOSITION 4.28. If the surface F' has degree 5 and generates o first order
congruence, then F' cannot be smooth.

Proor. It is a consequence of Corollary 4.25: if F' were smooth, then the
number of trisecant lines of F' through a general point of P* would be, by formula
(74) :

t = (:) '—27T+2X'—,2
=2(x—-m+1)

(where 7 is the sectional genus and ) the Euler-Poincaré characteristic of F),s0¢
is an even number and then it cannot be one. O

THEOREM 4.29. The only possible values for h are 5 and 6. Besides, we have
the following list of possible invariants

(75) h =35, k=2, a=5, =5,
(76) h =86, k=3, a=38, z=19.
PRrROOF. From (60), solving the inequality, we have that
B2 +4\/5 >1

and from (64) we deduce that k = h — 3, so, finally, that h > 4.
On the other hand, by the Clebsch formula,

4-3
h< — =6.
<3 6
From this we deduce (75) and (76). O

First of all, we consider case (75).
4.2.1. The case (75).

LEMMA 4.30. If F is a surface of case (75), then its hyperplane section is an
elliptic curve; besides it has 5 1-parasitic planes.

ProoF. From the fact that A = 5 and by the Clebsch formula we deduce that
the sectional genus of the focal surface F' is

4
7r—(2>—5-—1,

i.e. Fis a surface with elliptic sections. From (57) and from z = 5 we deduce that
the only possibility is to have 5 1-parasitic planes such that each of them contains
a cubic plane curve. O

We recall now the “Double Point Formula:”

THEOREM 4.31. Let S be a smooth surface of P™, of degree m; if we denote
with K its canonical divisor and with H its hyperplane divisor, then the number of
apparent double points 6 is given by the formula

(77) 26 =m? —10m — 5HK — 2K? + 12 + 12p,,
where p, is the arithmetic genus of S.

See [Har77], pages 433434, [Bar87], pages 58-59, or [BS95], page 217 for
details. ) '
Besides, we need the following theorems of classical adjunction theory:
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THEOREM 4.32. Let L be an ample and spanned line bundle on an irreducible
normal projective variety X of dimension n. Then w(L) > q(X), where n(L) is the
sectional genus and q(X) := h'(Ox) the irregularity of X. If in addition X has at
worst Cohen-Macaulay singularities and g(X) > 1, then n(L) = ¢(X) if and only if
(X,L) = (P(£),Op(ey(1)) for an ample and spanned vector bundle & over a smooth
curve C of genus n(C) = ¢(X). In particular, if n(C) = ¢(X) > 0, X is smooth.

4.6. DEFINITION. An irreducible non-singular projective surface S polarized
with an ample line bundle L is said to be a Del Pezzo surface if L =2 — K, where K
is the canonical line bundle of §.

A proof is in [BS95], pages 234-235. In the case of surfaces, this implies:

THEOREM 4.33. Let L be an ample and spanned line bundle on a smooth con-
nected projective surface S; then

1. if w(L) = q(S) >0, (S, L) is as described in Theorem 4.32;
2. ifm(L) =1 and q(S) =0, (S, L) is a Del Pezzo surface.

See [BS95], page 262. A classical proof can be found in [Con39] chapter III,
in which Theorem 4.33 is ascribed to Castelnuovo.
Let us return to our problem:

LEMMA 4.34. The surface F' of case (75) cannot be a scroll.

ProOF. We can prove the lemma simply applying Theorem 4.32, because, if

F' is a scroll, then, in this case, 7(L) = 1 > 0 by Lemma 4.30, since we have that
L = Op(1) and an ordinary singularity is Cohen-Macaulay—in fact it is a local
complete intersection. Then F is smooth and we can conclude by proposition 4.28.
a

So, finally, we have

THEOREM 4.35. The surface F of case (75) is a projection of a Del Pezzo
surface of P of degree 5.
‘ Vice versa, the trisecant lines of a projected Del Pezzo surface of P%, generate
a first order congruence.

Proor. It follows from Theorem 4.33 that the desingularization of F' is a Del
Pezzo surface; it has degree 5 and so it can only be a Del Pezzo surface of P®.

It remains to prove that this surface generates a first order congruence. We
have that the degree d of the double curve I' of the general projection of F to P3 is
5(= h), so, applying Theorem 4.24, we obtain

pr=m(m—1) —2d
=5(5-1)-2-5
= 10.

Since F' is a Del Pezzo surface, which is rational, then

pa=0
K=-H
K*=5

HK = -5
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s0, by the double point formula (77), we have

§==(m?—10m - 5HK — 2K* + 12 + 12p,)

(52 —10-5—5(=5) —2-5+12+12-0)

ol TR NN

I

Then, applying Theorem 4.24
ve =m(m —1) —pg — 26
=5(5-1)+10-2

= 28.
Besides, if we denote by F' the Del Pezzo surface of P8, we have that
x(F) =1
=5
and by Noether’s formula
cp=12-5
=T.

Again, from Theorem 4.24
1
P2 = é-(c? + ¢y — 12m + 8y — v2)

1
==(5+7-12-5+8-10-28)
= 2;

finally, since the projective characters are invariant under projections, we have that
the number of trisecants of F' passing through a general point of P* is

m 1 1
t= (3> - 5mp + g(zm + 2p2)

5 1 1
= (3>—§5~10+§(2.10+2-2)
=1

Therefore, the trisecants of a projected Del Pezzo surface of P5 generate a first
order congruence. O

Then, we consider case (76).

4.2.2. The case (76). First of all, we recall a formula, due to Cayley (for a
modern proof see again [Bar82]) which expresses the number of quadrisecant lines
of a curve of P3:

THEOREM 4.36. Let D be a smooth curve of P2, of degree m and with h appar-
ent double points; then the number of quadrisecants of D is

(78) a(D) = %(m ~ 9)(m — 3)(m — 13) — 2h(m — 3) +<Z> .

In particular, if D is a an irreducible curve of genus g, we have that

(1) a(D) = g5(m~2)(m~3(m—4) - Jg(m* ~Tm+13~g)

Then we prove a lemma concerning the rational normal scrolls:
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LEMMA 4.37. Let Sq,....a. be a rational normal scroll of type (a1,...,a;) em-
bedded in PN (with N = Zle a; +k—1) and ap, := max{ai,...,ar}. Then
any reduced scheme I' C S, .. o, of pure dimension (k — 1) and of degree d with
d < Zle a; — am(= deg Sa;....an — Qm) s given by £1 U --- U Ly, where £;, with
i =1,...,d are (k — 1)-planes of the ruling, or, in the case of the surfaces, if
a; =1, (i =1 and/or 2) one of the lines can be the unisecant curve Cg,.

PROOF. Let us prove this lemma by induction on the degree. For d = 1 the
claim is obvious. Let us suppose now that the claim is true from 1 to (d — 1).

Let us prove it by contradiction: let us suppose that the scroll contain an
irreducible (it is not restrictive: if it is not irreducible, we can consider its irreducible
components) variety I’ of codimension one (i.e. ahypersurface) and of degree d with
l<d< Zle a; — am, then I' would be contained in a linear subspace of dimension
(d + k —2) < N, since I would be at most a variety of minimal degree.

* Besides, for every point of I would pass a (k — 1)-space of the ruling. Then
the scroll would contain the scheme of dimension k given by the (k — 1)-planes of
the ruling of the scroll passing through the points of I'. But this scheme would be
contained in the linear space of dimension M (< am + (d+Ek—-2)+1< Zle ay, +
k — 1 = N) (Grassmann) generated by the hypersurface and the rational normal
curve C,  of degree a,, of the scroll. .

Then this scheme would be the scroll and it would be contained in a M-plane,

which is a contradiction.
O

We can now find which is the surface we are looking for:

THEOREM 4.38. The only surface F of degree 5 with isolated singularities of
the case (76) is a projection of the rational normal scroll S14 of P® from a line
contained in the 4-subspace generated by the unisecant quartic Cy of the scroll.

The surface F' contains 4 parasitic planes, one is the 4-parasitic plane which
contains the quartic curve image of Cy, and the other 3 are 1-parasitic. They are the
planes containing the (projection of the) unisecant line C1 and the couples of ruling
lines passing through the 3 singular points of the quartic plane curve contained in
F. :

Vice versa, the trisecants of such a rational scroll generate a, first order con-
gruence.

PRrROOF. From the fact that h = 6 and by the Clebsch formula we deduce that
the sectional genus of the focal surface F' is

4
7r—<2)—6—0,

i.e. F is a surface with rational sections; so, by the Corollary 4.21 F is a projection
of a rational normal scroll. Since it has degree 5, it is the projection from a non-
secant line of one of the three rational normal scrolls of P8, i.e. the cone So,5 and
the two smooth scrolls S; 4 and Sa 3.

So, the general hyperplane section Cgr of F is a smooth rational curve of degree
5 in H =2 P3; then, by formula (79), we have that the number of quadrisecant lines

of OH is
q(Cx) = (m-Z)(m—E’:)z(m-l—.Al)— %g(m2~7m+13-g)

(5-2)(5-3)*(5-4)

ol =Bl -

=
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As in the previous case, (57) and z = 19 say that either F' contains a quartic
plane curve and three plane cubics, or 19 plane cubics. But every hyperplane section
contains a 4-secant, so we are in the first case: indeed, if the quadrisecant lines were
not contained in a plane, then they would generate a family of dimension two and
all these lines would be contained in the focal surface; but the only surface with
this characteristic is the plane. Then there is a plane rational quartic C' contained
in F. This curve is clearly the projection of a rational quartic of a linear subspace
of dimension at most four contained in P8, and this curve is contained in the scroll,
which therefore cannot be Sy 3.

Consider first of all Sy 5: by the Lemma 4.37 the quartic C' must be the union
of four lines. ‘

Then in this case, C must be the projection of four lines of the ruling of the
cone—call these lines £1,..".,£s—from a line £ contained in the P* generated by
Ly, ..., 4. ,

Besides, the three other parasitic planes contain three lines of the ruling each,
and these planes are the projections of three dimensional spaces of P® given by
three lines of the cone. Hence, each of the three spaces will intersect the line £in a
point.

Clearly, each of these 3-spaces will intersect the 4-space in a line, containing
the vertex of the cone P and the point of £ of this 3-space.

Now, if we consider the corresponding situation on the rational normal curve
of degree 5 which is the unisecant of the cone, we have a 3 dimensional 4-secant
space, three 2 dimensional 3-secants and the line £’ given by the intersection of the
plane generated by £ and P, with the hyperplane containing the unisecant.

In this case, we would have that the only 3-secant planes are the three just
considered, but the 3-secant variety of the rational normal curve of P is the whole
space and so for every point of £ we have a 3-secant line. Then F' cannot be the
projection of the cone Sg 5. '

The only possibility is that F' is a projection of a S14. As in the preceding
case, it is easy to see that this scroll cannot contain an irreducible curve I' of degree
d with d = 2, 3.

We have two cases: either C is a projection of a rational normal curve of degree
four of the scroll from a line £ in its P4, or it is the union of four lines. One of these
is the unisecant line D = P! and the others are three fibres—say f1,..., 4.

First consider the case of the four lines: the three parasitic planes will be
generated by three lines of the scroll each. If this were the case, then the P® would
have in common with the P the unisecant D, since it would contain (at least) two
points of it; but P3 should have a point in common with £ also, which would be
contained in D, which is a contradiction.

The only possibility is therefore the projection from a line of a P* containing a
rational normal curve of degree four contained in Sy 4.

The observations concerning the parasitic planes are straightforward; it remains
to prove that this scroll generates a first order congruence. This is given by the
computation of the projective characters of F' or, which is the same, of S; 4. Since
these surfaces are rational, we have that

x(S14) =1
C% = ('“K51.4)2
= 8&;
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then, by Noether's formula
e =12 —c?
=12-28
=4.
If e is the hypérplane class of Sy 4, then—since e®> = deg F' = 5—by the adjunction
formula »
—cie =2g(e) —2 —€*
=-2-5
= -T.
From this and from Theorem 4.24 we can calculate the projective characters:
py = 3m —ce
=3-5-7
=8,
Vs =6m—4cle+c% —Ca
=6:5-7-4+8-4
= 6;

from p1 and vy we deduce pa:

po = =(c2 + o — 12m + 8uy — 1)

(8+4—12-5+8-8)

OV po| = b =

So, finally:

1
mu -+ 5(2#1 + 2us + pa)

o~
—
&
~
i
T
e 3
[NR

4.3 1 1
= —_ -0 8+ = <8+ 2+

= 1.

" This concludes the proof of Theorem 4.38, since the trisecant lines of such a scroll
generate a first order congruence. O

4.3. Case m = 6: First of all we can deduce that

PROPOSITION 4.39. If F' has degree 6, then we have
(80) h=1, k=3, a=S38, z = 10;
so F has 10 1-parasitic planes. ‘Besides, F' is a surface with sections of genus 3.

Then, we need another result of classical adjunction theory on surfaces; for this
we have to recall the Remmert-Stein factorization (see [Har77] for a proof):

REMMERT-STEIN FACTORIZATION. Let ¢ : X — Z be a projective morphism of
Noetherian schemes. Then one can factor ¢ into ¢ = sor, wherer: X =Y isa
projective morphism with connected fibres, and s : Y — Z is a finite morphism.

THEOREM 4.40. Let L be a very ample line bundle on a smooth connected pro-
jective surface S. Assume that q(S) < m(L) = 3 and L* > 6; if we denote with ¢
the map associated to H°(K + L) and ¢ = sor the Remmert-Stein factorization of
¢, then we have the following possibilities:
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1. (S, L) is a conic fibration over P! under ¢, in which case L* = 6;

(S,L) has (P?,0p2(4)), 7 : S — P? as the reduction;

. 3. the reduction (Y,Ly), 7 : S = Y of (S,L) is a Del Pezzo surface with
K2 ~ 2, Ly ~ —2Ky, in which case L* = 8 (~ denotes the Q-linear
equivalence on Weil divisors, see [BS95], pages 5-6 for more details).

B

The preceding Theorem is an interpretation of the results contained in [BS95],
pages 259-264, in which this (and much more) is explained.
We note also that the smooth scrolls of P* are known:

THEOREM 4.41. If S is a smooth irreducible scroll of P*, then S is either a
conic bundle or an elliptic quintic scroll.

See [Lan80], [Aur87] and [DP95].
LEMMA 4.42. The surface F' of case (4.3) cannot be a scroll.

PRrROOF. Let us suppose first that the scroll is an irregular surface (i.e. g(F) >
0). For proving that this case cannot occur, we could apply simply Theorem 4.40
to the desingularization of F', since there are not irregular surfaces in the list. We
can prove it also directly: F is a scroll with (L) = 3 > 0, by Proposition 4.39;
besides, we have that L = Op(1). We see also that an ordinary singularity is Cohen-
Macaulay—in fact it is a local complete intersection. Therefore we can apply to F
Theorem 4.32, and we see that in particular F' is smooth. Then we conclude by
Theorem 4.41 or by the fact that there are no scrolls in the list of smooth surfaces
of degree 6 in P* (see [Ran88] for a list).

If we are in case g(F) = 0, then we are in case (1) of Theorem 4.40, i.e.
(projection of) a conic fibration on PL. Let us calculate the number of trisecant
lines for this surface. This surface is a rational ruled surface, and then we have that
K% =0, so we obtain

x(F) =1
i = (-Kr)®
=0;
then, by Noether’s formula
co =12y — c%
=12

If e is the hyperplane class of § , then—since e? = deg F = 6—by the adjunction
formula
—cie = 2g(e) —2 — €2
=4-6
= 2.
From this and from Theorem 4.24 we can calculate the projective characters:
p1 =3m —cie
=3-6-2
= 186,
Vs =6m~4cle+cf —Ca
=6-6—2-44+0~-12
= 16;
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from p; and vy we deduce po:

1
p2 = '2'(0% + 2 —12m + 8py — vs)

1
=§(0+12—12-6+8-16—16)

= 26.
So, finally:
m
(3> 5min + 5 (2#1 + 2vp + Hz)
4
635 6 16+3(2 16+ 216 -+ 26)
=2.
So, this does not generate a first order congruence. ' O
THEOREM 4.43. The only surface F of case (4.3) is the Bordiga surface of P*,
ie. F is a blow up of P? in 10 points z1,...,z10 embedded in P* by the linear
system ‘
|D| := |[7*4L — Ey — Ey — -+ — Eyo|
where 7 : F — P2 is the blow up in the points T1,...,T10, L is a line in P? and E;

is the fibre of m over x;. In fact F' contains 10 distinct lines and 10 distinct plane
cubics such that each line meets a single cubic. (see [DP95] and [Bea83| page 56
for further details)

Vice versa, the trisecant lines of a Bordiga surface generate a first order con-
gruence.

Proor. It a straightforward consequence of Theorem 4.40 and Corollary 4.42
that the only possibility left is to the Bordiga surface of P*.

Then it remains to prove that it generates a first order congruence: the surface
is ratlonal and also smooth; then

x(F)=1.
Therefore, we can apply formula (74):

t(S) = <mﬁ1>—g(m—3)+2x—2

3
5.-4-3
= -36-3)+2-2
75 ~36-3)+
=1,
obtaining that the trisecanls of a Bordiga surface generate a first order congruence.

a

REMARK. We observe that a Bordiga surface is indeed given by the vanishing
of the minors of a 3 x 4 matrix with linear entries, see [DP95], and so we are in
case of Corollary 2.23 and Theorem 2.24.

4.4. Final remarks on the congruences of the first type. Let us make
some concluding remarks about the results just proved: we consider now the con-
gruence B as a subvariety of dimension 3 in G(1,4).

PROPOSITION 4.44. Let B be the variety parametrizing the trisecant lines of
the Veronese surface. Then B is a general linear congruence. In particular, B is
smooth.

See Proposition 2.19, (2).
An interesting characterization of the Bordiga surface is the following:
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PROPOSITION 4.45. The only linearly normal surface in P* whose trisecants
generate a first order congruence is the Bordiga surface.

REMARK. The Bordiga surface is given by the vanishing of the minors of a
general matrix of type 3 x 4 of linear entries. We recall that also the rational normal
cubic is the only curve of P® whose secants generate a first order congruence, see
Theorem 0.1 and that this curve is given by the vanishing of the minors of a general
matrix of type 2 x 3 of linear entries.

PROPOSITION 4.46. The variety B parametrizing the trisecant lines of the Bor-
diga surface is smooth.

ProoF. It is Theorem 2.24 with n = 4. 0

5. Congruences of the Second Type

NoOTATIONS. We consider now a first order congruence of the second type, i.e.
the secants lines of an irreducible surface F; which meet another surface F3 also.
So, F = F; U F, is our (pure) focal surface. In this case, we will denote with m;
the degree of F;, 1 = 1,2; s0o m = m3 + ma.

We will assume also for the rest of this section that the surface Fy is with
isolated singularities. With this assumption, we denote with h; the number of
apparent double points of the general hyperplane section Cy g of Fi.

REMARK. If F} has not isolated singularities, many of the results of this section
continues to be valid if we suppose that the general hyperplane section Cy g of
F, has ordinary singularities—and so, we can define h;—or, even if the general
hyperplane section Cy g of Fi has not ordinary singularities, by setting hy :=
(™) = g(C1,u), where g(C1,x) is the geometric genus of Cy .

First of all, we can give some observations on this situation from the point of
view of the Schubert calculus: it easy to see that the family of the secant lines,
S(Fy) of F; is a flat family of dimension 4, so it determines a cycle of codimension
2 in the Grassmannian, such that

S(Fl) = coy1 + dUgO.
We can actually calculate the numbers ¢ and d:

PROPOSITION 4.47. The following formula holds:

™m
(81) S(F) = ( 21‘)011 + hi0o90,
where hy is the number of apparent double poz’nté of a general hyperplane section of

the surface Fi.

ProOF. We will compute the two numbers separately:

1. First of all we consider ¢:
we have

011 ={£eG(1,4) | L PP c P}
and its complementary cycle is
' o2 = {£ € G(1,4) | £ C P?}.
We have that
my = deg F}
= length(Il N F),
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where II is a general plane of P%. So
S(Fl) 022 =C
={ )

since we have m; points in the plane II, so the number of the lines passing
my

through two of them is ("2}).
2. Then, we can compute d:
we have

o0 = {£ € G(1,4) | £NP* #£ G}
and its complementary cyclg is
o3 = {£ € G(1,4) | Pe L CP3}.
From this observation we see that
S(F1) 031 =d
= h;.
O
Similarly, the (flat) family M (F3) of the lines meeting F5 is a family of dimen-
sion 5, and so
M(F3) = eo1o.
Similarly to the preceding case, we can calculate e:
PROPOSITION 4.48. The following formula holds:
(82) ‘ M(F») = maoio.
PROOF. We have
010 = {£ € G(1,4) | £NP? # B}
and its complementary cycle is
032 = {L € G(1,4) | P € £CP?}.
So, since deg Fy = length(F, N II), where Il is a general plane, we have that
M(Fy) - 033 =€
= ma.

O

PROPOSITION 4.49. If the two surfaces Fy and Fy properly intersect, then Fy
is a plane and Fy is a surface of minimal degree of P*, i.e. a rational normal scroll
either of type Si,2, which is smooth, or of type So 3, i.e. a cone over a rational
normal cubic.

Proor. If the two surfaces are in general position i.e. if they intersect in a
scheme of dimension zero (and not in a curve), we have, as a cycle

(83) B = S(F1) - M(F)
(84)‘ = ((n;) o11 + h1020) - (M2010)
(35) - ((”;1) + hy)om).

So, in order to obtain a congruence of the first order, we must have my = 1, i.e.

Fy is a plane and hy =1, i.e. the sectional genus of Fy is (™47) — 1= 1".2_(’_”2_1:;?).
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From the Castelnuovo’s bound for the (non-degenerate) curves of degree m; in
P? we obtain, in this case:

my(my — 3) imi—-my+1 if my is even,
2 ~ 1 imi-1)—mi+1 ifmyis odd;
with an easy count we have that the only possible case is for m; = 3. O

REMARK. In the case of the preceding proposition, the congruence is given, as
a subscheme of the Grassmannian, as the intersection of a codimension two linear
section and a tangent linear section.

We give some observations similar to the ones of the preceding section:

PROPOSITION 4.50. If  is a i-parasitic plane and we call p; the degree of the
curves C; = F;Nn, with 1 = 1,2, we have that

(86) i= (“;) 2.

PROOF. It is analogous to the proof of Corollary 4.9, but in this case we have
a reducible curve C = C1 U Cy such that any line £ of  intersects C; in p; points,
and for every choice of two of these p; points of C; N £ and one of the p points of
Cy N £ give £ as a line of the congruence. So £ has multiplicity (“21)@2. O

NoTATIONS. We recall that m; is the degree of F; and we denote with k; the
multiplicity of F; N Vi in Vi, i =1,2.

Propositions 2.26 and 2.27 are

PROPOSITION 4.51. The following formula holds:
(87) 2k + k; =a+ 1.

PROPOSITION 4.52. The following formula holds:
(88) E2my + k3my = a® — 2.

NoOTATIONS. From now on we will denote with C' the scheme (of dimension less
or equal to one) intersection of F; and Fy. The degree of the subscheme (possibly
empty) of the components of C of pure dimension one will be indicated with c. So,
¢ = 0if and only if dim(C) = 0.

5.1. Case my = 1. First of all we suppose that Fy is a plane. We will also
suppose for the rest of this subsection that F; has only isolate singularities.
We can start with the following

PROPOSITION 4.53. The following formula holds:

(89) kp = hy — (;)

PRrROOF. Let H be a general hyperplane of P* and we put
r = H N Fy;

then, arguing as in the proof of Proposition 4.16, we see that kp is the number
of lines of the congruence contained in H that pass through a general point P of
r; but this number can be calculated by considering the hyperplane section of Fi,
which has hy apparent double points; or, in other words, the curve

CLH = HﬂFl
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has hy secant lines passing through P. This curve has ¢ points belonging to r, since
CigNr=HNFNE
=CnNr.

So, the number of the lines of the congruence through P is equal to the number of
the secant lines of F; through P excluding the line r (with its multiplicity, which
is (;)), since we are supposing that Fy is not a parasitic plane; so we are done. [

PROPOSITION 4.54. The followihg formula holds:

o omhu- (36 (™).

PROOF. As in the preceding proposition, we can consider a hyperplane H. We
recall that a is the number of lines of the congruence belonging to H and meeting
a line contained in it. For computing a, we consider a plane II contained in H and
containing the line r = H N Fy; this will intersect the curve C1 gy = HN Fy in my
points, ¢ of them belong to the line 7. So, the general line £’ of II will intersect the
(ml_c) lines determined by the mj — ¢ points not lying on r and k; times the line

2
T. ]

PROPOSITION 4.55. The following formula holds:
(91). ki=mi—-1-c

Proor. First of all, we observe that k; is the number of lines of the congruence
contained in a hyperplane H and passing through a point P of the curve Cy g =
H N F;. This number is, in fact, the number of secant lines passing through P
and which meet the line r = H N F, in a point not belonging to F;. This number
is clearly obtained considering the number of points of the plane section of C g
determined by r and P that are different from P and that do not belong to r. This
number is then m; — 1 —c. O

COROLLARY 4.56. The only possible values for ¢ are m; — 2 and my — 3.
Proor. Putting formulae (89), (90) and (91) in formula (87), we obtain

2my—1—c)+hy — (g) =h1—<g>+(mlz_c>+1

4(s—1)=s(s—1)+2
52 —554+6=0,

where we have put s := my — ¢. So the only possible values are s = 3 or s = 2, so
our claim follows. : O

REMARK. Another proof of this proposition could consider a hyperplane section
which contains the plane F5. This will intersect Fy in C' and another curve Cy
of degree s = m; — c¢. Now, since the lines of the congruence contained in this
hyperplane are the secant lines of the curve Cp, this must have only one apparent
double point; so, we can argue as usual by the Castelnuovo’s bound:

s(s—3) i1 —s+1 if s is even,
2 T |3(*-1)—-s+1 ifsisodd;

s0, the inequalities are satisfied only if s is 3. For this value, the curve Cpy is clearly
a twisted cubic. Besides, Cy can be a pair of non-planar lines, which is a curve
with an apparent double point, so s can be 2 also.

Another way of arguing is to say that the congruence restricted to the general
hyperplane H containing F; is a first order congruence of H = P3.
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We analyse now the two possibilities, m; —c=2 and m; —c¢=3.
5.1.1. The case m; — ¢ = 3. Let us start with the case m; —c = 3;

COROLLARY 4.57. We have that:

(92) by = o — (””2‘ 3)

(93) a=hy — W -3
(94) k=2,

and: A ‘

(95) T = 6hy — 3m? +17m; — 27 >0

Proor. We will prove formula (95), since the rest is irﬁmediate. Putting in
Equation (88) the formulas (92) we obtain (putting b= (™)
T = —kfml - kgmz +a?
= (hy +3)% — 2(hy + 3)b + b% — dmy — h? + 2hyb — b2
= 6hy +9 — 6b— 4my
= 6h1 — 3m} + 17Tm; — 27.
O

From now on, until the end of this subsection, we will suppose that the singular
points of F are out of Fy, i.e. Sing(F1)NC = 0.

THEOREM 4.58. The following identity
(96) h1:3(m1——3)—t+1
holds, where t is the length of CNCg. So 0 <t < 3.

PRrOOF. The cone xp given by the secant lines of F; passing through a (general)
point P of P* has degree h; (since its general hyperplane section containing P
consists of hy lines), and then the hyperplane section of this cone will determine
hi1 lines of the ruling of it. If we consider the hyperplane section H with the
hyperplane spanned by P and Fj, these lines are: the secant line of the twisted
cubic Cy passing through P, and the lines which are common to the join PC of P
and C and to the one PCy of P and Cpy, excluded the lines passing through the
points of CNCy.

Now, it is easy to see that

deg PC =degC =my — 3
deg PCy = degCr = 3
and putting ¢ := deg C' N Cg, we are done. O

COROLLARY 4.59. The only possible cases are the following:

1.t=0=z=-3m}+35m; —75>0=>3<m; <8
2.t=1=>z=-3m?+35m; —81>0=4<m; <§;
3.t=2=z=-3m?+35m; —87>0=4<m; <8§;
4. t=3=>3=-3m?+35m; —-93>0=5<m; <7

ProoF. We use Equation (96) in (95) to eliminate h;, obtaining
z = ~3m? + 35m; — 6t — 75 > 0,

and solving it we obtain our claim. O
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Using formula (96), formulas (92) and Corollary 4.59 we obtain the list of the
possible (general) surfaces F; with their invariants:

THEOREM 4.60. The list of the possible surfaces Fy with invariants t, my, hy
as above and with sectional genus 7 is given by Table 1; we have also, for these

case # ||t |my|m|w]alc|klsa
i 31 5 4 1216|237
i 3| 6 713171314169
i 31 7 |10}51 7141415
iv 21 4 21115112138
v 21 5 5111712 4|13
vi 21 6 8128 3|5 115
vii 21 7 |11{4| 8 145 |11
viii 21 8 147715141
ix 1] 4 31016 1| 3]11
X 115 6 |0] 812|519
xi 1] 6 911]9 113|621
xii 117 (1213 9 (4] 6 |17
xiii 1] 8 |15(6| 81|55 |7
xiv 0 3 11014(0]1]3
XV 0| 6 [10]0|10|3| 7 |27
xvi 0 7 |1312110|4| 7 |23
xvil 0| 8 {16595} 6 |13
TABLE 1

surfaces, ky = 2.

PRrooF. It is a straightforward consequence of formula (96) and Corollary 4.59.
We observe that cases t = 0 with m; = 4,5 must be excluded since we have
=1 : O

If, in addition, we suppose that the surface is smooth, since all the smooth
surfaces up to degree 10 are classified, (see [Ran88] for the complete list and
details in degree 10, [Rot37] for details in degree less than 7, [Oko84], [Oko86],
for degree 7 and 8, supplemented in [Ale88] and [AR92] for degree 9) we can
analyse which of them exist and generate a first order congruence.

First of all, we recall the Noether’s Lemma:

NOETHER'S LEMMA. An algebraic surface S is rational if and only if it contains
an irreducible rational curve C with dim|C| > 1.

For a proof, see [GHT78]. Then, we pass to the following:

LEmMA 4.61. If, in the hypothesis of Theorem 4.60 we add that Fy is smooth,
then Fi must be rational.

PRrROOF. An element of the pencil of hyperplanes through the plane F» of C
intersects Fy in a rational normal cubic (meeting C in t points). Therefore the
linear system of these cubics has dimension at least one, so, by Noether’s Lemma,
we conclude. O

THEOREM 4.62. If the surface Fy is smooth, then only the cases (i), (ii), (iv)
and (xiv) of Table 1 are effective.

PROOF. Let us study each case separately:
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1. The case (i) of Table 1 gives, as the possible F1, a rational quintic with

sectional genus 2, linked to a plane in the complete intersection of a quadric
and a cubic, i.e. a Castelnuovo surface; F is a blow up of P2 in 8 points

z1,...,zs embedded in P* by the linear system
|D| := |7*4L — 2Ey — By — -+ - — Eg|
where 7 : F; — P2 is the blow up in the points z1,...,7s, L is a line in P?

and E; is the fibre of 7 over z;.

The curve C should be a conic;:ontained in a plane F3, and a conic in Fy
is given by the proper transform £; 3 of a line 43 3 through—for example—x;
and z3.

By the adjunction formula, we get, in fact, that a hyperplane through
F, intersects Fy, out of C, in a rational normal cubic and this cubic inter-
sects C in three points. These rational normal cubics are clearly the proper
transforms of the cubics having a double point in z; and passing through
T4,...,Tg. Then, in fact, these surfaces generate a first order congruence.

We observe, from Proposition 4.50 and from the adjunction formula,
that we can have only 7 1-parasitic planes, i.e. each of them contains a conic
meeting C' in two points. For getting these planes, we see that the proper
transforms of the 5 conics passing through the points 1, z;, ..., T, , where
iy < -+ < 14 € {4,...,8} give 5 such conics and so 5 of these 1-parasitic
planes. The other two are given by the planes of (the conic component of)
the proper transforms of the cubics having a double point in z; and passing
through z;,z4,...,zs, with ¢ = 2, 3.

. The case (ii) of Table 1 gives, as the possible F}, a rational sextic with

sectional genus 3, linked to a cubic scroll in the complete intersection of two
cubics, i.e. a Bordiga surface, which is described in Theorem 4.43

The curve C should be a cubic contained in a plane F5, and a cubic in F}
is given by the proper transform of a cubic through 8 points—for example,
ZTy,...,T10-

By the adjunction formula, we get, in fact, that a hyperplane through
I, intersects Fi, out of C, in a rational normal cubic and this cubic inter-
sects C in three points. These rational normal cubics are clearly the proper
transforms of the lines through z;. Then, in fact, these surfaces generate a
first order congruence.

We observe, from Proposition 4.50 and from the adjunction formula,
that we can have only 9 l-parasitic planes, i.e. each of them contains a
conic meeting C in two points. For getting these planes, we see that the
proper transforms of the 9 lines passing through the points z; and z;, where
i€ {2,...,10} give 9 conics and so 9 1-parasitic planes.

. The case (iil) of Table 1 gives, as a possible Fi, a surface of degree 7 and

sectional genus 5, which is a non-minimal K 3-surface, linked to a degenerate
quadric surface in the complete intersection of two cubics. But this surface
cannot generate a first order congruence, since it is not rational. But we can
prove it also directly: in fact, the curve C should be a quartic of genus 3
contained in Fh, with three points in common with the curve Cy, element
of the pencil of rational normal cubics obtained by the intersections of Fy
by the hyperplanes through Fy out of C. These points would form a linear
series of degree 3 and dimension 1, i.e. a g3 on C; but a gi should be cut
out by the lines through a fixed point of C, 4.e. the three points of the linear
system should be contained in a line, which is absurd, because they are three
points of a rational normal curve also. )
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4. The case (iv) of Table 1 gives, as a possible F1, a quartic with sectional genus
1, which is a Del Pezzo surface, a complete intersection of two quadrics; F}

is a blow up of P? in 5 points z1, ..., zs embedded in P* by the linear system
]Dl = I?T*3L‘E1 — Ey —"'—-Esl
where 7 : F; = P? is the blow up in the points zi,...,zs, L is a line in P?

and E; is the fibre of 7 over z;. ,

The curve C should be a line, and a line in F} is given by the proper
transform of either a line through—for example—=x; and z, or one of the ex-
ceptional divisors E; or the proper transform of the conic through z;,...,zs
(see, for example, [GHT8], pages 545-549). F3 is then a plane through one
of these lines.

By the adjunction formula, we get that a hyperplane through F; inter-
sects Fi, out of C, in a rational normal cubic which meets C in two points;
therefore, the line C' must be the proper transform of a line through z; and
z5. The rational normal cubics are then the proper transforms of the conics
through z3,z4, 75 and another point P € P2. Then, in fact, these surfaces
generate a first order congruence.

We observe, from Proposition 4.50 and from the adjunction formula,
that we can have only 5 1-parasitic planes, i.e. each of them contains a
conic meeting C in two points. For getting these planes, we see that 3 of
them are the planes of the proper transforms of the 3 lines passing through
the points P and z;, where ¢ € {8,4,5}; the remaining two are the planes
of the proper transforms of the two conics through P, z;, j = 1,2 and
T3,T4,T5. .

5. The case (v) of Table 1 gives, as the possible F1, a quintic with sectional
genus 1, which is an elliptic scroll. This surface cannot generate a first order
congruence, since it is not rational. Indeed, we can prove this also directly:
in fact, C should be a plane conic, but F; does not contain plane conics.

6. The case (vi) of Table 1 gives, as the possible Fi, a sextic with sectional
genus 2, which does not exist.

7. The case (vii) of Table 1 gives, as the possible Fi, a rational surface of
degree 7 and with sectional genus 4, linked to an elliptic quintic scroll in a
complete intersection of a cubic and a quartic; F} is a blow up of P? in 12

points z1,..., 212 embedded in P* by the linear system
[_D| = I’IT*E)L-— 2E1 - 2E2 ’-Eg e '_EIZI
where 7 : F; — P? is the blow up in the points z1,...,212, L is a line in

P? and E; is the fibre of m over z;. But this surface cannot generate a first
order congruence: the curve C should be a plane quartic, but an easy count
shows that F; does not contain such a curve.
Another way of proving this is to see that C should be a quartic of genus
3, with two points in common with every curve of the pencil of rational
normal cubics given by the intersections out of C' of I} with the elements of
the pencil of hyperplanes through F5; but these points form a linear series
of degree 2 and dimension 1, i.e. a g; on C; but C cannot be hyperelliptic.
8. The case (viii) of Table 1 gives, as the possible Fi, a surface of degree 8 and
with sectional genus 7, which is a regular elliptic surface, linked to a plane
in the complete intersection of two cubics; this surface cannot generate a
first order congruence, since it is not rational. But we can prove this also
directly: C should be a smooth plane quintic of genus 6, with two points in
common with every curve of the pencil of rational normal cubics given by the
intersections out of C of F} with of the elements of the pencil of hyperplanes
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through Fy. These points form a linear system of degree 2 and dimension
1, i.e. a g3 on C; but C cannot be hyperelliptic, since the canonical divisor
of C is given by C - D, where D is a conic, i.e. it is given by 10 points on a
conic. Then, if we impose a conic to pass through two points P and @ on
C, this condition imposes two linear independent conditions on the space of
the conics; then dim|P + Q| = 1 by Riemann-Roch.

. We give now a lemma concerning the case in which ¢ = 1:

LEMMA 4.63. Ift =1, then C is a rational curve.

PRrOOF. Since t = 1, C has one point in common with every rational
normal cubic given by the intersection out of C' of F} with a hyperplane
section through F; but these points form a linear system of degree 1 and
dimension 1, i.e. a g} on C; so C is rational. O

COROLLARY 4.64. Ift =1, then n(Fy) = 0.

Proor. It follows from Lemma 4.63 and the adjunction formula. 3

COROLLARY 4.65. The only possﬁ'ble cases with t = 1 are (ix) and (x).

(a) The case (ix) of Table 1 gives as F} the Veronese surface, which does
not generate a first order congruence. In fact, the curve C should be
a line, but the Veronese surface does not contain lines.

REMARK. It is easy to see that, in the case (ix), if we suppose that
the surface F} has ordinary singularities instead of being smooth, we
see that this case is effective. In fact, if we take as F} the projection
of the rational normal scroll S; 3 and as Fy a plane passing through
a line C of the ruling, we have that the intersection of a hyperplane
passing through C is given by a rational normal cubic out of C' and
so these surfaces generate a first order congruence. Indeed, by the
double point formula we have that F; has one double point A.
Besides, we have to see that z = 11: there is a plane n through A
and the unisecant line D of the scroll which is 3-parasitic, since it
contains the cubic whose components are D and the two lines of the
ruling through A, and intersects F; in a line, since the hyperplane H
spanned by F3 and A contains 7, because H contains a point of DNy
and then D C H.

We have also two 1-parasitic planes, given by the two conics through
A obtained by the intersection, out of C'U D and the lines of the
ruling, of F; with the embedded tangent cone to F in A.

The other cases in which we have surfaces with ordinary singularities
and with rational sections can be studied in the same way.

(b) The case (x) of Table 1 gives, as the possible F1, a quintic with rational
sections, which does not exist.

10. For the case t = 0 the only possibility is the case (xiv) of Theorem 4.60

which gives as F} the cubic scroll Sy 2, i.e. we are in the case of Proposition
4.49. Besides we have 3 1-parasitic planes.

In fact, since t = 0, we get that C cannot be a curve (since otherwise
C would be an irreducible component of Fi!). Therefore we have a proper
intersection, i.e. we are in the case of Proposition 4.49. Finally, the three
1-parasitic planes are those of the conics of the scroll passing through two
by two of the three points of C.

a
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REMARK. Reverting the arguments of the proof just given, we see that the sur-
faces of the preceding theorem, with the configurations given in the proof, generate
a first order congruence. :

5.1.2. The case m; — ¢ = 2. Now, let us consider the case m; — ¢ = 2;

COROLLARY 4.66. We have that:

-2
(97) ky = hy — (”“2 )
(98) a:h1~ml(m21”5)—2
(99) k=1,
and:
(100) z=2h —m}+4m; —5>0

PROOF. we prove only formula (100): the rest is straightforward. Putting in
Equation (88) the formulas (97) we obtain (putting b = ("”2_2)):

T = —kim; — k2my + o?
= (b1 —b+1)* —my — (ha = b)°
=2(hy —b)+1-my
= 2hy —m? + 4m; — 5.
O

From now on, until the end of this subsection, we will suppose that the singular
points of F; are out of Fy, i.e. Sing(F1)NC = 0.

THEOREM 4.67. The following identity
(101) ' hl = 2(m1 - 2) —t+1
holds, where t is the length of C N Cy (and s0 0 <t < 2).

PRrOOF. We recall, as in the proof of Equation (96), that the cone xp given
by the secant lines of F} which meet a (general) point P of P* also, has degree h;.
Then a hyperplane section of xp through P is the union of h; lines of the ruling of
it. '

In particular, if we consider the hyperplane section H with the hyperplane
determined by P and Fj, the hg lines are: the secant line of the two non-coplanar
lines £ and ¢ (which are the irreducible components of Cir) which passes through
P, and the lines which are in the intersection of the joins PC—given by the lines
meeting P and C—and PCgy—i.e. the lines through P and Cy—and not passing
through the points of CN Cy.

Now, it is easy to see that

deg PC =degC = my ~ 2

while PCpr is the union of the two planes P¢ and PZ'; then, putting ¢t := deg CNChx,
we are done. i ‘ O

COROLLARY 4.68. The cases to be considered are the following:
1.t=0=z=mi+8m; —-11>0=2<m; <6
2.t=1=z=m?+8m -13>0=3<m <5
3.t=2=z=mi+8m -15>0=>3<m; <5
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PROOF. We use Equation (101) in (100) to eliminate k1, obtaining
z =m? +8m; — 2t — 11 > 0,
and solving it we obtain our claim. O

As in the preceding case, using formula (101) and Corollary 4.68 we obtain the
list of the possible surfaces Fy with their invariants:

THEOREM 4.69. The list of the possible (general) surfaces Fy with invariants
t, mi, h1 as above and with sectional genus 7 is given by Table 2; we have also,

case # ||t |mi | hi|m|alc|k |z

i 21 3 11012111110

i 21 4 310131221

iii 21 5 51113131210

iv 1) 5 6 |0i413] 32

v 0] 6 91141413 |1
TABLE 2

for these surfaces, k1 = 1.

ProorF. It is a straightforward consequence of formula (101) and Corollary
4.68. We observe that cases t = 1 with m; = 3,4, ¢t = 0 with m; = 2,5 must be
excluded since we have m = —1 and ¢ = 0 with m; = 3,4 since we haver = -2. O

As in the preceding case, let us analyse the possible cases of smooth surfaces:

LEMMA 4.70. If, in the hypothesis of Theorem 4.69 we add that Fy is smooth,
then Fy must be rational.

PROOF. An element of the pencil of hyperplanes through the plane Fy of C
intersects F} in a couple of skew lines £; and £ (meeting C in ¢ points). Therefore
the linear system of—say—/; has dimension at least one, so, by Noether’s Lemma,
we conclude. (]

THEOREM 4.71. If the surface Fy is smooth, then only the case (i) of Table 2
is effective.

PrOOF. Let us study each case separately:

1. The case (i) of Table 2 gives, as the possible Fi, the cubic scroll S q; C
should be a line, so it can either be a line of the ruling of the unisecant line
of the scroll; besides, Fj is a plane through C. C cannot be a line of the
ruling, since if we consider a hyperplane H containing F3, then H intersects
F; out of C in a plane conic.

Then C can only be the unisecant line and F, a plane through it. It is
obvious that with this configuration we have a first order congruence, since
a general hyperplane containing Fy intersects Fy in two (skew) lines of the
ruling.

2. The case (ii) of Table 2 gives, as the possible Fi, a (projected) Veronese
surface, which cannot generate a first order congruence since the Veronese
surface does not contain lines.

3. The case (iii) of Table 2 gives as Fi an elliptic quintic scroll, which has
sectional genus 1 and it is not contained in any quadric, but it is cut out by
cubics; but this surface cannot generate a first order congruence, since it is
not rational. We can prove this also directly: C should be a cubic smooth
plane curve, since it has genus 1 by adjunction. Then C is a unisecant cubic
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curve of the scroll. But then if we intersect F; with a hyperplane through
Fy, we would have a couple of skew lines, which cannot occur, since for
the elliptic quintic scroll the hyperplane through a unisecant cubic gives a
reducible (plane) conic.

4. The case (iv) of Table 2 gives, as the possible Fi, a quintic with rational
sections, which does not exist.

5. The case (v) of Table 2 gives, as the possible Fj, a sextic with sectional
genus 1, which does not exist. ,

O

REMARK. Reverting the argument of the proof just given, we see that the sur-
face of the preceding theorem, with the configuration given in the proof, generates
a first order congruence.

5.2. Case ms # 1. We will suppose now that Fy is not a plane.
Let us start with the following

THEOREM 4.72. If Fy is not a plane, then Fy has degree three. So either Fi is
the rational normal scroll 51,2 or it is a cone over a rational normal curve of degree
three.

Proor. We will denote with u the number of lines passing through a general
point of P* which meet the (at most) one-dimensional scheme C := F; N F, and
are secants of Fj.

We have that the cone xp of the secant lines of Fi passing through P has
degree hi, so we have hymg lines of this cone meeting F5 too. Ounly one of these
lines does not meet C, since we have a first order congruence (and the lines of the
join of C and F} give a congruence which is distinct from A, since F; is not a plane
and A is, by hypothesis, irreducible), so v = hymy — 1

On the other hand, since F, is not a plane, through a general point @ € Fy
cannot pass infinitely many secant lines of F} meeting C also, since these lines
would be lines of the congruence and varying the point @, we would obtain all the
lines of the congruence; then, we had a congruence of the fourth type (i.e. the lines
meeting a curve and a surface).

Then, through @ there pass hj(ms — 1) secant lines of F} meeting again Fj,
that must be the v secant lines of F} passing through @ and that meet C also.
This is due to the fact that if one of the hy (ms — 1) lines would meet F, outside C,
then this would be a focal line, since it contained (at least) four focal points. So,
A would have a focal hypersurface.

So, we have

u = h1m2 -1
= hi(mg — 1)

and so h; = 1, and, as usual, by Castelnuovo’s bound, we obtain m; = 3. Therefore
it is a surface of minimal degree, so it is the rational normal scroll S 2, or the cone
So,3. O

REMARK. From this proposition, we can give an alternative proof of the fact
that in this case C' must be one dimensional.

In fact, if £} is the scroll Si,2. the cone xp of the secant lines of F) passing
through a general point P will be the pencil of lines through P in the (unique)
plane IT which contains P and intersects F} in a conic. Since A is a first order
congruence, mg — 1 of the my points in common between II and F» must be in C;
so C has dimension (at least) one, since by hypothesis we have msy # 1.
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If Fy is the cone Sy 3, the cone xp of the secant lines of F; passing through
a general point P will be a plane: in fact, if we consider a general plane II, this
will span a hyperplane H with P; then, this hyperplane will intersect F} in a
rational normal cubic, which has only one apparent double point, i.e. there will
pass only one secant line of it through P. Then, arguing as before, we conclude
that dim(C) > 1.

We will suppose now that Fj is the scroll S »; clearly analogous results can be
proven in the case of the cone.

PROPOSITION 4.73. If Fy = 51,2, we have that
(102) ¢ <2(mg —1).

Proor. If £is a generic line of the ruling of the scroll F1, then £NC has length
i < (mg — 1), since for a (general) point P of £, the cone xp of secant lines of F}
through P will be the pencil of lines through P in the plane given by £ and the
unisecant line of the scroll d, and the ms — 1 points of intersection of C' with this
plane will be contained in the lines of the pencil xp which meet C also and the line
£ is an element of xp. "

So, intersecting C with the hyperplane given by two lines of the ruling £ and #'
of the scroll, we obtain, as £N C and £ NC two zero dimensional schemes of length
i, and so out thesis follows. O

PRrROPOSITION 4.74. If Fy = Sy,3, we have that
(103) c < 3(mg —1).

Proor. If £ is a generic line of the ruling of the cone F1, then £NC has length
p < (mg — 1), since for a (general) point P of £, the cone xp of secant lines of Fy
through P will be a pencil of lines through P, and the my — 1 points of intersection
of C with this plane will be contained in the lines of the pencil xp which meet C
also and the line £ is an element of xp.

So, intersecting C with the hyperplane given by three lines of the ruling £, ¢
and £" of the scroll, we obtain, as £N C and £ N C three zero dimensional schemes
of length , and so out thesis follows. O

PROPOSITION 4.75. We have that

(104) ki =2mqg —c
(105) k=1
(106) _ n = 4ms — 2¢

PRrOOF. Let us start proving formula (105); ko is the number of lines of the
congruence contained in a hyperplane H that pass through a general point P of
the curve Cy g = H N Fy; to compute this number, we consider the rational normal
curve C1,g = H N Fy, which has one apparent double point, so we have only one
secant line of C1,m passing through P, and this line (for P general) cannot intersect
C, otherwise we had C = Fy.

For proving formula (104), we recall that k; is the number of lines of the
congruence contained in a hyperplane H that pass through a general point P of the
rational normal curve C; g these lines are the secant lines of C; g passing through
P and that meet Cs g out of C. So we have to intersect a cone of degree 2 and the
curve Cy g of degree my, obtaining 2mg points, from which we have to subtract
the points of C, whose number is ¢. 4

The last formula follows from formula (87). , : : O
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COROLLARY 4.76. We have that: ,
(107) = (2my —c)®> —my > 0.
ProoOF. We use the formula (88) in this case
z = —3(2mg — ¢)? — my + (4my — 2¢)?

= (2m2 - 0)2 - mj.

From this we can obtain an improvement of Propositions 4.73 and 4.74:
COROLLARY 4.77. The following inequality holds:

(108) ¢ < 2mgy — \/ma.
THEOREM 4.78. The surface F; is rational.

Proor. We can construct a rational map in the following way: given a general
plane II, we can associate to a general point P in this plane, the unique point of
Fy contained in the plane of the secant lines of F} passing through P and that is
not in C. O

We can summarize what we have proven:

THEOREM 4.79. If Fy is not a plane, then Fy either is the rational normal
scroll 819 oris theA cone So,3 and Fy is a rational surface.

REMARK. If restrict ourself to smooth surfaces, then, by a Ellingsrud and Pe-
skine’s Theorem, see [EP89], we have only a finite number of cases.

6. Congruences of the Third Type

NoOTATIONS. Let us consider three irreducible surfaces Fy, Fy and F3, and the
congruence A of the lines that meet once each of the three surfaces.

So, F = Fy U Fy U F3 is our (pure) focal surface. In this case, we will denote
with m; the degree of F;, 7 =1,2,3; s0 m = my + mq + ms.

First of all, we can give, as in the preceding sections, some observations on this
situation from the point of view of the Schubert calculus.
We recall from proposition 4.48 that the (flat) family M (F;) of the lines meeting
F;, i=1,2,3 is a family of dimension 5, and that
M (E) = mM;J10-

REMARK. If the three surfaces are in general position i.e. they intersect two by
two in a scheme of dimension zero (and not in a curve), so we have, as a Schubert
cycle

(109) B = M(F1) - M(F) - M(F3)
(110) = (m1010) - (Ma010) - (M3010)
(111) - =mama(og0 + 011) - (M3010)
(112) = mimam3 (2091 + 030), -

So, in order to obtain a congruence of the first order, we must have m; = 1,
1=1,2,3, i.e

THEOREM 4.80. If the three surfaces Fy, Fy and F3 meet properly, then these
surfaces are three planes and the congruence has bidegree (1,2). Each of them is a
fundamental 2-locus (of multiplicity one), and we have a 1-parasitic plane also: the
plane spanned by the 3 points F1 N Fy, Fy N F3 and F; N F3.
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We can repeat the observations given in the preceding sections; the proofs are
(almost) the same given before:

PROPOSITION 4.81. If 1 is a i-parasitic plane and we call y; the degree of the
curves C;, = FyNn, with i = 1,2, 3, we have that

(113) 1= p1p2ps

NoOTATIONS. We recall that m; is the &egree of F; and we denote with k; the
multiplicity of F; N Vi1 in Vi1, 1 = 1,2,3.

Propositions 2.26 and 2.27 are

PROPOSITION 4.82. The following formula holds:
(114) ki +k+ks=a+1.

ProprosITION 4.83. The following formula holds:
(115j k2my + k2mg + kims = o — .

NoTaTIONS. From now on we will denote with Cj ;2 the scheme (of dimension
less or equal to one) intersection of F; and Fj, 1 < i < j < 3. The degree of the
subscheme (possibly empty) of pure dimension one of Ci4j—3 will be indicated with

Citj—2-
The first important fact is the following:
THEOREM 4.84. At least one of the 3 surfaces Fy, Fy and F3 is a plane.

PRrOOF. Assume by contradiction that none of the surfaces Fy, F» and Fs is a
plane.

We will denote with u the number of lines passing through a general point
P of P* which meet the—possibly empty—subscheme Z of Cy U C3 given by the
components of Cy U C3 of dimension one, and meet F; and F3 also.

Since we have analysed the case in which the three surface meet properly, we
can suppose that—at least—C; is in fact a curve. We have that the cone xp of
the lines passing through P and meeting both F; and F; and not pass through the
points of C; has dimension two and degree mymy — ¢;. We have to cut out the
points of C; since the lines meeting C; and Cs form in fact a congruence distinct
from A and A is irreducible.

We have (mims — ¢;)mg lines of the cone xp meeting F3 too. Only one of
these lines does not meet Z, since A is a first order congruence (and the lines of
the join of Z and F; give a congruence which is distinct from A, since F; or Fj is
not a plane and A is, by hypothesis, irreducible), so

(116) (mimg —c1)mz =u+ 1.

On the other hand, F3 is not a plane, so if @ is a general point of F3, Z C Fj
and @ are not coplanar. Besides, through a general point ) € F3 cannot pass
infinitely many lines of the join of Fi and Fy meeting Z C F3, since these lines
would be lines of the congruence and varying the point @, we would obtain all the
lines of the congruence; then, we had a congruence of the fourth type (i.e. the lines
meeting a curve—Z—and a surface, F3).

Then, through @ there pass (mimg — ¢1)(ms — 1) lines of the join of Fy and
F, meeting Z, and so
(117) U= (mymz - Cl)(mg - 1)

From Equations (116) and (117) we deduce that mymg = ¢; + 1. This means that

the general projections of F; and Fp—under ¢, the prOJectlon from a general point
P € P*—intersect out of ¢(C}) in a line 4.
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Besides, since we can suppose my > mg > 1, it follows that ¢ > my +1 >
my + 1. Therefore, deg(¢(C4)) = ¢1, ¢(C1) cannot be a plane curve and so C;.

¢~1(£) is given by two lines £, C Fy and £, C Fy (non necessarily distinct) and
for every choice of P € P* we have two of these lines, so we deduce that the trisecant
line of the congruence through P must be in the intersection of the two planes Pl
and Pfy. Then, £; and £, meet in (at least) one point, which, by definition, must
be contained in C; = F; N F3, but this is impossible, since the general line of the
congruence do not intersect Cf. ‘ O

Then, either one of the surfaces is a plane or two of them are planes. The case
of three planes was just considered. We consider the two cases separately:

6.1. The case in which F; and F3 are planes. Let us suppose then that
Fy and Fj are planes and F1 a non-linear surface.
What we said at the beginning of this section in Proposmons 4.81 and 4.83, in

this case means:

COROLLARY 4.85. With notations of Propositions 4.81 and 4.83, the following
formulas hold:

(118) i = p, E2my + k3 + k2 = a® — .
But naturally, we can say more: '

PRrROPOSITION 4.86. The following formulas hold:

(119) k=1,
(120) k2 =1my — Cy,
(121) ]Ga =mi —C1.

PROOF. If g is the scroll given by the lines of the congruence contained in a
hyperplane H, then H N F;, with 7 = 2,3 is a line £;, while H N F} is a curve Cy of
degree my, with ¢;—; points in common with ¢;. The multiplicity of ¢; is k; since, as
usual, k; is the number of lines of the congruence contained in H that pass through
a general point P; € £;. The cone xp, of the lines of the congruence passing through
the general point P; of ¢; is given by the lines of the pencil of centre P; contained in
the plane P;/; which meet Cpg out of Cj_1, with i # j; so we have formulas (120)
and (121).

ki is the number of lines of the congruence contained in H that pass through a
general point P € Cp; then k1 = 1, since the only line is given by the intersection

of the two planes Pl and Pl;. O
COROLLARY 4.87. The following formula, for the second degree a, holds: |
(122) a=2m;—c —Cy.
ProOF. It is formula (114) knowing formulas (119), (120) and (121). O

COROLLARY 4.88. The following formula holds:
(123) 4m? — m1(2c; + 2c2 + 1) — 2100 — z = 0.

PROOF. It is the second formula of Corollary 4.85 knowing formulas (119),
(120),(121) and (122). O

NoTATIONS. Let us fix some other notations: let P be a general point of P*,
the two hyperplanes PF; and PF; will intersect in a plane IIp which has a line in
common with F;—say it £;—with ¢ = 2,3. These lines pass through the point Cj
and let £p the line joining P with Cs. Finally, let us denote with Az the multiplicity
of C3 for F; and with h; the multiplicity of C3 for Cy, 1 = 1, 2.
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PROPOSITION 4.89. The following formula holds:
(124) my—1= (a1 — h1) + (cg — hg) + hs;

vice versa if Equation (124) is satisfied with the hypothesis of this section, then we
have a first order congruence.

Proor. If fact, we have that only one line of the congruence passes through
the general point P of P%; the formula is obtained in this way: consider the cone
xp of lines through P and meeting F1. xp has dimension 3 and degree m;. But a
line of the congruence must intersect the two planes F, and F3, i.e. it is contained
in the plane IIp. IIp N xp is given by m, lines (counted with multiplicities), and
among them there are the line {p with multiplicity h3 and the lines joining P and
the points of Ilp N C;, ¢ = 1,2, which are ¢;; but among these ¢; lines, there is the
line £p also, counted with multiplicity A;; so formula (124) holds.

Reverting the proof we get the second part of the theorem. O

THEOREM 4.90. The surface Fy is rational.

PRrOOF. Let II be a general plane of P4 and Q € II a general point of it. Let
IIg be the plane defined as above and £ and ¢3 the corresponding intersection of
Mg with F; and F3 respectively. IlgNF; will be given by a 0-dimensional scheme of
length my; but in this intersection, we have that the subscheme which has support
in C3 has length hs, while C;, i = 1,2 intersects II out of C3 in a scheme of length
(c;— h;). Then, by formula (124) we have that there is only one point Py € IIgNF;
which is not contained in 4;, 7 = 1,2. The map

) oI F
defined by ¢(Q) := Pg is, in fact, birational. O
PROPOSITION 4.91. A parasitic plane passes through Cs.

Proor. Indeed, a parasitic plane must intersect Fy and Fj in a line, so it must
pass through Cj. O

6.2. The case in which there is a plane only. Let us suppose then that
F; is a plane and F; and F; are not linear surfaces.

What we said at the beginning of this section in Propositions 4.81 and 4.83, in
this case means:

COROLLARY 4.92. With notations of Propositions 4.81 and 4.83, the following
formulas hold:

(125) 1= Uila, Emy +k2mg 4+ k2 = a® — z.

But naturally, we can say more:

ProrosITION 4.93. The following formulas hold:

(126) kl =My — C3,
(127) kg =Tm; — Cg,
(128) ks = mimsg — €1 — CaC3.

PRrOOF. If By is the scroll given by the lines of the congruence contained in a
hyperplane H, then H N F3 is a line £3, while H N F;, with i = 1,2, is a curve C; 5
of degree m;, with ¢;4.1 points in cornmon with £3.

The multiplicity of C; g is k; since, as usual, k; is the number of lines of the
congruence contained in H that pass through a general point P; € Cj g. The lines
of the congruence passing through the general point P; of C; g is given by the lines
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of the cone xp, obtained by the join of P; with Fj, , with 4 # 7, contained in the
plane P;Z; which meet £3 out of Cj11; so we have formulas (126) and (127).

ks is the number of lines of the congruence contained in H that pass through
a general point P € f3; then these lines are the intersection of the two cones x;
obtained as the join of P with F;, , with ¢ = 1, 2, to which we have to subtract the
lines of the cones which pass through C; N C3 and through C;. So formula (128)
holds.

]
COROLLARY 4.94. The following formula holds:
(129) a4 =1mims —Cg —Cy — € — C1C3 — 1.
Proor. It is formula (114) knowing formulas (126), (127) and (128). O

COROLLARY 4.95. The following formula holds:

(130) (’mz — 63)2’m1 + (m1 - 02)277’&2 + (m1m2 —C1 — 6263)2 =
= (myms —c3 —Cy — €1 — €13 — 1)2 - .
Proor. It is the second formula of Corollary 4.92 knowing formulas (126),
(127),(128) and (129). O

PROPOSITION 4.96. If C is a curve of P3 of degree m and M(C) is the family
of lines meeting C then, if we consider M(C) as a cycle in the Grassmannian, the
following formula holds:

(131) M(C) = maoio-
PRrOOF. We are interested in the lines meeting C'; it is easy to see that these

form a (flat) family M(C) of lines of dimension 3, so it determines a. cycle of
codimension 1 in the Grassmannian. Then, we have, as Schubert cycle

M(C) = bG’lo.

We can actually calculate a:
we recall that

o0 ={£€G(1,3) | LNt #0}
and its complementary cycle is v »
o0 ={L€G(1,3) | P €£CP?}.
From this observation we see that
M(C) 091 =0
=m,

since the general plane section gives m points and the lines of the congruence
passing to a general point P of this hyperplane are the lines through P and the m
points. , O

THEOREM 4.97. The following formula holds:
(132) a = 2mymy — (1 + c3my + cama).

Proor. We recall that the second degree a of the congruence is given by the
lines of the congruence contained in a hyperplane H that meet a (fixed) line £ C H.

Let H be a general hyperplane and £ a line in it. We set £3 := HNF3 and C; y
the components of H N F; with ¢ = 1,2, out of F3. By formulas (126) and (127),
we have that deg(C1,5) = mq — ¢z = ko and deg(Ca,z) = m2 — c3 = ki
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We have to find the degree of the scroll Xy given by the lines of the congruence
contained in the hyperplane H. If the line £ meets {3 in one point, then through
this point will pass k3 lines of the congruence.

‘We have to find now the lines meeting £, F; and F3: we have seen in Proposition
4.96 that the family of lines meeting a curve C of degree m is, as a Schubert cycle,
maig, SO, the number of the lines meeting our three curves is given by the following
intersection

M(ﬁ) . A/I(Fl) . M(FQ) = Ulo(kldlo)(kzo‘lo)
= 2k1k2091,

i.e. we obtain a scroll of degree 2k k. Therefore there are 2k ky lines meeting
{3 C F; also. But among these 2k;ko lines, there are kikg through P := f3 N {:
these are the lines in common of the two cones xpc, » and Xp,c, y With vertex P
on Cy g and Cy g. Then, the number of the lines of the congruence meeting £ is
given by:

a=kiks + ks

= (my — c3)(ma — ¢3) +mimg — c1 ~ c203

= 2mymg — (€1 + camy + camia)

and so the theorem is proved. ' O

LEMMA 4.98. If H is a hyperplane containing the plane F3, then Alg is a first
order congruence of H = P3.

Proor. If H is a hyperplane containing F3 and P a general point in it, any
line of the congruence through P will be contained in H, since it has to meet F3.
Vice versa, if Q is a general point of P4, it will span with Fj a hyperplane Hg), and
the line of the congruence through ) will be contained in Hg, since it meets Fj.
So the lemma is proved. ‘ O

COROLLARY 4.99. One of the following formulas hold:
1. either co =my — 1,

2. orcg =mg — 1.

PROOF. By the preceding lemma, the congruence restricted to a hyperplane H
containing F3 is a first order congruence of H. In particular, this congruence is a
congruence of the second type of P3, i.e. we are in the hypothesis of Theorem 3.12
and the congruence is given by the lines joining the two curves C; g where C; g are
the components of H N F; with 1 = 1,2, out of F3. In particular, one of these, e.g.
C1,m, is a line. Then, we have, by formula (126):

deg(H ﬂFl) =mi

= deg(Cr,m) + c2
=1+cq,

i.e. g =mp — 1. O

NoTATION. Let us suppose for the rest of this section that co = m; — 1, which
is obviously not restrictive.

With this assumption, we deduce, from formula (127) that
(133) ko =1,

and we can prove the following:
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THEOREM 4.100. The surface Fy is a rational scroll, possessing an unisecant
curve C4 which is the irreducible component of Co formed by the points which do not
lie on a focal line; besides, the general line of the ruling intersects Fp in my —cg—1
points.

PROOF. As we saw in Lemma 4.98, if H is a hyperplane containing F3, then
Algr is a first order congruence of H. A|y is a congruence of the second type of P?,
i.e. we are in the hypothesis of Theorem 3.12 and the congruence is given by the
lines joining the two curves C; gy where C; g are the components of H N F; with
i = 1,2, out of F3 and, by the hypothesis done and by preceding Corollary, C1 m, is
a line. We denote with C} the (irreducible) component of Cy which is not contained
in the join of Cy g and Cs g.

Besides, if IE”};3 is the pencil of hyperplanes containing F3, and we vary H in
this pencil, we obtain that F} is a scroll, and the general line C; g will meet Cj in
a point, since otherwise C} would be an isolated component of Fj.

If we fix a (general) hyperplane H, by Identity (133) we deduce that there is
only one line of the congruence contained in H that pass through a general point
P € CY; from what we said above, this is a line of the join of Cy y and Cy . In
particular, these lines give a birational map

d):c’l,H —‘)Cé

from the line C1,m onto its image, and ¢(Q) is defined as the intersection of the
cone xq of the lines of the congruence A|g passing through @ and the curve Cj.
Then we deduce that F5 is a rational scroll and Cj is its unisecant curve.

Finally, since Alg is a first order congruence of H, we have that C; g meets
Ca r in deg(Cs ) — 1 points. ' ‘

From formula (127) we obtain:

deg(Co,m) = 1=k —1

Zmz—(’,‘g—l.

COROLLARY 4.101. The following formula holds:
(134) length(C’l n F3) = - (mz —C3 — 1)

ProoF. We recall that the curve C; is the intersection of F; and F;. In
particular, if H is a general hyperplane, then length(C; N H) = ¢;.

If H is a general hyperplane containing F3, by Theorem 4.100, we have ms —
¢z — 1 points of F; N F; out of Fs; so formula (134) holds. O

THEOREM 4.102. The surface Fy is rational.

PRrOOF. Let II be a general plane of P* and @ € II a general point of it. Let IIg
be the plane contained in the hyperplane H := QF; and containing the line Cy g,
i.e. the component of H N F; out of F3. Clearly, £:= F3 N1Ilg is a line. IIg N F5
is a O-dimensional scheme of length ms; but in this intersection, the subscheme
which has support in C) g has length mg — ¢z — 1, by Theorem 4.100, and the
subscheme contained in F3 is £N C3, which has length ¢3. Then, there is only one
point Pg € llg N H which is not contained in £ or Cq . The map

¢: 11 = Fy
defined as ¢(Q) := Pq is, in fact, birational. a
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7. Congruences of the Fourth Type

NoTATIONS. Let us consider an irreducible surface F; and an irreducible curve
C, and the congruence A of the lines that meet once the surface and the curve.

So, F' = Fy U C is our (pure) focal locus. In this case, we will denote with m,
the degree of Fy, and with mqy the degree of C.

As usual, we can give some observations on this situation from the point of
view of the Schubert calculus. _ ’

‘We recall from proposition 4.48 that the (flat) family M (F}) of the lines meeting
F is a family of dimension 5, and that

]VI(Fl) =mi0190.

We are interested in the lines meeting C; it is easy to see that these form a
(flat) family M (C) of lines of dimension 4, so it determines a cycle of codimension
2 in the Grassmannian. Then, we have, as Schubert cycle

M{(C) = aoy1 + bogg.
We can actually calculate the numbers a and b:
PRrROPOSITION 4.103. The following formula holds:
(135) . M(C) = maoq.
PRoOOF. We recall that
o = {£eG(1,4) | £CP® C P}
and its complementary cycle is
' o = {£€G(1,4) | £ C P?}.

So, since a general plane will not intersect C, we have that a = 0.
It remains to calculate the coefficient of ogg; we have

020 = {£ € G(1,4) | £n P! #£ 0}
and its complementary cycle is :
o3 = {0 G(1,4) | P € £ C P?).
From this observation we see that
M(C)-031=10
=My,

since the general hyperplane section gives mq points and the lines of the congruence
passing to a general point P of this hyperplane are the lines through P and the mq
points. 0

REMARK. If the curve and the surface are in general position i.e. they do not
intersect, we have, as a Schubert cycle

(136) B=M(F)- M(O)

(137) = (mlalo) . (mzo’go)
(138) = mima (030 + 021),

So, in order to obtain a congruence of the first order, we must have m; = mg =
1, i.e.

THEOREM 4.104. If Fy and C meet properly, i.e. FyNC =0, then F is a plane
and C is a line. The congruence has bidegree (1,1), Fy is the fundamental 2-locus
and C the fundamental 1-locus. We do not have parasitic planes.
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REMARK. It is easy to see that in this case the congruence, as a subscheme
of the Grassmannian, is the intersection of a hyperplane section (i.e. ;) and a
codimension two section (i.e. o). In particular, we see that this is a limit case
of the intersection of three hyperplane sections of the Grassmannian, i.e. if the
corresponding planes meet in a line. See also [Cas91].

Then, we consider the general case. First we will consider the case in which C
is contained in Fj and then the other case.

7.1. The case C C Fy. We have analysed in Theorem 4.7, (1) the case in
which Fi is a plane, so in the following we will suppose that F} is not a plane. We
start with the following

LemMA 4.105. If C C Fy, then C must be a plane curve.

PROOF. Let us prove the lemma ab absurdo: if £ = PQ is a general secant line
of C, we have that deg f~1(£) = 2, since P and Q are points both of C' and F; i.e.
£ is a focal line. Then the (embedded) secant variety of C, which has dimension 3
because C is not plane, is contained in the focal locus, which is absurd. O

THEOREM 4.106. If C' C Fy then there are the following possibilities:

1. C is a line and F is a rational surface of degree my and, if we suppose that
F1 has only isolated singularities, with sectional genus my — 2;

2. C is a conic and Fy is a projection of a rational normal scroll of type
Smi—2k,26, With my > 3, one of its unisecant curves is C' and a general
hyperplane through C intersects Fy in C with multiplicity k and in a line.

Proor. Let 7 be a plane containing C and IP}, the pencil of 3-planes containing
7. If H is a general element of P}, then A|y is a first order congruence of H = P3; in
particular it is a congruence of second type, i.e. we are in the situation of Theorem
3.12.

Besides, since C is a plane curve, and Fj is not a plane, C can either be a
line or a conic. In fact, if my > 2, then H N F) is given by C and a line £z, and
length{(C' N {fg) = ma —1 > 1, by Theorem 3.12. It cannot be £y C H, because
otherwise length(C' N £y) = ma. So, C must have a (my — 1)-multiple point P and
{5 pass through it. So, varying H in IP,l), we obtain that F is a cone with vertex
in P. But the general hyperplane section through P must be a line only out of the
plane 7, and so F; should be the union of n and a plane, which is a contradiction.

1. If C is a line, this is the fundamental line of Theorem 3.12; besides, HNF} is
a rational curve C of degree m; and we have that length(CgNC) = m; —1.
Therefore Fj is rational, by the map

¢:PL — By

where PZ is the set of hyperplanes containing C' and ¢ associates to H the
unique point of Cx N C which is not in €. The map is dominant because
otherwise the congruence would be given by the join of two curves and it
is injective because we have a first order congruence. We can also conclude
because an unirational surface is in fact rational. Besides, the sectional
genus 7(Fy) of Fy is obtained by adjunction:

m(F1) =g(Cu) +9(C) - 1+C1-C
=mi — 2.
2. If C is a conic, then H N F; must be a line £ and length(¢ N C) = 1, by
Theorem 3.12, and the thesis follows from Corollary 4.21.
. ' O
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COROLLARY 4.107. In the hypothesis of the preceding theorem, if we are in case
(2), then Fy is smooth if and only if is the rational normal scroll Sy 2 of degree 3
linearly normal in P*, i.e. formy =3 and k=1 and C is a unisecant conic.

REMARK. Let us consider case (1) of Theorem 4.106: let us suppose that Fj is

smooth; then, its hyperplane section is a (smooth) curve Cy C H = P? of degree
my and genus my — 2; we recall that

PROPOSITION 4.108. There exists a smooth curve C of degree d and genus g
in P®, whose hyperplane section D is non-special (i.e. k(D) = h®(K¢ — D) =0),
if and only if either

1. g=0andd2>1,

2.g=1andd>3, or

3.g>2andd>g+3.

See [Har77], page 350 for a proof.
Therefore Ci has the hyperplane section special, since it cannot be a plane
curve. We recall also that

PROPOSITION 4.109. If C is a curve in P2, not lying in any plane, for which
the hyperplane section D is special, then d > 6 and g > %—d—l— 1. Furthermore, the
only such curve with d = 6 is the canonical curve of genus 4.

See [Har77], pages 350-351 for a proof.

Clearly, we are in the hypothesis of the preceding proposition and we observe
that the condition g = d ~ 2 in fact implies, with g > %d + 1, that d > 6. By
Riemann-Roch we have

(139) x(Ocy, (1)) = deg(Cr) +1 - g(Cx)
(140) =3

and, since Cyr is not a plane curve, we have that h°(Oc, (1)) > 4.
Let us consider then the exact sequence of coherent sheaves on Fy defining Cy:

(141) 0 Op, -2 05, (1) = Oy (1) = 0
and the corresponding long exact sequence of cohomology:
0 — H°(Op,) = H*(OF, (1)) = H*(Oc, (1)) =
— HY(OF,) ~ HY(Op (1)) = HY(O¢, (1)) —
- H*(Op,) — -~

but Fj is a rational surface and it is not the Veronese surface, since its sectional
genus is not zero, and so it is linearly normal; then, we deduce

(142) RY(Og) =1
(143) R (Op, (1)) =5
(144) RY(Op) =0
(145) h*(Or,) = 0;

from equations (142) and (143) we get that h®(Og, (1)) = 4, and then, by (140)
we obtain that

(146) , RYOc, (1)) = 1.

Finally, from (146), (144) and (145), we get h'(Op (1)). We recall (see [Ale88])
the following

4.7. DEFINITION. The speciality of a rational surface S in P” is the number
g(1) == h*(Os(1)).
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So, we obtain that:

PROPOSITION 4.110. If the surface F1 of case (1) of Theorem 4.106 is smooth,
then it is a speciality one rational surface of P*,

Now, the speciality one rational surfaces of P* can have degree 8,9,10 or 11,
and are known and classified only the surfaces in degrees 8,9 and 10: see [Ale92].
In particular, in degree eight we have (see [Oko86]) the following

THEOREM 4.111. Let S be a speciality one rational surface of degree eight in
P4; then it is linked to a Veronese surface in a complete intersection of a cubic and

a quartic. S is a blow up of P? in 16 points z1,...,T15 embedded in P* by the linear
system

ID! = 171'*6L—'2E1 —"'—2E4—E5—'°'—E161
where 7 : S — P? is the blow up in the points ©1,...,T16, L is a line in P? and E;

s the fibre of ® over ;.

See [Ran88] and [Ale92] for references.
In degree nine we have the following

THEOREM 4.112. Let S be a speciality one rational surface of degree nine in
P4; then it lies on a net of quartics. In fact, if S is a rational surface of degree 9 in
P* with speciality q(1) > 0, then q(1) = 1 and the first and the second adjunctions
(we recall that the first adjunction map is the map associated to the linear system
|H + K|, where H is the hyperplane divisor and K the canonical divisor; then the
higher order adjunction maps are defined naturally by recurrence: see for exam-
ple [SomT79]) of S give a canonical sequence of birational morphisms of rational
surfaces

sts s,
where Sy is canonically a cubic surface in P3. The morphism fo blows up in three
distinct (closed) points z1, s, z3, while f1 blows up in siz distinct points T4, ..., Tg.
Let K1 and Ko be the inverse images of the canonical divisors of S1 and Sa respec-
tively, the linear system of the hyperplane sections of S is given by
|H| = [-K - K — K|
where K is the canonical divisor on S.

See [Ran88] and [Ale92] for references and proofs.
In degree ten we have the following

THEOREM 4.113. Let S be a speciality one rational surface of degree ten in P*;

then S is a blow up of P? in 13 points z1,...,2z13 embedded in P* by the linear
system

ID] = I7T*14L - 6E1 - 4E2 —_— = 4:E10 - 2F11 - E12 - E13|
where 7 : S — P2 is the blow up in the points T1,...,T13, L is a line in P? and E;

1s the fibre of ™ over z;.
See [Ran88]| and [Ale92] for proofs.

COROLLARY 4.114. A speciality one surface of degree my, with 8 < my < 10
contains (at least) a line.

Therefore, we have proven that

THEOREM 4.115. If we are in case (1) of Theorem 4.106 and we suppose that
Iy is smooth, then Fy is a speciality one rational surface, and so Fy is one of the
surfaces of Theorems 4.111, 4.112 and 4.113 or, if it exists, a speciality one rational
surface of degree 11. Vice versa, the lines meeting speciality one rational surface
and a line in it generate a first order congruence.
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Proor. It remains to prove that the lines meeting a speciality one surface and
a line in it generate a first order congruence; but this can be done reverting the
proof of Theorem 4.106. O

7.2. The case C ¢ F;.
NoTaTION. First of all, we set ¢ := length(C N Fy); then, we give the following
LEMMA 4.116. If C is not a plane curve, then Fy is a plane.

ProoF. We will denote with u the number of lines passing through a general
point P of P* which meet the zero-dimensional scheme F; N C.

We have that the two cones xr, p and x¢,p of the lines passing through P and
meeting respectively F; and C have dimensions 3 and 2 and degrees m; and mo.

Then, they meet in mime lines and only one of these lines belongs to A, since
we have a first order congruence, so u = mymg — 1, as the lines through F1 N C
cannot be computed as lines of the congruence; in fact, if @ € Fy N C the lines
through @Q form a star of lines, which is a first order congruence.

On the other hand, since C is not a plane curve, given a general point @ € C,
the cone xg,c (which has degree my — 1) cannot be contained in the cone xq,r,
otherwise all the secant lines of C' would meet F; and so they would be focal lines.

Then, through @ there pass mi(mq — 1) secant lines of C' meeting again Fj,
that must be the u lines passing through @ and that meet F3 N C also. This is due
to the fact that if one of the my(mg — 1) lines would meet Fy outside C, then this
would be a focal line, since it contained (at least) four focal points. So, A would
have a focal hypersurface.

So, we have

U=mimo — 1
= ml(mz - 1)
and so m; = 1. O

THEOREM 4.117. If F1 is a plane, then C is a rational curve such that ¢ =
mo — 1.

PROOF. Let P, be the pencil of 3-planes containing Fi. If H is a general
element of P}, , then Ay is a first order congruence of H = P?; besides, length(H N
C) = ma, i.e. a finite number of points. Therefore, Ay must be a star of lines
with centre Py € C; s0 ¢ = mg — 1 and C is rational by the birational map

¢:Pp = C
such that ¢(H) = Py. O

THEOREM 4.118. If C is a plane curve, then there are the following possibili-
ties:
1. C is a line and Fy is a rational surface and, if we suppose that F1 has only
1solated singularities, with sectional genus mi — 2; besides, ¢ = my; — 1;
2. C is a rational curve with a point P of multiplicity mo — 1 and F} is a cone
with vertez in P and basis a rational curve and the intersection of F} and
the plane of C is given by mq — 1 lines (and so, ¢ > (m1 — 1)ma).

PRroOF. Let n be a plane containing C' and ]P’,l7 the pencil of 3-planes containing
n. If H is a general element of P}, then Ay is a first order congruence of H = P3;
in particular a congruence of second type, i.e. we are in Theorem 3.12. Besides,
since C is a plane curve, it can either be a focal line or a fundamental curve for
Alg and with mg > L. :
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1. If C is a fundamental line of Theorem 3.12 then H N F} is a rational curve
Cg of degree m; and we have that length(Cyr NC) = my — 1. Therefore Fy
is rational, by the map

gb : ch — F 1
where P% is the set of hyperplanes containing C and ¢ associates to H the
unique point of Cy N C which is not in €. The map is dominant because
otherwise we had that the congruence is given by the join of two curves and
it is injective because we have a first order congruence. We can also conclude
because an unirational surface is in fact rational. Besides, the sectional genus
m(Fy) of F is obtained by adjunction:

7(F1) =9(Cx)+g(C)=1+C;-C
= mji — 2. :

2. If C is a rational curve not a line, then H N F; must be a line £ out the
plane 17 of C and length(£N C) = my — 1, by Theorem 3.12, so F; must be a
cone with vertex on a point P € C of multiplicity mz2 —~ 1 for C and Fy Ny
is given by m; — 1 lines.

The base of the cone is a rational curve; in fact, called B the basis for
the cone, we see that the map

o IP’}7 —+ B
—where PJ; is the pencil of hyperplanes containing II—defined associating
the hyperplane H to the point b € B through which there is the unique line
£ C Fy N H not contained in n. The map is clearly birational, and so we are
done.

d0

As we have seen in Proposition 4.110, the surface of Theorem 4.118, case (1),
if it is smooth, is a speciality one rational surface of P4 But such surface must
have a (m; — 1)-secant line. Then surely the surfaces of Theorems 4.111 and 4.112
does not have, respectively, a 7 and a 8-secant line, since are contained in complete
intersections of hypersurfaces of degree < 4.

But, in fact, we can see that no one of the speciality one rational surfaces can
generate a first order congruence: if we project F} from a point of the (m; — 1)-
secant line £, we get a point P of multiplicity m; — 1 on the projected surface G.
Clearly, projecting from this point, or from ¢, to P2, we obtain a birational map. In
particular, the hyperplane section Gg through P of G is a (plane) rational curve
with only one singular point, P. But we see that F) is the desingularization of
G (or, the blow up of G in P) and taking the proper transform of Gy we get a
hyperplane section of Fj, which has genus ms — 2. But ms > 2, therefore this
situation cannot happen. So we have proved that

THEOREM 4.119. Smooth surfaces, giving a first order congruence as in Theo-
rem 4.118, case (2), do not ezist.

Besides, we have that

THEOREM 4.120. A first order congruence as in Theorem 4.118, case (2) ezists
only if my =1 and mg = 2, i.e. if C is an irreducible conic and Fy a plane meeting
C in a point (and so, c=1). :

Vice versa, given an irreducible conic and a plane meeting it in a point, then
the lines meeting both the varieties generate a first order congruence.

Proor. It is straightforward that these are the only smooth varieties of case
(2); besides, reverting the argument of the proof of Theorem 4.118, we get the
. second part of the theorem. O
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7.3. Final remarks on the congruences of the fourth type. Let us con-
sider a congruence B as a subvariety of dimension 3 in G(1,4); from the article
[ABT94] we can deduce which are the smooth congruences B of the fourth type.
We recall the following result of [ABT94]:

THEOREM 4.121. Let B C G(1,n) a smooth congruence of bidegree (ag,a;)
with @ fundamental 1-locus C. Then one of the following holds:

1. n = 3 and the congruence consists of the secants of either a twisted cubic or
an elliptic quintic; or :
2. the curve C is a line; then, denote with (=2 o,—2) the cone given by the
lines meeting C, then either
(a) agp = a1 and B is the intersection of I' with a hypersurface of degree
ag; or
(b) ap = a1 + 1 and B is linked to a (n — 1)-fold of degree n — 2 passing
through the vertez of T', in the intersection of I' with a hypersurface
of degree ag +1; or
(c) n =3, ap = a1 — 1 and B is linked under the complete intersection
of ' and a hypersurface of degree a; to a plane consisting of all lines
passing through a point; or
3. the congruence is a scroll, then either
(a) C is a conic andag =1 or 2, a; = 2; or
(b) C is a plane cubic and ag = a3 = 3; or
4. C 1is a plane cubic and ap = 3, a1 = 6.
Besides, it is possible to construct all the above congruences.

Therefore, we get

THEOREM 4.122. The smooth congruences B of the fourth type are only the

following:

1. B is given by the lines meeting a plane Fy and a line C' not intersecting, i.e.
the case of Theorem 4.104; ‘

2. the congruence is given by the lines meeting a plane Fi and a conic C meeting
in a point (out of the point in common), i.e. we are in the case (2) of
Theorem 4.118 with m1 = 1 and my = 2. For this congruence, we have
a=2andc=1.

Proor. It is straightforward to see that the only possible cases of first order
congruence of P4 in Theorem 4.121 are (2a) and (3a). The case in which we have a
line is straightforward. Concerning the case of the conic, we see that we can exclude
case (2) of Theorem 4.106 since in this case B is not a scroll, while in the case (2)
of Theorem 4.118, the only way to get a conic with B a scroll is with m; =1
and my = 2. We could conclude the case of the conic also directly, by quoting the
explicit construction given in this case in [ABT94|, page 54. O
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