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1. GENERAL INTRODUCTION.

In recent years there has been an increasing experimental and
theoretical evidence supporting the idea that gauge quantum field
theories (GQFT's) are the most relevant for the description of the
physics of elementary particles.

A great deal of experiments has indeed given a rather precise agreement
for the standard model of electroweak interactions and a rough
agreement for quantum chromodynamics, not to speak of the spectacular
results concerning quantum electrodynamics.

The formulation of GQFT's along the lines of the Wightman axioms [SW]
is mot without problems. In particular it has been shown that the
introduction of "“charged fields" 1is in conflict with either the
locality (microcausality) or the positivity axiom [STR1][STR2][WIGL].
We may formulate gauge theories in several different ways (called
gauges) depending on which parts of Wightman theory it 1s convenient to
retain (for the solution of the particular problem at hand).

For instance the Coulomb gauge of quantum electrodynamics is not local
but preserves positivity of the metric, while the contrary happens in
the Gupta-Bleuler gauge.

On the other hand, the striking success of perturbative
renormalization theory [EPS1][BRS] (also in the context of gauge
theories) suggests that it may be useful to keep a relation with the
wisdom gathered from conventional perturbative approaches, which are
local and covariant [MOR1].

Indeed even the (non-perturbtive) solution of the long-standing
infrared problem of quantum electrodynamics [MOR2], which is connected
with the construction of charged states, has been possible only by
exploiting the local structure associated to the Gupta-Bleuler
formulation of QED [GUP][BLE][STR1]; this formulation is actually local
and covariant and follows the Wightman axiomatic approach to QFT as
close as possible.

Moreover, also the more recent developments of QFT, 1like the



geometrical understanding of anomalies, the covariant quantization of
string theories and conformally invariant models, etc., have been
possible in a formulation which insists on the locality property as a
basic structure for the study of quantum field theories.

Therefore it could be better to retain locality rather than positivity,
at least for technical reasons.

Thus it may be of some interest to investigate the general properties
of Indefinite Metric Quantum Field Theories, i.e. QFT’'s satisfying all
the Wightman axioms except positivity.

Models of this type are characterized by a set of Wightman functions
which are local, covariant, and satisfy the (weak) spectral condition,
[GARL] [SW] [MOR1].

For such theories the infrared behaviour is much less constrained than
in the standard Wightman theories, since the Fourier transform of the
matrix elements of the translation operators need not to be measures,
(for instance they may contain dipole singularities of the kind 6’(k2)
whose properties will be studied in subsequent chapters).

This fact, which from a technical point of view may be considered as an
unpleasant difficulty, may offer an insight for the confinement
problem: indeed this property allows a violation of the cluster
property as required by a linearly rising confining potential.
Such type of infrared singularities are also necessary forthe
spontaneous breaking of global gauge symmetries which otherwise would
not be possible , in a standard positive metric Wightman field theory

[FER] (see lso chapter 5).

In indefinite metric quantum field theories, in order to get a physical
interpretation, the positivity is replaced with a condition which
allows the construction of a Hilbert space associated to the given set
of correlation functions [MOR1]; this condition is necessary because
the ordinary reconstruction theorem [SW] leads us only to a linear
space endowed with a sesquilinear form (the local states) and a Hilbert

space can be obtained only by adding further information (Hilbert space

structure condition [STR2]).




In particular, very important structure properties like the existence
of charged states in quantum electrodynamics [MOR2], the spontaneous
breaking of gauge symmetry, the existence of ®-vacua, etc., crucially

depend on the Hilbert structure chosen.

There is an important subclass of Hilbert space structures among the
possible ones: those which associate a maximal set of states to the
given set of Wightman functions (i.e. a Hilbert space not properly
contained in any larger Hilbert space); it 1is possible to give a
characterization of these maximal structures (minimal topologies): they
are Krein-Hilbert structures, 1i.e. Hilbert spaces endowed with a
sesquilinear form <-,-> whose metric (or Gram) operator n has a bounded

inverse [MORl][BOGN].l

Finally we mention that the physical interpretation of- indefinite
metric QFT’s is usually obtained by giving a subsidiary condition that
selects a positive definite subspace of the reconstructed Hilbert
space. We stress again that the study of a given subsidiary condition
has to be performed only after having completed the local states in a
Hilbert topology. The reason of this fact 1is that physically
interesting states are not local (i.e. cannot be obtained by applying
local fields to the vacuum) in many important cases (see for instance

the construction of charged states in QED4 [MOR2]).

1

A Krein space is a topological vector space endowed with a Hilbert
product (-,-) which characterizes its topological properties, and with
a sesquilinear form <.,-> which is jointly continuous with respect to
the Hilbert norm. There exists a bounded and selfadjoint operator 7
(the metric or Gram operator) such that

<3, 1> = (3,n0)
nz= 1.

The sesquilinear form characterize the geometry of the Krein space and
is linked to the "physical content" of the Krein space in QFT context
(e.g. the transition amplitudes are computed by means of it).




The main aim of the this thesis is the study of a class of
models exibithing infrared singularities that are not compatible with
the positivity axiom. The models that we will study are so simple that
may be exactly solved; we do not pretend that they can reproduce the
full complexity of a realistic theory; however they may be used as a
theoretical laboratory to isolate mathematical structures and phenomena
that may be relevant also for understanding more realistic cases, as
well as for checking on them some ideas that are part of the "folklore"
of gauge theories.

In particular we will devote our attention to certain models exhibiting
the dipole infrared singularity 6’(k2) which is believed to play a
crucial role in the confinement picture as well as in the Higgs model.
Indeed the distribution 6'(k2) is a simple example of infrared
singularity of the "confining type" [STR2] [MOR1], in the sense that it

is not a measure in a neighboorhood of the light cone
C= (= ¥k -0).
7

More pictorially, it corresponds to a linearly growing potential
between static "quarks" [NAR]. Furthermore, we will prove in chapter 5
that this singularity must necessarily occurr in the correlation
functions of the abelian Higgs model (the proof is a corollary of the

arguments contained in [FER][STR3]).

We give mnow a general survey of the content of the thesis. More
detailed accounts of our results may be found in the introductions to

the single chapters.

1) We start by discussing the mathematical structures of the dipole

field model, a scalar field satisfying the equation

10 ¢ =0 (1.1.1)

This model attracted the attention of theoretical physicists at
different times for different reasons [FRO][LUK] [FER] [NAR][ZWA] [CAP1].

We apply the ideas that we have briefly exposed before in order to



characterize the mathematical properties of this model and to discuss
some features that have received little or no attention.

The distribution 6’(k2) corresponds exactly to the two-point function
of the dipole field, as it may be seen by Fourier transforming the

equation charcterizing the two-point function:

[ wx) =0 — KAFi(k) = 0

R

(%) 19(k0)6'(k2) (1.1.2)

I
'

W(E) log (-¢° + ie€ ), & =x-y, (1.1.3)

l67r2

(actually the (1.1.2) is a formal definition because of the product of
singularities at the point k=0). The n-point functions of this model
are constructed as in a free field theory [SW].

Our results are the following:

i) we construct a Krein-Hilbert space kK® on which we represent the
dipole field as an operator valued distribution.

ii) This Krein-Hilbert space has non conventional features: the most
relevant is that it contains "infinitely delocalized states" (or
infrared states) which are consequence of the severe infrared
singularities of the model and of the minimality of the topology used
to control them. These states are Poincare' invariant and have zero
n-norm (i.e. if ¥ is such a state we have that <¥,T>=0); the Wightman
vacuum vector is therefore essentially unique [MOR1].

iii) The existence of these infrared states has a counterpart also in
the field algebra of the model. Indeed we will show that the strong
closure of this algebra contains Poincare' invariant field operators.
Operators of this kind have been introduced in literature as extra
degrees of freedom to account for the scale transformation of the
dipole field [SAL][FUR]; in our framework they are an intrinsic feature
of the model and have a well defined mathematical status. The infrared
operators also play a role in the study of the global gauge symmetry.

iv) We discuss the possible physical interpretation of the model.



First of all we show that every 75-positive definite subspace H' of the
(dense) finite particle subspace of Kd, such to be invariant under the
translation group is actually a zero definite subspace. This implies
that every strictly positive definite subspace of K:p cannot be
invariant under the translation group.

Thus, the dipole infrared singularity implies a sort of breaking of the
space-time translations for the physical subspaces. This can be
regarded as a simple prototype of a mechanism of confinement.

We further pursue this idea and construct two positive mnoncovariant
quantizations of the dipole field which have in common a gauge

invariant content.

2) The construction of the Krein-Hilbert space k% allows the correct
discussion of the structural properties of the dipole field, but it is
also the starting point for the introduction of some nonlinear
functions of the field itself.
In particular it permits the construction of its Wick-ordered
exponential. This construction is an essential step for discussing a
class of models [ZWA][FER] in which the dipole interacts with other
fields. The Wick-ordered exponential is (formally) defined by the
series
0 n
rexp(z4): (£) =} ET 4" (f), zeC. (1.1.4)
n=0

n

The Wick powers :¢ :(x) are defined as in the standard case
[GARL][WIG2] and are tempered distributions whose values are operators
on the Krein space K®. The Wick exponential ‘:expzé:(f) will be
constructed by assuring the strong convergence of the series (1.1.4) on
a dense domain of K. A sufficient condition for this convergence 1is
obtained by restricting the topological space to which the test
function f may belong to a suitable nuclear space; this feature
characterizes also the Jaffe fields [JAF2] but there is an important

difference: in this latter case the restriction is due to ultraviolet

reasons while the construction of the Wick exponential of the dipole is



afflicted also by infrared divergences.

It turns out that the test function spaces which allows this
construction are certain "spaces of type S", whose properties are
studied in detail in the book of Gelfand and Shilov [GEL2].

It is interesting to notice that the Wightman functions of the Wick
exponential :expz¢:(x) are well defined tempered distribution.
Therefore the exponential :expzé:(f) as an operator on k* is a more
singular object than its own correlation functions (as distributions),
(this feature 1is expected to occurr also in realistic GQFT models in

local gauges).

3) The construction of the Wick ordered exponential of the dipole field
then allows a mathematically sound discussion of certain interacting
models. The first model that we analyze has been introduced by

Zwanziger and is defined by the following equations of motion:

(17“8”- m) P(x) = g“f“Ap(X)lb(X), A, =8 $(x), (1.1.5)

[1%¢x) = 0. (1.1.6)

This model may be considered as a four dimensional version of the two
dimensional Schroer model [SCHR1] (actually in the Schroer model the
field equation corresponding to the (1.1.6) is [:]¢ = 0, but the
analogy relies in the fact that the two-point function has the same
form W(&) = log(-£2+iego) in both the cases)

The solution of the previous equations is easily written in terms of

"building blocks" fields and is given by

$(x) = rexp(-igé):y (%) (1.1.7)
where ¢0(X) is a free Dirac field:

(iy“aﬂ- m) ¥ (x). (1.1.8)

A reasonable question to ask is whether the interaction of the fermion
field with an infrared singular field leads mnot only to the
infraparticle phenomenon [SCHR1] but also costrains or even forbids the

appearence of charged states (charge confinement). The main points of




our discussion are the careful exploitation of the Krein structure
associated to the model and the use of its intrinsic field algebra
i.e. that one generated by the fields 6#¢ and ¥ (this field algebra is
strictly contained in the algebra generated by the "building blocks"
field ¢ and wo).

In particular we show that all the physical states that satisfy the
Zwanziger subsidiary condition must have zero "electric" charge; the
physical space is therefore equivalent to the zero charge sector of a
free fermion field.

We hve also investigted a different subsidiary condition which gives a
non trivial positive quantization of the dipole field.

In this case there are charged states that satisfy this new subsidiary
condition but the translation group is well defined only in the zero
charge sector. Also in this case we may think to the charged states as
confined because of the breaking of time translations, a mechanism

already noticed in QED3 and massless QEDA [MOR2].

The second interacting model that we study has been introduced by
Ferrari [FER]. The equations of motion are those corresponding to the
electrodynamics of a charged scalar field, and they are made exactly

soluble by the derivative coupling ansatz:

[Ja = ie[x (8 + iea ) (3 - ieA)x' ], A =d¢ (1.1.9)
, = telx u tie X T X y " e X T = 1.

. oM s A ; ‘
= -ied" (A - A (8 + A 1.1.10
[x = -1ed”¢ X) - 1eAT(8 + e )x ( )

We will show that:
i) a part from the trivial case =0, the charged field x which solves

the above field equations has necessarily a non zero order parameter
<@0, X(X)Wb> = 0. (1.1.11)

ii) The Wightman functions of the field algebra generated by the fields

x and Ap are not invariant under the global gauge transformations



$(x) — exp(-ia)d(x), Ap(X) — A“(X) (1.1.12)

Nevertheless this symmetry is implementable in the Hilbert-Krein space
K in which the model is represented, thanks to the existence of the
infrared states and operators.

iii) There is no charged state in the physical space which is
solution of the suitable subsidiary condition. In this case we speak of

charge screening. In contrast with the confinement case, this

phenomenon 1is associated with the non invariance of the Wightman

functions under global gauge transformations [KOG][STR2].

Finally, we discussthe infrared structure associated to the generic
a-gauge formulation of two-dimensional QED, known as the Schwinger
model [SCH]. The importance and significance of the Schwinger model is
well known and we do not insist on it. On the other hand the situation
igs that a mathemtically rigorous study of this model has been worked
out only in the Landau gauge [MOR3],which has very peculiar properties.
It is therefore of some interest to develop a rigorous treatment of the
generic covariant gauge, because even if the physical interpretation of
the model must be gauge invariant the mathematical structures
characterizing it may depend on the gauge.

It has been shown by Capri and Ferrari that the infrared behaviour of
the Schwinger model in a generic covariant gauge is completely

accounted by a two-dimensional quantum field satisfying the equation

[]%¢ =0 (1.1.13)

This field satisfies again a dipolar equation; however it is much more
infrared singular than the four dimensional dipole because of the low
dimensionality of this space-time.

We will construct a family of Krein-Hilbert spaces associated with the
Wightman functions of the field (1.1.13). These spaces have a very rich
infrared structure wich will be explicitely displayed.

Subsequently, we examine also in this case the problem of the

construction of the Wick ordered exponential of the field ¢.



First of all we study the distributional properties of the Wightman
functions associated to the formal series (1.1.13). These Wightman
functions are non tempered distributions [WIG3].

The ultraviolet problem is absent and their distributional character is
accounted by their growth properties for large values of x. Again the
use of the Gelfand and Shilov's ‘"spaces of type S" will be crucial for
this characterization and alsé for the construction 6f the Wick
exponential as an operatorial distribution. This construction requires
as expected a further restriction of the test function space on which

the Wightman functions are defined.

10



2. THE DIPOLE FIELD MODEL IN FOUR DIMENSIONS

2.1 INTRODUCTION

In this chapter we present a rigorous treatment of the free dipole

field model, that is an hermitian scalar field satisfying the equation
[]%¢ =0 M =a“a” (2.1.1)

The motivations for such analysis are several. This model attracted
the interest of theoretical physicists already in the fifties under the
influence of the debated paper of Killen and Pauli on the Lee model
[KAL][FRO][LUK]. A revival of interest in the model came with the
advent of gauge theories and this because the Fourier transform of the
two point function of the dipole field has a 6,(k2) singularity,
k?=kpk“. This singularity is the quantum field theory version of the
linearly growing potential believed to be a crucial feature of the
quark-antiquark interaction [NAR]. Besides, as it will be shown in
chapter 5, the breaking of the gauge symmetry in the abelian Higgs
model requires, in local gauges, this kind of singularity (see chapter
5) Other classes of models which have a dipole field as a building
block are the Zwanziger model [ZWA], the conformally invariant models
[SAL][FUR] and the supersymmetric models. From a general point of view
the model can be regarded as a simple prototype of a four dimensional
quantum field theory exhibiting infrared singularities of the confining
type [STR2][MOR1], which are mnot compatible with the axiom of
positivity [SW]. Since the lack of positivity is an unavoidable feature
of gauge quantum field theories when treated in local (renormalizable)
gauges [STR1][STR2], a rigorous treatment of this model will shead
light on those general mathematical structures characterizing mnon
positive QFT’s in the Wightman framework.

Finally a further motivation for a revisitation of this model is that

the previous treatments are not completely satisfactory. The main open

11



problems are:

1) a clear identification of the Hilbert space of states associated to
the Wightman functions of this model;

2) the existence of translationally invariant states other than the
vacuum state (i.e. the essential uniqueness of the vacuum) ;

3) the symmetry breaking problem in the model;

4) the possible identification of the physical space and the physical
interpretation of the model;

The point is that, as emphasized by Morchio and Strocchi in [MOR1] and
by Wightman in [WIGl] the structural questions concerning an indefinite
metric QFT cannot be correctly posed and answered without making
reference to a Hilbert space realization of the model, and this is the
reason for which the ©previous treatments are not completely

satisfactory.

The starting point of the following discussion of the dipole field
model is a set of local and covariant Wightman functions which satisfy
the weak spectral condition. The lack of positivity imply that the
reconstruction theorem [SW][MOR] yields only a linear space 0 endowed
with a sesquilinear form < , >. To obtain a Hilbert space it is
necessary to introduce in 0 a Hilbert topology compatible with the
intrinsic indefinite product < , >. There are of course many possible
ways to introduce a Hilbert structure in 0, but the most interesting
cases are given by those structures which are maximal, i.e. not
properly contained in any other compatible Hilbert structure.

In this case the metric operator n, which represents the sesquilinear
form < . >, has the property that n2=l and the corresponding Hilbert

space is a Krein space [BOGN].

In section two we will construct a Hilbert-Krein structure associated
with the dipole field; we will show that the Hilbert space K in which
the model may be represented, contains vectors (different from the
vacuum) which are invariant under the Poincare’ group (infrared

states); the vacuum is however essentially unique [MOR1] i.e. there is

12



no strictly positive ( w.r. to < , > ) subspace of K consisting of
vectors invariant under translations, whose dimension is greater than
one. The infrared states have an interesting counterpart in the strong
closure of the local field algebra: indeed this closure includes
operators that are invariant under the Poincare’ group (infrared
operators). This property has been already noticed for the massless
scalar two-dimensional field [MOR3], and appears naturally when the
confining infrared singularities are controled by a maximal Hilbert

structure (Krein structure).

In section three we turn our attention to the symmetries of the model;
their treatment has unconventional features due to the indefiniteness
of the theory. The equation of motion are invariant under the group §
of local gauge transformations ¢ — ¢ + a , where a is a smooth real
solution of the equation [:]a = 0. The subgroup of global gauge
transformations a = const. is not broken in K (in the sense that there
exists a generator for this symmetry [STR4]) and its generator 1s
constructed using the infrared  operators. Also the scale
transformations are implementable in the space K and in fact the
translationally invariant operator which was introduced as a new
dynamical variable to account for the scale transformations of ¢ by the
uthors of [SAL][FUR] is here an intrinsic element of the theory and is

exactly the infinitely delocalized limit of ¢.

In section four we reconsider the problem of the quantization of the
dipole field using the canonical formalism. We recover, in an
unambiguous way, a (pseudo)-canonical quantization of the dipole field

operator.

Finally, in section five, we discuss the physical interpretation of the
model. Even if the model is very simple it may be used to test some
ideas that may work also in more interesting cases.

The problem of the physical interpretation of this model has already

been investigated. In particular the authors of [CAPl] obtain a

13



Poincare' invariant Hilbert space with positive metric but they
represent the field by a non-hermitian operator and give wup the
relation between the Wightman functions and the scalar product in the
physical space (from this point of view their solution has essentially
changed the terms of the problem ). On the other side a rigid
application of the requests of gauge invariance of the fields and
Poincare' invariance of the physical space forces the authors of
[ZWA] [MIN] [BOG1l] to conclude that the theory has a trivial content.
Finally a positive quantization of the dipole field is constructed in
[NAR] but the translation group 1is not implementable in the
corresponding Hilbert space.

We will examine this problem ab initio and first of all we will show
that the severe infrared singularities of the theory imply that the
Poincare’ group must be broken in every mnon trivial physical Fock
space; as a consequence of this fact we have that any non trivial
positive quantizations of the dipole field must necessarily be non
covariant under space time translations.

In particular we will construct two positive quantizations of the
dipole; in the first one the time translations are not a symmetry of
the theory while the space translations are an exact symmetry and the
contary happens in the second one. However it is possible to define a
vacuum sector (connected with gauge invariance) which is the same for
the two quantizations and with the property that the whole translation
group is a well defined symmetry on it. Part of the contents of this
chapter has already been published in [MOS1][MO0S2].

14



2.2 THE HILBERT-KREIN STRUGTURE ASSOCIATED TO THE DIPOLE FIELD.
INFRARED STATES AND OPERATORS.

In this section we construct a Krein-Hilbert space associated to the
dipole field and contemporarly give the general framework which is
suitable for the discussion of local and covariant quantum field

theories.

i) Krein Structure.

A local and covariant quantization of the dipole field is characterized

by a set of Wightman functions (¥ )} satisfying the following axioms:
n

O TEMPEREDNESS

¥ is a distribution belonging to f’(th, the dual of the Schwartz

n

space of the rapidly decreasing functions [GEL2][SCHW][REELl][REEZ].

1 COVARTANCE

For any Poincare' transformation {a,A} the n-point function are

invariant:

¥ (Ax+a,....,Ax+a) =% (x,....,X). (2.2.1)
n 1 . n n 1 n

1T LOCALITY

If x - x. = & 1is spacelike then

i i+1 i

¥ .. .. = .. L., X ). L2,
JEeaxax L eax ) =W (LXK X ) (2.2.2)
IIT WEAK SPECTRAIL CONDITION

The Fourier transforms W(kl,...,k l) of the distributions

-

W ,..,& )=V (x,..,x),have support contained in the cones
n 1 n-1 n 1 n

15



C= € )M(k) 20, (k)= 0 ). (2.2.3)

The Fourier transforms of test functions and distributions are defined

by the following formulae:

F(k,..,k )=(27r)-sz.exp(ik X +.. .4k x )E(x.,..,x)d'x ..d'% | (2.2.4)
1 n 1 1 non 1 n 1 n

T(f) = T(%), (2.2.5)

where kx is the Lorentz invariant product, fEf(RMB and Tef'(RA).
These axioms and the equation of motion (2.1.1) lead us to the

following two-point function:
¥ (x,x) = W(E) = -(16x%) 7 1n(-¢%+ i) (2.2.6)

We assume that the one-point function and all the truncated n-point
functions wvanish.

Following the paradigm of [MOR1] we obtain that these Wightman
functions define only an "intrinsic" representation of the dipole field
(defined through the reconstruction theorem) that is an operator valued
distribution on a linear space ? (the quasi-local states): indeed one
consider the Borchers algebra B [BOR] which is the set of finite
sequences f=(f,..,f,..) with £e C , fjef(a“j); in B one defines the

following inner product:

*
<fg> =)V (£xg)_ (2.2.7)

*

where (ﬁxg)n== z;+kmf£g , f (xl,..,xn)=f(xn,..,xl) and the bar means

complex conjugation.

1

Then the linear set 0 is defined to be 8/7 where ¥ is the Wightman
ideal:
F =1 feB : <£,g>=0 , vgeB ) (2.2.8)

(it is an ideal of B w.r. to the product x ). Elements of 0 are denoted

by the symbol [f]. By construction the inner product (2.2.7) is non

16



degenerate on 0. We may define the field operator on D as follows

p(£)[gl = [£ x gl (2.2.9)
where a representative for £ is (0,£,0,...). It is clear that the
vacuum vector wo , whose representative is (1,0,...), is cyclic w.r. to

¥, the polynomial algebra generated by the fields 4(f). There is a

linear representation of the Poincare’ group on 9, defined by

Ula, M E] = £, o

I (2.2.10)
where f{&A&(X> = f(Aq(x-a)). The covariance of the Wightman functions
implies that the operators U(a,A) preserve the inmer product (2.2.7)
(we will say that they are n-unitary operators).

In the following we will shortly denote by the same symbol f the test
function entering in the field ¢(f) aand the corresponding vector
obtained by applying that field to the vacuum.

As briefly discussed in the introduction, the lack of positivity of the
Wightman functions does not make (naturally) D a pre-Hilbert space.
However to get a full physical interpretation ome has to comnstruct a
Hilbert space of states: according to the commonly accepted wisdom they
are obtained as solutions of a subsidiary condition given in a Hilbert
closure of the local states. Thus, a necessary step is to associate a
Hilbert space of states to the Wightman functions and in this way
obtain a representation of the fields as operators in a Hilbert space.
The following axiom [MOR1l], which replaces the standard positivity
axiom [SW], guarantees that such Hilbert space construction 1is

possible:

IV HILBERT SPACE STRUCTURE CONDITION

There exists a set of Hilbert seminorms (p }, p_defined on f(R“v and
n n

P-continuous , such that

. :
]thxfnx gm)l = pn(fn)pm(gm). (2.2.11)
Without loss of generality we may assume in addition that these

17



seminorms vanish on J. Using standard methods we may now complete 0
W.I. to the topology induced by the seminorms {pn} and get an Hilbert
space H. Furthermore, we can extend the inner product (2.2.7) to the
whole H and there exists a bounded and self-adjoint operator n such

that [REE1l]
<1Ir1,\Ir§ = (wl,ntlrz) v ‘I’l’q’ze H, (2.2.12)

where ( , ) is the Hilbert scalar product in H, defined by the

seminorms {pn}. It is worth to point out again that different choices

of the seminorms give rise to different Hilbert spaces and whereas in
the standard case the Wightman functions uniquely fix the closure of D,

in the indefinite metric case different closures are available
corresponding to different topologies.

Among the possible Hilbert majorant topologies a distinguished role is

played by the so called minimal topolgies; they are characterized as

those which associate to the Wightman functions a maximal set of
states. Technically, they may be characterized by the property that the

metric operator 5 has a bounded inverse, or equivalently by the

property n2= 1 (Krein topology and Krein structure).

We now introduce a Krein structure for the dipole field model.

First of all we notice that the factorization of the n-point functions
(free field theory) implies that a possible set of seminorms may be
constructed using a single seminorm p defined on f(RA). We denote the
inner product induced in f(Ré) by the definition (2.7) by the same
symbol < , >. It is possible to choose a y f(RA) such that ;(O) =1
and <y,x> = 0 [ZWA] . Then one has that [GEL1]

<f,g> - f{(l-n)[‘fock>éo<k> + EOX(0E () + BOE XM ]| o dk

+

(2.2.13)

with £ (k) = £(k) - £(0)x(k) , DE(k) = k 3/0k (k) and o= ki‘+k§+k§.

We now define a Hilbert product in f(RQ) as follows:
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(f,g) = inf[_b:l(k)Gl(k)+fz(k)Gz(k)]w°3d3k +  <F,x><x,g> + I(0)g(0)
(2.2.14)

with F (k) = [(1-D)E (k)]|, and F,(k) - [DE (11, - (2.2.15)

+ +
It is easy to see that |<f,g>|= I£llel, with Hf”z=(f,f). Now we have

that the wvectors

1
Yex T ari ) A (E DT (2.2.16)
generate 9 . The symbol : : denotes the Wick-ordered product defined in

terms of Wightman functions [GARLl]. It follows that

n m
<V = — A
Ff . ¥ N > i Snmlzﬂ <fl,gi >...<fn,gi >, (2.2.17)
1 n 1 m 1 n
where Zﬂ denotes the sum over all the permutations.We may now define a

Hilbert product in D simply by

)= (n!)-ISn’mzﬂ(fl,gil)...(fn,gi ) (2.2.18)

1""11 1'”'m n

Denoting by K the Hilbert completion of D w.r. to the topology induced
by the (2.18), it follows that

K=o k™ | g®= ek (2.2.19)

n s

where K is the Hilbert completion of f(RA) and ® denotes the
symmetric tensor product. Therefore the study of K completely fixes
the Hilbert space of the theory. The main result of this section
consists in the proof that K is a Krein space and therefore the
so obtained set of states is maximal.

To prove this we need to study in advance the space Y, which is the

completion of the space
FRY = ( fer@®Y) : E(0) =0) (2.2.20)

w.r. to the Hilbert topology induced by the scalar product
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[£,8] = gnf[i(k)clck) + F (k)G (k) Jw d’k (2.2.21)

Lemma 2.2.1: it is possible to extend the product (2.13) to the whole

1" and there exists a bounded and self-adjoint operator n, such that

<f,g> = [£,7g] v £,g € gV (2.2.22)
and besides (r]o)2 =1, (2.2.23)
. CPI .

i.e. H is a Krein space.

Proof: the first part of the lemma follows from standard theorems of
functional analysis [REEl]. We need only to show the (2.2.23). To this

end we consider the space fo(Rﬁ)®Cz endowed with the products

(F,G) = ﬁwf[’fl(k)gl(k) +E, e, W1, » dk (2.2.24)
+
and a map U : 7 (R") —* (R)®C” defined by
vE- |(ID)E (2.2.25)
DF

It is obvious that we may extend the operator U to an operator Udefined
1 . . . .
on HY with values in the Hilbert completion of ran(U) w.r. to the

topology induced by the product { , } which we denote by R(U).The

+’
operator U has the following properties:

(U£.Ug) = [£,8] , (Uf,Tg) = <f,g> (2.2.26)
vV f,g HY. Besides one has that

(Uf,Ug) = {ﬁf,aaﬁg}+ (2.2.27)

with (o) =6 (-1
1,

J i,

. Therefore it follows that

{ﬁf,ﬁnog}+= [£,n,8] = <f,g> = (U£,Ug) - {ﬁf,aaﬁg}+ (2.2.28)

vV f,g e H(D. It is now possible to show that o, maps R(U) into itself;

this implies that we may apply eq. (2.28) twice and obtain that
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[£,(n)%8] = (TF, (o) T} ,~ (T£,Tg),~ [£.g] (2.2.29)

This relation is valid vV f,g € H"’ and this implies the (2.2.23).##

The fact that D is a differential operator non tangential to the future
cone C+ implies that R(U) is isomorphic to the Hilbert space
IF(C+-{O}, w‘%fk)®02 , which we briefly denote 1%9¢*. The use of the

operator U makes it possible the proof of the following

Corollary 2.2.2: H is isomorphic to IF@CZ, which is the space of two

complex component functions, defined on {C+-{O)}, square integrable

-3
w.r. to the measure w d?k. i

We are now in position to state and prove the main theorem of this

section:

Theorem 2.2.3: it is possible to extend the inner product (2.2.13) to

the whole K" and there exists a bounded and self-adjioint operator
n(n such that V f,g € kY it happens that

(@)

<f,g> = (£,7n @), (2.2.30)

(n'*H? = 1. (2.2.31)

Proof: as before, we need only to show eq. (2.2.31). Let us define on
(1

K the following functional:
X(E) = <x,£>. (2.2.32)
This functional is continuous because |X(£)| = |£| ; actually it is

possible to show that its norm is exactly one: indeed if we take the

sequence of elements of fO(RA) defined by
k) =9 (o) X(K), (2.2.33)

with 9(t) an infinitely differentiable non decreasing real function,

which is zero for t<0 and is one for t=1, and O (t) = d(nt), we find
n
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that

|X(fn)|/”fn” — 1. (2.2.34)

n-+co
The Riesz lemma implies that there exists a vector vie kK'Y such that
(V+,Vﬁ) =1land Vv f e K(D
<. £ = (v, ) (2.2.35)

It is not difficult to show that the sequence

bogX (2.2.36)

n

+ -
Vo= (<x,£%)
n n

(1

+ . 1 ;
converges to v in K We may think to K''’ as decomposed into

orthogonal subspaces:

(

k- K;“@ vie x (2.2.37)

+
where V' and X are the one dimensional subspaces generated by v and x
and

(1)
0

It follows from the formulae (2.2.13,14,38) and the corollary 2.2 that

K(1)
0

K= (£ ek (x,f) = (v,6) =0 ). (2.2.38)

is isomorphic to L’ec?.

Now, we want to compute explicitely the action of the metric operator

n<“ on the subspace V'® X. We have that for any f € K

+ (1)

v, £) =<x, 0> = (nPx , £, (2.2.39)
and this implies nujx -v. Let now f € f(Ré). We have that

(x,£) = £, (2.2.40)
<V, f> = 1lim <v:,f> = F0) = (v, 6 (2.2.41)

The density of f(RA) finally implies that n(va = x. We may write

£ =Pf+ (v ,E)v + (x,f)x, v £ ex?® (2.2.42)

where P is the projector on K;l). From eq. (2.42) it follows that
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<f,e> = (£,2nPPg) + (£,v)(x,2) + (£.0G g (2.2.43)

Theorem 2.2.1 and the decomposition (2.2.37) imply that
&) (1)

Pp P = Pno P
Defining by P, the projectors on the vectors 2—”2(v++ x) we obtain
that

(L (1)
<f,g> = (f£,n "'g) = ( L, {Pno P+ P, - Plg) (2.2.44)
and therefore
't = Pnél)P +P,- P (2.2.45)

Eq. (2.2.45) finally implies that (n‘*)? = 1. ##

Corollary 2.2.4: kY is isomorphic to (IF@CZ) ® Ve X

Corollary 2.2.5: K is a Krein space.

ii) Infinitely delocalized states and operators.

The implementers of the Poincare’ group are n-unitary but unbounded,
and therefore they are defined only on a dense set.

There is an important thing to notice: the sequence (2.2.36) converges
: . . + . . .
pointwise to zero; this means that the vector v 1s not a function and
describe a Poincare’ invariant state (infinitely delocalized state or

- . - 2 +
infraredstate); indeed it is easy to prove that v Dbelongs to the

domain of the operators U(a,A); then, V f € f(R“), we have:

- F(0) = 0. (2.2.46)

I
il
—~
o
~

SU(a,Mv - v B> =<, £ > - <, B>

{a,A}
The density of f(Rﬁ) and the non degeneracy of the inner product

(2.2.13) implies that
Ula,N)v = v . (2.2.47)

+ A ;
However the vector v has zero np-norm. This implies that the vacuum

vector is essentially unique [MOR1], i.e.there is no positive subspace
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of translationally invariant vectors, whose dimension is greater than

one. We may represent the field operator in K by the following formula:

CoE) v)™ = (n+1) V2 <E TSk, k) 4
172 o = (n-1)
+ T EG) PP, kL k) (2.2.48)
Jm1 J J n
where the f appearing at the R.H.S. has to be regarded as an element
of K(D, gt QOM1)(k,kl,...,k ) and k is the "integrated"
n

variable. This formula gives also explicit expressions for the positive
and negative frequencies parts of the field operator. Note that with
our conventions on the Fourier transforms of distributions, positive
frequencies correspond to "creation® operators. Also the covariance of
the field follows easily by the (2.2.48). When the smearing function f
is real, the operator ¢(f) is essentialy self-adjoint w.r. to the
indefinite product (7n-self-adjoint). The following estimate may be
proven using the representation (2.2.48), exactly as in the ordinary

case [REE2]

leceye™ | = )2 €] + €7 et (2.2.49)
with fi(k) = f(ik) We may now define another seminorm on f(RQ) by
a®® = £ + £ (2.2.50)

The completion of f(Rq) w.r. to the topology induced by the seminorm q

gives, exactly as before, the space
(L%(C,-(0),07°d*)ec%) @ (12(C -(0),0a°)ec?) © V'o Vo X (2.2.51)

where v is the one dimensional subspace generated by the wvector

v = limv . By the (2.49) we have that the sequence
n

(Wf s ) = {:¢(fnl’.'.’§k): @6} (2.2.52)

n n

1 k

converges in K if each of the {f } converges in the space (2.2.51).
n

It follows that the local field algebra ¥ has an extension ¥ which

xt
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contains the fields ¢(f), with f belonging to the space (2.2.51).

In particular Tm& contains the infrared field operators ¢(v*) and
¢(v7), which are invariant under the Poincare’ group.

These operators correspond to the operators introduced in [NAK] in the
context of the massless scalar two-dimensional field model, as an ill
defined integral.

Such integral does not actually exist and our construction provide an
alternative mathematically rigorous definition.

We stress that the existence of the infrared states and operators is a
consequence of the fact that K is a maximal space associated with the
given Wightman functions; this feature is not shared by non Krein
realizations of the theory.

As we will see in the next section such infrared operators are exactly
those needed to obtain a representation of the scale transformatioms
[SAL][FUR]. It is a virtue of the Krein formulation to give them a
sound matemathical status, so that they enter mnaturally in the theory

and need not to be introduced ad hoc from outside, as additional

degrees of freedom.
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2.3. SYMMETRIES.

i) Introduction.

The construction of the Hilbert-Krein space of the theory allows us a
correct discussion of the questions concerning the symmetries of the
model. We have already discussed the Poincare' symmetry and we will
turn again our attention on it when we will treat the physical
interpretation of the model. In this section we will deal with the
gauge and the scale symmetry but we begin by recalling briefly some
well known facts about symmetries in quantum mechanics, in order to
underline the differences that arise in the generalized context of
indefinite metric quantum theory.

The following brief exposition is based on [STR4] to which we refer for
more details.

An exact (or unbroken) symmetry in quantum mechanics is a

transformation of the rays of a Hilbert space H

T: ¥ — ¥, (2.3.1)
which leaves invariant the transition probabilities:

[<a, 0| = |<&",up|* . (2.3.2)

The well known and fundamental theorem of Wigner asserts that any such
transformation can be described by an operator U in H which is either
unitary or antiunitary [WIGN]. This implies that the trnsformation

(2.3.1) induces a corresponding transformation of the canonical

variables
o A— A" = UAU (2.3.3)
which preserves the algebraic relations, including the adjoint

operation and the commutation relations, i.e. it is a *-automorphism of
the canonical algebra 4. Since the equations of motion in the
Heisenberg picture of quantum mechanics are algebraic relations between
elements of the canonical algebra #, it follows that they are invariant

under a *-automorphism of 4 itself.
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It is interesting (and extremely important) to ask the opposite
question, i.e. whether given an arbitrary *-automorphism « of 4 it can
be represented in the form (2.3.3).

For quantum systems with a finite number of degrees of freedom the
answer is affirmative, i.e. any symmetry of the equations of motion
(i.e. a *-automorphism of the canonical algebra #) defines an exact
symmetry of the theory.

As regards infinite quantum systems the situation is drastically
different: indeed the existence of inequivalent representations of the
canonical algebra implies that not every symmetry of the equations of
motion gives rise to a transformation law of the states, which
preserves the transition probabilities. If this is the case, one says

that the symmetry is spontaneously broken.

A necessary and sufficient condition for which a *-automorphism « of
the canonical algebra, which commutes with the time translations,
defines an exact symmetry in a representation with unique cyclic ground

state @0 , is that all correlation functions are invariant, i.e.
(&0,a(A)@b> - <@O,A@b> (2.3.4)

for any Aed; this equivalence has lead several authors to assume the
opposite of the (2.3.4) as the very definition of a spontaneous
breaking of a symmetry, i.e. a symmetry a (¥-automorphism) of the
canonical algebra # is said spontaneously broken if there is at least

an element Ac4 such that
T ,e(A)T > = T AT S (2.3.5)

where WO is the unique cyclic ground state of the chosen representation
of the algebra.

The situation changes again if now enlarge our framework to include
quantum systems having an indefinite metric representation space.
Indeed in this case the symmetry may be implementable by a n-unitary
operator which does not leave the cyclic ground state invariant (the
mechanism is that such state may be invariant up to vectors having zero

n-norm) : this means
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that a symmetry o may not leave invariant the correlation functions of
the canonical algebra (and therefore be "spontneously broken" according
to the criterium (2.3.5) and nevertheless it may be implemented by
n-unitary operator.

We immediately clarify these facts by discussing the global gauge
automorphism of the polynomial algebra ¥ generated by the dipole
field.

ii) Gauge symmetry.

An important symmetry (also for subsequent applications, see chapters
4 and 5) of this model is the gauge symmetry; in fact one sees
immediately that the equation of motion (2.1.1) is invariant under the

following gauge transformations of the second kind (local gauge

transformations)
$(x) — (%) + a(x) (2.3.6)
where a(x) is a real smooth solution of the equation [:]a = 0.

We consider the particular solutions of this equation given by a(x)=)\.
These solutions identify the gauge transformations of the first kind
(global tranformations); they correspond to the following group

of automorphisms of the field algebra:
A
T e(x) — p(x) + AL (2.3.7)

This group of automorphisms is generated by the conseved current

6ﬂ[:]¢(x), in the following sense: consider the local charge Q; , given
by

Q - f 8,L] ¢ £.(xa (x) a'x (2.3.8)

where f(x) is an infinitely differentiable function such that f(x)=1 if
x| = 1 and £(x)=0 if |[x| = 2, and ad(xo) is an infinitely

differentiable function of compact support such that

J ad(xo) dX0 =1 , lim ad(xo) = 6(X0) (2.3.9)
d-*o
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Then one has that

d 7'\(¢<f))IA=O = 1 lim [Q,¢(£)] = (2m)? £(0) = f £(x) d'x (2.3.10)
dx R0

Theorem 2.3.1: the automorphism 7A is implementated in the Krein space

K by the operator FA = exp ZﬂziAQ, with Q = (2%2)_%n-1im QR.

Proof: define

[6(v) - $(v)] (2.3.11)

[ anad

Q =

First of all we show that QR converges to (ZWZ)Q as a bilinear form on

n0xD. Indeed we have that
@,y = 3r [k, B (¥ B (03, (301 | ok -

i J E (-0 (-0) gw,k) o dk . » (2.3.12)

Since f%(—k) converges to (2n)w25(k) in the sense of distributions as

R goes to infinity, and ad(O) = (2%)‘U2, we obtain that

lim <¥ ,Q¢(g)V> = 27r2<\D0,Q $(g)> = -27%1 §(0) (2.3.13)

R0

Consequently, the factorization of the Wightman functions implies that

¥, P($) QP (#) Uy = 21" <T, P ($) QP (#) V> (2.3.14)

and therefore QR converges to 2W2Q in the sense of sesquilinear forms
on the domain nDxD.
A direct calculation shows that for any ¥l the following uniform

majorization holds:
(- (£a)¥ || = const. (2.3.15)

c s . . 2
This implies that QR is weakly convergent to 2x Q. Now we have that D
is a set of analytic vectors for Q and therefore we may exponentiate it

and obtain
™ = exp 27%1 Q (2.3.16)

Thus 1"A actually implements the symmetry vA L HH#
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By the above results, the global gauge symmetry is unbroken in the
Krein space (i.e. there exists a one-parameter group of n-unitary
operators implementing the global gauge transformations). We remark
that this symmetry would have been broken if we had used a non Krein
topology (see the analogous mechanism in [MOR3]).

As we have anticipated, here emerges a feature that is not shared by
conventional theories: the symmetry is implementable but the vacuum is
not invariant under the action of the implementers PA . It is however
essentialy invariant: indeed the extra term is a translationally
invariant null vector.

Another difference w.r. to the standard case is that the sequence of
local charges QR converges to 2n2Q in the weak graph limit sense
[REEL], a kind of convergence which is forbidden in the standard

(positive metric) case [SCHR2].

ii) Scale transformations.

Another very interesting symmetry of the theory is given by the scale

transformations x — sx. These transformations do not leave invariant
. . . . 2, -1

the two-point function: it get shifted by the constant -(8x°) log s.

Let us define the following automorphism of ¥ N
ex

oy i $(E) — $(£) + 7 = log s E(0) 4(v) (2.3.17)

with £ _(x) = s “F(x/s) and ¢(v) = H(V) + $(v) (2.3.18)

Theorem 2.3.2: The automorphism o is implementated in the Krein space

K by the operators U(s) which are p-unitary and leave the vacuum

invariant.

Proof: it is easy to verify that

<Upe g ($(E))a ($(8))U> = <V, 4(£)4(g)¥ > (2.3.19)
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The action of U(s) is determined by its definition on the one-particle

space:

2

U(s)e, = ¥, + 7o’ E0) log s v (2.3.20)

£
s

and because of the invariance of the Wightman functions one has that
U(s)llf0 = WO. #i (2.3.21)
Thus, the translationally invariant operator that has been introduced
in literature as a new dynamical variable to account for the scale
transformations of ¢ in the context of conformally invariant models
[SAL][FUR], is exactly ¢(v), the infinitely delocalized limit of ¢; it
is therefore an intrinsic content of the model in the Krein space

approach.
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2.4, CaNONICAL QUANTIZATION

In this section we want to develop a canonical formalism for the dipole
field. To this end we consider again the operator valued distribution

¢, satisfying the [:]z¢ = 0 and the commutation rules

[6G) 6] = - 5= (€ )0(eD), | (2.4.1)

where 9(t) is the step function and e(t) = 9(t) - 9(-t); the commutator
(2.4.1) follows immediately by the two-point function (2.2.6).
General properties of hyperbolic equations [GAR2] allow us to extend
the class of test functions which may be used to smear the field ¢, to
distributions of the form £ (x) = §(x - t)f(x) with £ € P(RY).

Thank to this property we may introduce the fixed time fields
p(t,f) = f¢(t,x)f(x)d%{. It follows that the only non zero fixed time

commutators are the following ones:

Lece,=),0,LIsCe, ] = [ [Jece, 0,8 6t,7)] = 168 (x-y). (2.4.2)

The commutators (2.4.2) are exactly those that one imposes in the
canonical quantization of a system of two fields with lagrangian [NAR]

_ ot L 2
E=afan il (2.4.3)

Actually A is not independent on ¢: indeed the equations of motion that

follow from (4.3) are

[]¢=na , [Ja=0 (2.4.4)

(which together imply [:]2¢ = 0).

To avoid ambiguities we restrict for the moment test functions to
those of fo - It is then possible to introduce in a standard way [SW]
the splitting of the field ¢ into positive and negative frequency parts
¢ = ¢+ + ¢ . We consider then the star algebra 4 generated by the
fields ¢Cb, 80¢dn, ACb, aoACb, taken at t=0 (i.e. smeared with test
functions of the form 6(x0)f(x)). Clearly not all these fields are
algebraically independent: indeed they are linked by the four relations
given by conjugation and by the two commutators (2.4.3). Taking these

relations into account we are led to the following expressions (see
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[WIG2] for analogous formulae regarding the canonical free field):

0,1 = (-0 0,3 + (-0 40,3 + 5(-5)""38(0,x), (2.4.5)
$.(0,%) = (-0 $(0,x) + 1(-0)""9 $(0,%) - %(-A)‘l"‘A(o,x), (2.4.6)
which, by construction, contain only negative frequencies

(consequently, their conjugated contain only positive frequencies);
. . 2,2 .2

The operator A is the Laplacian: A = -61 -82 -63.

We obtain two pairs of creation and annihilation operators simply by

taking the Fourier transform:

a (k) = (2m) %2 J exp(ikx) ¥ (0,%) a’x (2.4.7)

az(k) - (2m) %2 f exp (- ikx) ¢'if<o,x) &x . (2.4.8)

These operators satisfy the following pseudo-canonical commutation

relations:
2, (@),al (0] = 6°(a-), (2.6.9)
[az(q),a;f(k)] - -6°(q-K). (2.4.10)

The remaining commutators are zero. We remark that the minus sign at
the R.H.S.of (2.4.10) is an unavoidable consequence of the relation’
between the spectral condition and the splitting of the field operator
into positive and mnegative frequencies.

One may take a combination of these operators to obtain the C.C.R. in
the usual form (without the minus sign) but the so obtained operators
are no longer related to the positive and negative frequency parts of
the field ¢ (we will comment again on this point). The field equation

determines the following time evolution of the a’s:

Tt(al(k)) = exp(-iwt) [(1+iwt) al(k) - lwt az(k)] (2.4.13)
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Tt(az(k)) = exp(-iwt) [iwt al(k) + (l-iwt) az(k)] (2.4.14)

Therefore the time evolution mixes a1 with a,; however it is not a
(proper) Bogoliubov transformation because it does not mixes creators
and annihilators. Using the previous formulae one may obtain the

following representation of the field:

8’ (t,x)= (2n>‘3’2fexp(iwt-ikx) [(1~iwt)a1(k) + iwt a;fuc)] (2023 *a%k
+ (2n)“3’zf exp(-iwottikx) [(1+iot) a (k) - iwt az(k)](2w3/2)—ld3k.
(2.4.15)

The commutation relations (2.4.9) and (2.4.10) also imply that the Fock
representation for the a's is a space endowed with an indefinite

metric. The Fock vacuum is defined by the following conditions:
al(k)wo = az(k)llf0 =0 . (2.4.16)

The usual methods of Lagrangian field theory lead us to the following

four-momentum:

H = J w [al(k)(al(k) - a (1) + (aI(k) ) al(k))az(k)] @’k (2.4.17)

Pt~ f ki[az(k)al(k) - aZ(k)aZ(k)] a’k . (2.4.18)

The Hamiltonian given in the (4.14) does indeed generate the time

evolution T in fact one has that

gtTt(ai(k),)!t=0 =i [H,al(k)] - (2419)

Therefore the time evolution is implementable in the (indefinite
metric) Fock space of the model. '

Now we return back and use these results to give an explicit expression
of the dipole field as a distribution on f(Rh) (rather than on

fo(Rb) ) with values operators on the Krein space K; this formula takes
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into account the two extra degrees of freedom which are connected with
the infrared singularities which affect the splitting of the field
into positive and negative frequencies parts (tip of the light cone) .

We obtain the followiﬁg expression:
$(E) = ¢/ (£) + E(0)$(0) + <x, E4(v) + <E,x>4(v) (2.4.20)

$', whose explicit expression is given in (2.4.15), here identifies the
L part of the field operator (this splitting 1is obviously a
consequence of the structure of the space given in eq.(2.2.51)).

The time evolution gets extra terms; for instance we obtain:

¢t<a‘;(k)) ~ exp(iwt) [(l-iwt) az(k) + iwtai(k)] +

2

+ (n/2) 2072 [exp(iwt) (1-iwt) - 1 ] X(w0,k)é (") (2.4.21)

Tt(ag(k)) - exp(iwt) [-iet a];(k) + (l+iwt) aZ(k)]

2

- (n/2) Y207 P [exp (Lwt) (-iwt)] X(w,k)$ (V) (2.4.22)

We conclude this pargraph by a comparison between our results and the
existing positive quantization of the dipole field displayed by
Narnhofer and Thirring. As it is clear by the previous derivation, the
splitting of the field ¢ into positive and negative frequencies [SW]
leads to the introduction of pseudo-canonical operators. We have
already said we may obtain "true" canonical operators by taking
suitable (frequency-dependent) combinations of them. In particular
Narnhofer and Thirring's canonical operators may be obtained by the

following Bogoliubov-like transformation:

b (k) = 2 4l + 1o + 2)]a () + [0 + 32) - iwla (k) +

b o - 1 - 21al(0 + 1w - 1)+ iela] (0}
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bz(k) = {[(-w + %Z) - iw]al(k) + [w + i(w - %;)]az(k) +

N =

+ [(w + %5> ] iw]aI(k) + [0+ i(w + %;)]az(k)} . (2.4.23)

(These transformtions are infrared singular, but are well defined on a
dense subset of Lz).It easy to verify that these operators satisfy the
canonical commutation rules. To give an example we compute the

following commutators:

[5,(@),6] (0] = 746" + (o + 3% 1a (@),al (0] +
F o+ 29208 [a (@), al (9] + (0 + @ - 1al(@,2 a7 +
2w 2 q ,az 2w 1 1/, 1

+ (-0 - %;)z+w2)[al(q),az(k)]} - §°(q-k) (2.4.24)

(5,@,5,(01 = 7 4lo + 10 + $1(( + £ - 102 (@),a (0]
Lo+ 50 - tlle + i + 2] (a (@,af @) +

+ [0 - i(w - %5 1 (-0 + %;) - iw][ai(q),al(k)] +

+ [(-w - %;) + iw][w + i(w - %;)][aZ(q),az(k)] -0 (2.4.25)

The remaining commutators may be computed in the same way and we obtain

that the only nonzero ones are the following:
5,0l 0] = 1b,(2),6] (0] = 6%q-10)
For completeness we give also the inverse formulae:

al(k) = % {lo - i(w + %;)]bl(k) + [(w + %5) - iw]bz(k) +

+ [0+ i(w - %;)]bz(k) + [(o - %;) ; iw]bi(k)}, (2.4.26)
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a, () = F1l(0 - 3 - iw]b () + [w - i(w - 3)]b (k) +

b o[- + %;) + iw]bj(k) + o - i(e + %;)]bi(k)}. (2.4.27)

Finally the dipole field written in yerms of the canonical operators

b’s hs the following form:

$(x) -—;-——(;;?/ZP (5 + 1w)cos (ut-kn)+(5 - T+ iw)sin(ut-kx) 15] (0

+ [0 - 59 cos(et-kx) - (w - 2F - Iy sinue-en] bl o j:f:/z

+ 2_(—;-)—3_4 i (g - iw) cos(wt-kx) +<~2t« - %—w - 1w) sin(wt-kx) 1b (k)
(2.4.28)

It has been proved by Narnhofer and Thirring that the Fock
representation for the operators b's, defined by the condition
b(k)@é=0, leads to mnon implementable time translations. In our
perspective this conclusion appears related to the fact that the
operators b are not linked to the splitting of the commutator (2.4.1)
into positive and negative frequency parts.

As we have seen there exists a representation, which is non-Fock for
the canonical operators b’s and that satisfy the Fock condition for the
operators a(k), in which the time translations are implementable. In

this case the Fock like state is non positive.
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25 THE PHYSICAL INTERPRETATION.

It is necessary at this point to identify some subspace K' of the Krein
space K by means of which constructing the physical space of the
theory. K' must satisfy at least the two following requirements: the
vacuum vector must belong to K’ (i.e. the vacuum is a physical state),
and K’ must be semidefinite (i.e. <T¥,¥> > 0 YV ¥ € K') for the
probabilistic interpretation of the theory. It is usual to define the
space K' using an operator supplementary condition, as in the
Gupta-Bleuler [GUP] [BLE] or B.R.S.T. [KUG] quantization. Then,

defining
K'" = (¥ € K': <¥,1>=0) (2.5.1)

we obtain as a candidate for the physical space of the theory the

following Hilbert space:

R o= (R/R) (2.5.2)

where the completion is taken w.r. to the Hilbert topology induced by
the scalar product < , >. Before performing the explicit construction
of some possible physical spaces, we state and proof the following
theorem by which space-time translations must be broken in every non

trivial physical subspace oh D:

Theorem 2.5.1: Every semidefinite subspace of 9, invariant under

space-time translations is a null subspace of 7.

Proof: it is clear that it is enough to show this result at the one
particle level and therefore we consider a positive semidefinite
subspace of f(R}) which contains a certain function f and all its
translated f; eq. (2.10) imply that ’fa(k> = exp(ika) f(k). Call this
space Tf. We use at first the invariance of Tf under time translations.

Let a = (t,0) and define
Tl(t) = <f-ft,f-ft> . (2.5.3)

By hypothesis Tl(t) > 0 and it is obvious that Tl(O) = 0 . Therefore



the point t=0 must be a minimum for Tl(t), and this implies that

2 .
d - ]
2 T ()| = - J[(l + D) | Fk) 7] |C+w e >0 . (2.5.4)

The same argument may be applied to the function
T (t) =< ) E] e, ¥ [;] 1P E > (2.5.5)
n 5=0 jt 3=0 jt

By induction one has that

dm
— T ()] =0, m =< 2n-1 . (2.5.6)
dr m n t=0

The fact that t=0 must be a minimum for T (t) now gives the condition
n

3

jwz“‘a[a - 2n - D)If(k)lz]lcdk > 0. (2.5.7)

+
Now we exploit the invariance of Tf under space translations. To
: . 4
illustrate the method let us suppose at first that f € fO(R ). The non

negativity of Tf implies that

<f,f> = gw f [(1-D)1‘f(k>|2]|c wdk = 0. (2.5.8)
+
The invariance of Tf under space translations implies that actually it

must be

[(1-D)IE(K)[]] = 0 (2.5.9)

+

pointwise . Indeed let us define

N
F, (k) = (e, ¥ exp(igne) £ (k) (2.5.10)
2

with ne (O,nlegae,nae) and ¢ > 0. When ¢ and N stay finite FE .

belongs to Tf and by hypothesis

N
<F ,F >= §7r<e/N)3 ¥ Jexp[i(k—q) (n-m)e](l-D)['E(k)gzic w 2d’k =0
n,m='N +
(2.5.11)
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By choosing ¢ = N'? and taking the limit of the last expression for
N — = we obtain the (5.8). Repeating now the steps that led us to the

formula (5.7) we concludethat it must be

{(l-2n—D)[f(k)[z}|cz 0 Vo1, (2.5.12)
+

where it is no more necessary to suppose that fefO(Ra), It is now
evident that the system of inequalities (2.5.12) may be verified if and

only if

’f(k)]c= 0. (2.5.13)

+

Therefore Tf is contained in the linear space

¥ = (fer@®") : W) (2.5.14)
+
which is a null subspace of f(Ré) invariant under the translations

group. Therefore Tf is a null subspace of f(R4) #i#

Corollary 2.5.2: every semidefinite (actually null) translationally

. . 4, . . .
invariant subspace of P(R') is contained in #.

Thus, according to corollary (2.5.2) there is no hope of finding a non
trivial physical subspace of K that be Poincare' invariant: indeed
the condition (2.5.13) leads to a physical space that contains only the
vacuum vector [ZWA][BOGLl][MIN].

(This space is selected by the Zwanziger supplementary condition [ZWA],
based on the electrodynamical analogy. We will study in detail this
condition in chapter 4)

This fact does not mean that the content of this free field theory is
necessarily trivial; it means only that we must construct a physical
space in which the Poincare' symmetry is broken. This should not come
as a surprise: indeed already in QED4 the construction of the physical
charged sectors requires the breaking of the Lorentz group [FRO][MOR2]
(though with a different mechanism).Besides, confinement of charged
massless particles in QEDQ and of charged massive particles in QED3 is

a consequence of the breaking of the translation group in the physical
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space [24]. Also in the present case the infrared singularities are of
the confining type, and lead to the breaking of the translation group
in the physical space (mechanism of confinement). Let us see the
concrete construction of some possible physical spaces: consider a

complex valued infinitely differentiable function z=z(k), such that

Re z(k) = u < 1/2 , | Im z(k) | < const |k]|. (2.5.15)

Each z(k) that satisfies the previous conditions labels a possible

physical space K s Indeed, following the procedure briefly
z,phys

illustrated at the beginning of this section, we may define the one

. 1! .
particle space K" as the Krein closure of the dense set
z

D= (fer RY) : (D-z()E®) ). (2.5.16)
+

K’ may be obtained as the symmetric Fock space over K(l)', and the

z Z

physical space K is given by K'/K’'’. It is possible to see that
) z, z z

phys

K’ 1s a maximal non negative subspace of K (i.e. it is not properly
zZ

contained in any other non negative subspace of K). Note that the set

(5.16) is mnot stable under the translation group; indeed one has that

(1)

U(a)y " - gt ) (2.5.17)

z+ik0a0

Eq (5.17) implies that K; is not stable under time translations while
it stable under space translations; in particular the time translations
map a dense set of a maximal non negative subspace of K onto a dense
set of another maximal non negative subspace of K and therefore define
orbits (of maximal non negative subspaces of K).

The same happens for the Lorentz boosts , while purely spatial
rotations leave each K; invariant.

To get a closer insight into the structure of these spaces we mow study

in some detail the case z=0. We have that
-3.3 +
K =1L (C+-{O},w dk) eV | (2.5.18)

k() v (2.5.19)



1
K()

2 -3 .3
z=0, phys =L (C+-{O),w dk) (2.5.20)

The total physical space K 0 vhys 1Y be obtained by the usual Fock
2=U, phys

procedure. The fact that K’0 is maximal semidefinite may be understood
z=

by looking at (2.5.18). Eq. (2.48) implies that the vectors of K’

z=0
may be characterized by the following Gupta-Bleuler condition:
¢ (£) T =0 erfO(R") such that (1-D)E(-k)|_= 0
) + (2.5.21)
¢(v ) ¥ =0

The next question concerns the definition of the fields on the physical
space. We distinguish here two notions of "quotientability" that are
similar to those notions of gauge invariance introduced in [STR1]. Let

A be a bounded operator in K. A is said guotientable w.r. to K’ if

AR'C K’ AK''C R’ ', (2.5.22)

A 1s said weakly gquotientable if the matrix elements <¢1,AT2> s
wl,wze K'", depend only on equivalence classes of K’'/K'’. These
definitions may be easily generalizated to cover the case of unbounded
operators. There is a unique operator ; in mes associated to a
quo?}entable operator A. If A is only weakly quotientable the existence
of A is guaranteed only in the case in which the space K'/K'' is
complete [24]. In this case g is constructed using the representation
theorem for sesquilinear forms [19]. Let us come back to our concrete
case. It is evident that for a generic test function f

¢(f)K;=D & K;=o (2.5.23)
but it is not difficult to show that ¢(f) is weakly quotientable when
fEfO(RA) (the severe infrared singularities of the theory prevent the
possibility to extend the quotiented field to functions belonging to
f(Ra)). The explicit expression of the quotiented field w.r. to K' is

z=0

the following:
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(n+1)

BENH® - éﬁ (n+l)1lzf[(l DEC-K)]], (k,kl,...,knﬂ)w"ad"k +

+
”22[(1 DYE(k,)] I, ‘“’(kl,..,k,,..k) (2.5.24)
j=0 + d n

This expression glves a positive (mon covariant) quantization of the
dipole field ([:]45 = 0) as an operator valued distribution on J"(R ),
acting on a Hilbert space with positive metric. The fact that time
translations are a broken symmetry becomes now more evident: indeed one
may define a transformation 1, of the polynomial algebra generated by

the quotiented field ¢:
7, ($(5)) = #(£) (2.5.25)

with ft(x) = f(xo—t,x).

it turns out that this transformation may be interpreted as time
translations only when restricted to a subalgebra.

Indeed from eq. (2.5.24) one can easily obtain the quotient of the
gauge invariant field A = Dqﬁ. It is possible to find a non trivial
"vacuum sector"A by applying polynomials of the quotiented gauge
invariant field A to the wvacuum vector (and completing w.r. to < , >):

= {?’(A)‘Ifo} (2.5.26)

vac,z=0

This conclusion 1is in contrast with those of [ZWA][BOG]. The
explanation of this contrast is  that while the vacuum expectation
values of the polynomial algebra generated by A vanish, this is not the
case for ?(/A\) at the quotient and this because of the (5.23). It is

worth to mention that the transformation 7, has the meaning of time

translation in K o and its representation is the usual one; for
vac, z=

instance if ¥ € K" one has that the implementer of 7, is given by
vac, z=

V(t)¥ = exp(—ékot)‘lf (2.5.27)

Therefore, starting from the local and covariant quantization of
chapter 2, we have got as a special case a positive quantization

somewhat related to that exibited in [NAR]. In this case the time
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translations are implementable in the Krein space K, but do not Kphys
invariant . Here we have another example (see also [MOR2]) supporting
the advantages of the strategy of computing the Wightman functions (or
equivalently solving the dynamics) in a local and covariant gauge,
where a lot symmetries are implementable and the theory has a linear
structure. The physical interpretation of the model is then obtained
simply by a linear subsidiary condition; it is at this stage that the
physical structure, which is in general non symmetric, appears.

The physical space Kvm,mws we have just constructed, may be regained
easily wusing the canonical formalism introduced in the previous

section. The Gupta-Bleuler condition now is written as follows:

a (k) [phys> = 0 (2.5.28)

A A

It follows that a = o, a=a,. The quotiented field is given by

;(t,x) - (27r)‘3’2fexp(1wt-ikx)(1-iwt);z(k) (20> 7 'a% +

(21r)’3/2fexp(-iwt+ikx)(1+iwt);1(k) (20° %y %k (2.5.29)

The Hamiltonian is quotiented to zero . Again the time translations are

& symmetry only in the vacuum sector; their generator is the following:
AT A 3

H=1]w al(k)al(k) d'k (2.5.30)

v

On the other side the space translations are implementable on the whole

physical space and their generator is exactly the quotiented momentum:

Pt - f kicALI(k)c;l(k) (2.5.31)
We note also that the equal time commutators involving quotiented
fields which are not gauge invariant may depend explicitely on time.

It would now be intersting to know if there is the possibility of
obtaining a positive quantization of the dipole field in which the time
translations are an exact symmetry for the whole physical space and not
only for the wvacuum sector. The Krein space approach allows the
possibility to give an answer to this question. Indeed there are many

other positive semidefinite subspaces of K and we may try to find some
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which are stable under time translations. Therefore let us consider the
following construction: let w = w(k) a complex-valued infinitely

differentiable function such that

Re w(k) = p > -1/2 |Im w(k)| < const. |k (2.5.32)

The one-particle semidefinite subspace we are looking for is defined as

. . 1y’
the Krein completion H'Y of the dense set
W

g = (£ RD) ¢ LEwEDE®I - 0) (2.5.33)
+
where G = k18/3k£+ k23/8k2+ kaa/aks. Again H; is obtained by

. . 1) .
constructing the symmetric Fock space over 1Y "and the physical space
w

H is given by H'/H''. In this case we have that
w,phys w' o w

U@E " = 8 (2.5.34)
This implies that H; is not stable under space translations while it is
stable under time translations, which therefore define an exact
symmetry in H As in precedence we give the supplementary

w,phys'

condition that characterizes the space H' o
w=

= -GIECB) ]

4T (E)y = 0  vfer (R') such that [(1-D)E(-K)]|
0 + + (2.5.35)

p(v )T =0

Exactly as before the quotiented field may be constructed only for -
those test functions belonging to fO(Ré). We do not give here the
complicated expression of the quotiented field but write its two point

function:
3
3. -1 . -3
G(x-y) = W(x-y) + (327) 2 x,x'j k,kjexp[ék(x-y)]]c w Lk (2.5.36)
i3 i
i,3=1 +
Thus we have obtained another (nom covariant) positive quantization of

the dipole field for which the time translations are an exact symmetry
of the physical space while the space translations do not leave it
invariant.

We remark that this quantization can never be obtained in a formal

approach which exploits the usual creation and annihilation operators:
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indeed the supplementary condition (2.5.35) cannot be rewritten in
terms of them.

Clearly the two quantizations that we have constructed must have the
same physical meaning and indeed it is again possible to construct a
"vacuum sector" in which the whole translation group is implementable
and actually this vacuum sector is isomorphic to the previous one: this
may be understood by looking at the Wightman functions of the gauge
invariant quotiented fields which are the same in the two cases, as it
may be directly verified using formulae (2.5.24) and (2.5.36).

We have come to the following conclusions: a local and covariant
quantization of the dipole field model may only be obtained by making
use of an indefinite metric space and it turns out that the most
natural setting to discuss the model is the Krein space K, whose
features has been described in sections two and three. Then the thing
to do is to look for a positive semidefinite subspace of K by means of
which constructing the physical space (and therefore the physical
interpretation) of the model. In our case we have seen that the
infrared singularities of the Wightman functions forbid the possibility
of constructing a Poincare' invariant physical space diffefent from the
vacuum vector. There is however the possibility to find subspaces of K
which are not invariant under the Poincare' group and which originate
physical spaces exhibiting its breaking (mechanism of confinement). In
particular we have constructed two explicit examples: in the first one
the time translations are broken while the space translations are an
exact symmetry, and the contrary happens in the second one (actually
other choices are possible but all exhibiting the breaking of the whole
translation group). What is important is the fact that it is possible
to construct a "vacuum sector” and this is the same in the two cases;
therefore the gauge invariant content of the two positive quantizations

that we have constructed is the same.
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3. THE WICK ORDERED EXPONENTIAL OF THE DIPOLE FIELD

3.1 INTRODUCTION.

The discussion of a class of soluble models with an interacting dipole
requires the introduction of an important nonlinear function of the
dipole field, namely its Wick ordered exponential.

As in the standard case the Wick powers :¢": of the dipole field are
well defined fields (except positivity) i.e. it is possible to show
that they are tempered distributions with values operators in the Krein
space K introduced in the previous chapter (the construction is similar
to that exposed by Garding and Wightman in [GAR1]).

It has been known for a long time [GLA][EPS] that yet in the standard
(positive metric) case no series of the kind B(x)=z ah:pn:(x), where p
is a free scalar field and an infinite number of coefficients aare
different from zero, defines a tempered field operator in a space time
of dimension greater than two. However it was also noticed that one may
construct QFT’s containing objects like these by finding suitable test
function spaces allowing the strong convergence of the series defining
B(x). In particular B(x) is a well defined operator valued distribution
on the test function space Z [WIGL][SCHR1][KLA]; Z contains only
analytic functions and their Fourier transform are infinitely
differentiable functions having a compact support [GELZ]. Fields of
this type have been considered in various models of nonrenormalizable
and nonlocal interactions [GUT][FRA][EFI].

1t was Jaffe [JAFl] to discover that in certain favourable cases these
fields admit a formulation of microcausality, i.e. notwithstanding the
fact that the growth of the fields in momentum space is faster than any
polynomial they may be smeared with test functions having compact
support in position space (Jaffe fields). This has 1lead to some
remarkable extensions of the Wightman theory to more general
distributional frameworks [CON][NAG].

The main scope of this chapter is to give a sense to the series
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texp(zg):(x) = ¥~ ig%i(x) | zeC (3.1.1)

The first thing to do is to use the (by now formal) definition (3.1.1)
to compute the vacuum expectation values of the "field" texp(zg) : (x).
These may be easily computed and one gets the following expression for
the n-point function:

n

(ijgo:exp(zj¢):(xj) WO> = igk exp[zisz(xi-xk)] (3.1.2)

with W(€)= -(4n) % 1n(-&%+ ie€).

In this way we get a set of tempered distributions, and we want to
construct a field (i.e. an operator valued distribution on a
Hilbert space H) having these distributions as correlation functions;
this operator valued distribution will be called ﬁhe Wick exponential
of the dipole field and denoted with the symbol :expzé:(x). Let us see
how to proceed:

1) having at our disposal the Wightman functions (3.1.2) we may try to
use the reconstruction theorem to obtain the field :exp(zg) :(x) as an
operator valued distribution on a Hilbert space H.

In the standard (positive metric) case this is in principle ever
possible (see for example [JAF2]). In the indefinite metric case the
generalized reconstruction theorem [MOR1] requires the introduction of
a Hilbert majorant topology.

However the direct construction of a set of Hilbert seminorms that
majorize the n-point functions (3.1.2) (without passing through the
construction of the free dipole field), is very difficult because the
truncated Wightman functions of the field iexpz¢: (x) do not vanish and
the needed Hilbert seminorms cannot have the simple structure found in
the previous chapter for the free dipole field.

1i) The alternative way consists in studying the strong convergence of
the series (3.1.1) inside the Krein-Hilbert where we have reconstructed
the free dipole field. As in the case of Jaffe fields one is compelled
to restrict the test function spaces in order to assure this kind of

convergence.
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There are however some differences w.r. to that case: first of all the
strong convergence of the series (3.1.1) depends crucially on the
Hilbert majorant topology used to construct the free dipole and in
general the control of the strong convergence of the series (3.1.1) is
not possible.

Besides the test function spaces which allow the strong convergence of
that series may (and actually will) be much more restricted than the
fundamental space on which are defined the correlation functions
(3.1.2).

The point is that now the construction of the Wick exponential requires
the simultaneous control of the ultraviolet and infrared singularities;
the latter ones are not shared by standard field theories and, as we
have repeatedly said, the control of such infrared singularities
requires the introduction of a Hilbert topology. The so constructed
field operator Hilbert topology may have infrared and ultraviolet
behaviour which is more singular than that of its correlation
functions.

These facts lead to introduce what will be called "fields of type S5".
The dipole field and its Wick exponential provide us an interesting
prototype of the general situation described above. It is interesting
to note that the methods employed for the actual construction work
also in the other singular cases (Jaffe fields, Hyperfunctions,
nonlocal fields, etc.) and seem to provide the most general framework
for the choice of test functions in quantum field theory. Another

important example will be discussed in the sixth chapter.
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3.2 CONSTRUGTION OF THE WICK ORDERED EXPONENTIAL

In this chapter we explicitely show that the series (3.1.1) defining
the Wick ordered exponential of the dipole field strongly converges on
a dense domain of the Krein space introduced in the previous chapter.

Let's rewrite the Hilbert product (2.2.14) in a form which is more

convenient for our present purposes:

(£,8) = f Ex) K(x,y) g(y) (3.2.1)
with

KG,y) = - 6m)  In(-¢% 166 ) + (2m) 7 xy (-€°+ ie€ )7 eme
G - QoI (y) - 2n7 2m)*[6, () + 6 ()] (3.2.2)

where, as usual, ¢ = X-y and we have defined
W (0= - (4m) f In(-£% ie€ ) x(y) d'y, G~ f ¢, (x(x)d'x
G ()= (2m)7 f xy, (-7 1e€ )7 x(y) dy.

As we already know from the second chapter, the completion of f(Rh) in
the topology induced by the Hilbert product (3.1.1) yields the one
particle Hilbert space K(D, which carries a Krein structure, and the
complete Hilbert space of the theory is the Fock space over K(n.

The first step toward the construction of the Wick ordered exponential
consists in determinating conditions on the test function f such that
the vector :expzq&:(f)ﬁi0 belongs to the Krein space K (i.e. has a finite

Hilbert norm). It is easy to understand that (at least formally)

l rexpzé: (£)¥ | = f exp []z]* K(x,y)] F(x)E(y) d'x d'y, (3.2.3)

so we have to find conditions such that the integral at the R.H.S. of
eq. (3.2.3) is well defined.
The characterization of the distributional aspects of the kernel

exp [K(x,y)] will be done in several steps; the method employed is
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similar to that applied by Klaiber [KLAl] for the study of a model in
which a fermion interacts with a scalar free field (derivative
coupling); this method is based on Thirring's formulae expressing the
powers of the Pauli-Jordan function [THI]. Some modifications are
necessary to deal with the non covariance of the kermel K(x,y).

The estimates necessary to control the norm of the more general vector

given in appendix 3A.2.

The first of thing that we want to do is showing that the following
series converges to an analytic function of the complex parameter z, if

the function f satisfies suitable conditioms:

J ¢, (x,y) E(x) £(y) a*x a'y (3.2.4)

he~18
S

n=0

where G’n(x,y) is the following tempered distribution of f’(RB):
2
¢ Gx,y) = [(z/6n") %y 1" (-€ teg )T (3.2.5)

We have that

J ¢, Guy) () £() a'x d'y -

- (27r>"(z/41r2)“J Z, ooy (KD 187705 Fk)|? a'x

7 is the Riesz distribution, and is an entire function of the complex
S

parameter s [SCHW]. It follows that G (x,y) is analytic in z for each
z,n

fixed n. Taking into account the explicit expression of Z obtain that
. s

J G, =y £(x) £(y) d'x d'y =

_ (2m)%exp[(1-(z/167%))1n4] (z/16x°)" [T((z/16n")+n) T'((z/16x°)+n-1]""

2
2, (z/1687 )+n-2

J 9 (k)0 (K") (k) |8%/818 By | a'k (3.2.6)
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where I' is Euler’s gamma function.

In order to study the convergence of the series (3.2.4) we consider the
fundamental spaces faﬂ(Ré), consisting of all infinitely differentiable

functions f(x) satisfying the inequalities

| 3% (x) | = ¢ a* BY 1 (P (3.2.7)

In this formula we used a multi-indicial notation (i.e. k = (ko,.l,ka),

A = (ALA), @ = (a,..,a), A=ADF...(A)% etc.): the
0 3 0 3 1 n

constants C, Ai, Bj depend only on the function f and a and ﬂj are
real and nonnegative.

The spaces faﬂ have been introduced by Shilov and are extensively
studied in [GEL2]. They are particularly suited for the study of
partial differential equation [GEL3] and consequently for QFT.

In particular the spaces fmﬁE fﬂ (with only one index active) have been
used for the study of nonrenormalizable and nonlocal field theories
[GUT], [CON], [RIE], [FAI].

As we will see, the construction of the Wick ordered exponential of
the dipole field, is complicated by infrared and ultraviolet problems
occurring contemporarly and requires the use of spaces with two active
indices to control both the large x and large k behavior.

The spaces faﬂ are usually called "spaces of type S" because of their
structure very similar to that of the Schwartz space F of rapidly
decreasing functions. They have many common properties. It is very
important that the Fourier transformation may be used freely inrthese
spaces: the operators 8/8x and multiplication by x exchange roles under
the Fourier tranformation and the spaces faﬂ transform into each other,
i.e. one has that the Fourier transformed of faﬂ is fﬁa and the Fourier
operator is continuous in the topology of the appropriate fundamental
space [GEL2].

The restrictions posed on functions belonging to faﬁ are the stronger
the smaller is the value of a+f. In particular one gets that faﬁ

consists only of the function identically equal to =zero, if for a
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certain index j aj+ﬁj<l, while fmw = F and fom = D.

Although the inequalities (3.2.7) completely characterize each of these
spaces, we may give a more concrete picture of the asymptotic behaviour
of the functions that belong to them in terms of the corresponding
windicatrix functions". We give here this kind of characterization in

the one dimensional case, the general case being completely analogous.

1) All functions f(x)Efa(R), together with all their derivatives
decrease exponentially at infinity, with an order greater or equal than
1/a, and a type greater oY equal than a costant depending on the

function £, i.e.

Qif 1/e
|552l= ¢ exp(-alx| ). (3.2.8)

2) Since fﬂ(R) is the Fourier transformed of fﬁ(R) it follows that the
characterization of the functions belonging to fﬂ(R) is identical with
the previous one if we use the Fourier conjugate variable k:

3%F

Equs Cq exp(-a]k|”ﬂ). (3.2.9)

If B<l something more can be said. In this case we have that f may be

continued analytically in the z=x+iy plane as an entire function of

order of growth 1/(1-8), i.e.
£ (xtiy) | = C_ exp By VAP (3.2.10)

Analogous considerations may be done regarding the space faﬂ. For more
details about the spaces of type S and thelr usage see [GEL2].

Let’s return now to the series (3.2.4).

Lemma 3.1: If £ € faﬂwith a0+ﬂ0 < 3/2 then the series (3.2.4) converges

to an analytic function of the complex parameter z.

2 . .
Proof: suppose that Iz/l6ﬂ | < m , where m is a certain natural

number.This immediately implies that Re(z/l6wz) +m + 1 > 0. We may
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rewrite the series (3.4) as the sum of two terms. The first one is

m+2
y 4 fcz (x,y) £(x) £(y) d'x a'y (3.2.11)
n=0 n

n!

and is obviously an entire function of z, because it is a finite sum of
entire functions. The second term that we must control is the

following:

(2m)° exp[(L-w)ln4] T  w[I(wtn) T'(wtn-1)]

n=m+3

f 9(k )9 (k%) (1) "™ [8%/3] E) |* a'k (3.2.12)

with w=z/l6w2. Since n>m+2, the complex number w+n-1 belongs to the
right complex half-plane (because by assumption IWISm. We may therefore
apply the results of the appendix 3A.1; in vparticular lemma
3A.4 implies that Ond{[n!F(W+n)F(W+n-l)]_l)=l/3, and by proposition
3A.2 a sufficient condition for the normal convergence [NAC] of the

series (3.4) is the following:
| fﬁ(ko)ﬁ(kz) (k%)y"2 [6°/6E (k) | a'k | = 1/a_ (3.2.13)

where (an) is a positive sequence such that Odd{ah) < 1/3
(see appendix 3A.1). This is guaranteed if the function f belongs to
faﬂ(RQ), with a0+ﬂ0<3/2. Indeed after some lenghty calculation one gets

the following majorization:
| J@(ko)eaf) (k)" [6%/81 E(i)|* a'k | =
C’Anm(n+m)2(ao+ﬁ0)(n+m), (3.2.14)

and the constants C'and A depend only on the function f.

Now we have that

lim n logn /(log[A™™(n+m)?%*Fy) ™™y, _ (20428 )" (3.2.15)

n—
Thus condition (3.10) implies that if a0+,80 < 3/2 then the series

(3.2.4) converges mnormally on S = {zeC : |z/l6ﬂ2f < m}. Since every
m
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compact of the complex plane is contained in some S the series
m

converges to an entire function of the complex variable z. ##

By polarization we my now give sense to the expression

p—

Lo fGZn@{:y) E(x) gly) d'x dy (3.2.16)
n=0

as a functional on P ﬂ(R.)@ F ﬁ(R )y which depends analytically on the
parameter z. Since the spaces f A are nuclear spaces [GEL4], it follows
that the series (3.2.16) unlquely defines a generalized function
belonging to faﬂ'(RB) (with an obvious redefinition of the
eight-dimensional indices o and B) and depends analitically on z.

Therefore we obtain that

4 J- ¢, (x,y) F®ew a'xd'y = J X (x,71" E@ely) dxdy (3.2.17)

K (x,5) = - (4m) *In(-€"+ief ) + (2m) 2 xoyo(-gz+ieg0)'1 (3.2.18)

This allows us to write

ol i

. 6, Gy = exp [2(R (5] (3.2.19)

He~18

n=0

Obviously the series (3.2.4) converges also on the linear span of the
spaces F ﬁ(R ) such that a-H3<3/2 This is a linear subset of f(R]
symmetric under Fourier transformation, but it is not a fundamental

space.

Lemma 3.2: let K(x,y) the distributional kernel defined in eq.(3.1.2).

The series

@© n

Z
L o [KG,y1" = exp [2(K(x,¥)] (3.2.20)
n=0
defines a distribution belonging to f’aﬁ(RB), a=(a0,..,a3,ac,..,aa)
ﬂ=(Bo,..,53,ﬁo,..,ﬂ3), if the following conditions are satisfied:
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a0+/30<3/2, a0<l, a <o, B>, (3.2.21)

1 1

This distribution depends analytically on z.

Proof: Eq. (3.2.2) implies that K(x,y)-Kl(x,y) is an infinitely
differentiable function. By [GEL2] we know that multiplication by a

function h(x), satisfying for any ei>0 the inequalities
(@) a qf 1/ 1/
[h'T(x)]| < C.efq exp(ellxll 14+ .+ en|xn| n) (3.2.22)

transforms the space J’aﬂ(Rn) into itself and is a bounded operator.
Thus, we must estimate the behavior of the function exp(K(x,y)—Kl(x,y))
and of all its derivatives. The leading term is given by the factor

expGX(x)expGX(-y). We have that
6 = 0 [ xy (6%iee)) x() oy -

- x f exp (ikx)ﬁ(ko)a(kz)a/ak{);?(k) dk. (3.2.23)

Choosing x(k) = exp [-c(kj + wz)] , with ¢>0 such that <y,x>=0 we obtain

the following estimate:

% o | = ¢lnton (1+]x, ) (3.2.24)

From the recursion formula

n+l n

" exp(£) = T [k} (8" ) (8%exp (£)) (3.2.25)
we obtain that if 8 >1 and ao<1
1

In]

lanexpGX(x)l < ¢’ no!..nalexp(c’]xol) =<

ey elnl(no!)ﬁo..(nsl)ﬂsexp(e[xoll/ao ) (3.2.26)

The other factors are now simply accounted by the condition o <wo,
1
Thus if conditions (3.2.21) are verified, the function

exp[t(K(x,y)—Kl(x,y))] is a multiplier on J"a’B(RB) for any complex t.
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Taking into account eq. (3.2.19) and Hartog's theorem [NAC] the lemma

is finally proved. ##

The previous lemmas help us in proving that at least the vacuum vector
is in the domain of the Wick ordered exponential of the dipole field.

Indeed one has the following theorem:

Theorem 3.3: for each fefaﬂ(a‘*), with a+8<3/2, a<l, a<e, p>1

and each z€C, we have that
S zZ" 2 2 b b
. n -
Lim l ZO L :(f)xpou = J. expl|z|*K(x,y)] £Ex)E(y) dxdy <= (3.2.27)
n=
Besides, for any R>lz| there exists constant Ci(R) such that

Yo(lzl/R)7 (3.2.28)

n=0

0
EIY
DS |:¢": ()Y || = (R
n=0
and therefore the series (3.1) is strongly convergent on @0.

Proof: by lemma 3.2 we have that

%Z J explz K(x,y) 1 EE(yd'xa'y | | = j K(x,y) 1" E(x)E(y)d'xd'y =

= (n!)~%:¢:n(f)@0,:¢:n(f)@9K (3.2.29)

Therefore, if fefaﬁ(R4) with @ and B8 as in (3.2.21) the partial sums
N

Y (amm!) 2 e ()T, e ()Y, =

n , m=0

. -1 - 4

Yo (nt) 2N J[K(x,y)]n Fx)E(y)d'xd'y (3.2.30)

n , m=0
converge to fexp[sz(x,y)]f(x)f(y)d%«fy. Equation (3.2.27) follows by

taking w=z, and the bound (3.2.28) is obtained by Cauchy’s integral
formula [NAC]. ##

To get a less trivial domain for the field :expz¢é: we mneed to extend
the proof of theorem 3.3 to the case of multiple series. As we have

already said, the proof of the following theorem is much more difficult
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and is given in appendix 3A.2.

Theorem 3.4: if f,ef’aﬂ(R[‘), with ao+ﬁ0<3/2, ao<l, ai<°°’ ﬁi>l we have
1
that for any R>0 it exists C(f ,R) such that
1
n n n
L1 g 2, Lk 'm 1 ' n +n .+.n
[ :¢ HED B TIE) i () v | = CHELR) mitn ton t/(R)M 2™
and therefore the multiple series

Lint.nn™z 2% 2% L(E) e 2:(f2>{.:¢k:(fk) T (3.2.31)

n=0

is strongly convergent.##

Theorem 3.4 imply that the Wick exponentials are operators defined on

the dense domain
iDexp= {P( :exp(zd): (), :an:(g))\IfO, f,g e J"aﬂ(Rq) , z€C}) (3.2.32)

This domain may be enlarged, as the following theorem shows:

Theorem 3.5: the series (3.1.1) is strongly convergent on the dense

domain

D = {?(:eXP(mﬁ):(f),eXP[tsﬁ(g)])llfo),

fefj(R‘*), with a+8<3/2, a <1, a<e, §>1 geP(RY), t,zec) (3.2.33)
1 1

Proof: first of all we notice that the vectors of D are analytic

exp

vectors for ¢(f), where f belongs to the space (1.2.51). 1Indeed

consider the projection ‘Iff}’(n) of the vector

{z}_ . . . . .

T = .expzl¢.(fl).equﬁzz.(fz)...expquﬁ.(fk) ‘Ifo (3.2.34)

£
on the n-particle subspace of K. The results of appendix 3.2 imply that

el ™) < ¢, (R (|z|/R)" (3.2.35)
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where |z| = Izll+...+|zn|. The estimate (2.2.49) now implies that [PIE]
I 1] < ¢ ey (3.2.36)
and therefore

R ICIc R R IR (3.2.37)
k=0
Thus the operators P(exp[¢(f)]) may be defined on 9@@ by the

corresponding power series.

On 99 it holds the following commutation rule:
xp

rexpzé: (£) expté(g) = exptd(g) :expzé: (GI)

where G(x) is the function (exp-tz[¢(x),4(g)]) and it may be verified
that it is a well defined multiplier for the allowed test function
spaces f;B.

Thus we may repeatedly apply to the vacuum ordinary and Wick ordered

exponentials and the resulting vectors are well defined vetors of K.4#

33 CONCLUDING REMARKS.

The Wick exponential of the dipole field which we have constructed in
theorem 3.5 is not a tempered field (operator valued distribution).

The spaces that allow its construction, namely the Gelfand and Shilov
spaces [ ﬁ(R ), with « +ﬂ <3/2 a <l o <w ﬂ >]1 contain test
functions having compact support and therefore the chk exponential is
a localizable field. On the other side the spaces fﬁ (R ) which are the
Fourier transformed of the previous ones contain only analytic
functions.

In any case the correlation functions of the field texpzo: (x) are
tempered distributions and furthermore they satisfy the (weak) spectral
property ( written in the usual way, i.e. making use of test functions

having compact support in momentum space).
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APPENDIX 3.1
ENTIRE FUNCTIONS AND SEQUENCES OF FINITE ORDER

Let f=f(z) be an entire function and let M(r) denote the maximum

modulus of f(z) for |z]=r. We define [BOA]:

0rd £

lim sup log(log M(r))/logr = p (3A.1.1)
Tyr £ = lim sup r'? log M(r) = ¢ (3A.1.2)

It is well known [BOA] that f has finite order p if and only if for any
e>0 the quantity M(r)/exp(rp+e) tends to zero for large values of r.
Analogously f has finite type r if and only if for any €>0 the
quantity M(r)/exp[(r+e)rp] tends to zero for large values of r.

It holds the following theorem [BOA]:

Theorem 3Al: The entire function f(z) = Z a z" has finite order p and
n

finite type r if and dnly if

lim sup n logn / log(lanrﬂ) =4 < (3A.1.3)

lim sup n lahl—p/n =y <o (3A.1.4)

In this case we have that d=p and 7 = v/ep,.

Theorem 3A.1 suggests that eq. (3A.3) and (3A.4) may be used to define
the order and the type of a numerical sequence, i.e,

0nd {ah) = lim sup n logn / log(lahlﬂ) (3A.1.5)

and an analogous definition for Tgﬂ{an} .To give an explicit example
consider the following small modification of Euler’s gamma function:

I'(z,p,r) = %fe"“(u/r)z”’duog u) (3A.1.6)

It easily follows that T'(z,p,7) = F(z/p)r-ﬂp/p.

By  using Stirling'’s formula we obtain that the sequence
fa) = ([I(n,p,er)]™

has order p and type 7. The proofs of the following propositions

are easy:
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Proposition 3A.2: let (a} and {b} two real sequences such that
n n

Ond{ah)=p and Ond{bn}=n. Then
0nd{ab ) = pn/(p+n) (3a.1.7)

The series ). a z'/b converges to an entire function f if n>p. In this
n n

case we have

ond £ = pn/(n-p) (3A.1.8)

Proposition 3A.3: let 02d {(a } = p and suppose that a =0. If
n n

lim log(ah/awm)/(n logn) =0 (3A.1.9)

n—+co

then 01d{a } = p.
Hm
Now we are in position to state and prove the following lemma:

lemma 3A.4: let w € S(a,b) = {z€C : Iz—alsb} where a and b are two

positive numbers such that a>1 and a-1=b. We have that

0nd {T(win) ') = 1 (3A.1.10)

Proof: the recursive formula
T(nt+w) = (ntw-1)(n+w-2).....o.n w (W)

together with the analyticity of the gamma function in the positive

half-plane imply

|T(n+w)| = n! m(a,b), m(a,b) = min  |T(W] (3A.1.11)
w&S (a,b)

From the other side we get that

|T(ntw)| = (n+a+b-1)..... (atb-1) max |T(w)| = (n+{atb])! M(a,b)
w&S (a,b)
(3A.1.12)

where [a+b] is the greatest integer less or equal to atb. Thus we get

that
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1 1 1
M(ab) (n+[atb])! = TT@w)| =  ma 5y m (3A.1.13)

But by proposition 3A.3 we have that

1
BRCEEEY I

and therefore the lemma is proved.
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APPENDIX 3.2
ESTIMATE OF THE N-POINT NORM.

In the paragraph 3.2 we developped a simple charcterization of the
two-point norm exp{]z]zK(x,y)] by using the explicit expression of the
Fourier transform of the Riesz's distribution. This method is wvery
simple and direct but, unfortunately, it may be used only for the
two-point norm. The estimate of the behaviour of the n-point norm
requires more work; we give a sketch of the methods wused in this
appendix. In certain respects they are similar to those used in [RIE].
We begin by stating and proving a simple lemma concerning some spaces

of type S:

Lemma 3A.4: Let faﬂ(R?) be isotropic, i.e. e=(a,a,...a) and B=(8,8,..,8).
Let gefaﬂ(RP) and let A: R° — R" linear and invertible.
Then g'Efaﬁ(RP), where g' (x) = g(Ax).

Proof: let k and q be multiindices. We have to estimate the quantity

x&éqg’(x). First of all observe that

-1 t-1 t
y = Ax, x =AYy, By— (A7) ax, 6X—A8y
It follows that

k, k! T S
1 1 - i - 1 - in
: (Xi) B ; a_lla,z! oo (Aalyl) (Aizyz) "'(A&nyn)
1 1

Analogously one gets

qi qi qi' t ﬂil t ﬂiz t ﬂln
(8 /%) = ) BBt B 1 (A0 AL A
% B, .=q
j=1 1J 1
[al
d
ﬁil 'BJ.n
ayl ....... Byn
Define
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C..
(B]" = m B ™
ij ij
Then we get the following identity:
B, B 7
k.q , _ k q -lia 6.8 1 T2 n
x3°g’ (x) ~Za,ﬁ[{a]] [[ﬂH [(A717A1 y, Ty, Ty

n

lql

Suppose now that gefaﬂ(R?), with o=(a,2,...a) and f=(8,8,..,8).
It follows that there exist constants C,A,B such that

|x*6% (x) | =< ¢ al¥l plal @ (9
Therefore we obtain that

eyl et o9 1 (]) (3)) 0o

C"Alllkl B"IqI kka qqﬁ,
/ B gn
and thus also g’ belongs to Pa (R7). ##

The following is the central result of this appendix:

Lemma 3A.5: If £ € faﬂ(Rk), with a0+ﬂ0 < 3/2, then
3
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n
- 4 4
J;gk exp[G(xi,xk)] fl(xl) ..... In(xh)d Xl...dxn < ® (3A.2.1)

where G(x,y)=(2ﬂ-)_2 xoyo(-§2+ie§0)_l, E=x-¥y.

Proof: to show the kind of estimates we have to face we consider

at first the case n=2 (two-point norm): we may write [GAR]
r < - 0 2, 4
r r r -
G(x,y) = c XY, J exp[—lﬁlglkl] lgl[ 6(kl)5(kl) d kl] (3A.2.2)

where, as usual, 6(ki)=5(k“ﬂﬁ“). It follows that

j 6(x,y)" E)g(y)d'xd'y =

clrf [67/8k> EC } k) 1187/9K; &( };kl)] lgla(kiw(ki) d"kl——-

1=1 1=1
r T r . = r e - 1.3
- r o~ -
czf [87/8%, ( ). k)1[87/8k, g Y. k)] lgl(lkl[) d'k, (3A.2.3)
1=1 1=1
where we have in the last expression k{=!kl|. By assumption we know

that T and g belong to P a(Ra) (remember that o« and exchange their
g g

B

roles under Fourier transform). Thus it follows that

2ra

|<1+(k°)“’)<ar/akz E(")) (87/aK; )| = ¢ A" BT a0 ¥% (3A.2.4)
Therefore we get:

- roor ~, r 0.-1.3
IJ [67/dk, f(lg k118 /3k g(lglkl)] LI G d-kll =

1

r
c A" B° o 2% j (1+(1<°)“’)'111le(k‘l’>“1d3kl=
o0 [e¢]
r
¢t A" BT m™o % j I (1+(k°)m)'1lgl(ki)"ldk‘i (3A.2.5)

where integration over angles has been performed in the last step.

By changing the integration variables in the following way

J
t=3 k° (3A.2.6)
J 1=1 .
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and choosing m=2r+l we finally obtain that

e, 7)™ B g(y)d'xd'y| = cva® (r1)2 25(@"H (3A.2.7)
and again we obtain that if a0+ﬂ0< 3/2

[epe G E@em = 1 7oy Bopmatndy <o .

Now we consider the full expression (3A.2.1):

n
4 4
Jigk exp[G(xi,xk)] fl(xl) ..... f;(xn)d Xl...d X =
1 rl 13
Y T ,Jc<x,x> Glx %)
rij=o 12 137 """ n-1,n
1<i<j<n
...... G(x ,x) "M F(x).....f (x)d'x...d'x =
n-1 n
1 0 Ri Q R rlz r13
n
Z r lr '....r ! J (Xl) '°°(Xn) D(El> D<€z) v
rij=0 12 13 n-1,n
1<i<j<n
¥ -1 4 4
...... D& )" F(x).....f (x)d'% ...a% (3A.2.8)
1 1 n n 1 n

where we have adopted the following definitions

T T (34.2.9)

i+l n
r, 7t » R=- Y . ,R=)R (3A.2.10)
and D(¢) = (2x)72 <-§2+tego)'1.

Let’s pass to difference variables; we have to estimate the quantity

A = j[ JTT  peer+e, DPul m(e, .6 ) dg ... .ae (3A.2.11)

X 1<i<j<n 1 1
where
n n r n
- 0, i
ho(§,..., 6 ) = fjgluigjsi) fj(iitjgin de_ (34.2.12)
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Eq.(3A.2.2) then implies that

. u rij 0 2
A;f TT  lexp-i(g+...4€ ) lz=1 kLT o0, 6 )

1Si<jiZn

ho(6,, ... 6 DdE ....de -

R = N 2 4
c f hR(_ql’f"’-qnﬂ) ]I lgl 6(km,1)6(kLL1) dk

ij,1
1<i<j<n

where we have defined

k n rij
o -L L L k.,
i=1 j=k+l 1=1 ’
Define now
£(¢,,..6) = IIf <i§jéi>]
n n 0 Rj n
£.(6,...6) = jglui}:jjsi) fJ.(igjfi)]

d'x

ij, L

(3A.2.13)

(3A.2.14)

(3A.2.15)

and let v be a matrix with integer nonnegative entries, having all

zeros below the principal diagonal. Finally, define

n
S| -m : , N-=
v i=t v v l...wv | 3

j1  j2 jn i

[ =}
A

i3

(we remember that 0!=1). It follows that
2R oRy R o1 o a
EADERRE LI[E)) @t

where the sum 1is over all the wupper triangular
nonnegative integer entries and such that

n

Lv, =R
j=]_ 1] 1

Thus we get that

£ (¢ _ Z R 0 Nl 0 Nn £( £ )
2 e ) = y (él) ..... (§n) 51,.. N
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(3A.2.17)

matrices with

(3A.2.18)

(3A.2.19)




and therefore, since ), R=) N = R , we have
i 3

R A
~ R R d
hR(-ql,...,-qn_l) =c Zu[( . ]] . o Ela - q_) |

(3A.2.20)
where the symbol " indicates Fourier antitransform.

An obvious generalization of the arguments of lemma gives the following

estimate:
M M - R A
0, 1 -1 R d
I(l+(q1) )..(1+(q°_ ) { ]] flq ..... q)]=
n-1 vil v N N 1
N (89 ) 1....... (@7 ) n
MB M B N N N N o N o
CA . A M. “"12”R] B'....B"N N®
1 n-1 1 n-1 viLt v JJ 1 n 1 n
MM MB M B
cAlA™M Y M™ (up ..B )} R*®
1 el n-1 1
and thus
~ oM o he1, -1
1B Gapnma DI = ¢ 1) DL ) TH]
"M Ml‘B M—II'B R
AT A M R (3a.2.21)
1 n-1 1 n-1
Notice now the following obvious inequality:
r r
o k n SN n §o o
. =2 L 2 k.o,=z2 X X koo=aq, (34.2.22)
i=1 j=k+l 1=1 J=k+1 1=1
It then follows that
r
R o M o' Ma-1 -1 Yo -1.3
la | = cf{<1+<q1> Yol O T @ e Tk
1<i<j<n
oM M1ﬁ M-l'B R
AATTM T MY PR (3a.2.23)
S | n-1

By using a change of variables analogous to that given in (3A.2.6) and
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choosing

M = 2(x +r +....+r )y + 1 (3A.2.24)
k k,k+1 k,k+2 k,kin
we finally get
n-1
R 1 R(a +8 )
]AR] =c kgl [2(x +r +... 4T )1 R0 (34.2.25)
k,k+1 k,k+2 k,k+n

Thus since R contains twice each r
1

»d

, i<j, we have that if a0+ﬂ0< 3/2

the series (3A.2.8) converges and the lemma is finally proved. ##

Lemma 3A.6: the multiple series

Flz ..,z ) =
x k
1 n
Z, ..z k kj kj+1 k
g E;?——————i;—!C:¢ ..... :(fl).. Y :(fj)wo, ¥ :(fj+1)...:¢ :(fn)\lfo)K
n
e B .
converges for any fl,...fnefa , with a0+ﬁ0<3/2, a0<l, ai<m, ﬁi>l.
Besides Tf(zl,..,z ) is an entire function of the variables ZoyenZ -
bl
Proof: we may rewrite ?f(zl,..,z ) as follows:
n
Tf(zl,..,zn) =
n . . 4 4
Jigk exp[zizkwgk(xi,xk)] fl(xl)..fj(xj)f(xj+l)...f;(xn)d.xl...d X
where

W(x -x ), if l=i<k<j; j+l=i<ksn

i K(x ,x), if 1=i=j;  j+lsksn,

W has been defined in eq.(2.1. ) and K is the kernel (3.1.2). Using

the same trick of lemma 3.2 we get that

n
F .. =
f(zl’ ’zn) figk eXp[ziZk Wl,ik(xi’xk)]
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- - 4 4 .
. M(xl...,xn) fl(xl)..fj(xj)f(xjﬂ)...fn(xn)d xl...d X

the definition of Wl'ik is the.same of Wik except that K(xi,xk) is
substituted by Kl(xi,xk) (see eq (3.2.17)); as in lemma 3.2 the
function #4 is a good multiplier for the space f’a'B(R[m) (with the
appropriate multiindices « and B). Now estimates analogous to

those of lemma 3A.5 give that the kernel

n

iI<Ik exp[zizk Wl,ik(xi’xk)]

belongs to J"’a'B(Rén) and this conclude the proof of this lemma. ##

Proof of theorem 3.4: We have the following formula:

n

- nl. . nz- . k~ 2
[ECIENCHRTRSECNEY IETCHIN N

Therefore, wusing the multiple Cauchy formula one proofs the bound

(3.2..), and consequently the series

12" " Tk oy "2 Y
1 1 1 . . . . . .
o(nl.nz...nk.) z,'z, -z o) .(fl).qS .(fz)...qS .(fk) 1110

I r~18

n

is strongly convergent.##
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APPENDIX 3.3
SOME REMARKS ABOUT POSITIVE DEFINED GENERALIZED FUNCTIONS.

This appendix 1is devoted to state and prove a certain theorem
concerning positive defined generalized functions.

Positive definite functions arise as Fourier transforms of positive
summable  functions. They find application in many areas of
mathematics, like  probability theory, the theory of group
representations and, obviously, quantum field theory.

The siniple theorem we shall proof will allow us to construct certain
non trivial positive representations of the gauge invariant subalgebra
of the free dipole field, but we believe that it may be useful in
showing positive definiteness of other (non free) quantum field
theories or stochastic processes.

We start by recalling some definitions and results. We limit ourselves
to the discussion of the one dimensional case the general case being

analogous.

A continuous function T(x) is called positive-definite if for any

real numbers X oo X and any complex numbers 61. ...§ one has
n n
n

j §=1 T(xj-xk)gjgkz 0 (3A.3.1)

It can be shown that this commonly accepted definition of positive

definiteness is equivalent to the following one [GEL4]:

a continuos function T(x) is called positive definite if for any

infinitely differentiable function f(x) with compact support one has

j T(x-y)f£(x)£(y)dzdy=0 . (3A.3.2)

This second definition has the advantage that it may be extended to
more general kernels T(x-y); in particular T may be a generalized

function.

71




It is well known the important structure theorem of Bochner-Schwartz
that asserts that the class of positive definite generalized functions
on the space 0 (distributions) coincides with the class of Fourier
transforms of positive tempered (finite if T is an ordinary

continuous function) measures.

Thus, according to the Bochner-Schwartz theorem, we may represent a

general positive definite generalized function in the following way:

"T(x)" = I exp(-igx) du(q), (3A.3.3)

where p is a tempered positive measure.
A positive definite generalized function may be used to introduce a

pre-Hilbert product in Ej(R) (or equivalently F(R)) by means of

(f,g)T== J T(x-y)£(x)g(y)dxdy. (3A.3.4)

Let now T and S be two positive definite generalized functions.
We may introduce the a pre-Hilbert product in EZ(R)®€:(R) in the
following way: let f,g,h and k belong to Gj(R) ; we define

(fog,hek) = (£,h) (g,k)_ =

f T(x-y)£(x)h(y)dxdy f S(z-w)g(z)k(w)dzdw.

This product is obviously positive semidefinite. Indeed one easily
prove the Schwartz inequality on the monomials:

| (Fog,hok), |* = (£, g,k |* = £)2 [n]? [el? k]2 =

2 2
I o, Ik,

and this easily implies the positivity of the norm of the linear

combinations:
|a(£og)+b (hek) |2 >0.

Since the set of finite linear combinations of the kind Z f (x)g (x) is
3 3

dense in e:(RZ) it follows that

f T(x-2)S(y-w) f(x,y)f(z,w)dxdydzdw = 0. (3A.3.5)
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Untill now we said nothing new. The remarks that we have done follow
very closely the way in which one constructs the n-point functions of a
free field theory starting from the two-point function [SW].

Now we present a result that goes in another direction:

Theorem 3A.7: Let TeFP'(R) be a positive definite distibution and let

fbos(Rz) = (feP(R®) : f(x,y)=f(¥,%)). (3A.3.6)

Define in fb (R?) the following sesquilinear form:
oS

<hi’hz> = J El(x,y)T(x~z)T(X—W)T(y-z)T(y-w)hZ(z,W)dxdydzdw (3A.3.7)

Then the form <-,-> defines a pre-Hilbert product in fmﬁ(R?), i.e.

<h,h> 2 0 , for each hel_ (R%)
[s]

s

Proof: Using the Bochner-Schwartz theorem (eq. (3A.3.3)), we may

rewrite the expression (3A.3.7) in the following way:
<h ,h> = f El(q+r,k+s)ﬁ2(q+s,k+r)dp(q)dy(k)d,u(r)dp(s), (3A.3.8)

where p is the tempered measure corresponding to the distribution T.

To begin we consider functions of the following form:
h G,y)=f£)E(y), b (x,y)=gx)g(y).
We have that

<h ,h> = f F(qtr) F(kt+s)F(q+s) F(k+r)dpu(q)du(k)du(x)dp(s) =

- 2
jdy(q)dy(k)‘j F(q+r)E(k+r)du(r)| = 0 . (3A.3.9)

To conclude the proof of the theorem we must show that it holds the

following (Schwarz) inequality:
|[<h ,h >|*< <h_,h> <h_,h > (3A.3.10)
12 1’ 2’2

By using twice the L>-Schwarz inequality we obtain the following chain
of inequalities:

- - 2
l<h1,hz>|z=U E(qtr)E(k+s) gla+s) g(ktr)dp(q)du(k)du(r)du(s) | =
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~ - - 2
dp(q)dp(k) U'f<q+r>’é<k+r>du<r>] U‘f<k+s)é<q+s>du<s>] =<
~ : - 212
dp(q)du(k) U f(q+r)g(k+r)dn(r)] =

- - - - 2
E(qtr)g(k+r) E(q+s) g(k+s)dp(q)du(k)du(r)du(s)| =

n : _ : _ 2
dp(r)du(s) Uf<r+q>f<s+q>du<q>] Ug(wk)g(mk)dn(k)] =<

1 = - 2

jcm(r)dp(s) U E(r+q)E(s+q)dp(q) }

2
] = <h ,h><h ,h>
171 2’2

[ j dp(r)du(s) U g(s+k)g(r+k)du(k)

As consequence of this majorization we have that <¢,¢>0, with
$ a finite linear combination of the kind ¢(x,y) = Zf.(x)f.(y).
3 3
But these functions constitute a dense subset of fb (RZ), and
os

therefore the proof is concluded.##

We remark that we may complete fb%(RZ) with respect to the Hilbert
topology defined by the form (3A.3.7) and get a Hilbert space.

Starting from a certain two-point correlation function T(x-y) we have
thus constructed a (nontrivial) four-point function (different from the
one whose truncated function wvanish). The previous theorem can be

generalized to the construction of nontrivial 2n-point functions:

Theorem 3A.8: Let TeFP’'(R) be a positive definite distibution and
consider the "bosonic" subspace fb (RP) of f(RP). Define in fb (R?)
oS oS

the following sesquilinear form:

<h1,h2> = j hl(xl,..,xn)T(xl-yl)--T(Xl-yn)--T(xn-yl)--T(xh—yA)

~h2(yl,..,yn)dxl..dxndyl..dyn . . (3A.3.11)
Then the form <-,.> defines a pre-Hilbert product in fb (RP), i.e.
0s
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<h,h> > 0 , for each her (R ##
oS

Let’'s show how to apply the theorem 3A.8 to study the the positive
definiteness of certain Wightman functions of the field rexpigd: (x).
We illustrate the procedure in the case of the four point function. For

convenience we pose g=4m. We get the following expression:
<:exp£g¢:(f):exp%g¢:(f)% , :expig¢:(f):exp%g¢:(f)%’) =

j(lZ)(34)[13][14][23}[24]f(xl)f(xz)f(xs)f(x“)dxldxzdxsdx4
We have adopted the following conventions:

Y cay o s2 R I -1
£, 7%, X, (ij) Eﬁ, [i3] ( §U+46(§0%j) .

i
It is impossible to evaluate directly the previous integral, but we may

rewrite it in the following way:
<:expig¢:(f):exp£g¢:(h)% , :expig¢:(f):expig¢:(h)%’> =

1[13] [14][23][24]]- (xl-x2>2]'f<xl)'f'<x2) [- (xs-xé)z] £(x,)£(x,)dx dx dx dx_

Now theorem 3A.8 may be directly applied and it follows the positivity
of the n-norm of the vector :exp£g¢:(f):expig¢:(f)% .

More generally we may apply theorem 3A.8 to construct positive definite
(coherent) subspaces of the Hilbert space K. This construction involves
the introduction of the ®-vacua (MOR4) and will not be reproduced here.
However the application of theorem 3A.8 constitutes the first step
toward the study of the positive definiteness of the Wightman functions
of the Wick exponential of the dipole field. We stress the fact that
the method of introducing a mass for this study (WIGL) is not
applicable here because the nonpositive definiteness of the dipole
field is not only due to the infrared problem associated with the tip

of the light cone.
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4. ZWANZIGER MODEL.

4.1 INTRODUCTION.

In order to clarify the connection between the occurrence of infrared
singularities of the so called "confining type" [MOR1] and the actual
confinement of charges, it seems worthwhile to consider a simple four
dimensional model in which a fermion field interacts with a dipole
field.

The model is defined by the following equations:

(@9, - m3e = gf'a P (4.1.1)

[]ZA”@) -0 (4.1.2)

(for the moment we omit specifying the renormalization required to give
a meaning to the R.H.S. of eq. (4.1.1); it will be discussed below).

Following the strategy of the Schroer model we impose the condition
A (x) =28 X), 4.1.3
#( ) “¢( ) ( )

which guarantees its exact solvability. Indeed, in this case the
solution of the model may be easily obtained in terms of "building

block" fields; in fact we can write

p(x) = exp[-1gd(x)]¥ (%) (4.1.4)

and this field solves eq. (4.1.1) if ¢ satisfy the free Dirac equation:
o

(h’“ap - w3y (x) = 0 (4.1.5)

This model can be considered as a four dimensional analogueof the two
dimensional Schroer model [SCHR2] and a resomnable question to ask is
whether the interaction of the fermion field with an infrared singular
field (in this case the dipole) leads not only to the infraparticle
phenomenon [SCHR2] (disappearance of states with sharp mass) but also
costrains or even forbids the appareance of charged states (charge

confinement) .
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The model has been investigated by Zwanziger in connection with quantum
electrodynamics, in order to explore the possibility of reformulating
the theory in terms of a "grandfather" Hertzian potential, and to
verify  the compatibility between the existence of physical charged
states and the Gupta-Bleuler condition [ZWA].

Because of the occurence of infrared singularities of the confing type
(the dipole propagator is proportional to l/ka) the model may also be
regarded as a toy model of quantum chromodynamics [MIN], also in view
of exploring the infrared structures of the realistic case.

The aim of the analysis of this chapter is twofold. First of all we
will revisit the model by careful exploitation of the associated Krein

structure. The discussion of the previous chapters allows us to
construct and fully control the solution of the model in terms of the
Wick exponential of the dipole field, identify the correct charge and
gauge automorphisms , discuss their implementation, and solve the
subsidiary conditions which identifies the physical states of the
theory. Several delicate points overlooked in the literature will
emerge, like the characteriztion of the degrees of freedom of the model
in term of the intrinsic field algebra F (defined using only the
fields 3¢ and ¥), the charge content of the Krein space which provides
a representation of F, etc..

The focusing of these points will allow wus a clear cut identification
of the physical space which will have different features w.r, to those
claimed in literature.

In particular we find:

i) All physical states have zero "electric" (or fermionic) charge (in
contrast with the conclusions of [ZWA][MIN][BOG]).

The point is that the free fermion states ¢o(f)$0 do not exist in the
Krein space in which the intrinsic field algebra F is represented and
therefore such states cannot exist as solution of the subsidiary
condition either (this situation is completely analogous to that of the
Schwinger model [MOR5] where is found that the bleached states do not
belong to the Krein realization of the correspondig intrinsic algebra).

ii) The physical interpretation of the theory gives rise to the
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following picture: the physical states are generated by application to
the vacuum of polynomials of neutral fermion bilinears; the physical
space 1is therefore equivalent to the zero charge sector of a free

fermion field.

In the second part of this chapter we further investigate the
alternative look at the model initiated in section two. The starting
point is the splitting of the dipole field as ¢ = ¢l+¢2 , so that a
non-negative physical space H' can be selected by the supplementary
condition which simply rules out the negative definite part of the
Krein space of the theory: ¢;(f)H'=O

This subsidiary condition is different from the Zwanziger omne (which
mimic closely the Gupta-Bleuler condition of QEDA); its main virtue is
that of giving rise to a non trivial positive realization of the dipole
field. In this way we get the following results: the physical states
obtained ‘as solutions of the new subsidiary condition are not
necessarily neutral; however in the so obtained charged sectors the
space-time translations cannot be implementable (by a mechanism similar
to that already seen at the level of free dipole field). In this case
one may view the confinement of the fermionic charge as due to the
breaking of space-time translations, a mechanism which is realized also
in the confinement of charged particles in QED3 and of massless charged
particles in QED4 [MOR2].

In conclusion, the selection of the physical space by means of the
Zwanziger’'s subsidiary condition [ZWA] 1is essentially related to the
idea of giving much emphasis to the gauge invariance and of beeing as
close as possible to the Gupta-Bleuler subsidiary condition of QEDV
This excludes the existence of charged states tout court.

In the second approach with non-covariant subsidiary condition one only
demands to obtain a non trivial positive realization of the dipole
field and the result is the lack of stability under time or space
translations. In both cases physical states with well defined time

translations must have zero charge.
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42 SOLUTION OF THE MODEL AND CHARGE CONTENT OF THE ASSOCIATED HILBERT
SPACE.

To discuss the solution of our quantum field model we must give a
meaning to the non-linear term in (4.1.1) e.g. by using the wusual
procedure of mnormal ordering. The interacting fermion field may

therefore be written in the following way:

p(x) = rexp(-igd): (x)¥_(x) (4.2.1)

where % 1s a free quantum Dirac field. The field ¥(x) satisfies the
[s]

" "renormalized" equation of motion

(iv"8, - WP =Linm g7"a (G0)H gl (x-y))p(y) (4.2.2)
and obviously

(%) =0 (4.2.3)
W) = -(aw)*zln(-g%—iego) is the two-point function of the dipole

field.The field algebra F associated to this model is generated by the
fields 3% and 8¢, and is a proper subalgebra of the algebra 72 ,
generated by the building blocks wo and ¢. The field algebra ¥
contains, as it is usually understood, also operators obtained through
Wick products and point splitting regularizations. As we will see,
these procedures do not allow the reconstruction of the building
block fields.

We may easily compute the Wightman functions of the field algebra ¥. In
particular the Wigthman functions involving the local charged fields
.have the following form:

Wy G0 ¥y 0By G (50> =

i n n
zllsﬂz 2/167(2
& 8
-(X -xX - -
15i|<3!5n[ (x,-x )] [- (5,7,

2 2
J—l j—l [-(xi-yj) + i€<X0;y0§]8 /18T

1<i<n 1<j=<n
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. <¢0,¢Da (xl)....zpoan(xn)?boﬁ (yl)....¢oﬁn<yn)mo> (4.2.4)

1 1

i) A Krein realization of the Zwanziger model.

Knowledge of the Wightman functions of ¥ identifies a vector space DO
of local states, endowed with an indefinite inner product (see chapter
two) : 00 = T@O. Again a topology is needed to close the local states
and obtain a Hilbert space. Obviously ﬂo is contained in the Hilbert

space

Fhu = & - Klen’ (4.2.5)
where K" is the Krein space representing the dipole field which we have
studied in detail in chapter two, and H® is the Hilbert space
corresponding to a free Dirac field. Since we are interested in
representing only the field algebra ¥, we have to consider only Hilbert
seminorms majorizing the Wightman functions of F.

To this end we consider again the distributional kernel K(x,y)
defined in eq. (3.2.2). We may obtain the Hilbert seminorms we are
looking for simply by taking the Wightman functions of ¥ and replace
the nonpositive distribution W(xi-x‘) whenever it appears, with the
distributional kermel K(xi,x‘). i

For example we get that we %ay majorize the two-point function of the

field ¢ in the following way:

[<¥ $(DPE S| < | explg™®(x,y)]1S(x-y)E(x)E(y) d'xd’y. (4.2.6)
0 0

The conditions for which the integral at the R.H.S. actually
converges are exactly the same which allow the existence of the Wick
ordered exponential of the dipole field (see chapter 3).

The above seminorms define a (pre)Hilbert majorant‘topology 7 [BOGN]

and therefore a Hilbert space

H=Fr cK. (4.2.7)
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In H a sesquilinear form <-,-> (the Wightman functional) and a Hilbert
product (-,-) are defined, and a bounded and self-adjoint metric
operator n representing the sesquilinear form exists.

There are two kind of difficulties that we have to face at this point:
ii) the metric operator may be degenerate.

This problem is easily avoided by redefining the scalar product in H as

follows [MOR1]:
(r, ) — (-,[l-PO]-) (4.2.8)

where PD is the projector on kernel of the metric operator 7.

ii) the second problem is concerning the maximality of the so
obtained Hilbert space structure.

As it is well known, not every closed subspace of a Krein space is
itself a Krein space [BOGN]. The point is that 5 need not have a
bounded inverse.

However starting from H we may reach a Krein space K simply by the
following redefinition of the Hilbert product [MOR1]:

() — Gy =Ll (46.2.9)

K

(In this case the metric operator may be written as P -P , where P+ and
P are the projectors corresponding to a fundamental decomposition of
H; this decomposition exists because H is a non degenerate closed

subspace of K [BOGN]) .

ii) The current operator,

We want to define now the current associated with the local charged
field #%(x). As wusual we must define a procedure that allows the
ultraviolet 1limit necessary to construct the bilinear invariants
vzaypw:(x) . We will use the well known point splitting gauge invariant
limit procedure [KLA2][ZIM][LOW]

First of all we need to evaluate the diverging terms of the expression
E(X+6)7M¢(X). We perform the computation for a massless ¢O the massive

case being analogous. We have that
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b (x+e) 'y () = W (xte)p () - dn (e ) (4.2.10)
besides we have that
(exXp 1gp: (x+e) iexp-igh:(x) =

. ; i
Z(e) {1 + ¢g6#6“¢(x) +;— g ePe” 8,800 + 5 g e”e”e"aWPqS(x) +

2 2
- % e“euza“¢(x)au¢(x): - - % e#eyep:apu¢(x)6p¢(x): +
3
-4 g’mJ‘e’“e":aﬂ¢(x)au¢(x>ap¢(x):}. (4.2.11)

2 2
where Z(e) = (_ez)g/lmr.

Following Zimmermann [ZIM] we define the following operator:

X+€

3 n
Q(x,6) = Blxre)Pp(x-e) - ¥, Pxre) P P(x-e)u> 3 :[ i dy“a”¢<y>} :
-€

n=1
(4.2.12)

The current operator may now be obtained by taking the ultraviolet

(coincinding points) limit in the following way:
-1 1
Fy = z(e) 54 a0 + i, -e) b (4.2.13)

We obtain the following result:

JHx) = :1/)°(x)7‘uz/)o(x): JH(x) (4.2.14)

free

Thus the "electric" charge Q;l= f Jo(x)fR(x)d%c here is given by the
free fermion charge Q; = f J;me (x)fR(x)d%L

The fact that the current relative to the interacting fermion ¥(x) is
identical to the free fermion current is a consequence of the
derivative coupling; indeed the same result is obtained by applying the
previous formulae to compute the current operators of the Schroer
[SCHR1] and the Klaiber [KLAl] models.

On the other side this method produce currents different from the free
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one when applied to models in which the interaction is not so simple
(as in the case of the Schwinger [LOW] and Thirring [KLA2] models).

Finally notice that we obtained the current operator using only the
fields 3% and d8¢; therefore J?ree belongs to the intrimsic field

algebra F.

1ii) Charge structure: the gauge transformations of the first kind and

the fermionic charge.

We now study in some detail the charge structure associated with the
various Hilbert spaces introduced.

First of all we consider the charge operators in the Hilbert space K
associated to the building block fields. Since K® has a tensor product
structure, i.e. K - keH’ the following analysis may be splitted:
indeed since the global gauge transformations are locally generated by
the charge Q; (see eq. (4.2.16)) we may examine the status of the gauge
charge in K, Analogously, since in the last paragraph we identified
the fermionic current with the free one, we may study the status of the
electric charge in Hf; then we will easily extend the so obtained
results to K .

Let’s briefly resume the discussion of the gauge symmetry that we began

in chapter 2. There we defined the gauge automorphism as

A

v (e(£)) = (& + X)(E) (4.2.15)
We showed that this automorphism is generated in K* by the local charge
d 4

Q, = Jao[j¢(x) £ (e (x) d'x (4.2.16)

(for the definition of the test functions fR and a see chapter 2
Besides we obtained that the local charge Q; converges in the weak
graph limit sense to the operator Zﬂsz, with Qd= i(¢(Vf)-¢(v:)), and
that the domain of Qd contains the dense set Ds = ?(¢(f))WD. Finally,
we had that the automorphism yA is actually n-unitarily implementable

. . 2
and its generator is exactly 2x°Q.
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Now we want to extend these results to a larger domain including also
Wick ordered exponentials of the dipole field, and namely we want to
prove that the automorphism (4.2.15) is locally generated by Q: also on
the algebra Fi which includes Wick ordered exponentials of the dipole
field and that w-1lim Q; D: = 27r2Qd Di

To this purpose we recall that in the previous chapter we obtained that
it is possible to construct the Wick ordered exponential of the dipole
field as a distribution on the test function space faﬁ(Ra) (with
certain values of a and 8) with values operators on the Krein space K.
The dense domain of definition of the Wick exponentials is the set ﬂj
obtained by applying to the vacuum polynomials in the fields expt¢(f),
#(g), :expzé:(h), with f,gef(Ra) , hefaﬂ(Rh), t,zeC. Besides we had on

Di the following commutation rules:
texpz¢:(h) expté(f) = exptd(£f) :expzé:(h exp[tsz]), (4.2.17)

with C (%) = [¢(x),4(D)].
The gauge automorphism may be extended to the Wick exponentials by

strong continuity; we obtain the following action:
7A(:expz¢:(f)) = expliz :expz¢:(f). (4.2.18)
Using the previous commutation rules, and the fact that

lim [¢(x),Q§] =1 (4.2.19)
R-+0

we obtain again that

i lim [Q;,:expz¢:(f)] = z :expzd: (f). (4.2.20)
R—*c0

and therefore the global gauge symmetry is generated by the 1local

charge Q: also on the algebra ?i , which includes polynomials of the

fields expté(f), ¢(g), :expzé:(h).

Proposition 4.4.1: the global gauge automorphism 7A is implementated on

ﬂi by the n-unitary group of operators V(\) = exp ZﬂZiA [(¢(vf)~¢(v~)];

. d
besides we have that QZ converges weakly to 2w2Qdon the dense set Dl.
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Proof: 1let

z . . . _ Z 1..... Z n (J.,..3)
Wh = .expzl¢.(h1) ..... expzn¢.(hh)@0 . Z T —— Ty n .

(4.2.21)

where mﬁjl"'ﬁﬂ e kY1 The results of appendix 3A.2 give wus
that for any M-0 it exists a constant Ch(M) such that

Je % = cen 5t joru G (4.2.22)

Besides we had that (see eq.(2.2.50)) for each e k™ the following

estimate holds:
l6E) ™| = @)™ q(®) o] . (4.2.23)

Thus, since q(80[:]f§ad) < const, we obtain that there exists a

constant C depending on @; but not on R such that

IS v | = c'qa [J£e) = c. (4.2.24)

Using again the commutation rules (4.2.12) we obtain that also for a

general T € D: there exists a C$>O such that

IS w | =c, (4.2.25)
Finally, since w-lim Q: ﬂz = ZwZQd 92 and Qd is p-symmetric on ﬂi we
obtain that

lim <2,Q0> - 1lim <Q3,% - 27°<Q%, 7> = 27 <2,Q"D> (4.2.26)

for any @eﬂi and any WEDZ.
Thus {Q;W} is a bounded sequence of <vectors, weakly convergent

relatively to a dense set and therefore weakly convergent, i.e.

. dpnd 2 .dnd FTeI
W-JR_}*{'I&QRDI = 27I'Q91. . (4228) L

Let us briefly revisit now some well known properties of the free Dirac

field % , which 1s represented on the Fock space Hf. Let " the
o

polynomial algebra generated by ¢O. It contains (by Wick ordering) the

free current Je (x) = :w7”¢:(x). We may construct the local charge
Iree [#] [+]
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operator

Qi - f J:Iee(x) £.(®a (x) d'x . (4.2.29)

It is well known that the local charge Qi converges mneither in the
strong mnor in the weak graph limit sense when R tends to infinity
[SCHR3].

Nevertheless, since
lim <<1>,Q§11:0> -0, Vo € a)j = P($_(£))¥ : suppf is a compact,  (4.2.30)
o

a charge operator Qf may be obtained by taking the limit in the sense
of the sesquilinear forms [VOL].

Qf is a symmetric operator, with domain Dj , which corresponds to the
formally defined integral fJ;we(x)d%{. Furthermore one has the

following commutation rules on the local states:

lim [Q,% (£)] = [Q%% (D)] = - ¥ (£) (4.2.31)
o o o

Since lim <@,Q§QO> = 0 implies wao = 0 one has that

Q% (H)¥ = lim [Q, ¥ (£)]¥ = - p (DY, (4.2.32)

Analogously we obtain that Qf E:(f) WO = E:(f) QO.
More generally, we have that
£ — . —
QPO (Y = lim [Q, P (DF_()]T, (4.2.33)

where the limit is obtained for finite values of R via the locality

property.

. B
Now we are ready to examine the charge structure of the space K and the
. . B
corresponding field algebra 7 .
First of all we notice that we may extend the action of the fermionic

charge Qf to the whole ¥° in the obvious way:

[Q°,8(E)] =0, [Q5¥(E)] = - v(£), [Q5,%(E)] = B(E), (4.2.34)

. : s . f B _B
with corresponding definitions for the action of Q  on D°=F mo.
On the other side we obtain as an easy consequence of proposition 4.4.1

86



d . .
the fact that QR converges weakly to 211'2Qd on the set D1®D§’ which is
dense in the Hilbert space K>. An argument entirely similar to that

used in proposition 4.4.1 then shows that

w-1im Qifl)B = 22°Q"%". (4.2.35)

Let us now focus our attention to the "intrinsic" Hilbert space H.

Proposition 4.4.2: the charge Q; = Q;-Qf converges weakly to zero on

the set 0 =F‘If0.

(A word of caution is in order: here weak convergence has obviously to

be understood in the sense of the Hilbert space H which is a proper
B . . s

subspace of K and therefore weak convergence in H is distinct from

. B
weak convergence in K7).

Proof: let ¥, ¥'e 9, with 11;'=,4\1;0 , #€F. We obtain that
lim <¥, (Q%-QDY'>S = lim <, [(Q-QD), 410> + lim <41w, (@-QHw > =
RH ’ QR R0 ’ QR ! 0 RH ’ QR 0
. t d
%_1)3 {4 @,QR\I»'O), (4.2.36)
and this because Qf‘lf0= 0 and

1im [Q;,T] - 0. (4.2.37)

R
Thus we must compute the expression %_%g(@,QZ@O), with ¥&D, and it
may be directly verified that this matrix element converges to zero.

The point 1is that <1I!,Q:1IIO> may be different from =zero only if
the state¥ is generated by applying to the vacuum an equal number of
and E; this in turn implies that <II‘,Q§1FO> converges to zero when the

limit is performed. Indeed let's consider the simplest case in which

v o= ¢a<f>$5<g>wo (4.2.38)
It follows that

2 2
-g /16T

1im<Qov , % - lim J QUL 8-> [-(x-3)° + Le(x )]
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saﬁ<x-y)f<x)g(y)d“xd"y -0, (4.2.39)
because

lim <QQ¥, [$(x)-¢(1)]¥> = 0. (4.2.40)

It easy to understand that the general matrix element converges to zero
for the same reason. Thus the charge QT annihilates the vacuum weakly.
Since it is true again that “Q; @“H < CW , i1t follows that Q; converges
weakly to zero on D.

Thus we have the following result: fix an increasing sequence of

positive numbers R  such that 1§g R, = @». The elements of the sequence
3 3 J
T
{QR} JEN D(QR)=$, (4.2.41)
J

are unbounded n-symmetric operators on the Hilbert space H. This
sequence has a weak graph limit QT which is an #n-symmetric densely

defined operator : indeed we just proved that Ci ¥ converges weakly for

3
any ¥ € D. Since D is dense in H we may apply an easy extension [MO0S3]

of theorem VIII.28 that may be found in [REE1l] and obtain that D(QT)DD,
that QT is 7n-symmetric and therefore closable. Since (fﬂ=0 we finally

obtain that the closure of QT is the zero operator on H:

Q'H = 0. (4.2.42) ##

The previous result holds also in the Krein space K , since the
definition (4.2.9) implies that
T T ,
I} wl, =<l Jo%el, < c .
and therefore the charge operator Qiconverges weakly to zero also in K.
These facts have an important consequence: the states ¥ (f)\If0 cannot
[}

belong to the space H or K. Indeed if this would be the case we should

have
Q $ (DY ="y (DY = - p (D (4.2.43)

which contradicts QTH =0 (or QTK = 0).
Thus the states 3 (f)\I!0 , which do not belong to H or K, cannot belong
o
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to any of their subspaces, and there are no free electrons or positron
states in the Krein space K.

This implies that it is impossible to get the space of free electrons
and positrons as solution of any supplementary condition one imposes to
get the physical interpretation of the model as has been claimed in
[ZWA][MIN][BOG] (see [MOR4] for a similar conclusion in the Schwinger
model).

43 7WANZIGER SUBSIDIARY CONDITION.

As usual in the context of indefinite metric quantum field theory, we
must now specify a subsidiary (or supplementary) condition which
selects the physical Hilbert space of the theory. We briefly recall
that this condition is usually given as an operatorial condition of the
form AH'= 0, and the physical space 1is then obtined as the quotient
Hmws= H'/H'', where H'' is the null subspace of H' [MOR1]. »

The first supplementary condition which we examine is that proposed by
Zwanziger [ZWA]. This condition mimic closely the Gupta-Bleuler
supplementary condition of QEDQ

Let’s briefly spell in some detail this analogy: the Gupta-Bleuler
formulation of QEDQ is given in terms of a local field algebra AR
generated by the vector potential Ap and the charged fields ¥ and 3
[MOR3][GUP][BLE]. There is a gauge group acting on 7% and leaving the
observable subalgebra #4 invariant; the guge transformtions of the first
kind are generated by the electromagnetic current Ju which is also the

source of the vector potential A#:

- H -
DA/J(X) 3,00, 873 (%) = 0, (4.3.1)
lim j [T, &), ¥] £ ®e (%) da'x - 1im [Q;l,’,b(y)] = qp(y), (4.3.2)

lin [h8 (0] - 0. | (4.3.3)

The gauge transformation of the second kind are generated by the
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v

conserved current B = 3 § AV:
Q= f z<x)*"5: BVAV(X) (4.3.4)
[Q%,3(0)] = qE(x)$(x), [QZ,Ap(X)] - 9 Z(x) (4.3.5)

3
where [ |2 = 0, Z(x,x)EF(R).
The Gupta-Bleuler subsidiary condition, which selects the physical
states, is obtained by the request of gauge invariance:

Cr =0 e= 8A" ¥ = 0. (4.3.6)

This condition contemporarly ensures the validity of the Maxwell

equations. In our quantum field theory model this condition gives
V - -
A, v =[]¢ v=0 (4.3.7)

An important point in this analogy is to regard ¢ as a purely gauge
degree of freedom, and therefore the condition of "gauge invariance" of
the physical states can be written as the vanishing of the generator of

. v _
gauge transformations 3 Au = [:]¢ = A

For the study of the Zwanziger subsidiary condition in the intrinsic
Hilbert space H is convenient to think to H as embedded in the space
K’ Let us compute an explicit expression for the operator A (k). Using
the results concerning the canonical quantization of the dipole field

we obtain the following formula (see chapter 2):

A(E) = <[JE.x08Gv) +

+ (Zw)-a/zjexp(iwt-ikx)[(l-iwt)al(k) + iwtaz(m]dak/zw"”z[jf(xm“x :

(4.3.8)
By Fourier transformation we then obtain that
- 2 /2 3/2 ~ - R
A(k) = 9(k) 6 [22m)7% W*% b(k) + 27 X(w,K)$(v) ], (4.3.9)
where b(k) = al(k) - az(k), w = Ik], and the supplementary condition

may be rewritten as
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A (k)H'=0. (4.3.10)
First of all we want to show that the auxiliary supplementary condition
AR (4.3.11)
implies the condition

$(vHK = 0. (4.3.12)
To this end we should prove that in some sense

lim o (K =0. (4.3.13)

Observe that b(k) acts only on the dipole degrees of freedom of the
Hilbert space K (and of its subspaces), and that

d, (n)

(b E(k)dk ) K @

c K (4.3.14)

This implies that we may restrict ourselves to consider the
. a .
one-particle subspace of K . Let therefore h (k) a é-converging
n

d, (1)

sequence, and let ¥eK According to the decomposition introduced

in chapter 2, we may identify the L? component of the vector ¥ and this
is a vector function F whose compomnents f1 and f2 belong to the Hilbert
space IF(RS-{O},w_ﬂfk). This fact implies that the components f1 and
f2 should behave near the origin like w®, with e>0. Therefore we get

that

(Jo"*p(0)h_(0)d’k ¥ = fhn(k)[fl(k)+f2(k)]d3k — 0, (4.3.15)
and this implies that

s-lim [[h (k) W% bk)]K = 0 (4.3.16)

which is a stronger rigorous version of the eq. (4.3.13). Therefore,

since for any TeK® we have
s-lim [fh (k) 120202 02 b(k) + 21 X(w,K)p(v )]dK] ¥ = 27 $(v )T
(4.3.17)

it follows that the auxiliary supplementary condition (4.3.12) implies
the condition (4.3.13).
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Now we may complete our discussion of the Zwanziger supplementary
condition and show that no charged state solves this condition.

To this end we notice that
$(v)IH C H (4.3.18)

and that the operator ¢(v) is proportional to the fermionic charge,
when restricted to H. These facts follow easily by the following

commutation rules

[4¢v),8 6001 =0 (4.3.19)
[$G7)80] = - 2oy (4.3.20)
4y

and by the facts that the field ¢(v ) annihilates the wvacuum.
Consequently, since by eq. (4.3.12) it must be $(v )H' = 0 , H' cannot
contain any charged state and consequently there is no charged state in
H (the same conclusions hold also for K ).

phys phys

Thus we conclude that the physical space of the interacting model is
equivalent (modulo vectors of zero n-norm) to the zero-charge sector of

a free fermion field. The charged states are therefore confined.
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44 NON COVARIANT SUBSIDIARY CONDITION,

The subsidiary condition which is the object of this paragraph 1is
essentially singled out by the request that the degrees of freedom of
the dipole field are mnot completely swept out from the physical
(quotient) space. In this perspective such condition has some
connection with the philosophy of Narnhofer and Thirring who exhibited
a positive realization of the dipole field.

Clearly this appear as the point of view that one should take if he
wants to mimic the case in which the infrared singularities of the
confining type characterize the non-gauge part of the "gluon"
propagator.

In contrast with the case of the Zwanziger subsidiary condition, the
non-covariant subsidiary condition does not decrete from the start that
the dipole field describes only non physical degrees of freedom and in
fact it gives rise to a non-trivial positive realization of the dipole

field, as in Narnhofer and Thirring [NAR].

Let us consider the following construction:

the dipole field is characterized by the two-point  function
W(g) = -(Aw)_zln(-§2+ie§0). We may introduce two independent
noncovariant fields ¢1 and ¢z, which are characterized by the following
two-point functions (in this section the word "field" is used in some

loose sense; we will call fields also objects which are not covariant):

i -
Wl(x,y) W(x-y) - 5 xoyDD (x-y),

Wz(x,y) = % XOyOD_(x—y).

where D is the negative frequency part of the Pauli-Jordan commutator
function of mass m=0. It turns out that Wz is a negative definite
distribution while Wl is mnot definite because of an infrared
singularity of the kind lkl—a.

The status of ¢l is closely analogue to that of the massless
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two-dimensional scalar free field (except for covariance).
Now we consider for convenience a slight modification of the Krein

structure introduced for the dipole field in chapter two.

<f,8>1 = J Wl(X,y) —f(x)g(y)déxdky

<f,g>2 = J Wz(x,y) f(x)g(y)déxdl'y
Obviously <f,g> = (f,g>1+<f,g>2. Let now £ be a test function such that
§(0) =1, <,8> =0 .

and define as usual f= f - f(O)S. Let

(£.8) = <f .8, +<E£,& <0 + E(0)E(0),

(£,8),= £,

The wusual procedure of completion and quotient gives wus the
one-particle Hilbert space in the form of a direct sum:

(L (1)

1 2

K =K

(D_ 2. - (D _ 2,
K1 =L <C+ {0))eve=, K2 L (C+ {oy).

This Krein structure coincides with the one introduced in chapter two
if fxoyoD(x-y)E(x)Ef(y) = 0. In any case this structure makes it
transparent that the one dimensional subspaces V and E appear because
of the singularities of the field qSl. The usual Fock construction gives
the complete Hilbert space where to represent the fields ¢1and ¢2.

Observe that
<T,Q7 ¢ (g)¥ > = -5 f xy,D (x-9)(8 [] £ (x)a (x)]1g(y)d*xad’y =
-% J w (fR(-k)Ed(-ko)g(k)}lc a’x —= 0.

+

It follows that

. . d 2=
i iii [QR,él(f)] = 47 £(0),
i 1im [Q§,¢2(f)] - 0.

R0

Thus we obtain that
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B0 = (B, 1 ($,() = $,(5),

which correctly give v (¢(£)) = ($+A)(£).

Consider now the intrinsic field algebra F and the Hilbert space H =
?E;T. Obviously we may split 8¢ into 6¢ﬁ6¢2 . The first important
thing to notice is that we may introduce the field ¢2 as an operator
valued distribution on the Hilbert space H. This fact may be verified
directly. Indeed using the results of chapter two we obtain easily the

. B
representation of ¢2 on the space K . For example we have that

0
om0 ]
k 8/8k (k) |C

+
We shall show that this state is available also in H. Indeed it may be
constructed as a norm convergent sequence of vectors of the form

60¢2(gn)$0. Consider indeed the following sequence of test functions:

~ 8 = k2 8’
g (k) = 3¢ £(k) - lakﬂm
0 2 wt+=)
n
We have that
Z
Oﬁ&g&m - ~ﬂml+—«a zﬂml

Note that

32
lim o f(k)l + --(w+—) 52 f(k)l
pointwise. Furthermore we have that

Jlko ak & g (0| | o dk = n_zj ©'(w +5) I f(k)l | 0 dk <

+ <,

@)Jl ﬂmH &’x —— 0.
+
It follows that
%ig ”¢z<f)wb—ao¢z(-¢%u>woﬂﬁ -
Thus it is possible to introduce the field ¢2 in the Hilbert space H.

95



The situation regarding the field ¢1 is very different: indeed the
infrared singularities of ¢1 are much worse and for this reason it
cannot be represented as an operator on H. This fact may be verified
directly too, but it may also be shown by a different argument.
Indeed in this case it should be 6T¢l(f)wo # 0 but we already know that
this is impossible.
As a consequence of these results we have that the the intrinsic field
algebra F may be equivalently generated by the fields
(8,6, ¢,, texp(-igé ):v ).
Indeed if A and B are two independent free fields (i.e. guantum fields
having vanishing truncated Wightman functions) we have that [GARL]:

n
(A+B)O"(x) = ¥ { ?] AT (x) B ().

=0
Therefore (if the following series converges in some sense) we have

that

cexp( A+ B ):(x) ==Z -%T Z [ ? ] :Aéﬁ:(x) :Bj:(x) =
n=0 =0

) Z'?H:%YTET (A" (%) B (x) = :expA: (x) :expB:(x).
n=0 j=0

Consequently we have that

:expz¢:(x)¢o(x) = :expz¢1:(x) :expz¢2:(x)¢o(x)

and thus

Y (x) = :exp(-ig¢1):(X)¢o(X) =
%_i,gz Z(y,x) rexp(igd ): (y) rexp(-igd) 1 (x)¥ (x) =

%_igjg Z(y,x) rexp(igd ) (y)¥(x).

We are now ready to state the supplementary condition that we want to
study. It may be written using the field ¢2, since we know that it can

be introduced as an operator in H:

qS;(f)H'——- 0.
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This supplementary condition may be easily solved and we obtain that

H' = {?(8¢1(f), :exp-ig¢1:(h))wo}'.

We now want to check is that H’ is really a positive subspace of H. As
we we already said the situation of :exp-%g¢1: is closely analogue to
that of the massless two-dimensional free field; we may try to reply
the method by Wightman [WIG] and study the positive definiteness of H'
by intoducing a mass.

First of all we notice that the Fourier transform of the two point
function of the dipole field may be (formally) written in the following

way:

Ty = (2m) 0 (k)6 (K

(we said formally because of the ill-definition of the previous
distribution at the tip of the conme k=0). Let us introduce a mass by
defining

T (k) = (2m) ok )6(End) = -(2m ek ) 50l m’).

m 0 0’ dm

By Fourier transformation it follows that

(k) = -(2m)° %azjexp(-ikx) 19(k0)6(k2-m2) dx =i ggz D (x-y),

where D is the negative frequency part of the Pauli-Jordan function
m

[BOG2]. 1In this way we obtain a massive regularization of Wl:

., 3 1 -
Wl’m(x,y) = i( prcil Xoyo) Dm(x-y).

and a direct calculation shows that

I Wlm(x,y) f(x)g(y)d%«fy

We may give an approximate formula that holds for small values of m: by
[BOG2] we know that
D (¢) = — ; + = - m 1n[m2(-g?+iego)],

Lu” (-€7+4 650) 16x

and thus we get

X
OyD

W (xy) = - L inm®(-e%iec )] + 1) +

167>

8ﬁz(—§z+ie$0)
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Now wusing the reconstruction theorem [SW] we may introduce a
noncovariant free field ¢Lm , whose two-point function is exactly WLm
( We stress that the covariance plays no role in the reconstruction
theorem ). Besides, we may also introduce the Wick ordered powers of
the field ¢Lm and a suitable restriction of the test function space
(see chapter 3) allow us to sum the series defining the Wick ordered
exponential of ¢

1,m
Let us examine the two point function of this Wick exponential:

(@O, :exp(-ig¢Lm):(x) :exp(ig¢1m):(y) wb> = exp[gZWLm(x,y)] =

Xy
L (in(m?(-g%iee )] +1 ) + :

2
expg[- >

)

16 8rn”(-¢2+ict )

By construction this is a positive definite (noncovariant) generalized
function. Obviously its positivity is mantained if we multiply it by
the factor exp(1l/16x")exp[(ln m’)/16n%]. Taking the limit for m—0 we

obtaimn the positiv definiteness of the kernel

Xy
S InGgtHes ) ¢ 2
167 8m (-¢

Now we may exactly reply Wightman's analysis [WIG] (or Swieca's

eXP[gZWI(x,y)] = exp gz[ - ) }
+ieg

0
2
0
argument [SWI2]) and it follows the positive semidefinition of the

space H'.

We come at the conclusion that the non covariant subsidiary condition
admits charged states which solve it. However the time translation are
a well defined symmetry only for the (gauge invariant subspace of the)
vacuum sector , because of the instability of the charged sectors under
time translations(we do not repeat here the detailed analysis of this

phenomenon; see chapter 2 for more details).
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5. A SIMPLE MODEL OF GAUGE SYMMETRY BREAKING

5.1 INTRODUCTION.

A characteristic feature of the standard treatment of unified weak and
electromagnetic interactions [ABE] is that it relies on the mnon
vanishing expectation value of the Higgs field, i.e. the spontaneous
breaking of the global gauge symmetry. Such statement is based on
perturbation calculations; a mnon perturbative analysis of the problem
indicates that such breaking is more problematic than one might think
[KEN]. Actually the discussion of the Higgs model in local and
covariant gauges (the only renormalizable ones) is intrigued by the
necessary lack of positivity. Indeed it has been proved quite generally
that in the Abelian Higgs model [FER] the breaking of global gauge
symmetry requires indefinite metric in the general a-gauge and implies
that the space-time translations cannot commute with the metric
operator. Actually a slight improvement of the argument shows that
global gauge symmetry breaking requires the existence of dipole
singularities 6'(k2) in the correlation functions of the model.

Thus, also in this case, a careful discussion of the properties of the
model, and in particular of the spontaneous symmetry breaking, requires
a control of the Hilbert space structures associated to dipole field
singularities (vacuum degeneracy, cluster property, etc.).

In order to explore at least at a simple level the breaking of the
global gauge symmetry and the role of the dipole singularities we
revisit a model first suggested by Ferrari.

This simplified model may shed light on certain aspects of the Higgs
model, like the charge screening and the mathematical phenomena
connected with spontaneous symmetry breaking.

As we will see, the experience gained in the previous sections allows
to completely control the mathematical structure of the model and
answer the questions the questions not settled in the previous

literature. In particular we will show that in the above simple model
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i) the Higgs field must necessarily have a non zero vacuum expectation
value (apart from the trivial case) i.e. the solution of the model must
show the "breaking" of the global gauge symmetry.

ii) The non invariance of the Wightman functions does not preclude the
implementability of the global gauge transformations in the Krein space
of the model. This is due to the appearence of the infrared states
which makes the vacuum essentially unique but not unique as we already
discussed in chapter 2. It is evident that a crucial role is played
here by the Krein structure associated to the Wightman functions. This
problem could not be decided without making reference to the Hilbert
space structure of the model,.

iii) The subsidiary condition exclude charged physical states (charge
screening) [KOG] [STR2] [STR3].

In contrast with the confinement case, such screening of the charge is
here associated to the non invariance of the Wightman functions w.r. to

the global gauge transformations.

Before discussing the model we give the proof of the existence of
6'(k2) singularities in the correlation functions of the abelian Higgs

model. This model is formally defined by the Lagrangian

L = -

N

2 a v, u§ . s *oo,2 4
(880" + 3 3 A8 A% + (a# + ded))g (a# lea )¢ g +

+ ,uzl ]2.

¢ (5.1.1)

This Lagrangian is invariant under the gauge transformations of the

second kind:
A“(X) — A'U(X) + 3M§(X) » (X)) — exp(-i&(x))é (%) (5.1.2)

where €(x) is a real smooth solution of the equation [:]f = 0, and one
looks for a solution which is mnot invariant under the gauge
transformations of the first kind, ¢ — exp(iv)é.

From a more rigorous point of view [STR3] we consider the local field

algebra F generated by the vector potential A“ and the Higgs field y.
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The fields ¢ and A“ are operator valued distributions on a
Krein-Hilbert space H, and have a common dense domain 0. As usual, we
denote with (-,-) the Hilbert product and with <.,-> the indefinite
product by means of which one computes the transition amplitudes; the
metric operator is denoted by 5 and it is such that n2=l.

There exists a non trivial group of local automorphisms c«_ of the field
algebra F whose infinitesimal action is given by eq. (3.1.2) and is

generated by a local conserved current JZ(X):

—

. q = . oqs = 4
éx(£) =1 lim [Q , x(£)] =1 lim J a (z)E (x) [Q, x(£)]dx (5.1.3)
where the functions fR and a have been defined in chapter 2.

In particular the current which generates the global gauge

transformations is the source of the gauge field Ap(x):

DA“(X) - aa#a"Au<x) - 3,0 (5.1.4)

We come to the result of this section.

Proposition 5.1.1: in the (local and covariant) a-gauge formulation of

the U(l) Higgs model, the spontaneous breaking of the U(l) gauge
symmetry implies the existence of singularities of the kind 6’(k2) in

the Fourier transform of the correlation function
<$O, A”(X)B ¢0> (5.1.5)

where Au is the gauge vector field, and B is the field operator whose

correlation functions are not U(l) invariant.

Proof: thanks to the generalization of the Goldstone theorem to
indefinite metric QFT [STR3], we have that the Fourier transform of the

matrix element
F”(x) == (WO, Jp(X)B W&> (5.1.6)

contains a 6(k2).

The locality property now implies that the operator
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J;L(x) = J”(x) - aa”Fw<x), (5.1.7)

could be equally well taken as thelocal generator of the global gauge
transformations,where F (x) = 8 A (x) - 8 A (x),and thus also the
pv BV vop

spectral function of

Fp(x) = <@O, J”(X)B @§> (5.1.8)
contains a 6(k2). Since JL(X) = (1l-a) [:]Ap(x) it follows that

Fr(x) = (l-a)DOIfO,A“(x)B v (5.1.9)

and this implies that the Fourier transform of G(x) = (@b,Ap(x)B ﬂ%>

contains a singularity of the kind 5’(k2). #i#t

This theorem can be seen as a slight improvement of the arguments
already contained in [FER] and [STR3]. The same conclusion has already
been reched by Ferrari at the first order of perturbation theory, while

our proof is non-perturbative and generally valid.
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5.2 THE FERRAR! MODEL

This model is defined by the following coupled (unrenormalized) field
equations, which describe the quantum electrodynamics of a (complex)

massless scalar field:

iy

* *
J =i d + ieA - x(8 - ieA 5.2.1
4 ie[ x ( u “)x x( i e u)X ] ( )

It

L] x

These equations are invariant wunder the group of local gauge

! . b .
- ied" (A - 1eA" (8 + ieA 5.2.2
( px) ( u e #)x ( )

transformations
A“(X) — Ap(X) + 8pa(x) » o x(x) — exp[-iea(x)]x(x), (5.2.3)

where o is a smooth real solution of the equation [:]a(x)=0.

It is clear the (5.2.1) and (5.2.2) cannot be exactly solved unless
some additional condition is imposed. We look for the more general

solution that may be obtained by the ansatz (derivative coupling)

A#(X) = 3“¢(X) » x(x) = exp(-led(x))p(x). (5.2.4)

Furthermore we require that Jp generates the gauge transformations; we

write this condition as the following equal-time commutation relations:

[JO(O,X);X(O:Y)] -QS(X-y)X(OiY)a

-e8(x-y)x(0,y). (5.2.5)

[J,(0,%),x(0,7)]

First of all we want to know what are the equations of motion for the
building block fields ¢(x) and p(x). These equations are easily
determined by substituting eq. (5.2.4) into the (5.2.1) and (5.2.2),
and taking into account the fact that J“ is a conserved current.

We obtain the following equations:
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[Jpx) =0, (5.2.6)
[1%x) = o. (5.2.7)

Thus p(x) is a solution of the free massless Klein-Gordon equation
while ¢(x) solves the dipole equation.

However the fields p and ¢ are not independent; indeed they are linked
by the equation (5.2.1). ;

Using again the gauge invariant point-splitting limit procedure which

we outlined in chapter 4 we obtain the following equation:

8,( o) =3 - ie:[x*(ap + 1ea )x - x(8, ieAﬂ)x*]: -

= ie:[ rexp(ied):p (3, + ied §) iexp(-ied)ip +

- rexp(-ie¢):p (ap - ie8#¢) :eXp(ie¢):p*]:

~ie [10°9 pi(x) - ip 8 p 1 (®)] (5.2.8)
= 1 p #R X p “p (x)1 . VAN

The interacting current is again equal to the free current associated
to the field p (as we have already said, this feature is shared by all
the models in which the coupling is purely derivative) and, by the
field equations, it must be equal to the field 6p[:]¢(x).

This relation implies that if we want a nontrivial current the field ¢
must be a true dipole (i.e. it must be [:]¢(x) # 0) otherwise we would
have JM(X) = 0. Consequently the two-point function of the field ¢ must
contain the distribution 1og(-$z + iefo) whose properties have been
studied in detail in chapter 2. The most general local and covariant
solution for the two-point function of the field ¢ is then the
following:

C (¢4
T $R$(ITD> = -— log(-¢” + €€ ) + ———— + c . (5.2.9)

16w ‘fz + 1550 ?

We obtain that the current JH(X) must have wvanishing two-point
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function: <W0,JM(X)JV(y)®b> = 0.

The commutation relations (5.2.5) can be used to fix the constants in
the expression (5.2.9): we obtain that c= 1 while c, and c, may be
taken equal to zero without loss of generality. Furthermore we obtain

the following commutators:

[8,[ s 0.%), s, =138 []¢ (0,0, 50,11 =0 (5.2.10)

Summarizing we have that the complex field p satisfies the massless
Klein-Gordon equation [:]p=0, and has zero equal-time commutators with

* *
its own current Jﬂ(x) =1die [ :p 8um(x) - p Bﬂp (x)] .
The free time evolution implies that also for unequal times one gets

[3,G), 0] = [Jp<x>,p*<y>] -0 (5.2.11)

i.e.

A, (x-vy) :B“p:(x) + 3# A (x-y):p*(x): - A (x-v) :aup*:(x) +
PP pp pp

- Bp A, (x-y):p(x): =0,
p P

% *
A *(x-y) :app:(x) + a“ A *(x-y):ph(x): - A *(x—y) :app (x) +
PP pp PP

- 6“ A, *(x—y):p(x): = 0 (5.2.12)
p P

where A, (x-y) = [p (x),p(1)], ete..
PP

There are two possibilities for the solution of eq. (5.2.6): it may be

either

Lo

pi(xR) = 1p (%) (5.2.13)

or all the commutators are equal to zero.
These solutions are in fact the same; indeed if condition (5.2.13) is

satisfied, we may write p(x) = o(x) + ¢, where o(x) 1is a real field
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with vanishing one-point function. Using the equation (5.2.8) we get

that

6,[Jecx) - te [:p*app;(x) - i B“p*:(x)] - ie(c - ©)3,0(x)  (5.2.14)

and therefore

p(x) = —=— [Jé(x) + c. (5.2.15)
ie(c - ¢)

which corresponds to the solution exibithed by Ferrari [FER].

It is clear from the (5.2.15) the fact that also in this case all the

commutators involving the fields p and p* are actually zero.

In the general case, writing

p(x) = c [Jgx) + r(x) (5.2.16)

where the complex field 7(x) does not contain terms linear in [:]¢(x),

we obtain

3,[0800 = e 12070 p:0) - 15 80" (0] -
ie [CT@ﬂT(X) - cla'u'r*(x)][jd)(x) + ie[clr*(x) - C’IT(X)] 8#D¢(X) +

+ie[7*(x)6u'r(x) ; T(X)B#r*(x)] (5.2.17)

This implies that 7(x) = c, and

* * .
- cec]=1 (5.2.18)

ie[c c
12 172

Thus we arrive at the most general solution for the charged

field:

x(x) = c ::exp(-ie¢):[:]¢ (k) + c, rexp(-ied) : (x) (5.2.19)
where the complex constants c, and ¢, must satisfy condition (5.2.18).
It then follows that

TLx(R)T D = ¢, (5.2.20)

where c, cannot be zero becuse of (5.2.18). ¢

Thus the exact solution of eq. (5.2.1) and (5.2.2) that is obtained
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using the derivative coupling ansatz must necessarily exhibit the

spontaneous breking of global gauge symmetry.

We may now shortly conclude the discussion of this model by using the
results that have already been obtained in chapter 2 and 3.

In particular we find that:

i) the field algebra of the interacting model is represented on the
Krein-Hilbert space K® which we have constructed in chapter 2. As we
know this space contains infrared Poincare' invariant states. The field
algebra of the model admit a strong closure (in the topology of the
Krein representation space) which contains also the infrared operators
$(v') and $(v).

ii) The global gauge symmetry which is locally generated by the current
(5.2.8) is implementable in the Krein space K* by the group of

n-unitary operators (2.3.16) whose expression we rewrite:

A 2.
I = exp 2771 Q (5.2.21)
Q=i [¢(v)-4(v)]. | (5.2.22)

Furthermore the charge Q is the the weak graph limit of the local
charge QR. Also in this case the Wightman functions are not invariant
and nevertheless the symmetry is implementable because of the existence
of the infrared states. Indeed the vector FAQO - WO is Poincare'

invariant and has zero n-norm.

iii) The physical space 1is again identified by the Gupta-Bleuler

condition (which assures gauge invariance):
[J¢" ) kK" =0 (5.2.22)

There is no charged state that solves this condition and the charge is
totally screened. We stress again that this screening is associated to
to the non invariance of the Wightman functions w.r. to the global

gauge transformations [KOG]. The distinction that we make between the
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phenomena of "confinement" and "screening" is based on the following
difference: a confined charge is associated with an unbroken symmetry
while the screening of a charge is associated to a symmetry mnot

shared by the Wightman functions.
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VI. INFRARED STRUGCTURES IN ALPHA-GAUGE FORMULATION OF
TWO DIMENSIONAL QUANTUM ELECTRODYNAMICS

6.1 INTRODUCTION.

One of the most interesting exactly soluble models 1is the two
dimensional quantum electrodynamics (QEDZ), known as the "Schwinger
model" because Schwinger was the first to realize that this model could
be exactly solved [SCH].

A rigorous tretment of this model in a local and covariant gauge was
given in the pioneering work by Lowenstein and Swieca [LOW] who chose
to work in the Landau gauge (the one identified by the condition
a“Au=0). A more general discussion in a generic a-gauge has been given
by Capri and Ferrari [CAP2][CAP3]. They pointed out that such generic
case involves the introduction of a two-dimensional scalar field

satisfying the equation
1% - o (6.1.1)

and of its Wick ordered exponential.

However, a full Hilbert space realization of such «-gauges 1is still
lacking (the only one that has been completely characterized is the
Landau gauge [MOR5]) and in our opinion this is not a mere academic
question since even if the physical interpretation is independent on
the chosen gauge, the mathematical structures leading to the physical
phenomena of confinement, screening, symmetry breaking, etc. may be
different in different gauges.

Such mathematical control on the building block fields needed for the
discussion of the generic a-gauge formulation of QED2 is the subject of
this chapter. In particular we discuss the two crucial steps for the
Krein realization of QED2 namely the Hilbert space realization of the
field ¢ (eq.(6.1.1)) and the construction of its Wick exponential as a
distribution with values operators acting on the same Hilbert space.

This constuction meets two different kinds of problem:
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i) first, as discussed in the introduction of chapter 3 it requires
making reference to a Krein topology; the latter plays a crucial role

in proving the strong convergence of the partial sums
N

Y gt ()T ' (6.1.2)

n=0

ii) secondly, such strong convergence can be achieved only if the test
function f is restricted to belong to a suitable space of type S,
(in general more restricted than the Schwarz space of test function of
fast decrease).

Another motivation for discussing the mathematical properties of the
field ¢ and of its Wick ordered exponential is the fact that the
Wightman functions of the latter are not tempered distributions, as
noticed by the authors in [CAP3] and especially emphasized by Wightman.
Actually in his paper on the choice of test functions in quantum field
theory [WIG2] Wightman considers this model as an interesting prototype
of a non tempered field theory, as one should expect in local and

covariant formulation of realistic gauge quantum field theories.

The points that we have further clarified are the following:

i) the Wightman functions of the Wick ordered exponential of the field
¢ are non tempered distributions and we determinate the class of
test function spaces for which such Wightman functions are well
defined, actually fa(Rz) with a<% .
ii) These function spaces allow a respectable of quantum fields, since
for them the Fourier tranform is well defined (contrary to what stated
in [ROT] and [CAP3]) and it maps fa(Rz) onto fa(RZ). The spaces fa(Rz)
satisfying the condition a<% contain test functions having compact
support so that the locality property is defined in the usual way.

On the other side the corresponding Fourier transformed spaces fa(Rz)
do not contain any function of compact support. It follows that the
definition of the spectral condition requires some generalization of
the notion of support (carrier) [DER] [FAI].

iii) The construction of the Wick exponential as an operator in the

Hilbert space of states associated to the Wightman functions further
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restricted the test function spaces allowed to the condition a<% .
We see here a prototype of a phenomenon which has to be expected in
gauge QFT, namely that the Hilbert space realization of the fields
involves more severe infrared singularities than those occuring in the
Wightman functions.

The Wick exponential of ¢ provides a significant example of field of

type S which is mnot tempered because of its infrared singularities.

As a final remark we notice that our discussion of the mathematical
properties of the Wick exponential of the field ¢ also provide the
mathematical framework for the fields occuring in the massive Schwinger
model, as discussed in [ROT]. In this paper the authors point out that
one must expect two point function singularities exactly of the type
exp {M?§21n(-§2+¢efo)) . They argue that such singularity is so severe
that it prevents the existence of the corresponding quark field. As a
result of our discussion, we have that fields which such kind of

singularities have a well defined mathematical status as fields of

type S.

6.2 ALPHA-GAUGE FORMULATION OF QED p

In this section we follow the exposition given by Wightman [WIG3] of
QED2 in a generic gauge. We give for simplicity the classical
formulation of the model and then we comment about the 1its quantum
version.

The classical equation of motion corresponding to the two-dimensional

quantum electrodynamics are the following:

g ; _
iy (6# + lqAﬂ)¢(x) 0 (6.2.1)

[1 4,6 + (@8 (3"a) () = q G 7, ) (6.2.2)
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where the the Dirac matrices are given by
0 0 1 1 0 -1 5 01 1 0

and ¥ is a two-component field on which the gamma matrices act by left
multiplication.
As it usual in the context of explicitely soluble models the solution

of these equations may be obtained by considering the following ansatz:

P(x) = exp(-iqQ) (x) b (%) (6.2.4)

where Q(x) = c(x) + 75d(x) and ¢O satisfies the free massless Dirac

equation:

-ivPa p (%) = 0 (6.2.5)
m o

Since

I : - sy Ko

7 exp(-1qQ(x)) = exp(-iqQ’ (x))vy (6.2.6)

where Q) is the field obtained by Q by replacing d with -d it follows
that

-iv“a“exp<-iqn<x>)wo<x> = ~q7“(3pc + eﬂya”d>exp<-iqn<x>>¢o<x> (6.2.7)

pv

where € is .the totally antisymmetric tensor characterized by the
s 01 . .
condition e = 1, and we have taken into account the relation
L5 uy
Yvyo, = (8 ).
J B v

We have that the Dirac equation (6.2.1) is satisfied if we choose

A = e + M5 a. (6.2.8)
This implies

B“A#(X) = [Jex (6.2.9)
As for the current we have that

PTG = P (3) exp(107 (1)) 7,exp(10())P () = F_ ()78, (x)

(6.2.10)
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and therefore

a o [Je + 3 [Ja=q Eo(xwyz/»o(x) (6.2.11)

It is well known [KLA2] that there exist potentials p and ¢ such that
= _ -1/2 _ -1/2 v

1 ¥,y (x) = (m) 778 p= (m) e 80 (6.2.12)

We may choose

de=2@™q,, [Ha=a-m) m™q0 (6.2.13)

Thus the quantum version of the Schwinger model leads mnaturally to

introduce quantized fields satisfying the equations
(1% =0, [J%-o. | (6.2.14)

At this point the quantum solution of the model 1is obtained by
substituting classical fields with the corresponding quantum
operators. This procedure involves the definition of an appropriate
point splitting regularization [KLA2][ZIM][LOW]. As it is well known,
an important effect of nonclassical nature is obtained in this way:
indeed it happens that equation (6.2.10) does not hold any more: the
current obtained with the quantum interacting fermion field is not
proportional to that of the free theory and a free massive boson field
appears [LOW]. We do not enter further in this aspect of the model; for
more details see [KLA2][LOW].

6.2 KREIN STRUCTURE

In this section we introduce and discuss certain Krein structures
associated with a two dimensional scalar field satisfying the equation
E]2¢ = 0. We closely follow the general framework of chapter two and
we assume that the truncated n-point function wvanish.

This implies that we may limit ourselves to discuss the two-point
function and the Krein structures associated to it. The complete

Hilbert space of the theory will be obtained by the usual Fock
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procedure. The most general local and covariant distribution which

solves the equation [:]%J(S) = 0 may be written in the following way:

W(E) = (ag” +b) log w’(-¢% 1eg) (6.3.1)
1 if ts0

where 9(t) = , and e(t) = 9(t) - 9(-t).
0 if t<0

We do not loose in generality by taking b=0. We now give the Fourier

transform of this distribution. We have that

T,k = F(u,v) = G(u,v) + G(v,u) (6.3.2)
32

G(u,v) = ¢ — (8(u) log u) 6'(v), (6.3.3)
du

where u = L£+kl, v = k”-k' are the light-cone variables, and c is a

certain constant depending on a which we will fix later. We list the
obvious transformation rules:

0 8 _ Q“E + Q_T , o 28 .28 L8 suav = 2aklakt.
du ak dk av ak

As usual, we use the two-point function to introduce a sesquilinear

form in f(Rz):

{f,8> = 2n f W(k) F(k)g(k) dk = « J F(u,v) f(u,v)g(u,v) dudv. (6.3.4)

We obtain the following explicit expressions:

2 2 -
<E, &= -ggjdkllogfzle(é~E reahio o L Faogaol
ak dk™ (dk") (k™) +
(6.3.5)
T 3% 8 =
£, =-ﬂcj Logu ——z= (£(u,v) g(u,v))}| , du+
du v
T 8> 9 =

-wcj logv ;;E'{EG (£(u,v) g(u,v))}LFOdv (6.3.6)

If the functions f and g belong to the space

r (&% - {fer ®?Y, £0) = 20y = ¥ 0y — 0}, (6.3.7)

F 8k° ok’
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we may partially integrate and obtain

<t = et -eahi T, -
dk dk +

ﬂcjuf%g;(f(u,v)g(urv))}Lpodu + wclvfﬁga(f(u,v)g(u,v))}LFOdv

(6.3.8)

. . . 2 .
Now we introduce Krein structures in F (R"). To do this we use the
T
explicit formula depending on the usual momentum variables (equivalent
structures may be obtained using the light cone variables).

We choose ¢=-1 and define

é__a + e(kl)g——l- (6.3.9)
ak dk

We may rewrite the (6.3.8) in the following way:

D = -

<E, 2= G jdkllkll'z{[mm%(k)][<1+D>é<k>1 - [(A-DYE®) 1 (L-D)B(R}H], -
\

(6.3.10)

Then we introduce the following family of pre-Hilbert products in
r (&%:
I

[f.el 4 = éwj{ukl)c?l(kl)c:l<k1>+Fz<1<l)Gzacl)) +

£ B(kD(F (K)G, (K)+F (k)6 (kD) k'] Pak’ (6.3.11)

with Fl(kl) = ((DERD] Fz(kl) - (A-DE®N]_ - (6.3.12)
+ +

The function a(kl) is real-valued and greater than one; B is fixed by
the conditions ﬁz = az-l, B=0 .

We assume that ae@w(R—{O}); a may be diverging near the origin but its
order of divergence cannot be greater than 1 , otherwise the integral

(6.3.11) become meaningless:
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a(ky) = (k" ™?, with O=d<l (6.3.13)

It is possible to verify that for each f,g € fr(R?)

2
[<E.e>l'= [£.6] g8, (6.3.14)
i.e. each of the products [-,-]a 4+ defines a pre-Hilbert majorant
topology .

We may complete the space fr(Rz) in the Hilbert topology induced by
each of the previous scalar products. In the following we limit
ourselves to characterize the Hilbert spaces that may be obtained by
completing fr(Rz) the Hilbert products ["'}a,- . To simplify the
notation we omit everywhere the minus sign.

The Hilbert spaces associated with the topologies defined by the

products [-, -] may be obtained exactly in the same way.

a,+
Following the same steps we already walked in chapter two we obtain the
family of Hilbert spaces H;ln which are the spaces of functions

defined on {C+ - {0}} with values in Cz, and such that

J{a<kl>(|Fl(k1>|2 + |F,(D % - 2Re ﬂ(klﬁl(kl)pz(kl)}|kl|‘2dk1 < @,
(6.3.15)
Furthermore, there exists a family of bounded and selfadjoint operators

n;, each defined on the corresponding H;l) and such that
0
Y > =100, n vl . (6.3.16)

It follows that (n2)2= 1. This may also be understood by looking the

. . . 0
explicit expression of 74"

(6.3.17)

a(kly , -p(khH
n’ (k) = : .

. . . 2
We are now ready to introduce a Krein structure in P(R"). Let us

consider three test functions x,¢,) belonging to f(Rz) and such that

X0 =1, X0y -0, (o) -0,
dk ak
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o =0, E=-1,% -0,
dk ok
X -0, -0, %201,
dk dk
COX> = 68 = W = K€, = K60 = O, = 0. (6.3.18)

Given f € f(RZ) we may extract its "regular" part in the following way:

£ - f - B0y - L 0ye - L (oyn . (6.3.19)
0 8k’ ok’

and rewrite the inner product (6.3.5) in the following way:

Eg> = <E,8> + B0, + BOKE Y + Z(o)e, > + 2o, +
dk dk

£(0)<A,g> + a—’*‘§—<O)<f,x>. (6.3.20)
ok’ okt

This makes transparent that each of the pre-Hilbert products

(.8, = [£,8]_ + <6040 + <E,EXE,» + <KE,00 g + E(0)5(0) +

2 (0)28-(0) + Z(0)28(0) (6.3.21)
ok dk dk dk

defines a pre-Hilbert majorant topology on f(RZ), i.e.

2
KE.|" < (£,8 (8.9, (6.3.22)

Again the usual procedures of completion and quotient give us a family

of Hilbert spaces K;l) and there exist self-adjoint and bounded

operators 1, such that

£, > = Cf,nag)a (6.3.23)

1) . .
Theorem 6.1: K;) is a Krein space.

Proof: We have to show that (na)2= 1.

First of all we consider the following linear functionals defined on
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fr(Rz):
(D) =<x, B>, ZE(() =<K£,£, AE) =,D . (6.3.24)

We want to show that each of these functionals is discontinuous w.r. to
the Hilbert topology defined on P (Rz) by the scalar product [-,']a
r

We consider at first the functional Z. Since E(O) we may write

&0 =7 Jdkllkll“z{ca——G

-e(HE) FaEmH (6.3.25)
dk dk +

Suppose that Z is continuous. The Riesz lemma implies that it must

)

. 1
exist a vector v, € H; such that

3
[vg,f]a=<§,f> (6.3.26)

(here f has to be intended as representative of its own equivalence
class). This equation gives the following representation for the

components of the vector v

5:
ve (&) = 2D [(LDEW ], - BEHIA-DEW®I],

+ +

ve L) = B [WDEWI], - aH[A-DEW®]] . (6.3.27)
' + +
In this way we would get that

[v..,v

eVl

%J\dkllkll*Z[ (a(kM -8 |E®) |* + (ah)+8(kY)) [DE(K) |4 |, = =.
) +

Thus the functional E cannot be continuous. Analogously the functional
A 1s mnot continuous w.r. to the scalar product [-,-]a , and a slight
modification of this method gives also the discontinuity of the
functional X.

This implies that they exist three sequences of functions of H;l)which

we denote by'{fi}, {fi}, {fi} such that
GGEX > =1, lim [£5,£X = o, &£y =1, 1im [£5,£5] =0,
n n—*ro n n n n-—+0 n n

QLS =1, lim [ £, €]
n n—+o n n

I
o

(6.3.28)
Now note that the functionals X,E and A are linearly independent and

118



that their discontinuity implies that each of the hyperplanes P(X,c),

P(E,c') and P(A,c'') is dense in Hél), where
P(X,c)={fe H;“: G, = o,

etc.. These facts imply that the we may choose the previous sequences

in such a way that

: XN . XN _ - &y _
%33 (g,fn> =0, %lm <A,fn> = 0, %1m <X’fn> 0,
. I3 . by 3 by
lim {)\,£>> = 0, lim <{x,f> = 0, lim <£,£> = 0.
n—+x0 n n—+w n n—+ro n

We have that the functionals X,E and A are obviously continuous w.r. to

any of the Hilbert products (6.3.21). The Riesz lemma implies that
1)

there exist three normalized vectors v vg VA € K such that
GO =0, ED =D, OB =D, (6.3.29)
for each fEK;”
Furthermore one may understand that
s-1lim fx = , s-1lim fS , s-lim fA = v, . (6.3.30)
n—*xo X n-*o0 5 n-+o0 n A
Indeed
X X X X 1
%%g (f VX , fn VXDa %32 (f , fn )a 1 0 (6.3.31)

and analogously for the other two vectors. It is immediate to note that
navX = x , navx = £ 7,9\ = X. (6.3.32)

Since we have that

= 11 X - F -
<Vx’f> = 1im (£7,8) = £(0) = (x,D) (6.3.33)
the non-degeneracy of the sesquilinear form {-,-> implies that
nx =7y (6.3.34)
Analogously we have that
n g = Vg ) ﬂaA =V (6.3.35)

The joint continuity of any Hilbert product now implies that
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(vx,vé) = (VX’V/\) = C"g’vA) =0 (6.3.36)

Collecting these results and the fact that (n )2= 1 we finally get that
(”a)2= 1, and therefore the fact that K;l) is

0
[0
a Krein space. ##

Thus we have that each of the Hilbert spaces that we have obtained
shows a rich infrared structure; in particular they contain a three
dimensional infrared subspace invariant under the Poincare’ group which
has also a counterpart in the field algebra. These facts have also
important consequences for the structure of the gauge group. In

particular we have that certain "large" gauge transformations are

implementable. We will discuss these facts in a subsequent work.

6.4 THE WICK ORDERED EXPONENTIAL OF THE 2-DIM DIPOLE FIELD.

In this section we concern ourselves with the construction of the Wick
ordered exponential of the 2-dimensional dipole field.

As we have already said in chapter 3, this problem has two respects:
first of all one needs to know the Wightman functions of the field in
question and examine their distributional <character.

The computation of the Wightman functions of the Wick ordered
exponential of a free field is easy and is given by the following

expression [WIGLl]:

(WO, :expzl¢:(x1).....:expzn¢:(xn)@b) = I_I exp ziz‘j W(xi-xj) (6.4.1)

i<
For instance, in this case we obtain the following two-point function:
Z1%2 2 2
(WO, :expzl¢:(xl):expzz¢:(x2)$b> = exp {—Z;— Elog(-&"+ieg 3} (6.4.2)
A second and more difficult problem consists in reconstructing the

Wick-ordered exponential as a distibution whose wvalues are operators
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on a certain Hilbert space H.
The method we proposed to follow consists in finding a Krein-Hilbert
space K where to reconstruct the free field ¢, and then determinate a

fundamental space # and a dense domain § < K such that the series
exp

n

Y —I— igi(f) U fed , e (6.4.3)
n=0

n! exp

is strongly convergent.
This procedure leads in general to further restrictions on the test

function spaces on which the n-point functions make sense.

Let’'s begin by examinating the distribution (6.3.2).
The 2-point Wightman function of the 2-dim dipole field is proportional
to the distribution {ﬁzlog(-§2+£e%)} , with €=x-y. Let us rewrite

this distribution more explicitly; we have [GEL1]
2 2 .
W(E) = c&{logl|e’| + ée(g)9(E)} (6.4.4)
It follows that for any e>0 it exists a positive constant Ce such that
2)1 &
W] =c {1+ |77 2} (6.4.5)

2

since [¢*] = [¢2 - & = &2+ & = [¢]* ana £ = (x-y) s 2542y,

we obtain. that l&zl =< 2”X“2 + 2Hy”2 and therefore

€
BER AR R T e ] )

[weer] = e 41+ d=l* + Iyl®
We finally get that

lexp 2W(&) | = exp|z|[W(&)| = const_ (exp 1=|**€) cexp |y[**).  (6.4.6)
This implies that the integral I exp zW(¢) F(x) gly) dx dy is well

defined when £ and g belong to any of the spaces fa(Rz) [GEL2]

. . s .. 1
which satisfies the condition o < 5

These estimates may be replied exactly in the same way also when
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calculating the asymptotic behaviour of the n-point function; thus we

obtain that the Wightman functions of the Wick-ordered exponential of

the 2-dimensional dipole field are generalized functions belonging to
2 . 1

f'a(R ) with a < 5

We now pass to the construction of the Wick exponential as an operator

on a certain Hilbert space K. We do the explicit construction in a

Krein structure isomorphic to the one corresponding to the function

a(kl)sl (regular metric, see the previous chapter) but it is possible

to make analogous constructions also in the other cases.

It is more convenient to use the light-cone variables.

The Krein structure we are speaking of corresponds to the

introduction of following pre-Hilbert product in 7 (Rz):
r
fee]

2
[f.g] = -x l Logu “— {E(u,mgu,v) + & Fuv) & guv]_au +
du
3° = 3 = . .8 N ,
- logv ——E-{f(u,v)g(u,v) + (EG f(u,v)) T g(u,v));LFodv (6.4.7)
av

The complete scalar product may be now obtained as in formula (6.3.21).
Our aim is to find an explicit expression for the distributional kernel

K(x,y) corresponding to this Krein structure:

(f.8) = f K(x,y) £(x) g(y) d'x d'y (6.4.8)
We have that [GEL1]

J exp(-iox) 9(x) logx dx =

[ (T (1) + 3—@(-@ +10)7 - (-0 + 10) 7 log (-0 + i0)] . (6.4.9)

This formula implies that

J du dv exp (-%ux_ -%vx+) ga—(ﬁ(u) log u) §(v) =
— L) + 37 - log (- 3x_+ 10)] (6.4.10)
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and that

. . 2
J du dv exp (—%ux_ -lvx+) i—z(@(u) log u) §(v) =

2 du

= 2 1@ + Ir - log (- x4+ i0)] (6.4.11)

Thus we have the following equation:
- .

I logu -:—% Fuwmgmy + (& Fuv) & sy du -

Ilogugz—z{f(u,v)g(t,s)+(%;f(u,v))(Z—E g(t,s))}6 (V)6 (u-5)8 (v-t)dudvdtds =
u

-2—71:; J -[‘j—;—wu)logu) §(v)6 (u-5)6(v-t) -

{j eXP(*%UX_ - %vxﬁ E(x) d’x J eXP(%SY_ + %ty+) g(y) d’y +

3 i i = 2.8 i 2 B
[ 5—_\;J.exp(-§ux--§v>§+)f(x)d x] [ Fre R (§sy_+—2*ty+)g(y)d y] }dudvdsdt=

2
. ) .
;-Z—f i—u—z(ﬁ(u)logu) §(v) (1 + xy) expc-—;-u(x_-y_) - —zl—v(x+-y+)) du dv

- Ex)gly) dxdly -

1, i 1 .
F (1 +xy) (x-y) [T + j:z—fr - log [- F(x -y)+ 10]]
CEx)gly) dxdly . (6.4.12)

Analogously we obtain that

[en]

2
\[ Logv g—;—z— Fwewy + G v & gt av =
L J(l+xy) (x -y) [(I"(1)+-j:1r- log [- l(x-y)+ i0]]
= -7 - + 74 - 2 27+ T+
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- Ex)g(y) d*xd’y . (6.4.13)

Thus we obtain that the distributional kernel K(x,y) expressing the
two-point norm of the Wick ordered exponential of the dipole2 has the

following expression:

K(x,y) = Kl(X,Y) + F(x,y) (6.4.14)
Kl(x,y) =c (1 + x4y+)(x_—y_) [ (1) + %ﬂ - log [- %(x_-y_)+ i0]] +

e (1 + xy) (xoy) [(T'(1) +3r - log [- $(x,-y)+ 10]]  (6.4.15)

where F is an infinitely differentiable function whose explicit

expression may be calculated by considering eq. (...) and (...):

Fe,y) = -z B0 + K (014 320R (5) + K, (014 1= [R (1) + K (0] +

1 i i
+ ——— K -— [K x -K ] +— [K . x -K vyl +
o2 XX o2 x& o fxyo 92 XA 1 Ax’1
1 1 1
+ — K., xy - —[K. xy +K x] + — K, xy. +
92 €€ 0’0 22 EX7071 éxyo 1 22 AN T

+ wx(x)ﬁx(y) + Ws(x)ﬁg(y) + Wk(x)ﬁ/\(y) + —15 {1+xy + xlyl}

2T
(6.4.16)
where
K () - J Kl(x,y)x(y)d“y , §X<X) = f Kl(x,y)E(X)déx ,
— 4 4
KXX = J Kl(x,y)x(x)x(y)d.xd y , etc.. (6.4.17)

A little computation shows that for any e>0 it exists a constant C€>O

so that

X Gy + By | o= c (=" + ]9 (6.4.18)
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This estimate implies that the generalized function exp[Kl(x,y)] is
well defined on each of the Gelfand and Shilov spaces f’a(RQ) such that

Q<

4
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