ISAS - INTERNATIONAL SCHOOL
| FOR ADVANCED STUDIES

Thesis submitted for the degree of "Doctor Philosophiae”.

SOME NON-CONVEX PROBLEMS OF THE

CALCULUS OF VARIATIONS

CANDIDATE: CARLO MARICONDA

SUPERVISOR: PROF. ARRIGO CELLINA

Academic year 1990/1991

TRIESTE







Thesis submitted for the degree of "Doctor Philosophiae”.

SOME NON-CONVEX PROBLEMS OF THE

CALCULUS OF VARIATIONS

CANDIDATE: CARLO MARICONDA

SUPERVISOR: PROF. ARRIGO CELLINA

Academic year 1990/1991







Il presente lavoro costituisce la tesi presentata dal Dott. Carlo Mariconda, sotto la di-
rezione del Prof. Arrigo Cellina, in vista di ottenere ’attestato di ricerca post—universitaria
»Doctor Philosophiae”, settore di Analisi Funzionale e Applicazioni. Ai sensi del Decreto
del Ministro della Pubblica Istruzione 24. 4. 1987, n. 419, tale diploma & equipollente con
il titolo di dottore di ricerca in matematica.

Trieste, anno accademico 1990/91.

In ottemperanza a quanto previsto dall’ art. 1 del decreto legislativo luogotenenziale
31. 8. 1945, n. 660, le prescritte copie della presente pubblicazione sono state depositate
presso la Procura della Repubblica di Trieste e il Commissariato del Governo della Regione

Friuli Venezia Giulia.






ACKNOWLEDGEMENTS

I am very grateful to Arrigo Cellina for his generous advices and encouragement during

the preparation of this thesis.
I also wish to thank the staff of S.I.S.S.A. for providing a very comfortable environment.






SOME NON-CONVEX PROBLEMS OF THE
CALCULUS OF VARIATIONS




CONTENTS

INTRODUCTION, 6

I. ASSUMPTIONS AND PRELIMINARY RESULTS, 10
§I.1 Convex analysis, 10
§I.2  Relaxation and non—convex variational problems, 12
§1.3  Liapunov’s type Theorems, 15

II. EXISTENCE RESULTS FOR NON-CONVEX VARIATIONAL PROBLEMS, 25

III. EXISTENCE RESULTS FOR NON-CONVEX VARIATIONAL PROBLEMS OF
SLOW GROWTH, 31

§III.1 A preliminary result, 31

§III.2  Parametric problems, 32

§III.3  Non-—parametric problems, 35

IV. ON THE DENSITY OF MINIMUM PROBLEMS HAVING EXISTENCE, 38

V. AN EXISTENCE RESULT FOR NON-CONVEX VARIATIONAL PROBLEMS
WITH RESTRICTED ADMISSIBLE TRAJECTORIES, 43

REFERENCES, 46



INTRODUCTION

We consider the Problem of the existence of solutions to minimum problems of the
Calculus of Variations in the scalar case, when the independent variable is a scalar. We
are interested in minimizing

(P)  I(z) = /O F(t,2(t), 2 (£)) dt : & € WH([0,T], R™), 2(0) = a, 2(T) = b.

The basic reasoning used in the proofs of existence of minima for the functionals I(z) is
the following: by imposing conditions on the growth at infinity with respect to z' on the
integrand (Hypothesis (H), §1.2) one obtains that the functions that make the integral finite
are contained in a weakly compact subset of W12, so that a weakly convergent sequence
(z,) can be obtained. Now, in order to achieve the proof of the existence of a minimum,
one has to show that the value of the functional on the limit point Z of (z,) is not larger
than the lim inf of the values of the functional along the sequence, i.e one requires to have

(1) I(z) < 1imnian(a;n).

If the above equality holds for every sequence z, weakly converging to &, the functional is
called weakly lower semi—continuous.

In most of the recent books on the Calculus of Variations, the concept of weak L.s.c. plays
a preminent role and the following result is presented in main light (see [CE], [DA]).

THEOREM. A.necessary and sufficient condition for the weak l.s.c. of the functional I,
under suitable regularity and growth conditions, is that the map ¢ — f(t,z,{) be convex
for each t,z.

The previous Theorem had the effect that until recently, not much effort has been made
in order to provide Theorems guaranteeing existence of solutions without the condition
of convexity on the integrand. Nevertheless Tonelli’s convexity assumption on z’ is far
from being necessary for the existence of a solution to (P); in fact there is no reason to be
concerned about what happens along sequences that are not minimizing sequences.

The first problem that has been investigated outside the realm of weak l.s.c. has been the
problem of minimizing

T
(P1) /U Flt, &' (1)) dt, 2(0) = a, z(T) = b
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under the usual regularity and growth assumptions on f but without the condition of
convexity. Surprisingly, [O] and [MC]| showed that the above problem always admits at
least one solution.

When the integrand f depends on the space variable z, conditions under which (1) holds
for each minimizing sequence weakly converging to & (l.s.c. along minimizing sequences)
have been given in [A~T1], [R1]. The basic drawback of this approach (when the state
variable is a scalar) is that l.s.c. along minimizing sequences is equivalent to impose that
each solution to the convexified problem is a solution to the original one, so that these
results will never contain as a special case the result for problem (P1).

In [MC] and [C—C], Ls.c. is not considered: sufficient conditions for the mere existence
of a minimum are given. Their results below contain that for (P1).

THEOREM (MARCELLINI). Let g: R — R, h: R — R be such that f(z,z') = g(z) + h(z")
satisfies growth conditions, and g be monotonic. Then Problem (P) admits at least one
solution.

THEOREM (CELLINA-COLOMBO). Let g, h: [0,T] x R® — R be such that f(¢,z,z') =
g(t,z) + h(t,z') satisfies growth conditions. Assume further that z — g(t,z) is concave
for a.e. t. Then Problem (P) admits at least one solution.

In the proofs of the above results, a solution is built; this is in fact the main difference in
the investigation of conditions for l.s.c. and those for the (naked) existence. In particular,
the main tool of the proof of Cellina~Colombo’s result is Liapunov’s Theorem on the range
of vector measures: it allows to substitute to the solution # to the relaxed problem another
function Z, a candidate for being a solution to the original problem. This new function
is not defined directly; one defines a measurable function v(t) and Z(¢) is the primitive of
v. Liapunov’s Theorem has been succesfully applied for integrals on a symmetric domain
of R™ in [C-F], [F1], [F2]. In general, for integrals defined on non radially symmetric
domains the above reasoning cannot be followed: if our problem involves the gradient
and we define a measurable function v, there is no reason for v to be the gradient of some
function u. In spite of this, when the boundary datum u* is affine, i.e. u*(z) =< a,z > +b,
a necessary and suflicient condition for the existence of a minimum of

[ a(vule)de, wew + W@

‘has been given recently (with no assumptions on the domain) in [C1], [C2].
When no construction is involved, i.e. when the Theorems concern l.s.c. along minimizing
sequences, several results for functionals involving the gradient have been presented in

[A-T], [R3].



PRESENTATION OF OUR RESULTS

When the integrand f(¢,z,2') is not the sum of two functions whose arguments are
t,z and t,z’ separately, it is not known whether the concavity assumption on the map
z — f(t,z,z') is sufficient for the existence of a solution to Problem (P). Purpose of Ch.
IT is to consider this problem. In Theorem II.2 we prove that the functional I (under
concavity assumption) attains a minimum if we assume further the existence of a solution

(5:72717" <3 Pn+1y7V1, 7vn+1)
to the associated convexified problem (PR’) in the sense of [E-T] (§1.2) satisfying

n+1

(0) () 02 (~F(t,3(2), (1)) # Bae.

(0: (—f(t,Z(t),vi(¢))) being the subdifferential at the point Z(¢) of the convex function
z — —f(t,z,v:(¢)), see §1.1).
Obviously, each solution to (P) is a solution to (PR’) satisfying (C) (in this case it is
enough to set v; = - -+ = vy = solution to (P)). The cases for which our Theorem can be
usefully applied are those where the converse does not hold. For instance, condition (C) is
automatically satisfied (for each solution to the convexified problem) when the integrand
is the sum of two functions whose arguments are ¢,z and ¢,z’ separately (although if,
in general, there are solutions to (PR’) that are not solutions to (P)): in this situation
Theorem II.2 yields Cellina—Colombo’s existence result. As a further application of our
condition, we show (Theorem II.3) that Problem (P) attains a minimum if f(¢,z,2') =
g(t,z) + h(t,z)l(t,2') and its bipolar f**(¢,z,.) is locally constant on each A(t,z) = {¢:
flt,z, &) > f**(t,z,£)}. The main tools are basically the arguments of [C—C]: an extension
of Liapunov’s Theorem (Theorem 1.3.1) and a selection Theorem (Lemma II.1).
Non—-convex variational problems of slow growth are considered in Ch. III. If we assume,
instead of the usual growth assumption (H), the weaker condition that the integrand f
satisfies (Hy):

flt,z,2") > aft) - Blz| +7lz'| (a € L', BER, v > 0)

then Tonelli’s convexity assumption on z’ is no more sufficient to ensure existence to (P),
so that the convexified problem does not admit, in general, a solution. Assume that f(¢,z')
does not depend on the space variable z. In this situation the proof of Theorem II.2 show
that if the convex hull of the epigraph of ¢ — f(¢,z) is supposed to be closed for a.e. t and
if the relaxed problem (PR) admits at least one solution then so does (P) (without being
necessarily the same). We prove, in Theorem II1.2.2 that the above conditions are satisfied
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if f(z') is positive homogeneous of degree one (i.e. f(kz') = kf(z') for each k > 0) so
that, under this assumption, the parametric problem

b
minimize / flz'(t)) dt

among all rectifiable curves C : z = z(¢) satisfying prescribed boundary conditions admits
at least one solution. Analogously, an application of the above yields a non—convex version
of some non-parametric problems of slow growth, treated for instance (in the convex case)
in [CE, §14.3].

Tonelli, Marcellini, Cellina-Colombo’s existence Theorems lead to believe that, for maps
of the form g(z) + h(z') (z, ' € R), the property of yielding existence is strictly related to
very special behaviourin z or in @': either convexity in ' or concavity in z or monotonicity
in z. Purpose of Ch. IV is to show that this is not so. We consider the class of functions
g(z)+ h(z') where g : R — R is continuous and h : R — R is L.s.c. and we show that there
exists a subset D of the space of continuous functions, dense for the topology of uniform
convergence on compacta, such that, for g in it problem (P) has existence of solutions for
every function h satisfying growth conditions.

The main tool here is a one~ dimensional version of Liapunov’s Theorem (Proposition
1.3.1), due to M. Amar and A. Cellina, which cannot be extended in dimension greater or
equal than 2 (example 1.3.1).

Finally, a weaker 2-dimensional version of the previous Proposition 1.3.1 (Proposition
1.3.2) provides, under geometrical assumptions on the non—convex integrand f(z'), the
existence of a solution with fixed end points entirely contained in a prescribed closed half—
plane of R?. The problem whether this result can be generalized (i.e. other geometrical
features instead of a half-plane, less conditions on the integrand,...) is still open.



I. ASSUMPTIONS AND PRELIMINARY RESULTS

1. CONVEX ANALYSIS

Let us denote by < .,. > the usual scalar product in R™. Let f be a function of R™ into
R. If u* € R™® and a € R, the continuous affine fanction v —< v*,u > —a is everywhere
less than f if and only if

Yu € R", > <u*,u>—f(u)
ie. a > f*(u*)if we agree to set

(1.1) Fr(ut) = sup {< u"yu > —f(w)}
uER™

The consideration of the affine minorants of f thus leads to define by (1.1) a function f*
of R” into R = R U {co}.

- DEFINITION 1.1. If f:R™ = R, formula (1.1) defines a function from R™ into R, denoted
by f*, and called the polar function of f.

We refer to [E—T] for the basic properties of f*.
If we repeat the process, thereby leading to the bipolar

(1.2) f(u) = sgg {<u™u > —f"(u")},
u* n

the comparison between f and f** leads to the following

PROPOSITION 1.1 [E-T, Prop. 1.4.1]. Let f be a function of R into R. Then f** is the
greater convex lower semi—continuous (I.s.c.) function everywhere less or equal than f.

REMARK 1.1 [E-T, §1.3.2]: The epigraph of f** coincides with cl(co(epi f)), the closed
convex hull of the epigraph of the function f.

Let f be a mapping of R® into R. We say that an affine function [ everywhere less than
f is exact at the point u € R™ if I(u) = f(u). Necessarily, f(u) will be finite and [ will
have the form:

I(v) =<u™,v—u>+f(u)
=<u*,v>+flu)— <u",u>.
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As a consequence, we have:
(1.3) f(v) — f(u) > <u*,v —u > for every v € R".

DEFINITION 1.2. A function f is said to be subdifferentiable at the point v € R™ if it has
an affine minorant which is exact at uw. The slope u* € R™ of such a minorant is called a
subgradient of f at u, and the set of subgradients at u is called the subdifferential at u
and is denoted 0f(u).

Continuous convex functions are subdifferentiable:

ProrosiTiON 1.2 [E-T, Propr.1.5.2]. Let f be a convex function of R® into R and
continuous at the point u € R. Then 8f(u) # 0.
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2. RELAXATION AND NON—CONVEX VARIATIONAL PROBLEMS

The integrands used in the calculus of variations are normal integrands:

DEFINITION 2.1. Let Q be a measurable subset of R®, B be a Borel subset of R?. A
mapping f of Q x B into R is termed a normal integrand if:

(2.1) for a.e. t € Q, f(t,.) is I.s.c. on B

(2.2) there exists a Borel function F:QxB — R such that f(t,.) = f(t,.) for a.e. t € Q.

A first consequence of this definition is that if u is a measurable mapping of {} into B,
the function z — f(¢,u(t)) is measurable on (2.
Functions measurable in ¢ and continuous in z are normal integrands.

DEFINITION 2.2. A mapping f : Q x B — R is said to be a Carathéodory function if
(2.3) for almost all t € 1, f(t,.) is continuous on B,

(2.4) for all z € B, f(.,z) is measurable on .

PrOPOSITION 2.1 [E-T, Prop. VIIL1.1]. Every Carathéodory function is a normal
integrand.

Let f:[0,7] x (R™ x R®) — R be a normal integrand. We are interested in
T
(P) minimizing I(z) = / f(t,z(t),2' (t))dt : = € WHP([0,T],R"), z(0) = a, z(T) = b.
0

The following growth assumption will be considered:
HypoTHEsis (H): if p = 1, there exist: a convex l.s.c. monotonic function 1 : Rt — RT

such that
<1im ¥(r) = —i—oo) ,
r—0co 7T

a constant £, and a function a;(‘) in L' satisfying

ft,z,€) > ai(t) — Bi|z| + ¥(|¢]) for each =z,  and for a.e. .

if p > 1, there exist: a positive constant v,, a constant 3, (—gﬂ being strictly smaller than
P

the best Sobolev constant in Wy ?([0,7],R")), a function a,() in L' such that
f(t,z,€) > ay(t) — Bplz|? + vp|€|? for each z, £ and for a.e. t.

The basic existence criterion for solution to Problem (P) is the following:

12



THEOREM 2.1. Let f be a normal integrand of [0, T] x (R™ x R™) satisfying (H). Moreover
assume that

(2.5) V(t,z) € [0,T] x R, f(¢,z,.) is convex on R™.
Then Problem (P) admits at least one solution.

SKETCH OF THE PROOF: (see [E—T, Th. VIIL.2.2] for details) Tonelli’s convexity assump-
tion (2.5) implies the weak lower semi—continuity of the integral functional I(z), i.e.
for each sequence z,, in WP converging a.e. to z and such that z! converges weakly to

z', we have
I(z) < liminf I(z,).

Let z, be a minimizing sequence. By (H), the sequence z/, of the derivatives is contained
in a weakly compact subset of L? and we can extract a subsequence z),, converging to

t
u € L?. Then, if we set z(t) = a +/ u(s) ds the sequence z,, converges to z a.e. The
0

l.s.c. of I now gives

inf (P) < I(z) < limkinfl(:cn,c) = inf (P)

i.e. z is a solution to (P).
When f(t,z,£) is not convex in ¢, it is natural to introduce f**(¢,z,.), the bipolar of
f(t,z,.). We have the following

ProposITION 2.2 [E-T, PrOP. VIIL.2.1]. If f is a normal integrand of [0, T] x (R™ x R™)
satisfying (H) then f** is also a normal integrand of [0,T] x (R"™ x R™) satisfying (H).

The Problem of minimizing
T
(PR)  I'"*(z) = / F (6 (), 2! (8) dt : = € WH([0,T],R™), 2(0) = a, 2(T) = b
0

is termed the relaxed problem associated to (P).
REMARK 2.1: Since f** < f then min(PR) < inf (P).

The relaxed problem (PR) can be rewritten in an equivalent form.
ProrosiTION 2.3 [E-T, LEMMA 4.1]. Let f : [0,7] x (R* x R®) — R be a normal
integrand satistfying (H). Then, for any & € W([0,T]) such that f**(t,%(t),2'(t)) < oo
a.e. there exist n + 1 measurable mappings v; : [0,T] — R" and n + 1 measurable p; :

(0,77 — [0,1)(>"p; = 1) such that:

n-+1

(2.6) Zpi(t)vi(t) =Z'(t) ae.

13



n+1

(2.7) > D740l = (650, 5(0) e

SKETCH OF THE PROOF: Assumption (H) implies that coepi f(t,z,.), the convex hull of
the epigraph of f(¢,z,.) is closed for each t,z (see the proof of [E-T, Lemma IX.3.3] for
the details). In this situation we have [E-T, Lemma IX.3.3]:

n-+1 n-+1 n-+1
f**(t‘E)E = min {Zkftmvé : Zkifi:&)‘izoyz/\i:l}-
=1 =1

A measurable selection argument yields the conclusion.
We are thus led to reformulate the relaxed problem (PR’):

T n-+1
minimize/ sz t),vi(t)) dt
pi : [0,T] — H, v; : [0,7] — R™ measurable
(PR’) S opit)=1,pi >0

= Zpi(t)vi(f) €L?

z(0) =a, z(T) = b.

As a consequence of Proposition 2.3, (PR) and (PR’) are equivalent.
PROPOSITION 2.4 [E-T,§VIIL.4.5]. Under the hypothesis (H), min(PR)=min(PR’).

REMARK 2.2: The proof of Proposition 2.3 shows that in order to have (2.6) and (2.7), it
is enough to assume, instead of the growth assumption (H), the more general statement
that coepi f(t,z,.), the convex hull of the epigraph of f(t,z,.), is closed for every (t,z) €
[0,T] x R™.

Some cases for which coepi f(t,z,.) is closed for every (t,z) under weaker growth con-

ditions on f will be treated in Ch. IIL
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3. LIAPUNOV’S TYPE THEOREMS

The following extensions of Liapunov’s Theorem on the range of a vector measure [CE,
Ch.16] will be the main tools in the next chapters II, III, IV. The proof of Theorem 3.1 is
based on an argument by A. Cellina and G. Colombo [C—-C].

Let us indicate by xg the characteristic function of a set E. Also, by ¢ we mean the
Lebesgue measure on R™.

THEOREM 3.1 ([M1], [R2]). Let Q be a measurable bounded subset of R, fi ..., fm
be vector-valued measurable functions with values in R’ (1 >1). Let p1...,pm be real
valued, measurable and such that p;(w) >0, Y..pi =1, 3. pifi € L*(Q). Let us further
assume that there exists an integrable function § such that fj(z) > 6(z) for a.e. © € Q.
Then there exists a measurable partition Ey ,..., Ep, of ) with the property that Y. fixg, €
L'(Q) and the following equality holds:

(3.1) /QZpifi du=Y /E i dps

PRrROOF: Let us suppose that [ = 1, the general case being similar. By Lusin’s Theorem
there exists a sequence (K;)jen of disjoint compact subsets of Q and a null set N such
that = N U (U;K;) and the restriction of each of the maps f; to any K is continuous.
For any ; fixed in N, Liapunov’s Theorem on the range of vector measures [CE, Ch.16]
provides the existence of a measurable partition (E’ i=1,...,m of Kj with the property that

(3:2) /Kj Zpifi dp = / fidp

Set, for any v € N, the function s, to be

Each term of the right—hand side of the above equality is a sum of non—negative terms,
hence the sequence s, is monotone non—decreasing. Furthermore, by (3.2) we have:

[ i = ZZ U= 8)d

j<r i=1
—z/, zpz
i<v

SL(;Pifi—5)dy< 0.
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Moreover, if we set E; = UjEN(EZ), we have
ligns,, = Zfixgi — 6 a.e.
1

Then Beppo Levi’s convergence Theorem implies that : >, fixe; € L'(Q) and
/ ZfiXE,- dp = / lims, dy + / §dp
Q Q v Q

———lim/ sl,dp—{—/édp,

=/Q£:pi(fi—5)ndu+/ﬂ5du
:szifid”’

which proves (3.1).

A generalization of Theorem 3.1 to the case where Q is not bounded has been given by
F. Flores in [F]. The following Corollary to Theorem 3.1 is strictly related to the relaxed
formulation (PR’) of a variational problem (P).

COROLLARY 3.1. Let f:[0,7] x (R® x R®) — R be a normal integrand satisfying (H).
Let & € WH2([0,T],R™), p1,.-.,pPm : [0,T] = [0,1] (3 ;pi = 1), 1y ,Vm : [0,T] — R™

be measurable and such that
(3.3) 3= pivi, > pilt)F(4,8(t),vilt)) € L.

Then there exists a measurable partition E,...,En of [0,T] satisfying

1

S vixe: € 17, Y F(t (0, vi(t)xe: (1) € 1

and the following equalities hold:



PROOF: Let us denote by v;" (resp. v; ) the positive (resp. negative) part of v;, so that
v; = vl —wv] and |v;] = v +v]. Set f; to be the function defined by:

fi(t) = ('U?M(t%vi_(t%f(tvi(t)vvi(t))°

Let us show, in order to apply Theorem 3.1, that Y . p;fi € L*. By (3.3), it is enough to
prove that 3. p;|v;| € L. For this purpose, let us remark that by (H) we have ) . p;|v;|? €

L. Since p; < p/? (p; < 1) then Hélder’s inequality leads to

m m 1/p
> pilvil < (Zpilvilp> m! /P
i=1 i=1
so that > . p;|v;| € L', which proves the claim.
Moreover, if we set 6(¢) = (0,0, ap(t) — Gp|Z(¢)|?) then by (H) we have:
fi(t) > 6(2) a.e.

Theorem 3.1 yields the conclusion.

In the case where n = 1 and f : R — R does not depend on (¢,z), the measurable
partition of Corollary 3.1 can be chosen in a more precise way.

ProrosiTioN 3.1. Let f : R — R be Ls.c. and satisfy (H), let p1,p2,v1,v2 : [0,T] — R be
measurable (p; > 0,p1 + p2 = 1) and such that:

P11 + povz € LY, pif(vi) + paflvze) = f**(p1vs + pave) € L.
Then there exists a measurable partition E1, Ey of [0,T] such that

> vixm € L7, Y f(4,8(8),vi(t)xE: € L

13

and the following relations hold:

T T :
\/(; ;pividtzl Zi:'UiXEf dt,
(3.5) . .
| S = [ nsw @m0

and, for each t,

t t
(36) / ZviXEi dt 2 / Zpi’vi dt.
0 vy

The proof of Proposition 3.1, due to A. Cellina and M. Amar, is based on Lemmas 3.1
and 3.2 below.
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LEMMA 3.1 [A—C, LEMMA AE]. Let & : [0,T] — 2% be a multivalued function with
values in the closed intervals of R. Let K C [0,T] be a measurable set such that ®(t)xx (1)
is integrably bounded and let u'(t) be a measurable selection of ®(%).

Then there exists a measurable selection w, with w belonging to the extremal points of

®(t)xx(t), such that:
T T
7,)/0 w(t)x;g(t)dtz[) u'(¢)xr(t)dt
7,7,)/(; w(s)xx(s)dt < /(; u'(s)xx(s)dt for everyt € [0,T].

PROOF: Let m(t) = min &(t)xx(t) and M(t) = max ®(¢)xx(t). We consider the multi-
valued function ¥ defined by

t T T
@'(t):/O m(s)XK(s)ds+£ @(s)xﬁ-(s)ds—/o u'(s)xK(s)ds

(see [O] for the definition of the integral of a multifunction). Clearly ¥ is continuous with
respect to the Hausdorff topology of the multivalued maps (see [AUB-C]); moreover

t T T
inf ¥(1) :/0 m(s)xx(s)ds + inf {/t @(s)x;;(s)ds} —A uw'(s)xr(s)ds

-/ (s e(s) ds — / (s e (s) ds

which is independent of the time. Since u'(t) is a measurable selection from ®(t) and

T T
\?(0):/0 @(s)x;g(s)ds—/o u'(s)xx(s)ds,

we have that 0 € ¥(0). Let us define § € [0,T] as follows

(3.7) §= sup{r<T: 0€¥(r)}

Since ¥ is continuous and takes values in the closed subsets of R, § must be a maximum,
ie. 0 € ¥(4).

If § =T, then

T
0= / (m(s) — u'(s))xx(s)ds

0
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and, since m(s) < u'(s) a.e. in K, it follows that m(s) = u/(s) a.e. in K. Hence, it is clear
that w(s) = u/(s) is the extremal selection.

Let us consider now the case in which § < T'. If 0 belongs to the interior of ¥(§), then the
continuity of ¥ could not agree with the definition of § given in (3.7). On the other hand,
if 0 = min ¥(6), then we should have 0 € ¥(¢) for every ¢t € [0,T], because min ¥(¢) is
independent of ¢, and this again contradicts the definition (3.7). Hence the only possible
case is the one in which 0 € max ¥(§), i.e.

6 T T
(3.8) /{; m(s)xj‘;(s)ds—i—/é @(s)x‘r{(s)ds——/g u'(s)xx(s)ds = 0.

If we set w(t) = m(t)Xx o, (t) + M(t)Xxnps,7)(t), then clearly w is an extremal selection

and the equation (3.8) gives i).
For ii), we consider

(3.9) ‘/Ow(s)XK(s)d.s—/; u'(s)xx(s) ds.

If t <6 then (3.9) becomes

t
0

(3.10) /}m(s)x;;(s)ds——/ u'(s)xr(s)ds

and, since m(s) < u/(s) in K, (3.10) is less or equal than zero, hence ii) holds for every
t <6é.
If t > 6, then (3.9) becomes

6 T t
(3.11) /Um(s)xfg(s)ds-{—/a ]\/I(S)XR’(S)dS—‘/D u'(s)xx(s)ds.

Since for every ¢ > 6 the function Mxgnis1) + v Xxnp,7) is a measurable selection of
®(s)xx(s), (3.11) belongs to ¥(§); moreover, since 0 = max ¥(§), it follows that (3.11) is
less or equal than zero, which gives ii) for every ¢ > §. The claim is proved.

Let us denote by extr(S) we mean the subset of extreme points of a set S.

LEMMA 3.2 ([A-C],[C-M]). Let f : R — R be convex, Ls.c., satisfy

f@") 2 h(l2"]) + v

(v € R, ¥ > 0 being convex, l.s.c. and such that lim M = +00).

T2 ™
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Then, for each measurable ' : I = [a,8] — R with the property that ¢ — f(z'(t)) €
L! there exists an integrable selection w of ®(t) : t — (8f)71(0f(z'(t))) with values in
extr(®(t)) such that :

/w(t)dt / /f ) dt = /f
/:w(s)dsg /:m'(s)ds.

PROOF: Let us first remark that each inverse image under df of a point ¢ € R is closed,

!
convex (f being convex) and bounded, since lim fl(wll)
z!—o0 |2

(8f)(c) is either empty or a closed interval. Let (¢i);c;cn be the values of O0f whose

inverse image under 8 is a non—trivial interval [as, b;] (a; # b;) and set K; = (z')*([ai, bi])
foriin J, Ky = I\ U;K;. Then, by Lemma 3.1, there exists a measurable selection w; of
the set—valued map ®(t)xx; (¢) with values in extr(@(t)XK,.(t)) = {a;, b;} such that:

(3.12) [wrtonaa(tyie = [ o/t @)t
I I
and, for each ¢
t t
(3.13) / wi(8)xr;(s)ds < / z'(s)xw;(s)ds.
For each 7 € J, we have:

/f(w’(f))xx,- (t)dt = /If(ai)+cz'($’(t) — ai)xx(t) dt

and, for each t,

= +o0o. It follows that each

hence, by (3.12)

(3.14) / Fo! (), (1) dt = / Flai) + ex(wi(t) — ai)xm (1) dt

- / Flwi(£) s (2) e

since w;(t) € {a;,b;}. By the growth assumption on f, it follows that, for eachn € N,

/I Bl e + 3 lwilxa,) dt < / (F(&' (1)) — ) dt

i<n Ui, K




i.e. the functions =’y g, + wixK:, n € N, are equi-integrable, thus Vitali’s convergence
X [¢] X i) 7 q g
i<n

Theorem [E-T, VII, Corollary 1.3] yields w = z'xx, + ZwiXK.' € L'. By (3.12), (3.13),

(3.14), w has the required properties.

PROOF OF PROPOSITION 3.1: Let # € WP be such that &'(t) = piv; + pavy. Clearly
extr(0f**) 1 (8f**(Z(¢)) = {v1(%),v2(t)} a.e. Then Lemma 3.2 yields the conclusiomn.

Let us show that Proposition 3.1 does not hold, in general, if either f(¢,z) depends on
torn > 2 (ie. z' € R?).

ExaMPLE 3.1. Given measurable vi,v; : [0,1] — R (vy # vy on a set of positive measure),
there does not exist a measurable partition Ey, E; of [0,1] such that vixg, + v2xE, € L*
and satisfying:

1 1
1 1
(3.15) / ‘2"01 + *2"02 dt = / VIXE, + V2XE, dt,
0 0
1 1
1 1
(3.16) / i (5’01 + 57)2) dt = / t('UIXE1 + 'U2XE2) dt
0 0
i 1 1
(3.17) / SU1 + %’1)2 dt > / V1XE, + V2XE, dt for each t.
0 0

PROOF: Let us assume that such a partition exists.
t

t

Set &(t) = % / vy + vy dt and Z(t) = / vV1XE, + V2XE, dt so that, by (3.15), (1) = (1)
0 0
whence (3.16), integrated by parts, gives

(3.18) /1 Z(t)dt = /l z(t) dt.
By (3.17)
(3.19) for each t, Z(t) > Z(¢)

hence (3.18) implies Z(¢) = Z(t) a.e. The differentiation of both terms of the above equality
yields to #'(t) = &'(¢) a.e. By definition this means v; = vy a.e. A contradiction.

If n = 2 and vy,...,vy, are constant vectors of R?, pi,...,p,, are measurable (p; >
0,p1 + -+ + pm = 1), then the component of p1(s)vy + +++ + pm(s)vm along one fixed
direction is given by pi(s)a; + -+ + pm(s)am for some ai,...,a, € R. We have the
following analogue of Proposition 3.1.
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PROPOSITION 3.2. Let py,...,pm : [0,7] — [0,1] be measurable (p1 + -+ + pm = 1),
I C [0,T] be measurable, ai,...,am € R. Then there exists a measurable partition
Ey,...,E,, of I such that

(3.20) W(Es) = /;pi dt(i=1,2,3)

and, for each t € [0,T],

t t
(3.21) /Z@iXE; ds 2 f(ZWPi)XId&
0 0

i

PROOF: Assume
m=3, ag > ay > as

the general case being similar. Let ¢1, t» € [0,T] be such that

1y 12 t2 1
/ XIdtz/pl dt;/ det:/ D2 dt;/ detzfpadt,
0 TI 1 1 12] I

Such t1, to exist since p; +p2+ps = 1. We claim that the measurable partition of I defined
by:
El = [0: tl[mI) EZ = [tla tz[ﬂ[, E3 = [t27 1} NI

satisfies (3.20) and (3.21). Proof of the claim:
First, by the very definition of E;, (3.20) holds trivially. In order to prove (3.21), fix
t €[0,7] and set

1

L(t) = /Ot Z aixg; ds; I(t) = /Ut(z aipi)xrI ds.

We wish to show that I,(¢) > I(¢).
Ift <ty then

i

1
L (t) = / a1XE, ds = aixsds
0

t

ai(p1 + p2 +p3)ds

> /:(Z aip;)xf ds = I(t)

i

o o
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If tl S 1 S tz then

: ¢
(3.22) L(t) = a1 u(Er) + a2 / XE, ds
0

t
::al/plxjd.s—l—az/ XE, ds
I 0

t
2a1/ pixrds + a2 J (i)
0

where
T t
J(t)r:/ p1X1d5+/ XE, ds.
t 0
Now,
t t
/ XE, ds = / (Pl + p2 +p3)XE2 ds
0 0
hence
T t
(3.23) J(t) = / pixrds + / (p2 + p3)XxE, ds.
11 11
Moreover
T T
(3.24) / P1X1ds = / (1 —p2 — p3)xrds
t, t

T
= w(EB2) + p(Es) — / (p2 +p3)xrds

1y

T
Z/(Pz +P3)ds"/ (p2 + p3)xrds
I

i

31
=/ (p2 + p3)xrds
0

so that (3.23) and (3.24) together yield

(3.25) J(t) = /;(m + p3)xrds.

By (3.22) and (3.25) we have
t t
L(t) > a / p1x1ds + as / (p2 + p3)xrds
0 0
t t
> / a1p1X1d5+/ (asp2 + asps)xrds = I(t).
0 0
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Finally, if ¢t > t2 then
1
(3.26) I,(t) = a1 p(Br) + azpp(B2) + as f XE, d5
0

i t
204/ p1XIdS+a2/ paxrds + a3 K(t)
0 0

where - t
K(t) = / (p1 + p2)xrds + / XE; ds.
t 0
We have:
1 t
/ XE, d5 = / (p1 + p2 + P3)XE, 45
0 0
hence
t
(3.27) K(t) = / p1 + p2)x1ds +f psxrds
t2

t

f (1—ps) XIdS-I-/ psxrds
t2

w(E )—/ paxrds

/Psx.rds

The conclusion follows from (3.26) and (3.27). The claim is proved.

l
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II. EXISTENCE RESULTS FOR NON-CONVEX
VARIATIONAL PROBLEMS

In this chapter, we assume that the set-valued map ® : [0,7] — 2R" is measurable

[C—V, Def.Ill.1.1] with non-empty closed values. In addition we assume that there exists
T
at least one v € L?([0,T],R™) such that v(t) € ®(¢) a.e. and / v(t)dt = b— a. The most

0
important result of the calculus of variations without convexity assumptions (and without
regularity assumption on the integrand) is due to A. Cellina and G. Colombo.

THEOREM 1 [C-C]. Let f(t,z,z') = g(t,z) + h(t,z’') be Carathéodory and satisfy hy-
pothesis (H). Assume that

z — g(t,z) is concave for a.e. t.

Then the problem
T

(P) minimize / g(t,z(t)) + h(t,z'(t)) dt
0

on the subset of WP of those functions satisfying z(0) = a, z(T') = b, z'(t) € D(¢) a.e. in
[0,T] admits at least one solution.

We shall prove the following generalization of Cellina~Colombo’s Theorem.

THEOREM 2 [M3]. Let f(t,z,¢) : [0,T]x(R*xR™) — R be Carathéodory (i.e. measurable
in t, { and continuous in z) and satisfy hypothesis (H). Moreover, assume that

z — f(t,z,&) is concave for each t, €.

Then, if there exists a solution (Z,p1,...,Pn+1,V1,.--,Vn+1) to the associated relaxed

problem (PR’) (§1.2) satisfying

n-+1

(C) ﬂ O (—f(t,2(2),vi(2)) # 0 ae,
the problem

T
(P) minimize /u f(t,z(t),z'(t)) dt
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on the subset of W1 of those functions satisfying z(0) = a, (T) = b, ¢'(t) € ®(t) a.e. in
[0,T) admits at least one solution. '

REMARK 1: Obviously, each solution to (P) is a solution to (PR’) satisfying (C); the cases
for which Theorem 2 can be usefully applied are those where the converse does not hold.
For instance, when f(t,z,z') = g(t,z) + h(t,z') we have

Oz (—f(t,z,€)) = 8; (—g(t,z)) for each , z, {

hence each solution to (PR’) does trivially satisfy (C) (without being, in general, a solution
to (P)) and this proves Theorem 1.

REMARK 2: Note that, when f(¢,z,¢) is differentiable in z, condition (C) reduces to

of of ..
(93:( z(t),vi(t)) = am( ,Z(t),v;(t)) for each 7, 7.

The following Lemma will be used in the proof of Theorem 2. For a subset @ of R", we
write ||Q] for the set {|g]|: ¢ € Q}.

LEMMA 1. Let f1,..., fm :[0,T] x R® — R be Carathéodory and satisfy:
i) fi(t,z) < a(t) + BlzlP (B >0, a € L,i=1, ...,m);
ii) for each 1, z — fi(t,z) is convex for a.e. 1.

Let  be continuous and such that

ﬂ@f, ) #0 ae.

Then, the set—valued map ¥ is measurable and admits an integrable selection.

SKETCH OF THE PROOF [C—C]: Let us assume 7 = 1, the general case being similar.
a) ¥ is measurable. In fact, fix A > 0; then f(¢,z) < FA? + a(t) in [0,7] x AB. By the
Corollary to Proposition 2.2.6 in [C] we have that

(1) 10 f(t,2)|| < —i—ﬁ(ZA)p + a(t) for ae. t € [0,T], for all z € AB.

Fix € > 0 and let, by Scorza Dragoni’s Theorem, E. C [0,7] be closed and such that:
w([0, T\ Ee) < ¢ the restriction of f to E. x AB is continuous as well as the restriction

of a to E.. Then the map (t,z) — O, f(t,z) is upper semi~continuous on Ee X AB. An

application of Lusin’s Theorem for multivalued maps yields the claim.

b) By the Theorem of Kuratowski-Ryll Nardzewski [AUB-C, §1.14] there exists a mea-

surable selection §(¢) € 8,(¢,z(t)) which, by (1), is integrable.
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REMARK 3: The proof of Lemma 1 points out the fact that an integrable selection of ¥
exists if, instead of ii), we assume that there exists a function (‘) in L' and a function
c: Rt — R such that

18:(fi(t, 2|l < a(t) + c(A) for each t, |z| < A, i =1,.

PROOF OF THEOREM 2: Let (&, pi,-..;Pnt1,V1,---,Vn+1) be asolution to (PR’) satisfying
condition (C). Let, by Lemma 1, §(*) € L' be a selection to

n—+1

t ﬂ 0= (—f(t,2(1),vi(?))) -

Then, for each y € R™® and 7 € {1,...,n + 1}, we have:

(2) Ft, (1), vi(t) = f(ty,vi(t)+ < 6(t),y — 8(2) >

(<, > being the usual scalar product in R™). Set
T
B(t) =/(; §(s)ds, fi(t) = (vi(t), f(£,2(2),vi(t)), < wi(t), B(¢) >).

By the arguments of the proof of Corollary .3.1, the growth assumptions on f (hypothesis
(H)) imply that the conditions concerning the functions f; stated in Theorem I1.3.1 are
satisfied: let Eq,..., E,11 be a measurable partition of [0, 7] such that

/0 Zpi(t)f(t,ﬁ(t),vi(t))dt= / Zf(t,f(t)wz'(t))xa(t)dt-

and set Z(t) = a + / Z s)ds: I claim that Z is a solution to (P).

Proof of the claim:

Clearly, by (3), #(T) = z(T) = b and z € W?. Furthermore, by (2):

Z f(t,2(t),vi(t))xE: (t) = Z f(t’ﬁ(t)’vi(t))XEi(t)‘*' < 6(¢),2(t) — z(t) > .
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The integration of the above inequality and (3) yield:

(4)  min (PR') / Z F(t, vi(t))xm: (¢) dt >

/ Zf ))xE (t)dt + /{T< §(t), 5(t) — &(t) > dt.
Let us remark that
Z Ft, 2 (1), vi(8))xe: (t) = f(t,3(2), & (1)) ae.
and, by Tonelli-Fubini’s Theorem:
/0 < 6(t),8(t) - 3(t) > di = / s )~ i) < ), BEE) B0 >

Then, (3) and (4) together yield:
T
min (P) > min (PR) > /0 £(t,5(t), & (t)) di > min (P).

the conclusion follows.
We shall now give a further application of Theorem 2. The following hypothesis will be
considered.

HyPOTHESIS (H): Set A(t) =a+ co{/ s)ds}. We assume that:

H,) The functions g, h, [ : [0,T] x R* — R are such that f(t,z,¢) = g(t,z) + h(t,z)I(t,€)
is Carathéodory and satisfies hypothesis (H) for a.e. ¢, for each £ and for each z € A(2);
H,) either

for a.e. ¢ : h(t,z) > 0 for each z € A(%)
or

for a.e. t : h(t,z) < 0 for each z € A(1);
H;) For a.e. t and z € A(t), the set A(t,z) = {6 € ®(t): F*(t,2,¢) < f(t,2,€)} is open
a_nd, on it, the function & — f**(¢,x,§) is locally constant.
H,) There exist: a function a() in L' and a function c: R™ — R such that

for ae. t 1 ||8:(f(t,2, )| < a(t) +c(A) for each & € &(t), z € A(2), lz] < A.

BXAMPLE 1: 8(t) = BV, a = 0, f(t,2,€) = —7a? + (1 + 2)|€ — S(2)[1€ — H(2)
(p,v € L>®,¢,1% >0 ,'y being strictly smaller than the best Sobolev constant) satisfies
hypothesis (H).

We have the following
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THEOREM 3. Let g, h, [, ® satisfy hypothesis (ﬂ) Then the problem

T T
(P) minimize I(z) :/ o(t, 2(2) dt +/ h(t, 2(8))I(E, o (1)) dt

0 0
on the subset of WP of those z(-) satisfying z(0) = a, z(T) = b, 2'(t) € ®(¢) a.e. in
[0,T] admits at least one solution.

Lemma 2 below will be used in the proof of Theorem 3.

LEMMA 2. Let h,[:[0,7] x R® — R and set ¢(t,z,&) = h(t,z)l(¢,§).
Then for each t, z, & :
¢" (¢, 2, &) = h(t, 2)L(1,€)
where - £ (i, 2)
**(t,€) if h(t,z) > 0;
L(t,¢) = { **) )
—(=0)*(¢,&) if h(t,z) < 0.
PROOF: Let us suppose h(t,z) < 0, the other case (h(¢,z) > 0) being similar. In this

situation, the inequality
(=0 (8,¢) < -1, €)

implies

—h(t,z) ((=1)"(t,€)) < h(t,2)I(t,€)
whence
(5) h(t,z)L(t,&) < ¢™*(t,z,§).

Conversely, let ¢,z be fixed and ¢ be any convex function satisfying ¥(§) < h(t,z)i(t,§)
for each ¢. Then

—1
h(t,m)¢(5) < —{(t,€) for each ¢
whence
(6) PO < (D7),

In particular, for ¥(¢€) = ¢**(¢,2,¢), (6) yields
(7) 9™ (t, 2, &) < h(t,z)L(t, ).
The conclusion follows from (5) and (7).
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PRrROOF OF THEOREM 3: In order to apply Theorem 2, it is enough to prove the existence
of a solution (£,P1,...,Pnt1,V1,---,Vn+1) to (PR’) satisfying

f(t,z,v:(t)) = f(t,z,v;(t)) for each t, z and 7, j € {1,...,n + 1}.

For this purpose, let (&,p1,...,Pnt1,Wi,--,Wnt1) be an arbitrary solution to (PR’).
Then, by Proposition 1.2.4

(8) Fre(E,2(), () = Zpi(f)f(t,i(t),wi(t))-

The map £ — f**(¢,Z(¢),€) being convex, we can assume

(9) £ (6, 3(8), wi(t)) = £(b,5(2), wil2)) ace.

Set A ={t: f*(t,8(t),3'(¢)) < f(t,2(1), &' (1))} = {t : 2'(2) € A(¢,2(2))}-
t,x(t

i),z
By H3), the convex function f**(¢,&(t), ) is constant in a neighbourhood of &'(¢) for a.e.
t € A. As a consequence

£ (t,2(t),€) > F**(¢,2(t),z'(t)) for a.e. t € A and each £ € R".

In particular
£ (t,3(¢),w(t)) > £ (t,2(¢),z'(¢)) for ae. t € 4

hence, by (8), we can assume
(10) £ (t,3(t),w:(t) = f(¢,2(¢),2'(¢)) for ae. t € A.
Equalities (9) and (10) prove that, if we set
v; = wiX4 + & X[, T)\A

then (Z,P1,--«)Pnt1,V1,---,Vnt+1) is a solution to (PR’) satisfying
(11) ft,2(2),v:(t)) = (¢, £(¢),2 (1)) ae.
By Lemma 2, there exists a function L : [0, T] x R™ — R such that:

£ (4,2,€) = 9(t,2) + h{t,)L(1,€).

Thus (11) yields
I(t,v;(t)) = L(t, &' (¢)) ae.

The claim is proved.
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III. EXISTENCE RESULTS FOR NON-CONVEX VARIATIONAL
PROBLEMS OF SLOW GROWTH

1. A PRELIMINARY RESULT

We assume now that the integrand f(¢,z,z') : [0,T] x (R® x R™) — R does not depend
on the space variable z and that, instead of the usual growth assumption (H), f satisfies
the weaker condition
(Hy): f(t,z,2') > a(t) — Blz| + v|2’| for each ¢, z, 2’ (o € L, v > 0).

As it is well known (see, for instance [CE, §14]), (H;) does not ensure the existence of
a solution to (P), neither if f(¢,z,2’) is convex with respect to z’, so that, opposite to
what happens usually, the associated relaxed problem (PR) to a non—convex problem (P)
does not admit, in general, a solution. Let us further remark that, under assumption (H;),
the conclusion of Proposition 1.2.3 (a main tool in the previous chapter) is not true, in
general; in fact the convex hull of the epigraph of a function f(¢,z,.) satisfying (H; ) is not
necessarily closed.

EXAMPLE 1: f(2') = 2’ + |z/|'/? is such that f**(z') = |z'| so that, unless z' = 0, f**(z')
cannot be written as a sum A; f(v1) + A2 f(v2) (A >0, XX\ =1, 3. Ajv; = 2'). Here

coepi f = {(z,y) e R? : y >z} U{(0,0)}

is not closed

Assume now that f(¢,z') does not depend on the space variable z. In this situation, the
proof of Theorem II.2 (and Remark 1.2.2) yield the following Proposition.

ProrositioN 1.1. Let f(t,z') : [0,T] x R® — R be a normal integrand satisfying (Hy ).
Assume further that
coepi f(t,.) is closed for a.e. t.

Then if (PR) admits at least one solution, so does (P).

We are thus led to consider those convex problems of slow growth having solutions.
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2. PARAMETRIC PROBLEMS

A parametric curve C in R™ is a suitable equivalence class of n—vector continuous maps
z=u(t),a<t<by=y(s),c<s<d

leaving unchanged the sense in which the curve is travelled. Usually, two continuous maps
z and y are said to be equivalent if there is a strictly increasing continuous map

s=h(t),a<t<b, h(a)=c, h(b)=4d

such that
y(h(t)) = z(t), a <t < b.

For technical reasons a weaker equivalence relation is needed.

DEFINITION 2.1 [CE, §14]. continuous maps z and y as above are said to be Fréchet
equivalent if for every € > 0 there is some homeomorphism

h:s=h(t),a<t<b hla)=c, h(b) =d

such that
ly(h(t)) —2(t) < a <t < b

A class of F-equivalent maps is called a parametric curve or F(réchet)—curve.

It is easily seen that for any given F—curve C : ¢ = z(t), a <1 < b, the subsets
€] = [2] = {=(t) : a <t < b} and {a(a)} , {=(b)}

of R™ are F—invariant. The same holds for the Jordan length L(C) of a Fréchet curve C,
which is defined as a total variation,

(2.1) L(C) = sup Y _ |a(t:) — o(ti-1)|

where sup is taken with respect to all subdivisions
a=1ty <t <...<ty=25b of [a,b].

A F-curve C is said to be rectifiable if L(C) < +co. The following Proposition justifies the
definition of F—curve.
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PRrOPOSITION 2.1 [CE, §14.1.1]. A rectifiable curve C posseses A.C. representations. In
particular, the arc—length parameter s yields a unique A.C.representation

z =z(s), 0<s < L(C), |z'(s)| =1 a.e. in [0, L].

Ifz(t), a <t < bis an A.C. representation of C, the Jordan length L(C) is given by

b
(2.2) L(C) = / &' (t)] dt.

Let f : R" xR™ — R be a continuous function, and C be a rectifiable F-curve, z(t), a <
t < b be any of its A.C. representations. Then the integral

b
(2.3) ol = [ (alt) o' (1) e

is independent of the chosen A.C. representation if and only if f is a parametric integrand,
i.e. f does not depend on t and is positive homogeneous of degree one in z’' [CE, §14.1.B],
i.e. :

Ve >0: f(z,kz') = kf(z,z).

In this situation (2.3) defines the parametric integral I(C) for any F-curve C and for
any of its A.C. representations. The following existence Theorem is rather typical of the
parametric case.

THEOREM 2.1. Let B (resp. K ) be a closed (resp. compact) subset of R™ and let f(z,z') :
R™ x R® — R be continuous, convex and positive homogeneous of degree one in z', satisfy

(Hi).

Assume further that there exists a positive monotone non—decreasing function ¢ such that
(2.4) L(C) < #(1(C))

for all F~curves C. Then I(C)) has an absolute minimum in the class Q of all rectifiable
F-curves C : = = z(t), a <t < b satisfying the boundary condition z(a) € K, z(b) € B.

PROOF: a lower semi—continuity argument. See, for instance [CE, Th. 14.1.iv].

In the case where a non necessarily convex integrand f(z') does not depend on z, our
Proposition 1.1 yield the following existence result.
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THEOREM 2.2 [M1]. Let B (resp. K) be a closed (resp. compact) subset of R" and
f : R® — R be continuous, positive homogeneous of degree one and satisfy (Hy) (a =
0,8 =0). Then the parametric integral

b
1(c) = / Fa'(8) de

has an absolute minimum in the class Q of all rectifiable F~curvesC : z = z(t), a <t < b
satisfying the boundary condition z(a) € K, z(b) € B.

flzy,22) = Vizil|ze| + |z | + |22

is positive homogeneous of degree omne, but not convex since, for instance, f(1,0) =
1, £(0,1) =1, £(3(0,1) + 3(1,0)) = 3 > 1.
PROOF OF THEOREM 2.2: In order to apply Proposition 1.1, we wish to show that:

i) coepi f(.) is closed;

ii) the bipolar f** is continuous, positive homogeneous of degree one and satisfies (H;)
so that, by Theorem 2.1, the associated relaxed problem (PR) admits at least one solution.
Ad i). Let C be the closed subset of R™ defined by

EXAMPLE 2.1: n =2,

C={&: f(&) =1}
By (H;), C is bounded; the homogeneity of f proves that the graph of f is given by:
graph f = {A(§,1): A 20,{ € C}

As a consequence, the convex hull of the epigraph of f coincides with the convex cone
generated by co(C), i.e.

(2.5) coepi f = {(A¢,p): A 20,8 € co(C),p= A}

Now, C is compact hence so does co(C) [R]; (2.5) gives i).

Ad ii). The function ¢ — |¢| being convex, f** does trivially satisfy (H1). In order to prove
the second part of the claim, let us recall that, in general, the epigraph of the bipolar of f
is the closed convex hull of the epigraph of f (Remark I.1.1). In i) we proved that this set
is a closed convex cone. It follows that f is continuous and positive homogeneous.
Proposition 1.1 yields the conclusion.

34



3. NoN—-PARAMETRIC PROBLEMS

Let f: [0,T]xR™ — R™ — R be a normal integrand satisfying (H; ) whence, by convexity
of £ — |¢| and Proposition 1.2.2, so does f**. Let us denote by F(¢,p,u) the parametric
integrand associated to f**(¢,z') ([CE], Ch.14) defined by:

F :[0,T]x]0,+00[xR" — R

(t,p,u) 1—————)pf (tu;) .

As it is described in [CE], the function F'is convex and positive homogeneous in (p,u). As
a consequence, if f** is supposed to be continuous, if (¢,u) is fixed and we allow p > 0 to
approach zero, then F(t,p,u) must approach a finite limit or +oco. This limit is taken as
the definition of F'(¢,0,u). Since F(¢,kp,ku) = kF(t,p,u) for all k > 0, we define F(t,0,0)
to be zero, so that the homogeneity property holds for £ > 0. It can be shown [CE,§14.2]
that if F** is continuous in its domain and F(t,0,u) is finite everywhere then F(t,p,u) is
continuous in [0,7] x [0, +oo[xR™.

Let K, K5 be two compact subsets of R®*! such that for every (¢1,z1,%2,22) € K1 x K>
we have t; < t5 and set K = K; x K,. We consider the problem of the minimum of the
integral

I(e) = /t T, (4)) dt

in the class  of all A.C. functions z(¢) = (z!,...,2") € K (we say that these are the
admissible trajectories). The following existence Theorems are the nonconvex analogue of
[CE, Th.14.3.i, Th.14.3.ii]. Their proof is a direct application of our Proposition 1.1.

THEOREM 3.1 [M2]. Let f be a normal integrand satisfying (H;). Assume that the
bipolar of f is of class C* in its domain and that its associated parametric integrand F is
continuous in [0,T] x [0, +oco[xR™. Moreover, let us assume that

Vte [0,T], Vu € R", [u| =1: g(t,O,u) = —o0
p

and there are constants My, My,§ > 0 such that for all t € [0,T], (p,u) € [0, +oo[xR™,
|p| + |u| =1 and ¢* with [¢* —t| < § we have

oF , ..
l“g;(t ,2,u)| < My F(t,p,u) + M.
Assume further that coepi f(t,.) is closed for a.e. t.
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Then, I(z) has an absolute minimum in the class of all admissible trajectories.
THEOREM 3.2 [M2]. Let f : R® — R be independent of ¢ and satisfy hypothesis (H, ).
Assume that the parametric integrand F associated to the bipolar of f is continuous in
oF
[0, +oco[xR™ with continuous partial derivative 5 in [0,+oco[xR™\ {0,0} and that for
P

every u # 0 we have

%l;-(p,u) = 0 if and only if p = 0.

Assume further that coepi f(.) is closed.
Then, I(z) has an absolute minimum in the class ) of all admissible trajectories.

REMARK 3.1: It doesn’t seem reasonable, in order to satisfy the assumptions of Theorems
3.1, 3.2 to require conditions only on f instead of f**. For instance, the function defined

by
F(€) = [€I(1 + sin(27¢))

is such that the limit as p approaches zero of its associated parametric integrand F(p, u) =

lul(1 + sin(27rg)) does not exist whereas the parametric integrand F' associated to the
bipolar of f , given by F(p,u) = |u| , is continuously differentiable in [0, +co[xR.

REMARK 3.2: If n = 1, coepi f(.) is closed if, for instance, f is continuous and f = f**
in the complement of an interval I = [a,b] in which the graph of f** is a line joining the
points [a, f(a)] and [b, f(b)]. In fact, in this situation coepi f(.) coincides with the epigraph
of f**, a closed set.

EXAMPLE 3.1: Let us consider the following nonconvex continuously differentiable func-

tion f defined by:
N R e
1+ €2 + cos(€) + 1 otherwise.

Let z, be the point in ]0, [ such that f'(z¢) = 0. Then, the bipolar of f is given by

F(&) if [€] = zo;

fre)= {f(wo) if €] < 0.

We claim that the parametric integrand F associated to the bipolar of f satisfles the
conditions of Theorem 3.2.
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In fact, f(£) > |£] and by Remark 3.2, coepi f(.) is closed. Furthermore, F' is clearly of
class C!, and if we let u # 0 its partial derivative with respect to p is given by:

’

S Y i -
VPitur o op
5 m) = FE =25tz B s e
Fl=o) if l;:-' < 2
Since f(zq) # 0 and for each ¢ € [zy, 7] we have f/(£) # f—(gl then %—};—(u, p) = 0 if and

only if p = 0. The claim is proved.
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IV. ON THE DENSITY OF MINIMUM PROBLEMS
HAVING EXISTENCE

Let g : R — R be continuous and h: R — R be Ls.c. Assume, as usual, that f(z,z’) =
g(z) + h(z') satisfies the growth assumptions (H) and consider the problem

T
(P) Minimize /0 g(z()) + h(z'(8)) dt : z(0) = a, 2(T) = b,z € W'?.

In chapter II, we proved that a solution to (P) exists if either A is convex (Tonelli’s classical
Theorem 1.2.1) or if g is concave (Cellina—Colombo’s Theorem II.1); moreover Marcellini
proved [MC] that a solution exists under the assumption that n =1 and g is monotonic.
Therefore existence seems to be a property related to very special geometric behaviour in
z or in z'. We show here that (for z in R) this is not so: there exists a subset D of the
space of continuous functions, dense for the topology of uniform convergence on compacta,
such that, for g in D, problem (P) has existence of solutions for every function h satisfying
the usual growth conditions.

Let D be the subset of C(R) of those continuous functions with the property: for g in
D, there exists a partition of R into countably many intervals [a;, b;[ with the property
that only finitely many meet every finite interval of R and such that g is affine on [ai,bi;
moreover at each a; (and at each b;) at least one of the one sided limits of the derivative
of g is zero. (Hence, given two consecutive intervals, g is constant on at least ome).

PRrOPOSITION 1 [C-M]. D is dense in C(R).

ProOF: Fix h € C(R) and € > 0. Fix n in Z; since k is uniformly continuous on [n,n + 1],
there exists an integer m such that

1 €
(1) z,y € [n,n+1], o -yl < — = [A(y) — h(z)| < 3
Define g, : [n,n+ 1] — R by:
h(n) for z in [n,n + ! ]
n) for n,m+ —1;
9 3m’
1 k 1

k k
gn(z) =< h(n+ —)forzin[n+— — —,n+ — —J],k=1,...,m—1;
™m m  3m m  3m

1
h 1) 1 i 1—— 1
(n+1) for z in [n + 3m,n+ ]
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and continuous affine elsewhere. Let us show that, on [n,n + 1], ||h — gnllec < €.

k
Fix z and let k be such that z € [n + E,n + —+}[ By the very definition (and by (1)),
m m

9n(2) = hn+ 2| < h(n+ EEL) —hin e £y < £

so that, by (1) again,
|gn(z) — h(z)| <e.

Set g(z) to be gn(z) if z € [n,n + 1[. Since g is in D, this proves the claim.

THEOREM 1 [C-M]. Let p > 1 and g € D be such that g(z) > o — B|z|P for every x (c,
B € R). Then, the Problem:

T T
(P) Minimize/; g(m(t))dt—{—‘/l; h(z'(t)) dt

on the subset of W?([0,T],R) of those functions satisfying the boundary conditions
z(0) = a,z(T) = b admits a solution for every lower semicontinuous function h(z') satis-

fying the usual growth assumptions, i.e.
if p = 1, there exist a convex l.s.c. function ¥, v € R and h(z') > ¢(|z'|) +~; if p > 1,

there exist o > 0 (é being strictly less than the best Sobolev constant), v € R and
o

R(z') > olz' [P + 4.

PRrOOF: Let Z be a solution to the relaxed problem associated to (P) and set A; =

min {Z(t) : ¢t € [0,T]} , A» = max{z(t) : ¢ € [0,T]}. Let d; be the greater discontinuity

point of ¢’ less or equal than Ay, dy < --- < d,,—1 be those inside | — A;, Ay[, d,, be the

next after d,,_1 and set

e=—15—min {|di+1 —di| : i=0,...,n—1}.

a) We claim that [0,7] can be partitioned in a countable union of disjoint intervals I;
(7 € N) such that g is monotonic on #([;).
Proof of the claim. Consider the three sets A, V, B defined by:

n—1 n
A=Jldi+ediss—e,V="{di—edi+e:i=1,...,n}, B=|J]di — 2¢,d; + 2¢[.
i=1 i=1

By the continuity of Z, the inverse image of 4 under Z is a countable union of disjoint
relatively open subintervals (o;,7;) of [0,7]. The image of each subinterval is contained
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in one of the open intervals |d; + ¢,d;+1 — €[ on which g is affine. By the continuity of z,
there exists ¢ such that

[t —s] <& =|2(t)—2(s)|] <e.

Consider those subintervals (o;,7;) whose diameter 7, — oy > 6, say for7 = 1,...,m. These
are the first elements of our partition. Again by continuity, for each 7, at least one between
#(o;) and #(7;) is in V (actually both, except for the case o; = 0 or 7; = T'). Consider
the finite union of closed subintervals of [0, T that is the complement of the finite union
of open subintervals (o;,7;), 2 = 1,...,m: they are the intervals [0,01], ..., [Tm-1,0m],
[Tm,T]. For t in this complement, #(¢) is in B. In fact either ¢ is in 271(4) \ Ui~ (oi,73)
or #(t) is in |J,[di — €, d; + €.

In the first case, from the choice of § and the remark on the behaviour at the extremes of
the intervals, there exists d; such that |Z(t) — d;| < 2¢, i.e. Z(t) € B.

The second case holds since each [d; — €,d; + €] is in B. Since B is open, its counter
image #~*(B) is countable collection of open subintervals. Consider the image of any such
subinterval: it is contained in one (and only one) ld; — 2¢,d; + 2¢[. On one of |d; — 2¢,d;[ or
|d;, d; + 2¢[ g is constant, on the other affine: g is monotonic on ]d; — 2¢, d; + 2¢[. Intersect

each subinterval with the finite collection of intervals [7;,054+1] : ¢ = 0,..., m. The union of
this countable collection of intervals and of (o;,7;) : 2 =1,...,m is the required partition
of [0,71].

b) By Proposition 1.2.3 there exist measurable p1, p2,vi,v2 : [0,7] — R (p; > 0, p1+p2 = 1)
such that
{ ' = p1v; + pavs a.e.;

W3 (1) = pr (DA( (1)) + P2 ()h(va(t)) 2
hence extr (O™ )1 (8R**(&'(2))) = {v1(¢),v2(t)} a.e. Let I; = (aj,3;) be one of the inter-

vals considered in a). Let us explicitely carry out the construction for the case g’ < 0 on
|d;—1,d;[, the other cases being treated similarly. We claim that there exists a measurable

partition EY, B} of [a;, ;] such that:

(i) ViXEi Jrv?!XE; € LP(aj,B;);
8; B;

(ii) / ViXpi T v2Xpi At = / P1v1 + pava di
i pr

(iii) / V1X —{—szEJZ' ds > / p1v1 + pavs ds for each t € (e ,8;);

) !J3j ] B;

() [ B (Oh(on6) + palboa()dt = | hloa(sy () + Bloa(xsy (1)t
o @j

< € for each t € (aj,B;).

1 1
(V) / ViXE] 'i"‘)ZXE{z' ds — / p1v1 + pava ds
/o aj
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Proof of the claim. Set 1(z') = vp|z'|P if p > 1. Let us first remark that by La Vallée-
Poussin’s Theorem, the set :

B; B
H={feliens): [ v < [ we@md- [ v

& i

B;

is equi-integrable: let p > 0 be such that [, |f|dt < g for each measurable subset 4 of

I; whose measure is less than p and for each f € H. Let aj =7y <71 < -+ < Ym = 0j
be a subdivision of I; such that max;|yi+1 — 7i| < p. By Proposition I.3.1 and the above
remark on the inverse image of the subdifferential of A**, for each interval [yx, vx+1], there
exists a measurable partition Ej p, Ep i satisfying:

(I)k ViXE. . +V2XEa € LP(Yks Tht1);
7 Yk+1

Y+ 1
(“’)k / VIXE, , T V2XE2 dt = / p1v1 + pava dt ;
ot b

k k
i

¢
(732) / VIXE,, + V2XE,, 45 > / p1vy + pave ds for each t € (Y, Yk+1);
e

oy [ > plt)h(os(t) dt = [ > Aoz ()

Set Bi = m‘l Eiy, B = P! Ea. Then (1), (i1), (iii), (iv) can be trivially deduced
from their correspondmg (2)k, (m)k, (zm)k, (iv)k. In order to prove (v), fix t € (aj,3;) and
let k be such that ¢ € [yg,vg+1[. Let us write that

(2) /}: Pi = Xi) v,dsﬁ/ Z Pi — Xgi) v,dt—}—/ Z — Xgi Jvi ds.

By (1), the first term of the right-hand side of the above equality is zero. Furthermore
we have

Y(lo1lxgi +Iv2lxgi) < A(vi())x i () + h(va(t))xg; (8) =
so that, by (1v)k, vixgi + vaXgi € H. Let us recall that [t — 44| < p hence by equi-
1 2
integrability and (2) we have:
t ¢
< [ paboal + palualds + [ forlg + lvalsy 4
Ve 2!

k

XEJ v; ds

<E+€
— — = €
2 2

which proves the claim.
¢) Let us denote by Z; : [@;,8;] = I; — R the function defined by:

t
z;(t) = £(y) +/ V1XEi + V2 X g ds.

@j
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| Then, by (i), Z; € LP(c;,B;) and by (ii) we have z;(B;) = #(B;). Furthermore, by (iv),
B; Bj
(3) / R**(z'(t)) dt = / h(Z’(t)) dt.

j o;

Since, by definition, Z;(c;) = &(a;) then, by (ili) &;(t) > £(t) for every t € I;. Moreover,
by (v),

|Z;(t) — (t)| < € for every t € Ij,
whence Z;(t) €]d; — 3¢,d; + 3¢[. Then, g being non-increasing on the above interval,

(4) 9(z;(t)) < g((t)) for every t € I;.

Now, (3) and (4) together give:

(5) IRCOrEYRCIOLE [ stewyde+ [ h@ @)

I; I Ij I
Let z : [0,T] — R be the function whose restriction to each I; (j €N)isZ;. Thenz € WhP
and £(0) = #(0), #(T) = #(T). Moreover, by (5):

T T
mm@hiﬂgamﬁ+ﬁhwmmt

T T
glgmmﬁ+lhwmmﬁ
= min (PR) < min (P).

It follows that the above inequalities are in fact equalities: Z is a solution to (P).
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V. AN EXISTENCE RESULT FOR NON-CONVEX VARIATIONAL
PROBLEMS WITH RESTRICTED ADMISSIBLE TRAJECTORIES

Let f : [0,T] x (R® x R") — R be a normal integrand satisfying (H) and Tonelli’s
classical convexity condition (I.2.5). Moreover, let C be a closed subset of R®. Then, a
slight modification of the proof of Tonelli’s classical existence Theorem I1.2.1 shows that
the problem

T
(P) minimize /0 flt,2(t),2'(¢))dt : z(0) =a € C, z(T) =b e C, z(t) € C for each ¢

admits at least one solution.

As usual, we are led to consider the case where f is not convex in z’. The basic idea is that
to extend the arguments of the proof of the density Theorem IV.1, i.e. given a solution Z
to the convexified problem (PR), try to find a function Z, a candidate for being a solution

T T
to (P), satisfying / f(@'(t))dt = / f**(2'(t)) dt and whose ”relative position” with
0 0

respect ¢ ensures that its trajectory is contained in C'. We showed, in example 1.3.1, that
if n > 2 then Proposition 1.3.1, a basic tool in the proof of Theorem IV.1, does not hold,
in general. Nevertheless, in the case where n = 2 and C = IIT, a half-plane in R?, its
weaker 2-dimensional version (Prop. 1.3.2), yields Theorem 1 below.

THEOREM 1. Let f : R? — R be Ls.c. and satisfy (H). Assume further that

K ={{: f(§) < (&)}

is a finite union of polygons and that, on each of them, the epigraph of f** is contained in
a hyperplane of R®. Then the problem

T
(P)  minimize / f(@'(t))dt: 2(0) =ac T, 2(T) =bc T, z(t) € I for each ¢
0

admits at least one solution.

PRrROOF: Let us denote int (9) the topological interior of a set S and assume that the closure
of K = {¢{: f**(€) < f(€)} coincides with int(co(v1, vy v3)) for some v, vy, v3 € R2, the
general case being similar.

Let 2 : [0,T] — R? be a solution to the relaxed problem (PR) associated to (P):

T
(PR) minimize f f(2'(t))dt: 2(0) =a € It, 2(T)=be I, z(t) € II'" for each ¢
U
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and let T be the measurable subset of [0,T] defined by
I={t:%'(t)e K}.
By Proposition 1.2.3 there exist p1, pa, ps : [0,7] — [0,1] (p1 + p2 + p3 = 1) such that
for tin I, 3'(t) = p1(¢)v1 + p2(t)ve + ps(t)vs
Assume that the half-plane IIT is defined by
t={ueR?:<u,n>r:>p} (n R’ peR).

By Proposition 1.3.2 there exists a measurable partition E;, o, E3 of I with the property
that:

(1) p(E;) = /;Pi dt

and, for each t:

(2) /:Zpi(s)<vi,n>X1dsz/(;tz<vi,n>x}3;(5)ds.
Define

w =& X0, 7)\1 + Z viXE; (s) ds

and
z(t) = a—l—/o w(s)ds.

We claim that Z is a solution to (P). Proof of the claim:
~ Clearly, £(0) = a. Moreover, by (1) we have

Z/XEdf z#E)~Z/pzdt

As a consequence,

H
Q
+

Il

Q

_.|_
?\?\

dt+/z Vi X E; dt
dt—}—/szvzdt

S~
’*]

i
)

il
8:
iﬂ -+
H
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Analogously, by (2) we have:
< z(t),n >> < &(t),n > foreacht

hence, by the definition of II't, Z(¢) € II'* for each ¢.
In order to prove that fOT (z'(t)) dt = fOT f(&'(¢)) dt, let

H={(z,23) ER* xR : z3 =< ),z > +)3} (AeR? X3 €R)
be the hyperplane containing the graph of f** restricted to K so that, on I,
(&'(2), F(2'(t)) € H and (2'(2), £ (2'(¢)) € H,
i.e., for tin I,
FRE ) =D pilt) < Avi >+,

f@'(1) = f(2'(2) = ZXE,-(t) <A, > +As.

As a consequence we have:

(3) /I(f**(fﬁ'(t)) - f(@'(2)) dt = Zl: <A v > /Ipi(f) dt — p(E;) =0

by (1). Furthermore, on [0,7]\ I, we have ' = Z’ and f**(2'(¢)) = f(2'(¢)) hence
4 (2 (1)) dt = z'(t)) dt.

(4) /{ ) /EO,T]\I 7@ () &t

Then (3) and (4) together yield the conclusion.
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