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PREFACE

The topic of this thesis is the study of radiation hydrodynamics in spherical accretion
flows around compact objects and its relevance in connection with the modelling of
compact X-ray sources. In the last decades, the accretion of matter onto black holes
and neutron stars has been recognized as the mechanism at the origin of the high energy
emission from Galactic compact sources and Active Galactic Nuclei. Since then, the
study of the accretion process in a variety of different environments has became an issue
of fundamental importance in theoretical astrophysics. In particular, the analysis of the
interaction between matter and radiation is certainly a key ingredient in formulating
physically realistic models which can account for the observational properties of X-
ray sources. Moreover, in the vicinity of compact objects relativistic effects, such as
gravitational redshift, aberration and advection of photons, become important and a
general relativistic approach to the study of radiative transfer in differentially moving
media is definitely required. In this thesis, this study has been carried out by means
of a general relativistic treatment of the radiative transfer equation, which exploits the
expansion of the specific intensity of the radiation field into moments (Thorne 1981).
In order to determine self-consistently the dynamics of the accretion flow, which is
influenced by the interaction with the radiation field, the moment equations are coupled
to the conservation equations for the matter fluid and then solved numerically using
two original codes suitably designed for the integration of systems of partial differential
equations of elliptic (stationary) and hyperbolic (time—-dependent) type, respectively. A
brief presentation of this general relativistic moment formalism is sketched in the first
part of Chapter 1. The assumption of spherical symmetry is certainly not adequate to
describe in full realism much of the phenomenology observed in compact X-ray sources
and it is not my intention to go deeply into a detailed treatment and modelling of these

objects. However, there are some classes of compact X-ray sources, such as bright Low
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Mass X-ray Binaries accreting near the Eddington limit and old isolated neutron stars
accreting from the interstellar medium, for which radiative transfer in one dimensional
flows might give at least a qualitative indication of the expected emission properties.
In the second part of Chapter 1, I will briefly review, the observational data and the
present understanding of these sources and, in connection with this, I will discuss the
possible relevance of the radiative transfer calculations in spherical accretion flows which

is carried out in the following chapters.

The original results which I have obtained from the investigation of radiation hydro-
dynamics are contained in the following three chapters. In Chapter 2 the effects of bulk
acceleration of photons in radially inflowing/outflowing, optically thick atmospheres will
be investigated. In fact, in the scattering process, in addition to thermal motion alsc
ordered bulk motion of the electrons can affect the photon distribution in phase—space.
To study this effect, we solve analytically the moment equations in two different ways:
the first method follows closely the classical approach by Payne & Blandford (1981),
whereas the second is presented here for the first time. The spectrum shows both a shift
in frequency and the formation of a typical high/low energy tail for inﬂowing /outflowing
atmospheres. This effect, called dynamical comptonization, is produced entirely by the
bulk motion of the gas and become relevant if the quantity Tv /¢, where 7 is the electron
scattering optical depth and v is the flow velocity, is of order unity. In the second half
of Chapter 2, we will investigate the role of bulk acceleration of photons in connection
with the formation of the spectrum in neutron stars accreting near the Eddington limit.
The flow dynamics and the frequency—dependent transfer problem are self-consistently
solved for a cold, scattering atmosphere, including General Relativity. The relevance of
these results in connection with the observed spectral properties of bright Low Mass X-

ray Binaries with a high energy tail, and of Cygnus X-2 in particular, is also discussed.

The second topic of relativistic radiative transfer on which I concentrated is the study
of the thermal and radiative structure of static, geometrically thin atmospheres around

neutron stars accreting well below the Eddington limit. The leading motivation for this
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study stems from the determination of X-ray spectral properties of old isolated neutron
stars accreting from the interstellar medium, which may show up as very weak, soft X~
ray sources, as originally suggested by Ostriker, Rees & Silk (1970). This investigation
has been carried out on the wake of the seminal paper by Zel’dovich & Shakura (1969)
and the results which we have obtained are presented in Chapter §. We have proved
that two distinct types of solutions, characterized by very different temperatures, exist
for a certain range of accretion rates: in the low temperature models (T' ~ 10° K), the
opacity is dominated by free—free and matter and radiation are in local thermodynamical
equilibrium, whereas the newly discovered “hot” solutions have temperatures ~ 10°
K and are dominated by self-comptonization of bremsstrahlung photons. We have
found also that at very low accretion rates there is a unique solution, the “cold” one
discovered by Zel’dovich & Shakura and, since we are interested in investigating the
spectral prbperties of neutron stars accreting at very low rates, we focussed on the
determination of the spectral properties of these solutions. As it will be dis;;ussed
in Chapter 3, the spectra emitted by cold, thermalized atmospheres are signif‘;;antly
distorted with respect to a black body at the star’s effective temperature, showing both
a broad maximum and a high energy tail which become progressively more pronounced
as the accretion rate decreases. In the remainder of Chapter 3, on the basis of the
actual form of the spectrum emitted by the atmospheres of neutron stars accreting at
low rates and in the hypothesis that a relic magnetic field can channel the accretion flow
onto the polar caps, a detailed investigation of the observability of old isolated neutron
stars accreting from the interstellar medium has been presented. Old neutron stars
might contribute up to 10% to the detected soft X-ray background, although in this
case about 10 sources per deg~2 should be observable at low sensitivity limits (~ 1073

counts s7*) by ROSAT.

Compact X-ray sources are usually variable on a wide range of time-scales and a
lot of information about the physical processes acting in these sources can be inferred

by a detailed observational and theoretical investigation of their variability. Then, on
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the basis of the increasing interest toward the time-dependent analyses of the X-ray
signal from compact X-ray sources, we have started a careful study of time—-dependent
radiative transfer in spherical symmetry, which is culminated with the construction of a
lagrangian time-dependent numerical code for the solutions of radiation hydrodynamics
equations. At present, this code has been applied to the investigation of the stability
properties of spherical accretion onto black holes, presented in Chapter 4. We decided
to make the first application of this code to black hole accretion since it is quite an in-
teresting problem per sé and, although it has been extensively studied starting from the
early seventies, no definite proof of the stability of its solutions had yet been given. As
shown by many authors, the flow properties are fixed once the accretion rate is specified,
so that stationary solutions can be completely characterized by their position in the ac-
cretion rate-luminosity plane. It was already known since the middle eighties that, on
this plane, two disconnected branches of solutions exist for a certain range of accretion
rates, a high and a low luminosity branch, characterized by very different thermal and
radiative processes. We have shown that the low luminosity branch is completely stable,
whereas part of the high luminosity branch is unstable to thermal perturbations and
tends to develop a hydrodynamical shock at about 103-10* gravitational radii.

Finally, I take the opportunity to list all the relevant papers from which all or part
of the results presented in this thesis have been taken: for Chapter 1 Nobili, Turolla &
Zampieri (1993), Zampieri, Miller & Turolla (1995); for Chapter 2 Zampieri, Turolla &
Treves (1993); for Chapter 3 Turolla et al. (1994), Zampieri et al. (1995), Zane et al.
(1995); for Chapter 4 Zampieri, Miller & Turolla (1995).
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CHAPTER 1
INTRODUCTION

This thesis contains a thorough investigation of the trans-
fer of radiation in spherically symmetric accretion flows onto
compact objects within a variety of different assumptions. Al-
though they rely on such a common framework, each of the
following three chapters will deal with a different and specific
aspect of relativistic radiation hydrodynamics, namely the ef-
fects of dynamical comptonization in spherical flows, the study
of the thermal structure and the formation of the spectrum
in atmospheres of neutron stars accreting at low rates and
the stability properties of time—dependent, spherical accretion
onto black holes. All but the last of these topics have been
carefully investigated having in mind their possible applica-
tion to certain classes of astrophysical sources in which they
could be of importance. In this respect, as it will be discussed
in sections 1.2 and 1.3, the results contained in the second
and third chapters could be relevant in connection with the
observed phenomenology of bright Low Mass X-ray Binaries
accreting near the Eddington limit and with the detectability
issue of Old isolated Neutron Stars accreting from the inter-
stellar medium.

The first part of this introductory chapter (section 1.1)
contains a brief review of the derivation of the relativistic ra-
diation hydrodynamics equations in spherical symmetry which
will be extensively applied in the remainder of this thesis to
the study of the transfer of radiation in accretion flows onto
compact objects. In sections 1.2 and 1.3, we will briefly sketch
the present observational status and theoretical understanding
of bright Low Mass X-ray Binaries (LMXBs) and Old isolated
Neutron Stars (ONSs). We argue that the spectral effects of
dynamical comptonization produced by bulk motion in a ra-
dial inflow can be of importance in explaining the high energy
tails of the spectra emitted by LMXBs and that radiative
transfer calculations in spherical symmetry can be assumed
valid in describing the emission properties of ONSs, provided
that the effects of the reduced emitting area are taken into
account.
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1.1 RELATIVISTIC RADIATION HYDRODYNAMICS
IN SPHERICAL SYMMETRY

Radiative transfer in differentially-moving media has been extensively investigated in
the past and a large body of literature is available on this subject (see Mihalas & Mihalas
1984 and references therein). Despite the large efforts, however, works dealing with the
transfer of radiation through media moving at relativistic speeds are comparatively
few. The special relativistic transfer equation was firstly derived by Thomas (1930)
and, including Thomson scattering, by Simon (1963) and Castor (1972); a thorough
derivation can be found in the monograph by Mihalas & Mihalas. Stationary solutions
in spherical symmetry were discussed by Mihalas (1980), Mihalas, Winkler & Norman
(1984) and Hauschildt & Wehrse (1991). Radiative transfer in curved spacetimes was
investigated by Lindquist (1966), Anderson & Spiegel (1972), Schmid-Burgk (1978),
Thorne (1981), Schinder (1988), Schinder & Bludman (1989), Anile & Romano (1992)
and Nobili, Turolla & Zampieri (1993). All the solutions of the relativistic transfer
problem found up to now were obtained using a number of different approaches: in
some cases the transfer equation is directly solved for the specific intensity I of the
radiation field, as in the Tangent Ray Method (Mihalas, Kunasz & Hummer 1975;
Mihalas 1980; Schinder & Bludman 1989) and in the DOME method (Hauschildt &
Wehrse 1991); in certain circumstancbes it is assumed that the normalized intensity (i.e.
the specific intensity divided by the radiation energy density) is slowly varying along
the characteristics of the radiative transfer equation and then flux—limited expressions
for the radjative flux and stress tensor can be obtained, as in the Flux~limited Diffusion
Theory (Levermore & Pomraning 1981; Melia & Zylstra 1991; Anile & Romano 1992);
finally, in other situations the angular dependence is removed by expanding I into
moments and the moment equations are then integrated (Thorne 1981; Nobili, Turolla
& FZa.mpieri 1993). Each method has both advantages and disadvantages which depend

on the specific problem considered.

In the following we will concentrate on the covariant moment formalism introduced
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by Thorne (1981), which can be profitably used to get, at least, an approximate solution
for I by introducing ,“a priori”, reasonable expressions for the Eddington factors which
relate moments of order higher than the truncation order to any of the lower order
moments.

We will denote with u® the 4—velocity of the reference frame comoving with the gas
flow. In this frame the energy and momentum conservation equations can be obtained by
projecting the 4—divergence of the stress—energy tensor of the matter plus radiation fluid
along u* and orthogonal to it, giving (we follow the conventions that Greek indices run
from 0 to 3 and covariant derivatives are denoted with a semi—colon; we use a spacelike

signature (—,+,+,+))

wo (757 +T1‘§ﬁ)‘ﬁ ~0, | (1.1)
hoe (57 + T5°) =0, (1.2)

where hyq = gya + UylUq is the projection tensor orthogonal to the 4—velocity and
T3l = (e +p)uv” +pg”, (1.3)

1
TP = Mu®u? + oMeuP) 4 MmoP 4 thaﬂ (1.4)

are the matter and radiation stress—energy tensors, respectively; e and p are the energy
density and pressure of the gas. This system of equations must be supplemented with

the rest—mass conservation equation

(pu®),0 =0, (1.5)

where p is the rest-mass density of the matter measured in the comoving frame. In
equation (1.4) the stress—energy tensor of the radiation field is expressed in terms of the

Projected Symmetric Trace-Free (PSTF) moments (Thorne 1981)

Trace—Free
peroe = 1 ( / In“l...n“kd9> : (1.6)
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where I = I(2®,p®) is the specific intensity of the radiation field and n® is the unit
vector which gives the direction of propagation of a photon as seen in the rest frame
of the fiducial observer u*. Integration is over solid angle in the projected space and
“Trace-Free” denotes the consequence of the usual tensor operation. By definition, the
PSTF moments are symmetric tensors which lie entirely in the projected space and
represent the relativistic analogue of the classical moments of the specific intensity (see

e.g. Chandrasekhar 1960). In terms of PSTF moments, I can be written as

[o,9]

e+
I = CZ —4—7;‘1{:'—)—“./\/1 1 "nal...nak . (17)
k=0
The specific intensity obeys the general relativistic equation of radiative transfer
dN
2— = 1.8

where N = (¢?/2h)(I/v?) is the photon occupation number (v = cu®p,/k is the photon
frequency measured in the comoving frame), [ is a non—affine parameter along the photon
trajectory in phase—space and S is a source function which describes the effects of the
interaction between matter and radiation, its actual form depending on the radiative
processes which are considered. The moments of the source function, S®*®*  can be
defined in analogy with equation (1.6). If there is no interaction, S = 0 and N is
conserved along each photon trajectory. Moment equations can be obtained taking the
PSTF moments (i.e. projecting orthogonal to u®, performing the symmetrization and
removing the trace) of the relativistic transfer equation (1.8) and this gives rise to an
infinite hierarchy of differential equations.

In spherical symmetry we can define a local orthonormal frame comoving with the
flow as {ey,es,e;,e5}, with e; = u, e; being in the radial direction and e;, e; being
orthogonal to each other and to e;. Since in this case I and S are invariant under
rotations of the photon direction n® about e, it is possible to show that all of the
components of each PSTF moment of rank & can be evaluated in the comoving frame

as functions of the radial one
El(2k+1)1

= T...T =9 -
Wi=M "E+ 1)

[1PHaa, (1.9)
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kl(2k+1) b

S = Si‘...i‘ =9
: TR

/V35Pk(p,)dy., (1.10)

where P¥(u) is the Legendre polynomial of order k, u = n" and & denotes the e4
component. In particular

M =W, (1.11)
M = Wye (1.12)

M = W, (e?e.

3™
!

| =
@

> Q
@

W
|

B[
®

R
)

™
\J

(1.13)

In the following we will denote with wy and s; the frequency integrated radial moments

of the specific intensity and the source function, respectively:
(e o] .
wi(r) :/ Wi(r,v)dv, (1.14)
. 0

sp(r) = /0‘00 Sk(r,v)dv. (1.15)

It is easy to see that wq is the radiation energy density and cw; is the radial component
of tlhe radiative flux.

Moments equations form a recursive system of differential equations which is not
closed, since at any given order k.., it contains moments up to order kpqz+1 in the
frequency-integrated case (and ko242 in the frequency-dependent case). This means
that, in order to use these equations for calculations, it is necessary to make some
“ad hoc” assumption to close the system (see e.g. Fu 1987, Cernohorsky & Bludman
1994 and references therein) and this is usually done on physical grounds by introducing

suitable closure functions which relate Wy .., /wk,..,., (and W3 where necessary)

mazt2
to moments of lower order. Since the behaviour of all of the moments is known in the
asymptotic limits (when the interaction between matter and radiation is either very
strong or completely absent), it is sufficient to prescribe a reasonable smooth function
that connects these two limits (see e.g. Nobili, Turolla & Zampieri 1991). Clearly

uncertainties in this will introduce some error into the calculation of the lower order

moments, whose magnitude will be dependent on the closure relation but turns out to
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be no larger than ~ 15 % for the range of parameter values typical for real astrophysical
flows (Turolla & Nobili 1988).

In the following chapters of this thesis, this formalism will be applied to the solution
of radiative transfer in both stationary and time-dependent flows. Since the equations
and the assumptions are different in the two cases, we will discuss them separately.
Finally, we note that in the remainder of this thesis we will adopt the notation and

conventions introduced in this section.

1.1.1 Stationary regime
Now, we assume that the spacetime is stationary and can be described by the spher-
ically symmetric, Schwarzschild line-element

-1
ds? = — (1 — 19—) 2di? + (1 — -’31) dr? + r2(d6? + sin? 0 dg?) (1.16)
T

r

where ry = 2GM/c? is the gravitational radius.

Using the line-element (1.16), the equations of radiation hydrodynamics (1.1), (1.2)
and (1.5) in the stationary regime (i.e. putting the derivatives at fixed = equal to zero)
can be cast in the form (see Nobili, Turolla & Zampieri 1991)

TTg50

e — (P + e)E— + —— ] =0 Energy equation, (1.17)
p o yv/c
!
(P+ e)y— +p T Euler equation, (1.18)
Y Y
G - :
+—=4+2=0 Continuity equation, (1.19)

(vy)  »p

where a prime denotes derivative with respect to Inz (z = r/r; is the adimensional

Eulerian radial coordinate), y = /(1 —1/z)/(1 — v2/c?) and v is the velocity of the
gas with respect to the fixed Eulerian frame. Here v is assumed positive for outward
motion. In the following we will consider also situations in which v will be positive
for inward motion (accretion flows); in this case, all the equations presented in this

section are valid provided that v is turned in —v and the accretion rate M in —M. It
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is possible to show that equations (1.17)—(1.19) can be written in the alternative form
(Nobili, Turolla & Zampieri 1991)

Tl

p TT450
(v —1)= =0 1.20
v w2\ (yv) v2 1 Ty v
vl _ ol - —1)s0 — —51| =0 1.21
(cz c2> (yv) c? + 2zy?2 (P +e)yv/c [(7 oo csl] ’ (1.21)
M= 47r:c2r§pyv , _ (1.22)

where T is the gas temperature, v = 1 + b/B is the local adiabatic exponent, v? =
OP/0plentropy = @ + b?/B is the adiabatic sound speed squared and a, b and B are

ancillary thermodynamic quantities defined by

s T (o o (o® ,__T (6P
- P+4+e \OT p’ “TPre op )’ ~ P+e\OT p'

(1.23)

In the following only the first two moment equations (k = 0, 1) are retained and we
assume that this suffices to ensure a satisfactory treatment of radiative transfer at all
optical depths, the main reason for such a choice being just to make numerical solution
an affordable task. The maximal fractional error induced by taking into account only
the first two frequency integrated moments wy and w; was estimated by Turolla &
Nobili (1988) to be about 15%, so that our approximation seems to be not too drastic.
Upon truncation of the ﬁoment expansion to Ekme, = 1, the two frequency—dependent

moment equations governing the radiation field can be directly derived from equation

(5.10a) of Thorne (1981); they read

W1 alIlW;[ cl]_ny 61nW1 v Bano
{alnm +2+d]m<1_ )} c[

Wo Olnv Olnz
dIn(yv) 101ln Wy dln(yv) W, 0lnWs|  Sozry
+ ( dlnz T 2> (1 T3 0lnr /) \ dnz 1 Wy Olnv | yW, ' (1.24)

3 9ms < dinz \' 3 ol W, \ Olnz " dlnz Olnv

10lnW, dlny <1 _1_(9111Wo> W, (BanZ 5 dlnyaanz)
Wo
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v [Ealnwl 1w (7d1n(y'v) +8> 1w (3dln(y'v) +2) Oln W,

¢ | W, 8lnz 5 Wy dinz CBW, dinz Olnv
Ws [ dln(yv) Oln W, _ SizR, _
W ( dlnz Ry A G Olnv oyW, (1.25)

Here the W} have the dimensions of erg cm™ Hz ™%, whereas the ¢S} are in units of erg
cm ™ s7! Hz™1. The presence of both a gravitational field and a non—vanishing velocity
gradient introduces a frequency-mizing of moments related to the v—derivatives of W
appearing in equation (1.24) and of W in equation (1.25); as a consequence, in the
relativistic transfer problem it is not possible, in general, to combine the two moment
equations into a single second order partial differential equation for the radiation en-
ergy density, as in the newtonian case. For the sake of concreteness, we shall write in
the following the explicit expressions for the source moments when the dominant ra-
diative processes are bremsstrahlung and electron scattering. This particular case can
be thought, in fact, to be well representative of quite general astrophysical situations
in which magnetic fields play no substantial role. We assume that Kirchhoff’s law is
valid (emitters and absorbers in thermodynamic equilibrium throughout the fluid) and
that non—conservative scattering can be treated in the Fokker—Planck approximation by
means of Kompaneets equation (Rybicki and Lightman 1979). Kompaneets equation
holds only for a thermal, non—relativistic electron distribution and if the photon energy
is small compared to the electron rest mass. Recent calculations (Loeb, McKee and
Lahaw 1991) show, however, that Kompaneets equation can be safely used for electron
temperatures up to ~ 2 x 10° K (see also Prasad et al. 1988; Shestakov, Kershaw &
Prasad 1988 for a general treatment of the Compton Fokker—Planck equation). Under
these assumptions the source moments can be written as (see equations (6.6) and (6.14)

of Thorne 1981)

Sozry . kespzrg ET [6%1n W, + Oln W, E _ 3) Oln Wg+
W oy mec? | O(lnv)? Olnv kT Olnv
hv AWy Oln W, 1
w - —k .
5T T KT ( Glnv 1)} MW A ffW")} > (126)
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Sizry kespzrg ( kﬁ) W,
= — 1+ -} —=. 1.27
yWo Yy kes )] Wo ( )

In equations (1.26) and (1.27) k., is the electron scattering opacity and ey and kyy are
the frequency—dependent free-free emissivity and opacity; using the Kirchhoff law the
free—free emissivity can be re—expressed as €55 = ks B, (T'), where B,(T') is the Planck
function.

The first two frequency integrated moment equations can be obtained by integrating
in frequency equations (1.24) and (1.25) and requiring that Wi — 0 as v — oo; they
read

, , ] 1 4 1
w4 2+ Py ((vy) _1) + 2w, (H y_) i, ((vy) +2) _ 5037 () g
c Y c vy

C vY Yy

wy + %w'l + %w; +ws (3 + %) + 2%1111 ((—?)— + 1) + %%wo = Slzrg , . (1.29)
where a prime denotes again derivative with respect to Inz. In equations (1.28) and
(1.29) wy and w; have the dimensions of energy density and cso and cs; are in units of
erg cm~3 s~!. Neglecting the non—linear term which accounts for induced emission in
the Kompaneets equation, the frequency integrated source moments can be written

4K

Mec?

so = p(€ — Kowp) + kespwo (T -T,), (1.30)

81 = —pR1W1, (131)

Here € is the frequency integrated free—free emissivity, kg and k; are the absorption and
flux mean opacities and T, is the radiation temperature, defined by

1 fooo hvWo(r,v) dv
T 4K fooo Wo(r,v)dv

(1.32)
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1.1.2 Time—dependent regime

We next introduce the spherically symmetric, comoving—frame line element
ds® = —a?cdt? + b2 dp? + r? (d6? + sin® 0dp?) (1.33)

where ¢ and p are the Lagrangian time and the comoving radial coordinate (taken to
be the rest mass contained within a comoving spherical shell), 7 is the Eulerian radial
coordinate and a and b are two functions of ¢ and p which need to be computed.

In order to calculate self-consistently the metric tensor g®f which describes the
geometry of the space-time, we need to solve the Einstein Field Equations for the

system

o o — af of
R - ~g*PR= = (T3 + T3P) . (1.34)

The complete system of radiation hydrodynamic equations (1.1), (1.2) and (1.5)
along with the Einstein Field Equations (1.34) and the line element (1.33) can be cast
in the form (Rezzolla & Miller 1994; Zampieri, Miller & Turolla 1995)

et — hps + acsp =0  Energy equation, (1.35)
r b 4 1
ut + ac [3 (p,,, +h Sl) + :fr <P+ §w° +wz> +
P (1.36)
GM .
+——=| =0  Euler equation,
c?r
2 . br 4
(pr 2)t + ac (u# AmGhrws /e ) =0  Continuity equation, (1.37)
pr Ty
be (1.38)
47r2p
(ah)y  hp,— ey + bsy
=0 1.39
= > ; (1.39)
4mrir i
M# = 2 £ (e + Wo + —fwl) 3 (140)
where
u=t (1.41)
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is the radial component of the fluid 4-velocity measured in the fixed Eulerian frame,
I =(1+u®-— 2GM/c®r)/? = 7,/b is the general relativistic analogue of the Lorentz
factor, M represents the effective gravitational mass (for black hole + gas + radiation)
contained within radius » and k = (e+p)/p is the specific enthalpy. Here, the subscripts
¢ and p denote partial derivatives with respect to the corresponding variables and sy and
s, are the frequency-integrated radial moments of the source function S. In spherical
symmetry and with the line-element (1.33), the first two frequency integrated moment

equations can be written (Thorne 1981, equation [5.10c])

1 4/3_8/3 2 _b_t A . _
TR (wob T ) + _—abr (wia®r?), + el acsg =0, (1.42)
(w1b2 2) + ——-—(wga‘l)“ 4+ — (wgar Ju —acsy =0. (1.43)

b22 33b b3

In equations (1.42) and (1.43) wo and w; have the dimensions of energy density and cso

and cs; are in units of erg cm ™ s .

1.2 BRIGHT LOW MASS X-RAY BINARIES

Already in 1965 Zel’dovich & Guseynov pointed out that X-rays emitted from single—
line spectroscopic binaries would provide strong evidence for the presence of either a
black hole or a meutron star. With the increasing precision of positional measurement
of the X-ray telescopes, the positive identification of the optical counterparts and the
periodicity inferred both by the line shift of the optical star and the periodic modulation
of the X-ray flux, gave support to this idea and, at present, the theoretical models
which best describe the observed phenomenology of X-ray binary sources are based on
the transfer of mass through a stellar wind or an accretion disc from the companion
component to the compact star. As can be seen in figure 1.1, where the position of
the 339 sources detected by UHURU (The Fourth UHURU Catalogue, Forman et al.
1978), is shown in galactic coordinates, it is evident the existence of a population of
relatively bright objects which are concentrated along the Galactic plane and whose

optical counterparts (when identified) reside at distances ranging from 500 pc to 10 Kpc,
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Figure 1.1 — The X-ray sources in Galactic coordinates reported
in The Fourth UHURU Catalogue, Forman et al. (1978). The
size of the symbols is proportional to the logarithm of the peak
source intensity.

confirming their Galactic origin. Within this population of Galactic X-ray sources, a
further distinction can be made on the basis of the spectral properties of the optical
counterparts (Bradt & McClintock 1983): one group of sources is associated with O-B
supergiants (High Mass X-ray Binaries, HMXBs), which are much more massive and
younger than the stars of later spectral type associated with the second group of sources

(Low Mass X-ray Binaries, LMXBs).
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Figure 1.2 ~ The color—color diagram of an atoll (left; EXOSAT
ME data on 4U 1735-44) and a Z (right; EXOSAT ME data on

SOFT COLOUR

Cyg X-2) source (taken from van der Klis 1991).

19

The bright LMXBs, which have very high luminosities in the range 10°7-1038 erg

s~', show very interesting observational properties as far as the emitted spectrum and

the X-ray variability are concerned (for a review of the properties of X—ray binaries

see e.g. White, Nagase & Parmar 1993). The spectrum of LMXBs is rather complex

and is characterized by a decay in the flux above 6-10 keV, which contrasts with the

substantially harder emission of X-ray pulsators; in some sources, however, a steep

high energy tail (above 20 keV) is observed (see e.g. Maurer et al. 1982, Matt et al.

1990 and references therein). A good fit to the observed spectra is often obtained with

the superposition of two components, like a a multitemperature black body disk plus

a boundary layer black body (Mitsuda et al. 1984, 1989), or a boundary layer black
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body plus an unsaturated comptonized disc component with the form of a power law
(White, Peacock & Taylor 1985; White et al. 1986; White, Stella & Parmar 1988), or a
comptonized spectrum (Ponman, Foster & Ross 1990; Lamb 1989, 1991). Often several
different models fit the data (Vacca et al. 1987).

Bright LMXBs usually show variations in X-ray intensity and spectra on time-
scales from several hours to days. These variations are commonly visualized in two
types of diagrams, the hardness—intensity diagram and the color—color diagram. The
“hardness ratios”, also called “colors”, are defined as the ratio of the count rates in
two different spectral bands (after subtracting the background) and are a traditional
way to characterize X-ray spectra which has been used since the early days in X-ray
astronomy. In the color—color diagram, LMXBs are found in a rather narrow band of
hardness ratios (Schulz, Hasinger & Trumper 1989). Although a positive correlation
is often observed between the spectral hardness and intensity and in the color—color
diagrams, inverse correlations ore multi-valued dependencies are also well documented
(see figure 1.2). Along with the variations of the X-ray intensity on time-scales of
hours to days, the flux of bright LMXBs undergo rapid variability on much shorter
time—scales. The main diagnostic to study this high frequency variability is through the
power spectrum (square modulus of the Fourier transform) of the X-ray signal. Studying
the variation of the power spectrum with X-ray intensity in the EXOSAT data of the
source GX 5-1, van der Klis et al. (1985) found that the source exhibited intensity-
dependent, quasi-periodic oscillations between ~ 20-40 Hz, appearing as a peak in the
power spectrum. After this important discovery, quasi periodic oscillations (QPOs) were
soon found in other bright LMXBs, such as Sco X~1 (Middleditch & Priedhorsky 1986)
and Cyg X-2 (Hasinger et al. 1986). Since these sources were known at that time to be
characterized by multivalued hardness-intensity and color—color diagrams, it was then
quickly realized that the complicated patterns described on these diagrams could be
related to their QPOs properties. This investigations culminated in the identification of

two distinct “morphological classes” of bright LMXBs, the Z and atoll sources (Hasinger
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1987; Hasinger & van der Klis 1989), whose names derive from the form of their typical

tracks on the color—color diagrams.

The six objects which appear to belong to the class of Z sources show typical three—
branched Z patterns on the hardness—intensity and color—color diagrams (see again figure
1.2), whose form depends on any individual source and, for each source, on the spectral
bands used for the definitions of the colors. The three branches have been historically
called horizontal branch (HB), normal branch (NB) and flaring branch (FB). As X-
ray intensity varies on time-scales of hours to days, the source appears to move in a
continuous but not periodic way along the three branches, never jumping from one to
the other. This suggests that a single parameter can be used to establish a one-to-one
correspondence between the position along the Z and the source state. Usually it is
assumed that this parameter can be identified with the accretion rate (van der Klis
1989, 1991). The appearance of a peak in the poWer spectrum during the motion of the
source along the color—color diagram marks the presence of horizontai branch QPOs
(HB QPOs) and normal/flaring branch QPOs (NB/FB QPOs) with different centroid
frequencies. Along with QP Os, various noise component are often detected in the X—ray

signal of Z sources, which can differ along each branch.

The typical tracks of atoll sources in the color—color diagrams, shown in figure 1.2,
exhibit an elongated, upwardly curved branch, called banana branch (BN), and two or
more island zones, where the source do not move very much with time. The motion
along the pattern is again regular without jumps, although not periodic. No QPOs are

present in the power spectrum, which is dominated by noise components.

If the accretion of matter from the companion star is the source of energy of LMXBs,
any plausible physical scenario must explain the spectral properties and the very com-
plex patterns described by these sources on the hardness—intensity and color—color di-
agrams, along with the characteristic presence of quasi periodic oscillations of variable
frequencies in relation with the position of the source on these diagrams. According to

the model of Alpar & Shaham (1985) (see also Lamb et al. 1985), HB QPOs would
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originate from the interaction of the neutron star magnetosphere with a Keplerian disc.
This interaction would cause a modulation of the accretion rate at the beat frequency
between the disc and the neutron star spin frequencies. NB/FB QPOs seem to be pro-
duced by a completely different mechanism, as suggested by Fortner, Lamb & Miller
(1989) (see also Lamb 1989, 1991; Miller & Park 1995). Since Z sources have luminosi-
ties and accretion rates near the Eddington limit, in the inner part of the accretion disc
the effects of radiation pressure should become important (see e.g. Shakura & Sunyaev
1973); the disc itself may be driven in a puffed—up state, originating an approximately
radial accretion flow component. In these conditions, the flow can become overstable
and start to oscillate at a frequency comparable with that observed for NB QPOs. A
tentative interpretation of the Z/atoll classification (Hasinger & van der Klis 1989) sug-
gest that 7 sources have higher values of both the accretion rate and the neutron star
magnetic field than those of atoll sources. The higher magnetic field explain why HB
QPOs, which are likely to be a magnetospheric phenomenon, occur only in Z sources
and the higher accretion rate can explain why NB/FB QPOs have only been observed
in Z sources. The suppression of HB QPOs in this high accretion rate state would be
caused by the “engulfing” of the magnetosphere by the inflated accretion disc. Such a
qualitative picture is in accordance with the unified model of X-ray spectra and QPOs
of bright LMXBs proposed by Lamb and collaborators (Fortner, Lamb & Miller 1989;
Lamb 1989, 1991; Miller & Lamb 1992; Miller & Park 1995). According to this model,
a weakly magnetized neutron star accretes gas simultaneously from a Keplerian disc fed
by the companion star and a spherical corona produced by radiation pressure in the
inner part of the disc. When the luminosity is comparatively low (~ 0.5Lg4q4), unsatu-
rated comptonization of soft photons in the hot (10-30 keV) central corona around the
neutron star surface could produce the characteristic power law with high energy cutoff
component observed in the HB of Z sources; the soft (~ 1 keV) black body component
would be produced by saturated comptonization of photons from the inner disc and/or

the neutron star magnetosphere and would increase with the increase of M along the
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HB. According to the model by Alpar & Shaham (1985), the HB QPOs are caused
by the interaction of the small magnetosphere with the inner disc. At luminosities
2> 0.9L 544, the radiation pressure in the disc drives some plasma into a more extended
inner disk corona, which surrounds the hot central corona and cools to temperatures ~ 1
keV. Radiation drag causes the inner disc corona to lose its angular momentum and fall
approximately radially toward the neutron star. The angular momentum conservation
limits the radial mass flux to at most ~ 30% of the total mass flux. Then, the spectrum
is modified as it passes through the cool, optically thick inner disc corona because of
direct Compton effect. The hard part of the spectrum is progressively degradated as the
optical depth increases and this would cause the characteristic decrease of the soft and
hard colors observed along the NB of LMXBs. NB QPOs are attributed to overstable
oscillations of the radial flow (Fortner, Lamb & Miller 1989; Miller & Lamb 1992; Miller
& Park 1995). The spectral changes and FB QPOs along the ﬂari~ng branch may be
caused by complicated physical phenomena, such as photohydrodynamics modes which

grow in amplitude as luminosity becomes 2 0.9Lg4q4.

Then, the observed phenomenology of Z sources appears to indicate that, at a cer-
tain stage, the accretion pattern can be regarded as approximately spherical because of
the effects of radiation pressure. In addition, if these sources have low magnetic fields
(B £ 10° G), as it seems to be indicated by the absence in the spectrum of cyclotron
absorption and/or emission lines, the radiative opacities are presumably not very af-
fected and radiative transfer calculations neglecting the presence of magnetic fields can
provide reasonable results. In these conditions, we argue that the spectral effects of
dynamical comptonization produced by the bulk motion of a radial inflow of gas can be
of importance in explaining the high energy tails of the spectra emitted by Z sources
accreting near the Eddington limit. As it will be shown in Chapter 2, bulk motion
comptonization is expected to become important in regions where the electron scatter-
ing optical depth 7 is larger than unity and the infall velocity of the accretion flow v is

such that T7v/c ~ 1; owing to the large value of the accretion rate, both conditions turn
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out to be satisfied for Z sources in the normal branch and then we expect dynamical

comptonization to produce observable effects on their spectra.

1.3 OLD ISOLATED NEUTRON STARS

The discovery in 1967 of the first radio pulsar (Hewish et al. 1968) gave the first
observational proof of the existence of neutron stars. Born from the supernova explosion
which ends the life of massive stars, neutron stars are estimated to be as many as ~ 10°
in our Galaxy, their actual number depending on the evolution of the supernova rate
explosion during the past history of the Galaxy. If certain conditions are satisfied,
at a certain stage of their life isolated neutron stars can undergo accretion from the
surrounding interstellar gas and may show up as weak, soft X-ray sources, as firstly
suggested by Ostriker, Rees & Silk (1970). For a star moving supersonically with velocity
v relative to the interstellar gas, the amount of mass which is accreted per unit time is

given by (Novikov & Thorne 1973)

M= mripy ~ 6 x 10° | 2( e ) v _3gs"1 (1.44)
S Mg 1cm™3/ \40 Km s~! ’ '

where 7, = 2GM*/1)2 is the gravitational capture radius (M, is the mass of the neutron
star). As shown by equation (1.44), the supply of fuel to make lone neutron stars
shining in the sky depends on the actual geography of the interstellar medium and on
their velocity and position relative to it (these topics will be discussed in more detail in
Chapter 3). However, in the first stages after their formation, isolated neutron stars are
probably strongly magnetized and can emit intense electromagnetic dipole radiation in
the radio band at the expense of their rotational energy. This low—freq{lency photons
will produce a non-negligible radiation pressure on the surrounding medium which will
inhibit any possible accretion of interstellar material until the neutron star slows down
to periods of few seconds; for typical neutron star parameters and assuming a magnetic

dipole model for the emission, this would require a characteristic time (Treves, Colpi &
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Lipunov 1993)

- /(M N\N'( B \°( B
t~ 10° T * — f
510 (106 cm> (M@> (1012 G> (1012 G> 8
n -1/2 v
(o) ()

where 7, is the NS radius, B; is the magnetic field at the surface of the NS at birth and

(1.45)

By is the residual field strength. Then, for typical values of the density of the interstellar
medium and of the velocity of the neutron star (see Chapter 3), ¢ turns out to be close
to the age of the Galaxy. However, if a decay of the magnetic field occurs, most of the
isolated neutron stars are sufficiently old in order to start accretion from the interstellar
medium. Once the flow penetrates the accretion radius, it will proceed unaffected until
the Alfven radius is reached, where the magnetic pressure becomes equal to the ram
pressure of the gas:

2..6 . 12/7 N —-5/7
m:—-}i—r*—-.—ngleo”( T ) M. x
G M 106 cm Mg

B &/ n —2/7 v 6/
% (1012 G) (1 cm"3> (40 Km s—1> o

At this point, matter is channeled along the magnetic field lines and accretion can be

(1.46)

stopped if the centrifugal acceleration exerted on the matter flowing along the field
lines is greater than the gravitational acceleration, i.e. when the angular velocity of
rotation of the neutron star is larger than the Keplerian angular velocity at r4. So, if

the accretion rate decreases below the minimum value

’ 6 / 1L\ "%/ B 2, p\ /3
min = 1 18 T . Tl T -t .
M 0 (106 cm> (M@> (1012 G) (1 s> 8% (1.47)

where P is the neutron star spin period, accretion cannot proceed further on. Comparing

equations (1.44) and (1.47), for the typical values of n and v expected for Old isolated
Neutron Stars (ONSs) accreting from the interstellar medium, accretion turns out to
be possible for a relic field B ~ 10° G and periods of the order of a few seconds.
Observations of pulsars (Lyne, Manchester & Taylor 1985; Bhattacharya et al. 1992)
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seem to suggest a decay of the magnetic field of neutron stars over a time ~ 107 yr or
longer. However, evidence for a long lived component (10°-10*° G), comes from the
observations of old accreting neutron stars in binaries and millisecond pulsars (Kulkarni
1986). Then, for isolated ONSs, fields of 10°, 10° or 10'2 G can be equally plausible.
If the magnetic field is large, the accreted material may be temporarily stopped and,
under these circumstances, the accretion process may be cyclic with recurrence time of
108 s (Treves, Colpi & Lipunov 1993). For this reason in the following we will consider
a magnetic field B = 10° G, which ensures that accretion takes place and is essentially
steady.

Since M is very small, the accreting plasma is likely to be channeled along the
magnetic field lines onto the polar caps (for B ~ 10° G r. < r4). Then, the energy of
the infalling matter will be released mainly when the accretion flow impinges the neutron
star surface near the magnetic poles. The details of the flow braking are rather different
according to the mechanisms which are effective in stopping the flow. If binary Coulomb
collisions between the infalling ions and the atmospheric electrons dominate, as it is
expected at very low values of M, the accretion flow can be stopped at several Thomson
depths and the resulting spectrum can be thermalized at a temperature approximately
equal to the star effective temperature (see Zel’dovich & Shakura 1969; see also Alme
& Wilson 1973)

Loy = (—L N Loo (L *1/4( ;- )_3/4 M
eff drr? fio B 103 108 cm Mg

11 —3/4
X ( r > Y eV,
1 cm™3 40 Kms™*

where L = GM,M /7, and f, is the fraction of the surface area which undergoes accre-

(1.48)

tion. Then, ONSs emit typically in the ultraviolet and soft X-ray bands. On the other
hand, although its actual occurrence has not yet been proved at low accretion rates,
the appearance of plasma instabilities can lead to the formation of a shock above the
neutron star surface and, at the shock front, a large fraction of the kinetic energy of

the incoming matter can be thermalized at very high temperatures. In this case the
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emission of copious hard X-ray or y-ray fluxes are expected (Shapiro & Salpeter 1975).
Finally, cooling curves (Nomoto & Tsuruta 1987) show that the surface temperature
of a NS will drop below 20 eV in a characteristic time ~ 10% yr and then the emission
from the cooling of the interior can be certainly neglected after as much as 10° yr.

All of the previous investigations have been limited to computing the spectrum at
relatively high values of the accretion rate, which are certainly not relevant for ONSs
accreting from the interstellar medium. A thorough investigation of the emitted spec-
trum turns out to be certainly a key ingredient in order to correctly address the issue of
detecting these sources, since the choice of the energy bands where to look for and the
absorption of the interstellar medium are strongly related to the ONSs emission proper-
ties and in particular to the actual shape of their spectrum. In addition, if the magnetic
field is sufficiently low (B < 10° G) its effects on the radiative opacities are presumably
not very important and radiative transfer calculations without considering the presence
of magnetic fields can provide reasonable results. For these reasons, we decided to carry
out a detailed investigation of the transfer of radiation in the atmosphere of a neu-
tron star accreting at low rates assuming that the stopping of the incoming flow is due
mainly to binary Coulomb collisions. Although our radiative transfer calculations has
been performed in spherically symmetric, we argue that they can be assumed still valid
in presence of low magnetic fields and polar cap accretion, provided that the effects of
the reduced emitting area are taken into account. This will clearly produce a hardening
of the emitted spectrum since all of the accretion energy is released in a comparatively
smaller area. The results of this study and their application to the detectability of ONSs

will be presented in Chapter 3.






CHAPTER 2

DYNAMICAL COMPTONIZATION
IN SPHERICAL FLOWS

In the second section of this chapter we will re~investigate
the effects of bulk acceleration of photons in radially inflowing
atmospheres within the framework of the moment equations.
We will solve analytically these equations in two different
ways: the first method (separation of variables) follows closely
the classical approach by Payne & Blandford (1981), whereas
the second, which exploits the technique of the Fourier trans-
forms, will be presented for the first time here. We will re-
cover all of the main properties of dynamical comptonization
in spherical flows, namely the drift of the centroid toward high
frequencies and the formation of a high energy tail with a well
defined spectral index. This method will allow us to work
out also an analytical solution for radial spherical outflows,
whose properties are somewhat reversed with respect to those
of inflows: shift toward low frequencies and formation of a
low frequency, power law tail. To get more insight, we present
also a detailed study of dynamical comptonization from the
microphysical point of view and, starting from these results,
we discuss the limit of validity of the present approach.

In the second part of this chapter, we will investigate the
role of bulk acceleration of photons in connection with the
formation of the spectrum in neutron stars accreting near the
Eddington limit. As it will be analyzed in section 2.3, the
physical conditions encountered in the inner part of the ac-
cretion flow seem to be favourable in order for bulk heating
of photons to be of importance. A thorough numerical in-
vestigation of the deformation of the spectrum induced by
dynamical comptonization shows that, at near Eddington lu-
minosities, a power law, high energy tail with spectral index
~ 3 (count rate) can form above 10 keV. The flow dynam-
ics and the transfer of radiation are self-consistently solved
for a spherically symmetric, “cold” scattering flow, including
General Relativity. The possible relevance of these numerical
results in connection with the observed spectral properties of

7 sources, and Cygnus X-2 in particular, is discussed.
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2.1 INTRODUCTION

In the scattering against an electron at rest a photon will lose energy according
to the Compton formula. However, if the electron is moving, it can transfer part of
its kinetic energy to the photon; such an effect is called inverse Compton. In certain
situations, the effects of comptonization of photons by electrons in thermal motion in
a static medium can be of primary importance in modifying the spectral distribution
of the radiation field. In general, the transfer of photons through a relativistic electron
gas is governed by the Boltzmann equation in which the interaction term contains
the Klein-Nishina cross section averaged over a relativistic Maxwellian distribution
(Pomraning 1973; Kershaw, Prasad & Beason 1986; Kershaw 1987). Because of its
complicated structure, a number of authors have attempted to model this equation by
a diffusion equation (Fokker—Planck approximation). In particular, Kompaneets (1957)
first derived a diffusion equation valid for non-relativistic electrons and small photon
energies. Katz (1976) extended the Kompaneets work to the study of photon diffusion
through a finite homogeneous isothermal plasma (see also Sunyaev & Titarchuk 1980)
and found that, for moderate optical thickness, the emergent spectrum shows a power
law, high energy tail, whose index depends on the electron temperature and the optical
depth. Finally, Prasad et al. (1988) and Shestakov, Kershaw & Prasad (1988) obtained
an analytic expression for the diffusion coefficient of the Fokker—Planck equation which
describes correctly comptonization for arbitrary values of the photon energy and electron

temperature.

All of the previous studies concentrated on the effects of thermal comptonization of
photons by electrons in thermal motion in a static medium. However, to the same extent,
also bulk ordered motion of the electrons could affect the photon distribution in phase—
space. Already in 1978, Rees (1978) and Begelman (1978) showed that, if radiation is
propagating through a medium which is accreting onto a black hole and in which the
optical depth is sufﬁciently large, at a certain radius the inward flow velocity can become

equal to the outward diffusion velocity of the photons and radiation is effectively trapped
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into the accreting gas. However, they did nét consider the extent and consequences of
dynamics on the spectrum of photons. The first systematic investigation of thg effects
induced by the bulk motion of the gas on the radiation field (dynamical comptonization)
has been presented by Blandford & Payne (1981a,b) and Payne & Blandford (1981).
They derived the transfer (Boltzmann) equation for a gas moving at non-relativistic
velocities in flat space—time. In the static limit they re-obtain the Kompaneets equation
for a finite medium. Particularizing their equation to an accreting spherical inflow and
neglecting thermal comptonization, they were able to evaluate quantitatively the effects
of photon trapping solving the equation by separation of variables. If photons are
emitted near the trapping radius, they undergo a lot of scatterings and most of them
are dragged inward, resulting in a severe decrease of the outward flux. Photons cannot
escape easily but, if they do, they gain significant amount of energy from collisions
with the inflowing electrons. Then, because of the work done by the radial inflow on
the escaping photons, the emergent spectrum shows both a drift to high frequencies
and the formation of a high energy tail whose index depends on the velocity profile. W
We note that this effect is similar to Fermi acceleration of cosmic rays and has been
independently discussed within the framework of the acceleration of charged particles,
photons and neutrinos also by other authors (see e.g. Schneider & Bogdan 1989 and
references therein). However, if the thermal velocity of the flow cannot be neglected
in comparison with that of the ordered motion, the combined effects of bulk heating
and ordinary thermal comptonization need to be considered. This problem was fully
investigated by Colpi (1988), which presented an analytical solution of the transfer
equation for an isothermal spherical inflow in which velocity is proportional to free—fall
and induced scattering and free-free absorption are neglected. The effects of the bulk
acceleration of photons modify in two ways the thermal spectrum: first through an
overall decrease of the emitted flux, second washing out the Wien peak and producing
again a power law whose index depends on the ratio between the Compton and the infall

time—scales. Finally, the effects of dynamical comptonization in accretion onto neutron
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stars were investigated analytically by Mastichiadis & Kylafis (1992), which found that,
in the case of near critical accretion, the emergent spectrum is much flatter than for

black hole accretion.

One of the most promising astrophysical environments in which bulk heating of
photons might have a significant role is the inner part of the spherical accretion flow
onto neutron stars radiating near the Eddington limit. In this case, the drag exerted on
the accretion flow by the radiation pressure is so effective that the gas decelerates and
a settling regime is established above the neutron star surface, as found by Maraschi,
Reina & Treves (1978). Stationary spherical near—critical accretion onto neutron stars
has been studied also by Miller (1990) and, including General Relativity, by Park &
Miller (1991), who obtained very similar results. The density near the star surface
becomes sufficiently high that radiation interacts strongly with the inflowing gas and,
even in the absence of emission processes, the emergent spectrum can be modified by

dynamical comptonization due to bulk motion.

2.2 DYNAMICAL COMPTONIZATION

In this section we will present the solution of the first two frequency—dependent
moment equations for a spherical inflow/outflow of matter in which the only effective
interaction between gas and radiation is due to Thomson scattering and the optical
depth is everywhere greater than one. This problem was fully investigated by Payne and
Blandford (1981) for a converging fluid flow. They solved the transfer equation within
the same assumptions and found that, provided certain conditions are satisfied, the flow
can strongly modify the initial spectral distribution of photons through comptonization
due to bulk gas motion: the emerging spectrum shows a distinctive power law, high
energy tail with a spectral index dependent on the velocity gradient. In the following we
will reconsider this problem within the framework of moment equations. We will obtain
an analytical solution for the radiative flux and will show that dynamical comptonization

can be effective in modifying the spectral shape of the radiation field also in optically
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thick spherical outflows.
Let’s consider for the moment a spherical inflow in which the velocity profile is

assumed to be a power law (we neglect thermal motion and assume v positive for

B
v = vin <L> , (2.1)
Tin

where 7;,, is the inner radius and v;, = v(74n). In order to make the analytical treatment

inward motion):

possible, in analogy with Payne & Blandford, we switch off gravity setting

1
YTV ler

dlny  (v/¢)® dlnv
dlnr  1—(v/e)?dlnr’

so that, to first order in v/c, y =1 and dlny/dlnr = 0. With these assumptions, from

the continuity equation (equation (1.22)) it follows immediately that the density can be

.\ —(248)
p = pin (——> B (2.2) .

written as

Tin

Using equation (2.2) the electron scattering optical depth between r and co turns out

to be:

_[7 _ Eespr —a48)
T—/r kesPdT—1+ﬁO<T o (23)

which implies that 8 > —1 for the optical depth to decrease with increasing radius.
Now we assume that the diffusion approximation holds (7 >> 1). In this case it is
known that W1 /Wy = O[1/7], Wa/Wo = Ol(v/c+ 1/7)/7] and W3/Wo = O[(v/c +
1/7)/7?] (see Thorne, Flammang & Zytkow 1981). Retaining all terms of order 1,
1/7 and v/c in the moment equations (1.24) and (1.25) and putting So = 0 and 51 =
—kespW1 (see equations (1.26) and (1.27) where only Thomson scattering is considered),

we obtain
an _’li BWQ
Olnt c¢Olnt

1 6w,
—2W; + (2 +[3)% (Wo -3 ami) =0, (2.4)

oWy
Olnt

_3(1+B)rW, =0, (2.5)
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where k.;pr has been rewritten as (1+ )7 (see equation (2.3)) and we have introduced

the new variable

t=3(1+ ﬂ)T% o rt, (2.6)
9 ___ 8
Olnr  flnt’

Dividing equation (2.4) by v/c, taking the derivative with respect to In ¢ and eliminating
OWy/0lInt, °Wy/8Int? and 8°W,/01Intdlnv by means of equation (2.5), we obtain,
after some manipulation, a single second order partial differential equation for the flux

Wy

82W1 oW, 28 2+8 oW,
— ) — = .
r-1-9R e (1-L)w 2RI,
which, introducing the new variable u; = Wit~ 2, can be recast in the form
32 5‘11,1 2+ 06 0Ou;
—_ ) — — —_——_— T = . 2.
o TR G —n - gt =0 (2:8)

Following Payne & Blandford, the solution of equation (2.8) can be found by separation
of variables: writing u; = ¢(¢)v™7, equation (2.8) becomes a confluent hypergeometric
equation for ¢ which can be solved once suitable regularity conditions are imposed
as t — 0 and ¢ — co. Asking that the photon number flux becomes a constant for
t — 0 and that the adiabatic compression of photons is recovered for ¢t —» oo, the
regular solution turns out to be the superposition of eigenfunctions corresponding to
the discrete spectrum of eigenvalues (p,;n = 0,...,00) of the confluent hypergeometric
equation (see Abramowitz & Stegun 1970). Then, Wy can be written as a superposition
of modes, each one of the form v with p, = 3(n+1)/(2+0), as found by Payne and
Blandford:
)
Wi =12 ApLn(t)y~3(n+1)/(2+8) (2.9)

n=0

where L,(t) are the Laguerre polynomials of order n and A,, are constants tc be fixed
by the boundary condition. For 8 = —1/2 and n = 0, Po = 2, so the spectrum at high
enough frequencies is expected to be a power law with spectral index 2 in the free—fall

case.
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In the following we will consider an alternative approach to the solution of equa-
tion (2.8) which exploits the technique of the Fourier transform and allows to select
automatically the well-behaved solutions. This method will provide us an easier way
of handling the regularity conditions which will be particularly useful in the case of
spherical outflows. We will start again from equation (2.8) which is a Fokker—Planck

equation and can be written in the form

& (tuy) O Ouy

512 “E[(t—l_ﬂ)ul] = 8z’ (2'10)

where z = 3lnv/(2 + B). Fourier transforming equation (2.10) with respect to ¢, we
obtain
0w, 0Oiy

k(1 — k) g = - = —(1+ )ikia (2.11)

where 4, is the Fourier transform of u; and is given by

1 “+oco . B
’Ill(k,z) = —i; / C_Ikt’u,l(t,v)dt. (212) .

—o0

This method has the advantage of reducing the order of the partial differential equation
which becomes of first order in the k—space and can be solved using standard techniques
once a boundary condition is imposed. A monochromatic flux of photons of frequency

vg is put into the flow at a given iq:

ui(t,v) = A(w)6(t — to) v=ug, (2.13)
which can be Fourier transformed to give

y(k, z) = A(z)e " Fto z=2z=1. (2.14)

The solution of equation (2.11) with the boundary condition (2.14) is

’thq e? %0

ik(e*=2 —1)+1]

iy = A(zo) [ik (e — 1) +1] P exp {— (2.15)
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Applying the inverse transformation to equation (2.15), we finally get the solution of

equation (2.10) (see Appendix A, equation (A5))

—BI2 /4, (2+8)/2 1/27 -
w=a)S— (2) e (-2 na ST i)

where ¢ = (vo/v)3/(?**F) and I,1 4 is the modified Bessel function of order 2+ 3. Taking

the limit £ — 0 in equation (2.16) and recalling that

2+8
Ip(9) ~ _I-‘E’;IIF) (%) Y —0, (2.17)

where I'(3 4 ) is the I'-function, the radiative flux turns out to be

_ 2 _ _Alw) 3 9,240 to
Wy=t ul*I‘(B—t—ﬁ)(l—f)“‘ﬂt tg eXP(_l—ﬁ) t—0. (2.18)

At high frequencies (v > vy, £ < 1) we recover the asymptotic dependence on frequency
given by equation (2.9)

LN 308
) t—0, v>u. (2.19)

Wy x &= (L—;
We emphasize that the main advantage of this method is that the Fourier transform
automatically selects the well-behaved regular solutions which are Lebesgue integrable
and then does not require any regularity condition to be imposed. This fact is partic-
ularly advantageous for spherical outflows for which the handling of such conditions is
not so straightforward. For this reason here we will repeat the calculation for spherical
outflows using the Fourier transform method and will not consider further on the ap-
proach which exploits the separation of variables. Taking now v positive for outward
motion, assuming that diffusion holds and combining together the first two moment
equations, we get

O*W,

3
ot?

-0, (2.20)

+(8—-1+1)

oW, 2 2+ 6 oW,
ot _<1+T>W1+ 3 Olnv

which, introducing the new variable u; = Wit~ ? and after some manipulation, can be

recast in the form
62 (t’lLl)
ot*

Ous
0z’

bl +1+p)m] = (2.21)



Dynamical Comptonization 37
where z = —3Inv/(2 + B). In strict analogy to what has been done previously, the
solution of equation (2.21) is obtained imposing the boundary condition (2.13), Fourier
transforming and applying the inverse transformation, which yields

P (2+8)/2 1/2
Uy = A(V[))fg 1 (%) €Xp (— é; i_ §0> Iz+ﬁ [2%] . (222)

Taking again the limit ¢ — 0 and considering frequencies v < vp (§ > 1), we get for

the radiative flux

o Alw) ¢ 248 (_ to )
W=t ul—r(3+ﬂ)(§—1)3+,@t2t° exp Pl

3
o £ = (3—> t—0, v<ug.
Vo

(2.23)

irrespectively to 8. Then, dynamical comptonization in spherical outflows tends to
modify the input spectral shape producing a power law, low energy tail whose index is
independent of the shape of the velocity profile.

The results presented in this section have been derived imposing as boundary con-
dition a monochromatic photon input. However, since equations (2.10) and (2.21) are
linear, for more complex input spectra, the solution can be obtained as a superposition
over vp of equation (2.16) or equation (2.22), the weighting function A(vo) representing

the input spectral shape:
W, = t2/ uy (¢, v;vo)dvy - (2.24)
0

The fact that equation (2.7) (equation (2.20)) can be re-written as a Fokker—Planck
equation says that dynamical comptonization can be described essentially as a diffusion
process in frequency, which has three basic features: convection, diffusion and the pro-
duction of a power law spectrum. This process causes not only the distortion but also
an overall shift in frequency of the input spectral shape. As can be seen from figures
9.1 and 2.2, where the emergent (¢ — 0) flux is shown for different injection radii (to),

the peak of the spectrum shifts toward high frequencies for spherical inflows and toward
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Figure 2.1 - Emergent (¢ — 0) spectrum for a radial converging flow
(u1 = t72W71; see equation (2.18)). Here B = —1/2 (free—fall) and
to = 1/3 (dash—dotted line), 1 (dashed line), 3 (continuous line).

low frequencies for outflows. In addition, the distortion and the drift of the spectrum
is clearly present only if £y ~ 1, that is to say only if radiation passes through a region
where it is effectively trapped into the flow. It is interesting to note that, if 2+ 3 = 0,
the diffusion term in equation (2.7) (equation (2.20)) disappears and any input spec-
trum will be unaffected. As shown by equation (2.2), this is possible only for a constant
density flow: in fact, although photons are convected (transported outward) by the gas,
in this case no compression (decompression) is exerted by the inflowing (outflowing)
medium on the radiation field and no energy is transferred to it through compressional

work.

2.2.1 Microphysics of Dynamical Comptonization

More insight on the results presented in the previous section can be obtained consid-
ering bulk motion comptonization from the microphysical point of view. If electrons are

moving with velocity v, the photon energy ¢, as seen by the observer at rest, will change
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Figure 2.2 — Emergent (¢ — 0) spectrum for a radial outflow (u; =
t2W1; see equation (2.23)). Here 3 = 1 and ty = 1/3 (dash-dotted

line), 1 (dashed line), 3 (continuous line).
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in the scattering process. The Doppler shift transformations for the photon energy from

the observer frame K to the electron rest frame K " are

€ :e*y(
(1——3cos(91) ,
c

!

€1 = a7

v

C

1———cos€>

while the inverse transformations from K "to K are

b

€= e"y (1—l—3c059’) ,
c

1 v 1]
€1 = €7 (1 + p cos()1> ,

(2.27)

(2.28)

where €; is the photon energy after the scattering, # (61) is the angle between the

incident (outgoing) photon and the electron velocity and a prime denotes quantities

evaluated in the electron rest frame. If, in this frame, the scattering is conservative and

isotropic, we have

(2.29)
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<61>Q'1 =€gv=c¢€7. (2.30)
Equation (2.30) has been calculated from equation (2.28) averaging over all outgoing

photons directions Q'l in the electron rest frame. Now, in the observer frame K the

mean energy change per scattering is given by (see also Rybicki and Lightman 1979)
(Avs)Q:1 = <€1)9'1 —e=[y*(1 - (v/c)cos ) — 1] . (2.31)

If the radiation field is isotropic in K, equation (2.31) yields the well-known result for

the mean energy change

(A€)) g = 72(v/c)1e. (2.52)
In the diffusion limit, however, photons are not isotropic and, in the electron rest frame,
the radiation field has an angular distribution

!
cos @

FE)=1+ —. (2.33)

Transforming to the observer frame (equation (2.27)) and averaging upon 8, one gets

for the mean energy change the expression (Nobili, Turolla & Zampieri 1993)

(Ao =~ = =L (234)

which is positive or negative according to the sign of ». Since photons produced in a
region where 7 > 1 undergo N, scatterings before escaping to infinity, the total energy
variation is ~ N3<(Ae>)ﬂflg'/(e)nr. The number of scatterings for photons diffusing
through a moving medium is ~ T'/¢, where ¢, ~ L/(cT) is the scattering time-scale,
T ~ L/vgq is the total travel time, L is the characteristic dimension of the region and

vg = ¢/7 + v is the diffusion velocity as measured in the observer frame. N, is given

then by
r 2.35
Ny~ —no .
1+ (v/e)r (2.35)
and the total fractional energy change turns out to be
(A& g
/ala (v/c)r (2.36)

ey 14 (v/er



Dynamical Comptonization 41

When v is negative, as in accretion flows, N; diverges when (v/c)r — —1, just implying
that in our approximate treatment photons produced at or below the trapping radius
never reach infinity being advected inward by the matter flow. For (v/c)r = —1, the
total fractional energy gain is typically of order unity. On the contrary no trapping
radius exists for outgoing flows, v > 0, and the total energy variation, which is now
negative, approaches —1 for large values of (v/c)r.

This simple argument shows that the energy of the emergent photons may be sub-
stantially different from their initial energy if 7 is large enough even if v/c < 1. Dy-
namics is therefore expected to have non negligible effects on the observed radiation
spectrum whenever photons are produced in a region where |v/c|r ~ 1. This result is
due to the fact that, in the electron rest frame, the photon energy is unchanged during
the scattering process. This amounts to saying that the electron has effectively infinite
mass and does not experience any recoil in K ". It can absorb the momentum change of .
the photon without modifying its velocity. For the observer K, photons which bounce
against the electron will gain energy if they move toward it and will lose energy if they
move in the same direction. The process is similar to the reflection of particles against
a moving mirror, although it is complicated by the presence of aberration and Doppler
effects. The net energy gained (lost) in the observer frame K by a certain angular dis-
tribution of incident photons is supplied (absorbed) by the infinite reservoir of kinetic
energy of the electron. The ultimate source of energy is the external field which has
accelerated the electron to the velocity v.

Then, the effectiveness of the process is essentially related to the possibility of ne-
glecting the recoil of the electron. However, if the energy of the incident photon in K s
not small with respect to the rest mass of the electron, it is no more possible to neglect
the recoil since the photon will lose energy in the scattering process according to the

Compton formula

r

' €
T Tt € (1 — cos @)/me?’

(2.37)

where cos © = cos 0; cos §' + sin 6, sin 3 cos(cp' — 1) is the cosine of the angle between
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the incident and the outgoing photons measured in the rest frame ((pl and <p'1 are the
azimuthal angles of the incident and scattered photons) and m is the electron mass. If

! .
€ < mc?, we can write
!

€ € [1 -~ 6—(1 — cos 09)

— : (2.38)

Inserting equation (2.38) into equation (2.28), averaging (2.27) and (2.28) over the

angular distribution (2.33) and over all of the outgoing photon directions in K ,, we get

((e1))grqr = 7€ {1 e (1 - 1;—/7_6)} , (2.39)

mc2

’ v/c
;= 1+ L2, 2.4
(€)qr =€ ( + 37 ) (2.40)
Then, the mean energy change is given by

v/c+ € (37 —v/3c)/mc?
v/e+ 37

<<A6>)Q'19' = - (€)qr - (2.41)

Comparing equation (2.34) with equation (2.41), if the photon energy becomes relatively
large, it is not possible to neglect the recoil of the electron and, even for an inflowing
atmosphere (v < 0), high energy photons can lose more energy through ordinary Comp-
ton effect than what they gain through bulk motion comptonization. This energy will
be turned into electron thermal energy. This effect is particularly important when the
optical depth is very large, so that photons will undergo a lot of scatterings before
escaping to infinity. Although dynamical comptonization tends to increase the mean
photon energy in each scattering, when € increases this process can be stopped by the
fact that the recoil term € (37 —v/3c)/mec? in equation (2.41) becomes important. Then,
a significant amount of energy can be transferred to electrons and the ordinary thermal
comptonization cannot be neglected. If 7 > 1, it is easy to see that the condition for
heating or cooling due to the bulk motion to overcome the electron recoil can be written

as follows

PO (2.42)

mc? ~ 3riv|/c’
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Since 37(v/c) must be of order unity for dynamical comptonization to be effective,
equation (2.42) says simply that the kinetic energy per unit mass of the ordered motion
of the electron must be greater than the energy of the incident photon measured in the
electron rest frame. Whenever this equation is not satisfied, it is no longer possible to
neglect the electron recoil and a more generalized treatment of the transfer of radiation

including thermal comptonization has to be considered.

We note also that, in the present analysis, the velocity of the electron could orig-
inate partly from its thermal motion. Although we are not interested here to make a
detailed calculation, in this case an additional term would appear in equation (2.41)
which accounts for the thermal motion and would be proportional to the mean thermal
velocity (vsn) ~ (KT /m)'/2, where T is the electron temperature. Then, as shown by
Blandford & Payne (1981a), if (12KT/m)'/? > v the ordinary inverse Compton effect

will dominate and a detailed treatment of the transfer of radiation has necessarily to

include thermal along with bulk motion comptonization (see e.g. Colpi 1988).

2.3 NEAR CRITICAL ACCRETION ONTO NEUTRON STARS

In this section we will study the effects of bulk acceleration of photons on the spec-
trum emitted at the surface of a non-rotating, unmagnetized neutron star which un-
dergoes spherical accretion at near critical rates. We assume that X-ray radiation is
generated by the conversion of gravitational potential energy, as matter is accreted onto
the neutron star. If the flow velocity vanishes at the neutron star surface, the efficiency

of the accretion process is given by the variation of the specific gravitational energy E,

°GM, GM,
Ners = (Bp)o — (Bp), =1~ (V=g00), =1 —4/1 - i (2.43)

where M, and 7, denote the neutron star mass and radius, respectively, and we used

vacuum Schwarzschild solution to describe the gravitational field outside the star. By

introducing the adimensional radial coordinate z = 7/rg, Tg = 2GM,/c?, and the
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accretion rate M ; the total luminosity observed at infinity is

Loo =nessMc? = (1 —4/1— —1—) Mc?. (2.44)

Ly

The complete analysis of a steady-state, spherically symmetric gas flow onto a compact
star is a complex task since the appearance of shocks and/or of a boundary layer at
the neutron star surface should be expected. However, some reasonable simplifying
assumptions can be made if one is not interested in treating in detail the inner accretion
layer where nearly all the energy is released. First of all we note that Ness ~ 0.1 for
M, ~14Mg and 7, ~ 10 km, so that Lo /Lpgg = loo ~ 1 if M/MEdd =1 ~ 1, where
Lpds = 47GM,c/ke, is the Eddington luminosity and Mpggy = Lgga/c? is the critical
accretion rate. By comparing this value for lo, with the maximal luminosity attainable
in black hole accretion, ;5 < 0.01 (see Nobili, Turolla & Zampieri 1991), it follows
that the infalling gas can radiate, at most, a few percent of the total energy output
before the impact with the surface of the star. We can therefore safely neglect emission
processes in the accreting gas and treat the material as a pure scattering medium. In
this hypothesis the radiation spectrum observed at infinity is formed in the boundary
layer by processes which are not important to specify in detail since the overall spectral
properties are determined mainly by scatterings as radiation propagates outward. The
main goal of our investigation is to study the effects of dynamics on radiative transfer
and therefore we consider only coherent (Thomson) scattering. We make the further
assumption that the plasmais “cold”, in the sense that its enthalpy is always much less
than effective gravity. This is equ%valent to say that the the gas velocity is everywhere
greater than the sound speed and limits the validity of our approach to the supersonic
part of the flow.

The equations governing the dynamics of the matter gas and the transfer of radia-
tion in spherical, stationary accretion in a Schwarzschild gravitational field have been
presented in Chapter 1 (equations (1.20)—-(1.22), (1.28) and (1.29)). In the case of a

“cold” (T =0,P =0, ¢ = pc®), pure scattering (so = 0, s; = —kespw1) plasma they
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reduce to the form (here the velocity v is assumed positive for inward motion)

v? (yv)’ 1 keszrg
—C"E ytv = “‘2y2$ + ycz w1y , (2.45)
2 (U .
Yhesryz?p (-) y =, (2.46)
c

' v o , , 4 ’U’
wl—z“’o”“”l(”%>"“i”"{f(%?—l)*é(%f”ﬂ:0’ (247
1 ' vt 1 y' 4y,
(f""?;)wu"z"%‘*‘[f +f(3+§)+§'§}’wo—

il ) b
c yv Yy

(2.48)

The comoving luminosity L is related to wy by L = 47ra:?1’§ cwi. To close the system,
we have introduced the variable Eddington factor, f = wa/wo, where wy is the radial -
moment of second order of the specific intensity. In the following we assume that fis

a given function of the optical depth 7 of the form

flr) = 3017 iﬂ) : (2.49)

The fact that dynamical effects on radiative transfer are going to be relevant in
the present model, can be easily shown. As discussed in the previous section, bulk
motion comptonization is expected to become important in regions where 7 > 1 and
7v/c ~ 1. Using equations (2.44) and (2.46), neglecting relativistic corrections and
assuming T ~ kespzry, we have that

(Tv/e)u ~ oo

2@,

~ oo (2.50)

which shows that close to the star surface 7v/c is indeed not far from unity for near

critical accretion.
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To compute the emitted spectrum, we need to solve the first two frequency—dependent

moment equations for a pure scattering flow (see again Chapter 1, equations (1.24) and

(1.25) with » > 0 inward)

oW, dlny oW,
Olnz WL+ dlnz (Wl B Blnz/> -
v 8Wg 1 6VVO _
—‘c‘{m+(ﬂ+2)Wo—{f(ﬂ—1)+‘3‘(ﬂ+2)} Blnu}_o’ (2.51)
1\ 0w, dln f
(f_r§> Olnz +f (3+ dln:c) Wo+
dlny 1 6WQ v BW]_ 1 1 6W1
+d1n:v ItWD a (f+ §) 81111/] T c [Bln:v i g(7ﬁ+8)WI 5 (36 +2) Olny} a

ow, kespzry, Wi
~ —1 =—— 2.52
o6 -1) (W + g2 ) Lt (2.52)

where Wy and W; are the frequency-dependent moments and 8 = dln(yv)/dlnz. In
writing equations (2.51) and (2.52) we have assumed that the Eddington factors f =
W2 /Wy and g = W3 /Wy, where W5 and W3 are the higher order moments which enter
equations (1.24) and (1.25), are independent of frequency: f is given again by equation
(2.49) and g = 3f/5.

The solution of equations (2.45)-(2.48) provides the velocity and density profiles
of the matter gas and the radial evolution of the frequency—integrated moments, once
boundary conditions are given. In treating a pure scattering problem one of the con-
ditions must fix the value of either the radiation energy density or of the flux at some
radius. Computed models were obtained assigning the value of the luminosity far from
the star (I). Since M, and 7, are known, equation (2.44) gives immediately the ac-

cretion rate, while the two remaining boundary conditions are
wy = w; T = Tous (radial streaming) (2.53)

and

= T = Tous (“modified” free fall). (2.54)
c
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It should be noted that I, is the only free parameter of the model. Equations (2.51)
and (2.52) have to be solved as a two points boundary value problem in space and an
initial value problem in frequency. In our particular case, we have assigned the flux

spectral distribution at the star surface
Wi(z.,v) = F(v), (2.55)

with the additional constraint that

/°° Fv)dv = wi(z«), (2.56)

0

where w1 (z4) is the frequency-integrated flux at z., as given by the solution of equations

(2.45)—(2.48); the remaining radial condition is again
Wy = W1 T = Toyt ‘ (radial streaming) . (2.57)

In the case of an unmagnetized neutron star accreting close to the Eddington limit, as we v
are considering here, we assume that photons are generated only at the surface, through
some convenient mechanism that could convert the kinetic energy of the infalling gas
into radiation with a given spectral distribution. The simplest choice that can be made
is that the input spectrum is Planckian in shape

(hv/KT,)?

() = A ,
Wilz-,v) exp (hv/KT,) -1

(2.58)

where the temperature T, = T(z.) is fixed by the condition

T, = ( Lroo )1/4. (2.59)

2
drrio

This expression for T is justified if the effective optical depth in the flow is always
smaller than unity, as indeed should be the case in all our models. The constant A
appearing in equation (2.58) is determined by normalization (2.56). Two different sets

of frequency boundary conditions have been used in the calculations, according to the
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value of [, which characterizes the model.  For models with luminosity I, < 0.4 the
spectrum drifts toward low frequencies because gravitational redshift dominates over
dynamical comptonization (see the following discussion), so that both conditions must

be specified at the largest frequency mesh point vmqq

OlnW, 0OlnW,
lny ~ dHlnv

(9111W0 _3 hv
Olnv KT,

V= Vmaz, (2.60)

V= Vmagz (Wien law). (2.61)

The situation is reversed for models with luminosity /o 2 0.4 and the previous condi-

tions are replaced by

OlnW, OlW,;
Olnv  flnv

V= Unmin , (2.62)

Oln W,
Olnv

Conditions (2.61) and (2.63) express the fact that W, must remain black body in shape

=2 V = Vmin (Rayleigh-Jeans law). (2.63)

at high (low) frequencies while (2.60) and (2.62) derive from the request that W; « W,
in a pure scattering medium. A discussion on how frequency conditions should be placed
in solving the transfer problem in moving media can be found in Mihalas, Kunasz &
Hummer (1976), Nobili, Turolla & Zampieri (1993) and Turolla, Zampieri & Nobili
(1995). Numerical integrations show that in a small luminosity range around lo = 0.4
both sets of boundary conditions work satisfactorily.

The self-consistent velocity and density profiles obtained from the simultaneous
integration of the hydrodynamical and frequency-integrated moment equations has been
used in equations (2.51) and (2.52) to compute the emitted spectrum. Once a solution
has been obtained, we compared the integral of W; with the corresponding solution for
the frequency—integrated flux w; and found that the fractional error was always less
than few percent. This ensures that the computed velocity and density profiles are

consistent with the solution of the frequency—dependent moment equations.
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Figure 2.3 — Velocity v, density p, stationary I, = lo[1l + (y —

1)/ness]/(1 — 1/z) and comoving I luminosities versus radius for the

model with lo = 0.3. Scales are logarithmic and density is in g cm 3.

2.3.1 Numerical Results

The results of numerical integrations of equations (2.45)-(2.48) are shown in figures
2.3 and 2.4, for two representative values of leo, loo = 0.3 and le = 0.9 respectively; in
all models M, = 1.4 Mg and 7, = 10%cm. The settling regime 1s a common feature of
all high luminosity solutions and is clearly visible in figure 2.4. The overall behaviour
of our models is close to that one found by Maraschi, Reina & Treves (1978), Miller
(1990) and Park & Miller (1991) under quite similar assumptions. In order to simulate
the effects of a disc component, we have computed also another model with [ = 0.9
but with a mass flux reduced of about 70%. In fact, as discussed in Chapter 1, within
the framework of the unified model of Low Mass X-ray Binaries (Lamb 1989, 1991) the
angular momentum conservation limits the radial mass flux to at most ~ 30% of the

total mass flux. In these assumptions, a significant fraction of the mass flux is contained
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Figure 2.4 — The same as in figure 2.3 for the model with [, = 0.9.

within the accretion disc and a corresponding fraction of the radiative luminosity (l.)
is released in the inner part of the disc near the star surface. Then, the total luminosity
observed at infinity will be the sum of two contributions, the first coming from the disc

(I+) and the second produced by the radial accretion flow (nessri,)
loo =l + neffmr y (2.64)

where 7, = 0.3 (see Park & Miller (1991) for a discussion of a radial distributed source
of photons in the disc). The results of this calculation are shown in figure 2.5. Although
the density at the outer boundary is smaller, the decelera.tic;n of the flow becomes more
precipitous (see again Park & Miller 1991) and in the inner region p increases above the
value of the model with the mass flux entirely within the spherical component. As a
consequence, the optical depth at the star surface is larger and (7v/c). is still sufficiently
large in order dynamical comptonization to be of importance (see table 2.1).

The integration of equations (2.51) and (2.52) has been performed using an original
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Figure 2.5 — The same as in figure 2.3 for the model with [ = 0.9
and m, = 0.3m.

numerical code based on a relaxation method (for a detailed presentation see Nobili,
Turolla & Zampieri 1993). A 30 frequency bins x 60 radial zones grid was used with
0.4 <logz < 5and —0.5 < hl(hV/K‘T*) < 1.2. Some representative spectra are shown
in figures 2.6 and 2.7 and results are summarized in table 2.1, where the “soft” and
“hard” colors of the emergent spectrum are quoted together with the count rate in the
1-17 keV energy band; the last column gives the value of the photon spectral index if
a power-law tail forms at high energies. The number flux was computed assuming a
distance of 8 kpc for the source. Owing to the fact that 3(7v/c). is sufficiently large,
the spectrum of the model with the reduced radial mass flux does not show significant
quantitative differences with respect to the spectrum shown in figure 2.7. For this
reason, since we are interested mainly in the spectral properties of the solutions, we
will not distinguish further between models with I, = 0.9 and different radial accretion

rates.
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Table 2.1 — Characteristic Parameters for Selected Models

(3-6)°>  (6-17)°

I T2 (tv/c)« (1-3) (3°6) count rated  a°
0.1 0.3 0.17 0.17 0.02 0.40 -
0.2 0.7 0.31 0.31 0.06 0.73 -
0.3 1.3 0.37 0.40 0.09 0.96 -
0.4 2.2 0.38 0.68 0.20 1.00 -
0.5 4.0 0.38 1.06 0.49 0.87 -
0.6 7.1 0.39 1.28 0.70 0.86 -
0.7 14 0.38 1.44 0.98 0.82 -
0.8 33 0.34 1.63 1.23 0.79 3.3
0.9 1.8 x 102 0.30 1.79 1.53 0.75 3.4
0.9 2.1 x102 0.05 1.75 1.46 0.76 3.4
0.95 1.2 x 103 0.28 1.87 1.69 0.72 3.5

# electron scattering optical depth at the star surface.
b “soft” color: N3_g/Ni_3, where N is the photon count rate in the specified energy range.

¢ “hard” color: Ng_17/N3_s.

4 count rate: N;_17 (arbitrary units).

¢ photon spectral index: —91n N, /81n v, calculated above 20 keV.
f model with the reduced mass flux my = 0.3m.

As can be clearly seen from the figures, the behaviour of the emergent spectrum
changes significantly around lo, = 0.4. For I, < 0.4, in fact, the flow becomes optically
thin to scattering and, although (rv/c). ~ 0.3, bulk motion comptonization has little
effect, because the probability for a photon to scatter before escaping to infinity becomes
very low. The fact that (7v/c). is not far from unity means that the typical fractional
energy change per scattering is still large but electron-photon collisions are so few that
the total energy exchange is negligible. Consequently the spectrum at infinity remains
nearly Planckian but is rigidly shifted to the red (see figure 2.6) by the effect of gravity.

As l is increased beyond 0.4, models start to develop a thick core, (Tv/c)« remains
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Figure 2.6 — Number flux spectral distribution for the model with
— 0.3. The source is assumed to be at a distance of 8 Kpc.

lo
fairly constant because v. decreases and T, increases, but now dynamical comptonization
is important owing to the larger optical depth near the stellar surface. The emergent
spectrum is systematically shifted to the blue and a power—law, high—energy tail forms.
The dynamical blueshift roughly compensates the gravitational redshift just at leo ~ 0.4.
A typical dynamically Comptonized spectrum is shown in figure 2.7 for loo = 0.9. The
spectral shape is essentially Planckian up to energies ~ 10 keV and then becomes a
power law with spectral index o ~ 3.4.
We wish to stress that low and high luminosity models have different spectral prop-
erties because the former are everywhere optically thin (or at most marginally thick)
while the latter do have an optically thick inner region. The fact that (Tv/c)« is more or

less the same for all the solutions does not contradict the previous statement. In fact,
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Figure 2.7 — The same as in figure 2.6 for the model with I, = 0.9.

from the analysis presented in section 2.2 it follows that 7v/c is the important parame-
ter for dynamical comptonization, but it should be taken into account that results were
obtained in the diffusion limit, that is to say in the hypothesis of very large scattering
depth. For optically thin flows the approach presen;ced in section 2.2 does not apply at
all and one has to expect the emergent spectrum to show different features. However,
when [, 2 0.4, the optical depth becomes larger than unity and spectra originating
from near critical accretion onto neutron stars closely resemble those obtained by Payne
& Blandford (1981, PB) for spherical accretion onto black holes, showing both a drift to-
ward high frequencies and the formation of a power-law, high—energy tail. Mastichiadis
& Kylafis (1992, MK) extended PB’s analysis to an accreting flow onto a neutron star.

They performed essentially PB’s calculations, but replaced the original boundary con-
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dition with the requirement that the flux vanishes at the star surface and proved that
now the spectral index e = 1, irrespective of the value of the velocity gradient. While
the overall spectral evolution is quite similar in both cases, some important points, as
the value of the final power-law index, seem to depend on the choice of the condition
for the radiation field at the inner boundary. This particular aspect deserves a further
comment in order to understand how our numerical solutions relate to these analytical
results. While PB asked for adiabatic compression of photons as ¢ « Tv/cox rTt — oo,
MK used a different condition (vanishing flux) at r = r. where their integration domain
terminates with a finite value of ¢t. Although the input spectrum is a monochromatic
line in both cases, the two conditions at the basis of the flow produce two distinct sets
of eigenvalues (p,) and this explains the different form of the emergent spectrum at
high frequencies (@ = po for v > ). As far as our model is concerned, the integration
domain is finite, as in the MK case, so that PB’s analysis certainly does not apply; our
approach, however differs also from that of MK, because in fixing the input spectrum
at 7., we have assigned a different inner boundary condition. So, in this situation we -
do not know the analytical solution and the corresponding set of eigenvalues. Indeed,
the emergent spectrum shows, a well-defined power—law tail whose index is related to
the physical conditions in the region where dynamical effects become important.

In concluding we note that, although present results refer to the radial evolution of
a Planckian, the global properties of the model (drift to high frequencies and formation

of a power law tail) are largely independent of the form chosen for the input spectrum.

2.3.2 Comparison with spectral observations
of Cygnus X—2
As discussed in Chapter 1, the results presented in this chapter can be relevant in
connection with the observed spectral properties of Z sources. If the neutron star has
a low magnetic field (B < 108-10° G), as it is believed for Low Mass X-ray Binaries

(LMXBs), the radiative opacities and the flow dynamics may be practically unaffected
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by its presence. In addition, within the framework of the unified model for LMXBs
(Lamb 1989, 1991), at luminosities near the Eddington limit the pressure of radiation
escaping from the inner disc drives some plasma into an extended disc corona. This
plasma loses its angular and vertical momentum because of radiation drag and falls
approximately radially toward the star (Fortner, Lamb & Miller 1989). The spectral
properties and the time variability of Z sources seem to be well accounted for by this
model (Miller & Lamb 1992; Miller & Park 1995; Psaltis, Lamb & Miller 1995). In
this spirit, the results which we have presented in this section may be tentatively com-
pared with the observed spectrum of Z sources and, in particular, of Cygnus X-2 which

represents one of the prototypes of this class.

In comparing our synthetic spectra with actual observations one should keep in
mind the drastic simplifications of this model. We have considered a unique compo-
nent, a dynamically Comptonized black body, and in treating radiative transfer we have
neglected all emission-absorption processes so that, for instance, line features do not
appear. Also, we did not consider such complicated issues as the effects of unsaturated
thermal comptonization in the hot central corona which, according to the unified model,
should be presented around the neutron star surface and should account for the typical
spectral shapes observed in bright LMXBs at moderate luminosities (~ 0.5Lg4q). Then,
although a good fit to the spectral data obviously requires the superposition of various
physical regions, each emitting a rather complex spectrum, it seems of interest to in-
vestigate simple models, physically well defined, which can shed light on some aspects

of the formation of the spectrum and be part of the overall picture.

In order to be specific we shall deal with the EXOSAT observations of Cyg X-2
obtained in 1983, which covered the energy band 0.5-20 keV (see Chiappetti et al. 1990)
and focus our attention on the observations of September 13-22. Assuming a distance of
8 kpc (Cowley, Crampton & Hutchings 1979), the X-ray luminosity is 1.7 x 1038 erg/s,
which clearly situates the source close to the Eddington limit for M, ~ Mg. A good fit

to the data is obtained by the superposition of a bremsstrahlung at 4.4 keV and a black
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Figure 2.8 — The spectrum of Cyg X-2 in the 1-60 keV range. The
dashed line is the best fit to the data of Chiappetti et al. (1990), crosses
refer to the observations of Maurer et al. (1982) and the continuous
line is the model spectrum for [, = 0.9.

body at 1.2 keV. However, as for other bright LMXBs, several two component models
can be fitted equally well to the observed X-ray spectrum (Hirano et al. 1984; Vrtilek
et al. 1986; White, Stella & Parmar 1988; Hasinger et al. 1990; Hirano et al. 1995). We
consider also the high energy observations of Maurer et al. (1982), obtained during a
balloon flight in May 1976, which detected the source in the 18-60 keV range, with the
low energy point at a level comparable to that of the EXOSAT observations. The high
energy count rate is well fitted by a power law of spectral index 2.8 +0.7. A steep high
energy tail (above 20 keV) have been detected also in other balloon-borne observations
(Webber & Reinert 1970; Matt et al. 1990). Furthermore, an analysis of the HEAO-1
A4 catalogue (van Paradjis & van der Klis 1994) has shown that the ratio of the fluxes
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emitted in the 40-80 and 13-25 keV bands is ~ 0.016 - 0.008, which is consistent with
a power law spectrum with spectral index larger than 3. We have not considered in the
present discussion the X-ray spectral observations of Cyg X2 obtained with Ginga in
low-high~voltage mode (2-60 keV; Mitsuda 1992), since, during the observations, the
source was mainly in the horizontal branch. In figure 2.8 we have plotted the observed
spectrum of Cyg X-2 in the high-level luminosity state (Chiappetti et al. 1990), the
high energy spectrum of Maurer et al. (1982; errors below 20 keV are < 10%) and
our computed spectrum for the model with I, = 0.9. A comparison of the synthetic
spectrum with the observed one (see figure 2.8) clearly indicates that our model can
not describe the number counts in the entire energy range because it exhibits a definite
photon deficit at low frequencies. However, the flux energy distribution above ~ 20 keV
is a steep power law and it is well fitted by the model; the computed spectral index,
o =~ 3.4, is, in fact, consistent with the observed one. On this regard, we note that,
at frequencies greater than ~ 10 keV, the energy lost by a photon in the scattering
with an electron starts to be no more negligible for the typical bulk velocities of the
accreting gas at loo ~ 0.9 (see equations (2.41) and (2.42) and the following discussion)
and the scattering can no more be considered elastic in the rest frame of the electron.
Then, the actual spectral shape at these energies could be modified by the effect of the
electron recoil and a more detailed treatment of radiative transfer including thermal
comptonization would be required. However, the quantitative good agreement of our
computed high energy tails with the observed data of Cyg X-2 may indicate that this

effect is not drastically important at least up to energies of ~ 20-30 keV.

As far as the spectral observations of other Z sources are concerned, recent work by
the Granat/Sigma group (Barret & Vedrenne 1994) seem to indicate that some of them
(GX 5-1, Sco X~1) emit less than ~ 1% of the total luminosity in hard X-rays (above
30 keV) and that no evidence for flat power law tails can be found. In particular, the
spectrum of Sco X~1 obtained with the Kvant module (Sunyaev et al. 1991) has a steep
high energy cut-off at around 20-30 keV. Using the data contained in the HEAO-1 A4
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Figure 2.9 — Hardness ratio versus count rate for our models. Each
cross is labeled by the value of [ (see also table 2.1).

catalogue, van Paradjis & van der Klis (1994) find that the observed colors of the 7
sources are consistent with spectral indices @ > 3. We note that these results are not
in contrast with our conclusions, since the expected power law tails produced by bulk
heating in the radial accretion flow are larger than 3 and the flux emitted above 30
keV turns out to be of the order of a few per cent. Moreover, it is likely that the inner
disc corona is not perfectly spherically symmetric and inclination effects could come
into play. Finally, as discussed above, at high energies (2 30 keV) ordinary thermal
comptonization is no more negligible and, hence, the precise form of the spectrum will
depend also on the thermal processes acting in these sources.

As mentioned above, a useful tool for studying the X-ray spectral properties of

LMXBs are the intensity—color and color—color diagrams. Cyg X-2 is, in fact, the first
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source for which the constancy of the hardness ratio with respect to the intensity was
discovered (Branduardi et al. 1980). The intensity—color diagram for our solutions is
plotted in figure 2.9. The color is defined as the ratio of the number counts in the 6-17
and 3-6 keV bands while the intensity refers to the count rate in the 1-17 keV range.
A direct comparison with the observations is of little significance, since the computed
spectrum shows a significant deficit of photons with respect to the observed spectrum
within the spectral band where the hardness ratio is calculated. In spite of that, the
results of figure 2.9 are of interest. As can be seen, for luminosities I, < 0.4 the
count rate in the 1-17 keV band increases, while, for I, > 0.4, it starts to (slowly)
decrease, because the spectrum becomes harder and the total number of photons in the
interval 1-17 keV becomes lower. This contrasts with the nearly linear dependence of
the hardening ratio on the total luminosity (see also table 2.1). The turning point in the
diagram corresponds to the model with loo =~ 0.4 which is the value of the luminosity
at which the count rate is maximum. We note that the existence of an anticorrelation
branch in the intensity—color diagram for our solutions is entirely due to dynamical
effects. In fact, in the absence of bulk motion comptonization, the spectrum remains
Planckian and drifts to higher frequencies for increasing /o, just because 7T, o l})ﬁ;
the gravitational redshift does not enter in these considerations being the same for all
the models. It can be easily checked, in fact, that a Planckian spectrum produces
always a positive intensity~hardness correlation. The turning point appears only when
dynamical effects start to be important. If we explain the X-ray variability of LMXBs
in terms of a time varying accretion rate, the turning point present in the intensity—color
diagrams of some Z sources, such as Cyg X-2 (see e.g. van der Klis 1991), bears some
resemblance with the behaviour of our solutions. As far as the color—color diagram is
concerned, within the framework of the unified model of LMXBs (Lamb 1989, 1991), the
characteristic Z shape of Cyg X-2 can be qualitatively reproduced. However, as shown
by Lamb (1991), if the electron scattering optical depth in the radial inner disc corona

is sufficiently high, the observed decrease in the soft color along the normal branch can
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be correctly reproduced, whereas the fall in the hard color is too large. As noted by
Lamb, several relevant effects were not included in the model, such as the work done on
the radiation field by the converging radial flow. Although no direct comparison can be
made, we argue that a significant contribution to the hard tail of the spectrum and hence
to the hard color along the normal branch could be due to dynamical comptonization.

In conclusion, although the simple model considered here cannot describe the overall
X-ray emission of Cyg X-2, we find that dynamical effects due to bulk gas motion (drift
to high frequencies and formation of a power law tail) may be an important ingredient
to explain some of the observed spectral properties of Z sources. In light of these
results, we argue that a more detailed model of spherical accretion onto neutron stars
near the Eddington limit, which accounts for an input spectrum different from a black
body (such as an unsaturated comptonized spectrum produced from the hot corona)
and which can deal with thermal comptonization and free—free emission and absorption

along with the effects of bulk acceleration, could allow a more significant comparison

of synthetic spectra, intensity—color and color—color diagrams with observations. This -

study is presently under consideration.






CHAPTER 3

STATIONARY, SPHERICAL ACCRETION
ONTO NEUTRON STARS
BELOW THE EDDINGTON LIMIT

In section 3.2, results are presented from an investigation
of stationary, low rate accretion onto an unmagnetized, non—
rotating neutron star. It is found that new “hot” solutions
may exist for a wide range of luminosities. These solutions
are characterized by a high temperature, 10°-10%! K, and
arise from a stationary equilibrium model where the dominant
radiative mechanisms are multiple Compton scattering and
bremsstrahlung emission. For low luminosities, < 1072 Lg,
only the “cold” (& la Zel’dovich and Shakura 1969) solution is
present.

The spectral properties of X-ray radiation produced in
the low temperature, static atmosphere surrounding the neu-
tron star are investigated in section 3.3. Previous results by
Alme & Wilson (1973) are extended to the range 1078 <
L/Lgda < 10~% to include the typical luminosities, L ~
10%° ergss™!, expected from isolated neutron stars accreting
the interstellar medium. The emergent spectra show an over-
all hardening with respect to the blackbody at the neutron
star effective temperature in addition to a significant excess
over the Wien tail.

In the last section of this chapter, the relevance of present
spectral results in connection with the observability of Old
isolated Neutron Stars (ONSs) accreting from the interstellar
medium is discussed. In particular, we focus our attention on
the overall soft X-ray emission of ONSs and show that it may
provide a substantial contribution to the X-ray background
in the 0.5-2 keV band.
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3.1 INTRODUCTION

Since the early 1970s, large theoretical efforts have been devoted to investigate the
properties of radiation produced by accretion onto neutron stars, in the attempt to
model the observed spectra of galactic X-ray sources. Even before the observational
evidence that these sources are mostly binary systems containing an accreting neutron
star, Zel’dovich & Shakura (1969, ZS in the following) studied in some detail the spec-
trum of radiation produced by stationary, spherical accretion onto an unmagnetized
neutron star and compared their results with the (poor) data available at the time for
Sco X~1. The pioneering paper of ZS shows that the resulting spectrum depends essen-
tially on two parameters, the accretion rate (luminosity) and the penetration length of
the accreting ions in the outermost neutron star layers. The outcome can be described,
in essence, as a black body with a high energy tail due to the Compton heating of
thermal photons in the hot, external part of the atmosphere surrounding the neutron
star. ZS’s analytical work was pushed further by Alme & Wilson (1973, AW in the fol-
lowing), who computed the emergent spectrum for luminosities L 2 1072 Lgqq solving
the moments of the transfer equation. Shapiro & Salpeter (1973) adopted essentially
ZS solution at the inner boundary and explored the possibility that in the surrounding
region a shock is formed, which may modify the resulting spectrum. While models of
spherical accretion evolved substantially since then, considering, for instance, the role
of nuclear reactions induced in the crust by the bombardment of accreting ions (see
e.g. Bildsten, Salpeter & Wasserman 1992), the basic picture proposed by ZS has been

maintained.

Here we reinvestigate the thermal and radiative structure of the atmosphere of neu-
tron stars accreting at low rates adopting a set of equations which essentially coincides
with those of ZS. We show that ZS’s solution for the temperature profile is not unique:
for large enough accretion rates, another solution, at considerably higher temperatures,
may exist. We have computed also the spectrum emerging from the low temperature,

static atmospheres, extending previous calculations by AW to L ~ 107 Lggg. In fact,
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up to now the interest mainly focussed on emergent spectra for luminosities in the range
~ 10% — 10%® ergss™!, since most of observed X-ray binaries have L X 10°* ergs s7L.
Much fainter sources may, nevertheless, exist. It was suggested long ago (Ostriker,
Rees, & Silk 1970), in fact, that although the thermal emission resulting from cooling
of the hot interior is too weak for being observed after a time ~ 10 Gyr, old isolated
neutron stars, no longer active as pulsars, may show up as very weak, soft X-—ray sources
(L ~ 10%° — 103! ergss™*, Tess ~ 90eV; see Chapter 1) if they accrete the interstellar
medium (ISM). The low bolometric luminosity and the softness of the spectrum explain
the difficulty of observing an isolated ONS. The detection of ONSs was included as a
possible target for the Einstein mission (Helfand, Chanan & Novick 1980), but it was
only a decade later that this issue came to life again when Treves and Colpi (1991,
hereafter TC) reconsidered the observability of ONSs with ROSAT. Assuming a black-
body spectrum, using the velocity distribution proposed by Paczynski (1990) and a local
density 0.07 cm™3 for the ISM, they found that thousands of ONSs silould appear in
the ROSAT PSPC All Sky Survey in the most favorable case of polar cap accretion. -
A complete analysis by Blaes and Madau (1993, hereafter BM) essentially confirmed
TC results. From the numerical calculation of the spectra emitted by low temperature,
static atmospheres around neutrons stars, we have found that the emergent spectral
distribution at very low luminosity is significantly harder than a blackbody at the star
effective temperature. In light of this result and taking into account that the present
estimates of the observability of ONSs are all based on the assumption of a Planckian

spectrum, we decided to reconsider the issue.

The interest for the X-ray emission from isolated ONSs is not restricted to the
detection of individual sources. Despite their intrinsic weakness, in fact, they could
provide a contribution to the diffuse X-ray background (XRB), being their total number
very large. In a recent paper, Hasinger et al. (1993) have analyzed the X-ray emission
in selected high-latitude fields and found that the number of resolved sources exceeds

by ~ 60% the number of quasars expected from a standard evolutionary scenario. This
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led to the suggestion that a new population of sources can contribute sizeably to the
soft X-ray background detected at 0.5-2 keV with ROSAT. Although such a population
may be extragalactic in origin, Maoz & Grindlay (1995, hereafter MG) showed that its
properties are compatible with those of galactic objects and tentatively identified them
with Cataclysmic Variables. Accreting ONSs could have the desired spatial distribution
but were ruled out as possible candidates by MG on the basis of their too soft emission.
We stress, however, that MG restricted their discussion to the very simple case in which
the spectrum is a blackbody at T.s;, emitted from the entire star surface. Using our
computed spectra we have found that, in the case of polar cap accretion (B ~ 10° G),
the ONSs contribution is ~ 10% of the total measured intensity in the 0.5-2 keV band,

corresponding to & 25% of the observed soft—excess.

3.2 ATMOSPHERIC THERMAL AND RADIATIVE
STRUCTURE

We consider a non-rotating, unmagnetized Neutron Star (NS) which undergoes
spherical accretion and is surrounded by a geometrically thin, static atmosphere; the
envelope material is assumed to be pure hydrogen. As the accretion flow penetrates
into the atmosphere, protons are decelerated by Coulomb collisions, their bulk kinetic
energy is transferred to electrons and is finally converted into electromagnetic radiation
via free-free emission. The input physics of our model essentially coincides with that
used in previous studies on this subject (ZS; AW). If the flow velocity vanishes at the
star surface, the relativistic efficiency 7.5 of the accretion process in the Schwarzschild

metric is given by equation (2.43)

Tg

Uef.f:l— "‘—;', (31)

where 7, = 2G M, /c? is the gravitational radius and M, the mass of the neutron star.
For r. >~ 3ry and M. ~ 1.4My, ness ~ 0.18. If all of the kinetic energy is converted

into photons and considering accretion rates M well below the Eddington limit M Edd,
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the luminosity seen by an observer at infinity turns out to be (see equation (2.44))
lo =nessm < 1, (3.2)

where [, and m are the luminosity and the accretion rate in Eddington units. Then,
the drag exerted by radiation on the impinging flow is negligible and the accreting gas is
essentially in free—fall. Significant deviation from free—fall in the accretion flow far from
the NS surface can be caused only by heating produced by high temperature radiation
coming from the NS atmosphere. However, if we calculate the electron scattering optical

depth 7, between the NS surface and infinity (assuming free—fall), we find

.\ L2

which implies that Compton heating is very ineflicient and any interaction between the
radiation field and the accretion flow can be neglected. In these conditions, the radiation
spectrum is formed entirely in the static atmosphere around the neutron star.

To study the structure of the geometrically thin atmosphere which surrounds the

surface of the neutron star, we introduce the column density

= /roopdr (3.4)

which physically represents the amount of atmospheric material per unit surface above
the radius 7 and can more conveniently be used as the independent variable in place of
the radius; here p is the matter density. The details of the flow braking are exceedingly
complicated (see e.g. Bildsten, Shapiro & Wasserman 1992), also because a collisionless,
standing shock can form, as originally suggested by Shapiro & Salpeter (1973). For this
reason, following ZS, we treat the total column density of the atmosphere required to
stop the incoming protomns, 79, as a free parameter. In the following we will consider

o = 5-20 g cm™2.

If the flow velocity v exceeds the electron thermal velocity, vg,,
these values of the proton penetration length are appropriate to describe the stopping

of the incoming protons in a hydrogen plasma where only Coulomb interactions take
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place. On the contrary, if v < v§,, the proton stopping through repeated Coulomb
scatterings is less effective and other collective processes (e.g. plasma oscillations) need
to be considered to keep 7y within this interval.

The heat injected by the infalling protons per unit time and mass in the atmosphere

is assumed to be constant and is related to the total luminosity observed at infinity L

by

=—~% 0<n<no
4m J, r?ydn (3.5)

=0 7>10,

w

where y = (1 — r,/7)*/? and Lo is the luminosity at the inner boundary of the atmo-
sphere. We note that, owing to the gravitational redshift, the total luminosity seen by
a distant observer is related to the local luminosity at the top of the atmosphere by
Lo = y*L(0). More realistic expressions for W, which in general depend on depth, will
be considered later.

The runs of pressure, P, and temperature, T, are obtained from the hydrostatic
balance and radiative energy equilibrium (equations (1.17) and (1.18) with v = 0 and
with the additional heating term W)

dP GM, (h k1 yL
il b Y (AR (3.6)
dn y*r2 \?  Kes LEdd
w _ KT T
—c- = (E - nowo) + 4]98311)0@ (1 - %) 5 (37)
where wg is the radiation energy denmsity, L = 4wr?w;c is the radiative luminosity

(both measured by the local observer) and & is the specific enthalpy of the atmospheric
gas. The matter density p is calculated from the perfect gas equation of state for
completely ionized hydrogen, P = 2pKT /m,. Since we study the general properties of
spherical accretion onto neutron stars for luminosities well below the Eddington limit, in
equation (3.6) we neglected the ram pressure exerted by the inéoming protons, which is
typically two orders of magnitude below the gravitational term. The absorption opacity

is approximated using the Planck mean kp, while the flux mean can be conveniently
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expressed as (see equation 4.4)
K1 = kes + 6.4 X 1022pT_7/2 cm? g7t (3.8)

Using the Kirchhoff law the free—free emissivity can be re-written as € = kparT*,
where ag is the blackbody radiation constant. The radiation temperature T, is defined
in equation (1.32).

The transfer of radiation in the atmosphere is governed by the equations for the
radiative luminosity and the radiation energy density which, in spherical symmetry and
using the Eddington approximation, can be written as (see equations (1.28) and (1.29)
with v = 0 and wy = 0)

d(y*L
(?Zln ) = —drriyW (3.9)
Ldyte)) _ L
3 dgp " gmrte (3.10)

Since, as numerical models show, the atmosphere does not expand significantly even for
high temperature solutions, the Eddington approximation is reasonable.

In general, the radiation temperature 7., can be computed only solving the full
frequency—dependent transfer problem and will depend on 7 (in ZS, T%y was taken equal
to [wo(n)/a)*/*, which is appropriate only in LTE). In the following, 7', will be calculated
from an equation which will be presented in Chapter 4; it describes the variation of the
radiation temperature when multiple Compton scattering becomes important and, in
terms of the column density 7 = 7/k.s, it can be written (see equation (4.11))

dinT, T,
Tinr _2YC(T —1> , (3.11)

where Y, = (4KT/mec?)max(r,7%) is the Compton parameter. As it will be discussed
later, use of equation (3.11) requires some care since it is meaﬁt to describe the vari-
ation of the radiation temperature when multiple Compton scattering is the dominant
mechanism to exchange energy between photons and electrons. Equation (3.11) there-

fore does not apply if either 7., < 1 or true emission—absorption are important. On
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the other hand, equation (3.11) gives the correct limit for low optical depth (Y. < 1
implying T, = constant), so that one can extend the validity of equation (3.11) to all
regimes, provided that no physical significance is attached to T, where the effective
optical depth 7.z > 1. In this case, the second term on the right hand side of equation
(3.7) is negligible compared with the true emission—absorption term and an accurate
evaluation of 7 is no longer needed.

Finally, since we are using the column density 7 as independent variable, we can

compute the radius  directly from equation (3.4)
1
—-—=—=, (3.12)

During the numerical calculation we used equation (3.12) to check if the atmosphere

remains geometrically thin.

3.2.1 Boundary Conditions

The solution of equations (3.6), (3.7), (3.9)~(3.12) provides the variation of P, T,
L, wg, Ty and 7 as functions of the column density 7 and is found numerically; here
1072 < 5 < 102 g cm™? and all models refer to a neutron star of r« = 10 km and
M, = 1.4 Mg . This system of 5 first order, ordinary differential equations plus an
algebraic equation have to be supplemented with a corresponding number of boundary
conditions which are listed below. In the study of stellar atmospheres the natural
boundary condition for the hydrostatic equilibrium equation is that at the top of the
atmosphere the gas pressure vanishes: P = 0 at N = Tout. As far as equation (3.12) is
concerned, we require that at the neutron star surface r = T, 7 = Tin. Lhe appropriate
boundary condition for the radiation field at the outer edge of a non-illuminated medium
is wo(Nout) = Loo/2mR*y%¢c, while, at the inner boundary, we account for the possible
presence of a radiative input flux: L(nin) = Lin = Lo/y?. If all of the observed
luminosity is generated within the atmosphere, L, = 0. This is the same condition

used by ZS and is appropriate if the effective optical depth close to 7;, is very large.
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We note that a boundary condition for T%, must also be imposed because the radiation
temperature obeys a differential equation; models were obtained specifying a value of

T, at 7 = Mout-

3.2.2 Results

We have found that two distinct kinds of solutions, “hot” and “cold”, always exist for
any 7o provided that the luminosity exceeds a certain limit, which depends on 79. The
thermal properties of the atmosphere are illustrated in figures 3.1 and 3.2, where the
run of T versus column density is shown for different luminosities in the case 7o = 20
g cm™2. The “cold” solutions of figure 3.1 are just those already found by ZS and
are obtained setting To(7out) = [Loo/(4m720)]*/%. As can be seen from the figure, the
temperature profile is nearly adiabatic in the inner layers where the gas is optically thick
to true emission—absorption. The sudden increase of T' in the external layers is due to
the heating produced by the incoming protons, balanced mainly by Compton cooling at
low densities. The temperature “shock” moves at very low values of the column density -
as luminosity decreases. The “hot” solutions of figure 3.2 exist for values of T satisfying
the condition Ty > Terit(Loo,m0); here Ty(Mout) = 2 X 10° K. The temperature is close
to T, in the outer region (7 < 23 gcm™2), while in the dense layers close to 7in LTE
is attained at T ~ 107 K. Cold, thermal photons do not propagate outwards because
L = 0 for Mg < 0 < Tin, so the hot and the cold zone are thermally decoupled, at least
radiatively. On the other hand, we have checked that imposing an outgoing flux at 7in
does not alter our picture significantly if [Lo|/Leo S 0.1.

The presence of two possible regimes has a simple interpretation in terms of the
relative efficiency of the two radiative processes we have considered, Compton scatter-
ing and free—free emission—absorption. The static atmosphere must, in fact, radiate a
given luminosity and, for doing that in the scenario we are proposing, there are two
ways. A first possibility is that a lot of soft bremsstrahlung photons are produced in

a low—temperature, dense medium in which the effective depth is large. This gives rise
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Figure 3.1 — Temperature versus column density of “cold” solutions
for loo = 7 x 1072 (continuous line), loo = 2 x 10™2 (dashed line)
and lo = 7 x 1072 (dashed-dotted line); here 770 = 20 g cm™2 and
|Lo|/Loo S 0.1.

to a spectrum which is essentially blackbody and corresponds to the “cold” solution.
Comptonization is never dominant because temperature is low and the scattering depth
is not large enough to make Y. > 1. The “hot” solutions represent the opposite case, in
which much less energy is generated through bremsstrahlung emission in a low—density,
hot plasma far from LTE. Comptonization, however, is now so efficient that matter and

radiation temperatures are everywhere very close and the same energy output can be

obtained.

It is possible to get an insight on the existence of high-temperature solutions and to
give an estimate of the limiting value T.;; by means of simple analytical considerations,
using, for the sake of simplicity, a plane-parallel geometry for the atmosphere. For
7 < 1o we can safely neglect free—free absorption in equation (3.7) and, not considering
general relativistic effects (i.e. setting y = 1), we get the expressions for L, wy and p as

functions of  and T
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Figure 3.2 - The same as in figure 3.1 for “hot” solutions.

L=Ll—T (3.13)
7o .
174
wo = — [210 + 3besn (0 = 1| (3.14)
n
= D— .
p=Dx (3.15)

where D = GM,m,/2Kr? = 8.1 x 10°, in c.g.s. units for 7, = 10% cm and M, = 1 Mg.
Neglecting the term kowy, the energy equation becomes a cubic equation in § = T/2,
that can be studied analytically for given values of g and L and treating 7%, as a free

parameter. Equation (3.7) can be cast into the form

6 +p.0+q.=0 (3.16)

with
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A. = 6.3 x 10?2 and B, = 5.1 x 1025, again in c.g.s. units. The approximate expression
for p. holds only for T, >> 108K, while, in order to make the analytical treatment pos-
sible, in the inner part of the atmosphere ¢, is set approximately equal to its maximum
value, (gc)maz = gc(10). Once 1o and I are fixed, equation (3.16) has one or three real
roots, according to the sign of the discriminant, and it is easy to prove that all the roots

are real only if
2.5 x 108

>
U7 (14 Bhegm) P 2

It can also be shown that if just one real root is present, then it satisfies T 2 T.,, whereas,

(3.17)

if condition (3.17) is satisfied, the three roots have magnitudes T' 2 T, T << T, and
T < T, respectively. The solution T' & Ty is unacceptable since T' > T', will produce a
negative radiation temperature gradient (see equation (3.11)) and also 7' << T’y must be
rejected because it is inconsistent with our starting assumption that absorption could be
neglected because the plasma is very hot. Fina.lly, the root T' < T, is the “hot” solution;
it exists only when the radiation temperature exceeds the limit given by (3.17), which
represents the analytical estimate of T.piz.

In figure 3.3 we plot the mean energy of the outgoing photons as a function of

the total luminosity for 7y = 20 g cm™2,

For “hot” solutions only the lower bound
Teriz (dashed line) is shown. As can be seen, while the mean photon energy of the
“cold” solutions (crosses) monotonically increases with the luminosity, the lower bound
Terit for “hot” solutions shows the opposite behaviour. The “hot” and “cold” solutions
coexist for a certain range of luminosities and the mean photon energies of the two
modes approach each other for increasing lo,. The “cold” solution becomes hotter for
increasing accretion rate while the “hot” one softens and this behaviour is opposite to
the one exhibited by the hot, shocked solutions of Shapiro & Salpeter (1973). Moreover

the numerical analysis indicates that high temperature solutions may exist only for high

enough values of ., and that the critical luminosity , lc, below which no “hot” solutions

exist depends on 7g: for 7 = 5 g cm ™2, lo, = 2 x 1072, while for 7o = 20 g cm ™2,

I, = 6 x 1073,
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Figure 3.3 — Mean energy of the outgoing photons versus total emit-

ted luminosity for 7o = 20 g cm~?; crosses refer to “cold” models.

The dashed line represents the lower limit for the existence of “hot”
solutions given by equation (3.17).

The anticorrelation between Teri: and le, and the lack of “hot” sﬂolutions at low
luminosities can be explained as follows. As lo decreases, W and wg start to de-
crease (see equations (3.5) and (3.14)) and, since Compton heating (which is domi-
nant over cooling) becomes progressively smaller in magnitude, the free-free emissivity
(e pT/? P/T/?) must also decrease for the energy equation to be satisfied.
This can be achieved only by an increase of temperature (and a decrease of density,
see equation (3.15)) because the pressure profile is nearly independent on the thermal
properties of the gas. The lack of “hot” solutions at small luminosities is due to the fact
that, when density is very low, the envelope becomes photon starved and even a strong
comptonization is unable to produce the required luminosity.

Comptonization and bremsstrahlung emission from this hot layer could produce hard
X-ray spectra (50-100 keV). The existence of both “cold” and “hot” solutions for the
same values of the flow parameters has been already found in black hole accretion (Park

1990a; Nobili, Turolla & Zampieri 1991) when both free—free and Compton scattering
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are present. An alternative picture for the production of hard X-rays (~ 100 keV)
from accreting neutron stars has been proposed by Kluzniak & Wilson (1991). In their
model matter coming from the inner edge of an accretion disk hits the stellar surface
at a shallow angle, creating a hot equatorial belt in which Compton cooling is very
efficient. It is quite interesting to note that also Zel’dovich & Shakura proposed a “hot”
model in which the reduction of the mean free path of the incident protons, due to the
deceleration produced by plasma oscillations, can raise the temperature in the outer
part of the atmosphere up to 10° K.

The basic limitations of our approach are obviously that the analysis is stationary
and the spectrum is described just in terms of a mean photon energy. The fact that
“hot” models may exist only for high enough radiation temperatures, Ty & Topy ~
10°K at the outer boundary, suggests that, in order to get started, an extra energy
input, different from that produced by the incoming matter flux, must be supplied.
A physically consistent scenario should be investigated in a time-dependent picture.
Furthermore temperatures are mildly relativistic and the expression we used for the
Compton heating—cooling term is just an approximation. Moreover, pair production—
annihilation can not be neglected for I, > 10~2 when the compactness parameter
becomes 2 10. Above I, ~ 0.1, the dynamical effects of radiation pressure and bulk
motion comptonization become also important (see Chapter 2) and are not included in
the present model.

The existence of “hot” solutions for intermediate luminosities with temperatures
~ 100 keV suggests that a class of hard X-ray sources, which possibly have not yet
been discovered, may exist. The transition between the “hot” and the “cold” regime,
even at luminosities where the two solutions are rather different, may be expected in
a time-dependent scenario. N on-stationary calculations are also needed to explore the

stability properties of the two solutions.
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3.3 EMITTED SPECTRUM FOR “COLD?” SOLUTIONS

As shown in the previous section, at very low accretion rates (the threshold depends
on 79 ) there is a unique solution, the “cold” one discovered by 7S (see figure 3.3). Since
in the following we are interested in investigating the spectral properties at very low
accretion rates, such those encountered in 01d isolated Neutron Stars accreting from
the interstellar medium, we will focus on the study of these solutions.

We have demonstrated that no significant expansion occurs in both “cold” and “hot”
envelopes, so that in the following we will treat the radial coordinate as a constant, equal
to the neutron star radius 7.. The heat injected per unit time and mass in the envelope
is calculated using a more realistic expression for the energy loss rate due to Coulomb

collisions of super—thermal protons (see Bildsten, Salpeter & Wasserman 1992),

Lo — Lo 1+ 02 [v?
W = ) th! Y1 0< S
Srrimoy [L— (L — iy /v8)(m/m0)]/? =1 =0 (3.18)
=0 n> 70 »

where v? = ¢3(1 — Leo/LEaa)/3 is the “modified” free—fall velocity, vZ, = 3kT/myp is
the proton thermal velocity.

The monochromatic radiation energy density Wo and flux F = ¢W; (both measured
by the local observer) are obtained solving the first two frequency—dependent transfer

moment equations in the Eddington approximation (equations (1.24) and (1.25) with
v =0 and Wy = W3 =0)

F {amﬁ*_ GM, (1_61nF 2] 5 (s.0)

cWo | On c2py?r? Olnv pre | yWop ’
10mW, GM. (,_10lWo\_ __Si 320)
3 On c2py?r2 3 dlnv |  yWop '

The first two moments of the source function, S, and S, account for the exchange of
energy and momentum between electrons and photons and, for the radiative processes
we are considering, bremsstrahlung and electron scattering, they have the form (1.26)

and (1.27), respectively. The free—free opacity for a completely ionized hydrogen gas is
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expressed by

1— e-—hu/kT

krr =1.318 x 1056 p7—1/2 §(v,T) cm?g™?, (3.21)

3

where a functional fit to Karzas & Latter’s (1961) tables was used for the velocity—
averaged Gaunt factor g(v,T). Since equations (3.19) and (3.20) define a second order
elliptic operator, conditions must be prescribed on the entire boundary of the integration
domain and their form is discussed in N obili, Turolla & Zampieri (1993). In particular,
we assume that diffusion holds in the deep layers where LTE is certainly attained and
this automatically fixes the luminosity at the inner boundary, L;,.

Although the total radiation energy density and luminosity needed in equations (3.6)
and (3.7) are just the integrals of W, and 47wr2 F over frequency, we found numerically
more convenient to derive them from the first two gray moment equations (3.9) and
(3.10). Taking r = r, = constant and considering the expression for W given in

equations (3.18), equation (3.9) can be solved analitically

Lo L 1—[1—(1—v% /vt 1/2
— _2_ _ __;3 . Lin [ ( t;z./ 12)(77/770)] O S 77 < 7]0
v\ 1= o3, /o] (3.22)
= Lin ’ n > 0 ,

with the boundary condition L(nin) = Lip = Ly /y?. The radiation temperature T, is
computed directly from its definition (equation (1.32)).

Equations (3.6), (3.7), (3.10), (3.19) and (3.20) were solved numerically by means
of an original finite differences relaxation scheme (see Nobili, Turolla & Zampieri 1993)
on a logarithmic grid of 50 frequency bins x 100 depth zones. The integration range
was typically —0.7 < log hv/kT, < L1, with T, = T(n:p), —7.6 < logn < log n;y, with
NMin marginally smaller than n,. A typical run required ~ 15 minutes of CPU time
on an IBM RISC/6000. Two sets of models were computed, both with r, = 12.4 km,
M, =14My: N0 = 20 g cm ™2 and luminosities in the range 4 x 1078 < L/LEgq < 0.2,
Mo =5gcm™2 and 10~7 S Loo/Lpis < 107°%. Qur numerical method should guarantee
a fractional accuracy better than 1% on all the variables. As a further check, the total



Emitted Spectrum for “Cold” Solutions 79

luminosity, given by equation (3.22), was compared with the numerical integral of F
over the frequency mesh at each depth: agreement was always better than 10%. We
have also verified that our solutions with Leo = 1072Lp4q reproduce almost exactly
those computed by AW. For low-luminosity models, which we are mainly interested in,
particular care must be used to handle properly the absorption and flux mean opacities,
since the envelope thermal balance depends entirely on the free—free integrated source

term and the radiation spectrum becomes very nearly Planckian in the deeper layers.

The emergent spectra are shown in figures 3.4 and 3.5 for different values of Leo.
In all these models it is 79 = 20 gcm™2; solutions with 79 = 5 gcm™? show the same
qualitative behaviour. A quite unexpected feature emerging from figures 3.4 and 3.5 is
that the spectral shape deviates more and more from a blackbody as Lo, decreases. The
model with Lo, = 2.25 x 1072 Lgqq is, in fact, quite Planckian in shape (see also AW),
showing only a moderate hard excess. On the contrary, solutions with Leo < 107*LEgaa
are characterized by a very broad maximum and by a slow decay at high energies.
Comptonization is relatively important for L < 1072 L gg44, similarly to what happens in
X-ray burster atmospheres (see e.g. London, Taam, & Howard 1986). For less luminous
models, however, non—conservative scatterings play essentially no role in the formation
of the spectrum, as it should be expected since the temperature, and hence the Compton

parameter, becomes lower.

Although the hard excess present in our low-luminosity spectra may be of interest as
far as predictions on the observability of ONSs are concerned, more important, in this
respect, seems to be the comparison of the actual emerging spectrum with the blackbody
at the neutron star effective temperature, By (Tefs), Tefs = [Loo/(4mr20)]*/*, which was
assumed to be the emitted spectrum in all previous investigations (e.g. TC, BM). It
is apparent from figure 3.5 that model spectra with L < 1075 Lpqq are substantially

harder than the blackbody at the star effective temperature. The spectral hardening
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Figure 3.4 - Emergent spectra for Lo, = 2.25x1072 ,107% /107™% Lgqq
(full lines), together with the corresponding blackbody spectra at the
neutron star effective temperature (dashed lines).

can be quantified introducing a hardening ratio

T‘Y
Y=,
T,[B.,(Tfr)]

(3.23)
where T,[B,(Tess)] = 0.96Tss. This differs from the usual definition, v = Teot/Tesy,
where Tco; is the color temperature, because our spectra are not always well fitted by
a blackbody. For mp = 20 gcm™2, 4 steadily increases from ~ 1.5 (value typical of
X-ray bursters in the static phase) for L ~ 1072-10"%Lggq, up to ~ 2.5 for L ~ 10~5—
107° Lgqq (see table 3.1).

The significant deviation of low-luminosity spectra from a Planckian equilibrium
distribution could appear unexpected, since radiation is in LTE in a medium where the
scattering depth is always much less than the absorption one. The source function should
be Planckian and the emergent spectrum, formed at the thermal photosphere, should
coincide with B, (T.s). However, if the atmosphere develops smooth temperature and

density gradients in layers where the medium becomes optically thin to free—free, the dif-

ferential nature of absorption opacity plays an important role. High—frequency photons
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Figure 3.5 — The same as in figure 3.4 for models with Lo =
10~° ,10_6 ,10"7,4 x 1078 Lg4q.

decouple in the deeper, hotter layers and then propagate freely to infinity, contributing
to the high—energy part of the emergent spectral flux. At large enough frequencies, the -
observed shape of the spectrum turns out to be a superposition of planckians at different
temperatures. This result resembles closely that of standard accretion disks, where the
emergent spectrum shows a broad plateau due to the combined, thermal emission of

rings at different temperatures.

Owur present result that low—luminosity spectra are harder than a blackbody is con-
sistent with the previous finding by Romani (1987), who computed model atmospheres
for cooling neutron stars. Although he considered a quite different physical scenario, an
atmosphere in radiative energy equilibrium illuminated from below, the free—free opac-
ity in his cool, He models (Tes; ~ 3 X 10° K) acts in much the same way as in our faint
solutions, producing a hardening of the spectrum. Both in Romani’s and in our anal-
ysis the effects of the neutron star magnetic field were ignored. An insight on the role
of a strong magnetic field, B ~ 10'? G, on radiative transfer was recently provided by

Miller (1992) and Shibanov et al. (1992), who showed that departures from a blackbody
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Table 3.1 — Characteristic Parameters for Selected Models

LL;; T, (keV) %"—f 7y
2.25 x 1072 1.03 1.01 1.40 -
103 0.53 1.03 1.56 -
10—¢ 0.35 1.01 1.88 -
103 0.24 1.02 2.21 2.06
108 0.15 1.07 2.44 2.31
107 0.09 1.34 2.64 2.55

4 x 108 0.07 1.92 2.72 -

* Ratio of integrated flux to blackbody one above 0.1 keV, for models with 79 = 20 g cm™2.

® Hardening ratio, defined in equation (3.23), for models with 779 = 20 g cm™2.

¢ Hardening ratio for models with 175 = 5g cm ™2,

become less pronounced, since the decay of the opacity is less steep at high frequency
than in the unmagnetized case. Finally we note that the assumption of a pure hydrogen
chemical composition used here, is not entirely ad hoc. In fact, contrary to what hap-
pens in equilibrium atmospheres, such as those considered by Romani and Miller who
allowed for different compositions, it is likely that metals are destroyed in the accretion
flow (Bildsten, Salpeter & Wasserman 1992), leaving just a hydrogen envelope.

As we already noticed, the leading motivation for studying the spectral properties of
X-ray radiation coming from neutron stars accreting at low rates, stems from the possi-
ble detection of isolated objects fed by the interstellar gas. Their expected luminosities,
~ 10%% ergss™!, could be within reach of satellites like Einstein and ROSAT. Very re-
cently Stocke et al. (1995) pointed out that one of the objects in the Einstein Extended
Medium Sensitivity Survey may be actually an ONS, consistently with the original sug-
gestion by TC. The knowledge of the emitted spectrum is fundamental in estimating the
observability of any X-ray source and our synthetic spectra, being significantly harder

than the blackbody at T.fs, may indeed increase the chances of detection. In table
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3.1 we have listed the ratios of the computgd flux above 0.1 keV to the blackbody one
for various luminosities; the threshold of 0.1 keV was suggested by the sensitivity of
ROSAT. The solutions with L ~ 10~7 and ~ 1073 Lgq4q can be taken as representative
of the typical luminosities expected from ONSs embedded in the average ISM or in
Giant Molecular Clouds (see Colpi, Campana & Treves 1993). As can be seen from the
table, the ratio becomes larger than unity and the flux above 0.1 keV is from ~ 10% to
~ 40% larger than the blackbody one for 1030 < L < 103 ergss!. We will investigate
the consequences of these results in connection with the observability issue of ONSs in

the following section.

3.4 OLD ISOLATED NEUTRON STARS

As discussed in Chapter 1, if certain conditions are satisfied, at a certain stage of
their life isolated neutron stars may undergo accretion from the surrounding interstellar
gas and may show up as weak, soft X-ray sources, as firstly suggested by Ostriker, Rees
& Silk (1970). The very hypothesis of accretion is questionable if a relic magnetic field
is present and, to ensure that accretion is not stopped by the joint action of magnetic
pressure and rotation, in the following we will assume that the neutron star magnetic
field B is < 10° G.

The total luminosity L emitted by an ONS moving with velocity v relative to the
ISM and undergoing accretion from interstellar gas of density n is (Novikov & Thorne
1973)

0 = s = 1.85 % 10—3neff;7—z_—3 : (3.24)

where 7.5 is the relativistic efficiency defined in equation (2.43) (mess =~ 0.18 for 7.
3r, and M, ~ 1.4Mg), n = (1+x)nm (x = 0.36 for standard chemical composition),
ng is the hydrogen number density, £ and m are the luminosity and the accretion rate
in Eddington units; the velocity is in km/s. If the star moves subsonically relative to
the ISM, equation (3.24) remains valid provided that the ISM sound speed c; is used in
place of v (¢, ~ 104/(T/10*K) km s~1). For typical values of the emitted flux and the
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ISM density, the Strémgren radius, inside which the ambient medium is photoionized
by the neutron star emission, is much larger than the accretion radius and then the

temperature of the accreting gas is always 2 10* K.

As shown by equation (3.24), in order to investigate the detectability issue and
to evaluate the contribution to the X-ray background of ONSs, it is crucial to have
knowledge of the density distribution of the ISM and the velocity distribution of ONSs
in the Galaxy. Calculations of the time evolution of the distribution function f of ONSs
have been carried out by many authors (Paczyriski 1990; Blaes & Rajagopal 1991; BM).
Unfortunately, the velocity distribution of pulsars at birth is poorly known and any
evolutionary scenario remains affected by this indetermination. In a detailed study,
Narayan & Ostriker (1990), starting from the observational data of about 300 pulsars,
showed that their distribution in the parameter space can be well fitted assuming the
presence of two populations of NSs at birth, slow (S) and fast (F) rotators. In a recent
paper, based on a sample of 29 young pulsars, Lyne & Lorimer (1994) suggested the
possibility that neutron stars are born with typical velocities higher than both the F
and S populations of Narayan & Ostriker. Their sample, however, is not complete and
the result would prima facie imply that most pulsars evaporate from globular clusters
and the Galactic plane, leaving at present only a small Galactic population of low
velocity objects. For this reason we retain the velocity distribution at birth proposed
by Narayan & Ostriker. Since high velocity objects do not contribute sizeably to the
possibility of detection (see equation (3.24)) and no detailed tabulation for f is given,
we have repeated the calculation presénted by BM, evolving the distribution function
for the population F (which is characterized by the lowest value of the mean velocity)
of model b of Narayan & Ostriker. All NSs were assumed to be born at ¢t = 0. The
Galactic potential is sum of three contributions, disk, spheroid and halo, and is taken
from Blaes & Rajagopal (1991). The fraction of F objects is 55 % of the total number
of neutron stars, and we use Ny, = 10°. The distribution function was calculated

integrating the orbits of 48000 stars, up to ¢ = 10'° ys. Initial conditions at ¢ = 0
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were obtained assuming that the velocity distribution is gaussian in each component,
together with the vertical distribution; the radial one is poissonian and the azimuthal
one is uniform. In the local region 7.5 kpe < R < 9.5 kpc (R is the galactocentric
radius) we find (z2)1/? = 739 pe: (z) = 261 and 249 pc in the northern and southern
hemisphere, respectively (z is the height above the plane of the Galaxy). The mean
velocity in this local region, averaged over |z| < 200 pe, turns out to be 78 km/s, and

(v2)1/? = 87 km/s. All these values are in close agreement with the results obtained by
‘BM.

As far as the structure of the Local Interstellar Medium is concerned, it has been
widely investigated by a number of authors (Frisch and York 1983; Paresce 1984; Welsh
et al. 1994; Diamond et al. 1995). Within ~ 50-100 pc from the Sun, the gas is tenuous
(n ~0.05—0.07 cm~?) and warm (T' = 10* K), although at distances less than 20 pc, in
the so called “Local Fluff”, the very local value of the density is slightly higher (n ~ 0.1
cm™?). On much larger scales, according to Dickey & Lockman (19.90), the average
density of cool (T' =~ 10?2 K) material in the Galactic plane is generally known to be
n ~ 0.6 cm~? with a scale height variable with the distance from the Sun, although
there are a number of hot (T' = 105-10% K) bubbles almost devoid of material (n =~ 0.01
cm™?). In the following, in connection with the observability of individual sources, the
local ISM will be approximately described as a constant density medium with ng = 0.2-
1 cm~—3, whereas for the distribution of the ISM in the Galaxy we consider the following
picture, based on the presence of two main components, namely neutral hydrogen and
molecular hydrogen: for a wide range of distances (0.4 < R/Ro <1, where Ry = 8.5 Kpc
is the distance of the Sun from the Galactic center), the neutral hydrogen distribution
is nearly constant with radius and can be well fitted by a superposition of two gaussians
and an exponential with a mid-plane density ~ 0.6 cm~—3 and a scale height above the
Galactic plane ~ 230 pc (Dickey & Lockman 1990). Observations for the molecular
hydrogen distribution are less conclusive and here it will be approximated with a local

gaussian distribution with central density ~ 0.6 cm™® and scale height ~ 70 pc (Bloemen
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1987; De Boer 1991). Finally, in the calculation of the ONS contribution to the soft
X-ray background, the presence of the Local Bubble of radius ~ 100 pc surrounding
the Sun has been neglected, since the fraction of sample stars that falls within this
underdense region turns out to be negligible.

As already discussed in Chapter 1, another fundamenta] ingredient to investigate the
detectability of ONSs is the knowledge of the region of the electromagnetic spectrum
in which they emit the bulk of their energy. In the previous section we have calculated
the spectra produced in the ILTE atmosphere surrounding a NS accreting at low rates
and here we will use these results to investigate the detectability issue of ONSs. We will
consider also another possibility: since a relic magnetic field is likely to be present, the
accretion flow can be channeled into the polar caps and, if we neglect all the radiative
effects produce by the magnetic field (on this regard see e.g. Miller 1992; Shibanov et

al. 1992; Nelson et et al. 1995), the main consequence is to limit the size of the emitting

2

+» Where A, = 773 /r 4 is the area of the polar cap and 74 1S

region by a factor 4. /2xr
the Alfvén radius. As discussed in Chapter 1, this fact will produce a hardening of the
spectrum with respect to the unmagnetized case with the same luminosity, since the

flux emitted per unit surface is Frnag = L/24, > Funmaeg = L/4mrZ,

3.4.1 Observability of individual sources
A star of luminosity T, (i.e. moving at v = ) can be observed up to a maximum

distance d,,,, at which the count rate

*1 L” —o, N
N:‘/O‘ 5471-(126 HAde (3.25)

becomes lower than the sensitivity limit of the detector §. In equation (3.25), d is
the distance of the source, o, is the absorption cross—section (Morrison & McCammon
1983) and Ng the column density of the ISM, A4, the detector effective area. In the
following we will refer to the PSPC on board ROSAT (the response curves for A, have
been taken from the ROSAT guide for observers). Due to the combined differential
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effects introduced by the response of the detector and the absorption of the ISM, this
analysis crucially relies on the spectral shape of the radiation emitted by the NS.
The total number of ONSs which can be observed within a certain distance dmqz is

the sum of all the objects with luminosity I > L (i.e. moving at v < %)

‘1_)‘ dmﬂ-m
Nons (£ dmaz, <) = / / / f(r, b,l,v)rz drdQdv , (3.26)
0 QJ0

where f is the distribution function of ONSs and r is the radial distance from the Sun.
Here, we assume a uniform medium and treat ny as a free parameter. Obtaining a
reliable statistical sample of objects in the local region near the Sun from the evolution
of f would require prohibitively high computational times. Since the ONSs which
have reasonable chances to be detected are those in the vicinity of the Sun, we tried
to minimize the effects of the small number of local objects introducing a suitable
approximation to equation (3.26), based on the hypothesis of a local uniform spatial
distribution (details are given in Zane et al. 1995).

Results are presented in table 3.2 for typical values of the luminosity and the density
of the ISM and taking into account also for the possible presence of a magnetic field
B = 10° G. ONSs with z > zrsp =~ 300 pc are assumed not to accrete. The numbers
in brackets refer to a black body emission at the star effective temperature and are
shown for comparison. Calculations have been repeated for two values of the sensitivity
limit of ROSAT, S; = 1.5 x 1072 counts s~* and S = 1072 counts s™*, which roughly
correspond to the thresholds of the All Sky Survey (ASS) and the Deep Exposure (DE).
As can be seen, the maximum detectability distances obtained using our computed
spectra are systematically greater (up to a factor 2-3) than the black body ones, owing
to the hardness of the spectrum. We obtain that, for luminosities [ ~ 1072, at the
sensitivity limit of the ASS ONSs should be detectable up to distances ~ 200 — 300
pc even in the absence of magnetic fields. This result is of the order of TC estimates
for polar cap accretion and shows that, due to the form of the computed spectrum,

ONSs may be observable even if unmagnetized and that the extreme softness of the
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Table 3.2
L = b b
Lgag nH v d?na:c N:ns dma.:c Nons
em™® kms! pc pc
B =0

1077 0.2 9.9 525 (375) 260 (132) 1170 (725) 1293 (497)

1077 0.5 13 360 (240) 333 (148) 845 (425) 1837 (465)

1077 1 17 275 (165) 253 (55) 675 (275) 2495 (414)
4 x107% 0.2 14 380 (220) 402 (135) 840 (445) 1965 (552)
4 x107% 05 19 265 (145) 312 (51) 555 (275) 2324 (570)
4 x1078 1 23 195 (105) 262 (41) 415 (185) 2737 (544)

B=10°gG

107 0.2 9.5 760 (705) 480 (413) 2480 (2110) 5112 (3700)

1077 0.5 13 685 (595) 1069 (802) 2055 (1675) 9563 (6353)

1077 1 16 615 (515) 1823 (1279) 1690 (1330) 13769 (8528)
3 x107% 0.2 15 410 (385) 611 (539) 1350 (1060) 6630 (4088)
3x1078 0.5 20 370 (305) 1345 (914) 1160 (845) 13224 (7017)
3 x1078 1 25 340 (260) 2382 (1393) 990 (695) 20128 (9954)

& All Sky Survey sensitivity limit: S; = 1.5 x 10™2 counts s—!
® Deep Exposure sensitivity limit: S3 = 1 x 10™% counts s™!
Nipt = 5.5 x 108

X-ray spectrum could be a wrong criterion for selecting ONSs. Another relevant result
is that, if a magnetic field B = 10° G is taken into account, the maximum distance
at which ONSs can be observable is 1.5-2.5 times the corresponding distance for the
unmagnetized case and about 10 sources per square degree should be observable at the

DE sensitivity limit; this value is 10 times larger than the estimates by TC.

From a direct analysis of the on line catalogue of the ROSAT PSPC pointings

(ROSATSRC), we found that the mean number of sources detected with flux larger
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than 1072 countss™ is ~ 30-40 deg™2. This result is formally in agreement with the
mean number of ONSs predicted by our model at the same flux limit, ~ 10 deg™?, al-

though we are aware that the ratio of ONSs over the total number of sources is relatively

high. This fact could require a reconsideration of the presently adopted assumptions.

A very promising environment for the detection of ONSs are the nearby Giant Molec-
ular Clouds, where the density of the ISM is sufficiently high for a single NS to emit a
considerable amount of radiation (BM; Colpi, Campana & Treves 1993). However, in
this case also the absorption of the ISM will be enhanced and the possibility of detec-
tion will crucially rely on the delicate balance between the emitted luminosity and the
absorbed flux. We have analyzed the 18 Clouds already considered by Colpi, Campana
& Treves (where all the relevant parameters are quoted; see also Dame et al. 1987).
Since density is much higher than the average value of the ISM, we repeated the calcu-
lation of the detectable number of ONSs, assuming that all of the absorption is due to
the gas in the Cloud. Results are summarized in table 3.3, where a typical luminosity
[ ~ 1077 and the possible presence of a magnetic field B = 10° G have been considered. -
As can be seen from the table, even for the unmagnetized case more than half of the
clouds have count rates above the DE sensitivity limit. Confirming previous estimates
(Colpi, Campana & Treves 1993), Clouds 5-7 and 9-13 represent the most favorable
sites for the observability. At present, we are analyzing the data from the pointings of
the ROSAT satellite in the direction of two Molecular Clouds (Cygnus Rift and Cygnus
OBT) of this sample to see whether any ONSs can be detected within them (Belloni &
Zampieri 1995).

3.4.2 Contribution to the soft X—ray background

Recently Hasinger et al. (1993), performing an analysis of the X-ray emission de-
tected by ROSAT in 27 selected high—latitude pointings, found that the number density
of resolved sources (413 deg™?) exceeds by ~ 60% the number density of quasars pre-

dicted by a standard evolutionary scenario (see also Comastri et al. 1995) and that
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Table 3.3
Cloud Name d. R. mn. Count Rate v N2 .
pc pc cm™?® 1073 571 kms™*
B=0
1  Cloud A 500 20 50 1.6(2.1 x 107%) 56 4
2 CloudB 300 20 51 4.4 (5.2 x 107%) 56 4
3 CloudC 500 16 67  1.5(1.5 x 107%) 62 2
4 Vul Rft 400 23 61 1.7 (8 x 107%) 60 5
5 CygRft 700 67 29 0.3(82x 107°) 47 95
6 CygOB7 800 64 29 0.3 (7.4 x 1079) 47 83
7 Cepheus 450 45 20 2.3 (4.4 x 107%) 41 18
8 Taurus 140 13 134 9.9 (3.1 x 107%) 78 1
9 Mon OBl 800 34 40 0.4 (2.2 x 107%) 52 15
10  Orion A 500 27 84  0.5(8.5 x 1075) 67 12
11 OrionB 500 31 56 0.8 (2.4 x 107%) 58 13
12 MonR2 830 32 36  0.5(3.9 x 107%) 50 10
13 Vela Sheet 425 26 46 1.8 (1.3 x 107%) 55 7
14 Cham 215 13 44 15.4 (0.24) 54 1
15  Coalsack 175 8.5 65 24 (0.43) 61 0
16  G317-4 170 5 203 13.8 (1.7 x 107%2) 90 0
17 Lupus 170 18 53  14.8 (2.3 x 1072) 57 3
18 Rer A 150 7.6 68 34.9 (0.81) 62 0
B =10°G
1 CloudA 500 20 50 20.5 (12.4) 54 3
2 CloudB 300 20 51 56.4 (33.9) 54 3
3 CloudC 500 16 67 19.7 (11.7) 59 2
4 Vul Rft 400 23 61 26.2 (14.4) 58 5
5 CygRft 700 67 29 6.7 (3.3) 45 78
6 Cyg OB7 800 64 29 5.3 (2.7) 45 68
7  Cepheus 450 45 20 26.7 (16.6) 40 18
8 Taurus 140 13 134 180 (94.1) 75 1
9 Mon OB1 800 34 40 6.7 (3.7) 50 12
10 Orion A 500 27 84 11.5 (5.4) 64 10
11 OrionB 500 31 56 14.4 (7.4) 56 13
12 MonR2 830 32 36 6.9 (4) 48 10
13 Vela Sheet 425 26 46 25.7 (14.8) 52 7
14 Cham 215 13 44 140 (96) 52 1
15  Coalsack 175 8.5 65 220 (150) 59 0
16  G317-4 170 5 203 180 (110) 86 0
17 Lupus 170 18 53 180 (110) 55 2
18 Rer A 150 7.6 68 300 (210) 60 0
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the flux produced by extragalactic sources is only ~ 40% of the total flux measured
in the 0.5-2 keV band (2.47 x 1078 erg cm™? s™! sr™!). Although this excess could
be explained in terms of a different quasars evolutionary scenario, another interesting
possibility is that the observed soft emission could be produced by a new population of
sources. Very recently Maoz & Grindlay (1995) showed that the observed data for the
unresolved soft XRB can be accounted for invoking the presence of a galactic population
of objects, which they have tentatively identified with Cataclysmic Variables; using the
hypothesis of black body spectrum at the star effective temperature, ONSs were ruled
out because of their too soft emission. Here we reconsider the issue in light of the fact
that our computed spectra for accreting ONSs show a significant hardening with respect
to a black body and that the possible presence of a magnetic field tends to make the
emission even harder.

The contribution to the soft XRB by accreting ONSs is calculated summing the

fluxes per unit solid angle emitted by all the population of objects in the Galaxy

dI 1 [ Tmes L
— )y == l =
<dQ> 4T /(; /Q /0 f(r.5Lv) 472

where the integrals in 7,  span the entire Galaxy and L, is the source luminosity in the

r2drdQdv , (3.27)

0.5-2 kev band, corrected for interstellar absorption. As far as the number of resolved
sources is concerned, we repeated the calculation of the integral (3.26), where now dmas
is the maximum distance at which a star of luminosity £ produces a count rate above
the threshold of Hasinger et al. (estimated to be ~ 2 x 107* counts s71), the integral
is extended to all velocities and the result is divided by 4w to calculate the projected
number density of sources.

The results of our calculations are presented in table 3.4. Similarly to the finding of
MG and BM, for the unmagnetized case the ONS contribution to the XRB is negligible,
although the flux is almost 40 % larger than that estimated by BM. However, for polar
cap accretion, it turns out that 10% of the observed XRB could be explained in terms of

emission from ONSs and 5% of the total number of resolved sources would be ONSs. In
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Table 3.4

(4Lye <;-l££>" {d1/dQ) {dN/dQ)

dQ ET9) Fxrp® Nxrp?

B=0
6.3 x 1011 0 2.5 x 107%% 0
B =10°G

all b 2.4 x107° 22 9.8% 5.3%

] > 30° 1.3x107° 6 5.2% 1.4%

|b] < 30° 3.6x107° 38 14.5% 9.2%

® ergcm ™25 Isr™

b sources deg 2
¢ Fxpp = 2.4778 ergcm 25 1sr~!
4 Nxgrp = 413 sources deg 2

1

order to quantify the degree of anisotropy, the calculations for polar cap accretion have
been repeated for objects with high (|b] > 30°) and low (|b] < 30°) galactic latitude.
The first case allows a closer comparison with Hasinger et al. and MG. As can be seen
from the table, the ratio of the X-ray flux emitted by objects below and above 30° is
about 2-3. This degree of anisotropy is not in contrast with the observed near isotropy
of the XRB (McCammon & Sanders 1990) since ONSs can contribute at most to 25%
of the soft excess.

The strongest constraint to our results derives from the expected number of sources
above 1072 countss™! (see section 3.4.1) and this will determine the importance of the
ONSs contribution to the X-ray background. Actually, the contribution of ONSs would
scale as the percentage of sources which will be identified as ONSs. We note that our
results are not strongly dependent on the overall shape of the velocity distribution of
ONSs, but only on the number of objects in the low velocity tail, here calculated using
the Narayan & Ostriker distribution function. However, one should keep in mind that
the distribution in the low velocity tail of ONSs remain very uncertain; in fact, in

addition to the possibility that the distribution could be much more depleted of low
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velocity objects than that of Narayan & Ostriker (Lyne & Lorimer 1994), it can also be
affected by dynamical heating, as suggested by Madau & Blaes (1994). This process,
observed in the local disk star population, causes the velocity dispersion to increase
with age as a consequence of scattering by molecular clouds and spiral arms (Wielen
1977). If ONSs participate the same process, dynamical heating over the lifetime of the
Galaxy may scatter a fraction of low velocity stars to higher speeds. This could have
a major effect on the source number counts (that can be decreased up to a factor 10)
and it may reduce the contribution of luminous ONSs to the background. Other factors
of indetermination, like the poor knowledge about the NSs birth rate, and hence, of
their present total nun}ber, may affect our conclusions to the same extent. In addition,
present estimates of the magnetic field of ONSs are subject to various uncertainties. We
conclude that, even if Neutron Stars do not account completely for the characteristics of
the galactic population proposed by Hasinger et al. (1993) and MG, their contribution

may be of importance.






CHAPTER 4

TIME-DEPENDENT ANALYSIS
OF SPHERICAL ACCRETION
ONTO BLACK HOLES

In this chapter results are presented from a time—dependent,
numerical investigation of spherical accretion onto black holes,
within the framework of relativistic radiation hydrodynam-
ics. We have studied the stability of self-consistent, station-
ary solutions of black hole accretion with respect to thermal
and radiative perturbations and also the non-linear evolution
of unstable, high temperature models, heated by the high—
temperature radiation produced by the accretion flow itself
in the inner region near to the horizon. In some cases, a
hydrodynamic shock forms at around 10%-10* Schwarzschild
radii, where Compton heating exceeds radiative cooling. The
calculations were made using a suitably designed radiation hy-
drodynamics code, in which radiative transfer is handled by
means of the PSTF moment formalism and which contains an
original treatment of the radiation temperature equation.

4.1 INTRODUCTION

Stationary, spherical accretion onto black holesis a well-known and extensively stud-
ied topic. Starting from the seminal paper by Bondi (1952), many papers have been
devoted to the analysis of spherical accretion under a variety of conditions, mainly in
order to obtain a definite estimate of the efficiency of the process. In contrast with
accretion onto neutron stars, the efficiency is not fixed by the requirement that all the
gravitational potential energy of the accreting gas must be converted into radiation,
since no rigid surface exists which can stop the flow. Matter can cross the horizon
carrying a substantial fraction of the gravitational potential energy liberated and the
efficiency of the process is determined solely by the effectiveness of the radiative pro-

cesses in converting the internal energy of the accreting gas into radiation, as first noted
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by Shvartsman (1971). As shown by many authors (see e.g. Michel 1972; Novikov &
Thorne 1973; Blumenthal & Mathews 1976; Begelman 1978; Brinkmann 1980), the flow
properties are fixed once the accretion rate is specified, so that stationary solutions can
be completely characterized by their position in the (7, I) plane, where 7 and [ are,
respectively, the accretion rate and luminosity in Eddington units. Stationary spheri-
cal accretion onto black holes was investigated in detail by Nobili, Turolla & Zampieri
(1991, hereafter NTZ); figure 4.1 shows the (mh, 1) diagram for the complete set of
their solutions. At low accretion rates (rh < 1), spherical accretion is very inefficient
in converting gravitational energy into radiation since the density is too low for cool-
ing processes to be effective; the emitted luminosity is also very low (lower branch in
figure 4.1, hereafter the LL branch). These models are essentially adiabatic and have
very high temperafures (see also Shapiro 1973a). In this regime, the only possibility for
increasing the efficiency of the accretion process is related to the presence of magnetic
fields, which can cause strong dissipation (e.g. through reconnection of field lines) and

induce strong emission of synchrotron radiation (Shapiro 1973b; Meészaros 1975). Soffel

(1982) studied in some detail the transition from the optically thin regime to the opti-
cally thick one: as mn increases, the cooling processes become more effective and the gas
temperature decreases, causing in turn a decrease in the total emitted luminosity (with
a local minimum at around m ~ 0.1). For higher values of the accretion rate, free—free
absorption is no longer negligible and the gas becomes optically thick in the inner re-
gion near to the horizon of the black hole. The temperature increases because heating
exceeds cooling and also the luminosity rises since radiation is in LTE with the gas in
the inner core. Preliminary investigations of spherical accretion in the diffusion regime
were made by Tamazawa et al. (1974), Maraschi, Reina & Treves (1974), Kafka &
Mészaros (1976), Vitello (1978), Begelman (1979), Gillman & Stellingwerf (1980) and
Freihoffer (1981), while a complete treatment was finally given by Flammang (1982,
1984), who showed the existence of a subcritical point related to the equation for the

radiative luminosity. When 7 > 1, the inner core starts to be optically thick to elec-
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Figure 4.1 - The (rn, [) diagram for the complete set of stationary
solutions found by NTZ (circles). Also shown are the 6 initial models
whose relevant parameters are listed in table 4.1. Filled circles mark the
stable LL stationary solutions, while open circles denote the unstable
HL models. Asterisks indicate the low m HL solutions, which might
still be unstable, but on much longer time—scales.

tron scattering as well. Stationary, spherical accretion onto black holes with 7o >> 1 has
been studied by Blondin (1986). In this regime, a trapping radius appears (Rees 1978;
Begelman 1978), below which all of the radiative energy is advected into the black hole,
since the outward diffusion velocity of the photons is smaller than the inward velocity
of the accretion flow. This makes the process less efficient and the rate of increase of

luminosity with 7 becomes slower.

For 3 < m < 100, there is also another class of solutions, characterized by hav-
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ing high temperatures and luminosities (upper branch in figure 4.1, hereafter the HL
branch). These are dominated by the effects of comptonization which keeps the gas and
radiation temperatures almost equal in the inner part of the flow where the density is
sufficiently high to make the Compton parameter very large. In the intermediate region
between 102 and 105 g (where ry is the Schwarzschild radius of the black hole), Comp-
ton heating dominates and the only competitive cooling mechanism is free—free emission.
The first authors to investigate the possible existence of high luminosity solutions were
Wandel, Yahil & Milgrom (1984) and Park (1990a,b), who performed a detailed study
of spherical accretion for a large range of accretion rates and considered also a two—
temperature model with pair production. High luminosity stationary solutions have
relatively high efficiency and appear to exist only for a very definite range of accretion
rates. Already in 1976, Ostriker and collaborators (Ostriker et al. 1976) pointed out
that, because of the non-local nature of comptonization, the heating produced in the
flow by the high~temperature radiation coming from the inner region can increase the
gas temperature in such a way that the internal energy density becomes larger than the
gravitational energy density and the accretion process is then stopped. This effect is
called preheating. Later on, Cowie, Ostriker & Stark (1978), Shull (1979), Stellingwerf
& Buff (1982) and Krolik & London (1983) showed that preheating is very important in
placing limits on the region of parameter space within which HL solutions for black hole
accretion can exist, although the strength of preheating is reduced if Compton cooling
is taken into account (see e.g. Bisnovatyi-Kogan & Blinnikov 1980). As shown by NTZ,
preheating at the sonic point for the matter prevents the existence of high luminosity
solutions With\ ™ 5 3, while preheating within the sonic radius prevents the existence of
stationary solutions for 72 > 100. The stability of these solutions remains a completely
open question and represents the main goal of the present study. The first attempt to
investigate the stability of isothermal accretion was made by Stellingwerf & Buff ( 1978)
using an Eulerian scheme, based on an extension of the Henyey relaxation method.

They found that transonic accretion is quite stable. By means of a general relativistic
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analytical calculation, Moncrief (1980) showed that, for isentropic flows, no unstable
normal modes exist which extend outside the sound horizon. The first studies including
the heating and cooling terms due to the presence of the radiation field (Cowie, Ostriker
& Stark 1978; Stellingwerf & Buff 1982; Stellingwerf 1982) were devoted to analysing
the effect of preheating on the stability of the accretion flow and to defining the region of
the (1h, ) plane where the existence of stationary solutions is not allowed. In particular,
Stellingwerf (1982) presented a local stability analysis of optically thin, X-ray heated
accretion flows and showed that, for sufficiently high luminosities, a finite amplitude
drift instability can develop, due to the form of the free—free cooling function, causing
a time—dependent behaviour of the solution on a time-scale ranging between a day and
a few tens of days. Krolik & London (1983) used the WKB method to derive the dis-
persion relation for modes coupling density, temperature and velocity perturbations in
an optically thin, accreting gas and found that, although stationary solutions with high
temperature and luminosity can exist, heating of the gas inside the sonic radius leads to
the onset of a thermal instability in a large region of the (71, [) plane. Gilden & Wheeler -
(1980) and Vitello (1984) investigated time-dependent, optically thick accretion within
the framework of General Relativity, treating the radiation field in the diffusion approx-
imation and using two different numerical schemes: a Lagrangian hydrodynamic code in
the first case and a Linearized Block Implicit Algorithm in the second one. They found
that, within this approximation, no matter which initial conditions the code started
from, convergence toward stationary LL solutions was rapidly achieved, showing that
they are intrinsically stable. Finally, NTZ, using an argument originally suggested by
Nobili, Calvani & Turolla (1985) and based on Prigogine’s criterion, argued that HL

solutions might be unstable because of the large value of the entropy production rate.

Despite the fact that the stationary problem has been extensively investigated,
mainly for shedding light on the efficiency of the radiation generation, we think that
several aspects require further consideration such as, for instance, investigating the sta-

bility properties of the high luminosity solutions and searching for the existence and
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non-linear evolution of possible heated or shocked models. In this chapter we present
an analysis of the stability and time-dependent behaviour of the solutions for spher-
ical accretion onto black holes within the framework of general relativistic radiation

hydrodynamics.

4.2 THE MODEL

In the following, we will consider spherical accretion of a self-gravitating hydrogen
gas in the gravitational field of a non-magnetized, non-rotating black hole. The basic
equations have been presented in Chapter 1 (section 1.1.2). The radiation hydrody-
namic equations (1.35)—(1.41), together with the first two moment equations (1.42) and
(1.43) need to be supplemented with the constitutive equations for the gas, the ex-
pressions for the source moments, a prescription for the closure function and suitable
boundary conditions. Stationary, spherical accretion onto black holes has recently been
investigated in detail by NTZ. The main goal of the present analysis is to ascertain the
stability properties of the solutions found by NTZ; in particular, we want to study the
behaviour of the models in a certain range of accretion rates, for which both low and
high luminosity solutions exist. To allow a direct comparison of our results with those
of NTZ, we will adopt the same input physics which they considered.

If the dominant radiative processes are free~bound, free—free and isotropic scattering,

the radial source moments sy and s; can be written (see equations (1.30) and (1.31))

_ 4KT T
Sg = P(E_fb — ko’lﬂg) + kespwg mec2 (1 - ?Z_'l) 5 (41)

81 = —pk1w1 5 (42)

where c&gp is the emissivity per unit mass per unit time, ko, k; and k., are the absorp-
tion, flux-mean and scattering opacities, respectively, and T, is the radiation temper-
ature, defined in equation (1.32). As discussed in Chapter 1, the second term on the

right hand side of equation (4.1) accounts for the energy exchange between matter and
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radiation due to non-conservative scatterings and is obtained by integrating the Kom-
paneets equation over frequency and neglecting the non-linear term which describes
induced emission. Since it is derived in the Fokker—Planck approximation, this term
is certainly not adequate for describing the interaction between photons and electrons
when the latter become relativistic, as happens in some of the solutions which we have
computed. However, even in this case, the model can give a good qualitative indication

of the correct results. We have expressed the emissivity using the interpolation of the

cooling function A given by Stellingwerf & Buff (1982)

_ pA A
= 4.3
ero mf,c ’ (4.3)

-1
A= l:<142 X 10*27T1/218rel + 6.0 x 10—22T*1/2) +
—1

~-12
25 T 3 . —1 %
+10 15 840K erg cm” s,

Bret = (1+4.4 x1071°T)

which includes bound-bound, free-bound, e—p and e—e bremsstrahlung for a pure hy-
drogen gas; the factor B, is a relativistic correction. Assuming LTE between emit-
ters and absorbers, we can use the Kirchhoff law to obtain the Planck mean opacity,
kp = €5/ arT*, where ag is the blackbody radiation constant. Since the actual spec-
tral distribution of the radiation energy density is not known in a frequency—integrated
calculation, we use kp in place of the absorption opacity ky. The flux-mean opacity
k1 can be split into two terms: the first is the scattering opacity ke, and the second is
the sum of the contributions from all of the other radiative processes; however, since
kes is always dominant for the range of densities and temperatures encountered in the
present problem, we have approximated the additional term using the Rosseland mean

kr calculated taking into account only free—free processes

k]_ 2k63+kR, (44:)
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kr = 6.4 x 1022pT~"/? cm? g 1.

Finally, we need to specify the constitutive equations for a pure hydrogen gas

P=l14a(r)Pit, (4.5)
e = pc? {1 + g[z(T) +2*(T)] nifz 1 - 2(T)] Tfiz } , (4.6)

where T is the gas temperature, Eg = 13.6 €V is the hydrogen ionization potential and
z(T) is the degree of ionization, computed by equating the collisional-ionization and
radiative-recombination rates (Buff & McCray 1974) and expressed using the interpo-

lation formula of Stellingwerf and Buff (1982)

2(T) = 1_%5 , (4.7)
with
Fzz(_l_%)exp(—1.58;105 K) '
In equation (4.6)
o (1) =2 [ (7-1) - 1], (4.8)

where § = KT /m.c? and 7 = K3(071)/K5(67') (K is the modified Bessel function of
order n). A polynomial fit by Service (1986) was used to calculate 7, giving an accuracy
of a few parts in 10°. The third term inside the curly brackets in equation (4.6) accounts
for the electrostatic potential energy of bound electrons in the neutral hydrogen atoms.

The constitutive equations (4.5) and (4.6) can be used to express two fluid variables
in terms of the other ones. Since the values of the temperature T and the density p
are needed for evaluating the source moments so and s;, it is more convenient to use
them in the hydrodynamic equations and to calculate e and P from equations (4.5) and
(4.6). Inserting equations (4.5) and (4.6) into equation (1.35), the Energy equation can

be written in the form

3 EH) dz 3 dz* ] kgT Ty P <1> asg
¢

3 .
[5(”+’c)+(§+k31’ dlnT  2dInT +o, =0 (49)

2T 2
mpc2 T ¢

P
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As far as the closure function is concerned, in the present calculation we chose to

relate wy to wy using the following expression

f:Ez.__:?_[H(L)TT , (4.10)
Wo 3 T0

where 7p and n are free parameters. We made several trials with different expressions
for f and found that the fractional difference between solutions obtained with different
reasonable closures turns out to be no larger than ~ 20 %, which is acceptable here.
In fact, a change in the closure parameters was used to perturb the initial stationary

solution, as we will discuss later.

4.2.1 Equation for the Radiation Temperature

In the frequency—integrated transfer problem, the radiation temperature Ty cannot
be directly computed from its definition (equation (1.32)). However, since Ty appears
only in the term in sy which accounts for comptonization, it only becomes important
when the energy exchange between matter and radiation due to non—conservative scat- -
terings starts to be effective. In a medium at rest, the fractional change of the mean
photon energy (E = 4KT,) because of scatterings with a thermal, non-relativistic
distribution of electrons, follows the relation

dE _4KT (B 1\ .
E  m.c® \4KT &aTs

(Rybicki & Lightman 1979; Wandel, Yahil & Milgrom 1984) where 7 is the scattering
depth, 4KT(E/4KT — 1)/mec? is the mean energy change per scattering and adr is

the mean number of scatterings which a photon undergoes between 7 and 7 + dr, with
a=1 forT <1,

a=2r forr>1.

From the computational point of view, it is convenient to write an equation for T', which

is valid over all of the integration domain with continuous coefficients; for this reason the
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previous equation is usually written in the following form, which is an approximation

near to 7 ~ 1 (Park & Ostriker 1989; Park 1990a):

dinT, __ (T,
=2 <—f - 1) , (4.11)

where Y, = 4KT max(7,72)/m.c? is the Compton parameter. In stationary calcula-
tions, this equation has been used directly to give the variation of T, with r, at Eule-
rian constant time ¢, but for non-stationary flows it is not satisfactory to integrate it
along the time-slice (i.e. at constant Lagrangian time ¢) as this would imply an infinite
speed of propagation of information. Instead, we apply it along the outward—pointing
characteristics of the radiation field, pc(t) (defined from the moment equations (1.42)

and (1.43)), and calculate the optical depth 7 along the same lines using

T:/ kespbl'dp . (4.12)
m

This seems a reasonable choice because the radiation temperature is strictly related, by
definition, to the radiation energy density and we expect that information will propagate
along the characteristic lines of the radiation field. In this case it is not difficult to show
(see Appendix B, equation (B5)) that |

or, 2kespY. T, 1 0T,
T gDy, | 2RePleq (21 —Z| 4.1
ot al'v [ T o ( T 1) i I’ Ou (4.13)

where v = bjic/a = (f +1/3)/%¢ is the characteristic velocity for the radiation field
and fic = dp./dt. This is the actual form of the equation for T, used in our calculations.
Equation (4.13) applies when comptonization is the dominant radiative process and also
gives the correct behaviour (outgoing wave) when non—conservative scattering becomes
ineflicient as long as true emission and absorption can be neglected. For the HL models,
true absorption is never dominant and true emission is never likely to significantly affect
T, and so the use of equation (4.13) is always satisfactory. For the LL models, true
emission and absorption are dominant but in this case the second term on the right

hand side of equation (4.1) is small compared with the other terms and an accurate
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evaluation of T is no longer needed. The stationary limit of equation (4.13) (see again

Appendix B, equation (B8)) is
2kespY. T

uc \ 07T, B I,
(1 + I‘vc) B ?— — T, < 7 1) , (4.14)

where the partial derivative is taken at constant Eulerian time ¢. In this form, the

presence of a critical point where u = —T'v./cis made apparent. We note that this result
is a consequence of the finite velocity of propagation in equation (4.13); in fact, as is well-
known, the presence of critical points in the hydrodynamic equations for stationary flows
is a relic of the characteristic velocity of the corresponding time—dependent equations.
This result represents the main difference between the form of the T, equation used
here and the one considered in all previous studies of this problem in the framework of

black hole accretion (Park & Ostriker 1989; Park 1990a; NTZ).

4.2.2 Boundary Conditions

From the mathematical point of view, the equations of radiation hydrodynamics
(1.36)—(1.41) and (4.9), the first two moment equations (1.42) and (1.43) and the radi-
ation temperature equation (4.13) form a hyperbolic system. In order for the problem
to be well-posed, we need to specify values for all of the variables at some initial time
t = to over all of the integration domain p;n, < g < oyt and also to assign suitable
boundary conditions at the spatial boundaries pin, ttont. The number of boundary con-
ditions needed depends on the sign of the eigenvalues of the characteristic equations at
each boundary. At the outer boundary, negative eigenvalues signify that information
is propagating into the integration domain from outside and a corresponding number
of conditions must be assigned; the same is true for positive eigenvalues at the inner
boundary. In the present case it can be shown that we need to prescribe 7 boundary
conditions (4 at the inner boundary and 3 at the outer boundary) as follows: 2 condi-
tions related to the fluid equations, 2 related to the moment equations, 1 each for the

equations for Ty, a and M. As far as the fluid boundary conditions are concerned, we



106 Time—dependent Analysis of Spherical Accretion onto Black Holes

set a floating boundary (extrapolation in r) for u at g = pous; at g = pin, we dropped
the pressure gradient term from the Euler equation, making it advective in form and
assuming strict free—fall very near to the black hole horizon. The inner conditions on
T, and w; and the outer condition on wy were all taken as floating boundaries. The
choice of a floating boundary is suitable when one does not want to put any constraint
on a variable, leaving it free to adjust itself or to oscillate if there are waves propagating
out of the integration domain (as for a vibrating string with free endpoints).

As far as ¢ and M are concerned, the time—slice at constant ¢ is a characteristic

- direction for equations (1.39) and (1.40) and we put
a=1 L= Hout (4.15)

The condition on a, equation (4.15), corresponds to synchronizing coordinate time with
the proper time of a comoving observer at the outer edge of the grid. This is also equal
to the Eulerian clock time there, if the outer edge of the grid is placed sufficiently far
away from the black hole.

Finally, we note that, if the system tends to a stationary limit, the time—dependent
equations reduce to their stationary form and the solution which crosses any critical

points in a regular way is automatically selected.

4.2.3 Numerical Method

The equations presented in this chapter and in section 1.1.2 have been solved nu-
merically for matter being accreted spherically onto a Schwarzschild black hole, using
a Lagrangian finite difference scheme with a standard Lagrangian organization of the
grid. The code was adapted from one developed by Miller & Rezzolla (1995) for solution
of the equations of radiation hydrodynamics in the context of the cosmological quark—
hadron transition. We divided the integration domain (from the black hole horizon at

r = ry out to 10°r,) into a succession of comoving zones with each one having width Ap
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21% larger than the one interior to it. Whenever the inner edge of the innermost zone
crosses the horizon (which happens every 4-5 cycles with our time-step constraints),
we remove it from the calculation and perform a regridding of all the variables. We
followed a regridding procedure previously adopted by Szuszkiewicz & Miller (1995) in
connection with the study of disc accretion onto black holes. Originally a cubic spline
interpolation was used, but this turned out to produce a numerically unstable evolution
in our case. A local cubic interpolation was eventually used instead, which was found
to be satisfactory and efficient. At the initial time the effective mass contained within
the inner boundary, My, is equal to the initial black hole mass M3y, which we take to
be 3Mg as in the stationary calculations. As time elapses, My increases as zones pass
through the horizon and are removed from the calculation. However, during a charac-

teristic evolutionary time interval, the mass of the material accreted is small compared

with My,

To have second—order accuracy in time, u and w; are both evaluate(i ba,t an interme-
diate time level. They are advanced to the ne\& time level at the end of ;each cycle after -
all of the other variables have been calculated. The time-step is adjusted in accordance
with the relativistic Courant condition and two additional constraints on the fractional
variations of p and T in each time-step, which are required to be smaller than 5%. In
practice, we found that the time-step is usually limited by the last two conditions due to
the fact that the variation of density and temperature, as seen by comoving observers,
becomes very rapid near to the horizon where the flow velocity approaches the speed
of light. As far as the spatial centering is concerned, p, T', wg, T,y and a are treated as

mid-zone quantities, while », M, v and w; are treated as zone boundary quantities.

Once the finite difference representation has been introduced, equations (1.36),
(1.37), (1.39), (1.40) and (1.41) can be solved explicitly for u, p, a, M and r, re-
spectively. Where necessary, linear interpolation and extrapolation in time were used
to obtain the values of quantities at suitable time levels. The semi-logarithmic deriva-

tives present in the Continuity equation (1.37) and the equation for a (1.39) were solved
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using the Crank-Nicholson operator for equation (1.37) and the Leith—-Hardy operator
for equation (1.39) (see e.g. May & White 1967). For the moment equations (1.42) and
(1.43), we adopted a mixed representation: after dividing the first equation by wy and

the second by w; we grouped together the terms in the following way:

(’LU(])t_ 4 (b; T4 by s ac 1 9 2
—'u—J;am 3 —I;--I-Z—; + T f +;; So—m(wla"")u ,  (4.17)

(wl)t:_2<ﬁ+ﬁ>+§}:51_ 1

wy b T 1 abrd

(woa‘l)“ -

. (Fwoar®),| . (439
where wy has been expressed using the closure relation wy = fwy with f being defined
as in equation (4.10). The terms on the left hand side of equations (4.17) and (4.18)
were treated using the Crank—Nicholson operator, while the quantities appearing on the
right hand side were calculated at the correct time level by means of interpolation or
extrapolation where necessary. Because the dependence on temperature in the Energy
equation is rather sensitive, we adopted a semi-implicit scheme for equation (4.9) using
a secant iteration method. The temperature at the new time level is calculated itera-
tively starting from two initial estimates, based on the value at the previous time—step.
Convergence is rapidly achieved in 4-5 iterations. Since s is in general very sensitive
to the value of the temperature, the iteration was extended to include also the zero—th
moment equation (4.17).

The equation for T, (equation (4.13)) presents a particular numerical problem be-
cause of the delicate balance between T' and T, which, following Bowers & Wilson

(1991), we treated using a fully implicit differencing for (T' — T) to achieve numerical
stability.

4.3 NUMERICAL RESULTS AND DISCUSSION

We have calculated the time evolution of 6 models, starting from the stationary
solutions listed in table 4.1 whose position in the (n, [) plane is shown in figure 4.1.
Because of the different form of the 7', equation used here, the present stationary solu-

tions differ slightly from those of NTZ (see equation (4.14) and the following discussion).
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Table 4.1 - Characteristic Parameters for Stationary Models.

m l Neff = l/?’h
1L 28.5 4.8 x107%  1.7x10°7
2L 4.27 9.2 x 107" 2.2 x 1077

3L 0.071 3.5 x 1078 4.9 x 1077
0H 70.8 7.3 x 1073 1.0 x 107*
1H 28.3 1.4 x 1073 5.0 x 1073
2H 3.45 2.2 x107* 6.5 x 107°

The definitions of relevant time—scales for the present discussion are listed in table 4.2.
Along with the dynamical time—scale, t4 (which is the characteristic time for an element
of fluid with velocity u to travel a distance r), we have listed also the sound crossing
times for the gas, t,4, and for the radiation, t,, (these are defined as Phe ratio of the
radial length scale to the relevant characteristic velocity and represent the time needed
for a “sound” wave in the gas or radiation fluid to travel a distance r). For determining
whether stationary solutions are stable or not, we should in principle evolve each model
for a time comparable with the relevant ¢,4 or ¢, in order to allow information to travel
from the inner regions to the outer ones. At 105rg, tog ~ 10* s and t5, ~ 1 s. To
reach an evolutionary time ¢ = 10* s would require prohibitively high computational
times but in fact, as we shall see, all of the models evolve on a much shorter time—scale
(typically of a few seconds) which is mainly determined by the thermal and radiative
processes. The thermal balance is regulated by the cooling and heating time-scales, t.
and t;, which are the ratios of the internal energy of the gas to the cooling rate (C)
and heating rate (H), respectively, and are both defined in table 4.2. We have also
introduced the thermal time—scale, :5, defined as the ratio of the internal energy of the
gas to the net rate of energy input or output for the gas, |H — C|.

For each model we started the numerical calculation from an initial perturbed so-

lution which was calculated by changing the closure function. By varying 79 and n in
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Table 4.2 — Time-scales

tg = ;7‘2 dynamical time
5P 1/2
tyg = -vL sound crossing time for the gas Vg = (79‘;) Ientropy
) . Lo 1/2
tor = vl sound crossing time for the radiation Ve = (f + %) / c
2
te = i:z"é—”i cooling time C=pc (Efb + keswo ‘i:Bc{)
2 —_—
tp = e;p—cgi}: heating time H = pcwq (kO + k3347]:z3<:1;7>
2
tin = El:é’%(%lf thermal time

equation (4.10), we obtained a perturbation of the order of 10-20 % in the gas tem-
perature and in the radiation moments. This way of setting the perturbation was not
effective for model 3L, which is optically thin everywhere, and so, only in this case, we
decided to evolve the solution without any initial perturbation just to have an indication
of the intrinsic stability of these models. The solution after 14 seconds remains exactly
in the initial stationary state. This is not surprising since, in this case, we know that
cooling is very inefficient and so the result obtained by Moncrief (1980), who found that
adiabatic flows are stable, was likely to apply here. In fact, optically thin solutions are
not of great interest and we did not spend further time in the numerical analysis of the

stability of these models.

In figure 4.2 the results from the numerical calculation for model 1L are shown.
This solution is representative of the behaviour of all optically thick LL models. As can
be seen from the figure, the solution relaxes toward the stationary state (shown with
a continuous line) on a time—scale of the order of #;; which, for this solution, is much
shorter than 1 second within 10°r;. This shows that these solutions are stable, in agree-
ment with the result obtained by Vitello (1984). The perturbation does not directly
involve velocity and density, which remain essentially equal to their initial values and
the accretion rate also remains extremely constant. Radiation and gas pressure have

negligible effect in these cases and matter is essentially in free—fall from the sonic radius
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Figure 4.2 — The Mach number uc/(I'v;), the accretion rate in Ed-
dington units 1, the gas temperature 7' and the radiative luminosity
| = 4wr?cw, / Lg are plotted versus log(r/ry) for model 1L at different
times.

(located at 7 ~ 10%7,) down to the black hole horizon. Temperature and luminosity re-
lax very quickly to their stationary values. In the optically thick inner core, matter and
radiation are in LTE and the luminosity is proportional to the local value of the temper-
ature gradient; in the outer region compressional heating balances free-bound cooling
and the gas is essentially in radiative energy equilibrium at the hydrogen recombination

temperature, T ~ 10*K.
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For models on the high luminosity branch, the behaviour of the time—dependent
solutions is completely different. In figures 4.3 and 4.4, we show the results of numerical
calculations for models 2H and 1H, respectively. For model 2H a small deviation from
free—fall is observed in the velocity profile at around 10°-10*r,, due to the high gradients
in the gas pressure. However, even in this case, the matter fluid is essentially in free—fall
and the accretion rate is constant. The interpretation of the temperature and luminosity
profiles shown in figure 4.3 is less straightforward. They do not seem to converge at all
toward the stationary solutions found by NTZ, but, after 70 seconds, they are still in
essentially the initial perturbed state. We postpone discussion of these solutions to the

end of this section.

For model 1H (having larger m), a thermal instability appears in the inner part of
the flow after about 2-3 seconds, as can be seen from figure 4.4, and the temperature
increases by almost an order of magnitude. The cause of the onset of this instability
will be discussed later. A few seconds after this, the velocity profile starts to deviate
significantly from free—fall owing to the large drag exerted by the internal pressure
gradients. A compression wave develops, whose front becomes progressively steeper as
it propagates outward and, after 8-10 seconds, a hydrodynamic shock forms at around
103-10%*ry. Across the shock, the kinetic energy of the gas is dissipated into thermal
energy and the density increases; matter starts to accumulate at the shock front and a
corresponding decrease in p is seen in the inner region. Immediately behind the shock
front, the gas accelerates and free—fall is rapidly restored. We note that, since the shock
is very far away from the black hole horizon, the local free—fall velocity is ~ 10~ 2¢; for
this reason the kinetic energy dissipated at the shock is relatively small and the radiative
luminosity does not increase significantly through it. As far as we know, this is the first
time that a shock has been found in self-consistent solutions of black hole accretion (see
Chang & Ostriker 1985 for a discussion of shock formation in stationary models). The
large increase of / in the first 3 seconds (by more than one order of magnitude) is due to

the enhancement in efficiency of free—free and Compton cooling caused by the increase
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Figure 4.3 — The same as figure 4.2 for model 2H.

in T'. Looking carefully at the profile of the Mach number, it can be seen that the shock
front is moving outward, at an approximate speed of 108 cm/s ~ 1072¢. Hence this
solution is definitely non-stationary as confirmed by the fact that the accretion rate
is not constant and matter keeps accumulating at the shock front. With the aim of
getting a better treatment of the shock region, we repeated the calculation inserting a
source of artificial viscosity. Figure 4.4 shows the result of this computation. Following

the standard prescription by von Neumann and Richtmyer (1950), a dissipative term Q,
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Figure 4.4 — The same as figure 4.2 for model 1H.

proportional to p;_1 /3 (ui — u,-_l)z, was inserted into the equations (here the subscripts
indicate the locations on the finite difference grid at which each variable is evaluated; ¢
represents a zone boundary and 7 —1/2 represents a mid-zone). However, since the flow
is being compressed continuously from the sonic radius down to the black hole horizon,
the amount of dissipation would be excessive, especially in the vicinity of rg, unless
some modification is made to the standard procedure. In view of this, we decided to

switch on the artificial viscosity only when the fractional variation of u across a grid
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Figure 4.5 — Ratios of the heating time ({3) to the cooling time ()
and of the thermal time (%41 ) to the dynamical time (tq) plotted against
log(r/ry) for model 2H at different times.

zone a = 2(u; — wi—1)/(u; + u;_1) becomes larger than 30%. As the shock forms, o

increases above 0.3 and the viscous term

0.3

Qi—12 =k (1 - 7;) pi—1/2 (ui— wi1)’ ¢ (4.19)

then starts to be progressively more effective. Here k is an adjustable constant (k = 2
in the actual calculation). About 30 seconds after the beginning of the evolution and
approximately 20 seconds after the shock formation, we were nevertheless forced to stop
the calculation because of the formation of large numerical oscillations at the shock front
and some more sophisticated treatment would clearly be desirable. However, for the
present purposes, we were content simply to demonstrate the existence of the shocked
solutions.

The evolution described for model 1H, with the appearance of a thermal instability
and the formation of a hydrodynamic moving shock, is a common feature of all of
the high luminosity models along the high m part of the HL branch. We have made

a systematic search for the point on the (mh, 1) plane which marks the onset of the
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Figure 4.6 ~ The same as figure 4.5 for model 1H.

instability and the result is shown in figure 4.1, where all of the HL unstable models
are plotted as open circles. According to the analysis of Field (1965) and Stellingwerf
(1982), the form of the free~free cooling function implies that the gas should be thermally
unstable to isobaric short—wavelength perturbations so that, if the Compton heating rate
exceeds the cooling rate at some radius, it will continue to do so until matter there has
been heated to a temperature which is essentially equal to that of the radiation. In the
present case, owing to the large value of the Compton parameter Y., Compton cooling is
equally as efficient as Compton heating and the analysis by Stellingwerf (1982) does not
strictly apply. However, as discussed by Cowie, Ostriker & Stark (1978), the instability
is clearly due to the fact that the heating rate is greater than the cooling rate and, at the
same time, the heating time is shorter than the dynamical time. In figures 4.5 and 4.6,
we have plotted the ratios of the heating time (tn) to the cooling time (¢.) and of the
thermal time (¢;5) to the dynamical time (¢4). These quantities are plotted against r/r,
at different times for models 2H and 1H, respectively. As can be seen from figure 4.6,
at the beginning t5 is slightly smaller than ¢, in the region around 10%-10%*r,. There,
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heating exceeds cooling and, since the‘ flow cannot advect the excess energy efficiently
(ta =~ t), a small perturbation is sufficient to make heating more effective and the
onset of a thermal instability is unavoidable. Also the value of the thermal time—scale,
t11,(10%rg) ~ t4(10%r,) ~ 1 s, is consistent with the time-scale for the onset of the
instability found numerically. The region of instability then moves to larger radii, as
can be seen from figure 4.6, and so it is not surprising that the shock keeps moving
outward. On the other hand, figure 4.5 shows that the ratio ¢;5/t4 is significantly larger
than unity for model 2H in the region where heating is more effective than cooling and
so the thermal instability is advected into the hole on a dynamical time—scale. In other
words, since the models along the low . part of the HL branch have small gas densities,
the radiative heating and cooling are comparatively less efficient than compressional
heating and the gas is essentially adiabatic. Only very far away, around 3 x 10°r,, do
the conditions seem to be favourable for the onset of the thermal instability; however,
the thermal time-scale in that region is ~ 10%® s and the evolutionary time becomes
very large. This means that these solutions might also be unstable but on much longer

time—scales.

Then, we confirm that all of the low luminosity, NTZ stationary solutions, which are
characterized by negligible comptonization, are indeed stable to thermal and radiative
perturbations in agreement with previous investigations (e.g. Gilden & Wheeler 1980;
Vitello 1984). On the other hand, the time evolution of high luminosity solutions, for
which self-comptonization of bremsstrahlung photons is the main radiative and thermal
process, exhibits a much richer phenomenology. As we have shown, the upper part of
the HL branch (for 7n 2 10) enters the region of the (7h, ) plane where preheating
effects start to be important and this leads to the onset of a strong thermal instability
giving rise to the formation of an outward—propagating hydrodynamic shock. These
shocked solutions show significant transient increases in the total luminosity. Finally,
we note that, during the evolutionary times considered, we did not find any evidence

for possible transitions between the HL and the LL branch.
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We are planning to apply this code also to the study of the stability and the time—
dependent behaviour of accreting neutron stars in order to shed further light on the
observational properties both of the bright LMXBs accreting near the Eddington limit

and of the ONSs accreting from the interstellar medium.



APPENDIX A

In this appendix we derive the solution of the Fokker—Planck equation (2.10) for the
variable u; = Wit~2. This solution is obtained applying to @41 (equation (2.15)) the

inverse Fourier transformation
1 +co -
U = — 7, dk. Al
! 27 J _ oo ! ( )

By defining ¢ = 1/e"7% = (vo/v)*/ (2+6) and introducing the new complex variable
s = ik(1/€ —1) + 1, the Fourier integral (A1) can be cast in the form

A & gttt [T 14p ¢t t
m—%l—fexp(—l’f)/pioo st exp(l_gs 1__€;>d.s, (A2)

Tt can be shown (see e.g. Grobner & Hofreiter 1973; Prudnikov, Brychkov & Marichev

1986) that equation (A2) is an integral representation of the Bessel function Ja:
p a2 pAtico /
a 9 /—’ oa—1_ps—gq sds .
( 2= ami (‘1> /A——ioo 5oe ’ (43)
Comparing equation (A2) and (A3), we get
- (2+6)/2 12
§ to §t+to (2+8)/2 (‘Etto)
= A -1 J . 4
= AT <£t> P ( 1- ) (=) ) e
Taking into account that (—1)%/2 Jo(tu) = Ta(u) (u real and positive), we finally have
E—ﬁ/z to (2+8)/2 &'t + 1o (é‘tto)l/z
=A>— 1| — xp | — I 22—
which is exactly equation (2.16). We note that, although the absolute convergence on

the complex plane of the integral representation (A3) is proved only for p, ¢, A>0and
Re a < 1, direct substitution of equation (A5) into the Fokker-Planck equation (2.10)
shows that (A5) is a solution with the only restriction { < 1. Moreover, equation (AS5)
coincides with the solution obtained by Payne & Blandford (1981) using separation of
variables.

Finally, in strict analogy with what has been done here, it is possible to show that

the solution of equation (2.21) for a radial outflow is given by equation (2.22) (with
£>1).






APPENDIX B

EQUATION FOR THE RADIATION
TEMPERATURE

In this appendix we derive the expression of the equation for the radiation temper-
ature which has been used in the calculations presented in Chapter 4. As discussed
in section 4.2.1, we assume that equation (4.11), which gives the fractional change of
the mean photon energy in a medium at rest because of scatterings with a thermal,
non—relativistic distribution of electrons (Rybicki & Lightman 1979; Wandel, Yahil &
Milgrom 1984; Park & Ostriker 1989; Park 1990a), is valid along the outward—pointing
characteristics of the radiation field, pe(t) (defined from the moment equations (1.42)
and (1.43)), with the optical depth being defined along the same lines by

T= / kespbTdp . (B1) .
m
Then, we have
dr
2 = —kes . 2
i pbI’ (B2)

(Throughout this Appendix the total derivatives are taken along the outward—pointing

characteristics of the radiation field). Using equations (B2) and (4.11), we can write

T, 4Ty dr . CdTy, 2kespYe T,
o - dr d“uc—--—kespbf,uc o = al'v, T, T -1}, (B3)

where fic = dpc/dt and ve = bfic/a. However, also

dT, 8T,

dt ot

oy
op

e (B4)
I i

and so we finally get

or,
ot

2k€3 YC T aT
z—aI‘vc[ d Ty <—1—-1>+ ! i
u T T

B J . (B5)
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In practice, we obviously cannot calculate the integrated value of 7 directly from expres-
sion (B1) evaluated along the outward—pointing characteristics for the radiation since
this would involve knowledge of information ahead of the current time reached in the
calculation. Instead, we evaluated equation (B1) along the time—slice and this should
give reasonable values. While it is important to calculate the derivative (B2) along the
correct directions in order to ensure satisfactorily causal propagation of information,
the calculation of the integral (B1) should not be so sensitive.

To derive the stationary limit of equation (B5), we need first to write it in terms of
the Eulerian time and radial coordinates, (%,7). Using the chain rule for differentiation

in equation (B5), we obtain

~ 0T, oTy| 2kespY., . (T, 1~ 8T, 1 ar,
G e [ (7 B R

(B6)
The condition of stationarity is expressed with respect to the fixed (constant 7) Eulerian

observers by

0
—| =0. B7
7. (B7)
Taking the stationary limit in equation (B6) and using r; = gcu and 7y = bI finally
yields
uc \ 0T, 2kespY, T,
— = - — =1 B
(1+Fvc) or |y T T‘Y<T ’ (BS)

which corresponds to equation (4.14).



REFERENCES

Abramowitz, M., & Stegun, L. 1970, “Handbook of Mathematical Functions” (New
York: Dover)

Alme, M.L., & Wilson, J.R. 1973, ApJ, 186, 1015 (AW)

Alpar, M.A., & Shaham, J. 1985, Nature, 316, 18

Anderson, J.L., & Spiegel, E.A. 1972, ApJ, 171, 127

Anile, A.M., & Romano, V. 1992, ApJ, 386, 325

Barret, D., & Vedrenne, G. 1994, ApJ, 92, 505

Begelman, M.C. 1978, A&A, 70, 583

Begelman, M.C. 1979, MNRAS, 187, 237

Belloni, T., & Zampieri, L. 1995, in preparation

Bhattacharya, D., Wijers, R.A.M.J., Hartman, J.W., & Verbunt, F. 1992, A&A, 254,
198 :

Bildsten, L., Salpeter, E.E., & Wasserman, I. 1992, ApJ, 384, 143

Bisnovatyi-Kogan, G.S., & Blinnikov, S.I. 1980, MNRAS, 191, 711

Blaes, O., & Madau, P. 1993, ApJ, 403, 690 (BM)

Blaes, O., & Rajagopal, M. 1991, ApJ, 381, 210

Blandford, R.D., & Payne, D.G. 1981a, MNRAS, 194, 1033

Blandford, R.D., & Payne, D.G. 1981b, MNRAS, 194, 1041

Bloemen, J.B.G.M. 1987, AplJ, 322, 694

Blondin, J.M. 1986, ApJ, 308, 755

Blumenthal, G.R., & Mathews, W.G. 1976, ApJ, 203, 714

Bondi, H. 1952, MNRAS, 112, 195

Bowers, R.L., & Wilson, J.R. 1991, “Numerical Modeling in Applied Physics and As-
trophysics” (Boston: Jones & Bartlett Publishers)

Bradt, H.V.D., McClintock, J.E. 1983, ARA&A, 21, 13

Branduardi, G., Kylafis, N.D., Lamb, D.Q., & Mason, K.O. 1980, ApJ, 235, L153



124 References

Brinkmann, W. 1980, A&A, 85, 146

Buff, J., & McCray, R. 1974, ApJ, 189, 147

Castor, J.I. 1972, ApJ, 178, 779

Cernohorsky, J., & Bludman, S.A. 1994, ApJ, 433, 250

Chandrasekhar, S. 1960, “Radiative Transfer” (New York: Dover)

Chang, K.M., & Ostriker, J.P. 1985, ApJ, 288, 428

Chiappetti, L., et al.

Colpi, M. 1988, ApJ, 326, 223 |

Colpi, M., Campana, S., & Treves, A. 1993, A&A, 278, 161

Comastri, A., Setti, G., Zamorani, G., & Hasinger, G. 1995, A&A, in press

Cowie, L.L., Ostriker, J.P., & Stark, A.A. 1978, ApJ, 226, 1041

Cowley, A.P., Crampton, D., & Hutchings, J.B. 1979, ApJ, 231, 539

Dame, T.M., et al. 1987, ApJ, 322, 706

De Boer, H. 1991, in Proceedings of the 144th TAU Symposium, H. Bloemen ed.
(Kluwer: Dordrecht), 333

Diamond, C.J., Jewell, S.J., & Ponman, T.J. 1995, MNRAS, 274, 589

Dickey, J.M., & Lockman, F.J. 1990, ARA&A, 28, 215

Field, G.B. 1965, ApJ, 142, 431

Flammang, R.A. 1982, MNRAS, 199, 833

Flammang, R.A. 1984, MNRAS, 206, 589

Forman, W.C., et al., 1978, ApJS, 38, 357

Fortner, B., Lamb, F.K., & Miller, G.S. 1989, Nature, 342, 775

Freihoffer, D. 1981, A&A, 100, 178

Frisch, P.C., & York, D.G. 1983, ApJ, 271, L59

Fu, A. 1987, ApJ, 323, 227

Gilden, D.L., & Wheeler, J.C. 1980, ApJ, 239, 705

Gillman, A.W., & Stellingwerf, R.F. 1980, ApJ, 240, 235

Grébmer, W., & Hofreiter, N. 1973, “Integraltafel” (Wien: Springer—Verlag)



References 125

Hasinger, G. 1987, A&A, 186, 153

Hasinger, G., Lanmeier, A. Sztajno, M., Trimper, J., Lewin, W.H.G., & White, N.
1986, Nature, 319, 469

Hasinger, G., Burg, R., Giacconi, R., Hartner, G., Schmidt, M., Triimper, J., &
Zamorani, G. 1993, A&A, 275, 1

Hasinger, G., & van der Klis, M. 1989, A&A, 225, 79

Hasinger, G., et al. 1990, A&A, 235, 131

Hauschildt, P.H., & Wehrse, R. 1991, JQSRT, 46, 81

Helfand, D.J., Chanan, G.A., & Novick, R. 1980, Nature, 283, 337

Hewish, A., Bell, S.J., Pilkington, J.D.H., Scott, P.F., & Collins, R.A. 1968, Nature,
217, 709

Hirano, T., et al. 1984, PASJ, 36, 769

Hirano, T., et al. 1995, ApJ, 446, 350

Kafka, P., & Meszaros, P. 1976, Gen. Rel. Grav., 7, 841

Karzas, W.J., & Latter, R. 1961, ApJS, 6, 167

Katz, J.I. 1976, ApJ, 206, 910

Kershaw, D.S. 1987, JQSRT, 38, 347

Kershaw, D.S., Prasad, M.K., & Beason, J.D. 1986, JQSRT, 36, 273

Kluzniak, W., & Wilson, J.R. 1991, ApJ, 372, L87

Kompaneets, A.S. 1957, Soviet Phys.~JEPT 4, 730

Krolik, J.H., & London, R.A. 1983, ApJ, 267, 18

Kulkarni, S.R. 1986, ApJ, 306, L85

Lamb, F.K. 1989, in Proceedings of the 23rd ESLAB Symposium “Two Topics in X-ray
Astronomy”, N.E. White ed. (ESA SP-296), 215

Lamb, F.K. 1991, in “Neutron Stars: Theory and Observation”, J. Ventura & D. Pines
eds. (Dordrecht: Kluwer), 445

Lamb, F.K., Shibazaki N., Alpar M.A., & Shaham J. 1985, Nature, 317, 681

Levermore, C.D., & Pomraning, G.C. 1981, AplJ, 248, 321



126 References

Lindquist, R.W. 1966, Ann. Phys. (N.Y.), 37, 487

Loeb, A., Mc Kee C.F., & Lohav, O. 1991, AplJ, 374, 44

London, R.A., Taam, R.E., & Howard, W.E. 1986, ApJ, 306, 170

Lyne, A.G., & Lorimer, D.R. 1994, Nature, 369, 127

Lyne, A.G., Manchester, R.N., & Taylor, J.H. 1985, MNRAS, 213, 613

Madau, P., & Blaes, O. 1994, ApJ, 423, 748

Maoz, E., & Grindlay, J.E. 1995, ApJ, 444, 183 (MG)

Maraschi, L., Reina, C., & Treves, A. 1974, A&A, 35, 389

Maraschi, L., Reina, C., & Treves, A. 1978, A&A, 66, 99

Mastichiadis, A., & Kylafis, N.D. 1992, ApJ, 384, 136 (MK)

Matt, G., Costa, E., Dal Fiume, D., Dusi, W., Frontera, F., & Morelli, E. 1990, ApJ,
355, 468

Maurer, G.S., Neil Johnson, W., Kurfess, J.D., & Strickman, M.S. 1982, ApJ, 254, 271

May, M.M., & White, R.H. 1967, “Methods in Computational Physics”, Vol. 7, B.
Alder, S. Fernbach, & M. Rotenberg eds. (New York: Academic Press)

McCammon, D., & Sanders, W.T. 1990, ARA&A, 28, 657

Melia, F., & Zylstra, G.J. 1991, ApJ, 374, 732

Mészaros, P. 1975, A&A, 44, 59

Michel, F.C. 1972, Ap&SS, 15, 153

Middleditch, J., & Priedhorsky, W.C. 1986, ApJ, 306, 230

Mihalas, D. 1980, ApJ, 237, 574

Mihalas, D., Kunasz, P.B., & Hummer, D.G. 1975, AplJ, 202, 465

Mihalas, D., Kunasz, P.B., & Hummer, D.G. 1976, ApJ, 206, 515

Mihalas, D., & Weibel Mihalas, B. 1984, “Foundations of Radiation Hydrodynamics”
(Oxford: Oxford University Press)

Mihalas, D., Winkler, K-H., & Norman, M.L. 1984, JQSRT, 31, 479

Miller, G.S. 1990, ApJ, 356, 572

Miller, G.S., & Lamb, F.K. 1992, ApJ, 388, 541



References 127

Miller, G.S., & Park, M.-G. 1995, ApJ, 440, 771

Miller, J.C., & Rezzolla, L. 1995, Phys. Rev. D, 51, 4017

Miller, M.C. 1992, MNRAS, 255, 129

Mitsuda, K. 1992, in Proceedings of the 28th Yamada Conference “Frontiers of X-ray
Astronomy”, Y. Tanaka & K. Koyama eds. (Universal Academy Press), 115

Mitsuda, K., et al. 1984, PASJ, 36, 741

Mitsuda, K., Inoue, H., Nakamura, N., & Tanaka, Y. 1989, PASJ, 41, 97

Moncrief, V. 1980, ApJ, 235, 1083

Morrison, R., & McCammon, D. 1983, ApJ, 270, 119

Narayan, R., & Ostriker, J.P. 1990, ApJ, 270, 119

Nelson, R.W., Wang, J.C.L., Salpeter, E.E., & Wasserman, I. 1995, ApJ, 438, L99

Nobili, L., Calvani, M., & Turolla, R. 1985, MNRAS, 214, 161

Nobili, L., Turolla, R., & Zampieri, L. 1991, ApJ, 383, 250 (NTZ)

Nobili, L., Turolla, R., & Zampieri, L. 1993, ApJ, 404, 686

Nomoto, K., & Tsuruta, S., 1987, ApJ, 312, 711

Novikov, I.D., & Thorne, K.S. 1973, in “Black Holes”, C. DeWitt & B.S. DeWitt eds.
(New York: Gordon & Breach), 343

Ostriker, J.P., McCray, R., Weaver, R., & Yahil, A. 1976, ApJ, 208, L61

Ostriker, J.P., Rees, M.J., & Silk, J. 1970, Astrophys. Letters, 6, 179

Paczyhski, B. 1090, ApJ, 348, 485

Paresce, F. 1984, AJ, 89, 1022

Park, M.—G. 1990a, ApJ, 354, 64

Park, M.—G. 1990b, ApJ, 354, 83

Park, M.—G., & Miller, G.S. 1991, ApJ, 371, 708

Park, M.-G., & Ostriker, J.P. 1989, ApJ, 347, 679

Payne, D.G., & Blandford, R.D. 1981, MNRAS, 196, 781 (PB)

Pomraning, G.C. 1973, “The Equations of Radiation Hydrodynamics” (Oxford: Perga-

mon Press)



128 References

Ponman, T.J., Foster, A.J., & Ross, R.R. 1990, MNRAS, 246, 287

Prasad, M.K., Shestakov, A.L., Kershaw, D.S., & Zimmerman G.B. 1988, JQSRT, 40,
29

Prudnikov, A.P., Brychkov, Yu.A., & Marichev, O.I. 1986, “Integrals and Series” (New
York: Gordon and Breach)

Psaltis D., Lamb F.K., & Miller, G.S. 1995, ApJ Letters, submitted

Rees, M.J. 1978, Phys. Scripta, 17, 193

Rezzolla, L., & Miller, J.C. 1994, Class. Quantum Grav, 11, 1815

Romani, R.W. 1987, ApJ, 313, 718

Rybicki, G.B., & Lightman, A.P. 1979, “Radiative Processes in Astrophysics” (New
York: Wiley)

Schinder, P.J. 1988, Phys. Rev. D, 38, 1673

Schinder, P.J., & Bludman, S.A. 1989, ApJ, 346, 350

Schmid-Burgk, J. 1978, Ap&SS, 56, 191

Schneider, P., & Bogdan, T.J. 1989, ApJ, 347, 496

Schulz, N.S., Hasinger, G., Triimper, J. 1989, A&A, 225, 48

Service, A.T. 1986, ApJ, 307, 60

Shakura, N.I., & Sunyaev, R.A. 1973, A&A, 24, 337

Shapiro, S.L. 1973a, ApJ, 180, 531

Shapiro, S.L. 1973b, AplJ, 185, 69

Shapiro, S.L., & Salpeter, E.E. 1973, ApJ, 198, 761

Shestakov, A.I., Kershaw, D.S., & Prasad, M.K. 1988, JQSRT, 40, 577

Shibanov, Yu.A., Zavlin, V.E., Pavlov, G.G., & Ventura, J. 1992, A&A, 266, 313

Shull, J.M. 1979, ApJ, 229, 1092

Shvartsman, V.F. 1971, Soviet Astr.—AJ, 15, 377

Simon, R. 1963, JQSRT, 3, 1

Soffel, M.H. 1982, A&A, 116, 111

Stellingwerf, R.F. 1982, ApJ, 260, 768



References 129

Stellingwerf, R.F., & Buff, J. 1978, ApJ, 221, 661

Stellingwerf, R.F., & Buff, J. 1982, ApJ, 260, 755

Stocke, J.T., Wang, Q.D., Perlman, E.S., Donahue, M., & Schachter, J. 1995, AJ, 109,
1199

Sunyaev, R.A., & Titarchuk, L.G. 1980, A&A, 86, 121

Sunyaev, R.A., et al. 1991, Sov. Astron. Lett., 17, 409

Szuszckiewicz, E., & Miller, J.C. 1995, in preparation

Tamazawa, S., Toyama, K., Kaneko, N., & Ono, Y. 1974, Ap&SS, 32, 403

Thomas,L.H. 1930, Q. J. Math., 1, 239

Thorne, K.S. 1981, MNRAS, 194, 439

Thorne, K.S., Flammang, R.A., & Zytkow, A.N. 1981, MNRAS, 194, 475

Treves, A., & Colpi, M. 1991, A&A, 241, 107 (TC)

Treves, A., Colpi, M., & Lipunov, V.M. 1993, A&A, 269, 319

Turolla, R., & Nobili, L. 1088, MNRAS, 235, 1273

Turolla, R., Zampieri, L., Colpi, M., & Treves, A. 1994, ApJ, 426, L35

Turolla, R., Zampieri, L., & Nobili, L. 1995, MNRAS, 272, 625, 629

Vacca, W.D., et al. 1987, A&A, 172, 143

van der Klis, M. 1989, ARA&A, 27, 517

van der Klis, M. 1991, in “Neutron Stars: Theory and Observation”, J. Ventura & D.
Pines eds. (Dordrecht: Kluwer), 319

van der Klis, M., Jansen, F., van Paradijs, J., Lewin, H.G., van den Heuvel, E.P.J.,
Trumper, J.E., & Sztajno, M. 1985, Nature, 316

van Paradijs, J., & van der Klis, M. 1994, A&A, 281, L17

Vitello, P.A.J. 1978, ApJ, 225, 694

Vitello, P.A.J. 1984, ApJ, 284, 394

von Neumann, J., & Richtmyer, R.D. 1950, J. Appl. Phys., 21, 232

Vrtilek, S.D., et al. 1986, ApJ, 307, 698

Wandel, A., Yahil, A., & Milgrom, M. 1984, ApJ, 282, 53



130 References

Webber, Y., & Reinert, C. P. 1970, ApJ, 162, 883

Welsh, B.Y., Craig, N., Vedder, P.W., & Vallerga, J.V. 1994, ApJ, 437, 638

White, N.E., Nagase, F., & Parmar A.N. 1993, in “X-ray Binaries”, W.H.G. Lewin, J.
van Paradijs, & E.P. van den Heuvel (Cambridge University Press), 1

White, N.E., Peacock, A. & Taylor, B.G. 1985, ApJ, 296, 475

White, N.E., et al. 1986, MNRAS, 218, 129

White, N.E., Stella, L., & Parmar, A.N. 1988, AplJ, 324, 363

Wielen, R. 1977, A&A, 60, 263

Zampieri, L., Miller, J.C., Turolla, R. 1995, MNRAS, submitted

Zampieri, L., Turolla, R., & Treves, A. 1993, ApJ, 419, 311

Zampieri, L., Turolla, R., Zane, S., & Treves, A. 1995, ApJ, 439, 849

Zane, S., Turolla, R., Zampieri, L., Colpi, M., & Treves, A. 1995, ApJ, in press

Zel’dovich, Ya., & Guseynov, O. 1965, ApJ, 144, 840

Zel’dovich, Ya., & Shakura, N. 1969, Soviet Astron.—AJ, 13, 175 (ZS)



