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ABSTRACT. Dynamical systems with complicated orbit structures are best de-
scribed by suitable invariant measures. Sinai, Ruelle and Bowen showed, in
the 70's, that a special class of invariant measures (now called SBR measures)
which provide substantial information on the dynamical and statistical proper-
ties, can be constructed for uniformly hyperbolic systems. The question arises
as to what extent weaker hvperbolicity conditions still guarantee the existence
of SBR measures.

We introduce a class of flows in R3, inspired by a system of differential equa-
tion proposed by Lorenz. in which the presence of a singularity and of criticalities
constitute obstructions to uniform hyperbolicity. VWe prove that a wzaker form
of hyperbolicity exists and is present in a (measure-theoretically) persistent way
in one-parameter families. It is expected that such non-uniform hyperbolicity
implies the existence of an SBR measure.
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In measure, at first, quality and quantity
are immediate, and measure is only their
'relative’ identity. But measure shows it-
self absorbed and superseded in the mea-
sureless: vet the measureless, although
it be the negation of measure, is itself a
unity of quantity and quality. Thus in
the measureless the measure is still seen
to meet only with itself.

G.W.F. Hegel, Science of Logic, Part one of
the Encyclopedia of the Philosophical Sciences,
§ 110 :

Life is a mystery

evervone must stand alone
when you call my name

it feels like home....

when vou call my name
it’s like a little prayer

I'm down on my knees

I want to take you there....

Madonna, Like a prayer
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CHAPTER I

Introduction

1. Statement of the problem

An important aim in the theory of differential equations is to describe the solu-
tions of a system of differential equations

(1) z = f(z,1)

defined on some Riemannian manifold M. For the sake of the following discussion
we shall always assume that f satisfies sufficient regularity conditions to guarantee
the existence of a unique solution through each point zo € M and, in general,
we shall restrict ourselves to systems which are periodic or autonomous. For
autonomous systems, the set of solutions of (1) can be naturally descnbed by a
one-parameter group of transformations (the flow),

(2) G M— M

where ¢ € R represents the time and *(zo) gives the position of the point zq
after time ¢ under the evolution determined by (1). For time-periodic systems
it can also be useful to define a diffeomorphism ¢ : M — M by ¢ = 7 (the
time-T map, where T is the period of f). Then many dynamical properties of
(2) can be recovered from properties of the discrete system {¢'};ez. A natural
generalization of flows and diffeomorphisms is constituted by systems in which
the time evolution is defined only in the future, i.e. semiflows and iterates of
endomorphisms. These systems have the advantage, in some sense, that they
can exhibit remarkably complex dynamical features in ambient spaces of lower
dimension than is the case for invertible system. For example, one dimensional
diffeomorphisms are essentially trivial whereas there exists a rich theory of one-
dimensional endomorphisms (see [dMvS93] for an up to date and comprehensive
account). The same is true for flows and semiflows, respectively, in two dimensions.
A lot of recent results on the dynamics of two dimensional maps (including some

1



2 I. INTRODUCTION

of the results presented in this thesis) are based on the ideas and methods of one-
dimensional dynamics, even though they clearly also require a non-trivial amount
of additional techniques.

1.1. Invariant measures. Returning to the problem of describing the solu-
tions to systems such as (1) or (2), this can be solved completely only in a very
limited number of cases, e.g. if the system is integrable or if there exists a unique
attracting equilibrium point or periodic orbit of relatively low period to which all
trajectories converge. In general this is not the case and the dynamics is much
more complicated, at least from a geometrical or analytical point of view. This
means that it is very difficult, even in principle, to describe the solutions by such
methods. A powerful alternative is to be found in the ideas and methods of er-
godic and measure theory. To illustrate the basic style of this approach we consider
a group of transformations as in (2) and suppose that some ergodic probability
measure y is preserved. This means that for any measurable set A C M we have
p(A) = p(pi(A)) for all t € R; ergodicity means that any invariant subset B
satisfies u(B) = 0 or u(B) = 1. Then Birkhoff’s ergodic theorem says that the
asymptotic distribution of p-almost every point is determined by the measure p:
given any measurable subset A C M the average time which trajectories ¢*(z)
spend in A is proportional to g(A). Moreover other dynamical and statistical fea-
tures of the dynamics can often be described in terms of corresponding features
of the measure u. This constitutes, therefore, a good way, in some sense the only
way, of describing the dynamics of the system.

Thus, our problem can be reformulated in terms of determining the existence
and properties of invariant measures. \We remark that there are, in general, an
infinite number of invariant measures for a given system (e.g. every periodic
orbit admits a Dirac measure concentrated on the orbit) each of which captures a
different aspect of the dvnamics. Ususally it is most desirable to have an invariant
measure which is related to the Riemannian volume on M since we would like
to describe the dynamics of a set of trajectories which is large in relation to the
natural topologv or natural measure on . A Dirac measure on an unstable
orbit or other measures which are singular with respect to Lebesgue (Riemannian
volume) cannot, a priori, give any information on a positive Lebesgue measure set
of points (although sometimes they do, see below).

Some systems (e.g. conservative systems) are known a priori to preserve Lebesgue
measure. In this case most of the effort goes into determining the properties of
Lebesgue measure with respect to the dvnamical system, starting with -ergodic-
ity (just the fact that Lebesgue measure is preserved is not sufficient to gain any
information since it might have even an uncountable number of ergodic compo-
nents). This is already a difficult problem and there exists a vast literature (see
e.g. [Sin94] and references therein).
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For systems which do not preserve Lebesgue measure one would hope, in the first
instance, that there exists an invariant measure absolutely continuous with respect
to Lebesgue, for the reasons discussed above. In dissipative systems, however,
the asymptotic dynamics is concentrated on attractors [Mil85] which contain the
support of all invariant measures. By dissipativity these attractors have zero
Lebesgue measure and thus all invariant measures are singular with respect to
Lebesgue. In these cases it is sometimes possible to show that such an attractor A
has a stable foliation F° formed by leaves through points of A which reach out into
the manifold Af. All the points belonging to a given leaf have the same asymptotic
distribution: their orbits converge to the orbit of the point z € A contained in the
leaf, and so, if = is y-generic then all the points in that leaf will also be p-generic.
Thus if most of the leaves of F° correspond to u-generic points of A and if one
can show that F° has positive Lebesgue meaure then one can conclude that, even
though p is singular with respect to Lebesgue, it is neverteless true that a positive
Lebesgue measure set of points is generic with respect to p.

1.2. Uniform hyperbolicity. Having argued for a measure-theoretic descrip-
tion of the dynamics of complex systems we observe that many of the arguments
used in proving ergodicity of invariant measures or in constructing invariant mea-
sures for systems in which no a priori measure is preserved or, more generally,
in determining the statistical properties of given invariant measures, are often
topological and analytical in nature. In their barest essence they usually rely on
certain conditions of topological transitivity (existence of dense orbits) and ana-
lytical hyperbolicity estimates (exponential expansion and contraction of vectors
in the tangent bundle). Moreover a careful analysis of the geometry of the stable
and unstable leaves (whose existence is guaranteed by the hyperbolicity estimates)
is often required to bring everything together. The first person to have used this
kind of approach was Hopf in 19338 who proved the ergodicity of the geodesic flow
on surfaces of constant negative curvature. Later Anosov [Ano67] generlized this
construction to manifolds of arbitrary dimension and made explicit some of the
fundamental properties of the system which made the proof work, in particular
that of uniform hyperbolicity.

Dissipative systems were studied from this point of view by Sinai. Ruelle and
Bowen [Sin70] [Rue76] [Bow75][Bow78]. They showed that under uniform hyper-
bolicity assumptions (and topological transitivity) a measure can be constructed
on the attractor which gives considerable dynamical information for almost all
points in the basin of attraction (in particular a set of positive Lebesgue measure;
see discussion above). These measures are now called Sinai-Bowen-Ruelle, or SBR,
measures. ‘

We give below the definition of a uniformly hyperbolic set and then, in the
next section discuss two main obstructions to uniform hyperbolicity, namely the
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presence of singularities and the presence of criticalities. In some cases a weaker
form of hyperbolicity can be recovered which is sufficient to guarentee the existence
of an SBR measure.

For a discrete dynamical system ¢ : M/ — M we say that a compact invariant
set A C M is uniformly hyperbolic if there exists a continuous splitting

TA=FE°+E*

of the tangent bundle over A and constants C > 0 and 1 > A > 0 such that for all
n € N and all z € M we have

IDz™(z) - v|| < CA*|e]| for all v € E*(z)
and

| D¢~ (z) - v]| < CAM|v]| for all v € E¥(x).

The definition is analogous for the case of continuous time. In that case we have
a splitting

TA=E°+E*+E°
where vectors in E° and E* satisfy exponential estimates as above and vectors
in E° are tangent to the direction of the flow and clearly do not satisfy any
exponential estimates.

A natural direction in which the work of Sinai, Ruelle and Bowen is being
developed is that of extending their results to other classes of systems, in particular
systems which satisfy only weaker hyperbolicity conditions. Two important ways
in which systems which appear to have certain hyperbolic structure can fail to
be uniformly hyperbolic is through the presence of singularities (in the case of
flows this means an equilibrium point, in the case of maps it means a set of
discontinuities) and/or the presence of criticalities (e.g. homoclinic tangencies).

1.3. Non-uniform hyperbolicity with singularities. The presence of a sin-
gularity in a non-trivial invariant set A implies that it is not possible to have a
continuous hyperbolic splitting over A. For a map this follows simply from the
fact that the map is not even continuous, for a flow notice that the hyperbolic
decomposition in a regular point includes a neutral direction parallel to the flow
whereas this does not occur in the equilibrium point which satisfies exponential
estimates in all directions. This fact gives rise to a remarkable number of com-
plications. It turns out, for example, that the stable and unstable manifolds of
points of A can get cut when the orbits pass close to the singularities and so
these invariant manifolds are generally formed of countably many connected com-
ponents. Moreover there is no uniform lower bound on the size of the connected
components. For these reasons the techniques of Bowen-Ruelle-Sinai cannot be
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applied directly. An important class of systems in which this phenomenon is
observed is in Billiard-tvpe dynamical systems. Here there is a natural invari-
ant measure and statistical properties have been extensively studied developing
the work started in [Sin70][BS83], see also [Sin90]. For dissipative systems the
main example is the geometric Lorenz attractor, a class of flows in R® introduced
indipendently by Afraimovich, Bykov and Sil'nikov [ABS77][ABS82] and Guck-
enheimer and Williams [Guc76][GWT9][Wil79]. An important emphasis in these
papers was given to the topological and geometrical structure of these attractors.
Statistical properties were studied in [BS80], see also [Bun83] and [Bun89]. Pesin
and Sataev [Pes86] [AP37] [Pes92] [Sat92] have proved the existence of invariant
measures, analogous to the SBR measures discussed above, for a wide class of
maps with singularities. Their results apply in particular to the return maps of
the geometric Lorenz attractors. A further generalization has been given recently
in [JN95] for a class of maps in which certain conditions on the behaviour of the
differential near the singularities have been relaxed.

1.4. Non-uniform hyperbolicity with criticalities. A different kind of ob-
struction to uniform hyperbolicity is given by the presence of criticalities, i.e.
homoclinic tangencies or, more generally, non transversal intersections between
stable and unstable manifolds. Intuitively a point of non transversal intersection
cannot have a hyperbolic splitting because the stable and unstable subspaces E*
and E*, tangent to the stable and unstable leaves respectively, would then have to
coincide implying that £* + E* is one dimensional and does not span the tangent
space.

The importance of criticalities in the loss of stability and hyperbolicity of dv-
namical systems has been studied extensively starting from the works of Smale,
Palis and others [Pal70][PS70]. It is now apparent that there are a number of
important bifurcations associated to homoclinic tangencies and criticalities in gen-
eral and there exists a substantial body of work on the unfolding of criticalities in
parametrized families of maps and on the relation between the existence of criti-
calities and uniformly hyperbolic dynamics ([New79][NPT83] [PT85][PT87][PV94]
[PY93], see also [PT93] for an overview of the theory). Indeed, according to a
global research program proposed by Palis, criticalities are on of the main sources
of chaotic and non-uniformly hyperbolic dynamics.

An almost canonical example of a family of dynamical systems in which criti-
calities play an important role is the family of smooth plane diffeomorphisms

(Hén) Rap i (z,y) — (1 — az® + y, bz)

introduced by Hénon and Pomeau [Hén76][HP76]. Numerical studies of this family
for a range of parameter values indicate the existence of non trivial attractors and,
due to the geometry of the map, the likely occurence of criticalities for a large
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number of parameter values. However, a rigorous proof of this fact did not appear
until Benedicks and Carleson proved, in their ground-breaking paper [BC91] that
indeed there exists many parameter values (sets of positive Lebesgue measure) for
which the Hénon map exhibits a non-trivial attractor with certain non-uniform
hyperbolicity properties. Moreover, such parameter values can be approximated by
parameter values for which the corresponding map exhibits criticalities (homoclinic
tangencies) [Uré93]. Benedicks and Young [BY93] have shown that these attractors
admit SBR invariant measures analogous to the ones which exist for uniformly
hyperbolic systems and for systems with singularities.

The powerful ideas introduced in [BC91] are being applied to other classes of
svstems in which the presence of criticalities constitutes an obstruction to an
application of the methods of uniformly hyperbolic dynamics ([DRV94][PRV95]).
Higher dimensional systems with criticalities have also been studied succesfully
by different methods in [Via95]. Such systems exhibit a remarkable statistical
mechanism of persistence as a consequence of which they are fully persistent in a
neighbourhood, i.e. nearby systems continue to exhibit non-uniformly hyperbolic
attractors.

1.5. The Lorenz equations. Both examples mentioned above, the geometri-
cal Lorenz attractors and the Hénon family of diffeomorphisms were inspired by
numerical studies of the following system of differential equations introduced by

Lorenz [Lor63] in 1963:

T =—0ox+0oy
(Lor) y=rz—y— T2
i=—bz+uzy

as an example of an explicit system with a simple formulation which, nevertheless,
appears to exhibit remarkably complex, erratic and nonperiodic behaviour. A
rigorous description of the dynamics, for the parameter values o = 10,b = 8/3
and r = 28 originally considered by Lorenz, remains an open problem up to the
present day. Some limited facts can be proved by classical methods. Using the
theory of Lyvapunov functions, for instance, it can be shown that there exists
for all parameter values a neighbourhood of the origin into which all trajectories
enter and never leave. Since the Lorenz equations are dissipative this implies that
there exists a compact invariant set A, of zero Lebesgue measure containing the
omega-limit sets of all trajectories. However it seems hard to prove any specific
properties of this attractor (see [Spa82] for a thorough discussion of numerical
studies and classical approaches). Even the existence, for any parameter value,
of a homoclinic orbit to the singularity at the origin seems remarkably difficult
to prove. Partial results in this direction include [Rob89][Rob92}[Ryc89] where
the existence of a homoclinic orbit is proved for systems of differential equations
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close to that of Lorenz. Recently some computer assisted proofs have also been
announced [HT92].

1.6. Geometric models. In some sense the most fruitful approaches to the
Lorenz equations have been the geometric models described above which have
respresented fundamental e*{amples for the theory of non-uniformly hyperbolic
systems.

Geometric Lorenz attractors were introduced to model the dynamics of (Lor)
for the parameter values considered by Lorenz himself. For these parameter values
a horizontal cross section to the flow can be chosen near the singularity and the
return map to this cross section studied numerically. From these studies it appears
that the return map has strong hyperbolic properties except for the presence of
the discontinuity (which consists of the intersection of the cross section ¥ with the
two-dimensional stable manifold of the singularity; the trajectories through these
points end in the singularity and never return to 1ntelsect Y., thus the return map
cannot be defined there)

However, as r is increased to values of around 30 and beyond that the flow begins
to twist in such a way that criticalities are formed. Hénon’s family was introduced
as a simplified model of the dynamics for this range of parameter values. Hénon
believed, quite correctly, that it would be easier to concentrate on the effects of
the folds and the effect of the criticalities in the context of non-singular smooth
maps. A major breakthrough in this direction was accomplished in [BC91] as was
already mentioned above.

Our objective, in this thesis, is to recover Hénon’s original project and to de-
velop a model for the dynamics exhibited by the Lorenz equations in the region
of parameter values in which both criticalities and the singularity are present. We
will define a class of one parameter families of vector fields which exhibit, for a
certain range of parameter values, geometric Lorenz attractors. As the param-
eter is varied, a series of bifurcations takes place through which criticalities are
formed. On the other side of this sequence of bifurcations we encounter attractors
in which dynamical features deriving from the presence of a singularity coexist
with dynamical features deriving from the presence of criticalities. We study the
way in which these two dynamical phenomena interact and show that a weak form
of hyperbolicity still occurs in a measure theoretically persistent way.

Our model is described in detail in the next section where we also give a precise
statement of our results. In chapter II we study a 1-dimensional model, which
is also of intrinsic interest. Indeed many features of dyvnamical systems in which
singular and critical dynamics coexist are already present in this model. Thus,
apart from the present motivation, the family of one-dimensional maps studied
below is a rich source of non-smooth dynamics. In chapter III we prove our main
theorem.
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2. Statement of the results

2.1. Definition of Lorenz-like flows. Let X(R?) denote the space of smooth
(CB) vector fields in R3. We shall study one-parameter families of vector fields { A, }
in X(R3) defined by the following characteristics:

LL1: Each X, has a hyperbolic smgulant} (equilibrium point) with eigen-
values Ay < A, < 0 < A, satisfying |Ags
LL2: There exists a two dlmensmnal Cross sectlon transversal to the flow

such that the first return maps ®, to T form a family of Lorenz-like maps
(as defined below).

We call a family of vector fields satisfying LL1 and LL2 a family of Lorenz-like
vector fields or Lorenz-like flows or, even, when we want to emphasise the existence
of attractors, a family of Lorenz-like attractors.

In this section we shal give the precise definition of the family of maps ®, through
which our flows are defined. We shall obtain ®, as a composition &, = ¥, o P
where P describes the flow near the singularity and ¥, describes the flow outside a
neighbourhood of the singularity and, as we shall see, exhibits features which are
typical of the presence of criticalities. The maps P and ® are described precisely
in 2.2 and 2.3 respectively. In 2.4 we give a precise statement of our results and
make some technical remarks.

2.2. Singular dynamics. We introduce here a map describing the dynamics
of the flow in a neighbourhood of the singularity. We suppose that the singularity
is fixed in the origin of R? for all parameters. Let I. = {(z,y,2) € R®: ||, |y|.]|=] <
¢} denote an arbitrarily small cube centered at the origin. By a theorem of Wig-
gins [Wig88]. for sufficiently small ¢ the flow in this cube approximates a linear
flow in the sense that the discrete maps describing the flow between one side of
the cube and another are close in the C? topology to the maps describing a linear
flow. In fact the flow in I, is smoothly equivalent to a linear flow (i.e. there exists
a smooth orbit preserving change of coordinates in a neighbourhood of the origin
such that the original flows commutes with a linear flow by this change of coordi-
nates) as long as a finite number of non-resonance conditions on the eigenvalues
are satisfied [Ste38]. Moreover one can even assume that for a given interval of
parameter values, there exists a smooth family of smooth linearizing coordinates
in a neighbourhood of the origin (see [Rov93]). To simplify the exposition we
shall assume, without anyv real loss of generality, that the non-resonance condi-
tions mentioned above are satisifes and therefore that our family {A},} is smoothly
equivalent to a family in which there exists a fixed neighbourhood of the origin
where the flow is linear. From now on we shall always work in this linearizing
system of coordinates. \We remark however that for the purposes of our results it
would be quite sufficient to consider a neighbourhood in which the flow was just
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close to a linear flow, thus avoiding any assumptions whatsoever and working in
full generality.

Up to a linear rescaling we can also suppose that the linearizing neighbourhoods
always contain the cube

I={(r.0.2) €R:fal,hlol < 1.
By standard hyperbolic theory there are submanifolds W, W and WS C W,

locs loc
tangent in the origin to the eigenspaces associated to A,, (As,Ass) and Ag re-
spectively. In the linearizing coordinates W}  intersects the boundary of the

cube [ in (1,0,0), W32 in (0.0,1) and Wi, in the line {(0,y,1),|y] < 1. We
let ¥ = {(r,y,1) : |z|.]y| < 1} denote the top of the cube I and £y = {(1,y,2) :
lyl < 1,0 < z <1} U{(-1.y.2) : |ly] £ 1,0 < z < 1}. We want to study the
image of ¥ under the effect of the flow: for each point in (z,y) = (z,y,1) € &
we consider the trajectory of the flow through (z,y) and the first intersection
of this trajectory with X,. Notice first of all that the trajectories of points in
L NWW? terminate in the origin without ever intersecting Yo, trajectories through
Yt = X|{z>0) intersect 7 = Zgliz=1}, and trajectories through £~ = Z|cq)
intersect ¥70 = Xo|{z=~1}. By linearity, the positien (z:,y, 2;) after time ¢ of the
point (z,y,1) € £* = ©¥ U T~ transported by the flow, is given by

(If: yt: zt) = (xetAu, y@t‘\“’ Etl\‘),

The “flight time” T that it takes to reach ¥y depends only on the norm of
the z-coordinate and is given by |z|eT** = 1 or, equivalently, T = T(|z]) =
(1/A)log(1/]z]). From this we easily get yr = yelts = yellss/A)logl/lz) -

ylz|Pel/re and similarly zr = |z|Pe/ Let A = |A,/).| and ¢ = |\,s/A.]. Then
we define the map
P:2. =%
(2.9.1) = (L.ow,v) = (L, 2], yle|* sgn (2)).

Notice that there is a natural identification of ¥4 with X. through which P can be
thought of as a two dimensional map of X. into itself by writing P(z.y) = (v, u).
To simplify the notation we will sometimes take this point of view without making
any further remark. The differential of P can be calculated explicitly to get

c _ a_-.Pl ayPl . /\IIIA_l 0
(3) DP = (3:}72 0P T \colz|”y 7]
The expressions for the map P and for the differential DP capture certain signif-
icant features of the dynamics essentially related to the presence of the singularity.

Line segments I, = {z = const.} C Z. (i.e. colinear with the strong stable local
manifold 11%2) are strongly contracted as they are transported by the flow near
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the singularity. For small z such segments spend increasing amounts of time near
the singularity and thus the effect of the contraction is increased. The overall
effect of this process is expressed analytically in the equation 9.P, = |z|° which
shows that the contraction increases exponentially as « approaches zero giving the
characteristic cusp shape to the images P(X%) and P(¥7). On the other hand
the equation 8, P; = A|z|*~! describes the expansivity of line segments contained
in I, = {y = const. C X.} (i.e. colinear to the unstable manifold W}%.). Due to
the fact that A\, > 0 distances between points in I, are exponentially stretched.
Points which are very close to z = 0 spend an arbitrarily large amount of time in a
neighbourhood of the singularity and therefore exhibit an arbitrarily large amount
of stretching (|0, P1| — oc as = — 0).

2.3. Critical dynamics. The global return maps ®, : £. — ¥ are obtained
by composing the maps P : £. — %, described above with a family of maps
U, : &g — X describing the flow outside a neighbourhood of the singularity. The
strong dissipativity of the Lorenz equations, and of the family of flows we want do
describe, leads necessarily to strongly dissipative return maps. This means that,
in some sense to be defined precisely below, the family @, is close to a family of
one-dimensional maps ¢,.

We begin by describing the families {¢,}. They are of the form

(z) = p(z) —a ifz>0
¢ —o(—z)+a ifz <0

&

e

where ¢ : Rt — R¥ is smooth and satisfies:

L1: o(z) = Z(z) for all z > 0, where 0 < A < 1/2 and ¢ is a smooth map
defined on R with ¢*(0) = 0 and '(0) # 0; '

L2: there exists some ¢ > 0 such that ¢'(¢) = 0;

L3: ¢"(z) <0 forall z > 0.

For small values of the parameter the maximal invariant set of ¢z, in the interval
[—a,a] is a hyperbolic Cantor set. Under certain natural conditions, implied by
L4 and L5 below, the entire interval [—a, a] becomes forward invariant as a crosses
some value a; > 0. This situation persists for a certain range of parameter values
and corresponds to the class of maps usually associated to the "Lorenz attractor”
(see § 1.3). We are mainly interested in studying the bifurcation which occurs as
the parameter crosses the value @ = ¢. With this in mind, we add two natural
assumptions on ¢ which ensure that a Lorenz attractor persists for all a < c.

Let = s denote the unique point in (0,c) such that ¢'(z z) = V/2; sometimes
we also write a; = r 5. Then we suppose

L4: 0 < @a(2 5) < wala) < z 5 for all a € [ay, c].
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The last inequality implies that given any y with |y| € [z s.a) there exists a
unique z € [—a,a] such that #;(z) = y. Note that z and y have opposite signs.
Moreover, the first inequality implies that |z] < z 5. Our last assumption is

L5: |(v2)(z)] > 2 for 2ll z € [—¢,c]\ {0} such that |0 (z)] € [z 3, (]
Observe that this is automatic if ¢.(z) = z 5 (because |z| is strictly smaller than
z. /3, by the previous remarks) and also if ¢ (z) is close to ¢ (then z is close to zero

and so |(¢2)'(z)| = |27 = o).

s fa -

+C

g -a
/

FIGURE 1.1. Lorenz-like families with criticalities

It is straightforward to check that L1-L5 are satisfled by a nonempty open
set of one-parameter families, where openess is meant with respect to the C*
topology in the space of real maps ¥. Notice that the family of one-dimensiona!l
maps described above can be embedded into a family of two dimensional singular
endomorphisms by defining ©* : ¥. — ¥ where we have, for (z,y) € Z., ¢, 0 P :
(z,y) = (¥(|z)* sgn (z), sgn (z)). The maps ¥ o P correspond to return maps for
a class of semiflows. In this case the images of the two components &F and -
are just line segments and we have 1, 0 P(£F) C {y = £1} C Z.

We can now define a family of Lorenz-like maps

G,:¥. =%
as the composition ®, = U.c P where P(z,y) = (z|* sgn (z),|z|°y) and ¥ : T4 —
Y} is characterised by the property that
(LL) 1T — Uallcs < b

We always take b small and take (LL) to mean closeness in the C3 topology with
respect to all three variables. i.e.
[ouitH gyt

i

| Gioral ~ Bloral
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where U;,vy.7 = 1.2 denote the coordinate components of ¥, and of ¢°, respec-
tively,and 1 < j+k+1< 3.

2.4. The main theorem. Let X be a smooth vector field in R3. We say that
X has a chaotic attractor A\ if there exists a compact set A C R? with the following
properties: '

(1) A is invariant for the evolution of the flow; A

(2) There is a set of points of positive Lebesgue measure for which «w(z) C 4,
where «(z)= omega limit set of z; :

(3) There exists a point = € A whose trajectory is dense in A (ie. w(z) =4)
and such that z has a positive Lyapunov exponent.

VWe shall show below (see proposition 1.1) that there is a certain interval of param-
eter values for which Lorenz-like flows exhibit chaotic attractors of the type of the
geometric Lorenz attractor. This occurs for parameter values preceeding the for-
mation of criticalities. Our main theorem concerns the existence (and persistence)
of chaotic attractors after the appearence of criticalities.

THEOREM. Let {X.} be a family of Lorenz-like flows. Then there erists a set
AT of parameter values, after the formation of criticalities, such that X. ezhibits
a chaotic attractor for each a € A¥™. These (Lorenz-like) attractors are persistent
in the sense that the set AT has positive Lebesgue measure.

The complete proof of this theorem is given in chapter III. For the moment we
make some general remarks concerning the result and the ideas and methods used
in the proof.

The theorem follows from the analogous result for the return map @,. Our
basic approach is inspired by the ideas introduced in [BCY1]. Here, however,
we have to deal with several additional difficulties deriving from the presence of
the singularity and of regions with arbitrarily large derivatives. In particular
several estimates {including distortion bounds) which in the smooth case rely
on on the boundendness and/or on some Lipschitz continuity properties of the
derivative require here a non-trivial reformulation together with a detailed study
of the recurrence rear the singularity (as well as near the critical region). Even
though the expansivity near the singularity should, in principle, help to obtain
positive Lyapunov exponents it turns out that it constitutes a serious obstruction
2t various points of the proof in which bounded distortion estimates play a crucial
role. Thus a bounded recurrence condition needs to be imposed and parameters
excluded when certain orbits pass too close or too frequently near the discontinuity.
" The precise formulation of this condition will be given in chapter III, here we just
remark briefly on it basic form. Let {z;}%, denote a piece of orbit of the point z
and let ||z;|| denote the distance of z; from the singularity set. Let {z:;,}i=1 bea
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subsequence of points belonging to the orbit of z such that z;, belongs to a small
neighbourhood of the discontinuity. The kind of bound which we require on the
rate of approach of z; to the singularities is of the form

() > loglz, | < an

for some suitably small a. From the dynamical point of view condition (*) has the
effect of bounding the rate of growth of vectors and, therefore, besides the impor-
tant role it plays in several crucial estimates it also guarantees that the attractors
obtained in the proof have finite Lyapunov exponents. It seems interesting to ob-
serve that condition (x) is exactly the form of the bounded recurrence condition
used to bound the recurrence in the critical region if we let ||-|| denote the distance
of z; to the critical point (or to a suitable critical approximation) instead of its
distance to the discontinuities. Indeed it is equivalent (up to some multiplicative
factor) to the two conditions (basic assumption and free period assumption) in-
troduced by Benedicks and Carleson. In some sense, condition (%) seems more.
natural and easier to state, specially since it can be formulated more or less at
the beginning of the proof (whereas the free period assumption in [BC91] requires
quite a lot of notions to be introduced before it can be even stated).

The proof presented below essentially works for the Hénon map if the existence of
the discontinuity (and all the related estimates) are ignored. Indeed most estimates
should become significantly simpler. We have tried to give as straightforward and
direct a proof as seemed possible, introducing most of the notions and ideas in a
simple setting before using them in more general contexts. We begin with a careful
analysis of the dynamics outside the critical region (but including the singular
region). Here an essentially hyperbolic dynamics takes place and this, together
with condition () , allows us to prove some uniform bounded distortion estimates
for the growth of vectors for orbits which remain close (bound) and far from the
critical region for a certain (in principle unlimited) amount of time. We then
collect in a relatively self-contained section (2) most of the notions and estimates
concerning the existence of critical approximations. We also discuss the problem
of considering different orbits (corresponding to different critical approximation)
at each step of the iteration. We show that new critical approximation are always
bound to older ones and that, consequently, the history of the new orbit under
consideration is essentially the same as the old one. In section 3 we consider
the first time that some critical approximation falls into the critical region. We
introduce the notion of binding point, binding period and condition (%) in the
critical region. A main advantage in considering a first return is that no further
returns occur during the associated binding period. This allows us to prove all
the desired binding period estimates (bounded loss of growth, recovery at the
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end of a binding period, bounded distortion) directly and without requiring too
much abstract inductive information. In particular we can highlight some of the
differences between the one dimensional and the two dimensional situation and,
to some extent, clarify the way in which the additional difficulties in the two
dimensional case are dealt with. At this point all the main ideas and methods
have been introduced and the general binding period estimates follow without too
much trouble in section 4. There we also show that those parameters for which all
critical approximations satisfy () for all time actually exhibit a chaotic attractor
and that A* has positive Lebesgue measure. Several estimates in this last section
proceed essentially as in the Hénon or quadratic like case [BC91][MV93].

Before going on to the proof of our main theorem, we carry out a detailed
analysis of the dynamics of the family of one-dimensional maps {,} defined above.
The precise statement of the theorem in this case and several remarks, as well as
a complete proof. are given in the next chapter which is essentially self-contained.



CHAPTER II

The one-dimensional model

1. Introduction and statement of results

Let {¢.} be a family of one-dimensional maps satisfying conditions L1-L5 (see
subsection 2.3). We begin by observing that these hypotheses imply that ¢, is
essentially uniformly expanding for all parameters up to ¢:

ProprosITION 1.1. Given any a € [ay, ¢,

(1) the interval [~a,a] is forward invariant and ¢|[—a,d] is transitive
(2) 1(¢2) (2)] Z min{V2, ¢, (2)[}(V2)"* for all = € [~a, ] such that oi(z) #
0 for every 3 =0,1,... ,n—1.

This relatively strong form of (non-uniform) expansivity replaces, in our context,
the Misiurewicz condition which is usually assumed in the case of smooth maps
(see remarks following the statement of the theorem). We postpone the prove
of 1.1 to the beginning of section 4. After the bifurcation a = ¢ such uniform
expansivity is clearly impossible, due to the presence of the critical point in the
domain of the map. However, our main result states that nonuniform expansivity
persists in a measure theoretic sense after the bifurcation '. Let ¢;(a) = ,(c) and
for o > 0 define A™(c) = {a > ¢ :|(¢?)(c1(a))] > €7 for all j > 1}.

THEOREM. Let {,} be a Lorenz-like family satisfying conditions L1-L5. Then
there exists ¢ > 0 such that m{A7(c¢) > 0 where m denotes Lebesque measure on

R.

Measure theoretic persistence of positive Lyapunov exponents (outside the class
of uniformly expanding maps) was first proved by Jakobson [Jak$1], for maps

1This chapter is a revised version of a joint paper with M. Viana:Positive Lyapunov exponents
for Lorenz-like families, to appear

15
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in the quadratic family f,(z) = 1 — az? close to parameter values @ satisfying
([Mis81])

\ |
“ o

fé(c) - Cl >0 (¢ = critical point = 0).

There exist today many proofs of this theorem, e.g. [CES0], [BC83], as well
as generalizations to families of smooth maps with finitely many critical points
[TTY92], and to families of maps in which a single discontinuity coincides with
the critical point [Rov93]. A number of main differences should be pointed out in
this setting. between smooth maps and our Lorenz-like maps.

While all proofs of Jakobson’s theorem in the smooth context rely in one way
or the other on the nonrecurrence condition (4), here we need no assumption on
the orbits of the critical points for a = c. Instead, we simply take advantage of the
strong expansivity estimates given by Proposition 1.1 for that parameter value.

As we mentioned above there are several technical complications in the proof
due to the presence of regions with unbounded derivative. We gain control over
these regions by imposing an additional condition on the parameters which bounds
the extent of the recurrence which is allowed near the discontinuity. We remark
here that the svmmetry inherent in the definition of Lorenz-like maps, though
partly justified by the symmetry which exists in Lorenz’ system of equations, is
not necessary for the proof of our theorem. Every part of the proof goes through
with a minimal amount of modifications in a non-symmetric case. We carry out
the proof in the symmetric case since this allows us to simplify the exposition a
great deal. In particular we shall often discuss some construction or result with
explicit reference to only one of the critical points with the implicit understanding
that the same statements apply to the other one as well.

The proof of our main result is organized as follows. In Section 2 we identify a
pair of conditions on the parameter a which ensure that a € A™. Sections 3 and 4
are then devoted to showing that the set of parameters for which such conditions
are satisfied is large in the sense of the statement of the theorem. The whole global
approach is inspired on [BC91].

2. Positive Lyapunov Exponents

We begin by proving Proposition 1.1. In doing this we focus only on a € [a,c]:
the case a < a, corresponds to the situation in [GWT79], and it also follows from
(simpler versions of) these same arguments.

2.1. Proof of Proposition 1.1. The invariance of [—a,a] is an immediate
consequence of lim,_o|pa(z)] = a, |p.(%a)] < z,5 < a (recall L4), and the
monotonicity of 17, on (—a,0) and (0, a).
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Next, let z and 1 < j < n —1 be as in part (2). If [pi(z)] < z./5 then we have

ol (23 (2))] > V2. If |2i(2)] > z,/; then, by L4, there exists a unique z € [—c, ]
such that ¢c(z) = ¢i(z) = @a(p]™(2)). Moreover, z and ¢27!(z) have the same
sign (opposite to that of ¢v!(z)) and |z| > |¢17!(z)|, because a < ¢. Using L5 we
get

(2 (@) = (A7 @) ¢ (@) 2 16/(2) (2 (@) = (22 ()] > 2

Part (2) follows directly from these remarks and it is easy to see that one even
gets a somewhat better bound, with v/2 replaced by some slightly larger constant
6.

To prove transitivity. we let Uy, Vo C [—a,a] be arbitrary open sets and show
that ¢, (Ug) N V5 # 0 for some n > 0. Suppose, without loss of generality, that
0¢ Ugand U C (~z.3.75) (recall L4). Aslongas 0 ¢ ¢l (Us), write U; = @i (Up)
and notice that |U;] > 67|Up|. Thus we must have 0 € ¢,(Ux,~1) for some k; > 1.
Let U, denote the largest connected component of ©a(Uk,—1) \ {0} and observe
that |Uy,| > 3lwa(U, - 1)] > 205 |Us|. Suppose first that Uy, C (27, z7F), where
7T <0< :—:+ are the preimages of zero under ,; observe that |z*| < z sz as
a consequence of the first inequality in L4. Then we proceed as before, with
Uo replaced by Uy,. More precisely, we define Uy,.; = ¢2(Uy,) until the first
iterate ky > k; for which 0 € ¢4(Uk,-1); at that point we take Uy, to be the
largest component of ¢.(Uk,_1) and repeat the whole procedure again. As long as
Uk, C (z7,z%) we have kijyq > k; + 2, hence

U,

t+1

1 ]. .. .. l 9 -
I 2> _T)‘[(Pa(Uk;«ﬂl > 5‘9M+1-LIIUA~;‘ > ae-lvksl

grows exponentially with 7. Thus, one eventually reaches some & = k; for which Uy
contains either (z7,0) or (0,z%). In the first case ¢,(Uy) contains (0,a) D (0,z7)
and then ¢2(Uk) contains (—a,0), which ensures that either ¢,(Uy) or ¢?(Uy)
intersect V5. The second case is entirely analogous so the proof of the proposition
is complete.

Now we fix a number of constants to be used in the sequel of our argument.
Recall that 0 < A < 1/2. We take 0y > 0 and ¢ > 0 such that 0 < 20 < oy <
log /2 and also choose 4 € (1,A™1 —1) and § > 0 such that 1 <4 +6 < A~! — 1.
Then‘ welet0<a<f be small, depending on the previous constant-s (the precise
conditions are stated throughout the proof wherever they are required).

By conditions L1-L3 there exist 51,75 > 0 such that

e

=55 [

o le(@)]

= d
M an 2t |z — o

= 7.
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For each i = 1,2, we fix constants 77 = n; — v and {7 = n; + v, where v is some
small positive number (again, precise conditions are to be stated along the way).
Then we have

M1: for all z # 0 close enough to the origin,
il S valz) +a<nflzlt ifz>0
—nflzl S gal@) —a < —nif2* iz <0,
and g7 Az < el (@)l < nf AT
M2: for all z close enough to the critical point c,
ny (x=¢)’ < lpa(z)=pa(e)| < nf (z—0¢) and 27|z —c| < |¢(2)] < 2n7]e—c],
and for all z close enough to —c,
15 (240 < lpa(®)=e()] < 7 (a)? and 25 [e+e] < |2 (2)] < 20 o+l

Now, for each small € > 0 we let AS_, A%, A7 denote the £7- neighbourhooods

of the origin and of the critical points, respectively. We define a partition of
A%\ {0}, by writing
AV} = U I°
fri>1
where each I, is an interval of the form I, = [¢7e™",e7e™™+1), for r > 1, and
I_, = I,. We also define analogous partitions

A\ {e}=U Iz and AF\{-=U [~

[r|>1 r|>1

where I%° = J% £ ¢ are simply the translates of I?. We shall always assume that
£ > 0 is small enough so that A% and A%® are contained in the regions for which
M1 and M2 are valid. Moreover, we let r. = [§logc™!] (here [z] is the integer part
of z) and we consider restricted neighbourhoods

A°={oju | P and A* ={tu |J IF

fri>re+1 Ir|>re+1
. £ .- . " .
(of radius & £*™) of the origin and the critical points.

2.2. Breaking the hyperbolic structure. The loss of expansivity occuring
after the bifurcation a = ¢ and caused by the critical points entering the domain of
the map is, in some sense, local: for ¢ < a < c+e¢, it occurs only in a neighbourhood
of the critical points of size e7*® < €. More precisely, any piece of orbit that
does not intersect A*¢ has an exponentially growing derivative. The proof of
this fact requires two preliminary lemmas. First we obtain some estimates on
the position and size of the preimage of A%¢ for a convenient range of parameter
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values. Then we estimate the accumulated derivative of points which pass close
to the discontinuity and close to the critical points.

LEMMA 2.1. For all ¢ > 0 sufficiently small,
(1) (e/n)% < |¢7L(o) < (¢/n7) and
(2) for everyy € _ljr and a € [c+¢/2,c+ €],

1 I%l(y)l
e = o) =€

PROOF. By the second inequality in M1,

7]1 iv—"c+= C)l\ <c—(c+e)<— /e [Y;-r )lAa

which immediately gives (1). To prove (2) notice that, for any y and a as in the
statement, y —a = (c—a) — (c—y) € [——s — €7 —-/7 + ¢7] and so, using M1 in
the same way as before,

/2—5) . e+e7\?*
—— ] <leil'(w)| < — .
( 77;- () Uht

Combining with (1) we get

1 1
(12_1:6/2—6”)* < ledlw) (n_if_e%—e”)*
o€ T el T \mr e

The left hand side is close to 1/2, and hence larger than 1/e, if € is small (and v
has been fixed sufficiently small, recall the definition of ). Analogously, the right
hand side is smaller than e if € and v are small enough. The proof is complete. [J

>

m

Now we define r. = r.(¢) > 1 by the condition ¢} !(c) € ISTC. Observe that

HE) << (2)

by part (1) of the previous lemma. Moreover, part (2) gives
(6) e (A I Ul Ul foreverya€[c+e/2,c+ 2l

LEMMA 2.2, Foreverya € [c+¢/2,c+e] andz e I0,r > 1,

(1) if walz) ¢ A= then |(¢2) (z)] = e20e;
(2) if va(z) € AT®, with p.(z) € IF, then

P2l 2 ee” and |(2) ()| 2 & TR > €20



20 1I. THE ONE-DIMENSIONAL MODEL

PRrOOF. We begin by proving (1). Suppose first that r < r. — 2. Then, in view
of (6), |z — ¢ ()| > |[rx1] = (1 = 1/€e)?e ™. Thus, by the mean value theorem,

lpa(z) —c| 2]z = (c)] -inf{e'(s) : z € [ yoa (o)}
> (1—1/e)emeny AeTe~ )M 1
> k “A -—r\’

with ky = (1 — 1/€)n7 Ae*L. Tt follows, using M1, M2,
|(22) ()]

I | _>_ i A(_'ye—r-rl)/\ 17]7 k .-"7\ —-rA
(1 )er -21) > 2ao€Gr

where ky = 27 Ae* 157 k; and, for the last inequality, we suppose # < 1 —2A and
¢ sufficiently small.

Now suppose that r > 1. — 2. Since @,(z) ¢ A%, we have |, (z) £ ¢ > &*F*
and so we get

[(22) (@) = le()]lee(ee(2))] > gy AT ) gy e
> faz M oer(1-4) > g M Hie(re=2)(1-3=8) O

> k4s.*/,\+5+(1—-\—ﬁ)(’7—‘}{)eﬁr > e?aoeﬁr.

with k3 = 2n7 Xe"1n; and ky = ks((n7 )Te“Z)1 A=8_In the fifth inequality we use
(). For the last one we note that YA+6+(1-A=B)(7—3%) = (v—3)(1-8)+6+1 <0
if B is small enough (recall the choice of v and § above) and we take € to be
sufficiently small.

Finally, suppose that ¢,(z) € IF® C A%e. Clearly,
@ : i
()] 2 1P AT > AT N0 > g

if 3 and ¢ are small. Moreover, by (6), e7e™ ™7 < |z| < e7e™"*?, which gives

(2@ 2 1@ )] 2 e " 2grene?
> fgzhe1-Nree=F > fo M O-NO=D) (T E-1e
> keomieT 2 ete,

where ks = 277 Ae23-1p; and kg = ks(n7 )3 ! and we use the relation (5) in the
fourth inequality. O

LEMMA 2.3. Foranya € [c+¢/2,c+¢€] and z € [—a,d],
AP NAT =0 then  |(¢0)()] 2 min{e”, [, (@)},
If moreover ¢}(z) € AT then |(¢r) (z)] = 7"
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PROOF. Denote z; = ¢I(z), for 0 < j < n —1. We claim that given any j > 1
either |} (z;)] = €% or |(2)'(z;-1)| = €*°. This is obvious if |z;| < z /5. because
we get |or(z;)] = [¢'(z;)] > €. (From now on we consider z; > z 5. the case
z; < —z /5 being entirely analogous. If z;_1 € AY then |(¢2)(z;-1)] > €*° by
part (1) of the previous lemma. Therefore, we may suppose z;_; ¢ A%, that is
|z;-1] > €”. Then, recall M1, M2, ¢ — ¢ (z;—1) > n7e™ and so |¢'(p(z;-1))] =
20717 €7, Hence, using also ¢.(z;1) — @c(T;j—1) = a — ¢ < ¢, we get

ICAKCIEV I CACACIRY)| I CACHCTEY) kA CECIRY)
(P2 (zi-)l 1@ (eelzi-a))l — CACREIN]

where k7 = k/(2n7 07 ). with k a Lipschitz constant for ¢’ on {z > z sz — o} (o is
some small constant, we take ¢ < g3). Since 1 —Ay > 0, the left hand term is larger
that €270 /2 if ¢ is small enough and then the claim follows from L5. Moreover, the
first statement in the lemma is a direct consequence of our claim (cf. the proof of
Lemma 2.1).

In order to deduce the second part of the lemma we may suppose |, (z)] < e,
for otherwise there is nothing to prove. Observe also that if ¢7(z) € AZ® then, by
(3), (6), we have |, (o7 (z))| > kss?™%, with ks = Ae2A-1(n7)3.

Moreover, by hypothesis, z ¢ A*® and so |@,(z)] > n7Ae7°. Altogether,
writing kg = 17 Mks,

— -1
Y@ 2 APt @] 2 haerHoenteio)
> k95‘1+§+1——3\—eao(n—2) > eoom,

)I

)l Z 1 _ k,rsl—:\‘y"

if € 1s small enough. O

2.3. Recovering expansion. Now we deal with the expansion losses occur-
ring when trajectories pass close to some of the critical points £¢. More precisely,
we consider points z € A*°. Assuming that the critical trajectories satisfy (ex-
ponential) expansivity and bounded recurrence conditions (during a convenient
number of iterates, depending on |z & ¢|), we show that the small value of ¢ (z)
1s fully compensated in the subsequent iterates, during which the trajectory of
z remains close to that of the critical point (and so exhibits rapidly increasing
derivative).

For each j > 0 let ¢; = ¢;(a) = ¢i(%c) and denote d(c;) = min{|c;|.|c; % |}
In what follows € > 0 is fixed and we suppose a € [c+¢/2,c+¢€].

LEMMA 2.4, There erists § = (8 — «) > 0 such that the following estimates

hold. Let z € I¢ for some r > 1.+ 1. Suppose that there is n > r/a such that
(7) d(c;) >e"e™  and |(¢1)(c))] > €7, foralll<j<n—1.
Then there exists an integer p = p(z) > 1 such that
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(1) For all y1,z1 € [¢a(2),va(c)] and for all1 <k < p,

]
1 I(e()
7S ) =
(' yp< 2(r + vloge) <n-—1;
(3) [(@HY(@)] 2 029 and |(o2+1) (2)] > 56+,

PRrROOF. Define p = p(z) > 1 as the maximum integer such that
(8) lz; — ]| < e’e @ foralll <i<p

where z; = ¢! (z). Recall that we fix 8 > a. Therefore, (8) and the first condition
in (7) ensure that the intervals [z;,¢;], 1 < ¢ < p, do not contain the origin nor any
of the critical points &c. Therefore, (0! : [z1,¢1] = [Zit1, Ci41) Is a diffeomorphism
for all 1 < ¢ < p. In particular, given any y,z € [z1,¢1] we have ¥,z € [1:.¢i]
for 1 <7 < p, where y; = ¢ (y ) and z; = ¢} (z) By the chain rule,

() (z1)| _ soa z; l
(5 ()| soa (vi)| =1

and so part (1) will follow if we show that

(9) i ol (z:) — o, yl)‘

@ (y:)
is bounded by some constant depending only on 8 — a. Now, by the mean value
theorem there exists some ¢; € [2;,y;:] such that

_ iz wllea @l o o - lea (&)l
ST S el

since |z; — yi| < |o; — ;] < €7e P, In order to estimate the ratio |¢}(&)] /|2 (y:)]
we distinguish two cases. Let some small constant eg > 0 be fixed such that M1
holds on [—2zq,220] (we take € < €g). Suppose first that [z, ¢;] N [—20. 20! = 0.
Then |¢”(&;)] < k, where k depends on €g but not on e. Moreover, by M2, (3),
and the first part of (1), |9L(y:)| > 2n5e"(e7>' — e7#*). Thus we get

992( A yz)‘
Sga yl

EACREACD
‘%(yi)

cre P ke (B—e)s
< . — < — < const e~F7%),
— 2pyet(eoi — ePF) T 2p7 (1 — e~ (B-o)i) T

AR ACD)
‘Pa(yz)

Now we show that a similar estimate holds also if [z;,¢;] N [—20,€0) # 0. Indeed,
since y; € [z, ¢;] C [—2¢20,2¢0], we have

o (y)] = 7 Ay > a7 A(le] + 7PN
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On the other hand, |%(&;)] < const |¢]*~2 < const (|¢;| — e7e™#)*~2, recall L1. In
this way we get

Al ) 1 — v o—=BiyA=2 v ——.31.
AG Ik AUD) < const s"e"ﬁ‘“cll € ) < const ——
o) (el eremm s < = s
—Bi )
< const —fi————. < const e~ (F=a)i,
e—ot e-—ﬁz

as long as ¢ > 0 is small enough. Altogether, this shows that (9) is bounded by
2i>o const e~ (6-=) < const /(1 — e~ (=~ ﬁ)) Wthh completes the proof of part (l)
Starting the proof of (2), let ¢ = mm{p,n} Sincez € I¢, we have |z —c| > &"¢™"
and so [:vl —c1| =2 n7e¥e™? . Then, in view of the second condition in (7) and the
distortion estimate we have just proved, the mean value theorem yields

-2

nyeTe e <z — )| < €7,

Thus

as long as ¢ is sufficiently small. Since we also take an >r > 1. +1 > flogl, we
find that ¢ < 2(an + (v/8)an) < n (if « is small), so that it must be ¢ = p. In
this way we have proved that p < 2(r 4+ ylog 1) < n, as claimed in part (2) of the
lemma.

Now, by the definition of p we have |zp41 — cpy1| > €7e7PPH1). Thus, using part
(1) in conjunction with the mean value theorem,
gve—B(p+1)

LD\ ( ‘p+1 T Cp-‘-ll 23
[(22) (z1)] > 7 = > I > const e %P,

Since |l (z)] > 2n7e7e™", we find
(10) |(2271)(z)] > const ™77,
Using part (2) and r > r.+1 > §log sy wegetr—fp>r(1—28)—23+1log?! and

I((PZ-H)I(‘T‘)[ 2 const e(l—?ﬁ)r—(?ﬁw/ﬁ)r; 2 e(l—?ﬁ)(r—r,)

as long as we fix 8 > 0 small (such that 28y < §(1 —23)) and take r. large (that
is, € small) enough. This proves the first statement in part (3).

Combining (10) with r > & — ylog® we also get |(2)'(z)| > const elz=%77,
We now distinguish two cases. Suppose first that e=(3729? < ¢x=1, Then

[(¢21)'(2)] > const e(z=Pe=(3-200P7=3+1 > const e8Pe7-3+1 > (Slp+1)



24 II. THE ONE-DIMENSIONAL MODEL

if ¢ is small (recall that v — + +1 < 0). Now suppose that e(3729)P < ¢1-%, Then

2 1 1< 1 1 2
___1'3) og — < (5 — 1)

if 8 is small. It follows from (10) that

1 T
8p < 8(5 = V(3 )5 <

[(?F1)(z)] > const e27? > const e=2e% > i)
if € is small. This completes the proof of part (3) and of the lemma. O

2.4. Proving positive Lyapunov exponents. We can now state the main
results of this section, asserting that, under two convenient assumptions on the
parameter a to be given in CP1, CP2 below, the critical trajectories exhibit expo-
nential growth of the derivative and, in fact, the same is true for most trajectories
of ©,.

As before, we write ¢; = c¢;(a) = ¢i(c), for j > 1. For the time being we fix
some n > 1 and assume that

CP1(n): d; = min{|¢;|,|c; £ c|} > e"e > forall1 < j < n.
and
CEG(n—1): [(¢)(a)| > e foralll1 <j<n—1.
Then we define sequences of integers v;, p;, by vy = inf{r > 1: ¢, € A=} and

i) p; = p(c,,), as given by Lemma 2.4;

i) vigp =inf{r >v; +pi:c, € A=}

(CP1(n) ensures that c,, € I* for some r < av; < an). We take s maximum such
that v, < n. Then elther vy < n < vg+p,or v, < v +ps <n. We define P, =
(p14+1)+---+(ps—1+1) in the first case and P, = (p1+1)+-- -+ (ps-1+1) +(ps+ 1)

in the second one. Then we further assume that
CP2(n): P;<Zforalll <j<n.

LEMMA 2.5. Suppose that some parameter a € [c+¢/2,c+ €] satisfies CP1(n),
CP2(n), and EG’(n —1). Then it also satisfies
EG(n): |(¢1)(c1)| = €7 foralll <j < n.

PROOF. We let v;, p;. be as above and define ¢go = v; — 1 and ¢; = vig1 — (Vi +
pi+1)for1 <i<s—1.1If n>v,+ps wealso write g, =n — (vs + ps). Then

(11)
[(22) (e) = I( H () (@) 1(@8) (cme) D 1227 7) (el
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The first factor on the right can be estimated as follows. Since @,(cy) = €, € A,
relations (5) and (6) vield |2, (c, )| > const (€7e™"<)*~1 > const ex~1. Hence, using
also the first part of Lemma 2.3,

(22 (e1)] = 127 ()l (9a) (cg0)] > const e~

(note that the last inequality in L4 implies |¢;| < z s5 and so |pg(c1)| > V2 > e’
for all a close to ¢). On the other hand, Lemma 2.4(3) and the second part of
Lemma 2.3 give, for 1 <: < s —1, ’

(@2 ()] = %) and (@) (cuigpir1)| = €7,

For estimating the last factor in (11), we distinguish two cases. If n > v, + p;
then we use Lemmas 2.4(3) and 2.3 once more and get

I(‘TOZ_V’-H[)I(CV.:) = l(’ﬁgir‘l—l),(cua)l : I("fogs),(cl/s"}’}’:'i'l)l
2 eflpaF1) min{eao ) I‘P;(Cus+ps+1)l}eao(q:—l)

> const e?(PsFN o c0a
(the final bound remains valid when n = v, + p,, i.e. ¢, = 0). Replacing in (11),
(12) [(#2) (e1)] > comst 15 H7#5e(70 Do st L (i),
Now, CP2(n) implies (recall that we take op > 20)
aoiqi —:—ﬁi(pi +1) > oo(n— P,)+ P, > 0’0% >on
i=0 i=1 : 2

and the lemma follows by replacing this in (12) and assuming € sufficiently small.

Suppose now that v; < n < v,+p;. In this case we can not take advantage of the
estimates in Lemma 2.4(3). as we did before. Instead, we use CP1(n), EG(n —1).
and the distortion estimate in Lemma 2.4(1), to conclude that

(27 (6] = (e )] - 237 (e )| 2 const 6™ const e7t=+2
This gives
(13) (™) (c1)| > const ;.l—§+"/6(ao S q;+ﬁZ:ll(p.'+1)—ow.«+0(n—vs))_
Now,

s—~1 s—1
oo Zqi + ﬁZ(p; +1)—av, +o(n—v,) > oo(vs — P,,) — avs + o(n — v;)
=0 =1

> %Qus—ays—i-a(n—— vs) > on
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as long as we take 2o < oo — 20. Replacing in (13) (and assuming € small) we get
the conclusion of the lemma also in this case. Our argument is complete. O

PROPOSITION 2.6. Suppose that some parameter a € [c + £/2,¢c + €] satisfies
CP1(n) and CP2(n) for alln > 1. Then |(¢2)(c1)| = €™ for alln > 1.

ProOOF. This follows directly from the previous lemma, by induction on n.
Observe that the step n = 1 is an immediate consequence of L4: as we already
remarked, it implies |¢;| < z sz and so [¢g(c1)| > V2>e. O

3. Partitions and distortion estimates

Our objective in this section is to set up the machinery which will enable us.
in the next section, to estimate the size of the set of parameters for which the
corresponding maps satisfy the conditions CP1(n) and CP2(n) for all n > 1.

A main ingredient is a family of maps {c¢;};ey defined on parameter space and
taking values in dynamical space. More precisely we fix some ¢ sufficently small
and let wo = [c+ %, c+¢] denote a small interval of parameter values (where p > 1
is chosen as in lemma 2.1). Then we define, for each j € N a map

¢jiwy — [—c—g,c+¢]
a — ¢(a)
Our first lemma states that the derivatives of the maps c;, i.e. the partial deriva-
tives D, (cy) of ¢i(c;) with tespect to the parameter, are growing exponentially
as long as the partial derivatives 8;¢1(c;) = (%) (c1) are growing exponentially.
This is quite a general fact for parametrized families of maps and will be used in
a fundamental way below since it implies that the images ¢j(wg) are growing ex-

ponentially as long as the derivatives along the critical orbit of the corresponding
maps are.

LEMMA 3.1. There ezists a constant 1 > 1 such that if |0z¢%(z)] > €7, £ lin,
then

1004 (2)] -
T Jre <y < lin
103 ()]
Proor. Using the chain rule we can write
Ouipy(z) = (£27H(z)) + Oepa(0n 1 (2)) 00y (2).

Reapplying the same argument several times and using the shorthand notation

0; = Ozp, (i (2)) and 9] = O, (vi(z)) we get

n—1
Ooot(x) =t + a2 e+ DO

1=0
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and, dividing through by 0% (z) = S, we get

=0
Oupalm) _ Oi 40020+ 4+ YIS0,
O.v5(z) o 0:
N N 1
" 0.0(2) 0,92 ()
e 1
= 1+ -
.; RAC))
Using again the fact that |1 — |z|] < |1 4+ z| < 1 + |z| for any real number z, we
get
d,27(z) = 1
=4 1+ .
9,3 (2) ; 9,.(7)
S I+Z€_m
1=0
and
0,8 (x) ' S
ava > 1 — !
b Z |\ &R

v
E—
|
-Mg
3\
:

The lemma is proved. O

From now on every construction and formula involving ¢ (e.g. the partitions
A® A%e (CP1), etc.) is defined in terms of the e chosen above which will remain
fixed for the rest of the paper.

3.1. Partitions. We shall now use the family of maps {c;} together with
Lemma 3.1 to construct two nested families {F,,} e and {E,}nexw of subsets of
wg. More precisely we shall have

'”gEnangEn—lg"'ng-

Fach F, will be formed by a finite number of intervals of parameter values and
the partition of F}, into such intervals will be denoted by P,. By construction all
parameters belonging to F, will have the property that the corresponding maps
satisfy condition CP1 up to iterate n, i.e. for all a € F}, the condition

(CP1) d(c;) = e7e™™
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is satisfied for all 1 < j < n. E, is obtained by throwing out those elements of 7y
which do not satisfy CP2 up to n. Thus every parameter a € E, has the property
that the orbit of the critical point of the corresponding map satisfies

(CP2) P. <

n.

PO

Finally the set A* = (,cy En will be formed by parameters which satisfy CP1
and CP2 for all time and thus, by Proposition 2.6, the orbit of the critical points
of the corresponding maps will have an exponentially growing derivative for all
time, i.e. a positive Lyapunov exponent.

The construction of the objects described above is carried out inductively. For
the first step of the induction we simply set Eg = Fo = wo and Py = {wo}. Now
suppose that E,_1, F,_; and P,_; have been defined. We shall discuss below how
parameters are excluded and the partition P, and the sets F}, and E, are defined.
We shall consider seperately the cases n < == and n > %=.

Case 1: n < Z. Suppose first that forall 1 <j <n —1,
¢i(wo) N AL = 0.

Then, if also c,(wo) N Ay = @ we simply set E, = F, = wp again and also let
P, = {wo} (in fact in this case we even have E; = Fj = wp and P; = wy for all
1 < j < n). If, on the other hand, ca(wo) N Ay then there is a possibility that
some parameters parameters fail to satisfy CP1 and therefore need to be thrown
out. More precisely we have to exclude any intersection of ¢,(wo) with an £7e™2"-
neighbourhood of the origin and of the critical points. We shall denote such a
neighbourhood by A,,.

Notice that since ¢;(a) N Ay =0, V1 < j < n-—1forall a €wy we have
[(¢3) ()] > € VY1 <j<n—1byLemma 2.3 and therefore |c}(a)| > ne° by
Lemma 3.1, and so

lcj(wo)l = ne™ ol
> n(p—1)
- E-"I
> remen

by the mean value theorem. In particular the proportion of excluded parameters
at this stage is very small.

Let
Fo=Fo 1\ (Aan N cn(wo)).
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For technical reasons we also want to exclude at this point any connected compo-
nent of F, which is too “small” in the sense that it image under ¢, is completely
contained in A;. Denote by F,, the remaining parameters. Define

Pr = { connected components of F,}.

Since n is the first return there have certainly not been any binding periods and so
we set £, = F,,. We now continue iterating the elements of w € P, and consider
their images c;(w) repeating the procedure above if there is any intersection with
A;. In fact we shall say that an iterate j < = is a return (for the interval
w € Pj_1) only if exclusions need to be made since the rest of the time the interval
w is essentially in a free period (see remarks below).

REMARK 3.2. As long as n < It the situation is, in some sense, particularly
simple. Indeed this condition 1mphes that the excluswn zone A,, contains A =
(=7, £’+‘5). In particular it means that we can never have any interesections
with AZ¢ since ¢.(w) N AT # @ would imply ¢,_1(w) N A® # @ which is impossible
because any parameters falling into A° would be thrown out. This means that
there are no binding periods and

E.=F, Vn<c=.
(67

REMARK 3.3. Another consequence of remark 3.2 is that for all n < ¢ and
a € F, we have by Lemma 2.3 ;

[P ()l 2 e V1<j<n

REMARK 3.4. Observe also that == can be made arbitrarily large by taking ¢ or
a small.

Case 2: n > Z=. We suppose that for each a € E,_; a sequence
0 < vi(a) < vp(a) < --- < v,(a), s = s(a)

of return times has been defined. For each w € P,_j,w C E,_1 C F,_; we
distinguish two basic possibilities.

1) If
o n belongs to the binding period of some previous return, i.e. if
vi(la) +1 <n<v,(a)+ps(a), Vaé€ w;

or
o c,(w) does not intersect A, i.e.

a(w)NA =0

or
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e the intersection between c,(w) and A is very small,i.e.
c(w)NACI;, x=0,xc

or
o c,(w) is completely contained in A but does not properly contain any subin-
tervals I7, r2>re,*x =0,=xc
then no exclusions are necessary (see also Lemma 3.7 below). We set w C F,w €

P,.. We throw out those w € P, which do not satisfy CP2 and define E, as the
union of those remaining.

REMARK 3.5. in the last subcase above we say that n is an inessential return
for all @ € w. We shall prove in Lemma 3.7 below that inessential returns always
satisfy CP1, thus justifying the fact that we have made no exclusions as explained
above. If this return occurs in AT then we define for future reference, a binding
period of the interval w by

(=) = min {3(@)}.
2) If ¢,(w) contains some I7 with * = 0,%c and r > . then we say that n is an

essential return for every a € w. We start by throwing out the parameters which
do not satisfy CP1, i.e. the set

iz (ea(w) N Aan)

as well as any connected component w' C w \ ¢;}(ca(w) N Aan) such that c,(«”)
does not contain at least one I7. Let @ denote the remaining parameters.

We divide & into a finite number of subintervals (which we shall denote again
by w) in such a way that the image c,(w) of each of these subintervals contains
ezactly one I with r > r.. These subintervals are by definition elements of P, as
well as subsets of F,. Those which satisfy C P2 at this point also belong to En,
and those that don’t get thrown out. This completes the inductive definition of
the sets E,, F,, and the partitions P,.

REMARK 3.6. Observe that to each w € P, is associated a sequence
0 < vy(w) < va(w) < --- < ws(w), s = s(w)

of return times corresponding to the essential and inessential returns of intervals
of parameter values contained in «y and containing w. These returns can occur
either in A° or in A%,

Let {v;,} denote the subsequence of return times in which the (essential or
inessential) return occurs in A%, To this subsequence can be associated a sequence
{px} corresponding to the lengths of the binding periods following each v, .

Let {v;,} denote the subsequence formed by the essential returns (to A? or
AZ%¢). To this sequence can be associated a sequence {r}} of (signed) integers with
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[r3] > re, * = 0,%c corresponding to the unique subinterval I7 singled out by
the essential return v;; as explained above.

Notice that for a given sequence {r;} there can be at most one element w € P,
to which that sequence can be associated. Concerning this point however, there
are a couple of situations which need to be clarified. Notice first of all that all
returns occuring before iterate Z= should be thought of as essential returns. Such
returns generally contain more than a single subinterval I* and moreover they
contain subintervals with values of r < r.. In this case we shall associate to them ,
by convention, the value r.. A similar problem might occur with essential returns
v; 2 . Indeed it was specified above that the image under c,, of such intervals
should contain exactly one element I with r > r.. However, if w € P,, and ¢,,(w)
contains I, it will, in general, also contain several other elements I, with r < r..
in this case also we make the convention of assigning the value r. to such returns.

LEMMA 3.7. Inessential returns satisfy (CP1)

J < 1jn and

PROOF. Let w C F,_;,w € P,_; and suppose that |(¢?)(c;)] > €°
v < n denote the last

Va € w. Suppose n is an inessential return for w and let
essential return before n. Then

e (w) DI, for some r. < 1 < [an]

and therefore

leo( ) 2 L]
Z E’Y(er-i-l _ e—r)
> (e—1)"e™.

We shall show below that
len ()] > 287 [onlHt
implying that

o cither all a € w satisfy (CP1) for iterate n;

e or, if some a € w is close enough to the origin or to the critical points to fail
to satisfy (CP1) then, due to the length of c,(w) it will certainly contain
at least Jj,,)-; contradicting the fact that n is an inessential return.

We shall consider seperately the cases ¢,(w) C A® and ¢, (w) C A==,
(1) ¢,(w) C A%
As was mentioned in remark 2.2 we can suppose that ¢;1(AL) C I, for
some 1, with |r.| > |r.|, for all ¢ € w. Thus we distinguish two subcases.
(a) cu(w) D I, D (AL);
(b) culw) DI —r,r # ..
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The first case cannot actually occur in our present setting since it implies
cvr1(w) D (AL) and therefore n = v 4+ 1 would be an essential return
contradicting our hypotheses.

In the second case we have, by the mean value theorem, the distortion
estimate in Lemma 4.1 and Lemma 2.4,

const. €71 |, ()]
(27-1)

|en ()]

ke’ — l1
const. &7 g7e el

const. g7V g7emlovl+l

97 elaml+1

vV IV IV IV

if ¢ > 0 is small enough.

(2) c(w) C A
To obtain the desired estimate in this case we define a binding period
p = p(w) = min,c,{p(a)}. By Lemma 3.2 we have, for parameters for
which p(a) = p(w),

1
=PV (¢, > Zconst.g2B1—8(1-28) g (r—rc)(1-25)
() (e la)] > 5eo
and, therefore, by using the bounded distortion estimate we get

1 ,
[(22) (en(a))] = 7 const. g261=5(1-28) g(r—rc)(1-28)

Then the mean value theorem implies

evrs(@)] 2 leul)] - inf [(22) (eu(a))

> 9:7elanltl

since 28+ — §(1 —23) < 0. The result follows from the fact that |cn(<)] >
levsp(w)| O

3.2. Distortion estimates.
LEMMA 3.8. There erists a constant A such that if w € Pp,w C E -1 then

Oatpa(c1(a))

<A
GREACIC)

V1< k<n,Vadecw.

Notice that the constant A in the theorem is independent of w and of n. This
result follows by Lemma 3.1 and an analogous result proved below for the partial
derivatives with respect to z.
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LeEMMA 3.9. There exists a constant A > 1 such that if w € Pp_yw C E,_ then

(") (cx(a))
(%) (e (a '>>l =4

V1<k<n,Va,de€w.

PROOF. Observe first of all that by proposition 2.6, w € E,_; implies l(FY (e1(a)) >
e’* for all 1 < k < n. Write ¢; = i(c) and ¢! = ¢i,(c). By the chain rule we can
write

I

soa(cz) @, (ch)
(l/a.’(cl')

soa (ci) — @hlch)
(Ioa,’( i)

k
k
k
k
H 1+ A

Thus the proof reduces to showing that the sequence of partial sums i, |4;] is
bounded above by a constant independent of k. By the mean value theorem, for
each 17, there exists a {; € [¢;, ¢] such that

[ales) = Gl = " (&) lei — <

and so we can write

4= [#1E) e — ¢
| il - ,/ / -
9”0’(01')
Let 0 < 1y < v3 < --- < vy < n be the returns of w with corresponding index,

as defined above, r; strictly greater than r.. For the purposes of this lemma other
returns (with r; = r.) can actually be treated as free periods since they all admit
the same uniform distorition estimates. Let p;,ps,... ,ps denote the lengths of
the binding periods corresponding to those returns which occur in A*°. We start
by estimating the total accumulated distortion during of free periods.

v;—1

Fpo= > A
Vj—1+p;—1-+1

v;—1

- 5

vi—1+py-1+1

©"(&) |ci — i
wo(ch)
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By the definition of free period ¢;(w) is uniformly bounded away from both the
origin and the critical points. Notice also that the first and second derivatives in
given points are independent of the parameter and we get,

PN < ()]
and
|l (e)] > |¢(c

Thus

(L. P Caas

,(6;) ,s/ ( 2\ = a(¢)

T;(Cz) S";(C-EA’“)

and

VJ-1+Pj—1+1
By the inductive hypothesis |(¢?)(ci(a))] > e/ £ 1jn Va € w and Lemma 4.1

we have

le; — ¢t > —(156"(

and since the sequence of values |¢; — ¢}| is bounded above by
we get

ey — o

/
Cy; = €y

< e, ()]

Fj S a Z —-cr(vJ 1)

¢y, (w) I

e, ()]

<(12

where a; = a»(2) = a1671 T2, e

For returns v; we distinguish two cases according as to whether the return occurs
near the origin or near the critical point. If v; is a return to a neighbourhood of
the critical point then ”/(£,,) admits an upper bound independent of v;. Indeed
we have

2" < max{l¢"(2)] 2 € [~ ", e+ 7]}
= 0,3(6).

Moreover, recall that, by construction, ¢, (w) is contained in at most three adjacent
elements [, ., U [, U I, of the partltlon of A=°. Thus

(e,

> 2nye’e” !
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and
ot Y ,—Ti+2 _ v, —T;—1
cyy =, < |Ee g'e
< gTe7 e — 6‘1[
and, combining these estimates
7 / L
(60, e, — <, e, ()]
! - a4
99 (CVJ) ITJ

If v; is a return to A° then

£"(&,)
<'(c,))

sup{¢”’(z) 1 z € (7e T2 g¥e"Ti71)}
nf{(s) 7 € (e, e )
(e
o' (eTe-m42)
(A= D)y (gTeTm A2
nz’ (5*/6—r1+2),\—1

(A _ 1)77:-[!*6—(,\—2)(67€-rj),\~—2
- Ny 62(’\"1)(676_r1)‘\—1

-1
S as Ir]
and so we get, as above,
Y"(é”i) Cy, C:/J Cl,j('u«’)‘
< as
@I(CU]) '[r]

Finally, consider the contribution of binding periods

(6 i = ¢/
()

vj+p;

B. =

i =

v, +1

Repeating the arguments in the proof of Lemma 3.2 and keeping in mind that in
our case the upper bound for |¢; — ¢}] is
3.2), we get

c,,j“(w)l (and not €7e™*? as in Lemma

|B;| < as

o1 ()]

where ag < const. Y2, e
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Thus we have

u |CV1("‘")I
glfiil < aglcpl(w)l+as—lI—|-+aslcy2(w)|+a2!cn(c—')l+--

< ar Z e, )l+asi

e, (0 |

I

L]

e, (w |

< QQZ

since the

ey, (w )i form an exponentially increasing bounded sequence and therefore

the corresponding partial sums are uniformly bounded. For this very same reason
the last sum above is uniformly bounded. Indeed write

s e, ()]
;_L, é‘: IMm;l_r}lu,~(w)l
const.
S 2T

since the second sum is bounded above by a constant independent of r. Finally
we get

k
Z |A l < ap Z
=1 T>OT, III
S aig Z 676—-7‘
T>T,
< A O

4. Parameter exclusions

We now wish to estimate the total measure of the parameters excluded after each
iterate. We shall consider seperately exclusions due to (CP1) which are carried
out each time some interval of parameter values intersects a small neighbourhood
of the origin or of the critical points, and exclusions due to (CP2).

4.1. Exclusions due to (CP1). Recall that, for each n, we need to exclude
parameters a for which c¢,(a) falls into A,n, an €7e7"- neighbourhood of the
origin or of the critical points. Moreover, if a € w € Pp_; and cn( )\ .. contains
any small connected components, i.e. components which which do not contain at
least one I,,7 < [an] + 1, then these components are also excluded. Thus, letting



4. PARAMETER EXCLUSIONS 37

@ C w denote the subset of w which gets thrown out at the n-th iterate, we have
cn(@) C Apan)+1 and so

en(@)]_ 2e7emlenl
ea(@)] = " Tenlw)

and, by the bounded distortion estimates above,

A ~  lan]+1
lwl 2/—16 €
|en (W)l
def

= A,

o]

Our objective in this section is to show that |A,| — 0 exponentially as n — oc
in order to get, for each n,

|[Froi N ER] 2 (1= An) | Fa
with TT:2,(1 — A;) > 0.
LEMMA 4.1. There exist constants ' > 1 and o' > 0 such that
A, <eflemom foralln > 1.
PROOF. Let w € P 1. C F_1,w C E,_;. We have
I(;;i)'(cl)i > ¢’ < 1jnandforallac€ .

Obviously we can suppose ¢,(w) N A, # § since no exclusions would be necessary
otherwise. Let v < n be the last essential return for « before n. Then ¢, (w) D I,
where 1 < |r| < [av]. We shall distinguish four different cases: ¢,(w) D I? where
1) 7 =7, i1) r < 7. dli) 7> 1, and iv) ¢, (w) D I

i) Suppose first that r = r.. Then clearly ¢,1; D A° and therefore n = v + 1 is
an essential return. Thus we have

o)) = @)l _inf {#'(2)}
> (e —1)eTeTTe2y; (TN
> 2ny (e — 1)5‘7'\_7575_7.6e_rc('\‘l)6'2(¢\—»1)
> 207 (e — 1)t Dem e
> 207 (e — 1)82(‘\—1)(T]i*')is'y,\+1—~p\
> const. €
where const. = 27y (e — 1)52('\_1)(7711_)% and we use that fact that r. > (3 —

1

7)loge™ — tlogny from lemma 2.1
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This gives

676—[an]+2

A, < 2A const.
< const. g1 e~ lom]
< r__«9’6——@’11.

aslong as ' <7 —1and &' < a.
ii) Now suppose c,(«) D I? with r < r.. Then

le. () 2 fevga(w@)]

> o)) inf {(¢2)'(2)}
r€cy (w)
aCw
> (e—1)s"e™ const. (s7e”7)* !
> const. (e7e¢77)*
and therefore
~ .—[an]
A, < const. £e
(576-—1')2,\
g7 e on] .
< -
< const. B since r < [av] < [an]
< const (g7elenhyi-2
< e,

iii) For r > r. we have
leu (<) ley42(w)
el _inf_{# @)}

acw

v v

. o—p - 1 (1 \)(r—
const. £7e ’e’“he(l M(r=rc)

~bl1—3 - —(1-\
COIlSt. 62[—["1 /\e /\Te (1 ,\)TC

AVANAY

and so

eetor]

G
IN

const.

E'Z‘H—l—-f\- e—kre—(l—/\)rc
1 _
Ae

1+1=% e—(an~rc)(1—A)

~+1= [an]+Ar4+(1-M)re

const. €

const. €

g _—a'n

£ €

IN A A
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since T, <1 < an.

iv) Finally suppose the return v occurs near the critical point and ¢, (w) D I¢
with r > r.. Then

leo (@) 2 evrpra()]
> la()-_inf {(62/(=)
aEw

const. g7e Telr—re)(1-23)

Notice that 239 — (1 — 28) < 0 by our choice of § and therefore we get

v

grelan]
An < const. " +257—5(1-28) g(1-23)(r—12)
< 51-20)-237 ~[en]-(1-20)(r~r.)
< femam

O

4.2. Exclusions due to (CP2). Consider the set F, of parameters which
satisfy CP1 up to iterate n and CP2 up to iterate n — 1. Let P, denote the
partition of F,, as defined in the previous section. We exclude those elements
which do not satisfy CP2 up to n and denote the remaining set by E,. Notice
that the exclusions will concern a union of elements of P,, since all the parameters
in any one such element have the same history of returns and bindings. The
purpose of this section is to show that most of the parameters in wo. as long as
they satisfy CP1, also satisfly CP2. We begin by showing, in the next two lemmas,
that the total amount of iterates which belong to binding periods between one

essential return and the next can be estimated just in terms of the position of the
return.

LEMMA 4.2, Let w € P, and c,,(w) be an essential return to A. Suppose
cv.(w) D I, and let vy, be the first essential return after v;. Then

lew ()] 2 Bles, ()],
PROOF. If v; is a return to A*® then it is followed by a binding period for which
we have (by Lemma 2.4)
[(2) (en)] 2 e
for all @ € w,c,, = ¢,(a). Following this binding period there may be some

free periods and some inessential returns but the overall accumulated derivative is

always increasing. Thus, taking into account Lemma 3.8 we obtain our result in
this case.
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If v; is a return to A%\ ]?C then we have at least v;;; — v; > 2 and by Lemma
2.2

|(92) (cn) 2 €
for each a € «. Reasoning as before we obtain the result in this case also. Finally,

if v; is an essential return to I,?C then v;4; = v; + 1 and by Lemma 2.2 we get the
required expansion. O

LEMMA 4.3. Let w € P,, and suppose c,,(w) is an essential return containing
I: with x = 0,%c. Let vy be the first essential return after v;. Then

Ti i
< (142,
VI—B(]" 6)

PROOF. The minimum rate of expansion between a return and the next s e,
as follows from Lemmas 2.4, 2.2 and 3.8 . This gives

(527 (e,)] 2 i

a

Vit1 —

and since the lengths of the iterates c;(c,,(«)) is bounded above by the length of
the domain of our maps, which we can assume to be 1, at which point an essential
return is guaranteed to occur, we have

12 [eugmm(en(w))] 2 emem el

This clearly implies

1
Vigr — Vi < 'B‘(rx'*"flog“)

T; ~loge™!

< X !

< o+ TRE

< Tyl
B bloge?
T;

< = +—)
ﬂ(

since r; > r. > §loge™!, proving the lemma. O

The statement in the lemma clearly implies that the number of iterates belonging
to binding periods between one essential return and the next is less than 21+ 3).
In particular the number of iterates belonging to binding periods admits a bound
depending only on r; (once the other constants have been fixed). In particular we
can reformulate condition CP2 by noting that

1 -
< 5(1+g’>§2m-
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Thus if, for some a € w € P, we let ry,...,7s denote the sequences defined above
associated to the sequences v;, < --- < v;, (which from now on we shall denote

just ¥; < -+ < ;) of essential returns of w, condition CP2 is satisfied by the
parameter a if

B -
ZTJ—Q )TL ﬁn'

where 8 = 2(%;) Thus we need to show that for each n the proportion of

parameters belonging to F,, and not satisfying y_r;(a) < Bn is very small.

The strategy is to obtain an estimate on the size of the intervals w C F, in
terms of the associated sequences ry,...,r;. This will show that intervals with
an associated sequence containing many terms or terms with very high values
(corresponding to intervals with a history of spending a large proportion of time
in binding periods) are very small. Thus the larger elements in P, are more likely
to satisfy CP2 and the elements which do not satisfy CP2 are more likely to be
small. A combinatorial lemma and an analytical lemma are then used to show
that there are not enough small elements to compensate for the fact that they are
small, i.e. in measure theoretic terms the small elements of P, are only a small
proportion of the bigger ones.

We shall use the notation w = I(rq,...,7,).

LEMMA 4.4, Let I(ry,...,75) =w € Pp,w € F,. Then
o < M5 T
Proor. Consider the nested sequence of intervals
I(ry,.o.yrs) CI(ry, .o yrs21) € --- C I(ry) C I, = wo.
Foreach 0 < j < s -1 we have
ey, (I(r1,. .. )] 2 7€
and by Lemma 4.2

lCVj-{»l (](7‘1, e ,Tj))l |CVJ(I(r17 e 7TJ))|e@rJ

gre T

VAR
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Thus
[ I(re; - ri)] . ey, (I(ra, - - :Ti+1))]
[ I(ry,....75) e, (I(r1yeenymi))
glem it
< e e~ P
]
and
[ I(rys...,7s) [1(r2)|
I(rq..... r)| = : |,
H(rss-oorel] G 11(r1)|' o
< (p- 1)66—“”'16_’32;=1”
< €1+56—’BZ;=1”.
]
Let 7(R) denote the number of possible sequences ry,...,7; with r; > ¢log g1

andr;+---+r, = R.
LEMMA 4.5. For each £ > 0 there exists € > 0 such that
n(R) < 28
for all R € N.

PrROOF. The number of ways in which R balls can be distributed in s drawers
. (R )
is s) and thus we have

R!
n(R) < m

The crucial ingredient in the following computation and the essential fact which
underlies the truth of the lemma is that we have

r;>re > &loget.

Consequently the length of the sequences which can occur for any given R is
bounded above by a constant depending on € and on R. More precisely we have

sloge™' <R
or, equivalently,

< éloge.

=i
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This upper bound can be made arbitrarily small by taking € small. Using this fact
and Stirling’s approximation formula for factorials

V2rkkFed < k' < V2rkkReR(1 + i—k)

we get
\/‘7‘—‘ R_—-R + ..1_
n(R) < AR (14 3p)
V2rsse % /27(R — 8)(R — s)F—se~(R-s)
< RR T (1- é)
T s(R—s)Fs\s(R—3s) 2=
RR
< for large R and small £ > 0

IA
o
TN
» |
N—
TN
jay]
| |
wn
N—
T

IA
N
N
» |
N————
B
TN
uy
| | =
wn
N—
T
ol

<

8]
TN
:I!]"'l —
N——

j
TN
Y
| | =
Dlw
N—
sl

< 9:4R

. 2 1<
since (-i—) ® and (1—}_—> ® both tend to zero as % < éloge — 0. Thus we can take
R R

e samll enough so that

The lemma is proved. O
Let ¢ = %
LEMMA 4.6.

/eEZ;ﬂT’d(a)SsHS > e %R,

R>S§loge—1
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Proor.

R O

n (T110es7s)
w=I(ryyenTs)

Y, € LrigmBYinglHe
(T14eesTs)

€1+SZR Z RETIDBES

(7'1 1"'17-.1)
ri4+-+r.,=R

clte Z U(R)e(é—ﬁ)R
R

3
e iR
R

INA

IA

(AN

IN

where R > floge™. O

The theorem now follows from Lemmas 4.1 and 4.6. Indeed, by Lemma 4.1 the
exclusions due to CP1 are exponentially small in n with a multiplicative factor of
e @ > 1 which means that proportionately less and less parameters are excluded
as we choose initial intervals «wq closer to the bifurcation point ¢. Lemma 4.6 gives

8 S 5 3
et S em2f > 65/ ezi=lr’d(a) > efefrmiar Y r; > e}
R>§log=—1 Fn
which implies
3 a . 8
m{a: > r; > e} < e Prefet ™t N ez
R>6log="1

Thus the proportion of parameters belonging to Fy, (i.e. not excluded by CP1)

and excluded by CP2 at each iterate n is also exponentially small with n and

admits a multiplicative factor > £'*%, This proves that the set A¥ has positive
measure.



CHAPTER III

Lorenz-like flows

We begin the proof of our main theorem by discussing some of the constants which
will be used '. We also describe briefly the definition of the neighbourhoods of the
critical points and the discontinuity. These are straightforward generalizations of
the analogous constructions in the one-dimensional case and so we refer the reader
to chapter II for more detailed explanations.

Two fundamental constants A and o satisfying 0 < A < 1/2 and ¢ > 1 are
fixed a priori and depend only on the form of the maps. We choose ¢g > 0
and ¢ > 0 such that 0 < 2¢ < ¢ < Iogﬁ (c will be a lower bound for the
Lyapunov exponents associated the the maps which we construct below). We
shall suppose, to simplify certain estimates, that ¢ and ¢y are slightly smaller
than the analogous constants o and oy used in the one-dimensional model. Then
there are some “incidental”constants, i.e. constants which do not seem to be
intrinsically related to the dynamics but which are necessary for our arguments.
We fix v and § satisfying 1 < v < A —1and1 < v+8§ < A7 =1 and
then choose f > a > 0 sufficiently small. At some point in the proof we fix a
small € > 0 which, on a heuristic level, represents the “distance” between the
parameters we are considering and the parameters for which the maps @, exhibit
a hyperbolic Lorenz attractor. Generalizing the construction carried out in the
one-dimensional context we define the sets A° = {(z,y) € £ : z € (=¢&",e")},
AL ={(z,y) €T :z € (=", e7)} and A* = A%+ (c,0), AZ = AY + (c,0).
Finally we shall fix some b > 0 small which controls the dissipativity of the maps
®,. Notice that these constants are chosen in the order 7,6, 5, @, <, b in the sense
that each one has to satisfy certain numerical relations involving only the constants
chosen previously. The precise conditions which have to be satisfied will appear
explicitly during the course of the proof but, in principle, all the constants could

1This chapter is an extract from the paper written in collaboration with M. Viana: Lorenz-like
atiractors without invariant foliations, to appear

45



46 III. LORENZ-LIKE FLOWS

be fixed right in the beginning. When there is no possibility of confusion we shall
always let = denote a point of £ and (z,y) its horizontal and vertical coordinates
respectively.

We make a final remark on a notation which will be frequently used when
considering iterates of points. In general we shall use no subscripts to indicate
points which belong to the critical region, e.g. z or (. We denote with the subscript
0 the first images of these points, e.g. zo = ®(z), and the successive iterates are
then given by z; = ®¥(zp) = ®*+(z). Thus, in some sense all iterations begin in
the region of the critical values. Thus, even when we talk about a certain iterate
n of a point z in the critical region what we really mean is the n’th iterate of zo.
This choice of notation might seem confusing at the beginning but it is actually
quite usefull.

1. First properties

1.1. The Differential. Several properties of the differential D® = D®, which
are immediate consequences of the definition of ® will be used repeatedly through-
out the proof. For convenience we collect here some of these properties. By the
chain rule we have

D@(”) _ a.z:®1 ay®1 . au\]?l au\yl a:z:Pl a.‘rPQ
2 TN0.9, 0,8,)  \0u¥2 0,92) \OP 0,P )"
Notice that the partial derivatives of P can be calculated explicitly to get

_ 3$P1 0 Pl o /\‘Il'\_—l 0
DP = (arp2 af,g) = <o—|z|°—1y |7 )

By (LL) the partial derivatives of ¥ satisfy |9, Y2, 0, 1], 10,9,| < band|0.¥, —
9,11 < b. Notice also that 9.0 P, = ¢’ and therefore we can write, to simplify
the notation, 8,9,8, P, = & with |&' — ¢'| < b. Thus the differential can be
written as :

) N (% D12\ _ ¢ +0,% 0]z My 9,0,z
09 pa() = () @22)‘(auwlml*-l+aum2a|x|°—1y oWz

For future reference we collect below certain estimates concerning the partial
derivatives of D® which derive immediately from (LL) and which will be used
repeatedly below.
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LEMMA 1.1. There exists constants T > 7' > 0 such that:

|o'| + 70 > |A(2)] > |¢'| = T'b and > |A(Z)| > 7
2Xbjz] 1 > | B(2)] and Ab|z|*~? > |B(2)|
b2 [C()],1D(2)| and b> |C(2),|D(2)]

Finally observe that the definition of ®, implies strong area contractiveness. In-
deed det DP = 0,P,0,P,—0.P,0,P, = lm["““’ “lwitho4+A—1>0,and det DU =
0,910,¥; — 9,9,9,¥, < b9,¥; < Kb for some constant K > sup{|9,¥;|} > 0.
Then

det D® = det DU det DP < Kb|z|7** ! « 1.

1.2. Hyperbolic dynamics outside A%e.

LEMMA 1.2. For any a € [c+¢€/2,c+¢] and zo € X7 such that {®}(z0)}555 N

A% =Q for some n > 1, we have, for all 1 < j < n, letting w; = D®(2) - (1,0),

(?) slope (w;) < Vb

i w;|| > e7tecli-1)
7 =

Moreover, if ®71(z0) € AT° and/or ®7(z) € AZ® we actually have, for all
1< <n,

(i) e 2 e

ProoF. We begin by showing the existence of a forward invariant cone field,
i.e. we define in each z € £~ a cone C(z) = {v € T.Z" : slope v < v/b} and
show that if z € X7\ A=° then D®(z) - C(z) C C(®(z)). Let z € £\ A%
and v = (v1,v;) € C(z). Then, clearly, (1,v2/v;) € C(z) since vg/vl < Vb, and
D®(z)-v € C(®(2)) if and only if D®(z) - (1,v2/v1) € C(®(2)). By (14) we have

Ny [ 0T P 0,0 0)z] y + v/ 8,04z [
be(z) (1’L2/b1)_<8u\1f2/\[1:|’\“1—'rau\lfga]:r["‘ly-I—vg/vlav\l’ﬂx[” =)

By (LL) this gives |vp] < bA|z|*! + boylz]”~! + Vbb|z|” < 3b(s7T¥)*1 and
lvil > (1 — b)nTe™® where 57 is some constant involved in the definition of
one-dimensional Lorenz like maps. Then we get

36(,7+5)A 1

-prew <V

slope (v3,v2) <
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if b is sufficiently small. This proves i). To prove ii) and iii) we make the following
observations. By 1) we have

(13) llwsll 2 llesill 2 sl (1 = )

where w; denotes the horizontal component of w;. Moreover, by (14) and (LL) we
have that

(16) llwisall 2 010z Pallessl] 2 (1 = B)¢"(2;) lwil
where z; = (z;,y;). Finally, from (15)and (16) we get
lhejeall = (1= 0)2' (@) sl 2 (1= B)(1 + B)*' () |

and the result now follows by taking b > o small and by the analogous result in
the one dimensional case, taking ¢p < 0,. O

1.3. Controlling recurrence near the discontinuity. We introduce a con-
dition on the rate of approach of orbits to the discontinuity.

DEFINITION 1.3. We say that the point z satisfies condition () up to time n
if, for all 1 <k <mn, letting 0 < v; < va...v; < k denote the times for which
z,, € A’ with z,, € I, =1,...,s we have

(*) XS: T; S ok
=1

A first important consequence of () is that it guarantees a certain minumum
number of iterates before entering the critical region.

LEMMA 1.4. For all e > 0 sufficiently small and a € [c+¢/2, c+¢€] the following
fact is true. If z satisfies (x) for some n > 1 then

zj ¢ A foradll1<j <N
where N = min{n,é/alogl/c}.
PROOF. Notice that () implies in particular |z,,| > €”€™*" and therefore it
implies that it takes a certain minimum number of iterates before the orbit of

z can enter a small given neighbourhood of the discontinuity. In particular. if
n < é/alogl/e, then

- - —as < -
lxﬂ-l _>_E’76 an > e af/alogl/ ____€/+6

Thus it is sufficient to show that the preimages ®7'(A*¢) are contained in an
g7*t-neighbourhood of the discontinuity for all @ € [c¢+ €/2,¢ + €] to imply the
desired result. In the one-dimensional case we proved that ¢;!(A*°) is contained
in a neighbourhood of the discontintuity of size 26(5/171_)'} for every a € [c+
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€/2,c+¢]. By (LL) this implies that ®;1(A*° is contained in a neighbourhood
of the dlSCOHtlnultV of size 3e(e/n7)x > 26(6/7]1 )X + b. Tt remains to show that

3e(e/n7)% < €7F, but this follows since 1/A > v+ 6 and € can be chosen small.
This completes the proof of the lemma. 0O

A second very important consequence of () is a uniform upper bound on the rate
of growth of vectors.

LEMMA 1.5. For any a > ¢, if = satisfies condition (x) up to n then, for all
1<k <n, we have

lwr(2)| S IDOF(2)]| < (7F7e™)H V% < w*
for & = (e7F5e~1)(A-1),
PROOF. For z; ¢ A® we have
D2zl < (%)
For z,, € A% with z,, € I, we have
1D2(=)] < (7% 7)1
thus

llwe(2)]| < ||DO*(2)|| < elr#OO-1F He_(A Vs
=1
< 5(‘/+5)(/\—1)k€—(f\—1)z:=1 g L1k —(A-1)k

proving the lemma. O

1.4. Binding. The notion of binding was already introduced in the context of
one-dimensional maps. It plays a significantly greater role in the two dimensional
argument. We begin by giving a preliminary definition of binding and proving some
simple consequences. Later on we shall give a slightly more sophisticated definition
which depends on the points under consideration. However that definition will be

more restrictive and thus all the results proved below continue to apply.

DEFINITION 1.6. Two points £, n are bound up to time n if
& —m:] < 2e7e™P W0<i<n

where o = ©(£),n0 = ®(n) and & = ®}(&) and n; = Bi(n0). We let B(z)

denote the set of points bound to = up to time n.



50 III. LORENZ-LIKE FLOWS

Notice from the definition that £ € B™(z) implies |®*(£)—®(2)| < g7e~Pl-1) for
all 0 <i<n-+1. This seemingly awkward notation will simplify certain calcu-
lations later on. The notion of binding is particularly useful in conjunction with

condition (%) . As a first example of this we give a simple generalization of lemma
14.

LEMMA 1.7. For all e > 0 sufficiently small and a € [c+¢/2,c+¢] the following
fact is true. If z satisfies (x) for some n > 1 then, for all & € B(®)(z), we have

&A= foralll<j<N
where N = min{n,§/alogl/c}.

PROOF. Let &7 denote the horizontal coordinate of the point &;. By the defini-

tion of B(™)(z) and the fact that 8 > o all points { € B()(2) satisfy a weakened
form of condition (*) . More precisely

S(ri—1) < ak

for all & < n. This follows easily from the fact that the sets B}")(z) are contained
in balls whose radius is decreasing exponentially fast with respect to the rate at
which the point z approaches the discontinuity. Thus, by choosing ¢ small and
therefore §/clog1/e large we can guarantee that leTeok — g7e™PF| < LevemeoF
implying that if z,, € I, then &,; € I, with 7; < r; —1. Thus the rest of the proof
proceeds precisely as above. [J

1.5. Bounded distortion outside A*°. Another important property that
the sets B (z) will be proved to satisfy under suitable condition on the orbit of
z, is the property of bounded distortion. We begin by proving this result here for
some B™(z) with z satisfying (=) and z; ¢ A%V 1 <j <n (notice that we do
not requite n < N = §/alog1/z). For £ € BM(z) let w;(¢) = D®i(&) - (1,0).

LEMMA 1.8. There erist constants C,Co > 0 with the following properties. Sup-
pose that for some n > 1 the point zg = ®(z) satisfies (x) and z; ¢ ATV j<n.
Then, for any &,n1 € B"1(z) and any 0 < k < n we have

1 ”ug({)” i e(a..j)j .
K Ty = L+ = Go<
(1) £ (wi(€), wi(n)) < Chela=P)

PROOF. Notice first of all that, by lemma 1.2, slope w;(é) < /b and slope
w;i(n) < Vb giving Z(w;(€), wi(n)) < 2/b. We shall use this fact to prove part
i) and then prove the stronger bound in ii). The philosophy behind the proof is
similar to that underlying the computations carried out in lemma 1.2: we use in
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a fundamental way the fact that the vectors are almost horizontal and therefore
satisfy ‘almost 1-dimensional’ estimates. The formal argument, however, is more
involved.

For any £ € B(™(z) and any 1 < j < n, let w;(€) denote the horizontal compo-
nent of the vector w;(¢), Then we have, by (i) and a simple geometrical argument,
that Joo; () (1+8)% > s ()l > llwj ()] > |lw;()]|(1+b). Since these bounds
do not depend on ¢ nor on n, it will suffice to prove our result for the horizontal
components w;(¢) and w;(n). We first prove inductively the following statement.
Forall 1 <k <n and any £, € B™)(z2),

40 <o
where
(1) By = 2 E0 5,

F() = b

and n7 denotes the z-coordinate of the point 7; and ¢; € [¢7,7%]. Then we show
that the product above is bounded by some constant indipendent of n which proves
the lemma.

Fix £,n € B™(z) and let wo(€) = wo(n) = (1,0). Then

w6 (L EE) 0ol ie
! 0,920. P, + 0,¥y0|E7|771EY

and similarly for w;(n). Thus the corresponding horizontal components «;(¢) and
wy(n) satisfy

lw1(6) = w1(m)] < 1E'(67) — &'(n")| + 0, T10lE7)7
<"1 - 167 = 07| + B¢ — n]

where ¢ € [{7,77] and its existence is given by the mean value theorem. The

second term in the last inequality also follows from the mean value theorem and

the observation that all the second derivatives involved are small, by (LL). Notice
also that

_avq} Tio—-1_y
(19) 10 [n*|7 Y]

s (M 2 16" (n7) = &

and therefore we have

lor(OIl _ en() = en ()] (@"(6) + B)I€ — 7l PO +h
[lor(m)] len(mIl — g )—-b T (7)) b
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which completes the first step of the induction. The general inductive step proceeds
in the same way. Suppose that

”wk( )H ('~"(Cz) i ),'ye—ﬁi
Tl = ,=o(” Z0r7) = b )

for all k < n—1. Consider the normalized vectors wy_1(€)/||wn-1(€)|| 2nd wa—1(n)/llwr-1(n)||
and (the horizontal components of) their images wn(€)/|lwn-1(£)|| and wa(m)/ Nlen-1(m)]]-
Then, reasoning as in (19)-(20) we get

len () s O] _  , &"(Gar) +
Ol S Sy~ el

with (u_1 € [€2_;,7%_;)- Then, using the inductive assumption, we get

llen(ON _ Nwn @/ lkena(O ln-1 (O]
len(MIl N M/ Tonmr (M leon—a ()]

)
<[+ B (B0 St )

n—1
< II(+ By
1=0

(

which completes the induction. Thus we have reduced the proof of the lemma to
proving that the terms B; tend to zero exponentially fast in ¢. However the meps
involv ed are now entirely one-dimensional and the proof proceeds exactly as in the
one-dimensional case to yield

B; < Cele0)

for some constant C > 0.

The strength of part ii) is that it does not require an inductive argument. In
fact it follows immediately from the following significantly stronger statement Let
£i,m; & A%, & — n;] < e7e7% and suppose that slope w;(€),w;(n) < b>. Then

£(wje1(€),wia(n)) < Cbe™P,
We have

wis1(€) = DO(E;) - w; = DO(&;) - (wj,05) = (wis1, Tj41)

[ FE) s+ AT ey + T 0y
au‘l’z)\lﬁﬂ'\_l Wi+ 9,08 |E717 w; + B, Wa|E7]7 - o
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and similarly for wji1(n). Thus
|7541(€) = o502 (n)] < BT — 07|l (§) — i (MI(E"(CT) +
< bJE7 — 07| Cole; (MI(F(¢7) +2)
using the fact that slope w; < b/ and therefore ¢; < b/2w;. Moreover

eisn ()] 2 (F(77) = B) ;)]

(
+

and thus
CobléF — 17 |("(C7) + 2)|w;(n)]
(&'(n%) — b)lw;(m)
Co b;,e_,ef?”(@ ) +2
. &'(n7) —

estimating (”(¢%) + 2)/(&'(n%) — b) just like in the one-dimensional case. [

L(wip1(€) win (7)) <

< const. &™)

2. Critical Points

One of the additional difficulties in analyzing the dynamics of two-dimensional
maps is that there is no, a priori, well defined notion of critical point. We shall show
below how to overcome this difficulty by constructing succesive approximations to
critical points which are, eventually, defined only for those parameters for which
a non-trivial chaotic attractor exists.

2.1. Contractive approximations. ‘
LEMMA 2.1. Qutside A= there exist two smooth unit vector fields fM(z) and
eM(z) with the following properties:

i fM)(2) lies in the direction which is most expanded by the action of D®(z).
17 e(l)( ) lies in the direction which is most contracted by the action of D®(z).
i eM(z) and () are orthogonal and

46 T c+A-1
slope(fM(2)) < —I‘BTI’FT“

ProoF. The directions which are most expanded and most contracted by D®(z)
are solutions to the differential equation

(20) %]{D@(z) - (sinf,cos )| = 0.

Explicit differentiation and some algebraic manipulation yields

2(8,9,0,8; + 0,9,0,9,)
(0:9% + 0,93) — (8,32 + 9,02)

(21) tan 260 =



54 III. LORENZ-LIKE FLOWS

By the definition of Lorenz-like maps |9,®| < b|z|?,]0,®.] < blz|7,|0:®,! <
2bM|z|*~! and, since z ¢ A=, (1 —b) ";6 < 10:9,] < 2(1 + b)|z|*?! and so we get
the following estimate

4b|z|o+A-1

22 9
(22) tan 26 < 207

This shows that f()(z) and e(¥)(z) are always orthogonal and that the slope of
fO(2) is very small (< 4bz|°+*~1). The smoothness follows clearly from the fact
that f)(z) and e¥(z) are defined in terms of a smooth differential equation.
Thus the lemma is proved. O

The same calculation can be carried out, in principle, for the matrix of D®7(z)
to estimate the directions of the unit vectors f(™(z) and e(™(z) which are respec-
tively most expanded and most contracted by the action of D®"(z). However the
matrix for the action of D®"(z) becomes unwieldy quite quickly and it is easier
to obtain the following result which says that under certain conditions the vectors
el (z2) and f(”)( ) converge very rapidly. When such directions are defined let

f(2) = D8 () f*)(z) and el (2) = D (2)e®) ().

LEMMA 2.2. Suppose that the point z = (z,y) satisfies condition (x) and ezx-
hibits exponential growth up to time n:

(EG(n)) ID®(2) - (1,0 =¥ 1<j<n
Then, for all 1 < u < v < n we have

() £(e(2),e(2) € f)( < o

(ii) |D®#(z) - e (z)]| < Cv*.

PROOF. Let z = (z,y) satisfy the hypotheses of the lemma. To simpliiy the
exposition we shall omit reference to the base point z in the notatlon used below.
For 1 < v < n write "1 = £e) 4 pf¥)z, Smce e() and f®) are orthogonal we
ha\e§2+n~ =1as wellasel~ D= £ 4n f) and, in particular (§2+7]2)||e(;‘1’i§ =
e +nll £ An alﬁebraxc manipulation gives

(v=1)12 _ |lo(v) )12
’ (el o) ___tan-lg___\!neu 12—l
(23) ( ) e =\ 7T — e

By EG(n), we have ||f] ()]| > e and Hf(” 1)“ > e(*~1)_ Using the general fact
that HfJ(J)H - e J)H = det D&’ < KV we obtain ||| < /e and Heﬁ,’ ) I <
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v*~1/e*~1). The final, and most crucial estimate is an upper bound on llel=1j.
Clearly we have

(24) | =21 < (1€ V) - 1D (z,-1)]l-

However the norm of the differential is not, a priori, bounded in the maps we
are considering. Indeed we have ||D®|| tending to infinity as the line {z = 0} of
discontinuity is approached. Here we use condition (*) which, together with the
definition of Lorenz like maps. implies

(25) 1D®(z,o0)]] < (14 B)r(erem> )Mt
From (24) and (25) we get

v-1

el < o (1 + Byr(eete )=

< (1 +b)rs? 1(A-1) (be‘c a(l- \)) < rer(A=1pr-1

c(»—1)

(26)

choosing @ < (1 — A)/c so that e=°¢*(1=Y < 1. Thus we have, for some constant
C >0,

T (A=1))252(v—1) { ‘(\ 1) -1 v—~1
I£0/2 2R Hf N
Finally, this gives
el ) '%2 () eli+1) i b
(e, ) < LieD U+
= i= Hf LFE

proving (z). To prove (i) write
[D2*(2) - ] < i D2*(2) - (e — )] 4 [ DB*(2) - )
e

+ v
IIf“‘)H

<2001, (“)II
<2007,
This concludes the proof of the lemma. O

Points which are bound up to time n to some z satisfying (*) also satisfy |¢7] >

€7e™%I(1 — elP=2)). This estimate is quite sufficient for the entire proof above to
go through yielding the following more general result.
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LEMMA 2.3. Suppose that the point z = (z,y) satisfles condition (x) and all
¢ € B™(z) erhibit exponential growth up to time n. Then, foralll < p<v<n
we have

t e (z), e (= —_—
(i) £, =) € o
(id) 1D8*(2) - e)(2)]| < Cb.

Contractive approximations of a given order are actually almost constant func-
tions of the space variable z and of the parameter.

LEMMA 2.4. There exists a constant Ko > 0 such that
e (2 lo2(ea) < Kob foralll <v<n.

2.2. Critical approximations. We consider the closure of the unstable man-
ifold W of the hyperbolic periodic orbit {p;,p2}. Bx considering the iterates of
the local unstable manifold of p; (resp. p:) one sees that p; (resp. pz) belongs
to a leaf which runs all the way from the discontinuity line {z = 0} to the tip
of the cusp ®(0,y) = lim,_o+ ®,(z,y) (resp. @7 (0.y} = lim;_o- @a(z,y)). For
definiteness let’s focus on the leaf containing p;.

LEMMA 2.5. Let~ : ¢ — z(z) = (z,y(z)) parametrize the piece of leaf contained
in A¢. For b> 0 sufficiently small, + satisfies the following conditions:

l9(2)]. |i(z)| < b for all z(z) € -

PRrROOF. This follows from the smooth dependence of compact parts of invariant
manifolds on the map (see e.g. [PT93]). O

Let 7o = ®,(7) and zo(z) = ®,(z(z) € v. By the definition of Lorenz-like maps
(in particular condition L4 in the definition of one-dimensional Lorenz-like maps
with criticalities) we have 50N A= = {). Thus, by lemma 1.2 we have, for each zo =
z0(2) € 0. |lwi(20)]| > €% where wi(z0) = D®,(z20) - walz) and wo(z0) = (1,0).
In particular the first contractive approximations e’{z;1 are defined. Recall from
lemmas 2.1 and 2.2 that these contractive approximations are almost vertical:
|£(eM(20).(0,1))] < 4b/220+9) | and almost constant: | DelM(z)|| < Rob. On the
other hand the tangent vectors to 4o, to(20) = D®.(zir)) - (1,7(x)) are quickly
changing direction due to the sharp fold in 7.

DEFINITION 2.6. We say that z(1)(z) = z(2(!)) is a first order critical approxi-
mation if #o(z1)) is colinear with e®(z(1) .

LEMMA 2.7. There exists a unique first order critical approzimation (1 € 4.
Moreover |2V 4+ ¢| < 7b/4.
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PROOF. Notice first of all that the formalism introduced above makes sense in
the one dimensional situation, i.e. for & = 0. In this case v reduces to the one-
dimensional neighbourhood A=< of the critical point —c¢, it is trivially b-flat, and
we have t(zo) = ¢/(z) where zo = zo(z) = ¢(z). Thus, in particular, |t(—c)| =
|¢'(—c)| = 0. Moreover, for b = 0, the first order contractive approximations
eM)(z) are always vertical and the first order expanding directions fA)(z) are
defined and horizontal evervwhere excpet at z = #c (and at the discontinuity).
Thus it makes sense to talk about the scalar product |T(z) - f(z)] and we have,
by the remarks above, for b = 0 that [t(—c) - fM)(—¢;)| = 0. Sonce ® is close to ¢
in the C? topology we have, for small b > 0

[t(z1(=¢)) - fO (z0(=e))] < b.

However we also have
| D2 (t(z0(2)) - fP(20(2))] = |Det(z0(2)) - O (z0(2)) + D2 fV(z)(2)) - tz1(x))]

with [ Do fW(zo(z)) - t(z0(2))] < Kob by lemma 2.4 and since [t(z0(z))] < e <« 1
for z(z) € A7°. For b= 0 we have D,t(zo(z)) = (¢"(z),0) with |o"(z)] > 7 > 0.
For b > 0 small we can write D,#(zo(z)) = (¢"(z),0) + v(z) with ||v|| < const.b.
Thus, in particular, D,#(zo(z)) is almost horizontal and bounded away from zero
in norm. Since f)(zy(z)) is also almost horizontal and has norm 1 we get

|Dt(z0(z)) - fM)(20(2))| > 7/2 > 0 and therefore
| D2 (t(z0(2)) - FM (20(2)))] 2 7/3 > 0.
Thus there exists a unique (1) such that () = z5(z(!)) satisfies
HERD M),

In particular, #(z(!)g) is colinear with e(!)(z(Y)y) and is the required first order
critical approximation. Moreover we have

|z® 4 ¢ < br/4
and the proof is complete. O
If all points & € BéQ)(z(l)) are expanding up to time 2 then a 2-nd order contractive
approximation e?)(&;) is defined in each such point. we shall show below that, in
this case, we can find a 2-nd order critical approximation (2 € B®)(z(1)). In fact
we can iterate this procedure as long as all points in B((;H)(z(")) exhibit exponential

growth up to time 7 + 1.

LEMMA 2.8. Suppose that critical approzimations zV, ... z(*=1 € v have been
constructed. Suppose that each zU) satisfies condition (*) and each ﬁél) € B((;)(z(i))
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exhibits exrponential growth up to time 1+ 1 (in partzcular up to time v). Then
there ezists a unique critical approzimation z%in 4 N B (2~ V).

PROOF. Notice first of all that foreachi=1,...,v -1, B()(z(9) contains a ball
of radius e"e“ﬁ‘f;"(‘“) centred in z(‘).. Indeed let R ) be a straight line segment
originating in (9, with |R() < Ve Pig=(+1) and, for each z € R, let #(z) be a
unit vector tangent to R in z. Then we have

(¢ i+ i - .
IRV = 1072 (R)| = [ D27 (=) - 1(z)dz

< Ile{i+l < E-ye—,@i,{-—i-i-lﬂi—%-l < E-ye—ﬁi

which implies the claim.Thus it is enouﬁh to show the existence of a critical ap-

proximation z*) € v with |z®) — 2"V < grem P,

By hypothesis all points in ,OﬂB v=1) ( :(*=1)) are expanding up to tlme z/ and so
the contractive approximations e®)(z) a.re defined in each zg € 7 ﬂB ( v=1)),
By lemma 2.4 we have Z(e)(zo), (”)( - 1))) < blzg = 1)| and, by lemma 2.2

v— (v-1) vy (v=1) b
Z(eP (25" 7),eM(z7)) 5o (T and, therefore,
- b~ 1
L(e¥ (=) e (20)) < 5+ bz — 267
|D2=2 (=)

Now recall that by the definition of contractive approximation

to(a )/ /e (=" 7Y)

where 54 = (2. () = DO(=D) (D) and (e ) = (L")
is tangent to v in z . The direction of to(z) is changing quite rapidly as z varies
near :r(“ R One can see this formally by decomposing to(z) into a horizontal com-
ponent u( ) and a vertical component v(z). Then, by the form of D®(z(z)) we
have easily that ¢(z) < b while i(z) > 7/2 1mp1\1n6 that

d
<= (slope to(2)) = -

wl\\

Thus the amount of “space” measured along v required for to(x) to swing around
from a direction colinear to e(”“l)(zéy_l)) to a direction colinear to e(*)(z)) for some

zo = ®(z(z)) is of the order of A(e(”“l)(z((f’l)), e(")(z))/(7/3). This implies that
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(S]]
e}

there exists a point z{) with to(z®)//eM(()2) with

L) _ L1 31(6(”‘1)(38"_1)),e('/)(()zo))
|20 — 1)) <

—

i

< 28D (=) 4 Zpf=) =)

| wo

] oo~

25208 ()| + 26 — 26|

v—1
|z — D) < 3b
T (1=3b/7)7]| D@ (=)
<Pl gm A

if bis small. O

Notice that two critical approximations of different orders, e.g. z(*) and z(*+1)
do not, in general, coincide. Strictly speaking therefore we are continually changing
the initial point of the orbit we are considering, at each iterate k we are interested
in the properties of the orbit of z*) up to time k. This fact constitutes one of
the main motivations behind lemma 2.8 and other lemmas which will be proved
below. Indeed z*+1) might not coincide with z*) but the two are not Completeh
indipendent either, in lemma 2.3 we show that z(*) — z(**1) < b* and in partic-
ular 25+ ¢ B ()Y Thus there is little difference at this point between
considering the orbit of (¥} (up to time k + 1) or the orbit of z*+1) up to time
k+ 1. In fact we shall see that all points bound to a critical approximation are
essentially indistinguishable, at least as far as the expansivity properties which we
are interested in are concerned, they satisfy a bounded distortion property and
have basically the same itinerary.

Finally we also want to be sure that all points which are bound to z**1) up to
time k + 1 are also bound to z(*) up to time k. i.e.

(27) By V(1#D) ¢ BP (=),

For this reason we introduce below an alternative deﬁnition of binding period.
Recall that |z(9) — 2341 < p* and therefore }zkk - ~k+1| < (xb)). Thus we
want to define a binding condition which guarantees that all points satisfving
|k — -A 1] < hyoq27e”PF also satisfy |€x — z; )l < hps7e~P%. We have

k k :
662171 < 16w — = |+ 120 = 2] < hipgmen® 4 (ub)
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1

and so |& — :,gf)[ < hpete PR f hyyisemF 4 (kb)F < his¥e~?% which gives
hiyr < hg — (fceﬁb)ks"’.
This leads us to the following

DEFINITION 2.9. A point £ is bound to a critical approximation zMup to time
E<vif
6 — 2| < hyete™  forall1<j<k

where

h,=2— ZE_"(KeBb)i € (1.2).
i=1

2.3. Higher generation critical approximations. So far we have shown
how to construct a sequence of critical approximations 2 .,z on aleaf of W
containing one of the two periodic points p; or p, of period 2. We discuss here how
these critical approximations induce other, nearby, critical approximations which
are, in some sense, more deeply embedded in the attractor. Them we explain what
we mean by the generation of a critical approximation.

Let z(be one of the critical approximations constructed above lyingon ~ : 7 —
z(z) = (z,y(z)). Recall that [g(z)],j(z)] < bz for all = € 7., the domain of the
parametrization of . Recall also that B®(z() contains a ball of radius r(rked).

Suppose that there exists another piece of W, parametrized by 4§ : z — (1) =
(z,3(z)) for = € 3 satsifying |j(z)|, |§(z)] < b2 and |3(z) — 2(z)] < ¥ (ne?)™®
for all = € 4. N 35;. We suppose that 4 is sufficiently long and sufficiently well
centred with respect to z(*): if z() = (z),y(z))) we suppose that 5. D (r) —
1/4=7(kef)%. ) 4+ 1/47(kef) ™). Then we easily get the following result by
using the arguments of lemma 2.8.

LEMMA 2.10. There exists a unique critical approrimation ;) e 3N B,

The leaves of W are all classified according to their generation in the following
way. We let Gg denote the connected components of W through the points p; and
ps. For g > 1let G, = ®3(Go)\ p? (Go). Then, if the curve 7 in the construction
above is contained in G, we say that the critical approximation ) g gy is of
generation g.

3. The first return

Ve consider the first time that one of the critical approximations constructed
above falls into A*¢. More precisely we define the first return v as the unique
integer such that

Mgt vi<ji<v-1
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and
2,l(lu) € Aic.

Notice that v > §/alog1/¢ since all critical approximations satisfv (%) by hy-
pothesis (we only consider parameters such that this is the case). By lemma 1.4
condition (x) implies zjn) ¢ A for all 0 < j < é/alogl/e. Moreover we also
have [lw;(z(™)]| > €7 and slope wi(zM) < bz forall0 < j<n < §/alogl/e
as discussed above. Analogously to what happens in the one-dimensional case a
lot of expansion is lost in the critical region. Here we also have the additional
complication of a certain amount of rotation which means that the slopes of the
vectors involved are difficult to control. The purpose of this section is to introduce

certain key ideas and technical tools to enable to to gain some control over return
iterates.

3.1. Binding points and binding periods. Let z()be a return to A%°, A
binding point for z{)is a critical approximation () (of order v) such that z{)and
(™) are in tangential position: There exists a curve 7 : [z, 28] — 2(2) = (z,y(2)
with z(z)) = (W), 2(z) = () | ()], lii(z)| < b7 for all ¢ € [z®),2(:)], and
satisfying ¢(¢*)) = (1,7(z®)) colinear to (1,0) and #(z{")) = (1,9(z)) colinear
to w,(z"). The fact that binding points exist is proved in the second half of the
paper where we deal with parameter exclusions. For the moment we suppose that
they do. For v as above, we write 7o = ®,(v) and ~; = ®(~p). Let |;] denote the
length of ;. Then we define the binding period associated to the first return z(v)
as the interval [v + 1,v + p] where p is the unique integer such that

(28) [l < evem? forallj <p-1
and
(29) o] 2 €77

In this section we shall deal with the case in which there are no further returns
during the binding period:

(v) == .
) EaE vi<i<p

This happens for example when z(*)is a first return since it implies that C](”) ¢
A% .Y 1 <j < v and we shall show below that p < v. In the general case it can
(and does) happen that z,(,:_)j falls into A*¢ during a binding period. Such bound
returns cannot be ignored, as they are in the one dimensional situation, and give
rise to higher order binding periods within the main binding period. We shall

consider this situation in the next section. There we will give a more general
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definition of binding period (which coincides with the one given above in the case
of the first return considered here) and show that higher level binding periods are
nested allowing us to control the cumulative effect. Returns which do not occur
within binding periods, such as the first return, are called free returns. Any return
to A%¢ is either a free return or a bound return.

3.2. Controlling recurrence in the critical region. Let 0 < 1} < vy <

- < vs < n be a (maximal) sequence of free returns to A% of the critical
approximation z(® (recall remark in the previous section). For each such returns
v; let () be a binding point for z{*) and let r; € Z be such that

(30) SeTH > 5] > [0 - (0] 3 o) 2] > e

Here v(*) denotes the curve which binds z,(/"_’*) to () in tangential position and r;
is called the depth of the return v;. We shall always suppose from now on that the
following condition is satisfied.

S

(%) > ri<an
=1

This is exactly the same condition used to control the recurrence near the dis-
continuity. We use the same name since from now on we shall always suppose
that every critical approximation of order n satisfies condition (*) both near the
discontinuity and in the critical region. This is true up to parameter exclusions in
the sense that we exclude those parameters for which some critical approximation
fails to satisfy (%) . Notice that () implies in particular

(31) Il(::z)‘ > gTemok
where zl(/’l"') = (a'le:')ayfff‘))-
3.3. Loss of expansivity and recovery.

LEMMA 3.1. Let v be a first return, { = () a binding point for z = =)

v )

~ = ~") the binding curve through z, and ( and r = r, the depth of the return v,
(|4 = €7e™"). Let p be the length of the binding period associated to v. Then
r

T
' e <p<2l++4/8)r<v—1
W /Blog""—"l’(l—/\)logl/s“'p— ( 1/8)r < v

and, moreover,

(¢2) [oaps1(z®) | 2|l (=)

(z21) slope w,4p11(2")) <b2
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PROOF. Let v : [z, 2] — 2(z) = (1,y(z)) be the parametrization of the
curve which binds z{) to ¢ . Let t(z) = (1,9(z)), to(z) = D®(=(z)) - t(z) and,
for 1 < i < p, t;(z) = DP(z0(z)) - to(z). Let also 4o = ®(7) and +; = () and
ve = [20),20)]. Letting |7;| denote the length of ~; we have

bl = [ lit@)lde and bl = [ fei(z)]lda.

Notice that we can immediately get a lower bound for p by applyving lemma 1.5.
Write

(32) e <l = [ t(e)ldz S e
Yz
which implies
T
3 > .
(33) P= Blog k

By the definition of binding. |v;| < e’e ' forall1 < i < p — 1 and, in particular,
all points in 7 are bound to () up to time p, i.e. v C BP(¢™). Recall also that,
by the definition of contractive approximation, Cé”) exhibits exponential growth
up to time v, that is: |[w;(CD)|| > e ¥V 0<j <v. Moreover, since v is a
first return, (()j ¢ A*c for all 0 < j < v —1 and thus, by lemma 1.8 all points
in Béu)((:(")) exhibit exponential growth and, moreover, the bounded distortion
property is satisfied. We shall prove below that p < v implying B®(¢(™)) C
BM(¢™). However this information is not yet available to us for the present
calculations and so we set, for the moment, p = min{p, v} and use p instead of
p. In particular we can say that all points in v C Béﬁ)(C(“)) C Béy)(g'(“)) exhibit
exponential growth and satisfv the bounded distortion property.in particular the
contractive approximations e(ﬁ)(z(o)) are defined for each zg € ¢. We summarize
below two important facts concerning these contractive approximations. By lemma
2.2 they are “almost vertical™: letting (g,1),¢ = ¢(zo(z)) denote a vector in the
direction of € (zy(z)) we have

(34) gl < Cb.

Moreover, by lemma 2.4 they are almost constant functions of the point zy = zg(z)
(and therefore almost constant functions of z), i.e.

(35) 4] < Cb.

Now we take, in the tangent space of each zy € 4 a system of coordinates whose
base is given by {(1,0),e®(z0)}. By what we just said these coordinate systems
are almost constant along ~vy. We let

to(z) = (Bo(z), ao(z))
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denote the vector to(z) the vector to(z) in the coordinate system given by {(1,0), e (=)}

Let also

t_o(z) = (uo(z), v0(2))
denote the vector to(z) in the coordinate system given by the horizontal and the
vertical coordinate axes. From (34) we have |vo(z)] < |ao(z)| < (1 + Cb)|vo(z)]
and |vo(z)] = [9.(2(2)) + y(2(2))Pp(2(z))] < Cb giving, in particular,

(36) lao(z)] < 2C0.
Moreover, differentiating, with respect to z,
(37) ()] < 2

Then Bo(r) = uo(x) — q(z)]ao(x)|. Differentiating with respect to z and using (33)
we set

(39) ' > Bo(z) > 7.

An explicit estimate for By(z) is more delicate and constitutes in fact the crucial
estimate in the proof. From (38) we have

(39) 7le — 2| > |Bo(2) = Bo(z™)| 2 7|z — =]

and, our aim now, is to show that Bo(z(~1) is very small (in relation to |z —z)|)
and, from there, to conclude that 8,(z()) is of the order of |z{) —z()] ~ e7e™*". to
achieve this aim we proceed in the following way. Recall that (¢) = (2, y(z))
is a critical approximation and therefore, by definition, to(z(*)) is colinear with

e (z(z™))). By lemma 2.2, Z(e®,e)) < bﬁ/llféﬁ)(zo(z(”))) therefore,
(40)

Bo(z) < uo(z™) — ao(z")q(z!)] <

v ‘
Z 1 + Cb)|ag| < 7.
Ilfé”)(zo(;ctv)))”( )|l

It remains to show that p is sufficiently large (we want Bo(z)) < 8 < €7e™?7).
From (43) we have

b -5\?
(41) 132 € —55 <o () <oe
1757 (o=@ :
From (39) this gives
(42) B 2 g7lal) = 2t 2 rene.

The sweaty part of the proof is over. We are at the top of the hill and the view
is good. We can now obtain an upper bound for p and show that p = p < v.
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We begin by writing t;(z) = fo(z)wi(20(z)) + co(z)eP (z0(z)) where e (z0(z)) =
D3 (zp(x)) - e(ﬁ)('o( )). By lemma 2.2 ||e!?)(z5(z)) < C¥ and therefore we have

() ezl = [ u(E)lde > [ (1G] - OF
for all 1 <7 < p— 1. Moreover we can write
(44)  Bo(2)wi(z0()) = Bo(@)wi(z0(x)) + (Bo(z) — Bo(a™)))wi(z0(2))-

By the bounded distortion property lwi(zo(z))]] < Clee: (N and therefore we
have || Bo(x™)w;(z0(2))]| < C W”_)TI < Cb'. Tt follows that ||8(z)w;(z0(2))|| >

1Bo(z) — Bo(z™)]|||w:(z0(2))]| = Cb' and so, from (43), letting i = p — 1,
1680 3 il > [ [fu(a) — Aole)llepn(an())
> Cllwz— ()] | 1Bol=) — Bo(z®)|dz
> Cec"(ﬁ'l):—/ |z — 2M|dz > Cre®® V| |2 > CreeP (72,
Tz

From this we get e~7e2 et C~1771 > el°0+F)P which gives p < 2r + vlogl/e +
co+ P —log Cr. Keeping in mind that 7 > §log 1/¢ we can write ylog1l/c < (y/8)r
and therefore

v

(45) p< 2+ < (247/8)av <

SRR

where the second inequality follows from condition (*) and the third by choosing
a small. On the strength of this new piece of information we repeat essentially
the scheme used above, in order to obtain (z27). From (39) and the definiton of
binding period we have

e < Pl < [ 180(a) = Aoy (z0(2))|dx —2C%

s —-II — 2P llwp(z0(zt)]

which gives
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Thus
”wu+p+1(z(y))” 2 [lw, (2 V))HB( (U))Hup( u+1)”
> ()7 e e
> [, ()",
Now using r > p/(2 + +/6) from (43) we have
eror > oz —B)P > e3?

choosing B small. This proves (7). Now (7i1) is relatively straightforward. Notice
first of all that (77) implies ||w,4p21(z™))]| > Hu (zt)]]. On the other w, e (20) =

wyipr1(z (")) + O'V_pﬂ( :00) where w, 4,41 (2") = D@p( u+1 - omega, . (;(")) and

Curpsr(z¥)) = DOP(l)) 0,01 (1)) and 1,41 (z1)) = wuia (z1)) + 00y 1(' “)) is the

decomposition of w,+1(z)) in the coordinate system given by {(1,0).¢ #)(z ;(,:)1)}
Since there are no returns between v+1 and v+ p-+ 1 we have slope ..,-1( ) <
b2 and, by lemma, 2.2, ||oy1pe1 (20| < BPllovsa (1)) < BPF |, (21)]] where
the last mequaht} follows from (36). Therefore

P w, (M)

slope wy1p31(2*)) < b2 + || < 2b%.

l|wytpe1(zt)

This completes the proof of the lemma. [J

REMARK 3.2. The vector w,4,.1(z*)) actually returns to an almost horizontal
position long before the bindincr period ends. Indeed as we mentioned above, the

vector wyppe1 (=) = wi(z U+1> has a small slope. thus it is sufficient to show that
Hdu+m( )l ()]
[l (=) lleme s (0201

We have that |lsigma,rpar(z0)| < 85, Jlws(z ,(J'fl_)l)H > e* and therefore, be™® <
£77€" giving that w,y,:01(z)) has a small slope as long as

r+vlogl/e
~ log1/b+logco

This shows that the vector returns to a horizntal position long before the binding
period ends since

r+~logl/e
log1/b+logco

<L fracrfB+logk —2 < p.
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3.4. Bounded distortion after the first return. Let z()be a critical ap-
proximation with a first return v as above. Notice that we have

st (Z)] 2 oy (z) 32676 > eolbDemovek 14y > eoy 11,

In particular the point = ( ) is expanding up to time v + 1 and therefore we can
construct the critical appro*ﬂmatlon (+1) Morover all points in B (")) satisfy
the same kind of estimates and exhibit exponential expansion up to iterate v+p+1.
In this section we shall prove that the sets BU+7+1)(z(»+i+1)) satisfy bounded
distortion estimates, for all 0 < j < p, analogous to those satisfied by BU)(z())
for all 0 < 7 < v(lemma 3.1). The proof relies fundamentally on the fact that
by the time the return v occurs, we have £7e P < €7e~Y. Thus the points of
BW () are all very close together with respect to their distance from the critical
approximation (the binding point) and all satisfy essentially the same estimates.
More precisely we will prove the following

LEMMA 3.3. For all £,7 € BUt¥)(z0)) and all 1 < k < p+ 1 the following es-
timates are satisfied:

; Jous®ll 5
Y Tonesm) = L (14 Ce
and

(22) L,k (6),w,51(n)) < C ela=B)(v+k)

ProoF. We begin with the case £ = 1. By lemma 1.8 we have
o (Ol vy
| < [+ Ce*77y).
=1L

Thus, proceeding as in the proof of that lemma we write

oI v M/ llwn (M Hlw. (9]

and therefore we just need to prove

RO G
T mm) = )

Notice that [[w,+1(E)][/{lw, (€)]] = [[DR(£,)b,(§) and [[wysa ()| /[lw. ()] = [ DO (0. )b, (n)
where @, () = w,(§)/[lw.(§)]] and ©,(¢) = w,(§)/llw. (€]l Let w1a(€) =
D®(£,)w,(€) and w,+1(n) = D®(n,)w,(n). As in the proof of the previous lemma
we now need a careful analysis of the norms and slopes of the vectors ,+; in
the coordinate systems {(1,0),e()(£,41)} given by the horizontal axis and the
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contractive approximations of order p. We shall use in a fundamental way the
fact that these coordinate systems are almost orthogonal (lemma 2.1) and almost
constant functions of the point (lemma 2.4 , (34)-(33)). To simplify the exposi-
tion and highlight the main ideas of the proof we shall carry out the estimates
below assuming that these coordinate systems are actually constant functions of
the point.

Recall that |¢, — 7] < e7e®, that @, (f) and () are unit with small
slope (< b1/2), and that Z(,(€),%,(n)) < Cbel=A=1. We write @,11(£) =
(B,41(€), 6u41(6)) and @y11(€) = (Bus1(£), éu41(€)) as discussed above. Then we
have, by the same arguments used in the proof of lemma 3.1,

|G,21(6) = Gy ()] S BE — | S be™™
and

|Bv+1(§) - Bu+l(77)l <76 -l < TeTe .
This implies
liy41(8) — duga(n)]| < 277
Thus it is sufficient now to show that the ||@,41(€)|| and ||, 41(£)] are large in
relation to €¥e™#” (and, in particular, in relation to Hw,,J_l(ﬁ) —w,1(n)|]). We

know, from the proof of lemma 3.1 that 13,416, 1Bus1(n)] = (3/4)e7e™" and
therefoxe, from the fact that the coordinate systems are almost orthogonal, we
deduce that

(O ()] 2 5767 2 5eTe™™

i e
It follows that
M = Hﬁ)u_’-l(&) — ?“Z’V'*'l(n)” L T’e(ﬂ—,@)u
Bl ~ T Mot

and

w w = /(i W llv41(6) — @, ()l ~tpla=8)v
L(w,1(8),wupr(n)) = £( bu+1(8), Wug1(n)) < ”lbu+1(77)H <4 .

This proves (7) and (iz). O
4. Positive Lyapunov exponents and parameter exclusions

In this section we finally show that if all critical approximations satisfy condition
(¥) up to time n there is a vector which is exponentially expanded up to time
n. We also deal with the remaining difficulties associated to the presence of the
singularity. The estimates on the dependence on the parameter of the various
constructions and the estimates on the measure of the set of excluded parameters
proceed essentially as in the quadratic-like case [BC91][MV93].
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For each n > 1 we let C,, denote the set of critical approximations of order
n. We recall that the set C, is constructed inductively in the following way. For
a certain initial number of iterates it is formed by the critical approximations
{z(M) ...} constructed in section 2. Then we suppose that the set C; is defined
for all 0 < ¢ < n — 1. By definition each critical approximation z(®*1) satisfies
condition (*) and |jw;||e” for all j < n—1. We then consider those parameters for
which condition (x) is satisfied by all critical approximations in C,_; up to time
n. We shall show below that for these parameters all critical approximations also
satisfy |lw,(2(""1)|| > e*. For these parameters then we can also construct higher
order critical approximations z(™ € B(")(2("=1)) using tha algorithm of lemma 2.8.
Then using the algorithm of subsection 2.3 new critical approximation of higher
generation can be constructed.

We suppose that for each z(") € C, a sequence 0 < v; < --- < vy, < nis
defined of return times to A. Let ry,7,,..., 7, be the depths of these returns and
P1.D2,---,Ds be the lengths of the associated binding periods (recall that p; = 0
if v; is a return to A®). We suppose that estimates analogous to those proved in
section 3 are satisfied at the end of each binding period. These are the general
inductive assumptions. Section 3 constituted the first step of the induction. The
main result of this section is the following lemma that shows that if z{*) is a return
to A% then a binding period can be defined and the corresponding estimates on
expansion and distortion at the end of the binding period can be obtained. It is
not difficult, then, to show that condition () implies an exponentially growing
vector for all time and for all critical value approximations.

LEMMA 4.1. Suppose that n > v, + p, + 1 is a return to A% for the critical
approzimations z(™ and that 2™ satsifies condition (x) up to time n. In particular
suppose there exists a binding point (™ with |z(" — (M| > ¢7e™ > 7e=". Then
there exists a p < n such that the following estimates are satisfied:

. s T
(1) momS».v(1_x)1oa1/.—51”52(1“/5)"5”“1
(11) [wnspr(z17)]| 2%l (=1V))]
(iii) slope Wyppsq (2™ <b32

The main difference between the situation here and that of lemma 3.1 is that
the binding point (™ might have some returns to A*® in the interval of time [1, p].
If this occurs, also z(™ returns to A*¢ in the interval of time [n + 1,n + p]. and
this is called a bound return for z(™. Further loss of growth occurs at iterates
corresponding to bound returns and it is also difficult to control the slope of
vectors since there is further rotation after bound returns to A=°. Apart from this
(non-trivial) additional difficulty the ideas involved in the proof are the same as
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those required to prove the analogous estimates in lemma 3.1. Thus we shall limit
ourselves here to explaining how to deal with bound returns.

We start by giving a slightly modified definition of the binding period. Let = be
the curve binding z{™ to (() . Let p € N be defined by the condition ly;] < evePi
foeall1 <j < p—1and |5 > e7e PP, Then the binding period associated to the
return n is the interval [n +1,n + p] where p is the maximum positive integer with
p < p such that p+ 1 is a free iterate for ¢(®) . Notice that in the case of a first
return (see section s:first return) all iterates in [n +1,7n 4 p] are free and therefore
p = p. Moreover condition () and the inductive hypothesis p; < 2(1 4 ~/6)r; for
every return v; of ¢ () implies that

> P <201+ %)ZU <201+ g/)aﬁ < ép
j=1 =1

where the sum is taken over all returns of ¢(* in the interval of time [1,p] and
& can be chosen arbitrarily small simply by taking a small. This implies that a
proportion greater than or equal to (1 — &) of iterates of ¢ in the interval of
time [1,p] are free. Thus, in particular, we have

p= (1 —4a)p.
This means that p is of the same order as p and all estimates carried out with
respect to p are essentially valid when we replace p by p.

Notice that there can be a whole sequence of bound returns within binding
periods. An important consequence of the definition of binding periods is that
they are always nested, i.e. the last binding period to begin is always the first to
end. This is the crucial fact which will allow us to mantain some control over the
vectors w;. We now explain how this is done.

We start by decomposing the vector wny1 into a horizontal component and one
which is colinear to e(p)(z,(ir_l*_)l) as in lemma 3. Thus we have

Wnp1 = g1 + Onp1 = Bata(1,0) + an+1€(?)(~’£1)1)-

Notice that |lws + 1|] = |3as1] and ||ons1]l = @ns1 can be estimated as in lemma
3. Then. for each 1 < j < p+ 1 we write

Wnyje1 = DQ(Zr(:i—)j) T Wn4j
and
Grrirr = DO(2\)) - 0ny;
and we distinguish three cases:
1) If j is not a return nor the end of a binding period we simply set

Wnij+1 = Wntjtl and onpj41 = Ontjs-
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2) If j is a return then we split

(46) Cnpjr1 = Prsrjr1(1,0) + &n+j+1€(p)(3£:n)j+1)

where p is the length of the binding period associated to the (bound) return n+;+1
and e(?) is the direction of the p-th contractive approximation. Then we set

3
(n)

ey = o GovrqeP) (2
Wntj+1l = Wi+l an+1+1€( )(~n+1+1)
and

(p)( _(n)

Ont+j+l = Ontjt1 T Onpjp1€ n-»_;-l)

3) If 5 is the end of a binding period, i.e. j = g3 + p1 + 1 for some previous
return pq, then we reconstitute the vectors which we had decomposed at the
begininning of the binding period (see (46)): let wpijr1 = Gnyj + @y, DOP - elP)
and opyjy1 = Gpe; — a, D®P - eP1), In general, if s > 1 binding periods end at
time n + J then we take

Wnija1 = Cnyj + 9 alpha, DOP - )

1=1

and
Ontj+l = Ontj — Zau; P el

It is now easy to see how the arguments used in the proof of lemma 3.1 can be
applied in this case also to obtain the desired results in the statement of the lemma.

4.1. Bounded distortion. By using the decomposition above and applying
the arguments of lemma 3.3 we also get the following

LEMMA 4.2. Forallé.p € BOHR () alll <h<p+landalll <k<n+h
the following estimates are satisfied:

(Z) “lbk(f)

lex (Ol 55 (a5
< || 1+ Cela=?)
Nwr(] <o

and

(i1)  Z(w(€), wa(n)) < CelemD
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4.2. Positive Lyapunov exponents. We are now ready to show that condi-
tion () implies positive Lyapunov exponents. Thus completing the proof of the
theorem.

LEMMA 4.3. Let z(™) € C, satisfy condition (*) up to time n, and ezponential
growth up to time n — 1. Then it also satisfies

lwn (") 2 .

4
PROOF. Let Q = ¥ q; denote the total number of iterates that z(") spends in
free periods in the interval of time [1,n] and let P = n—Q = }_ p; denote the total
number of iterates belonging to binding periods. By lemma 1.2 and 4.1 we have

lwn(zM)]] > €098,
By condition (x) we have P < ¥ p; < &n and therefore @ > (1 — &)n and we get
”wn(z(n))” > eco(l-—c'»:)n > e

taking & < ¢, — ¢. This concludes the proof. 0O



[AP8T7]
[BC85]
[BCY1]
[Bow75)

[BowT8]
[BSS0]

[BSS83]
[Bun83]
(Bun89)
[BY93]
[CE80]

[dMvS93]
[DRV94]

[GucT6]

Bibliography

V.S. Afraimovich, V.V. Bykov, and L.P. Sil'nikov, On the appearence and structure
of the Loren= atiracior, Dokl. Acad, Sci. USSR 234(2) (1977), 336-339.

V.S. Afraimovich, V.V. Bykov, and L.P. Sil’nikov, On attracting structurally unstable
limit seis of Lorenz type atiractors, Trans. Moscow Math. Soc. 44 (1982}, 153-216.
D.V. Anosov, Geodesic flows on closed Riemannian manifolds with negative curva-
ture, Proc. Inst. Steklov 90 (1967), 1-235.

V.S. Afraimovich and Ya. B. Pesin, The Dimension of Lorenz type attractors, Sov.
Math.Phys. Rev., vol. 6, Gordon and Breach Harwood Academic, 1987.

M. Benedicks and L. Carleson, On iterations of 1 —az? on (—1,1), Annals of Math.
122 (1985), 1-25.

M. Benedicks and L. Carleson, The dynamics of the Hénon map, Annals of Math.
133 (1991), 73-169.

R. Bowen, Equilibrium States and the Ergodic Theory of Anosov diffeomorphisms,
Lect. Notes in Math. 470 (1975).

R. Bowen, On Aziom A Diffeomorfisms, CBMS Reg. Conf. Ser. 35 (1978).

L.A. Bunimovich and Ya.G. Sinai, Stochasticiiy of the aitractor in the Lorenz model,
Nonlinear Waves, Proc. Winter School, Moscow, Nauka, Moscow, 1980, pp. 212-226.
L.A. Bunimovich and Ya.G. Sinai, On a fundamental theorem in the theory of dis-
persing billiards, Math USSR Sb. 19 (1983), 407-423.

L.A. Bunimovich, Statistical properties ofLorenz atiractors, Nonlinear dynamics And
turbulence (Boston MA-London), Pitman, Boston MA-London, 1983, pp. 71-92.
L.A. Bunimovich, Systems of hyperbolic iype with singularities, Encyclopedia of
Mathematics, vol. 2, Springer-Verlag, 1989.

M. Benedicks and L.-S. Young, SBR measures for certain Hénon maps, Invent. Math.
(1993).

P. Collet and J.-P. Eckmann, On the abundance of aperiodic behaviour, Comm.
Math. Phys. 73 (1980), 115-160.

V. de Melo and S. van Strien, One dimensional dynamics, Springer-Verlag, 1993.
J.L. Diaz, J. Rocha, and M. Viana, Sirange atiractors in saddle-node cycles: preva-
lence and globality, to appear (1994).

J. Guckenheimer, A strange, strange attractor, The Hopf bifurcation theorem and its
applications (M. J.E. Marsden, McCracken, ed.), Springer-Verlag, 1976, pp. 368-381.

73



T4
(GWT9]
[HénT6)
(HP76]
[HT92]
[Jaks1]
[IN93]
[Lor63]
[Mils3]
[Mis81]
[MV93]
[NewT9]
[NPTS3)]
[Pal70]

[Pes86]

[Pes92]

[PRV93]
[PS70]

[PT85)
[PT87)
(PT93]
[PV94)
(PY93)
[Rob39]

[Rob92]

BIBLIOGRAPHY

J. Guckenheimer and R.F. Williams, Structural stability of Lorenz attractors. Publ.
Math. THES 50 (1979), 307-320.

M. Hénon, A two dimensional mapping with a sirange attractor, Comm. Math. Phys.
50 (1976), 69-77.

M. Hénon and Y. Pomeau, Two strange attractors with a simple structure, Lect.
Notes in Math. 565 (1976), 29-68.

S.P. Hastings and W.C. Troy, 4 shooting approach to the Lorenz equations, Bull.
ADMLS. 27 (1992), 298-303.

M.V. Jakobson, Absolutely continuous invariant measures for one-parameter families
of one-dimensional maps, Comm. in Math. Phys. (1981), 39-88.

M.V. Jakobson and S. Newhouse, A two dimensional version of a folklore theorem,
to appear (1995).

E. N. Lorenz, Deterministic nonperiodic flow, J. Atmosph. Sci. 20 (1963), 130-141.
J. Milnor, On the concept of attractor, Comm. Math. Phys. 99 (1983), 177-1%5.
M. Misiurewicz, Absolutely continuous invariant measures for certain interval maps,
Publ. Math. THES 53 (1981), 17-51.

L. Mora and M. Viana, Abundance of strange attractors, Acta Mathematica 171
(1993), 1-71.

S. Newhouse, The abundance of wild hyperbolic sets and nonsmooth stable sets for
diffeomorphisms, Publ. Math. LH.E.S. 50 (1979), 5-72.

S. Newhouse, J. Palis, and F. Takens, Bifurcations and stability of families of dif-
feomorphisms, Publ. Math. LH.E.S. 57 (1983), 101-150.

1. Palis, A note on Q-stability, Global Analysis, Proc. Symp. Pure Math. AMS 14
(1970), 221-222.

Ya. B. Pesin, Ergodic properties and dimensionlike characterisiics of strange atirac-
tors that are close to hyperbolic, Proceedings International Conference of Mathe-
maticians, 1986.

Ya.B. Pesin, Dynamical systems with generalized hyperbolic attractors; hyperbolic,
ergodic and topological properties, Erg. Th. & Dyn. Syst. 12 (1992), 123-151.

M.J. Pacifico, A. Rovella, and M. Viana, Global spiral attractors, preprint (1593).
J. Palis and S. Smale, Structural stability theorems, Global Analysis, Proc. Symp.
Pure Math. AMS 14 (1970).

J. Palis and F. Takens, Cycles and measure of bifurcation sets for two-dimensional
diffeomorphisms, Invent. Math. 82 (1983), 397-422.

1. Palis and F. Takens, Hyperbolicity and the creation of homoclinic orbits, Annals
of Math. 125 (1987), 337-374.

J. Palis and F. Takens, Hyperbolicity and sensitive-chaotic dynamics at homoclinic
bifurcations, Cambridge University Press, 1993.

J. Palis and M. Viana, High dimension diffecomorphisms displaying infinitely many
periodic attractors, Annals of Math. (1994), 207-250.

J. Palis and J.-C. Yoccoz, Homoclinic tangencies for hyperbolic sets of large Haus-
dorff dimension, to appear (1993).

C. Robinson, Homoclinic bifurcation to a transitive attractor of Lorenz type. Non-
linearity 2 (1989), 495-518.

C. Robinson, Homoclinic bifurcation to a transitive attractor of Loren:z type, I,
SIAM J. Math. Anal. 23 (1992), 1255-1268.



[Rov93]
[Rue76]
[Ryc89]
[Sat92]
[Sin70]

[Sin90]
[Sin94]

[Spa8?2]
[Steb8]

[TTY92]

[Urég3]

[Via95)
[Wig8sg]
[Wil79]

BIBLIOGRAPHY

-1
O

A. Rovella, The dynamics of perturbations of the contracting Lorenz attractor, Bull.
Braz. Math. Soc. 24 (1993), 233-259.

D. Ruelle, A measure associated with Aziom A attractors, Amer. J. Math. 98 (1976).
98.

M. Rychlik, Loren= attractors through Sil'nikov-type bifurcation. part I, Erg. Th. &
Dyn. Syst. 10 (1989), 793-821.

E.A. Sataev, Invariant measures for hyperbolic maps with singularities, Russ. Math.
Surveys 471 (1992), 191-251.

Ya.G. Sinai, Dynamical systems with elastic reflection, Russ. Math. Surv. 25 (2)
(1970}, 137-189.

Ya.G. Sinai, Hyperbolic billiards, proceedings of ICM-90, 1990.

Ya. G. Sinai, Topics in ergodic theory, Princeton Mathematical Series, vol. 44,
Princeton UP, 1994.

C. Sparrow, The Lorenz equations; bifurcations, chaos and strange attractors, Ap-
plied Mathematical Sciences, vol. 41, Springer-Verlag, 1982.

S. Sternberg, On the structure of local homeomorophisms of Euclidean n-space 1,
Amer. J. Math. 80 (1958), 623-631.

Thieullen, Tresser, and Young, Ezposant de Lyapunov positif dans des familles @ un
paramétre d’applications unimodales, C. R. Acad. Sci. Paris t. 315, Serie I (1992),
69-72.

R. Urés, Approrimation of Hénon-like attractors by homoclinic tangencies, Ph.D.
thesis, IMPA, Rio de Janeiro, 1993.

M. Viana, Muliidimensional nonhyperbolic attractors, preprint (1995).

S. Wiggins, Global bifurcations and chaos, Springer-Verlag, 1938.

R.F. Williams, The structure of the Lorenz attractor, Publ. Math. IHES. 50 (1979).
321-347.






