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Introduction

The subject of this dissertation is the study of the automorphism groups of
Cauchy-Riemann manifolds. The general notion of a CR manifold general-
izes that of a smooth real submanifold M of a complex manifold X, having
the property that the dimension of the analytic tangent space H,M is con-
stant for x € M. The automorphisms we are looking for generalize the
diffeomorphisms of M that are restrictions of biholomorphic maps of X onto
itself.

A simple example of this situation is the sphere S® C C?. The CR auto-
morphisms of S? are obtained by embedding S® into CP? and considering the
projectivities of CP? which leave S? invariant: we obtain in this case a Lie
group of transformations which is isomorphic to SU(1,2)/{+/}. The gen-
eral case of a strictly pseudoconvex hypersurface of C? was fully discussed
by E. Cartan (cf. [8] and [9]) in 1932. The extension of Cartan’s results
to hypersurfaces in complex manifolds of higher dimension has been a very
interesting and impressive achievement in complex differential geometry (cf.
[39], [11], [41]).

In my thesis I am mainly concerned with the case of CR manifolds of
higher codimension. Indeed, interesting examples of CR manifolds of arbit-
rary codimension also arise as orbits of holomorphic group action (see [4]).
CR manifolds have been one of the main subjects in complex analysis and
geometry over the last decades, both from the analytic and the geometrical
point of view. I pursue the geometrical point of view, continuing the in-
vestigations started by N. Tanaka (cf. [39] and [40]) in the context of the
generalized contact structures. Extending the method of G-structures, we
are led to consider special Lie algebras, that we call of Levi-Tanaka, which
parametrize the infinitesimal CR automorphisms of homogeneous CR man-
ifolds. In this work I describe the general properties of the Levi-Tanaka
algebras and, after classifying all semisimple ones, I discuss the homogen-
eous CR manifolds which have the largest Lie group of CR automorphisms
for a given (higher order) Levi form.

The thesis is organized as follows. In the first chapter I collect the general
definitions and preliminary notions related to CR manifolds.

In chapter 2 it is described how to each point of a CR manifold M one
can attach the main invariant for discussing CR transformations: the Levi-
Tanaka algebra. This is defined as the canonical prolongation (i.e. the max-



imal pseudocomplex transitive one) of the fundamental graded Lie algebra
®p<08p associated to the filtration of the tangent bundle 7'M induced by the
distribution HM C TM of the holomorphic tangent vectors. Such a pro-
longation g = @,ecz8, is unique up to isomorphisms of graded Lie algebras
(see Theorem 2.3.1). The remaining part of the chapter contains a proof
of a criterion for the finiteness of the dimension of the prolongation which
is based on a result of Serre (see [13]) and had been proved by N. Tanaka
in [40]. In the case of pseudocomplex algebras this criterion boils down to
a nondegeneracy condition, namely to: {X € g_1|[X,g-1] = 0} = (0). Ac-
cording to a classical theorem of Kobayashi (see, for instance, [20]), when
this condition holds at all points of M, the group of CR automorphisms is
a finite dimensional Lie group. If the Levi-Tanaka algebra is semisimple,
it is possible to associate to the manifold a principal bundle endowed with
a Cartan connection, in such a way that CR transformations are lifted to
diffeomorphisms of the principal bundle preserving the Cartan connection.

Chapter 3 is devoted to a general study of the Levi-Tanaka algebras (and,
more generally, of graded Lie algebras g = @,czg, endowed with a character-
istic element, i.e. an element such that the subspaces g, are the eigenspaces
of its adjoint representation, associated to the eigenvalues p € Z). Next we
prove that a Levi-Tanaka algebra admits an appropriate Levi-Mal¢ev decom-
position in which the semisimple part is the semidirect sum of two ideals, one
of which is still a Levi-Tanaka algebra while the other one is a semisimple
algebra of derivations of the radical. From this decomposition we deduce
criteria to investigate the structure of the Levi-Tanaka algebras based on
the adjoint representation of gy on g_; or g_». Then a suitable version of
the Cartan decomposition for semisimple Levi-Tanaka algebras is given. The
chapter ends with a section collecting significant examples. It is worth of
noticing that part of these examples were actually suggested by the previous
discussion of the general properties of the Levi-Tanaka algebras.

Chapter 4 is devoted to a complete classification of the semisimple Levi-
Tanaka algebras. This is also important because of the connection of these
algebras to compact homogeneous CR manifolds, that will be stressed in the
last chapter. The key to this classification is the fact that the pseudocomplex
structure is defined in this case by a 0-degree inner derivation and it uses
the results on the classification of semisimple graded Lie algebras which are
related to the construction of the weighted Satake diagrams (due to Djokovi¢
[12]). After reducing the problem to that of classifying simple Levi-Tanaka
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algebras, I discuss separately simple graded Lie algebras of the complex and
of the real type, first giving general criteria on their weighted Dynkin and
Satake diagrams in order that they admit a structure of Levi-Tanaka algebras
and next applying these criteria to the different classes. In the classical cases
we give matrix representations, while for the exceptional ones we give in the
appendix a complete list, which was obtained by symbolic calculus, using a
software that I produced for this purpose.

Chapter 5 is devoted to Levi-Tanaka algebras of the second kind. Up to
isomorphisms they are classified by the subspaces of the space of Hermitian
symmetric forms modulo conjunctivity. This is the reason why the results are
further restricted to the CR codimension 2 case: there is indeed a complete
theory of the canonical form of a pair of Hermitian symmetric matrices. The
complete classification obtained in this special situation provides a rich set
of examples of Levi-Tanaka algebras which are not semisimple.

In chapter 6 we associate to each Levi-Tanaka algebra g a real universal
homogeneous space: the standard CR manifold S;. These simply connected
CR manifolds have at each point z € S; a Levi-Tanaka algebra g(z) iso-
morphic to g and a maximal group of global automorphisms. The CR auto-
morphisms of these manifolds satisfy also a localization property. Moreover
Sy is embedded in a complex homogeneous space X in such a way that g is
the Levi-Tanaka algebra associated to the complex structure induced on S,
by the embedding. We consider also the case of projective immersions and
give some criteria for the compactness of Sj.

The results proved in Chapters 3, 4, 5 and 6 are original and are partially
published in [24], [25], and [26]. The remaining of the original part of this
thesis, in particular the results of Chapter 5, is the subject of a forthcoming
publication.
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Chapter 1

Preliminaries

1.1 Partial complex structures and CR man-
ifolds

Let M be a smooth real manifold of dimension m, countable at infinity. Let
n, k be nonnegative integers with 2n + k = m. A partial almost-complez
structure of type (n,k) on M is the pair (HM, J) consisting of a real vector
subbundle HM of rank 2n of the tangent bundle 7M and a smooth fiber
preserving bundle isomorphism J : HM — HM with

J*=-Id: HM — HM
and such that
(1.1) [X,Y]—[JX,JY] e'(M,HM) VX,Y e'(M,HM).

Here we use I' to indicate smooth sections of a fiber bundle.

The triple M = (M, HM, J), where (HM, J) is a partial almost-complex
structure of type (n, k) on M, is then called an almost-CR manifold of type
(n,k). The number n is called the CR-dimension of M and k the CR-
codimension of M.

We say that the partial almost-complex structure (HM,J) on M is a
partial complez structure (or CR structure) if it is formally-integrable, i.e. if

(1.2)
N(X,Y) = [JX,Y]+[X,JY] - J(X,Y] - [JX,JY]) =0

1



for every X,Y € I'(M, HM). When (HM, J) is a partial complex structure
of type (n, k), we say that the triple M = (M, HM, J) is a CR manifold of

type (n, k).
Note that —J is also a partial complex structure of the same type and with
the same properties of integrability as J. It is called the conjugated structure.

The integrability conditions (1.1) and (1.2) can be expressed in another equi-
valent formulation. Let

TWOM = {X —/=1JX |X € HM}, T"'M ={X +V=1JX|X € HM)

be the complex vector subbundles of the complexification CQgr HM of HM,
corresponding to the eigenvalues /—1 and —v/—1 of J. Then (1.1) and (1.2)
are equivalent to each of the following:

[O(M, T"°M),T(M,T**M)] c T(M,T*°M),

[O(M,T% M),T(M,T**'M)] c T'(M,TM).

Note that a complex subbundle HT'M of the complexification C Qg T'M of
the tangent bundle TM such that:

(1.3) HTMNHTN = {0} and
(1.4) [C(HTM),T(HTM)] c T(HT M),

defines a CR structure (HM, J) given by

HM ={X|X++V-1Y € HTM} and

JX)=Y if X++-1Y € HTM.
This is a good definition because two elements in HT' M with the same real
part are equal by (1.3). This partial complex structure is formally-integrable

by (1.4).
Note that HT'M defines the conjugate CR structure (HM, —J).

1.1.1 The CR structure of a complex manifold

Let M be a complex manifold of complex dimension m. If (2!,...,2™)
are holomorphic coordinates in a neighborhood of a point z € M, we call

2



holomorphic and antiholomorphic tangent space of M at = the subspaces of
CRrTM:

0 o}

1,0 _
(1.5) T M, = < 50 (z),... B (z) >¢ and
d 0
0,1 _
(1.6) T%'M, = < 55 (z),... e (z) >¢,

respectively, where < - >¢ denotes the complex linear span of the vectors
included in the brackets.

The holomorphic tangent bundle T%°M = U,ep T°M, defines a
CR structure on M of type (m,0) as:

(1.7) M, NTOM, = {0}
(1.8) TOM, e TOIM, = CQrTM,.

This structure is obviously integrable.

The CR structure of a complex manifold M can be given in an equival-
ent way by considering the pair (T'M, J) where the partial almost-complex
structure J : TM — T'M is given for every z in M by

(1.9)
J (%(@) = Biyj 5y, J (5‘37(9;)) - -—%(m) forj=1,...,m

where (2!,...,2™) = (2! + /—=1y%,...,2™ + +/—1y™) are holomorphic co-
ordinates in a neighborhood of z.

A partial almost-complex structure of type (n,0) on a real 2n-dimensional
manifold (i.e. of CR-codimension k = 0) is called an almost-complex struc-

ture. The following theorem is due to Newlander and Nirenberg (see [31] and
also [46]).

THEOREM 1.1.1 Every manifold with a formally-integrable almost-
complez structure (i.e. a CR structure of CR-codimension k =0) is a com-
plex manifold in a natural way.

1.2 CR maps and immersions

Let M1 = (A/Il, HMl, Jl) and M2 = (]VIQ, HM2, Jg) be two almost-CR man-
ifolds. A differentiable map f : M; — M, is a CR map if

3



1. f(HM)) C HM, and
2. f*(Jle) = JZf*(X:z:) Vr € M]_ y VXx € Hle

When M, is C with the complex structure of a CR manifold of type (1,0)
given by T%'C, a CR map from M, to C is called a CR function.

A differomorphism f : M; — M, is called a CR diffeomorphism if f
and f~!: My, — M; are both CR maps. Two CR diffeomorphic almost-
CR manifolds are necessarily of the same type.

A CR immersion (respectively CR embedding) of a CR manifold M of
type (n, k) is the datum (X, ¢) of a complex manifold X and an immersion
(resp. embedding) of manifolds ¢ : M — X which is a CR map (considering
on X the CR structure given from 7%1X).

It is called generic if (M) is a generic submanifold of X, that is if
dim¢ X = n + k. A generic embedding is also called a complezification. A
CR manifold is called embeddable if it admits a CR embedding (X, ¢).

Every real-analytic CR manifold admits a complexification (cf. [2]). Gen-
eral results on the complexification of smooth CR manifolds have been ob-
tained only in the CR-codimension one case (cf. [1], [47] and [10]), while
counterexamples to the embeddability have also been obtained for higher
codimension (see, for instance, [32], [17], [33], [7], [34], and [16]).

1.3 The form of Levi-Tanaka

We begin by an easy proposition from linear algebra, that will be useful in
the sequel.

PROPOSITION 1.3.1 Let V be a real vector space, of even dimension
2n, on which a complez structure J € Homg(V, V), with J? = —Id, is given.
Then:

1. For every alternating R-bilinear form a : V x V. — R* such that
a(Jv, Jw) = a(v,w) for every v,w € V there is a unique Hermitian
symmetric form §:V x V — CF such that

Sf(v,w) = a(v,w) Yv,we V.



It is given by
flv,w) = a(Jv,v) + vV —-1la(v,w) Yv,w eV
and is Hermitian symmetric for the real form RF of CF.

2. If a and § are as in (1), A € Home(V,V) and B € Homg(RF, R¥), the
following are equivalent:

(1) a(Av, Aw) = Ba(v,w) VYv,w €V,

(41) f(Av, Av) = Bf(v,v) YveV.

8. If a and § are as in (1), A € Home(V,V) and B € Homg(R*, RF), the
following are equivalent:

(117) a(Av,w) + a(v, Aw) = Ba(v,w) Yv,w eV,

() f(Av,v) + f(v, Av) = Bf(v,v) Yv € V.

Moreover, (it) and (iv) are respectively equivalent to:

(13") f(Av, Aw) = Bf(v,w) Vv,w eV,

(10" f(Av,w) + f(v, Aw) = Bf(v,w) VYv,w €V,
for the complexification, still denoted by B, of the real linear map B.

Let now M = (M,HM,J) be an almost-CR manifold of type (n, k),
denote by QM the quotient bundle TM/HM and let 7 : TM — QM be the
projection onto the quotient. Given two sections X,Y € I'(M, HM) and a
point z € M, the value 7([X,Y];) € Q.M only depends on the values X, Y,
at z of X and Y. Thus we obtain an alternating bilinear form

(o HoM x HyM 3 (X, Ys) — 7([X, Y],) € QoM

which is called the Levi-Tanaka form of M at z. Clearly the assignement
M>z— 1, € A>(HM,QM) is smooth.
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By condition (1.1) this form is J-invariant:
(I Xz, JYs) = (X;, Ye) Vo eM, VX, Y,e€ HM.

By applying the proposition above, we obtain for every z € M a unique
Hermitian symmetric form f, for the complex structure of H,M such that

[a:(X.’Ea Ya:) = %fx(X:cy }/:z:) VXz; Yz € Ha:M
It is given by

and therefore smoothly depends on z. The corresponding Hermitian quad-
ratic form
H.M 3 X, — §,(Xz, Xz) € QoM

is often referred to as the (vector valued) Levi form.

1.3.1 Pseudoconvexity and pseudoconcavity

Let M = (M, HM, J) be an almost-CR manifold of type (n, k). We define
the characteristic bundle of M as the smooth linear subbundle H°M of the
cotangent bundle T*M of M whose fiber HM at the point £ € M is the
annihilator of H,M C T, M:

HM = {6, € T"M|(Xs, &) =0 VX, € HyM}.
We define the (scalar) Levi form at &, € HOM by
L&z, Xe) = (Fo( Xz, X2), &) for Xy € H; M.

This is a real valued Hermitian form for the complex structure of H, M.
We say that M is g-pseudoconver at € M if we can find &, € HJM such
that the Hermitian form £(&,, -) has at least (n — ¢) positive eigenvalues.
We say that M is g-pseudoconcave at z € M if for every &, € HIM with
&z # 0 the Hermitian form £(&;, -) has at least ¢ negative eigenvalues.
Pseudoconvexity and pseudoconcavity are related to the local properties
of the CR complexes (see, for instance, [30] and [27]).



Chapter 2

Prolongations of fundamental
graded Lie algebras

2.1 Graded Lie algebras

A Z-graduation (or briefly graduation) of a Lie algebra g over a field K is a
decomposition of g into a direct sum of finite dimensional K-linear subspaces
g = @Dpez 9p such that

[gpv gq] C Bp+q Vp, q € Z.

A Lie algebra g with a given graduation is called graded. We say that g is of
finite kind 41, for a nonnegative integer u, if g, = 0 for p < —p and g_, # 0.
In this case we call the dimension & of ©,<_1g, the codimension of g.

LEMMA 2.1.1 Let g = ®_,<p<u8p be a finite dimensional graded Lie al-
gebra. Let kg denote the Killing form of g. Then

Kig(8p, 8g) #0 => p+q=0.
Assume now that p # 0 and let X € g, andY € g_,. Then

Ka(X,Y) # 0 => [X,Y] #0.



Proof. If X € g, and Y € g, with p+ ¢ # 0, then the linear operator
adg(X) o adg(Y) : g — g is nilpotent as ady(X) o adg(Y)(gr) C Gh+p+q, and
so kg(X,Y) = 0.

Let now X € g,, Y € g_, with p # 0 and assume that [X,Y] = 0. Then
adg(X) and ady(Y’) are commuting nilpotent operator and so ad4(X )oady(Y),
being nilpotent, has trace k4(X,Y) = 0. O

We note that gg is a Lie subalgebra of g and, for every p € Z, the map

Pp : Bo — HOmK(gp: gp)’
defined by

(2.1) pp(Xo)(Xp) = [Xo, Xp] for Xo € go, X € gp,

is a linear representation of the Lie algebra g in g,.
A graded Lie algebra g is said to be:

1. fundamental if g, = 0 for p > 0 and [gp, g—1] = gp—1 for p < 0, i.e. g4
generates g;

2. nondegenerate if [X, g_1] # 0 when 0 # X € g_y;

3. irreducible (respectively completely reducible) if the representation p_;
of go in g_; is irreducible (resp. completely reducible);

4. transitive if (X, g_1] # 0 when p > 0 and 0 # X € g,; in particular,
the representation p_; of go in g_; is faithful.

Note that if g is a nontrivial transitive graded Lie algebra, then p > 1, and
if g is also nondegenerate, then p > 2.

Let g = @pezg, be a graded Lie algebra over R. A partial complez structure
on g is an R-linear map J : g_; —g_; which satisfies

Jt=-1d,_,
(2.2) )
[JX,JY]=[X,Y] VX,Y €g...

In this case the real dimension of g_; is even, and we say that g is of type
(n, k) if dimg = 2n and dimg ©p<_29, = k. The integers n and k will be also
referred to, respectively, as the CR-dimension and CR-codimension of g.
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Note that —J is also a partial complex structure, of the same type of J.
It is called the conjugated structure.

A graded Lie algebra g over R with a partial pseudocomplex structure J
is said to be pseudocomplez if the elements of p_;(go) commute with J on

g-1.

For a graded Lie algebra g = @,¢czg, over K, the K-linear mape: g —g
defined by

(2.3) e(X)=pX for Xe€gp,pel

is a 0-degree derivation. If e = ady(F) for some E € g is an inner derivation,
we call such an element E € go a characteristic element of the graded Lie
algebra g. Conversely, if a finite dimensional Lie algebra g over K contains
a semisimple element F such that adg(E) : g — g has integral eigenvalues,
then the subspaces

(2.4) gp={X€gl|[F,X]=pX} forpeZ

give a graduation of g for which F is a characteristic element.
Note that a characteristic element is contained in the center 3(go) of go.
The characteristic element is uniquely determined if and only if the center
3(g) of g is trivial. In this case we will call F the characteristic element of g.

An isomorphism of graded Lie algebras is a map ¢ : g = @pezgp, — ¢ =
©®pezg, between graded Lie algebras over the same field K such that: 3

(1) ¢ is a Lie algebras isomorphism;

(4) ¢(gp) = g, for all p € Z.

For graded Lie algebras having unique characteristic elements £ and E’
respectively, condition (i%) is equivalent to ¢(E) = E'.

Remark 2.1.2 Every graded Lie algebra is contained as a graded Lie ideal
in a graded Lie algebra with a characteristic element.

LEMMA 2.1.3 The center 3(g) of a graded Lie algebra g = ®pezgp with a
characteristic element E is contained in go.

If g is also transitive, then the center 3(g) of g is trivial; in particular, E
s the unique characteristic element of g.



Proof. Let X = 3 ,cz X, be an element of the center of g, decomposed into
the sum of its homogeneous components. From ady(X)(E) = — ¥,z pX, =
0 we deduce that X, = 0 for every p # 0, and so X = X € go.

Moreover, as adg(Xo)(g-1) = p-1(Xo)(g-1) = 0, if g is transitive, then
Xo=0. !

If I is any subset of a graded Lie algebra g = @®pez8,, we will use in the
following the notation [, for the set [Ng, of its elements that are homogeneous
of degree p. We say that [ is graded if [ = @pezl,.

LEMMA 2.1.4 Ewvery ideal of a graded Lie algebra g = ®pezg, with a char-
acteristic element E is graded.

Proof. Let X = X_, +X;_,+ ...+ X, be an element of an ideal i of g,
decomposed as a sum of its homogeneous components. Then i contains all
elements ady(F)*(X), where E is a characteristic element of g and £ is any
positive integer. Therefore i contains:

X_, + X1, + ..+ X,
Xy + (1-pXi, + ... + vX,
(—w)'X_, + O-pX_, + ... + VX,

from which it follows that the ideal i contains all the homogeneous compon-
ents of X. O

2.2 Fundamental graded Lie algebras associ-
ated to vector distributions

Graded Lie algebras were considered by Tanaka in [39] in order to investigate
canonical forms of vector distributions and CR manifolds. We rehearse here
the relevant construction.

Let D C TM be a rank r linear subbundle of the tangent bundle of a
smooth differentiable manifold M of dimension m. We set

D_, = ['(M, D)

10



and define by recurrence
D, = [Dp+1, Doy] + Dy for p< —1.

Then we have an increasing sequence of £(M)-modules of vector fields

D,.CD,yC...CT(M,TM).
For every z € M and p < 0 we set

(Dp), = {X; € T,M| X € Dy}
Note that:
(©)  [Dp, D] C Dpyg Yp,q <O;
(¢0) ifp,g<0,X €D, YD, f,g€E(M), then

[FX, gY] = fg[X,Y] € Dpigir.

Let us define then, for every fixed z € M,

g-1(z) = (P-1),
D
gp(z) = éﬁsx for p<-—-1.

By conditions (i) and (it), the commutator of vector fields in D, and D,
composed with the projection onto the quotient (Dpiq), — gp+¢(%), defines

on
g(z) = P gp(z)

p<0

the structure of a real fundamental graded Lie algebra.
We say that D is regular if, for every p < 0, D, is a vector distribution of
constant rank in M, i.e. if

dimg gp(z) = dimr g,(y) Vp <0, Vz,ye M.
In this case there is a smallest positive integer u such that
D, =D_, Vp<—p

11



and D_,, is the smallest formally integrable vector distribution in M contain-
ing D_; = I['(M, D). By the classical Frobenius theorem M is locally foliated
by integral leaves of D_,,.

In particular we can apply the construction above to the linear vector
subbundle HM of TM for a given almost CR manifold M = (M, HM, J).
We say that M is contact regular if HM is regular.

We shall denote by m(z) the fundamental graded Lie algebra associated
to HM at the point x € M. It is pseudocomplex with respect to the complex
structure J on H,M = m_;(z). We note that m(z) is nondegenerate if and
only if the Levi form is nondegenerate at z.

A CR diffeomorphism induces isomorphisms of the pseudocomplex fun-
damental graded Lie algebras associated to the partial almost-complex struc-
tures at the corresponding points. In particular the algebras m(z) are pseudo-
conformal invariants of the CR manifolds.

The fundamental graded Lie algebra m(z) takes into account also the
higher order Levi forms (see, for instance, [38]). However, for the study of
the local CR invariants of M, it is convenient to extend m(z) to a larger
graded Lie algebra g(z), via a canonical prolongation. This g(z) will be
called the Levi-Tanaka algebra of M at z.

2.3 Canonical prolongations of fundamental
graded Lie algebras

Given a finite dimensional graded Lie algebra a = @_,<,<,a,, we say that
a graded Lie algebra b = ©_,<,b, is a prolongation of a if there is a mono-
morphism of graded Lie algebras a — b inducing an isomorphism of a onto
bey = @_pu<p<i by

In this section we sketch the proof of the fundamental theorem about the
existence of canonical prolongations of fundamental graded Lie algebras (see
[40]).

THEOREM 2.3.1 Let m = @_,<,<oM, be a fundamental graded Lie al-
gebra over R. Then we can construct a graded Lie algebra g = @Dp>_, 8p,
unique up to isomorphisms, which is mazimal between the transitive graded
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Lie algebras g for which there is a graded Lie algebras isomorphism:

g-= P g —om

—p<p<0

Such a transitive graded Lie algebra g will be called the canonical pro-
longation of m.
Proof. The existence of a canonical prolongation trivially follows from the
Zorn lemma. However, the explicit construction also shows uniqueness and
gives a method for computing the canonical prolongation.

To construct a canonical prolongation g, we first set

gp = m, for p<0.

The linear spaces g, for p > 0 will be defined below recursively as linear
subspaces of Homg(m, ®4<pg,). For X, € Homg(m, ®¢<,9,) we write:

Xp(Y) = [Xp, Y] = —[Y, Xp] YY € m.
With this notation we set:

g = {X, € Homz(m, ®4<,8q) | Xp(gr) C gp+n VA <0, and
X,(Y), Z) ~ [X,(2), Y] = X,([Y, Z]) WY, Z € m}.

We note that go C Homg(m, m) is the Lie algebra of derivations of degree 0
of the graded Lie algebra m.

By this construction, the Lie product [X, Y] in g is defined when one of
the two elements X,Y € g belongs to m and the Jacobi identity

(X, Y], 2] + Y, 2], X] + [[Z, X], Y] = 0

holds when X,Y, Z € g and two of them belong to m.
Moreover, because m is fundamental, we have

[Xp, 9-1]#0 if p>0 and X,€g, X,#0.

To define the Lie product of arbitrary elements of g and to show that the
Jacobi identity holds true, we argue by induction on the degrees.
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It suffices to consider products of homogeneous elements [X,,, ;] for X, €
gp and Y, € g, with p,¢ > 0. When p = ¢ = 0 we consider gy as a Lie
subalgebra of gl(m) and set

[Xo, Yo] = Xp0 Yy — Yy0 X,

Since the derivations of a Lie algebra form a Lie algebra, we have [X,, Y] € go
and moreover the Jacobi identity

(2-5) [[Xp’ Y:z]’ Zr] + [[Y;p Zr]: Xp] + [[Zr, X;DL Yq] =0

for X, € gp, Y; € g, and Z, € g, holds true when p, ¢, < 0. This we call a
Jacobi identity homogeneous of degree p + ¢ + 7.

Assume now that £ > 0 is fixed and [X,, Y] has been defined when
p+q<¥4 pg>0,in such a way that the Jacobi identity (2.5) holds true
when 7 < 0. For p,¢g > 0, p+ g =/ and Z € m we define then

[XIH Y;I](Z) = {[XmZ]a Y;] + [XP’ [Yq’Z]]

One easily verifies that this yields [X,, Y] € g, and that the Jacobi identity
(2.5) is satisfied when r < 0.

To show that g is a Lie algebra we only need now to show that the Jacobi
identity (2.5) is true without any assumption on p,q,r. The cases where
p+q-+7 <0 are obvious. We can argue then by induction on p+qg+1r > 0.
Taking into account that the left hand side of (2.5) is an element of g and that
m is fundamental, we reduce to the easy verification that the Lie product of
this left hand side and of every element of g_; is zero. In this way we reduce
to Jacobi identities homogeneous of degree < p + ¢ + 7.

The uniqueness is also clear, as for every transitive prolongation g of m
an element Xp € gp with p > 0 is completely determined by the homomo-
morphism

m>Z— X, 2 €@y,
q<p
it defines. Arguing recursively on the degree, we obtain an injective morphism
of Lie algebras
g9

which is an isomorphism by maximality. O
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2.4 Definition of Levi-Tanaka algebras

Let m be a fundamental graded Lie algebra of kind x and let m be its canon-
ical prolongation, as constructed in the proof of Theorem 2.3.1. We fix a Lie
subalgebra gy of the algebra mg of all derivations of degree 0 of m. Then we
define the canonical prolongation of m @ go setting by recurrence:

g = {Xp € Wy |[Xp, 9-1] C gp1})-

This is a graded Lie subalgebra of m and hence a transitive graded Lie al-
gebra, maximal between the graded Lie algebras a which are transitive and
satisfy
m®go ~ Pa, asgraded Lie algebras.
p<0

When m is a pseudocomplex fundamental graded Lie algebra, we say that a
prolongation a = @p>_,a, of m is pseudocompler if the elements of ay define
derivations of degree 0 of m which are C-linear on m_; for the complex
structure induced by J.

If we define gg to be the space of all 0-degree derivations of a pseudocom-
plex fundamental graded Lie algebra m which are C-linear on m_;, we call the
canonical prolongation of m & go the canonical pseudocomplex prolongation
of m.

A graded Lie algebra g = @,>_,8p such that

(1)  m = @®_,<p<oPp is a fundamental Lie algebra with a partial almost-
complex structure J,

(#7) g is the canonical pseudocomplex prolongation of m,

will be called a Levi- Tanaka algebra.

An isomorphism of Levi-Tanaka algebras g = @pez8p and g’ = @pezg,,
whose partial complex structures are denoted by J and J’ respectively, is an
isomorphism ¢ : g — g’ of graded Lie algebras such that ¢(JX) = J'¢(X)
for every X € g_;.

We recall that, when m = m(z) is the pseudocomplex fundamental graded
Lie algebra associated to a point z € M of an almost CR manifold M =
(M,HM,J), its canonical pseudocomplex prolongation g(z) is called the
Levi-Tanaka algebra of M at z.
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We note that CR diffeomorphisms induce isomorphisms of the Levi-
Tanaka algebras at corresponding points. In particular the Levi-Tanaka al-
gebras -modulo isomorphisms- are pseudoconformal invariants.

2.5 Finiteness of the canonical prolongation

In this section we give a complete proof of a criterion for the finiteness of the
canonical prolongation, which was given by Tanaka in [40], using a result of
Serre contained in [13].

For this it is convenient to consider a slightly more general setting.

Let m = @®_,<j<0g; be a fundamental graded Lie algebra over a fleld K
of characteristic 0. A right m-module is the datum of a K-linear space E and
of a bilinear map

Exm> (v,X)—>vXekFE

such that
(wX)Y — (W)X =v[X,Y] VWweE, VX,Yem

Note that a right m-module is in a natural way a right 2,-module, where
2, is the universal enveloping algebra of m.

An m-graduation of F is a decomposition of E into a direct sum of K-
linear subspaces E = @®pcz L, such that

Epg; C Epyj VpeZ, —n<j3<0.

Given any subset F' of a graded right m-module E = @,czE, we denote by
F), the subset F'N E, of all elements of F* which are homogeneous of degree
p. If F'is a K-linear subspace of E, then all F, are K-linear subspaces of E.

An m-submodule F' of E is called a graded m-submodule of F if F' =
@pEZFp'

An m-graduation on E is good if the subspaces Ej, in the direct sum
decomposition are all finite dimensional.

We say that a well graded right m-module F satisfies condition (C) if

©) i) Ep, =0 for p<—p;
i) if ve E,,withp>0, and wvg_;=0, then v=0.
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We associate to an element v € E, for p > 0 the multilinear map:
o(w): g%, 3 (X1,...,Xp) = vXy1--- X, € Ey.

Then (i7) in condition (C) implies that the map v — o(v) is injective from
E, into the space 9MP(g_1, Ey) of K-multilinear maps g*; — FEj.

Remark 2.5.1 If E = @pezkl, is a well graded right m-module satisfying
condition (C), and, for some p > 0 we have E, = 0, then E, = 0 for all

q > p.

Remark 2.5.2 If B = @,z F, is a graded right m-module, then the trun-
cated Ejp, = @p<poEyp 15 also a graded right m-module for every py € Z. It
satisfies condition (C) when E satisfies condition (C).

Remark 2.5.3 The quotient of a well graded right m-module by a graded
right m-submodule is, in a natural way, a well graded right m-module. In
particular, this is the case for E/E,, with py € Z. These m-modules will play
an important role in the following discussion. However, it will be convenient,
in order that condition (C) be kept while passing to the quotient, to redefine
the graduation of these modules by a shift in the natural grading, as explained
below.

Remark 2.5.4 Definition of the right m-modules E(q).

Let E = ®,cz.Ep, be a graded right m-module. Let us fiz an integer g > 0.
We denote by E(q) the right m-module E/E,_,_1 endowed with the following
graduation: if m : E — E(q) is the projection onto the quotient, we set
E(q)p = m(Eq4p). The K-linear isomorphism @p>q—,Fp — E(q) identifies
Eqyp to E(q)p for p > —p. With this identification in mind, we can define
the right m-module structure of E(q) by

ox = JVX  HvEEy X€gp h2q—p, —p<p<0, htp2qg—p
0 fvEEL, X€g, h2q—p, —p<p<0, h+p<qg—p.

We note that E(q), =0 for p < —p and E(q) is well graded when E is well
graded. Moreover, E(q) satisfies condition (C) if E satisfies condition (C).
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A K-linear vector space M, together with a bilinear map m x M 3 (X, a) —
Xa € M such that

X(Ya) -Y(Xa)=[X,Y]a VX,Y€m, VYaeM

is called a left m-module.
An m-graduation of a left m-module M is a decomposition: M = @pezM?
of M into a direct sum of K-linear subspaces with the property that

ngpch—j for —pu<j5j<0, peZ.

The m-graduation is good if the subspaces MP are finite dimensional. Dual
to condition (C) for right m-modules, we introduce condition (C') for well
graded left m-modules:

(@)

1)) MP=0 forp< —pu
i) MP=g_,MP~t forp> 0.

We note that every left m-module M can also be considered as a left U,
module. Condition (C’) implies that M is a left 2 -module M of finite

type.
Let M = @,z MP? be a graded left m-module and let ¢ > 0 be fixed. We
define M(g)? = MP*9. Then

M(q) = @p>-,M(q)?

is a graded left m-module, which is obviously well graded when M is, and
satisfies condition (C’) when M does.

The relationship between right and left m-modules is explained by the
following:

LEMMA 2.5.5 Let E = @pezEp be a well graded right m-module. Denote
by M the subspace of its algebraic dual E' consisting of all linear functionals
a: E — K such that a(E,) = 0 for |p| sufficiently large. Then M has a
unique structure of well graded left m-module M = @pczMP such that

(vX,a) =(v,Xa) YWweE, XeEmaeM

and
(v,a) =0 for veE,aeM? and p+#yq.

Moreover, E satisfies condition (C) if and only if M satisfies condition (C").
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We call M the dual graded left m-module of the graded right m-module E.
For every integer ¢ > 0, M(q) is the dual left m-module of the right m-module

E(q).
The verification of the statements of the lemma is straightforward.

We will prove the following:

THEOREM 2.5.6 Letm = ®_,<p<00p be a fundamental graded Lie algebra
over a field K of characteristic 0 and let E' = @©p>_,E, be a well graded right
m-module satisfying condition (C). Let:

HE)={veE|vX =0 YX € ®pc_18p}-

Then a necessary and sufficient condition in order that E be a finite dimen-
stonal K-linear space is that H(E) be finite dimensional.

The proof of this theorem requires several lemmas. It is based upon an
inductive argument on the kind u of the fundamental Lie algebra m. There-
fore we start by considering the structure of a well graded right m-module
satisfying condition (C) in the case where m is of the first kind. Then m
is a finite dimensional vector space of finite dimension n over K, with the
trivial structure of a commutative Lie algebra and its universal enveloping
algebra 2, is isomorphic to the ring P = Kz, ... , 2z,] of polynomials in n
indeterminates over the field K, with the natural graduation which identifies
the elements of m to the homogeneous polynomials of degree 1 in P. The
following lemma, due to Serre (cf. [13]), deals with the Koszul complex of
commutative algebra (see, for instance, [36] or [22]).

LEMMA 2.5.7 Let m be a fundamental Lie algebra of the first kind. Let
E = @pez Ly be a well graded right m-module satisfying condition (C). Then
we can find py > 0 such that

1. E(po) s the classical prolongation of (E(po)-1 ® E(po)o): this means
that, for every p > 0, the map

E(po)p SU — O'(U) € Sm”(m, E(po)o)

defines an isomorphism of E(po), onto the space E(po)® of symmetric
multilinear maps s : m? — E(pg)o such that

WS (Yo, Y, .. %) = s(Ys,- .., Y)Ye € Elpo)

18 also symmetric.
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2. We can find a basis X1,...,X, of m such that, setting
EJ ={A€ E,|AXy,=0 for h=1,...,5}

the maps Epj 5 A — AXj € Ep_lj are surjective for p > pg and
j=0,1,...,n—1.

Proof. Denote by m the ideal of P generated by m and let M be the dual left
m-module of E, with the structure of well graded left m-module satisfying
(C") given by Lemma 2.5.5.

Then M is in a natural way a left graded P-module. By condition (C’)
it is a P-module of finite type. We consider the Koszul complex associated
to the P-module M:

0= M™ 5 M- 5 5 MO 5 MO 0.

Its homology groups H;(M) are isomorphic to Tor? (M, P /).

They are therefore finite dimensional vector spaces over K.

Indeed they could also have been computed starting from a Hilbert res-
olution of the P-module M, of minimal lenght d < n:

0—=Lg—>Lsg1—...>Li—>Lyg—>M=—=0,

where the L;’s are free P-modules of finite type: the groups H;(M) are
therefore isomorphic to the homology groups of the complex:

P P P P
0——)‘:'®'pLd—>T®'pLd_1—)...—+—:®’PL1-—>—:®PL0-——>0.
m m m m

Since P/m ~ K, this one is a complex of finite dimensional linear spaces over
K and K-linear maps. In particular the groups H;(M) are finite dimensional
vector spaces and are 0 when 7 > d.

The graduation of M as a P-module yields a graduation of the groups
H;(M). For every integer ¢ we denote by H;(M)? the set of homology classes
that are homogeneous of degree ¢. Since @o<i<, H;(M) is a finite dimensional
vector space, we can find gy € Z such that

H;(M)? =0 forevery i and gq> qo.
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Let M(q) = ®p>_1M??. By Lemma 2.5.5, M(q), with the graduation
M(q)P = M7, is also a well graded left m-module satisfying condition
(C"). Since the differentials in the Koszul complex are homogeneous maps of
degree 1, one obtains

Hy(M(q))' = H;(M)*™ forevery i and ¢>0.

We already noted that M(g) is the dual m-module of E(q).

In the statement of the lemma, we can as well substitute the m-module £
by anyone of the modules E(q) for ¢ > 0. Thus in the proof we can assume
for simplicity that M = M(qgp), so that

H;(M)" =P H,(M)! = 0.

q20

From H,(M)* = 0 we obtain that the set of ideals of P
{Ann(a)|a € MT = @M}

does not contain m. This set of ideals is finite, because Mt is a P-module
of finite type. Therefore, by choosing X; € m outside the union of a finite
set of linear subspaces of m, the map

M@O)"3a— Xiae M(1)"

is injective. Let W be a linear complement of ker(X; : M~ — M°) in M1
Then M = W & M is a graded P-module and X; M = X1 M, so that we
have a short exact sequence of P-modules:

0— M E5 M — M/XM — 0,
from which we deduce the long exact sequence:
0 — Ho(M) — Hy(M) — Hy(M/X M) — Hyp_1 (M) — ...
From the assumptions on M we obtain:
H,(M)" ~ H,(M)* =0 and Hyy (M/X:M)* ~ Hy(M)*
for0<i:<n-1
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Next we show that M satisfies condition (C"). To this aim, it suffices to
verify that mM~! = MP°. Let us complete X; to a basis X1, Xs,...,X, of m

as a linear space over K. Given a € MY, by condition (C”) for M there are
by,bo, ... b, € M1 such that

a = X1b1 +X2b2++ann

We set b; = w; + z; with w; € W and 2; € ker(X; : M=t — M?). Then we
obtain

a = Xqwy + Xows + ...+ Xpw, + Xozo + ...+ X2,

But Xozo + ...+ X2, € MO and Xl(XQZQ + ...+ ann) = 0 shows that
Xozy + ...+ X, z, = 0 and therefore proves our contention. By substituting
M(q) to M for some positive ¢ we obtain then that also H;(M)* = 0 for
every 1. In particular, H,(M/X;M)* = 0. Note now that M/X; M is in
a natural way a well graded left m’-module satisfying condition (C’) for the
fundamental graded Lie algebra of the first kind p’ generated by Xs, ... , X,.
Arguing by recurrence, we obtain then a basis X1, ... , X, of m (with perhaps
different Xs,...,X,) such that, when M = M/(q) for some positive ¢, the
maps
M+ M+
(e XM > &7 & € sy

are injective for = 0, ... ,n—1. This yields by duality the second statement
of the lemma. From this we deduce the first.

Condition (C) tells us that the correspondence o : E, — E® is injective
when p > 0. To prove that it is also surjective, we argue by induction. When
p = 1, an element s € E() defines n elements A; = s(X;) € Ey with the

property:

By property 2, we can find B; € E; such that

Al = Ble.
Then A; = Ai - B]_Xz S Eol and

A;XJ - A;X, = A,XJ - Ain - BlXin + B]_X,'Xj =0 forl S Z,] S n.
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In particular, we can find B, € E;! with
Ay = By X,.
Repeating this argument, we find B; € ;! for i = 1,... ,n such that
Ai—(B1+...+Bi-1)X; =B;X; for ¢t=1,...,n.

Taking into account that B;X; = 0 when j < 4, for B = By +... + B, we
obtain
A,,:BXz for Z=1, ,

and hence s = o(B). Assume now that p > 1 and ¢ : E,_; — E®~V is
surjective. Let s € E®. Then we obtain n maps

Silmp—l-—)Eo
by
si(Ya,...,Y,) =s(X;,Yz,...,Y,) for Ys,...,Y,em.

Clearly s; € E®=Y for i = 1,...,n. By the inductive assumption we can
find A;,..., A, € Ep_; such that s; = 0(4;) for i = 1,... ,n. By condition
(C) we have

Ain = AJX, for 1 < i,j S n.

The same argument used in the case p = 1 gives then that
Ai ZBX, for = 1, ,
for some B € E,. Then
s(Y1,...,Y,) =BY;---Y, for Yi,...,Y,€m
and s = o(B), which completes the proof. ' O
LEMMA 2.5.8 Let m = ©_,<p<o™, be a fundamental Lie algebra of kind
p>1and M = @pezMP a well graded left m-module satisfying condition
(C). LetU = [V,W] € g, for V € g_y and W € g_,41 be such that the
maps
M?>a— Ua € MPH

be injective for p > 0. Then we can find t € K such that

MP 3 a— (VF ! +tW)a € MPH#!

is injective for p > 0.
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Proof. Note that either the maps V#~1+tW are never injective, or the set of

t € K for which they are not is finite. Indeed, U commutes with every element

of m and therefore, with all linear operators on M corresponding to elements

of the universal enveloping algebra 2, of m. Therefore it suffices to prove

the injectivity of MP 3 a — (V¥ ! +tW)a € MP™ ! when 0 < p < u— 1.

For simplicity, we can restrict to the proof of the injectivity in the case p = 0.
Assuming by contradiction that

VALt W s MO — MPTT
is never injective for ¢ € K, we can find a polynomial
f®) =ao + a1t +...+ ant™, withag,...,am € M® and ag, am # 0,

such that
(VAL W) f(t) =0 VteK.

Indeed, if the map
(Ve W) K[t @ M° — K[t] @ M*!

is injective, then V#~! +tW : M°® — M*! is injective for all, but a finite
number of ¢t € K.
With a_; = a1 = 0 we obtain the set of equalities:

VAl + Wa;y =0 for i=0,...,m+1.

We have ‘ . »
VieW=WoVi+jUoVi7t Vj>1.

Indeed, for j = 1 this is the definition of U. Assuming the formula holds true
for some fixed 7 > 1, we obtain:

VItTloW = Vo(WoVIi+jUoVi™
= UOVJ'-%—WOV"’H-I~jV0U0Vj_1
WoVit 4+ (j+1)UoV?

since U and V commute as linear operators on M.
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Moreover, we have
V(j+1)u—1aj =0 Vi=0,...,m.

This follows directly from the equalities above for 7 = 0, while the formula
of recurrence:

0 = VIMVHF1la; +Waj)
VUtDElg, + W o VIka;_y + jul o VI la;_,

shows that it holds for every j = 0,...,m. Therefore, there is a minimum
integer A > 0 such that V%a,, = 0. If A > 0, we have

WU oV' e, = VioWay, — WoVPta, = VioWa, = 0.

Therefore h = 0 and hence a,, = 0, contrary to the assumptions. O

LEMMA 2.5.9 Let m, U = [V,W] and M be as in the statement of
Lemma 2.5.8. If moreover U : MP — MP** is an isomorphism for every
p >0, then MP =0 for every p > 0.
Proof. By Lemma, 2.5.8, we obtain
dimg M? < dimg MP** 1 for p>0,
while by the assumption
dimg M? = dimg MP** for p>0.
Hence we have:
dimg M° < dimg M*7! < dimg M*~? = dimg M*7 2 < ... < dimg M°

and this shows that dimg M? = d is constant for p > 0. We write U® for
the linear isomorphism M? — MP+# defined by U (for p > 0). Analogously
we write VP for the linear map M? — MP*! defined by V and W) for the
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linear map MP — MP*™#~1 defined by W. For p > 0 we identify MP** to M?
by the linear isomorphism (U®)~!. We consider then the maps

WO = WO M0 — pr-t
WO = UO)-Low® : Mt — MO

W=D = (UE=2)=1 o Wk-1) ; pra-1 5 pru-2

and

V-1) — (U)o V=1 . pre-1 5 pf0.
Since U commutes with V' and W, the following relations hold true:

V-1 o WO — WMo VO = I,

{f/@) =V®  MP — MPH for 0<p<p—2

PO o W0 — W6 o 70 = I,

T2 o ) — O o T = Iy,
Let M = M°®...® M* ! and
V=vOg...eoVvei .MM
W=wlg..oWk?d. M- M.
Then the relations above can be written in the form:
V,W]=VoW - WoV = I.
The trace of the endomorphism in the left hand side is 0, while the trace of

the one in the right hand side is g d. Thus d = 0 and the lemma is proved.
O

From this we derive the dual statement:

LEMMA 2.5.10 Let E = @p>_,E, be a well graded right m-module satis-
fying condition (C) and let U = [V,W]| € g_, withV € g1, W € g1, be
such that the linear maps:

UP . E,5v—vU€E,_,

be isomorphisms for p > p. Then Ep, = 0 for every p > 0.
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Proof (of Theorem 2.5.6). The condition that H(F) be finite dimensional is
obviously necessary in order that E be finite dimensional.
To prove the sufficiency, we argue by induction on u. When g = 1, then
E = H(FE) and there is nothing to prove. Assume then that 4 > 1 and that
the statement has already been proved for fundamental graded Lie algebras
of kind < p. Set
E'={veF|vg_,=0}/E_,.

Then E' is a graded right m/g_,-module for the fundamental graded Lie
algebram/g_, of kind p—1, satisfying condition (C). Because H(E') = H(E)
as vector spaces, it follows that E’ is finite dimensional by the inductive
assumption. In particular, we can find an integer ¢ such that E, = 0 for
P=4q.

Substituting E(g) for E, we can as well assume that E, = 0 for p > 0.
Then we split E into a direct sum of right g_,-modules:

B =@®p>_1Ejip, for j=0,...,p0—1

We consider g_,, as a fundamental graded Lie algebra of the first kind. By
the way they are defined, the EU)’s satisfy condition (C).

By Lemma 2.4, we can find py € Z and a basis Uy, ... ,U, of g_, such
that, for

Et={veE,|vli=...=vUy=0}, p€Z, h=0,...,s—1

the maps
F~h Foh
E;>v—= vl € Ep_#

are surjective for p > pp and h = 0,1,...,s — 1. Again we can assume for
simplicity that pg = 0 (this corresponds to substitute E by F(q) with a larger
q)-

Then we first apply Lemma 2.5.10 to Esl = GBI,Z_“E;‘I. Since by the
definition of a fundamental graded Lie algebra g_,, = [g-1, g1-,), we can find
V € gy and W € g1, such that U = [V, W] is equal to U, modulo an
element of the subspace of g, generated by Us,...,Us—1. Then U = Uj
as a linear operator on E°~! defines isomorphisms E3~" — E>~} for p > 0.
Lemma 2.5.10 implies that E‘;“l = 0 for p > 0. This shows that Us_; is
injective as a linear operator E;—z — E;:z for p > 0. By the choice of
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Ui, ..., Us it is then an isomorphism for p > 0 and then Lemma 2.5.10 yields
E;‘2 =0 for p > 0. By recurrence we obtain the thesis. a

As a consequence of Theorem 2.5.6 we obtain the following criterion:

THEOREM 2.5.11 Let g = @®p>_,8p be a transitive prolongation of a fun-
damental graded Lie algebra of kind p and let

H(g)={X €g|[X,)Y]=0 VY € ®pc_10p}-

Then g is finite dimensional if and only if H(g) is finite dimensional.
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Chapter 3

Levi-Tanaka algebras

3.1 Canonical pseudocomplex prolongations

The finiteness criterion given by Theorem 2.5.11 yields in the pseudocomplex
case:

THEOREM 3.1.1 Let m = @_,<p<_1my, be a pseudocomplezr fundamental
graded Lie algebra. The canonical pseudocomplex prolongation g = @p>_,0,
of m is finite dimensional if and only if m is nondegenerate, i.e.

{X €g-1|[X,9-1] =0} =0.

A necessary and sufficient condition in order that g be finite dimensional is
that

(3.1) {Xem|[X,)Y]=0 VY €Ppc_1g,} =0.

Proof. Let n = @p<_19, and let h denote the graded Lie subalgebra of g
defined by h = {X € g|[X,n] = 0}.

Assume that m is degenerate, i.e. thereis 0 # X € g_; such that [X,Y] =
Oforevery Y € g_;. Let g'; be a J-invariant subspace of g_; complementary
to the subspace g”; generated by X and JX. Then we define Yy € by =
hNgo C go by

[¥5,Z2] =0 for Zeg ,®n
Y, Z]=2 for Zeg",.
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We note that Yy € b and that also the element Ys, defined by

[Y5,Z2]=0 for Zeg ,®n
Yo,Z2]=JZ for Zeg',

belongs to hy C go. By recurrence we can define sequences {Y;},>0, {Y’L}pzo:
with 0 #Y,,Y, € b, C g, by setting, for p > 1,

Y5, Z] =0 for Zeg ,®&n=0
[Y;JvX] :Y.’D:l
[¥p, JX] = Ty

[Y,,Z] =0 for Zeg ,@n
¥y, X] = Ypuut
[V, JX] = =Y.
This shows that g is infinite dimensional.
Conversely, when m is nondegenerate, we prove that h) = hng, = 0

and the criterion applies. Indeed, let us consider the Hermitian symmetric
C ® go-valued form

(X|Y) = [JX,Y]+V=1[X,Y] for X,Y €g_,.
Let £ € gy such that [£,g_s] = [£,9-3] =0, and denote by B : g_; — g the

corresponding R-linear map. Then we have
B(X)Y =B(Y)X VX, Yeg,
(B(X)Y|Z)+ (Y|B(X)Z)=0 VX,Y,Z€g_;.
From these we obtain:
(B(X)Y|2) = (B(Y)X|Z) =-(X|B(Y)Z) = —(X|B(2)Y)
(B(2)X]Y) = (B(X)Z]Y) = —(Z|B(X)Y)
—(B(X)Y|2) VX,Y,Z €g-1.
This shows that
RB(X)Y|Z)=0 VX,Y,Z g4
and hence B = 0, which gives £ = 0. O
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Remark 3.1.2 In the proof of the previous theorem we showed that condi-
tion (3.1) is equivalent to

(3'2) {X € g1 | [X7 9—2] = [X7 9—3] = 0} =0.

PROPOSITION 3.1.3 Assume that the pseudocomplez graded Lie algebra
m = D_,<p<oMy 5 the direct sum of two pseudocomplexr graded ideals a =
Bu<p<08p and b = &_,<pcobp. Then:

(1) m is fundamental if and only if a and b are both fundamental;
(17) m is nondegenerate if and only if a and b are both nondegenerate;

(133) if m is fundamental and nondegenerate, then its canonical pseudocom-
plex prolongation g(m) is isomorphic to the direct sum of the canonical
pseudocomplez prolongations g(a) and g(b) of a and b respectively.

In particular, the direct sum of two finite dimensional Levi- Tanaka algebras
18 a Levi-Tanaka algebra.

Proof. Statements (i) and (i¢) are trivial, as [a,b] = 0. Let us prove (7).
Let 2l and ®B be respectively the canonical pseudocomplex prolongations of a
and b. We note that the direct sum of Lie algebras 2A@® B is a pseudocomplex
prolongation of m which is transitive and therefore there is a Lie algebras
monomorphism

ADB — g,

where g is the canonical pseudocomplex prolongation of m. We can assume
therefore that A@® B C g. To prove equality, we show by induction on p € Z,
that

(33) Q[j S5 %J‘ =g; for 7<p

holds for every p € Z. Indeed this is true for p < 0 by assumption. Assuming
that (3.3) holds for some p > 0, let us prove that it also holds for p + 1.
Denote by 7 : ®j<p8j — Dj<pa;j and mp : Bj<pd; — Dj<pb; the projections
corresponding to the direct sum decomposition

Dj<pi = Dj<ptj D Bj<ph;.
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For X € g, we consider the induced homomorphism

X :m— ©j<p8;

defined by 5
X(Y)=adX)Y =[X,Y] VYV em

Then X splits into the sum
XzﬂaoXowu]m+ﬁaoXowb|m+wb OXOTraIm+7TbOXO7rb|m,

An easy computation shows that m, o Xo Talm and g © Xo Tp|m actually
define elements of g,, belonging respectively to 2, and to 9B,. It follows that
a0 X o To|m + T © Xo Ta|m defines an element Z of g,. We want to prove
that Z = 0, using the fact that g is transitive. We note that

B for U€a

Z,U] e
[ ] {Ql for U€b.

Then for U € a_; we obtain
[Z,U],V]=0 forVe€a,
because [Z, U] € B,
[Z,U],V]=—-[U,[2, V)| +|Z,[U, V]| = -[U,[Z,V]] =0 forV €b_,

because [[Z,U],V] € B, while [U,[Z,V]] € A. This shows that [Z,U] = 0
for all U € a_;. When p = 0, this follows from the assumption that m is
nondegenerate and when p > 0 from the fact that g is transitive. Analogously
we prove that [Z,b_;] = 0 and this implies Z = 0 because g is transitive. O

Given a pseudocomplex graded Lie algebra g = @,>_,g, with partial
complex structure J : g_; — g_;, we consider its complexification g€ =
@p>-u85- The complexification of the partial complex structure J is a partial
complex structure J* = ® J : g¢, — ¢g%,. In this way we obtain that g©
is a pseudocomplex graded Lie algebra by considering g* as a graded real
Lie algebra endowed with the pseudocomplex structure J¢. We have the
following:
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PROPOSITION 3.1.4 A necessary and sufficient condition in order that
the complezification of a pseudocomplex graded Lie algebra g be a Levi- Tanaka
algebra is that g is a Levi-Tanaka algebra.

Proof. First we note that m® = ®p<og§ is fundamental (resp. nondegener-
ate) if and only if m = @®,«0g, is fundamental (resp. nondegenerate) and that
g® is transitive if and only if g is transitive. Next we consider the canonical
pseudocomplex prolongation a of m® and we prove by recurrence that the
anti-C-linear part of the map g%, — g5, defined by any X € a, (for p > 0)
is 0. This implies our contention. O

3.2 Properties of Levi-Tanaka algebras

LEMMA 3.2.1 If g = ®p>_,0p s a Levi-Tanaka algebra, then there is a
unique element E € gy such that

(B, X, =pX, Vp€Z VX, € gp.

Proof. The R-linear map E : m — m defined by
E(X,) = pX, for p<0 and X,€g,

is a derivation of order zero of m, which commutes with J on g_; and therefore
defines an element E € go. We have to show that [E, X,] = pX, when p > 0
and X, € gp. This is certainly true when p = 0, because p_;(F) commutes
with all endomorphisms in Homg(g_1,g-1). Assuming it is true for some
p > 0, we have for X1 € gp41 and Y_; € g_1:

[[E:Xp+l]7 Y—l] = [E7 [XP+17 Y—l]] + [Xp+1, [Y—la EH
= (p+1) [Xps1, Y.
Since g is transitive, this implies that [E, X,41] = (p+ 1) Xp11. O

We recall that the element E described in the previous lemma is called the
characteristic element of the graded Lie algebra g. The following two corol-
laries are consequence of Lemma 2.1.3 and Lemma 2.1.4.
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COROLLARY 3.2.2 The center of a Levi-Tanaka algebra g is trivial. In
particular, the adjoint representation g 3 X — ady(X) € gl(g) is faithful.

COROLLARY 3.2.3 Every ideal of a Levi-Tanaka algebra is graded.

Using Corollary 3.2.2, we will often identify g with the Lie subalgebra of gl(g)
which is the image of g by the adjoint representation.

Let V be a vector space over a field K of characteristic 0. A Lie subalgebra
of glx (V) is splittable if it contains the semisimple and nilpotent component
of each of its elements. A Lie algebra [ with trivial center is called splittable
if its image by the adjoint representation is splittable. In the same way we
call an element X of I nilpotent (resp. semisimple) if its image ad((X) by the
adjoint representation is nilpotent (resp. semisimple) as an element of gi([).

LEMMA 3.2.4 The Lie subalgebra gy of a Levi-Tanaka algebra g = @pezp,
considered as a subalgebra of the Lie algebra gl(m) of the endomorphisms of
m = @p<oPp, ts splittable.

Assume that m is nondegenerate, so that g is finite dimensional. Then:

(?) if SandN € gy are the semisimple and nilpotent components of A €
go as endomorphisms of m, then ady(S) and ady(N) are respectively
semisimple and nilpotent in gl(g);

(4¢)  the algebra g is splittable as a Lie subalgebra of gl(g).

Proof. Every element A € g defines a derivation of the fundamental Lie
algebra m. The semisimple component S and the nilpotent component NV
of A in gl(m) are still derivations of m (cf. [6] Ch.7 §1 Proposition 4(ii)).
Moreover, since S and N are polynomials of A, we have S(g,) C g, and
N(gp) C gp for all p < 0 and S and N define C-linear endomorphisms of g_;.
This shows that S, N € go.

Let us assume now that g is finite dimensional. First we note that the
elements of gy are splittable as endomorphisms of g. This follows by the
same argument given above: if A € go, then ady(A) is a 0-degree derivation
of g which defines a C-linear endomorphism of g_;. Then the semisimple and
nilpotent components S and N of ady(A) in gl(g) are 0-degree derivations of
g which define C-linear endomorphisms of g_;. Their restrictions to m are
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commuting semisimple and nilpotent endomorphisms of m and thus are the
semisimple and nilpotent components S and NNV of the representation of A in
gl(m). This shows that ad,(S) and ad4(/N) are still semisimple and nilpotent
respectively. Indeed they coincide with S and N because by the construction
of the canonical prolongation 0-degree derivations of m uniquely extend to
0-degree derivations of g. This proves (1).

To complete the proof, we observe that when g is finite dimensional the
elements of Upog, are all nilpotent. It follows from (¢) that g, considered
as a Lie subalgebra of gi(g), is generated by its semisimple and nilpotent
elements. This implies that ady(g) C gl(g) is splittable (see [6] Ch.VII § 5
Theorem 1). O

LEMMA 3.2.5 Let g = ®pez8p be a finite dimensional graded Lie algebra.
We assume that g contains a characteristic element E and is splittable. Then
we can find a Cartan subalgebra by of g contained in go.

All Cartan subalgebras of the Lie algebra go are Cartan subalgebras of g
and contain the element E. In particular, go contains regular elements of g.

Proof. Let S denote the set of semisimple elements of g and 7 the set
of all commutative Lie subalgebras of g contained in S. Let 7; denote the
set of maximal (with respect to C) elements of 7. As g is splittable the
centralizer Cy(t) = {X € g|[X,t] = 0} in g of every t € 77 is a Cartan
subalgebra of g (see [6] Ch.VII §5 Proposition 6). A characteristic element
E of g is semisimple, hence it can be included in a Lie subalgebra t € 77. Its
centralizer f) in g is a Cartan subalgebra of g and, if X € hand X =3, X,
is its decomposition into the sum of its homogeneous components, we have
0=[FE,X]=3,.pXp, and hence X = X, € go.

A characteristic element E belongs to the center of gy and hence to all
Cartan subalgebras of go. Hence the normalizer in g of a Cartan subalgebra
b of go coincides with its normalizer in gq: it is equal to h and § is therefore
a Cartan subalgebra of g.

The last statement follows from [6] Ch.VII §3 Proposition 3. O

Remark 3.2.6 Because of Lemma 8.2.1 and Lemma 3.2.4, the conclusions
of Lemma 8.2.5 apply in particular to Levi-Tanaka algebras.
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3.2.1 The (J) property

LEMMA 3.2.7 Let m be a pseudocompler fundamental graded Lie algebra
of the second kind and let g = @p>_28, be its canonical pseudocomplez pro-
longation. Then there is a unique element J € gy such that

(3.4) J,X]=JX VX €g..

Proof. When m is of kind 2, the elements of gy can be identified to the
space of C-linear maps A : g_; — g_; for which there is an R-linear map
B :g_s — g_o such that

[AX,Y] +[X,AY] = B([X,Y]) VX,Y e€g_,.

From the definition of a pseudocomplex graded Lie algebra, this relation
holds true for A = J and B = 0. O

We will see below that the existence of such an element J is not guaranteed
when the kind p of m is greater than 2. We say in general that a pseudo-
complex graded Lie algebra g = ®,>_,8, has the (J) property if there is an
element J € go for which (3.4) holds true. In this case we denote by J, the
representation p,(J) of J in g,. Note that J_; = J is the complex structure
of g_;.

By Lemma 3.2.7, Levi-Tanaka algebras of the second kind have the
(J) property. Later on we will show that all finite dimensional semisimple
Levi-Tanaka algebras have the (J) property.

LEMMA 3.2.8 Let g = ®p>-,8p be a canonical pseudocomplez prolonga-
tion of a pseudocomplex fundamental graded Lie algebra m of kind p > 2. If
g has the (J) property, then:

(i)  J, defines a complez structure on g, for p= -3, —1, 1;
(i) Jp=0forp=-2,0.

When p = 2, and m is nondegenerate, J, is a complex structure on gp for p
odd and 0 for p even.
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Proof. The statement is certainly true when p = —2, —1, 0.

Let us consider the case p = —3. The elements [X,T], for X € g_; and
T € g_, are a set of generators of g_s because m is fundamental. Since J is
a 0-degree derivation of m we have

J—3([X>T]) = [j7 [Xa TH

[J_1 X, T) + [X, J_oT)
[JX,T] VX €g_1,VT €g_o.

Then we obtain

IL(X,T) = Js([JX,T))
[J2X,T)
—[X,T] VX €91, VT € gy,

i

from which we deduce that
J33Y =-Y VY €g_;

because this relation holds true on a set of generators of g_s.

In general, the argument above shows that, if p < 0 and J, = 0, then
Jp-1 is a complex structure on gp_;.

Let us turn now to the case p=1. Let X € g;. Then we have

0= Jo([X,Y]) = [/iX, Y]+ [X,JY] VY €g_i.

This yields
[JlXaY]z—[X7JY] VXEQhVYEg—la

from which we obtain

[J3X,Y] = —[LX,JY]=[X,J?]
—-[X,Y] VX €g,VYeg,.
Since g is transitive, this shows that J; is a complex structure on g;.

More in general, this argument shows that, if J, = 0 for some p > 0, then
Jp+1 is a complex structure on gp;.

37



Let us turn now to the case where m is of kind 2. Then, assuming that
Jp = 0 for some p > 0, we have

[Jp+2Xp+2aY—2] = Jp[Xp+2aY—2] - [Xp+27J—2Y—2]
=0 VXP+2 € gp+2, VY _ 5 € g_o.

This implies that Jy12X,+2 € hy42, where h = {Z € g|[Z, g—2] = 0}. But we
proved (see Theorem 3.1.1) that , = 0 for p > 0 when m is nondegenerate.
Then we obtain by recurrence that J, = 0 for every p even.

By the previous remarks, this completes the proof of the lemma. a

PROPOSITION 3.2.9 Assume that the Levi-Tanaka algebra g = @p>—p,9p
contains an element J € go such that

[J,X]=JX VXeg..

Then ad(J) is semisimple. Denote by o,(J) the set of eigenvalues of p,(J),
for p € Z. Then we have:

(3:5)05(J) C {(p+2V-1L,(p+4)V-1,...,—(p+2)V-1} forp< -1
(36)0,(J) C {-pvV—-1,2-p)V—1,...,pV=1} forp>0

Proof. Using Lemma 3.2.4, we can decompose J as J = S + N with
S,N € go, [S,N] = 0 and ad(S) semisimple, ad(N) nilpotent. Since J is
semisimple on g_;, we have p_1(J) = p_1(S) and therefore J = S because g
is transitive.

Denote by g® the complexification of g and let Xi,..., Xs, be a basis
of g‘El whose elements are eigenvectors of J. We have [j , Xn] = A Xy with
A= £/-1.

Formula (3.5) is valid for p = —2. To prove it holds also when p < —2,
we observe that in this case the space gf is generated by the vectors

Y;Il,iz,...,il_p,i_p = [Xim [Xizy [ ey [Xi1..pa 'i-p]) cee ]]]

for 1 < 44,%2,... ,%1-p,i—p < 2n. These are eigenvectors for pp(j), corres-
ponding to the eigenvalues

/\‘il + /\i2 + ...+ /\il—p -+ /\i_p-

38



Since p_g(J) = 0, we need that A;;_,+X;_, = 0inorder that ¥ ;, ;i #
0. This shows that the elements of ap(j) are the sum of 2 — p terms, each
equal to ++/—1 and so (3.5) is proved.
To prove (3.6), we note that it holds true when p = 0. Let p > 0 an

Y € g5 \ {0} be an eigenvector corresponding to an eigenvalue X of po(J).
Then, since g is transitive, there exists 1 < h < 2n such that [Y], X,] # 0.
This is an eigenvector corresponding to the eigenvalue A + A, € 0,1 (J).
Therefore we have

op(J) CA+V=T|A€ o (NIU{N=V=T| )€ g1 (D)}
Together with oo(J) = {0}, this inclusion implies (3.6). O
Remark 3.2.10 Proposition 3.2.9 remains valid under weaker assumptions

on g: namely it suffices that the pseudocompler graded Lie algebra g =
®p>-—pufp Satisfies:

(¢) the adjoint representation g — ad(g) C glg(g) is faithful;

(1) ad(g) is a splittable subalgebra of glg(g);

(131) g is transitive;

(tv) m = @p<09, s fundamental;

(v) there ezists J € go such that [J, X] = JX for every X € g_;.

We note in particular that (i) and (it) are valid when g is semisimple and
finite dimensional.

Remark 3.2.11 Since [j, A] = 0 for every A € gy, the linear endomorphism
pp(A) is C-linear in g, whenever J, defines a complez structure on g,.

Remark 3.2.12 From the lemma above we obtain that dimg g_3 must be
even when g has the (J) property. In particular we cannot expect (J) to hold
for the Tanaka algebras of a CR manifold M of type (1,2) in which the vector
fields in T'(M, HM) generate the Lie algebra of tangent vector fields to M.
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3.3 Semisimple prolongations

We first recall a lemma on the structure of finite dimensional semisimple
graded Lie algebras (see, for instance, [42]).

LEMMA 3.3.1 Let s = ©_u<p<iSp be a finite dimensional semisimple
graded Lie algebra over R. Then:

(7) the algebra s contains a characteristic element E € sy such that
[E, X, =pX, V—p<p<v, VX,E€ sy,
this element is unique as the center of s is trivial;
(i) every ideal i of s is graded, i.e. i = @pez(iNsp);

(i3t) the Killing form ks of 5 defines a duality pairing between s, and s_p:
in particular v = p and dimg s, = dimgs_, for 0 <p < p;

(iv) the Lie algebra go is reductive, i.e. decomposes into the direct sum of a
semisimple and an abelian ideal;

(v) if u >0, then s is of the noncompact type.

Proof. (t). The linear operator defined as in (2.3) is a derivation of order
zero of s and hence, because s is real semisimple, it defines an element E of
59.

(1) is a consequence of (i) and Lemma 2.1.4.

(#1%) is a consequence of Remark 2.1.1, because &, is nondegenerate on s.

Statement (iv) follows because the restriction to sq of the Killing form .,
which is nondegenerate by (i¢1), is the invariant bilinear form in sy induced by
the adjoint representation. Then we apply [6] Ch.I §6 Proposition 5(d). The
last statement is a trivial remark, as by (#¢) the Witt index of the Killing
form is larger than or equal to dimg ®_,<p<0Sp- ]

LEMMA 3.3.2 Let s = ©_,<p<,5p be a semisimple graded Lie algebra over
R. Assume that m = @p«05, 15 fundamental. Then a necessary and sufficient
condition in order that s be transitive is that

(3.7) (X €50]|[X,5.1] =0} =0.
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Proof. The condition (3.7) is trivially necessary. Let us prove sufficiency.
First we show that, for X € s,

[X,5.1]=0=[X,s,] =0 Vp<O.

This follows by recurrence: indeed [s,,5_1] = s,-1 for p < 0 because m is
fundamental; then

(X, 5P—-1] = [[X7 510]: 5—1] + [5107 [X7 5—1]]

shows that [X,s,_1] = 0 when [X,s,] = [X,5_;] = 0.

Let now X be a nonzero element of s, for some ¢ > 0. By (i) of
Lemma 3.3.1 there is Y € s5_, such that x4(X,Y) # 0. Lemma 2.1.1 implies
that [X,Y] # 0. Since m is fundamental, the proof is complete. O

If g is a Lie algebra, we define by recurrence [X] = X for every ele-
ment X € g and [X1, Xo, ..., Xk = [X1, [Xo, [+, [Xk—1, Xk] . . . ]]] for every
X1,...,Xr € gwhen k> 1.

For [ C g denote by [¥ the linear span of [X,..., X)) for X1,..., X, € L

LEMMA 3.3.3 Let 5 = ©_u<p<uSp be a simple graded Lie algebra over R
of kind n > 1. Then m = @_,<p<05, s fundamental if and only if s, # 0
(i.e. there exist X1,...,X, € s_y such that [X1,...,X,] #0).

Assume that m is fundamental, then:

(1) s is transitive;

(1) if u > 2, s is nondegenerate.

Proof. In the proof we shall use the following

CLAIM 3.3.4 For every element X of a graded Lie algebra g = ®pezgp
the elements of the ideal i(X) generated by X are linear combinations of X
and elements of the form [Zy, ..., Z1, X| with Z; homogeneous and deg Zy >
... >deg Z;.

(This claim can be easily obtained using induction and Jacobi’s identity.)
Suppose there exist Xi,...,X, € s_; such that [X,,,...,X;] # 0. Then we
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have that ¥; = [Xj,... ,Xi] # 0 for 1 < j < p and the ideals i(Y;) gen-
erated by the Y;’s are not zero. Because s is simple, they coincide with
s and i(Y;)—p = i(Y;) Ns_p = s_,. We will prove, by recurrence, that
s_g=5" forl < g < u If g =y, then it follows from the claim that
s_, = i(Y,)-, is generated by elements of the form [Z,...,Z;,Y,] with
Z; € sg for every i. Because s”, is invariant under the adjoint action of
go, we conclude that s_, = i(Y,)-, = s%,. Assume now that ¢ < p and
s_p, = 7, for ¢ < p < p. We want to prove that s_, = s%,. By the
claim s_, = i(Y;)—, is generated by linear combinations of Y, and elements
of the form [Z,...,Z;,Y,] with Z; homogeneous, deg Z; > ... > deg Z;
and Y %degZ; = 0. It suffices to prove that they all belong to s?,. If
deg Z, = 0, then Zy,...,Z; € 5y and therefore [Z,...,Z1,Y,] € s2,. If
deg Zy, > 0, then [Z,...,Z1,Y,] is a linear combination of elements of the
form [Zy, Uy, ... ,U1] with U; € s_; and r = ¢ + deg Z;. By repeated applic-
ation of the formula [V, V,,... , V1] =Y [Vs, .-+, Vi1, [V Vi), Vier, .-, VA,
we can show that the commutator [Z, Uy, ... ,U;] belongs to s7,. The con-
verse is obvious.

Suppose now that m is fundamental.

(i). Let a be equal to {A € s¢|[4, m] = 0}. By Lemma 3.3.2, it suffices
to prove that a is zero. Assume that A € a. If X € s, then [[4, X],Z] =
[[4, Z], X] + [A,[X, Z]] = 0 for every Z € m, so that [a,50] Ca. If X € s5is
homogeneous of positive degree, then we have

0= ko[, Z), X) = —ks(Z,[A, X]) VZ €m

and, by Lemma 3.3.1, we obtain [A, X] = 0. It follows that a is an ideal of
5. Since it is contained in sy and s is simple with u > 2, we have a = 0.

(13). Assume p > 2. If s were degenerate then we could find X € s,
such that [X,m] = 0 and the ideal i(X) generated by such an X would be
different from zero, hence equal to s. On the other hand, using the claim
above we obtain that s_, = i(X)_, = 0 and this gives a contradiction. O

Remark 3.3.5 Ifs is the Levi- Tanaka algebra at a point x of a CR mansfold,
the condition in the previous lemma means that the highest order Levi form
is not identically zero at x (cf. [38]).

LEMMA 3.3.6 Let g = @_,<p<u8p be a semisimple transitive prolongation
of a fundamental graded Lie algebra m = ®_,<p<08p- Then go = [g_1, g1)-
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Proof.  Setting [, = g, for p # 0 and Iy = [g-1, g1], we obtain an ideal
[ = @pezlp, of g. Then g = a@ [ for an ideal a C g. By Lemma 3.3.1 each
ideal of g is graded, and so a C go. Since [a,g-1] C a_; = 0, we have a = 0
because g is transitive. a

We have

THEOREM 3.3.7 Letm = ®_,<p<09p be a fundamental graded Lie algebra
and let s be a semisimple transitive prolongation of m. If g = ®_,<p<,8p 5 @
finite dimensional transitive prolongation of m containing s, then g coincides
with s.

In particular, if m is also pseudocomplex and nondegenerate and if s is
a semisimple transitive pseudocomplezr prolongation, then s is isomorphic to
the canonical pseudocomplezx prolongation of m.

Proof. Assume that s is a semisimple transitive prolongation of m. In this
case we can consider s as a subalgebra of g. If g is semisimple, then g and s
coincide. Indeed, by (i7%) in Lemma 3.3.1, g, is equal to s, for p # 0 (because
they have the same dimension as vector spaces) and, by the lemma above, g
coincides with s.

Let us prove now that g is semisimple. We already know that g is finite
dimensional. Then it suffices to show that its radical vis 0. By Corollary 3.2.3
t is a graded ideal of g. We have tNs = 0 because s is semisimple and hence
@ _pu<p<otp = 0 because ®_,<pcogp C 8.

Let us show by recurrence that t, = 0 also when p > 0. For p = 0 we
have [tg, g—1] C t—1 = 0 and hence ty = 0 because g is transitive. Assuming
t, = 0 for some p > 0, we deduce that also t,; = 0 from the transitivity of
g and the fact that [tp41,9-1] Ct, =0. » |

The following is a criterion for the simplicity of the prolongation, which is
close to one which was stated in [39].

THEOREM 3.3.8 Let g be the canonical pseudocomplex prolongation of a
nondegenerate pseudocomplez fundamental graded Lie algebra m and assume
that p_ is irreducible and g, # 0. Then g is simple.

In particular, if a finite dimensional fundamental simple graded Lie al-
gebra g = @_,<p<u8p of kind p > 2 is pseudocomplex, then g is a Levi-Tanaka
algebra.
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Proof. Let t be the radical of g. We want to show that t = 0. We consider
two cases.
(a) Assume t_; = 0.

In this case, we claim that v, = 0 for p > —1. Indeed, we argue by
recurrence on p > —1. We have t_; = 0 by assumption. If t, = 0 for
some p > —1, we have [tp41,8-1] C t, = 0 and hence tp4; = 0 because g is
transitive. This shows that t C n = ®_,<p<—18p- Let s be a Levi subalgebra
of g: 5 is semisimple and g = s @ . We have s ~ g/t and, since t_; = 0,
for every X € g_; the subalgebra s contains an element of the form X + Z
with Z € n. Since

Xi+ 20, Kt + Zae, Xy + 2] = X0 [ [, X ]

if X1,Xo,...,X, €9-12and Z3,2,,...,Z, € n, we obtain g_, C s because
m is fundamental.

Repeating a similar argument we deduce that also g;_,, ... ,g—2 are con-
tained in s and then g = s and ¢ = 0.

(b) Assume t_; # 0.

Since t_; is a p_1(go)-invariant subspace of g_; and by assumption p_;
is irreducible, we have in this case v_; = g_;. Let t® = t and define
recursively the ideals t® = [t~V -] for £ > 0. We have t® = 0 for
¢ > 0 and sufficiently large because t is a solvable ideal of g. Then there is
a smallest positive integer h such that ‘C(_hl) = 0, while t(_hf Y £ 0. We note

that t=1 is an ideal of g, in particular t* " is a p_; (go)-invariant subspace

of g_;. Therefore t(_hfl) = g-1.

On the other hand, arguing as in (a), we prove that t(® C n. Therefore
we have

[ g) = (0,00 o) = for p20

and this implies that tl([,h"l) = 0 by the transitivity of g. This gives a con-
tradiction, because

t(()h'—-l) o [t(—hl—l)7gl] = {9—1791] 7‘4 0.

This shows that t_; = 0 and then ¢ = 0 by (a).
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Therefore g is semisimple. It is simple, because if it were the direct sum
of two semisimple ideals s’ and s”, then each of the subspaces s’ ; and s”,
would be p_;(go)-invariant. One of these, say s’ ; is then equal to g_; and
the other is 0 by the irreducibility of p_;. But, since m is fundamental, s’ is
then a semisimple pseudocomplex prolongation of m and therefore coincides
with g. This gives s = 0 and completes the proof of the theorem. a

Remark 3.3.9 Vice versa, when g is semisimple, then the representation
p—1 18 completely reducible. Indeed, gy is reductive. Then its radical t(go) is
equal to its center 3(go) and therefore is contained in every Cartan subalgebra
b of g which is contained in go. Hence its elements are semisimple together
with their p_; representation. Then p_; is completely reducible (cf.[6] Ch.I
§6 Theorem 4).

3.4 Solvable prolongations

We consider in this section criteria for the solvability of the canonical pseudo-
complex prolongation.

Let m = @©_,<p<0gp be a pseudocomplex fundamental Lie algebra. We
denote by f the Hermitian symmetric form §: g_; X g-1 — C® g_» such that

[X,Y] = Sf(X,Y) for X,Y €g_.

Let g*, be the dual space of g_, and, for every £ € g*, denote by f, the
Hermitian symmetric form

g-1 % g1 3 (X,Y) = fe(X,Y) = (f(X,Y), §) e C.
Then we have the following:

THEOREM 3.4.1 Let m be a pseudocomplex fundamental Lie algebra of
kind 2 and let g = @p>_28, be its canonical pseudocompler prolongation.
Assume that

(1) dimgg-s >2;

(i1)  there is £ € g*, such that the Hermitian symmetric form f¢ is nonde-
generate;
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(i56)  p-s(go) = {MIds_,| ) € R}.

Then g, = 0 for allp > 1. Moreover g is solvable if and only if gy is solvable.

Proof. Let us prove that under the assumptions (), (), (¢i¢) we have g; = 0.
By the transitivity of g this implies that g, = 0 for p > 0.

Let V € g, and denote by A:g_; — go and B : g_s — g_; the corres-
ponding R-linear homomorphisms. Then the following equations are satis-
fied:

(3.8)
p-1(AX))Y — p_1(A(Y))X = B([X,Y]) VXY €g,
[B(T), X] = p2(A(X))T VT €93 VXEg

By assumption (é¢) we can find a basis ¢*,...,&" of g*, such that fe is

nondegenerate for j = 1,...,k. We take the dual basis T3,... ,T; of g_o
defined by the condition that

(T;, " =6 for 1<jh<k.
Then the second equation in (3.8) yields, by assumption (#:7):
fer(B(T3),X) =0 VX €94 for h+#j

and hence B(T}) = ... = B(T;) = 0. This shows that, with h = {X €
g|[X,g9-2) =0}, we have V € hnNg; = b;. But h; = 0 by Theorem 3.1.1.
Therefore V' = 0 and this shows that g; = 0.

In this case we have [a, a]o = [ap, ao] for every ideal a of g and then it is
clear that g is solvable if and only if gq is solvable. O

In the following we will assume that g is a finite dimensional Levi-Tanaka
algebra and denote by S the set of all semisimple elements of g and by n the
set of all nilpotent elements of g.

LEMMA 3.4.2 Let g = @_,<p<v8p be a solvable graded Lie algebra. We
assume that g has trivial center and is splittable (as a subalgebra of gl(g) via
the adjoint representation). Then the set n of its nilpotent elements is the
mazimal nilpotent ideal of g.
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Let T be the set of commutative Lie subalgebras of g contained in S and
T. the subset of mazimal elements of T. Then for every t € T; we have a
decomposition of g into a semidirect sum:

(3.9) g=tdn.
We can find a regular element Xy € S N gy such that the centralizer
Cy(Xo) ={Y € g|[Xo,Y] =0}

is a Cartan subalgebra of g containing the characteristic element E and con-
tained in gp.

Proof. The fact that n is an ideal of g follows from [6] Ch.I §5 Corollary 7
to Theorem 1. The above decomposition is in [6] Ch.VII §5 Corollary 2 to
Proposition 6.

The last statement then follows from [6] Ch.VII §2 Theorem 1(iv). Indeed
(cf. [6] Ch.VII §5 Corollary 1 to Proposition 6) any Cartan subalgebra § of g
contains a regular element A of g. Then, taking a Cartan subalgebra b C gy,
we find a regular element A € go. Its semisimple component S belongs to go
by Lemma 3.2.4. Since adyS has the same characteristic polynomial as adgA,
it follows that S is a regular element of g. Moreover E and S commute and
thus the centralizer of S is a Cartan subalgebra of g containing E and hence
contained in gq. O

COROLLARY 3.4.3 Let g = ®_,<p<v8p be a solvable Levi- Tanaka algebra
such that all elements of go are semisimple. Then g, = 0 for every p > 1.

Proof. We have @px0g, C n. Therefore, if X; € g;, then
(X1, Yq]€lg,9-1) =[m,nq] Cnp=0 VY, €g.,.

This shows that g; = 0 and hence g, = 0 for all p > 1 because g is transitive.
0
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3.5 Pseudocomplex Levi-Mal’¢ev decompos-
ition of Levi-Tanaka algebras

We turn in this section to the general case. First we prove

THEOREM 3.5.1 Let g = ®_,<p<,8p e a finite dimensional Levi-Tanaka
algebra. Then its radical t is pseudocomplez and g contains a Levi subal-
gebra £ which is graded and pseudocomplez, i.e. a pseudocompler semisimple
graded Lie subalgebra £ such that

(3.10) g=LPr.

Proof. As usual we denote by S the set of all semisimple elements of g
and by t the radical of g. Being an ideal of g, the radical t is graded. By
Lemma 3.2.5 we can find a Cartan subalgebra f of g which is contained in
go- Then, since g is splittable,

t=pNS Cgo
is a maximal commutative Lie subalgebra of semisimple elements of g and
h={X€g|lX,t] =0}

Next we note that hNrt is a Cartan subalgebra of t and that t is also splittable.
Then
t=hNntNS Cr

is a maximal commutative Lie subalgebra of semisimple elements of t and
we have

bt = {X ert|[X, =0}
(X €t|[X,¢] =0}

Let n be the ideal of t of nilpotent elements of t. Then t =t @ n.
We define the subalgebra 3 of g by setting

3={X egl|[X,t]=0}

We note that 3 = ®_,<p<uvdp is @ pseudocomplex graded Lie subalgebra
of g. We denote by rad(3) its radical. Then we have:
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(1) rad(3) =hNr=3N7tC 3;
(#4)  rad(3) is a nilpotent ideal in 3;

(@17)  [rad(3),3,] =0 for p#0;
(iv)  every Levi subalgebra of 3 is a Levi subalgebra of g.

To prove (i) and (iv) we use [6] Ch.VII §5 Proposition 7: for every Levi
subalgebra £ of 3 we have a direct sum decomposition g = £ @ ¢ @ n, with
t = t ©n. This implies (iv). Moreover, g = 3 +t. Hence 3/3Nt ~ g/t,
from which (i) follows. Now (i) is a consequence of the fact that rad(3) is
contained in the nilpotent Lie algebra § and (747) of the fact that the ideal
rad(3) is contained in 3.

We claim that 3 contains a graded pseudocomplex Levi subalgebra. This
follows from the lemma below.

LEMMA 3.5.2 Let g = ®_,<p<u8p be a finite dimensional graded Lie al-
gebra, whose radical t is contained in go. Then g contains a graded Levi
subalgebra £ = ®_,<p<,Ly. If g is pseudocomplez, then also £ is pseudocom-
plez.

Proof. ~ We argue by induction on the order of solvability of t, i.e. the
smallest nonnegative integer & such that t™® = 0 (by t® we indicate the
h-th term of the derived series of t). If A = 0, this means that t = 0 and
then g is semisimple and there is nothing to prove.

Assume now that A > 0 and that the statement of the theorem is true
for graded Lie algebras with the radical composed of homogeneous terms of
degree 0 and order of solvability less than h. Let £ be a Levi subalgebra of
g and set £9 = £Ngo. Set g, = g, for p # 0 and qq = Lo & t). We claim
that q = @pez4q, is a Lie subalgebra of g with radical t(V).

To prove the first asset, it suffices to show that q contains the Lie product
[X,Y] of every pair of homogeneous elements X & dp and Y € q,. This is
obviously true when p+q # 0 because in this case [q,, 4,] C [gp, 84] C Bpiq =
dp+q- It is also obvious when p = ¢ = 0 because £, is a Lie subalgebra of g,
and therefore also £ @ t!), because () is an ideal in g.
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_ Then we only need to consider the case where ¢ = —p # 0. We can find
X,Y € £such that X — X, Y —Y € t. Then we obtain

[X,7Y] = X,Y]+[X - X, V]+[X, Y - Y]+ [ X - X,V - Y]
= [X,)Y]+[X-X, Y -Y]€ £

because [, gg] = 0 if £ # 0. Therefore
(X,Y]=[X,Y]-[X-X,Y -Y]€ Lol

To show that v is the radical of g, we observe that q/t(!) is isomorphic to
g/t. Indeed the map q — g/t induced by the projection is clearly surjective
and its kernel is given by q Nt = t(!), From this isomorphism it also follows
that every Levi subalgebra of q is also a Levi subalgebra of g. Since (¢
t{®) = 0, by the inductive assumption q contains a graded Levi subalgebra
£ = @®pez Ly, which is also a graded Levi subalgebra of g. We note that
£, = g, for p # 0 and therefore £ is pseudocomplex when g is pseudocomplex.

g

To complete the proof of the theorem, we consider the subalgebra ad(t') of
glg(g). It is a commutative algebra whose elements are semisimple. Therefore
we have a direct sum decomposition

g=30b

where
3={XeglX,t]}=0 and b=][gt].

Both 3 and b are graded because t C go; MOreover 3_i and b_; are J-
invariant. From 3, = £_; and b_; C t_;, we obtain that t_; = b_; and
therefore t is pseudocomplex. O

Remark 3.5.3 The assignement of a mazimal commutative Lie subalgebra
t' of v contained in vy, whose elements are semisimple, uniquely determ-
ines the elements of @®pz0L, and hence the semisimple subalgebra s =
Bp0Lp + [Bprolp, Bpzoly] of g. This subalgebra s is made more precise
in the statement below.
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THEOREM 3.5.4 Let g = ®_,<p<,9p be a finite dimensional Levi- Tanaka
algebra and let £ be a pseudocompler graded Levi subalgebra of g. Then

a={X € £|[X,£.1] =0}

15 an ideal of £ and there is a pseudocomplex semisimple graded subalgebra s
of g such that
L£=a&s.

Proof. First we note that a is an ideal in £. Indeed the subalgebra m’ =
Dp<0Lp of m = Bpcogp is fundamental and therefore we obtain [X, m'] = 0 for
all X € a. Next we show that [a, £,] = 0 for p > 0. Indeed, if [X,Y] # 0 for
some X € a and some Y € £, there is Z € £_, such that ke([X,Y], Z) # 0,
kg being the Killing form of the semisimple Lie algebra £. But then

K)g([X, Y], Z) = —I‘Gg(K [X, Z]) =0
gives a contradiction. Finally the fact that [a, £9] C a follows because
X, Y], Z]=[X,Z2,Y]+[X,]Y,Z]] =0 VX€aYe Zcl_,.

We note that the graded semisimple Lie algebra £ contains an element E¢ €
£o such that [E, X] = pX for each p € Z and X € £,. Thus every ideal of £
is graded. We write £ as the direct sum of a and a graded semisimple ideal
s of £. Since £_; = s_;, the ideal 5 is pseudocomplex. O

A finite dimensional Levi-Tanaka algebra g = @_,<,<, g, with a graded Levi
subalgebra contained in gy (resp. in g_; @ go @ g1), will be called almost-
solvable (resp. weakly-solvable).

Remark 3.5.5 A Levi-Tanaka algebra is almost-solvable if and only if the
characteristic element E of g belongs to the radical v of g.

COROLLARY 3.5.6 Let g=®_,<p<,8p be a finite dimensional Levi-
Tanaka algebra with radical t. The following statements are equivalent:

(t) g is semisimple;

(ZZ) @p<0tp = 0,’

(i) t_,=0;

(w) t2=0.
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Proof. Clearly (i)=(ii)=(it7). Let g = £ @ t be a graded Levi-Mal’¢ev
decomposition given by Theorem 3.5.1. Then (i17)=>(iv) because m = ®p<ogp
is fundamental. Assume now t_, = 0. We have £_; = g_; because g is
nondegenerate, and therefore m = @,<0L, because m is fundamental. By
Theorem 3.3.7, the algebra g coincides with £. This shows that (i7)=(¢). O

COROLLARY 3.5.7 Let g=®_,<p<v8p be a finite dimensional Levi-
Tanaka algebra. If the representation p_1 of go in g1 s irreductble, then
g is either simple or almost-solvable.

More precisely, it is simple when g1 # 0 and almost-solvable when g; = 0.

Proof. By Theorem 3.3.8, if g is not simple, then g; = 0 and so g is
almost-solvable. a

COROLLARY 3.5.8 Let g =@®_,<p<u8p be a finite dimensional Levi-
Tanaka algebra with radical t. If the representation p_o of go in g 1is
irreducible, then g is either simple or weakly-solvable.

Moreover, vty = 0. Hence g is simple if and only if go # 0, weakly-solvable
if and only if go = 0, and almost-solvable if and only if g1 = 0.

Proof. By Theorem 3.5.1 we have a decomposition g = £ @ t where £
is a semisimple graded Lie subalgebra and t is the radical of g. By the
assumption, we have either g_o = t_5 or g_o = £_». In the first case, we
have that £ is contained in g_; @ go @ g1, and so g is weakly-solvable. In the
second case, we have t_ = 0, and hence g is semisimple by Corollary 3.5.6.
It is a sum of simple graded ideals by Corollary 3.2.3, which are not included
in go as g is transitive. Since m = @,<og, is fundamental, these ideals have
a nonzero component in g_; and, since g is nondegenerate, they have also a
nonzero component in g_s, which is an invariant subspace of g_, for p_s. As
p—o is irreducible, we have that g is simple.

Let n be the maximal nilpotent ideal of g. By [6] Ch.I § 5 Corollary 7 to
Theorem 1, it consists of the elements X € t such that adyX is nilpotent,
hence it contains the subspace @,xot,. Let £ be the greatest integer such
that n® N g_y # 0 and n®*! N g_, = 0. Note that, as g is nondegenerate, we
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have n N g_; = 0. Moreover, as p_, is irreducible, the ideal n contains the
subspace g_; and then all the subalgebra @®,<_2g,. Consider now X € t; =
n;. For p = —2,-3, we have [X, g,] C [n,n] N gpy1 = "1 N gy = 0, and
so, by Remark 3.2, X = 0. O

The following theorem describes the structure of completely-reducible Levi-
Tanaka algebras (see also [48]).

COROLLARY 3.5.9 Let g=®_,<p<u8p be a finite dimensional Levi-
Tanaka algebra with radical v = @pegty. If the representation p_y of go
in g1 s completely reducible, then vy is abelian, t1 = 0 and ®,<ot, is the
mazimal nilpotent ideal n of g. In particular g decomposes into the direct
sum

g=L£Ppdn

where £ is a graded pseudocomplex semisimple Lie subalgebra.

Proof.  Indeed in this case vy is an abelian algebra whose elements are
semisimple (see [6] Ch.VII §5 Proposition 7 (i)). But [X,Y] is a nilpotent
element of vy for every X € tv; and every Y € g_;, because t; is contained
in the maximal nilpotent ideal of the adjoint representation of g. Therefore
[X,Y] =0 for every X € r; and every Y € g_; and hence t; = 0. O

3.6 Levi factors of Levi-Tanaka algebras

In this section we investigate some structural properties of the semisimple
pseudocomplex graded Lie algebras that appear in the Levi-Mal’éev decom-
position of a Levi-Tanaka algebra.

3.6.1 Construction of the element J
First we prove the following

LEMMA 3.6.1 Let g = ©_,<p<u8p be a finite dimensional semisimple
pseudocompler graded Lie algebra. Then there is a unique complex struc-
ture Ji on g1 such that:

(3.11) kg(J1X,Y) = —kg(X,JY) VX €g1,Y € gy,
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where kg denotes the Killing form of g.
This complex structure J, has the properties:

(1) p1(go) is a real subalgebra of the algebra glc(g1) of endomorphisms of
g1 which are C-linear for the complez structure defined by Jy;

(“’) [JIX’ Y] = —[X7 JY] VX € 91, Ye g-1.

Proof.  Since the Killing form k4 of g defines a duality pairing between g;
and g_1, formula (3.11) uniquely defines an R-linear map J; : g — g1. It is
a complex structure on g; because

ko(J2X,Y) = —rg(iX,JY) = kg(X, J?Y)
= —kg(X)Y) VXeg,VY¥eg,

implies that J2 = —Id on g;.
(1) Let A € go and X € g;. Then, for every Y € g_; we obtain

"59([‘41 LX)Y) = -HQ(J1X7 [A,Y]) = K’B(X» [A4,JY])
= —ry([4, X],JY) = r4(N1[4, X],Y).

This implies that [A, ;1 X] = Ji[4, X] for every A € gp and X € g;.
(i) Let X € g1, Y € g_;. Then for every A € gy we obtain

HB([J1X7Y]7A) = EQ(JlX) [V, A]) = —rq4(X, [JY, A])
= -K’g([X’JYLA)

and this implies (i¢) because k4 is nondegenerate on go. O

In the following we shall write for semplicity J instead of J; also for the
complex structure on g; defined by the lemma above.

Let g = ®_,<p<ufp be a finite dimensional semisimple graded real Lie
algebra. It has a unique characteristic element E and is splittable. There-
fore, by Lemma 3.2.5, we can fix a Cartan subalgebra f of g containing
and contained in gg. Its complexification h* is a Cartan subalgebra of the
complexification g€ of g. Setting g& = C ®g gp, we have g€ = ©_,<pcu0y
and g€ is a finite dimensional semisimple graded complex Lie algebra.
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Let R C Homg(h®, C) be the set of nonzero roots of hC and for « € R
we denote by

(3.12) g°={X €g®|[H,X]=a(H)X VHcH®}
the eigenspace corresponding to the root a.

LEMMA 3.6.2 Let g and R be as above. Then, for every o € R, we have
a(E) € Z and g* C g5 5.

If m = @pco8p is fundamental, then there exists a basis B of the root
system R such that a(E) € {0, -1} for every a € B.

Proof. The first assertion is a consequence of the fact that all subspaces gf
are invariant under ad(g§) and h* C g5. Next we note that, if m = @,<g, is
fundamental, then all roots o with @(F) < —1 can be decomposed as sums
of roots B’s with —1 < B(E) < 0. Since —a(E) < 0 when a(F) > 0, it is
also clear that there are simple systems B of roots with a(E) < 0 for every
a € B. By the observation above, if « is a simple root with a(FE) < 0, we
have o(E) € {0, —1}. O

LEMMA 3.6.3 Let g = ©_u<p<ufp be a finite dimensional semisimple
pseudocompler graded Lie algebra and let b and R be as above. Assume
that @« € R and o(FE) = x1. Then all vectors in g* are either of the form
X ++/—1JX with X € g+1 or of the form X — /—1JX with X € g.;.

Proof. Assume a(F) = —1. We still denote by J the C-linear extension of J
to g&,. Since J commutes with p_; (H) for every H € hC, the subspace g* is
J-invariant. Since g* is 1-dimensional, we obtain, for X ++/—1JY € g*\ {0},

JX +vV-1JY)=JX —/-1Y = +V/-1(X + v-1JY).
Then Y = X or Y = —X according to the fact that the eigenvalue of J on

g% is —v/—1or v—1.

The argument for o(E) = 1 is similar and therefore is omitted. a
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We introduce the notation:

g0 = {X - V=1JX | X € g1}, o = {X - VZ1JIX|X € g1},
“” ={X +V-1JX|X €g_1}, (‘”) ={X +V-1JX|X € g }.

(0,1) (1,0)

By (4i) in Lemma 3.6.1, g ©) g g1’ and g(_lio) @ g;  are commutative
complex Lie subalgebras of g¢. From this observation we obtain the

LEMMA 3.6.4 Let g = ©_,<p<u8p be a finite dimensional semisimple
pseudocomplez graded Lie algebra. Let @ € R be such that a(E) = —
Then:

g c gy

g c g(0 ,1)

s g—a C g(o 1)

s g—acg(lo)

We are now able to prove the following:

THEOREM 3.6.5 Let g = ©_,<p<u8p be a finite dimensional semisimple
pseudocomplez graded Lie algebra such that m = @p<08p is fundamental.
Then there ezists a unique element J in the center 3(go) of go such that

(3.13) [J,X]=JX VX e€g_.

Proof. We keep all notation and conventions introduced above. In particular
we fix a Cartan subalgebra b of g which is contained in gy and a basis B for
its root system R such that a(E) € {0, -1} for every a € B.

For each a € B we fix X, € g%, H, € h® and X_, € g~ such that

[XayX—a] =—H,, [Hm Xa] = 2Xa, [HmX——a] =-2X_,.
We obtain a generating family
{(Xay Hoy X_0) | € B}

corresponding to the basis B. For every real number ¢ we obtain a new
generating family
{(Xa(t), Ha(t), X-a(t)) | o € B}
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corresponding to the same basis B by setting

H,(t) = H, VaeB

(X, if o€ B, a(E)=0
Xo(t) = {eV"¥X, ifaeB, g=c g’
leVIX, facB, g*c g%
(X_, ifaeB,alE)=0
X o(t) = eV X , ifaeh, ge C g(_lio)
e iX_, ifaeB, g*cg%y.

Then, by [6] Ch.VIII §4 Theorem 2, for each ¢ there is a unique automorphism
@; of g€ such that

¢t(Xa) = Xa(t) ) ¢t(Ha) = Ha(t) 3 (bt(X_a) = X..a(t) Va € B.

Clearly R 3 ¢t — ¢, is a 1-parameter group in the Lie group of automorphlsms
of g©. Its derivative in 0 defines a derivation J on g®. Since g€ is semisimple,
J is an inner denvatlon with respect to an element of g, that we still denote
by J. We have J € g§ and

[J,X]=JX ong°.
In particular, [J, g_1] = J(g_1) = g_1, and so
[J,m] C m.
The Killing form of g€ is the complexification of the Killing form of g. Since
ke ([T, X],Y) = —kge(X, [J,Y])
is real for all X € g,, Y € g_, with p > 0, we conclude that also
[, @p>085] C Dp>08p -

Finally, as roots o € R with a(E) = 0 are sums of roots 8 € B with
B(E) = 0, we have [J, g§] = 0. The restriction of J to g yields therefore the
desired element.

The unicity follows from Lemma 3.6.2. O
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From Theorem 3.6.5 we deduce:

PROPOSITION 3.6.6 Let g = @_,<p<pulp e a finite dimensional semi-
simple pseudocompler graded Lie algebra such that m = @pcog, 15 funda-
mental. Then every ideal a of g is a finite dimensional semisimple pseudo-
complez graded Lie algebra such that ®p<oa, is fundamental.

In particular, if g is a semisimple Levi-Tanaka algebra, then every ideal
of g 1s a Levi-Tanaka algebra.

We obtain, for a Levi factor £ appearing in the pseudocomplex Levi-Mal’¢ev
decomposition g = £ @ t of Theorem 3.5.1:

COROLLARY 3.6.7 Let g = £t be a Levi-Mal’¢ev decomposition of a
finite dimensional Levi-Tanaka algebra, where t is the radical of g and £ 1is
a semisimple graded Lie algebra of g which is pseudocomplez. If

L=g'e...o ™

is a decomposition of £ into a direct sum of simple ideals, each factor £
is a pseudocompler graded Lie subalgebra £ = @®pezly such that ®p<0£§ 18
fundamental.

3.6.2 Conjugation

We assume that g = @_,<p<ufp is a finite dimensional semisimple pseudo-
complex graded Lie algebra, which is transitive and such that ©p<og, is
fundamental. As above, we fix a Cartan subalgebra h C go, denote by §h©
its complexification and by R and B respectively the root system of h* in
g® = C ®g g and a basis for R such that a(E) € {0, -1} for every a € B.

The real form b of hC defines a real involution on the dual h¢ of K,
obtained by associating to every C-linear functional a € hC the unique C-
linear functional & € hC such that

(3.14) a(H)=a(H) VHEHW.
LEMMA 3.6.8 With the assumptions and notation above, we obtain

&aeR VaeR.
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Proof. We consider first the case of a root & € R with a(E) = —1. Assume
that g@ C g(_oil) and let X, = X, ++/—1JX, be a basis of g*. For every
H € b we obtain

[H7Xa - \/—_——IJXa] = [HyXa + \/:-IJXa] = a(H)(Xa - \/jiJXa):

where we have used complex conjugation in g€ with respect to the real form
g. By C-linearity this equality extends to H € h*, showing that & € R and
that g@ is the conjugated of g® with respect to the real form g.

The case g* C g_lio) is analogous.

To conclude the proof of the lemma, we need only to consider the case
where o € R and «(E) = 0. Since g® is transitive, there exists 3 € R with
B(E) = —1 such that o + 3 € R. Then @ + 8 € R and again we conclude

by complex conjugation with respect to g that
%7, 677] = g® # 0.
The proof is complete. O

We note, however, that the eigenvectors in g© corresponding to o and @ € R,
may not belong to a same simple ideal in g¢. The eigenspaces g* and g®
belong to a same simple ideal when the real parts of the elements of g
belong to a simple ideal of the real type, i.e. such that its complexification
is still simple. We have

PROPOSITION 3.6.9 Let g = ®_,<p<ufp be a finite dimensional semi-
simple pseudocomplex graded Lie algebra such that @p<o8, is fundamental.
We assume that u > 1 and that the complezification g€ of g is simple. Then
w>2, g is a Levi-Tanaka algebra and g€ is of type As, or Dy, or Es.

Proof. We keep the notation introduced above. Because p > 1, B con-
tains at least a root o with o(E) = —1. Then also @ € R. We note that
@ # « and cannot be obtained as sum of & and simple roots 8 € B. Indeed
the eigenspaces g® and g® belong one to g(_lio) and the other to g(_oil), which
are disjoint and g$-invariant. Because we assumed that g is simple, the
Dynkin diagram of g* is connected and therefore R contains roots v with
v(E) < —2. In particular, for the highest root § we obtain 6(E) = —pu > 2
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and we conclude that g is a Levi-Tanaka algebra by Theorem 3.3.8. Finally,
the conjugation map a — & on the roots, described in the previous lemma,
permits to define an order two automorphism of the complex Lie algebra g®,
which is different from the identity. This defines an automorphism of a Weyl
chamber. Hence the result follows from the classification of the automorph-
isms of simple complex Lie algebras (cf. [H], Ch.X). O

3.6.3 Cartan decomposition

In order to discuss the properties of standard homogeneous CR manifolds
having a semisimple Levi-Tanaka algebra of infinitesimal automorphisms, it
is convenient to discuss their Cartan decompositions.

PROPOSITION 3.6.10 Every semisimple Levi-Tanaka algebra g =
D —pu<p<ufp admits a Cartan decomposition

where:

(1) ®is a Lie subalgebra of g of the compact type on which the Killing form
Kg 15 negative definite;

(1) &= Do<p<pullp| with €y =8N go and &y C g, @ gp forp>0;

(132) p is the orthogonal complement of & with respect to the Killing form kg
of g and kg is positive definite on p;

(iv) P = Bo<p<ubip| With pjoy =pNgo and P C g—p D gp forp > 1;

(v) the natural projections &, — gip and Pip| — G+p are linear isomorphisms
forp>0;

(vi) the associated Cartan involution 6 : g — g such that € is the set of fized
points of 0, 6(X)=—X for X € p, and for which

gx g3 (X)Y) = —k4(X,0(Y)) €R
is a positive definite real symmetric form, has the properties:
0(gp) =9-p for —p<p<u,
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9_19X——>9(X)Egl and 913X~—>0(X)€g_1

are C-linear for the complez structures of g_1 and g, defined by J.

Proof. Let § be a Cartan subalgebra of g contained in go and let < be the
corresponding Cartan subalgebra of the complexification g© of g. Let R be
the set of nonzero roots of g¢ with respect to h* and H,, for a € R, the
element of h® such that

kec(H, Hy) = o(H) VH € p~.

The form k4 is positive definite on the real subspace b® of hC generated by
the H,’s. 3
For each oo € R we can choose a basis X, of g® in such a way that

(Koo Ko = Hay  tg0(Xoy K_a) = 1.

According to Lemma 3.6.3 and Lemma 3.6.4, we can split the set of roots «
with a(E) = %1 into two disjoint subsets, the first Ry consisting of roots
o for which X, = X, +v/—1J Xa, the second R; consisting of roots a for
which X, = X, — v/=1JX, with X, € gu;.

Then we obtain a compact form u by

U = ol
where
wop = V=IEP Y (R(Xa - X_o) @ VZIR(K, + X))
aE)=0

uy = P (R(Xa - X o+ V-1J(Xa+ X_0))
a€Ro,1
AV-IR(Xy + X_o +V-1J(X, - X—-a)))

up = D (R(Xa ~ X_o) ® V=IR(X, + X_a)) for p>0.
o(E)=-p

Let us denote by 7 : g© — g€ the complex conjugation in g€ with respect
to the real form u and by o : g© — g€ the complex conjugation in g€ with
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respect to the real form g. We set
9(;%| = g5
gﬁ,] = gq_:p @gf for p>0.

Then we have

rlaf) = o) =g for p=0.on

Moreover we note that J defines an antiinvolution on u);; and therefore, by
C-linearity, also on y/—1u;. From this we derive that

—JotoJ=71, ie. Jor=T1To0oJ on g‘ﬁ|.

Obviously the conjugation o commutes with J on g&. This property is
therefore shared by the composed C-linear automorphism a = o o 7 of g©.
This is a selfadjoint map for the Hermitian scalar product

B, :g®x g" 3 (X,Y) = —rge(X,7Y) €C

and therefore a? is selfadjoint and positive definite for B,. We denote by ¢
the positive selfadjoint fourth root of a®. This is still an automorphism of
the Lie algebra g€ such that ¢(u) is a compact form of g€ that is invariant
under 0. Moreover, by the construction,

#(o) =5 and goJ=Jod on g

A Cartan decomposition of g is obtained by setting € = ¢(u) N g and p =
v/—=1¢(u) N g. Then the Cartan involution § on g is defined by ¢ o7 0 ¢~*
and therefore commutes with J on g_; @ g;.

We note that the positive definite symmetric real form

gx g3 (X,Y) = g(X,)Y) = —k4(X,0(Y))

satisfies
g(JX,Y)=—g(X,JY) for XY €gn

and therefore is on g_; and g; the real part of a Hermitian scalar product
for the respective complex structures. a
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3.7 Almost-solvable and weakly-solvable rad-
icals

Let g = @_,<p<v8p be a finite dimensional Levi-Tanaka algebra, with radical
v = Dp>—pTp-

For X € g, we denote by (X), the ideal in g generated by X. Since all
ideals of g are graded, (X), contains all the homogeneous components of X.
In particular, if X =3 X, with X, € g,, we have (X,); C (X),.

For each nonnegative integer h we set

(3.15) a® = {X € g|(X)gNg-r Ctn}.
We have

PROPOSITION 3.7.1 Let g = ®_,<p<.8p be a finite dimensional Levi-
Tanaka algebra of kind p, with radical v = @p>_,t,. For each nonnegative

integer h, the set a®™ defined by (8.15) is a graded pseudocomplez ideal.
We have

(i) @ =vanda®™ =g for h > p+1;

(i) a® C a*) for every h € Z,h > 0.

Moreover, if £ is a graded pseudocomplex Levi subalgebra of g and
L=glg...gm

its decomposition into a direct sum of simple ideals, we obtain

(3.16) o = v @ (e{¢/ | kind of & < h})

for every nonnegative integer h.

Proof. ~ We note that each £’ in the decomposition (3.15) is graded and
pseudocomplex. Therefore it is sufficient to prove (3.16). Let us fix a non-
negative integer h and denote by ¥® the right-hand side of (3.16). The
inclusion ¥ C a® is clear from the definition of a®. To prove the opposite
inclusion, we take any X € g and consider its unique decomposition

X=Xo+X1+...+X;m with Xg€r,X; €8 fori=1,...,m.
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Assume 1 < j < m and kind of &/ < h. If the £/-component X, of the
decomposition above is different from 0, then (X;)¢; = £’ because £7 is

simple. In particular, there is a Lie polynomial, i.e. a linear combination
P(T) of terms of the form

T —1[2,...,2,T,Y,...,Y

with Zi,...,ZY4,...,Y, € &9, such that P(X;) € £, \ {0}.

We note that P(X;) is the £/-component of the homogeneous component
of degree —h of P(X). Note that if we had X € a®, then also P(X)
and all its homogeneous components would be elements of a®. From this
observation we deduce that X ¢ a® if X ¢ t®. Thus a® = T*). |

The ideal a® is the sum of the radical and of a semisimple subalgebra con-
tained in go. It is the largest ideal in g having this property and will be called
the almost-solvable radical of g. We note that

oV = @p>_,af)
with .
A — {X €gol[X,9-1] Croa} forp=0
P T for p#0.
The ideal a® is the sum of the radical of g and of a graded pseudocomplex
semisimple subalgebra of kind < 1 of g and is the largest ideal in g having
this property. We call a® the weakly-solvable radical of g.
We recall that every simple graded pseudocomplex Lie algebra of kind
> 2 is a Levi-Tanaka algebra. In particular, if £ = £ & ... @ £™ is the

decomposition of a pseudocomplex Levi subalgebra £ of g into a sum of
simple ideals, as in Proposition 3.7.1, the subalgebra

s = ©{L% | kind of & > 2}
is a Levi-Tanaka subalgebra of g and we have the decomposition
(3.17) g=5@a?

of g into the direct sum of a Levi-Tanaka subalgebra which is semisimple and
the weakly-solvable radical.

We recall that a finite dimensional Lie algebra I is called fasthful if the adjoint
representation induces faithful representations of its Levi subalgebras in its
radical. We have
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THEOREM 3.7.2 A  finite dimensional  Levi-Tanaka algebra
9= ®_u<p<rBp can be decomposed into the direct sum of two Levi-Tanaka
ideals

g=bl

with b semisimple and | faithful.

Proof. Let g = £ @ t be a Levi-Mal'¢ev decomposition with a graded
pseudocomplex Levi subalgebra £. Let

b={X € £|[X,] = 0}.

Then b is a graded ideal of g which is pseudocomplex. Indeed, if X € I_;,
we have JX € [_; because [is an ideal in £ and £ has the (J)-property.

Denote by [ the orthogonal of b with respect to the Killing form kg of g.
It is an ideal of g. Since b is an ideal in £, the Killing form is nondegenerate
on b and we have the direct sum decomposition of ideals

g=bol

Clearly a® C [ and [ is faithful.
We need to prove that both b and [ are Levi-Tanaka. To this aim it
suffices to notice that

m = @pcolp = (@p<ﬂbp) 52 (®p<0Ip)

is a decomposition of m into the direct sum of two ideals which are funda-
mental and nondegenerate: then b and [ correspond to the canonical pseudo-
complex prolongations of their negative parts. O

3.8 Examples

Before discussing general results on the classification of Levi-Tanaka algebras,
we give in this section several examples to substantiate the abstract theory
developed in this chapter.

For the notation about the Levi-Tanaka algebras of kind 2 the reader is
referred to § 5.1.
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3.8.1 Levi-Tanaka algebras of kind 2 isomorphic to
su(p+m,q+m)

Let m, p, ¢ be nonnegative integers with m > 0 and £ =p+ ¢ > 0. With I;
denoting the ¢ X t identity matrix, we set

I, 0
b= (% %),

We consider the Hermitian symmetric matrix
0 0 In
Q=] 0 I, 0
I, 0 O

The Lie algebra g of matrices A in sl(¢ + 2m, C) satisfying
A'Q+QA=0

is isomorphic to su(p + m, g + m), so it is simple. Its elements are null-trace

matrices of the form
ann —aylpy a3 )

as Q22 23
* *
a1 —aylp, —ai;

with blocks a3, a1 € u(m) and az € u(p,q). We obtain a structure of
Levi-Tanaka algebra of type (¢m, m?) by defining the elements £ and J by:

I, 0 0 — [ —t, 0 0
E=| 0 0 0 and j:z 21 0 2ml, O .
0 0 —I, Tem 0 -/,

This case generalizes the case of CR hypersurfaces, i.e. of type (n, 1), with
nondegenerate Levi form, that was fully discussed in [41] and [11], and cor-
responds to the choice m = 1. We note that the space of orbits of D:($s(V))
contains only finitely many elements. In order that the canonical pseudocom-
plex prolongation be finite dimensional, it is necessary and sufficient to start
from PL = {[h]} with h nondegenerate, i.e. of signature (p, ¢) with p+q = n.
In this case g(L) is isomorphic to the simple Lie algebra su(p + 1,9 + 1).
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3.8.2 Levi-Tanaka algebras of kind 2 isomorphic to
sl(n, C)

Let n > 3 and let us fix two positive integers m, £ with 2m + £ = n. We
write a matrix A € sl(n,C) in the form

)
a11, 413, @31, azz € gl(m, C)

a1 Q12 Q13 G192, a3z m X £ complex matrices
Go1 Q22 Q93 with ¢ a9, ass £ X m complex matrices
(31 a3z (33 ag € gl(¢,C)

(tr(aq1) + tr(age) + tr(ass) = 0.
We graduate the Lie algebra sl(n,C) by setting

a;; Q12 a3
gp = Gz1 G2 Gg3 | |a; =0 for j—i#p
G3y 0432 0ass

The elements E and J are like in the previous example. We denote this
pseudocomplex graded Lie algebra by sl(2m + ¢, C).

We consider the 2/m-dimensional complex vector space V' of pairs of £xm
complex matrices and the map

0 0 O
g-12 251 0 0 — (0121,0,;2) eV
0 azo 0

where a3, denotes the conjugated transpose of az;. This map is C-linear
for the complex structure of g_; and the canonical complex structure of V.
Identifying the space of m x m complex matrices to a 2m?-dimensional real
space, we obtain the Levi-Tanaka form on V:

(3.18) SF((v1, v2), (w1, we)) = V3w, — wivy.

It is convenient to represent g_, as the direct sum of two copies of the Her-
mitian symmetric m X m matrices. We obtain a (vector-valued) Levi form

that can be written as
ool L ()
1) Y2 [
val ) = He 0 = €5(C™)?
Vg 0 Ig (1
V2

(vl’v2)( IE 0
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and therefore s[(2m + £, C) is the Levi-Tanaka algebra of a CR manifold M
of type (2¢m,2m?) which is £-pseudoconcave. It is also mé-pseudoconvex.

Note that the algebra considered in this example can be obtained by consid-
ering the complexification of the algebra in the previous one, where £ = p+gq.

Remark 3.8.1 The simple algebra sl(n,C) admits at least one structure of
Levi-Tanaka algebra of kind p for 1 < p < n. Moreover, there ezist several
nonequivalent structures for the same p if 1l < p <n—1.

Indeed, given a partition (ng,...,n,) of n, i.e. positive integers n; with
0 < j < p such that 3°%_4n; = n, we consider

1, .

E = —Q—dzag(,ulno,... (b =2§)I, .. ,—,uIn#) +cgl,

- V=1 )

Jo= diag(Ing, .. (=1 Loy, , (=1)*Io,) + V=1c;1,

where cg,cj € R are such that E, J € sl(n,C) and diag(ag, ... ,a,) denotes
the block-diagonal matrix of entries aq, ... ,a,. If we denote by g, the eigen-
space of the adjoint representation of sl(n, C) of the element E associated to
the eigenvalue —p < p < p, then g = @_,<p<u8p, With the pseudocomplex
structure on g_; given by the adjoint representation of the element J,is a
Levi-Tanaka algebra of kind p.

We note that if in addition n; = n,_; for every 0 < j < u, denoting by

we have that the algebra
{A €sl(n,C)|A*Q + QA =0},

with the graduation and the pseudocomplex structure similarly defined, is
a Levi-Tanaka algebra of kind u. If in addition p is even, we may take in
the definition of @ the matrix I,, instead of I,/. These algebras are all
isomorphic to su(p, g) for suitable p and gq.
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3.8.3 Levi-Tanaka algebra of kind 2 isomorphic to
so(n+2,n)

Let V be a complex linear space of dimension n > 2 and let W be a totally
real subspace of V of real dimension n. We consider the ﬂnz_—ll dimensional
subspace L of $3,(V') of Hermitian symmetric forms h such that h(X, X) =0
forall X e W.

In a basis eq,...,e, of V contained in W, the matrices associated to the
elements of L are of the form y/—1 A for a matrix A € so(n). We call such a
subspace L of $s5(V) a skew subspace of $s(V). Clearly, all skew subspaces
of H;(V) belong to the same orbit under the action of GL¢ (V) and therefore
define isomorphic pseudocomplex fundamental graded Lie algebras m(L).

PROPOSITION 3.8.2 The canonical pseudocomplex prolongation of a
pseudocomplez fundamental graded Lie algebra m(L) associated to a skew
subspace L of $s(V) is a simple graded Lie algebra, isomorphic to the Lie
algebra so(n + 2, n).

Proof. 'We consider on the real vector space R*®*? the symmetric bilinear
form of signature (n + 2,n) defined by the Hermitian symmetric matrix

0 0 I,
Q = 0 I2 0 )
I, 0 0

where I, is the identity £ x £ matrix. Then so(n + 2,n) is identified to the
space of matrices of the form

(o € gl(n,R)

a § v B is a2 x nreal matrix

( g e =9 ) where <(J is an x 2real matrix
0 =B —lo v, 6 € so(n)
L€ € 50(2, R).

We denote by g the Lie algebra of (2n+2) x (2n +2) matrices defined above.
We consider the element E € g:

I, 0 O
E=10 0 O .
0 0 -I,
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Then ady(E) is semisimple with eigenvalues —2, —1, 0, 1, 2 and we denote
by g, the eigenspace corresponding to its integral eigenvalues —2 < p < 2.
In this way g = g_2 @D g—1 D go ® 91 D g2 has the structure of a simple graded
Lie algebra. We note that

a 0 0
go = 0 ¢ 0 |a € gl(n,R), € € 50(2)
0 0 —-%

0 0 O
g-1= g 0 0 ||Bisa2xnmatrixy.
0 -6 0

Let j = ( 0 -1 ) and consider

1 0
(000
J=10j 0] e¢g.

000

~2 ~ ~

We have p_1(J)" = —H|,_, and [p_1(J)X, p_1())Y] = [X,Y] for every
X,Y € g_;, therefore p_l(j) defines a complex structure in g_;. If we
associate to the matrix 8 parametrizing g_; the element Z € C* obtained
by adding to its first row y/—1 times its second row, the way the element

and

a 0 0
Xo=| 0 ¢ 0 € go acts on g_; can be described by
0 0 -

p_l(Xo)(Z) =—-alZ+ \/:—]:-TZ

0
from zero. Moreover, the matrices of the form 3% — v, for 3, varying in
the space of n x 2 real matrices, are a basis of so(n) as a real vector space
and the bilinear form (8,v) — 8% — 73 is nondegenerate. Then g_» @ g,
is a nondegenerate fundamental graded Lie algebra. By Lemma 3.3.2, it
follows that g is transitive. From j% = I, we obtain also that g_, & g_;

ife = ( 2 -7 ) . It is clear then that [Xp, g—1] # 0 if X, € go is different
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is pseudocomplex. By Theorem 3.3.7, it is sufficient then to establish an
isomorphism between the pseudocomplex fundamental graded Lie algebras
m(L) and g2 @ g-1.

To this aim we choose a basis ey, ... , e, of V contained in W and associate
to every vector v € V the n x 2 real matrix # whose first column is the real
and the second the immaginary part of the components of v in this basis.
The identification of g_, and L* is the standard identification of the dual
of real alternating forms on W with the real alternating forms on W*. The
proof is complete. O

3.8.4 Levi-Tanaka algebras of type (n,2) with n > 1

Let m = @p>_29, be a fundamental graded Lie algebra of type (n,2). Assume
that m is nondegenerate so that its canonical pseudocomplex prolongation is
finite dimensional. The structure of m can be given by a real 2-dimensional
subspace L of Hermitian symmetric forms on a complex vector space V with
dimcV = n. Assume that there exists a nondegenerate form belonging to
L and let L; and L, be a basis of L with L; nondegenerate. By Theorem
4.5.19 of [15] we can choose a basis of V such that L; and L, are represented
by two matrices in the diagonal form with ¢; x ¢; blocks A;, respectively B;,
where
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with o; € R and ¢; = +1, for 1 <17 < r, and 2¢; x 2¢; blocks

& 1
with o; e C\R, forr+1<i<r+s.

We assume that ¢; = 1 for every 1 < i < r-+s. The case s = 0 and
o = ... = a, is not possible because L has dimension 2. In the case
s =0with a1 = ... = ap # app1 = ... = Qp4q, the algebra m is the
direct sum of two ideals and g is isomorphic to su(p+1,1) ®su(g+1,1) (see
Proposition 3.1.3). When r = 0, n is even and if a; = ... = ays, then g is
isomorphic to s[(2+n/2,C) as in the example in 3.8.2 (using Theorem 3.3.7).
In all other cases with n > 3 it can be proved that p_»(go) = RId,_, and so,
by Theorem 3.4.1, we have that g, = 0 for every p > 0.

When n > 3 and all 4;’s are equal to 1 and the o;’s are distinct, the
corresponding standard homogeneous CR manifolds are Euclidean and are
parametrized, modulo CR diffeomorphisms, by a moduli space of real dimen-
sion n — 3. This space is indeed the quotient of the set of n-tuple of distinct
points of CP!, symmetrical for the involution defined by RP! C CP!, under
the action of the group of automorphisms of CP! which leave invariant the
Poincaré half-plane. This has been shown in [28] (for the case n > 7) and by
the author in [23].

For n = 2, assuming again that the ¢;’s are equal to 1, we obtain Levi-
Tanaka algebras isomorphic either to su(2,1) @ su(2,1) (the pseudoconvex
case) or to sl(3,C) (the 1-pseudoconcave case).

We consider a case where ¢; # 1 in the example below, that completes
the description of all Levi-Tanaka algebras of type (2,2) and kind py = 2.
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3.8.5 The weakly-pseudoconcave Levi-Tanaka algebra
of type (2,2)

Let F' be the linear subspace of $);(C*) generated by the Hermitian symmetric
forms associated to the matrices

10 01
Fm(20) im0 1),

To compute the Levi-Tanaka algebra g(F') we first introduce some notation.
We denote by T,C the unitary associative C-algebra of lower triangular 2 x 2
matrices with complex coefficients. We consider on T5C the two antilinear
maps 15C 3 a =+ & € ToC and ToC 5 o — & € T»C associating to the

o 0 )
u the matrices
Q21 (gg

—_ @11 0 ~ 5122 0
o = _ _ , = _ _ .
Q21 Qa2 Q21 Q11

Then we define the two subrings of T5C:

matrix o = (

Nz(C:{(Zl 2) [zl,zze(C}:{aETgC)&:&},

22

NQR:{(zl tO ) 'tl,tQER}:{O{ETQC’O{:d’:&}.
2 1

Remark 3.8.3 We have:
1. aB=af Vo, e TC
2. af=pa Va,pe D
3. aff=pa Va, fe€ N,C;
4. ifa, eTRC and o =(B V(€ NyR, then o = 8 € N,C.

PROPOSITION 3.8.4 The Levi- Tanaka algebra g(F') is isomorphic to the
subalgebra of gl(6,C) of matrices of the form

o’ n o
(3.19) (c B V-7 )
T —/-1{ -é&
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where T, 0 € NoR, (, n € NoC, and

(3.20)

oo [@F V10 0 5= ad _ 2\/=T1b 0
B c d++v/=1b )° 77 —2v/=1Sc 42-2y/-1b )’

with a,b,d € R and c € C.
We note that 8 = —8 and that o + 8 — & is a diagonal 2 x 2 matriz with 0
trace.

The operators E, J € go(F) are described by the matrices

L 0 0 N 0
E=|0 0, 0 and  J= 0o 2L o0
0 0 -l 0 0 ¥
We have:
0 0O
go(F) = 000 ||reNR}~R
T 00
0 0 0
g1 (F) = ¢ 0 |¢ € N,Cp ~ C?
0 —/=1¢
a 0 0
go(F) = 0 B8 0 ||aBasin(520);;
0 0 —a
0 n 0
g (F) = 0 0 =17 | |n€ NC p ~C?
00 0
0 0 o
go(F) = 000 ||oceNR)~=R.
000

The Levi-Tanaka algebra g(F') admits a graded Levi-Mal’¢ev decomposition
g(F) =5 ® v with s ~ s5u(2,1) and vt # 0.
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Proof. Using the previous remark, one easily checks by direct computation
that the matrix algebra defined above is a pseudocomplex prolongation of
the fundamental pseudocomplex Lie algebra m(F'). We define t as the set of
matrices as in (3.19) with

00 00
T_(t O),tER, a—(s 0>,SER,

00 0 0
C“‘(zo),ze(Cy ﬂ—(w()),wec,
a 0 a O
(25) w0 ( g 8 mrenece

It is easy to verify that v is an ideal of g(F').
Next we denote by s the set of matrices of the form (3.19) with

t 0 s 0
7'-—(0 t),tE]R, a-(o s)’SER’

z 0 w 0
C—(O Z),ze(C, 77—(0 w),we(c,

a++/—1b 0 —2/—1b 0
a:< 0 a+\/:Tb>and 5:( 0 —2\/—_11;)

for a,b € R. We observe that s is a Lie subalgebra of g(F') which is semi-
simple being isomorphic to su(2,1). To prove that the algebra g(F') defined
above is the Levi-Tanaka algebra of the second kind associated to L, we have
to show that it is a maximal prolongation. First we remark that the canon-
ical pseudocomplex prolongation of m(F’) is not semisimple because go(F) is
not reductive (and go(F) is the 0-degree component of the canonical pseudo-
complex prolongation). By the graded Levi-Mal’¢ev decomposition and the
fact that the canonical prolongation is semisimple when the radical has no
component of degree —1, we deduce that s is the semisimple part of the ca-
nonical pseudocomplex prolongation. Knowing that a prolongation of g(F)
would be a prolongation of its radical, we conclude by an explicit compu-
tation that the g(F") we constructed is indeed the canonical pseudocomplex
prolongation of m(F). 0
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3.8.6 Weakly-solvable Levi-Tanaka algebras

A transitive graded Lie algebra g = @p¢czgp, over R or C, is called a pseudo-
product if:

1. the algebra m = ®p«g, is fundamental;

2. there is a decomposition of the subspace g_; = ¢ ® | into a direct sum
of two irreducible go-modules (by the adjoint representation) such that
[e,e] =0 and [f,f] = 0.
When ¢ and f are irreducible go-modules and g_ # 0, then g is called of
irreducible type. We use the following weaker form of a result due to Yatsui
(see [49]).
THEOREM 3.8.5 Ifg is a pseudo-product graded Lie algebra of irreducible
type such that the subspaces

0-1(g) = {X € g1 | [X, ®p<—18,] = 0}
and g1 are not trivial, then we have:

1. if go = 0, g is a semidirect product s ® N of a semisimple graded Lie
algebra 5 = 5_; ® 50 © 51 and a nilpotent ideal N = @pcoN, (with
[No1, N.1] =0);

2. if go #0, g is simple.
It is not difficult to show that a simple transitive graded Lie algebra with
d-1 # 0 has kind p < 3.

Let g be a complex pseudo-product of irreducible type, with e and | as
above. Make it into a pseudocomplex Lie algebra defining J : g_; — g—; by

_JV-IX X ee,
JX) = {—\/——1)( if X ef.

Since ¢ and f are go-modules the elements of p_1(go) commute with J on
g_1. Thus g is a pseudocomplex prolongation of the pseudocomplex algebra
m = @p<ofp- Let g be the canonical pseudocomplex prolongation of m. Then
g C § and g is still a pseudo-product, with the same ¢ and f, because the
elements of p_;(go), commuting with J, operate on the subspaces e and f
which are the eigenspaces of J in g_;. Assume now that g also satisfies the
assumptions in Theorem 3.8.5. If g has kind p > 4, then g is not simple and
therefore go = 0. The Levi-Tanaka algebra g so obtained is weakly-solvable.
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3.8.7 Finite dimensional Levi-Tanaka algebras g =
@pEng with ding_l =2

Let m = @_,<p<08p be a pseudocomplex fundamental graded Lie algebra
with n = %dz’ng_l =1 and let g = @p>_, 9, be its canonical pseudocomplex
prolongation. Suppose that m is nondegenerate. This is equivalent to p > 2
and, by Theorem 3.1.1, to g finite dimensional. Note that gy is abelian,
dimggo < 2 and the equality holds if and only if g has the (J) property (see
subsection 3.2.1).

We will prove that:
1. if gy =0, then g is solvable;

2. if g; # 0, then g is simple and isomorphic to su(2,1) with the gradu-
ation given in the example in 3.8.1.

As p_5 is irreducible, by Corollary 3.5.8, the algebra g is simple or weakly-
solvable. If g is weakly-solvable, then g decomposes as direct sum of a graded
semisimple pseudocomplex Lie algebra s = s_; @ 54 @ 5; and the radical «.
If s_; were nontrivial, then it would coincide with g_; and so, by Corol-
lary 3.5.6, g would be semisimple. Then s_; = 0 and g is almost-solvable.
Again by Corollary 3.5.8, g; = 0.

Let us assume now that g is simple. The complexification g = C ®x g
of g is a semisimple complex Lie algebra and a Levi-Tanaka algebra. By
Lemma 3.2.5, g© has a Cartan subalgebra hC contained in g§ = C ®g go
and then its rank ¢ = dimch® is less than or equal to dimcg§ < 2. By the
classification of simple complex Lie algebras we have that g is isomorphic
to one of the following: so(5,C), sl(2,C), sl(2,C) & sl(2,C), sl(3,C) or the
exceptional Lie algebra G,. Since dimcg® = dimgg > 7, and using Propos-
ition 3.6.9, we obtain that g* is isomorphic to s[(3,C). This implies p = 2
and dimgg_y = 1. These two conditions characterize a fundamental graded
Lie algebra m whose prolongation is isomorphic to su(2,1) (cf. example in
3.8.1).
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Chapter 4

Classification of semisimple
Levi-Tanaka algebras

In this chapter we classify finite dimensional semisimple Levi-Tanaka algebras
up to isomorphisms. Every semisimple Levi-Tanaka algebra is a direct sum of
simple ideals which are Levi-Tanaka algebras for the restriction of the partial
complex structure. Hence, it suffices to classify simple Levi-Tanaka algebras.

In the classical cases we will give also matrix representations, while for
the exceptional ones we will give in appendix a complete list, obtained by
symbolic calculus.

4.1 Real semisimple graded Lie algebras

In this section we rehearse some general properties of finite dimensional real
semisimple Lie algebras, for which we refer to [12], [37], [45], and consider
their bearing to semisimple Levi-Tanaka algebras.

Let s be a finite dimensional semisimple real Lie algebra. Every Cartan
subalgebra h of s decomposes into a direct sum b = §* @ h~ where

b* = {X € h|ads(X) has purely imaginary eigenvalues}
b~ = {X € blads(X)has real eigenvalues}

are called respectively the toroidal and vectorial part of . A Cartan sub-
algebra h whose toroidal part has minimal dimension is called minimally
compact.
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We have (cf. [37, Cor.2 to Th.3] or also [45, Cor.1.3.1.5]):

PROPOSITION 4.1.1 All minimally compact Cartan subalgebras of a
semisimple real Lie algebra are conjugated by the action of the adjoint group.

The complexification hC of a minimally compact Cartan subalgebra b of s
is a Cartan subalgebra of the complexification s© of 5. Denote by R the
relative root system. Consider the real form b, = b~ @ v/—1h* of h*. We
1dent1fy the complexification of the dual b, of b, with the dual hC of hC. Then
R C b, C BC. Let o be the conjugation on s© defined by the real form s and
denote by o the corresponding involution of hC given by € 3 o —a’ € B,
where

(4.1) o’(X) =a(0X) VX et
Then the root system R is o-invariant.

In the following we will use s to denote a finite dimensional semisimple real
Lie algebra and g for the graded Lie algebra obtained by fixing a graduation
on s.

We recall that a finite dimensional semisimple graded Lie algebra g =
@®_,<p<u0p has the characteristic element E which is semisimple with integral
eigenvalues. By Theorem 3.6.5, if g is also pseudocomplex, then there exists
an element J in the center 3(go) of go such that J = p_;(J); this element is
semisimple with purely imaginary eigenvalues. Then we have:

Remark 4.1.2 A Cartan subalgebra § of a semisimple graded Lie algebra
g = ©_u<p<ubp 5 contained in go if and only if it contains the characteristic
element E of g (and the element J if g is also pseudocompler); moreover
E € 3(g0) Nb~ (and J € 5(g0) N HT).

We have (cf. [12]):

LEMMA 4.1.3 The characteristic element E of a semisimple real graded
Lie algebra g = @pezgp is contained in a minimally compact Cartan subal-
gebra by C go of g.

Proof. The lemma is a consequence of the fact (cf. [37], Theorem 2) that the
vectorial part of any Cartan subalgebra of g is conjugated by an element of
the adjoint group to a subspace of a minimally compact Cartan subalgebra of
g. Then we reduce to the observation that the semisimple element E belongs
to a Cartan subalgebra of g. a
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Let b be a minimally compact Cartan subalgebra of a semisimple graded
Lie algebra g, containing its characteristic element F, and let R be the root
system of g€ with respect to hC. We set:

Re = {aeR|a(H)=0 VHeh™},
Rp = {e€R|a(E)=p} for peZ;
R. = {eeR|aE)< }-—UR

We have the inclusions: R, C Ry CR_CR.
We call the integer |a| = a(E) the degree of the root o € R.

Remark 4.1.4 As o’(H) = o(cH) = a(H) = a(H) for every H € ™, the
root systems R. and Ry are invariant under the action of the conjugation o
defined by (4.1).

For every a € R we denote by g the relative eigenspace:

g*={Xeg"|[H X]=a(H)X VH ey}

We have:
g% = e P ¢
a€ERp
g = P g
a€Rp

Assume that g is a semisimple pseudocomplex graded Lie algebra with partial
complex structure J € glz(g_1). We recall that:

g = (X -V=1IX | X eg} S
g@il) = {X+\/—JX|XEQ 1}‘"0’((10))ng1.

These are the eigenspaces corresponding respectively to the eigenvectors /—1

and —y/—1 of J and are invariant under p_;(go). In particular each eigen-

L0 o in g(o Y and is J-invariant.
if and only if g*° = o(g®) C g%,

space g* for o € R_; is contained e1ther in g

Moreover, g* C g(l 0
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If X is an eigenvector corresponding to a root o € R with |a| € {-1, 0},
we define

+1 if|e| = —1 and g* C g{?
(4.2) sgn(X)=<{—1 if|a|]=—1and g* C ggm)

Note that JX = sgn(X)y/~1X when X € g* with |a| = —1.

We recall also that, by Theorem 3.6.5, if g is a semisimple Levi-Tanaka
algebra, there exists a unique element J in the center 3(g0) of go whose
representation p_l(j ) in g_; coincides with the partial complex structure J
of g.

In the following we will use for simplicity the same symbol J to denote
either the partial complex structure J of g or the element J of the center
of go.

We list now some results, related to the classification of real semisimple
graded Lie algebras, for which we refer to [12], [3], [19], [45].

Let g = ®_,<p<ufp be a semisimple real graded Lie algebra of kind px.
Then there is a minimally compact Cartan subalgebra f of g contained in
go and b contains the characteristic element E of g. We denote by R the
root system of g€ relative to hC. It admits a fundamental root system B =
{a1, ..., ¢} contained in R_, which is o-fundamental according to [45, p.23]
(cf. condition (2) below).

We denote by A, the weighted Dynkin diagram of g&, which is obtained
from the Dynkin diagram of g€, in which the vertices are identified to the
corresponding roots in B, by attaching to each vertex ¢; its degree |oyl.
The weighted Satake diagram X, of g is obtained from the weighted Dynkin
diagram A, of g© by the following procedure:

1. The vertices o € B, = BNR, are black and all other vertices are white.
Note that black vertices have degree 0.

2. For every white vertex a € B — B, there exists a unique white vertex
o' € B— B, such that o — ¢/ is a linear combination of the black roots
(cf. [45], Lemma 1.1.3.2). If o # o/, then we connect the pair {a,a'}
by a curved arrow. Note that roots connected by a curved arrow have
the same degree.
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Let s be a semisimple real Lie algebra and g a graded Lie algebra obtained
by fixing a graduation of s. The weighted Satake diagram of g is obtained
by attaching to each vertex o of the Satake diagram of s its degree || with
respect to g. This construction provides a partition of B into the subsets B,
with p <0, given by

(4.3) B,=BNR,={acB|la|=p}.

Vice versa, every such partition of B, indexed by the nonpositive integers,
determines a unique graduation of s and all graduations of s are obtained in
this way, up to isomorphisms of graded Lie algebras. We explicitly note that
the fact that g_; generates m(g) is equivalent to have B = By U B_;.

The classification of real semisimple graded Lie algebras is deduced from
the following:

THEOREM 4.1.5 A necessary and sufficient condition in order that two
real graded Lie algebras be isomorphic is that they have isomorphic weighted
Satake diagrams.

We also note that (cf. [19], Theorem 2.4):

PROPOSITION 4.1.6 1. The kind p of g is equal to the absolute value
of the degree of the highest oot of gC.

2. Assume that the graduation of g is associated to a partition B = ByUB_;
of the fundamental roots of g. Then g is the direct sum of a semisimple
Lie algebra, whose Satake diagram is obtained from ¥, by deleting all
vertices in B_y and all rods and arrows issuing from them, and its
center 3(go), whose dimension equals the number of elements of B_;.

We say that a real simple Lie algebra is of the complex type if its Satake
diagram is disconnected, i.e. if it is obtained from a simple complex Lie
algebra by change of the base field; we say that a simple real Lie algebra is of
the real type if it has a connected Satake diagram, i.e. if its complexification
is also simple.

We note that for simple Lie algebras s of the complex type the Satake
diagram is obtained by taking two copies D, and D of its Dynkin diagram
D, painting white all vertices and connecting by a curved arrow each root in
D! to the same root in D;. Thus for simple real Lie algebras of the complex
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type the Dynkin diagram already contains all information.

We collect some elementary facts on the Satake diagram of a Levi-Tanaka
algebra in the following

THEOREM 4.1.7 Let g be a finite dimensional semisimple Levi-Tanaka
algebra, and X its weighted Satake diagram related to a Cartan subalgebra
h Cgo of g. Then:

(1)  the degrees of the vertices in B are either (—1) or 0, so that B =
B_; U By; the set B_1 of fundamental roots of degree (—1) contains at
least two elements;

(17)  each vertez o in B_; is connected to another vertez o in B_; by a
curved arrow.

Proof. The first claim in (¢) follows from the fact that g_; generates the
subalgebra m(g) = ®,<00p, the second from (iz) and the fact that the kind
w of a finite dimensional Levi-Tanaka algebra is > 2.

We prove (i¢) by contradiction. Assume that o € B_; is not connected
to any other root in B_; by a curved arrow. Then o = « + v, where 7 is
a linear combination with integral coefficients of roots of By. It follows that
J acts as the multiplication by the same 5 = £+/—1 both on g* and on g*°.
But we already noticed that this cannot be the case because g* and g* are
contained in eigenspaces of J corresponding to opposite eigenvalues. a

For the sake of conciseness we will call in the following LT-admissible the
weighted Satake diagrams of semisimple Levi-Tanaka algebras.

We also call admissible a weighted Satake diagram satisfying conditions
(1) and (72) in Theorem 4.1.7.

4.2 The weighted Satake diagrams of simple
Levi-Tanaka algebras of the complex type

First we investigate the Levi-Tanaka structures that can be defined on a
simple real Lie algebra s of the complex type.
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We fix a minimally compact Cartan subalgebra b of s. Note that b is
simply a Cartan subalgebra of s considered as a complex Lie algebra. Let R
be the corresponding root system (attached to s and § considered as complex
Lie algebras), B = {au, ... ,a;} a fundamental root system for R and D, the
associated Dynkin diagram. For simplicity we will call connected a subset Y
of B if its points are the vertices of a connected subset of the graph D,.

Up to equivalence, all admissible gradings of s are obtained from a parti-
tion {By, B_1} of B into a set B_; of fundamental roots of degree (—1) and
a set By of fundamental roots of degree 0. Let B_; = {ey,,...,q;, }, with
1<4; <... <1, </ be the set of roots of degree (—1).

Every root o € R is a linear combination with integral coefficients

l
(44) o= Z ki(a)ai, ki(a) eZ

i=1

of the roots in B. We associate to the root o its degree

@5) ol = 3 k(e
where |o;| equals (—1) if a; € B_; and 0 if ; € By. We recall that
(4.6) Y(a) = {ou|ki(a) # 0}
is a connected subset of D, and, for every connected ¥ C D;,
(4.7) Y meR

aEeY

(cf. Corollary 3 to Proposition 19, Ch.VI §1 in [6]).
We denote by g the graded Lie algebra obtained from s by the partition

{B-1,Bo} of B: the subspace g, of homogeneous elements of degree p is
defined by:

g=he P g

a€ERo

5= P g for p#0.
a€Rp
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To define on the so obtained graded Lie algebra g a partial complex
structure satisfying (2.2), by Theorem 3.6.5, we need to find an element
J € 3(go) C b such that

2
(48) p—l(']) - Hg—x
[‘L g-—?] =0.
We note that J must satisfy
0 if o;€By
4.9 Jyoq) =
( ) < CY) {i\/—l if o;€B_

because the eigenspaces of the roots ; are contained in the eigenspaces of
adg(J).

Then from (4.8) we obtain:
(a) if Y is a connected subset of Dy and Y NB_; = {o, a;}, with i < j, then

(410) (J, Oli> = —(J, Ctj).

Let indeed Y be a connected subset of D, containing exactly two elements
a;, a; of B_;. Decompose Y into two disjoint connected subsets Y1, Y5 such
that {&;} = Y1 N B_; and {¢;} = YanNB_;. Then B = ¥,,ev; @n and
B2 = Xa, ey, On are roots of degree (—1) and

(J7 /81> = (']> ai)a <J; 132) = (‘]’ aj)'

Since B; + B, € R, we obtain for nonzero eigenvectors Xg,, Xs, of 51, (2
respectively:

0# [Xﬂu Xﬂz] = [J‘Xﬁw ']Xﬁz] = (J, ;) {J, aj)[XﬂuXﬁz]'
This shows that condition (a) is necessary.
From this observation, since any two roots in 3 can be joined by a segment
in D,, we deduce that J is uniquely determined by the value it assumes on
one of the roots in B_;. In particular, for each admissibile structure of graded

Lie algebra g of s, either there is no partial complex structure J satisfying
(2.2), or there are two such structures, one being conjugated to the other.
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Moreover, condition (4.10) does not restrict the possibility of defining the
partial complex structure J, unless D, contains ramification points. In the
last case, there are two possibilities:

(b) either the ramification point o; of D, belongs to B_;, or at most two of
the branches issuing from «; contain elements of B_;.

Assuming that the conditions (a) and (b) are fulfilled by a J defined on
the elements of B, then a necessary and sufficient condition in order that J
extends to an R-linear map definining a complex structure on g_; satisfying
(2.2) is that:

(c) there are no roots o € R with |a| = —2 and k;(a) = 2 for some o; € B_;.
Indeed for o € R with |a| = —2 there are the two possibilities:

(*) Y(a)NB_1 = {04, a5} contains exactly two roots and k;(c) = k;(a) = 1;
(¥x) Y(a) N B_; = {o;} contains only one root and k;(c) = 2.

We first extend J to a C-linear map on g @ g—; by setting J = 0 on gy and
JXg = (J, ;)X if {o;} =Y (8) N B_;.

A nonzero eigenvector X, corresponding to a root & € R of degree (—2)
is obtained as the Lie product [Xg, X,] of two eigenvectors corresponding to
roots 3,7 € R with |8| = |y| = —1. If the root « satisfies (x*), then J acts
on Xg and X, as the multiplication by the same n = £+/—1 and hence, if
(2.2) is satisfied,

Xo = [Xp, X5] = [T X, IXyl = —[Xp, X3l = Xo =0,

gives a contradiction.

Vice versa, if all roots @ € R with |a| = —2 satisfy (), then each of
these roots can be represented as @ = 3 + 7 for two roots 3,7 € R with
|8l = |7| = —1. Then Y(8) N B_; = {a;} and Y (y) N B_; = {¢;}, where
a;, o are the edges of a segment in D, which does not contain any other
root in B_;. By condition (a), J acts on an eigenvector Xz of 3 as the
multiplication by n and on an eigenvector X, of v as the multiplication by
—n, with n = #4/=1. Then

KXo =[Xp, Xy] = [JXp, JX,]

and by C-linearity condition (2.2) is satisfied in this case.
We summarize the discussion above by:
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THEOREM 4.2.1 A necessary and sufficient condition in order that a
weighted Dynkin diagram A, with vertices B = {ou, ... , aq}, associated to a
graduation g of a simple Lie algebra s of the compler type correspond to a
LT-admissible Satake diagram is that the following three conditions be satis-

fied:

1. the graduation of g is defined by a partition of B into a subset B_,
of roots of degree (—1) and a subset By of roots of degree 0 and B_;
contains at least two elements;

2. if a; € B is a ramification point of Ay, then either o; € B_y or at most
two of the branches issuing from «; contain vertices in B_1;

3. there are no roots o = Y.f_; ki(@)o; € R with |a| = —2 and k;(a) = 2
for some a; € B_;.

To every LT-admissible weighted Satake diagram of a simple Lie algebra of
the complez type correspond ezactly two partial complex structures on the
corresponding graded Lie algebra g, one conjugated to the other.

Using this theorem, we can give the complete list of LT-admissible Satake
diagrams for simple Lie algebras of the complex type. We refer to [6], Ch.VI
for all relevant informations on the root systems. Note that the issue reduces
to finding the partitions {B_;, By} of B into a subset B_; of roots of degree
(—=1) and a subset By of roots of degree 0 leading to LT-admissible Satake
diagrams. We will say in this case that B_; is LT-admissible.

While considering the classification of a simple Levi-Tanaka algebra g of the
complex type, we must take into account the fact that an automorphism
of its weighted Dynkin diagram A, induces either an automorphism or an
antiautomorphism (i.e. changing J into —J) of g.

4.2.1 Simple Levi-Tanaka algebras of the complex type

A (£21)
The basic roots a;, ... , oy are organized in the Dynkin diagram:
0 O O—-nmmmmmoeoee O O -0
o, (* 3] O3 (P 4%] oy oy
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Since the Dynkin diagram has no ramification points and there are no roots
in R_ with coefficients k; > 2, every B_; containing at least two elements is
LT-admissible. Note that we need ¢ > 2.

Since the highest root in R_ is § = a1 + ... + ay, the kind x equals the
number v of roots in B_;.

We note that the isomorphism of the Dynkin diagram s : B 3 o; —
Qu+1-i € B yields isomorphisms of the Levi-Tanaka algebras corresponding
to B_; and s(B_;). Therefore, up to equivalence, the weighted Dynkin dia-
grams associated to simple Levi-Tanaka algebras of the complex type A, are
parametrized by

(4.11) B_y ={ai,...,,} with v>2
and, to take into account the isomorphism s, we impose that

(4.12)
(i1,...,0) <(€+1—4,,...,£+1—4d;) for the lexicographic order.

To each B_; in (4.11) there correspond two nonisomorphic Levi-Tanaka al-
gebras when (i1,...,%,) < ({+1—4,,...,£+1—14;) or when (i1,...,4,) =
(€+1—i,,... ,£+1—1%;) and v is odd. We obtain, up to isomorphisms, only one
structure of Levi-Tanaka algebra when (3y,... ,4,) = (¢+1—14,,... ,£+1—4))
and v is even.

Let B_; = {ay,... o4, } withv > 2,1 <4 <... <14, </ and let us define
d():il,d1=i2'—i1, ...d,/_l :iu—i,,_l, dy=g+1_iy.

Let g = ®_,<p<,9p be a Levi-Tanaka algebra associated to 5_;. We know
from Lemma 1.1 that gy is reductive. Its center 3(go) has dimension v and
the semisimple part is isomorphic to the direct sum:

@ 5[(dz,C)

d;>1

Moreover we obtain:

dime go = (3= df) -1
dimc g4p = 227, didi—p for p=1,...,m.
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To obtain a matrix representation of g, it is convenient to write every
matrix X in sl({+1,C) as

X = (xij)OSi,jSU with Tij € m(d, X dj,(C).

Then the characteristic element F of g is given by the matrix

eofdo 0 0

0 ely ... O j i — . i — v)d,
. L . Wher66j=]d0+(] dy+...+ (i —v)d
: : : f+1

0 0 e,,Id,,

while the partial complex structure is represented by plus or minus the matrix

7]1.[,10 0 N 0
0 nily ... O Y s CE
) ) . ) where ‘3;1” N
: : . : oy = —y/— 1%ttt
0 0 e 77(—~1)"Idy

4.2.2 Simple Levi-Tanaka algebras of the complex type

By (£>2)
The basic roots ai, ... , s are organized in the Dynkin diagram:
o O O rmmmmmmeees —O0——C—=0
o, o, o5 (e 4% 9% o,

Also in this case there are no ramification points. The positive roots
which have a coefficient larger than or equal to 2 are those of the form:

Zm+%z%)mhmmma

i<k<j j<k<t

Hence, if B_; = {ai,,... ,, } with 1 <4; <... <14, < £, the necessary and
sufficient condition for the existence of a Levi-Tanaka structure on g is that

’l:u - iu—l + 1.

The highest root in R_ is § = a; + 2(a2 + ... + o) and therefore for a LT-
admissible B_; = {a,, ... , &, } the kind p of the corresponding Levi-Tanaka
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algebras equals 2v—1 or 2v according to either a; belongs or does not belong
to B—l-

There are no automorphisms of the Dynkin diagram of B, and there-
fore we distinguish the weighted Dynkin diagrams associated to simple Levi-
Tanaka algebras of the complex type B, into two classes, that parametrize
up to equivalence these algebras:

(4.13)
B-—-l = {aly Cliy v 7ai,,..1:ai.,_1+1}

with v2>22, 1<t <...<i,1<¥{, ofkind p=2v-1
and
(4.14)

B_, = {Oém e ,ai,,_l,ai,,_1+1}

with v2>2,1<4;<...<4,_1<¥ ofkind p=2v.
Let us set:
(4.15)
do=Cl—i,1—1,di=1,...,dy =0 py1 —tpp, ..., dy =11

It is also convenient to set d, = 0if h #£0,1,...,v.

The center 3(go) of go has complex dimension v. The subalgebra gq is
the direct sum of its center and a semisimple part which is isomorphic to the
direct sum

®di>l S[(di, C) ] 50(2d0 +1, C) if do >0
@di>15[(di7 C) if do = 0.

Then we obtain

dimcgo =1+ d? + 2d3 + do
7':1/2—-211——1 p

dime Bp+) = Z didap14i + Z didapy1-i + dap + (2do + 1)dops1 + dapro
- = for p>0

dime g2y = ”ip didapti + S didap—; + Bldy — 1) (dpz_ D

\ - = for p>0.

+ dop_y + (2do + 1)dap + dapy
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To obtain a matrix representation of g we introduce the (2£+1) x (2¢+1)
symmetric matrix

0 0 0 0 0 0 0 I
0 0 00 0 0 0 I, 0
0 0 00 0 0 I 0 0
0 0 00 0 1 0 0 0
B=| 0 0 0 0 Ipgsr O O 0 0
0 0 01 0 0 0 0 0
0 0 I, 0 0 0 0 0 0
0 I, ... 0 0 0 0 ... 0 0
I, 0 ... 00 0 00 ... O

We can identify s0(2¢+ 1,C) to the space of matrices X € sl(2£+ 1,C) such
that
XB+ BX =0.

We write these matrices in the form

z_iy_j x"'i,o :L"_iyj
X=1 Zo-j Top ZToj :
Ii,"j mi’o $i7j lsi,ij

They are characterized by:

(.’L'i,j € M(dy x dj), C) for |i|,|7] >0

To; € M((2do + 1) x d},C) for |7]>0

Tip € m(dm X (2d0 + 1),@) for ]z[ >0

Too € M((2do + 1) % (2dp + 1),C)

\t.’ltiyj = —T_j—i for l2|,|j| =0,... ,V

We note that z_11 = z1,-1 = 0 because d; = 1. The characteristic element
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E of g is represented by the diagonal matrix:

[ —v, 0 .. 0 0 0 .. 0 0
0 (1-v)lgy, ... 0O 0 0 ... 0 0
0 0 ..=1 0 0 .. 0 0
0 0 ... 0 Opgger O ... 0 0
0 0 .0 0 1 .. 0 0
0 0 e 00 0 ... W=D, 0
0 0 .. 0 0 0 .. 0 vl

ie. E = (e;;) with e;; =ily, fori=—v,...,0,...,v and e;; = 0 for i # j;
the element J which defines the partial complex structure of g is defined by
plus or minus the matrix

oo V=11, 000 0 0 0 0
0 0 O 0 0 0 0
0 0 /-1 0 0 0 0
0 0 0 Ogytr 0 0 0
0 0 0 0 —/-1 0 0
0 0 O 0 0 0 0
0 0 0 0 0 0 —v—114
ie. J=(m;) with
T2h+1,2h+1 = \/“‘1Id2h+1 for h= —1, ey — -'/'2*'—1] y
Moh+12h+1 = —V —1lgy, for h=0,..., [VT—I ’
M =0 if i#37 or i=j even.

4.2.3 Simple Levi-Tanaka algebras of the complex type

Ce (£2>3)
The basic roots a4, ... , o, are organized in the Dynkin diagram:
O O- O vmmmmmmnnes —O0——O0=—=<—20
oy (%) o3 (LY} Oy o
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Since there are no ramification points, we only need to check that B_; =
{a, ..., } with 1 < 4 < ... < 4, < £ satisfies condition (3) of The-
orem 4.2.1. The positive roots which have a coefficient larger than or equal
to two are:

Z ak+2<z ak)+ag for 1<i<j</{

i<k<j j<k<t

and

2(2 ak>+ag for 1<i<d

i<k<t

Thus we must have
(416) op € B_q

and this condition, together with v > 2, is also sufficient in order that there
exist Levi-Tanaka structures corresponding to B_;.

The highest root in R_ is § = 2(a; + ... + 1) + ¢ and therefore the
Levi-Tanaka algebras corresponding to a LT-admissible B_; = {a, ... , 0}
have kind pu = 2v — 1.

Since there are no automorphisms of the Dynkin diagram of Cj, the
weighted Dynkin diagrams associated to simple Levi-Tanaka algebras of the
complex type C, are parametrized by:

(4.17) B_y={ai,...,0,_,, 04} with v>2,
) 1<i1<...<ip_1 <€ and p=2v-1.
Let us set:
(4.18)
dy=€—1ty_1, d2 =ty —by_2y oevy Qp = Gumht1 — l—hy -5 Dy = 110

We set alsodp, =0ifh#1,...,v.
The center 3(go) of the subalgebra go has complex dimension v and go is
the direct sum of its center and a semisimple Lie algebra isomorphic to

@ Sl(di, (C)

d;i>1
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Then we obtain:

dlmC 90 = g:l d’tz
dimge g (2p+1) = Lhoopro dhdh-op-1 + Lhepro dadopro—n + g’ﬂ%ﬂ—ﬂl for p>0
dime giop = Xjoppr hdh-2p + Chepyy dndopir-n for p> 0.

To describe a matrix representation of a Levi-Tanaka algebra of the com-
plex type C¢, we consider the matrix:

0 0O ... 0 0 0 0 .. 0 I
0 0 0 0 0 0 Iy, O
0 0 0 0 0 I 0 0
4| 0 0 0 0 Iy 0 0 0
0 0 0 —-I; 0 0 0 0
0 0 ~I, 0 0 0 0 0
0 —Ijy, ... 0 0 0 0 ... 0
I, 0 ... 0 0 0 0 ... 0

We identify sp(¢, C) to the space of complex (2£) x (2¢) matrices X such that
XA+ AX =0.

Denote by S, the set of indexes {3,3,... ,251}. Then we represent the
matrices X in sp(¢, C) by

X = ( T—i—j T-ij )
Ti—j  Tig 4,7€ES,

where

Tij € M(dy X d, C)  for §=£H5L j = 421
;= —0(i)o(j)z_j—s for 4,j€S,U=S8,

and o(a) denotes the sign of the rational number a.
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The characteristic element of g is represented by the matrix E:

2, 0 ... 0 0 0 0 0 0
0 =2, ... 0 0 0 0 0 0
0 0 31, 0 0 0 0 0
0 0 0 -1l 0 0 0 0
0 0 0 0 4I; O 0 0
0 0 0 0 0 2I, 0 0
0 0 - 0 o 0 ... 23, 0
0 0 .0 0 0o 0 ... 0 2l

ie F = (6i,j)i,j€S.,U-—Su with

e =il  for i=+21
€ij = 0 for 1 # ]

The partial complex structure of g is given by plus or minus the matrix J:

g‘7l-1__';1d,, 0 0 0 0 0 0 0
_l)u—l
0 Bty . 0 0 0 0 0 0
0 0 =i, 0 0 0 0 0
0 0 0 I 0 0 0 0
0 0 0 0 = 0 0 0
0 0 0 0 0 Y, .. 0 0
: : : : : : h :
0 0 0 0 0 0 .. 12:}/%—1%_1 0
0 0 0 0 0 0 0 -“é;—i_)l:Idu

ie. J = (mij)ijes,u-s, with

g = o) T, for =2
i =0 for i#j.
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4.2.4 Simple Levi-Tanaka algebras of the complex type

Dy (£>4)
The basic roots a,... , oy are organized in the Dynkin diagram:
Oy
o O O—rmmmeeees
o, a, o Oy &z
o

In this case oy_9 is a ramification point. If ap_y € By, then, according to
condition (2) of Theorem 4.2.1, only two branches issued from cy_, may
contain elements of B_;.

Then we consider the five cases:

(DeI) By = {1, 0}
(DeIl) g, 01,04 € B_y;
(D III)  ap_q € By, oy € B_y;
(D III'Y oy € B_y, ay € By;
(DedV) 1,4 € By.

We note that the cases D,III and D,III" are interchanged by the automorph-
ism of the Dynkin diagram of D, which leaves «; fixed for 7 < £ — 2 and
exchanges a,_; with a,. Therefore, in order to give a classification of the LT-
admissible weighted Dynkin diagrams of Levi-Tanaka algebras of the complex
type D, it will suffice to consider the four cases D,I, D,II, D,III and D,IV.
Moreover, for £ = 4, all permutations of the roots that leave as fixed are
automorphisms of the Dynkin diagram of D,. Therefore we need to consider
only the first three cases when ¢ = 4.

The positive roots in R having a coefficient larger than or equal to 2 are
given by:

o= Zak—l-Q( Z ak)+ag_1+ag for 1<i<j<e—-2.

i<k<j j<k<e—2
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Thus condition (3) of Theorem 4.2.1 is always satisfied by D,I, D,II and
D,III.

In case DIV, if B_y = {ciy, ... ,q;, } with 1 <4y < ... <4, < £—2, the
necessary and sufficient condition in order that B_; be LT-admissible is that
v>2andi, =1,.1+ 1.

Since the highest root in R_ is § = aq + 2(a + ... + o) + 1 + v,
the kind p of a Levi-Tanaka algebra associated to a LT-admissible B_; =
{ai,,-.. 0} is equal to 2v — ' where 0 < v/ < 3 is the number of elements
of BN {011, g1, ag}.

DgI: B_l = {Ole_l,ae}.
In this case go is the direct sum of its center 3(go), which has dimension 2,

and of a simple Lie algebra isomorphic to s{(¢ — 1,C). The corresponding
Levi-Tanaka algebra has kind 2 and we have

dimcgo =£2——2£+2
dim(c g+1 = 2(@ - ].)
dimg gao = (e-1)(e-2)

2

To obtain a matrix representation of g we introduce the matrix

0 0 Iy
B=| 0 I 0
I, 0 0

and identify so(2¢, C) to the space of (2£) x (2£) matrices

T-1,-1 Z-10 T-11
X = ( To—1 Too Lo, )
Ii,-1 T T11
with
Ti141 € 93?((6 — 1) X (E - 1), C),
T_1,0,T10 € Dﬁ((é - 1) X Z,C),
Zo,—1,Z0,1 € 93?(2 X (E - 1),@),
t:z:i,j = —T_j—i for Z,] = —1, 0, 1.
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The characteristic element E of g is represented by the matrix:

Iy 0 0
0 0 O
0 0 Ipq

and the partial complex structure J is defined by plus or minus the matrix:

0 0 0
[0 o).
0 0 0

Note that for the case of Dj, all choices of B_; equal to {oy, ash, {a1, a4},
{a3, a4} give equivalent LT-admissible weighted Dynkin diagrams of the type
D,I, leading to Levi-Tanaka algebras of kind p = 2 with

dimc 3(go) =2, go =~ 3(go) ® 5(3,C)

and with
dimc 8o = 10
dimc g+ =6
dim(c G40 = 3.
DJ: B_; = {Otil, ey QG o, Qp 9,0y 1, Ozg} with 1 < 11<...< ly—3 < £-2.
We set v — 1 = s and define
d0=2,d1 ‘—“1,d2:€—2~2.,,_3, ey dh,:iu—h""iu—h—la ey dszil.
It is convenient to set d, =0 for h #0,1,...,s.

The center 3(go) of go has complex dimension v and gy is isomorphic to
the direct sum of 3(go) and the semisimple Lie algebra:

@ El(di, (C) .
i>1
d;>1

Therefore we obtain:

dimc go = 35, d7 + 2
dimg g 2pt1) = 2daps1 + Sps " dpdhroprr + ooy dndopy1-p for p>0
dime gaop = 2dp + ShZT didnizp + Th0; dadop—s + 22 for p > 0.
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To give a matrix representation of the corresponding Levi-Tanaka algebras
g, we introduce the (2£) x (2£) matrix

0 ... 0 000 0 .. I
0 0 0 0 0 I 0
0 0 001 0 0
B=| 0 0 0L 0 0 0
0 0 100 0 0
0 I, 0 0 0 0 0
I, ... 0000 0 ... 0

and identify so(2¢,C) with the space of (2£) x (2£) matrices X such that
tXB + BX = 0. It is convenient to write these matrices X in the form:

Toi—j T-i0 T—ij
Ti—j  Ti0  Tij /g5=1,.s

;5 € M(d)y X dyj), C)

Tij = —Toji

with

for 4,7=-s,...,0,...,s.

We note that the condition ds = 1 implies that z_;; = z1,-1 = 0.
Then the characteristic element E of g is represented by the matrix:

~sl;, ... 0 0 00 0 .. 0
0 ~2I,, 0 0 0 O 0
0 0 -1 00 0 0
0 0 0 0,0 O 0
0 0 0 01 0 0
0 0 0 0 0 2I, 0
0 0O 0 00 O sy,



i.e. by the matrix (e;;) with e;; = ilg, for e =0,%1,... ,£sand e;; = 0
for 1 # j; the partial complex structure is defined by the element J of 3(go0)
associated to plus or minus the matrix:

vV=1I;; 0 0 0 0 0 0
0 0, 0 0 0 0 0
0 0 V=1 0 0 0 0
0 0 0 0, O 0 0
0 0 0 0 —/=1 o0 0
0 0 0 0 0 0g 0
0 0 0 0 0 0 —/—1I,

i.e. by the matrix (n;;) with n;; = %Idi if ¢ is an odd integer, 7;,; = 0
otherwise.

When ¢ = 4 and B_; = {1, a, a3, a4}, the algebra gy has complex
dimension 4 and it is abelian, the kind of the corresponding Levi-Tanaka
algebras is 5 and

(dimg go = 4

dime g+, = 4
dimg g+3 = 3
dimg g+3 = 3
dimc geq =1

\dim(c g45 = 1.

We rewrite explicitly the matrices corresponding to the elements E and J in
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this case. They are respectively:

-3 0 0 00O0O0OTO V=10 0 00 0 0 ©0
0 -2 0 00000 O 0 0 00 O O ©
0 0 -1 00000 0 0+/—1 00 0 0 O
0O 0 0 00000 4 000 00 0 0 0
00 000000/ O 0 0 00 0 0 O
0 0 0 00100 0 0 0 00—-/~10 0
0 0 0 00020 0O 0 0 00 O 0 O
0O 0 0 0000 3 \ 0 0 0 00 0 0-——-1

All the weighted Dynkin diagrams obtained from the choices of B_; equal
to {1, ag, a3}, {1, s, s}, {02, 03,04} are isomorphic. In this case the
subalgebra go has center 3(go) of complex dimension 3 and it is the direct
sum of its center and a simple Lie algebra isomorphic to s{(2,C); the kind
of g is 4 and the complex dimensions of go, g+1, g2, §+4 are respectively
6,4,4,2,1.

The matrices corresponding to the elements £ and J are in this case:

—2 0 0 00000 00 0 00 0 00
0 -2 0 00000 00 0 00 0 00
0 0 -1 00000 00100 0 00
0 0 0 00O0O0O 00 0 00 0 00
0 0 000000 |® o0 0 00 0 o0
0 0 000100 00 0 00—/=100
0 0 0 00020 00 0 00 0 00
0 0 0 0000 2 \o0 0 00 0O 00
DI B_y={0i, ., _,, e} withr>2,1<i; <... <4 <£—-1
We set:
(4.19)
di=0—iy_1,do =1y 1 —Gygy -y Qh =bphtl — Guehy -5 Ay =T

and d, =0forh#1,...,v.
The center 3(go) has dimension v and go is the direct sum of its center
and of a semisimple Lie algebra isomorphic to

@ 5[(di, C)

di>1

102




We obtain
dimc go = 25;1 d?
dime gaopi1) = Ynes’ dndnyoprs + S0, dudapsap + Mﬁ’L—l—) for p>0
dime ga2p = Yho2F dpdpaoy + S0, dpdapy1-n for p>0.

To give a matrix representation of g, we introduce the matrix

0 ... 0 0 .. I,

I R R
B=10o .5, 0o ... 0
I ... 0 0 ... 0

and identify s0(2¢, C) to the space of (2£) x (2£) complex matrices X such that
‘XB+BX = 0. The matrices X are better written as block matrices indexed
by the set of half odd numbers S,U—S, where S, = {2, ..., Aol ALY
It is convenient to introduce the following notation: for every integer r # 0

we set
) {————2’;1 for >0
T =

el for r<0.

Then we write the matrices X in the form

X _ ( x—i,—j m"’;y} )
xzy”i wi:} i,j:l,...,ll

T35 € gﬁ(dli] X dm,C)
T =75

for 4,j=41,...,+w.
The characteristic element E of g is represented by the matrix

with

~oly, ... 0 0 ... 0
: .0 0 ... 0
0 ... -, 0o ... 0
0 0 lr, 0
0 0 0 D1y,



i.e. by the matrix (e; ;) with ¢;; = zIdH and e;; = 0 when 7 # j.
The partial complex structure of g is deﬁned by the element J in 3(go)
corresponding to plus or minus the matrix

tl?izdy ... 0 0 0
0 I g 0
0 .0 =%t 0
o .. 0 o0 .. G

i.e. by the matrix (7; ) where 7;; = M'—;}——Idu and 7; 5 = 0 for ¢ #7.

When ¢ = 4, and B_l contains three elements, the dlscuss1on reduces to
the case D4II. The construction above yields an equivalent matrix rep-
resentation for the choices of B_; equal to {ai, 02, a3}, {a1, s, 4} and
{ag, 3, 04}

Consider now the equivalent weighted Dynkin diagrams corresponding to
the choices of B_; respectively equal to {1, @}, {a2, a3} and {ag, 04}

We obtain Levi-Tanaka algebras of kind 3 with 3(go) of complex dimension
two and go equal to the direct sum of its center and a semisimple algebra

isomorphic to sl(2,C) @ sl(2,C). We have:

dime go = 8

dimc g+1 =5
dimc g1 = 4
dimc g43 = 1.

In this case g is isomorphic to the Lie subalgebra of gl(8,C) whose elements
are the matrices:

where all entries z;; are 2 x 2 complex matrices and 'r;; = —x_;_; for
,j] = —2,-1,1,2. The characteristic element E and the partlal complex
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structure J are associated respectively to the matrices:

-2 0 0 0 000 0
0 -2 0 0 0000
0 0 -1 0 0000
0 0 0 -2 0000
0 0 0 0 Looo
00 0 0 012100
0 0 0 0 00 20
0o 0 0 0 00032
and
-l 0 0 0 0 0 0 0
0o -4 0o o0 o0 0 0 0
0 o ¥ o0 o0 0 0 0
L] 0 0o 0 % o 0 0 0
0 0 0 o %I o o0 o0
0 0 0 o0 0 XL 0o o
0 0 0 0 0 0o 4L o
0 0 0 0 0 0 o0 %I
DV: By ={a,-- 04,0 o} withy >2 1<i<...<i,, <
£—2.
We set:
do=2(0—1—iy1), di=1, do=tp_1l—ips, ..., dyoy =ip— iy, dy = 7y.

We also set d, =0 for h#0,1,...,v.
The center 3(go) has complex dimension v and the semisimple Lie algebra
90/3(go) is isomorphic to

@ El(dz', (C) & 50(d0, (C)
dl,'>>11
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We obtain:

( do(dy — 1 l
dime¢ go = '—0'(——05——) +Zdi2+1
=2 v—2p—1 p
dime ga(2p+1) = dop + dodop+1 + dopi2 + > drdpyapr1 + > dndapri-n
h=2 h=2
\ for p>0
: o -l dp(dp — 1)
dime gaop = dap—1 + dodap + dopr1 + Y, ddhyap + > dndop—n + S —
h=2 h=2
\ for p>0.

To obtain a matrix representation of the Levi-Tanaka algebra g we intro-
duce the symmetric (2£) x (2¢) matrix:

0 ...0 0 0 I, \
0 ...0 0 1 ... 0
B=| 0 ...0 Iz 0 ... 0
0 ...1 0 0 ... 0
I, ...0 0 0 ... 0

and identify s0(2¢, C) to the Lie algebra of the complex (2£) x (2£) matrices
X such that X B + BX = 0. We write the matrices X in the form:

Tei=j T=i0 T—iyj
X=1| Zo~j %oo Zoj
Ti—j L0 Tig [ =1,

Zij € m(dm X dlj|,C),
Tij = —Tji
for 4,7=0,%1,...,%v.

with

Note that z_;; = z1,; = 0 because d; = 1. Then the characteristic element
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of g corresponds to the matrix:

—vly ... 0 0 ... 0
: 0 0... 0
0 -1 0 0 ... 0
0 0 04 O ... O
0 0 0 1 .. 0
0 ... 0 0 0 .. vl

i.e. to the matrix (e;;) with e;; = iIdm and e;; = 0 for ¢ # j. The element
J € 3(go) that defines the partial complex structure of g is associated to plus
or minus the matrix:

;e V/=II; 0 0 0 0 0 0
... 0 0 0 0 0 0 0

0 0+v=IT 0 0 0 0

0 0 0 05 0 O 0

0 0 0 0 —/=1 0 0

0O 0 0 0 0 0 0

0 0 0 0 0 0 —/III

ie. to the matrix (n;;) with n;; = %Idlil if ¢ = 7 is an odd integer, and
n;,; = 0 otherwise.

4.2.5 Simple Levi-Tanaka algebras of the complex type

Eg
The basic roots oy, ..., as of the complex Lie algebra Eg are organized in
the Dynkin diagram:
o O O o )
oy [0 2% [o 1 s Qg
23}
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The root a4 is a ramification point for the Dynkin diagram and therefore,
according to condition (2) of Theorem 4.2.1, we must restrict to the following
cases:

(1) |aa| = -1

(1) oz € B_y C{ou, 3,0}
(i41) g € B_y C {ag, a5, 06};
(iv) B_1 C {01, a3, 05,06}

To check condition (3) of Theorem 4.2.1, we only need to consider positive
roots having at least one coefficient equal to 2 and at least one coefficient
equal to 0. These roots are:

Qg + o3 + 20!4 + (871
ap + a + a3 + 204 + o5

oy + a3 + 204 + @5 + 05
ap + o + 203 + 204 + 05

Qy + a3 + 20[4 + 2625 + ag.

In case (z) the LT-admissible B_; are therefore given by:
all B_; containing cy and at least one of the roots as, a3, as.

In case (ii) and (444) all B_;, containing at least two elements are LT-
admissible.

Finally, in case (iv), the necessary and sufficient condition for B_; to be
LT-admissible is that it equals one of the following:

{oq, a3}, {ou, 03,05},
{01706}7 {051,013,@6},
(4.20) {043= a5}, {011, Qs, 016},
{aa,as}, {a’s,as,as},

{a1, 03, a5, 06}

Since the highest root in R_ is § = a + 2 + 203 + 34 + 205 + €6, the kind
 of a Levi-Tanaka algebra associated to a LT-admissible B_; is obtained by
the formula:

—p = |ou| + 2|ag| + 2|as| + 3|ay| + 2|as| + |o]
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and therefore we have 2 < p < 11.

The Dynkin diagram of Eg has the only non trivial automorphism that
leaves ay and a4 fixed and exchanges o; with o and a3 with as. There
are therefore up to isomorphisms 26 nonisomorphic weighted Dynkin dia-
grams associated to simple Levi-Tanaka algebras of the complex type FEg,
corresponding to 49 nonisomorphic Levi-Tanaka algebras. We will give the
complete list in the appendix, also indicating their kind, the complex di-
mension of each subspace g, and the structure of the reductive subalgebra

go-
4.2.6 Simple Levi-Tanaka algebras of the complex type
Er

The basic roots a, ..., a7 of the complex Lie algebra E; are organized in
the Dynkin diagram: \

O— O— O O— O— O
o, (o Oly Qs O Oy
(02

The root a4 is of ramification for the Dynkin diagram. The roots « in R_
for which we have k;(a) = 2 and kj(a) = 0 for some 1 < i,j < 7 are all
roots from Eg which have a coefficient k;(c) equal to two (we have in this
case k7(a) = 0) and the roots

oy + a3 + 20!4 + a5 + ag + o
oy + a3 + 204 + 205 + a5 + oy
oy + a3 + 20(4 + 2035 + 2a6 + ar.

In particular the LT-admissible B_; which do not contain «; are obtained
from the B_; which are LT-admissible for Es. When oy € B_;, we observe
that:

1. the only admissible B_; of the form {o4, a7} are {a1, a7} and {ag, a7},
because the root system of Eg contains roots o with k;(c) = 2 for every

i # 1,6
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2. if B_; contains oy and at least other two roots o; with 1 < 1 < 6,
then the necessary and sufficient condition in order that B_; be LT-
admissibile is that B_; \ {a7} be LT-admissible for s and, when a4 €
By, we need also that B_; be contained in the union of only two of the
three branches issued from ay4.

Since the highest root in R_ is § = 2a; + 2+ 33 + 40y + 305+ 205 + a7,
the kind p of a Levi-Tanaka algebra associated to a LT-admissible B_; is
obtained by the formula:

—p = 2|y | + 2|o| + 3las| + 4| + 3las| + 2|as| + |ad|

and therefore we have 3 < u < 17.

Taking into account that there are no nontrivial automorphisms of the
Dynkin diagram of Ey, we conclude that there are 84 nonequivalent weighted
Dynkin diagrams, each one corresponding to two nonisomorphic simple Levi-
Tanaka algebras g of the complex type E7. We list them in the appendix,
also indicating their kind, the complex dimension of the subspaces g, and
the structure of the reductive subalgebra go.

4.2.7 Simple Levi-Tanaka algebras of the complex type

Eg
The basic roots ai,... ,as of the complex Lie algebra Eg are organized in
the Dynkin diagram:
o O ® O— O O )
oy [0 X} [o 3% s Og g g
o>

Again the root oy is of ramification. The roots o € R_ for which we have
ki(e) = 2 and k;(c) = 0 for some 1 < ¢,j < 8 are the roots of E7 (where we
take kg(c) = 0) for which k;(c) = 2 for some 1 < i <7 and the roots

oy + o3 + 204 + a5 + 0 + Q7 + O3
a + a3 + 204 + 20!5 + ag -+ a7+ og
oy + a3 + 204 + 205 + 206 + a7 + oOs
oy + o3 + 2&4 + 2a5 -+ 20!6 -+ 20[7 + og.
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We note that for all these four roots kg(ar) = 1. We conclude that when B_,
does not contain g, a necessary and sufficient condition in order that it be
LT-admissible is that it was admissible for E;. When ag € B_1, we note
that:

1. the only LT-admissible B_; of the form B_; = {oy, s} with 1 <i< 7
is {az, s} because for every 1 < i < 6 the root system of F; contains
some root a with k;(a) = 2;

2. if ag € B_; and B_; contains at least three elements, then it is LT-
admissible if and only if B_; \ {as} is LT-admissible for E; and is all
contained in two of the three branches issued from a4 in case ay € B,.

Since the highest root in R_ is § = 20y + 3a + 4oz + 6 + Sais + dog +
3az +2as, the kind p of a Levi-Tanaka algebra associated to a LT-admissible
B_; is obtained by the formula:

—l = 2]051! + 3!02! + 4!&3[ + 6!0!4! + 5'0!5] + 4’&5! + 3|C¥7| + 2[agl

and therefore we have 5 < 1 < 29 (with the one exception of 28).

Since there are no nontrivial automorphisms of the Dynkin diagram of
Es, we conclude that there are exactly 165 nonisomorphic weighted Dynkin
diagrams corresponding to simple Levi-Tanaka algebras of the complex type
Eg (each corresponding to two nonisomorphic conjugated Levi-Tanaka algeb-
ras).

We list in the appendix all LT-admissible choices of B_;, giving for each
one the kind of the corresponding Levi-Tanaka algebra g, the complex di-
mension of the g,’s and describing the structure of the reductive subalgebra

Jo-

4.2.8 Simple Levi-Tanaka algebras of the complex type
Fy

The basic roots os,... a4 of the complex Lie algebra Fy are organized in
the Dynkin diagram:

O———O0—>—0——20

[0 2] (053 0.4 Oy
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There are no ramification points, so that we have only to care for the positive
roots having at least one coefficient equal to 2 and at least one coeflicient
equal to 0. The list of these roots is:

ag + 203
a1 + ag + 2a3
oy + 203 + 0y
oy + 209 + 203
oo + 203 + 204.

Again we can compute the kind p of the Levi-Tanaka algebras associated to
Fy, using the highest root § = 24 + 3as + 403 + 204 € R, by the formula

—p = 2|on| + 3|az| + 4]as| + 2]as.

The possible values of u are 5,7,9,11. There exists a Levi-Tanaka structure
on g if and only if B_; is equal to one of the following sets:

{oq, a2}, p=5; {a,o0n, 04}, p="7;
{Oﬁz, 053} y m= 77 {012, a37a4} ) H= 9:
{an, 0,3}, p=09; {al,az,as,q4}, p=11.

In the appendix we will list for each LT-admissible B_; the kind of the
corresponding Levi-Tanaka algebras g, together with the complex dimensions
of the subspaces g, and the structure of the reductive subalgebra go.

4.2.9 Simple Levi-Tanaka algebras of the complex type
G

The basic roots aj,as of the root system G, are organized in the Dynkin
diagram:

C====0

o, o,
There are no ramification points and the only possible choice B_; =
{01, 0y} = B satisfies condition (3) of Theorem 4.2.1, so that there is a Levi-
Tanaka structure on the corresponding graded Lie algebra g. Since there
are no nontrivial automorphisms of the Dynkin diagram, there are exactly
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two nonisomorphic Levi-Tanaka algebras of the complex type G,. They have
kind 5 and we have:

(dimcgo =2, go = 05(C)
dimc g+1 = 2
< dimg g2 = 1
dimc g3 =1
dimc g+4 =1

\dimc 845 = 1.

4.3 The weighted Satake diagrams of simple
Levi-Tanaka algebras of the real type

We turn now to investigate the possibility of defining a Levi-Tanaka structure
on a real simple Lie algebra of the real type. If g is a Levi-Tanaka algebra,
then the complexification g< of g is also a Levi-Tanaka algebra for the com-
plexification of the partial complex structure. Therefore, if g is a simple
graded Lie algebra of the real type, admitting a structure of Levi-Tanaka
algebra, it follows from Theorem 4.2.1 that there are only two possible par-
tial complex structures on g, one being the opposite of the other. Moreover,
the fact that g© admits the structure of a Levi-Tanaka algebra is a necessary
condition in order that g could be made into a Levi-Tanaka algebra.

Let g be a simple graded Lie algebra of the real type. By Theorem 4.1.7 in
order that its weighted Satake diagram X, be LT-admissible, it must contain
curved arrows and the graduation of g will be determined by a partition
{Bo, B_1} of its vertices, where the set B_; of the roots having degree (—1)is
a nonempty union of pairs of distinct white roots joined by a curved arrow.

If g is a simple Levi-Tanaka algebra of the real type, the underlying
weighted Dynkin diagram Aj corresponds to one which is associated to a
Levi-Tanaka algebra of the complex type. Therefore we can use the results
obtained in the case of simple graded Lie algebra of the complex type to
obtain the classification of those of the real type.

Indeed we can use the following criterion:

THEOREM 4.3.1 Let g be a simple graded Lie algebra of the real type.
Then a necessary and sufficient condition in order that g admits the structure
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of a Levi-Tanaka algebra is that for its Satake diagram X the following
conditions (1) and (i) hold true:

(1) B = ByUDB_, and the set B_; of vertices of weight (—1) is nonempty
and consists of a disjoint union of pairs of white roots joined by a curved
arrow;

(ii) g% admits a structure of Levi-Tanaka algebra.

Proof. A direct inspection of the Satake’s diagrams of simple Lie algebras
of the real type shows that, when (7) holds, we also have the following:

(#43)  if o,/ € B_; are joined by a curved arrow, then the line joining o
to o/ in the Dynkin diagram A, contains an even number of vertices in
B_;.

Assume that J € 3(g$) defines a partial complex structure on g€ for which g©
is a simple Levi-Tanaka algebra of the complex type. To prove the theorem,
it suffices to show that condition (#ii) implies that [J, g—1] C g1

Let o € B_,. Write an eigenvector of o in the form X + /=1Y with
X,Y € g_;. We have:

[, X +V-1Y] = nX +nv—-1Y with n==xv-1

If o is the involution of g€ induced by the real form g, we obtain
T
o =ad + Z:Bu with /81: "'7137‘ € R
i=1

for the root o joined to o by a curved arrow. It follows that ad(J) acts on
g® and on g* as the multiplication by the same factor 7. Since X —+/ —-1Y
belongs to g*°, we obtain

[J,X]=nv=1Y, [JY]=-nv/-1X

because the line joining o to o' in the Dynkin diagram contains an even
number of roots of B_;.

Because the real and imaginary parts of vectors in g* for a € B_, to-
gether with their images by ad(go), generate g_;, we obtain that [J,g-1] C
g-1. a
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Hence the simple Levi-Tanaka algebras of the real type are, modulo isomorph-
isms, in a one to one correspondence with the simple Levi-Tanaka algebras
of the complex type for which B_; satisfies condition (z) above.

We can now proceed to classify, up to isomorphisms, all simple Levi-
Tanaka algebras of the real type. We already know that their complexifica-
tions should be of the type A, D, or Eg (cf. Proposition 3.6.9).

4.3.1 Simple Levi-Tanaka algebras of the real type A4,

There are only two types of Satake diagrams associated to A, that contain
curved arrows. They correspond respectively to the real Lie algebras su(p, q)
with p < g and p+¢ = £+1 and to the real Lie algebra su(p, p) with p > 2 and
¢=2p—1. Accordingly, we divide the discussion of the case of Levi-Tanaka
algebras of the real type A, into two subcases.

Subtype su(p,q), 1 <p <gq,p+g=~+1. The Satake diagram is:

o— O @—---oeroooe- — @O —0
o o, Oyt Ogy O, o,

According to Theorem 4.3.1, the weighted Satake’s diagrams associated to
Levi-Tanaka algebras isomorphic to su(p, q) are those corresponding to the
choices of

B—l = {Ckil, ey O, Qg 11, ...,Oﬁg__,;l_H} with 1< <...< 1, < p.

The kind of these Levi-Tanaka algebras is 2v, according to the discussion
for the complex type A,.

Let us set
(4.21)
do — g + 1- 2'5,,, dl - 'iy - iu_l, eeey dh = i,,..h+1 - ’I;,,_h, ceey d,, - il-

It is convenient to set also d, = 0 for h # 0,1, ..., v. We obtain then

(4.22)
do =~ DQV(R) &) 511(]7 - iy, g+ 1-— p— ’LU) &) @ ﬁl(di, (C)

>0
d;>1

115



and

(dimggo =d2 +2Y7,d?—1
v—2r—1 T
) dimg ga(ori1) =2 9 didorgri + 2y didyry1i  for 720
v-2r =0 r—1 =t
dimg gror = 2 Z didoryi + 2 Z didor—; + dg for r>0.
\ =0 =1

To obtain a matrix representation of the Levi-Tanaka algebra g associated
to this choice of B_;, we first introduce the dy x dy matrix

~ I, 0
B=(""rw
( 0 IE+1—-p-iu>

and consider then the (£ + 1) x (£+ 1) matrix

0 0 ... 0 0 0 ... 0 I
0 0 ... 0 0 0 ...1I, O
0 0 ... 0 0 I 0 0
B=|0o 0 .. 0 B 0 0 0
0 0 ...1I; 0 0 0 0
0 Iy, ... 0 0 0 ... 0 0
I, 0 ... 0 0 0 ... 0 0

We identify g to the Lie subalgebra of sl(£+1, C) of the matrices X satisfying
X*B + BX = 0. It is convenient to write X as a block matrix:

:L“’iy_j x_i,o x—irj
X =| To~j Zoo Toj
Zi—j  Tio  Tij /=10

with
(2;; € M(dpyy x dj,©)  for 4,5 =0,%£1,...,xv
Ti; = —Tj—i for 4,j==1,...,xv
1%5;B+2-j0=0 for j==1,...,%v
T} + Bzo—i =0 for i==#1,..,+v

(2§08 + Bzop =0
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The characteristic element E of g is then associated to the matrix:

—vly, 0 .. 0 0 0 .. 0 0
0 (1-vI4y, ... 0 0 0 ... 0 0
0 0 . =I; 0 0 ... 0 0
0 0 . 0 04 O ... 0 0
0 0 o 00 Iy ... 0 0
0 0 e 00 0 ... (v=DI, o0
0 0 .. 0 0 0 .. 0 vl

and the partial complex structure is defined by plus or minus the matrix:

mlz; 0 0 0 0 0 0
0 ml, 0 0 0 0 0
0 0 mlpb 0 0 0 0
0 0 0 mly, 0O 0 0
0O 0 0 0 mIy 0 0
0 0 0 0 0 mly O
0 0 0 0 0 0 ml

— /_1 2!d1+d3+...)
where { d !i’:-zld +da+
m = -V Tz

£+1

Subtype su(p,p), 2p =£+1, p > 2. The Satake diagram is:
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Therefore, according to Theorem 4.3.1, the choices of B_; corresponding to
Levi-Tanaka algebras are:

Boy = {Qui, .-y CiysQopiyy- e > O2piy }
withry>1 and1<i;<... <2, <p-—1

The corresponding Levi-Tanaka algebra g has kind 2v.
We set

(4.23)
do = 2(p - iu), dl =1, — 7:u—-la ooy dh = iu—h—!—l — ly—hy ey du =1

and also d, = 0 for h #0,1,...,v.
We obtain

go =~ 02, (R) @ su(p — 4,,p — i) ® P sl(d;,C)

HS|
and
(dimg go = d2 + Z;-’zlod? -1
ﬁ dimg g+(2r41) = 2 "‘2—1 didory14i + 2 j; didor41—; for 7>0
LdimIR gior =2 Vfr didor i + 2§ didor—; +d?  for r>0.
i=0 i=1

We obtain a matrix representation analogous to that of the case su(p,q)
taking instead of the matrix B used before the new matrix

= [0 I
B=(,° % ).

4.3.2 Simple Levi-Tanaka algebras of the real type D,

There are only two types of Satake diagrams associated to D that contain
curved arrows, which correspond to the real Lie algebras so(¢ —1,£+1) and
s0*(2£) with £ = 2p + 1, respectively. We discuss the two cases separately.
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Subtype so(¢ —1,£+1), £ > 4. The Satake diagram is:

Therefore the only possible choice is:
B_y = {oy_1, o4}

and it is LT-admissible. A Levi-Tanaka algebra g associated to the corres-
ponding weighted Satake diagram has kind two and we obtain:

go = 02(R) @ sl(£ - 1, R)
and
dingo = £2 — 2042
dimR g1 = 2(£ - 1)
dimR g+2 = 5—124—2 .

To obtain a matrix representation of g we introduce the matrix

0 0 I
B=|0 I 0
Iy 0 O

and identify g to the subalgebra of gl(¢ + 1,R) of matrices X such that
XB + BX = 0. We write these matrices in the form

T_1,-1 T-10 T-1;1
X = (%,«1 Zo,0 330,1)

Ti,~1 T T1.
with
(24141 €M((L-1) x (£—-1),R)
Ti10 € DJT((€ - 1) X Z,R)
STo+1 EM2%x (£-1),R)
Too € 9ﬁ(2 X Q,R)

tiL'i,j = —Tj— for i,j = O,ﬁ:l.

\
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The characteristic element F is associated to the matrix

—I,.; 0 O
0 0, O
0 0 I

and the partial complex structure is defined by plus or minus the matrix

0p_1 0 0
o (99) 0 |-
0 0 0g-1

Subtype so0*(2¢), £=2p+1, p > 2. The Satake diagram is:

Therefore the only possible choice of B_; is:

B_; = {ogp, agpi1}

and it is LT-admissible. If g is a corresponding Levi-Tanaka algebra, then it

has kind 2 and
go = 02(R) @ su* (2 — 4).
Moreover we obtain:
dimg go = 4p* + 1
dimg g+1 = 4p
dimg g+2 = p(2p — 1).

Let us describe a matrix representation of g. For every positive integer h we

denote by I, the (2h) x (2h) matrix
0 —1I
I, 0)°
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Then we introduce the two (4p + 2) x (4p + 2) matrices:

Iy 0 0 0 0 Iy
A=10 I, 0 and B=|0 L, 0 {.
0 0 I Ly 0 0
Then we identify g to the space of complex (4p + 2) X (4p + 2) matrices X

such that
XA=AX and XB+BX =0.

Using the block notation
T_1,-1 T-10 T-1;
X = To,-1  ZToo  To,
Ti,-1 T10 Ti1
with
Ti+1 € M(2p x 2p,C)
Tr1p0 € ﬂJI(Zp X 2, (C)
To,+1 € (2 x 2p, C)
Too € 9)?(2 X 2, (C)
we obtain the relations
fi,jj = jiL',"j for Z,j = 0, +1
t.'E,’,j = —T—j - for i,j = 0, +1

where [ is either [, or 5 according to the sizes of the matrices involved.
The characteristic element and the partial complex structure correspond re-
spectively to the matrices

—L, 0 0 0p 0 O
0 0, 0] and |0 (°3) 0.

0 0 I 2p 0 0 02p

4.3.3 Simple Levi-Tanaka algebras of the real type Fs

There are only two types of Satake diagrams associated to Fg that contain
curved arrows: they are usually referred to as Egll and EgllI. Accordingly,
we divide the description into two parts.
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Subtype EgIl. The Satake diagram of EglI is:

The choices of B_; corresponding to Levi-Tanaka algebras are:

{043,05}, {041,046} and {al,as,as,as}-

Due to the automorphisms of EgllI, there is, modulo isomorphisms, a unique
Levi-Tanaka algebra corresponding to each LT-admissible choice of B_;. We
list below the main features of each of these algebras:

(B_; = {01, a6}, p=2
go =~ 02(R) @ s0(3,5)
(4.24) dimz go = 30

dimg g+1 = 16

(dimg g1 = 8,

(B_, = {a3, a5}, p=4
go = 02(R) @ 5l(2,C) & sl(3,R)

dimz go = 16
(425) 4 dlmR 8+1 = 12
dlmR 842 = 12

dimg g+3 = 4

(dimg g4 =3,
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(4.26)

Subtype EgIII.

(B_, = {1, 03, a5, a5}, u==6
go =~ 04(R) @ 5l(3, R)

dimg gg = 12

dimg g+ = 8

qdimg geo =9

dimg g+3 =6

dimg g+4 = 5

dimg g+5 = 2

\dimR 8+ = 3.

The Satake diagram of the root system EgIIT is:

Therefore the only possible choice of B_; is:

B_l = {O!l, Cl:’s}.

It is LT-admissible and, due to the automorphisms of EgIII, there is, modulo
isomorphisms, a unique Levi-Tanaka algebra g associated to it. Its main

features are:

(4.27)

(B_; = {01, as}, p=2
go =~ 02(R) & s0(1,7)

¢ dimg go = 30

dimg g4+; = 16

| dimg g4o = 8.
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Chapter 5

Finite dimensional Levi-Tanaka
algebras of codimension 2

In this chapter we shall consider finite dimensional Levi-Tanaka algebras of
the second kind. These are particularly interesting because they correspond
to those CR manifolds for which general results on the behaviour of the
CR complexes are known (cf. [30]).

A finite dimensional Levi-Tanaka algebra of CR-dimension n, CR-
codimension & and kind p = 2, is completely determined by the datum of a
k-dimensional linear subspace of the n?-dimensional linear space of Hermitian
symmetric forms. The case k = 1 is the one discussed in [39], [11], [41]. Here
we shall be interested to the case of higher codimension k¥ > 2. The results
that are known about the canonical form of a pair of Hermitian symmetric
matrices allow us to give a complete description of the Levi-Tanaka algebras
arising in the case k = 2.

The theory developed by Tanaka in [39], [40] and [42] makes it possible
to obtain results on the group of CR automorphisms of CR manifolds of
codimension 2, complementing and completing those obtained in [28] and
in [23].
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5.1 Canonical forms

Let m = @_,<p<om, be a pseudocomplex fundamental graded Lie algebra.
As shown in Proposition 1.3.1, the alternating map

m_; xm_; 3 (X,Y) = [X,)Y]em_,
uniquely defines a Hermitian symmetric (vector valued) form
f: m_; Xm_; 3> (X,Y) — f(X,Y) e CRrm_y

such that
[X, Y] =S(X,Y) VX, Y em_;.

The form f is defined by
§(X,Y)=[JX,Y]+V-1[X,Y] VXY em_;.
We consider the natural map
L:miy & —fe € Hs(moy)

from the dual space m*, of m_, to the real linear space £;(m_) of Hermitian
symmetric forms on m_;, which is given by

fe(X,Y) = (f(X,Y),£) VEemly, VX,V €my.

Vice versa, given a finite dimensional C-linear space V' and a linear sub-
space F' of the space $:(V') of Hermitian symmetric forms on V, there is a
pseudocomplex fundamental graded Lie algebra m = m_s ® m_; of kind 2
such that

m_;=V and L(ml,)=PF

This algebra is unique up to isomorphisms and can be described by setting
m_p = F7, [m—z,m—z] = [m—27m—-1] =0

while the Lie product [X, Y] of two elements X,Y € m_; = V is the R-linear
functional on F:

[X,Y]: F>h—Sh(X,Y)eR
The complex structure J of m_; is the complex structure of V' and m is a

graded pseudocomplex Lie algebra m of kind 2 and type (n,k) with n =
dimcV and k = dimgF'.

126



Remark 5.1.1 The group GL¢(V) of C-linear automorphisms of V acts on
the space (V') of the Hermitian forms on'V by

GLc(V) x H(V) 3 (a,h) — a-h e H(V),
where
a-h(X,Y) = h(aX,aY) Vae GLc(V),Vhe H(V),VX,Y € V.

The subspace $s(V) is stable under this action of GLc(V). Moreover,
GLc(V) transforms k-dimensional subspaces of $:(V) into k-dimensional
subspaces of H5(V).

We denote by Gri($s(V)) the Grassmannian of k-dimensional subspaces of
$s(V) and by Ox($s(V)) the space of orbits of Gry(53;(V')) for the action of
the linear group GL¢(V).

Given a k-uple (fi,...,f;) of independent Hermitian symmetric forms,
we denote by F' =< fy,...,fx > the subspace of $,(V) that they generate,
and by [F] the orbit of F in D4($H,(V)).

PROPOSITION 5.1.2 Let n, k be positive integers, with 1 < k < n? and
let V' be a complex vector space of dimension n. There is a 1-to-1 correspond-
ence between pseudocomplez fundamental graded Lie algebras of kind 2 and
type (n, k) -modulo isomorphisms- and the orbits of GL¢(V) in Or(Hs(V)).

Proof. Let m = m_, @ m_; be a pseudocomplex fundamental graded Lie
algebra. Let a € GL¢(m_;) and b € GLg(m_;). Then we obtain another
isomorphic fundamental graded Lie algebra m = m_,®th_; by setting m_; =
m_; as C-linear spaces and m_, = m_, as R-linear spaces and defining the
Lie product by:

[Tﬁ—h Tﬁ—z]’ = [m—z, m—z]’ =0

and
[X, Y] = b([a(X),a(Y)]) VX, Y em_; =m_,.

The isomorphism ¢ : M — m is given by
m13X —aX)em; and m_y>T — b }T) € m_,.

Indeed the equation ¢([X,Y]) = [#(X), ¢(Y)] reduces to the definition of
the Lie product in m.
By this remark, the statement of the proposition becomes clear. O

127



Using this proposition, we can parametrize pseudocomplex fundamental
graded Lie algebras of kind 2 and type (n, k) -modulo isomorphisms- by fixing
a complex n-dimensional vector space V and a point F' in one of the orbits
of O1($Hs(V)). We will denote by m(F) the corresponding pseudocomplex
fundamental graded Lie algebra and by g(F) its canonical pseudocomplex
prolongation.

The subspace F' and the corresponding algebra m(F) are called nonsin-
gular if the space F' € (V') contains a nondegenerate form.

Note that a nonsingular algebra is nondegenerate. The converse is in
general false (see the example in 3.8.3).

Remark 5.1.3 Let P9, (V) denote the projective (n* — 1)-dimensional space
corresponding to the linear space Hs(V). The action of GLc(V') defines, by
passing to the quotient, an action on P$H,(V). Let us denote by C the image
in PH,(V) of the cone of positive definite Hermitian symmetric forms on V.
This is a convez body in PHs;(V). The corresponding Hilbert distance in C is
given by

d([h1], [ho]) = sup log 2%

1<ij<n  AJ

where [hy] and [ho] are the points of C corresponding to two positive definite
Hermitian symmetric forms hy, by on'V and Ay, ..., A, are the eigenvalues
of hy with respect to hy (i.e., denoting still by hy and hy the anti-C-linear
maps V — V* corresponding to the forms hy and hs, the eigenvalues of the
C-linear endomorphism hy*ohy of V). The group GLc(V') operates on C. Iis
image in its representation in the group of permutations of C is the connected
component of the identity in the Lie group of isometries of the Hilbert metric.

For the study of the Levi-Tanaka algebras of the second kind with CR-
codimension equal to 2, we will employ the following lemma (taken from [43]).

LEMMA 5.1.4 Let F C $:(V) be a two-dimensional linear subspace, such
that m(F) is nondegenerate. Then there is a direct sum decomposition of V:

(5.1) V=Vi&..0V,
with the following properties:

(i) V; is orthogonal to V; with respect to every formf € F for0 <i#j<m
(biorthogonality);
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(i) for each i = 1,...,m, the subspace V; is not a direct sum of two non-
trivial subspaces that are orthogonal with respect to all § € F (indecom-
posability).

Let f1,f2 be a basis of F. Then, for each i = 1,...,m, we can choose a
basis of V; in such a way that, for all A\, u € C, the matriz corresponding to
the restriction of pfo — Ay to V; has one of the following forms, involving
parameters v € R,I" € C, e, E, £ natural numbers, and € = +1:

(I) an e-square matriz:

By — A
"
€De(7y, 14, A) =€ . with v € R;
By —A p
(II) a 2E-square matriz:
0 Dg(T, u, X .
C - R E\1, [y .

Dy(T, p,A) = ( Da(T, 1 ) 0 ) with' € C\ R;

(IIT) an e-square matriz:
—p
LA

€D, (oo, u, \) = ¢ .o ;

(IV) a (2E — 1)-square matriz:
—A
O H
S
DS (ﬂ) /\) = 12
“A p
Og—1
)\ u
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The decomposition (5.1) is essentially unique: this means that the number
and the dimension of the subspaces are uniquely determined and, after fizing
a basis f1,§2 of F, the forms of the blocks and the parameters involved are
uniquely determined.

The parameter € = %1 above is called the sign or inertial signature associated
to the correspondent block.

The numbers 7’s and I'’s are called roots or eigenvalues of the pair (1, f2)-
The set ¥ = X(f1, f2) of the roots, including co € CP! if the form given in
Lemma 5.1.4 contains blocks of type (III), is called the spectrum of (f1, f2)-

Remark 5.1.5 When F is nonsingular and f1,f2 are chosen with a nonde-
generate §,, the basis of V given in the lemma is one for which the matriz
corresponding to §7'fo is in the Jordan canonical form (here we used the
same letters both for the Hermitian symmetric forms and for the anti-C-
linear maps into the dual that they define); we call it a canonical basis.

In particular, the subspaces in the decomposition (5.1) are either indecom-
posable subspaces for §7'f2 corresponding to a real eigenvalue or the direct
sum of two indecomposable subspaces for fi L, corresponding to a non real
eigenvalue and its complez conjugate. In this case the spectrum % coincides
with the spectrum of the eigenvalues of 17 2.

We consider more closely the different blocks in the matrix representation of
f1, f2 given in the previous lemma. The blocks of type (I) are characterized
by the data of distinct real numbers y1, 72, - .. 71, With ; occuring in blocks
of distinct sizes e;; (m;; times), e; (M times), ..., eis; (Mg, times), e;; >
i > -+ > €5, and corresponding inertial signatures €;;p, for 1 < p < my;,
1<]<s“1<z<l

The blocks of type (II) are described by distinct conjugate pairs (I'y, ry),

, (I, T'z) of nonreal numbers, with T'y, I'; occuring in blocks of distinct
sizes 2B, (M, times), ..., 2Ers, (Mjg, times), En > -+ > Epg, I =
1,...,L.

The blocks of type (III) are described by their distinct sizes €1 (Moot
times), ... ,€oos0s (Moose times), With €1 > <++ > €cose,, and associated
inertial signatures €sojp, for p=1,...,Mej, 7 =1,..., 8c0-

The blocks of type (IV) are given by the datum of distinct parameters
2S£l§§£s
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The matrix associated to ufs — Af; in a suitable basis of V takes then the
form:

8; Tij

[/"]c2_’\f1] = @@@esz eij 7u“a/\)

i=1j=1p=1

Soo Mooj

@ @@eoopg €ooj OO .U‘aA)

j=1lp=1
L S; Mip;

'DEIJ(FI7 ’/\)
@ OOD (p, Funy )

I=1J=1P=1
Y, @DEJ(.U’7/\)
j=1

where we used the symbol of direct sum to indicate diagonal block decom-
position. This is called the canonical reduced form for the ordered pair of
Hermitian forms (f1, f2).

We consider now a 2-dimensional subspace F of $,(V) generated by a
pair of Hermitian symmetric forms (f1, f2). If f;, f; is another basis of F', then

there is B = ( Z z ) € GL(2,R) such that

(f1, 2) = (af1 + bf2, cfy + df2).

The canonical form of the pair (f;,f,) has blocks of the same type corres-
ponding to the same biorthogonal decomposition (5.1) of V. The spectrum
X' of (f, ) is obtained from the spectrum % of (f1, ;) by the action of ‘B
as a real projectivity on CP'. Indeed the spectrum X' of (f{, f,) is the image
of ¥ by the transformation

(5.2) ¢ : CP' 3 [z,w] — [az + cw, bz + dw] € CP* .

In particular, we can always choose a basis f1,f, of F' such that in the ca-
nonical form of the pair (f;, f2) given by Lemma 5.1.4 do not appear blocks
of type (III).

The question of the equivalence of Levi-Tanaka algebras corresponding
to different 2-dimensional subspaces of £(V) can be solved using the action
of GL(2, R) on the set of data

(Vs €15, Mij, €ijp, 0O, €cojy Moojs €ocjpy LTy Bryy Mry, En).
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5.2 Computation of g

Let V be an n-dimensional complex linear space and m = m(F) = g2 @ g1
be the graded pseudocomplex fundamental Lie algebra associated to a given
two dimensional subspace F of H,(V). We fix a basis fi, f» of F' and denote
by (Fi,F,) the matrices corresponding to fi,fz in a canonical basis of V'
as described in Lemma 5.1.4. The elements of go correspond to matrices
A € gl(n,C) such that

(5 3) A*F1+F1A=aF1+bF2
. A*Fy + FobA =cF| + dF,

for some a,b,c,d € R.

We assume, as we can, that f; has maximal rank in F. Consider first the
case of a nonsingular F'. Then Fj is invertible and we can define the matrix
L =F'F,.

From the first equation in (5.3) we obtain

(5.4) F'A*F = —A+al +bL

and hence, substituting this expression into the second, we get:
(5.5) [A,L] =bL*+ (a—d)L —cI.

The following easy lemma will be useful for computing go:

LEMMA 5.2.1 Let A and L be two endomorphisms of a finite dimensional
complez vector space V. Assume that [L,[L, A]] = 0. Then for every p € Clz]

we have:
[p(L), A] = [L, Alp'(L).

In particular the generalized eigenspaces V* of the spectral decomposition of
L are A-invariant.

It follows that all generalized eigenspaces V* of L = F['F, are invariant
under all endomorphisms A € GL(n,C) which are solutions of (5.3). We
will denote by A* the restriction of A to V.
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5.2.1 Computation of p_s(g)

We begin the study of go = go(F) by computing its p_, representation. To
describe p_s(go), it is convenient to introduce four f-square matrices that
will be used in the discussion below:

01 1
Jg: ) Dlz )
1
0 1
e~}
=
M, =
Iy
2
3y
and o
0 % £-3
0 =
0
Ny =
0 5t
-
0
0

We distinguish different cases, according to the nature of the spectrum ¥ of
the pair (1, f2).

(0): X =0, ie. there are only blocks of type (IV).
For

[uf2 — M1] = D De; (1, ),
7j=1

we set s
A(h) = @ Agj (h) for h=1,2,3,4,
j=1

133



where, for each integer £ > 2,

4e() = 3hen
Ae(2) = (Mg_%Ig Dg_lMg_ng_l—%IH)
Ae(3) = (N”%Jg Dg_l(Ng_l—éJs-ﬁDs-l)
Ae(4) = (Dg(N”g?;%)Dg Ng_l—-é-Je-l)‘
Then:
pata) = (5 9)
pata) = (5 5)
pata) = (4 5)
pata) = ()

Therefore p_s(go) = glg(g-2) in this case.

Remark 5.2.2 From the discussion of case (0) it follows that, when ¥ #
0, the existence of blocks of type (IV) imposes no restriction on p_s(go) C
glg(g_2); by this we mean that the form of p_2(go) only depends on X.

Using Remark 5.2.2, we can assume for simplicity, while discussing the cases
where & # @, that the canonical form of (Fy, F3) does not contain blocks of
type (IV).

(1): E={1},7eR
By computing the trace of the two sides of (5.5), we have 0 = by*+(a—d)y—c.
Assuming, as we can, that v = 0, we obtain ¢ = 0.

For

§1 ™Maj

[ufz = M1] = D D €1jpDer; (0, 1, A)

j=1p=1
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we set:

P ( ey ... ®M,y,)

n'g

myj—times

©...0N,y,)

o’

to obtain:

All) = I,

A(Q) - .81 ~

A@B) = éj}l(iveu
p—2(A(1)) =
p-2(A(2)) =
p-2(A(3)) =

a'e

myj—times

(
[
(

1

10
01

0 -1

01
00

)

)
)

In this case p_y(go) turns out to be isomorphic to the Lie algebra of upper
triangular 2 x 2 real matrices.

(2): T={rrhmnreR n#mn
In this case, by taking the restriction of the two sides of (5.5) to the subspaces
V1 V™ we obtain:
b(n)+(a—dn—-c=
b(1)?+(a—d)yp—c=0.

Taking, as we can, 7; = —1, v, = 1, we obtain

a=d
5.6
(5:6) {b =c.
For
s1 ™Mi1j so T2j
[/“’f? - /\fl] = @ @ eljpDeu (—17 H, )‘) @ @ @ GZjPDezj (17 H, /\) 5
j=1p=1 j=1p=1
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we set:

AQ) = I,
AQ) = @( oy M @@( o M)
Then:
ata) = (5 7)
paa@) = (1 }))-

Hence in this case p_s(go) is isomorphic to the Lie algebra of the group of
conformal linear transformations of the real hyperbolic plane.

2): ©=={I,I'},TeC\R
In this case we have the system:

bT?+(a—dT—c=0
b2+ (a—dl —c=0.

Taking I' = v/—1, we have

(5.7) {Z : i_

For

S My 0 Dg,,(vV/~=1,1,A)
,U,fz - )‘fl @ @ ( DE;J (_\/—_—T7l~l'7 >‘) ’ 0 ) ,

we set:
AQ) = I,
S
A(Q) = @ (\NEU -V —lMEu) @ (NEIJ + v _1ME1J2 .
J=1

M, j—times
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Then:

pala) = (5 9)
eata) = (5 0).

Thus p_5(go) is isomorphic to the Lie algebra of the group of linear conformal
transformations of the Euclidean plane.

(3): X contains at least three distinct elements 1,72, v € C.
We obtain the system

b(n)?+(a—d)yr—c=0
b(1)?+(a—d)yp—c=0
b(73)?+(a—d)y3~—c=0

which has solutions

a=d
(5:8) {b=c=0.

Then p_s(go) is the 1-dimensional Lie algebra of the real multiples of the
identity on g_,.

9.2.2 The "homogeneous” system

To complete the computation of gy = go(F), we observe that all solutions
of (5.3) are obtained by adding to those found in the previous subsection the
elements of ker p_j, i.e. the solutions of the ”homogeneous” system:

59) {A*F1+F1A=o

A'Fy, + F;A=0.

When F) is nonsingular, the homogeneous system is equivalent to

x -1
(5.10) {A = -hAR

[A,L]:O,
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where L = FJ ' Fy.

Note that, when (F}, F3) is in the canonical form, Fy = F l=Fyand L
is a Jordan matrix. Moreover L is self-adjoint with respect to Fj.

To compute ker p_, we use the classical Frobenius theorem from linear
algebra. The matrix corresponding to an element of go is block-diagonal, of
the form: ) .

diag(A™,... A" A AT , ATz ATL)

where v1,...,%,T1,..., 1 are respectively the eigenvalues of L which are
real and which have a positive imaginary part.

Let n; = dime V¥ and ny < ng < ... < ny, be the dimension of the
subspaces of a Jordan decomposition of V7 for the restriction of L. In a
basis adapted to the Jordan decomposition, A% = (A}}) and we have:

(5.11)
Al e /-1R[J,,,] forh=1,...,7;

. ) Dy, B*D
AY = (0,B), AZ‘h=—( "0 ")

with B € C[J,,,] for1<h<k <.

In particular, the dimension of the Lie subalgebra of glc(V™) obtained by
restricting to V7 the p_; representation of ker p_; has real dimension

(2r; — Dy + (2rs — 3)nig + -+ + 3Ny 1 + Ny -

Let n; = dimg V! = dimg VIirand npy < mpp < ... < nrr, be the dimen-
sion of the subspaces of a Jordan decomposition of V17 (resp. V17) for the
restriction of L. In this case we obtain

Af] — __(AI‘])*
with AT7 = (A}})1<h k<, Satisfying

(5.12)
AEIIL € C[Jnlh] forh=1,...,m1
A= (0,B) with BeC[J,,] for1<h<k<r

A}Q,g:(ﬁ) with B € C[J,,,] for 1<k<h<rs.
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The dimension of the real Lie subalgebra of glo(VT" @ V1) obtained by
restricting to VI7 @ V7 the p_; representation of ker p_s is

2 ((27‘[ — 1)7?,[1 -+ (27‘[ — 3)77,[2 R 371[,7-1_1 -+ ’I’Z[1.,-I) .

LEMMA 5.2.3 Let (Fy, F») be a pair of independent Hermitian symmetric
matrices with Fy nonsingular. Let ¥ = {y,... ,v,T1,T1,... , [, T} be the
relative spectrum. Then the solutions A € GL(n,C) of the homogeneous
system (5.8) are block diagonal matrices (A™, ..., An, AT, ... ATr),

Assume that (Fy, Fy) is given in canonical form. Then the A% ’s are block
matrices (A}:) solutions of the system

(513 ¥Mw=—mmmﬁ

Tl = A =0,

where J)* and D' are J; and D, matrices of suitable size.
In particular: Ay, € V/=1IR[J}] (see, for instance, [18, vol.II, p.107] or
[21, § 64]).

The AT'1’s are block matrices AE{c such that
AIFI
AFI — ( hk r )
hk A”hljc
with ALl solutions of the system
(A%5)* = =D}’ A" Dy
(5.14) T TARE — AT —

T AnTr nl'r gy __
Jp A" — A" d =0,

where J,I:’ and D}:’ are Jy and Dy matrices of suitable size.
In particular: A3} = —A"1 € C[JH].

Assume now that F' is singular, i.e. all forms in F are degenerate. We
consider a biorthogonal decomposition

(5.15) V=UeW

where U is the direct sum of the subspaces of the decomposition (5.1) corres-
ponding to blocks of type (IV') and W is the direct sum of the subspaces of
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the decomposition (5.1) corresponding to blocks of types (I), (II) and (III).
Accordingly, we write:

U U
Fl:(Fl Flw) and F2=<F2 sz)

and decompose the matrices in gl(n, C) as:
AUU AUW
A= ( AWU AWW)'
Note that (5.9) yields

(5.16)

(AWW)*FIW + FIWAWW =0
(AW EW L FW AWV = 0.

In particular, Lemma 5.2.3 applies to describe the structure of A"". For
the other pieces, we have the equations:

(517 (AVV)*FY 4 FYAUY =0
‘ (AUU)*FY 4 FY AU =0

and

o fiaroreervar

(AWU) FY 4+ FYAUW = 0.

We solve (5.17) in the case where there is a unique (2 —1) x (2€ — 1) block
of type (IV). Let

a=ae= (") a-ae-(, )
Note that
Qi = Ieos,
Q@i = ( e ) L Q= ( 0 I )
Q3 = Je, QiQ2 = Jes.
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If AVU — [ @1 Q12 , we obtain
Qg1 Q2
a7, Qs + Qicge =0
a5 @ + Qo1 =0
o1yQi + Qi = 0.

We have, from the first equation equation:
Qo Qi+ ap =0 fori=1,2.

This implies that of; is a matrix having terms which are constant on the
diagonals. On the other hand of,Q; + Q122 = 0 implies that all terms
in the last row of of, which are not on the principal diagonal are zero and
0f1Q2+ Q2022 = 0 implies that all terms in the first row of o, which are not
on the principal diagonal are zero. This shows that a;; = Al for a complex
A and therefore gy = —~AJIz_;. The equation o3, @ + Q;a2; = 0 implies that

Oy + Qi021Q; = 0.

After deducing from this equation that all columns of a4, are equal, we obtain
Qg1 = 0.

Finally, the third equation shows that both Qo2 and Q3o are Her-
mitian antisymmetric. This gives oy, in the form

(5.19)
(83} Qo Q3 . Og_1
Qg 0%] Qe Qg
Q3 . e
’ with aq,... , 099 € vV—1R.
Ce
Geg—1 Cg Qiog_3
g --. Qg3 Qog-2

Therefore the Lie algebra of matrices satisfying (5.17) is in this case the
algebra of matrices of the form

/\Ig (8
(5.20) ()
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with « as in (5.19), and is a solvable real Lie algebra of dimension 2&.

In case there are several blocks of type (IV'), organized in such a way that
& < & < ... < &, the analogue of Frobenius formula yields an algebra of
real dimension

2 ((25 — 1)81 + (28 — 3)52 +o e+ 381+ Ss) .

5.3 Computation of g;

Before computing the g, = g1(F) term of the canonical pseudocomplex pro-
longation of an m(F) of type (n,2), we give some remarks valid for general
Levi-Tanaka algebras of the second kind.

An element of g; is described by the datum of two R-linear maps (B, D),
B:g_; —goand D:g_p — g_1 such that

(5.21)  B(X)Y - B(Y¥)X = D[X,Y] VX,Y € g4
(522) [DT, X] = B(X)T VX eg_1,VT € g_a.

When the Levi form is nondegenerate, the homomorphism D completely
determines the corresponding element of g;. To make this observation more
precise, we prove:

LEMMA 5.3.1 Let (B, D) be the pair of R-linear homomorphisms assoct-
ated to an element of g1. Then

(5.23) 2[B(X)Y, Z] = [D[Y, Z] + JDJY, Z), X]+
+[D[X, Z] + JD|JX, Z],Y] + [D[X,Y] + JD[J X, Y], Z]

for every X, Y, Z € g_;.

Proof. For X,Y,Z € g_, we obtain, since B(X) € go and (5.22) holds true

[B(X)Y, Z] +[Y, B(X)Z] = B(X)[Y, Z] = [D[Y, Z}, X].
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Thus we have:

[B(X)Y,JZ] = [B(Y)X,JZ] + DX, Y], Z]

= —[X,B(Y)JZ]+[DIX,JZ],Y] + [D[X,Y], JZ]

= [JX,B(Z)Y]+[JX, DY, Z]] + [D[X, JZ],Y] + [D[X, Y], J 2]

= [B(2)X,JY]+[DlJX,Y], 2] + [JD[Y, Z], X] +
+[D[X,JZ),Y] + DX, Y], ] Z]

= [B(X)Z,JY]+[D[Z, X+ JY]+[D[JX,Y], Z] +
+[JD[Y, Z], X] + [D[X, JZ),Y] + [D|X, Y], JZ]

= —[2,B(X)JY]+[D[Z,JY],X]+ +[D[Z, X] + JY] + [D[JX, Y], Z] +
+[JD[Y, 2], X] + [D[X, J 2, Y] + [D[X, Y], ] Z].

We note that
—[Z,B(X)JY]+[JZ, B(X)Y] = —[B(X)Y, JZ]
and hence
2[B(X)Y,JZ] = [D[Y,JZ] + JD[JY, JZ], X] +
+[D[X, JZ|+ JD[JX, JZ), Y]+
+[D[X, Y]+ JD[JX,Y],JZ],
from which (5.23) follows. a

We still denote by D : C ®g g_o — g_; the C-linear extension of D. Then
we have

D[Y,Z1+ JDJY,Z] = J(D[JY,Z]+ JD|Z,Y])
where f:g_; X g_; = C®xg g_» is the Hermitian symmetric form associated
to the vector valued Levi form.

Formula (5.23) for the pair (B, D) of R-linear homomorphisms associated to
an element of g; can be written in the form

(5.24)  2[B(X)Y,Z] =
[JDf(2,Y), X] + [JD}{(Z, X),Y] + [JD§(Y, X), Z]

for every X,Y,Z € g_;. We have the following:

143



PROPOSITION 5.3.2 Let B € Homg(g_1, Homg(g-1,9-1)) and D €
Homg(g_2,9-1) be two R-linear maps such that (5.24) is valid for every
X,Y,Z € g_,. Then B(X) € p_1(go) for every X € g_, and there is a
unique £ € gy such that:

(5.25)

£, X]=B(X) VX €ga
[£,T]=D(T) VT €g—s.

Proof. From (5.24) we deduce

(5.26) 2{(B(X)Y, Z) =
i(JX, D§(Z,Y)) + {(JY, Df(Z, X)) + §(J DF(Y, X), Z).

We note that the right-hand side is C-linear in Y and anti-C-linear in Z and
this shows that B(X) is C-linear on g_; because f is nondegenerate. Next
we show that B(X) € go for every X € g_;. Indeed we note that the last

two summands in the right-hand side of (5.23) are interchanged when we
interchange Y and Z and that also [JY, Z] = [JZ,Y]. Therefore we obtain

[B(X)Y,Z] +[Y,B(X)Z] = [B(X)Y,Z]-[B(X)Z,Y]
1
= [DIY,Z],X] VY,Z€g
This shows that B(X) € go and that (5.22) holds true. To prove (5.21), we
note that the first two summands in the right-hand side of (5.23) are inter-

changed when we interchange X and Y and that also [JX,Y] is symmetric
with respect to X and Y. Therefore

1
[B(X)Y - B(V)X,Z] = 5 (D[X,Y],Z] - [DIY, X}, 2)
= [D[X,Y], Z] VX,Y,Z € g_;.
The proof is complete. O
Let £ = dimgg_o and let us fix a basis T1,...,T; of g_, in such a way
that the scalar components fi, ... ,fr of the vector valued Levi form § have
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been selected. Set JDT; = & € g_y for j = 1,...,k. Then JD§(X, Y) =
> &§(X,Y) and we deduce from (5.26) that

(527 2,(B(X)Y,Z) =
*ny (X, &)fn(Y, Z) - ng Y, &n)fn(X, Z) +th Y, X)fi(&n, 2).

If we assume that f; is nondegenerate, then there are f,-self-adjoint C-linear
maps Ly,...,Lg: g_1 — g_; with:

fj(X7Y):f1(LjX7Y) VX,YEg—lyj=27---7k-
Then the equality (5.27) yields, for j =1,...,k and L; = id:
2L;B(X)Y = = > §i(X, &) LaY — 3 F(Y, &) LaX + 3 fa(Y, X)L,
h h h

In this case we obtain the following criterion:

PROPOSITION 5.3.3 Assume that F' is nonsingular. A necessary and
sufficient condition in order that D be the homomorphism D : g_o — g_;
associated to an element of g; is that, for £ = JDTy, j =1,... ,k, we have:

(5.28) > f(X, &) LiLaY + Y fi(X, &)L Ly X =
h h

DoFAX LY + > fi(X, &) LeX VX, Y €g_;.
3 h

After the preliminaries, we turn to the discussion of the special case where
dimg F' = 2. The situation of a nonsingular F' and that of a singular F are
completely different: in case F is singular, the component g; (F) is completely
determined by the singular part in the decomposition (5.1).

We begin by describing g; = g;(F) in the nonsingular case. We assume
that f; is nondegenerate and we write L = L,. Using Proposition 5.3.3, a
necessary and sufficient condition for a pair £;,£; € g_; to define an element
of g; is that the equation

(5.29)  F(X,&)LY + 7 (X, &) LY + 7(Y, &) LX + 51(Y, &) L2 X =
fl(LX, &)Y + f1(LX, &) LY + 11 (LY, £) X + f1(LY, &) LX

be satisfied for every X,Y € g_;.
We consider several cases, depending on the spectrum X of (fy, f2).

145



1): T={rv},7eR

We can assume vy = 0. Note that, as f; and f, are linearly independent,
at least one of the subspaces V; of the biorthogonal decomposition (5.1) has
dimension greater than or equal to 2. We distinguish two subcases:

(a). dimV; < 2 for all subspaces V; in the biorthogonal decomposition (5.1).

In these cases all pairs (&;,&) with & = L& for an arbitrary §; € V
define solutions of (5.29). Thus g; is not zero and dimc g, = dimcg-;.
When n = dimgg_; = 2, the prolongation g is described in the example
in 3.8.5.

(b). At least one of the subspaces V; in the biorthogonal decomposition (5.1)
has dimension greater than or equal to 3.

In these cases (5.29) has only the trivial solution & = & = 0, so that
g1=0.

Let V = V'@ V" where V' is one of the subspaces V;, having dimension
greater than or equal to 3 and V" is the direct sum of the remaining subspaces
in the decomposition (5.1). Fixing Y € V' with L?Y" # 0, we obtain for every
Xev"

f1(LX,6) =0
f1(X, &) = 1(LX, &)
fl(Xaé-Z) =0.

The first and the third equations imply that &;,& € V.
Considering X =Y € V' in (5.29), we obtain:

f1(X, &) LX + f1(X, &) LPX = fH(LX, &)X + 1(LX, &) LX .

For X in an open dense subset of V', the vectors X, LX, L?X are linearly
independent. Therefore we obtain:

fl(LXa 61) =0
f1(X, &) = 1(LX, &)
fl(X7€2) =0.

Since &1, &2, LE1, L& € V', we obtain that & = & = 0. Thus g, = 0 and g(F')
is solvable in this case.
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(2): Y= {71,72}a 7,72 € R, 71 # 7.
We have two cases:

(a). If all subspaces V; of the biorthogonal decomposition (5.1) have di-
mension one, then the algebra m = m_, ® m_; decomposes into a direct
sum of two pseudocomplex graded ideals of codimension one and its canon-
ical pseudocomplex prolongation is isomorphic to su(1 +p,1) @ su(1 + g, 1),
where p and ¢ are the dimensions of the eigenspaces relative respectively to
71 and 7z.

(b). Assume now that at least one of the subspaces V; has dimension greater
than or equal to 2. We can as well assume that this subspace is contained in
V™ and moreover that 71 =0, 15 = 1. We use (5.29) to obtain

L& =0
5.30
(5:30) {(&—sz)+§2-——o.

From
f1(X, 61— L&) =0

for every X such that LX # 0, we obtain & = L&, because the set of
the X with LX # 0 is a set of generators of V and f; is assumed to be
nondegenerate. The second equation of (5.30) allows us to conclude that
& = & = 0. Hence, in this case g(F) is solvable.

2): s={I,T}, T eC\R

Note that the CR-dimension n is even. We have two cases:

(a). If L is semisimple, i.e. all subspaces V; in (5.1) have dimension 2, then
g(F') is isomorphic to sI(%+2, C) with the structure of a Levi-Tanaka algebra
described in the example in 3.8.2 (see formula (3.18)).

(b). Assume now that there is a subspace V; in (5.1) of dimension 2d, with
d > 2. From (5.29) we obtain

L& — &+ V=16 + L&) =0
&+ L& +2¢/-16=0.

Then
L& +& =0
L& +6 =0
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and therefore L2¢; = &;. Since L has no real eigenvalues, we conclude that
& =& = 0. Hence g; = 0 and g(F') is solvable.

(3): X contains at least three distinct elements v1,72,73 € C.
In this case (5.29) gives us

—L& + (6 — L&)+ 728 =0
—L& + 726 — L&) + 736 =0
—~L& + 73(6 — Lé) + 7362 = 0.

Then & = & = 0 and so g; = 0. We note that we would obtain the same
conclusion using Theorem 3.4.1 because p_»(go) operates on g_o as multiple
of the identity (see 5.2.1). Therefore also in this case g(F) is solvable.

Next we take up the case in which all Hermitian symmetric forms in F
are degenerate. We fix a basis f1,f, of F with f; and f both of maximal
rank, and denote by NV;, for i = 1,2, the subspaces of V:

We decompose V into a direct sum
V=UesW

where U and W are orthogonal with respect to all elements of F', while the
canonical form of the restriction of the pair (f1,f2) to U is a direct sum of
blocks of type (IV), whereas the restriction of (fi,f2) to W leads only to
types (1), (IT), (11).

In this case, the necessary and sufficient condition in order that the datum
of £1,& € V defines an element of g; is that, for some B € Hom(V, glc(V)),

(5.31) 2f;(B(X)Y,2) = —ifj(X,fh)fh(Y,Z)~ij(Y,fh)fh(X,Z)

h=1

2
+ > (Y, X)f(én, 2) for j =1,2.
h=1

Choose j =1 and Z € N; \ {0}. Then (5.31) yields:
(X, 6)1(Y, 2) + 1(Y,&)f(X,2) =0 VX, Y eV.
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Since m(F') is nondegenerate, we can fix X =Y in such a way that f,(X, Z) =
f2(Y, Z) # 0. Then we obtain f,(X,&) =0 for every X € V, i.e. & € Ny.
In the same way, we prove that & € N,.
Using these information, we can rewrite (5.31) in the form:

2/;(B(X)Y, 2) = —§;(X, &)Y, 2) - §;(Y,€)§(X, 2)
+; (Y, X)§;(&5, Z) VX, Y,ZeV, j=1,2.

This can be written also as:

21(B(X)Y, Z2) = fi(-h(X, &)Y — 1 (Y, &)X + 11(Y, X)&1, Z)
2f2(B(X)Y, Z) = fo(—F2(X, &)Y = 1Y, &) X + f2(Y, X)&, Z)
From these relations we obtain that, for suitable bilinear forms ¢; : g_; x

g-1 — N; (i=1,2) which are C-linear in the first and R-linear in the second
variable:

(5.32)
2B(X)Y = —1(X, &)Y — 1(Y, &)X + 1 (Y, X)& + 1Y, X)
2B(X)Y = —f2(X, &)Y — f2(Y, &)X + f2(Y, X)& + ¢2(Y, X) .

First we exploit the two equations taking X =Y not belonging to N; & N,.
This yields the equation:

fl (X: 51) = fQ(X, §2)

which first is valid for all X € N; @ N; and then, since V' \ N; @ N, is dense
in V, we obtain:

(5.33) (X, 6) = fa(X,6) VX €gy=V.

Taking on each subspace V; of the biorthogonal decomposition (5.1) such
that F'|y; is singular a canonical basis

Zy, ... Dy,
we obtain that _
&=2 N2}
§2 = X piZ,
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for suitable A;, u; € C.
If £ > 2, taking X = Z; ,, in (5.33) we obtain

N = fo(ZE 1 miZE) = 0
and taking X = Zé&— | we obtain
0= fl(ZgE,'—lv NZY) = s -

In the case & = 2, by substituting X = Z3 in (5.33) we obtain that A; = y;.
Hence

&= Te=2 MiZj.
The equations (5.32) give then

{51 = Vgm0 N}

(Y, X)& + ¢1(Y, X) = (Y, X)& + ¢o(Y, X) VX, Y eV
and therefore |
(Y, X) = f2(Y, X)&2, ¢ (Y, X) = (Y, X)&; .

Hence we obtain the expression

(5.34) B(X) = %{_’fl(Xa 6)Y — 1Y, &)X + (Y, X)& + (Y, X)&}
= LRXE)Y ~ L)X + (Y, X6 + R(Y, X))
for every X,Y € g_; =V, with

L= \NZi, b= > NZs.

E;i=2 E;i=2
It follows that

PROPOSITION 5.3.4 If F is singular, then gi(F) is a C-vector space
whose dimension equals the number of three-dimensional singular subspaces
in the decomposition (5.1).
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5.4 Computation of g, in the singular case

Assume that F' is singular. Let U be the direct sum of the subspaces V; in the
decomposition (5.1) such that dimV; = 3 and F|y; is singular. We consider
the restriction F'|y of F to U and

m(F]U) =g..0U
We have a natural inclusion
go(Flv) = go(F)

and an isomorphism
81(Flv) = g1(F)

in which b 5
g2 — ga=V g-1 —> do
[l T1~1 1—1T lﬂ'z} O My«
Dly - Bly
g-o2 — U U — go(FIU)

where B and D denote the linear applications given in Proposition 5.3.2.

An element n € go(F) defines by "restriction” an element of go( Fy).
Since an element of gy(F") which vanishes on g_o(F) = g-2(F|v) is zero by
Theorem 2.5.11, the map g»(F') — g2(F|v) is injective.

We note that p_(go(F'|r-)) is irreducible. Then the Levi-Tanaka algebra
9(F|v) is either simple or weakly solvable with g, = 0. We already know
that all simple Levi-Tanaka algebras of type (n,2) have a nonsingular F. It
follows that go(F'|r) = 0 and therefore gz(F') = 0 and g(F') is weakly solvable.

We conclude this chapter with the following:

EXAMPLE 5.4.1 Let F C (V) be a two dimensional linear space of
Hermitian symmetric forms on V such that the fundamental pseudocomplex
graded Lie algebra m = m(F) = g_, ® g_; associated to F is nondegenerate.
Assume that dim¢ V' = 3 and F singular, i.e. (f2 — M1] = Da(u, A). Then
we obtain for ker p_, C go, as subset of gl(3,C), the subalgebra generated by:

e () (o) (55)
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Note that the last three matrices generate a subalgebra isomorphic to sl(2,R).
The "homogeneous” system provides a subalgebra of gl(3,C) generated by:

v—-1 1 0 ' 0 v—1
=1 , 1 , 0 v-11, 0
v—1 -1 0

In particular, dimg go = 8. Moreover, dimcg; =1 and g2 = 0.
Note that in this case g has a pseudocomplex Levi factor not contained in go.

0
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Chapter 6

Homogeneous CR manifolds

6.1 Standard homogeneous CR manifolds

Let g = @pezgp be a finite dimensional Levi-Tanaka algebra. In this section
we construct homogeneous CR manifolds M = (M, HM, J) having at each
point z € M a Levi-Tanaka algebra g(z) isomorphic to g and such that the
group of CR automorphisms of M is a Lie group with Lie algebra isomorphic
to g.
Let us set
m = DOpcofp and gy = Bp>00p-

We denote by G a connected and simply connected Lie group with Lie al-
gebra g. We note that g, is a Lie subalgebra of g and therefore generates a
connected Lie subgroup G. of G.

LEMMA 6.1.1 The subgroup G, is a closed in G.

Proof. Let
Ad: G — GL(g)

denote the adjoint representation of G. Then

H={g € G|Ad(9)(g+) = 8+}

is a closed subgroup of G and hence a Lie subgroup of G. Clearly the Lie
algebra of H is g4 and then G,, being the connected component of the
identity in H, is closed in G. a
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We identify g to the Lie algebra of left invariant vector fields on G. For
—p < p <0 we set gp) = ®g>p and denote by gy the vector distribution
generated by g(). For g € G, we denote by L, and R, respectively the left
and right translations with respect to g.

LEMMA 6.1.2 For every —p < p < 0 the vector distribution g(p) 18 invari-
ant with respect to left translations by elements of G and right translations
by elements of G.

Proof. The invariance under (L,). for g € G is obvious. For X € g and
g € G, we have:
(Rg-1)+(X) = Ad(g)(X)-
Since
adg(V)(X) = [V, X] € 96) YX €00, ¥ € 8+,

the Lie algebra of the Lie subgroup A of the elements g € G such that
(Ry)+(8(s)) C 8(p) contains g.. Hence G, C A because G is connected. O

Using these lemmas we obtain:

THEOREM 6.1.3 The homogeneous space M = G/G is a simply con-
nected real-analytic manifold. We can endow M with a natural CR structure,
in such a way that G acts on M as a group of CR automorphisms and the
Levi-Tanaka algebra g(x) of M at every point x of M is isomorphic to g.

Proof. Since G is a closed subgroup of G, the homogeneous space M =
G/G. is a real-analytic manifold, on which the elements of G define real-
analytic diffeomorphisms. Moreover, M is simply connected because G is
simply connected and G is connected.

Let us describe the CR structure of M. We denote by 7 : G — M the
natural projection, and by G x M > (g,z) — g -z € M the left action of G
on M. Let §_1, §+ = (o) and §(—1) denote the vector distribution generated
respectively by g_i, g+ and g(1) = @p>-18,- They are all invariant by left
translations and g, is the vertical distribution of the G-principal bundle
G5 M.

Let 0 = w(e) be the image of the identity of G in M and H,M =
Tu((§-1)e)- If B € G4, we have

Te((8-1)n) = Ho M.
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Indeed, since m o Ry,-1 = 7 for h € G, we obtain:

T ((8-1),) = m ((g(“l))h)
= e 0 (Ry-1), ((8=1))n)
= T((-1))e) = mu((§-1)) = H, M.

This implies that
HygyM = g.H,M

is well defined at all points of M and is invariant by the action of G on M.

If X7 isin H,M and g € G is such that = g - 0, then we can find a
unique X € g_; such that X7 = g,m,(X.). We want to define the partial
complex structure Jys of M in such a way that

TuX: = g (JX,).

'This would imply also that M >z — g-z € M is a CR diffeomorphism for
every g € G.

To this aim, we only need to show that the definition is consistent, i.e.
that, if v is another element of G such that y-o =z and Y ¢ g-1 is such
that v,m.(Y.) = X7, then

'7*7"*(JYe) = g*'/T*(JXe)~
We note that y7'g € G, and thus we are reduced to show that
(6.1) T.(Ad(h)(JX,)) = m.(JY)

ifhe Gy X,)Y € gy, and Y — Ad(R)X € §.. Let H = >p>0 Hp €
9+, expressed as a sum of its homogeneous components. Then we have
Ad(exp(tH))X — Ad(exp(tHy))X € g, for X € g_; and ¢ € R. This shows
that (6.1) holds for the elements of G, which are of the form exp(H) for
H € g, and therefore for all 4 € G, because G is connected.

To show that the Levi-Tanaka algebra g(z) of M at every point z € M
is isomorphic to g, it suffices to note that by construction m(o) is isomorphic
to m and hence g(o) ~ g: the general statement follows because G operates
on M as a group of CR diffeomorphisms. a
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The G-homogeneous CR manifold obtained in Theorem 6.1.3 will be denoted
by S, and called the standard (homogeneous) CR manifold associated to the
Levi-Tanaka algebra g.

We have

THEOREM 6.1.4 LetT be the kernel of the representation of G as a group
of CR automorphisms of the standard CR manifold Sy. Then T is the discrete
subgroup Z(G) N G, where Z(Q) denotes the center of G, and G/T s the
connected component of the identity in the group of CR automorphisms of
Sg-
Every local one-parameter group of CR automorphisms of S, extends to a
one-parameter subgroup of G.

If M is another connected G-homogeneous CR manifold with the same
Levi- Tanaka algebra g, then there is a CR covering map Sg — M commuting
to the action of G.

Proof. We note that I’ = yeq(9G+g7") is a closed normal subgroup of G
contained in G. Its Lie algebra is an ideal contained in g, and then is null
because g is transitive. This shows tht I' is a normal discrete subgroup of
the connected Lie group G and hence is contained in its center. So we have
I' = Z(G) N G,. Vive versa every element of Z(G) N G is obviously in the
kernel T'.

To show that G is the component of the identity in the group of CR auto-
morphisms of M we essentially follow [40]; the proof in the case of homogen-
eous manifolds is actually simpler.

(a) Let us denote by A the connected subgroup of G with Lie algebra
m. If  is the Maurer-Cartan form of G, then the Maurer-Cartan form £ of
A is the pullback of # to A. The natural projection 7 : G = G/G; = M
induces a diffeomorphism of an open neighborhood U, of e in A onto an open
neighborhood U, of o = 7(e) in M. Let £ = (n|y,).£ and set P = (m|y,) P,
where £ = 3, &” is the decomposition of { according to the graduation of
the fundamental algebra m. We note that we obtain the equations

1

i =-1 S F&  for p<l.
2r-+—s=p

(b) Let X be a vector field defined on an open neighborhood of o0 in 5.
We can as well assume that X is defined on U,. We want to take X as the
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infinitesimal generator of a 1-parameter family of local CR diffeomorphisms
on M. If ¢x(t) is the local 1-parameter group defined by X, this condition
means that dox(t) : T,M — T, ox()(z)M induces, by passing to the quotient,
an isomorphism of pseudocomplex fundamental graded Lie algebras

déx(8) : m(z) — m(dx (t)z)

for z in a small neighborhood of o and ¢ in a small neighborhood of 0. In
particular, using the identification of m(z) to m for all z € U,, the differential
at o of the map m — m induced by the diagram

m — m
l |
du) m(¢x (t)x)

gives a map f°: U, — go.
Let us set, for p < 0, f?(z) = €?(X,) € g,. Then the definition of f° can
be rewritten by

-1 - - _
4#*(@) = TP @), (mod @7, &) for p<.
r=p
Indeed, we have for every YV € X(M)

(Lx)¥) = XEW) - &%, Y] = L(6x ) @)Y lem
= [’@.&1Y)  (mod &7, ,E¥)  for p<o.

Hence we deduce that A
dff(z) = d(€(X))=d(X| &)= Lx& — X] dé?
= Lxgp —I—XJ (:,1): Z {ér’gs])

r+s=p

= [f°@), &1+ Y [f(= (mod €771, £7H).

T+8=p

Then we can define f? also for p > 0 in such a way that

df* =3 [fP"(z),£] VpeZ.

r<0
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We have already constructed f? for p < 0. Now we note that these equations
yield:

&'z) = Pl 7(),€]

r<0

df'(z) = YIf7"(),8]

r<0

which is a completely integrable system (see [40]).

(c) Let us denote by X, the Lie algebra of germs at o of infinitesimal
generators of 1-parameter groups of local CR diffeomorphisms. By Lemma
6.4 in [40], we have

fer=— 2 lfk.fi] VpeZ VXY eEX,

r+5=p

where for Z € io we used f5 for the set of functions associated to Z as in

(b).

The map ¥, 3 X — ¥ f%(0) € g is therefore an anti-homomorphism of
Lie algebras and is injective by Lemma 6.3 in [40]. But this map is trivially
surjective and therefore is an anti-isomorphism. This proves the first state-
ment.

The second statement is a consequence of the proof above and the fact that
left-invariant vector fields on a Lie group are complete, i.e. generate a one-
parameter subgroup.

To prove the last statement of the theorem, it suffices to note that M = G /Q
for a closed subgroup Q of G whose Lie algebra is isomorphic to g Indeed
from (a), (b), (c) above we deduce that M and S are locally CR diffeo-
morphic and therefore the Lie algebras of the stabilizer of a point in the

group of local CR automorphism of M and S (respectively) are isomorphic.
O

In the example contained in 3.8.1 we showed that the Lie algebra su(p+1,q+
1) (for p 4 ¢ > 0) admits a structure of Levi-Tanaka algebra of codimension
one.

Remark 6.1.5 The standard CR manifold S, associated to su(l,n + 1) s
CR diffeomorphic to the sphere S contained in C***.
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Indeed, every biholomorphism of the open unit ball B in C**! extends to
a neighborhood of the closure of B and then defines a CR automorphisms
of the sphere. Conversely, every automorphism of the sphere extends to a
biholomorphism of the open ball (cf. [29]). Then there is an isomorphism
between the group of CR-diffeomorphisms of the sphere and the group of bi-
holomorphisms of the ball, which is isomorphic to SU(1,n-+1)/{=£I} (see, for
instance, [35]). In particular, S***! is a SU(1, n + 1)-homogeneous CR man-
ifolds. Then, by Theorem 6.1.4, there exists a CR covering Sy — SFL
which is a CR-diffeomorphism as S?**! is simply connected.

The following theorem is a slight extension of a result in [40]:

THEOREM 6.1.6 If a (finite dimensional) Levi- Tanaka algebra g is semi-
simple, then the standard homogeneous CR manifold Sy is compact.

The proof of this theorem relies on the following

LEMMA 6.1.7 Let g = @®pez8, be a finite dimensional semisimple Levi-
Tanaka algebra and let

g=top
be a Cartan decomposition of g, where € is a mazimal Lie subalgebra of g on

which the Killing form kq is negative defined. Then, for g, = Dp>09p, we
have

g=%t+g,.

Proof. Let d = dimg gy and m = dimg m where m = @p<08p. The Killing
form kg4 is nondegenerate on go and therefore its restriction to go has a signa-
ture (0%, 07) with %+ 0~ = d. Since m is totally isotropic, the Killing form
kg has signature (o* +m, o~ +m). Given a Cartan decomposition g = & +p,
we claim that €N g, is a Lie subalgebra of dimension o~ of g. Indeed, if
X = ¥ p>0 Xp is a nonzero vector in €Ng, decomposed into its homogeneous
components, then
0 > Kg(X, X) = £4(Xo, Xo)

shows that the natural projection €N g, — go is injective and its image is a
subspace of gy on which &g is negative definite. This shows that dimg £Ng, <
o~. On the other hand, the projection ¢ — g/g., having kernel £N g, is
necessarily surjective and therefore has rank m and o~-dimensional kernel.
In particular we obtain that g = ¢+ g.. O
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Proof (of Theorem 6.1.6). Let G be a connected and simply connected Lie
group with Lie algebra g and let G and « be the connected Lie subgroups
of G having Lie algebras g, and ¢ respectively, with € the direct summand
in a Cartan decomposition of g. Then & is a compact subgroup of G. We
consider the map k — S; = G/G. induced by the restriction of the natural
projection. Its image is compact and hence closed. On the other hand, the
decomposition g = &+ g, shows that this map is a submersion and then
open. Therefore, since S, is connected, this map is onto and Sy is compact.

O

Denote by ko the connected Lie subgroup of G having Lie algebra €N g..
(Note that €N gy C go if we use a Cartan decomposition with the properties
of Proposition 3.6.10.) Then the natural map «/ro — Sy is a diffeomorphism
because is a connected covering of a simply connected manifold.

6.2 Canonical immersions of standard
CR manifolds

In [2], Andreotti and Fredricks proved that for every real-analytic CR man-
ifold M there exists a (global) embedding into a complex manifold X such
that the CR structure of M is induced by the complex structure of X. In
this section, for every standard CR manifold Sy we give an immersion of Sy
into a complex manifold X, homogeneous with respect to a group GC of
complex transformations, in such a way that Sy is an orbit with respect to
the action of a real subgroup of GC.

Let g = ®pezgp be a finite dimensional Levi-Tanaka algebra and g¢ =
C ®r g be its complexification. We denote by GC a connected and simply
connected Lie group having Lie algebra g€ and by GF the connected Lie
subgroup of GC having Lie algebra g. This is a closed Lie subgroup of G%,
as GF is the connected component of the identity of the closed subgroup of
GC
{9 € G%| Adge(9)(g) = 8},

where Adge : G€ — GL¢(g®) is the adjoint representation. We also use
the notation g¢ = C ®g g4+ for the complexification of the Lie subalgebra
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g+ = Dp>08p and GE for the connected Lie subgroup of GR having Lie
algebra g .

LEMMA 6.2.1 Let g% = {X +/=TJX | X € g_1}. Then q=g%" @S
is a complez Lie subalgebra of gC.

Proof. First we remark that g(_o’l) is a complex subspace of g€. Indeed, for
1 g
X € g_1 we have

V-I(X +V=1JX) = (~JX) +V/=1J(~JX) and JX €g_,.

Moreover

X +vV-1JX,Y +V=-1JY]=0 VX, Y €g_,
and [C ®g go, g(_oil)] c g% because g% is a complex subspace of g€ and
the elements of p_;(go) commute with J on g_;. Finally, it is obvious that
[C@gp,g(_oil)] CC®gp—1 Cqforp>0. | a
Let Q be the connected complex Lie subgroup of G€ corresponding to the
Lie subalgebra, q.

LEMMA 6.2.2 Q is a closed Lie subgroup of GC.

Proof.  We consider the adjoint representation Adgec : GC — GL¢(g%).
Then

H = {g € G°| Adge(g)(q) = q}

is a closed subgroup of G® and Q is the connected component of the identity
of H. O

THEOREM 6.2.3 The GC-homogeneous space Xy = G%/Q is a complez
manifold.

The GR-homogeneous space Sg = GR/GR is a differentiable manifold
with a unique CR structure which makes the covering map

Sy — SF
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defined by the commutative diagram

G — GR

! |

Sy — SR

a local CR diffeomorphism.
The composition G — G¥ — GT induces a CR immersion

Sy = X,

whose image Sf is a locally closed CR submanifold of X.

Proof. X, is a connected smooth complex manifold because Q is a closed
subgroup of GC. Analogously S’g{ is a connected real-analytic CR manifold
because G® is a closed subgroup of GF.

The group G is a covering of G® and S;R is G-homogeneous by the action

GxS?B(g,x)%p(g)-a:ES?

where p : G — GR is the covering map.

We consider the orbit S in X, of the image o of the identity of G in X
with respect to the closed subgroup GR. Since gy is the Lie algebra of the
stabilizer in GR of 0, we obtain an immersion Sk — X, which is a surjective
local diffeomorphism onto the orbit Sg. Let o : GR — X, denote the map

g—g-o.

We note that for the elements X of g_; we obtain, by the definition of q,
a,(JX) = v—1ou(X) and therefore the map S® — X, is a CR immersion.

Let A and A be the connected Lie subgroups of G® having Lie algebras
mand =g & (@p<_1 gg) respectively. We fix convex open neighborhoods

Up of 0 in g€ and V; of 0 in [ such that the exponential maps
exp:U0—>UeCGC, exp:Vo——-H/;CA, exp:UoﬂgﬁUeﬂGR

be diffeomorphisms. We can assume that Vo = Uy N[, so that V, = U, N A.
If a € GRNANU.,, we have a = exp(Z) = exp(X ++/—1Y) with Z € gn U,
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X €mY € @peigp and Z, X + /—1Y € U,. By the injectivity of the
exponential on U, we obtain Z = X + 4/=1Y, hence Y = 0 and Z € m.
This shows that GRN AN U, = ANU,. Moreover, AN U, is closed and
connected in ANU,. We note now that the projection 7 : G€ — .S’;C induces a

diffeomorphism of a neighborhood W C V, of e in A onto a neighborhood W,
of o = 7(e) in X and, since QNANV, = {e}, we have (mw,) " (SR) = V.NGE.
This shows that WoﬁSf is closed in W,. Since Sgﬁ is homogeneous, it is locally
closed in X,. O

We call X the standard (homogeneous) complez manifold associated to g
and the map S; — X the canonical immersion of S,.

THEOREM 6.2.4 If a Levi-Tanaka algebra g is semisimple, then the
standard homogeneous compler manifold X, associated to g is compact.

Proof. Let 6 : g — g be the Cartan involution found in Proposition 3.6.10
and let g = E® p be the corresponding Cartan decomposition. Then u =
t® +/—1p is a compact form of the complexification g€ of g. We set

ut? = X — VTIIX +60(X) + V=I1J0(X) | X € g_1}
u® = (X +V/=1JX +0(X) - V=1J6(X) | X € g_,}
u, = un(gc_p—}—gcp) for p>0.

Next we define the real Lie subalgebra b of g€ by
h=ung=uy@®u®.

Let U denote the connected Lie subgroup of GC having Lie algebra u and
H the connected Lie subgroup of G® having Lie algebra §. The group U is
compact and hence closed in G, and also H is compact, being the connected
component of the identity in the intersection U N Q.

Consider the commutative diagram:

U — G@G¢

! |

U/H S GC/Q.
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Since u + q = g€, the map U — G%/q is a submersion and therefore is
open. It is also closed, being a continuous map from a compact space into a
HausdorfF space. Since X; = G®/q is connected, this map is surjective and
therefore U/g — GT€/q is a covering map. Since G®/q is simply connected,
this map is a diffeomorphism. This proves the theorem. O

PROPOSITION 6.2.5 If the component g of g is zero, then the mani-
folds S§ and Xy are both Euclidean and SE is embedded in Xy as a closed
submanifold.

Proof. By Lemma 3.18.4 of [44], Sf;c is closed in X and simply connected
and, by Lemma 3.18.11 of [44], it is also Euclidean. Indeed, m is an ideal
in g and therefore the map m @ go 3 (X,Y) — exp(X)exp(Y) € G is a
diffeomorphism. O

6.3 Canonical projective immersions of
standard CR manifolds

The problem of finding an immersion of the standard homogeneous CR man-
ifold S into a complex projective space is equivalent, by Theorem 6.1.4, to
the one of finding, given a Levi-Tanaka algebra g, G-homogeneous CR sub-
manifolds of complex projective spaces having at each point a Levi-Tanaka
algebra isomorphic to g.

Our construction is akin to the one used in [4]. We use the complexi-
fication of the adjoint representation Adge : G® — GL¢(g®) and denote
by GE and GF respectively the image Adge(G®) and Adge(GF). They are
Lie subgroups of GLc(gc). We also set QF and GE for the connected Lie
subgroups of GE having Lie algebra equal respectively to the Lie subalgebra
q defined in Lemma 6.2.1 and to g.

We consider the Grassmannian Gr(g®) of complex subspaces of g® having
dimension £ equal to the complex dimension of q. The orbits XF and S} of
q by the action of GE and GF are respectively a Gg-homogeneous complex
manifold and a GE-homogeneous CR. submanifold (and therefore G® and
G-homogeneous). In this way we obtain a CR submanifold of a projective
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manifold having the prescribed Levi-Tanaka algebra g at each point.
We take up now the question of the existence of a closed embedding into a
projective space in the case where the Levi-Tanaka algebra is semisimple.
We recall that a Borel subalgebra b of a Lie algebra g is a maximal solvable
Lie subalgebra of g and a Lie subalgebra q of g is said to be parabolic if it
contains a Borel subalgebra. Accordingly, a connected Lie subgroup B (resp.
Q) of a Lie group G is a Borel (resp. parabolic) subgroup if its Lie algebra
b (resp. q) is Borel (resp. parabolic). In particular a Borel subgroup of G is
a maximal connected solvable subgroup of G.

LEMMA 6.3.1 Let g = @pez0, be a finite dimensional Levi-Tanaka al-
gebra. Then the following facts are equivalent:

(1) g is semisimple;

(43) 9+ = ®p>09, s parabolic;

(142) q = gg’il) @ g€ is a parabolic Lie subalgebra of gC.

Proof.

(i) < (41). Let E be the element of gy described in Lemma 3.2.1. Then
Dp>08p DR E is a solvable Lie subalgebra of g and hencefore is contained in
a Borel subalgebra b. If ¢ is the radical of g, then t C b. By Corollary 3.5.6,
t is contained in g, if and only if g is semisimple and v = 0. The condition
is therefore necessary.

To prove sufficiency, we first note that the representation p : b — I(g)
obtained by restriction from the adjoint representation is faithful. Then,
by the criterion of Cartan, p(b), and thus b, is solvable if and only if [b, b]
is orthogonal to b with respect to the Killing form kg of g. Assume by
contradiction that b contains an element X = ¥, X, with homogeneous
component X, # 0 for some ¢ < 0. Since g was assumed to be semisimple,
we can find Y_, € g_, C b such that x4(X,,Y_,) # 0. Then we obtain

kg([B, X1, Y_g) = g kg(Xq, Yog) #0

which contradicts the Cartan criterion.

(1) & (#4) If v is the radical of g, then C®g t is the radical of g€. Clearly,
if X € v_y, then X —+/=1JX belongs to the radical of g€ and therefore, if
q is parabolic, the radical of g is contained in g.. a
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THEOREM 6.3.2 A necessary and sufficient condition in order that Xg’
be compact is that g be semisimple.

If g is semisimple, then ST — XT is a closed embedding of Sy into a
compact projective complez manifold.

Proof, The first part of the statement is a consequence of Lemma 6.3.1 and
of [5] (Theorem 11.1 and Corollary 11.2) because G? is an algebraic group.

The second part follows because Sg' is compact when g is semisimple be-
cause it is the quotient of Sy with respect to the action of a discrete subgroup
of G. O

We call X} the standard (homogeneous) projective manifold associated to the
Levi-Tanaka algebra g and the map S; — SF — X7 the canonical projective
immersion of Sg.

THEOREM 6.3.3 Let g be a finite dimensional Levi- Tanaka algebra. Then
a necessary and sufficient condition in order that Xy be compact is that g be
semisimple.

Proof. We already proved that X, is compact when g is semisimple. When g
is not semisimple, then X P is not compact and hence also X, is not compact,
because it is a covering space of X . P O

Remark 6.3.4 It follows from [14] that, when g is semisimple, the standard
homogeneous projective manifold S]Pv associated to a semisimple Levi-Tanaka
algebra g = ®_p<p<u¥p with dime g 1 =n and dimg n = dimg Sp<_18p = £,
has a CR embedding into the space CPRn+3/2)k],

Remark 6.3.5 Every Borel subalgebra b of g is splittable. Indeed the split-

table envelope of a solvable subalgebra of g is still solvable and therefore the
splittable envelope of b is equal to b by mazimality.
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Appendix

Tables of exceptional Levi-Tanaka
algebras






SIMPLE LEVI-TANAKA ALGEBRAS OF THE COMPLEX TYPE Eg

—|a] 4 o+ gn}:%gﬂ +5 go
+6 £7 +8 £9 +10 £11

o 10000 1 02 316980000 5 (C)ese(s,C)
2 110000 03 20500900  5(Cesl5C)
3.1 0100 0 03 pui000% 3(QeslsC)
o4 0 1 100 0 04 300212000099  25(C)asl(2,C)@sl(4,C)
6. 0.0 1 010 04 22V 9 (Cesl(2,C)@sl(3,C)@sl(2,C)
6. 1.0 100 1 04 [BH10000 3 (Casl(4,C)
0. 0.0 1 100 05 Fe0208%% 9 (Qasl(2,C)esl(2,C)asl(3,C)
. 010100 05 [Fo08R0 3 (Cesl3,C)esl(3,C)
. 1 1100 0 05 208300800 o (Cesl(4,C)
0. 101010 05 20T gy (C)@sl(3,C)@sl(2,C)
110100 06 10008080 oy(C)asl(2,C)@sl(3,C)
22101100 06 Sos0m%808 5 (Cesl(2,C)esl(3,C)
3100110 06 2000802 5 (Cesl(2C)asl(2C)asl(2,C)
4101011 06 208090002 o Cesl(3,C)
50 11100 07 (40809050905  25(Q@sl(2,C)@sl(3,C)
6. 0.0 1 1 10 07 2OSSNE 5(Cesl(2,C)asl(2,C)@sl(2,C)
7.011.0 101 07 7S 5, (Cesl(2,C)esl(2,0)
B 101101 07 280707008 5, (Qesl(2,C)@sl(2,C)
9. 0111100 08 2080705980938 3, (Cesl(3,C)
2110110 08 20m0T0T040 5, (Cesl(2,C)asl(2,C)
2. 1.0 1110 08 203070800 5, (Cesl(2,C)esl(2,0)
2011110 09 20008800 5 (Qesl(2,C)asl(2,C)
2.1 1110 1 09 207080800 o (Cesl(2,C)
#0101 1.1 1 09 2000008004 p5(Q)@sl(2,C)
2. 1 1 1 110 10 230800000804 5 C)@si(2,C)
2. 1 1 1 1 11 11 50808080804 5 )

In cases 1), 5), 14) the two conjugated Levi-Tanaka algebras corresponding to the same weighted Satake
diagram are isomorphic, in the other cases they are not isomorphic.
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01.

02.

03.

04.

05.

06.

07.

08.

09.

10.

11.

12.

13.

14.

15.

16.

17.

SIMPLE LEVI-TANAKA ALGEBRAS OF THE COMPLEX TYPE E;

—las]
1000001
0000011
1100000
0100010
1000011
0100011
1010000
0110000
0100100
0000110
1010001
0100101
0000111
0010100
0101000
1110000

1010010

u

03

03

04

04

05

05

05

05

05

05

06

06

06

06

06

07

07

0

dim

cg
+1 +2 +3 +4 +5
+6 £7 48 +9 +10 11
+£12 £13 +14 +15 +16 £17

47 26 16 01 00 00
00 00 00 00 00 00
00 00 00 00 00 00

47 17 16 10 00 00
00 00 00 00 00 0O
00 00 00 00 00 00

37 21 20 06 01 00
00 00 00 00 00 00
00 00 00 00 00 00

29 20 20 07 05 00
00 00 00 00 00 00
00 00 00 00 00 00

3117 16 09 08 01
00 00 00 00 00 00
00 00 00 00 00 00

27 16 15 11 06 05
00 00 00 00 00 00
00 00 00 00 00 00

37 16 15 15 01 01
00 00 00 00 00 00
00 00 00 00 00 00

29 15 20 10 05 02
00 00 00 00 00 00
00 00 00 00 00 00

2516 18 12 04 04
00 00 00 00 00 00
00 00 00 00 00 00

2912 20 10 05 05
00 00 00 00 00 00
00 00 00 00 00 00

27 16 15 10 10 01
01 00 00 00 00 00
00 00 00 00 00 00

211416 10 09 03
04 00 00 00 00 00
00 00 00 00 00 00

27 12 11 15 05 03
05 00 00 00 00 00
00 00 00 00 00 00

2115 18-09 09 03
02 00 00 00 00 00
00 00 00 00 00 00

2513121804 04
03 00 00 00 00 00
00 00 00 00 00 00

27 11 15 10 10 05
01 01 00 00 00 00
00 00 00 00 00 00

21 15 14 10 09 06
01 01 00 00 00 00
00 00 00 00 00 00
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go

02(C)@s0(10, C)
02 (C)®dso0(10,C)

02 (C)@sl(6,C)

22 (C)&sl(5,C) ®sl(2,C)
03(C)®s0(8,C)
03(C)sl(5,C)
02(C)@sl(6,C)

092 (C)@sl(2,C)®si(5,C)

02 (C)@si(4, C)®si(3,C)

22 (C)asl(5,C)@sl(2,C)
03(C)e@sl(5,C)

3 (C)@sl(4, C)@sl(2,C)
93(C)@sl(5,C)
2:(Q)@sl(2, C) sl(3, C) os1(3, C)
02 (C)@sl(3, C)@sl(4,0)

23 (C)@sl(5, C)

23 (C)@sl(4, C) @sl(2,C)



18.

19.

20.

21.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

1000110

0100110

0010101

0101001

0011000

0001100

1010011

1000111

0100111

1010100

0010110

1101000

0101010

0011001

0001101

1010101

0010111

1101001

0101011

07

07

07

07

07

07

08

08

08

08

08

08

08

08

08

09

09

09

09

2112161009 04
04 01 00 00 00 00
00 00 00 00 00 00

21 10 14 12 08 06
02 04 00 00 00 00
00 00 00 00 00 00

17 14151008 06
03 02 00 00 00 00
00 00 00 00 00 00

191312121004
03 03 00 00 00 00
00 00 00 G0 OC 00

23 10 16 12 06 08
01 02 00 00 00 00
00 00 00 00 00 00

21 09 18 09 09 06
02 03 00 00 00 00
00 00 00 00 00 00

19121409 09 05
06 01 01 00 00 00
00 00 00 00 00 00

191211110905
04 04 01 00 OO0 00
00 00 00 00 00 00

19 10 11 10 10 05
05 02 04 00 00 00
00 00 00 00 00 00

19 13121206 09
03 01 01 00 00 00
00 00 00 00 00 00

17 11 12 13 06 08
03 03 02 00 00 00
00 00 00 00 00 00

211112101204
04 02 01 00 00 0O
00 00 00 00 00 00

17111209 1205
04 02 03 00 00 00
00 00 00 00 00 00

171114100905
06 01 02 00 00 00
00 00 00 00 0C 00

17 10 13 12 06 08
04 02 03 00 00 00
00 00 00 00 00 00

15 12 12.10 08 06
06 03 01 01 00 00
00 00 00 00 00 00

1511 10 10 09 06
05 03 03 02 00 00
00 00 00 00 00 00

151211 09 10 07
04 03 02 01 00 00
00 00 00 00 00 00

151011 09 08 07
05 03 02 03 00 00
00 00 00 00 00 00
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03(C)dsi(4, C)dsl(2,0)
03(C)@s!(4,C)@sl(2,C)

93 (C)@s1(2, C)@sl(3,O) @sl(2,C)
23 (C)@sl(3,C) @sl(3,C)

22 (O)osl(2, C) @sl(2, C)@sl(4,C)
22 (C)@s1(3,C) @sl(2, ) @sl(3,0)
9:(C)@sl(4,C)

24 (C)osl(4,C)

24 (C)@si(4,C)
03(C)@s!(3,C)@sl(3,0)
2;(C)@s1(2,C) @sl(3,O)@sl(2,0)
03(C)osl(2,C) @si(4,C)
23(C)o@sl(3,C) @sl(2, C)@sl(2,C)
23(C)@sl(2, C)@sl(2,C) @sl(3,C)
23 (C)os!(3, C)@sl(2,C)@sl(2,C)
24 (C)osl(3,C) ®sl(2,0)
24(C)@s1(2, C) @s1(3,C)

24 (C)@s!(2,C) @sl(3,0)

2:(C)@sl(3,C)@s1(2,C)



37.

38.

39.

40.

41.

42,

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

1011000

0111000

0011010

1001100

0101100

0001110

1010110

1101010

1011001

0111001

0011011

1001101

0101101

0001111

0011100

1010111

1101011

1111000

1011010

09

09

09

09

09

09

10

10

10

10

10

10

10

10

10

11

11

11

11

21 10 09 14 06 06
08 01 01 01 00 00
00 00 00 00 00 00

21 07 12 08 12 06
04 04 01 02 00 00
00 00 00 00 00 00

15 10 12 10 09 06
05 04 01 02 00 00
00 00 00 00 00 00

17 09 14 09 09 06
06 02 02 01 00 00
00 00 00 00 00 00

19 07 12 09 09 09
03 04 01 03 00 00
00 00 00 00 00 00

17 09 08 15 06 06
07 02 02 03 00 00
00 00 00 00 00 00

1509 12 09 09 05
07 03 03 01 01 00
00 00 00 00 00 00

13 11 10 09 08 09
04 04 02 02 01 00
00 00 00 00 00 00

1511 09 11 08 06
05 06 01 01 01 00
00 00 00 00 00 00

15 09 10 09 08 09
04 04 03 01 02 00
00 00 00 00 00 00

13 09 12 08 09 06
06 03 04 01 02 00
00 00 00 00 00 00

13 10 11 10 08 06
06 04 02 02 01 00
00 00 00 00 00 00

15 08 10 09 09 06
07 03 03 01 03 00
00 00 00 00 00 00

15 09 08 10 09 06
05 05 02 02 03 00
00 00 00 00 00 00

17 07 10 12 06 09
03 06 02 01 02 00
00 00 00 00 00 00

13 09 10709 08 06
06 04 03 03 01 01
00 00 00 00 00 00

11 10 10 08 08 07
06 04 03 02 02 01
00 00 00 00 00 00

19 07 09 08 10 06
06 04 04 01 01 01
00 00 00 00 00 00

13 10 09 09 09 06
05 05 04 01 01 01
00 00 00 00 00 00
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2;(C)@sl(2, C) @sl(4, C)
23 (Q)@sl(2, C) @s(4, C)

93 (Q)@sl(2, C) @sl(2, C) @s1(2, C) @sl(2, C)
93(O)@sl(2, C) @sl(2, C) @s((3, C)
23(Q)@sl(3,C) @s1(3, C)

23 (0)@s!(3,C) @s1(2, C) @s((2, C)
2% (Q)@sl(3,C) @s1(2, C)

2 (O)@sl(2,C) @s1(2, C) @sl(2, C)
2 (Q)@sl(2, C) @s((3, C)

2 (Q)@sl(2, C) @s1(3, C)
2,(O)@sl(2, C) @s1(2, C) sl(2, C)
2%(Q)@sl(2, C) @sl(2, C) @s!(2, C)
2% (Q)@s!(3,C) @s1(2, C)
2(C)@s!(3,C) @s1(2, C)
2;(Q)@sl(2, C) @s1(2, C) @s((3, C)
25(C)@sl(3,C)

05(C)@sl(2,C) @sl(2, C)

2 (Q)@sl(4,C)

21 (C)@sl(2, C) @sl(2, C)@sl(2, O)



56.

57.

58.

59.

60.

61.

62.

63.

64.

66.

67.

68.

69.

70.

T1.

72.

73.

4.

0111010

1101100

1001110

0101110

0011101

1111001

1011011

0111011

1101101

1001111

0101111

1011100

0111100

0011110

1111010

1101110

1011101

0111101

0011111

11

11

11

11

11

12

12

12

12

12

12

12

12

12

13

13

13

13

13

13 09 08 10 06 09
06 03 04 02 01 02
00 00 00 00 00 00

15 08 09 10 06 09
06 03 04 01 02 01
00 00 00 00 00 00

13 09 08 11 08 06
05 06 02 02 02 01
00 00 00 00 00 00

15 07 08 09 09 06
06 05 03 02 01 03
00 00 00 00 00 00

13 08 09 10 08 06
06 04 04 02 01 02
00 00 00 00 00 00

13 09 08 08 08 07
06 04 04 03 01 01
01 00 00 00 00 00

11 09 09 09 07 07
05 05 03 04 01 01
01 00 00 00 00 00

11 08 09 08 07 07
06 05 03 03 02 01
02 00 00 00 00 00

11 09 08 09 07 07
06 05 03 03 01 02
01 00 00 00 00 00

11 09 08 08 09 06
05 05 04 02 02 02
01 00 00 00 00 00

13 07 08 07 09 06
06 04 05 02 02 01
03 00 00 00 00 00

15 07 09 08 09 06
06 03 06 02 01 01
01 00 00 00 00 00

15 07 06 11 06 06
09 03 03 04 01 01
02 00 00 00 00 00

13 07 08 08 10 05
06 04 05 02 02 01
02 00 00 00 00 00

11 09 07 08 07 O7
06 05 03 04 02 01
01 01 00 00 00 00

11 08 07.08 08 06
06 05 04 03 02 01
02 01 00 00 00 00

11 08 08 08 08 06
06 04 04 04 02 01
01 01 00 00 00 00

11 08 06 09 07 06
06 06 03 03 03 01
01 02 00 00 00 00

11 07 08 07 08 07
05 04 05 03 02 02
01 02 00 00 00 00
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2.(C)@sl(2, C) @sl(2, Q) @si(2,C)

% (C)os1(2,C)@sl(3,0)

2 (Cosl(2,C) @sl(2,C)esl1(2,C)

% (Q)@sl(3,C)@sl(2,C)

24(C)@sl(2, C) @sl(2, C) @sl(2,C)

25 (O)®sl(3,C)

25(C)@sl(2, C)@sl(2,0)
25(C)@sl(2,C) @sl(2,C)
25 (O)@si(2,C)@sl(2,0)
95(O)@sl(2, C)osl(2,0)
25(C)@s1(3,C)

24(C)@sl(2,C)@sl(3,0)

24 (C)@sl(2,C) @sl(3,0)

2 (O)osl(2,C) &sl(2,C)@s1(2,C)

25 (C)®sl(2,C) sl(2,C)
25 (C)@sl(2,C) @sl(2,C)
95 (C)dsl(2,C) @sl(2,C)
25 (C)@sl(2, C) ®sl(2,C)

v5(C)osl(2, C)@sl(2,C)



76.

7.

78.

79.

80.

81.

82.

83.

84.

1111011

1101111

1111100

1011110

0111110

1111101

1011111

0111111

1111110

1111111

14

14

14

14

14

15

15

15

16

17

09 08 08 07 07 06
06 05 04 03 03 02
01 01 01 00 00 00

09 08 07 07 07 07
05 05 04 04 02 02
01 02 01 00 00 00

13 07 06 08 07 06
06 06 03 03 04 01
01 01 01 00 00 00

11 07 07 08 07 07
05 05 03 05 02 02
01 01 01 00 00 00

11 07 06 07 08 06
05 06 04 03 03 02
01 01 02 00 00 00

09 08 06 07 07 06
05 06 04 03 03 03
01 01 01 01 00 0O

09 07 07 07 07 06
06 04 04 04 03 02
02 01 01 01 00 00

09 07 06 07 06 07
05 05 04 04 03 02
02 01 01 02 00 00
09 07 06 06 07 06
05 05 05 03 03 03
02 01 01 01 01 0O
07 07 06 06 06 06
05 05 04 04 03 03
02 02 01 01 01 01

96(C)@sl(2,C)
26 (C)®s1(2,C)

25 (C)@sl(3,C)

25 (C)@sl(2, C)@sl(2,C)

v5(C)@sl(2,C)@s1(2,C)

2% (C)@sl(2,C)
2% (C)@si(2,C)
25(C)o@sl(2,C)
26(C)@sl(2,C)

27(C)






SIMPLE LEVI-TANAKA ALGEBRAS OF THE COMPLEX TYPE Ej

dimc g
0 +1 +2 3 44 +5
46 47 +8 +0 +10 +11 p
+12 £13 +14 +15 £16 +17 0
+18 £19 £20 £21 +22 +23
4£24 £95 £26 +27 £28 £29

=l 7

50 28 35 21 08 0T
00 00 00 00 00 00

oor. 11000000 05 00 00 00 00 00 00 22 (C)@sl(7,C)
00 00 00 00 00 00
00 00 00 00 00 00

80 28 27 27 01 01
00 00 00 00 00 00

oo2. 00000011 05 00 00 00 00 00 00 02(C)Des
00 00 00 00 00 00
00 00 00 00 00 00

50 22 20 36 07 07
07 00 00 00 00 00

oo3. 10100000 06 00 00 00 00 00 00 02(C)a@sl(7,C)
00 00 00 00 00 00
00 00 00 00 00 00

48 27 26 18 17 10
01 01 00 00 00 00

coa. 10000011 07 00 00 00 00 00 00 03 (C)®s0(10,C)
00 00 00 00 00 00
00 00 00 00 00 00

40 18 29 21 15 12
03 06 00 00 00 00

oos. 01100000 07 00 00 00 00 00 00 02 (C)@sl(2, C)@sl(6,C)
00 00 00 00 00 00
00 00 00 00 00 00

34 25 30 18 16 10
05 03 00 00 00 00

o06. 01000100 07 00 00 00 00 00 00 02(C)asi(5, C) @sl(3,C)
00 00 00 00 00 00
00 00 00 00 00 00

50 18 32 20 10 16
01 02 00 00 00 00
o07. 00000110 07 00 00 00 00 00 00 02(C)®s0(10, C) dsl(2,C)
00 060 00 00 00 00
00 00 00 00 00 00

38 22 21 20 22 07
06 06 01 00 00 00
oo. 10100001 08 00 00 00 00 00 00 23 (C)@si(6,C)
00-00 00 00 00 00
00 00 00 00 00 00

32 20 24 24 10 16
06 04 04 00 00 00
9. 01001000 08 00 00 00 00 00 00 02(C)sl(4, C) sl(4,C)
00 00 00 00 00 00
00 00 00 00 00 00
3813 21 14 21 15
06 07 02 06 00 00
ol0. 11100000 09 00 00 00 00 00 00 93(C)@sl(6,C)
00 00 00 00 00 00
00 00 00 00 00 00
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011.

012.

013.

014.

015.

016.

017.

018.

019.

020.

021.

022.

10100010

01000101

10000110

00000111

00101000

00001100

01010000

01000110

10100100

01001001

00110000

10100011

09

09

09

09

09

09

09

10

10

10

10

11

30 21 20 15 22 12
07 05 05 02 00 00
00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00

3022251716 11
10 05 02 01 00 00
00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00

341824181710
09 08 01 02 00 00
00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00

48 18 17 26 10 10
16 01 01 01 00 00
00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00

28 18 24 1519 12
09 06 03 04 00 00
00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00

34 13301515 15
05 10 01 03 00 00
00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00

34 16 15 30 10 10
15 03 03 05 00 00
00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00

3017 20 21 12 15
06 10 05 01 02 00
00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00

26 19 18 15 16 18
07 07 04 04 03 00
00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00

26 19 22 18 16 10
12 06 04 03 01 00
00 00 00 00 00 00
00-00 00 00 00 00
00 00 00 00 00 00

321220191120
05 10 04 02 05 00
00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00

28 17 201515 13
12 06 05 05 01 01
00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00
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093(C)osl(5,C)®sl(2,C)

23(C)@sl(5,C)@sl(2, C)

03(C)®s0(8,C)@sl(2,0)

03(C)@s0(10,C)

92 (C)@sl(2,C)@sl(3,C)dsi(4,C)

22 (C)@sl(5,C)@sl(3,C)

22 (C)sl(3,C)@sl(5,C)

23(C)osl(5,C)®sl(2,C)

23(C)@sl(4, C)@s1(3, C)

93(C)®sl(4,C)®s1(3,0)

22(C)@sl(2,C)esl(2, C) @si(5,C)

24 (C)®sl(5,C)



023.

024.

025.

026.

027.

028.

029.

030.

031.

032.

033.

034.

10000111

01001010

10101000

00101001

10001100

00001101

11010000

01010001

00011000

01000111

10100101

00101010

11

11

11

11

11

11

11

11

11

12

12

3218171717 10

09 09 08 01 01 01
00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00

24 16 20 16 17 10
11 08 06 04 02 02
00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00

26 16 15 18 09 19
12 05 07 03 03 04
00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00

2218 211515 13
11 07 06 03 03 01
00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00

26 13 22 1515 12
12 07 05 06 01 03
00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00

30 14 21 20 10 15
10 05 10 01 02 01
00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00

30 13 15 15 20 10
10 10 06 03 02 05
00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00

26 17 15 21 16 10
09 12 03 03 04 01
00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00

28 10 24 12 18 12
08 12 03 06 01 04
00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00

28 17 16 16 16 11
10 06 10 05 01 01
01 00 00 00 00 00
00°00 00 00 00 00
00 00 00 00 00 00

2217 18 14 14 13
13 07 06 04 04 02
01 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00

20 16 18 16 12 15
09 10 05 06 03 02
02 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00
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2:(C)®s0(8,C)

03(C)@sl(4, C)@sl(2, C) @sl(2,C)

93(C)@si(3, C)psi(4,C)

3(Q)esl(2,C)@sl(3,C) sl(3,C)

93(C)@sl(4,C)osi(3,0)

93(C)@sl(5, C)dsi(2,C)

93(C)@sl(2,C)dsl(5,C)

23(C)@sl(3, C) @s1(4, C)

02(C)@sl(3,C)@sl(2,C) @sl(4, C)

04 (C)®sl(5,C)

2 (C)@sl(4, C)@sl(2,C)

23(Q)@sl(2,C) @s1(3, O @sl(2, C) @s1(2,C)



035.

036.

037.

038.

039.

040.

041.

042.

043.

044.

045.

046.

010011600

00001110

01010010

10110000

00110001

10100110

01001011

10101001

10001101

00101100

11010001

01110000

12

12

12

12

12

13

13

13

13

13

13

13

26 11 18 18 12 15
06 13 04 06 04 01
03 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00

30 13 12 25 10 10
15 05 05 10 01 01
02 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00

22 16 15 15 19 10
09 09 09 03 03 03
02 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00

3012112009 11
20 05 05 07 02 02
05 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00

24 14 1816 13 13
13 06 08 04 02 04
01 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00

2213 18 13 13 12
13 08 07 05 04 04
01 02 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00

221518141511
11 0T 08 06 04 02
01 01 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00

20 16 1515 12 12
13 10 05 06 03 03
03 01 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00

22 141716 1410
12 09 06 05 06 01
02 01 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00

22121519 08 16
09 09 09 03 06 03
01 03 00 00 00 00
00°00 00 00 00 00
00 00 00 00 00 00

22151413 17 12
10 08 09 05 03 02
04 01 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00

3008151019 11
10 10 05 10 02 03
01 05 00 00 00 00
00 00 00 G0 00 00
00 00 00 00 00 00
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23 (C)@sl(4,C)@sl(3,C)

23 (C)@sl(5,C)@sl(2,C)

23(C)@sl(3, C)@s1(3, C) @s1(2,C)

23(C)@s!(2,C)@sl(5,C)

23(C)@sl(2, C) @sl(2, C) @s1(4, C)

24(C)dsi(4,C)®sl(2,C)

% (C)@sl(4,C)@sl(2,C)

24(C)®s1(3,C)®s1(3,C)

24(C)®sl(4,C)sl(2,C)

23(C)@sl(2, C) @sl(3, C) @s1(3, C)

24(C)®sl(2,C)@si(4,C)

93(C)@sl(2,C)sl(5,C)



047.

048.

0489.

050.

051.

052.

054.

056.

057.

058.

00110010

01010100

10011000

00011001

10101010

00101011

01001101

10001110

00001111

11010010

01010011

10110001

13

13

13

13

14

14

14

14

14

14

14

14

201416 14 14 11
13 08 07 06 04 02
03 02 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00

22 13151218 12
09 07 10 06 03 03
02 03 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00

2410181214 12
12 08 08 06 03 04
01 04 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00

221219151215
08 09 09 03 06 01
03 01 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00

18 14 15 13 13 09
14 09 08 05 05 03
03 02 02 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00

181517 13 14 10
12 08 08 05 06 03
02 01 01 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00

2212151614 10
11 08 09 04 06 04
01 02 01 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00

221312171410
09 12 06 05 05 06
01 01 02 00 00 00
00 00 00 00 00 00
00 00 060 00 00 00

28 13 1216 15 10
10 10 05 05 10 01
01 01 01 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00

18 151312 14 14
09 09 07 08 04 03
02 03 02 00 00 00
0000 00 60 00 00
00 00 00 00 00 00

20 14 151513 13
09 09 06 09 03 03
03 01 01 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00

22 14 11 16 12 09
13 13 05 05 06 02
02 04 01 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00
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03(C)@sl(2, C) @sl(2, C) @sl(3, C) @sl(2, C)

03(C)osl(3,C)@sl(2,C) @sl(3,C)

23(Q)@sl(2, C)@sl(2, C) @sl(4, C)

03(C)@sl(3, C) @sl(2, C) @s1(3, C)

24 (C)@sl(3,C) @sl(2,C)@si(2,C)

% (C)o@sl(2,C)@sl(3,C)@si(2,C)

24 (C@sl(4,C)sl(2,C)

2:(C)@sl(4,C)@s1(2, C)

04 (C)@sl(5,C)

04 (C)@sl(2,C) @sl(3,O) @s1(2,C)

2:(C)@sl(3,C)@s1(3,C)

24 (C)osl1(2,C)dsl(4,C)



20 12 14 14 12 13
09 12 05 08 04 04

0os9. 00110100 14 02 02 03 00 00 00 93 (C)osl(2, C) @sl(2, C)@sl(2, C)@sl(3,0)
00 00 00 00 00 00
00 00 00 00 00 00

26 08 15 12 12 18
06 10 04 12 03 03

os0. 01011000 14 03 01 04 00 00 00 03 (C)@sl(3,C) @sl(4,C)
00 00 00 00 00 00
00 00 00 00 00 00

20 12 14 18 09 14
11 06 10 06 03 06

o61. 00011010 14 01 02 02 00 00 00 23 (C)@sl(3, C)@s!(2, Q) @sl(2, C)@sl(2,0)
00 00 00 00 00 00
00 00 00 00 00 00

20 13 15 13 13 09
13 08 08 06 05 04

o62. 10100111 15 04 01 01 01 00 00 95 (C)®sl(4,C)
00 00 00 00 00 00
00 00 00 00 00 00

22 11 12 14 16 09
10 08 10 05 04 06

063. 01001110 15 04 01 01 02 00 00 2 (C)osl(4,C)@sl(2,C)
00 00 00 00 00 00
00 00 00 00 00 00

20 10 15 12 13 08
13 09 09 06 05 04

o64. 10101100 15 03 03 01 03 00 00 04(C)@sl(3,C) dsl(3,C)
00 00 00 00 00 00
00 00 00 00 00 00

181313 16 12 10
11 09 08 07 03 06

o65. 00101101 15 03 01 02 01 00 00 2 (C)@sl(2, C)@sl(3, C)@si(2,C)
00 00 00 00 00 00
00 00 00 00 00 00

28 08 11 10 15 09
11 10 10 05 05 06

o66. 11110000 15 02 02 01 05 00 00 9 (C)osl(5,C)
00 00 00 00 00 00
00 00 00 00 00 00

22 1113 11 14 13
09 10 07 06 08 02

o67. 01110001 15 03 01 04 01 00 00 24(C)@sl(2,C)Psl(4,C)
00 00 00 00 00 00
00 00 00 00 00 00

18 14 11 13 13 09
10 13 08 05 05 05

os. 10110010 15 02 02 03 02 00 00 21 (C)asl(2, C)@si(3,C) @sl(2,C)
00700 00 00 00 00
00 00 00 00 00 00

1812171213 10
12 08 09 05 06 04
o69. 00110011 15 02 03 01 01 00 00 4 (C)@sl(2, C) dsl(2, C) @sl(3,0)
00 00 00 00 00 00
00 00 00 00 00 00
1813121211 15
09 09 07 07 07 03
oto. 11010100 15 03 02 02 03 00 00 24 (C)odsl(2, C) ®s!(2, C) @sl(3,C)
00 00 00 00 00 00
00 00 00 00 00 00
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071.

072.

073.

074.

075.

076.

077.

078.

079.

080.

081.

082.

01010101

10011001

00111000

00011100

10101011

10001111

00101110

11010011

01110010

01010110

10110100

00110101

15

15

15

16

16

16

16

16

16

16

16

131314121511
11 07 08 07 06 03
03 02 02 01 00 00
00 00 00 00 00 00
00 00 00 00 00 00

181215131211
12 08 08 07 05 03
04 01 03 01 00 00
00 00 00 00 00 00
00 00 00 00 00 00

24 08 1216 08 15
07 12 08 04 09 02
04 02 01 04 00 00
00 00 00 00 00 00
00 00 00 00 00 00

22 10 09 21 09 09
15 06 06 11 03 03
06 01 01 03 00 00
00 00 00 00 00 00
00 00 00 00 00 00

16 131413 11 11
09 11 07 08 04 05
03 03 02 01 01 00
00 00 00 00 00 00
00 00 00 00 00 00

201312121510
09 09 09 05 05 05
06 01 01 01 01 00
00 00 00 00 00 00
00 00 00 00 00 00

18 12 11 13 15 08
11 08 09 07 05 03
06 03 01 01 02 00
00 00 00 00 00 00
00 00 00 00 00 00

16 13 14 11 13 11
11 08 08 06 07 04
03 02 03 01 01 00
00 00 00 00 00 00
00 00 00 00 00 00

1812111210 14
10 08 09 05 07 06
02 03 01 03 02 00
00 00 00 00 00 00
00 00 00 00 00 00

1811131212 13
09 09 06 09 04 06
03 03 02 01 02 00
0000 00 00 00 00
00 00 00 00 00 00

18 12 11 11 13 09
10 09 12 05 05 05
04 02 02 02 03 00
00 00 00 00 00 00
00 00 00 00 00 00

16 12 14 12 13 09
12 08 09 06 06 04
04 02 02 02 01 00
00 00 00 00 00 00
00 00 00 00 00 00
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94(C)@sl(3,C)asl(2,C) @si(2,C)

24(C)@sl(2,C)as1(2,0) ®s1(3,C)

3(C)o@sl(2,C)asl(2,C) @sl(4,C)

03(C)®sl(3,C)asl(2,C) @sl(3,C)

95 (C)@sl(3,C)osl(2,C)

05 (C)@sl(4,C)

2:(C)@sl(2, C)esl(3,C) @sl(2, C)

25 (C)@sl(2, C)es1(3,C)

04(Q)@sl(2,C)esl(3, C) @s1(2, C)

24 (Q)@sl(3,C)esl(2, C) @s1(2,C)

2, (C)@sl(2,C)ssl(2,C) @s1(3,C)

24 (Q)@sl(2,C)esl(2, C)@sl(2,C) @s!(2,C)



083.

084.

085.

086.

087.

088.

089.

090.

091.

092.

093.

094.

11011000

01011001

10011010

00011011

01001111

10101101

11110001

10110011

11010101

01110100

00110110

01011010

16

16

16

16

17

17

17

17

17

17

17

17

2209 11 13 08 14
12 06 10 04 08 06
02 03 02 01 04 00
00 00 00 00 00 00
00 00 00 00 00 00

2010 13 1212 12
12 07 07 06 09 03
03 03 01 03 01 00
00 00 00 00 00 00
00 00 00 00 00 00

161212141110
11 10 06 08 06 04
03 04 01 02 02 00
00 00 00 00 00 00
00 00 00 00 00 00

181115131211
10 09 07 07 06 03
06 01 02 01 01 00
00 00 00 00 00 00
00 00 00 00 00 00

201112111411
09 07 10 06 05 04
06 04 01 01 01 01
00 00 00 00 00 00
00 00 00 00 00 00

16 11 13 12 12 09
10 09 09 07 06 04
04 03 03 01 02 01
00 00 00 00 00 00
00 00 00 00 00 00

201110101211
09 09 10 07 05 05
05 0202010401
00 00 00 00 00 00
00 00 00 00 00 00

16 1212131011
08 11 08 08 05 04
05 02 02 03 01 01
00 00 00 00 00 00
00 00 00 00 00 00

14 13 12 11 11 12
10 09 07 07 06 06
03 03 02 02 02 01
00 00 00 00 00 00
00 00 00 00 00 00

18 11 09 13 08 12
13 06 09 07 04 08
04 02 03 01 02 03
00- 00 00 00 00 00
00 00 00 00 00 00

16 10 14 10 13 09
11 08 09 06 07 04
04 04 02 02 01 02
00 00 00 00 00 00
00 00 00 00 00 00

18 10 11 12 12 09
13 08 07 05 08 06
03 03 03 01 02 02
00 00 00 00 00 00
00 00 00 00 00 00
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4 (C)os!(2,C)@sl(4,C)

2, (C)osl(3,C)@sl(3,C)

24 (CQ)@s!(2,C) @sl(2,C)dsl(2, C)@sl(2,C)

2, (Q)osl(3,C)@sl(2,C)&s1(2,C)

25(C)@sl(4,C)

25 (C)@sl(3,C)@sl(2,C)

05(C)®sl(4,C)

05(C)®sl(2,C)dsl(3,0)

%5 (C)@sl(2,C)@sl(2,C) @sl(2,C)

9, (C)@si(2,C)@sl(2,C)@si(3,C)

24(C)@s1(2, C) @s1(2, C) ®s1(2, C) @s1(2,C)

2, (C)@sl1(3,C)@sl(2, C) @sl(2,C)



095.

096.

097.

098.

099.

100.

102.

103.

104.

106.

10111000

00111001

10011100

00011101

10101110

00101111

11110010

01110011

11010110

01010111

10110101

11011001

17

17

17

17

18

18

18

18

18

18

18

18

2208 11101210
09 07 12 08 04 05
05 03 02 0201 04
00 00 00 00 00 00
00 00 00 00 00 00

181011141011
09 10 08 07 05 07
02 04 02 01 03 01
00 00 00 00 00 00
00 00 00 00 00 00

18 10 09 15 11 09
09 12 06 06 08 05
03 03 04 01 01 03
00 00 00 00 00 00
00 00 00 00 00 00

18 11 09 16 12 09
10 10 06 07 08 03
03 06 01 01 02 01
00 00 00 00 00 00
00 00 00 00 00 00

16 10 11 1211 10
08 10 07 09 05 06
03 04 03 03 01 01
02 00 00 00 00 00
00 00 00 00 00 00

16 12 11 11 12 12
07 09 08 08 05 05
03 06 03 01 01 01
01 00 00 00 00 00
00 00 00 00 00 00

16 12 09 10 10 11
09 09 08 09 05 05
05 04 02 02 01 03
02 00 00 00 00 00
00 00 00 00 00 00

16 10 13 10 11 11
09 10 07 07 06 05
06 02 03 01 03 01
01 00 00 00 00 00
00 00 00 00 00 00

14 11 1210 11 10
11 08 08 06 07 05
05 03 03 02 02 01
02 00 00 00 00 00
00 00 00 00 00 00

16 11 121112 10
11 07 08 07 06 04
06 03 03 02 01 01
01-00 00 00 00 00
00 00 00 00 00 00

141211 11 11 10
08 10 08 09 05 05
04 04 02 02 02 02
01 00 00 00 00 00
00 00 00 00 00 00

16 11 10 12 09 11
11 09 07 07 05 07
05 02 03 02 01 03
01 00 00 00 00 00
00 00 00 00 00 00
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2:(C)o@sl(2,C)wsl(4,C)

24 (C)esl(2,C)@sl(2,C) @s1(3,C)

% (C)esl(2,C)@sl(2, ) @s1(3,C)

24(C)esl(3,C)@sl(2, C) @sl(2,C)

25(C)esl(3,C)@sl(2,C)

25(C)esl(2,C)@sl1(3,C)

95 (C)esl(3,C)@sl(2,C)

25(C)esl(2, C)@sl(3,C)

25(C)esl(2,C)@sl(2, C) @sl(2,C)

95 (C)osl(3,C) @sl(2,0)

95 (C)esl(2,C) @sl(2, C)@sl(2,C)

2;(C)esl(2, C) @sl(3,C)



107.

108.

110.

112.

113.

114.

115.

116.

117.

118.

10011011

01111000

00111010

01011100

00011110

11110100

01110101

10110110

00110111

11011010

01011011

10111001

18

18

18

18

18

19

19

19

19

19

19

19

141113111209
10 09 08 06 07 05
04 03 04 01 02 01
01 00 00 00 0C 00
00 00 00 00 00 00

22 08 07 14 08 08
15 07 06 10 04 04
09 02 02 03 01 01
04 00 00 00 00 00
00 00 00 00 00 00

16 10 10 12 12 08
10 09 09 06 06 06
05 02 04 02 01 02
02 00 00 00 00 00
00 00 00 00 00 00

20 08 09 12 12 09
09 12 06 06 04 10
030303030101
03 00 00 00 00 00
00 00 00 00 00 00

18 10 09 11 15 09
08 10 07 06 08 05
03 03 06 01 01 01
02 00 00 00 00 00
00 00 00 00 00 00

16 11 08 10 09 10
09 10 06 09 07 04
05 05 03 02 02 01
02 03 00 00 00 00
00 00 00 00 00 00

1411101109 11
09 10 07 07 06 05
06 04 02 03 01 02
02 01 00 00 00 00
00 00 00 00 00 00

141011 11 09 11
07 10 07 09 06 05
05 03 04 02 02 02
01 02 00 00 00 00
00 00 00 00 00 00

141013 1011 10
09 08 09 06 07 05
04 04 04 02 02 01
01 01 00 00 00 00
00 00 00 00 00 00

14 11 09 11 10 09
10 10 07 07 05 06
06 04 02 03 02 01
02°02 00 00 00 00
00 00 00 00 00 00

16 09 12 10 12 09
10 09 08 05 07 05
06 03 03 03 01 02
01 01 00 00 00 00
00 00 00 00 00 00

16 10 10 10 11 09
10 06 10 08 07 04
05 04 03 02 02 01
03 01 00 00 00 00
00 00 00 00 00 00
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25(C)@sl(2, C)@sl(2, C)@si(2,C)

24 (C)@sl(2,C)@si(4,C)

24(Q)@sl(2, C) @sl(2, C) @s1(2, C) @s1(2, C)

24(C)@sl(3,C)®sl(3,C)

29, (C)@sl(3,C)@sl(2,C) @sl(2,C)

25 (C)dsl(2,C) @sl(3,C)

25(C)@s1(2, C)@sl(2, ) @sl(2, C)

25(C)@sl(2, C)@sl(2,0)@sl(2,0)

25(O)osl(2,C)asl(2, Q) @sl(2,C)

95(C)o@sl(2,C)@sl(2,C)@sl(2,0)

5(C)@sl(3,C)@sl(2,0)

v5(C)@sl(2,C)®sl(3,0)



14 11 09 12 12 09
08 10 08 06 06 07
1m9. 10011101 19 04 03 03 04 01 01 25(O)@sl(2, C)@sl(2, C)@sI(2,C)
02 01 00 00 00 00
00 00 00 00 00 00

18 08 09 10 14 07
08 10 09 06 06 05

120. 00111100 19 07 03 02 04 02 01 (O @sl(2, C)@sl(2, C)@sl(3,C)
01 03 00 00 00 00
00 00 00 00 00 00

14 10 11 10 11 09
10 06 09 07 07 05

121. 10101111 20 05 03 04 03 03 01 6 (0)®sl(3,C)
01 01 01 00 00 00
00 00 00 00 00 00

14 10 11 09 10 09
10 07 09 07 07 05
1222 11110011 20 05 04 04 02 02 01 %6 (0)@sl(3,C)
03 01 01 00 00 00
00 00 00 00 00 00

12 11 11 10 10 10
09 09 07 07 06 06

123 11010111 20 04 05 03 03 02 02 25 (O)@sl(2, C)@si(2,C)
01 01 01 00 00 00
00 00 00 00 00 00

14 09 11 09 10 09
09 10 07 07 06 05

2. 01110110 20 06 04 04 02 03 01 (O @sl(2,C)as!(2, C) @sl(2,C)
02 01 02 00 00 00
00 00 00 00 00 00

20 08 07 10 09 08
10 09 07 06 10 04
125. 11111000 20 04 05 05 02 02 02 2:(O)esl(4,C)
01 01 04 00 00 00
00 00 00 00 00 00

16 10 07 12 09 08
11 09 07 07 07 04
126. 01111001 20 05 07 02 02 03 01 25(C)osl(2,C)@sl(3,C)
01 03 01 00 00 00
00 00 00 00 00 00

14 10 09 10 10 09
09 07 08 09 06 06

127z 10111010 20 04 05 03 03 02 02 05 (O)@sl(2,C) @sl(2,C) @sl(2,C)
01 02 02 00 00 0O
00 00 00 00 00 00

14 09 11 11 10 10
08 08 09 07 05 07

12z 00111011 20 04-05 02 04 02 01 2:(O)@sl(2,C)@sl(2, C) »sl(2,C)
02 01 01 00 00 00
00 00 00 00 00 00

16 09 08 10 11 08
09 09 09 06 06 04

129¢ 11011100 20 07 05 03 02 03 02 5 (C)@sl(2,C)Psl(3,C)
01 01 03 00 00 00
00 00 00 00 00 00
16 09 09 10 12 09
09 08 10 05 05 06

130. 01011101 20 07 03 03 03 03 01 25(O)@sl(3,C)@sl(2,C)
01 02 01 00 00 00
00 00 00 00 00 00
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14 10 09 09 13 09
08 08 09 06 06 06
13:. 10011110 20 06 03 03 03 04 01 5 (C)@sl(2,C)@si(2, O @sl(2,0)
01 01 02 00 00 00
00 00 00 00 00 00

16 10 09 11 10 12
08 08 07 07 07 05

1322 00011111 20 05 03 03 06 01 01 25 (C)esl(3,C)@sl(2,0)
01 01 01 00 00 00
00 00 00 00 00 00

12 11 09 09 09 09
09 08 08 07 07 06

133. 11110101 21 04 05 04 03 02 02 2(O)@sl(2,C)ds1(2,C)
01 02 02 01 00 00
00 00 00 00 00 00

12 10 10 11 09 09
09 07 08 08 06 06
3¢, 10110111 21 05 04 03 04 02 02 2 (C)@sl(2, C)dsl(2,C)
02 01 01 01 00 00
00 00 00 00 00 00

12 10 10 10 09 10
08 09 08 07 05 06

135. 11011011 21 05 05 04 02 03 02 25 (C)@sl(2, C)@sl(2,C)
01 02 01 01 00 00
00 00 00 00 00 00

14 10 07 10 10 08
08 10 08 06 07 05

6. 01111010 21 04 06 05 02 02 03 2;(C)@sl(2, C) @si(2, O @si(2,C)
01 01 02 02 00 00
00 00 00 00 00 00

16 08 09 08 12 09
09 07 09 07 05 04

137. 01011110 21 08 04 03 03 03 03 25 (C)@s!(3,C)@sl(2,C)
01 01 01 02 00 00
00 00 00 00 00 00

16 08 08 10 09 10
07 08 07 09 06 06
1. 10111100 21 05 04 05 02 03 02 25 (C)@sl(2,C)@sl(3,C)
02 01 01 03 00 00
00 00 00 00 00 00

14 09 09 09 12 09
08 06 11 06 06 05

1. 00111101 21 06 05 03 02 04 02 25 (C)@s!(2,C)psi(2, C)@sl(2,0)
01 01 02 01 00 00
00 00 00 00 00 00

12 09 10 08 09 08
09 07 09 06 07 06

0. 11110110 22 05 04 05 03 03 02 2% (C)@sl(2,C)dsl(2,C)
02701 02 01 02 00
00 00 00 00 00 00

12 09 10 10 08 10
08 08 08 07 06 05
141, 01110111 22 06 04 04 04 02 03 25 (C)@sl(2,C)@sl(2,C)
01 02 01 01 01 00
00 00 00 00 00 00
14 10 07 09 09 08
08 10 06 07 07 07
142 11111001 22 04 04 05 04 02 02 2 (C)®sl(3,C)
02 01 01 03 01 00
00 00 00 00 00 00
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143.

144.

145.

147.

148.

149.

150.

151.

152.

153.

154.

10111011

11011101

10011111

01111100

00111110

11111010

01111011

11011110

01011111

10111101

11110111

11111100

22

22

22

22

23

23

23

23

23

24

24

12 09 10 09 10 08
09 07 07 08 07 05
06 04 04 03 03 02
02 01 02 01 01 00
00 00 00 00 00 00

12 10 08 09 10 09
08 08 08 08 05 05
05 06 04 03 02 03
02 01 01 02 01 00
00 00 00 00 00 00

12 10 09 09 10 10
08 08 07 07 06 06
05 05 03 03 03 04
01 01 01 01 01 00
00 00 00 00 00 00

16 08 07 08 11 08
07 08 10 06 06 06
04 04 07 03 02 02
03 01 01 01 03 00
00 00 00 00 00 00

14 08 09 08 10 11
07 06 09 08 05 06
04 07 03 03 02 04
02 01 01 01 02 00O
00 00 00 00 00 00

12 10 07 08 09 08
07 09 07 07 06 07
05 04 04 05 03 02
02 02 01 01 02 02
00 00 00 00 00 00

12 09 08 10 08 09
08 08 07 08 06 05
05 05 04 05 02 02
03 01 01 02 01 01
00 00 00 00 00 00

12 09 08 08 09 10
07 08 07 08 06 05
04 06 05 03 03 02
03 02 01 01 01 02
00 00 00 00 00 00

14 08 09 08 10 09
09 07 08 06 07 04
06 05 04 03 03 03
03 01 01 01 01 01
00 00 00 00 00 00

12 09 08 09 09 09
08 07 06 09 06 06
05 05 04 04 02 03
02-02 01 01 02 01
00 00 00 00 00 00

10 09 09 09 08 08
08 08 06 08 06 06
05 05 04 04 03 03
02 02 01 02 01 01
01 01 00 00 00 00

14 08 07 07 09 08
07 07 08 07 06 06
06 04 04 04 05 02
02 02 02 01 01 01
03 03 00 00 00 00
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2s(C)&sl(2,C)dsl(2,C)

26 (C)®sl(2, C)®sl(2,C)

s (C)@sl(2, C)dsi(2,0)

25 (C)osl(2,C)@sl(3,C)

v5(Q)@sl(2, C) @s1(2, C) @s1(2, C)

96(Q)@sl(2, C)@sl(2, C)

26 (C)@sl(2,C)@s1(2,C)

06 (C)@sl(2, C)@sl(2,C)

26 (C)@sl(3,C)

(O o@sl(2,C)@sl(2,C)

9 (C)@sl(2,C)

26(C)@s((3,C)



158.

159.

160.

162.

164.

01111101

10111110

00111111

11111011

11011111

01111110

11111101

10111111

11111110

01111111

11111111

24

24

24

26

27

29

12 09 07 08 09 09
07 08 06 09 06 05
05 04 05 05 03 02
02 03 01 01 01 02
01 01 00 00 00 00

12 08 08 08 09 08
09 06 06 08 07 05
06 04 05 04 03 02
03 02 02 01 01 01
02 02 00 00 00 00

12 08 09 08 09 09
09 06 07 07 07 05
05 05 05 03 03 02
04 0201010101
01 01 00 00 00 00

10 09 08 08 08 08
07 08 07 06 07 06
05 05 04 04 04 03
02 02 02 01 01 02
01 01 00 00 00 00

10 09 08 08 08 09
08 07 07 07 06 06
04 05 05 04 03 03
02 03 02 01 01 01
01 01 00 00 00 00

12 08 07 08 07 10
07 07 06 08 07 05
05 04 04 06 03 03
02 02 03 01 01 01
01 01 00 00 00 00

10 09 07 07 08 08
07 07 07 06 07 06
05 05 04 04 04 04
02 02 02 02 01 01
01 01 01 00 00 00

10 08 08 08 08 08
08 07 06 06 07 06
05 05 04 05 03 03
02 03 020201 01
01 01 01 00 00 00

10 08 07 07 07 08
07 07 06 06 07 06
05 05 04 04 04 04
03 02 02 02 02 01
01 01 01 02 00 OO

10 08 07 08 07 08
08 07 06 06 07 06
05 04 04 05 04 03
03,02 02 03 01 01
01 01 01 01 00 OO

08 08 07 07 07 07
07 07 06 06 05 07
05 05 04 04 04 04
03 03 02 02 02 02
01 01 01 01 01 01
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26 (C)@sl(2, C)sl(2,C)

%6 (C)@sl(2,C)@sl(2,C)

26(C)@sl(2,C) ®sl(2,C)

27 (C)@sl(2,C)

27(O)osl(2,C)

26(C)@sl(2, C) @sl(2, C)

(C)@sl(2,C)

¥(C)osl(2,C)

27 (C)®sl!(2,C)

9:(C)®sl(2,C)

23(C)



SIMPLE LEVI-TANAKA ALGEBRAS OF THE COMPLEX TYPE F,

—el
.. 1100
2.1 1 0 1
3. 0110
4. 1 1 10
5. 01 1 1
6. 1 1 1 1

I

05
07
07
09
09
11

dim,

cg
0 +142+£3 4 +5
£6 £7 %8 %9 £10 £11

10 08 06 06 01 01
00 00 00 00 00 00
06 06 05 05 03 03
01 01 00 00 00 00
08 04 04 07 03 02
01 02 00 00 00 00
06 04 03 06 03 03
02 01 01 01 00 00
06 04 03 04 03 04
02 01 01 02 00 00
04 04 03 03 03 04
02 02 01 01 01 01

go

92(C) @ sl(3,0)

2:(C) @ 5l(2,0)

22(C) @ 51(2,C) & s1(2,C)
293(C) ®51(2,C)

23(C) & s1(2,0)

% (C)

SIMPLE LEVI-TANAKA ALGEBRAS OF THE COMPLEX TYPE G,

B_1 ={ai,az},

“:

9,

( dimcgg =2

dimc g+1 =2
dimc G402 = 1

dimggig =1"

dimegss =1

\ dimcgys =1
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o = 02 (C)
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