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Introduction 1

Introduction

The subject of this thesis is the minimization problem of integral functionals of the

form

I(u) = / [F(Vu(@)) + g(ule))] de,

where () is an open and bounded subset of RY and u: Q — R™ belongs to a
suitable Sobolev space and satisfies a prescribed boundary condition. Such mini-
mum problems are called scalar when either N =1 or M =1 and vectorial when
both N and M are greater than one.

As is well known, the direct method of the Calculus of Variations ensures the exis-
tence of minimizers for a functional provided the functional itself is simultaneously
(sequentially) lower semicontinuous and coercive with respect to a certain topol-
ogy. Here, by a coercive functional, we mean a functional whose sublevel sets are
(sequentially) compact. In particular, for functionals of the form considered here.
provided suitable regularity and growth assumptions are fulfilled by the functions
f and g, the sequential lower semicontinuity with respect to the weak topology of
Wir(Q,IRM) (weak* if p = oc) is equivalent to the quasiconvexity of the function
f (see [21]). We recall that, following C.B. Morrey ([39]), a function f: RMY — R

is said to be quasiconvez if

1
measD

f) < — = [ fa+Ve@)ds,

for every open and bounded subset D of RY, for every matrix A € RMY and
for every ¢ € WO1 ’°°(D,IRM). In the scalar case, quasiconvexity is equivalent to
convexity, while, in the vectorial case, quasiconvexity is a strictly weaker property
than convexity (see [21] again).

In this thesis, we present some existence results for non convex scalar minimum
problems and for non quasiconvex vectorial minimum problems related to /. More-
over, we investigate the issue of the validity of Euler-Lagrange equations for the
solutions of the minimum problem for I when f is a convex and extended valued

function.
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Let us begin by discussing this latter problem, wich is the subject of Chapter 1. Asis
well known, the Euler-Lagrange equations, in their weak formulation, are classically
derived for continuosly differentiable integrands whose derivatives satisfy suitable
growth assumptions from above and below ([21] and [29]). These assumtions allow
the application of the Lebesgue’s dominated convergence theorem to the difference
quotient of the functional I along every variation in C°(Q2).

Beyond this classical framework. it is fairly simple to show that the smoothness
assumption on f can be replaced by convexity, provided the subdifferential of f
satisfles growth conditions analogous to the classical ones. In particular, in the
Euler-Lagrange equations, derivatives are replaced by measurable selections of the
subdifferentials.

Whenever the integrand f is still convex but the growth assumptions are no longer
valid, the classical approach based on the Lebesgue’s theorem does not apply any-
more. In particular this is true for extended valued integrands. In this case, it
may even happen that not all functions in C°(Q2) are admissible variations for the
corresponding functional I.

At this point, let us focus the attention on the functional considered in Chapter 1.
where f(£) = jj0,1;(|€]]) is the indicator function of the closed unit ball of RY and
u is a minimizer of the corresponding functional I on ug + VVO1 Q).

Such functional can be viewed as the limiting case for p = oo of the functionals

1 ,
/ [;uvm)uugw(x)) d.

For a linear function g, the asymptotical behaviour (as p — o) of the minimizers
on WaP(Q) of the functionals above is studied in [6]. In [17], we directly face the
problem of the validity of the Euler-Lagrange equations for I, by integrating along
the lines of steepest descent of u, so as to determine a measurable selection a(z)
of 97j0,1)(IVu(z)||) such that the equation

VU(II?) _ o ulz T T
/ﬂ @) (g V(@) do = /Q ¢ (u(z))n(z) d

holds for all n € C(R2). It is worth noticing that this approach requires a pre-
liminary investigation of the regularity of the minimizers of I on ug + W'Ol Q).
an investigation wich is usually carried out as a consequence of the validity of the

Euler-Lagrange equations themselves.
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Now, we turn to the issue of the existence of minimizers for I. Most of the papers
related to non convex or non quasiconvex minimum problems feature a constructive
approach to the basic issue of existence, thus exhibiting a striking difference with
respect to the direct method. In most cases, the relaxed problem is considered.
i.e. the minimum problem for the largest lower semicontinuous functional I laying
below the original functional /. When [ is coercive, the existence of minimizers
for the relaxed functional I is ensured by the direct method and its minimum value
agrees with the infimum of the original functional. In the scalar case, under suitable
hypotheses on f and g again, the relaxed functional I is still an integral functional

which can be represented as
) = [ [7(Vu(o) +(ula)) da,

where f** is the convex envelope of f, i.e. the greatest convex and lower semi-
continuous function laying below f. All minimizers for I are minimizers for the
relaxed functional as well and they are characterized by the property of laying in

the set where f and f** coincide, i.e.
(%) F(Vu(z)) = £ (Vu(x)), for a.e. z € Q,

whenever v is a minimizer for I. At this stage, one aims at modifying a minimizer
of I in such a way that it is still a minimizer and simultaneously satisfies (*). This
idea has been fruitfully applied to various one dimensional scalar problems (N =1,
M > 1), see for instance [35], [12] and [14]. In all these papers, the derivative of
a minimizer of the relaxed functional is suitably modified by means of an explicit
construction in [35] and by Lyapunov like theorems in [12] and [14]. A minimizer
for I is then given by a primitive of this modified derivative.

This technique can be applied also to radially symmetric scalar problems with
N > 1. In Chapter 2 (see [15]), a problem of this kind is considered, namely

win{ [ (IVa@l) + stu(e)]de s e W&%B)}

where B is the open unit ball of RY, h : [0,00) — IR is lower semicontinuous
and superlinear and g : IR — IR is convex and monotonic. We first prove that the
relaxed functional has at least one radially symmetric minimizer. By using polar
coordinates, the gradient of this radially symmetric solution can be modified along
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the rays of B as in the one dimensional cases to obtain a solution of the original
problem.

When N > 1 and the problem is not radially symmetric, a further difficulty arises.
Indeed, by modifying the gradient of a function, one does not obtain in general
the gradient of a function again. Therefore, the approach described above is to be
followed with greater care. This is done for instance in [40] and [9], [10] when g = 0.
In particular, these latter papers provide a necessary and sufficient condition for

the existence of solutions to the minimum problem

min {/Q f(Vu(z))dz: u € ug+ Woll(Q)}

where ug is an affine boundary datum. The idea underlying the sufficiency part of
the papers is that of constructing a solution to the relaxed problem on a domain en-
joying suitable geometrical properties wich satisfies (*). Once such a local solution
is available, it is extended to the whole 2 by Vitali’s covering theorem.

It is plain that this approach based on finding a local solution to the problem which
is then extended by a covering argument cannot work when g # 0. For instance,

consider the problem of minimizing on Wy''(Q) the functional

/ [f (Vu(z)) + u(z)] dz.
Q

Here, a patchwork of local solutions having homogeneous boundary values badly
behaves with respect to the issue of making the integral |, q Udz as small as possible.
To the author’s knowledge, problems of this kind have been treated only in cases
when a candidate to be a solution has been previously identified somehow. This
is done in [11] and [48] for the functional considered above in the case of a non
negative and radially symmetric function f, i.e. f(§) = h(|¢]): under suitable
assumptions involving h and {2, the expected solution is, up to a multiplicative
constant, a distance function satisfying ().

A further example of this approach is given in Chapter 3 (see [8]). There, we
consider the problem of minimizing the previous functional on wug + I/Vol Q) in
the case f is non negative and vanishes on the boundary of a bounded and convex
neighbourhood K of the origin and the boundary datum wug is Lipschitz continuous.
Relying on a result presented in [40], the candidate u to be a solution is identified

among the Lipschitz continuous functions in ug + Wy () whose gradient lies in
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the boundary of K. By using a technique similar to the one introduced in [11].
we prove that such function w is actually a solution by showing that it verifies the
Euler-Lagrange equations for a properly chosen convex functional which lies below
the original functional and agrees with it on .

Now, let us turn to the vectorial problems. We shall confine ourselves to the case

g = 0, so that the functional I reduces to

I('u):/ﬂf(Vu(m)) dz.

Again, under suitable regularity and growth assumptions on the integrand, the
relaxed functional I associated with I admits an integral representation of the

form

T(u) = /Q Qf (Vu(z)) de,

where @ f is the quasiconvex envelope of f,i.e. the largest quasiconvex function lay-
ing below f. Unfortunately, no pointwise characterization of quasiconvex functions
is available, thus adding a further difficulty when dealing with vectorial problems.
Indeed, the quasiconvex envelope has been explicitely computed only for very few

special functions. Among these. we quote the function

£(€) = { L+l g0
0 iféE=0
whose quasiconvex envelope has been computed by R.V. Kohn and G. Strang
in [34]. The corresponding minimum problem, originating as an optimal design
problem, has been recently solved in [22] where a necessary and sufficient conditon
for the existence of minimizers is given. Further existence results for vectorial
problems are available in some cases where the computation of the quasiconvex
envelope reduces to the computation of a convex envelope. Among these, we quote
[40] which deals with an integrand which is a function of the determinant, [18]
where the determinant is replaced by a quasiaffine function and [22] again where a
more general functional is considered.
We end this short survey by mentioning those vectorial problems whose solution
requires the construction of a function whose gradient takes only prescribed values.
i.e. those problems which can be reduced to a system of Hamilton-Jacobi equa-
tions. We refer to (23] for various existence results on these equations. Among

these problems, we mention in particular the so-called problem of potential wells
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which consists of in minimizing the functional I when f is a non negative func-
tion vanishing only at certain potential wells, described by the rotation of a finite
number of matrices. In Chapter 4 (see [16]), we solve this problem with a homoge-
neous boundary datum when ) is an open subset of IR® and there are two wells
described by the rotations of the identity matrix II and —1I. The argument, which
we sketch below, is entirely constructive. We define, on an open cube of IR®, a Lip-
schitz continuous function u vanishing on the boundary of the cube whose gradient
satisfies

Vu(z) € SO3)TUSO(3)(—1), forae. z

This local solution is then extended to the domain §2 by a covering argument.
Finally, we mention that a further existence result for a two wells problem in IR?

has been proved in [40].
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On the Validity of the Euler Lagrange Equations

Chapter 1
On the Validity of the Euler Lagrange Equations

As is well known (see [29]), problems of the kind:
L : 1
minimize the functional / {EHVu(:c)IIO‘ +g(u)| dz
Q

on u € uy + Wy*(Q), 1 < a < o, at once admit solutions (under some suitable

assumptions) and solutions do satisfy the Euler Lagrange equation
div(|[Vul|*7*Vu) = ' (u).

We wish to investigate the limiting case o = oo. More precisely, the problem we

consider is the problem of minimizing the functional
P(u) = | Gon(IVue)l) + ou))ds

for u € ug + T/Vol "°(Q), where Jio.1) is the indicator function of the closed interval
[0,1]. The map y — jpo,1y([lyll) is convex, lower semicontinuous and extended
valued. The coercivity requirement, for the existence of solutions, is obviously
satisfied; hence, when the functional F assumes a finite value for at least one
function u € I/VO1 "°(Q), the minimization problem admits a solution. Even though
the integrand is not differentiable, the convexity of the function y — jio 1)(llyl)

leads one to expect the validity of an Euler-Lagrange equation in the form
divp(z) = ¢'(u(z)) for p(z) € I,y ([ Vulz)])-

Convex analysis, however, is of no help. In fact, the basic assumption needed for
the applicability of the theory, namely the continuity of the map £ € L®(2) —

Jo do.y([[€(z)|)dz is violated in this case, no matter what a is.
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Here, under some assumptions on ¢ (that include the linear case) but essentially
without assumptions on ) and on ugp, we show that the Euler Lagrange equation
holds for a solution to the minimum problem. In particular, whenever the functional
F is finite only along one function (the boundary function wug), it follows that ug
must be a solution to the Euler Lagrange equation. Equivalently, from an optimal

control point of view, we are interested in the conditions satisfied by the solutions

/ﬂ g(u)ds

for u € ug + Y/VO1 (), subject to the Hamilton Jacobi control equation

to the problem of minimizing

Vu(z) = v, veEB

where B is the unit ball of R, ie. {y € RY : |ly|| < 1}. We show that to a
solution u we can associate a map p € (L'(Q))" such that, denoting by H the

map
H(u,p.v) = —g(u)+ < p,v >,
we have: oH

and a.e. H(u(z),p(z),v(z)) = maxyep{H (u(z),p(z),w)}, i.e. the solution satis-
fies the Pontriagin Maximum Principle ([41]).

In contrast with the usual approach, where regularity of the solution is obtained as
a consequence of its being a solution to the Euler Lagrange equation, in our case
we must prove first some regularity of the solution in order to obtain, from it, the
validity of the Euler Lagrange equation.

1.1. Main results

We consider the following problem

®) min /Q G (IVe@)]) + o(u(x)) dz

ug+ Wy (Q)

It is our purpose to prove the following theorem.
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Theorem 1.1.1. Let Q be an open bounded subset of RY, let g : R — IR be
differentiable and strictly monotonic. Let ug be in W1 (Q)). Assume the existence
of at least a function in ug + Y/'Yf’&’oo(ﬂ) that makes the functional F finite. Let u
be a solution to the minimum problem (P). Then u is an integral solution to the

Euler Lagrange inclusion

divp(z) = ¢'(u(e) for p() € o,y (IVu()]).

To prove the theorem we should consider separately the two cases g increasing and
g decreasing. We shall present the proof for the case g increasing. We shall use
the notation: for A ¢ RY, p(z, A) = infyca{llz — v/}

The following lemma is a first regularity result on the solution .

Lemma 1.1.2. Under the same assumptions as in Theorem 1.1.1, let u be a
solution to problem (P). Then for every zo and r > 0 such that By(zo) is contained

i €, we have

sup{u(z) —u(zg) : ||z —zol| =7} =1

Proof. The map © must be, on B,(zg), lipschitzean of Lipschitz constant 1. Hence
the supremum above cannot be larger than r. Assume it is equal to {r, with { < 1.
Let n be a Lipschitzean function such that

(1) 77(530) = =T,

(it) [[Vnll =1,
(iii) n(z) =0,z € Q\ Br(zo).
Fix A € (¢,1) and consider the function

ma(z) = An(z) = (u(z) — u(zo)) + (7.

We have that: for z € dB-(zg), na(z) = (r — (u(z) — u(zg)) > 0 while ny(zo) =
—Ar +(r < 0. Call E the connected component of the set {n, < 0} containing z
(the measure of E is positive). The map 7, is then defined to be

- — L3 (:E), S E)
T (z) { 0 elsewhere.
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We have that n; (z) =0 for z € B, and that 1, (z¢) < 0; moreover

—/ v} AVn(z) = Vu(z) z€E,
Viy () = { 0 elsewhere,

so that ||[Vna|l £ 2. It is our purpose to show that for parameters ¢t > 0 sufficiently
small, we have ||[Vu+tVny| < 1.

a) Consider first those z € E such that ||Vu(z)| > l‘—;—é We have:

A—1

2<O

(Vu, Vi) < MVl Vall = [Vull® = [[Vull(A = [Vul)) < [Vl

and
_ _ 1—X_ 1-)2
(Vu, 955 )] = (v, Vi) 2 w52 > 22
Hence, for t € (O,—l-—_gﬁ) and a.e. z € E, we have that 2[(Vu,Vny)| > 4t >
t|Vn5 |2, Since

IVu + V5 |12 = | Vull® + £ |Vn5 || + 2¢(Vu, Vng)

we obtain
IVu +tVn5 1P = |Vl + @V |1+ 2(Vy, Vi3))
<1+t Vs lI* = 2V, V)] < L.

b) Consider now those z € E such that |[Vu(z)| < l‘—g—’-\— Then, for ¢ in

(0, %), we simply have

_ _ 1+XA 1-A
[Vu+ 6955 1| < [Vu(@) + 8 9n51| < =+ — "2 =1

Hence, from the above, the variation 7, is admissible, in the sense that a.e. in (1,
for all t sufficiently small,
| Vu+tVn5] < 1.

For one such ¢, since: jjo,1)([[Vu+tVny|]) =0, ae. in Q; u+tny, <wu,ae. in Q;
u+tn, <u,ae.in £, we have

Flu+tn,)= /g;g(u(:c) +tny (z)) dz < /Qg(u(:z:)) dz = F(u)

a contradiction. ' ]
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As an obvious consequence of the previous lemma, we have the following proposi-

tion.
Proposition 1.1.3. For a.e. z € Q, [|[Vu(z)||=1.
Proof of Theorem 1.1.1. We split the proof into five steps.

Step a) From Lemma 1.1.2, and the Lipschitz continuity of u, it follows that the
following property holds: to any point z € {) we can associate at least a unit vector
(a direction) d* and (at least) a non vanishing interval [0, 1) such that for ¢ € [0,1).
u(z + td*) — u(z) = t. The set of these directions gives rise to a multivalued map
z — D(z).

Given z and d®, let b* be such that [0,b%) is the largest such interval. Then it is
easy to see that = + b*d* € 9. In fact let y be on this segment. To y we can
associate at least one direction d¥ with the property stated above. If this direction
d¥ does not coincide with d*, in a neighborhood of y we could contradict the fact
that u is lipschitzean with constant 1. This in particular shows that d¥ is unique
whenever there exist = € 2, a direction d* and t in the interval (0,b) such that
y =z + td*®. For fixed z and d*, call (a®,b") the largest open interval such that
w(z +t1d%) —u(z +t2d®) = ta —t; for to > t; and ¢; and ¢y in (a”,b”). Whenever
z belongs to S(z) = {z +td* : t € (a*,b%)}, i.e. when a® < 0, we have that d* is
unique and that a* and b® depend only on z, i.e. we can consider the univalent
maps = — d(z) = d*, z — a(z) = a* and z — b(z) = b*. It will be convenient to
set

S = U{meg}S(fL').

Step b) For k in {1,..N}, let dj denote the k-th component of the vector d.
About the properties of the map z — d(z) we have the following claim, a first

regularity result on Vu.

Claim 1. Fix k € {1,...N} and ¢ > 0. On

EF={reS:(z—ed(x),z+ed(z)) C S(z); di(z) > p(z,00) > 3¢}

1
VN’
the map = — d(z) is Lipschitz continuous with constant 2\/7 E.
Proof of Claim 1. Consider two points P and P’ in E* and set d = d(P).
d' = d(P"). In the case |P — P'|| > 5==||d — d'||, we have

3n
2/ N
£

ld(P) = d(P)]| < |1P = Pl.
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Hence we consider the case ||P—FP'|| < 2\;jv—l]d—d’ll. Set 7 tobe {P+Ad: A € R}
and 7" to be {P'+ Ad': A € R}. Let O € r and O’ € 7’ be the two points of
minimal distance for 7 and 7’; then (O’ —O,d) = (0’ — O,d’) =0. When O # O’

we shall refer to the unique three dimensional space containing r and r’ (the case

O = O being similar and simpler). On the plane orthogonal to O’ — O and
containing 7, let 7”7 be the projection of the line r’. Also let P* be the nearest
point to P on 7", so that ||[P — P’|| > ||P — P*||. The point P” on r” is defined
to be the point having ||P — O] = ||P” — O]| and lying on the same side (w.r.t. 0)
as P*. By elementary geometry we have

12 =P _ fld—di
1P =0l 1

Consider the triangle O, P, P, and let H be %P + %P”‘ We obtain

|P— P _ JH-0|
IP=P7 ~1P7=0]

Since, by the definition of Ei‘ we have that “l'}-ii’;-%l‘l-' > \/N we obtain

1P - PW—HP.Pﬂg gm<fwﬁ P|

so that

1e-P" =P P~ P
IP-0l="fr=ay <Wja=ar <VVa=a <7

For symmetry reasons, also ||P' — O’'|| < §. Hence we have obtained that both O
and O’ are in Q, and u is therefore defined at O and O’. At this point we are
free to assume that u(O) > u(0O’).

Let A and D the extremes of a segment on S(P) centered on O and of halflength
£ and B’, C’ be the same on S(P’) with respect to O’. We have: ||P — 4] < ¢,
|P—DJ <e and

£ > g
Bl <IB -0 I _pl Pl < Z 44— <2 P—-C'|| < 2e.
|P—-B'| < ||B'=0O'||+]|O0"=P'|| +||P Pll_2+2+ ~ = e, [[P-C"|| <2

Therefore, all the points A, D, B’ and C’ lie in the ball Bs.(P) C Q. On this set,
the map wu is lipschitzean of Lipschitz constant 1. Let B and C' the projections of
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the points B’ and C’ on the plane orthogonal to O’ — O and containing O. We

can assume that
w(D) —u(4) = ||D - Al and u(C')-w(B')=|C"~B'|=|C- Bl

Hence, we have
|B'=D|| > u(D) — w(B) = u(D) — u(0) + u(0)
(1.1.1) —u(0") +u(0") —u(B') = |D = O|| + u(0) — w(O") + ||B" = 0|
> ||D-0O|+ B -0,
while, on the other hand,
|B' = D|* = ||B' - B> +||B - D||?
=[|0'=0|*+||B=O|*+|0~-DJ|*+2(D-0,0 - B).
By (1.1.1) and (1.1.2) we obtain
10" = O|> +||B-0|*+]|0—-D|*+2(0—-D,B-0)
> |D-O|*+|B = O'|*+2|D - OB -0

(1.1.2)

hence

||0'-—onzzan—onuB—on(1—<D“O B“O>)

ID-0]" 0 - B
g

= ID-0lI1B' - O'll2 — 2(d, )] = (Z) lla—a|

Tt follows then that ||d — d'|| < 2|0 — 0’| < 2||P - P'|.
Hence we have
2N

£

d(P) = d(P)]| < |1P = P'|

for every P and P’ in EF. This proves the claim.

Step ¢) Purpose of this step is to define a countable partition of S consisting of
measurable sets.

Consider the set P of pairs (p,q), where p and ¢ are integers and ¢ is positive,
and let ¢ : IN — P be a numbering of this set. Denote by (pn,qn) the image o(n).
To ne€ IN and k£ € 1,...N we associate the two disjoint sets

' mn 3
Bk = {y € S(a) ap = P2 di(z) = sup |di()l; ple,80) 2 =
dn 1<i<N qn

and z — —}—d(m), T + id(:v) € S(x)}

dn gn
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and

n 3
B = {y € S(@) iz =22 di(z) = — sup |di(a)l; plz,00) > —
dn 1<i<N dn

and 7 — —d(z), 7+ —d(z) € S(x)}

n Qn

In order to obtain a partition of S we operate in the standard way. Set Zf’l =E/ o
and, in general,
k+ & i
B = BPTT\{Uim,.a D]

Set E:fl = E:_;_ll\{Uizl,...N;m:l,,..nzrtp,’i} and

2:f1+1 = E:J.]Cl+1\{(Ui—_-l,...N;mzl,...nEjr‘L’i) U (Ui:l,...kz;:.‘:l)}
An analogous procedure is applied to the family E7** to yield the disjoint family
{¥-*}. This second family is defined so as to be disjoint from {Z}*} as well.
We have defined a disjoint family. We wish to show that it covers §.
Clatm 2. § = U;czl’__,N;ne]N(Z:'k U Zg’k).

Proof of Claim 2. We have only to show that
Uk:l,...x\’;neﬂ\l(z;{;’k U Z.,_l’k) DS.

Since

Uk:l,...N;TLGN(E:7k ] E;’k) - Uk:l,...N;nélN(E:’k ) E;’k)7

we have to show that, for every z € Q, S(z) is contained in the set at the right
hand side. Let z € S(z’) for some 2’ € Q. There exists a & such that either
de(z) = sup;q,. n|di(z)| or di(z) = —sup;_q, n|di(z)]. Let us consider the
first case (the other being analogous). Call A = p(z,02). Since S(z’) is an open
interval, there exists §, 0 < § < %, such that

{z +Xd(z): =6 <A< 6} S(2).

Let ¢ be a positive integer such that 1/q < §/2v/N; there exists an integer p such
that |(p/q) — x| < 1/2q. The point y = = + [(*f?Z —xk)/dk(z)]d(z) has the following
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properties: its k-th component y equals 5; recalling that di(xz) > 1/v N, we have

that

k()

As a consequence, an interval (on S(z’)) centered on y and halflength % is con-
tained in S(y) (= S(z’)) and contains . Moreover, p(y,d0) > A — (§/4) >
(7/4)6 > 3/q. Hence, setting n = o~ 1(p,q), we have z € E}*. This proves
Claim 2.

_ YN

= T3g

B
)

p— —_ q —.
Iz~ yll = | % <3

Claim 8. The measure of Q\S equals zero.

Proof of Claim 8. Since the subset of {2 of those points where u is not differentiable
is of measure zero, it is enough to show that it is of measure zero the subset of Q\S
where u is differentiable. In particular, for z in such a set, we can assume that
there exists a unique vector d*, as defined in Step a), otherwise we would contradict
the differentiability at z.

Since Uy (Ef* U E;*) =S, we shall prove that m(Q\ Uy, (E* U E; %)) = 0.
Assume, on the contrary, that this set is of positive measure and let zg be a point
of density of it. As it easy to see, the map x — D(z) as defined in Step a) is
upper semicontinuous; it follows then that for every e there exists § such that
|d® — d(zq)|| < € for ||z — zo|| < 6§ and d* € D(z). By changing coordinates we
shall assume 2o =0 and dy(zo) = 1.

Let us consider the (family of) cubes @, = {z : 0 < |z;] < ¢, i =1,..N} and let

us choose £ so small that, for every = € Q;, we have:
i) p(z,00) 2 ¢
ii) dy(z) > max{——\/%,g .

Let us consider the subset of Q; defined by

1
Ij={z:zy =0 and ]a:ilg;)—, i=1,..N -1}

4

The (N —1)-dimensional measure of I, is V=1, while the N -dimensional measure
of Qg is (20)N. Fix ¢, % <t< %Z and consider, on the hyperplane {zn = t}, the
subset of @y

P, = {x—i—tdifg) rx el anddED(x)}.
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Every point y in this set is in the interior of S(y); D(y) = d(y) so that it is possible
to define the map F; : P, — I; defined by

d(y)

Fi(y) = y_th(y)'

Notice that P, is contained in EY as defined in Claim 1, with £ = %, hence the
restriction of d to P, is lipschitzean with constant #. For y and v in P, we

have

1 dy) _ 4) | - lld(y)~d(y’)l!+ Hd(y’)!l

<f-6-*/-:ny Jn+N9[—u vl 2y,

dn(y)  dn(y’)

Hence the map F} is lipschitzean with constant 1+ tQNKL—N <1+8N+VN.
Considering the (N — 1)-dimensional measure of a subset A of P;, we have then

m(Fi(A)) < (1 +8N+/N)m(A). Hence

m(Ft(Pt)) _ TH(I@) _ EN_l
1+8NVN 1+8NVN 1+8NVN

The set U toict P, is contained in S and, by Fubini’s Theorem, its /V-dimensional
measure is at least £V /(3 +24N+/N), a fixed fraction of the total measure of Q.

Hence zg cannot be a point of density. This proves Claim 3.

Claim 4. For every k =1,...IN, for every n, the sets L* are measurable.

From now up to Step e) we shall fix a choice of either + or —, of & and of n.
Hence, for simplicity sake, we will drop #+, n ,k and simply denote EX* by E
and E* by ©. For every € RY we shall denote by & the (N — 1)-dimensional
vector (zq,...Tk—1,Zk+1,..-LN ), and for every £ € RV we shall denote by 7Z the
N -vector (Z1,...Z5-1, %—, Tk, ...Tn-1). It is convenient to set E to be the subset of
RY-! defined by E={2:x€ EN{z; = £2}}, and analogously for 5. Consider
(Z,t), 2 € E,a(ri) <t < b(nz) and define the map

=(2,t) = z + td(nz).

Since, by Claim 1, d is Lipschitz continuous on E N {zy = g—:—}, the map = i

uniformly Lipschitz continuous.



On the Validity of the Euler Lagrange Equations 17

Proof of Claim 4. As it is easy to see, both the maps a(nZ) and b(wZ) are lower
semicontinuous on E, and E can be described as the intersection of a closed set
with the counterimages through aom and borw of the interval [—;]—1;, ?;1;] , hence it is a
measurable set. The subset of IRY described by {(2,t) : # € E;a(n?) < t < b(n#)}
is measurable and so is F, its image through the Lipschitz continuous map =. It

follows that ¥ is measurable. This proves Claim 4.

Step d) We wish to study the properties of the maps Z(&,t) defined above and of
JZ(&,t), the absolute value of detVZ. For a.e. (2,t) € (£)7*(Z) we have that V=
exists and a computation shows that it can be obtained as follows. Consider the
N x N matrix Vd(rZ) and form the matrix I +tVd(n). Replace the k-th column
by the components of d(nz). This is the matrix VE(Z,t). Hence JZ is uniformly
bounded on ¥. It is also a.e. different from zero. In fact, differentiating the identity
|ld(z)|| = 1, we obtain (Vd(z))d(z) =0, so that (I +tVd(rz)) d(rZ) = d(nz). By
Cramer’s Rule, and the above computation of VZ, we obtain
. J=(z,t

de(rd) = £ +S§Vd)(7r:%)) '
Since (on %), |dk| > —\7——%, we finally have J=(Z,t) # 0.
We wish to define a map « and prove it is in L*(Z). Define first the map § on
Z71(Z) setting

1 t
66,0 = 32y [, ¢ @ IEE ) ds

For z € 3] define o as

Claim 5. o € L*(2).
Proof of Claim 5. We recall the change of variables formula ([26], Theorem 2,

p.99) that states that, for a function v € L' and an invertible and Lipschitzean

trasformation =, we can write

/mw v(E(2,) JE(i,t)d(i,t)=AN v(z) d.

By this formula we obtain

/ﬂwmm=/ ¢ (w(E(E, 1)) JE(2, 1) d(2, 1)
=

(=)-1(®)

b(rz)
:f (/ g’(u(E(ﬁ:,t)))JE(:i,t)dt) ds.
3 a(rz)

(11
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Similarly, by the change of variables formula and applying the definitions of o and

B, we have

. b(wz)
/Ea(x) iz = /@-1(2) Bz, 8)J=(%,8) d(#, £) = /E ( / P06, dt> iz

b(ng) pt
:/ (/ _/ 9'(w(E(Z,9)))JE(2, s) dsdt) ds.
S \Ya(ri) Ja(ri)

Integrating by parts we obtain that

b(rnz) pt
/ / g (w(=(%,8)))J=(T, s) dsdt
a a(r)

(m2)

b(w)
—_ / (t — b(n2))g (w(E(E, 1)) JE(2, ¢) dt.

(72)

Hence

(72)

b(w)
/E o) dz < /E diam(Q) ( / o (w(E (@, ) JE(, 1) dt) iz

b

P

=diam(Q)/g'(u(m))d$.

Step e) Since the sets ¥&* are disjoint and (with the addition of a null set)
form a partition of Q, « is actually defined a.e. on {2 and by adding the previous
inequalities over + and — and all k¥ and n, we have that « € L1(Q).

Setting p(z) = a(a:)“—%%ﬁ , we want to show that the pair (u(z), p(z)) is a solution
to the Euler Lagrange equation for the minimization problem (P).

Fix arbitrarily ¢ in C§°(Q?) and consider
[ a@)vu@), vé(a) da.
Q

Since |(Vu(z), Vé(z))| is bounded, the integrand is in L!(Q) and the integral over
Q is the sum of the integrals over Y%, We fix one such 1% that we denote by
¥ and recall the corresponding notations introduced in Step d). Recall that, by the
definition of Z and the properties of Vu,

a_ R — A ~
SE(5.1) = Va(E(3,1) = d(r3),
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independent of t. Hence,

%qf)(a(g‘c,t)) = (Vu(Z(%,1)), Vo(E(2,1))).

By the change of variables formula we have

/Ea(x)(Vu(I),V¢($)>d$ :/

by

/b(ﬂ'i‘) o ,(

= =@
/2 a(xz) Ot

Integrating by parts we have

(r)

b(r) b
( / o(E(2, 1) 5 #(E(2, 1)) J2(3, 1) dt> di

{11

(3,1)) / J (W(E(E, 5))) JE(, s) dsdt) di.

(v2)

/ o(2)(Vu(z), V() du
>

:/;3 (Lb(s(ae,t)) / 9 (u(E(&,5)))JE(&, 5) ds]ons)

a(n)

(r2)

b(nz)
_/ 7 (WEE, ) (E(E, 1) JE(E, ) dt) d.

The first term at the r.h.s. is zero since Z(&, b(nZ)) belongs to 0.

In the same way we compute [y g'(u(z))¢(z) dz. We have:

()
/EQ(U(JJ)M(SE) dﬂ?=/2 </a 9'(u(E(Z,1)))9(E(2,1)) JE(E,1) dt) di.

(7Z)

‘We have obtained:

[ .. c@(Vu@), Vo@hdo+ [ o w(@)ola)dz =0

ok

for every L£X* hence the same is true on Q. The pair (p(z),u(z)), where p(z) =

a(m)%ﬁ—g—g—g—n, is an integral solution to the differential inclusion

divp(z) = ¢'(u(z)) for p(z) € Ojjo,1([[Vulz)l)-
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Notice also the following chain of implications

Hp“ if ||pf| # 0 |
(p,v) = max(p,w) & v={ [P & p € djp,y(llvll)
weB :
B ifp=0

Hence, considering problem (P) as the problem of minimizing

/Q g(u)dz

for u € ug + Wy°(Q), subject to the Hamilton Jacobi control equation
Vu(z) = v, vEB

where B is the unit ball of RV, i.e. {y € RY : |ly| < 1} and introducing the
function
H(u:pav) - —g(u)+ <p,v >,

we have obtained that p and u are solutions to the differential equations

H
Vu=Vy; divp= —aa—
U

and satisfy a.e. the equation

H(u(z), p(z). v(z)) = max{H (u(z), p(z), w)}.
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Chapter 2
On Minima of Radially Symmetric Functionals

In this chapter we consider the problems of the existence, the uniqueness and the

qualitative properties (symmetry) of the minima to the problem

m [ Bl [Vu@)) + o(u(@)]de
where B is the unit ball of IR" and the map v — h(r,v) is lower semicontinuous
but not necessarily convex.

Problems of this kind arise in domains as different as non-linear elasticity, fluido-
dynamics and shape optimization, and, either for the problem of the existence of
solutions or for the properties of the relaxed problem, are considered in [4], [31],
[32], [34], [36], [42], [46]. In particular, the very same problem is considered in [46].
Our results present the following features:

a) no smoothness on h or g is required: h is either a normal integrand or a
lower semicontinuous function;

b) the case g =0 is allowed: in this case the assumption on i reduce, for the
existence of solutions, to h being lower semicontinuous and growing at infinity, as
is to be expected; for the uniqueness, in addition, on h** being strictly increasing,
as also is to be expected;

c) the case ¢ = au is allowed: for a # 0 our theorems yield at once exis-
tence and uniqueness of solutions with no further assumptions on h besides lower

semicontinuity and growth at infinity.

2.1. Basic notations

In what follows we shall assume that: IRY is endowed with the Euclidean norm
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|- 1|; B is the unit ball, whose measure is wy . The (N — 1)-dimensional Hausdorff
measure of B is Nwy .
The subgradient of a convex function h is denoted by Jh.
A map h:[0,1] x [0,00) — IR is termed a normal integrand, [25], if

i) for a.e. 7 €[0,1] h(r,-) is Ls.c. on [0,00);

i) there exists a Borel function h:[0,1] x [0,00) — IR: h(r,-) = h(r,-) for a.e.

r e [0,1].

Consider h : [0,1] x [0,00) — IR. Let A : B x R" — TR be defined by h(z,€) =
h(||lz||, |€]l). Whenever the bipolar of h, h**, is defined, by extension we call
bipolar of A, h**, the map defined by &**(||z|,||€])) = A**(z,€). Remark that the

map & — h**(r,£) is increasing. It is known, [25], that A** is a normal integrand

whenever so is h and that hA** satisfies the same growth assumptions as h.

2.2. Main results

We shall consider the following problem (P):

(P) win [ [Blel] [ Vu(@)]) + o(u(@)]de
ueWy " (B)J/B

where B = {z € R":||z|| < 1}, N > 2, h:[0,1]x[0,00) — IR is a normal integrand

and ¢:IR — IR is convex.

We shall assume throughout the following growth assumption GA:

There exist a convex ls.c. increasing function ¢ : [0,00) — [0,00) such that
im0 w(ss) = oo and a function « € L([0, 1]) satisfying h(r,s) > a(r) +¢(s) for
all s € [0,00), for a.e. r € [0,1].

The following result guarantees the existence of at least one radially symmetric

solution to the minimum problem (P) associated to a convex function h.

Theorem 2.2.1. Let h be a normal integrand satisfying assumptions GA. Assume
further that h** = h. Let g : IR — IR be conver. Then problem (P) admits at least
one radially symmetric solution. Moreover, if g is monotonic and either h(r,.) or

g is strictly monotonic, then every solution to (P) is radially symmetric.
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Proof. Let u be a solution to problem (P). Consider the function % defined by

(2.2.1) () :ﬁ; - elehas

It is our purpose to show that @ is a radially symmetric solution to (P). The

symmetry comes from the very definition.

a) We claim that

1 T

(Vu(wl||z]]),w)dw, z#0

Vile) = Nox [l Jjwy=1
va(0) = 0.

(2.2.2)

First remark that the above is true when u is of class C'. In this case, when

llz|| # 0 one can differentiate with respect to the parameter z to obtain

01 1
(@)=
oz; Nwpy

/ (Va(l]), w) -2 dw
lwll=1 llz]]

while, for =0

ou .1 1
ox; (0) = f}ilir'lo hi (NwN /ku:l(u(whi) - u(O))dw)
1

[ (o vu + m||wne<m||wn>dw)
lw]=1

To show the validity of the above formula for any u in W(B) let us consider a
sequence {up}, each uy of class C* and up — u in WH(B). Hence, from the
previous result, Vi, satisfy (2.2.2). We are going to show first that the functions
7y, defined by (2.2.1) convege to @ strongly in L.
Set w to be

i) = W‘j?;ﬂ‘f?ﬂ Siwi=1(Vu@wllzl),w)dw, = #0

0, a’;:o

To prove the claim hence it will be left to show that Vi converges to w strongly
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in L}(B). We have

la-a < | (ﬁ}); [, el = we(elal) dw) o

v | ( [ tutollel) = wslel)] do )

= ——1--—/ (NwN/ |u(wr) — ug(wr)| r™ " tdr | dw
NWN Jjjw)=1 0
— [ Iuta) ~ wel@)] dz =l w e
B
Through the same steps,
| w— Vi
_/ 1=
g Nwn ||
)
< [ — Vu(wl|lz|]) = Vug(wl|lz|D)|| dwdz
[ 5 |, Iveelel) = Vusla

A ll:l(VU(w“ﬂ?H) — Vuk(u)“:cn),w)dw dz

and, by applying again Fubini's theorem,
” w — Vg H1§H Vu — Vug Hl .

The claim is proved.
The above arguments defining % out of u are similar to those employed in [13] and

[27] for a problem involving the Laplacian.

b) From the convexity of g we obtain

/BQ(U(CE))CZIZ/g(ﬂ(m))dm.

B

Jonts < [ s [ atuteielyiods
/wll 1/ N_ldrd“’:/BQ(u(:r))d:c.

In particular the same computation in the case g(u) = u yields

(2.2.3) /Bu(:z:)d:cZ/Bﬂ(m)dz.

In fact
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To prove that @ is a solution it is left to show that

/h(HmH,HVﬂ(w)H)dIS/ h(llzll, [ Vu(z)l))dz
B B

Since

1
Vi(z - Vu(wl||z|])|| dw
Vel < g [ vl

and s — h(r,s) is monotonic,

_ 1
/. sl Iva) s < | h(!lxn,—m [ Iwutla dw) do

By the convexity of s — h(r,s) and Jensen’s inequality,

1
I <nxn, T L, Il dw> da
1
</ (m | wn_lmnxn,nw<w|1xn>||>dw> s

|Vu(wr N=lgrdw = [ h(|z]|],||Vu(z)|])dz
/wll 1/ nl e /B =zl IVu)]])

Hence 4 is a radially symmetric solution to (P).

c) Assume now that g is monotonic and let us prove the result first in the case
g monotonic increasing. The map v — h(r,v) is non decreasing; by assumption,
either g or h is strictly increasing. Let us show that every solution is radially
symmetric.

Let u be any solution and set @ to be

U = ! ﬁw T W
(@) = 5 /“ L Helalba

From the above, @ is a solution. Consider the average w =

(u + @). By the

o=

convexity of the problem, w is a solution. In particular,

/ h(llz) | V(@) ) dz
B

(2.2.4) . 1 —
=3 /B el [Vu(@)ldz + 5 /B (), |Va(z)|)dz.
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By the monotonicity and the convexity of h, we have

] [Vu(z)|| + HW(I)H>

2

&

Al IVe(@)]) < A (chl

< Shllzll, IVu(@)) + %h(llmil, IVa(z)l)

[N

so that, by (2.2.4), equality holds:

V()] + [Va()]
] : )

el IV w(@)l) = (ls
1, .. 1 _
= Shllzll, [Vu()ll) + Shlzll, [Valz)]).
Set T(r) to be T(r) = sup{v : h(r,v) — h(r,0) = 0}. The supremum is actually a
maximum.
We wish to show that for almost every z, ||[Vw(z)|] > T(||lz]). In the case h

strictly increasing, 7' = 0 and there is nothing to prove. Assume that g is strictly

(2.2.5)

increasing. Remark that v — h(r,v) is strictly increasing for v > T'(r). Hence,
notice the following property of w to be used later: for those z such that the
gradient exists, whenever ||Vw(z)|| > T(||z||), there exists A(z) > 0 such that
Vu(z) = M(z)Vi(z). In fact in this case the first equality in (2.2.5) implies that

V@)l = 5 (IVu(@) + |Va(z)])

and by the strict convexity of the euclidean norm, this is true only if Vu(z)=
Mz)Via(zx).

We claim that the map r — T'(r) is measurable. Fix € > 0. Since h(r,v) is
a normal integrand, by Theorem 1.1, p.232 of [25], there exists a compact K.
in [0,1], m([0,1]\K.) < €, such that the restriction of h to K. x IR is lower
semicontinuous and the restrictions of r — h(r,0) and of 7 — «(r) to K. are
continuous. In particular, there exists M, such that A(r,0) — a(r) < M, in K.
Hence, for every v satisfying h(r,v) — h(r,0) = 0 for some r in K. we have
Y(v) < h(r,0) — a(r) < M, that implies ||v|| < V. for some V.. Consider a
sequence (r,) in K, converging to r* and set 7™ to be the limsup of T'(r,). By
taking a subsequence we can assume that hA(r,,T(r,)) converges to y satisfying
y — h(r*,0) = 0; hence h(r*,T*) — h(r*,0) < 0. Being h non decreasing in v,
we have h(r*,T*) — h(r*,0) = 0, hence T(r*) > T™, i.e. the restriction to K, of

r — T'(r) is upper semicontinuous. By Lusin’s theorem this proves the claim.
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Let us first show that ||Va(z)|| > T(||z||) for a.e. z. Assume, by contrtadiction,
that m(A) > 0, where A is the set defined by A = {||z|| : ||Va(z)|| < T(||z]])}-
Define v:{0,1] — IR by v(||z||) = @(z). Remark that » — v(r) is locally absolutely
continuous in (0, 1]. In fact apply the change of variable formula to the transforma-
tion from Cartesian to polar coordinates, and obtain for the map o(r, §) = u(¢(r, 8))
that for almost every @, the map v : 7 — ¥(r,8) is locally absolutely continuous in

(0,1] and
/ v, - o) _
v (T) 87"( 9) <8T,VU(¢(T,0))>

Since 4 is radially symmetric, i(Vﬂ(m) ﬁ-ﬂ)' = ||Va(z)||; by the chain rule we
obtain v'(|[z||) = (Vi(z), 177) . and hence

T

(el = (Va(a), 2]

]

Set 9(r) to be [; (v/(s)xc(a)(s) + T(s)xa(s))ds and ©: B — IR to be o(z) =
9(||z|]). Then, from the very definition, 7(z) < @(z) and the strict inequality holds

on a subset of B of positive measure, hence
/ g(v(z))dz < / g(a(z))dz.
B B
On the other hand

h(llzl, IVo(e)l)) = hdll=ll, [Va()]),

so that % cannot be a minimum. Hence |Va(z)| > T'(||z||) a-e.

To show that the same inequality holds for w, remark that by the definitions one

7 ———L @w w
) = g [ wleleld

also has

so that

Vi(z) = (Vw(wllz)), w)dw

NWN [E /w” =1
and, by the definition and (2.2.3),

/Bﬂ(x)d:cngw(:c)d:r.
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Assume that there exists a subset S of B, m(S) > 0, such that ||Vw(z)| < T(||z]|)
for z in S. Since Vw = 1Vu + $Vi, on S we must have [|[Vu(z)|| < T(||z]]);

moreover |Vi(z)| must be equal to T'(]|z||). In fact, if it is not so,
(Il IVw(@)) < 2 A, V@) + Al [Va@))

contradicting (2.2.5).
Set
S, ={w : [|[Vw(wr)|| < T(r)}

m(S) = /01 pN-1 </”w”:1 Xs(wr)dw) dr = /01 pV-1 Aw”:l Xs, (w)dwdr

so that for r in a subset E C [0, 1] of positive measure,
/ xs, (w)dw > 0.
lwll=1

Consider one such r in E. Since, for ||z|| =7,

1

T(r) = [Va(z)]| < m/”w“:l IVw(wllz])] de,

on a subset of C(S,) of a positive measure we must have ||Vw(wr)|| > T'(r). Again

for r in F,

/“ L Il = /S (T + /C B |V w(wr) ) dw

(Sr)

> /” o Tl = / h(r, |V (wr)||) deo.

flwll=1

Set X tobe {z =wr : ||jw||=1,7€ E}. Then

h(||lz|l, |[Vw(2)||) de = Nwy 17'N—1 | wr)h(r, | Vw(wr)||)dwdr
ﬁ(MW @)]) A A¢§m>(n (wr)ll)

= NwN/O N1y g(r) (/” - h(r, HVw(ow)[[)dw) dr

> NwN/O Ny g(r) (/“ i h(r, IlVﬁ(wr)H)dw) dr

=/mwmwmmm
X
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For = not in X, by a previous remark, Vu(z) = A(z)Vi(z), so that Vw(z)
= (AMz)+1)Va(z); hence on B\ X, w itself is radially symmetric, i.e. w coincides
with @. By Lemma 7.7 in [30], Vw = V& a.e. in B\X. Hence

| wlall IVu(@l)ds = | Alall IVu(@)Dber(@) + xonx @)]ds
B B
> [ bl IVa(e)ds,

a contradiction, since w is a solution and

[ stwieds 2 | satz)is

B
Then m(S) = 0, i.e. for almost every z in B, ||Vw(z)|| > T(||z]). Hence, for
almost every z, Vu(z) = Mz)Vi(z).

This proves the theorem in the case g increasing.

d) Finally, notice that the case of a decreasing function g can be reduced to the

previous one by setting
§(&) =g(=¢), (€.

Now, g is increasing and each solution to the problem

(B) min wawwmm+wmmm

ueW, (B)

is radially symmetric.
Since % is a solution to (P) if and only if —% is a solution to (P), we see that every

solution to (P) is radially symmetric. O

Remark 2.2.2. To see how the assumptions of the previous theorem are sharp,
consider the case g =0 ( g is monotonic, but not strictly monotonic) and h = h(v)
to be the indicator of the interval [0, 1] (A is convex and monotonic, but not strictly

monotonic). Clearly there exist non radially symmetric solutions to (P).

The next results are concerned with existence and uniqueness of solutions for the
minimum problem (P) when A is (possibly) non convex. We shall assume that h
is independent on ||z||, i.e. h(r,&) = h(£).

Theorem 2.2.3. Assume that: h(r,€) = h(&) isl.s.c. and satsfies GA; g: IR — R

is convez and monotonic. Then the minimum problem (P) admits at least a solution
: 1,1

u in Wy (B).
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Proof. a) As in the proof of the Theorem 2.2.1, it is enough to consider the case
where ¢ is monotonic decreasing.

Let @ be a radially symmetric solution to the convexified problem

() i A (ORI

Define u:[0,1] — IR by u(||z]|) = @(z). Remark that the map r — u(r) is locally
absolutely continuous on (0,1]. and u/(||z|]) = <1|_§H’ Vi(z)).

We are going to show that we can as well assume that |u’| does not take its values
(for r in a set of positive measure) on any interval (a,b) where h** is affine. This
in particular will show that |u'| takes its values where & and A** coincide, proving
that u is a solution to the original problem.

Let ¢, (u) be the right derivative of g at u; the map r — g/, (u(r)) is negative and
bounded; consider G defined by

G(r) = /OT sN"lg;(u(s))ds.

Assume h**' = o on (a,b). Consider first the case a = 0; in this case (a,b) =
(0,7), and consider those 7 such that |u'(r)] < T'. The same reasoning as in
Theorem 2.2.1, point c), imply that there exists another radial solution v such that
|[v'| > T'. Hence we can as well assume a >0 .

Set E, = {r : |u'(r)| € (a+ 0,b— o)} and assume that for some o, m(E;) > 0.
We are going to show that, under this assumption, it is possible to define a family
{@i.} of variations of @ such that, for e small, the functional computed at i, has
a value strictly smaller that the minimum, a contradiction. Call E this E,.
Consider A(r) = (ar™~1 — G(r))xg(r). Let 71 and ry, 71 < rz, be points of
density for £ and Lebesgue points for A, so that

ri+6
LT A ar) = (et - 6,

ro+6
215_/ A(r)dr — A(rg) = (arév—l — G(r2)).

Since A is monotonic, A(rs) — A(r1) = 2X > 0. Set §* = §*(6) to be the measure
of the set [(ry — 8,72) N E]. Since 7o is of density for E, 6*/6 — 1, ie. §* > 0.
Let § be such that § < § implies

1

ri+6 /\
5 /T1 A(r)dr — A(ry)| < 7
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L A(r)dr — A(rq)| < A
5 Jrs Ny
Set 1’ to be
1 1
n = gX[rl,r1+6*]ﬂE - g;X[rg—é,rz]ﬁE
and define n as n(r) = [/ 7/(s)ds so that n(1) = 0 and, by the choice of 6,

n(r) > 0. Let us remark that u ( )+en’(r) coincides with w/(r) for r not in E, and,
for r in E, is in (a,b) whenever ¢ is sufficiently small. Hence h**(|u/(r) + en/(r)|)

is well defined and integrable.

b) Let us consider the family {u + en}. By the mean value theorem there exists:
&1(r) € [0,¢] and h**'(r) € OR**(|u/(r) + &1(r)n'(r)]) such that

R (Ju/(r) + e (r)]) = B (Ju/ (r)]) = ehe™ (r)n’ (7).

Moreover, since the subgradient of g is monotonic, there exists & (r) € [0, €] such
that
g(u(r) +en(r)) = g(u(r)) < egly (u(r) + &a(r)n(r))n(r).

Then
Bo= [ o )+ gtk anlar = [ o R W) + glwlar
< 6/0 rN“l[h:*'(r)n’(T) + gl (u(r) + & (r)n(r))n(r)]dr.

Set G, to be .
Gu(r) = / sV=1g! (u(s) + Ea(s)n(s))ds.

Since G(0) =0 and n(l) =0, we have

[P ate) + ettt =~ [ Gurnwar

Hence

Oﬂe—-‘

1 "f‘1+6"
A <e /0 PN TR () — Gu(r) ] () dr = / PN L= () — G ()]s (r)dr

oqu

/ PN () — Go(r) s (r)dr
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For every fixed s, u(s)+&3(s)n(s) converges to u(s) from the right, so that, being
the subdifferential of a convex function monotonic, we have g’ (u(s) +&2(s)n(s)) —
g’ (u(s)) as e — 0 . Moreover since g is finite on IR, there exists M that bounds
all the values of |g/, (v)| for v in a neighborhood of the image of the solution w.
Hence G (r) — G(r) pointwise and is dominated by a constant.

Moreover, for every 7 € E, h**'(r) = «, for every e sufficiently small. By integrat-
ing we obtain that, for every e sufficiently small,

1 ri+6* N1 , 1 ri+6” A
R - Gty -3 [ A < 3
T1 1
1 " N—1p %%/ A
6_*/ [T h’ﬁ (T‘) - GG(T)]XE d'f‘ - ""/ d’f‘ < Z
7'2—6

Finally, for some positive €,

A1 e A1
< 2oz 2
A, <ce 1 + 5 ). A(r)dr + R A(r)dr}
A 6L §1 [
,_2- + —5-(5—* A(T‘)d’f’ — '5:-6' e A(T)d’f‘}

i.e. for some positive ¢, the function @, defined by .(z) = u(||z||) +en(||z||) yields
a value for the integral in ( P**) less than the value computed at @, a contradiction.

O

Remark 2.2.4. In the case g = 0, the assumptions of the above theorem reduce

to lower semicontinuity and growth at infinity for A, as is to be expected.

Theorem 2.2.5. Let h and g satisfy the same assumption as in Theorem 2.2.3;
in addition assume that either h** or g is strictly monotonic. Then problem (P)

admits one and only one solution.

Proof. Assume that wu,v : [0,1] — IR are such that the maps z — u(||z||) and

z — v(||z||) are two distinct solutions to (P). There exists an interval (rq,732) such
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that: w(r) > v(r), v € (r1,72); u(r2) = v(re) and, when r; > 0, u(r1) = v(ry).
Set w to be 3(u-+v). The map ¢ — w(||z||) is a further solution to (P**) so that

3 P (D + gl + 5 [V (w6 + glutr)lar

2 T1 T1
i N—=17g %% /
= [ () + gwlr)lar
T1
The convexity of both h** and ¢ implies, in particular, that
T2 T2
/ TN—lg(w('r))d'r ::/ TN‘lg(u(r))dr.
T1 T1

Being g monotonic we infer
(2.2.6) g(w(r)) = g(ulr)), Vr € (ri,ra).

The above is a contradiction to the existence of u and v in the case g is strictly
monotonic.

Assume now h** strictly monotonic. Since g is convex there exists at most an
interval I on which ¢ is constant and attains its minimum. Set r* to be the
supremum of the set {r < 1: u(r) € I} and consider the map u* defined by

vy Julrt) for r <o
w(z) = {u(r) for > r*.

Then both ) )
/ PN =1o (4 (r))dr < /O N Lo (u(r))dr
0

and

|t e < [ e e e ear

hold, and the last inequality is strict in the case |u*’| differs from |u’| for r on a
set of positive measure. Since v is a minimum, u'(r) must be 0 on (0,7*). From
(2.2.6) one has that w(r) € I if and only if u(r) € I. Since w is a solution, the
above reasoning implies that also w/(r) = 0 on (0,r*) i.e. v/(r) = w'(r) on (0,r*).
The case r* > r; would violate the assumptions on 7,72, u,v. Hence on (r1,72)
the inequality w(r) > u(r) implies the inequality g(w(r)) > g(u(r)) a contradiction
to (2.2.6). O

Remark 2.2.6. Whenever g is linear, g not zero, uniqueness (besides existence)

is guaranteed simply by the lower semicontinuity and growth at infinity of h.
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Chapter 3
An Existence Result for a Class of Nonconvex Minimum Prob-
lems

The variational approach to various problems of shape optimization arising in both
solid mechanics and fluid dynamics leads to the problem of minimizing a non convex
functional of the form (see [31] and [33])

J(v) = /Q (Vo)) + ] de, v e Wh(Q),

where () is an open and bounded subset of IR? and A : [0,00) — IR is the minimum
between two convex parabolas having the same axis of symmetry.

In the previous chapter, we have seen that, when (1 is an open ball in RY | such
functional features a unique radially symmetric minimizer provided A is only as-
sumed to be lower semicontinuous and superlinear. For () a square in IR?, the
corresponding convexified minimum problem, i.e. the minimum problem for the

functional

T () = / (Vo) 4ol do,  we W9,

is studied in [31] and [33] from both an analytical and numerical point of view. In
both papers, the authors, relying on numerical experiments concerning the convex-
ified problem, suggest that the minimum problem for the non convex functional J
fails to have a solution. In nearly optimal configurations, homogenization occurs.

From an analytical point of view, a closely related class of non convex minimum
problems is studied in [11]. In that paper, £ is an open, bounded and convex
subset of IR? with piecewise smooth boundary and A : [0,00) — [0, o0] is a lower
semicontinuous function which admits a largest minimum point p > 0 where it
satisfies h(t) > h(p) + A(t — p), t > 0 for some A > 0. The existence of solutions
of the minimum problem on Wjy''(Q) is proved in [11] provided the slope A of
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h is at least equal to the width of §2, i.e. the least upper bound of the radii of
the open balls contained in 2. In such case, up to the multiplicative constant
—p, a solution is given by the distance function from the boundary of . It is
noteworth that the gradient of this solution lies in pdB, almost everywhere on
2, i.e. in the set where the function & — h(||£||) vanishes. Whenever the above
mentioned hypothesis is violated, the minimum problem for the functional J may
lack solution. In particular, this occurs when 2 is a square and h is finite only at
two points (see [7]).

The result of [11] has inspired further research. Indeed, in [48], the restriction on the
dimension of the space is removed while [47] deals with a more general functional,

namely

I(v) = /Q (v (Vo) +0] dz, v e W Q),

where ) is an open, bounded and convex subset of R?, vx is the Minkowski
functional of a closed, bounded and convex subset X of IR® containing the origin
in its interior and h satisfies the same hypotheses as in [11]. The dependence of
the functional above upon the gradient Vv can be regarded as a generalization
of the radially symmetric dependence. Indeed, the level sets of the function £ €
IR?* — h(vk(€)) consist of the union of homothetic copies of the boundary of K.
In particular, for K the closed unit ball, the functional above reduces to the one
considered in [11].

For Q an open, bounded and convex subset of R? (no regularity assumptions are
imposed on the boundary of 2) and for K a closed, bounded and convex polytope
containing the origin in its interior, the existence of minimizers for I is proved in
[47] under the same kind of assumptions considered in [11]: the slope A of h has
to be at least equal to a suitable measure of the width of (2 which involves the
convex polytope K. Again, the gradient of the solution defined in [47] lies, almost
everywhere on {1, in the set where the function h o yg vanishes.

In this chapter, we consider the problem of minimizing on ug + I/VO1 1(Q) the func-

tional

Flv) = /Q (Vo) +v] do, v e Wh(Q),

where () is an open, bounded and convex subset of RY and f: RN — [0,00) is
a possibly non convex, Borel measurable function vanishing on the boundary of a

closed, bounded and convex subset K of IR™ containing the origin in its interior
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and ug is a convex and Lipschitz continuous boundary datum.

In the homogeneous case uy = 0, the proof essentially follows the same ideas of
[11] and [47] combined with a suitable approximation argument. In particular, the
existence of solutions is ensured provided the slope of f with respect to vg, i.e.
the largest A such that f(€) > A[yx(€) — 1] for all £ € RY, exceeds the width of
Q) related to K introduced in [47]. Oncemore, the gradient of the solution turns
out to be in the boundary of K almost everywhere on (2.

For the non homogeneous minimum problem, we rely on a result presented in [40],
namely the construction of a Lipschitz continuous function u which agrees with
the boundary datum wug on the boundary of 2 and whose gradient belongs to the
boundary of K almost everywhere on {2. Such function u is the natural candidate
to be a minimizer on up + Wo1 1(Q) for the functional F'. This is actually proved
by showing that, up to an additive constant, the function u is the restriction to {2
of a minimizer of F' on VVOI 'L(QY), where Q' is a suitable convex set containing Q.
Finally, we wish to point out that, although the result presented here subsumes all

the previously mentioned results, its proof is entirely self-contained.

3.1. Notations and statement of the main result

Before stating the main theorem, we recall some elementary definitions and results
from convex analysis that will be useful in the sequel. Our definitions and notations
mainly agree with those of [44].

Let C be a convex subset of IR" . We denote the set of its interior points by int(C),
its relative interior by ri(C') and the polar set of C' by C°. The normal cone to C
at a point = € RY is defined by

Ne(z)={eR" <&z —-y>>0 foralyeC}
and we consider also the tangent cone to C' at z, i.e. the set
Te(z)={¢CeRY :<(,6 ><0 forall £ € No(z)}.

We point out that this definition of tangent cone agrees with those given in [11]
and [1].
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Then, recall that a polytope is the closed convex envelope of a finite numbers of
points. By an open polytope, we mean the set of interior points of a polytope.
Recall also that a point z € 9C' is said to be ezposed, if there exists a supporting
hyperplane to C at z wich meets the closure of C' only at the point z itself. An
open, bounded and convex set C is said to be regular whenever its boundary 0C
is continuously differentiable and every point of its boundary is exposed. It is easy
to see that every open, bounded and convex set can be exhausted by an increasing
sequence of regular and open convex sets (Cp)n, such that C, C C for every n
(see for istance [24]).

Whenever the convex set C is a bounded neighbourhood of the origin, we let
vo : IRY — [0, 00) be the Minkowski functional of C, that is

ve(z) = inf{t >0: z € tC}, z e RN,

It is well known that it coincides with the supporting function of the polar set of
C, that is
vo(z) =sup{< &z >: £ € C°}, zeRY.

The function (z,7) — vc(z — y) enjoies all properties of a metric on IRY but
symmetry. In fact it is not symmetric unless C is. Nevertheless, in the sequel,
we shall refer to it as the metric associated with the convex set C'. On account of
this agreement for all open, bounded and convex subsets A of RY, we define the

distance function from the set A with respect to the metric v¢ by
do(z,A) = inf{vc(y —z): y € A}, ze RV,

For C the unit ball centered at zero, we simply write d(-, A). Whenever the set A
is the boundary of an open, bounded and convex subset O of RY, the function
dc (-, 00) is Lipschitz continuous and its gradient belongs to —C° almost every
where on O (see [40]). We define also the width of O with respect v¢ by

We(0O) = sup{dc(z,00) : z € O}.
In the sequel, we shall consider the class of functions

F(C)={f:RY - [0,+0c] : f is Borel measurable and f(¢) =0, £ € 9C}
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and, for every f € F(C), we define the slope of f with respect to ¢ as
Ac(f) =sup{m >0: f(&) > mlyc(§) — 1] for all £ € RN},

Throughout this paper, we let 2 and K be two bounded and convex subset of
IRY | the former open and the latter closed and containing the origin in its interior.
For f € F(K), we consider the functional

Fv) = / [F(Vv) + 1] da, v e Whi(Q),
Q
and the associated minimum problem
(P) {F(u) u €+ Wol’l(ﬂ)}

where the boundary datum wug is a given function in W11(Q2). For such kind of

problems we shall prove the following existence result.

Theorem 3.1.1. Let f be in F(K) and let ug : & — IR be such that
(a) ug is convexr and Lipschitz continuous;

(b) Vup(z) € K for almost every = € (1.

If
(3.1.1) sup inf { [m_@xuo - uo(y)} + vgo (y — :1:)} < Ag(f),
rzeQ YeEIN Q
then the function
(3.1.2) u(z) = — inf {—uo(y) +vxe(y — )}, z €
yEeIN

is a solution to the minimum problem (P).

We split the proof of the theorem into two parts. In paragraph 3.2 we first give
the proof in the case ug = 0 (see Theorem 3.2.1 ahead) and in the last paragraph
we prove the general statement. We postpone to the end of this section some
comments on the hypoteses of the theorem above and we begin by examining some
consequences of it.

In the case ug = 0, Theorem 3.1.1 extends some recent results contained in [11],
[47] and [48]. In fact, whenever h : [0,4+00) — [0,+400] vanishes for some positive
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p, the function f = h o yx belongs to the class F(pK). Such function is the
one considered in the quoted papers for K being either the closed unit ball or a

polytope. Moreover, as W, k)o (2) = pWgo(Q) and A,k (f) = pA, where
A =sup{m > 0: h(t) > m(t — p) for all ¢t > 0},

the condition (3.1.1) with ug = 0 reduces to Wg+(Q2) < A, the very same condition
considered in [11], [47] and [48]. In these papers the case p = 0 is allowed. Such
case is not covered by Theorem 3.1.1 since zero is assumed to belong to the interior
of K. However, this limiting case can be easily recovered. Indeed, we prove the
following corollary which extends the previously mentioned results by allowing non
homogeneous boundary conditions and by removing the smoothness assumption on
the boundary of {2, the geometrical hypotheses on K and the restriction on the

dimension of the space.
Corollary 3.1.2. Let h: [0,+00) — [0,+0c0] be a Borel measurable function such
that h(p) =0 for some p >0 and set

A =sup{m > 0: h(t) > m(t — p) for every ¢t > 0}.

Let ug : Q@ — IR be such that
(a) up 1s conver and Lipschitz continuous;
(b) Vug(z) € pK for almost every x € §;

and assume that either

(3.1.3) sup inf {{m_a,‘ <1u0> _ (%uo(y)>] e (y — 3:)} <A

TeQ yEON Q P

if p>0,
Wio(Q) < A

if p=0. Then, the function

(3.1.4) u(z) = —pinf {—%uo(y) +ke(y—z): Yy € 8(2} if p>0,

is a minimizer on ug + WOl 1(Q) for the functional

(3.1.5) I(v) = /Q Bl (Vo)) +v] dz v e WhL(Q).
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Proof. First assume p > 0 and set f = ho~vg. Then, f € F(pK) and, as
A, f = pA, it is easy to check that (3.1.3) is equivalent to the hypothesis (3.1.1) for
[, uo and the convex set pK . Thus, Theorem 3.1.1 applies and, as v, k) = pVKo°
it follows that the function u defined by (3.1.4) for p > 0 is a minimizer for the
functional I on ug + Wy (Q).

Then, let p = 0, so that ug has to be constant due to (b). Hence, it is not restrictive

to assume ug null on 2. For € > 0, set

0 Hfo<t<e
hﬁ(t):{A(t-e) ift>e

and let I. be the functional defined by (3.1.5) with A replaced by h.. The first
part of the proof ensures that u.(z) = —edgo(z,00Q), z € Q, is a minimizer for I,
on Wol’l(Q) for each € > 0. Moreover, he(vx (Vue(z))) = 0 for almost every z €
and u. — 0 uniformly on Q. Thus, I(u.) — [(0). As I. < I for each € > 0, the

conclusion follows. O

Finally, we briefly discuss the hypotheses of Theorem 3.1.1 in the case ug # 0.
As we look for solutions to the minimum problem (P) whose gradient lies almost
everywhere in the boundary of K, i.e. in the set where f vanishes, it is natural to
assume (b). As far as (3.1.1) is concerned, recall that, as previously mentioned in
the introduction, the proof of the theorem in the non homogeneous case consists in
considering the homogeneous minimum problem for F' on a larger convex set (2'.
The existence of a solution to this problem is ensured provided Wxo(£2') < Ag(f)
and the left hand side of (3.1.1) turns out to be the width of (' with respect to
K°.

3.2. The homogeneous problem

The aim of this section is to prove Theorem 3.1.1 when ug = 0. For the reader’s

convenience, we state the theorem in such case.

Theorem 3.2.1. Let f € F(K) and assume that Wgo(Q2) < Ag(f). Then, the

function

(3.2.1) u(z) = —dgo(z,00), z €N
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is o minimizer on Wyt (Q) for the functional

F(v) =/Q[f(Vv)+v] dz, v e WhHi(Q).

We prove the theorem by showing that an increasing sequence of open polytopes
(On),, contained in Q exists with the property that, setting

[ —dge(z,005,) ifze Oy,
(3.2.2) Uun () = {O if z € Q\ Oy,
the integrals
/ [f(vun> +u'n,] dZE, n 2 1’
On

simultaneously converge to F'(u) and to inf {F(v): v e Wy ’l(Q)}.

In order to do this, we investigate the properties of the distance function associated
with K° from the boundary of an open polytope. Therefore, let O be one such set
and let FY,...,Fy,, beits (N — 1)-dimensional faces. The following Lemmas 3.2.2
and 3.2.3 are easy consequence of the definition of dgo (-, 00).

Lemma 3.2.2. Let z € O and let ¢ > 0. The following are equivalent:
(a) dgo(x,00) =c;
(b) the following conditions hold:
- z4+cK°CO;
- there exist y € 00 and £ € OK° such that y = x + €.
For every = € O, let

(z) = {y € 90: yxo(y — z) = dko(z,00)}

be the set of all points on the boundary of O which lie at minimal distance from

x with respect to yxo. Such set is non empty for all z € O and II(z) = 60 N
(x + cK°) where ¢ = dgo(z,00).

Lemma 3.2.3. Let y € 00, £ € 0K° and ¢ > 0 be such that y — c€ € O and
dgo(y — c&,00) = c. Then,

(a) y €y —c§);
(b) dio(y — b, 00) =b for every 0 < b < c.
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It is plain that the results above hold true when the open polytope O is replaced
by an arbitrary open, bounded and convex set. Conversely, the subsequent lemma

fails to be true in such a general case.

Lemma 3.2.4. Let y € 00 and & € OK®° be given. Then, the following are

equivalent:

(a) No(y) C Nko(§);
(b) there exists ¢ > 0 such that y —c € O and dgo(y — c£,00) =c.

Proof. Assume that No(y) C Nko(£). It follows that Txe(§) C To(y). By the
definition of tangent cone, it follows also that A(( — &) € Tke(§) C To(y) for every
¢ € OK° and A > 0. Then, set

A¢ =sup {A >0 y—i—A(C—S)e@}

and notice that

All€ =€l 2 min{d(y, Fi): y € Fi} >0

for every ¢ € OK°\{¢}. Hence, A¢ is positive and uniformly bounded away from
zero with respect to all such ¢. Then, set ¢ = £ inf {\¢: ¢ € OK°\{¢}}. It follows
that y-+c(¢C—€) € O for every ¢ € K°\{¢} and hence y—cé+cK° C O. Recalling
Lemma 3.2.2, we obtain that dgo(y — c&, 00) = c.

We have thus proved that (b) follows from (a). The other implication is an obvious

consequence of the definition of normal cone. O]

Now, we aim at proving that, up to a null set, the open polytope O can be decom-
posed into as many open sets as its (N — 1)-dimensional faces with the property
that the restriction of the function dgo(-,00) to each of them is affine. To this

purpose, set
I(y) = {£ € 0K*: No(y) C Nko(§)}, y € 00,

and notice that, if F' is any face of O, the set I(y) is independent on the choice of
y € ri(F). Hence, we write [r = I(y) for all y € ri(¥') and in particular I; when
F = F;. In this latter case, the set I; is non empty.

Then, for every y € ri(F') and £ € I;, we define

c(y,&) =sup{c>0: II(y —t&) Cri(F;) forall 0 <t < ¢}
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and the set
Oi(€) ={y —c& yeri(F;) and 0 < c<c(y,€)}.

Now, we investigate the properties of the sets O;(€).

Lemma 3.2.5. Let x € O be such that II(z) C ri(F;) and let £ € I;. Then, there
exists y € ri(F;) such that =y — € and ¢ = dgo(z,00).

Proof. By Lemmas 3.2.2 and 3.2.4, we have z = y' — ¢£’ for some y' € ri(F;)
and & € I;. Assume that & # £ otherwise there is nothing to prove. We claim
that y = ¢/ — (&’ = &) € 00. In fact, were y a point in O, it would follow that
y' +s(& —€) ¢ O for every s > 0. Being O a polytope, we have

To(y')={m: y' +ine O for all t > 0 small enough} .

Hence, it would follow that & — & ¢ To(y'). This would lead to a contradiction
since £ — & € Tko(§) and Tgo(§) C To(y').
Therefore y — c€ =z =y' — c£’ and y € ri(F;) by assumption. Cl

Remark 3.2.6. In view of Lemma 3.2.5, the sets O;(£) are independent on the
choice of & € I;. Therefore, we write O; = O;(&) for all £ € I;. Moreover, relying
on the previous lemmas, it is also easy to check that O; = {z € O: II(z) C ri(F})}
and that

O;N{z: dgo(z,00) =c} ={y—c& yeri(F;) & € I, and c < c(y,§)}.

Hence, the restriction of the function dgo(-,00) to each of the sets O; coincides
with an affine function that vanishes on F;. Moreover, for every z € O;, the vector

Vdgo(z,00) generates the cone —Np(y) for every y € ri(F;).
The next lemma ensures that each set O; is open and hence measurable.

Lemma 3.2.7. Let £ € I;. Then, the function c(-,§) is continuous on riF;.
Proof. Assume by contradiction that ¢(-,&) fails to be continuous at a point yg €
ri(F;). Hence, there exists a sequence (yn), C ri(F;) such that y, — yo and
c(Yn, &) — 1 with c(yo, &) #1.

By the definition of ¢(y,&), the set II(y — c(y,£)E) contains at least a point z €
OO\ri(F;). Let

{anyn"c(ynvf)(g—gn)) ’}’?,_>_].,
20 = yo — ¢(¥0,§) (£ — o),
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be such points associated with y, and yo respectively, where (, and (p are in
0K®°.

Assume first that c(yp,€) > [. Up to a subsequence, 2z, — 2z, where z{ =
yo —L(€—¢h) € OO\ri(F;) and this yields a contradiction. Then, assume that
c(yo,€) < | and consider the points

28 = yn — c(yn, &) (€ = Co), n > 1.

Such points are in O and z/, — 2 where 2z{{ = yo — [ (§ — (o). The point z; lies
on the segment joining yo and z{. As the points yo and zp are in 00, the same
is true for z5. Therefore, the segment [yo, zy] is entirely contained in F; and its
left hand point is in ri(F;) by assumption. Hence, the same holds true for zp, a

contradiction. ]

We are left to prove that, up to a null set, the open polytope O is filled up by the
open sets ;. To see this, we define an appropriate change of variables that will
be useful also in the proof of the Theorem 3.2.1. For every i € {1,...m}, choose
a point y; € ri(F;) and & € I;. Let also {v1,...vny-1} be an orthonormal basis
for the subspace of IR" orthogonal to & such that the mapping T; : RY — RY
defined by

Ti(s,t) = 811 + Savn + ..+ SN-1VUN—-1 — t&'i + Yis (S,t) c IRN—I % IR,

is an orientation preserving change of variables. In particular, det VTIi(s,t) = ||&]|.
Then, let A; be an open subset of RY"1 and o; RY~! = IR be an affine function
such that

T; ({(s,pi(s)): s € Ai}) = ri(F3)

and let also @; : RY — RY and ¥; : RY — R" be the affine mappings defined
by

(s,c) e RN ™! x R.

(3.2.3) {@i(s’c) = (s, () +¢),

U;(s,c) =T; 0 Pi(s,c),
It is easy to check that

detV;(s, c) = ||&]|
(3.2.4) v, (s,c) € RY-! « R.

—é—c‘(&‘,C) ==&
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For the sake of brevity, set ¢;(s) = ¢(¥;(s,0),&;) for all s € A; and finally set also
S; = UH0O;), SE={(s,¢): s€ A; and 0 < ¢ < ¢;(s) — ¢} for € >0 and

(3.2.5) 05 = Ti(55).

Then, denoting the Lebesgue measure on R by L£¥, we have the following lemma.
Lemma 3.2.8. We have lim._q LV (O\ (U1<i<m©O5)) = 0.

Proof. The set O\ (U1<i<m©f) is the disjoint union of the sets Ui<i<m (O:\Of)

and O\ (Ui<i<m©;). By Remark 3.2.6, this latter set can be further splitted as the

union of the sets
Eo = {z € O: TI(z) N [B0\ (Ur<i<mIi(F}))] # @}

and E}, where Ej consists of those points z € O such that II(z) C Ui<i<mri(F;)
and there exist two distinct indices i1, o such that II(z)Nri(F;,) # @ for j =1,2.
Letting & € I; be as in the changes of variables defined above and setting

Ef ={y—c&: yeri(F;)and c(y, &) —e<c<e(y, &)},

it is easy to check that EjU [Ui<i<m (0;\O5)] C Ui<i<m Ef.

We claim that Fp is a null set and that £V (Ef) — 0 as € — 0.

In order to prove the first claim, notice that Ey is covered by the union of the
sets Np = {z € O: II(z) Nri(F) # @} as F ranges through all faces of O such
that dimF < N — 2. Let F be such a face and denote the affine hull of F' by
aff (F). It is enough to prove that Np is contained in an affine subspace whose
dimension is dim F'+1. By Lemmas 3.2.2 and 3.2.4, we have Nr C U¢er.m¢ Where
e = {y+1t¢: ye€aff (F) and t € R}. We wish to prove that, for every pair (i,
¢z € IF, there exists z € Np such that z € m¢, N, which yields m¢, = m¢,. To
see this, assume that {; # (o and choose y; € ri(F). By Lemma 3.2.4, there exists
c1 > 0 such that y; — (1 € Nr and dgo(y1 — ¢1(1,00) = ¢1. Arguing as in the
proof of Lemma 3,2.5, we obtain that ys = y1 — ¢1(¢1 — {2) is in 0. Relying on
Lemma 3.2.3 (b) and applying the prevoius argument to the points y; — ¢(¢1 — (2),
0 < ¢ < ¢, we obtain that the segment [y1,y1 — c1({1 — ¢2)] is entirely contained
in 00. Now, by Lemma 3.2.4 again, there exists cy > 0 such that y; — ca2(s € Np
and dgo(y; — c2(2,00) = cz. The very same argument used above yields that

the segment [y;,y1 — c2(Ca — (1)] is contained in 0O as well. Hence, the whole
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segment [y; — c1(C1 — C2),y1 — ¢c2(¢2 — ¢1)] lies in F'. In particular, y, € F' and
y1 — 161 = y1 — ¢2(o. Setting y1 — c1(1 = = = y1 — c2(2, the first claim is proved.
Finally, by the change of variables ¥; defined by (3.2.3), we obtain that

LN (Ef) = LN (A)]I&])-
Thus the conclusion follows. ]

Now, all the tools needed for the proof of Theorem 3.2.1 are available.

Proof of Theorem 8.2.1. Let (uvp)n C Wol’l(ﬂ) be a minimizing sequence for F
such that F'(v,) is finite for every n and let (¢,), be a sequence in C2°(Q) such
that || vn — ¢n |11 — 0. Then, choose an increasing sequence of open polytopes
(On)n such that supp (pn) C On, O =Up>10, and

(3.2.6) lim |f(Vn) + | dz = 0,
n—o o\,
and let (un)n be the functions defined by (3.2.2). In order to complete the proof,

it is enough to show that

(a) limp—oo fOn [f(Vun) + un] dz = [ [f(Vu) + 4] dz;

(b) limMnoo fp [f(Vuun) + un] dz = inf {F(v): ve Wol’l(Q)}.

(a) Recall that Vdgo(z,0Q) and Vdge(z,00,) are in —0K almost everywhere
on  and O, respectively. Hence, f(Vu(z)) =0 and f(Vunp(z)) = 0 for almost
every z in Q and O, respectively. As u, — u uniformly on 2, (a) follows.

(b) Let p be a Borel measurable selection of 0vx and, for every n, let o, € L>®(O0,,)

be such that 0 < a, < Ag(f) almost everywhere on O, . By the definition of
Ak (f), we obtain that

/ (£(Vvn) + vn] dz
(@]

k3

> /o [f (Vun) + un] dz + /O [an(p(Vun), Vo, — Vuy) + (vn — up)] dz

n n

for every n. Recalling (a) and (3.2.6), we see that, in order to prove (b), it is

enough to show that the functions «, can be so chosen that

lim [an(p(Vun), Vup — Vug) + (vn — up)] dz = 0.

n—oo ©
n
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To this purpose, split each of the terms of the sequence above as
/ [ < (p(Vn), Vup — Vior) + (vn — @n)] dz
On

+/ [an(p(Vun), Vo, — Vun) + (on — uy)] dz
o

n

and notice that the choice of the functions ¢, and the uniform bound for the
functions «, imply that the first term of the expression above approaches zero as
n — oo. Now, we claim that, for every n, we can choose the function «, with the

further property that

/(9 [an (p(Vun), Vo — Vuy) + (on — un)] do = 0.

In order to simplify the notations, we drop the index n and, following the ideas
of [11], [47] and [48], we prove the existence of a function o € L*°(O) such that
0 < a < Ag(f) almost everywhere on O and

(3.2.7) /O a(p(Vu), V) + 0] ds =0,  ¥ngecle(0).

By Lemma 3.2.8, we have

/[ (p(Vu), Vi) + 7] dz = lim > / (p(Vu), Vn) + 1] dz
1<1<m
where the sets Of are those defined by (3.2.5). Hence, we address ourselves to the

computation of
(3:25) [ 1atp(¥u), V) +1] da.

To this aim, recalling that v is affine on each set O;, let §; € IRY be such that & =
p(Vu(z)) € 0vk (Vu(z)) for every z € O;. This implies that Vu(z) € Ngo(&;)
for every z € O; (see [44], Theorem 23.5). By Remark 3.2.6, it follows also that
No(y) C Ngo(&;) for every y € ri(F;). Hence, &; € I;. Then, consider the changes
of variables ¥; : R — IR defined by (3.2.3) and let §; : RN — IR be the functions
defined by

. _Jeils)—c if (s,c) € Sj, N-1
Bi(s,c) = { ) otherwise, (s,c) € IR x IR.
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We are going to prove that the function

z ﬁi o \Ijz‘_l(m)XOi(x)a T e O’

1<i<m

is such that (3.2.7) holds true. First of all, notice that o is measurable and that the
definition of the functions c¢; implies that 0 < a(z) < Wk (O) for every z € O.
Then, recalling the properties of ¥; and applying the change of variables formula,
we see that (3.2.8) is equal to

[ 1805, )Tl 00), T, ) + (s, N s )

Applying Fubini’s theorem to the last term in the expression above and integrating
by parts, we obtain

o)
. st ol dis, o) = /. < / n(ws,c))u&udc) ds
-/ ||5zu{—en< o= [ lels) = VR, %“I{f(s,c»dc}ds.
Now, recalling (3.2.4), how & was defined and the definition of §;, we have
[ 15, p(Tu(s(5,1). VWil ) + (it )] 6 s,
= el [, n(¥ls (o)~ s

and the right hand side of the equality above goes to zero as € goes to zero. This

concludes the proof of (b) and hence the proof of the theorem as well. ]

3.3. The non homogeneous problem

In this section we consider the minimum problem (P) with non homogeneous bound-
ary condition and we give the proof of Theorem 3.1.1. To this purpose, consider

the following construction.
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Let O and C be open, bounded and convex sets such that 0 € C and let the
function ¢ : © — IR be such that
(3.3.1) ¢ is non negative and concave on O;

(3.3.2) g is Lipschitz continuous on O and Vg € —C° a.e. on O.

In [40], it is proved seen that (3.3.2) is equivalent to

(3.3.3)  wo(z1) — wo(z2) < v-c(z1 — 72) = 7o (72 — T1), z1,%2 € O,

and that the function

p(z) = yienafo{sao(y) +7c(y - 2)}, zeO,

agrees with g on the boundary of O and is Lipschitz continuous with Vo € —0C°
almost everywhere on O.

Our aim is to determine a larger convex set O’ containing O, such that the distance
function from the boundary of O’ induced by the metric associated with C' agrees

with ¢ on O and hence with ¢y on the boundary of ©. We shall prove that such
set is

(3.3.4) O'=0uU U  @+e®o)|,
y€90,90(y)>0

a claim wich is an easy consequence of the following properties of the set O’.

Proposition 3.3.1. Let O and C be two open, bounded and convez sets such that

0€C, let o: O — IR satisfy (3.5.1) and (3.5.2) and let O’ be the set defined by
(3.3.4). Then,

(a) O is an open, bounded and convex set;

(b) for all z € 8O, there exists y € OO such that vc(z —y) = @oly);

(c) for all y € 8O, there exists z € 0O’ such that yo(z —y) = wo(v);

(d) de(y,00") = wo(y) for all y € 00;

(6) Wol0') = sup,cofde (s, 60},

Proof. Throughout the proof, we assume that ¢g is not identically zero on 90,

otherwise 80O = O and nothing is left to prove. In particular, this assumption and

the concavity of g ensure that ¢q is positive on O.
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(a) We need only to prove that O is convex. Let z1,22 € O’ and 0 < A < 1, and
set = Az + (1 — A)zy. It is enough to assume that z; € O'\O. We claim that
there exists y € O such that z € y + ¢o(y)C, ie. volz —y) < wo(y). To this
purpose, assume first that both points z; and z, are not in O so that there exists
y1,y2 € OO0 such that z; € y; + ¢o(y;)C, for ¢ = 1,2. Set y = Ay; + (1 — N)ya.
Hence, y € O and the concavity of g yields

wo(y) = Adpo(y1) + (1 = Mwo(y2) > Me(zr —y1) + (1 = A)ve(ze — y2)
> yo(Az1 + (1= Nza = Ayr — (1 = A)y2) =v¢(z —y).

Then, assume that z; is in O and let yo be as above. Set y = Az1 + (1 — A)ys, so
that y € O and

wo(y) = Apo(z1) + (1= A)wo(y2) > (1=Neo(y2) 2 (1 —A)ve(z2 —y2) = vo(z —y).

This proves the claim. Now, notice that if either y € 00 or z € O, we are over.
Therefore, assume that y € O, ¢ ¢ O and let ¥ be the unique point of the boundary
of © which lies on the segment [z,y]. By (3.3.3), we have

wo(7) > wo(y) = e —y) >vc(z—y) =7l —y) =vc(z -7
and hence ¢o(7) > 0 and z € T+ ¢o(7)C. Then z € O'.

(b) Let 2z € O’ be fixed. If z € 8O, it follows that ¢o(z) = 0 so that (b) holds true
with y = z. Otherwise, let z € d0’\0O and choose a sequence (z,), C O'\O, such
that z, — z. For all n let y, € 80 be such that yo(zn — yn) < ©o(yn). Up to a
subsequence, we have that y, — y with y € 80. Hence, we have vo(z2—v) < wo(y)

and, as z € 90', we actually have equality.

(c) We assume, without loss of generality, that the origin is contained in O, and

we split the proof into two steps.

Step 1. In this step, we prove the thesis under the following additional hypotheses:
(3.3.5)  ¢o >0 on O;
(3.3.6) O and C are regular convex sets.

Let v : 9C — SN~1 be exterior normal to the boundary of C'. As C is a reg-
ular convex set, v is a continuous bijection of dC onto SV~!. Hence, it is a

homeomorphism of dC onto SN-1.
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Now notice that (3.3.5) and (3.3.6) imply that the boundary of O’ is differentiable
and hence continuously differentiable as O’ is convex. In fact, given z € 90’ and
y € 00 such that 2z € y + @o(y)0C, the boundary of O’ lies between the set
y + ©o(y)C and its supporting hyperplane at z. Therefore, let n : 80’ — SV-1
be the exterior normal to the boundary of @’ and let d : 80’ — S¥~1 be the

continuous function defined by

i) = - E) e
llv=t(n(2))
The meaning of the function d can be easily explained: whenever the convex sets
@' and y+ \C, with y € O’ and A > 0, have the same supporting hyperplane at
z, then y lies on the line {z+td(z) : t > 0}. In particular, whenever z € 9O’ and
y € 00 is associated with z by (b), we have y = z + td(z) for a suitable ¢ > 0.
Then, set

Lz)=sup{l>0:2+1td(z)¢ O forallte (0,0}, z €00,

and notice that £(z) is a positive real number for all z € d0’. Indeed, the set
{£>0: 2z+td(z) ¢ O forallt € (0,£)} is non empty by (3.3.5) and bounded
from above by (b).

Now consider the map p: 80" — IRY defined by

(3.3.7) p(z) = z + £(2)d(z2), 2z € 00"

We claim that p has the following properties:
(i) p(z) € 80 and vc(z — p(z)) = wo(p(z)) for all z € 00';

(ii) p is continuous;

<z,p(z)>

TleET = —1, i.e. the vectors z and p(z) are never

(iii) for all z € 0O’, we have
antipodal.

(i) Let z € 90" and let y’ € OO be associated with z by (b). We have 3 = z2+£'d(z)
for some £ > 0. Set y = p(z) so that y € 00 and {(z) < ¢’ by the definition of
2(z). Recalling (3.3.3) and the inequality ¢o(y) < vc(z —y), we obtain that

wo(y) =vc(z=y) =vc(z—y) +1clv—v) =2 vc(z —y) + [po(y) — wo(v)]
> ©o(y) + [po(y) — wo(¥)] = woly)-
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Thus, ve(z —y) = wo(y).
(ii) Let z € 90’ and (z,)n, C OO’ be such that z, — 2z and set

Y= p(z) Yn = p(zn)
¢ = 4(z) b = U(z0)

n > 1.

Up to a subsequence, we have y, — yo and £, — fy with yg € 00 and ¢; > 0.
The continuity of d yields yo = z + £pd(z) and hence ¢y > £. We are left to prove
that €op = £. Assume by contradiction that £y = £ + ¢, where ¢ = |y — yo| > 0.
As the segment (y,yo0) is contained in O by (3.3.6), we can choose zg € (y,yo)
and p > 0 such that B,(zo) C O and |y — zg| < €¢/2. Therefore, there exist an
increasing sequence of integer (ng)x and a sequence of positive numbers (tx)x such
that zx = zn, + tkd(2n,) C B,k(zo). It follows that zx — zo and

te = llzk — zn.ll < ok — Zoll + [|20 — 2]l + {12 = znc |

Hence, we have

. €
limsupty < [lzo — z[| = |20 — ¢l + ly — 2| < £+ 5

k—co
and, recalling that £,, < tp, we conclude that limg_coln, < £+ €/2. Since
£, — {y = {+¢€, we have a contadiction. By the Uryshon’s property of convergence,

the conclusion follows.

(iii) For all z € 90O’ the segment (z,p(z)) contains no points of O@. Since the

origin is contained in O, the vectors z and p(z) are never antipodal.

In order to conclude this step, we have to prove that p is surjective onto 0O. To
this purpose, consider the canonical projection of R™V\{0} onto SN~1! ie. the
mapping z — z/||z||, and denote its restrictions to 80 and 80’ by ¥ and ¥’
respectively. Such mappings are homeomorphism of 80 and 80’ on to S™V~1 and
they preserve directions. The mapping p = ¥ opo (¥')~! is not antipodal and
hence it is homotopic to the identity map of SV~!. If § were not surjective, it
would be homotopic to a constant map and this cannot be since SV~1 fails to be

contractible. Being p surjective onto SV~!, the same holds true for p onto 0.

Step 2. In this step, we remove the additional hypotheses (3.3.5), and (3.3.6). To

this purpose, we approximate O and C by increasing sequences of regular convex
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sets (Op)n and (Cp), with the property that O, C O. The gradient of ¢, lies
almost everywhere in —C; and g is positive on O, and hence, in particular, on
the boundary of each set O,,. We set

0,=0,U| |J W+w@Cn)|, n=>1
yed0,

and we claim that

(3.3.8) O, =0,U| | @+wo(@)Cn)|, nx1
:1265,1

Indeed, assume by contradiction that there exists z € 4o (x)Cy such that z ¢ O,
for some z € O, . Hence, v¢,(z — z) < wo(z). Then, let y € 00,, and =z’ € 9O,
be the unique points such that y, 2’ € [z, 2] and, by Step 1, let 2/ € O], be such
that ve, (2" —y) = @o(y). Since 2z’ ¢ Oy, we have

Yoo (2 =) 2 oY) = v, (2" —¥)

and hence

wo(z) — woly) > vc,(z — z) —vc,. (2" —y)
=v¢,(z— ") +vc, (2 —y) +vc.(y — z) — ¢, (2" —y)
> e, (Z' —y) +ve. (v — ) —ve,. (2" —y) = 7o, (y — ),

that is, a contradiction. This proves the claim.

Relying on (3.3.8), it easy to check that O C O}, and that O’ = Up>10},.
Now, choose y € 80 and, for all n, let y, € 00, and z, € 9O, be such that
Yn — vy and vo, (zn — Yn) = @o(yn). For each n, let ¢, € C, be such that
Zn = Yn + ©o(yn)cn so that, up to a subsequence, we have z, — z and ¢, — ¢
where z € 0’ and c € 0C. It is clear that v¢(z — y) = ¢o(y) and this concludes
Step 2 and hence the proof of (c¢) as well.

(d) Choose y € 90 and notice that vc(z — y) > @o(y) for all z € 00’. By (c),
there exists z’ € 0’ such that v¢(2' — y) = @o(y). Therefore, we have

do(y,00") = inf ~ve(z—vy) =vc(2' —y) = wo(y).
z€e00/
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(e) As in (c), we split the proof into two steps. -

Step 1. First, we assume that ¢ and the convex sets O and C satisfy the
additional hypotheses (3.3.5) and (3.3.6). Let ' € O’ and 2’ € 90’ be such that
vo(z' —z') = da(z',00") = sup de(z,00")

zeQ’
and assume by contradiction that z’ ¢ O. Set y' = p(2’) where p is the surjective
mapping defined in (3.3.7) and notice that z’ # ¢’ and that the points z’, 3’ and
2’ lie on the same straight line. Then, either 2’ € [2/,y] or ¥ € [2/,2]. In the
former case, we have

dc(y,00") = vc(2' —y) = vc(z' —2") +vec(a’ —=y) > (' —2') = sup dc(z,00")
ze®’

and hence a contradiction. In the latter case, let 3" € 80 and 2" € 9O’ be such
that [1,y"] = [¢/,2']NO and p(z”) = y”. The points z’, ¥ and 2" cannot lie on
the same straight line, otherwise a contradiction would follow as in the first case.

Therefore, being C regular, they satisfy the strict triangle inequality
"/C(Z” . :E/) < ’YC(Z// _ yll) +70(y// _ 3:/)-
Hence, we have

sup dg(z,00") = vo(z' = 2') = vc (' —y") + vc(y" — 2')
zeO’

Z ’YC(Z” _ y/l) +’_YC(y// _ fEl) > ’YC(ZH . :L',) 2 dc(ml,aol)
a contradiction again.

Step 2. We are left to prove the thesis without the additional hypotheses (3.3.5)
and (3.3.6).

First, assume only that C is a regular convex set. Let (O,), be an increasing
exhaustion of O consisting of regular convex sets such that @, C O for all n, so
that g is positive on the boundary of each set O,. Then set

OL,=0,U| | (w+eo)Q)|, n>1
y€o0,

and notice that, arguing as in Step 2 of (c), the sequence (O;,), is non decreasing

and O’ = Up>10;. The sequence (xordc,(-,00;))n is in turn non decreasing
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and converges pointwise to dg (-, 90’) on O'. Hence the convergence is actually
uniform on the same set. Using the result of Step 1 and taking the limit as n — oo,

one obtains that

sup deo(z, 00" = sup de(z, 00").
zeQ’ €0

Finally, an argument similar to the previous one, based on the approximation of C

by a n increasing sequence of regular convex sets (C,)n, yields the conclusion. [

At last, we can prove the main theorem.

Proof of Theorem 3.1.1. Set C = int(K°) and ¢o(z) = maxguo — uo(z), z € 0,
so that all the hypoteses of Proposition 3.3.1 are fulfilled with @ = Q. Consider
the set Q' associated to Q by (3.3.4), that is

'=0u U w+ee®)O)|,

y€IQ,po(y)>0

and the function

v(z) = —dgo (z,0Q") + max uo, ze .
)
We wish to prove that it agrees with the function w defined by (3.1.2) on the
closure of 2. Indeed, choose z €  and let 2’ € 90 and v € O be such that
dgo(z,08)) = ygo (2’ — ) and y' € [#/,z]. We have

u(@) == Inf {~uo(y) + ke (y — )} = — nf {woly) + 7oy — 2)} + max ug

> ~[po(y') +vre(y' — )] + maxuo 2 —yxe (' — )] + ma g

= —yke (2’ — z) + maxug = —dgo(z,0Q) + max .

Q Q
Conversely, let y” € 0Q be such that
inf {eo(y) + 1Ko (v — 2)} = @o(y") + vk (y" — 2).
yeIN

By Proposition 3.3.1 (d), we have dgo(y”,0Q) = ¢o(y”’) and hence

u(z) = — inf {po(y) + vKe(y — )} + maxug
yea? Q
= —[po(y") + vk (v —2)] + max g
= —[dgo(y",0) + v (v" — z)] + maxug
Q

< dgo(z,0) + maxug = v(z).
)
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Therefore, u and v agree on {2 and hence on the closure of {2 as well. In particular,

we have
u(y) = vly) = ~deo (y, 0 + maxuo = —po(y) +maxuo =uo(y), v €N
Now, consider the following minimum problem

(3.3.9) min {/ [f(Vw) + w|dz : w € maxug + Wol’l(Q')} .

) Q
On account of Theorem 3.2.1, it is clear that v is a solution to problem (3.3.9)
provided Wi (€V) < A (f). This is easily seen to be a consequence of (3.1.1) and
Proposition 3.3.1 (e) since we have

Wio (V) = sup dgo(z,0Q') = sup dgo(z, Q)
zeQ) €

= sup inf { Km_axuo - uo(y)>} + vgo(y — :v)} < Ax(f).
zeQ YEIQ O

We have thus proved that u agrees with the boundary datum ug on 92 and it is

the restriction to Q) of a solution to the minimum problem (3.3.9). Therefore, u

has to be a solution to the problem (P). O
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Chapter 4
An Existence Result for a Problem of Potential Wells

Problems in elasticity, crystallography and phase transitions lead to the considera-

tion of energy functionals of the kind

/Q F(Vu(a))ds

where ¢ is non negative and is zero only on potential wells described by rotations

of finitely many matrices A;,..., A, ie.

.
f(F)=0 for Fel]SO(3)4,
=1
In general the matrices A; describe symmetries of the material and are connected
by a symmetry group. See, for instance [2], [3], [5], [19], [28] and [38].
Finding a minimizer of the energy satisfying the homogeneous condition at the

boundary of Q : u|sq = 0, is then equivalent to solving the differential inclusion

with the boundary condition: u|sgq = 0. This needs not always be possible: from
a result of Reshetnyak, see [43] and [28], it follows that the problem

{ Vu(z) € SO(3)1I,
ulaq =0,

admits no solution on any open and bounded 2 C R?
In this chapter we aim at showing that for any open and bounded ) C IR3, the
problem

{ Vu(z) € SO(3)1 U SO3)T™,
ulaq =0,
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where

-1 0 0

T ={ 0 1 0],

0 0 1
(or any other matrix giving a change of orientation in IR3) does indeed admit a
solution, a Lipschitz continuous map u : Q — IR3. More precisely, the matrix
Vu(z) will belong, for a.e z in §, to a subset of O(3) = SO(3)T U SO(3)1I™,
the set R of those orthogonal matrices having rows +e;, where (e, ez, e3) is the
canonical basis of IR3. Notice that this result is contrary to the intuition: when
Of) is smooth, in case u was smooth as well, the three components of u would have
90 as a level set, hence their gradients would all be orthogonal to 92, i.e. parallel

to each other. In particular this result shows that the minimum of the functional

/Q F(Vu(e))dz

with homogeneous boundary condition is zero. Hence the functional is not quasi-
convex since the (affine) boundary datum is not a solution to the minimum problem.
The boundary datum zero need not be the only case yielding a zero infimum for
the minimum problem. Characterizations of such boundary data under different

assumptions are presented in [3] and [45].

4.1. Notations and preliminary results

For z in IR®, define the three maps z — | X,|(z), = — | Xnl(z), T — | X;|(z), as
follows:

[Xsl(fl?]_,mg,il)g) = Sup{'le : .7: 112)3}

Let k € {1,2,3} be such that |X,|(z) = |zx| and set
‘Xm‘(wlv 1:2:1'3) = Supﬂmjl : .7 = 1’273; .7 # k"}

Remark that |X,,| is unambigously defined: in case k; and k, are such that
|zk, | = | Xs|(z) = |zk, ]|, then |Xm|(z) = |Xs|(z) independently of the choice of &.
Set also

| X (z1, 22, 23) = inf{|z;| : 7 =1,2,3}.
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Proposition 4.1.1.
a) The maps | Xs|, | Xml|, |Xi| are continuous.

b) For every = € R®, |X,|(z1, 22, z3) = | Xs|(Jz1], |z2], |z3]), and the same for
| Xom| and | X;].
¢) For any permutation (zj,,%j,,%;5) of (z1,72,73) € IR?, | Xs|(25,, %), T55)
= | Xs|(z1, 22, x3) and the same is true for | Xn,| and | X;]|.
Remark 4.1.2. The composition of a continuous function on IR® with the map
z — (|Xs|(z), | Xm|(z), | X:](z)), is a continuous function of z, and is invariant
under a permutation of (z1,z3,z3).
For z in IR® and such that |zi| # |z;], for 4,7 =1,2,3 and 1 # 7, set s(z), m(z),
i(z) to be such that

Zs@) | = 1Xsl(@), [m@)| = [Xml(2),  |2i2)| = | Xil(2).

The maps =z — s(z), ¢ — m(z),  — i(z), are locally constant on their (open)

domains.
We have the following technical proposition.
Proposition 4.1.3. Let E C IR? be defined by
E={z [z ]leo< 1, [z + 22| £ 1, [72] < |21}
U{z [z lle< 1, o] + 22| 2 1, [21] < |22}
Then, (z1,z2) belongs to E if and only if ((Z1)mod1, (T2)mod1) belongs to E.

Proof. Set y1 = (Z1)mod1 and y2 = (ZT2)mod1. Four cases are possible: (z1,z2)

= (y1,¥2), (z1,22) = (Y1 =1, 92), (z1,22) = (Y1,92—1), (z1,22) = (y1 — 1,2 —1).
One verifies easily the claim, separately for each case. U

We wish to have indices 7 in {1,2,3}. It is convenient to set ()3 = (r —1)moa3+1.

for any integer r.
We shall need three functions f!, f?, f3, from IR to IR. On [0,1] set

fHy) =inf{y,1 -y},

and consider f! on IR to be its extension by periodicity. We have that f! is
continuous and that f(y) = f}(Jy|). Set also

Pa)= 2 ) ) =17 ).

2
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4.2. Main result

It is our purpose to define a function 1 : Q — IR®, Lipschitz continuous on 2, such
that u|sn =0 and Vu(z) isin R € SO3)LUSO(3)I™ for a.e. z in Q.

Theorem 4.2.1. Let Q be a bounded open subset of R®. Then there exists a map
@ :Q — IR?, Lipschitz continuous with Lipschitz constant one, such that

i) Ulga =0,

i) Vi(z) € R, for a.e. x in (.

Proof. The proof consists of the following steps:

1

a) We define first a map u' on the sphere || z || < 1, satisfying the differential

inclusion ii) on || 7 ||eo< 1 but not the boundary condition i) at || z ||eo=1.

b) We recursively extend this map, by defining a function u™ on the set of z
such that 772 & <[] 7 [|< S &, a Lipschitz continuous map satisfying
condition ii) and such that. for all j € {1,2,3}, sup|u}(z)| < =T

c¢) We define a function u satisfying properties i) and ii) for Q = B, the sphere
|z [lo< 2.

d) Exploiting Vitali's covering theorem, we define % on Q, with the properties i)
and ii) of the theorem.

a) On By, the unit ball || z ||< 1, set:
ur(z) =1~ || z [o= 1 — | X|(2);

1

uz(z) = inf {1 (1X:l(2)), £ (1 Xml(x)) };

) - {HRIED o) Ll
’ X)) on |Xil(2) + [ Xml(2)

Notice that on the set {z : |X;|(z)+|Xm|(z) = 1}, one has | X;|(z) = 1| Xn|(z),

hence f2(|Xi|(z)) = f2(1 — |Xml(2)) = f2(|Xml(z) — 1) = f*(IXm|(z)) by the

periodicity of f2. Recalling Proposition 4.1.1, the map u! is continuous, actually

1

<
> 1.

piecewise affine. In particular consider u*(z1,z2,1).

Cla"l'm 1. ul(ml, Z2, 1) - ul((l‘l)modla ($2)modly 1)'
Proof of Claim 1. We have ul(z1,z2,1) = 0. Moreover,

uy(z1,20,1) = inf{f1(Je1), FH(Je2))} = nf{f(21), £ (z2)}
= inf{fl((ml)mod 1); fl((xZ)mod 1)}
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Finally consider ui(zi,z2,1). Recalling Proposition 4.1.3, we have
(z1,22) € E & ((Z1)mod1, (T2)mod1) € E.

Then if (z1,22) € E we have
uj(z1, 22, 1) = f2(lz1]) = f2(z1)

and
u%«wl)modl’ ($2)mod1a 1) = f2(|($l)mod1|) = fz((fcl)modl)~

Since f?(z1) = f%((z1)moa1) the claim follows in this case. Analogously when

(z1,z2) belongs to the complement of E. This proves Claim 1.

Moreover, we have: sup{|u;(z)| : z € By, j =1,2,3} = 1.

Whenever the gradients exist, we have:

Vui(z) = — sign(Xsx))es(x)
VUI(SE) — Sign(xi(x)>ei(x) on lmi(z)’ + lxm(:r)l <1
2 —SigN(Xm(x))em@x) ON |Ti(a)| + |[Tmz)| > 1
2/
: 1
VU%(CE) — fzf(mm(z:))em(z:) on |$z(m)[ + !wm(m)l <
[ (Zi@y)ei)  on |Tig)| + [Tmey| > 1.

Since |f2'(t)| =1, for t ¢ {(1/4)z : zinteger}, we have that, a.e. on By, Vul(z) €
R.

b) We begin by defining two auxiliary functions v and £*. The function ¢! will,
in turn, extend u! as u? on the layer 1 <|| & [|oo< 1+ 3. To do so, we have to

carefully consider the continuity of u? at {z :|| z ||o=1}. An induction argument

carries this construction to u«™.
We begin by defining the subsets Q3, Q3,, @F of By = {z || ¢ [|< 3} as

Q¥ = {z € By : |as| = |X,l(@));
@, = {z € By : |zs] = | Xul (@) };
Q! ={z € By : |za| = |Xi|(@)}.

Set v:B% — IR? to be:

1 1
v2(z) = 5= [ 2 lleo= 5 — [Xsl(2);

4
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and, for z in Q3UQ3,

v(z) = { f3(|Xm[(515)) on | X;|(z) + |X
1 PlxI@) o |Xil(z) + X
}

va(z) = inf{f*(|:](2)), F* (1 Xml|(2))};

3
&
IV IA
zi:h—mlo—z

for z in Q3,

v () = {f3(|X|( ) on |X:|(z) + | Xml(z) <
1 FlXml(z))  on |X|(z) + | Xml(z) >

va(z) =sup{f2(1X:|()), F* (1 Xml|(2))}.

The same arguments as used for u' show that v is lipschitzean on B 1 and that

B 0 [

1
sup{lvj(z)] : ¢ € By, j=1,2,3} = 5.

Notice, for future use, the following properties of v:

a) v(z1,22,23) = v(|z1], |32, [2s]);

B) v(z1,z2,z3) = v(T2,21,23).

To prove ) above, remark that when (z1,z2,z3) belongs to one of the set Q3.
3 @2, so does (z2,71,73). Then v is defined through the maps [X|, [Xm].

| X that assume the same values on (z1,z2,z3) and any of its permutations.

The map v is differentiable a.e. on B 1 and, whenever Vv exists, has the form, for

zin QQUQS:

/

Voy(z) = 4 L Em@)emia) 01 [Zia)| + oma]| < 5
I3 (@) ei() on |Zig)| + |Zm(z)| > %

V’Ug( ) = - Sign(ts(\())es(x)

V’Ug(ﬂ?) f2 ( Ti(x) ) (x) on lmi(z)l + ‘l'm(:z)l < %
f2 (Im(x )6m(z) on Imz(m)l + ixm(m)l > %

For z in Q3:

Voi(z) = f3:(ffi(z))€i(m) on |$i(m)1 + ll’m(m)l < %
f3 ($m(x))em(m) on ‘wi(m)I + lxm(a:)l > %

VUZ("E) = Sign(xs(x))es(x)

V’Ug(l‘) _ f?':(mm(r))em(a;) on lxi(m)| + ‘xm(m)| < %
f2 (xi(m))ei(x) on 1$i(m)l + Imm(m)| > %



An Existence Result for a Problem of Potential Wells 63

Hence, a.e. on By, Vu(z) € R.
The following properties will be essential to show the continuity of the extension of

the map u!.
Claim 2. For (z1,z9,1) in By we have
. 1 1
u (21,22,1) = v | (T1)mod1 — 5 (T2)mod1 — 5:0/-
Proof of Claim 2. We have already proved that

u(z1,22,1) = v ((1)mod 1, (T2)mod 1, 1),

hence, without loss of generality, we can assume zj,22 > 0. Set y in B 1 to be
y=(z1—%, 22— %—,O). Since y3 =0, y isin QF, and | X;|(v) + | Xm|(¥) = | Xml(y)
< 1/2, so that v1(y) = f3(0) = 0. Moreover, by the very definition, ul(zy,z3,1) =
0.
In order to prove the claim for the second and third components, consider the sets
A={z1+2z <1} N{z2 < 21},
B={z;+z2>1}N{z2 > 21},
C={z1+zo <1} N{zy > 21},
D=A{zy+x3 21} N{ze <z}

Since va(z1 — 3,22 — 3,0) =  —sup{|z1 — %|,|z2 — 3|}, we have

1 1
Vg (331 5% §>0>

= zaxa(z1,22) + (1 — z2)xB(Z1,22) + T1Xc(Z1, T2) + (1 — z1)xp (21, Z2).

On the other hand,
uz(z1, 9, 1) = inf{f (1), f}(2z2)} = inf{z1,1 — 21, 22,1 — z2}.

On A we have z3 < z1, 1 — 21 > 22, T2 < 1 — 9, so that ui(z1,72,1) = 2
Analogously one verifies that u3(z1,z2,1) = va(z1 — %,:1:2 — %,O), for (z1,z3) €
BuUCUD.

Consider now the third component. Notice that

1 1
|| (331 — 5 %2 §,0> =0
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and that

1 1
| Xom <$1 — 5 T2~ §,0> = inf

F

hence, by definition, vs(z1 — &,22 — 3,0) = f2(inf{|z, — ] |z2 — 5|}). We have

1
1 1 [:c1 5[ on AUB
inf 1171-—5 s 3)2—'5 =
= lﬂig—%’ on CUD
so that
1 1
V3 (iEl — 52T §,O>
2 1 2
=f <$1—;>XAUB(501,332)+f <$2—“2‘>XCuD(SC1,l‘2)

= f* (Il - %) Xaus(z1,32) + f° <$2 - %) Xcoup(T1,22)
= f3(z1)xauB(T1, 72) + 2 (22)XcuD(T1, T2)-
On the other hand, by definition,
ul(zy, 22,1) = f2(|Xml|(21, 22, 1)) xauc (1, 72) + F2(|Xil(z1, 22, 1)) xBUD (%1, Z2)
= f2(z1)xa + FA(z2)xe + 2 (@1)xB + P (z2)xD-
This proves Claim 2.

Claim 8. For &1,&5: ——% <& L —,f;, ~% <& < %, and for r =1, 2,3, we have:

1 11 11
Ulr—1)s (61:&230) = 2vr <'é'£1 + 'Zl'a }5‘52 + Z) 5) .

Proof of Claim 3. Consider r = 2. By definition, since (£1,&2,0) is in @3, we have
v1(€1,€2,0) = £3(0) = 0. On the other hand, since v is zero at the boundary of

B 1, the claim holds for r = 2.
Consider r = 3. We have

v2(€1,82,0) = % — sup{|&1], |€2l},

while, since (361 + 3,26 + 1,3) isin QF,
1. 1 1. 11\ . . fmfl. 1\ (1. 1
> : oz 22 ) —ipfd 2= z - l
U3 <2fl+472fz+4,2> in {f (2§1+4> f (2€2+4>}

=inf{‘12“fl <§1+%>éfl <§2+‘12*>}-
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Since f1, for ¢ € [0,1], can be written as f!(t) = 1 — |t — 1],

} 1 1 1 1 1. 1 1
w5 (643) 5 (@43) =i {5 - g - e

— 1 (3 -swllallel).

and the claim holds in this case as well.
Consider 7 = 1. Since (£1,&2,0) isin @3,

vs(£1,€2,0) = F2(inf{|&1], |€21})-
On the other hand,

w36+ 56+73)

Sl a6 e 2)) on it vl s
FPnf {36+ 2], [36+45]}) on|z&+il+[36+4i]2

{ (1 +3sup{é1,&}) oné&+& <0
(3 +3inf{6,&)) omé&+6>0
{f (5sup{€1,&}) oné& +& <0
T ($inf{&,&)) on& +& >0
L ¢

_ { (sup{é1,&2}) oné& +6 <0
fA(inf{€1,&}) oné& +& > 0.

Consider the four sets:

A={(£1,8&) : &+ & < 0andés > &1},
B ={(1,&) : & +& < 0andés < &1},
C={(,8) : & +& >0andé < &1},
D ={(&1,&) : &1+ & > 0and &y > &1},
so that A
BUD = {(1,8) : 6] > &}
and
AUC = {(£1,6) : &l = [}
We have

FE)xa+ 3526 + 5 E)xe + 5 F(E)xo

[N

11 11
<§1+4 §+42>:

= 2P (&Dxsu + 57208 Dxave = 5 P&l &l

[T
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Thus Claim 3 is fully proved.

Having proved the properties of the map v described in Claims 2 and 3, we introduce
the "layer” function £', that will be used to extend the map u'. On the set

R? x [~3., 3], we define £ as

1

1
51(1131,332,303) =V ((ﬂil)modl - 5, (wz)mom - ;,933> .

We shall use the following property of £!:

Claim 4.

021,22, 23) = £ (|21, |22, |zal).
Proof of Claim 4. We have

1 1

51(3817562,563) =v ((ﬂfl)modl - 5, (Cﬂz)mocu - 5,563)

1 1
— ( (e )mod1 = | |(E2)moa1 — = ,lxsl> .
By inspection, one verifies that i(ltl)modl - %—! = |(t)mod1 - -;—I, so that

1 1
El((ﬂl,%z,l‘g) =v ((|$1|)modl - ;a (l$2l)mod1 - '2‘7 |$31>

= ' (|z1|, |z2], |z3])-
Claim 4 is proved.
Having introduced £, define , for n € INT, " R2 x [-§1;, 2%] as

1
2n—1

gn($1,$2,$3) - El(zn—lxl’21’1,——11,2’27'1,—1:53).

Notice that, by Claim 4, £"(z1,z2,z3) = £™(|z1], |z2], |23])-
The analogue of the property expressed by Claim 3 is given by the following Claim 5.

Claim 5. For me€ INT and r = 1,2, 3,

m 1
g(rfi);; (3:1,332,0) = ET <x1=$27 57.;) .
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Proof of Claim 5.

L 1 1 -1 -1 1
E;rﬂn (1131,332, 57”;-) = 2m__1€T (2m 1131,2"‘ T, -2_,

! - 1 _ 11
= 2m—-1v’f‘ <<2m l-fUl)modl - 5, (2m 1x2)m0d1 — 5, §> )
On the other hand
1

1 1 1
= :Z—T;v(r—l)s ((2m$1)mod1 - 5, (2m$2)mod1 - =, O) .

At this point notice that, by inspection, for ¢t in IR, (2t)mod1 — [2(6)mod1 — 1]
€ {0,1}. Hence the difference between ((2™Z1)mod1 — 3, (2™Z2)moa1 — 3,0) and
(2™ 21)mod1 — 1 — 2,2(2™ 1 %2)moa1 — 1 — 3,0) has 0 or 1 at the two first
components; so that, by the periodicity of v when z3 =0,

1 1
U(r-1)a ((Zmzl)modl — 5 (2™ 22) mod1 — 5’0>

- 1 _ 1
= V(r-1)s (2(2m 1xl)madl —-1- 5,2(2”I 1x2)mod1 -1 5)0) ’

and applying Claim 3,

_ 11 1, .. 1 1 11
= 20, ((Zm 1$1)mod1“5”1+27(2 1$2)mod1_§“‘1‘{‘1>§>
- 1 _ 11
= 2’Ur ((2m .’El)modl - 3, (2m x?)modl — 3, 5) ,

proving Claim 5.

Set
L= {(z1,79,z3) : |z3| < land sup{|z1], |z2|} < |z3]},

and, for n > 2,

1 1
Ln = (ZEl,(Eg,CCg) . — S 11133{ S —_ and sup{[xll, lle} S !5173] .
i ik
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On L' the map u! is already defined. For n > 2 and (z1,z2,z3) in L™, set

n—2
n 1
uj (1131,2132,3}3) EZ ]-(n—l-l)) (581,2;2, ‘3;3' - E '2’—1> .

i=0
Remark that, from property () of the map v and Claim 4, we have, for the map
u™, the analogous properties
o) w™(z1,%2,23) = ut(|z1], T2l |z8]);
B u™(x1,z2,73) = u™(z2,21,23)-
Notice that it follows that the map u'xp: + u?xr2 is continuous. To prove this

fact, we have to show that
U;‘(fl;fﬂzs 1) - ejl'(xh T2, 0))

and the validity of this statement is supplied by Claim 2 and by the definition of

fl
-2 -2
n — 1 — 1
(% :231,1132,5 5 -——u] 1, T3, 5]
1=0 =0

Proof of Claim 6. We have to show that

Claim 6

[nl

—(n+1))3 (CL']_,J,‘Q,O) Zn

1
(j-n)s $17x27'2—m y

and this follows from Claim 5 setting m =n —2 and r = (j —n)s. Thus Claim 6

is proved.
We wish to extend each map u™ to the set {z : Srd & <[l = [o< Sorg =}
Set ’

u"(z) = u™(|Xi|(2), | Xm|(2), [ X[ ().

It is a true extension: let z be in L™. Then |z3]| = |X;|(z), and

(1Xil(2), | Xml(2), [ Xsl(2)) € {(z1], [22], |23]), (|22l [21], [23])}-

From ') and (') it follows then that

u"(z1, 22, 23) = u™(|Xi[(2), [ Xm|(2), [ X[ (2)),
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so that the new definition coincides with the old. Moreover each 4™ is a composition
of continuous maps, hence continuous.
We have in addition that, for j = 1,2,3 and n € N7,

sup{lu?(m)l : i 5 Sz lles Z 2,} S '1—[

i=0 ~ 1=0

Consider now Vu™(z). Recalling that the maps i(-), m(-) and s(-) are defined
on an open set of full measure and are locally constant on it, we see that, given
Z, there exist integer values, say 7, 7z, S, which are the values of i(:), m(-), s(-)

respectively on a neighborhood of . For z in this neighborhood
u™ (:E) =u" (xfa Ty .’13‘3‘)

If we consider the gradient with respect to the variables z7, T, =5, we have

n—2
n U 1
VZ,H,EUJ‘ (27, T, 75) = Vi sE(J 1(n+1))3 (ﬂ?z, T, |T5| — Z 21)

=0
1 .n n-—2 on— = 1
= Vz*ﬁz'an OK(J (n+1))s x" 2", 2 |25 - z 91
i=0
1 _
= Vz,m,§2 —V(j—(m+1))s (2" (& &m0 &)
Where
1 ~ 1 1 2
(& ém &5) = T <(2n 2T mod 1 — 5, (2" Tr)mod1 — 502" ? ([fﬂ?l - 5)) ’
= = 1=0

Except on a set of measure zero, this gradient equals
VimsVG-m+1))s (&0 &m &3) -

Since, a.e.,

Vimsv (& 6m &) €R

and Vimsu™(zr, o, 25) is obtained from it by a permutation of the rows, then
it follows that Vimsu™(zr, 27, z5) belongs to R as well. Since the columns of

Vu™(z) are a permutation of the columns of Vi su™(zz, 27, z5) ,we have

Vu(z) € R.



70 An Existence Result for a Problem of Potential Wells

¢) For z such that || z [|eo< 2, set:
u(z) =u”(z), whenz e L.

By Claim 6, the map u is unambigously defined and continuous, actually Lipschitz

continuous, a.e. Vu(z) is in R and, by the estimate on |u¥(z)|, one has

lim wu(z) = (0,0,0)

lz]loo—2

i.e. u satisfies i) and ii) with Q = Bs.

d) The collection {z+7By : z€ (), T € R*T, r< %d(z, o)} is a Vitali covering of
Q2. Let z; and r;, j € IV, be such that:

(1) (zj +r;B2) are mutually disjoint;

(2) Q=NU (Ujew(Zj + erg)) , with IV a subset of Q of zero measure.

For each j € IN, define the vector function @ on {2, by setting

T — 2z

2 ) Xzj+r;Ba (m)i

i (z) = rju ( ”
so that Vi/(z) € R for a.e. z in 2z +7;B;.
Finally set, for z in (2,
i(z) = > w(x).
JEN
Then % is the required function: 4 is Lipschtz continuous and satisfies i) and ii) of
the theorem. O
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