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Abstrax

The year is 10'° B.C. All the symmetries of Nature broken at low temperatures are
completely restored. All of them?

No!

A tiny space of parameters. near the nonperturbative region, is there to resist now
and ever to the invading forces of symmetry restoration. And life is not easy for the

thermally produced strings. monopoles and domain walls...
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Introduction

More than 30 years after it was suggested that topological defects may be produced
in a cosmological phase transition, the monopole and the domain wall problems
remain some of the most interesting open issues in the field of astroparticle physics.
This is particularly true for the monopole problem, a consequence of an idea as
fundamental as grand unification in particle physics. Although several solution have
been suggested, among them the far-reaching proposal of an inflationary period
during the evolution of the Universe, the problems are still far from solved. On the
contrary, in the domain wall case it is frequently proposed to altogether abandon the
possibility of spontaneous breakdown of discrete symmetries in general. The idea
of this Thesis is to investigate how fundamental the incompatibility of the standard

cosmological model is with theories that admit domain wall or monopole solutions.

Topological defect production in cosmological phase transitions has been my
main interest during these years at SISSA. Having studied the formation of strings
in first-order phase transitions in collaboration first with Leandros Perivolaropoulos.
and later with Antonio Ferrera, it was natural to turn to the more “dangerous”
defects -domain walls and monopoles. Research in this direction was carried out
mainly with Goran Senjanovi¢, and in collaboration with Gia Dvali and Borut Bajc.

It is this later work which will be presented in this Thesis.

The first chapter concerns the generalities of topological defect production in a
cosmological context. After a brief review of phase transitions in theories with spon-
taneous symmetry breaking, topological defects are introduced, and the mechanism
of its production is described. Some specific calculations in thermal field theory are
left for the Appendix.

The second chapter is the central one, where the monopole and domain wall
problems are described, together with a review of the solutions proposed in the
literature. It is in this chapter that the proposal of this Thesis is presented; namely,

that phase transitions are not unavoidable in theories of symmetry breaking with
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more than one scalar field. A general discussion is offered on how this can eliminate
the domain wall and monopole problem.

In the last three chapters the original results are presented. Chapter 3 is de-
voted to discrete symmetries and domain walls, Chapter 4 to gauge symmetries
and monopoles. In Chapter 5 the high-temperature behavior of non-renormalizable

theories is studied, with results on supersymmetric theories.



1 Of Phase Transitions in Cos-
mology

1.1 Symmetry restoration at high temperature

In 1972, when the Standard Model of electroweak interactions started attracting
wide interest, Kirzhnits [1] observed that field theories with spontaneous symmetry
breaking could have an extremely interesting behavior at high temperature. The
observation was based on the analogy with solid state physics systems. Kirzhnits
pointed out that the effect of a thermal bath in equilibrium with the Higgs field was
to restore the symmetry at sufficiently high temperatures. In the context of a “hot™
Big Bang Universe, his observation is of fundamental importance, since symmetry
restoration would lead to phase transitions in the Universe. Much of the modern
day early Universe cosmology has its root in Kirzhnits’s paper.

The idea was further explored by Kirzhnits and Linde [2]. Later, Weinberg
carefully studied the issue in his classic paper [3], providing the fundamental tools
for calculations at finite temperature in theories with spontaneously broken syvm-
metries. At the same time, Dolan and Jackiw [4] performed similar calculations
using functional integral methods, which resulted in the second classic paper on the
subject.

The conclusion was that the existence of a thermal bath fundamentally affects
the vacuum structure of the theory. Since it will be essential for this Thesis, we
will give a short discussion on how this comes about. Some of the details of the
calculations are left for an Appendix, as it will be of use to establish a notation for
the following chapters.

In theories with spontaneous symmetry breaking, the Higgs field has a vacuum
expectation value (VEV) which is non zero. To find it, one minimizes the energy
of the system or, in other words, finds the minimum of the potential. We take

the example of a real scalar field ¢, with a Lagrangian invariant under a discrete
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symmetry D 1o — —¢

L= —0 L0 o + ——2-90 - éc,o (1.1)
2 4
With m? > 0, the symmetry is broken. The minimum of the potential is at
(p) =v=m?/\
At finite temperature, on the other hand, the relevant quantity to be minimized
is not the energy but the free energy, F. It is defined in thermodynamics in terms

of the partition function, Z, and the temperature, T, of the system

F=-Thhz (1.2)
To calculate the free energy is an easy task once we know the partition function
Z = Tre H/T (1.3)

with H as the Hamiltonian. For a bosonic (fermionic) field, the free Hamiltonian is
a collection of bosonic oscillators with energy w = 1/ k2 + m2.

UED WV L Y EARSES (1.4)

where B stands for bosonic and F for fermionic systems. The sum represents a
continuous integral over momenta. and N is the number operator. The partition

function of the system is found by integrating over momenta the individual functions
Z(w)

nZ=V / 27;31112 (1.5)

(with V' as the volume) and we have
ZB(w) — Ze n——-)w/T —w/?T(l _ e—u/T)~—1 (16)
ZF(W) — Ze-(n—;—)w/T — ew/?T(l +6—w/T) (17)

We will be interested in the free energy density, f = F/V. From (1.2) and (1.7)

fB = / (;l ];3 [w +Tln(1 - w/T)] | (1.8)
fr= (__f.l_%g {'% ~Tla(1+ e"“’/T)} (1.9)



1.1. Symmetry restoration at high temperature 5

Figure 1.1: Feynman diagrams for the thermal correction to the mass. Dashed lines are the

boson ¢, continuous lines are fermionic

The expression (1.8) is precisely the effective potential at one loop and at finite
temperature for a scalar field o with a mass m, including the zero-temperature term.
It was derived by Dolan and Jackiw [4] using functional integral methods, for a scalar
field with a Lagrangian (1.1) The mass of the field is defined as

a4

M= o7 = —m? + 32 (1.10}

We use w? = k2 + M? to write the temperature dependent part of the free energy.

or effective potential at one loop, as

T4 co
Vl(T):I / dza?ln(1 4 e~V TM2/T? (1.11)
0

272

Now we can expand it for 7' >> M,

) 72 T2 T
ViI(T) ~ —T%4 M? — — M3
1(7) 90" ' 24 127
2 72
e T o T, 2 .
901" T24( m” + 3\p”) 127Tm( m* + 3A¢?) (1.12)

At high temperature and to highest order in T/M, we will write the complete

effective potential for ¢ as

m2

V(T)= ——¢* + 5¢4 + Zisw? (1.13)
: 2 4 24

where we have ignored constant terms such as the 7 contribution from the radiation
energy.

The result (1.13) is nothing but the contribution from the self-energy of o at
one loop, coming from the bosonic graph of figure 1.1(a) . This contribution was
first calculated by Weinberg [3] (details are given in the Appendix). The fermionic
graph (b) gives a similar result, and, more importantly, with the same sign. For a

Yukawa coupling of the type
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hapabo (1.14)
the contribution to the effective potential at high temperature is

AV(T) = %TQB/\ 1 A2 (1.15)

But what is of interest to us is the fact that, even when considering only the

self-interactions of ¢, the thermal bath induces a temperature-dependent mass for
('Q

Am(T)? = 3\T2 (1.16
Y 1-10)
which is positive definite. This means that there will be critical temperature
2
T2 = @;‘_ (1.17)

above which the effective mass of ¢ is positive. In other words, the minimum
of the theory is no longer at (o) = v = m?/A, but at (¢) = 0. The symmetry is
restored at high temperatures.

Weinberg [3] gives a very useful general formula for calculating the contribution
to the thermal mass for a theory with more complicated group structure, and in-
cluding the gauge field contribution. In a theory invariant under a group G, with

fields ¢; transforming under a representation of G' with generators T}, he finds

24 |\ ;0!

where sum over repeated indices is understood.

- T[(Z) ames] o

In the simple theory of (1.1). the pint (¢) = 0 is not a minimum at high tem-
perature: it is a saddle point. The potential at very high and very low T is depicted
in figure 1.2. The system undergoes a phase transition at T = T.. If we consider
a system like the Universe, going from high to low temperatures, after the phase
transition the field will take up values in the vacuum manifold. This is called a
second order phase transition, since it can be shown that in this case both the free
energy and the entropy are continuous at the transition. Only the second derivative
of f with respect to T becomes discontinuous. The field smoothly rolls down to its
new values in the vacuum, once the temperature falls below the critical one.

A phase transition will be of first order if the entropy has a discontinuity. This
is what happens, for example, in theories with a potential of the Coleman-Weinberg

type
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Figure 1.2: Phase diagram for a second-order phase transition.

Figure 1.3: Phase diagram for a first-order phase transition.

2
ooy = &oan P 1
V(o) i (In p 2) (1.19)

In this case, the point (¢) = 0 is always a minimum, although not a global one. The
situation is that of figure 1.3

To get to its true minimum the field has to tunnel through the barrier, and it
does so by nucleating “bubbles” of the true vacuum, as demonstrated by Coleman
[5]. These configurations will rapidly expand, collide, and merge, and the final result
is that the field acquires a VEVall over spacetime.
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1.2 Topological defects

It is well known that some systems in field theory admit classical solutions to the
equations of motion that are both non-dissipative and have a finite energy. Coleman
(6], in his excellent review, calls such solutions “lumps,” to distinguish them from the
usual wave solutions that dissipate with time. The term “soliton” is applied to these
solutions if in addition they satisfy some requirements on the particular dependence
of their energy with space and time (see, for example, the book by Rajaraman [7]
for a complete discussion). Roughly speaking, solitons have the characteristic of
keeping their shape after collisions. Some of the topological defects we will discuss
below are true solitons, and some not; but they all share the important feature of
being time independent solutions to the classical equations of motion whose energy
is finite.

As so often happens in particle physics, it was Nambu [8] who first pointed
out that topological defects are intimately connected with spontaneous symmetry
breaking, and that they might be produced in a cosmological phase transition. He

was referring specifically to one-dimensional lumps, the so-called domain walls.

1.2.1 One dimension

Domain walls are solutions to the classical equations of motion in one dimension.
The simplest such solution, the “kink” [9, 10, 11] is found in the theory we considered

in the last section, namely a real scalar field with
— l 3 AV OH é 2 242 ’
£ = $(0,0)(8"6) - (¢ ~ ) (1.20)

The potential is minimized by (0?) = v%, and when ¢ takes this value in vacuum,
the symmetry is spontaneously broken. There are, however, two possible configu-
rations for (¢?) that minimize the energy, (¢) = +v or (¢) = —v. The vacuum
manifold is discrete, consisting of two disconnected points. This is just a manifes-
tation of the fact that the spontaneously broken symmetry is a discrete symmetry.
The space of minima is therefore degenerate, and the two possible configurations are
completely equivalent.

We can give an intuitive argument as to why there should be a non trivial solution
to the equations of motion in this case. Consider a situation in which the field takes a
VEVin one of the minima (say +v) for large positive values of one of the coordinates
(¢ — +00), and another in the second minimum (—v) for large negative values of

that coordinate (z — —oo). Since the field must be a continuous quantity, it cannot
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I

Figure 1.4: The kink solution

jump in between the two minima~it has to acquire a configuration that smoothly
interpolates between them at some point. The exact shape of such a configuration is
to be determined by solving the equations of motion, but it is clear that the boundary
conditions that we have imposed will force (¢) to take non-constant values in some
region of space.

These conditions are a map between the manifold of the points at infinitv
Me={2— -0c0; z— 400} (1.21)
and the vacuum manifold
Mo = {60 -+ V(o) = 0 = o = £v} (1.22)

Each manifold consist of two points, and our map is single-valued. The problem
then is one-dimensional. One can picture the field taking VEVs in the minimum of
the potential in two regions of three dimensional space, and then interpolating in
the two dimensional boundary between them, forming a domain wall.

The kink solution is easily found by integrating the equations of motion

2
Vv

Figure 1.4 is a plot of this function (with § = 1), In its effort to interpolate between

Op = vtanh% 6= (1.23)

the two minima, the field has to leave M and take the value zero inside the domain
wall. This means that its potential energy is mazimal at the origin. The only way
for the field to do that is to simultaneously try to minimize its gradient energy. We
expect then the wall to be very thin, and the solution (1.23) tells us precisely this;

the thickness of the wall is given by é which is
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2 10714
VA v

where v is in GeV. Even walls formed at a low energy are extremely thin. The walls

6=

cm (1.24)

we are considering here are infinite in the other two spatial directions. Their energy

per unit area is

g

E 2

— = ZV® 1.25
13V (1.25)
a result that could be expected on purely dimensional grounds.

The energy is indeed finite. It remains to determine whether this solution is

stable. Note that we can define a conserved current

JE=e"0,0 (1.26)
with an associated charge
Feo T do p :
Q= dzJ,(z) = / d:c% = ¢(400) = ¢(—00) (1.27)

Now, @ is a conserved quantity, a topological charge. Although it is conserved in
the same sense as any familiar Noether charge, it is not of the same nature: it
does not correspond to an invariance of the action (since the symmetry ¢ — —¢ is
actually broken). The domain wall cannot be “unwinded” into a trivial, constant

configuration for ¢, since for the kink above, the topological charge is
Q=2 (1.28)

A constant solution, on the other hand, can have ¢(+o0) = ¢(—c0) = 4w, for
instance. Its topological charge is zero. The kink cannot decay and become a
constant solution—it is protected by a conservation law. This is the origin of the
term “topological” defects.

Another interesting example of domain wall appears in theories with a potential

of the sine-Gordon type

V(6) = Al — cos(¢/v)] (1.29)
The corresponding solution is
$(z) =4vtan” 1 (e\/gv“”) (1.30)

The domain wall separates the degenerate vacua (¢) = 27nv. In this case, the

domain wall is a real soliton, and it can be proven [7] that it does not change its
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shape during collision. A potential similar to (1.29) appears in the Peccei-Quinn
[12] axion model, and Sikivie [13] first suggested the existence of domain walls in

this theories. We will be dealing with them in chapter 3.

1.2.2 Two dimensions

The domain wall is a two-dimensional object which results from the mapping of
one of the spatial coordinates to the only internal degree of freedom of the real
scalar field. We are immediately led to a generalization, when the internal degrees
of freedom of the field are two, and expect to find a one-dimensional topological
defect. Namely, one has to consider a theory where the vacuum manifold is two-
dimensional, and find a nontrivial map between this manifold and spacetime. Take

the simplest example of a complex fleld with an U(1) symmetry, with a potential

V= %(¢*¢ —v?)? (1.31)

The vacuum manifold M, is a circle, since the minimum of V is at

(o)) =v*, (¢} = wve™ (1.32)

In cylindrical coordinates, p, 8, z, we look for a static solution of the equations
of motion that provides a map between the vacuum manifold M, = St and the
spacetime manifold at infinity, M., ={p = R, R — oo}, or

(R — o0) — ve'™ (1.33)

where n is an integer. We have mapped the field’s U(1) phase to the angular
coordinate 6, for any value of p and z. But the map is singular at p = 0, where # is
undefined. The field is not able to pick up a phase there, and therefore is forced to
go out of the vacuum manifold, and take the value (¢) = 0 at the origin. It leaves
the vacuum in a finite cylindrical region around the origin, with radius § determined
by the minimization of energy, just as in the domain wall case.

However, the energy per unit length of such object is easily seen to diverge.
Inside the string, for p < 4, the main contribution to the energy comes from the
potential, while for § < p < R, it comes from the gradient energy

E

b ' R 1 2 2 2, R ,
=7 N/o pdpdbV (s = 0) -I—/5 pdpdb’é—;g]aecﬁl ~v" 4+ T lng (1.34)
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This is just an example of a general theorem due to Derrick [14]. It states that
there are no stable, finite energy solutions for scalar field theories in more than one
dimension. The kink is then the only stable topological defect that one can form
with a scalar field.

One way to avoid this is to consider that the string solution does not have to
be valid up to infinity, i.e. some cut-off is placed at a finite distance. One can
consider that there is an anti-string or, equivalently, that strings are only formed
in closed loops; or one can use the fact that the Robertson-Walker Universe has
horizons, and therefore a natural cut-off . There is, however, a much more interesting
way of getting beyond the validity of Derrick’s theorem—gauge the theory. This is
what Nielsen and Olesen [15] did. obtaining the so-called vortex solutions in two
dimensions.

Local strings are perfectly well-defined topological defects, with a finite energy.

They manage to do so by satisfving

D,o=(0,—igA,)p—0, r— oo (1.35)

The string solution is found to be

o= vf(r)e™ (1.36)

where f(r) vanishes at the origin and becomes one at infinity. The gauge field

behavior at infinity
A, — 2a,0 (1.37)
g

guarantees the finiteness of the energy per unit length, since now there will be a

magnetic flux inside the string

2tn

- n
.43 :75 A dut = —f 0,0dzt = 7" 1.38
/ R—cc # 9 JR—oo # g ( )

If we calculate the magnetic field inside a string of radius §

(assuming that it is constant) we see that while the energy in the Higgs field is
minimized for § — 0, that of the magnetic field prefers § — oco. It is the interplay
between the two factors that gives the string its stability. The energy per unit length

and thickness are
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[ A 1AV ,
[ ;5112 ;o fx (g_zX> vt (1.40)

where the precise numerical factor will depend on f(r).

There are other types of strings one can consider, apart from the U(1) we have
referred to. Zy strings are formed when the symmetry group breaks down to a
subgroup with a Z, factor [16]. In any case, the stability of the solution is guaranteed
by a topological law similar to the one we encountered for domain walls: the winding
number of the string, n, is a conserved quantity. The string cannot “unwind” to the

trivial vacua, and the magnetic flux is conserved and quantized.

1.2.3 Three dimensions

Going up one dimension means allowing the field to have three internal degrees
of freedom, all of which can be mapped to the spacetime coordinates. The defect
formed will be one-dimensional, the monopole. It is precisely the fact that one-
dimensional topological defects can be identified with monopoles, and in particular
electromagnetic monopoles if the symmetry is broken to U(1)epn, that makes them
so interesting. Monopoles were among the first topological defects to be studied.
and the first monopole solution was obtained by ’t Hooft [17] and Polyakov [10].

Derrick’s theorem precludes the existence of finite energy global monopoles.
prompting us to discuss the gauge case only. The simplest example comes from
a theory with a SO(3) gauge symmetry and a scalar field qg‘transforming under the
fundamental representation of the group. The Lagrangian is

L= = FL PP b (D)D) + V(0) (L41)

4= #

where

Fi, = 8,AL = 9,A% + geape AL AS
D#éa au¢a -+ EabcAZ¢c

fl

V(¢)

Yoo - a=12,3 (1.2

We will identify the diagonal generator with the generator of an electromagnetic

charge, ensuring charge quantization. At the minimum

(¢°¢%) = v° (1.43)
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which tells us that the vacuum manifold is the surface of a three-dimensional sphere
Mo = {(65)2 + (63)* + (63)* = v} = & (1.44)

The symmetry is broken down to U(1) when (¢*) takes values in this vacuum.

It can, for example, be

(67) = 042 (1.45)

homogeneously over spacetime. Then the massless gauge boson /—1ﬁ is identified with
the photon. On the other hand, ¢ can take non-trivial vacuum expectation values,
leading to a topological defect configuration.

The analogy with the string case is evident. We want to make a map from My
to the manifold of spacetime points at infinity, Ms,. A non-trivial map is provided

in spherical coordinates r, 8, ¢ as

(¢') = sinfcosnz. (&) = sinfsin ney, (%) = cos f (1.46)
where n is the winding number. For n = 1, we can write

‘,L.a
(0*)(r — 0) = —w (1.47)
T
The energy is guaranteed to converge at infinity by asking that the covariant deriva-
tive vanishes there, which tells us that the gauge field takes the asymptotic form
r—co gi; Ly
A2 T2 o L (1.48)
H 2 : ;
gr
As for the local string, we expect the magnetic field to be nonvanishing inside
the monopole. To find it, however. we need a gauge invariant definition of the elec-
tromagnetic stress tensor, F,,, in terms of the SO(3) gauge fields. In the absence of
the monopole our definition should reduce to the usual electromagnetic one, written

in terms of the photon field. 't Hooft [17] found the correct form of F,,

6" 1 . (D,d)(D,p)se
FUZFGU————EabC 12 Y
g lol g |83

It is easy to see that in the vacuum given by (1.45), we have the usual form F,, =
9y A3 — 9, A3, The asymptotic magnetic field can be obtained from (1.48) and (1.49)

(1.49)

La

T——020
By — ——5
gr

(1.50)
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This indeed corresponds to the electromagnetic field produced by a pure magnetic
charge at the origin or, in other words, a monopole with magnetic charge g¢,, =
4m/g. Already in 1931, Dirac [18] proved that a magnetic monopole would imply, in
quantum mechanics, the quantization of the electric charge. The topological defect
that we call a monopole is an example of the inverse reasoning —a theory with a
quantized charge admits monopole solutions. Of course, one has to identifv the
U(1) group remaining from the breaking of SO(3) by the VEVof a vector field as
the symmetry group of electromagnetism.

It can be shown that, just as with domain walls and strings, there is a conserved

current of the form

J, = Sl?ew,,c,ea”ca“ (%) o° <£>b 0° (-¢—> (1.51)

corresponding to a conserved charge

Q= /d%Jo =n (1.52)

which is just the winding number. The magnetic charge of the monopole can be
related to this charge, and it is obtained
4 4w

M= —Q = —p (1.53)
g g

which is the topological conservation law that we expected, guaranteeing the stability
of the monopole solution, and in this case, also the charge quantization.

The "t Hooft-Polyakov monopole, also called the hedgehog solution, takes the
form

(6") = H(r)—v, Af=[1- K(r)]eaijf?% (1.54)

We know the asymptotic forms for H(r) and K(r), but their exact dependence
cannot be found in general in exact form. Prasad and Sommerfeld [19] showed that
it is possible to do it in the limit when the ratio of couplings v/A/g — 0. In this case

H(r)= coth(gvr)~— gi ,  K(r)= gur

o = Snhigor) (1.55)

Moreover, Bogomol'nyi [20] has found that the hedgehog mass is bounded from
below, so that

4
mar > —v (1.56)
g



16 § 1. Of Phase Transitions in Cosmology

and that the inequality is saturated in the Prasad-Sommerfeld limit.

Monopoles can be formed in more complicated theories, and solutions similar
to the 't Hooft-Polyakov can be found when the vacuum manifold allows for them
(see below). Dokos and Tomaras [21], and Schellekens and Zachos [22], have found
a number of such solutions in the SU(5) theory.

1.3 Phase transitions and the formation of topological
defects

Topological defects would be little more than curiosities for a cosmologist, were
it not for the possibility that the Universe underwent one or several phase transi-
tions. It is during these phase transitions, taking place when the temperature of the
Universe reaches the critical one, that the defects may actually be produced. The
possibility was pointed out, as we already mention, by Nambu [8], who suggested
that the Universe may consist of distinct domains, each one with a different (but
equivalent) value of the VEVof the Higgs field, and having correspondingly different
physical properties. In Weinberg’s classical paper [3] on symmetry breaking at high
temperature, the possibility of having domain walls formed is already mentioned.
Everett [23] and Zel’dovich, Kobzarev and Okun [24] took the possibility of domain
walls seriously and first calculated their effects in the evolution of the Universe. It
was Kibble [25] who later made a thorough study of the possibility of formation of
such structures, and in fact showed that the causal structure of our Universe im-
plies their appearance in a phase transition. Topological defects where no longer
a possibility ~they became an unavoidable consequence of the phase transitions, if
the topology of the vacuum manifold admits them. For this reason, the process by
which the topological defects are produced is often called the Kibble mechanism.
The way in which this actually takes place depends, in the first place, on the
nature of the phase transition, namely on whether they are of first or second order.
In a second order phase transition, the false vacuum becomes unstable near T' = T..
The field begins taking values in the vacuum manifold, and the scales on which it
can do so coherently are dictated by its correlation length. In a real scalar field

theory with a double-well potential
F_ A 242 z~
V= E(QD - ) (1.0()

the thermal mass is

m(T)* = %[Tf — 77 (1.58)
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for temperatures below the critical, 7, = v®. The correlation length (£) is of the

order of the inverse Higgs mass, or

9 TZ -1/2
"CN\/XT {1—-1;-2-} (1.59)

Of course, the correlation length thus defined becomes infinite at 7, but this is

just a reflection of the fact that we cannot trust (1.59) there.

After the phase transition has taken place, the field still has enough thermal
energy to jump over the potential. In regions of radius £, (¢) fluctuates wildly from
negative to positive values. It will do so until its thermal energy (T') becomes too
small to jump over the potential barrier AV. The energy required for a region of

radius £ to overcome the potential barrier is proportional to

. -3/2 2 571/2
87T 4 8 T2 Ao T? 1 T2
— ~ 8 s |1 - == = - | =—=T.|1-=
g oAl =8 <A3/2T§» [ rz} ) <32Tc : T? ﬁT“ T2

(1.60)
and it will become of order T when the Ginzburg temperature T is reached, namely
L o

2 _
TG = 1+/\TC

(1.61)
which does not differ much from 7, for small \. When this “freeze out” temperature

is reached, the field takes its definitive values in regions of size

/\ -1
&g ~ (5\/1 - /\TC> ~ (AT.)™? (1.62)
for A « 1. This is much smaller than the horizon size

Mp1 1 |
S (1.63)

H '~
Tg Tg = T

The field takes inhomogeneous VEV’s over spacetime. Domain walls will be
formed in the boundaries of regions with a different sign of the vacua.

If the transition is first order, the process occurs by quantum tunneling of the
field to its new values in the vacuum. Bubbles of true vacuum with the critical
size are formed inside the false vacuum, and certainly the values of the VEVof the
field in two different bubbles are uncorrelated. In the discrete symmetry case, the
VEVcan take positive or negative values. The bubbles expand, rapidly reaching
their terminal velocities (close to the speed of light), and start colliding. If two
bubbles with the same sign of the VEVmake contact, their walls simply dissolve

(the vacuum configuration at both sides being trivial), and coalesce. If the value of
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the VEVis opposite, the walls of the bubbles will evolve into a domain wall, which
will later reach its equilibrium thickness.

Kibble also provided the general tools for the study of the formation of defects in
a field theory. As can be seen from the discussion in the previous section, the nature
of the defect solution will essentially depend on the map between the manifold of
the vacua and the spacetime manifold at infinity. In other words, it will depend on
the topology of the vacuum manifold.

A spontaneously broken discrete symmetry will produce domain walls because
the vacuum manifold consists of two or more disconnected pieces. We will map
regions of spacetime at infinity with different such pieces, and one or more domain
walls will be formed in between. This property of the vacuum manifold is expressed
in group theory by the homotopy groups.

Homotopy groups m, classify the possible mappings of the manifold with a sphere
S™. A manifold consisting of disconnected points has a zeroth homotopic group, mp.
non trivial. In the example of a real scalar field given above, the manifold is Z,, and
in the axionic walls case that we will see in chapter 3 it is Zx.

Strings are formed when the first homotopy group, 7 of the vacuum manifold
is not trivial. 7; determines the mappings with a circle S, and count the number
of non equivalent closed loops one can form in the manifold. In the string of the
previous section, a /(1) symmetry was completely broken, and the vacuum manifold
is a circle. There are n ways to map a circle into a circle (one can wind n times
around it), and in this case 71 is Z,. In a completely analogous way, monopoles
are formed whenever the vacuum manifold has a non trivial w5, which counts the
number of inequivalent closed surfaces that can be formed in the manifold. In the
example of SO(3) broken to U(1), this manifold was S? and again, there are n closed
surfaces one can form in the surface of a three dimensional sphere, depending on
how many times one winds around it.

These results, that domain walls. strings or monopoles will be formed according
to which homotopy group is non trivial, is absolutely general. For more complicated
groups and symmetry breaking patterns, the task of determining the homotopy
groups of the vacuum manifold is facilitated by a useful theorem. If G is a con-
nected and simply-connected Lie group, having a subgroup H with a component Hg
connected to the identity, then

This means that if we have G breaking down to H, then the n + 1th homotopy
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group of the vacuum manifold M = G/ H is the nth homotopy group of the unbroken
piece H. To determine if strings are formed, then, it is enough to see if the group
surviving symmetry breaking is simply connected. For monopoles, the unbroken
group should have 7; # 1, or more than one family of closed loops.

In particular, consider the case of monopoles. Any simple group G that breaks
down to a group that has a U(1) factor will form monopoles, since 71 (U(1)) # 1.
This is a very important statement, since we know that the Standard Model of
particle physics has a U(1) factor, that of electromagnetism. So we are led to
conclude that any grand unified theory (GUT) that incorporates electromagnetism in
a larger symmetry (and in doing so, implies quantization of electromagnetic charge).
when breaking spontaneously will produce monopoles, much to the amusement of
Dirac.

An interesting application of these ideas comes about if one considers the break-
down of G to H and further breaking to J. Depending on the topology, one can
form the so-called hybrid defects. One can have, for example, the U(1) group of
the string’s example above. and two complex fields with different charges under this
symmetry. One can have

m? Ao, o - "y -
V= ~‘72—¢i¢i + I(Oi@i)Q t35 P11 $392 — g[ébﬁf’% + ¢37¢1] (1.65)
namely, the U(1) charge of ¢; doubles that of ¢3. When ¢; acquires a vev at a

scale vy, U(1) is broken and strings are formed
(¢1) = ve® (1.66)

in cylindrical coordinates. {7(1) is broken to Z,, since the potential is still invariant
under ¢; — —¢9. Later, at a scale vy, ¢y also gets values in the vacuum. Writing it

as ¢y = vye* | we see that the ¢ term becomes

pv1v3 cos(26 — 6) (1.67)

If i is negative, § = 0/2 will be preferred. At § = 2r, the value of ¢ is still 7, so
in order for (¢2) to be continuous it has to jump over to 27 in a narrow region. for
all values of r and z. This is nothing but a wall attached to the string.

What happened then is that U(1) first broke down to Z5, whose g is non trivial,
and the theorem dictates that strings be formed. Afterwards the discrete symmetry
Z7 got broken, and walls had to form. However, the final result is that U(1) broke

down to nothing, and the walls were just a consequence of the pattern of symmetry
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breaking. They are not protected by topology, and they are unstable. We will in
the next chapter come back to the question of this instability.

In a similar way, strings can be attached to monopoles, if we first break a group
G to U(1) and then U(1) to nothing, for example. In the first step, m; of the
unbroken group is non trivial and we get monopoles. Strings get formed attached to
the monopoles in the second stage. In general, one can have complicated sequences
of symmetry breaking, and in each case the only sure way to know the nature of the
topological defects formed is to investigate the topological properties of the vacuum

manifold.



2 Of the Problems Caused by

Domain Walls and Monopoles

2.1 Introduction

Since it was proposed that topological defects can be formed, intense research has
been carried out on their properties and in particular, on their interest to cosmology.
Strings are by far the most studied by cosmologists. They may provide the necessary
perturbations in the primordial Universe to account for the large scale structure. and
in this sense are a rival theory to inflation. We are not going to discuss in strings in
this thesis, and refer for example to [26] for an extensive review.

The main reason why strings are so interesting, however, is a simple fact—they
can be formed in our Universe without spoiling the standard Big Bang model. This
is not the case with domain walls and monopoles, as we note below. We give a
review on the domain wall and monopole problem and its proposed solutions. and

then state the proposal of this thesis.

2.2 The domain wall problem

The problem with domain walls is that they carry a large amount of energy. Roughly.
their energy per unit area is proportional to the scale of symmetry breaking
o~ (2.1)

so that even for a domain wall formed at low scales, say 100 GeV, we will have

o~ 10°GeV = 101°-L (2.2)
cm

We have then an object with a surface tension of 10,000 tons per square centime-

ter. Depending on its size, this energy can be significant in comparison to the energy

21
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carried by the rest of the matter and radiation in the Universe. It becomes important
to determine the size of the domain walls created during the phase transition.

A first estimate was done in [27] and [28], with a simple Monte Carlo simulation.
The idea is to take a three-dimensional lattice, with each cell representing a causally
connected region at the moment of the phase transition. The VEVof the field is
taken to be +v or —v in each cell. at random. Suppose that we call p the number
of cells in which the positive value is assigned, divided by the total number. Now,
a basic result of percolation theory is that every lattice has a characteristic critical
value for p, call it p., for which the system forms a large cluster of cells with the same
(in this case positive) value. That is, for p > p., the lattice will contain a region
that extends up to the boundaries. with the same value of the field’s VEV. This is
equivalent to saying that an infinite domain wall will form. The value of p. depends
on the specific form of the lattice. For a cubic lattice, for example, p. = 0.31, but
in general it is smaller than 0.5 for any regular three-dimensional lattice.

Clearly, the probability of having a cell with a positive value of the VEVis 0.5.
We will then have p = 0.5, and so p > p. always. Thus, in general we expect one
infinite domain wall to be formed as a consequence of the phase transition. The
distribution of smaller, closed walls depends on the characteristics of the lattice.
Given the large surface tension. one expects this closed system to evolve rapidly,
contracting and disappearing.

But a domain wall that extends all over the horizon length cannot contract over
itself and disappear. Rather, its tension will smoothen it out in larger and larger
regions, until we are left with a unique, “infinite” (in the sense that is larger than
the horizon) almost plane domain wall. It is not difficult to convince oneself that
this object is much too heavy to live in our Universe. We can compare its energy
density with the critical energy density of the Universe. We have

5 3 o
.= H*ME— wall = —
Pe PS'IT’ Pwall R

where H is the Hubble constant and R is the radius of the present-day Universe, or
H~'. Thus,

(2.3)

0 _ Pwall _ 8w g
vl T 3g. HMZ

where g, counts the relativistic degrees of freedom. With H ~ 10** GeV, and for

(2.4)

walls formed at the electroweak scale this gives

Q ~ 10t (2.5)
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The Universe is “overclosed” by the wall’s energy density. This is the domain
wall problem. It was first stated by Zel’dovich, Kobzarev and Okun in 1975 [29],
who calculated the evolution of a domain-wall dominated Universe, starting form
the energy-density tensor for a domain wall. They show that such a Universe will
expand as t?, much faster than the radiation-dominated Universe. Later. Kibble
[25] studied the evolution of the domain walls created during the phase transition,
concluding once more that they were not compatible with our Universe.

In fact, with an infinite domain wall the Universe will never evolve to present-
day dimension, but will become wall-dominated at early times. A wall’s evolution
is dominated by the interplay between the tension force, fr ~ o/R (where R is the
radius over which the wall is smooth), and the friction force produced by its move-
ment in the radiation background, fr ~ vT*. The wall’s velocity v is determined

by the balance between these two forces

g ot?
RT4 MpR

for a radiation-dominated Universe. The region over which the wall is smooth

v (2.6)

at time ¢ will be vt, thus it will grow with time as

ot3
M%

R(t)?* ~ (2.7)

Now we can calculate how much a region of wall with radius R(¢) will contribute

to the energy density. We have

M23o ,
pwa]](t) ~ t]; (23)
and
Vot
g (2.9)

n~
wa, IWP

The domain wall energy will start dominating the Universe at times tjy ~ o /3 2.
For our low energy domain wall, with a scale of symmetry breaking 100 GeV. this
happens at ¢ ~ 107sec ~ one year after the Big Bang.

In general, one expects walls to be formed at much higher energies, so that the
problem gets worse. In order not to interfere with the evolution of the Universe. the
scale of the discrete symmetry breaking must be smaller than about 1M eV [29].

There have been several attempts to cure the domain wall problem of theories
with spontaneous breakdown of discrete symmetries. One of them is inflation [30]. If

the Universe went through an inflationary regime, expanding exponentially during a



24 § 2. Of the Problems Caused by Domain Walls and Monopoles

vacuum-dominated era, the wall’s number density can be made exponentially small.
In other words, our Universe today is made up of a region where there were no
domain walls, and one says that the walls (and any other defect produced during
the phase transition) are inflated away. For this to work, it is necessary that inflation
takes place after the walls are formed. At present, no successful model of inflation
that requires no fine-tuning of parameters and is justified by the particle physics
phenomenology has been found.

Another way of getting rid of the domain walls is to actually break the discrete
symmetry. If the two vacua are not exactly degenerate, but some mechanism has
lifted the degeneracy by some small amount ¢, the evolution of the walls is different.
Basically, there will be a pressure difference between the two vacua, proportional to
€. Suppose that the pressure becomes bigger than the tension of the walls before

they can start dominating the energy density, i.e. for t < o/M3. We require [31]

a? v®

Ll 2.10
MZ "~ B (2.10)

€> fr>

If this is satisfied, the infinite walls will be pushed away from our Universe by the
pressure of the true vacuum. Of course, it may be regarded as unnatural to break the
symmetry explicitly by hand, even if it were by a small amount. Rai and Senjanovi¢
[32] have proposed a way to achieve this. They suggest that gravity may violate
the fundamental global symmetries. through black-hole physics process. Because of
no-hair theorems, the quantum number associated with a global symmetry will be
lost in black-hole collapse. Moreover, there are reasons to believe that time reversal
is violated by black holes. If gravity does not respect the symmetry, this will be
manifest in the Lagrangian by the presence of higher dimensional operators cut-off

by powers of the Planck scale. But a term like

Q/):';
Mp

(2.11)

will give an asymmetric contribution to the potential of order v*/Mp, which easily
satisfies the bound of (2.10). This will provide then a solution to the domain wall
problem, but of course to get into details of the mechanism, one should have a theory
of quantum gravity.

Another mechanism that may be used to get rid of the walls is to have the
discrete symmetry embedded in a larger group. Thus, one can have the domain
walls attached to strings, in the way we discussed in the previous chapter. If a

string forms the boundary of a domain wall, the vacuum manifold is in fact trivial,
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and the wall can decay. Kibble, Lazarides and Shafi [16] have studied the possibility
of having the domain wall-string system decaying fast enough to avoid conflicting
with cosmology. Essentially, quantum tunneling can create a hole in the wall. made
up from a loop of string. However, in order to create a loop of string, one has to
spend some energy, which should be compensated by the energy gained in removing
a corresponding piece of wall inside the loop. The probability per unit area per unit

time of nucleating a loop of string in the wall will be

P~ Ae™ (2.12)

where Sp is the Euclidean action corresponding to this tunneling process. and we will
not be concerned with the pre-exponential factor A. The difference in the Euclidean
action produced by the nucleation of a string of radius R and the disappearance of

the corresponding wall hole will be

So = 4T R%u — %R% (2.13)

where i is the energy per unit length of the string, and we are calculating the
tunneling in four dimensional Euclidean space [5]. The minimum radius for which
the hole will not collapse over itself is found by minimizing this action respect to R.
giving R = 2u/o. So we have

16 3 strin 6
§p= OTE <__”t g) (2.14)
3 o Vwall

We see that the probability is strongly suppressed for Ustring > Uwall- 1D concrete
examples as in SO(10) symmetry breaking (which can produce such hybrid defects).
the walls are practically stable.

Vilenkin and Everett [33] have considered a particular class of domain walls
attached to strings, that of the Peccei-Quinn model, or axionic domain walls. We
will give more details on these kind of models in chapter 3. Essentially, the Peccei-
Quinn model has a U(1) symmetry that gets broken by the VEVof a Higgs field o.
producing strings. The field takes values in the vacuum

() = ve'

However, the potential for the field  below a certain scale A is

Vo = A(1 - cos NO) (2.16)
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Therefore, 6 takes also values in the vacuum, (f) = 2Nnw. The strings get
attached to domain walls, which separate vacua with different values for . When
N =1, Vilenkin and Everett find that the evolution of the string network affects
the domain walls. While the strings collide and interconnect, interchanging ends.
the walls get successively “chopped” into smaller and smaller pieces. The final
result is that the domain wall-string system decays very rapidly. This should not be
surprising, since for N = 1 the vacua separated by the walls are the same, and the
total topology if the domain wall-string system is trivial. However, in the Peccei-
Quinn model NV is not arbitrary and it is not 1-it is the number of quark species.
For N # 1, the walls are stable, as shown by Sikivie [13].

2.3 The monopole problem

The problem with the monopoles is that they are produced in too large quantities
for an object of such a huge mass. With the scale of grand unification at 106 GeV,
the monopole’s mass is 16 orders of magnitude bigger than a typical baryon. In the
case of the monopoles, therefore, we will be interested in calculating their number
density.

During the phase transition at 7 ~ T., monopoles are created whenever the
expectation value of the Higgs field takes a non-trivial configuration in vacuum. A
simple estimate on the number of monopoles is obtained by supposing that approxi-
mately one monopole per horizon is created. Kibble [25] estimates (with techniques
similar to the ones in the previous section) that the number of monopoles per horizon
is roughly equal to 0.1, but our conclusions will be little affected by one or two orders
of magnitude. If dy is the horizon size at T' = T,, during the radiation-dominated

era, we will have for the number density of monopoles
1 ( 8w>3/2 TS -
nyM ~ 7 = | 9« 3 (211)
d% 3 M3
where g. counts all the massless degrees of freedom at 7,.. Now, in a Universe

expanding adiabatically, the number density over the entropy is a constant number.

So we have

n n 8T\3/2 7 T \3 , .
me L Sm el —c 2.18
n,  g.18 " V& ( 3 ) <Mp> (218)

For monopoles produced during the GUT phase transition, we get
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Im 10710 (2.19)
Ty
and this number has remained fixed until the present time. In other words, monopoles
produced at the GUT phase transitions should be almost as abundant as baryons
today, and 16 orders of magnitude heavier, which is clearly impossible in the context
of standard cosmology.

This simple estimate, however, does not take into account that monopoles are in
general produced together with antimonopoles. A monopole-antimonopole (M 3)
pair can annihilate, and their present day abundance could be in principle signifi-
cantly reduced, depending on the efficiency of the process. Zel’dovich and Khlopov
[34] calculated the annihilation rate and the monopole number density assuming
that their initial distribution corresponds to thermal equilibrium, and concluded
that the problem of the overabundance of monopoles persists. We now illustrate
how this happens following the analysis of Preskill [35], who demonstrated that the
assumption of thermal equilibrium can be dropped and the same conclusion reached.

If the annihilation process is characterized by D, in an expanding Universe the

number density will obey

dn ,
—dff = —Dnk; —3Hny (2.20)
Preskill [35] assumes a general form for D
A [mm\P
p=2 <_T1_Vf_> (2.21)
M

Given that in a radiation-dominated Universe H ~ /g, T?/(2M,), we can al-
ready see that depending on the value of p, the annihilation process can dominate
or not dominate the expansion of the Universe in (2.20). The solution of (2.20) can
be found in terms of p. For temperatures much smaller than the initial one, the

density becomes independent of its initial value, and the solution reduces to [35]

. " - p—1
ny P 1 yg-m (mM> (2.22)

T35 A 2Mp \'T

The specific form of D depends essentially on the ratio between the monopole’s
mean free path £ and the range over which the Coulomb attraction becomes impor-
tant, ro. In a thermal bath at temperature T, we have r, = g?/(47xT), where g is
the monopole’s magnetic charge. When £ < 7,, the monopoles move through the
plasma in a difussion regime. The monopoles are scattered by the charged particles

in the plasma, and we have



28 § 2. Of the Problems Caused by Domain Walls and Monopoles

2

- % (2.23)

where 1/8T* gives the sum over all the spin states of charged particles of the scat-
tering cross sections at large angles with each particle. For a particle of charge ¢,
this cross section is o ~ g%¢*/(4xT)?, hence the temperature dependence in (2.23).
With D increasing linearly with time (as is the case in a radiation-dominated Uni-
verse), it can be seen that the first term in the right-hand-side of (2.20) will start
to dominate over the second term as the Universe evolves. The annihilations will

become important then for

gx!]2 y <nﬂ/[) K
d~ dp | — 2.24
Ty~ ¥ 5 Mr 73 (2.24)

On the other hand, the diffusion regime will last until £ ~ 7,. We can estimate the
mean free path as { ~ v7, with v ~ /T /mjy, the average velocity of the monopoles
in the thermal bath; and 7 ~ m,41[/(__z3T2) the mean collision time of monopoles in

the plasma. So we will have a diffusion regime until

gip?

If annihilations become important before the diffusion regime ends, that is, if

Ty~ (2.25)

Ty < Ty, the abundance of monopoles at the end of this regime will be given by
(2.22), evaluated at T' = T and with D given by (2.23), that is

. (47)? /Gem
T3 3¢5 2Mp
for g2/(4r) ~ 100, 8 ~ 10, g. ~ 100 and mps ~ 1016,

When the Universe cools below T, one can begin to consider the monopoles as

~ 10710 (2.26)

free particles. But then their annihilation function can be calculated as

2 2
g m 10 .
D~——— = 2.2
(47 )Pm? <T> (227)
With p so close to one, from (2.22) it is evident that the annihilation becomes
unimportant. Alternatively, with this D in (2.20), it is easily seen that the annihi-
lation rate never approaches the expansion rate.
Thus, all the important M M annihilation takes place while £ < r,. If T < Ty,

or
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nar —7MAr
MM
7 <

(2.25)

the diffusion regime ends before annihilation can become important. The abun-
dance of monopoles remains to be the initial one. If, on the other hand, we have
initially nar /T3 > 107" (mpr/Mp), the diffusive regime will last until the annihila-
tions can become efficient, but they will reduce the abundance only until it reaches
its final value (2.26). We conclude that annihilations are not efficient enough to sig-
nificantly change our crude estimate of the present-day monopole abundance: they
still should be as abundant as baryons, or roughly so.

The domain wall problem represents a threat to models with spontaneously bro-
ken discrete symmetries, but the monopole problem is, in general, considered more
serious. If one wishes to have charge quantization, the U(1) factor group of the Stan-
dard Model has to be embedded in a larger group, and the spontaneous breakdown of
this larger symmetry necessarily will produce monopoles. It is remarkable that Dirac
[18] has shown that the requisite to have charge quantized is the existence of an elec-
tromagnetic monopole. While domain walls are altogether undesirable. monopoles
provide us with interesting physics, and it is hard to believe that a unified theory
does not include them. The search for a solution to the monopole problem has been
very intense.

The first solution proposed is again inflation. As with domain walls, inflation
can dissipate the monopole number density until it is practically zero. In fact. the
solution to the monopole problem was one of the main motivations of the original
paper by Guth [30]. Inflation has to take place at the GUT scale, and care must
be taken that monopoles are not produced at the reheating time. Again, we must
admit that no successful model for inflation is at present available.

Even if inflated away, monopoles may be produced later by particle collisions in
M M pairs, although their abundance can be easily kept at safe values (36, 37]. We
give more details on this mechanism of monopole production in chapter 4.

An interesting suggestion was made by Langacker and Pi [38]. They propose
that after the GUT phase transition had taken place and monopoles were formed.
the Universe went temporarily into a phase where U(1).,, was broken, to be restored
again at lower temperatures. How a symmetry can be broken at high temperatures
and restored at 7" = 0 will be the main subject of this thesis, and we will discuss the
mechanism in detail in the next session. Accepting for now that this can be domne.
it is easy to picture how the monopole problem can be solved this way.

When U(1)en, gets broken, strings are formed according to our general topological
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arguments. Since electromagnetic monopoles were formed in a previous phase tran-
sition, these strings will form attached to them, connecting monopole-antimonopole
pairs. One can view this process as the same one that occurs in a superconductor:
with U(1)broken, the Universe enters a superconducting phase, and the monopoles
get connected by flux tubes. Now, if a string connects them, it should be much
easier for the pairs to annihilate. Note first that a string can be cut into pieces by
quantum creation of a monopole-antimonopole pair. Following the same arguments
used in the case of quantum creation of a loop of string in a domain wall, we easily

find that the probability is exponentially suppressed by

2
So=n (”M> (2.29)

Us

so that it is negligible when the svmmetry breaking scales are widely separated.
The M M pairs will be subject to the string’s tension u, and therefore accelerate
at a = p/mps. The time for annihilation is roughly the same as the time required for
the energy of the string to be dissipated. For monopoles formed at a temperature Ty
at an average density of one per horizon, the distance between them at the moment
of string formation when 7" = T's will be [39] (see [26] for a complete discussion and

references on the subject)

Mp
d= 2.30
TyTs (2:30)
So we have to dissipate an energy
E~ pd~ Mpir—s— (2.31)
Ty

The mechanism of dissipation is the frictional force F' ~ Tv acting on the monopoles
in a plasma. The characteristic monopole velocity under the action of the string’s
tension is v ~ \/pd/mps, and we have for the energy loss

E ~ —T%? (2.32)

so that the characteristic dissipation time will be

r~ L DM TP (2.33)

This is much smaller than a Hubble time. Of course, in the above, one has
assumed that monopoles are connected by straight strings and that they do not

radiate, and that the dynamics of the string network was not taken into account.
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The efficiency of the annihilation mechanism will ultimately depend on the details
of the model. The main criticism of the Langacker-Pi mechanism is that it has to
assume a very complicated form for the Higgs potential, with at least three Higgs
fields. The MM annihilation process is extremely sensitive to the details of the

potential, which is considered a serious drawback.

2.4 The problem of this Thesis

The fact that monopoles and domain walls are incompatible with cosmology can
be viewed in two ways. One is to consider it as a useful piece of experimental
information, namely, to decide to discard extensions to the Standard Model on
the basis of their incompatibility with the Big Bang Universe. The idea of having
input for particle physics model building which comes from cosmology is certainly
an extremely appealing one. although given the large amount of model dependence
on cosmological predictions, it can be a difficult task to convince particle physicists
of the strength of this argument. And although it may be possible to renounce to
the advantages of having the discrete symmetries of nature spontaneously broken.
so that domain walls are avoided, it is less plausible that the search for a Grand
Unified Theory is detered by the fear of producing electromagnetic monopoles in
catastrophically large numbers. Electromagnetic charge is observed to be quantized.
and the existence of monopoles remains inevitably linked to this fundamental fact.

On the other hand, one can view domain walls and monopoles as problems. and
devise mechanisms to either prevent their formation altogether, or ensure that theyv
decay or are unobservable in the present-day Universe. This is what inflation does.
for example. But, of course, inflation does something even more fundamental than
diluting monopoles-it is the simplest and more elegant way to avoid the horizon
problem. If there was not an inflationary era, some other mechanism surely was at
work in the early Universe to ensure homogeneity on scales larger than the causal
horizon. To use inflation to solve the problem of the overproduction of topological
defects, however, is a delicate question. In a theory like SO(10) grand unification.
for example, one can have more than one phase transition, and form all kinds of
topological defects and hybrid topological defects at diverse energy scales. Invoking
inflation at each stage poses at least technical problems, and may be altogether in-
compatible with the scale of the fluctuations detected in the microwave background.

There is a crucial question hidden in the previous paragraph: are the monopole
and domain wall problems as fundamental as the horizon problem? Whatever view

one wishes to take on the meaning of the incompatibility of these defects with
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cosmology, the first essential thing to establish is whether they do constitute a
generic problem of the particle physics theories, an unavoidable consequence of the
marrying of particle physics with cosmology. This question is what we address in

this section, and the answer is on the negative.

The point is not whether the theory admits topological solitons, but whether they
get produced. We will show later that production of defects by thermal fluctuation
of the field configuration can be easily suppressed. For example, monopoles can
be produced in monopole-antimonopole pairs by particle-antiparticle collisions, but
their number density depends on many factors, and can be controlled, as we shall
see. The real danger is the Kibble mechanism, by which the defects get produced
as a consequence of the phase transitions. This is a familiar enough process in solid

state physics, for example.

The Kibble mechanism is triggered by the phase transition following spontaneous
symmetry breaking, and is based on the fact that our Universe has finite causally
connected regions. We cannot question this last fact and, as we said before, we
do not want to renounce to the benefits of spontaneous symmetry breaking. But
are phase transitions really unavoidable? In other words, do symmetries really get
restored in the early Universe? One would say yes, intuitively. The idea behind
spontaneously broken symmetries is that there is a critical energy scale above which
the hidden symmetry is manifest, and adding thermal energy to the system is likely
to have the same effect. This is what common experience tells us: on heating up a

system, more disorder is produced, therefore we go to a less symmetric phase.

However, clearly everyday intuition cannot be solid ground on which to found
the concept of a monopole or domain wall problem. Interestingly enough, there is
at least one system that functions in an inverse way. Weinberg [3] cites the example

of the Rochelle salt, that crystallizes more with increasing temperature.

Let us go back to the discussion on symmetry restoration of the previous chapter.
In a simple theory with a real scalar field ¢ and a discrete symmetry ¢ — —o,
the effect of the thermal bath at very high temperature (i.e. , at temperatures
much higher than the field’s mass) is to induce a temperature-dependent mass term
proportional to the quartic self-coupling. In such a simple theory symmetry breaking
is triggered by a negative mass term, and it is easily concluded, by calculating the
self-energy graphs at finite temperature, that the induced thermal mass has the
sign of the coupling constant. But this coupling constant has to be positive, so
the thermal mass squared induced by the self interactions of the field in a thermal

bath is positive. When the temperature-dependent part of the mass term becomes
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dominant, symmetry is restored.
We have repeated the argument that leads to symmetry restoration in order to
make manifest the assumptions taken. Namely, we have seen how symmetries get
restored in a very simple model, and it is clearly necessary to extend the analvsis
to more realistic theories before one can claim that phase transitions producing
topological defects are unavoidable. We have seen that given a potential V]¢] for
a set of fields ¢;, the thermal contribution to the effective potential from the self-
interaction and gauge terms is
. T2
AV(T) = 51

where a sum over repeated indices is assumed. Both terms are positive definite.

(2.34)
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Contributions from the Yukawa interactions with fermions are found to be positive
too, depending on the squared Yukawa coupling.

It remains, naturally, to extend the theory by adding more scalar fields. After all.
almost every extension to the Standard Model includes more than one Higgs field.
and, in particular, Grand Unified theories require at least two of them. This was
done already in the original paper by Weinberg [3], where the analysis of a two-fields
model with an O(N7) X O(N;) symmetry is carried out. According to Weinberg. it
was Coleman who suggested that the sign of the coupling (or couplings) governing
the interaction of the two fields can be negative. This in turn would give a negative
contribution to the thermal mass. Can this induce a negative sign for the whole
mass term, even at very high temperatures? Weinberg’s answer is that it can, under
certain conditions.

Let us illustrate the point with the simple example of a theory with a U(1)x (1)

global symmetry, two complex Higgs fields ¢ and x and a potential

mg Ao\ w a0 Ae /s a
V= =260+ SHe70) - X+ 0N + 58T (2.35)

We calculate the effective masses at in the high temperature limit using (2.34)

m3(T) = -m2+L(20+a) = —m2 + T22
mi(T) = -m2 + 52\ +a) = —m2 + T2 (2.36)

The crucial point is that the coupling constant alpha enters the mass terms at
high temperature. Nothing forces a to be positive, all that is required is that the

potential (2.35) is bounded from below, which implies
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Ashy > o (2.37)

One can have a < 0, and for example Ay > 2|a| > 4A,. Then v, in (2.36) is
negative, and m,(7') is negative for all temperatures. Note that (2.37) prevents us
from taking both v\ and vy negative. Then one of the U(1) groups is broken for any
value of T.

What has happened, essentially, is that in a theory with more than one field,
symmetry restoration at high temperature has become a question of dynamics. It
all depends on the range of the couplings.

This remarkable conclusion was, so to speak, lost among the many valuable
results of Weinberg’s paper. It was completely ignored until 1979, when it was
re-discovered by Mohapatra and Senjanovié [40, 41]. They were trying to find a
mechanism for keeping CP violation at high temperatures, to allow for successful
baryogenesis in left-right symmetric models. In order to keep CP broken at any
temperature, the authors add new Higgs fields and found the range of couplings for
which the symmetry is never restored. Maybe the best proof that the idea is so
contrary to intuition, is that the authors themselves (not to mention the physics
community!) were reluctant to believe their results, until they found out that the
possibility had already been mentioned in [3].

Mohapatra and Senjanovié¢ also point out in [40, 41] that this may be a solution
to the formation of CP domain walls. Later on, Langacker and Pi [38] put forward
the model we described in the previous section, including three Higgs scalars whose
couplings would ensure the non-restoration of U(1).y, during an intermediate regime.

However, the efforts to implement the idea of non-restoration to avoid domain
wall or monopoles quoted above. have a common feature: they try to solve the
problem. As we said before, what we are interested in is determining whether or not
the problem is there in the first place. We are going to be concerned with whether a
given theory, motivated by particle physics and relying on spontaneous breakdown
of symmetries, would or would not lead to a phase transition at high temperature.
To do so, we will examine different, well-known models from the literature that are
considered relevant for particle physics, and determine under which conditions they
have a domain wall or a monopole problem.

The fundamental point in this approach will be a “minimality” requirement.
Namely, all the theories considered have more than one Higgs field, and we will try
to determine if this can be of use in order to avoid symmetry restoration, and in

what range of parameters of the potential. We will not modify any model in order
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to allow for a solution of the problems caused by topological defects.

2.5 Non-restoration as a solution

With the fields that transform under a symmetry group always have a VEV, the
symmetry is always spontaneously broken, and the phase transition does not happen.

The field in the example above has a temperature-dependent VEV

)2 = f /\ a;( for T? < mz, (2.3%)
XN — '
T2 (o — 2 ,

Of course, this is valid as long as the theory is valid. We cannot say that the
symmetry is “always” broken. since completely new physics may take over at verv
high temperatures. At most we can trust our results up to the Planck scale. This is
only natural, even the Rochelle salt that crystallizes as we increase the temperature.
will burn at some point. But as long as the theory is in its range of validity, we can

say that the symmetry remains broken.

How does this solve the domain wall or monopole problems? Avoiding the Kibble
mechanism is not enough. One has to ensure that the field has taken values in the
vacuum since early times, and it has to do so even at scales larger than the causal
horizon. It should start near Planck scale having a unique fixed VEV, and then it
is guaranteed by the equations of motion that it will remain there, at the minimum
of the potential. We will have to solve the horizon problem in order not to have
topological defects produced. Any mechanism that guarantees homogeneity at large
scales will do, such as inflation. for example. This means that we do need inflation
to get rid of monopoles or domain walls, but the crucial difference is that the epoch
of inflation need not be related to the scale of symmetry breaking: it only has to
happen before. And if we have theories with many phase transitions, only one verv
early period of inflation is enough. The so-called primordial or chaotic inflation

suggested by Linde [42] is particularly suited for this task.

Of course, one has to resort to more realistic theories and this we will do in the
next three chapters. Before, however, it will be useful to have a general discussion

on how non-restoration can work in those cases.
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2.5.1 Global symmetries: O(N;) x O(N;) model

It is not difficult to convince oneself that non-restoration of symmetries is also pos-
sible when the fields transform under more complicated groups. Take the same
example of two fields, now transforming under an arbitrary symmetry group. One
can have a large number of coupling constants, depending on the group’s struc-
ture and the field’s transformations properties. The conditions of boundedness of
the potential analogous to (2.37) can be many, and very complicated. However, it
is enough that non-restoration occurs for a reasonable range of parameters, so it is
perfectly natural to ask for some of the couplings to be small. Then one can consider
only those couplings analogous to the ones of the simple model. That is, for fields
(®, =) transforming under the representations Ry, R of some group G containing

N1, Ny real fields (¢, x), write the Higgs potential as

N1 N 2 2
V=33 -0, + 260, - it + 2000 - S8t b4V
= 5 ¢ %t (070, 5 XX+ (X0X)T = 507X X s
a=1 b=1 -

(2.40)
where V; contains terms whose coupling constants are assumed to be much smaller
than Ay, Ay and . Thus in this case the symmetry is O(N1)x O(N,). We will use the
O(N1) x O(N3) models as a prototype that can effectively mimic more complicated
groups.

Taking a < 0, the condition for the boundedness of the potential is again (2.37).

The high temperature contributions to the masses are

AmZ(T) =T%*2 = T? [/\¢ (2&) - Nza}

P 12 12
Am(T) = 7% = 7 o () - o 24

and the G symmetry will not be restored if the couplings lie in the range

2+ . 2+ Ny\?
Ap > ( - 2) a> <_+___9> Ay (2.42)
;’\'1 ,N]

Note that there is no lower bound on the smallest coupling, so one can always

take it small enough to avoid the danger of the couplings getting too large and in
conflict with perturbation theory. This is not the case if G is a gauge symmetry,
since the gauge coupling will have to enter into the discussion, as we will see later.

Also, it is important to point out that the conditions are weaker if the ratio
N3 /Ny is big, that is, it will be easier for the representation with fewer real fields to

maintain its VEVat high temperature.
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In the simple example considered, only one of the fields can have a VEV. This
means that any subgroup of G preserved by its VEVwill be restored. But condition
(2.37) only prevents us from taking both mass terms negative, and with an adequate
coupling one can have both VEVs non zero even if one of the masses is positive. For
example, imagine that ¢ and x are real scalar fields transforming under D:¢ — —o.

X — —X. Write the pOtential

mg ms A A
V = %42 X, 2, 24, X 4
2¢ 2X+4¢+4X

a I3 1 S s
—59°X + B16%x + Pagx’ (2.43)

With 81,82 > 0. the potential is bounded from below if
AsAy > o (2.44)

The extrema of the potential are at (¢) = v, (x) = u, satisfying

[-m2 + /\,‘;,v2 —au® + 3B1uv)v + Byu = 0 (2.145)

[—mi + )\Xuz —av? + 3B1uv]u + Bav® = 0 (2.46)

And if mf.,), mi > 0, both VEVs are non zero. At high temperature, the effective

potential acquires the temperature-dependent terms
T?
24
By asking o« > 3, one can keep one of the mass terms negative at high temperature.

AV(T) = = [(38hs — a)6® + (38X — a)x® + 6(1 + B2)6x] (247)

the other forced to be positive by the boundedness conditions. However, the last
terms in (2.45), (2.46) prevent us from taking only one of the VEVs non zero.
In other words, the field with a negative mass term acquires a VEVand “forces”
the other to get one also, via the linear terms in the potential. Clearly, one can
redefine the fields at high temperature so that only one of them has a VEV. However.
note that the same holds true at zero temperature; the point is that the symmetry

breaking patterns at high and low T' are equal.

2.5.2 Gauged case

As we have already mentioned, when the symmetry is gauged non-restoration is

not straightforward. The gauge coupling provides a lower bound on the coupling
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constants and (depending on the particular gauge group chosen) one may have to
require the coupling constants to be of order one, away from the perturbative regime.

To see it explicitly, consider a simplified model as the one of section 2.5.1, that
1s, one where only the relevant coupling constants are taken into account, and now
the group G is gauged. The two fields ® and = transform under the representations

R; (i =1,2) whose generators satisfy

Tr(TAT?) = ¢;6% (2.48)

Then the high-temperature masses are

2

1
laa¥ 2 ) D G )
=17 A (B ) = Sro+ 1?25 )Tch] (2.49)

T

where g is the gauge coupling. Dim(G) is the dimension of the group and r; is 1
when the representation contains real fields, 2 when it is complex. Asking v, to be

negative and at the same time the fulfillment of the bound (2.37) now implies

o> 1 [[Ny+2 Dim(G) 1?
Ao > s (212 ), p 32 i), 2.50
@>AX>AX{< ¥, > LHT T, e (2:50)

As a function of A,, Ay has a minimum at

Dim(G)
Ay = 3¢ 2.51
x No(2 + NVg) 2 (2:51)
So Ay is bounded from below as
(2 4+ No)Dim(G)racy .
Ag > 12¢72 2.52

The dimension of the representation Ry (under which the fields that looses its
VEVtransforms) now plays an even more fundamental role: it has to be big enough,
if we want pérturbation theory to be valid.

Up to now we have used the high-temperature expansion of the effective potential
at finite temperature calculated up to one loop order. However, when the coupling
constants can get relatively large, it is not evident that next-to-leading order effects

are negligible. In the next chapters, we will carefully examine this issue.
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Figure 2.1: Feynman diagrams for the thermal mass correction in the supersymmetric ex-
ample. Dashed lines represent the scalar boson ¢, continuous lines represent its fermion

counterpart (i;

2.5.3 Supersymmetric theories

In supersymmetric theories, one writes the scalar potential in terms of the superpo-
tential, W,

2

ow
dpi

where W is an holomorphic function of the superfields ¢;, and renormalizability

V= (2.53)

requires that it is at most cubic in them.

Now, in finding the high-temperature effective potential, one has to take into
account the contribution of the fermions (we will for simplicity discuss global sym-
metries here). That means, in a theory with a A¢* interaction, calculating the usual
graphs of figure 2.1

The quadratically divergent parts of these graphs exactly cancel, since they are
made up with superpartner fields, given supersymmetry its best-known characteristic
of providing a solution to the hierarchy problem. The contributions to the thermal
mass coming form this graphs, however, do not cancel, since different boundary
conditions are applied in thermal field theory for bosons and fermions, to account
for the different statistics. We have calculated this contributions in the Appendix.
The fermion contribution is exactly double of that of its boson superpartners. It is
straightforward to generalize the formula for the thermal contribution to the effective

potential to the supersymmetric case

ow [

DpiOp;

2
AV(T) = L

- (2.54)

where now a sum over all 7 and j is understood.
Note in the first place that a non zero temperature immediately implies super-

symmetry breaking, since there will be a constant contribution 7 from the thermal
bath.
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At very high temperature, the minimum of the potential will be found simply
at AV(T') = 0, the potential being a sum of squares. This will make restoration of
the symmetry a straightforward matter. The superpotential being a cubic function
of the fields at most, its second derivatives cannot be too complicated. If on top of
that we impose that the fields transform under a given symmetry, W will be further
restricted. In fact, it has been shown that it is so restricted, that restoration always
follows [43, 44].

As an example, consider a simple theory with two chiral superfields ®, =, and a

superpotential with a discrete symmetry D:® — —&

W =m®? + (u? — %)= (2.55)

The high-temperature effective potential for the corresponding scalar fields ¢, y is

Vo= |pt = 0P+ 4¢P m — x|?

L {810 + aim - xP) (2.56)

+
At T=0, the terms in the first line above forces (the real part of) ¢ to take a
VEV, breaking the symmetry. The fact that x also takes a VEVis irrelevant, since
it is invariant under such symmetry. At high temperature, however, while y keeps
the same VEV, we see that the minimum of the potential occurs now for (¢) = 0,
and the D symmetry gets restored.
The results of Haber [43] and Mangano [44] have been formulated as a theo-
rem, stating the impossibility of avoiding symmetry restoration in supersymmetric

models. We come back to this point in Chapter 5.



3 Where we solve the Domain

Wall problem in several theories

3.1 Introduction

Two of the fundamental symmetries in nature, time reversal and parity, are discrete.
Both are explicitly broken in the Standard Model. Having them spontaneously bro-
ken is an old dream, ever since the work by T.D. Lee [45] on spontaneous breakdown
of C'P and the construction by Senjanovi¢ and Mohapatra of left-right symmetric
extensions to the Standard Model where parity is broken spontaneously [46].

Having these symmetries spontaneously broken has the notoriuos advantange of
rendering the P or CP phases calculable as physical quantities, and is particularly
desirable in the case of the strong CP phase. It can actually provide a solution
to the strong CP problem. But the search for realistic models has been in some
way obscured by the menace of a domain wall problem. It becomes important to
investigate in which of these theories the problem is really unavoidable, along the
lines of the previous chapter’s discussion.

Mohapatra and Senjanovié [41] suggested for the first time to use non-restoration
to cure the problem in spontaneously broken Left-Right theories, although they had
to modify the model in order to do so. Years later the idea was revived by Dvali
and Senjanovi¢ [47], for the T.D. Lee model and the Peccei-Quinn [12] solution to
the strong CP problem.

In this Chapter we present results from a collaboration with Gia Dvali and Goran
Senjanovi¢, published in [48]. We study the possibility of avoiding the domain wall
problem with symmetry non-restoration in some theories of spontaneously broken
CP, P and strong CP. Three kinds of models of spontaneously broken CP are inves-
tigated: the T.D. Lee model with two Higgs doublet; the three doublet model that
allows for natural flavor conservation [49, 50, 51]; and models in which the fermion

sector is enlarged [52], including a new version [53]. Later, we turn to parity and

41
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show that the proposal of [41] is not applicable, although the domain wall problem
can be avoided in models with singlets as in [54, 55]. Finally, we show how the
axionic domain wall problem can be solved in the invisible axion version [56] of the

Peccei-Quinn model.

3.2 Spontaneous CP Violation

There are many ways to break CP spontaneously. One can identify the CP violating
phase with the relative phase of the VEV’s of doublet Higgs fields. This is the idea
behind the original model of T.D. Lee [45]. Another way is to extend the particle
sector of the theory, as well as the Higgs sector, so that couplings with the new
fermions introduce phases in the Cabibbo-Kobayashi-Maskawa (CKM) matrix.
Whatever the mechanism, however, the important point is that the discrete
time-reversal symmetry gets spontaneously broken, producing CP domain walls.
We discuss in the following how to implement the ideas of non-restoration in order
to avoid domain wall production in some models with spontaneously broken CP.
Furthermore, CP is a particularly interesting discrete symmetry. We need some
amount of CP violation to make baryogenesis work [57]. It is desirable not to restore
it in the early Universe, at least not until the time of baryogenesis. This was actually
the original motivation of the first application in particle physics of the phenomenon
of non-restoration of symmetries at high temperature [58]. The model presented in
[58], however, is not minimal, in the sense that additional fields where included just

in order to have non-restoration working.

3.2.1 CP with doublets

To have the CP phase as a doublet’s phase, we obviously require at least two Higgses.

The original model is due to T. D. Lee [45], and consists in an extension of the

-

Standard Model with two complex Higgs doublets, with

9
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Choosing the parameter 3 > 0, one can prove that the minimum of the potential
is achieved when the fields acquire VEVs

@1:< 0 ) ; @2:< 0 )em (3.3)
(51 V2

The terms in brackets in the potential will force the CP-violating phase 4 to be
non-zero. This can be readily seen by writing (3.2) at the minimum (3.3), and wisely

rearranging terms so that

2 2 .
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Obviously, for ¢ > 0 the minimum will be at cos# = §, and CP is broken
spontaneously. Moreover, it will be broken for any value of § = cos™!(é + 2nw). with
n an integer. In general, when the phase transition occurs, § will take different values
in causally disconnected regions. Whenever two regions with different 8 values will
come into contact, a domain wall (of the sine-Gordon type [7]) will form between
them.

We therefore explore the possibility that CP remains broken at arbitrarily high
temperature. For this to happen in T.D. Lee’s model, we need to have the VEV s
of both ®; and ®, nonzero at high temmperature. In a potential with terms cubic
in one of the fields (such as @}LQ?l@I@g in (3.2)), it is not necessary to have both
masses negative, as we have seen in the previous Chapter. The interaction terms
will force even the field with a positive mass squared to have a VEValso. We require.
however, more than that: the relative phase between the doublets also has to be
kept non-zero at any temperature, for CP to indeed be broken.

The high temperature corrections to the effective potential for a model with N
Higgs doublets can be found by generalizing Weinberg’s formula [3] for complex

doublets. The most general potential for N complex doublets can be written as

N N
V== mielo + Y \judle,ele (3.6)

i=1 i,k l=1
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Then the high temperature correction is

N Tf_)
AV(T)= > -

.7,k=1

(250 + Akige) @10, (3.7)

For the two doublet model (3.2), this gives

AV(T) =

o™

3
(6A1 — 2a — £)®1dy + (6Xy — 20 — B)BLB, + S+ ) (@18, + h.c)
(3.8)
The potential at high temperature can then be cast in the same form (3.4), where

now the masses m? are replaced by m?(T)

o a B bb+ec) . 2
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for T >> m; and ¢ becomes §(T):
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Again, as in the simpler model, one can have one and only one mass negative at

high temperature, due to the condition that the potential be bounded from below

2

pP1p2 > 84‘ (3.11)

since now

vi=pi—0; Vvi=py—o; with 0='£~g——ﬂ———g<§ (3.12)
Requiring v{,v5 < 0 will give p1ps < 0 < p?/4, which contradicts (3.11).
Considering only the #-dependent part, we see as before that there is a minimum

for § = 6(T'). However, it is not difficult to see that with only one mass term negative,
both VEVs cannot be nonzero at high temperature, due to the fact that the mass
terms now depend on the coupling constants. Taking v2 < 0, the requirement that

v1 be real gives

1u:§|_—§ > 12py (3.13)
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together with (3.11), this is also enough to ensure that v, is real. Substituting for

2 2
v{ and v§ one gets

PP _
2<2 P2)>

which again implies p1p; < p*/4, contradicting (3.11).

(0 =p2)>(p1—0)p2 > <p1 - g) D2 (3.14)

[NR IR

We conclude that the only way to have both fields with a nonvanishing VEVat
high temperatureemperature is to set the phase 8 to zero. In other words, the field
with a negative mass term can “force” the other to acquire a VEV, but it drags it
in the same direction in U(1) space.

Notice that in [58] the fact that both VEVs can be nonzero was overlooked. but
it was still concluded correctly that with only two doublets, CP would become a
good symmetry at high temperature.

There is however a good reason for taking more than two doublets in order
to break CP. A common feature of models with two Higgs doublets is that thev
allow for flavor-violating interactions in neutral current phenomena. As shown in
(49, 50, 51], the minimal model for spontaneous CP violation involving doublets onlv
that conserves flavor, requires three of them.

To see why, consider a Lagrangian with two complex Higgs as in(3.1), (3.2). and

an extra symmetry Dy
Py — -9 U;R — —UR (3.15)

(where u, g are up quarks and hereafter a,b,.. are flavor indices). The Yukawa
interactions are written now

Ly = (ad)ihly®1d% + (ad)Eh2,(iry)B5ubk (3.16)

so that flavor violation through neutral Higgs exchange is avoided. However, now
the symmetry prohibits the terms of the type @{@1@1@2 in the Higgs potential.
and therefore at the minimum we have the phase # = 0 or 7/2, both leading to CP
conservation.

The way out is to have three doublets, and an additional symmetry D, that
prevents it from coupling to the quarks: ®3 — —®3, with other fields unchanged.
The most general potential invariant under SU(2) x U(1) x Dy x Dy is

Vo= 3 [-miefe + a(ele)?) +

1=1
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+ [—aij(@?}@i)(@}@j) — B:j(2]8;)(91@:) + 7i5(0]0;0]0; + h-C-X]3‘17)
i<g

It can be shown [49, 50, 51] that choosing Bij,vi; > 0, the above potential has a

minimum at

1 0

where only two of the #; (say, #; and 3) are relevant. Extremization with respect
to 8 yields [50]

Y1203 8in 201 + 71303 sin 2(0; — 63) = 0 (3.19)

71307 8in 2(fy — 63) + 72303 sin 265 = 0 (3.20)

Notice that to have CP violation, we need all three v; and both 8;, 63 to be nonzero.
It can be shown [51] that the CP violating solution of (3.19) is indeed a minimum.

When the phases take this value, the remaining potential is

3 . . s . . ..
Vi) =3 <_%v3 + %vf) -3 (—a”—%—ﬁi)v?v? (3.21)
=1 1<J
where
P= A — 712713 (3.22)
Y23

and analogous expressions for py, ps.
Once again, we are interested in whether the CP symmetry can remain broken
at high temperatures. It is straightforward using (3.7) to calculate the masses at

high temperature

T2
mi(T) = —m} + ry {6@' ~ > (204 + Bi5)
J#
Due to the high degree of symmetry of the potential, temperature contributions

2
~ T?yf (3.23)

are independent of the phases, so equations (3.19) are the same.
For the potential to be bounded from below, a set of constraints has to be

imposed on the couplings, in this case

p; >0 pip; > Gij foreach 7 < j (3.24)

P1P2Ps — 133 — P2ais — Paaly — 2a12a13a23 > 0 (3.25)
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with a;; = a;; + B, and we choose a;; > 0, so a;; > 0.
It is easy to prove that (3.24) prevents us from taking all three of the mass terms

negative at high temperature, as we could have expected. Necessary conditions
would be

> ai; > 3p;i (3.26)
J#
Multiplying these equations by pairs and adding them results in a contradiction
with eq. (3.24). But it turns out that with only two negative mass terms, all three
VEVs cannot be nonzero at arbitrarily high temperature. Take for example v > 0.

v3,v2 < 0. We need v; to be real, that is, minimizing (3.21)

v >0 (3.27)

2 _ T_Z_ ~ v (paps — ads) + v3(p3arz + aszais) + v3(paays + azz012)
! 3 P1Pap3 — P1%s — P2ais — Paai, — 212013023

We have already required the denominator to be positive. For the numerator to

be positive also, necessary (though not sufficient) conditions are

752 (p3a1z + agzais) + 3 (paars + azzarz) > —v1 *(paps — ais) (3.28)

where

2
3p1 — a1z — a1z < vy

Y
I

ayg + azz — 3p2 > sz

W
I}

% = a3+ azs — 3p3 > I/§ (3.29)

Inserting (3.28) in (3.29), one gets

—2paps(a12 + a13) — az3(paais + paaqz) >

pP1p2ps — P1a§3 - Pzafa - Psa%2 — 2a12a13a23 + 2p1(p2p3 — 033) (3.30)

which in view of (3.24) and (3.25) cannot be satisfied.
Thus, once again, the CP violating phase disappears at high temperature. As in

the two-doublet case, here too the problem is that CP violation is achieved through
the relative phase of the VEVs of the doublets.
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3.2.2 (P with a singlet field

It should be clear from the previous examples that when the CP phase is related to
the relative phases of doublet fields, high temperature effects will make it vanish.
We therefore look for models in which CP violation is broken spontaneously by the
VEVof just one field, which may be easier to keep at high temperature.

The simplest such model is a minimal extension of the Standard Model with
a) a real singlet field S which transforms under CP as § — —S; and

b) an additional down quark, with both left and right components D¢ and Dg
singlets under SU(2).

The interaction Lagrangian for the down quarks, symmetric under CP, contains

the terms

Ly = (ad)3ha®Dg+ (id)% hey®d’
+MpDrDp + My (Drd% + h.c.)
+ifpS(DrDr — DrDL) +if.S(Drdy — dDr) (3.31)

Clearly, when S gets a VEV(at a scale o much bigger than the weak scale My )
CP is spontaneously broken by the terms in the last line. A model of this kind was
developed by Bento and Branco [52], in the version where the singlet is a complex
field and gets a complex VEV, and with an additional symmetry under which §
and Dp are odd, with all other fields even. We will, for the sake of simplicity, keep
S real (and impose no further symmetries), noting that the analysis goes over the
same lines as in [52]. CP violation is achieved by complex phases appearing in the

CKM matrix through the mixing of d and D quarks. Through a diagram like
RD @ Mp +iofp My +io fy

1
1
1
1
1
1
]
i

1 1

! '

1 1

' !

! 1

' !

' i

! !

. N > N > N .
g N - o VAN

de Dr Dy dy

the down quark mass matrix will be roughly

RP(®)(Mp + io fp)(My + io fy)

Map =~ hab(®) + 2

(3.32)
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w
Mp

2
D 9| D I yD My, o

> |heb(®)+ hD(®) Ty

giving a CP violating phases of order ¢/Mp These phases remain in the limit
Mp,o — oo when the heavy quarks decouple. This should not come as a surprise.
since in the decoupling limit the theory reduces to the minimal Standard Model.
which in general has complex Yukawa couplings and a complex CKM matrix. Also.
flavor-violating currents are suppressed by powers of My /o, disappearing in the
decoupling limit. Thus the measure of the departure from the standard model is the
dimensionless parameter My /Mp, and for the theory to be experimentally testable
Mp should not be much bigger than 1 TeV.

To leading order, the high-temperature behavior of the ® — ¢ system is verv

simple. The most general potential can be written as

V(®,5) = —-midid+ rs(010)?
2
-5+ 5t - Soles (3.33)

and it has a minimum at

(¢'>=%(2> ; (S)=+0 (3.34)

At high temperature, the masses are replaced by

2

Tu
ma(T) = —-mb + -ZZ(IQA@ - )
2 2 2
ms(f) _ _ms T - -
5 = 5 + 24(3A5 2a) (3.35)

We can have m% < 0 always by requiring 2o > 3\s, and thus ¢ # 0 at any
temperature . The only further restriction is the usual A\ > a?/Xs.

It seems then that in this model, one can have CP broken at any temperature.
Remember, however, that up to now we have only considered the leading order con-
tributions to the effective potential in calculating the masses (3.35). A complete
analysis should include the next-to leading order corrections, as we already men-
tioned at the end of Chapter 2. We can anticipate that for a singlet field these
effects will not change the picture much, but we leave a detailed analysis for a

separate section.




50 § 3. Where we solve the Domain Wall problem in several theories

3.3 Spontaneous P violation

Parity is the other fundamental discrete space-time symmetry, and the fact that it
is broken is one of the most intriguing in particle physics. The Standard Model
simply incorporates this observational fact, giving no hints of its origin. Having
parity spontaneously broken, on the other hand, is an appealing idea. The Left-
Right symmetric models where suggested by Pati and Salam [59] and Mohapatra
and Pati [60], but the possibility of the spontaneous breakdown of parity in these
theories was demonstrated by Senjanovi¢ and Mohapatra [46]. Left-Right models
have a number of very interesting features (best reviewed in a detailed form in [61]),
including the fundamental characteristic of having an elegant and simple way of
explaining the smallness of neutrino mass [62, 63].

Left-Right models are based on the SU(2); x SU(2)g x U(1)p_r, gauge group,
with an additional discrete parity symmetry (P). Breaking SU(2)g x U(1)p_r at
a high scale Mg not only gives the gauge right-handed filed a large mass (thus
hiding the right-handed interactions). but also breaks parity spontaneously. This
however has tolead to domain walls. Interestingly enough, the first intent to use non-
restoration was precisely in Left-Right models [41], mostly in connection with strong
CP violation. It was concluded then that in the minimal models of spontaneous
P violation, left-right asymmetry may persist at high temperature. The analysis
however was carried out without considering carefully the role of the gauge couplings,
which is now known to be fundamental, and which as we will show may invalidate
that conclusion.

Let us recall the salient features of the minimal left-right symmetric theories
[61] based on a SU(2)r, x SU(2)r x U(1)p_r gauge symmetry. The fermions are in

doublet representations

(”) ; (”) (3.36)
€/ € /g

The minimal Higgs sector of the theory consists of

o the bi-doublets (one or more) ® needed to provide Yukawa couplings and

fermion masses

e two multiplets A and Agr which may be either doublets or triplets under
SU(2)r and SU(2)R, and which are in charge of breaking P spontaneously.
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We will not give here a review of howLeft-Right theories work, it will be enough
for our purposes to consider a simplified toy example which has all the relevant
features of the theory. More precisely, we take A7 and Ag as real scalar fields and

assume a left-right symmetric potential
2 A ad gy N2
+AR)+ (AL +AR)+ SALAR

m? A A=A
= —5 (AL + AR+ 7(AL+ AR+ —

<
[l
!
g\
L
™

AIAL (3.37)

A simple inspection of V is enough to convince oneself that for m? > 0 and
A= X > 0, the global minimum of the theory is obtained for
v o m?
(AL)* =0 ; <AR>2 = (3.38)

or vice versa. Thus the left-richt symmetry is broken spontaneously. With A > ).
the global minimum is found for both VEVs vanishing, and partity is preserved in
this case.

Of course in realistic models. besides A’s being non-trivial representations under
the gauge group, we do need a field ® to break the Standard Model gauge group.
One can then try to take one or more of the coupling constants between ® and the
A’s negative, thus achieving a negative mass term for the A’s at all temperatures.

Let us concentrate in the version of the theory which incorporates the see-saw
mechanism with Ap and A being triplets [63]. Since we wish to keep (Ag) nonzero
at high temperature, it is enough to look at the Agp — @ system and, as in [38].

consider a simplified model in which the potential is written

V = —mAALAR+ Aa(ALAR)?
—m3Trd1d + Ap(Trd'®)? — 20TrdTdALAR (3.39)

where AR is a triplet under SU(2)g, has B — L number 2, and other couplings are

taken to be small. The high temperature masses arel

5 1 3
2 2 2)2y _ 2 2 2 :
me(l)=—-ms+T {6/\¢, 3a+ 167 } (3.40)
20 2 2 1 2 3 12 2 . -
mA(T)=-ma +T 5/\.& —gat —g(g + 2¢%) (3.41)

1We use the normalization Tr®1® = D,P,./2; AEAR = A% A%, where a sums over six real fields.
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where g% is the U(1) gauge coupling, g2 the SU(2)r one. We have to keep m (T)
negative at high temperature while preserving the boundedness condition AgAs >
o?, thus we arrive at

a? 9 3 _

1 P .
YR _zAaJré—(g + 2g )J (3.42)

Ag >

Then the largest coupling of the theory is bounded from below by the gauge
coupling, as we have seen already in the general discussion of the previous Chapter.
Using (2.52), we find the minimum value for the largest coupling \g

27
Ao > (97 +29%) (3.43)

If we now use g”> = g%/2 and take g% = 1/4, we see that non-restoration of P
requires Ag > 1 in conflict with perturbation theory. Including other couplings does
not help, since new conditions on the couplings coming from the mass matrices have
to be imposed.

Although physically less attractive. one can in principle use doublets to break P
spontaneously. This is actually the case studied in [58]. It is easily found that with
doublets the condition equivalent to (3.43) is down by a factor of half. Thus this
case may be considered borderline.

Now, for the implementation of the see-saw mechanism in its minimal form, it
turns out that a parity odd singlet field is needed [55]. The singlet field S will couple

to the A fields with a left-right symmetric term

MS(ALAL — ALAR) (3.44)

Without the lower bound imposed by the gauge couplings, the situation in this
case goes along the same lines as that of Section 3.2.2-the VEVof the singlet can
be kept nonzero at high temperatures with the aid of the bi-doublet field &, or
even of the A’s. Exactly as it worked with CP, now P may remain broken at high
temperature, and the presence of more fields coupled to S than in the CP case only

makes it easier.

3.4 Strong CP Problem and High temperature

The strong CP problem arises in QCD when nonperturbative effects, resulting from
the existence of instanton solutions. induce effective terms in the Lagrangian that

violate CP. The resulting CP violating phase is
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O = O + arg det(M) (3.45)

where © is the coefficient of the eaﬁngﬁFg“ term, and M is the quark’s mass
matrix. O is constrained experimentally to be zero to a very high precision (0 <

1077), giving rise to a “naturalness” problem [56].

3.4.1 The invisible axion solution

The most popular solution to the strong CP problem is the Peccei-Quinn mech-
anism [12], in which the phase O is identified with the pseudo-Goldstone boson
resulting from the spontaneous breakdown of a global symmetry U(1)pg. Obser-
vational constraints require this breakdown to occur at a scale Mpg much bigger
than the electroweak scale, making the axion “invisible” [64, 65]. Besides the axion
field a, the breaking of U(1)pg produces a network of global strings [13]. As we go
around each minimal string. the phase © = a/Mpg winds by 27. Instanton effects
appear later, when the temperature has reached the QCD scale Agcp. Their effects

in the Higgs sector can be mimicked by an effective term

AV = Abep(l — cosNO) (3.46)

where N is the number of quark flavors. It becomes energetically favorable for ©
to choose one out of the discrete set of values 2wk/N (k = 1,2,..N). But since we
must have A® = 27 around a string, this results in the formation of N domain walls
attached to each string [33]. For N > 1, these domain walls are stable and therefore
in conflict with standard cosmology, as we argued in Chapter 2.

Clearly, without the global strings no walls will be formed: above T’ ~ Agep. O
would be aligned having some typical value @ which after the QCD phase transition
would relax to the nearest minimum. We wish then to study in detail the high
temperature behavior of the invisible axion mechanism, well above the scale M PO-

For concreteness we concentrate on the minimal extension of the original Peccei-
Quinn model [65]. The potential for the PQ model with the doublets ¢; (i=1.2)
both having ¥ =1 and a SU(2) x U(1) singlet S may be written as

2 N
Ve = X |-Trelei+ F(0160| - S(sien)6len) — Dslenslen)

i

2 s N , P
%—5-5*5 SRR CEIEDY (-72—¢3<pz-)5 S — M(1625 + ¢le15%)(3.47)
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Besides the SU(2)r x U(1)y local gauge symmetry, Vpg has a chiral U(1)pg
symmetry (¢; couples to say down quarks, and ¢3 to up quarks)

P — €9P1 5 By — e %y ; § — XS (3.48)

For § > 0, the minimum is found at

(@) = ( ° > i (S)=wvs (3.49)

v;

To have U(1)pg broken at any temperature, it is enough to keep the VEVof the
singlet nonzero for all T. From our analysis of the previous section for a potential
with three doublets, one can already expect that keeping the VEVof only one field
nonzero will not be difficult. In this model then the conditions on the potential
parameters cannot be an obstacle for non-restoration, but we present them here for
the sake of completeness. Taking vs > v;, the conditions over the couplings are, to

leading order

Ai>0 , As>0 5 MAs> 72 5 M > (a+B)? (3.50)

()

'U3 v
Mv? L—;(Al/\g -1+ E(A;w\s —73) = 2v1v2(As(a + B) + ’71”/2}

+ 30io} [MAads = Avd - vk = As(a+ B)2 = 2ya7a(a + B)] > 0 (3.51)

It is easily proven that (3.50) imply that the first line of eq. (3.51) is positive.
A sufficient condition for boundedness will then require (3.50) and the second line
of (3.51) to be positive, the same conditions that were required in the three-doublet
model of Section 3.2.1 (equations (3.24),(3.25)).

The mass term of the singlet at high temperature will be

2

AT = ~md + (s — 7~ 1) (3.52)

so that imposing 71 4+ 72 > As, we get the U(1)pg symmetry broken at all temper-

atures. We already know that at high temperature one cannot have all three VEVs

nonzero, and notice that because of the linear terms in (3.47), having vs # 0 forces
v1, Uy to vanish.

Up to this order then, it seems quite natural to keep the VEVof S nonzero at

high temperature. It should be evident that the same holds true for Kim’s version

[64] of the invisible axion idea.
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3.4.2 Spontaneous P or CP violation

Another well-known solution to the strong CP problem is based on the idea of
spontaneous CP or P violation [66]. Here, the symmetries can be used to set Opee =
0 and the effective © is then finite and calculable in perturbation theory, and in many
models small enough. The high temperature behavior of these theories is completely
analogous to the one discussed in Section 3.2 and 3.3, and thus we can conclude that
the solution of the domain wall problem favors models with singlets. However, before

the model is found we find it fruitless to study this question in detail.

3.5 Thermal production of domain walls and strings

If the symmetry never gets restored at high temperature, the system will not undergo
a phase transition when the temperature of the Universe becomes of the order of
the symmetry breaking scale. Without phase transition, the Kibble mechanism
is never activated. For this to work, of course, it is necessary to set the initial
conditions appropriately. Namely, one has to demand that the field takes the same
VEVover comoving distances at least as big as the present-day horizon, which for
earlier times means requiring homogeneity beyond the causal limit. There is nothing
surprising about this: it is yet another manifestation of the fact that in order to
have a consistent cosmology, one has to solve the horizon problem first. One can.
for example, have a period of primordial inflation near the Planck scale, forcing the
field to go to one and only one point in the vacuum manifold once and for all.

This, however, is not enough. The problem is that the theory still admits topolog-
ical defects as a solution to its classical equations of motion, and they can therefore
be created by other means. In particular, the field may be able to use its thermal
energy to nucleate a defect in vacuum. All that is required is that the field’s config-
uration is trivial at infinity. For a domain wall this means creating a spherical one,
for strings a loop is allowed, and for the monopoles (that we will study in the next
chapter) a monopole-antimonopole pair.

The thermal production of defects at finite temperature has been studied by
Linde [67, 68]. The production rate per unit time per unit volume at a temperature
T will be given by [67]

3/2
=14 (%) e~ 53/T (3.53)

where S35 is the energy of the closed defect. For a spherical domain wall with
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radius R,

7= AR (3.54)
where 5

o= §\/Xv3 (3.55)

is the domain wall energy per unit area. We cannot estimate the radius, but surely

we must have 5

R>6,= 3.56
T (3.56)
where 4, is the domain wall’s thickness. Then
S3 5 T v S
- > A7t — ~ 3.57 )
T T AT (

When the symmetry is not restored, the VEVof the relevant field is directly
proportional to 7T'. The exponential factor S3/7" turns out to be a constant in these
models, which makes it very easy to have the required suppression in the domain
wall’s thermal production. We have for the case of spontaneously broken C'P with

Ss 167 V3G =35
T~ 3v6 s
The production of domain walls is sufficiently suppressed just by taking As small

a singlet ( section 3.2.2)

(3.58)

enough.
A similar estimate can be made for the thermally produced loops of strings, that
could be formed in the Peccei-Quinn model of Section 3.4.1. A loop of string with

radius R will have

— =27R=— (3.59)
where this time
p=mv’K (3.60)

is the string’s energy per unit length. K is a factor depending on the specific shape
of the string solution, and is of order one. Again one must take the radius of the

loop much bigger than the string’s radius &,
0s = \/5\—1 (3.61)
6 v

S3 212/6
VA

-:ZT>>

so that

% (3.62)
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For the Peccei-Quinn case we get

VY1 + 72 — As
_5_3>>27r2 Y1+ 72 S

7 NS (3.63)

It is not necessary to repeat the argument for the model of spontaneous P vio-
lation with a singlet. We see that in all these cases, it suffices to take the singlet’s

self-coupling Ag small to avoid significant thermal production of defects.

3.6 Next-to-Leading Order Corrections

In a series of recent papers, Bimonte and Lozano [69, 70] have addressed the issue of
next-to-leading order contributions to the effective potential. As was already pointed
out in [4], in a theory with a Ao* potential, the next-to-leading order contributions

to the squared mass are of order

m*(T) o« X372 (3.64)

while higher loop corrections do not contribute significantly. We derive this
result in Appendix. The point is that in a theory with two fields where one of
the self-coupling constants is required to be larger than the other (as we did to
avoid symmetry restoration), the larger constant will enter in corrections to the
other field’s mass. Thus one has to make sure that the results to leading order are
maintained when including such terms.

In fact, in the case of gauge symmetries, it was concluded [70] that the inclusion
of these effects can alter significantly the phase diagram of the theory. This is mainly
due to the fact that in the gauged case the coupling constants cannot be as small
as one wishes, but are bounded from below by the value of the gauge coupling. In
the case of singlets [69], although the effects are not so dramatic, they do alter the
parameter space for symmetry non-restoration.

We begin by reviewing briefly the contributions of next-to-leading corrections
in the effective potential of a O(N;) x O(Nz)-symmetric model. Take two real
fields ¢1, @2, transforming as vectors under O(Ny),O(N3) respectively, and write

the potential

2 . | |
Vigr,¢2) = (“%léﬁdz + %I@'P) - %\@bﬂ?[cﬁzlz (3.65)

12

The temperature contributions to the effective masses to leading order are
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2+ N N 2
= 1) e T pim(e) L (3.66)

Ami(T) = T*? = T2 [/\i ( 5t ¥
1

(and a similar expression for Ams) while to next-to-leading, Am; = T'z; is found by

solving the coupled pair of equations

2 24+ Ny No g2 . ~C1T1
ry = l/i‘2 - < rpn ) )\11,‘1 + Z;al‘g - ED“n(G)[Tl—Vg

2 2 2+ N Ny g . Carg o am
;L'; = I/; - ( ar > /\QIQ + EQIlngm(G)WVg (364)

where

. N C; ;T - o
F; H;

for a group SU(N), where the sums are over the fermions and Higgs fields, respec-
tively.

Symmetry is restored when solutions of (3.67) are real and positive. The condi-
tions under which those solutions do not exist, and therefore the O(N;) symmetry

is not restored can be found to be [69]

Ny 12,27, C2T2 v o

Mg > a? (3.70)

where

3(2+ Ny) , 1672 Ny 3g2Dim(G)eiry ( Vg)} ’
Mia)= S M o [ M - + ~Z) -
f(h.a) 82 (\/Al 3( 1 M 24+ N “ Ni(2 4 Ny) T !

(3.71)

is a function that can take values from 0 to 1. The leading order conditions are
(3.69) with f = 0. One can see then why the parameter space is reduced: it gets
more difficult to fulfill (3.69). The behavior with the number of fields also becomes
nontrivial, since (1 — f) is a decreasing function of Nj, and the two factors of «
in (3.69) compete (up to leading order, it is always preferable to keep nonzero the

VEVof the field in the smallest representation).
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Figure 3.1: Symmetry non-restoration in a model with O(Ny) x O(N2) symmetry. Points
indicate the values of Ny, No for which the VEVof the O(Na) vector can be kept nonzero
at high temperature, for fixed values of the potential’s parameters: circles correspond to

A =01, @ =0.03, Ay = 0.01, crosses to A; = 0.1, @ = 0.01, A, = 0.001

The O(N;) x O(N3) toy model can mimic models with more complicated sym-
metries involving two fields with N7 and Nj real components, in the approximation
where their interaction is just of the type a|@1]?|#2]?. In particular, no approxi-
mation needs to be done in the doublet+singlet case. Also, when the field to be
non-restored is a singlet, the gauge coupling enters (3.70) only through f. and its
effect is very small.

In Figure 3.1 we show how symmetry non-restoration depends in the number of
fields when the next-to-leading order effects are included, i.e., we find the values of
Ny and N, for which the conditions (3.69),(3.70) are satisfied when the parameters
of the potential are fixed. The plot shows the situation for two sets of ratios of the
couplings: A\; ta:Ay=1:1/3:1/9and 1:1/10:1/100, in the global case. Notice
that Ny < Ny is still preferred. As the ratio No/N; increases, it becomes necessary

for non-restoration to take smaller ratio Ay/A;.

The cases of Ny = 4, Ny = 1 (a complex doublet plus a real singlet, as required for
CP violation in Section 3.2.2), that of Ny = 8, Ny = 2 (two doublets and one complex
singlet, as in the invisible axion model of Section 3.4) and that of Ny = 8, Ny =1
(two doublets and a singlet, as in the parity-violating model of Section 3.3) lie in
the non-restoration region.

The relevant question is how big is the region in parameter space where non-

restoration occurs. In Figure 3.2 we show that region for the case of the CP violation
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Figure 3.2: The region of symmetry non-restoration for the model of JP with a real, CP
odd singlet, for two values of the singlet’s self coupling constant A, as indicated. When only

leading order effects are taken into account, the region extends up to the dotted line

with a real singlet, in A, a space. when Mg is kept at a fixed value, and for g% = 1/4.
Varying As basically ‘rescales’ the whole picture in the a axis. The corresponding
region with only leading-order effects is also shown. Although the parameter space
is reduced by higher order corrections, the difference with the leading order case is
not dramatic.

For the Peccei-Quinn model, the next-to-leading order calculations are only ap-
proximated by an O(8) x O(2) model, in the limit where in (3.47), A\; = Ay = 20 =
Ag, 8 = 0, and v1 = 72 = 7. Under such approximation, the region where non-
restoration is allowed is presented in Figure 3.3, for the same range of parameters
as in Figure 2. It is evident comparing both figures that non-restoration does not
depend only on the ratio No/N;.
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As for the model of P violation with a singlet of Section 3.3, it can be imitated
by a O(8) x O(1) model if the quartic coupling with the two doublet fields is taken
negative. One can also choose the couplings with the bi-doublet negative, and then
consider an approximated model with some of the self and mixed couplings small.

The non-restoration region is clearly bigger than in the weak or strong C'P cases.

3.7 Summary

It seems then that it is possible, in some models, to have CP, P or strong CP
broken at high temperature. It is clear, however, that in realistic theories it is not
enough to have the VEVof a scalar field nonzero at high temperature. Care must
be taken that the desired characteristics of the models are maintained in the range
of couplings that allow for a nonvanishing VEV. Thus in the T.D. Lee model and in
the three-doublet CP violating one. the CP phase disappeared at high temperature.

In particular, models with singlets are favored, since the gauge coupling works in
favor of restoration, and its value cannot be adjusted to satisfy our purposes. It is
also clear that the non-restoration of a field is facilitated if it belongs to the smaller
(in the sense of having less components) representation of the group.

The next-to-leading effects, although affecting the parameter space where non-
restoration is allowed, are not so large as to prevent non-restoration. This is only
true for singlet fields, since if thev are coupled with the gauge sector, the gauge
constant provides a lower limit for the biggest self-coupling in the theory, with the
risk of invalidating the perturbative expansion. We have presented some examples
from the literature where the spontaneous breakdown of the discrete symmetries is
achieved by such singlet fields, and thus non-restoration is a possibility.

In addition to avoid the domain wall problem, having CP broken at high temper-
atures may be relevant for baryogenesis, as first discussed in [62]. This will require
embedding the models discussed here in a GUT. In the next chapter we turn to the

discussion of how non-restoration can be applied in the context of GUTs.



4 Where we attempt to solve the

monopole problem

4.1 Introduction

As we pointed out in Chapter 2, any Grand Unified Theory based upon a simple
group will admit monopole solutions. This is just a consequence of the fact that
the symmetry group of electromagnetism is U(1), and is not broken today. In this
chapter we will explore the possibility of using the phenomenon of non-restoration
of a gauge symmetry to solve the monopole problem in GUTs. To do so, we have
chosen the prototype of Grand Unified Theories, namely the one based on unification
under the SU(5) gauge symmetry. SU(5) is the minimal GUT, in the sense that it
is the smallest simple group that can accommodate all the fermions of the Standard
Model, and only those. The symmetry breaking pattern of SU(5) is simple and
elegant, providing us with a suitable frame in which to apply the non-restoration
scenario.

We present results from a collaboration with Gia Dvali and Goran Senjanovié.
published in [53]. The first attempt to solve the monopole problem with non-
restoration in SU(5) is due to Salomonson, Skagerstarm and Stern [71]. The analysis
of [71] did not include the gauge symmetry, however, and thus was not realistic—their
conclusions are radically different from ours.

We will present the theory at high and low temperature, and find the conditions
under which the symmetry is not restored in the early universe. As was the case for
domain walls, monopoles can be thermally produced, and we will therefore have to
find which further restrictions arise from this. In gauge theories, the next-to-leading
order contributions can become important. We will see how they actually do so
in the case of SU(5) non-restoration, posing serious problems to the possibility of
solving the monopole problem.

Finally, we will briefly discuss the application of non-restoration to the other best-

63
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studied GUT, SO(10). Breaking of SO(10) to the Standard Model can be achieved
in a large variety of ways. In such a rich pattern of possible phase transitions,
almost any kind of topological defect can be formed. Much in the same way as
SU(5) provides us the simplest scenario for discussing phase transitions in GUTs,
S50(10) offers the most baroque one, and we will profit from this to give some
examples. As in SU(5), however, next-to-leading order corrections conspire against

non-restoration. We will carefully discuss its consequences at the end of the chapter.

4.2 Grand Unification with SU(5)

Unification based on SU(5) was first suggested by Georgi and Glashow [72]. The
minimal model contains all the fermions of the Standard Model, in the fundamental
(5 ) and antisymmetric (10) representations. We will normalize the generators of

SU(5) in the fundamental representation as usual

TrT,Ty = %@b (4.1)

So that if 73 is the diagonal generator of the SU(2) subgroup, and Ty the one of the
U(1) subgroup, the charge is defined as

Q="T5- \/gToEdiag(—1/3,—-1/3,—1/3,1,0) (4.2)
Therefore the fermion fields will be
dT
d9
v=| & (4.3)
6+
c
and i i
0 uf -ug —u" —d
. —uf 0 ul w9 —ds
X = E 'ugc N | R VL (4.4)
u” ud ub 0 et
" d9  db —et 0

where the superscript C' denotes the antiparticles.
In order to break SU(5) to SU(3). X U(1)em, two Higgs fields are required. First,
the field H in the adjoint (24) representation breaks SU(5) to SU(3). x SU(2)r x
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U(1)y, at a high scale Mx ~ 10'%GeV . Later at the Standard Model scale, the field
® in the fundamental (5) representation does the further breaking. The potential
for the Higgs fields takes the form

Vo= —myTrH? + M(TrH)? + \,TrH*
— mieTe 4+ Ag(010)? — adteTrH? — BT H%S (4.5)

where we have not included cubic terms in H just for the sake of simplicity, since
they are irrelevant to our discussion. The scales being widely separated, one can
consider the first breaking to take place independently of the field ®. It is easily
shown that if the conditions

)\2 >0 TAq+ 30)\1 >0 (46)

are fulfilled, the absolute minimum of the theory is found at (H) = vy diag(1,1,1. -3/2. —3/2).
This ensures that SU(5) is broken to SU(3). x SU(2)r, x U(1)y. However, when in
the next stage ® gets a VEV, the solution for H gets slightly perturbed. Although
the perturbation is very small, it should be taken into account when considering
the minimum conditions to be imposed over the coupling constants, and it will also
be relevant when constructing the monopole solutions in the next section. After all

symmetry breaking has taken place, we found the VEV’s to be

< H >=vy 1 <®>=vp

_Oo o O O
—_
e
-1

with € ~ (vg/vy)?. These will be the global minima of the theory if, in addition to
(4.6), the following conditions are also satisfied

Ao >0, B>0, (30A1+T7A)(40AMe — ;82) —3(10a +38)* >0 (4.8)

Thus this Higgs content is sufficient to ensure the desired symmetry breaking.
It is well known however that minimal SU(5) has serious problems, in particular
concerning proton decay and the fermion masses. Consider the Yukawa couplings

that will give rise to the d quark masses

Ly = hpo®lxap + h.c. (4.9)
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With the VEVof @ in the o = 5 direction, we see immediately from (4.3) and
(4.4) that m(d) = m(e) = hve, and similar relations for the second and third
generations. Although this relation is valid only while SU(5) is a good symmetry,
one can construct ratios me/m,, for example, which will be weakly dependent on

the energy. Then one has a clear prediction on the mass ratios

Te ., (4.10)

m, M

and similar relations including the third generation. Obviously this contradicts

experimental results. To cure this problem, it was suggested [73, 74] to include an

extra Higgs field (X) in the 45 representation. It can be written as a three index
tensor with the properties

S§ =N 5%, =0 (4.11)

It can be shown [75] that ¥ acquires vacuum expectation values that leave in-

variant SU(3); X U(1)em much in the same way as @ in the 5 representation did.

More specifically, it is found

=vy, Xi5=-3ug (4.12)

which gives a new relation between the masses of the d-quark and the electron,
namely mg = 3m,. This in turn will imply
me. lmy

=_-—= 4.13
m,  9mg ( )

which agrees reasonably with experiment.

4.3 Non-restoration in SU(5)

To compute the effective potential at high temperature in the SU(5) model, we
again use the techniques of chapter 1. Consider in the first place the minimal model
with ® and H, and the potential (4.5). We calculate the effective potential at high
temperatures, t.e. for T > me, mpy, to be

2

12 36
V(T) = Vo+§—4{(12A¢—24a—€ﬁ+ 2

ot
59)

+ o (52A\ + 9—;/\2 — 200 — 28 + 30g2)TrH2} (4.14)
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The above form has already been given in [76]. To achieve non-restoration of the
SU(5) symmetry, we would like to keep the VEVof H nonzero at any temperature.

That is, we want to have

94 v
?/\2 —20a — 23+ 30¢%2 < 0 (4.15)
As in the cases before, the signs of some of the couplings are not determined: thev

5271 +

are subject only to the conditions (4.6) and (4.8). The question is then whether the
set of inequalities (4.6), (4.8) and (4.15) can be simultaneously satisfied. We will
first analyze the approximate model in which some of the constants are small. in

this case Ag and . In this limit, the potential becomes

Vo= —midie 4 \e(87)>
= —myTrH* 4+ \(TrHY? - 0d'0TrH? (4.16)

and possesses now a O(24) x O(10) symmetry. We can now use the results of
Chapter2 regarding non-restoration of gauge symmetries in this kind of simple mod-
els.

The conditions (4.6) and (4.8) now read (we will call Ay = Ay for clearness)

A >0, de >0, Agle > o (4.17)

and m%;(T) < 0 requires

3 3
a > 1—5~/\H + §g2 (4.1%)

We have already found the condition over the biggest of the couplings in a
O(N1) x O(N3) theory, when asking non-restoration of the field in Ry, namely

No+2 .
A > 12g2£~N212+T2)D2'm(G)7‘202 (4.19;
Thus we have a lower limit for \g
78
Ae > —5—g2 (4.20)

Here it becomes evident that the mechanism cannot work. Taking a typical value
g%/(47) ~ 1/50, we get Ap/4 dangerously close to 1, invalidating the small coupling
limit. Requiring non-restoration seems to be in open conflict with perturbation
theory. Figure 4.1 shows the region in parameter space where non-restoration is
possible, namely the one above the curve representing equation (4.18) and below

the one of (4.17) For any value of Ay, a, it is seen that Ag has to become too large.
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One can hope that this is a consequence of the simplifications we have taken. It
is an easy task to repeat the analysis for the full set of constants. We want to satisfy

(4.8), therefore from (4.15) we must have at least

(ma+33ﬂ (2601 + 2Ny + 26+ 15¢%)2
10\ 20 — = 2 > 3 2 4.21
(104220 ﬁ )> (30A1 g~ (30)1 + 7A2) (4.21)
Again finding the minimum respect to A; we get
8 5 L 52 9 32 .
° = Rl 4.22
Ao > =g \2 56‘%20A9 (422)

Taking into account that Ay, 3 > 0. we see that the minimum value is found for
Ay = 3 =0, as in our approximation.

The inclusion of ¥ in the 45 representation solves the problem. The most general
potential including H#, ® and X is rather involved. However, it is enough to look at
the simplified version, namely a theory where the only relevant terms are those in
the fields /' and ¥ that posses a O(24) x O(90) symmetry (the 45 representation
of S5U(5) is complex). Then one can once again find a lower limit for the biggest of
the couplings, in this case Ay. 45 contains 9 times as much fields as 5. From (4.19),
we see that the equivalent to (4.20) is smaller by a factor of 92.

S 26 4
=7 1359
which is enough to keep perturbation theory valid. The new region is shown in

A (4.23)

figure 4.2, and now the values of the coupling constants lay well below the limits
imposed by perturbation theory.

We see then that the model with a Higgs field in 45 seems to allow for non-
restoration, at least to leading order in the expansion at high temperature. Again,
the phase transition is avoided and monopoles do not get formed via the Kibble
mechanism. They can however be thermally produced, as we will see in the next

section.

4.4 Thermal production of monopoles

Monopoles can be produced in monopole-antimonopole pairs (M — M ) in particle

collisions, 1.e.

q+7—M+M, 2y—=M+M, WH+W~ = M+ M, tec. (4.24)
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Figure 4.2: Same as in the previous figure, now for the X field in the 45 representation.
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Figure 4.3: Same as in figure 5.1 , but now requiring that monopoles are not thermally

produced. The allowed region now lays below the red curve and above the blue one
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Figure 4.4: Same as in figure 5.3, for non-restoration with the ¥ field
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The monopole abundance is governed by the Boltzmann equation

A + 3Hny = —(ow)[ni; — f(T)n3] (4.25)

where nys,n., denote monopole’s and photon’s number densities respectively, H is
the Hubble’s constant, and (ov) is the annihilation cross-section times the relative
velocity. The first term in the right hand side of (4.25) takes into account the
monopole annihilation, and the second its production on all the possible processes.
To determine f(T'), Turner uses the fact that in thermal equilibrium the right hand

side has to vanish. Then f(T) must equal (nps/n-)? at equilibrium, that is

A(T) ~ (%)2 = ()Pe T (4.26)
Preskill [35] has estimated (ov) ~ 10*/T. The abundance will depend on the ratio
of the annihilation rate I and the universe’s expansion, H. If I' > H, the monopole
abundance will reach equilibrium, and remain at its equilibrium values until H
equals T' (“freeze out”). Afterwards, the monopole density is simply diluted by the
expansion. On the other hand, if I' < H always, equilibrium is never reached. but
one can easily integrate (4.25) by neglecting the annihilation term.
The ratio m/T determines whether we are in the first or second case. If m/T <

20, freeze out takes place for m/T; ~ 18 — 23. The ratio of n,, to n, at freeze out.

Ny —9*(Tf) ff_

will remain constant in a Universe expanding adiabatically. This gives us a value of

n 4 m ?
M ( ) e 2Ts 5% 1077 (4.27)

Qs which exceeds the critical one by 15 orders of magnitude.
On the other hand, if m/T > 20, we are in the second case above, equilibrium

is never reached. Integrating Boltzmann’s equation, we find

IM 3% 1073 (-Z—f) e/ T (4.28)

Ty

The present-day monopole density will be acceptable if
m/T R 35 (4.29)

Now, the interesting point is that the monopole mass is directly proportional to the
VEVof the Higgs field, and in the non-restoration scenario this VEVturns out to be
proportional to the temperature. The ratio m/T is then a fixed number, and all we

have to do is to find the region in parameter space where (4.29) is satisfied.
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In 5U(5), the lightest monopoles weigh [21],

o 107
My = ——p
M \/ig H

For ¢g2/(4r) ~ 1/50 or g ~ 1/2, mys ~ 40vgy, and thus the consistency with the

(4.30)

cosmological bound (4.29) implies

UVH
- 2> 4.31
T_l (4.31)

From (4.5) and (4.14), we get for T > my

vl 2080 4+ 28N, — 200 — 48 + 242
T2 = 12(30A1 4+ 7A9)

(4.32)

Obviously (4.31) and (4.32) will put even more restrictive conditions on the
parameters of the theory than just (4.20) or (4.23). The situation is similar to the
thermal production of domain walls and strings that we encountered before. For
the general case with two fields and a symmetry O(N1) x O(N3), we can rewrite the
condition over the largest coupling, (4.19), to fulfill the new condition (4.31). The
VEVof the non-restored field will be

T2 1 [, Dim(G)raca o
_ e — ‘\/,_%_2 5 — N SR, S A AT
Vo 12 % (/ 2 )/\- Nia+3 N, g (4 33)
from where the the bound becomes
N 14 i
A > 12g‘-’———~—(~ 2_; )Dim(G)T262 (4.34)
‘Nl .NQ

Let us see first what happens for the minimal model with ® in the 5 representa-
tion. For A} = Ay, we get

de > T=g (4.35)

For ¢? ~ 1/4, A > 2.7 and the perturbation theory clearly fails. Figure 4.3
shows the new allowed region in parameter space, including the surface represented
by eq. (4.35).

We repeat the same for the more realistic version with the field ¥ in the 45
representation. As before, the condition (4.35) relaxes by a factor of 1/81, and we
get

Ax > ——g° (4.36)
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which for g2 ~ 1/4 would give Ay > 1/30. Thus, the largest coupling of the
theory Ay is still quite small and the perturbation theory is operative. Figure 4.4

shows the situation.

4.5 Next-to-leading order corrections

As we announced in Chapter 3, when the symmetry is gauged the next-to-leading

order corrections are much more important. We have to satisfy

N ( N > - f(Al,a)] > Ay + 3g2Dim(G)—~£2—— (1 — U_9> (4.37)

2+ Ny NQ(Q + JVQ) iy
Mg > o (4.38)
where
3(24 Ny) , 1672 Ny 392 Dim(G)erm ( z/gﬂ
o)=Y 2. N - 1— 20 =)
S o)== ST S (R A A C Ry )17

(4.39)

as described in section 3.6. But there the singlet field was asked to break the

symmetry, and from the gap equations one could see that g entered only in the

function f. This is not the case now, and as shown in [70], the consequences are
dramatic.

Since the model with ¥ in the 45 representation was the one that allowed for
non-restoration, let us consider only this one. In figures 4.5 and 4.6 we have plotted
(4.38) for two values of the largest constant Ag, in a, Ay space.

The condition that the potential be bounded from below is the dashed line. and
non-restoration is allowed above it. The leading case conditions for non-restoration is
given for comparison as the continuous line, and the region lies below it. The dotted
line gives the corresponding upper bound when next-to-leading order corrections are
considered. There is no region where the symmetry can be kept broken, even for
values of A\g/g? as large as 5.

One could try to increase the dimension of the representation that looses the
VEV, since for leading effects it is much easier to non-restore this way. A quick look
at the gap equation can convince us that this is not the case when next-to-leading
effects are considered (we go back to this point in the next section).

It seems then that one should carry out a more complete analysis, including all
the couplings in the gap equations, to be able to determine if the monopole problem

can be solved in this theories.
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Figure 4.5: Non-restoration region with and without the next-to-leading order effects in the
model with ¥ in the 45 representation, with g = 1/4 and Ag/¢g? = 0.5. The region lies
above the dashed curve. When leading order effects are considered, it is bounded from above
by the continuous line; with higher order corrections included it should be bounded from

above by the dotted line

Am/g*

35 F

™~
T

05 F
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4.6 SO(10) and topological defects

Perhaps the most elegant way of unifying the known interactions is under the SO(10)
group. All the known fermions can fit in a single representation, the spinorial 16.
which in addition includes a right-handed neutrino an consequently the possibility

of a neutrino mass. In addition, SO(10) has as maximal subgroups

SU(5) % U(1), SO(4)x SO(6) (1.40)

so that SO(10) contains not only the full SU(5), but also the extremely important
group SO(4) x SO(6), homeomorphic to SU(2)r, X SU(3)r x SU(4)c. SU(4)c. the
Pati-Salam theory that unifies the three colors with a fourth “leptonic” one, contains
as a subgroup SU(3)c x U(1)p—r. Thus SO(4) x SO(6) contains the complete Left-
Right model with all its interesting features, and more.

Symmetry breaking in SO(10) can go through this two main channels. The first
one, breaking through SU(5), does not produce topological defects in the first phase
transition. Afterwards, SU(5) breaks down to the Standard Model in the manner
we studied in the first part of this chapter. We already know how non-restoration

behaves in this case.

We turn our attention then to the second kind of breaking, through SU(2); x
SU(2)px SU(4)c. There are a large number of ways of getting to SU(3)c X {'(1)em
from there (18 of them, for example, are quoted in ref. [77]). Depending on the
chain followed, many kinds of topological defects may be formed. In any case,
electromagnetic monopoles must remain after all the breaking has taken place. since
the end product will contain the Standard Model.

To have an example of the topological defect production in SO(10), we have

chosen the three chains represented in the following diagram
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(54) '
S0(10) monopoles. - SU(2)L X SU(R2)px SU(4)¢e
strings
monopoles,
(45) domain walls
(45) ’
= SU2)L x SU(2)r x U(1)gL x SU(3)¢
monopoles
monopoles,
(45) | domain walls
210 !
(210) >~ SU2) L xU(L)rxU(l)pL x SU(3)¢
monopoles,
two kinds
(126) strings
Y

SU(2)L x U(L)y x SU(3)c

In each case, the representation whose VEVproduces the breaking is given, and
we have specified which type of defects are formed.

The first chain starts by breaking SO(10) with a 54, a symmetric, traceless
second rank tensor, taking a VEVin the (1,1,1) direction (where here and in the
following the parenthesis denotes the (SU(2)r, SU(2)r, SU(4)c) contents). At
first sight one may think that no defects are produced, since the zeroth and first
homotopical groups of SU(2),x STU(2)gr x SU(4)¢ are trivial. However, the diagram
is inexact, SO(10) does not simply break to a direct product of SO(4) x SO(6), but
to a more complicated group A . The problem is that SO(4) and SO(6) have a non
trivial intersection, they share an element [78], so that the connected component of
H is [SO(4) x SO(6)]/Z>. This means that its first homotopic group is nontrivial,
and as a consequence Z; monopoles are produced. In addition, 54 leaves invariant
more than just SU(2)r x SU(2)r x SU(4)¢. Its VEVpreserves also a generator not
in SO(4) or SO(6), that can be identified by its action over the fermion mutliplet in
16 as charge conjugation. Thus there is also a disconnected component of H, and.
as we know this leads to the existence of Z,-strings.

The symmetry breaking proceeds further when a field in the 45 representation
acquires a VEVin the direction (1.1.15), breaking up SU(4)c. Another tipe of
monopoles, with B — L charge is cretaed. Through further breaking these monopoles

will evolve to become the familiar electromagnetic monopoles. The 45 VEVbreaks
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also the charge conjugation symmetry we mentioned above, which results in a domain
wall attached to each of the Z,-strings produced in the previous phase transition
[16]. Now, notice that these domain walls emerge as a result of the particular chain
of breaking. In fact, if we had gone from SO(10) directly to SU(2); x SU(2)g x
U(1)pr x SU(3)¢, only the monopoles would have been produced. Thus one may
argue that the domain walls are not stable, since they are not topologically protected.
However, just as with the case of the Peccei-Quinn walls, one can show that the

decaying rate for the walls is negligible [16].

A similar process occurs later when yet another 45 field takes a VEV. this time
in the (1,3,1) direction, braking SU(2)g to U(1)g. The third kind of monopoles.
R-monopoles, are produced. Additionally, parity is broken, which gives raise to
domain walls. U(1)g is broken further to nothing by the VEVof a 126 field. which
contains a triplet of SU(2)g with a B — L charge. In Left-Right models, this breaks
down both U(1) groups to produce the U(1l)y of the Standard Model. The R-
monopoles get then connected by R-strings, much in the same way suggested in
the Langacker-Pi mechanism. They can then annihilate, although whether they can
do so at a reasonable rate is a delicate question (that we will not address here).
Still supposing that unstable defects can decay, the first chain has left us with Z,-

monopoles, electromagnetic monopoles and Parity domain walls.

The second chain starts by breaking directly with a 45, bypassing the phase
transition that produced the Z, monopoles and strings. Only B — L monopoles are
produced. The end result is again electromagnetic monopoles and Parity domain

walls.

One can avoid the formation of these domain walls by breaking directly SO(10)
with a 210 as in the third chain. Both kind of monopoles are produced in the
first phase transition, so even if R-monopoles are not effciciently annihilated by
connecting them to R-strings. all one has to do is to avoid the restoration of 210
to get tid of the monopole problem. As a bonus, strings get formed in the next
phase transition, and this may offer interesting possibilities for the formation of
large-scale structure. Thus chain three provides us with a good excuse to try to use

non-restoration in SO(10).

It is straightforard to use previous results here. We want to use the 252 fields
in the 126 complex representation to help non-restore the VEVof the 210 real
representation. We resort to the simplified model with a O(210) x O(252) symmetry
in the Higgs potential, and apply (4.19) to get
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1
A2 > 592

(4.41)
for the 126 self-coupling. If we require additionally that monopoles are not produced
thermically in too large numbers, according to (4.34) the above bound has to be
increased by a factor (Vg + 14)/No, in this case 224/210 ~ 1. The largest coupling
is still safely smaller than the gauge coupling. To leading order then the phase
transition can be avoided. However, also in this case next-to-leading order effects
are far from negligible.

There is a simple way to estimate the consequence of including next-to-leading
order effects. From the discussion in section 4.5 one can see that the high tempera-
ture effects do not come as a perturbative expansion in the couplings, but rather in
the couplings times the number of fields. This is only natural, since the number of
fields count the number of graphs contributing to the thermal masses. For example,
the thermal mass of the field ¢; will not be an expansion in powers of A; but rather
of

Vo N; +2
' 12
Thus we will encounter problems in the validity of the expansion when dealing with

Ai (4.42)

large representations, as is the case of SO(10). In particular for a field in the 126
representation, ] ~ 20A; > g?/2. The same is true for the gauge coupling, the

expansion is around
2 Dim(G)ciri 2
9 ="~ 9
4N;
and for the 210 representation, g’ = 3g2. We are, once again, beyond the validity

(4.43)

of perturbation theory.

4.7  Summary

The question of whether one can solve the monopole problem by avoiding symmetry
restoration remains an open one. One certainly has to go near the non-perturbative
region, and then higher order effects start to become important, until they force
restoration. The problem gets worse in considering large representations, which are
normally in charge of symmetry breaking in GUTs. Since the study of the next-to-
leading order effects has to be done near the limits of validity of perturbation theory,
it is desirable to check these results in a non-perturbative framework.

Recently, various authors have tried to confirm the result of Bimonte and Lozano
(69, 70] using non-perturbative methods [79, 80, 81, 82, 83, 84]. The results are not

conclusive yet.
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There is, however, a different and perhaps more interesting way of achieving non-
restoration in GUTs. The idea suggested by Riotto and Senjanovié [85] and pursued
actively at the moment of writing this thesis by the same authors in collaboration
with Bajc, is to consider the effects of the chemical potential, as originally suggested
by Linde [87]. If viable, it could be the solution to the monopole problem in GUT.

and we eagerly await for their conclusions.
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5 Where we explore the non-

renormalizable lands

5.1 Introduction

It is clear, from the general discussion of Chapter 2 and the examples given up to
now, that in theories with onlv one Higgs field the symmetry is restored at high
temperatures. This just arises from the fact that the potential must be bounded
from below, which forces the coupling of the self-interaction term to be positive.
The thermal masses, we have seen, have the same sign as the coupling that induces
them.

Including extra scalar fields is the natural way out. However, one can find in
diverse examples in the literature [88, 89] a different attempt to induce a negative
mass term: allow for higher dimension, non-renormalizable interactions. This is a
very interesting idea, especially if one considers that higher dimensional operators
must be a part of the low-energy Lagrangian if there is to be new physics at a
higher scale. At least one believes in the existence of higher dimensional operators
suppressed by inverse powers of the Planck mass, since one should accept that still
unknown physics takes place at the Planck scale and above it.

We will give details on how these non-renormalizable terms may allow for a
negative self coupling, giving rise to a negative contribution to the thermal mass at
arbitrarily large temperatures. Essentially, non-renormalizable terms are introduced
in such a way that they stabilize the potential even in the presence of a negative
self coupling in the renormalizable part of the potential. The aim of this chapter.
however, is to show why this idea cannot work.

We will present results from a collaboration with Borut Bajc and Goran Sen-
janovi¢, which have been published in [90]. The point is that when introducing
non-renormalizable terms that are large enough to be relevant, one must be very

careful when performing a loop expansion. It turns out that a careful analysis shows

81
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that two-loop effects at high temperature become relevant in this situations, and that
they have the effect of always restoring the symmetry. We show this in the first two
sections of this chapter.

The addition of non-renormalizable terms in the hope of avoiding symmetry
restoration becomes especially interesting when considering supersymmetric mod-
els. As we mentioned in Chapter 2, it was first suggested by Haber [43], and then
shown by Mangano [44] that internal symmetries in a supersymmetric theory always
get restored, no matter how many fields one includes. One way out of this no-go
theorem could be to include non-renormalizable interactions, as suggested by Dvali
and Tamvakis [89]. Not surprisingly, here one can also demonstrate that the pro-
posal cannot work. Indeed, the work of ref [89] was the original motivation to start
a study on restoration in models with higher order operators, that turned out to be
very general. We show how the attempt to avoid restoration via non-renormalizable

terms in this cases also fails.

5.2 Non-renormalizable terms and high temperature

Consider a theory with a real scalar fieldp and a Lagrangian invariant under the

discrete transformation ¢ — —¢. The potential
2
m A
V = - 2 — 4 51
SRR (5.1)

requires A > 0 for boundedness as v — oco. A positive ), as we know, produces
a positive contribution to the thermal mass as high temperature, and this leads to
symmetry restoration.

Imagine now the situation in which our theory is an effective one, coming from
a more complete (and perhaps unknown) theory, valid at a higher scale M. This in
general will produce higher order terms in the potential, with strength suppressed

by inverse powers of the high scale. We can have for example

2
m- 9 € El 1 6

S = oy e 5.2
I 5P Y tpY (5.2)

where M? >> m?. This potential could be the product of a different theory, valid

above the scale M, involving in addition a heavy field y, for example

2 2
m* o, € . Mg o, 3 .
A2 4T 5.3
5 ¥ T ¥ 5 X + axy (5.3)

with M, of order M. x transforms just as ¢ under the discrete symmetry, and other

V=

terms can be taken to have small coupling constants for simplicity. The theory is
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Figure 5.1: Feynman diagrams for the interaction of ¢ (a) with x, for scales above M, and
(b) with itself, for scales below M, when the heavy field is integrated out. Solid lines are

© propagators, dashed lines correspond to x

perfectly renormalizable, but below the scale M, the field becomes “too heavy™ 1o
propagate. The result of this fact is depicted in the graphs of figure 5.1. Below
the scale M, the propagator for the y field becomes simply 1/M,, and the lines
representing it disappear. The resulting diagram gives a self-interaction for  of

order )
o
6 - \
© 5.4}
2 ¥ ( ;
Mx

which is just the corresponding term in (5.3) with M, /a = M. Formally, one can
solve the equations of motion for the heavy field x, assuming its kinetic term has

become negligible, i.e.
av o :
— =0 =>x=-——¢ 5.
N X= 327 (

Ot
Ut
—

Upon substitution of this solution in (5.3), and defining M = /2M, /a, we arrive
at the effective potential (5.2).

Now, the non-renormalizable term will not be completely negligible if € is suffi-
ciently small. In particular, it can play a role in symmetry breaking, as we will see
in a moment. The important point is that the sign of the self coupling ¢ has now
become arbitrary. It can be safely taken to be negative, and the boundedness of the
potential as ¢ — oo is ensured by the presence of the sixth order term. This is the
crucial point for symmetry non-restoration.

At T = 0, the minimum of the potential (5.2) will be at

N2 = S _ Am? = 6
(0)? =M (H: 1 62M2) (5.6)

when M is finite. Thus with m — 0, we have a VEVfor ¢ of order \/eM. As M/
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increases, the VEVgoes to infinity, and we are in the familiar case of an unbounded
quartic potential.

The question then is what happens in these kind of models at high temperature.
The contribution is calculated as usual

o T2V T, L 30, .
’—XV(T):Z(&; =o5im — 3e¢ +W¢ (5.

(@3]
~1
—

By “high” temperature, we mean here as usual 7% > (@)% ~ eM?, but we must

be careful to remember that 1/ is the largest scale of this theory, otherwise our

integrating out of x would not be valid. Thus we are in the regime
MP > T > eM? (5.8)

The non-renormalizable term has provided for us a peculiar behavior at high
temperature. At sufficiently high 7. the temperature-dependent part of the potential
will have the relevant role. Note that the mass term is negative at any 7, and that
the temperature dependent quartic self-coupling now is dominant over the non-
renormalizable term. In the range (5.8), and in the limit m = 0, we have a VEVfor
@

2 € 2 - B
o) = 5] 5.9
(e)? = 15 M (5.9)

which is independent of the temperature. This is in sharp contrast with the usual
non-restoration mechanism, whose main characteristic is a VEVdirectly proportional
to the temperature. Here, on the other hand, the field basically keeps the same
VEVas for T = 0.

Up to now, it seems that non-renormalizable interactions can induce symmetry
breaking at large temperatures. It is only required that the temperature is bigger
than the scale that suppressed the higher order operators.

Is it then possible to have symmetry broken at high temperatures, even in the-

ories with only one field? The answer is no, as we will now show.

5.3 The role of the two-loop corrections

The reason why the idea above does not work is best understood by looking at
the Feynman diagrams that give contributions to the high temperature effective

potential. While using the formula

AV(T) & —— (5.10)
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Figure 5.2: Feynman diagrams for the dominant temperature contributions from the

non-renormalizable sixth order term, at (a) one loop and (b) two loops

we were taking into account also the contributions coming from the sixth order term
at one loop. This contribution is the one represented in figure 5.2 (a).
It is clear that the loop will give the usual integral in thermal field theory
d*k - I .
Wm =1Ip (5.11)
(see the Appendix), which in turn gives a contribution Ig(T) = T?/12; while we will
have four external legs. This is the only quadratically divergent one-loop diagram
coming from this term. We do not have contributions to the mass coming from it: to
get them, obviously, we have to go to two loops, as in the diagram in figure 5.2 (b).
It is evident that each loop will give a quadratically divergent integral of the tvpe
Ig. The contribution to the temperature-dependent part of the effective potential

coming form this diagram will be
1 1 (12
AV =45 <Mg> (Ig)*p® =45 (W) (1—2> o’ (5.12)

with the symmetry factors taken into account. But now we have obtained a new

mass term, which is not negligible compared to the one-loop one coming from the
quartic coupling €. On the contrary,
, T? 5 T4
Mm(T Mioop]” = —€ < —
(T hoopl” = 7€ < 5372
since we have required that 72 3> M?¢ in order for the high temperature expan-

= lm(T)2loops[2 (513)

sion to be valid in the first place.
We have thus generated at two-loops a thermal mass that is at the same time
positive and bigger than the one-loop mass. The symmetry gets, therefore, inevitably

restored.
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One may wonder how this is possible: if perturbation theory is valid, the two-
loops effects should never overcome the one-loop ones. One must be careful, however,
when dealing with theories with more than one coupling constant. The same be-
havior was noted by Coleman and Weinberg in their classic paper [91]. Calculating
the effective potential for a A¢* a gauge theory, they found that the gauge coupling
induces a quartic term proportional to g* (with g the gauge coupling). Depending
on the values of the coupling, then. the one-loop effects can become important. In
our case, we have explicitly required that € is small compared to 1/M?, so it is not
surprising that two-order effects affect the one-loop potential.

Note that perturbation theory is still valid after the two-loops. The following
term in the expansion will be proportional to 7¢/M*, and is smaller than the one

7

in (5.12). Perturbation theory “starts later,” and this is just a result of our asking
that the higher-dimensional operator has a large coupling constant.

With a positive mass term, the symmetry is of course restored. The mechanism
for non-restoration is not applicable. One can include even higher order interactions.
in the hopes of inducing negative terms (even if they are not mass terms, this can

potentially induce symmetry breaking). In general, one may have

cb2n+4

LK 4, ¢ 5.14
V = _ 5.14
50—+ T (5.14)

where we include the first important non-renormalizable term. The power n varies
from model to model (n = 1 in the case discussed above). At one loop level, one

gets for T' << M the corrections

7° 2n + 4)(2
AVl—loop(T) = a7 —1’2€¢2 + ( T 4)( nt 3)¢2n+2

24 M?2n (5.13)

The idea is then that the temperature-induced non-renormalizable term is to
combine with the one coming from the negative self-coupling to induce a VEVwhen
AV(T) starts to dominate, i.e. for T2 > u?. But of course, for this to happen one
has to assume that the non-renormalizable term is not negligible, i.e. € very small.
This means that the expansion cannot end at one loop, but has to be pursued up to
n+1loops. At that level, the “butterfly” diagrams with n+1 loops and two external
legs of which Fig. 5.2 (b) is the n = 1 example, will induce the high temperature

contribution

P* . (5.16)

AVn—i—l—loops mass term(T) =

3(1“2)”“ (2n+4) 1
)

12 2+ (n, + 1)! M2n

Z
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Any other term in the expansion of the couplings 1/M*™ and € will be suppressed.
Each loop in the diagram will provide a positive contribution 7%/12, so the sign of
(5.16) is the sign of the coupling. A positive mass term already indicates that
the symmetry will be restored. however one should look at all the temperature-
dependent interactions that follow from the non-renormalizable terms. The diagrams
that give the dominant 1/A?" contribution to the ¢?™ interaction terms are again

the “butterflies” with 2m external legs, and they are readily calculated

wl (2n + 4)! T2\ gem -
AV(T) = 2—21 (2m){(n — m + 2)12n—m+2 12 M2 (5.17)

All the terms of the series have a positive sign, not surprisingly, as we mentioned
before the high-T contributions carry the sign of the coupling constant. Symmetry
restoration then follows.

We can easily generalize (3.17) to get the “butterfly” contribution to the high

temperature effective potential of an arbitrary V(¢):

o e I AN 1.0 VO L VA o
V(6,T)= Zm(a) {d¢zm<¢)— d¢2m<@=0)}- (5.15)

m=0

5.4 Restoration in supersymmetric models

The possibility of avoiding restoration of symmetries via non-renormalizable terms
becomes particularly interesting in the context of supersymmetric theories. Al-
though we have already shown that it cannot work in general, we believe it is useful
to give a further example of the ideas above. Furthermore, it was the paper of ref.
[89] on the possibility of non-restoration in supersymmetric theories which started
the investigation quoted on the last section.

We have discussed in Chapter 2 the issue of non-restoration in supersymmetric
models, and quoted a theorem [43, 44] stating that internal symmetries in a super-
symmetric theory always get restored. However, the Mangano-Haber theorem was
formulated for supersymmetric theories with renormalizable interactions only, and
this stimulated Dvali and Tamvakis [89] to find a way out using non-renormalizable
interactions. They take a superpotential for a chiral superfield ¢ with the same

symimetry as above, but including non-renormalizable interactions

Moo R -
V = s+ 5.1¢
W 2<I> +4]\/[@ (5.19)
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where M > p. This leads to the scalar potential
&2

|6I° l—u+—\f‘

= e+ ) - Srlet - i) +

Vv

ll

(;%A/IQ (@1 + @2)3 (5’20)

where ¢ = (¢ + id2)//2 is the scalar component of the chiral Wess-Zumino super-
field ®. Note that ¢y has a negative quartic self coupling. At T = 0, as usual. one
finds a set of two degenerate minima: (@) = 0 and (¢)? = uM. To see what happens
at high T, in Ref. [89] the usual 1-loop induced correction to the

effective potential is computed

1? a?wiz T 3¢% 5

AVicloopT) = 551" = |+ 7 (5.21)

or
T 9 o
_&x/1 loop(T) b |: — 3T[‘ 9) + e (C,Dl + ¢§)2 . (322)

If this was the complete potential for M2 > T? > uM, one would get (#)? # 0. as
concluded in [89]

As we did in the general example of section 5.2, it is required that M? > T? >
p . This amounts, once again, to the assumption that the non-renormalizable
terms are not negligible compared to the renormalizable ones. Note that this does
not bring into question the validity of perturbation theory, since the ¢* terms are
suppressed by the small parameter p/M. This is the analogy with the Coleman-
Weinberg case that we drew before. Perturbation theory is perfectly safe, since the
next term in the series would be of order ¢®/M*, or T?¢%/M*, which are strongly
suppressed by T'/M < 1 or ¢/M < 1.

Following the lines of the discussion in the non-supersymmetric case, one has to
go one step forward in the loop expansion. The leading contribution to the field’s
mass will come from the two-loop diagrams of figure 5.3. It is straightforward to
calculate the boson contribution from the scalar potential (5.20), since for bosonic
fields one can use the general formula (5.18). The bosonic graph in figure 5.3 is
proportional to I%. We can immediately guess that the fermionic counterpart has
to be proportional to I3 — 2Iglr . otherwise the quartic divergences would not
cancel at two loops, as we know they do in a supersymmetric theory. The Yukawa

Lagrangian and fermion mass terms in the non-renormalizable model are

LF = 5dé — = (6% — ¢2)ad —

20M (¢’1¢2 Sivsd (5.23)

M
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Figure 5.3: Feynman diagrams for the thermal mass correction from the non-renormalizable
term in the supersymmetric example. Dashed lines represent the scalar boson ¢. continuous

lines represent its fermion counterpart ¢

from where we see that indeed 5.3 (b) is the only graph that provides a 7% mass
contribution at two loops. When the internal boson is ¢y, the integral coming from
5.3 (b)is

d*k d'p 1 1 1
Jp = , Tr [ } 5.24)
P )ik rp? - @2 p—pk—p |
while with ¢, inside we get
, d*k  dip 1 [ 1 1 } - 5z
= 7 .23)
o= | a0
so that
d*k  dip 1 2pk
Jr +J; —-l/ . - (5.26)
F (2m)* (2m)* (B + p)? — p? (p? — p)(k? — pi?)

and taking into account that the propagator with momentum %k — p is the bosonic
one, it is not difficult to show that the integral gives exactly the result we expecred.
Indeed, for p,k > u, we have

d*k dip { 1 N 1 1
27 )4 (27)t Lk +p)?p?  (K+p)2k? k%p?

Combining the contributions to both graphs with the adequate symmetry factors

~ [:—2Ig1F (5.27)

JF+]F_4/

we get a result proportional to (I3 — I%)?, more precisel
g P B F)5 p y

97 9T+

slol* = ——— (¢ 3)
32M?2 64 M

This term, in the range of parameters considered (M2 > T? > pAM), dominates

‘.[J

A‘f2—-loops(T) = + @3) . (5
over the mass term in (5.22), and therefore must be taken into account. Since it is

positive, the conclusion is contrary to the one in Ref. [89]: the discrete symmetry is

restored at high temperature.
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5.5 Effective potential from renormalizable one

Up until now, we have used the field theory methods of [3, 4] to calculate the
temperature dependent effective potential. However, these methods were developed
supposing that the theory is renormalizable. One may wonder if non renormalizable
interactions can spoil the consistency of the method.

There is a straightforward, if tedious, way to check the results obtained in the
non-renormalizable model: resort to the original renormalizable theory. We have
discussed how a non-renormalizable potential can be obtained from a normal theory,
with an additional heavy field integrated out. We can take the original theory and
find all the relevant Feynman diagrams, i.e. those that reduce to the ones in figure
5.3 when the auxiliary field is “pinched out”. The graphs can be safely calculated
as usual, taking the limit 3 > T at the end of the calculation.

The superpotential (2.55) can be considered the effective, low energy theory

resulting from integrating out a heavy field X from

W = %oQ + %XQ + AX 2 (5.29)

This will produce a scalar potential

Vo= |uo +22xg| - {Mx + ¢’

which we can now write in terms of real fields, with ¢ = (¢; + 1¢2)/v/2 and y =
(X1 +ix2)/V2
2 2 2
7 /‘L 1 2 'A/[ 4 1 L4 A A i P
Vo= 7(@% +85) + TX(Xf +x3) = A1 + 608 + x3) + Tt ¢3)°
A . o : -
+ \ﬁM[xl(,@? — 63) + 2x20102] + V2Au(¢] + 63)xa (5.31)

and the fermion and Yukawa parts of the Lagrangian

Ly = péd— M XX - V2 ddx1 — V2Adivsdxa
— V2A(@X + X0)b1 — V2A(Sivsi + Xivsd)ds (5.32)

The two-loops graphs with two external legs that reduce to the ones in 5.3 (a)
and (b) when M > T are the ones depicted in figures 5.4 and 5.5, respectively.

Let us first calculate the ones giving the bosonic graph 5.3 (a), those of figure
5.4. Each one has two x propagators, approximated by 1/1VI§ in this limit, and two

X propagators. Integrating over the two loops will give in each case
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Figure 5.5: Fermionic graphs contributing to the 7%|¢|* terms. External legs can be ¢1 or

P2.
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21 )4 k% — p? (2m)4 p? — u? F%ME - @(

d*k 1 d* 1 1 1 1 5 ;
/( P Is) (5.33)

In each graph we have two three-legs vertex (either deb? or 143 or Yo$107). each
proportional to AM,; and one four-legs vertex ( x2¢? , x3¢2, etc.) giving a A\? factor.

All the graphs will give then a contribution proportxonal to

\4

Taking into account symmetry factors, the contributions add up to give

all bosonic graphs = 18

Ut
[WV]
(W1

——_

M2I 3.5

where M = M, /(A\?v/2). The fermionic graphs of 5.5 give contributions similar to
their non-renormalizable counterpart. In each graph, one can have either ¢; and v;
or ¢ and x3 boson propagators, and the integration will give Jp — J& = [& —2IgIF.
as before. Graph (a) has two y boson propagators, giving a factor 1/M; two three-
boson vertices giving /\QJW 2: and two fermion-boson vertices contributing a factor of
A%, Graph (b) has one fermion and one boson y propagator, giving 1/1[3 one three-
boson vertex giving A and 3 boson-fermion vertices giving A%. The two remaining
graphs have only 2 fermionic y propagators, contributing 1 /Mﬁ; and 4 fermion-
boson vertices contributing A*. We have then a total contribution proportional to

A*/M}(I% — 2IpIp). Considering all the symmetry and numerical factors carefully.

all fermionic graphs = 18 VI"UF 21pIF) (3.36)
Adding all the graphs, then
AV(T) = 9= (Ip — I5)*(82 + 62) (5.37)

M2

The (infinite) temperature independent contributions to Ir and I cancel out. while

the temperature-dependent part adds up as usual. We arrive this way to

the same result obtained with calculations in the non-renormalizable model.
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5.6  Summary

According to our investigations, the idea of using non-renormalizable terms to pro-
duce non-restoration cannot work in general. In particular, it seems that the theo-
rem that forbids non-restoration in supersymmetric models holds true even if higher
order, non-renormalizable interactions are included.

Admittedly, we have not given a rigorous proof of the theorem, nor being com-
pletely general in our calculations. restricted to the case of a single chiral field.
For example, derivative couplings coming from higher order terms in the Khaler
potential can change the picture. as suggested by Dvali.

There is however a more interesting way to evade the Mangano-Haber theorem
by going away from its limits of validity. We are referring to the idea put forward
recently by Riotto and Senjanovi¢ [85], based on the observation by Linde [87] that
a non-vanishing chemical potential can induce a negative mass term, already men-
tioned in the previous chapter. In [85], the issue is studied for supersymmetric
abelian models, and the conclusion is that the presence of a global charge in the

Universe can prevent symmetries from restoring, even in the supersymmetric case.



6 Summary and Conclusions

In this Thesis we explored the possibility of avoiding the domain wall and the
monopole problem in a number of theories. We used the fact that the cosmological
phase transition associated with symmetry breakdown is not an unavoidable phe-
nomenon; rather that its existence is a dynamical question that depends upon the
parameters of the theory. We have shown that in some of the theories under study.
the phase transition does not take place for a set of values of the couplings of the
fields involved. We have shown how, in such theories, the thermal production of

defects is naturally suppressed.

The mechanism of non-restoration works well when discrete symmetries are con-
sidered. We have studied spontaneous breakdown of CP, P and the strong CP
problem in some of the best known theories in the literature. In all cases. we have
restricted ourselves to the original, “minimal” version. All the theories considered
share the essential characteristic of having more than one scalar field in charge of
symmetry breaking, which is the first requirement for symmetry non-restoration.
The second has been found to be that the field whose VEVdoes not vanish at arbi-
trarily high temperature has the smaller number of independent components. The
third and most important requirement, is that the field that survives symmetry

restoration must be a singlet under all the gauge groups of the theory.

Thus, we have found that non-restoration is possible in models of spontaneously
broken CP where an SU(2)r singlet down quark is added [52, 53], since those models
require just a singlet in order to break the symmetry and generate a CP phase. It is
also possible to have non-restoration in Left-Right models where the scale of parity
breaking is higher than that of SU(2)g breaking [54, 55]. Finally, the invisible axion
version of the Peccei-Quinn model [64, 65] also allows naturally for the symmetry to
be broken at high temperature. Our results cannot clearly be valid for arbitrarily

large temperature, and they can surely not be trusted near the Planck scale.

When the spontaneously broken symmetry is gauged, non-restoration becomes
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more difficult. This is basically due to the contribution of the gauge fields to the
thermal mass of the scalar fields. The gauge coupling sets a lower bound to the
value of the largest of the scalar self-coupling, and this can be disastrous even when
only leading order effects are considered. We have found that, when only the one-
loop effective potential at finite temperature is considered, it is possible to have
non-restoration in SU(5) GUTs, when the field that breaks the Standard Model
symmetry is in the 45 representation, that is, in theories where realistic fermion
masses are predicted. In the minimal model where the Standard Model Higgs is
in the 5 representation, the symmetry is restored for all values of the couplings
allowed by perturbation theory. Once again, the result is that the field that keeps
the VEVat high temperature must be in the smaller representation. We have also
given an example in one of the symmetry breaking channels of SO(10) GUTs where
the symmetry is not restored, avoiding the phase transition that could give rise to
magnetic monopoles and allowing for the one that would produce cosmic strings.

which are not only not dangerous but welcomed by cosmologists.

Unfortunately, it is not enough to take into account the one-loop effects, since
due to the lower bound introduced by the gauge coupling, the scalar self-couplings
are dangerously close to one. When considering the next-to-leading order effects, it
is seen that non-restoration would require going beyond perturbation theory in all
the gauge symmetries discussed. In particular, since the expansion of the thermal
mass for the scalar field is not in the couplings but in a product of the couplings
times the number of fields, having large representations for the Higgs fields works

against non-restoration.

The calculation of the thermal masses near the non-perturbative regime is how-
ever a delicate task. Work is in progress by a number of authors, in order to check
the conclusions reached above on the importance of the next-to-leading order effects.
It is also important to remark that the higher order calculations have been carried
out in simplified O(N1) x O(N2) models only, not in realistic SU(5) or $O(10) mod-
els. Clearly more study is necessary, but for the moment it seems that one cannot

have non-restoration in gauged theories.

We have also explored the possibility, suggested in [89], of using non-renormalizable
terms to have symmetry non-restoration with just one field. We have shown how
this is not possible in general, by carefully calculating the effective potential at
high temperature in this theories up to two-loops. It was found that when non-
renormalizable terms are important enough to ply a role in symmetry breaking,

perturbation theory does not start at one loop, and higher-loop effects can be more
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important. This is a process analogous to the well-known case of the symmetry
breaking with a Coleman-Weinberg potential, where one-loop effects fundamentally
affect the tree-level ones.

In particular, we have proved that using higher-order non-renormalizable terms
cannot help in avoiding symmetry restoration in supersymmetric theories. In this
sense, we have extended the theorem by Haber and Mangano [43, 44], on the impos-
sibility of having non-restoration in supersymmetric theories, to the case in which
non-renormalizable terms are included.

Having proved how in some instances the phase transition that produces topo-
logical defects can be avoided. we have investigated the rate of thermal production
of such defects. It was found. in the case of discrete symmetries, that the thermal
production of domain walls can be kept at a low enough rate, in a region of pa-
rameter space perfectly compatible with the requirements for non-restoration. This
is due to the fact that when the symmetry does not get restored, the VEVof the
field becomes directly proportional to the temperature. The exponential suppression
factor for the thermal production of domain walls (or strings, in the axion case) is
then a constant, becoming easy to control.

Although non-restoration in gauge theories is still under discussion. we have
also calculated the thermal production of monopoles in the version of SU(5) where
restoration can be avoided up to leading-order effects. Also in this case, due to the
temperature dependence of the VEV, thermal production can be kept at low values.
even allowing for an observationally interesting monopole abundance.

In the discrete symmetry case, therefore, the domain wall problem can be solved
in some very interesting examples. All that is required is that the field that breaks
the symmetry has homogeneous values in the vacuum to start with, which is equiv-
alent to solve the horizon problem. The solution of the horizon problem however is
not related to the critical temperature for symmetry breaking, and therefore a sin-
gle, primordial epoch of inflation could suffice. The gauge case, as we said. requires
more investigation. This could be one of the future directions of the work presented
in this thesis. Another interesting possibility is one we already mentioned. of includ-
ing a chemical potential. In any case, we believe that the possibility of using this
mechanism to avoid the formation of the “dangerous” topological defects has been

demonstrated to exist and to be worthy of further investigation.
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Appendix:
Effective potential at high tem-

perature

Finite temperature field theory
We consider a scalar field with a Lagrangian
1 m? A
— 19 b8 % — Al
L= 50,600+ 56 ~ 29 (A1)
At finite temperature, on defines the finite-temperature 2-point function

-H/T g
Drlz—y) = Tre Iz’é(z)aﬁ(y) (A2)

where P stands for time-ordering. For noninteracting bosonic fields it satisfies

(0+m*)Dr(e —y) = ~idk)(z - y) (A3)

The boundary conditions are found by analytically continuing ¢ to the imaginary

interval 0 < ¢zq,4yg < 1/7T and the “time” ordering is defined as

(Po(z)oly)) (¢(z)o(y)) izo > iyo

(B(y)d(z)) iyo > izo (Ad)

This implies periodic boundary conditions

D1 = y)lspmo = D2 = Y)lugm_is (A.5)

The usual formulas
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+ + +
O
Dr(z ~y) zf(gﬂz)ezp(x"y)l):r(p) (A.6)
Dr(p) = / d*ze®® Dp(a) (A7)

go through, but due to the periodicity now

dip < d3p
— T S AR
e~ 2 ) &

’ —i/T ,
/d% - / de/d z (A.9)
0

and now pg is quantized

po = 2rnd’ (A.10)

Thus

: —1
D = =
7(p) p?—m?  Arn2T? 4 p2 + m?

(A.11)

For fermions the corresponding expression is

Tre=HIT Py(z)d(y)

—y) = A2
St(z —y) 7 (A.12)

but now the boundary conditions are anti-periodic
ST(2 = Y)lzo=0 = =57(¢ — Y)lzg=—i/T (A.13)

Effective potential at one loop

At one loop, for the bosonic contribution one needs to calculate the graphs at finite

temperature. We will calculate only the first one.

d*p —1

LD Tl o 3G Is(T AL
Gerip o - e (A.14)

oA
- WQZ(lQ)
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Figure A.1: Contour C
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Figure A.2: Contour C’

which in at finite temperature becomes

9 A ad d>p —1
— 212y : A.15
i 4( )ITT;) (2m)3 4720272 + p2 + m? ( )
Ig(T) can be written as
: d3p cot(z/2T) .
T)= dz——"—""" A.16
T8(T) / (2m)3 j(gc 22 4+ p2 + m? ( )

where the contour is given by figure A.1. Obviously the poles of cot(z/2T) are
for sin(2/2T) = 0, or /2T = =n, n = 0,1,..., which in turn by the theorem of
residues produces (A.15).

Now, by changing the contour C into C’ (Fig. A.2)

one picks up poles at z = +i1/p2 + m? = +iw, and we get

I5(T) = /(613]3’ cot{w/2T)

213 2w
d3p 1 ‘
I AT
where I5(0) = [ (%%J is the usual (infinite) correction at 7' = 0 which we did

not bother to keep before. We get finally (for T > m)
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o) 2
Ip(T) - Ig(0)=T7 / I (A.18)

27)3 -1 12

Thus the diagram of figure 1.1(a) gives from (A.15)

3A 2 12 ,
— 5T (A4.19)

which produces the finite temperature correction for the potential

A A
3 T = §T2¢2 (A.20)

In the same manner, one can compute the complete one-loop effective potential

—1 d*k
——In(iD~’ A.21)
5= | oo™ (A21)
which at T # 0 becomes
T & d°k 2 2m2 | 72 2 A 99"
B = 3;/ e In(4r*n°T* + k* + m”®) (A.22)

which gives

Vi(T) = —VEHME/TE (A.23)

and in the high 7' limit, substituting

, 0%V ,
m? = v (A.24)
one gets
2 2
- m-oo Ay T 2 A 9E
ViT)= ——o"+ — —3A A2
(T) 5O+ g8 3Ae (A.25)

For the fermionic graph in figure 1.1(b), we can define

dip —1

Qr)ip? M7 (4.26)

Ir =

and now fermionic boundary condition must be imposed. The calculation follows

the lines of the bosonic one, but now because of the different statistics one gets

4 dm [ 1 T2 o
Ip(T) — Ip(0) = T? —— /O zdz— iy (A.27)
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(a) ()

Figure A.3: Feynman graphs contributing to the n-th loop order terms of the high temper-

ature effective potential.

Next-to-Leading Order Corrections

One can get a next-order result by substituting m by mr in the high temperature

expansion (A.25)

72

1 5 T T2 mT 1/2
Ver = 5 |m"+ (N +2)A5 = (N +2)x | m? +(’V+9)/\——(N+2)/\—

’\ a2
+ g(soasv)
1., Y T2 NN A 5 5.
~ = N +2)A— = (N +2)A—=1] — + = (" o(Ar°
2[m + (N +2) TR )/\(%)2\/ B +4(<P90) + O(A7)

This iteration procedure is in fact justified by considering the N-loop graphs of
figure A.3. The graphs of the kind of figure A.3 a have a contribution of order 72

for the top bubble, plus for each bubble with to vertices an integral

idk 2 idk 9 T _
/ (kQ - m3> X Om2 (f L2 mz) x ')(Tm) < (A.29)

The ones of A.3b, on the other hand contribute a factor of 72 for each small

bubble, plus an integral for the big one of the form

1dk n 1dk 3(n 1) T
./ <k2 — m2> x 0m~ (/ k2 _ m2> X (Tm) x proy (A.30)

so we will have in the end

Tn-!—l 2n—1
agraphs :m" b graphs : —

= (A.31)

T
47

(A.28)
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which tells us that for each term in the loop expansion, the second type of graphs
will be bigger by a factor of 7"~? /m, and we only need to consider these, so called
“daisy” diagrams. Carefully taking into account the symmetry factor, it is obtained

for the daisy diagram with n — 1 small bubbles

, [T\ 9\ [T T \

And the total contribution, to all orders, is obtained by summing over all the

diagrams, from n = 1 to co. This is nothing but a Taylor expansion

S N A.33
feta =5 (5) 1@ (433)
where for us a is m?, z is the dominant temperature contribution to the mass
at one loop, (N + 2)AT?/12, and f is the thermal mass my I We have derived the
so-called “gap” equation for one field
9 2 T? T .
mp=m-+ (N +2)A |—= - mp— (A.34)
‘ T12 4w

whose solution gives the improved thermal mass in equation (A.28).

The generalization to the two-field case is straightforward. For a potential with
fields @1, o transforming as vectors under O(Ny), O(Ny) respectively, the gap
equations will get contribution to the thermal masses from similar graphs, involving
bubbles of both fields.






