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Introduction

For subschemes in projective space liaison arises from the geometric notion of
linkage. Roughly speaking, two subschemes are directly linked if their union is
a complete intersection. The equivalence relation generated by linkage is called
liaison. Omne can also define a finer equivalence relation called biliaison (or even
liaison): two subschemes are in the same biliaison class if they are related to each
other by an even number of direct links. Thus, in some sense, a biliaison class is
“half” of a liaison class. It turns out that biliaison classes are the right objectt to

study in the context of liaison.

Actually, at least in codimension two, biliaison theory is now well-established.
There are two main aspects of the theory, one is the parametrization of biliaison
classes and the other one is a description of the structure of a single class. The for-
mer goal was achieved by A. P. Rao in 1981 ([R2]). He showed that biliaison classes
of codimension two (equidimensional and locally Cohen-Macaulay) subschemes of
P, n > 2, are in bijective correspondence with stable equivalence classes of vector
bundles £ on P™ with H*£(t) = 0 for any ¢t € Z (we set P” = P%, where K is an
algebraically closed field of arbitrary characteristic, notice also that we say vector

bundle as synonym of locally free sheaf).

As a particular case, via the Horrocks’ classification of stable equivalence classes
([Ho]), one recovers an earlier result of Rao concerning curves in P? ([R1]): biliaison
classes of curves in P? aré in bijective correspondence with finite length graded
S-modules, identified up to shift in grading (S denotes the polynomial ring in
four indeterminates). The correspondence is obtained associating to a curve C its
Hartshorne-Rao module, that is, the first cohomology module of its ideal sheaf:
D,z H'Ic(t) = HlIc.

This motivates — via the Hartshorne-Serre correspondence ([H]) — our definition
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iv A. BURAGGINA

of biliaison for rank two reflexive sheaves on P3. Recall that a reflexive sheafis a

coherent sheaf which is canonically isomorphic to its double dual.

Definition 1. (Def 1.8) Let F and F' be rank two reflexive sheaves on P3. We
say that F and F' are in the same biliaison class if H}F = H1F'.

Notice that we do not allow a shift in the grading of the modules, indeed this
would produce equivalence classes too big and not well-behaved. We then param-

etrize these biliaison classes by strong stable equivalence classes of vector bundles

with H? = 0 (Thm. 1.10). Let us first set a definition:

Definition 2. (Def. 1.9) Two vector bundles £ and £ are strongly stably equiva-
lent if there exist integers a; and b; such that £ ® @ O(a;) = &' & P O(b;).

This equivalence relation is actually stronger than stable equivalence, since no

twist of the bundles is allowed.

Theorem 3. (Thm. 1.10) Biliaison classes of rank two reflexive sheaves on P3? are
in bijective correspondence with strong stable equivalence classes of vector bundles
£ on P? with H?£ =0 and, equivaleﬁtly, with isomorphism classes of finite length
graded S-modules.

The second main objective of biliaison theory is to describe the structure of a
class. For codimension two subschemesin P™ this has been done first by E. Ballico,
G. Bolondi and J. Migliore ([BBM]) who proved that any biliaison class of codimen-
sion two (equidimensional and locally Cohen-Macaulay) non-arithmetically Cohen-
Macaulay subschemes in P™ has the so called Lazarsfeld-Rao property. Roughly,
this ‘means that in each class there is a “minimal” element, unique up to defor-
mation, from which the whole class can be built up applying repeatidly a simple
process (basic double linkage). For curvesin P3, this has been proved independently
by M. Martin-Deschamps and D. Perrin ([MD-P1]) who also provided an algorithm
to determine the minimal curve in a given class. This type of results extends to
the case of non locally Cohen-Macaulay subschemes of pure codimension two, as
has been shown by Nollet in [N]. He has also extended the Rao’s correspondence

mentioned above to purely two codimensional subschemes on one side and reflexive
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sheaves F with H!F = 0 and £zi(F*,0) = 0 on the other side (see [N, Thm.
2.10]).

In Chapter 2 we show that (an adapted version of) the Lazarsfeld-Rao property
holds for biliaison classes of rank two reflexive sheaves on P? (Thm. 2.24). The key
points are the definition of minimal elements and that of a “basic” operation within
a class. To do this we use in an essential way work of M. Martin-Deschamps and D.
Perrin in [MD-P2]. For a given reflexive sheaf £ they define a finite support function
x¢ : Z — Z such that a general morphism @, .5 O(—n)xe(®) — £ is injective and
has a reflexive cokernel. The interest of this function is that it picks up the least
possible degrees of sections of £ which degenerate in codimension at least 3, i.e.
such that the cokernel is reflexive (it is well known that if we choose rk(€) — 2
sections of large degrees they degenerate in codimension at least 3). The function
x¢ is defined in terms of certain invariants associated with the rank stratification
of the subsheaves £«<, of £ generated by sections of degree < n. Furthermore,
Martin-Deschamps and Perrin show that if p : Z — Z is any other finite support
function such that there is an injection 0 — @, e, O(—n)P(™ — € whose cokernel
is reflexive, then for any ¢ € Z the function p satisfies | <t p(n) <>, <t XE (n) plus
another condition for “low” values of n (here “low” means not greater than a certain
integer depending on £). Since precise statements here require some preliminaries,
we ask the reader to refer to Chapter 2.

To be able to apply these results to our situation we first show that any reflexive
sheaf F on P2 has a special type of locally free resolution connected with a minimal

free resolution of its first cohomology module. Let
0—Ly— Ly »>Ly—L — Ly— H!F >0

be a minimal graded free resolution and let Ay be the (locally free) sheaf associated
with ker(L; — Lg). Then there is an exact sequence of sheaves on P® — that we

call the NMy-resolution of F — of the form:

(*) O—»@O(—n)p(”)eN——)f——)O
neZ

where N’ & Ny @ (direct sum of line bundles). In other words, AV is strongly stably
equivalent to Ny (Prop. 1.1). This is also the way we prove Theorem 3 above.
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Indeed, the biliaison class of F is uniquely determined by the strong stable equiv-
alence class of My and viceversa. Applying now the results of [MD-P2] to N we
obtain a description of the biliaison class of . In particular, we take as minimal
elements those given by the function xas,. The “basic” operation, which we call
(ascending) elementary biliaison, is also defined in terms of the Ny-resolution (see
Def. 2.20). Its effect is to move from a sheaf F with a resolution (*) to a sheaf F’

that has a resolution

0— @ O(=n)P'™ S N 5 F' -0
nez

with 37, p'(n) <37, ., p(n) for any t € Z.

With these “ingredients” we are able to prove the following:

Theorem 4. (Thm. 2.24) Any biliaison class of rank two reflexive sheaves F on P3
with H}F # 0 has the Lazarsfeld-Rao property. That is, the following conditions
hold:

(1) there exist minimal elements, which deform to each other with constant
cohomology and through sheaves in the same biliaison class;

(2) any non minimal sheaf can be obtained from a minimal one by a finite
number of ascending elementary biliaison possibly followed by deformation

with constant cohomology and through sheaves in the same biliaison class.

This nice structure allows us to control the behaviour in a class of some invariants
associated with a reflexive sheaf. We show in particular that minimal elements have
minimal first and third Chern classes. For the first Chern class this is just an easy
computation, while for the third Chern class this depends on a result communicated

to us by C. Walter (Prop. 3.7). As a corollary we get:

Theorem 5. (Cor. 3.10) Rank two vector bundles are precisely the minimal ele-

ments in their biliaison classes.

Notice that most biliaison classes do not contain vector bundles. Indeed, the
S-modules which are the first cohomology module of some rank two vector bundle

on P? satisfy quite strong conditions (see [R3] and [D]).
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Another invariant that we consider is the minimal integer ¢ such that F(t) has
non-zero sections, we denote it to(F) (see Def. 3.14). We prove (Cor. 3.16 and
3.17) that minimal elements have maximal ¢, which depends only on M.

In Chapter 4 we analyze the special case of classes associated to a split module.
That is, classes of reflexive sheaves F such that H!F decomposes as the direct sum
of two non-zero graded submodules with disjoint supports (Def. 4.2). In particular,
we show that these classes do not contain vector bundles (Thm. 4.7). In other words

we have:

Theorem 6. (Thm. 4.7) The intermediate cohomology modules of a rank two

vector bundle on P*® are non-split.

As a corollary, via the Serre correspondence, we get the analogous result for the
Rao module of a subcanonical curve. By curve we mean a locally Cohen-Macaulay
equidimensional subscheme X of dimension one. We recall that X is subcanonical
if its dualizing sheaf wx is isomorphic to a twist of the structural sheaf Ox. We

have:
Theorem 7. (Cor. 4.9) The Rao module of a subcanonical curve in P* is non-split.

This provides a complete answer to a question raised a few years ago, namely,
whether the Rao module of a subcanonical curve can have gaps in the grading. As
far as we know, up to now only partial results were proved ([Dal], [Da2], [B2]),
for example, for curves with low speciality index or for vector bundles with Chern
classes in a certain range.

We point out that these non-splitness results yield a vanishing criterion for the

cohomology groups of a vector bundle and of the ideal sheaf of a subcanonical curve:

Proposition 8. (Cor. 4.8) Let £ be an indecomposable rank two vector bundle
on P®. Suppose H'E(t) = 0 for some integer t > min{n|H'E(n) # 0} andi =1 or
i = 2. Then H'€(n) = 0 for any n > t.

And, similarly:

Proposition 8. (Cor. 4.10) Let C be a non-arithmetically Cohen-Macaulay sub-
canonical curve in P?. If H'Ic(t) = 0 for some integer t > min{n|H'Zc(n) # 0},
then H'Zc(n) = 0 for any n > t.
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This improves in some sense the well known Castelnuovo-Mumford criterion
([Mu, Lecture 14]) for these particular cases.

Finally, in Chapter 5 we consider the following question:

Let F be a minimal element in a biliaison class of rank two reflexive sheaves and
let C be a curve obtained as zero-locus of a section s € H*F(t,), where ¢, is the
first twist of F which has non-zero sections. When is C minimal in its biliaison
class?

A criterion is given in Prop. 5.1. We then construct a simple example where
the curve C is not minimal (Example 5.3). The situation seems more delicate if

we assume JF to be a vector bundle. As far as we know, no analogous example is

known with F locally free.

Most of the contents of this thesis appears in two S.I.S.S.A. preprints: Chapters
1, 2 and most of 3 are contained in [B3], while Chapter 4 is [B4].
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Notation

Throughout this thesis we work over an algebraically closed field K of arbitrary char-
acteristic. S denotes the ring of polynomials K|zo,...,z,] and m the maximal ideal
(z0,...,%,). P™ is the n-dimensional projective space P% = Proj(S) and O stands for
the structural sheaf Opn.

For short, we call a sheaf A a free sheaf if it is isomorphic to a finite direct sum
of line bundles, that is, A = @, ., O(—n)*™. In this case the finite support function
a:7Z — 7 is called the characteristic function of A. As a general rule, we use the same
letter to denote a free sheaf (upper case) and its characteristic function (lower case).

If F is a sheaf on P"™ we write F(I) for the twisted sheaf F @ O(I). The cohomol-
ogy groups H(P",F) are denoted simply H'F and we write h'F for their -dimension
dimg H (P, F). We also set HiF = @, H' F(1).

If X is a closed subscheme of P™ its ideal sheaf is denoted T, its saturated homoge-

neous ideal is Ix = H2Tx, its structural sheaf Ox and the dualizing sheaf wx.

Note that Thm. 1.10 means Theorem 10 in Chapter 1, unless another specific reference

is given.






Chapter 0

Biliaison theory for subschemes

of projective space: a review

In this introductory Chapter we give a short account of biliaison theory for
subschemes of projective space. We focus mainly on those aspects which have a
counterpart in biliaison theory for reflexive sheaves that will be developed in the
subsequent chapters.

Liaison and biliaison are equivalence relations on subschemes of the same di-
mension of P™. They arise from the geometric notion of linkage or residuation in
a complete intersection: two subschemes are (geometrically) linked if they have no
common components and their union is a complete intersection. This idea dates
back to the last century but has been developed in the modern setting of algebraic
geometry after the fundamental paper of Peskine and Szpiro in 1974 ([PS]). They
give an algebraic definition of link which applies also to the case when the two
subschemes have common components (and agrees with the geometric definition

above when they dont):

Definition 0.1. Let V; and V; be subschemes of codimension » in P". We say
that V7 is linked to Vo by the complete intersection X if X is a global complete

intersection of codimension 7 which contains V; and V5 and such that

Iv,[Ix = Hom(OVZ,Ox)
Iv,/Ix & Hom(Ov,,O0x).

We then write Vi3 ~ V5.

Typeset by AAS-TEX



4 A. BURAGGINA

The equivalence relation generated by linkage is called liaison: two subschemes
X and Y are in the same liaison class if there exists a finite sequence of links from
X to?Y:

X~Vi~nVo~eon Y

If one requires that the number of direct links be even, then the equivalence relation
is called even liaison or biliaison.

The interest of biliaison rather than liaison appears when one looks at the be-
haviour of the most important invariant of these classes, that is, the collection of
deficiency modules {H1Zx,..., H3Ix}, where d is the dimension of X. The follow-
ing theorem says that this sequence is preserved up to duals, shift and re-indexing

under liaison, for locally Cohen-Macaulay schemes:

Theorem 0.2. ([R1], [Ch], [Sch], [M1], [H1]) Let X and Y be locally Cohen-
Macaulay subschemes of P™ of codimension r which are linked by a complete in-

tersection Z. Let Iz = (Fi,...,F;) and ¢ = Z:le degF;. Then
HiTx = (Hf_r*”lfy)v(n—i-l—q) foreachl1 <i<mn-—r,
where ¥ denotes the dual as K -vector space.

In particular, in even liaison duals disappear and the deficiency modules are just

shifted all together:

Corollary 0.3. Let X and Y be locally Cohen-Macaulay subschemes of codimen-
sion 7 in P™. Assume that X and Y are in the same biliaison class, then there

exists an integer p such that HiTx = HiTy(p) for each 1 <i<mn —r.

This shows that even liaison has a better behaviour than simple liaison. More-
over, it is interesting to notice that the result of Corollary 0.3 still holds if we
drop the locally Cohen-Macaulay assumption (this has recently been proved by
Hartshorne, see [H1]), while Theorem 0.2 does not (indeed, for a non locally Cohen-
Macaulay subscheme the deficiency modules fail to be of finite length but are zero
in large degree). This gives further evidence to the fact even liaison classes are the
“right” object to study.

Unfortunately, the condition of Corollary 0.3 is not sufficient in general for two

subschemes to be in the same biliaison class. For example, there are arithmetically
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Cohen-Macaulay curves in P* which are not in the biliaison class of a complete
intersection. However, the condition is sufficient for curves in P2. This is a theorem

proved by Rao in 1979 ([R1]):

Theorem 0.4. Let C and C' be locally Cohen-Macaulay equidimensional curves
in P®. Then C is in the even Liaison class of C' if and only if H!Ic = HlZc/(h)
for some integer h € Z. Moreover, for any finite length graded S-module M there
exists a nonsingular curve C in P? such that H1Zc = M up to shift in grading.

It follows that even liaison classes of (locally Cohen-Macaulay, equidimensional)
curves in P? are in bijective correspondence with the isomorphism classes of graded
S-modules of finite length, identified up to shift.

This is indeed a particular case — thanks to Horrocks’ classification of stable
equivalence classes of vector bundles — of a later result of Rao which parametrizes
even liaison classes of codimension two (locally Cohen-Macaulay, equidimensional)

subschemes in P™. Let us first recall a definition:

Definition 0.5. Two sheaves £; and & on P™ are called stably equivalent if there
exist integers a;, bj, c such that & @ P;_; O(a;) = Ex(c) @ @;___1 O(b;).

Theorem 0.6. ([R2]) In P™, n > 2, the even liaison classes of codimension two,
equidimensional and locally Cohen-Macaulay subschemes are in bijective correspon-

dence with the stable equivalence classes of vector bundles £ on P™ with HlE =0.

This result has recently been generalized by Nollet ([N]) to subschemes of pure
codimension two (not necessarily locally Cohen-Macaulay) using reflexive sheaves
instead than vector bundles.

Thus, at least in codimension two, there is a satisfactory answer to the question
of parametrizing even liaison classes.

Another interesting problem is the description of a single class. Here again there
is good answer only in codimension two. The structure of an even liaison class of
codimension two subschemes of P™ is described by the so called Lazarsfeld-Rao
property. This says roughly that there is a minimal element, unique up to defor-
mation, from which the whole class can be built up applying repeatidly a simple

process. The ingredients are essentially two: the existence of a minimal element
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and a “basic operation” within a class. The latter consists of two consecutive
simple links by complete intersections Z; and Z, defined by homogeneous ideals
Iz, = (F1,F,;) and Iz, = (F1,AF;), with A a general form of positive degree. If we
start with a subscheme X, the result is a subscheme Y which is set-theoretically
the union of X and of the complete intersection defined by the ideal (Fy, 4). This
process is called basic double link.

Using this notion one can define a partial ordering on a biliaison class setting
X < X'"if X' can be obtained from X by a finite sequence of basic double links,
followed by a deformation which preserves cohomology and biliaison class. Nollet
calls it domination (see [N], for curves see also [MD-P2,V;1]). The “minimal”
element in the sense of the Lazarsfeld-Rao property (or LR-property for short) is
precisely a minimal element with respect to this partial ordering. Then one can

give a simple formulation of the LR-property (cf. [N]):

Definition 0.7. Let £ be a biliaison class of subschemes of pure codimension two.
We say that £ has the LR-property if £ has a minimal element with respect to

domination.

The name of this property is due to the fact that Lazarsfeld and Rao first showed
that certain biliaison classes of curves have this structure (cf. [LR]). Then it was
conjecture ([BM1]) and proved ([BBM]) that the same structure holds for every
biliaison class of codimension two, locally Cohen-Macaulay and equidimensional
subschemes of P™. In this case the réle of minimal elements is played by those
subschemes which realize the leftmost possible shift of the deficiency modules (see
[BM1]). When one deals with non-locally Cohen-Macaulay subschemes the defi-
ciency modules are not of finite length, hence this notion doesn’t make sense. In
order to prove the LR-property in the more general context of purely two codi-
mensional subschemes, Nollet extends the characterization of minimal curves in P?
given by Martin-Deschamps and Perrin in [MD-P1]. This is done in terms of the
N -type resolutions:

Definition 0.8. (cf. [N]) Let V C P™ be a subscheme of pure codimension two,

then an A -type resolution for Ty is an exact sequence

0P —->N->TIy—>0



CHAPTER 0 7

where P is a free sheaf and A is reflexive with HIANY = 0 and £zt'(N,0) =0

Now, for subschemes of pure codimension two the stable equivalence class of
the middle sheaf in an N -type resolution determines uniquely a biliaison class
(I[N, Cor 2.12]). Moreover, it turns out that the minimal elements are precisely
those subschemes for which the map P = @,c5 O(—t)*® — N in the N-type
resolution is given by sections of least possible degrees. This translates in the
requirement that the function p* — defined by p# (k) = >, p(t) — be as large
as possible (for precise statements we refer to [MD-P1] and [I—\I]) Then in order to
find minimal elements one has to determine, for a given reflexive sheaf A, a finite
support function g : Z — Z such that there is an injection P, O(—)1 — N
whose cokernel is the (twisted) ideal sheaf of a subscheme of pure codimension two
and such that if P,c, O(—t)"® < N is any other such injection, then r#(¢) <
¢¥(t) for any t. This work has been done by Martin-Deschamps and Perrin ([MD-
P1]) for the case of locally Cohen-Macaulay curves in P?,i.e. when A is a vector
bundle on P2, but their method applies also to the case when N is a reflexive sheaf
with HINY =0 and £zt (N,0) = 0. The adaption has been carried out by Nollet
in the above cited paper. The function ¢ associated with N is explicitly defined
(and can be computed) in terms of certain invariants of the rank stratification of

N. The conclusion is the following:

Theorem 0.9. ([BBM], [MD-P1], [N]) Any biliaison class of non-arithmetically
Cohen-Macaulay subschemes of P™ of pure codimension two has the Lazarsfeld-

Rao property.

It has to be pointed out that [MD-P1] actually provides an explicit algorithm
to determine minimal elements in a biliaison class of curves in P3. This algorithm
has recently been implemented using the programmes Macaulay and Maple and
concrete examples have been computed ([GLM]).

As we shall see starting from the next chapter, completely analogous results
hold for biliaison classes of rank two reflexive sheaves on P3. Indeed, we define
such classes taking into account the characterization of biliaison classes of locally
Cohen-Macaulay curves in P? given by Thm. 0.4.

The connection between curves and reflexive sheaves is provided by the so called

Hartshorne-Serre correspondence which reads as follows:
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Theorem 0.10. ([H, Thm. 4.1]) Let ¢; be a fixed integer. Then there is a bijective

correspondence between:

(1) pairs (F,s), where F is a rank two reflexive sheaf on P3 with first Chern
class ¢; and s € H(F) is a global section which vanishes in codimension
two;

(2) pairs (Y,¢), where Y is a locally Cohen-Macaulay curve in P3 generically
complete intersection, and ¢ € H'(wy(4 — ¢1)) is a g]ob‘al section which

generates the sheaf wy (4 — c1) except at finitely many points.

Under this correspondence there is an exact sequence
(*) 0-0—>F—>Ty(c)—0

moreover, ¢ = d and c3 = 2p,(Y) — 2 + d(4 — ¢1), where ¢, and c3 are the Chern

classes of F, d is the degree of Y and p,(Y") its arithmetic genus.

In particular, this gives a correspondence between rank two vector bundies and
subcanonical curves (Serre correspondence).

Notice that sequence (*) implies that H!Zy = H!F(—c1), hence, in view of
Theorem 0.4, curves corresponding to the same sheaf F or to any twist F(I) belong

to the same biliaison class.



Chapter 1

Biliaison classes of rank two

reflexive sheaves on P

In this Chapter we show that any reflexive sheaf on P? admits two special types
of locally free resolutions related with a minimal graded free resolution of its first
cohomology module. Then we define biliaison classes for rank two reflexive sheaves

and parametrize them.

In the following we will work on P2 and S will denote the ring of polynomials

in three indeterminates.

We recall that a reflexive sheaf is a coherent sheaf which is isomorphic to its
double dual. In particular, a reflexive sheaf is torsion free and any locally free
sheaf is reflexive (we shall use interchangeably the terms vector bundle and locally
free sheaf). The rank of a coherent sheaf is the rank at the generic point. For

generalities about reflexive sheaves we refer to [H].

Suppose F is a reflexive sheaf on P3. Its first cohomology module H1F is a
graded, finite length S-module which has a minimal graded free resolution of the

form

0Ly 25 Ly B Ly Ly D5 Lg— HEF — 0.

Let Ny = ker(o1) and Ey = ker(o), then the associated sheaves Ny and & are
locally free with HONy = Ng, HYE, = Eo, HINy = HIF, H1E, = 0, H>Ny = 0 and
HZEy = H!F (these properties can be easily proved splitting the resolution above

into short exact sequences, sheafifying and taking cohomology, see for example

Typeset by ApS-TEX
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[MD-P1, II}). It is easy to see that if H:F s 0, then N} and & have rank at least
3.

Proposition 1.1. Let F be a reflexive sheaf on P3, thenh.‘F fits in an exact sequence
(%) 0-A—-MN®D—F -0

satisfying the following two conditions:

(1) A and D are free sheaves;
(2) the homomorphism induced on global sections a : H'A — HY(N, & D)
satisfles a* = 0 (where a* is the dual homomorphism and a* is its reduction

modulo m)

Such a sequence is unique up to isomorphism.

Proof. Set F = HJF and consider the isomorphism Ext§(F, S(—4)) = (H2F) —
here ' stands for dual as K-vector space. Let G < (H2F)' — 0 be a surjection
defined by a minimal set of generators of (H2F)', G being a graded free S-module.
Then g is an element of Hom(G, (H2F)') = (H2F) ® G* = Exty(F, G*(—4)), that

is, an extension
(1) 0—-G(—4) - B — F—0.

Sheafifying () we get:
0-A—-B—-F—-0

where A is the free sheaf associated to G*(—4) and B is a torsion free sheaf with
H.B = H.F. Applying functor Hom(—, §(—4)) to () gives:
(1)

0 F*(—4) - B*(~4) =% @ % BxtL(F, §(~4)) — Exti(B, S(—4)) — 0,

and surjectivity of g implies Ext§(B, S(—4)) = 0, hence H2B = 0. It follows that B
is a vector bundle — since its intermediate cohomology modules are of finite length
— and, moreover, by Horrocks’ classification of stable equivalence classes of vector
bundles ([Ho]), it is of the form Ny @ D, where D is a free sheaf. This proves the
existence of an exact sequence (*) satisfying (1). Tensoring sequence (}) with K

shows that the minimality of the system of generators given by the image of g —
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which means that § is an isomorphism — implies a*(—4) = 0, hence ¢* = 0. To

prove unicity, suppose now that we have two exact sequences of S-modules

0ASN®dDSF—0
05C S Ne®E S F—0

where A,D,C and E are graded free S-modules, Ny = H2N} and a* = ¢* = 0.
Since H2Ny = 0, we have Exts(No @ D,C) = 0 and the homomorphism d lifts to
homomorphisms ¢ : Ng @ D — Ny @ E and 9 : A — C which make a commutative

diagram:

0 A—% 5 NyeD —% > F » 0
[+ e ll
0 » 0 —— Ny@E —— F > 0
Dualizing we obtain:
0 , F* Y NreDr —2 4 » ExtL(F,5) —— 0
| & [» ll
0 LN N; @ E* <, c » Bxtg(F,8§) —— 0

The hypothesis a* = ¢* = 0 implies that ¥* is an isomorphism. Thus, by exact-
ness of — ®s K we have Coker()*) = Coker(¢¥*) = 0 and the graded version of
Nakayama’s lemma (see for example [MD-P1, p.19]) implies Coker(s*) = 0. On
the other hand, since C* is a free S-module, Ker(¢*) = Ker(¢*) = 0 and, again
by Nakayama, Ker(¢*) = 0. We conclude that %™ is an isomorphism, hence ¢ and

¢ are also isomorphisms.

Definition 1.2. We say that an exact sequence 0 — A — Ny ®D — F — 0 which
satisfies (1) and (2) of Prop. 1.1 is the Ny-resolution of F.

Remark 1.3. Condition (2) in the Proposition is a minimality condition for se-
quence (%) — it corresponds to the minimality of the set of generators chosen for
(H2F)' — and implies unicity of the Ap-resolution. It will often be enough for our
purposes to consider exact sequences satisfying just (1). Of course, there are infin-

itely many such sequences, they are all obtained trivially from the Ay-resolution
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by adding a free direct summand, i.e., assuming now that (*) is the Np-resolution

of F, they look like:
0 AL Ny ODBL—-F—0

with £ a free sheaf. Indeed, suppose 0 — C — Ny @ £ — F — 0 is an exact
sequence with C and £ free sheaves, taking global sections and applying functor
Hom(—, S(—4)) we get

0 — F*(—4) — (N; @ E*)(~4) =% 0*(—4) 5 ExtL(F, S(—4)) — 0

where C = HJC and E = HE. If ¢*(—4) # 0, the image of § is a non-minimal
system of generators of Extg(F,S(—4)), then C*(—4) = G @ (a free S-module)
and C = A® L, with £ a free sheaf. As in the proof of unicity of the Nj-resolution,

since Extg(No @ D,A@® L) = 0, we can write an exact commutative diagram

d

0 —— A — 5 No@D > F > 0
| | |
0 — > A®L —5 s Ny@E —* 5 F 0

Taking duals and tensoring with K we see that 7* is surjective because a* = 0. It

follows that 7 is injective and split and we obtain the following exact commutative

diagram:

0 0

0 — A —2 5 Ny®D >y F 0
’ J |

0 —— AL —— Ny®E F 0
P
I —— L
0 0

Since the vertical exact sequence on the left splits, the vertical one in the middle

splits too and we have Ny @ E =X Ny ® D@ L.
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Proposition 1.4. Let F be a reflexive sheaf on P32, then there is an exact sequence
(+x) : 02 &EBL-M—-F—-0

such that:

(1) £ and M are free sheaves;
(2) the homomorphism induced on global sections p : H) (& @ £) — H!M
satisfies p = 0.

Such a sequence is unique up to isomorphism.

Proof. Let F = HYF andlet P - M = F — 0 be a minimal free presentation.
Sheafifying we get an exact sequence 0 — K — M — F — 0, where K is the
sheafified kernel of m, which is torsion free because M is a free sheaf. Taking

cohomology, we get
0> HK M F-HK—-0-—HF—-HK—0...

so we see that H1K = 0 and H2K = H!F. It follows that K is a vector bundle
and it is isomorphic to & & L, for some free sheaf L. Moreover, minimality of the
presentation of F means that 77 is an isomorphism, hence the mapp : HX @s K —
M ®s K is the zero homomorphism. Suppose now we have two exact sequences of

S-modules

0> EoL5MZF—0
OHEO@L'L,M'—T—)'F-AO

with L, L', M, M' graded free S-modules and 5 = p' = 0. Since M is free, m
lifts to homomorphisms ¢ : M — M' and ¥ : Eg ® L — Ey & L' which make a

commutative diagram

0 —— EyoL — 2> M -5 F 0
| 4| H
0 — » EyoL —2 s M —™ 4 F 0

Tensoring with K we see that ¢ is an isomorphism, then, by Nakayama’s lemma,

¢ is also an isomorphism and so is .
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Definition 1.5. We say that an exact sequence 0 — £ &L — M — F — 0 which
satisfies (1) and (2) of Prop. 1.4 is the &;-resolution of F.

Remark 1.6. As in the case of the Ap-resolution, condition (2) in Prop. 1.4
guarantees the unicity of the &£ -resolution, while there are infinitely many exact
sequences satisfying only (1). Again, they all arise from the &)-resolution adding
trivially a free direct summand, that is, assuming (**) is the £;-resolution of F,

they have the form
0—-&E LG o MG —-F -0
for some free sheaf G. The proof is straightforward since M 2 F — 0 is the

beginning of a minimal free presentation of F'.

As in the case of the ideal sheaf of a curve, the Ny-resolution and the & -resolution

of a reflexive sheaf are linked as described in the following:

Proposition 1.7. Let F be a reflexive sheaf on P® and

0-A-Ny®@D—>F—0
0-&EBL - M-S F—0

its Ny-resolution and &,-resolution respectively. Let Ly be the free sheaf associated
with the module L, appearing in the minimal free resolution of H:F. There exist

free sheaves L}, and L} such that
L, 2L, @ LY, A= L0 L, M=L]eD

and an exact commutative diagram with the middle column split:

0 0

~-

A e e— A

0 —— &L —— Lo LD — Nog®D —— 0

“ ~ 4

0 — &L — M _— F ——F 0

&
Ay



CHAPTER 1 15

Proof. The proof goes as in [MD-P1, II, Prop. 6.1]. Applying the global sections
functor to the Np-resolution and to the & -resolution of F we get two exact se-

quences of S-modules:

045N, eD5F—=0
0 FE,oL>5MZ F—o.

o ®id
Consider the surjection L, ® D 2%, Ny®D — 0, where o}, is induced by o in the
minimal free resolution of H.F (see beginning of Chapter). The map do (¢} & id)
lifts to a morphism g : Ly @ D — M which makes commutative square:

®1

L. @D -"é—d>NoeBD —_ 0

Ll L

M 25 F
N
0

Tensoring with K one sees that I is surjective, hence p is surjective and has a free

S ]

kernel L),. Let v : L\, — A be the morphism induced by ¢} @ id. Again tensoring
with K we see that 7 is injective, hence v is injective and split. We then have an

exact commutative diagram:

0 0
0 —— L, —— 4
o‘é@id
0 —— Eo _)LQ@D—-—)1V0@D~—————+O
A 7 d
0 ——> FoeL 2> M "> F —50
0 . 0

where ) is the morphism induced by p. Then A is injective and its cokernel is

isomorphic to A/L}, which is free. It follows that A splits and A/L} = L, hence
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A= Ly®L. We claim that L}, is a direct summand of L,. To prove this consider the
projections 7 and 7' of Ny @ D and, respectively, L ® D on D. Since by assumption

a* = 0 we have (w0 a)* = 0 and then also #6@ = 0. Hence 0 =76a067 = 7/ o v
which means that I'm(v) C L,. Let L, = L}, @ LY, then M = LY @ D. It is now

easy to check that there is an exact commutative diagram as in the statement.

We now define the equivalence relation of biliaison for rank two reflexive sheaves

on P3:

Definition 1.8. Let F, F' be rank two reflexive sheaves on P3. We say that F
and F' are in the same biliaison class if H}F = H}F'.

Theorem 1.10 below gives a parametrization of these classes. We first need a

definition:

Definition 1.9. Two vector bundles £ and &' are strongly stably equivalent if
there exist free sheaves A and B such that £ A= &' @ B.

Warning. Notice that this relation is actually stronger than stable equivalence
defined in Def. 0.5 since here we do not allow a twist of the bundles.

Theorem 1.10. The following three sets are in bijective correspondence:

(1) Biliaison classes of rank two reflexive sheaves on P3.
(2) Isomorphism classes of graded S-modules of finite length.

(3) Strong stable equivalence classes of vector bundles on P? with H2 = 0.

Proof. We define maps (1) — (2) — (3) — (1): by definition, a biliaison class of
sheaves determines an isomorphism class of graded S-modules of finite length, thus
F + H_F gives a map (1) — (2). Now, let M be a finite length S-module and
consider a graded free presentation Ly — Ly — M — 0. The sheaf associated to
ker(L; — Lg) is a vector bundle, say G, with H1G = M and H%G = 0. Clearly
G is determined up to a free summand by the isomorphism class of M (the free
summand depends on the presentation chosen, note that we do not consider only

minimal presentations), thus we have a map (2) — (3). We now define a map

(8) — (1): let M be a vector bundle of rank = with H2M = 0, taking r — 2



CHAPTER 1 17

general sections of very large degrees ay,... ,a,_2 we obtain as a quotient a rank

two reflexive sheaf £:

r—2
0——)@0(——@,')%./\/[—»5—%0.
i=1
It is clear that H!M = H!E and since H! modules are invariant in a strong
stable equivalence class, any bundle strongly stably equivalent to M yields a sheaf
in the biliaison class of £. It is easy to check that these maps provide bijective

correspondences among the three sets.

Remark 1.11. The correspondence between sets (2) and (3) in Thm. 1.10 is ac-
tually just part of Horrocks’ classification of stable equivalence classes of vector
bundles. Then one could obtain the bijection with (1) using Rao’s theorem for
curves ([R1, Thm. 2.6], see Thm. 0.4) via the Hartshorne-Serre correspondence
(Thm. 0.10). We chose to establish directly the correspondences — without men-
tioning curves — in order to make explicit the relationship between a biliaison class

of reflexive sheaves and the corresponding strong stable equivalence class of vector

bundles.






Chapter 2

The structure of a class

By the results of the previous Chapter we know that a biliaison class of rank
two reflexive sheaves on P? is uniquely determined by the minimal element of the
corresponding strong stable equivalence class of vector bundles (£ is a minimal
element in its strong stable equivalence class if it has minimal rank in the class,
i.e. if any other bundle in the same class is isomorphic to the direct sum of £ and
a non-zero free sheaf). If the minimal element is Mg, let us denote Refl(N) the
corresponding biliaison class of rank two reflexive sheaves. We identify sheaves in

this class with their Ay-resolutions.

A natural question then is: for a fixed Ay, which are the possible A and D that
yield an F in Refl(Ny), i.e. F reflexive of rank two?

A more general question is: given a vector bundle M of rank r > 3 on P3,
which are the possible integers a;,...,a,.—» such that a general morphism 0 —
D=2 O(—~a;) 2 M has a reflexive cokernel?

It is well known that if the degrees a;,... ,a,—» are large enough (i.e., such
that 'Hom(@::_f O(—a;), M) is globally generated) the map u will drop rank in
codimension at least 3, hence the cokernel will be reflexive (this is the argument
used in Thm. 1.10). For low degrees one has to analyze the situation more closely.
This has been done by M. Martin-Deschamps and D. Perrin in [MD-P2], in an
" even more general setting: given a reflexive sheaf £ they provide a necessary and
sufficient condition for a free sheaf A in order that there exists a morphism A — &

having a reflexive cokernel. To state their result we need some preliminaries.
Typeset by ApS-TEX
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Let £ be a reflexive sheaf and consider a surjection defined by a minimal sys-
tem of generators of its global sections: @, ., S(—n)™ — HYE — 0. Let
Drcz O(—n)te(™ L, & - 0 be the corresponding morphism of sheaves; if k is an in-
teger, let £<¢ be the image of the restricted morphism f<x : @, <, O(—n)% (™ — £,
i.e. E<i is the subsheaf generated by sections of degree < k. )

Definition 2.1. Let £ be a reflexive sheaf on P?. Define T¢ (respectively, R¢) as

the maximal integer (if it exists, 400 otherwise) such that:
(1) the morphism f<p is injective, i.e. E<p = Dn<k O(—n)'(n);
(2) the quotient sheaf £/E<y is torsion free (respectively, reflexive).

Remark 2.2. Clearly it is Re < T¢ and, for any k < T¢ (resp. k < Re¢), £/E<y is
torsion free (resp. reflexive). Indeed, for any k such that f<j is injective one has

the following diagram:

0
I
0 O(—k)k(®
I
0 —— 551:—1 y € > 5/5Sk._1 — 0
I | I
0 —— E<k s £ > El€<k  — 0
I |
O(_k)le(k) 0
|
0

which shows that if &/E<k is torsion free (resp., reflexive), then £/€<k_1 is too.

Definition 2.3. Let £ be a reflexive sheaf on P3. For any integer k € Z set:
(1) ar(€) = rk(E<k) = rk(f<k) at a general point;
(2) Bx(€) = infs{rk(f<r)|s}, where S describes the set of integral surfaces in
P3;
(3) 1x(€) = infc{rk(f<x)|c}, where C describes the set of integral curves in
P3.
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(These invariants can be defined more generally for any coherent sheaf, see [MD-
P2, 11, 4)).

The following properties are straightforward:

Proposition 2.4. For any k € Z we have inequalities: ax(£) > Br(€) > v(€); if
(x denotes any of the invariants ax(E), Bx(£), vx(E), then for any k € Z we have
Gk < Cr1- '

If g: Z — Z is a function with finite support, following notation in [MD-P2] we

write g% (n) = 3, 9(t). Note that from function g# one recovers function g by
the formula: g(n) = g% (n) — g% (n — 1).

Remark 2.5. The invariants T¢ and R¢ associated with a reflexive sheaf £ can be

characterized in terms of the ar(&), Br(&), 7x(&) and of the function /g as follows:

Te = sup{k|lZ (k) = ox(£) = Bi()}
Re = sup{k|IF (k) = ar(€) = B(E) = 1x(€)}

(equality lf(k) = ay(€) means that f<p is injective, while ax(€) = Br(€) (resp.,
ap(€) = Br(€) = 7x(€)) means that f<p drops rank in codimension at least 1
(resp., 2), see [MD-P2, II, 4]). Observe also that for R¢ < k < T¢ we have

(k) = ax(€) = Be(€) > 1(E)-
Definition 2.6. Given a reflexive sheaf £, we define a function x¢ : Z — Z setting:

#(n) _ { vn(E), forn < Tf¢
Xz inf(an(€) — 2,Bu(€) — 1,7a(£)), forn > Te.

Lemma 2.7. Let £ be a reflexive sheaf but not a free sheaf, then we have:

(1) 0 < xe(n) < lg(n) for any n € Z, in particular, for n < Rg we have
xe(n) = lg(n) and for n = Re¢ + 1 we have x¢(n) < lg(n);
(2) X?(n) =71k(€) — 2 forn > 0.

Proof. (1) The inequality x¢(n) > 0 is proven in [MD-P2, III, Prop. 3.7]. We prove
xe(n) < lg(n). To simplify notation, we shall drop the £ from the a,(€), Bn(€) and
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Yn(€) in the rest of the proof. For n < R¢ we have x¢(n) = xf(n) — x? (n—-1)=
TYn — Yn-1 = lf(n) = l:’f(n —1) = l¢(n) (see Rmks. 2.2 and 2.5). For n = Rg + 1
we distinguish two cases: either R = T, then we have x¢(n) = inf(a, — 2,,6n -
1,9n) =Yn-1 < an—2—1F(n—1) < H(n)—2—1F(n—1) = Iz(n)—2; or Re+1 < Tt
and hence Xg(n) = Yn—Yn-1= Yn—Qn-1 < Gn—0p_1 = l?(n)—lf(n—l) = lg(n).
Suppose now n > Rg+1. We first show that for any n at least one of the expressions
Op — 0p_1, Bn — Bn-1, Yn — Yn—1 is greater than or equal to xs(n), then we prove
that any of them is smaller than or equal to lg(n). If n < T, then clearly xc(n) =
n = Yn-1- Hn =Te +1, then xe(n) =inf(an —2,6n —1,72) = Yn-1 £ Tn — Yn-1-
For n > T¢ + 1 we need to consider separately nine cases. For example, suppose
inf(an — 2,6, — 1,9s) = an, — 2. I inf(ap—1 — 2,Bn-1 — 1,7n-1) = @n-1 — 2,
then clearly xs(n) = ap — ap_1;if inf(an—1 — 2,0n—1 — 1,¥n-1) = Bn-1 — 1, then
xe(n) = etn~2— 1 +1 < fo—1— Bz +1= o — n_y; if inf(an_1 — 2, Bn_s —
1,%n—1) = Yn-1, then x¢(n) = 0 =2 —p—1 < ¥p —Yn—1. The remaining six cases
are treated in a similar way.

Consider now the surjection (’)(—n)lf(") — E<n/E<n—1 — 0. It yields lg(n) >
rk(E<n/E<n—1) = rl;:(ESn) —1k(€<n—1) = an — ap_1. For the B’s, consider instead
the exact sequence O(—n)(™ — £/6., 1 — £/E<, — 0, which remains exact
after restriction to any integral surface S. Then we have lg(n) > rk(€/E<n—1)|s —
Tk(€/E<n)|s. Regarding By as rk(€) — maxs{rk(£/E<k)|s} we easily get lg(n) >
Brn — Brn—1. The same argument, replacing surfaces with curves, shows that l¢(n) >

Yn — Yn—1 for any n.

(2) The sheaf £(n) is globally generated for n > 0, i.e. f<n is surjective, hence
an(€) = Pr(€) = vn(€) = rk(€). It follows that x?(n) =an(€) -2 =rk(€) - 2.

Remark 2.8. A is a free sheaf, of characteristic function a, if and only if R4 =
T4 = +oo (one has l4 = a); then ax(A) = Br(A) = 71 (A) = a¥ (k) for any k and
XA = a.

The result which we need is the following:

Theorem 2.9. (Martin-Deschamps — Perrin, [MD-P2]) Let £ be a reflexive sheaf
on P?, but not a free sheaf. Then there exists a morphismu : @, ¢, O(—n)?™) — &
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such that Coker(u) is reflexive if and only if:
(1) ¢#(n) < xZ(n) for any n € Z;
(2) (FO)-condition (“condition du Facteur Obligatoire”): if 7 (no) = rk(E<n,)
for some integer ng < Rg, then @, <, O(—n)#™ = £, : if $#(no) =
Tk(E<n,)—1 for some integer ng < Tg,_then Drcno O(—n)#(™ is isomorphic

to a direct summand of <y,

Proof. See [MD-P2, III, Prop.3.5 and IV, Thm. 2.6].

Remark 2.10. If conditions (1) and (2) above are satisfied, i.e. if there exists a
morphism ug : P, 5 O(—n)?#(™) — £ with a reflexive cokernel, then there is a non-
empty open subset U C Hom(EP,, ., O(—n)?*(™, £) such that any € U has the
same property, that is, a general morphism P, ., (9(——77,)"5(”) — & has a reflexive

cokernel.

We now turn back to our biliaison class RefI(N): Xffo is the maximal function
such that the cokernel of a general morphism @, O(—n)X* (") — A is a rank
two reflexive sheaf and all the other possible such functions ¢/, are those dominated
by xa, — in the sense of the # function — and such that they satisfy the (FO)-
condition and qﬁffo(n) = rk(Np) — 2 for n > 0. To deal with other bundles in the
strong stable equivalence class of minimal element AN, i.e. of the form Ay @ D with

D a free sheaf, we need the following:

Lemma 2.11. Let £ be a reflexive sheaf and A= @, ., O(—n)*(™) a free sheaf,
then for any integer k we have:
(1) ax(€ @ A) = ax(€) + o™ (k);
(2) B(€ ® A) = Bi(£) + ¥ (k);
(3) (€ ® A) = 7i(€) + a¥(k);
(4) Tega = Tt, Rega = Re;
(5) xcoa(k) = xe(k) + a(k).

Proof. We have lgg s = lg + a and a surjection: EBnGZ 0(——71,)"(") oA _f@_ﬁii)

E®A — 0. Then (f ®ida)<k = f<x @ idASk for any integer k£ and the rank
of (f ®ida)<k at a point is equal to the rank of f<i at that point plus a¥ (k).
One then easily gets equalities (1), (2), (3) and hence (4). In turn they imply
xZoa(k) = x¥(k) +a* (k) and hence xeoa(k) = xe (k) + a(k).
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As a consequence of Theorem 2.9 and of Lemma 2.11 we get:

Proposition 2.12. Suppose N, is a non-zero vector bundle that is not a free sheaf.
The pairs of free sheaves (A, D) such that there exists a morphism A — Ny @ D
whose cokernel is in Refl(Ny) are exactly those satisfying the following conditions:
(1) (a— d)#(n) = rk(Ny) — 2, for n.> 0;
(2) (a — d)#(n) < x,(n) for any n € Z;
(3) (FO)-condition: if we have (a — d)#(no) = rk(No,<n, ) for some ng < Ry,
then A<pn, & (No®D)<n,; if we have (a—d)#(ng) = 7k(No,<n, )—1 for some
ng < Ty, then A<y, is isomorphic to a direct summand of (Ng @ D)<n,-

Definition 2.13. We say that (A, D) is an admissible pair for Ny if it satisfies
conditions (1), (2) and (3) of Prop. 2.12. In such a case we also say that (a — d)¥

(or, sometimes, a — d) is an admissible function.

In the following we assume Ny # 0. We now define a partial ordering in the class

Refl(Ny). Let F , F' be given by exact sequences:

(*) 0-ASN®D - F—0
(=" 0—+A'—1>,N0®'D'——>f’—>0
respectively, with A, D, A’ and D' free sheaves (notice that we do not require (x),

(%) to be the Ny-resolutions of F and F', i.e. to satisfy (2) of Prop. 1.1). Unless

otherwise specified we shall stick to this notation in the sequel.
Definition 2.14. F < F' if and only if (a — d)#(n) > (a’' —d')#(n) for any n € Z.

Remark 2.15. Notice that the function a — d is uniquely determined by the sheaf
F.-Indeed, we know that all pairs (A, D) which yield the same rank two reflexive
sheaf F are of the form (A @ £,Dy @ £), where L is a free sheaf and (Ag,Dp) is
the pair appearing in th‘e Njy-resolution of F (see Remark 1.3).

Since Xffo is a maximal element for the set of admissible functions (a — d)¥, we

have in a natural way a notion of minimal element in RefI(Ny):

Definition 2.16. A sheaf F is minimal in RefI(No) if (a — d)#(n) = x7; (n) for
any n € Z.
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Proposition 2.17. The minimal elements in Refl(N}) are precisely the sheaves

F whose Ny-resolution has the form

(f) 0 — P O(—n)¥o(™ - Ny — F — 0.
nez

Proof. Tt is clear that any sheaf in RefI(Ny) with Ny-resolution (f) is minimal.
On the other hand, suppose F is minimal in Refl(Np), that is, it fits in an exact
sequence 0 > A4 5 Nog®D — F — 0 with A = @, 5 O(—n)¥o(") @ D. Let
t = maz{n|d(n) > 0} and consider the morphism u<; : A<z — No,<t @D. Write
A 2D, o, 4 @(_n)x.vo(n)+d(n)@(f)(_t)XNo(tHd(t) and Ny,<: @D = No,<: @D’ @
O(—t) where D' = Deio1 ® O(—1)¥ D=1, If the morphism O(—t)xo(H+d®) _,
O(—t) induced by u is zero, then u<; factors through Ny,<: ®D' — since clearly
Hom(A<;—1,0(—t)) = 0 — and gives a reflexive quotient of Np,<;®D'. By
maximality of the function Xffo:_gt@’l)' we then have: a¥(t) = Xj%[u(t) + d#(t) <
Xf/'o,«eﬂ?' = xf}o (t) + d#(t) — 1, which is absurd. Thus u induces a non-zero mor-
plﬂjsr; O(—1)x¥o()+d() _; O(—t), hence an automorphism O(—t) — O(—t) and we

have a commutative diagram:

0 0
| |
0 —— Doz O(—n)¥e™ @D —2 s NyoD' . F 0
| | |
0 —— Pz O(-n)™MaeD —— Ny@D > F > 0
| -
O(—t) —— O(-1)
| |
0 0

The first row is then a new exact sequence for F with rk(D’) = rk(D) — 1. Pro-
ceeding in this way, after rk(D) steps we obtain an exact sequence of the form
0— D,cz O(—n)x*‘fo(“) — Ny — F — 0 which is necessarily the Ny-resolution of
F.
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Proposition 2.18. With the previous notation, if F, F' are such that a — d =

a' —d', then F' is a deformation of F with constant cohomology.

Proof. We can trivially modify sequences (*) and (*') as follows:

0-A0D 222, M@ DeD — F =0

0> AeD X2 A oD @D — F — 0
From the hypothesis we get a + d' = @' + d, that is, the characteristic functions of
the free sheaves A®D' and A' @D are the same. Let us write P = A@D' = A' @D,
to simplify notation, and also M =Ny @D @D XNy @D & D, v = u®idp and
v’ =’ @idp. Consider the family of morphisms

fi=tv+ (1 —t)' € Hom(P, M), te Ak,

there exists an open subset U C A}, containing 1 and 0, such that f; has a reflexive
rank two cokernel for any t € U, hence there is a deformation from F to F' within
Refl(Ny). Moreover any rank two reflexive sheaf £ given by an exact sequence
&) 0-P-M—-=E—-0

has the same cohomology. Indeed, from the long exact sequence associated with ()
we get: h°E(n) = ROM(n) — ROP(n) for any n € Z. By Serre duality and by the
isomorphism £* = £(—c;) — where ¢; is the first Chern class of £, which depends
only on P and M — , we also obtain h3£(n) = A M(—¢; —n—4)~h°’P(‘—c1 —n—4).
Clearly H;€ = H; M = H}N,. Finally, h2€(n) = h¥P(n) — h*M(n) + h*E(n) =
R*P(n) — BBM(n) + RM(—ci —n —4) — B®P(—c; — n — 4).

Corollary 2.19. In Refl(N;) there is a unique minimal element up to deforma-

tions with constant cohomology.

Definition 2.20. Let F € Refl(Ny) be given by an exact sequence
(+) 0> ASN®D - F—0

with A and D free sheaves. Suppose b, c are integers such that (A @ O(=5),D @

O(—c)) is an admissible pair for N and let £ be the cokernel of a general morphism
v: A®O(-b) - Ny ® D& O(—c):

0> AGO(=b) SNy ®@D®O(—c) » £ -0

We say that £ is obtained from F by elementary biliaison of type (b,c). If b > ¢

we say that the elementary biliaison is ascending, if b < ¢ we say it is descending.
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Remarks 2.21. a) For fixed integers b and ¢, all sheaves obtained by elementary
biliaison of type (b,¢) from F belong to the same ’f_anklily of sheaves in Re FUNG)
with constant cohomology. This is a conseqﬁence of Rmk 215 and of ;Prop 2.18.

b) Notice that even if we start from the ./V’o—resolutionrof F, the exact sequence
0-A0(-b) SNy Do O(—c) — € — 0 need not be the Ny-resolution of £.

c) A natural question is: for a given F, which pairs of integers (b,c) yield an
admissible pair? i.e., which types of elementary biliaison can we perform starting
from F7?7 |

Set A'=A® O(-b), D' =D @ O(—c) and denote as usual a, respectively, d'
their characteristic functions.

Case b = c: we have (a’' —d')#(n) = (a — d)¥(n) for any n. Then it is immediate
that (a' — d')% satisfies (1) and (2) of the admissibility condition (see Prop 2.12)
and it is easy to check that (3) holds too. Thus an elementary biliaison of type
(b,b) is always possible and, by Prop 2.18, it is just a deformation with constant

cohomology.

Case b > ¢: we have

(a —— d)#(n), forn<e
(' —d)(n)=< (a—d)#(n)—1, fore<n<b
(a — d)#(n), for n > b.

Then (a' — d')#(n) < (a — d)#(n) for any n and equality holds for n > 0. This
guarantees that (a’ — d')¥ satisfies (1) and (2) of Prop 2.12, since (a — d)* does.
Condition (3) — the (FO)-condition — is somewhat more delicate and is not always
fulfilled. Indeed, if one carries out the details of the verification, one can easily
see that obstructions arise if (a’ — d')#(ng) = rk(No,<n, ) or (a/ — d')7(ng) =
rk(Mo,<no ) — 1 for some ng > b. A sufficient condition for (3) to hold is that
b > T, Also, the case b = ¢+ 1 with ¢ > 0 always works.

Case b < ¢: we have

(a — d)#(n), forn <b
(' —dV¥(n) =< (a—d)#(n)+1, forb<n<e
(a — d)¥(n), forn > c.

Then (a' — d')#(n) > (a — d)#(n) for any n and since there is an upper bound for
admissible functions it is clear that it may not be possible to make a descending

elementary biliaison.
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d) If b # ¢, roughly speakiﬁg to perform an elementary biliaison of type (b,c)
means to change the degree of one section of the vector bundle in the middle.
Actually, we can split the process into two steps: first modify trivially the given

sequence (*) to get:

(c) 0= A®O0(—c) ZL N @D @ O(—c) » F— 0
then change c to b in the left bundle:

(b) 0> A O(-b) S No@D®O(—c) — € — 0.

One may observe that we could change the degree of one section in sequence (*),
but in that case we should choose an invertible summand of A, while in this way
we can a priori choose any c¢. Another advantage of passing through sequence (c)
is that (c) and (b) have the same bundle in the middle, thus instead of comparing
functions (a — d)# and (a’ — d')* we can just compare the # functions of the
characteristic functions of A @ O(—c) and of A & O(—b), which are positive and
non-decreasing (while (a — d)# need not be monotone). In the sequel it will be
useful to have explicit formulas: set A" = A® O(—c), then a —d = @’ — d', hence,

if b > ¢ we have:

a"#(n), forn<e
a'%(n) = a"#(n)—1, forc<n<b
a"#(n), for n > b.
and, if b < ¢
a"#(n), forn <b
a'#(n) = a"#(n)—l-l, forb<n<c
a"#(n), forn > c.

The effect of an ascending (resp., descending) elementary biliaison is then to de-
crease (resp., increase) of 1 the a'/ # function in the interval [¢,b) (zesp., [b,¢)). Also,
notice that the admissibility condition for (a’ — d')* translates into the following

corresponding properties for a’ #,

(1*) &% (n) = rk(Ny @ D') — 2 for n > 0;

(2%) a'*(n) < Xﬁo@p, (n) for any n;

(3*%) if &' # (no) = rk(Np ©D')<n, for someng < Ry, then AL, = (Mo@D')<ny;
if a’#(no) = 1k(No®D')<n, —1 for some ng < Ty, then A’Sno is isomorphic
to a direct summand of (Mo & D')<np,.
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Proposition 2.22. If F X F' and a—d # o' — d', then we can move from F to F'
through a finite number of ascending elementary biliaison followed by a deformation

with constant cohomology.

Proof. First we modify trivially sequences (%) and (*') in order to have the same

vector bundle in the middle:

() 0o A0D 222 N @D D - F -0
(a') OHA'@’DMNO@D'@’D—AJ:'—%O

Set P=A@D, P = A &D. From the hypothesis p#(n) > p'* (n) for any
nand p # p'. Let ky = maz{n|p#(n) > p'*(n)} — we know that for n > 0
p#(n) = p¥(n) = rk(No ® D& D') —2 — and ky = maz{n < ko|p(n) > 0} =
min{n|p#(n) = p¥(ko)}. We wish to perform an elementary biliaison of type
(ko + 1,k1) in order to diminish of 1 the function (a — d)¥ in the interval [k;, ko].
What we need to do is to check that we obtain an admissible pair. As explained
in Remark 2.21, d) above, we perform the elementafy biliaison in two steps: let
R=POO(—k1),B=POO(—ko —1), M =Ny @D @D ® O(—k;) and let also
R' =P'® O(—k;). Now we have three exact sequences:

0 R—-M->F—0
0-R - M-—->F -0
0->B-M-—-E—-0

the first two are obtained from (), (&) respectively, just adding trivially O(—k;),

while the third one is the effect of an elementary biliaison (kg + 1,%;) on (a). We

compare functions r#, »'# and b#. Notice that

forn <k, r#(n)=p*(n) and +7(n)=p"(n)

for n > kq, r#(n) = p*(n)+1 and T’#(n) = p'#(n) +1

and, by Remark 2.21 d),

r#(n), forn < ky
b#(n): r#(n)—1, fork; <n<ko+1
r#(n), for n > ko + 1.
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hence:

for n < kq, r'#(n) < b#(n) = r¥#(n)
forky <n<ko+1, r'%(n) <b#(n)=r#(n) -1

forn > ko +1, r'#(n) = b#(n) = r#(n).

Properties (1*) and (2*) of the admissibility condition for b# are then straightfor-
ward: b%(n) = r#(n) = rk(M) — 2 for n > 0 and b#(n) < 7#(n) < xf&(n) for any
n. We now check (3*). Observe first that

( r(n), for n < ky
r(n)—1, forn==Fk
b(n) = ¢ r(n), fork; <n<ky+1
r(n)+1, forn="Fky+1
\ 7(n), for n > ko + 1.

Recall that with the notation introduced at the beginning of this Chapter we have
a surjection @, O(—n)*(™ — M — 0. Then by definition of T we have
M =Dy O(—n)#(™) for any ¢t < Ta(= Ty,) and, by Lemma 2.7, xm(n) =
Im(n) for n < Raq(= Ra,)-

Suppose that 4% (ng) = rk(Mcp,) for someng < Ryy,. Il ng < ki, then 7% (np) =
Tk(Mcn, ), hence R<n, = Mcp,, that is, 7(n) = [y(n) for n < ng. It follows that
b(n) = lym(n) for n < ny. The case ng > k; cannot occur. Indeed, if k; < ng <
ko+1, then r#(ng) = rk(M<no)+1 > x7((no), which is absurd. If ng > ko +1, we
have r’#(no) = r#(ng) = rk(Mcn,) hence 7'(n) = r(n) = Lp(n) for any n < ng;
since it is also 7'(n) = r(n) for n > ko+2, it turns out that r = ', which contradicts
the hypothesis.

Suppose now that for some n < T, we have b%(ng) = rE(Mcn,) — 1. Again, if
ng < ki, then r# (o) = rk(M<n,) — 1. Hence there exists an integer ¢ < ng such
that Ren, ® O(—t) 2 My, ie.

T(n)_{lM(n), forn<mng,n#t
- lpm(n) =1, forn=t.

This implies:
{ Lm(n), forn<mg,n#t
b(n) =
Ipm(n) —1, forn=1t.
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If by <ng < ko +1, then r#(ng) = rk(M<n,)- Hence r(n) = lp(n) for n < mg. It
follows that:

Lm(n), forn < ky
b(n) =1 Im(n)—1, forn==F
Iam(n), for by <n < mnyg

that is, B<no ® O(—k1) = M<p,. Finally, if ng > ko + 1, then "% (ng) = 1#(no) =
rk(M<n,)—1 and there exist integers ¢,1' < ng such that R<,, @ O(—1) = Mcy, =
<no ® O(—1'). In other words:
{ZM(n), forn<mg,n#t
r(n) =
lpm(n)—1, forn=t

and :
) { Lam(n), for n < ng,n#t
r'(n) =
Ipm(n) -1, forn=1t".

It is necessarily ¢ > t'. Indeed, if ¢t = ¢/, then r’#(n) = 7#(n) for any n < ng, but
it is also r'#(n) = r#(n) for n > ko + 1, hence r = +/, which is absurd. If t < ¢/,
for t < n < t' we get r#(n) = #'#(n) — 1, which contradicts the hypothesis. Thus

t > t' and we have

r#(n), forn <t
r'#(n) =< r#(n)—1, fort' <n<t
r#(n), for n > t.

It follows that kg = ¢t — 1. Moreover, k; > t'. Indeed, for k; < t' we obtain
r# (k) = r'#(kl) while we know that 7#(k;) > r'#(kl). In the end we have
' <k <t=ky-+1and
r#(n), forn <k
b#(n) = r’#(n), forki <n<ky+1
r#(n), form >ky+1.

Hence:
La(n), forn < ky
b(n) =1 lpm(n)—1, forn=~Fk
Lam(n), for k; < n < ng,

i.e. Beng ® O(—k1) =2 Mc<p,. This shows that the (FO)-condition is satisfied.
Now we repeat the procedure on b* instead than p#. After a finite number of

steps we end up with an exact sequence
0-C—-Ny@®L—-G—0

with C and £ free sheaves such that ¢ — [ = @’ — d’ and we conclude by Prop 2.18.
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Propp 2.18 and 2.22 above allow us to describe the structure of a biliaison class
RefI(No). Such a structure is given by the so called LR-property (or Lazarsfeld-
Rao property) which, in the case of a biliaison class of reflexive sheaves, reads as

follows:

Definition 2.23. We say that a biliaison class of rank two reflexive sheaves on P2

has the LR-property if the following conditions hold:

(1) given any two minimal elements Fy and Fj, there is a deformation from Fy
to F; through minimal elements;

(ii) given a minimal element Fy and a non-minimal one F, one can move from
Fo to F through a finite number of ascending elementary biliaison followed

by a deformation with constant cohomology.
As a corollary of Propp 2.18 and 2.22 we then obtain:

Theorem 2.24. Any biliaison class of rank two reflexive sheaves F on P? with

H!F +# 0 has the LR-property.

Remark 2.25. Any two sheaves F and F' in a class Refl(N;) are connected one to
the other by a finite number of elementary biliaison — not necessarily all ascending
or all descending — followed by a deformation with constant cohomology. Indeed,
two different situations may occur: either F and F' are comparable in the partial
ordering defined on Refl(MN), or not. The former case is answered by Propp 2.18
and 2.22. The latter requires to pass through some minimal element. Suppose F
and F' correspond to functions a — d and a’' — d' respectively, then Xj‘ffo is greater
than both (a — d)* and (a’ — d')#. By Prop 2.22, there exist two finite sequences
of ascending elementary biliaison, one from Xf/'o to (a — d)* and another from Xf/o
to (a;' —d')#. If we perform one of these sequences in the inverse order, followed by

the other one we can move from (a — d)# to (a’' — d')# (or viceversa). We conclude

by 2.18.



Chapter 3

Behaviour of invariants in a class

In this Chapter we consider some invariants associated with a reflexive sheaf,
namely its Chern classes and the minimal twist which has non-zero sections, and
describe their behaviour in a biliaison class. We end the Chapter with some exam-
ples. |

Let us start with Chern classes. We will show in particular that minimal elements
have minimal first and third Chern classes (the latter result is due to C. Walter).
As a consequence we prove that in a biliaison class confaining vector bundles these
are precisely the minimal elements in the class.

We denote ¢;F the i-th Chern class of the sheaf F and we stick to notation
introduced in Chapter 2.

Remark 3.1. Suppose F is given by an exact sequence 0 — A — Ny®D — F — 0
with A and D free sheaves and F' is obtained from F by an elementary biliaison
of type (b,c). That is, 7' admits an exact sequence 0 — A @ O(-b) - Ny ®D &
O(—c) —» F' — 0. Then a direct computation on these sequences yields:

(1) aF' = F+b-c

(2) c2F' =c2F+(b—c)(c1F+b)

(3) csF' =c3F + (b — c)(c2F + b% + bey F)

As an immediate consequence one gets:

Lemma 3.2. If ' is obtained from F by an ascending elementary bilaison, then

le, > 61]:.

Typeset by ApS-TEX
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Combining this with Prop 2.22 yields:

Corollary 3.3. If F < F', then ¢1F < c;F'. (More precisely, if F < F' and
a—d#a —d, then c;F < e1F'. Of course, a —d = a' — d' implies c; F = 1 F').

Remark 3.4. Notice that the converse is not true, that is, the order relation on

sheaves induced by the ordering of first Chern classes is coarser than the partial

ordering defined in 2.14.

Corollary 3.5. In Refl(Ny) minimal elements have minimal first Chern class
equal to c{',‘j\’}o =c Ny + znez nxA,(n).
Proof. The first statement is clear. Then we can compute the minimal Chern class

from sequence (1) in Prop. 2.17.

Remark 3.6. Any integer greater than c’l""f\’}o is the first Chern class of some sheaf
in Refl(My). Indeed, if we perform an elementary biliaison of type (b,b — 1) with
b>> 0 on a sheaf F € Refl(Ny) — we need b large enough to obtain an admissible
pair, see Remark 2.21 c) — we obtain a sheaf 7' in RefI(Nj) with first Chern class
aF = F+1.

The following result is due to C. Walter.

Proposition 3.7. If ' is obtained from F by an ascending elementary biliaison,
then c3F' > c3F.

Proof. As usual, suppose F is given by an exact sequence
(%) 0—-ASLNe®D > F—0

with A4 and D free sheaves and F' is obtained from F by an elementary biliaison
of type (b,¢c), with b > ¢, that is

0> ABO(=b) >N @®@D®O(—c) = F — 0.

Let h = 0 be the equation of a plane H C P? which does not intersect the singular
loci of 7 and F'. Consider the map u @ h®=¢: 4@ O(=b) = Ny ® D @ O(—c) and
define a family of morphisms

e =tv+ (1 —t)(u@Rh'™C) € Hom(A® O(=b),No ®D® O(—c)), tec AL.



CHAPTER 3 35

Then ¢; = v degenerates at c3F' points, counted with multiplicities — hence so
does the generic morphism ¢; — while ¢g = u @ h*¢ degenerates on the plane H
and on c3F points counted with multiplicities and not lying on H. We are going to
show that these c3F points are specialization of (some of) the c3F’ points where
the generic morphism ¢; degenerates.

Let 7 : P2 x A — P2 be the projection, the 'famﬂy {¢:}icar defines a morphism
7 (AD O(=b)) —» (N ® D O(—c)).

Let Z denote the maximal degeneracy locus of ® and Iz, ;) the ideal defining Z
at the point (z,t). Since the rank difference between the bundles is two, at each
point (z,t) € P® x A' we have height(Iz ;) < 3 ([BV, Thm 2.1]). Thus every
component of Z has dimension at least one. On the other hand, by construction, we
have height(Iz (. ) = 3 for (z,t) € P3® x U, where U is a non-empty open subset
of A' containing 1 and for (z,0) € Sing(F) x {0}. Hence, at these points Z has
dimension one and is locally Cohen-Macaulay (Thm. 2.6 in [BV]). For any ¢t € U,
Zy:=Z NP3 x {t} is a finite set of points of degree c3F', then Zyy := Z NP3 x U
is flat over U. The flat closure of Zy over U U {0} contains Sing(F) x {0}, this
implies that c3 F < c3 F'.

Corollary 3.8. If F X F', then c3F < c3F'.

Proof. It is a consequence of Prop. 3.7 and Prop. 2.22

Corollary 3.9. In Refl(N,), minimal elements have minimal third Chern class,

namely,

e5', = caNo — e2Noea (xwe) + esNoler(xns ) — e2(xs )]
+ zcl(XNo)cz(XNo) - cl(XNo)3 - c3(XNo))
where we set ¢;(xn,) = ¢i(D,cz O(—n)xXVo(m),

Proof. We compute cg"f\’/‘o from the MNjy-tesolution of a minimal element given in

Prop. 2.17.

We point out the following:



36 A. BURAGGINA

Corollary 3.10. If Refl(Ny) contains some vector bundles, then they are precisely

the minimal elements in the class.

Proof. If Refl(Ny) contains vector bundles, then the minimal value of ¢z in the class
is zero and, by 3.9, it follows that minimal elements are vector bundles. Suppose
now £ € Refl(Ny) is a vector bundle but not a minimal element in the class. Then
for any minimal element F € RefIl(Ny) we have ¢1€ > ¢;F (Cor. 3.3). Thisis a
contradiction, because rank two vector bundles on P? with the same H! module

have the same Chern classes ([R3, Cor. 2.4]).

Remark 3.11. Notice that not every class RefI(Ny) contains vector bundles. Ac-
tually, finite length S—mbdules which are the first cohomology module of some rank
two vector bundle on P? satisfy quite stringent conditions ([R3]). Later these mod-
ules have been characterized by W. Decker in [D]. Here we have another citerion to

determine whether a class RefI(Ny) contains some vector bundles:
Corollary 3.12. A class RefI(Ny) contains vector bundles if and only if ¢J*j# = 0.

Corollary 3.13. If Refl(Ny) contains some vector bundles, then there is an iso-

morphism B, .5 (‘)(_n)x,\fo(ﬂ) o~ 53(0’1’%)-

Proof. Let F be a vector bundle in Refl(ANy), then by Prop. 2.2 in [R3] it is

obtained from an exact sequence
0— Li(enF) = Ny —» F — 0,

where L is the free sheaf associated to the module Lg in a minimal free resolution
of HIF and L} is its dual. F is a minimal element in its class (Cor. 3.10), hence
01.7;'.: c?"j\?o and its Ny-resolution is 0 — Drcz O(—n)XNo(") — Ny » F — 0.
Comparing with the exact sequence above we get the required isomorphism.

We now consider another important invariant of a reflexive sheaf, that is, the

minimal twist which has non-zero sections:

Definition 3.14. If G is a sheaf we denote ¢;(G) the minimal twist of G which has
non-zero sections, i.e. to(G) := inf{n|h°G(n) > 0}.
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The following lemma describes the behaviour of this invariant under elementary

biliaison:

Lemma 3.15. Suppose F € Refl(Ny) and let F' be obtained from F by an
elementary biliaison of type (b,c). We have:

(1) if b = ¢, then to(F') = to(F);

(2) if b > ¢, then to(F') < to(F). Moreover, if ¢ > to(F), then to(F') = to(F)
and for ¢ = to(F) we have RO F'(c) > 2; if ¢ < to(F), then té(.’F’) = ¢ and
ROF' () = 1;

(3) if b < ¢, then to(F') > to(F). Moreover, if b > to(F), then to(F') = to(F);
i b < to(F) and KOF (to(F)) = 1, then to(F') > to(F).

Proof. Suppose F is given by an exact sequence 0 — A — Ny @ D — F — 0,with
A and D free sheaves, then, by definition, F' is given by 0 — A & O(—-b) —
No®D@®O(—c) — F' — 0. For any n we then have: h°F'(n) = h°F(n)+hr°O(n—
¢) — h°O(n — b). Let us consider the different cases separately. (1) is obvious.
Suppose b > ¢, then for n < ¢ we have h°F'(n) = h°F(n), while h°F'(n) > h'F(n)
for n > ¢. It follows that #o(F') < to(F). It is also clear that if ¢ > #o(F) we -
have to(F') = to(F) and if ¢ = £o(F) then RO F'(c) > RO F(c) > 1. If ¢ < to(F),
then h°F'(c) = h°0O = 1. This proves (2). Suppose now b < c¢. For n < b we
have h°F'(n) = h°F(n) and for n > b we have hOF'(n) < h°F(n), which implies
to(F') > to(F). Moreover, if b > to(F), then to(F') = to(F). If b < to(F) and
RO F(to(F)) = 1, then to(F') > to(F).

Lemma 3.16. Let F be a minimal element in Refl(Ny). Then to(F) = Ra, +1
and RO F(Ry, + 1) = v (Bap +1) = o (B +1)-

Proof. By Prop. 2.17 the Ny-resolution of F has the form

0— @ O(—n)XNo(n) 2 Ny — F = 0.
neZ

Let No,< Ry, denote the subsheaf of Ny generated by sections of degree < Ry, .
Then the restriction of ¢ to @n<RJ\f0 O(—n)X~o (") factors through No,<ry,- We
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have an exact commutative diagram:

0 0
¢RNO
0 — @nSR‘\/D O(——n)XNO(n) I NU:SRNO » G > 0
) s Buany, Oyl A

and an exact sequence 0 — @n>RN0 O(-n)x%(™) — Q@ — F — 0. Then Q is
reflexive, since F is, and G is torsion free. Now recall that by definition of Ry,
(Def. 2.1) we have Ny,<nr,, = ®nSRN0 O(—n)¥o(m).| Moreover, Ix,(n) = xu,(n)
for n < Rp;, (Lemma 2.7). It follows that G has rank zero, hence G = 0 and PRy,
is an isomorphism. If we quotient out the Ap-resolution by this isomorphism we

obtain a new exact sequence:

(1) 0= P O(=np*ol™ — No/Noscny, = F = 0.

n>Ryr,

Consider now the following exact commutative diagram of S-modules where Ny =
HB-N'Oa NO;SR/\/O: HS(NO’SRNO )7 NO/NOaSRNO= HB(NO/N%SRNQ ) and By =
Hggo! '

~

@ngRNO 5(*")’”"(") —— N 1< Ry

~

0 —— B —— @,z S(—n)wo(® T Ny — 0

|

S(—n)wo(®) —T— No/No,cry, — 0

0 0
Since P,-r e S(—n)~o(™) has no non-zero components in degree < Ry, it is

clear that H°(Ny/No,<ry, )(t) = 0 for any t < Ra;,. In degree Ry, + 1 we have
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@n>R~'¢, S(Rp, +1 —n)Wo(m) = §WWo(Bxnot1) and, by maximality of Ry, (see Def.
2.1), we know that In,(Ra; +1) > 0. Moreover, since ¢ is minimal, 7 is minimal as
well. Tt follows that there are no relations in degree Ry, +1,i.e. H'&(Ry,+1) = 0.
The conclusion is that A°(NMo /No,<ry, J(BA, +1) = In,(Ra, +1). Combining this
with sequence (1) we finally obtain A°F(¢) = 0 for ¢t < Ra;, and h°F(Ru, + 1) =
INo (R +1) — X (Bap, +1).

As a consequence of the Lazarsfeld-Rao property and of Lemma 3.15 we then

get:
Corollary 3.17. For any sheaf F € Refl(Ny) it is to(F) < Rn, + 1.

To prove the LR-property for a class Refl(Ny) we assumed Ny # 0. Actually,
for the class Refl(0) we do not have a notion of minimal element (compare with
the liaison class of arithmetically Cohen-Macaulay curves in P?). For sheaves in

Refl(0) the two types of resolutions defined in Chapter 1 coincide and are of the

form

0—-A—-B—-F—0

with A and B free sheaves. In particular, the class RefI(0) contains all rank two
free sheaves O(a) ® O(b), a,b € Z. Actually, the only vector bundles in RefI(0) are
of this form: by Serre duality, H1£ = 0 implies H2£ = 0, hence Horrocks’ criterion
gives £ = O(a) @ O(b) for some integers a and b. An example of a sheaf in RefI(0)
which is not a vector bundle can be constructed from a twisted cubic curve using
the Hartshorne-Serre correspondence. The sheaf obtained in this way is a stable

rank two reflexive sheaf with ¢; = 0, ¢; = 2 and c3 = 4 (see [H, §4]).

Remark 3.18. Note that if we know the invariants associated with N, then au-
tomatically we know those associated with any twist Ny(h), h € Z. In particular,
Ryron) = By — by Tivy(n) = T, — b and x v, (n)(n) = xa5,(n + k). Thus, for exam-
ple, minimal elements in Refl(N;(h)) are precisely minimal elements in RefI(Np)
twisted by k and the whole class is just “shifted”.

Let us now consider a few examples:



40 A. BURAGGINA

Example 3.19. We use notation and results from [MD-P2,V 2]. Let f1, f2, f3, fa
be a regular sequence of homogeneous elements in m = (zo,z1,z2,3) of degrees
n; = deg(fi); suppose n; < ny < n3 < ny and let v = n; + ny + nz + ny. The

module S/(f1, f2, f3, f4+) has a minimal free resolution given by the Koszul complex:

0— S(—v) — @ S(n;i —v) — @S(—ng —n;)—

i<j

4
= D S(=ni) > 5= S/(fu: fos fu, f2) = 0

i=1
then Ny = ker(@?zl S(—n;) M S) and the associated sheaf N is locally
free of rank three. From [MD-P2,V 2] we know the invariants associated with N,
in particular, Ry, = n1 +n2 — 1, Ty, = n1 + n3 — 1 and, setting p = sup(n; +
ny,ma + n3), we have @, ., O(—n)*¥o(™ = O(—p). Thus a general morphism
O(—p) — Ny gives a reflexive rank two sheaf, which is necessarily minimal, while

other sheaves in RefI(N;) are obtained as quotients of general morphisms
O(-t)®O0(-a1)® - @ O(—a,) > No® O(—d1)® --- ® O(—d,)

for some integers ¢, a1 < -+- < ap, d;y < --- < d,, 7 > 0, such that ¢ > p and
a; > d; for i = 1,...7 (notice that in this example the (FO)-condition is empty
since g > ni+mng > T, > Ra;, and that in order to decrease a function xl’f we need
to increase the degrees of sections). The minimal first Chern class in Refl(Np) is
then c’l"fj\’}o = ciNo+p = —v+p = —inf(n; +ng,n2+n3). On the other hand, Prop.
3.1 in [R3] guarantees that for a module M with just one generator to be the first
cohomology module of some rank two bundle is equivalent to having rk(L;) = 4
and L} = Li(—c) for some ¢ € Z (L; is the free S-module appearing in a minimal
free resolution of M). We can apply this criterion to our example to find that
Refl(Ny) contains vector bundles if and only if 1y +ny = ny +ng (just impose the
above symmetry condition to @;_, S(—n.)).

A well known case when this occurs is for fi = z¢, fo = =1, f3 = 22, f1 = 3.

Thenn; = ny =n3 =ny4 =1and §/(zo,21,22,23) = K has minimal free resolution
0— S(—4) = S(-3)* - §(-2)* - §(-1)* = § - K — 0.
Then Ny = lps and a minimal element in RefI(Qps) has Ny-resolution

0— O(-2) - Qps —» F — 0.
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F is a rank two vector bundle with ¢;.F = —2, ¢aF = 2, #o(F) = 2 and R°F(2) = 5.
Up to deformation with constant cohomology this is the only vector bundle in
Refl(Qps). Twisting by 1 we obtain a null correlation bﬁndle, which is a minimal
element in Refl(Qps(1)).

Example 3.20. We now consider Buchsbaum modules, that is, graded S-modules
with trivial structure (i.e. the multiplication maps between graded pieces are all
zero). Let us write M = @] _, K*™) and suppose p(0) > 0 and p(r) > 0. The
minimal free resolution of M is obtained by just adding those of the summands

Ke(n).
0— P S(—4—n)"™ — P S(—3—n)*™ -
n=0 n=0

— ED 5(—2 —n)trm) @ S(—1—n)*(m -

n=0 n=0

., D S(—n)"™ - P K™ 0.
n=0 n=0
We have Ny = ker(@7_, S(—1 — n)*™ — @r _ S(—n)P(™) and the associated
locally free sheaf No hasrank 33" _, p(n). The invariants of Ny are Ra;, = Ty, = 1
(see [MD-P2, V, Prop.3.1]) and the function x . is:

3p(t—2)—2, fort=2
xAL(t) = ¢ 3p(t —2), for3<t<r+2

0, otherwise.

A general morphism
0(-2)*~% g (P O(—2 — n)*™ — N,
n=1

gives a minimal element in the class RefI(Np). The minimal first Chern class is
therefore c{’fﬁo = 2(p(0) — 2) + Y7 _,(6n + 10)p(n) and a minimal sheaf F has
to(F) = 2. Notice that Refl(Ny) does not contain any vector bundle, unless
p(0) = 1 and p(n) = 0 for n # 0, that is, unless M = K. This is an immediate
consequence of a theorem of M. Chang ([C, Prop. 2.1}).

The easiest example is a module concentrated in one degree and of dimension

greater than one, say M = K, a > 2. The corresponding biliaison classes of curves
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in P? have been studied by G. Bolondi and J. C. Migliore (see [BM]) The minimal

free resolution of such a module is:
0— S(—4)* - S(—3)** — §(-2)% — §(-1)** - §° - K* — 0,

then My 2 aflps and minimal elements have Np-resolution of the form 0 —
O(-2)%*"% — aflps — F — 0, first Chern class equal to 2(a — 2) to(F) =2
and hof(Z) = 3a + 2. ‘

Another example of Buchsbaum module is a module which has no non-zero
consecutive graded components. To fix ideas, let us consider a module with only
two non-zero components and a zero component in between,i.e. M = K*@ 0@ K°,

with a,b > 1. Its minimal free resolution is:

0 — 5(—4)* @ S(—6)" — S(-3)** & §(-5)* — 5(-2)** ® S(—4)* —
- S(-;)“ ®S5(—-3)* - 5@ S5(-2)° - M —o0.

Here we have Ny & aQdps @ b{lps(—2) and minimal elements have Aj-resolution:
0— O(—2)*"2 @ O(—4)*® — aQlps @ bQps(—2) » F — 0,

first Chern class equal to 2(a — 2 + 11b), to(F) = 2 and h°F(2) = 3a + 2.



Chapter 4

Biliaison classes associated to

a split module

In this Chapter we consider biliaison classes associated to split modules, i.e.
graded S-modules that are the direct sum of two non-zero submodules with disjoint
supports. In particular, we show that these classes do not contain any vector bundle.
In other words, this says that the intermediate cohomology modules of a rank two
vector bundle on P? are non-split (Theorem 4.7). As a direct consequence we prove
that the Rao module @, .5 H'Zc(n) of a subcanonical curve in P? is always non-
split. This provides a complete answer to a question raised a few years ago, that
is, whether a rank two vector bundle on P? can have gaps in its H! module (or,
equivalently, whether a subcanonical curve can have gaps in its Rao module), cf.
[Dal], [Da2], [B2]. To my knowledge up to now only partial results were obtained,
namely, connectedness was proven for vector bundles with Chern classes in a certain
range and for curves with “small” speciality index (see above cited papers and more
generally for curves [MD-P3] and [B1]). Besides, some of these results were valid

only under a characteristic zero assumption.

As a corollary of Theorem 4.7 we also get a vanishing criterion for the cohomology
groups H'E(t), for i = 1,2, of a rank two vector bundle £ (Cor. 4.8) and for the
groups H'Zc(t) of a subcanonical curve C (Cor. 4.10). The crucial point in the
proof of Theorem 4.7 is Corollary 3.10, which says that a vector bundle is always a

minimal element in its biliaison class.

‘We start with some technical results.
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Definition 4.1. Let M = D,,, M; be a finite length graded S-module. We set:

inf M = inf{¢|M; + 0}
sup M = sup{t|M; # 0}

Definition 4.2. Let M be a finite length graded S-module, we say that M is split
if it is the direct sum of two non-zero graded submodules with disjoint supports,
ie. M = M & M" with supM' < inf M". We say that M is non-connected if
sup M’ + 1 < inf M".

Suppose M = M' @& M" is split and let

o DL I I M, SR T Ny e Ny R V
be minimal free resolutions of M’ and M" respectively. Their direct sum is then a
minimal free resolution of M and L} @ L! is split for any i = 0,...,4 (cf. [MD-P4,
I, 2]). We denote Ny = ker(o} @ o) = ker(c}) @ ker(ol) = N} ® N} and Ny, N},
N’ the associated sheaves, which are locally free. {, (resp. ¢/, ¢!') will denote any
of the invariants an, Bn, 7 attached to Ny (resp. N|, V). For their definition
and those of Ts,, Ry, and of the function x; see Chapter 2.

To simplify notation in the following we will write x, x', X" for x5, XAz and x N
respectively. Also, in diagrams we will write @O(—n)*(") for Drcz O(—n)a(™),

Lemma 4.3. Let M be a split S-module, then we have:
(1) 1 : : 1

¢ :{Cn, if n <inf LY

" rkN§ 4+ ¢!, ifn>inf LY.

(2) TNO = TN(I’, R_N’O et RJV'A and RNA S T} (; < .R_/ é: S T./\/'(',"

Proof. We have the minimal surjection f' @ f" : L, ® L} — N ® N which defines
;Z, & ;g by composition with the natural inclusion of Nj ® Ny’ into £} © L. Thus
the invariants an, Bn, yn associated with (f' @ f")<, can be computed from the
matrix B, = Z, @ T of (6])<n ® (0} )<n (see [MD-P2, V, 1, b]). That is, ay is the
rank of X, B, is the maximal rank of minors of ¥, which do not vanish on a same
surface and 7, is the maximal rank of minors of ¥,, which do not vanish on a same

curve (and similarly for the ¢}, and ¢!). For n < inf LY we have (a"’:’)s,, = 0, then
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a, =B, =7, =0and {;, = (},. Forn > inf L}, we have f. = f' and T}, = &',
then o, = 8], = 7], = rkN{ (see Lemma 2.7, (2)). The mi;lors of the matrix %,
are products of minors of X/, and of X/, then clearly a, = o/, + o = rkNj + ..
For f3,, consider the closed sets V' defined by the 8] -minors of £/, and V" defined
by the 8, -minors of /.. Then V' U V" has dimension at most 1 and contains the
closed set V defined by the 8 + (.-minors of ¥,. Thus 8, > B, + .. Consider the
B, + B, + 1-minors of X,. They are product of a #'-minor of ¥/, and of a t"-minor
of ! with ¢’ +¢" = B, + B +1. If t' > B/, = rkX! there are no non-zero t'-minors
of ¥'. If ¢ < B}, then t” > B/ + 1 and the t"-minors of ! all vanish on some
surface, hence the same happens for the ¢’ + t""-minors of X,,. We conclude that
Brn = B, + Bl = kN + B2, A similar argument yields v, = v, + 7 = rkNj + 7.
This proves (1).
By Rmk 2.5 and using part (1) of this lemma we have:

Ry, = sup{n|l,#(n) + L#(n) =al, + ! =8, + B =+, ++4"}.

Now, since the invariants s, fn, 7n» do not decrease with n (Prop. 2.4), we have

Ry, = 'inf{RNé,RNé:}. The same argument shows that Ty, = inf{Tpr, Tar }-

On the other hand Th: < sup L) because N, is not a free sheaf, then we get
L]

Ry < Ty <supLy <inf Ly —1< Ry < Ty which completes the proof.

Corollary 4.4. If M is split the function x (= xn,) is given by:

(n) x'(n), ifn <infL}
) =
X h(n), ifn > infL!
with
o 0, if n <inf LY
h(n) = § inf(ay,B, + 1,9, +2), if n = inf L!
inf(al) — 2,8 —1,v;,) —inf(all_; —2,80_, —1,47_,), ifn>infL}.

Proof. The definition of function x# (Def. 2.6) and the previous lemma give:

Yns ifn <Tw,
x7(n) = { inf(a!, —2,8! —1,4"), if Ta, <n <inf LY
rkNg +inf(eg; — 2,6, — 1,7,), if n>inf Lf.



46 A. BURAGGINA

For n > sup L}, x 7 (n) = rkNj — 2, hence we have:

#(n) x #(n), if n <inf LY
X'\n;= !
X #(n) +2+inf(a — 2,81 —1,4"), if n>inf L].

Finally, using the formula x(n) = x¥(n) — x¥(n — 1), we obtain:

x'(n), if n < inf LY
x(n) = { inf(eq, B, + 1,7, +2), if n = inf LY

n

inf(a;; - 27ﬂ1,-: - 1,7:7{) - inf(a'ri—l - 2:181,':—1 - 1771,':—1)7 ifn > inf LIZI

Proposition 4.5. If M is split, given a general morphism ¢ : P, c» O(—n)X™)

No = N} ® N there is an exact commutative diagram: |

0 0 0
¢’ ¢ ¥
0 —— N} — NjON] —— Ny wmrmy )
0 — F' —> F —_— g — 0
0 0 0

where the first two rows split, F and F' are minimal elements in Refl(N,) and

RefI(N{) respectively and G is a torsion sheaf supported on a surface.

Proof. Cor. 4.4 implies @, ., O(—n)X™ =@, ., O(-n)X (™ g B ,cz O(—n)H™),

hence we have:
0 —— @O(—n)X'(™ — @O(—n)X(M s O(—n)HM — 0
j
&
0 — N} — NjON] —— Ny —— 0

where the two rows split. Since x'(n) = 0 for n > sup L} > inf L} and N has no
sections of degree less than inf LY, the morphism ¢oj factors through N and we get

¢ D,ez O(—n)X' (™) — A which makes a commutative square on the left. Let F
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and F' be the quotients of ¢ and ¢’ respectively. It is clear that they are minimal
elements in RefI(Ny) and RefI(N}) respectively. Let 9 : @, oz O(—n)¥ ™) — A
be the morphism induced by ¢. Again from Corollary 4.4 we obtain:

B (n) = {0 ' if n < inf LY
" inf(ell, B + 1,9 +2), if n>inf L}

thus h#(n) < o for any n and Lemma 4.6 below guarantees that 4 is injective.
Let G be its quotient. We have rkG = rkNy' — 3, cp h(n) =7kNY =3 7 x(n) +
Y ez X"(n) = rkN{ — rkN§ — kN + 2 4+ rkN§ — 2 = 0. That is, G is a torsion
sheaf and its support is the surface defined by det(¢)). We complete the diagram

by the snake lemma.

Lemma 4.6. Let £ be a reflexive sheaf and P = D ez O(—n)P(™ a free sheaf
such that p*(n) < an(f,') for any n. Then a general morphlsm P — £ is injective.

Proof. We go by 1nduct10n on rkP. If rkP = 1, ie. P = O(—a) for some a € Z,
the hypothesis says that a,(£) > 1 for n > a. In particular, £ has non-zero
sections of degree a, which proves the assertion. Suppose now rkP > 1. Let
a := sup{n|p(n) # 0}, and write P = P' @ (9(—@). Thus kP’ = 7kP — 1 and by
the induction hypothesis a general morphism u : P' — £ is injective. Let F be the

quotient of u:

0P -E—-F—0.

By [MD-P2, II, Cor. 6.5] we have a,(F) = au(£) — rkP’, then a.(F) > p*(a) —
rkP’' =rkP —rkP +1 = 1. That is, a general section of degree a of F is non-zero,

which concludes the proof.
Now we come to the non-splitness result for vector bundles.

Theorem 4.7. Let F be a rank two vector bundle on P®. Then the intermediate
cohomology modules of F are not split.

Proof. By Serre duality H2F = H!F(—c;F — 4), hence we only need to show that
H!F is non-split. Suppose there exists a rank two vector bundle F with H!F split
and let ReflI(N{ @ N{') be its biliaison class. Since F is a minimal element in this

class (Cor. 3.10) we can assume that there is a diagram as in Prop. 4.5. Then we
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can also write the following exact commutative diagram:

o 0

N

0 —— BO(—n)X™ — PO(—n)X™ — O(—n)H™ — o

II ¢
0 —— ®O(—n)X" — MeoN!' —— FaoN' ——0

0 0

The last column shows that 7' must be a vector bundle as well, then by Cor. 3.13 we
have: @, ¢z (’)(—n)X(") =L F)oL"§(c1F) and @nGZ @(«n)xl(") = L%(e1F')
( here L, L are the free sheaves associated with Lj and Lj respectively and *
denotes the dual sheaf). On the other hand, from the diagram we get: ¢;F =
aF' +aNy + 3, ez nh(n) where i NJ' + 3, ., nh(n) is the degree of the surface
which supports G (see Prop. 4.5). Since G cannot be the zero-sheaf, this degree is a
positive integer, hence ¢;F > ¢;F'. This yields a contradiction because L'§(ciF')
is a direct summand of L'§(c1F) @ L"§(c1F) but sup L'§(c1 F') > sup L'} (1 F) =
sup(L'§(c1F) & L"§(e1 F)).

In particular, Thm. 4.7 implies that the H} and H2? modules of a rank two vector
bundle are connected. As an immediate corollary we get a vanishing criterion,

namely:

Corollary 4.8. Let F be a rank two vector bundle on P® and suppose F is not a
free sheaf. If H'F(t) = 0 for some t > min{n|H!F(n) # 0}, with 1 < i < 2, then
HiF(k) =0 for any k > t.

Another direct consequence of Thm. 4.7 concerns subcanonical curves. We recall
that the Rao module of a curve C in P? is defined by M(C) := H;Zc, where Ic
is the ideal sheaf of the curve. By curve we mean a locally Cohen-Macaulay closed
subscheme of pure dimension one. A curve is subcanonical if its dualizing sheaf w¢

is isomorphic to a twist of the structural sheaf O¢, i.e. if there exists ac € Z such

that we = Oc(ac).
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Corollary 4.9. The Rao module of a subcanonical curve in P*® is non-split.

Proof. This is just the translation of Prop. 2.1 via the Serre correspondence (Thm.
0.10). Indeed, to any subcanonical curve C we can associate a rank two vector

bundle £ on P2 in such a way that there is an exact sequence
0—-0—E&->Ic(c1€) — 0.
It foﬂows that H!Zc is isomorphic to H1E up to shift.
Clearly the analogue of Cor. 4.8 for curves holds, namely:

Corollary 4.10. Let C be a subcanonical curve in P3 which is not arithmetically
Cohen-Macaulay. Suppose H*Zc(t) = 0 for some t > min{n|H'Ic(n) # 0}, then
H'Zc(k) =0 for any k > t.






Chapter 5

Minimal sheaves

versus minimal curves

Any finite length graded S-module M determines a biliaison class of locally
Cohen-Macaulay, equidimensional curves in P?® (Thm. 0.4) — which we denote
Curv(Ny) — and a biliaison class of rank two reflexive sheaves on P? (Thm. 1.10)
— which is denoted RefI(Ny) (as usual, NVj is the sheaf associated with the second
syzygies module of M). By the Hartshorne-Serre correspondence (Thm. 0.10) if
to a sheaf F € Refl(Ny) we can associate avcurve C, then C € Curv(N,;) and
viceversa, up to twist of the sheaf. Since the correspondence between sheaves and
curves in the two classes is not bijective, some natural questions arise. For example,

is there any relationship between minimal sheaves and minimal curves?

If we perform an elementary biliaison on a sheaf F is this equivalent in some
sense to a basic double linkage on a corresponding curve?

The first remark to do here is that we have to take into account shifts of the
module M. Indeed in a class Refl(Np) we do not allow any shift while in a class
of -c;irves there is a leftmost possible shift of the module M, which is reached by
minimal curves, and any other shift to the right is possible. This means that we
may need to twist our sheaves, i.e. to “shift” the whole class RefI(Ny).

For what concerns minimal elements it seems then reasonable to ask a more
precise question:

Let F € Refl(Np) be a minimal sheaf and ¢ its minimal twist which has non-

zero sections (Def. 3.14). Let C be a curve defined as the zero locus of a section
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s € H°F(to). Is C minimal in its biliaison class ?
We are going to show that in general the answer is negative.
By [MD-P1] we know that minimal curves in Curv(N,) are characterized by

having an N-type resolution of the form

0 ) O — My Tofh)
nezZ

where g, is the function defined by:

# an(MN), for n < Ty,
G (n) =19 .
inf(an(No) — 1,Bn(N)), forn > T,
(for details we refer to [MD-P1].
Recall that if F is a minimal element in RefI(Ny), then its minimal twist which
has non-zero sections is equal to Ry, + 1 (Lemma 3.16).

Proposition 5.1. Let F be a minimal element in Refl(Ny) and let C be a curve
which is the zero locus of a section s € H°F(Ry;, +1). Then C is minimal in its
biliaison class if and only if:

gn,(n), forn # Ra, +1
gn,(n) —1, forn = R, +1.

xo(m) = §

Proof. The curve C is given by an exact sequence 0 — O(—Ry, — 1) — F —
Ic(ciF + Ra,, +1) — 0. Combining with the Ny-resolution of F we get:

0— @ O(—n) (™ @ O(—Rp, — 1) = Ny — Te(er F + Ry, +1) — 0.
neZ

Then, by [MD-P1, IV, 4.1], C is minimal if and only if the free sheaf on the left is
isomorphic to @, 5 O(—n)™o (™).

This condition is quite restrictive and it is not hard to find an example where it

is not satisfied. We first prove a lemmas:

Lemma 5.2. Let M be a finite length graded S-module with minimal graded free
resolution -+~ Ly % Ly =% Lo — M — 0. Let N, be the sheafified kernel of o,
and let 2Ny = Ny @ Ny. Then we have:

(1) an(ZJ\fo) = 2an(No);
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(2) Br(2MN0) = 2B (No);
(3) 7n(2N0) = 2711('/\[0)7'
(4) Ran, = R, and Ton, = T,

Proof. Let oy : Ly — HENO — 0 be the minimal surjection induced by 5. Then
oy @0y : Ly® Ly — 2H? Ny — 0 is also minimal and we can compute the invariants
Qy, Br and 7y, associated with 20 from the matrix ¥, @ ¥, of the homomorphism
O2<n @ 02<n : La<n ® La<n — Ly @ Ly (see [MD-P2, V, 1, b]). Then a, is
simply the rank of the matrix, (3, is the maximal rank of minors which do not
vanish on a same surface and 4, is the maximal rank of minors which do not
vanish on a same curve. Clearly we have o, (2M;) = 2a,(Np). Since a p-minor of
Y, ® X, is the product of a {-minor and an 7-minor of ¥,, with ¢t +r = p, it is
not hard to see that B,(2Ny) > 28,(No) and v,(2Mo) > 27,(MNy) (see also [MD-
P1, 1V, 6.17] or Lemma 4.3). On the other hand to obtain a 28,(Nj) + 1-minor
we need either ¢ > B,(Ny) + 1 or r > B,(Np) + 1 hence they all have a common
factor and we conclude that B,(2MNo) = 28,(Np). A similar argument shows that
Yn(2No) = 29,(No). Finally, by Remark 2.5 it is easy to get Ran;, = Ru;, and
Toniy, =T,

Example 5.3. Consider a so called Koszul module M = S/(f1, f2, f3, f1+) where
f1, f2, f3, fa is a regular sequence of homogeneous elements of degrees n; = deg(f;)
with 1 < ny < ny < n3g < ny. Suppose moreover ny < nz. The beginning of a
minimal free resolution of M is:
4
D 5(=ni —ny) 5 P S(=ni) = S = 8/(f1, o, f, f) = 0.
i<j i=1
As usual, let Ny = Im(o) and N, be the associated sheaf. Let us consider the
sheaf £ = 2Nj. The invariants for Ay have been computed by Martin-Deschamps
and -Perrin in [MD-P2,V, 2, a], in particular, we have Ry, = n; + nz — 1 and
Tn, =n1 +ng — 1. Then by Lemma 5.2 we obtain the invariants for £ and we are
able to compute the functions x¢ and g¢. Comparing them we find out that:
ge(n), forn# Ry, +1and n# Th, +1
xe(n) =1 ge(n)—2, forn=Rpn,+1
ge(n)+1, forn="Tn, +1.
If F is a minimal element in RefI(£) a section of F(Rar, +1) gives a curve C whose
Rao module is shifted n3 — n, places to the right with respect to the leftmost shift.
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The situation seems more delicate when RefI(N;) contains vector bundles. Since
vector bundles are automatically minimal elements in their classes, the problem can

be formulated as follows:

Problem A: Let £ be a rank two vector bundle on P? and let #; be its minimal
twist which has non-zero sections. If C is a curve defined by s € H°£(#;), then is

C minimal in its biliaison class?
This is equivalent to the following:

Problem B: If a biliaison class contains subcanonical curves, then are the minimal

curves in the class subcanonical?

Let us show the equivalence. Suppose that the answer to Problem A is positive.
Let X be a subcanonical curve. Then we can associate with X a vector bundle €.
Let Y be a curve obtained from a section of £(%p), then Y belong to the biliaison
class of X, it is minimal and subcanonical. By Lemma 5.4 below it then follows that
any minimal curve in the class is subcanonical. Viceversa, suppose that Problem
B has positive answer. Let £ be a rank two vector bundle and let X be a curve
defined by 0 — O — &(ty) — Ix(c1€ + 2¢9) — 0. If X is minimal there is nothing
to prove. Assume X is not minimal and let Y be a minimal curve in the class of X,
then H!Zy = H}Ix(h) for some integer h > 0. By assumption Y is subcanonical.
Let 7 be a vector bundle such that 0 - O — F — Iy (c; F) — 0. It follows that
H!F = H!E(ey F—c1E+h—1g). Thatis, F and E(erF—c1E+h—1p) are in the same
biliaison class. In particular, since they are both minimal elements, they have the
same cohomology and Chern classes. Hence hOS(clf—c15+h—to) =h%F > 0 and
aF =c€&+2(ciF—c1€+h—1). Since h > 0, this yields ;. F — 1€ +h —to < 1o,

which contradicts minimality of #g.

Lemma 5.4. Ifin a biliaison class there is a minimal curve which is subcanonical,

then any other minimal curve in the class is subcanonical of the same level.

Proof. Suppose X is a minimal curve. Let ---Ly 2% L; 2% Lo — Mx — 0 be
a minimal free resolution of its Rao module and let as usual Ny = ker(L; — Ly).
Set also Ax = H?Ox. The construction of the N-type resolution for the saturated
ideal Ix (see [LR] or [MD-P1, II, 4.1]) gives an exact commutative diagram of
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S-modules:
0 0
-0 S — S/Ix —— 0
0—— F —Li®L —— S®Ly —— Ax — 0

0O —— Noy®L —— L L —— Ly — Mx —— 0

where 0 — Fy - L1 ®L — S® Ly — Ax — 01s a minimal free resolution of Ax and
0— Fy, - Ng®L — Ix — 0is by definition the N-type resolution of I'x. Since X is
a minimal curve, by [MD-P1,1V, 4.4] we have L = 0 and F, & @), o5 S(—n)@o(™),
It follows that the minimal free resolution of Ax, for any minimal curve X with

Rao module Mx, has the form:

0— @ S(—n)‘“’o(") —- L1 —-S®Ly— Ax — 0.
neZ

Now, by [Se, 2.5], X is subcanonical of level a if and only if there are isomorphisms:

Ll = LI(—‘]: - d)

P S(—n)¥o(") = §(—4—a) & Lj(—4 — a).
ncZ

Since this only depends on Mx, we are done.

As far as we know Problems A and B are still unsolved.
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