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Introduction

The possibility of baryogenesis at the electroweak scale is a very popular but contro-
versial topic. Despite the large number of related publications none of the key aspects
of this subject can be considered to be on firm ground. First, it is well known that the
requirement that the anomalous sphaleronic processes which violate baryon number
B go out of equilibrium soon after the transition translates into a lower bound on the
ratio between the vacuum expectation value of the Higgs field, v(T'), and the critical
temperature of the transition, T;, v(7;)/T. 2 1. In the Standard Model, improved
perturbative evaluations of this ratio give a value which is badly less than unity for
values of the mass of the Higgs scalar compatible with LEP results. On the other
hand, the perturbative expansion cannot be trusted any more for values of the Higgs
masses of the order of the W* boson mass or larger. Clearly, much work is still

needed on this issue.

Another aspect of the problem is C'P violation. This has been the subject of a
recent debate in the literature about the need of further complex phases in the theory
besides the one in the Cabibbo-Kobayashi-Maskawa mixing matrix. In models with
more than one Higgs doublet, like the Minimal Supersymmetric Standard Model,
further sources of CP violation can emerge naturally from the Higgs sector. In
particular, the possibility of a spontaneous C'P violation at finite temperature has
been emphasized. This effect could give enough contribution for the baryogenesis and
at the same time satisfy the upper bounds on C'P violation coming from the electric

dipole moment of the neutron.

Even assuming that the phase transition is strong and that C P violation is enough,

we must face the other key issue, namely what is the mechanism responsible for the
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generation of baryons during the phase transition.

The most significant departure from thermodynamic equilibrium takes place at
the passage of the walls of the expanding bubbles which convert the unbroken into
the broken phase. According to the size and speed of the bubble walls, two different
mechanisms are thought to be dominant. In the case of thin (width ~ 1/T') walls,
typical of a very strong phase transition, the creation of baryons occurs via the asym-
metric (in baryon number) reflection of quarks from the bubble wall, which biases the
sphaleronic transitions in the region in front of the expanding bubble.

If the walls are thick (width ~ (1 — 100)/T) then the relevant mechanism takes
place inside the bubble walls rather than in front of them. In this case we can make a
distinction between fast processes (mediated by gauge, flavour diagonal, interactions
and by top Yukawa interactions) and slow processes (mediated by Cabibbo suppressed
gauge interactions and by light quarks Yukawa interactions). The former are able to
follow adiabatica]ly the changing of the Higgs VEV inside the bubble wall, while, in
first approximation, the latter are frozen during the passage of the wall.

In the adiabatic scenario, as originally proposed by Cohen, Kaplan and Nelson
(CKN), if C'P violation, explicit or spontaneous, is present in the scalar sector then
a space-time dependent phase for the Higgs VEVs is turned on inside the wall. The
time derivative of this phase couples with the density of a quantum number non
orthogonal to baryon number and then can be seen as an effective chemical potential,
named charge potential, which has the effect of biasing the rates of the sphaleronic
processes, creating an asymmetry proportional to é, where 8 is the phase of the VEVs.

This mechanism was shown to be successful in the framework of the Minimal
Supersymmetric Standard Model where C P violation is spontaneous and occurs only
at finite temperature.

This adiabatic scenario was reconsidered by different authors in different but re-
lated aspects.

First, Giudice and Shaposhnikov have shown the dramatic effect of non pertur-
bative, chirality breaking, transitions induced by the so called QCD sphalerons. If
these processes were active inside the bubble walls, then the equilibrium value for

baryon number in the adiabatic approximation would be proportional to that for the
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conserved quantum number B — L (L is the lepton number), up to mass effects sup-
pressed by ~ (M,op(T)/7T)?. Then, imposing the constraint (B — L) = 0, where (- - -)
represents the thermal average, one would obtain zero baryon number (up to mass

effects).

Dine and Thomas have considered the two Higgs doublets model in which the same
doublet couples both to up and down quarks, the same model considered in the origi-
nal work by Cohen Kaplan and Nelson. These authors have pointed out that 6 couples
also to the Higgs density, so that the induced charge potential is for total hypercharge
" rather than for fermion hypercharge, as originally supposed by CKN. As long as ef-
fects proportional to the temperature dependent v(T') are neglected, hypercharge is
a exactly conserved quantum number and then, again imposing the constraint that
all the conserved charges have zero thermal averages, no baryon asymmetry can be

generated. So, one would find a M,,,(T)?/T? suppression factor.

Fina;]ly, Joyce, Prokopec and Turok (JPT) emphasized the very important point
that the response of the plasma to the charge potential induced by J is not simply
that of a system of fixed charges, because transport phenomena may play a crucial
role. When a space time dependent charge potential is turned on at a certain point,
hypercharged particles are displaced from the surrounding regions, so that even the
thermal averages of conserved quantum numbers become locally non vanishing. As a
consequence, the equilibrium properties of the system have to be reconsidered taking

into account the local violation of the conserved quantum numbers.

Analyzing the adiabatic scenario through the linear response theory allows us to
take transport effects into account. Assuming that a spacetime dependent charge po-
tential is generated inside the bubble wall we can investigate its effect on the thermal
averages of the various quantum numbers of the system. One finds that transport
phenomena are really crucial, but in disagreement with JPT’s early conclusion that
as a consequence of the local violation of global quantum numbers there is no bias-
ing of the sphaleronic processes. Actually, in the adiabatic approximation the local
equilibrium configuration of the system is determined by the thermal averages of the
charges conserved by all the fast interactions. The effect of transport phenomena

is to induce space time dependent non zero values for these averages. We calculate
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these averages using linear response theory and then determine the local equilibrium
configuration, showing that it corresponds to (B + L) # 0.

The inclusion of transport phenomena also sheds a new light on the strong sphaleron
effects and on the effect of a charge potential for total rather than fermionic hyper-
charge. The dramatic suppressions found by Giudice and Shaposhnikov and by Dine
and Thomas respectively, are both a consequence of taking zero averages for con-
served quantum numbers. Since these averages are no more locally zero we will find
a non zero (B + L) # 0, even in the case in which the charge potential is for total
" rather than for fermion hypercharge. In the case of QCD sphalerons we will find that
the final result depends in a crucial way on the form of the charge potential which is
considered.

Very recently, the original treatment by CKN which makes use of the charge
potential has been criticized on very general grounds. Using a general field theory
approach it was shown that fermionic currents in a C'P violating and space-time
dependent Higgs background arise only at one loop, so that a suppression factor
O(hiv/x T)? with respect to all the previous computations was found. These results
have been recently confirmed by Huet and Nelson with an independent semiclassical

approach.
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Chapter 1

Overture

1.1 Allegro

In the standard hot big bang model, relics from the early Universe can give us much
information about microphysics. For instance, the abundances of the light elements,
produced when the Universe was at a temperature of ~ 1 MeV, told us before the
existence of LEP that there were at most four, and probably three, species of light
neutrinos [1].

The most obvious of big bang relics are baryons, which make our own existence
possible. Furthermore, the Universe seems to contain relatively few antibaryons.
There is a clear evidence that at least the local cluster of galaxies is made of matter,
and there is no plausible mechanism to separate matter from antimatter on such large
scales. The observed abundance of baryons today implies that when the Universe was
much hotter than a GeV the asymmetry between baryons and antibaryons have been
about one part in 10%° [1].

The quantity we wish to explain is npg/s—the ratio of the baryon density of the
Universe to the entropy density—observed to be equal to [1]

B

Il

BT (0.84£0.2) x 1071, (1.1)
S

S

where s = (2 72 g./45)T°, g. being the effective number of relativistic degrees of

freedom present at the temperature T, is the entropy density.

1



2 Chapter 1. Overture

Approximately thirty years ago Sakharov [2] pointed out that this cosmological
asymmetry could be a calculable result of particle interactions in the early Universe,
teaching us several profound things about fundamental physics:

i) violation of the baryon number: this requirement is obvious since ng/s is non-
vanishing;

i) C (charge conjugation symmetry) and CP ( the product of charge conjugation
and parity) are not ezact symmetries: were C' an exact symmetry, the probability of
the process i — f would be equal to the one of the process 7 — f. Since the baryon
number of f is equal and opposite to that of f, the net B would be vanishing. Further-
more, because of the C PT theorem, C P invariance is equivalent to T  invariance (time
reversal). The latter assures that the rate of the process i(r;, p;, s;) — f(r;, p;,s;) and
that of the time-reversal process f(r;, —p;,—s;) — i(ri, —p;, —s;) are equal. Thus,
even if it is possible to create a baryon asymmetry in a certain region of the phase
space, when integrating over momenta and summing over spins, the net B would zero
if C P were conserved;

i11) the Universe must have been out of equilibrium in order to produce a net baryon
number aymmetry: the equilibrium thermodynamical distribution of a particle species
is determined only by its energy E and by its chemical potential p

1

EQ —
n (E7I‘L) - e(E"'I—")/T i 1'

(1.2)

Since, according to the C' PT theorem, the particle mass is equal to antiparticle mass
and the chemical potential p is vanishing at the thermodynamical equilibrium, we
get
d*p
ny = ng = / (éw—):} nEQ. (13)

This tells us that B = 0 at equilibrium.

1.2 Allegro, ma non troppo

Sakharov himself suggested that baryogenesis took place immediately after the big
bang, at a temperature not far below the Planck scale of 10'° GeV, when the Universe

was expanding so rapidly that many processes were out of equilibrium.
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The first models for baryogenesis satisfied the Sakharov’s criteria in Grand Unified
(GUT) theories [3], exploiting the fact that the GUT scale was not far from the Planck
scale [4]. Thus baryon violation could exist without being in conflict with the proton
lifetime, and departure from equilibrium could easily result due to the rapid expansion
of the Universe during the GUT epoch. All such theories had to involve new sources
of CP violation, as Kobayashi-Maskawa (CM) C'P violation alone proved to be too
small to explain the observed baryon asymmetry.

Two subsequently discovered effects threaten the viability of the GUT scale baryo-
genesis. The first is inflation, which serves to wash out GUT scale monopoles, but
also washes out any baryon asymmetry in the Universe (BAU) produced prior to
inflation. GUT scale baryogenesis to occur after inflation needs a high reheating tem-
perature, which requires a strongly coupled inflaton, which in turn tends to give large
perturbations inconsistent with structure formation. Moreover, in supersymmetric
[5] GUTs, the gravitino (the supersymmetric partner of the graviton) decays may
affect nucleosynthesis [6] unless the reheating temperature is below ~ 10° GeV, a
temperature too cool to reinstate the baryon asymmetry through GUT processes.

A second difficulty is that in the standard model (SM) of electroweak interac-
tions with gauge group SU(2)r ® U(1)y baryon number is known theoretically to be
anomalous and not exactly conserved [7]. This anomalous baryon number violation

acts on the left-handed fermionic doublets in processes like
tLtLbLTL > 0, tLbLbLVT « 0.

Indeed, due to the presence of axial couplings, baryon and lepton number are not
conserved. The baryon number current satisfies
2

g° N - .
Oulh = T Wg tr (FF), (1.4)

where N is the number of flavours. Integrating Eq. (1.4) and discarding the surface

terms of the baryonic current gives a change in the baryon number

AB = % / d'z iz (FF)

- N, / d'z 8,K"
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= N f do, K", (1.5)

where the last surface integral is taken over a large three-sphere S3, of infinite radius,

and the Cherns-Simons current is given by
g’ 2
KH = 2 gvabip [A,, (aaAﬂ - gigAaAﬁﬂ . (1.6)

87?2

For finite-action gauge field configurations, F' = 0 at spatial infinity and working
in the static A° = 0 static gauge, in which the only non zero component of the

Cherns-Simons current is K°, we get
AB = Ny ANgs, (1.7)

where the Chern-Simons number of the field configuration A(z) is defined as

. 2
g 3. _ijk i AT Ak
Ncs—247r2de€J tr(A AJA). (1.8)

If a generic element of the group G are parametrized as u(z) = exp[iga(z) - t], a
generic transformation on the gauge fields is given by A, — vA, u™! —id,uu"1/g.

Vacuum configurations A,.,. = —iVuu~!/g define a natural map S3 — G when
restricted to a(x) — 0 as |x| — oo. With this restriction, points in space can
be thought of as lying on a three-sphere, and the induced vacuum map is simply
x — u(x) € G.

The Cherns-Simons number of these configurations is just the homotopy or wind-
ing number of this induced map. For semi-simple groups, such vacuum configurations
can then be labelled by an integer and the true vacuum state is a linear superposition
of the corresponding perturbative wave functionals, which each have support only
over a definite winding number.

Note that, if G = U(1), any change in the Cherns-Simons number is vanishing,
which is not the case for an abelian group SU(2).

At low temperature baryon number violation only proceeds via an exponentially
suppressed tunneling process, at a rate proportional to exp(—4w/ay ), which is to

say, it never happens. This low number can be understood in terms of the very large
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potential barrier, of height ~ My /oy ~ 10 TeV, separating the perturbative vacua
of definite winding number [7].

At temperature above ~ 100 GeV, however, electroweak baryon number violation
is expected to proceed rapidly enough to equilibrate to zero any baryons produced
by GUT baryogenesis [8, 9].

In the last decade there has been much work proving that this is the case [10].
However, anomalous electroweak processes conserve B — L, the difference between
baryon and lepton numbers, and so a net B — L generated at the GUT or other
interactions will not be erased by electroweak interactions. New and improved GUT
scale baryogenesis models must now posses and effective B — L symmetry violated at
high energies, and the baryogenesis must typically involve a scalar field that can store
up B—L during inflation, only realising it after inflation is over. Such a field can be the
inflaton itself, or something like a squark or slepton field in supersymmetric (SUSY)
models [11]. Unfortunately, the only new observable experimental consequences from
such elaborate constructs are B and L violation, and even then the rates are very
model dependent and can be adjusted to be out of reach. The additional C' P violation
cannot be observed directly. In fact, due to inflation, one can account for a baryon
asymmetry within our horizon while having no net baryon number for the Universe

as a whole, thus eliminating the need of C'P violation.

1.3 Adagio

In 1985 Kuzmin, Rubakov and Shaposhnikov [10] suggested an elegant and simple
solution to the baryogenesis problem. They argued that anomalous baryon number
violation in the standard model of electroweak interactions is rapid at high tempera-
tures and that the weak phase transition [12], if it is of first order with supercooling,
provides a natural way for the Universe to get out of thermal equilibrium at weak
scale temperatures.

Critical bubbles of the broken Higgs phase H eventually nucleate with a typical
profile

H(r) = ”(2T) [1 + tanh (E%)] , (1.9)



6 Chapter 1. Qverture

where r is the spatial coordinate, L,, is the bubble wall width and v(T) is the vacuum
expectation value (VEV) of the Higgs field at the critical temperature 7.. Bubbles
expand until they fill the Universe; local departure from thermal equilibrium takes
place in the vicinity of the expanding bubble walls. Since C' and CP are known to
be violated by the electroweak interactions, it is possible to satisfy all the Sakharov’s

baryogenesis conditions.

One bottleneck for electroweak baryogenesis (EWB) proves to be z) the need for
departure from thermal equilibrium, which can only occur at the electroweak epoch
only if there is a sufficiently strong first order phase transition; ) the inadequate C' P
violation from the Kobayashi-Maskawa mechanism (as found in the original GUT

baryogenesis models). Let us discuss these problems in more details.

1.3.1 A strong first order phase transition?

The standard picture of EWB assumes that SU(2); ® U(1)y breaks via a first order
phase transition, leading to bubble nucleation and a separation of phases. As said
above, baryon number is expected to be badly violated at high temperatures. In ref.
[9], it was shown that there exist static, unstable solutions to the field equations with
one negative mode. These solutions are called sphalerons and represent saddle points
of the potential energy functional in field space labelling the vacua with different

“baryon numbers.

This interpretation is further justified since it has a Cherns-Simons number half

away between that of the successive perturbative vacua flanking the sphaleron.

It is quite probable that at very high temperatures, gauge field configurations
can simply sail over the barrier separating two distinct vacua with different baryon
number rather than tunnel through it, and then baryon number violation becomes
unsuppressed. Indeed, at high temperatures, the system is well described by classical

statistical mechanics.

In the broken phase around the electroweak scale the rate for barrier penetration

is essentially the Boltzmann factor associated with forming a sphaleron and the rate
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per univ volume is

| My, g
T e Ferlt (1.10)

where Eyp o (2 My /aw) is the sphaleron energy (see Arnold and Mc Lerran in [10]).

I1brok =~

In the symmetric phase, the situation is equivalent to a three dimensional field
theory with no small dimensionless parameter. While no single classical configuration
dominates the rate, a heuristic description in terms of instanton can be given. It is
generally believed that the three dimensional field theory has a mass gap ~ aw I
Correspondingly, the correlation length of the high temperature theory (the so-called
magnetic screening length) is ¢ = (aw T)~'. Consider now instantons at high tem-
peratures. These will exist with typical size (aw T )~!. This means that the number
density of sphalerons per unit volume in a sphaleron saturated gas is around (aw T')°.

Since they decay with a rate ~ oy T', the rate per unit volume is estimated to be
Toym =~ & (awT)%, (1.11)

where & is a dimensionless constant evaluated by Ambjorn et al. in ref. [10] to be in
the range 0.1 <k < 1).

In order to produce a baryon asymmetry, it is necessary that as the bubble of
broken phase nucleates and expands, particle interactions with the bubble wall some-
how produce a baryon excess in the region where B violation is rapid. However,
this baryon asymmetry will be subsequently destroyed, unless B violation rate in the
broken phase be extremely small. That is, the phase transition must be sufficiently
strong so that sphalerons are heavy and play no role inside the bubbles. This sup-
pression of the anomalous baryon number after the transition requires a large jump

in the Higgs vacuum expectation value v(T') during the transition [13]

)y am

The crucial question now is whether such a bound can be achieved in the SM.

Old common wisdom: andante: There has been extensive work on the nature
of the electroweak phase tramsition (EWPT) [14], and there is general agreement
that for the SM with one Higgs doublet, the transition is strongly first order in
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the limit My < My while being second order in the opposite limit My > My .
Perturbative calculations break down at My ~ M. The maximum value for the
Higgs mass where baryon asymmetry produced during the phase transition is not
subsequently destroyed in the broken phase was thought to be about 45 GeV, which
is experimentally excluded. It was also thought that extended Higgs sectors, such as
the singlet majoron model [15] are still viable candidates for a sufficiently strong first
order phase transition. A notable exception is the minimal supersymmetric standard
model (MSSM), which is viable only if there is a relatively light squark [16].

New common wisdom: andante con brio: There have been recent advances
in studies of the electroweak phase transition, expecially in lattice simulations of the
electroweak phase transition (see [17] for a general discussion).

These simulations tend to suggest that nonperturbative effects are important for
physically interesting Higgs masses, and that the phase transition tends to be more
strongly first order than found in perturbation theory. For instance, one simulation
found that for a Higgs mass of 80 GeV, v(T)/T = 0.68, as opposed to 0.3 from
perturbation theory. Thus the upper bound of 45 GeV on the Higgs mass for EWB
is probably too conservative, although we have not seen yet any definitive result

replacing it.

1.3.2 Sufficient CP violation?

Old common wisdom: andante adagio: Since we see C'P violation in the kaon
system, it is of great interest to know whether the same C'P violation is what gave
rise to matter in the Universe.

A very rough (and optimistic) estimate of the amount of C'P violation necessary
to get B o~ 107'° can be obtained as follows: since the baryon number violation rate
in the symmetric phase is proportional to af, ~ 1078, if we indicate with §op the

suppression factor due to C'P violation, we get

Scp ~ 107%6¢p. (1.13)

Neglecting all the suppression factors coming from the dynamics involved in EWB,
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we discover that

Scp 2 1077, (1.14)

Another naive estimate suggests that since C P violation would vanish in SM if

any two quarks of the same charge had the same mass, the measure for C' P violation
should be the Jarlskog invariant

Aor (o - ) (a2 ) (02— )

(M7 - m?) (M7 — M3) (M3 - m3), (1.15)

8

where J is twice the area of the unitarity triangle given, in the Kobayashi-Maskawa

parametrization, by
J = sin?, sin 6, sin @3 cos B, cos by cos 3 sin 6. (1.16)

The quantity Acp has mass dimension equal to twelve. In the limit of high tempera-
ture, T > M, the only mass scale is the temperature T. Therefore, the dimensionless
quantity §cp measuring the violation of C P is given by

Acp
T12

bcp o ~107%, (1.17).

where T, ~ 100 GeV is the temperature at the onset of the electroweak phase transi-
tion. Obviously, these estimates are very rough and a definitive answer can only be
given when studying particular models for EWB.

Contemporary common wisdom: veloce allegro: Recently Farrar and Sha-
poshnikov [18] challenged the above reasoning, which is admittedly naive. Their key
point is the following: for quarks having three momentum |p| ~ T > M,, the above
estimate (1.17) is correct since light quarks are effectively degenerate in mass and the
GIM suppression is operative; on the other side, this is no longer true when consid-
ering quarks having three momentum |p| ~ M,. Since the mass jump through the
bubble wall is just M,, quarks coming from the symmetric phase and with momentum
Ip| < M, are reflected off from the wall, whereas the ones with momentum |p| 2 M,
are partially reflected off and partially transmitted. In the reflection processes C'P is

violated because of the interference between the scattering phases and the CM phase
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and quarks and antiquarks acquire different probabilities of penetrating the bubble
wall. In such a way a net baryon number flux from outside to inside the bubble wall

i1s obtained.

If one considers momenta between the down quark mass M; and the strange
quark mass M, (corresponding only to the fraction (M, — M,)/T of the total number
of quarks in thermal equilibrium), then all strange quarks are reflected off, whereas
down quarks have a nonvanishing probability of being transmitted. In such a situation
it is clear that the above naive estimate of considering the light quarks degenerate in
mass is no longer trustable. Taking into account this fact, Farrar and Shaposhnikov
got a suppression factor dependent upon the quark momenta: it is always of the order
of (1.17) except in the interval My < |p| < M,, where it is much larger than (1.17).
For some values of the velocity v, and width L, of the bubble wall (which must be
extremely thin to make the reflection very efficient), such a mechanism seemed to

generate a baryon asymmetry in the right amount.

Modern common wisdom: adagio lentissimo: The results of ref. [18] have
been subsequently contradicted in refs. [19, 20]. The new effect, not taken into
account by Farrar and Shaposhnikov and responsible for the final disagreement, is

the loss of quantistic coherence of the quarks when scattering off the thermal gluons.

It is well known that fermionic dispersion relations are modified in a plasma [21].
Fermionic excitations appear, called quasi-particles, and acquire a thermal mass ~
g, T?. This was accounted for by Farrar and Shaposhnikov. However, quasi-particles
during their propagation scatter with the thermal medium and this phenomenon
induces a damping rate v proportional to the imaginary part of the self-energy, which
was not taken into account by Farrar and Shaposhnikov. The energy of quasi-particles

is large compared to v and it is then possible to speak about coherent excited states.

Quasi-particles have a lifetime ~ (1/2v) so that the quantum spatial coherence is
lost after a distance of order of (1/27). Since for quarks v =~ (0.15g, T)~! > M,, the
quark energy and momenta are not defined exactly, but have a spread of order of 2y
(analogously to resonance) much larger than the crucial range (M, — My) in which
Farrar and Shaposhnikov mechanism is operative. In other words, the lifetime of the

quantum packet is much shorter than the typical reflection time from the bubble wall
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(~ 1/M,): CP violation, which is based on coherence for (at least) a time (~ 1/M),
cannot be efficient.

Personally, we find the later work convincing, and believe that new C P violation
must be added to any theory of baryogenesis. As mentioned above, typical C' P vio-

lating angles have to be 1072 or greater, which usually has experimental implications.

1.3.3 Transport

After having shortly discussed the issues of the strength of the electroweak phase
transition and of C'P violation, we are now ready to (try to) answer the fundamental
question: how does the baryon asymmetry actually come from?

Assembling the ingredients is not emough to make a Universe, we still need a
recipe. The recipe involves four distinct time scales governing the relevant interac-
tions. These are the expansion time scale 7y given by the inverse of the Hubble
parameter; thermalization scale 7r, which characterizes how fast particles in the cos-
mic plasma equilibrate; the Higgs time scale 7y, which governs the departure from
thermal equilibrium as measured from a comoving observer while the expanding bub-

ble wall passes through her; and the sphaleron time 75, ™~ (ajy T)™' which governs
the rate of baryon number violation in the symmetric phase.

Thermalization rate due to weak and strong interactions, defined for the different
particles as the inverse of the mean free path I, is much faster than T . It s

estimated [84] from strong or weak Coulomb scattering cross sections

0.25 T
il o 1 (1.18)
0.08T W%, 2°, L

Yukawa interactions give rise to chirality changing processes (qr + 9 < qr +g). For

the top, the inverse rate can be estimated

0
T{-OP >~ (ag h? T).—l ~ ?, (1.,19)
whereas for lighter quarks the above quantity must be rescaled by the factor (hq/h¢)?,
h, being the generic Yukawa coupling.
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Thus, some rates correspond to fast interactions; some other standard processes
are much slower, such as chemical equilibration between the first and the third family,
or between the two chiralities of a light fermion.

The Higgs time scale is less easily determined (see, for instance, ref. [23] and
references therein for a recent estimate of v,, in SM) and is quite model dependent,

roughly given by
~ (0.01 -1)T, (1.20)

In general v,, depends on the bubble wall shape and, more in particular, on its
width. Intuitively speaking, the motion of the bubble wall is determined by two
factors, namely the pressure difference between inside and outside the bubble itself
(which allows the expansion) and a friction force, proportional to v, and due to the
collisions of the plasma particles off the wall.

The equilibrium between these two forces should imply a steady state with a final
velocity v, ~ 0.1. However, if bubble walls are rather thick and larger than the typical
particle free mean paths 71, thermodynamical conditions are established inside the
wall and for the latter it is no longer possible to loose its energy by thermal dissipation
(in other words, the friction force disappears and the total force acting on the wall
is velocity independent). Under these conditions the bubble wall is accelerated until
the approximation 7r < 7y is no longer valid and the friction force is restablished.

Despite of these uncertainties, we see that baryon number violation is always out
of equilibrium near the wall, since 7, > 1. However, other particle interactions may
or may not be able to equilibrate near the bubble wall, depending on the relative size
my and 7r. This gives rise to two different regimes:

The adiabatic regime: T’T,‘T‘%Op <K 74 K Tgp. Fast interactions mantain thermal
equilibrium as the bubble wall passes by and the value of the Higgs field changes.
This allows us to describe the plasma within the bubble wall in terms of equilibrium
thermodynamics with quasistatic chemical potentials for quantities that equilibrate
slowly compared to 7. In this adiabatic regime baryogenesis occurs within the bubble
wall itself and the mechanism is called spontaneous baryogenesis (SB).

The nonadiabatic regime: 71,77, Top < 7y. The wall is thin compared to the free
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mean path, and particles reflect off the oncoming wall with calculable C'P violating
reflection coefficients. Baryogenesis occurs in an extended region preceding the phase
boundary. The method for computing the flux of weak doublets reflecting from the
bubble walls where anomalous baryon violation is occuring rapidly, as presented in
refs. [25, 26, 27] for both the majoron model and the two Higgs model with a thin
wall and top quark reflection. Transport properties were considered in [26], where a
Monte Carlo calculation showed a significant snowplot effect: left-handed top quarks
were pushed along in a region ranging from 20 to 100 thermal units in front of the
wall. Such a model was shown to easily accomodate the desidered baryon asymmetry

with a C P violating phase of (1072 — 107%).

1.4 Overview

While the thin wall scenario has remained (approximately) unchanged, there has been
a lot of work done recently for EWB with thick bubble walls.

The challenge of this Thesis is to provide a review of the recent progress in SB,
which will turn out to be (for sure) not exhaustive.

SB was supposéd to occur quasi-statically within the bubble wall and was first
proposed by Cohen, Kaplan and Nelson (CKN) in ref. [28].

They considered the two Higgs doublet model in which up and down quarks couple
to the same Higgs doublet. If C P violation, explicit or spontaneous, is present in the
scalar sector then a space-time dependent phase for the Higgs VEVs is turned on
inside the bubble wall propagating in the thermal bath during the electroweak phase
transition.

In the adiabatic limit one can make a distinction between fast processes (mediated
by gauge, flavour diagonal interactions and by top Yukawa interactions) and slow
processes (mediated by Cabibbo suppressed gauge interactions and by light quarks
Yukawa interactions). The former are able to follow adiabatically the changing of the
Higgs VEV inside the bubble wall, while, in first approximation, the latter are frozen
during the passage of the wall.

Making a rotation on the fermionic fields to remove the space-time dependent
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phase from the Yukawa interactions, the time derivative of this phase couples with
the density of a quantum number non orthogonal to baryon number.

In the original paper [28] the rotation was taken to be proportional to the fermionic
hypercharge.

The time derivative of the phase can be seen as an effective chemical potential,
named charge potential. Each particle density acquires a nonvanishing value n; ~
Y;-f 6712, Y}f being the fermionic hypercharge of the species i, and the charge potential
has the effect of biasing the rate of the sphaleronic processes, creating an asymmetry
proportional to é, where 6§ is the phase of the VEVs.

One of the basic assumptions of such a mechanism was that the conserved (by all
the interactions) quantities, such as B — L or the electric charge Q, had vanishing
thermal averages.

This mechanism appeared to work, but only barely, in the original paper [28]
because of the presence of different suppression factors. More in particular, CKN
claimed that spontaneous baryogenesis could not work in the framework of MSSM in
the case in which C'P is broken spontaneously in the Higgs sector, see Chapter 2.

This claim was shown to be incorrect by Comelli, Pietroni and Riotto (CPR) in
ref. [29], where the authors made use of the fact that C'P can be spontaneously bro-
ken at finite temperature evading any experimental limit coming from LEP at zero
temperature [29, 30, 31]. Indeed, at high T there can be spontaneous C'P violation
such that the effective potential in the low-temperature phase has two nearly degen-
erate minima, with phases +x. Thus on roughly half the bubbles the C'P violating
phase will decrease from 0 to —m in going from the unbroken to the broken phase,
while in the other half it will increase from 0 to w. On each bubble the local baryon
asymmetry production should be comparable to that of a maximal two Higgs doublet
model. Then, it was argued that a tiny explicit C P violation, easily consistent with
the limits on the electric dipole moment of the neutron (EDM), could produce a dif-
ferent in the surface tension on the two types of bubbles enough that the net BAU
could be consistent with observations [29]. These results will be presented in Chapter

3.

The adiabatic scenario was subsequently reconsidered by many authors in differ-



1.4. Overview 15

ent, but related aspects, see Chapter 4.

Dine and Thomas [32] considered the same model discussed in the original work
by CKN, the two Higgs doublets model in which the same doublet couples both to
up and down quarks.

These authors pointed out that, when making an hypercharge rotation on fermionic
fields to rotate away the space-time dependent phase from the Yukawa sector, 6
couples also to the Higgs density, so that the induced charge potential is for total
hypercharge rather than for fermion hypercharge.

The key point was that total hypercharge is conserved by sphalerons: as long as
effects proportional to the temperature dependent VEV v(T') are neglected, hyper-
charge is a exactly conserved quantum number and then, imposing the constraint
that all the conserved charges have zero thermal averages, no baryon asymmetry can
be generated. A suppression factor of order of MZ?(T)/T? in the particle densities was
then expected with respect the original results given in [28], B ~ 1078 Ad.

Ciudice and Shaposhnikov showed the dramatic effect of non perturbative, chi-
rality breaking, transitions induced by the so called QCD sphalerons [33]. If these
processes were active inside the bubble walls, then the equilibrium value for baryon
number in the adiabatic approximation would be proportional to that for the con-
served quantum number (B — L) up to mass effects suppressed by ~ MX(T)/T?.
Then, imposing the constraint (B — L) = 0 we obtain zero baryon number (up to
mass effects).

Finally, Joyce, Prokopec and Turok [34] emphasized the very important point
that the response of the plasma to the charge potential induced by (9) is not simply
that of a system of fixed charges, because transport phenomena may play a crucial
role. When a space-time dependent charge potential is turned on at a certain point,
hypercharged particles are displaced from the surrounding regions, so that even the
thermal averages of conserved quantum numbers become locally non vanishing. As a
consequence, the equilibrium properties of the system have to be reconsidered taking
into account the local violation of the conserved quantum numbers. The authors

concluded that transport phenomena suppress the baryon asymmetry generated in

the adiabatic limit.
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In fact, it was shown by CPR [35] that transport phenomena are crucial and
that, rather than being detrimental, they helped in alleviating the above mentioned
problems.

CPR used the linear response theory in order to take properly transport effects into
account and investigate the effects on the thermal averages of the various quantum
numbers of the system in presence of a generic fermionic hypercharge potential.

They found that transport phenomena are really crucial, but were in disagreement
with the conclusion of ref. [34] that, as a consequence of the local violation of global
quantum numbers, there is no biasing of the sphaleronic processes. Actually, in the
adiabatic approximation the local equilibrium configuration of the system is deter-
mined by the thermal averages of the charges conserved by all the fast interactions.
The effect of transport phenomena is to induce space-time dependent non zero values
for these averages. CPR calculated these averages using linear response theory and
then determine the local equilibrium configuration, showing that it corresponds to a
thermal average (B + L) # 0.

The result in ref. [34] corresponded to freezing out any interaction .inside the
bubble wall, which is in contradiction with the adiabatic hypothesis.

Then CPR wrote down a rate equation in order to take into account the slowness of
the sphaleron transitions and obtained an expression for the final baryon asymmetry
explicitly containing the parameters describing the bubble wall, such as its velocity,
Vw, its width L, and the width of the region in which the sphalerons are active.

Compared to previous estimates in which transport effects were not taken into
account, they found an enhancement of nearly three orders of magnitude in the baryon
asymmetry.

The inclusion of transport phenomena also shed a new light on the strong sphaleron
effects and on the effect of a charge potential for total rather than fermionic hyper-
charge. The dramatic suppressions found by Giudice and Shaposhnikov and by Dine
and Thomas respectively, were both a consequence of taking zero averages for con-
served quantum numbers. In particular, the role of QCD sphalerons in cooperation
with transport effects depends crucially on the particle species which enter into the

charge potential.
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Since thermal averages for conserved quantities are no more locally zero, CPR
found a non zero (B — L) proportional to these averages, even in the case in which
the charge potential is for total rather than for fermionic hypercharge. Thus, CPR
showed that no suppression factor MZ(T')/ T? is present when transport phenomena
are taken into account.

We shall discuss transport phenomena in Chapter 5.

Completely similar conclusions to those given in ref. [35] were obtained in ref.
[36]. More in particular, CKN showed that diffusion allows doublet density produced
" within the bubble wall to venture out into the symmetric phase, where baryon number
violation is fast and not suppressed by hypercharge violating quantities, eliminating
the Dine-Thomas objection. It was also shown that particles are not in front of the
wall enough for strong sphalerons to completely eliminate the left-handed doublet
density, thus confirming the results obtained in [35].

However, a new and very general criticism was raised up very recently by CPR
[37], see Chapter 6 (from this point of view, Chapter 6 should be read immediately
after Chapter 2).

All the previous criticisms (and ways out) to SB assumed as a starting point that
the effect of a time-dependent C P violating phase in the Higgs sector was to induce
a particle densities n; ~ 6T2.

In fact, in the original paper [28], making a redefinition of fermionic fields to get
rid of the phase 8 from the Yukawa sector, the effect of the C P violation on particle
currents in the presence of C P violating Higgs background Hi(z) = vi(z) exp [i6:(z)]
was calculated perturbating around the Higgs field configuration f:(z) = 0, vi(z) # 0,
which, however, is not a solution of the equations of motions. In other words, the
procedure adopted in the original treatment was equivalent to disantagle 6;(z) from
vi(z), whereas from the field equations one could see that 8,0;(z) vanishes as vi(z)
for vanishing v;(z).

CPR calculated the particle currents induced in a bubble wall background at
finite temperature in a model with C' P violation in the Higgs sector. Using a general
field theory approach they showed that fermionic currents arise only at one-loop, so

that a suppression factor O(h,v/m T')? with respect to all previous computations was
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found. The contributions to the Higgs currents was also derived and their relevance
for spontaneous baryogenesis mechanism discussed [37].

This suppression factor has nothing to do with the ones described in Chapter
4, the latter being based on particular hypothesis involving some physics (like the
presence of QCD sphalerons) or some assumptions (like taking the thermal averages
of conserved charges vanishing). On the contrary, the suppression factor depicted in
Chapter 6 lies on very general theoretical grounds and is found when realized that
the charge potential tool to describe particle currents in a space-time dependent and
C P violating Higgs background suffers several problems.

Results of ref. [37] have been very recently confirmed and the same suppression
factors obtained by Huet and Nelson [38], who computed the effects of C'P violation
on particle distributions inside the bubble walls, taking into account the effects of
scattering from thermal particles.

That a typical suppression factor O(h;v/n T)? is really crucial can be understood
when realizing that baryon number violation ceases to be effective for values of the
Higgs VEV of order v, =~ aw/g. A suppression factor of order 10~* arises. The basic
problem is that C'P violating effects give rise to a doublet density in the region of the
wall where the Higgs field is large, while baryon number violation occurs where the
Higgs field is small.

In such a case, it might hard to reconcile the observed value of BAU with the
mechanism of baryogenesis in the adiabatic limit, both in the case of spontaneous
and explicit CP violation in the Higgs sector.

Nevertheless, CPR [37] suggested that, again, transport might help in eliminat-
ing this general drawback for spontaneous baryogenesis. This suggestion has been
recently proven to be correct by Huet and Nelson [39] for the case of EWB in su-
persymmetric models: thermal scattering processes can convert C'P violating charges
into C'P violating thermal particle distributions. The latter can diffuse into the sym-
metric phase, by C'P even thermal processes, where sphalerons are active producing a
baryon asymmetry of the same order of magnitude of that estimated in refs. [35, 36].

We are now ready to start: adelante Pedro, ma con judicio! [40].



Chapter 2

Spontaneous baryogenesis: the

ancient days

The aim of this Chapter is to make the reader familiar with the mechanism of spon-
taneous baryogenesis as was originally described in ref. [28].

In the adiabatic limit it should be valid to treat the plasma in the bubble wall
as being in quasistatic thermal equilibrium with a classical, time-dependent field.
However, the plasma will not be in chemical equilibrium because some interactions,’
such as baryon number violation, are slower than my. This deviation from chemical
equilibrium may be treated introducing chemical potentials for the slowly varying

quantities.

2.1 Toy model

To see how a time-dependent Higgs field can drive baryon number production, con-
sider a toy model [24] with a conserved U(1)p baryon symmetry carried by fermions
¢ (B =1)and x (B = —1), a scalar ¢ (B = 2), and a Yukawa interaction Dxo.

During the phase transition ¢ takes the classical value
#(t) = v(t) 0, (2.1
leading to baryon production, even for qS small compared to the fermion masses. To

19
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see this, redefine the fermion fields by the phase exp [1B6(t)/2]. This removes the
phase from the Yukawa interaction, but leads to a new interaction from the fermion

kinetic term

1. ,- 1.
Lxe = Lxe + 50 ($7°9 — X1°X) = Lxe + 59n5- (2.2)

Thus 6 acts like a chemical potential for the baryon number. KCN used the term
charge potential instead of chemical potential, since the effect is dynamical and does
not arise from any constraint. _

The interaction in Eq. (2.2) splits the energy levels of baryons versus antibaryons
so that the free energy is minimized at non zero baryon number. The interaction
violates C' and C'P and will spatially average to zero except in theories with explicit
violation of these symmetries.

If B symmetry is violated in some other sector of the theory (e.g. through the
electroweak anomaly, then Eq. (2.2) will cause B to try to equilibrate to the value
ng = O(0T?).

If the B violaﬁng interactions are rapid in comparison with 9/ 6, then this equi-
librium value will be attained.

In the real case we wish to study, however, the rate of anomalous fluctuations is
too slow to equilibrate because of the factor afy. In this case, one simply integrates

the master equation for weak scale baryogenesis over an appropriate time scale

dng _ Ty OF _ Ty

At T 6B T

KB- (23)

In Eq. (2.3) OF /0B is the derivative of the total free energy density F(B) calculated
with all the conserved charges kept fixed, I's, is the sphaleron rate per unit volume
and pp is the baryon number chemical potential associated to the slowly varying B
number.

To see how Eq. (2.3) is found (see [42] for a detailed analysis), imagine that the
system is characterized by vanishing conserved charges, so that the free energy of
the system is characterized, in presence of fermions, by a chemical potential (g such
that F ~ u% T?. As a consequence, transitions which increase the B + L number are

disfavoured with respect to the ones decreasing it.
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The ratio between the transition rates with ANcs = +1 and ANgs = —1 is given

by
T
I‘i e~ BT

where Af is the difference of the free energies of the two vacua in presence of fermions.

(2.4)

If we now indicate I'y ~T_ =TI, we get

dnB

dt

Tep
T

—3([y — )= —3 =2 Af, (2.5)

. where the factor 3 comes from the fact that AB = 3 in anomalous events. Recalling
now that Af = 3 0F/0B, Eq. (2.3) is recovered.

What Eq. (2.3) tells us is that sphalerons cease to act only when Ty, is suppressed
or when the system settles into its equilibrium state at which OF /0B = 0, i.e. the
total free energy density of the system is at its equilibrium value.

It should be emphasized that it is not necessary for the charge potential to couple
to the baryon number as in this toy model in order for having a nonvanishing value
of . As long as the charge X is not orthogonal to B, an interaction coupling of the
form J$ will give rise to a non zero value of the chemical potential for the baryon

number

where N is a calculable and model dependent constant.

After the bubble wall has passed a given point in space, the charge potential 6
returns to zero. If baryon number violation is still rapid compared to the cooling rate
of the Universe, the baryon number produced will equilibrate at zero. However, the
anomalous fluctuation rate Ty, goes rapidly to zero as the Higgs VEV turns on, so
that the baryon number drops out of chemical equilibrium and remains to the present
epoch.

Making the crude estimate that this cutoff value of the Higgs field occurs at!

Veo ~ O /g (2.7)

1The correct value of vco is mot currently known. The most optimistic consider it as large as
(14 aw T/g) [41]. In this Thesis we shall support the pessimistic trend and use the value of Eq.
(2.7).
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we find that the final baryon number produced during the phése transition

NT,
T

N fieo .
ng = -9 5 /_w dt 6T, [$(1)] ~ —9 A6, (2.8)

where we have estimated the integral by treating Iy, as a step function equal to its
symmetric phase value (1.11) for v(7T') < vc, and vanishing further inside the bubble
wall.

The quantity Af is then the change in # from the symmetric phase to the point in
the bubble where baryon number violation effectively shuts off; it is a homogeneous
- Tunction of the C'P violating parameter §cp of the theory in question. Furthermore,
Af is homogeneous in v, and could be very small if v, proves to be small [42].

Since I'sp >~ (awT)?, one finds

B~ —-3x10"" (%) <1i0) (%) : (2.9)

to be compared with the observed value B ~ 10719,

2.2 Recipe

Let us now list five steps that must be followed when analyzing EWB in the adiabatic
limit:

1) Identify a model that has a first order phase transition with large time scale
7y and classical Higgs field evolution during the phase transition such that there is a
C P violating, time-dependent phase in the Yukawa interaction.

2) Determine Af from the Higgs equation of motion in order to use Eq. (2.9) to
compute the final baryon number.

3) Rotate the fermion fields of the theory to remove the time-dependent phase from
the Yukawa interactions into a derivative coupling of the form 6 J%. The current X
is ambiguous since the rotation is not unique-one can always rotate so that X —
(X + @), where Q is a classically conserved charge. It is simplest to choose X so that
the rotation is anomaly free, so one needs not to treat couplings of the type 6(15)13’ F.

4) Compute the dynamically generated value of ug. To do so one must introduce

chemical potentials for each conserved or approximately conserved quantum number.
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All the particle densities may be determined in terms of these chemical potentials

and the charge potential é; for each particle species i the density n; is then

2

n; = k; [Xié +3 pa q?] -j-(;— (2.10)

where k; is a statistical factor accounting for the effective degrees of freedom and
differs for fermions and bosons, X; is the X charge of the species i, and the sum is
over all charges which are (approximately) conserved (including B ). The values of
. the chemical potentials g, are fixed by requiring that the primordial plasma does not
carry any quantum number. One can then determine pp and the factor N.

5) Use Eq. (2.9) to compute the final baryon asymmetry. This formula is only
expected to be valid in the adiabatic thick wall regime. If the equilibration time for
particle distributions is long compared to 7y, there may be additional suppression
factors.

Before going on the reader should be alerted on two crucial issues: first, Eq. (2.9)
is obtained assuming that thermal averages of conserved quantities, like B—L and @,
are vanishing, see Chapter 4. This is no longer true when transport phenomena are
taken into account [35]; secondly Eq. (2.10) does not present any suppression factor
recently discovered in ref. [37], see Chapter 6.

Let us now apply these five dogma to a practical case.

2.3 The two Higgs doublet model

The two Higgs doublet model was first suggested by Mc Lerran as a model for EWB
[44] and was analyzed by Turok and Zadrozny [45]. Here we strictly follow ref. [28].

The model is characterized by a Lagrangian

2
L= 3 % Db+ 2 1Dudil” = V (1, 02) + Lyui + Lgauges (2.11)

fermions 1

where the scalar potential is given by [46]

Vignde) = h(le— o)+ (sl —03)
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+ X[ (#ler —02) + ($hr —2)]

+ A [(elen) (d162) — (¢l ¢2) (¢en)]

+ s [Re (g1¢) — vivzcos €]’

+ X6 [Im (¢gs) — vivgsing]”. (2.12)

The Yukawa interactions in L, couple the ¢, field to up quarks; down quarks and
charged leptons may be coupled exclusively to either ¢; or ¢o—either choice suppresses
flavour changing neutral currents and is protected by a discrete symmetry which is
~ softly broken.

For convenience CKN assumed that all fermion masses arise due to ¢;. In fact,
the other option works equally well, since only the top quark Yukawa coupling proves
to be relevant.

During the electroweak phase transition the two Higgs doublets will acquire VEVs.

The neutral components of these doublet take the form
$l=vie ™, ¢ =vye". S (2.13)
During the phase transition the fields evolve towards their zero temperature values

vi(z) = v vaz) — vy

2.14
O(z) -0 w(z)— & (2:14)

Although §(z) = 0 in the vacuum, it will in general change by an amount Af during
the phase transition, with the size and the sign determined by the C P violating angle
¢ in the Higgs potential.

CKN then fixed the unitary gauge ensuring that # is the physical pseudoscalar
orthogonal to the Goldstone boson eaten by the Z°. This gauge fixing eliminates the
w degree of freedom in Eq. (2.13) through the relation

B = (”—1>2 8,.6. (2.15)

V2
During the phase transition, when v, and v, are function of the space-time, the Eq.
(2.15) for w is more complicated to integrate; luckily enough, since only the top

Yukawa coupling proves to be important, no need of integration was needed.
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In the model under consideration, the classical motion of the C'P odd pseudoscalar
field f(z) gives rise to a charge potential. To see this, CKN removed 6(z) from the
Yukawa couplings by performing a space-time dependent rotation on the fermion
fields. Since they did not want to induce any coupling of f(z) to gauge fields, they
eliminated 4(z) by means of an anomaly free fermion rotation; thus they rotated the
fermions by an amount proportional to their hypercharge.

CKN found that 6(z) had derivative couplings to twice the fermionic part of the

hypercharge current J }’ff

L = Lxg-+ hoditr+ hedrdibe

1 2 1 =
=+ "‘+h-C-+26u0[EQL7FQL+§UR7”UR—§DR7UDR

1- _
- gl - ER’Y”ER] : (2.16)

where there is an implicit sum over the three families in the current coupling to 0,0
and ¢ is the scalar doublet ¢; with the phase 6 removed.

During the phase transition, C P violation in the Higgs sector will produce a non
zeto spatial average for the time derivative of 6.

The quantity (9) is then a charge potential which splits particle-antiparticle energy
levels inside the domain walls produced during the phase transition.

Such a charge potential produces a free energy that is minimized for non zero
baryon number. Provided that there is baryon number violation during the epoch
when (9) # 0, a baryon asymmetry will result. The source of baryon number violation
is provided by the anomalous processes of the SM.

CKN first showed that the steady state value for the baryon number B was non
zero and proportional to (9)

Throughout the phase transition, the Universe was assumed to satisfy the con-
straints (B — L) = 0 and (@) = 0: conserved charges were taken to be vanishing. To
enforce these constraints, they introduced chemical potentials pp-r and pq.

Assuming that all particles are lighter than the temperature and in thermal equi-

librium with a non zero (), the net number (particle minus antiparticle) density for
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the sth particle type is given by

2
Yt 5 -
ni=ki (2q7(0) + aP Fun_s + ¢ o) o (2.17)
see Eq. (2.10).
Note that non zero (§) contributes to fermion number densities proportional to
fermionic hypercharge.
By applying the constraints (B — L) = (Q) = 0 and assuming sphalerons to be

active, CKN solved for pp_ and pg

6+n
L = —16 ———
#E-L TS

66 :
= —— (0
He 111+ 130\

6+n T? .

EQ _ EQ _ _ T 2.1
where n5* and ny? are the baryon and the lepton number densities and n is the

number of light charged scalars.

Although this calculation demonstrates the SP mechanism at the weak scale, it
involves sever oversimplifying assumptions. In particular, in a given region of space
a non zero charge potential is generated during an inverse time of order of (1 —100)
GeV, and the rate for anomalous violation is too slow for baryon number to reach its
equilibrium density given above.

It is possible that the time is long enough for weak interactions to remain in
equilibrium, but among the right-handed fermions, only the top quark does have
couplings strong enough to remain in thermal equilibrium with (9)

To deal with a system in which some degree of freedom are in equilibrium while
others are not, CKN needed to consider the rate equations for quantities that are
slow to reach equilibrium.

In the two Higgs doublet model the only interactions which could possibly be in
equilibrium inside the domain walls are: i) the SU(3)c® SU(2)L®U(1)y gauge boson
exchange; 11) family diagonal SU(2), gauge boson exchange; 41i) top Yukawa interac-
tions. Anomalous baryon number, Cabibbo suppressed charged current interactions

and light fermion Yukawa interactions are presumed to be too slow to equilibrate
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inside the bubble wall. Thus CKN introduced chemical potentials for any particle
which takes part to fast processes and then reduce the number of linearly independent
chemical potentials by solving the corresponding system of equations, along the same
lines of what done in refs. [43]. The abundances of any species in equilibrium can
then be expressed in terms of the remaining linear independent chemical potentials,
corresponding to the conserved charges of the system chosen by CKN to be B — L,
Q and also B since the baryonic number changes very slowly inside the bubble walls
and can be taken (approximately) conserved.

Thus, they fixed zero particle-antiparticle asymmetry for each of the right-handed
fermions except the top and (B — L) = (@) = (B) = 0 to calculate OF /6B, which

" is needed to solve Eq. (2.3) at the point where all slowly violated quantum numbers

are approximately zero.

The result is
oF _ é 6+mn

8B 325+ 4n<9>' (2.19)

Since the temperature is constant during the phase transition, Eq. (2.3) can be easily

integkated to yield

nBN 4 6+n OL%VTB

Ay Af ~ 1078 AS. 2.20)
s 3 25+4n s 0 ( )

B =

Af can be estimated from the scalar potential to be

Af ~ [E — tan™! (%tamf)] . (2.21)

Therefore, if A; and Ag are nondegenerate and of order one (so that Higgs fields are in
thermal equilibrium) a C P violating phase ¢ = 102 can explain the observed value
of ~ 10710,

CKN also commented about the fact that the final result for B is independent
from h,—even though baryon production must vanish in the limit of Ay — 0. They
claimed that h; is not present because they assumed the top quark-Higgs scattering
in thermal equilibrium, which is satisfied since the top quark is known to be heavy,
and then the rate drops out of any calculation. They also claimed that C P violation

occurs without loops in SB. The reason is that a CP violating phase 6 does have
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a nonvanishing time derivative due to the equations of motions; in presence of this
background field, tree level diagrams with different numbers of external § quanta can
interfere with each other and produce physical C' P violating effects.

We shall see in Chapter 6 that this claim was incorrect. Loop suppression factors
proportional to h} must be present in the final result for B even if top quark-Higgs

scatterings are fast enough to be in equilibrium.

2.4 The supersymmetric legacy

In ref. [28] CKN shortly discussed also the applicability of what learned in the
- previous Section to the case of MSSM.

Indeed, supersymmetric standard model necessarily has two Higgs doublets and
one might expect spontaneous baryogenesis to work quite naturally. However, CKN
claimed that this is not the case. All C'P violation may be removed from the Higgs
potential and placed in interactions involving only superpartners of the ordinary par-
ticles. The phase ¢ appearing in the potential (2.12) is absent in the MSSM because
supersymmetry enforces the relation A; = Ag = O(g?), allowing £ to be removed.

Provided that the squark and slepton fields do not acquire expectation values
during the electroweak phase transition, the classical evolution of the scalar fields
will be conserving. Since supersymmetry is softly broken, however, a finite splitting
between A; and Ag of order (g°/16n?) will be generated at one-loop when heavy
supersymmetric particles are integrated out of the theory, in particular from a box
diagram with gauginos and Higgsinos running in the loop. This can feed a CP
violation phase {susy into the Higgs scalar sector, and result in C P violating evolution
of the field 6.

From Eq. (2.21) CKN estimated the change in § during the phase transition to

be
2

16 72
The tiny limit on the neutron EDM requires that the new C'P violating phases

AG ~

€susy. (2.22)

in SUSY models be smaller than ~ 107?, which, when combined with the loop sup-

pression and the slow baryon number violating rate results in a net baryon number
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of about .
B ~ 107 £usy < 10712 (2.23)

Thus, CKN concluded that the MSSM cannot be taken as a viable model for EWB
in the adiabatic limit.

The aim of the next Chapter is to show that this conclusion was not correct: a
space-time dependent phase for the Higgs VEVs in the MSSM can be generated at
finite temperature by plasma effects, without being in conflict with any experimental
bounds at zero temperature [29].

In fact this new effect is quite model independent and was shown to be working not
only in the MSSM [29, 30], but also in the next-to-minimal supersymmetric standard
model when a gauge singlet is added to the MSSM [31]: assuming CP conservation
at zero temperature in the scalar sector, spontaneous C'P violation can occur both
inside the critical bubbles and the bubble walls (where SB occurs) thanks to the
interaction of the Higgs scalar fields with the surrounding plasma, which helps in
enhancing spontaneous violation of C'P.

When the temperature cools down, the C' P violating phases relax to 4 so that no
spontaneous C P violation is present in the theory at zero temperature. This allows
to avoid any stringent limit on C'P violating phases of order of 1072 coming from,
e.g., the present experimental bound on the neutron EDM and the possibility to have,
during the electroweak phase transition C P violating phases much larger than 1072

The reader is referred to refs. [29, 30, 31] for more details about this new mechanism.
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Spontaneous baryogenesis in
MSSM: the supersymmetric

ancient days

It is'rather intriguing that the three Sakharov’s conditions for the generation of the
baryon asymmetry in the early Universe might be fulfilled in the framework of MSSM.

In the MSSM the LEP lower bound on the lightest Higgs scalar is presently around
43 GeV [50].

The analysis which have been carried out by now [16] in the context of the one-
loop approximation for the finite temperature effective potential indicate that the
condition to have a sufficiently strong electroweak phase transition, v(T)/T 2 1, is
indeed a strong constraint even in the MSSM, but it is not yet clear whether this limit
rules out or not the possibility of generating the baryon asymmetry of the Universe
at the EWPT [16].

It is likely that the actual upper bound on the lightest Higgs mass coming from
Eq. (1.12) is not very far from the experimental lower bound the next generation of
accelerators (LEP2, LHC) will eventually provide, making the EWB supersymmetric
mechanism directly testable.

Moreover, if one considers also the dependence of v(T)/T on the stop-sbottom

masses and the p parameter, then a small region of parameter space is left, which will

30
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be explored by LEP2.

About the necessary amount of C'P violation to generate the BAU in the right
amount, the MSSM contains new sources of C'P violation and for such a reason can
provide a nice scenario for baryogenesis at the weak scale. In particular, the MSSM
contains two extra explicit CP violating phases with respect to the SM.

The requirement that these phases provide the necessary amount of CP violation
for the generation of the BAU, gives rise to additional very strong constraints on the
parameter space of the model [51]. Indeed, the electric dipole moment of the neutron
* must be larger than 107%7 e - cm, while an improvement of the current experimental
bound on it by one order of magnitude would constrain® the lightest chargino and
' the lightest neutralino to be lighter than 88 and 44 GeV, respectively [51].

However, in the MSSM another source of CP violation may emerge at finite tem-
perature. As was shown in refs. [29, 30, 31], one-loop effects at a temperature
T = (O(100) GeV may induce a non zero relative phase § between the VEV’s of
the two Higgs leading to spontaneous CP violation (SCPV). The phase ¢ varies
with-the VEV’s and with the temperature and, as T goes to zero, it becomes trivial
(§ =0, £x). Due to this fact, the spontancous phase & can assume all the values in
the range 0 < § < 7 and, contrary to the ezplicit phases considered in ref. [51], does
not receive any bound from current experimental constraints on the neutron EDM.

In this Chapter we will consider the implications of the finite temperature SCPV
on baryogenesis. The spontaneous breakdown of C P can lead to different cosmological
scenarios according to the nature of the EWPT.

We will investigate the relevance of the new source of CP violation for the SB
scenario described in Chapter 2 and also discuss the case in which the EWPT is of
the second order and the related problem of the formation of domain walls.

The presence of a space-time varying phase §, can induce a shift in the energy levels
between baryons and antibaryons and bias the anomalous, B violating, interactions,
giving rise to a non vanishing baryon asymmetry. The presence of expanding bubbles
in the thermal bath is essential to this mechanism, since the baryon asymmetry is

generated inside the bubble walls where the phase & changes its value and the B

1Strictly speaking, this is only true when transport phenomena are neglected, see Chapter 6.
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violating processes are active.

Since the phase § can take values of order one, the baryon number creation mech-
anism by a single bubble turns out to be very efficient. For comparison, the explicit
phases considered in [51] are constrained to be of order (1072 — 107%) by the bounds
on the neutron EDM, and the baryon number generated by a single bubble is esti-
mated to be (107 — 1073) times the one generated if SCPV is present. However,
if C'P is broken only spontaneously, then the phase § can take two opposite values,

corresponding to two ezactly degenerate vacua.

This degeneracy between the two vacua in +§ would induce an equal number of
nucleated bubbles carrying phases with opposite signs, which in turn generate baryon

asymmetries of opposite signs.

The BAU obtained averaging over the entire volume of the Universe would then
be zero, We will find that the introduction of very small explicit phases, of order
(107° — 107°), lifts the degeneracy, leading to a difference between the nucleation
rates of the two kinds of bubbles, and possibly to a baryon asymmetry of the right
orde£ of magnitude. We wish to stress that the spontaneous phase § and the explicit
ones play very different roles in this scenario, the former being the real source of C P
violation necessary to the primary production of baryons, and the latter lifting the
degeneracy between otherwise equivalent vacua in order to achieve a global bias of

the primary production.

From the phenomeﬁological point of view, such very small phases give rise to
negligible contributions to the neutron EDM. Moreover we shall prove that a light

Higgs pseudoscalar is needed, and an upper bound on its mass will be obtained.

First, let us briefly discuss the additional possible sources of CP violation in
MSSM, apart from the usual KM phase present in the SM.

As said before, it is useful to distinguish between ezplicit violation of C'P, due
to the present of complex parameters whose phases cannot be removed away by field
redefinitions, and spontaneous C'P violation, which is obtained when the vacuum
expectation values of the Higgs scalar fields are complex even in the limit in which

all the parameters of the theory are real.
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3.1 Explicit violation of CP in MSSM
Let us consider the MSSM superpotential [5]
WSS _ 1y + R H Qi + RLQD + R ERLE, (3.)

where we have omitted the generation indices for the superfields (indicated with hats).

The Higgs sector contains two SU(2)r, doublets

HY? H*
H, = ! and H, = ) (3.2)
H- HY

_ with hypercharge —1/2 and 1/2, respectively.

The lepton Yukawa matrix h® can be always taken real and diagonal, whereas h"
and A? contain the KM phase.

The new contributions to the explicit violation of C P emerge from the operators
which break softly supersymmetry [47]:

z)\ Trilinear scalar couplings:
I H,Qa + ¢ B, Qd° + T° Hy L& + hc, (3.3)
where we have omitted the generation indices and the matrices I'(wde) are defined a,s.
T(e) = gy AEE) . 0], (3.4)

3/ being the gravitino mass. Generally in supergravity models the matrices Alwde)

are assumed to be proportional to the identity matrix at the Planck scale
A (Mp)=A-1, (3.5)

where the A parameter can be complex.

i) Bilinear scalar coupling:
p B HiH; +h.c. (3.6)

#1) Majorana gaugino masses:

1
5 (MlAl)‘l -+ MzAg)\z + M3A3A3 + hC) , (37)
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where the initial condition in Grand Unified models reads
M, = M, = M5 = m. (3.8)

w) Scalar soft masses:

m2,Z 7, + h.c. (3.9)

To avoid too large supersymmetric contributions to the (K° — K°) mass difference,

it is usually assumed that at the Planck scale
My = M3 300 (3.10)

The new contributions to explicit violation of C'P are given by the phases of the
complex parameters A, B, and 7, which break softly supersymmetry, and by the
parameter x in the superpotential. Two phases can be removed [48] by redefining the
phase of the superfield H, in such a way that the phase of y is opposite to that of B,
¢ = —¢p. The product pB in Eq. (3.6) is then real.

It is also possible to remove the phase of the gaugino mass 7 by an R-symmetry
transformation. The latter leaves all the other supersymmetric couplings invariant
and only modifies the trilinear ones, which get multiplied by exp(—i¢y;) where ¢z, is
the phase of m.

The phases which are left are then

¢4 = arg(Am) and ¢p = arg(Bm), (3.11)
which are present in
A=|4]| &4, B=|B|e®" and p= || e5. (3.12)

Note that the convention arg(pB) = 0 leaves all the parameters of scalar potential
real at the tree level.

The two new phases ¢4 and ¢p do not have any effect on the C P violation in the
(K° — K°) system. On the other side, new important contributions to the neutron

EDM d, can be generated. The experimental upper bound on d, is of order of
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1025 e - cm [49]. Assuming all the supersymmetric masses equal to mg/p, the SUSY
contribution to d, is given by [48]

2 * u *
diUSY ~ (100 GCV) Mg(BMz) + arg(FnMs) 10 e - cm. (3_13)

m3/2 10-3

Thus, for mg/s > (10‘1 —1) TeV, we get

$a, ¢5 S (1072 —107%). (3.14)

3.2 Spontaneous breaking of CP
Let ®; be a generic scalar field, which transforms under C'P as
CP & CP™' =% &} (3.15)

Assuming the the vacuum is invariant under C'P, CP|0) = |0), the phase §; of the
field ®; and the phase ¢; are related through the equality

(0];])0 = v; € = (0|CP & CP7|0) = v; €475, (3.16)

or

8 = -;— ¢; + nm, (317)

where 7 is an integer number. If the above Equation is not satisfied, then v; = 0.

If one requires that a generic potential V(&) be invariant under C P, different
relations among the phases ¢;, and then on the ¢; through Eq. (3.17), are obtained.
For instance, if the potential does have a trilinear term of the type Aijx®:®,;®x +h.c,,

C P invariance is obtained if
6 + 5]' 4+ & + ¢)‘ijk = nm, (318)

where ¢y, is the phase of the parameter Aijk-
If the phases 6;, which are found by minimization of the scalar potential cannot
satisfy relations similar to the one in Eq. (3.18), it will mean that C'P is spontaneously

broken.
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Let us analyze a few examples to clarify the previous statements.

In the SM the scalar potential depends upon the modulus of the Higgs field and
CP is conserved for any value of the Higgs VEV.

In the case of the two Higgs doublet model, we can consider the example of the
operator

As (H H)? + h.c. (3.19)

Assuming As; to be real, the operator is C'P invariant if the phases of the the two
Higgs fields, §; and &, satisfy the relation

§=6+6 = ";—” (3.20)

where we have used the definition

(HY) = vy & and(HY) = v, &2, (3.21)
Thus, in absence of any other operator involving é; and &5, a fully imaginary phase

6 =1 does not imply violation of CP. However, if the operator

m% H1H2 + h.C. (322)
is present, among the values of § satisfying Eq. (3.20), only those for which

6 =nm

(3.23)
leave the theory C' P invariant.

Let us now consider the most general two Higgs doublet model scalar potential
Vo= mi|H| 4 mi B — (miHHy + he) + Ay [Hy' + Xg [H|* + X | By | Hy?
+ M |H | + A5 (HyHo) + Xs | Hy | HyHy + Ar |Hy[* B H, + h.c)] (3.24)
The scalar potential for the MSSM is a particular case of the potential (3.24).

m3

Let assume that all the parameters of the potential be real. Since both s and
2

are present in V, from the discussion above we know that C'P is spontaneously
broken if § = §; + 63 # nw. This condition is satisfied if

As >0 (3.25)
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and !
2 2 2
mj; — Ae V] — A7 V3

—1<A= < 1. (3.26)

4A5 V1 V2

If it is the case, the relative phase & is given by the relation
cos§ = A. (3.27)

Moreover, minimizing the scalar potential and taking into account the conditions

necessary to avoid charge breaking through VEV’s of A + and H™, we have
>\4 — 25 < 0. (328)

Let us now focus on the supersymmetric standard model potential. At the tree level

SUSY imposes the following relations for the couplings of the dimension four operators

1
Moo= =g (gf+g§)a
1
. A3 = Z (gg - gf) 9
1
Ay = ) 92>

We immediately see that SCPV cannot occur in MSSM at the tree level.

Due to the SUSY non-renormalization theorems [52], radiative corrections cannot
change the tree level values of the couplings X’s when SUSY is an exact symmetry
of the theory. The only radiative contributions able to modify the relations (3.29)
and lead to SCPV must involve operators which softly break supersymmetry. These
operators, of dimension two or three, can induce finite renormalizations of the A
parameters. Indeed, it was shown in ref. [53] that A5 can be renormalized at one loop
and get a positive value when scalar quarks, neutralinos and scalar Higgses run in
the loop.

However, the real problem is the condition (3.26). At one-loop the condition
|A] < 1 implies

m? 4+ Am2 — Adgv? — A A v < 4 AXs vy v, 3.30
3 3 1



38Chapter 3. Spontaneous baryogenesis in MSSM: the supersymmetric ancient days

where the quantity m} 4+ AmJ is related to the mass of the pseudoscalar® Mo by
M3, ~2 (mg + Amg) / sin 2, (3.31)

where tan 8 = vy /v;.

As a consequence, SCPV implies a very light pseudoscalar mass arising at one-
loop, M 4 <10 GeV [54], already excluded by LEP [50]. This result is nothing else than
the generalization of the Georgi-Pais theorem [55] stating that radiative corrections
can induce SCPV only if the model contains a zero spin particle with vanishing mass
at the tree level. In such a case, this particle identifies with the pseudoscalar A°.

SCPV in MSSM at zero temperature is then viable from the theoretical point of

view, but experimentally excluded.

3.3 SCPYV in the MSSM at finite temperature

In this Section we shall analyze the possibility of SCPV in the MSSM at finite tem-
pera:’;ure. We shall show that news contributions to the couplings Ase,7 and mj can
arise at finite temperature from radiative corrections. The effective potential can
then have a C'P violating minimum, with a nonvanishing phase §. The latter, when
the Universe cools down and relations (3.25) and (3.26) are no longer satisfied, goes
to zero and the only sources for C'P violation remain the KM phase and the § pa-
rameter of the QCD vacuum (apart from the possible explicit phases ¢, and ®B).
Furthermore, the mass of the pseudoscalar A°, calculated at zero temperature, may
be compatible with all the experimental bounds.

Differently from then phases ¢4 and ¢g, which cannot be larger than ~ (1072 —
1077) to avoid the limit on the neutron EDM, the spontaneous phase §(T) may assume
large values, §(T') = O(1), since at zero temperature it vanishes.

Radiative contributions to the parameters As 6,7 and mj can be obtained either
diagrammatically or calculating the one-loop effective potential. We shall follow this

second option.

2If C'P is broken spontaneously, the mass eigenstates of the scalar sector are no longer eigenstates
of CP. However, one of the eigenvalues of the mass matrix is given approximately by (3.31).
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The one-loop contribution at finite temperature to the effective potential can be
decomposed into the sum of a T=0and a T # 0 term and reads in the 't Hooft-Landau

gauge and in the DR scheme of renormalization [56]

AVioy = L Str {M(¢)4 (ln M(9)" §)} (3.32)

64?2 Q2 2
AVrgo = AVpg+AVET, (3.33)

where M?(¢), with ¢ = (H?, HY), is the field dependent squared mass matrix; the

supertrace

Str =Y (=1)* g; (3.34)

counts all possible particles with a ¢-dependent mass, spin J; and degrees of freedom
gi; Q is an arbitrary renormalization scale, and the Q2-dependence is compensated by
that of the renormalized parameters, so that the full effective potential is independent
of Q% up to next-to-leading order®

Defining agy(f) = Mg’(f) /T?, where My, 1) is the bosonic (fermionic) mass matrix,

the T' # 0 contributions may be written as

1 1 1 a?
bos  __ 4 2 23\3/2 4 b
AVES = T* Str Ezab———————l2ﬂ_2(ab)/ —--—647r2ab111 N

3/2 ZZIH)’ Q(%?_:__‘*T)l'l r <l+ %) (5’3)”2} ; (3.35)

1 4, g

€rm . 1
AV]{:;EO = T4 Stl’ —‘—(l? + ‘6—4—;5(1{ Af

48
71'3/2 ) . 1— 2——2l~—1

e I e eICA (z+ %) (g—)m} . (3.36)

=1

(ar < )

3See ref. [57] for a complete analysis of two-loop corrections to the effective potential.
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where Ay, = 16A4¢ = 167%exp(3/2 — 2vg), v& = 0.5772, { is the Riemann function.

Egs. (3.35) and (3.36) give an exact representation of the complete one-loop
effective potential at finite temperature [58] for a;, < 27 and a; < 7, respectively.

As long as SUSY is exact, A5 7 are zero at any order in perturbation theory. So
the only renormalization to these parameters may come from the soft SUSY breaking
sector. In particular, we find that the dominant contributions are those coming from
the gaugino mass terms, M 5, which enter the charginos and neutralinos mass ma-
trices, and by the sfermion mass terms My g which appear in the stop mass matrices.
In the following we will evaluate the one-loop renormalizations to As,7 and m3 at

finite temperature, including in the effective potential the mass matrices of charginos,

" - neutralinos and stops.

The stop mass matrix reads
M:, M}
M; = ( o ) : (3.37)
Mir Mgg
where

Mp, = M+ Tg+k? |HS[
+ (E-5) (mr - fmep).
Mip = B+ T+ b} |3
= ((m ),
Mip = h(AH +p" HY), (3.38)

and

4
I; =z ~ 5 g> T2, (3.39)
are the polarization squared masses of the stops in the limit of very heavy gluinos

[16].

Taking Mé = M the stop mass matrix takes the convenient form

a; =ap-1+a; (3.40)
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where a?Q = (Mé + II;)/T?, 1 is the identity matrix, and @? is the field-dependent
part of the mass matrix, z.e. a? — 0 as the fields vanish. Summing up all the terms
in Eq. (3.35) in @}, a¢ and a;, the following contributions are obtained from the stop
[29, 30]

: 1 2
Am:(;)z _ +3h?AtTa”et¢u [ + 1 (]. Q n 3) +4B4[CLQ]] y (34.1)

87ra,Q 167?2 Asz
42 2 1

AN = —12miEE ke 2

5 t 2 Bsla ] 2567ra5Q ’ (342

(s) __ 2Ata' 145 L
AX = —-Ght—j;ﬁ g { (95 +97) (Bﬁ[az?] - 192%&%)

1
1 4hfa,i (Bg[aé] + m)] ) (3.43)

. o Ata b 3 1
AN = _6]7,?—51—'164’ [(th — Z(gg +gf)) (BG[QQQ] - 19271—0,522)

where we have defined a, = |p| /T and
- 2 \l+2-n
271 3/2 1y ¢(20+1) I‘(l 1) I+ 2) (a3) 4
Banlag) = zzma%,n—z] (-1) i+ 2)1 + 2 n (4m2)i+2 (3.45)

n=2234... ag < 2w.

The series in (3.45), having terms of alternate signs, may be easily evaluated numer-
ically.

With the choice, |p2| = |M?| = |M2| = a2T?, the chargino and neutralino contri-
bution are obtained in a completely analogous way and read (see also the Appendix

of ref. [31] for a complete analysis)

(0)2 9 2 145 1 QZ 3
- Amg = +g2T n 3 In AfT2+ + 8F4[a ] (3.46)

MO = sebab e (47
A/\gc) — AX(,C) 494 2 i [3fﬁ[ai]+4aifg[ai]] y (3'48)
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and
9 9 2 2
Am:(;z)2 _ (g5 + gl)AmgC)2, A/\z(,“) — @.?.iz_gl_)_A)‘z(C), 1=25,6,7. (3.49)
293 2g;
where

71.3/2 oo . 1 —9-2-1

1\ (142 (lau/?)** "
Fonld?] = — —-1) ——— ((2l+1 I‘(l—i-—)( )—--—~—
2 [ Il] 8 l:maﬁv{_;’n-z] ( ) (l+2)| ( ) 2 n (TFZ)H-Z
(3.50)
In ref. [29, 30], it is shown that the conditions for SCPV at finite temperature, 7.e.

AXs > 0, (351)

and

m3 — AXgvi(T) + AAE(T)
4AN03(T)o2(T)

where M2 = m2 + Ami® + Ami™ + Am2@ and AN = AN + AXND 4 AN

(¢ =5,6,7) can be satisfied, for temperatures around the electroweak scale, in a wide

cos §(T) = <1 (3.52)

region of the parameter space compatible with the present experimental bound on
the mass of the Higgs pseudoscalar. Typical numerical values for A); are around -
1075, whereas A)g, AA; ~ 10~%. This means that in order to have spontaneous C' P
violation, 3 must be of order AXs v(T') + A); v3(T) within a 10 percent, see Eq.
(3.52).

The fact that 7] must be small enough to have SCPV does not mean that we get
necessarily a very light pseudoscalar, as in the case of zero temperature. Indeed, at
T = 01it is the quantity mj + Am3(T = 0) which must be small, leading to M4 < 10
GeV. On the other side, at finite temperature, the qﬁa,ntity which must be small is

m%: since

My = =3 [ - Ami(T £0)], (3.53)

Am3(T # 0) can be large enough for M o to avoid the LEP limits.

One-loop contributions to A5 67 and m2 from the Higgs scalars and the Goldstone

bosons are always proportional to mj and can be small if m2 is small (this does not
create problems with the bounds on M 4o since the latter receives large radiative con-

tributions from stops, neutralinos and charginos). However, a negative contribution
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to s proportional to —T/M, where M is the smallest eigenvalue of the Higgs mass
matrix (with plasma effects taken into account) calculated in the origin, can arise
“reducing the region of the parameter space where SPCV violation occurs (this effect
is analogous to what happens in the next-to-minimal supersymmetric standard model
[31] where infrated divergences prevent to have SCPV inside the critical expanding
bubbles unless the lightest of the stops has a mass close to its experimental lower
bound of 45 GeV). However, in spite of these infrared effects, sufficiently large re-
gions of the parameter space are left where C'P can be spontaneously broken at finite

" temperature.

3.4 A time dependent phase

The spontaneous C P breaking can lead to different cosmological implications accord-
ing to tiie nature of the EWPT.

If the latter is of the second order, all the quantities in Eq. (3.52) will evolve
smogfhly with the temperature, so that there will be a time interval during which
the conditions (3.51) and (3.52) are satisfied, and cos §(T") varies from 1 to -1. As
the temperature decreases below a critical value Tiest, the T-dependent quantities in
Eq. (3.52) become such that |cos §(T)| > 1 and CP is restored.

During the time interval in which | cos §(T)| < 1 domain walls separating positive
and negative phases can form. Indeed, as long as the coefficients of the scalar potential
are taken all real, the two vacua having §(T) = arcos(|A(T)]), with |A(T)) < 1, are
completely degenerate from the energetic point of view.

The evolution time scale of the phases is dictated by the Hubble parameter and, as
a consequence, inside each domain out of equilibrium conditions cannot be attained.
However, if the degeneracy of two vacua is slightly lifted, domain walls move due to
a pressure difference and out of equilibrium occurs inside the domain walls.

We shall analyze this possibility later one, showing that it cannot have relevant
consequences as far as the baryogenesis is concerned.

On the other hand, if the EWPT is of the first order and proceeds by bubble

nucleation, the temperature keeps constant until all the Universe is in the broken
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phase, then m3 and AJ; are fixed during the phase transition, whereas v; and v,
change their values at the critical temperature 7, from zero to v1(7¢) and vy(T,) when
a bubble wall passes through a fixed point. Any steady observer will then experience
a change in the phase 6 from 0 to 7(—) in a time interval Ty = v,,/L,, ~ (1—100)/T
(the time of the passage of the wall) if, as we assume, inside the bubble the modulus
of the ratio in Eq. (3.52) is greater than one.

In the following Section we shall investigate the cosmological implications of the
two different scenarios outlined above.

Let us only note that, as long as even a small explicit violation of CP is absent,
bubbles with equal in modulus, but opposite sign of §(T'), §(T) = arcos(|A(T)|),
* are produced in equal number during a first order EWPT by tunneling since they
are energetically equivalent. The consequences of this fact for baryogenesis will be
discussed in the following. For the time being, let us focus on the fate of bubbles with
a definite sign of §(7').

3.5 Application of SCPYV at finite temperature to
spontaneous baryogenesis

As we have discussed in the previous Sections, the evolution of the effective potential
as the temperature decreases may induce a non vanishing relative phase between
the two Higgs VEV’s. Such a new source of C'P violation may be relevant for the
generation of the baryon asymmetry of the Universe during the EWPT by means of
the so called spontaneous baryogenesis scenario described in Chapter 2.

Let us recall that the main underlying idea of this mechanism is that a space-time

varying phase § may induce an interaction of the form
Ling ~ 0,6 J". (3.54)

If the current J* is not orthogonal to the baryonic one, then the interaction term
(3.54) shifts the energy levels of baryons relative to antibaryons. The time derivative
of the phase 6 acts as an effective (charge) chemical potential for the baryon number.

If an interaction like that in Eq. (3.54) is active when also baryon number violating
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interaction are in equilibrium, then the thermodynamic evolution of the system leads
to a non zero baryon asymmetry.

An interaction of the type (3.54) emerges in the MSSM if one chooses the fermion
basis in such a way that at any time and at any point in space the fermion masses
are real. This implies that a space-time dependent rotation has to be done on the

fermion fields in order to remove the phase § from the Yukawa couplings
hy vy e dd° + hy o e 2 yu + he vy e " ge® + h.c. (3.55)

- at the price of introducing new interactions of the form (3.54) coming from the
fermionic kinetic terms.

The minimization of the effective potential can only fix the combination 8= 61+ba,
whereas the orthogonal combination corresponds to the Goldstone degree of freedom.

A variation of § is shared between §; and &, according to the variation

) _
e = wmy s aT (3.56)

which is orthogonal to the unphysical Goldstone mode absorbed by the gauge fields.

d51 -

The phases §; and §; can be removed from the Yukawa interactions (3.55) by a
space-time dependent rotation of the fermionic fields
d — eiw d, dc — ei(61—w) dc’

u— e u, u — ez(ﬁg—-w) us,

- e 3.57
e—e“e, e — e(61—2) e, ( )
v — €@y,
where w(z) and &(z) are arbitrary phases.
We know that making a generic rotation on a Dirac field P
b - expli(a+ ) O] ¥, (3.58)
where a and b are constants, generates the additional term in the Lagrangian
AL = m [exp (2iObys) — 1] + Dy (a + bys) 9 0,0. (3.59)

The axial rotation in the first piece will eventually cancel the complex phase induced

in the Higgs potential. The second piece exhibits the conservation or otherwise of the



46 Chapter 8. Spontaneous baryogenesis in MSSM: the supersymmetric ancient days

associated current via the topological terms. There are two such contributions to the
effective potential induced by the above rotation (3.57).

The first type is the anomaly term
FLFy
32 72

FpFy

ALcs = i0 (a — b) —

(3.60)

—10 (a +b)

where Fp(p) is the gauge field coupling to Yr(r). Such terms are temperature inde-
pendent, as shown in ref. [59].
One of the two arbitrary phases w and @ can be eliminated by requiring that the

rotation (3.57) does not introduce extra SU(2);, terms of the Chern-Simons type in

. theé Lagrangian. This requires

1
w=—=0o. (3.61)

3
In general, even is such a choice is made, there will be a second kind of contributions
to the Chern-Simons like terms arising from a Taylor expansion in powers of momenta

of non local one-loop triangle diagram at finite temperature [45, 83]

ALesr = zb@A(T)( 5ot 35«5)’

AT) = 33? ¢(3) WZ”;Q (1 - gz gg; St ) L 36

The effect of these terms was studied in [83] where it was shown that their contribu-
tions to the baryon asymmetry is negligible with respect to the contribution coming
from the charge potential* and we shall not consider them any longer in this Chapter.

Making the rotation (3.57) with the choice (3.61), the fermionic kinetic terms give

rise to the derivative couplings
Lini = 0@ Jg_1, + 0,63 Jhie + 0,61 Jhe + 8,6, Jk. (3.63)

These currents correspond, respectively, to the B — L vectorial current, to the anti-

quark up and down and to the antilepton currents.

4This statement was true when CPR wrote [29]. Nowadays, since CPR have shown that several
suppression factors were missing in the original treatment of the charge potential mechanism, the
importance of these terms should be reconsidered.
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The first coupling is not suitable for SB since it introduces an energy splitting
between the states with positive and negative B — L and, since all the interactions of
the SM conserve B — L, transitions between the two levels are forbidden. The other
three couplings, however, involve charge numbers which are not conserved if the
respective Yukawa interactions are active, so that they can play a role in generating
the baryon asymmetry together with anomalous B violating processes processes.

Assuming for the time being that all the Yukawa interactions are in equilibrium,

the number density of each species is given by

. ~ T2
n; = k; (95 +qf s+ g’ #Q) 6 (3.64)

- where 6; represents the rotation phase of the i*? species in Eq. (3.57).

Imposing the constraints (B — L) = (@) = 0, one gets

‘ . .\ T2
nEQ =t = -1;’—7 (99 b, + 131 52) = (3.65)

However during the EWPT the simplifying assumptions leading to eg. (3.65)
have to be revisited. In particular, the only right-handed fermion which might be
in thermal equilibrium is the top (or, for large values of tan 3, also the right-handed
bottom).

Moreover, since the typical time scale of the P violation in this system is
(1072 — 1) GeV ™", the rate for anomalous baryon number violation is too slow to
allow baryon number to reach its equilibrium density (3.65). For such reasons it

seems more appropriate to make use of the master equation (2.3)

g = —9 I‘Sp%?—. (3.66)
Introducing the chemical potentials pp_r, po and pp and setting the net densities of

the light, right-handed particles to zero and (B — L) = (Q) = (B) =0, pup reads

2 .

Eq. (3.66) will be integrated in Section 3.7 when we will estimate the baryon
asymmetry produced under the hypothesis of a first order EWPT. Before turning to
that scenario, which is the more promising from the point of view of baryogenesis, we
want to make some comments on the cosmological implications of the spontaneous

O P violation in the MSSM when the phase transition is of the second order.



48 Chapter 3. Spontaneous baryogenesis in MSSM: the supersymmetric ancient days

3.6 Second order EWPT and domain walls

If we assume that the EWPT is of the second order, as expected for large values of the
mass of the lightest Higgs, the spontaneous C P violation will lead to the formation
of domain walls separating regions with opposite signs of the phases §’s, whose cosine
is given by Eq. (3.26) [61].

Domain walls are an unavoidable prediction of models in which global discrete
symmetries are spontaneously broken [62]. Since their energy density grows faster
 than that of the radiation, at a certain temperature they begin to dominate the
evolution of the Universe, destroying its homogeneity and the isotropy of the relic
radiation. However, if the discrete symmetry is broken only in a limited temperature
interval, as for example in the scenario proposed in ref. [63], then the domain walls
will decay as the symmetry is restored. If the temperature of symmetry restoration is
higher than that at which the walls begin to dominate over radiation any dangerous
consequence for the evolution of the Universe is avoided.

This is precisely what happens in the present case, since C'P is restored at a
temperature that is of the order of 1 — As5/)\s times the temperature at which it is
broken, i.e. Trey = O(100) GeV, whereas the temperature at which the walls begin

to dominate is about 107*(v/100 GeV)3/2 MeV, where we have assumed v; ~ v, = v.

Domain walls may also plé,y a role in baryogenesis, as for instance in the left-right
symmetric model considered in refs. [64, 65]. In principle, also in the model we
are considering one could think to investigate on the possibility of implementing the
spontaneous baryogenesis mechanism. Indeed, the phase changes from § on one side
of the wall to —§ on the other side, so that there is a net change of 26 at any point
when the wall passes by it.

The motion of the wall can be obtained if the degeneracy between the two vacua
is slightly lifted, for example by introducing small ezplicit phases ¢.

At the temperature at which the difference in energy density between the two
vacua equals the energy density of the wall itself, which is of the order of (A;¢ M, ;_;1/ R LERS
100 GeV for ¢ ~ 1072, the walls start moving in the direction of the energetically

disfavoured domain.
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A necessary condition to make the spontaneous baryogenesis scenario work is
however that the baryon number violating processes are active inside the walls and
suppressed outside, otherwise the baryon asymmetry would be wiped out. Recalling
the condition in Eq. (1.12), this could be achieved if for some temperature interval
the ratio v(T)/T were sensibly less than unity inside the wall and greater outside.
Unfortunately this is not the case in this model, since the difference between the two
VEV’s is of the order of (Xs/g%)'/2v ~ 1072 v, consequently the B violating processes

freeze out inside the wall and outside it almost contemporarily.

8.7 First Order EWPT and Spontaneous Baryo-

genesis

We now-turn to the discussion of the consequences of the SCPV in the case in which
the EWPT is of first order and proceeds via bubble nucleation. In our scenario

the spontaneous baryogenesis mechanism is implemented through the change of the
VEV’s phase § inside the bubble walls where the VEV’s moduli change from 0 to
v1,2(Te).

If one approximates I's, by a step function for v S veo, as explained in Section
2.1, and takes into account that the temperature during the EWPT keeps constant,
one can easily integrate the master Eq. (2.3) and find the baryon number density to

entropy ratio induced by a single bubble

A
B= (35) ~3x1077 (—ﬁ) : (3.68)
local

S ™

The local baryon number density to entropy ratio (3.68) generated by the passage of
the wall would be erased if the anomalous interactions were still active in the true
vacuum. If in the middle of the bubble v(T)/T 2 1, the sphaleron rate is safely
suppressed.

This bound translates into an upper limit on the mass of the lightest higgs scalar
in the MSSM. As we have discussed in the introduction to this Chapter, it is not clear
whether this limit is or not compatible with LEP data [50].
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In the following we assume that the first order phase transition is sufficiently
strong so that the bound (1.12) is satisfied. Moreover, we will define the bubble wall
as the region in which sphalerons are active, that is, in which 0 < v(T)/T < 1.

Since the temperature keeps constant throughout the phase transition, the change
of the phase ¢ at a given point is induced by the change of the VEV’s v o(T') as the
bubble wall passes through that point.

More precisely, one can easily infer from Eq. (3.26) that, as the VEV’s change

from v, 10 Vpmay, Where

2 m3 1
v, = ,
i cos?@ A¢ + Artan? B — 4);5tan B
W, = = (3.69)

max cos?2 B dg+ Aztan?B + 4Xstan B’

The relative phase § changes from 0 to +m (we are assuming here that tan 8 keeps
constant at any temperature) . If vpa./T < 1, the variation of § lies entirely inside
the bubble wall, so that Ad in Eq. (3.68) may be as large as 7.

In refs. [29, 30] it is shown that the requirement vma./T < 1 is fulfilled in a
phenomenologically acceptable region of the parameter space. ;

On the other hand, from Eq. (3.69) we read that this condition implies 0 <
3 S As7 T2, which in turn induces a strong correlation between the parameters m%o
and tan g [29, 30].

In Fig. 1 we see that this requirement fixes the pseudoscalar mass with an accu-
racy of roughly 10 percent, which gives a measure of the fine tuning needed by this
mechanism.

In Fig. 2 we have allowed the other free parameters of the model to vary in the
range allowed by the condition (3.25) [29, 30], and we have obtained the absolute
upper and lower bounds to the pseudoscalar mass. The dashed line represents the
experimental lower bound [50], so that we can also see that values of tan 3 less than
~T are excluded.

Note that in the case of explicit breaking of C'P like that considered in ref. [51]
we have A§ = O(1)écp where §¢cp is bounded to values less than 1072 — 10~3 by the

experimental limits on the electric dipole moment of the neutron, which do not apply
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to the present case. Thus, we can read from Eq. (3.68) that the baryon production
by the single bubble with the mechanism discussed in this Chapter is at least two or

three orders of magnitude more efficient than in the case of an explicit C'P violation.

As we have previously discussed, for any set of values of the temperature and the
other parameters of the model, the effective potential has a double degeneracy in +£6
as long as Eq. (3.26) is satisfied and there are no new complex phases other than the

one in the Cabibbo-Kobayashi-Maskawa matrix.

Since we are assuming that the Higg’s VEV inside the bubble is greater than

Vmax, i.6. C'P is restored, the vacuum in the broken phase is now unique, unlike the

- - situation discussed in the previous Subsection.

On the other hand, inside the bubble walls, where the VEV is between vmin and
Vmax, the condition (3.26)) is satisfied, and then the ambiguity between the two signs

is present.

Stated in other words, the phase § may follow two different paths as the VEV’s
change inside the walls, namely, from 0 to = or from 0 to —w. This results in two
possible signs for ) , and then to the nucleation of two different kinds of bubbles, say
plus and minus bubbles which, according to Eq. (3.68), create baryons of opposite

signs.

Since there is no way to prefer one kind of bubble relative to the other one, the

net baryon asymmetry, averaged over the entire Universe, will be zero.

In the following Section we show that allowing the soft SUSY breaking parameters
and the p parameter to take complex values, the effective potential takes on a sin §
dependence, and then one sign of § becomes energetically favourite with respect to
the opposite one. In this way the two kinds of bubbles have slightly different surface
tensions, and then free energies, so that their nucleation rates are no more equal. As
a result, an abundance of one kind of bubbles relative to the other, and then a non
zero average baryon asymmetry, is achieved. We will also find that the job may be
done by explicit phases as little as 107> — 107°, which give a negligible contribution
to the neutron EDM.
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3.8 Choosing the good bubbles

We recall that, defining
A= |Ale"*s, B = |Ble'*s (3.70)

where A and B are the trilinear and bilinear soft SUSY breaking parameters it is
always possible to rotate the phase of the parameter p taking

= |ple="®B, 3.71
i

. so that m2 = uB is real.
A and p enter the one-loop corrections for mj and A5 g 7 (see Section 8.3), so these

- parameters take phases which, if ¢4, dp < 1, are given by

g = Bl 1AmS) +|Ame| 4 [AmD)|
w3l |3
¢; = ]A];\\l(;)lgb — ¢, ©1=25,6,7, (3.72)
where we have defined
3 = [m3] e, As = |As| e and Mgz =|Ag7| e, (3.73)

and approximated sin ¢4 5 ~ ¢4 p.

The scalar potential now has also terms depending on sin §, which are given by
AV (sind) =~ 2siné vi(T) voT) x

[173] (65 — bs) — [Xs] v3(T) (5 — ¢s)
— M| v3(T) (¢ — ¢7)] : ’ (3.74)

For fixed v;,2(T) there are two minima in §. The potential (3.74) slightly removes the
degeneracy between them, that is, it distinguishes between plus and minus bubbles.

We now come to an estimation of the abundance of one type of nucleated bubbles
relative to the other one, due to the breaking of the degeneracy. Inside a comoving
volume coincident with the horizon volume , the ratio between the number of plus

and minus bubbles is

N -
ﬁ:i = e AF/T, (3.75)



3.8. Choosing the good bubbles 53

where AF is the difference between the free energies of the two kinds of critical
bubbles.

The free energy of a bubble of radius R is given by the sum of the volume and
surface energies®

4
F = —éf RV — 41 R0, (3.76)

where V is the density energy of the true vacuum and o the surface energy density.
Reminding that the radius of a critical bubble, i.e. the minimum radius that a
. bubble must have in order to grow indefinitely, is given by R. = 20 |V, we can rewrite

the exponential in Eq. (6.4) as

(3.77)

AF  F(R.) (3A0' B 2AV>

T T o v /]
where Ao and AV are the differences in surface tension and volume energy density
of the two kinds of bubbles.

The ratio F/T during the bubble nucleation was evaluated in ref. (66] in the
contéxt of the Standard Model.

In that paper it was found that F/T varies from ~ 130 when the first bubble is
nucleated into an horizon volume to ~ 100 when all the Universe has been filled up
by bubbles.

The above results are stable within a few percent as the Higgs mass is changed
from 50 to 100 GeV [66] so we believe that these estimations may be valid for the
MSSM as well.

Since we are supposing that inside both kinds of bubbles the condition (3.26) is
not satisfied, the contribution to AF/T coming from AV/V is zero.

In fact, in this case the minimization condition relative to the phase é gives only
one solution § = O(¢;) (i=3,5,6,7) and the vacuum inside the two kinds of bubbles
is the same.

On the contrary, the surface tension contribution will be slightly different. A

5Rigously speaking, the expression for the free energy is only valid in the thin wall imit and
it is disputable whether this limit is applicable to the MSSM case. However, since we are only
interested in the relative difference of the free energies AF/T, and not the absolute value of AF, we
are confident that the error be negligible.
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convenient expression for o is given by [66]

»(R+AR)

o %/ V2V (v) dv, (3.78)
(R-AR)

where AR is the thickness of the wall.

Using the fact that inside the bubble wall dv/dR = +/2V, o can be approximated
by 4VAR, where V is the averaged value of V inside the bubble wall.

If, for instance, we take ¢4 < ¢p (this assumption is not restrictive) a straight-

forward calculation gives

AFR _ FAF_SFAJ
T T F T o
F m%, cos?p

~ 10 — Mao €08 P , 3.79

T T2 &2 ¢5 (3.79)

where T, ~ 100 GeV is the temperature at which the effective potential develops a
flat direction in the origin, and &, is the top Yukawa coupling.
The relative abundance of one kind of bubbles on the other one will give a global

baryon number density to entropy ratio

np N, —-N_ np AF
B <__> R (._.> il 80
8 / local N+ + N_ S Jlocat T ’ (3 )

where (np/s),, ... is given in Eq. (3.68).

Remembering that F/T is O(100), a value of B of order 107'° can be achieved
with a phase ¢p ~ (107° — 107°).

Such a small phase makes the supersymmetric contribution to the C'P violation
phenomenology unobservable. Moreover, this value is much smaller than that required
in previous analysis on supersymmetric spontaneous baryogenesis which makes use
of explicit phases as the only source of C'P violation [51], whereas in our mechanism
explicit phases are only needed to achieve an asymmetry in the number of plus and

mainus bubbles, while the dominant source of C'P violation is the spontaneous one

inside the bubble wall.
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3.9 Finale

In the present Chapter we have investigated the role of spontaneous C P breaking at
finite temperature in the MSSM [29, 30] for the generation of the baryon asymmetry
at the electroweak scale.

We have shown that a space-time dependent relative phase between the two Higgs
fields may act as a charge potential for the baryon number, along the lines of the SB
mechanism.

This scenario requires a sufficiently strong first order EWPT, proceeding via bub-
ble nucleation. This condition seems to be very critical in the MSSM, however a
* thorough analysis covering all the parameter space is still needed. In particular, in
the case of a light pseudoscalar mass, which is relevant for SCPV, the two masses of
the neutral scalar Higgses are not very different, and it is not possible to reduce the
minimization of the scalar potential to a one-dimensional problem, as it is usually
done [16].

A further source of uncertainty of the present results comes from the evaluation
of the rate of B violating anomalous processes inside the bubble walls, where sponta-
neous baryogenesis is effective, and of the thickness of the walls themselves. It seems
that in the MSSM, the walls are sufficiently thick to ensure equilibrium conditions
for sphaleron-like transitions. We believe that these uncertainties might lead to an
overestimation of the BAU by roughly one order of magnitude.

In general, the extra C'P violation in the MSSM relative to the SM gives rise to
fine tuning problems. Namely, the experimental bound on the neutron EDM, implies
that the explicit phases must be smaller than ~ 1073, instead of their natural values
¢ ~ 1. In the case of spontaneous C P violation at zero temperature, the fine tuning is
even stronger: in order to have a spontaneous phase § ~ 1073 one must require that
the ratio in Eq. (3.26) differs from unity by less than 1078 [67].

In the scenario we have investigated the fine tuning is not so stringent. Indeed, we
have found that in order to generate the observed amount of B, the explcit phases
may be as small as 107°.

Numerical analysis indicate phases (at least) one order of magnitude too small
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are induced by the Yukawa couplings through the Renormalization Group Equations
with initial real soft SUSY breaking parameters at the SUSY breaking scale [68].
Once again, one should ask for a new source of C P violation beyond the KM phase.
Indeed, it has been recently argued [69] that in most grand unified supersymmetric
theories, renormalization of the soft parameters between the Planck mass and the
scale of grand unification will induce phases of order (1072 — 107%) providing a new
source of C'P violation into the low energy effective theory.

We have also shown that, since the spontaneous phase § disappears as T goes to
zero, it does not receive any constraint from the neutron EDM.

On the other hand, as we have discussed in Section. 3.7, the requirement that
CP is violated inside the bubble walls at T' ~ 100 GeV, constrains m2 to be less
than ~ Ag7 T%. This condition is able to fix the mass of the pseudoscalar with an
uncertainty of order of 10 GeV, as is shown in Fig. 1, so the fine tuning needed in
the present scenario is only at the 10~ level.

The upper bounds on the pseudoscalar mass shown in Fig. 2 are well below 100
GeV, so the next experimental results from LEP2 might be able to rule out the pos-
sibility of generating the BAU through spontaneous C' P violation at the electroweak
scale independenﬂy from the uncertainties coming from the knowledge of the EWPT.
Of course, this conclusion might be taken cum grano salis: as it will become clear in
the following, transport phenomena play a crucial role in the SB mechanism and all
the results presented in this Chapter should be revisited. However, our feeling is that
no dramatic quantitative changes can be expected when taking into account the new

effects we are going to explain in next Chapter.



Chapter 4
The medieval era

In 1994 several authors reconsidered the spontaneous baryogenesis mechanism for
the production of the baryon asymmetry, pointing out different disturbing drawbacks
which might invalidate the whole picture.

Before launching into the specifics of these criticisms, let us remind the reader
some crucial aspects of the adiabatic scenario to make the objections clear.

Qiven a fermion mass term of the form
P! C Mij(z,) ¥+ hec. (4.1)

where we take all fermions left-handed and C is the charge conjugation matrix, we

can make a space-time dependent unitarity change of basis on the fermions
b = Uij(@) ¥ (4.2)

to make the fermion masses everywhere real, positive and diagonal; however the
space-time dependence of U requires that we replace the kinetc energy terms in the

Lagrangian by
Lxe — Lxg + 97" (UT10.U) ¢ = Lw + (U 6, u) Je. (4.3)
Note that, since U is a unitary matrix, Ut 8, U may be written

U6, U =40, ca(zy) ta, (4.4)

57
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where for Ny fermions the t’s are generators of U(Ny), and the functions a,(z,) are
defined by the above Equation.
Thus the Lagrangian with the mass term (4.1) is equivalent to a Lagrangian with

a real diagonal mass term, but also containing a term
- Z Opaa(z,) b tay™u 1. (4.5)

If the transformation (4.2) has a gauge anomaly there will be also a modification of

the Lagrangian

2
- g -
Z HFﬁFﬂ — z}; (9 + 16[;2 ag trt, té) FgFg, (46)
B a,

where the t4’s are the gauge generators of the left-handed fermion representation and
the Fp’s are the gauge field strength.

In the original paper [28] CKN chose a transformation free from anomalies in order
to get rid of the therm (4.6).

As already noted several times, the shift term in the kinetic term of the fermions
in Eq. (4.3) was understood as a charge potential. What effect does this charge
potential on a system? There are two possibilities:

e If there is a charge potential for an exactly conserved charge (e.g. electric
charge or B — L) one can ignore it. Although it looks like the system could lower
its free energy by producing a net charge, charge conservation imposes a zero charge
constraint. This can be easily seen by integration by part the shift term in Eq. (4.3).

e Charge potentials for non conserved charges will lead to an asymmetry in the
rates between processes which create and destroy the charges, until the system reaches
its thermal equilibrium. For instance, if there is a small charge potential f5 for the
baryon number density, for a system starting with no net quantum numbers, the
constraint of zero net baryon number can be implemented by introducing a baryon
chemical potential pp = —@p. The chemical potential is just the force of constraint
on the system, i.e. the derivative of the free energy density with respect to the baryon
number. A net baryon asymmetry is then created through sphalerons by means of
Eq. (2.3). In general, anomalous weak baryon number violation processes can be

affected by a potential for any charge generator whose trace over left-handed fermion
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weak doublets is non zero or by a non conserved charge current orthogonal to the
baryonic current (in such a case, the charge currents introduces an energy splitting
between the states with positive and negative charge numbers and baryon number is
violated separately in each energy level; this baryon number violation can then be
communicated to the other energy level since the charge current is not conserved).

In the original paper [28] the rotation to make the Yukawa couplings real was
taken to be proportional to the fermionic hypercharge Y;.

The key point here is that the fermionic hypercharge current J#—f inside the bubble
* wall is violated only by the right-handed top-Higgs scatterings (the other right-handed
fermions are out of equilibrium). From what said above, one should expect that the
" final result for the baryon asymmetry to be vanishing in the limit h; — 0 or 7 = 0,n
being the number of light scalars.

The dependence upon h; was not present in the original result [28], however this
is certainly correct when assuming the right-handed top tr interactions fast; had one
written a Boltzmann like Equation for g, this dependence would have been recovered.

Nevertheless, as one can realize looking at Eq. (2.18), in their original work CKN
did not found a vanishing baryon asymmetry for n = 0. The reason is they imposed
the constraint (Q) = 0, instead (Y) = 0. As tacitly assumed by CKN in their original
paper [28] (since there was no any evidence of suppression factors proportional to the
Higgs VEV v(T)), baryons were thought to be efficiently produced while the Higgs
VEV is small. As a consequence, it makes more sense to treat the system as being
in the unbroken phase , where one can constrain (Y) = 0 and then the nonabelian
charges like Y3 are automatically conserved. Alternatively one should constrain both
(Q) and (Y3) to be zero. In the broken phase one should constrain (@) =0.

Indeed, if we repeat the CKN calculation assuming Y, B and B — L as the ap-

proximately conserved charges, the following system is obtained

(Y) o 23(0) +(23+3n) py —2pp-r+ 4 =0,
(B—L) o 8(8)+8py +13pp-r+4ps=0,
(B) o (6)+py+2pp-r+2p8=0, (4.7)

which, when solving in pp, gives the correct dependence B « pp « (f) n. Indeed,
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in Eq. (4.7) taking n = 0 is equivalent to reduce the number of unknowns from four
(8, v, -1, ) to three (6 + py, pp_1,18)-

Thus, what one should take in mind is that in the original paper by CKN [28] and
in all the following papers, the hypercharge fermionic current was considered and,
consequently, the net baryon asymmetry was vanishing in the limit of decoupling the
right-handed top quark ¢g from the system.

Let us now analyze the three criticisms moved by several groups to the spontaneous

baryogenesis scenario.

4.1 Why QCD sphalerons should not make baryons

In ref. [33] Giudice and Shaposhnikov (GS) considered the effect of non-perturbative
chirality breaking transitions due to strong interactions on the spontaneous baryoge-
nesis mechanism.

Indeed, it is well known that the axial vector current of QCD have a triangle
anomaly, therefore one can expect axial charge violation due to topological transitions

analogous to the sphaleronic transitions of the electroweak theory

d 126 »
% =75 Lqop &5, (48)

where ()5 is the axial charge, the factor of 12 comes from the total number of quark
chirality states, the factor of 6 from the relation between the asymmetry in the quark
number density and the chemical potential n; ~ (u; T?/6).

The rate of these processes at hight temperature may be estimated [70] as

8 ag 8 4
r ) <——) Fp =73 T), 4.
qeop =3 | o) Tp =5r (asT) (4.9)
where ag is the strong fine structure leading to the characteristic time of order
N1 4.10
TQCD_192K,a§T' (4.10)

Since k = (0.1—1), we see that T7qcp is comparable to the time of passage of the bubble
wall, and might be even smaller. Hence GS concluded that strong QCD sphaleronic

transitions must be taken into account.
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The effect of QCD sphalerons may be represented by the operator
H?:i(uL u}{ dL de), (411)

where 7 is the generation index. Assuming that these processes are in equilibrium,

we get the following chemical potentials equation

3
Y (b — i, + pai, — pai,) = 0. (4.12)

=1

" Eq. (4.12) contains the chemical potentials for all the quarks, and imposes that
the total right-handed baryon number is equal to the total left-handed one. In other

" words, including strong QCD sphalerons allow the generation of the right-handed

bottom quark as well as first and second family quarks.

GS followed the original work by CKN [28] and considered a fermionic hypercharge
potential. Assuming all the fermions in equilibrium inside the bubble wall (this
assumption, however, is not crucial for their final conclusion), they wrote down the
particle densities in terms of the time derivative of the phase (9) and of the six

chemical potentials associated to the conserved charges Y, Y3 and 4;, + = 1,...,4

where
2 . .
A = Y @ite +2R-2 1L,
1=1
Ay, = 4t +Ipy*tr + R/2 — Ly,
3
Ay = > Dpy"Di —3 R/2,
=1
3 —_— .
A = Y BB,
i=1
2 — .
R = Y Un'Us,
=1
2 — .
=1
Imposing

(4i) = (Y) = (¥3) = 0, (4.14)
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the authors found

(B) = i; (B - L). (4.15)

Thus, GS concluded that, assuming a vanishing (B — L) charge, the net baryon
asymmetry would be vanishing in the presence of strong QCD sphalerons. The naive
reason for such a behaviour is that QCD sphalerons deplete the number of left-handed
quarks by converting them into right-handed quarks, making electroweak sphalerons
unuseful since they only act on left-handed doublets.

However, GS pointed out that the exact proportionality between baryonic number
* and (B — L) was an artifact of the massless approximation.
Indeed, the most general relation between the asymmetry in quark number density

and chemical potential reads

o d*k EQ( Y
Nq ng = (2 71_)3 [nq ( ’/Lq) nq ( ’ /Lq)]
pe T? 3 M
= 1— . 4.16
6 ( 2727T? (4.16)
When taking into account finite mass effects, GS found
3 M? 9n 5 2
=t =— M (0 4.17
20 w272 Yy 10(9 + 14 n)x? e (), ( )
where py, is the fermionic hypercharge density. Therefore, the presence of QCD
sphalerons leads to a suppression factor (126/185)(M,/x T)’, where it was taken

n = 2.

To understand how much crucial this suppression factor could be, one has to
realize that the sphaleron rate turns off rather fast, being the rate proportional to
exp(—2 Mw/T). As a consequence, sphaleron cease to be operative at a very small
value of the Higgs VEV, v, > (aw T'/g). This corresponds numerically to a suppres-
sion of about 107* for A; ~ 1 [33].

It was then concluded that QCD sphalerons wipes out the baryon asymmetry
created by the electroweak sphalerons up to mass effect, reducing the original result

of CKN [28] of roughly four orders of magnitude®.

!Note, however, that the situation can be improved when taking into account that fermions do
acquire a plasma mass MZ(T) ~ (g% T?/6) when propagating through the thermal bath. This should
reduce the suppression factor to about 1072,
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Such a conclusion relies on the basic assumption that the (B — L) charge has a

vanishing thermal average.

4.2 Why total hypercharge should not make baryon:

In ref. [32] Dine and Thomas reconsidered the same two Higgs doublet model used by
CKN in their original paper [28] to explain the spontaneous baryogenesis mechanism.

These authors pointed out that the final baryon asymmetry found by CKN was
* missing of a key ingredient, namely a suppression factor proportional to (v(T)/T)*
which takes into account that the total hypercharge must be violated to bias the
baryon violating anomalous interactions.

Indeed, if the small Higgs VEV limit is ignored, a chemical charge potential for
the total hypercharge cannot bias the sphaleron processes, since the latter do not
violate hypercharge. Moreover, scattering of top quarks from the Higgs particles in
the plasma cannot help, even if the scatterings are rapid.

The problem is that the field redefinition by fermionic hypercharge, while removing
phases from the fermion mass terms, induces phases in the Yukawa couplings of the
fermions to the fluctuating part of the Higgs field. To avoid these, one has to write
the Higgs field as

Hy, = (v, + H}) e, (4.18)

where H! represents the (complex) fluctuating field. Neglecting v, the Lagrangian

in terms of these fields contains the phase 6; in the coupling
8,6, Jy, (4.19)

where J& represents the full hypercharge current, including the scalar parts. Thus,
when making properly the redifinition of the fields of the theory, a total hypercharge
potential and not a fermionic hypercharge potential is induced.

. In the limit v; — 0, J¥ is conserved. Integrating by part Eq. (4.19) one realizes
that the chemical hypercharge potential does not have any effect on spontaneous

baryogenesis if hypercharge is not broken by a nonvanishing VEV of the Higgs field
¢1-
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To explain this point in another way, we can consider the system of equations
(4.7) valid in the unbroken phase, i.e. in the limit v(7') = 0. If one considers the
total hypercharge potential, Higgs particle densities ny receive a further contribution
proportional to Yy (9), where Yy is the hypercharge of the generic Higgs field H.
Of course, this new contribution was missing in the original papers on SB since the
fermionic hypercharge of the Higgs fields are zero. One immediately realizes that the
system (4.7) leads to a vanishing final baryon asymmetry since the effective number
of unknowns are reduced from four (é,/.Ly',/.LB_.L,/,LB) to three (4 + LYy bB—L, B)-

Thus, in order to obtain an asymmetry in the adiabatic limit, terms involving v(T)
must be included. To quantify how much hypercharge is violated, Dine and Thomas

considered the triangle fermion loop diagram at finite temperature which couples the

hypercharge current to the background gauge fields

M? FF
Ty = o g
14

Eq. (4.20), taking into account Eq. (4.19), is then equivalent to the coupling

Lo, =aly 2L — 2 (4.21)

Integrating by parts, L4, can be written in terms of the Chern-Simons number

MZ
£91 =a (—T‘—;—) 8001 NCS- (422)

This gives, effectively, a chemical potential for the Chern-Simons number

M2
Hcs = a (?;—) (9061, (423)

which biases anomalous baryon number violating interactions and gives rise to a final
nonvanishing baryon asymmetry.
Taking v, o~ (aw T/g) and hy ~ 1, it is then realized that a suppression factor of

about 107* is present in the final expression for the baryon asymmetry with respect
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to the original result given in ref. [28] and subsequent papers”.

Again we note that this conclusion is based on the crucial assumption that the
thermal averages of the conserved charges are vanishing inside the bubble wall as one
can infer from the above discussion about the system Eq. (4.7). Were this assumption

false, the Dine-Thomas objection should be no longer valid.

4.3 Why diffusion should not make baryons

To see whether diffusion may be a significant effect, it is useful to consider the di-

_ mensionless quantity

D

L’UJ 'Uw’

ep = (4.24)

where D is the diffusion constant for quarks (classically equal to [ ¢/3, [ being the
mean free path) ranging from 1/T to 5/7. Evidently ep may be O(1), and hence one
can expect significant redistributions of the particle densities due to transport.

Joyce, Prokopek and Turok (JPT) [34] were the first to emphasize the crucial role
played by transport phenomena: the response of the plasma to any charge potential
induced by (9) is not simply that of a system of fixed charges because diffusion may
play a crucial role.

When a space-time dependent charge potential is turned on at a certain point, hy-
percharged particles are displaced from the surrounding regions so that the thermal
averages of the conserved charges acquire 2 nonvanishing local value. As a conse-
quence, the equilibrium properties system should be reconsidered taking into account
the local violation of the conserved quantum numbers.

As we have often emphasized, all the results obtained so far are based on the crucial
assumption that the thermal averages of the conserved charges are constrained to be
zero. But is it physical to impose such constraints? The region we are considering is

surrounded by an effectively infinite bath of global charge which is pulled in by the

2Dine and Thomas also pointed out that this suppression might be even stronger in the two
Higgs doublet model where A6 is itself of order of (veo/T)? (times coupling constants), since in the
absence of quartic couplings the Higgs potential is C P conserving. However, as seen in Chapter 3,
plasma effects can give rise to such quartic couplings and induce spontaneous C'P violation at finite
temperature with Af; ~ 1.
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applied or induced potentials. By imposing the constraints such as (B — L) = 0 and
(B) = 0 at any space-time point, one is simply preventing some linear combination of
particle species from moving in response to these potentials. This moving is the effect
of screening: a local accumulation of charge drags in an exactly cancelling charge from
the surrounding plasma®.

To consider the rate at which the equilibrium distributions are established in the
bubble wall, one can turn to the Boltzmann equation.

In the case of slow, thick walls, the particles passing the wall should be accurately
described as a fluid (because the particle mean free path is much smaller than the wall
thickness). Following the usual derivation of the linear perturbation equations for a

relativistic fluid from the Boltzmann equation, JPT arrived to the following system

.1, 3ni< ; 6 n; )
;+ = —\ Y E, =
'v,+45+4i 0 - Y; —I»DTZ 0,
4
51‘ + 'g ’U; = 0, (4.25)

where §; is the fractional energy density perturbation; v; the velocity of the fluid
desc;ibing the species i; n; and p; are the unperturbed number and energy density;
E, is the hypercharge electric field along the z axis and D; is the diffusion constant
for the species 4, in terms of which the conductivity of the medium can be expressed
Finally primes denote spatial derivatives, dots time derivatives.

Now JPT looked for stationary solution to these equations describing the response
to the potential 9(:1: — v,t) moving through the medium, where vy, is the wall velocity.

Using the Gauss’ law and assuming all perturbations as functions of ¢ — v,t, they

found

1 9n;v
—— &+ =Y — §; L2 =0, 4.2
(3 ) +p,( 4 Zy]"” topTe ) (4.26)
where the term including the sum over all particles summarizes the effects of Debye
screening and the diffusion constant D is assumed to be equal for all the quarks,

Do~ (43T ~2T7 1L

3 A simple analogy is found in QED: when an electric charge is put into a neutral plasma, particles
rearrange themselves moving around to screen the electric charge so that Q is globally, but not locally
conserved.
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The fluid equations tell us what is going on. The build up of particles in the
charge potential 9(:1:) describes a state of hydrostatic equilibrium, in which the force
from the potential is balanced by the pressure of the particle fluid. As particles of a
given species enter the wall, they slow down or speed up accordingly as their density
decreases or increases. The time delay effect means that as the stationary state is
being set up, deficits and excesses of particles and antiparticles are left behind it, but
there is a little effect from them on or in front of the wall.

The question now is whether hydrostatic equilibrium is reached or not inside the

* bubble wall.

From Eq. (4.26) one can see that the friction term which opposes the state of
* hydrostatic equilibrium is dominant only when the wall thickness L,, satisfies the
relation

Lw Z T e (4.27)

Vw
For slow walls, v,, < 0.1, this is typically larger than the perturbative estimate of
typical wall thickness [23], L,, ~ (1—100)7~*. Thus, JPT concluded that hydrostatic
equilibrium is effectively reached for slow bubble walls, precisely the regime in which
spontaneous baryogenesis mechanism is argued to dominate.
Once checked that hydrostatic equilibrium is present inside the bubble wall, JPT
considered its effect on the spontaneous baryogenesis scenario. For slow walls, the

hydrostatic solution accurately follows the thermal distribution

1 PuE—

This is an exact solution of the Boltzmann equation for any static potential §(z), in
which all the collision terms are identically zero, provided the usual relations between
the chemical potentials for the species involved in a reaction are satisfied.

Since from Eq. (4.26) one can infer that in the equilibrium distribution (4.28)
many global conserved or approximately conserved quantum numbers are nonzero,
JPT argued that all the chemical potentials p; in Eq. (4.28) are zero due to the
absence of any constraints and that the density of the particle 7 is only proportional

to its hypercharge, n; ~ Y; §. Since anomalous baryon number violating processes
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do not change hypercharge, JPT concluded that diffusion is inimical to spontaneous
baryogenesis.

In the next Chapter we want to show that, in fact, transport phenomena are not
only friendly with SB, but can also shed a new bright light on the impacts of strong
sphalerons and the use of the total hypercharge potential on SB.



Chapter 5

Linear response theory approach

"to SB: the Renaissance era

In this Chapter, we will reconsider the spontaneous baryogenesis mechanism as origi-
nally proposed by CKN focusing on the effects of transport phenomena. The contents
of this Chapter are based on the work [35] by CPR.

We will analyze the adiabatic scenario using linear response theory (71, 72] in
order to deal transport effects.

We shall assume that a space-time dependent charge potential for fermion hyper-
charge (the results of this Chapter are, however, insensitive to this choice and are
confirmed even taking a total hypercharge potential) is generated inside the bubble
wall, without discussing its origin, and investigate its effect on the thermal averages
of the various quantum numbers of the system.

We shall find that transport phenomena are really crucial, but we disagree with
JPT’s early conclusion [34] described in the previous Chapter that as a consequence
of the local violation of global quantum numbers there is no biasing of the sphaleronic
processes. Actually, in the adiabatic approximation the local equilibrium configura-
tion of the system is determined by the thermal averages of the charges conserved
by all the fast interactions. The effect of transport phenomena is to induce space-
time dependent non zero values for these averages. We shall calculate these averages

using linear response theory and then determine the local equilibrium configuration,

69
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showing that it corresponds to (B + L) # 0.

Then we will write down a rate equation in order to take into account the slowness
of the sphaleron transitions and obtain an expression for the final baryon asymmetry
explicitly containing the parameters describing the bubble wall, such as its velocity,

Uy, its width L,,, and the width of the region in which the sphalerons are active.

The inclusion of transport phenomena also will shed a new light on the strong
sphaleron effects and on the effect of a charge potential for total rather than fermionic
hypercharge. The dramatic suppressions found by Giudice and Shaposhnikov and by
Dine and Thomas respectively, are both a consequence of taking zero averages for

conserved quantum numbers. Since these averages are no more locally zero we will

™ find a non zero (B+ L) # 0, even in the case in which the charge potential is for total

rather than for fermion hypercharge.

In the case of QCD sphalerons we shall find that the final result depends in a
crucial ;iva,y on the form of the charge potential which is considered. For example, if
all the left-handed fermions plus the right-handed quarks contributed to the charge
potential according to their hypercharge, then no bias of sphaleron processes would be
obtained. In this case, we would find a non zero value for B+ L inside the bubble wall
but no baryon asymmetry far from it inside the broken phase. On the other hand,
if only right and left-handed top quarks participate to the charge potential, which
seems the physical situation, then a final asymmetry is found and QCD sphalerons

are harmless.

The plan of the Chapter is as follows: in Section 5.1 we will develop a chemical
potential analysis for the equilibrium properties of the plasma inside the bubble wall
in the adiabatic approximation, and we will bwrite down the rate equation for the
production of (B + L) due to sphaleron transitions; in Section 5.2 we will introduce
our application of linear response analysis to the calculation of the variations of the
thermal averages induced by 6. In particular we will show that the fundamental
quantity to evaluate is the retarded two points Green’s function for fermion currents.
In Section 5.3 we will solve the rate equation, finding an expression for the final
baryon asymmetry in terms of the various bubble wall parameters. In this context,

we will also discuss the screening effects on the electric charge. In Section 5.4 we will
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discuss the role of QCD sphalerons in. cooperation with transport phenomena, and

finally we will discuss our results in Section 5.5.

5.1 Local equilibrium inside the wall

For definiteness, we will work in the two Higgs doublet model in which one doublet
couples to up quarks and the other one to down quarks. The phase transition is

assumed to be strong enough so that sphaleron processes freeze out somewhere inside

" the bubble wall.

The relevant time scale for baryogenesis is given by the passage of the bubble wall,

* which takes a time T = Ly /vy ~ (1 —100)/T.

During this time the phase of the Higgs VEV’s changes of an amount Af. Thus,
we can discriminate between fast processes, which have a rate 21/7y and then can
equilibrate adiabatically with 0, and slow interactions, which feel that ¢ is changing
only when the bubble has already passed by and sphalerons are no more active.

Next, we introduce a chemical potential for any particle which takes part to fast
processes, and then reduce the number of linearly independent chemical potentials
by solving the corresponding system of equations, in a way completely a,nalogous'
to that followed for example in refs. [43], the main difference here being that light
quark Yukawa interactions and Cabibbo suppressed gauge interactions are out of
equilibrium.

Finally, we can express the abundances of any particle in equilibrium in terms of
the remaining linear independent chemical potentials, corresponding to the conserved
charges of the system.

Since strong interactions are in equilibrium inside the bubble wall, and since the
current coupled to g is color singlet, we can chose the same chemical potential for
quarks of the same flavour but different color, and set to zero the chemical potential
for gluons.

Moreovér, since inside the bubble wall SU(2); ® U(1)y is broken, the chemical

potential for the neutral Higgs scalars vanishes'.

1This is true if chirality flip interactions, or processes like Z — Z*H 0. are sufficiently fast; since
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The other fast processes, and the corresponding chemical potential equations are:

) top Yukawa:

tL+Hg “tp+g (lu'tL = :u'tn); (5 1)
bL+H+<—>tR+g (ll'tR: Hby, +/I’H+)a
i) SU(2)r flavour diagonal:
63; « Vi +W- (/‘l’ui = /j’ei + /LW+)7
uy e dy, + W (Bui = g + pws), (5.2)
H o B W= (= pe),
H o H- + W+ (pr- = —pw+),

with (i =1, 2, 3).

Neutral current gauge interactions are also in equilibrium, so we have zero chemical
potential for the photon and the Z boson.

Imposing the above constraints, we can reduce the number of independent chem-

ical potentials to four

BN =

2 1 3 )
By Mgy Huy =5 i, and g, SEDNCE (5.3)
=1 ] :

These quantities correspond to the four linearly independent conserved charges of
the system.

Choosing the basis @', (B—L)', (B+ L)', and BP' = B;—1/2(B! + B)), where the
primes indicate that only particles in equilibrium contribute to the various charges,
and introducing the respective chemical potentials, we can go to the new basis using

the relations

po = 3y +2 puy — 3 e, + 11 s,
BB-ry = 3y +4 pruy, — 6 pe, — 6 pye, (5.4)
BBy = 3 ey 4 puy, + 6 pe

ppr = 3pey, =2 g,

the corresponding rates depend on the Higgs VEV, they will be suppressed by factors of (v(T)/T)?
with respect for example to the rate for ht; « tgrg. This has led the authors of refs.[33, 34] to
consider the system in the unbroken phase. Anyway, this choice does not lead to dramatic changes
to the conclusion of this Chapter.
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If sphaleron transitions were fast, then we could eliminate a further chemical

potential through the constraint

3 3 3
23t D bt ;ﬂeg = 0. (5.5)

i=1 i=1
In this case, the value of (B + L)' would be determined by that of the other three
charges according to the relation
(B+ L)gq = %Q' + %BP' — i—g—(B - LY, (5.6)
where we have indicated charge densities by the corresponding charge symbols.

We have neglected mass effects, which means that the excess of particle over
antiparticle density is related to the chemical potentials according to the relation [43]
n; — ai— = (a g; p: T?/6), where a = 1 for fermions and ¢ = 2 for bosons, and g; is
the number of spin and color degrees of freedom.

The above result should not come as a surprise, since we already know from ref.
[43] that a non zero value for B — L gives rise to a non zero B + L at equilibrium.
State\d in other words, sphaleron transitions erase the baryon asymmetry only if
any conserved charge of the system has vanishing thermal average, otherwise the
equilibrium point lies at (B + L)rq # 0.

Actually, as pointed out several times, sphaleron rates are too small to allow
(B + LY to reach its equilibrium value (5.6), 7 (ad, T)™' > 7w, so equilibrium
thermodynamics cannot be used to describe baryon number generation inside the
bubble wall.

Therefore, we shall make use of the rate equation

OF

r,
T aBII) (57)

d :
-CE(B + L)sp -

We recall that F is the free energy of the system, and the derivative with respect to
(B + L) must be taken keeping @', (B — L), and BP’, constant.

The meaning of Equation. (5.7) is straightforward. Sphaleron transitions (which
change (B + L) but conserve @', (B — L)', and BP') will be turned on only if they
allow the total free energy of the system to get closer to its minimum, ¢.e. equilibrium,

value.
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At high temperature (u; < T') the free energy of the system is given by

F=(T2/12) (342, +3pul, +6pl, +3pu, +3uj, +6p3 +3u, (5.8)

'%ﬂ%++2#%«+2#¢+2#@]
Using (5.1), (5.2) and (5.4) to express the chemical potentials in terms of the four
conserved charges in (5.4) we obtain the free energy as a function of the density of

(B + L) = (45:2T/6),
2
[(B+Ly - (B+ LYso)
§ T2
where the constant terms depend on @', (B — L)', and BP’ but not on (B + L)', and
. (B + L)gq is given by (5.6).

The total amount of (B+ L) present in a certain point at a certain time is made up

F[(B+LY]=0.46

+ constant terms, (5.9)

by two contributions: (B + L).,, generated by sphaleron transitions, and (B + L)tg,
which is not generated but is transported from nearby regions in response to the
perturbation introduced by 8.

"_[ihus, Eq. (5.7) now takes the form
Tsp
T3
with the initial condition (B + L), = 0 before § is turned on.

d ! ! / =
E(B + L)y, = —0.92 [(B + L), +(B+ L) —(B+ L)EQ] ; (5.10)

Let us summarize our discussion up to this point. Consider an observer in the
plasma reference frame during the phase transition. When a bubble wall passes by
the observer, she (he) measures a space-time dependent charge potential for, say,
fermionic hypercharge, which induces transport phenomena and then local asymme-
tries in particle numbers. The Q’, (B—L)', and BP’ components of these asymmetries
remain unaffected by fast interactions, while the other components are reprocessed
as to obtain their equilibrium values. In the case of (B + L)' the reprocessing is slow,
so we have to use the rate equation in (5.10) to describe it.

The generation of (B + L), will go on until either I's;, goes to zero or the local
equilibrium value is reached i.e. (B + L), + (B + L)1gr = (B + L)gq-

After the passage of the wall, (B + L)iq and (B + L)1y go rapidly to zero since 6
vanishes, and so the final asymmetry is given by the (B + L){, generated until that

time.
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As we can see, the crucial question is now to calculate the induced values for Q’,
(B— L)Y, BP', and (B + L);p. We will do that in the next section by using linear
response analysis [71, 72].

5.2 Linear response analysis

In this Section we want to discuss the effect on the thermal averages of the term

induced in the Lagrangian when § is active, which we assume to have the form

L— L+46Jy, (5.11)
with |
Jlgf = Zi/y}JP’ (5'12)

where E: means that the sum extends on particles in equilibrium with 6 only?.
The standard procedure is to consider f as an effective chemical potential, so that

particle abundances at equilibrium are given by

-~

ni =g pq + (b— )i pa-r + bpi par + ¥} 6, (5.13)

and then imposing
(@) =((B~-1L))=(BFP) =0, (5.14)
so that any particle abundance can be expressed in terms of g only.
The key point here is that taking transport phenomena into account, the above
thermal averages are not zero, but depend on 0 themselves.
So we must first calculate their values and then use them to determine the chemical
potentials.

Our starting point is the generating functional
Z[Jo; 9] = /P(A)BC Do exp {z/c dr /‘; Px [,C + éJ}Qf +Jo O+ sources” ,  (5.15)

where D¢ is the integration measure, O is the operator of which we want to calculate

the thermal average and Jp the corresponding source. C is any path in the complex

2The reader should not be confused by the fact we are using an hypercharge potential. Qualitative
results should be the same (apart numerical factor), had we used the total hypercharge potential.
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7 plane connecting the point Tin t0 Tou = Tin — 13 (8 = 1/T) such that the imag-
inary part of T is never increasing on the path [73]. P(A)BC means that periodic
(antiperiodic) boundary conditions must be imposed on bosonic (fermionic) fields on
the path.

The thermal average of the operator O(r,x) in presence of f is obtained in the

usual way [ }
1 6Z[Jo;0

- —— . 5.16
1 5Jo(tx,x) Jo=0 ( )

(O3 %)) g0 =

where all the field sources are set to zero.

Now we make a functional expansion of (5.16) in § and truncate it at the linear

. term,

(Ot Nise = sy AWIosd =1

5Z[Jo 0]
dr' [ Py b(r )
+/ T/ Y 59(T,y)

b
6=0

= (Oterimo +i [ & [ 3 6(,¥) (To T3, (7,¥) Olter Xm0
(5.17)

Jo=0

where T¢ is the ordering along the path C.

Different choices for the time contour C lead to different formulations of thermal
field theory, see Fig. 3.

One possibility is to take the vertical line connecting ¢, to ¢, — 183, so that 7/ —t,
is pure imaginary on any point of the path.

This choice corresponds to the imaginary time formalism (ITF) of thermal field
theory [73], and in this case we have to evaluate the euclidean two point thermal
Green’s function (TJy,(2), 0(0)) (2% = —z; — |z|*). This can be done in Matsubara
formalism, where Feynman rules are straightforwardly obtained [72]. But, in this
case, we would have to calculate § for complex times, whereas we are interested in its
values at real times, during the passage of the wall.

So, in order to get a more direct physical interpretation of what we are calculating,

we must turn to real time formalism. This corresponds to choose the path in Fig. 4,
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and then letting 7;, going to —oo, and tp to +oo [73].
Now, it is possible to see that the contributions to the integral coming from 7’ on
(5 vanishes in the above limit [73], so we are left with the contributions from C; and

C, only. The T¢ ordering now allows us to rewrite the integral in (5.17) as

i /C L /V @y 8ty ¥) (ToI?, (b ¥) Ot X))ie 1o =0

(5.18)
tz .
=i [ at, [ @y 60t 3) ([, (5 9), Ot ) )icsmor
Defining as usual the retarded Green’s function
iDGy, (e, %51, ¥) = ([0t %), T3, (1, ¥)]) Ot — 1), (5.19)

where ©(z) is the step function, we arrive at the result

| oo 3+ 4 R
(O(tmx»é;ﬁo = (O(tz,%))g=o + /;Oo dty/;/d y9(ty,y)DO’yf(tz,x;ty, y)-  (5.20)

The dperators we are interested in are fermionic charge densities (Q’, (B—L)', (B+L)',
BP") of the form Q, = 3! ¢ J?. Inserting it in (5.20), and using definition (5.12) we
get |

. ptoo .
(Qiq(ta:;x»é#o = Z:J q;-4 y} /;oo dty /V dsy H(tya Y) Dﬁ(th; ty, Y)v (5'21)

where D, is the current-current retarded Green’s functions for fermion 4 and j (7 and
j are flavour and color indices) and we used the fact that (Q';(ts,X))j—o = 0.

Note that the Green’s function has to be evaluated for § = 0, i.e. we must use
the unperturbed Lagrangian with the charge potential turned off and all the chemical
potentials equal to zero in the partition function.

The problem of calculating the effect of the charge potential in (5.11) on the
thermal averages for the particles in equilibrium is then reduced to the evaluation of
the retarded Green’s functions which enter in (5.21).

As we have discussed, the more natural framework for this calculation is real time
thermal field theory, in which the physical sensé of the various quantities is evident.

Anyway, we have also seen that we can calculate the euclidean Green’s function in the
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imaginary time formalism and then continue analytically to real times, thus obtain-
ing the Dﬁ’s (this relation was established for the first time by Baym and Mermyn
[74]). In energy-momentum space the analytical continuation is accomplished by the
substitution

iw, = w+ig, &— 0%, (5.22)

where w, = 27 n T are Matsubara frequencies and w is the real energy.

- 5.3 Solution of the rate equation

~. Since the rate of the sphaleronic transition is suppressed by ajy, the asymmetry in
B+ L) generated by the sphalerons, (B + L)._, is generally much smaller than both

g sp? g
(B + L)gq and (B + L)1y (we can check it a posteriori), so we can approximate the

rate equation in (5.10) by

d , T, ,
(B L)y 09223 (B + L)sq — (B + L)) - (5.23)

Using the equations (5.6) and (5.21) we can determine (B + L)jp = (B + L)gq —
(B + L)1g as ’

+oo .
(B + L)ip(terx) = (s rylte, %)) = Thiess [ dty [ & 8(ts,5) DE(taxs1,¥),
(5.24)

where

.73 7 19
P S — J — . — o —— —— — . — .
Cij = Yy <8Oqz + 2Obpz 40(b 1); (b+l),> .

Integrating eq. (5.23) in time from —co to +oco we get the final density of (B-+ L),

+o0 d
A(B+1L), = /_m dts (B + LYo (tz, %)

(5.25)

2w oo ~ —
= 092 /_  dw T, %) (B+ L)i(w, %),

where f‘sp(—w,x) and (B:L);R(w,x) are, respectively, the Fourier transformed of

Fep(tz,x) and (B + L)Lr(tz,x) with respect to time.
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We recall that Iy, is & (awT)* in the unbroken phase and decreases exponentially
fast as the Higgs VEV is turned on.

In order to solve eq. (5.23) analytically we approximate this behaviour by a step
function. Moreover, we will consider a plane bubble wall moving along the z-axis
with velocity v,. So, our expression for I'sp, will be

To(ts,x) ~T O <tm - fi) ® (tz b+ 3’—”-) , (5.26)

Vw UV
with t; = —oco0 and I’ = & (awT)*.
Of course, more sophisticated approximations for I's;, may be used, at the price of
solving eq. (5.23) numerically.
Analogously, we approximate g in such a way that it is constant in a region of

width L,, inside the bubble wall, and is zero outside,
0(t,,y) = 0 O(z, — vuty) O(vuty — 2y + Lu), (5.27)

where 8 = v, AG/L,,.
So, if we are at the point x = 0, we observe an interaction of the form (5.11)
turned on from ¢t = —Ly /v, to t = 0, while the sphalerons are active till ¢ = ¢, as
we have shown in Fig. 5. |
Putting all together we obtain
(2m)3
T3

A(B+ L), = 092 T 650

0 —iwt —iwt —iwLy /v

/’; e 2;e 11—ew / Eﬁ(pz=Py:07Pz=:—w:w)-

(5.28)

Note the peculiar relationship between p, and w in the argument of Eﬁ, due to the
spacetime dependence of 9(ty,y), see (5.27).

A consideration of the general properties of retarded Green’s functions [75] ensures
that the imaginary part of Eg is a even function of w, while its imaginary part is
odd. As a consequence the integral in (5.28) will always give a real result.

The lowest order contribution to Eg comes from the fermion loop in Fig. 6, where

the two crosses indicate the zero components of the fermion current.
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We may evaluate the corresponding euclidean two point Green’s function in the
ITF and then continue analytically to real energies according to Eq. (5.22).
Moreover, since the relevant frequencies at which 55 must be evaluated are such
that w < |p| < vy/Ly =~ T/10% we take only the leading terms in the high tempera-
ture expansion. These are given by [76]
T ipo . ipo + [P
— |1 - Of - 51’1',
3 2lp| "~ ipo — |p|

HZ(PO = 2TL71'T, p) 5,'3' = (5.29)

where we have neglected fermion masses.
After continuing analytically to real energies and fixing the momenta as in (5.28)

we get the lowest order contribution to 55,

— w T2 UV 14w, .7 .
DSO(PI =py=0,p: = ;;,w) -3 1- —é—log 1— v, te 5 Vw sign(w)| 6 . (5.30)

When v,, — 1 the above expression exhibits a collinear divergence, due to the fact
that the fermions in the loops are massless in our approximation. This divergence
disappears when plasma masses for fermions are taken into account. However, for our
purp?ses, since v, =~ 0.1, the effects of plasma masses for fermions can be neglected
[77].

Due to the constraint p, = w/v,, the real part of the correlation function in (5.30)

does not depend on w, while the imaginary part depends on its sign only. This implies
that, in the high temperature limit, the response induced on the plasma through (5.30)
has neither spatial nor temporal dispersion, i.e. inserting (5.30) in (5.21) gives rise
to an induced thermal average for the charge )4 which in any space-time point is

proportional to the value of g in that point
(Qa(ts, x))° o B(tz,%). (5.31)

In particular also (B + L)7r and (B + L)gq receive a contribution of this form and
disappear as soon as f is turned off.
Inserting it into the rate equation we obtain from (5.28) the contribution to the
asymmetry (¢; — —oo)
(27)°
T3

A(B+L),," = 0.92 T 6 5% ciI°(ta) 84, (5.32)
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where
(0 (tp < —Z2),
I°(t;) = 2—3711"2 <1 - %bg i +vw> x{ (t2+ =) (~L= <ty <0), (5.33)
v w w
| Le (t2 > 0).

We recall that ¢, is the time at which sphaleron transitions are turned off, while the
" charge potential induced by 6 is active for — Ly, Jvw <t < 0.

So the asymmetry calculated in this approximation for DS* grows linearly with
ty until t, = 0 (for ¢, < —L, /v, the asymmetry is obviously zero since there is no
overlap between sphalerons and 9)

The result for £, > 0 is an artifact of our approximation (B + L)., < (B + L){r,
which is no more appropriate in this case.

Actually, from (5.31) we know that when § goes to zero, as is the case for t > 0,
(B +L)gq and (B + L)ty vanish too, and the rate equation (5.10) becomes

| S
T3

%(B + LYy = 0922 [(B+ L)y  (t>0), (5.34)

so that the asymmetry produced before decreases exponentially from ¢ = 0 to ¢ = £,
with rate I'.

However, due to the smallness of I', and to the fact that ¢, cannot be much larger
than O(Ly,/v,), we can safely neglect this decreasing and take the result in (5.33).

Next, we consider the contribution to D5 due to gauge bosons exchange. Since we
are in the broken phase, and since the perturbation (5.11) induced by g is colorless,
we will take into account only photons, which contribute through the graph in Fig.
7.

The blob in the middle represents the sum of all possible insertion of fermion
loops.

In calculating the blob, we have to include not only the fermions which enter in @',
(B— L), and BP', i.e. the ones with fast flavour, or chirality, changing interactions,

but we must instead take into account the contributions of all the charged fermions
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of the theory. This is because QED interactions are fast and then, for instance, pair
production is in equilibrium also for right-handed light quarks.
The QED contribution of Fig. 7 gives

DOO(UJ, p)

ER, QED
1 — Yp(e g )P DI’

ij (W, P) = ¢’ q:g; H?(“’, P)

(5.35)

where eq; is the electric charge of the fermion i. D%(w,p) is the tree level (0,0)

component of the photon propagator in the Coulomb gauge

-1 1
D" = —Pp" — ——utu”, (5.36)
P

- where p* = w? — |p|%, u, = (1, 0, 0, 0) identifies the plasma reference frame, while

POO — POi — Pz'O — 0’

Py = &;—p'p/Ipl*.
As we have discussed, the sum in the denominator of (5.35) must be extended over

all the charged quarks and leptons. Setting p, = w/v,, we get

I} W, Pz = w/vw ‘
—iC 1 ) . (5.37)
w? + v Yp(eqe) (w, p. = w/vy,)

Note that, unlike the direct contribution (5.30), the QED one is not flavour (or

color) diagonal, so that even particles which do not enter into the expression for the

=R, QED
Dij @ (va) = —¢? q:9; ”3:

charge potential (5.11) get a non zero thermal average depending on 6.
Moreover, this contribution has a genuine w dependence.

Two points retarded Green’s function are analytic in the upper half of the complex

w plane. DX QED(

i w,p, = w/v, ) may then have poles of the form w = w, — 1v,, with

vp > 0. In order to determine them we have to solve the following equations

wr—72 = —CRelli(w),

P

C Im II,(@) (5.38)
Wy = —_—,

27p
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where C = v2 T, (e qx)?.
Since the right hand side of the first of Eqs. (5.38) is negative, and v,, >~ 0.1 <1,

we can approximate the solutions by

Wy, = Fw,+ivp,

™
Wp = - Vw Ypy

4
(5.39)

eT

1/2
O Rm@) =0 S [ S|

12

T

where 7, > 0 as it should be.
Inserting (5.37) in Eq. (5.28) we obtain the QED contribution to the asymmetry

' 2T 3
A(B+ L)3FP ~0.92 ( TB) T 95 ici; I9FP(t2), (5.40)
Wher\é, now,
27 Vp, 14w\ g
19D(y) = 2l (1m_1 ) )
(&2 3 2 BT v,/ Tula)?
( 0 (tg < *‘5—:‘
Ly, L. e~ p(t2+Luw/vw) .
% ) tz—l'v—'*’coswp(tz-f—v—)—;—“— (~ﬁ<t2<
L w w p
[ —7Ypt2
Lo e <coswpt2 — e lu/ve cog Wy (tg + éﬂ))} (t2 > 0).
\ | Vw Tp Vw
(5.41)

The same considerations about the case t, > 0 made after Eq. (5.33) apply also here.
We can notice that photon exchange gives two different types of contributions.
The first one has the same behaviour of that in (5.33), .e. a linearly increasing

asymmetry from t, = —L,/v, to t2 = 0. On the other hand, the second term
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exhibits a well known feature of plasma physics, namely, plasma damped oscillations
induced by an external perturbation [72]. The damping rate here is given by 7,. In
the case — L, /vy < ta < 0, we see that the oscillating term dominates over the linear
one only for ¢, — —L,,/v,, and is rapidly damped as ¢t — 0, since exp(—7p Lw /vy ) =
exp(—T L,) ~ exp(—40). When t, > 0 the amplitude of the oscillation is always
suppressed at least by a factor (107" — 107?) with respect to the linear one, and then
we can conclude that the effect of the oscillating term is negligible unless ¢, is very
near to — Ly, /vy,.

An interesting feature of our results (5.33) and (5.41) can be appreciated if we
calculate, by means of eq. (5.21), the electric charge @’ induced by the phase 6,

taking into account both the direct contribution (5.30) and the QED omne (5.35) to

R . oy e .
Dy;. Tt is easy to see that it is given by

(Q') o [Z: Yig; (Zk @ - q,%) X linear contribution]
(5.42)

+damped contribution,

then, when every fermion is in equilibrium, the linear contribution to the thermal
average of ()’ vanishes, and we are left with the damped one.

The reason is that in this case @’ coincides with the total fermion electric charge,
and this is perfectly screened as in the usual QED plasma. Since in the real situ-
ation not all the fermions are in equilibrium, the linear contribution to (5.42) does
not cancel. Anyway, this considerations are valid for electric charge only, while the
other interesting charges, (B + L)', (B — L)', and, BP’, would have non zero linear
contributions even if all the fermions were in equilibrium.

Putting all together, and neglecting the damped contribution, we find the final
asymmetry in (B + L)’

;o 37 JI0 VU 14, L,
A(B+ L), =092 o (27)' — (1~ : logl_vw> <t2+ vw), (5.43)

where we have assumed that the sphalerons turn off when the phase is still active
(—Lw/vw <ty < O)
Recalling that § = A#bv,/L,, and assuming that sphalerons cease to be active
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after a time interval t; + Az/vy, = f Ly /vy from the turning on of f we get
A(B+ L), ~—2.3-10° s T° aj, A f, (5.44)

where we have taken the reasonable value v,, ~ 0.1.

The above value is enhanced by nearly three orders of magnitude with respect to
the original estimates by CKN [28] where transport phenomena were not taken into
account.

The predicted baryon asymmetry of the Universe then comes out to be

B="F ~ _10"°kAd f. (5.45)

S

x is estimated in the range (0.1 — 1) from numerical simulations [10].

Choosing f ~ (aw/g), the observed baryon asymmetryc B = 1071°, can then be
reprodul:ed for Af ~ (1072 — 1073), values which can be obtained either by explicit
C P violation or by spontaneous C P violation at finite temperature [30, 31] without
entering in conflict with the experimental bounds on the electric dipole moment of
the neutron.

The result (5.44) was obtained considering a charge potential of the form (5.11)
where the sum extends on all the left-handed fermions plus the right-handed quark.

Considering the more phyéical situation im which only the top quarks (left- and
right-handed) feel the effect of g the coefficient 37/240 in (5.43) should be changed

into 9/32, thus leading to an enhancement of a factor 1.8.

5.4 The QCD sphalerons’ legacy

As explained in Section 4.1 Giudice and Shaposhnikov analyzed the effect of these
QCD sphalerons on the adiabatic baryogenesis scenario.

They showed that, as long as these transitions are in equilibrium and fermion
masses are neglected, no baryon asymmetry can be generated. Thus, the final result
will be suppressed by a factor ~ (M,(T)/= T)?. In this Section we will reconsider the

issue taking transport phenomena into account.
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The effect of QCD sphalerons may be represented by the operator

2 (ug wh dp db)s, (5.46)

=1

where 1 is the generation index. Assuming that these processes are in equilibrium,
we get the following chemical potentials equation

3

=1
Eq. (5.47) contains the chemical potentials for all the quarks, and imposes that the
total right-handed baryon number is equal to the total left-handed one.
Using Eqgs. (5.1) and (5.2) we can rewrite it as

4 py, + pey — by — 2 Pdp — 2 fup — 3 pw+ = 0, (5.48)
where
' 12 12
HPupr = 9 ZILULIg Hdp = 9 Z:U’dj:l' (5.49)
1=1 =1

Oneof the three new chemical potentials, pp,, pds, and p,,, can be eliminated using
Eq. (5.48), while the remaining two correspond to two more conserved charges that
must be taken into account besides @', BP’, and (B — L)' (now the primes mean
that the summation has to be performed on right-handed quarks too, but not on
right-handed leptons). ‘

We can choose

2 7 3 2 t
X = ZdR——z—ZuR, (5.50)
=1 =1
1 2. . 3. .
Y = bitirtintg dup— > (el +v1), (5.51)
=1 ji=1

corresponding respectively to Az and A, in the notation of ref. [33] and Section 4.1.

Following the usual procedure, we can now express the abundance of any particle
number at equilibrium as a linear combination of @', (B — L), BP', X, and Y. For
(B + L)' we obtain the result

(B+ L)gq = —% (B-1LY, (5.52)
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to be compared to Eq. (5.6), which we obtained considering QCD sphalerons out of
equilibrium.

Thus, the equilibrium value for (B+L)’ depends only on the the density of (B— L)',
in agreement with what was obtained in ref. [33]%.

If transport phenomena were not present, as it was assumed in ref. [33], we could
set (B — L) to zero and then conclude that QCD sphalerons allow no non vanishing
(B + L) density, at equilibrium and in the massless approximation.

On the other hand, including transport effects, we can easily calculate the (B— L)’
" density induced by § using Eq. (5.21), and then, through (5.52), the equilibrium value
(B+ L)jq, which, unlike in ref. [33], comes out to be non vanishing inside the bubble

"~ wall.

However this is not sufficient to conclude that we will have a non zero final baryon
asymmetry when the bubble wall has passed by.

As we discussed in Sect. 5.2., the generation of baryons inside the bubble walls
is described by Eq. (5.10), with the initial condition (B + L), = 0.

Then we must calculate (B + L);g, i.e. the contribution to (B + L)' due to
transport.

If all the particles in equilibrium participated to the charge potential then we
would find

(B + L)ir(teyx) = (B + L) (te, X) (5.53)

so that the system would always be on the minimum of the free energy inside the
bubble wall and there would be no bias of the (electroweak) sphaleronic transitions.
As a consequence, (B + L)s, would remain zero and no asymmetry would survive
after the passage of the wall up to fermion mass effects, in agreement with what was
find in ref. [33].
On the other hand, this is only an artifact of taking all the particles in equilibrium.
Including only left-handed quarks and the right-handed top quark into the charge

3Incidentally, note that this is not a general property due to the insertion of QCD sphalerons
into the set of processes in equilibrium, but is due to the fact that only top Yukawa interactions
are fast. If, for instance, bottom quark Yukawa interactions were also fast, then we would find that
(B+ L)gq is not simply proportional to (B—L)', but depends also on the values of the other charges

in equilibrium.
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potential, Eq. (5.53) is no more satisfied and a non zero result for the final baryon
asymmetry is recovered. In this case, the factor 37/240 in Eq. (5.43) should be
changed to 25/72.

5.5 Discussion

In this Chapter we have analyzed the SB mechanism taking transport effect into
account by using linear response theory.

We have assumed that inside the walls of the bubbles nucleated during the elec-
" troweak phase transition a space-time dependent charge potential for (partial) fermionic
hypercharge is generated.

Our main interest here was to set a scheme for calculations in the the adiabatic
scenario in the case in which such a charge potential is present, in order to determine
the variations in the thermal averages induced by transport effects and the production
of baryon number by sphalerons inside the bubble walls.

The physical limit we have considered is that of perfect transport, in which the
abundances for particle species interacting via fast interactions assume their local
equilibrium values.

These are not zero but driven to non vanishing values by transport phenomena.
In particular, the local equilibrium configurations will correspond to non zero values
for (B+ LY.

We have determined the local equilibrium configuration by means of a chemical
potential analysis, calculating the values of the thermal averages for the conserved
charges by using linear response theory.

We have considered only the dominant contribution to these averages, in partic-
ular, we have neglected any fermion mass effect and also the coupling of the Higgs
field to the Chern-Simons number.

We find that, in contrast with previous claims [34], the presence of transport
phenomena does not prevent baryon number generation inside the bubble walls. The

main source of disagreement with JPT is the following. In their paper, JPT consider
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the rate equation in the form

. Isp
B = == (3 ey + 8 oy + iy + ), (5.54)

where the term on the right hand side has been obtained by considering the variation
of the free energy of the system due to a sphaleron like transition involving only the
third generation, 7.e. due to the processes tptrbrrr < 0 and t1brbry, < 0.

Then these authors find that the chemical potential of any particle is proportional
to the value of its hypercharge, and so they argue that the right hand side vanishes

as a consequence of the conservation of hypercharge (and of fermion hypercharge) in

.. any sphaleronic transition.

The point is that, assuming local equilibrium of the fast interactions, the chemical
potentials of the single particle species are not proportional to their hypercharge. In
fact, since the single particle numbers are not conserved quantities of the system,
their abﬁnda,nces are reprocessed by fast interactions as to obtain their local equilib-
rium values. Omn the other hand, imposing that the particle chemical potentials are
propgrtional to hypercharge, would be equivalent to freeze out any interaction inside
the bubble wall, both the fast and the slow ones, leaving transport phenomena as the
only relevant process. |

Also, if a charge potential for fermionic or total hypercharge is present, transport
phenomena allow the generation of the baryon asymmetry even in the limit in which
the Higgs VEV’s go to zero, thus avoiding Dine and Thomas objection to spontaneous
baryogenesis.

The reason is again that the thermal averages for @', (B — L) and BP’ are non
vanishing and then a (B + L) asymmetry can be generated even if the electroweak
symmetry is unbroken.

This is strictly analogous to the well known result of the survival of a B + L
asymmetry when a B — L density, eventually of GUT origin, is present [43].

Transport phenomena have been also studied by CKN in ref. [36] by means of
kinetic equations. Their results are in perfect agreement with those described in this

Chapter in the adiabatic limit of thick bubble walls®.

4Note, however, that in ref. [36] the baryon number violating rate was used twice: in diffusion
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In particular, the authors found that the Dine and Thomas criticsm is evaded
since doublet densities produced within the bubble wall can venture out into the
symmetric phase, where baryon number violation is effective. It was also shown that
particles do not remain in front of the wall enough for the strong sphalerons to erase
the left-handed doublet densities, thus making the QCD sphalerons harmless.

Let us make some comments before launching into the subject of the next Chapter.

We want to stress that no discussion about the origin of the charge potential has
been given so far.

Throughout the whole Thesis we have been (tacitly) assuming that the effect
of space-time dependent and C'P violating phases (in the Higgs sector) on particle

" densities were described by a charge potential for the fermionic (or total) hypercharge.

This assumption has been the starting point of all the the objections (and subsequent
ways out) depicted in this Thesis.

However, since in the limit in which all the Yukawa couplings go to zero there is
no communication between the Higgs and the fermion sectors, we expect that in this
limit. also the charge potential should go to zero. A

In the traditional approach of CKN and in all the subsequenf papers there was
no trace of this behaviour. |

Furthermore, in the limit in which the VEV’s go to zero, also the charge potential
should go to zero, since no complex phase can emerge from the Higgs sector in this
case. Then, also this suppression, like the one due to vanishing h;, should be made
evident by an accurate discussion on the origin of the charge potential. As a conse-
quence, our results for the baryon asymmetry, Eq. (5.44) should be multiplied by a
further suppression factor roughly of order (M,(T)/= T)?, which has nothing to do
with the presence of QCD sphalerons or with the Dine Thomas objection: we expect
this suppression on very general theoretical grounds.

We reserve the discussion on this subject to the next Chapter.

equations and to compute the final baryon number asymmetry through the Equation (2.8). They
also used equilibrium number densities n?’q proportional to Yfi 6 T?, which is not correct in the limit
of fast processes since, when interactions are considered, this proportionality gets lost as we have
seen in this Chapter. These conceptual errors have been corrected in ref. [39)].



Chapter 6

Currents in a CP violating Higgs
- background and SB: the Modern

era

Motivated by the opinion that describing by means of a charge potential the effects
on particle currents of a space-time dependent and CP violating Higgs background
presents some serious problems, in this Chapter we shall develop a field theoretic
approach to the computation of particle currents on such space-time dependent and
C P violating Higgs background. The contents of this Chapter are bases on two recent
papers by CPR [37].

We shall consider the SM model with two Higgs doublets and C'P violation in
the scalar sector, and compute both fermionic and Higgs currents by means of an
expansion in the background fields. We shall discuss the gauge dependence of the
results and the renormalization of the current operators, showing that in the limit of
local equilibrium, no extra renormalization conditions are needed in order to specify
the system completely.

By means of this field theory approach we shall recover the suppression factor
(M,(T)/x T)? announced at the end of the previous Chapter.

Let us remind the reader again that this suppression factor has nothing to do with

the ones depicted in Chapter 4 (the latter being derived from particular hypothesis

91
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involving the underlying physics, like the presence of QCD sphalerons, or some as-
sumptions like (B — L) = 0). From this point of view, this Chapter should have been
read immediately after Chapter 2).

The suppression factor we shall be discussing about is predicted by very general
arguments and lies on very firmed theoretical grounds. Its presence signals that the
charge potential tool is inadequate for a fully consistent approach to spontaneous
baryogenesis.

In order to reliably combute the final baryon asymmetry, it is then necessary, as
a first step, to determine the values of the currents induced by the background.

As said several times, in the approach of ref. [28] a rotation of the fermionic fields

" is done to make the Yukawa couplings real. As a consequence, a derivative coupling

of the form
Ling ~ 0,8, (6.1)

where j“ is the current corresponding to the rotation, is induced from the kinetic
terms. We indicate here by 6(z) the space-time dependent relative phase between the
two Higgs complex VEV’s.

Nevertheless, using the interaction term in Eq. (6.1) as a starting point to compute
the perturbations to the thermal averages presents some drawbacks. |

Since the phase § is communicated from the Higgs to the fermion sector through
the Yukawa interactions, any perturbation in the fermion densities n; should vanish
in the limit of zero Yukawa couplings h;.

Also, they should vanish in the limit of zero vacuum expectation value for the
Higgs fields H(z) = vi(z) exp[ifi(z)] because no spontaneous CP violation is present
in the Higgs sector in this limit.

Naively, one could then expect a suppression factor of order (h?v%(z)/ T?), where
h; is the relevant Yukawa coupling, for the perturbations in the fermionic particle
number with respect to the original result. Since one is interested in regions of the
bubble wall where sphalerons are still active, i.e for values at most Veo/ T typically
smaller than one, then the above mentioned suppression factor might be crucial for
the scenario of SB.

The reason why these suppressions do not appear in the original treatment is that
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considering Eq. (6.1) as the only effect of the background is equivalent to perturbing
around the Higgs field configuration §(z) = 0, v;(z) # 0, which is not a solution of
the field equations.

On the other hand, taking the field equations into account, one immediately sees

that the expected suppression factors are recovered also in the original treatment,
so that the result comes out to be rotation independent, vas it should, also in this
context. Indeed, by partially integrating Eq. (6.1), we obtain a perturbation term
which is given by the hypercharge violating terms in the Lagrangian, coming from
' the fermionic mass terms and from the Higgs potential.
’ Also, from the field equations one can see that 9,8(z) vanishes as v?(z) for van-
) ishing v;(z). In other words, it is the perturbation (6.1) itself, if properly considered,
to be vanishing in the limit of vanishing top Yukawa and Higgs couplings, or in the
limit of vanishing values for the background Higgs fields.

In the limit in which some interaction rates (like for example those for the top
Yukawa processes) are so large as to be in thermal equilibrium inside the bubble
walls, the local equilibrium values for the corresponding particle numbers are of course
independent on the reaction rates.

On the other hand, since their values are fixed by that of the perturbation term
(6.1)), they are still suppressed by the above mentioned factor of (h?v*(z)/T?). Thus,
this suppression is not the one described at the end of Section 2.3: it is always present,
even for particles whose reactions are so fast that their equilibrium number densities
do not depend upon the interaction rates.

In this Chapter we shall describe in more detail our approach to calculate the
expectation values of a generic composite operator O(z) in a CP violating Higgs
space-time dependent background.

For definiteness, we will work on the background of a bubble wall, however the
formalism is quite general and can be easily extended to consider other interesting
situations, like for example a non trivial background also for the gauge fields.

The method relies on a functional expansion in power series of the background
$¢(z) where the coefficients of the expansion are the n-point 1PI Green’s functions

with one insertion of the operator O(z) computed in the unbroken phase.
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We shall discuss the dependence of the expectation values from the gauge in which
the background ®¢(z) is expressed, showing explicitly that the expectation values of
gauge invariant operators are gauge independent. Moreover, the problem of current
renormalization will be addressed. In general, the computation of Green’s functions
with insertion of a composite operator requires the introduction of new counterterms

besides those necessary for the renormalization of the basic Lagrangian.

This fact leads to the well known phenomenon of the mixing among the different

renormalized currents of the theory. We shall discuss the mixing matrix for the

~- renormalized currents present in the Standard Model model with two Higgs doublet

and use the non renormalization properties for the conserved currents in order to

reduce the number of independent counterterms.

Finally, we will discuss the limit of local equilibrium, showing that, in this case, the
only expectation values that can be consistently computed are those for the conserved

currents, so that no new renormalization condition is needed to specify the system in
this limit.

The Chapter is organized as follows: in Section 6.1 our field theory method is
described on general grounds and particular attention is given to the classical equa-
tions of motions and to the question of gauge invariance. In Section 6.2 the explicit
calculations for the fermionic and Higgs currents in the specific model under consider-
ation are given in details. Section 6.3 deals with the issue of current renormalization,
whereas the role of the conserved currents in the thermodynamical limit is described
in Section 6.4. Section 6.5 presents our comments on the implications of the results
of this Chapter for the SB mechanism. Finally, Section 6.6 briefly describes a new
semiclassical approach due to Huet and Nelson, by which the same suppression fac-
tor proposed by CPR in [37] was found. Its application to EWB in supersymmetric
models is shortly depicted in Section 6.7.
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6.1 The expansion

In this Section we will discuss our approach to the computation of the expectation
value of an operator O(z) on a non zero background for the fields of the theory.

Our starting point is the finite temperature generating functional for the 1PI
Green’s functions with insertion of an operator O(z) (in the following O(z) will rep-

resent a particle current)

(8i(e), @) = W Ii(e), A@)] -3 [ at23i(2)95(=), (6.2)

™ where ®¢(z) are the classical fields of the theory and Ji(z) the corresponding sources,

while A(z)is the source for the operator O(z). Note that the Legendre transformation
has been performed only on the fields and not on the operator.

The quantity we are interested in is the expectation value of the operator O(z)
on the background given by the fields ®$(z), which we will specify later,

) 8T [8F, Al

(O(2))as(z) = TEA) | O [97(2)](2)- (6.3)

A=0

We can expand the functional O [®¢(z)](z) in a power series of &

o0 1 N
O @] ()=, ¥ = [ a1 a'2,0) (1, 2 208, (31) 85, (o),
(6.4)
where the coefficients of the expansion are the n-point 1PI Green’s functions with one
insertion of the operator O(z) computed in the unbroken phase

1 §7HIT (8¢, A

T 392 (1)~ 682 (2,)5A(2) |, (6:5)

Oz(ln,)..,,z’n(mla *tyTny z) =

Now we have to specify the background fields, ®¢(z).
A priori, the relevant background is given by the solution of the full field equations,

5T (8¢, A = 0]

6(1?1?(:13) oe=5¢

=0 (6.6)

with appropriate boundary conditions.
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In practice, however, we have to consider some approximation of this complete,
and unknown, solution. A possibility could be to consider the solutions of the classical
equations of motion as the zero order approximation. However in many interesting
cases the radiative corrections to the effective potential, either at zero or at finite
temperature, are crucial in order to determine the shape of the potential and conse-
quently of the background. A typical example is that of a first order phase transition
induced by finite temperature corrections, in which the existence of bubble solutions
is due to the T' # 0 radiative corrections which induce a second minima in the effective
potential.

Following refs. [78, 79], we will then consider the classical equations of motion in
which the tree level effective potential is replaced by the radiatively corrected one.

In the following, we will consider the Standard Model with two Higgs doublets,
H, and H,. H; has U(1)y charge —1/2, and couples to the down type right-handed
fermions,~whereas H, (charge 1/2) couples to the up type ones.

Moreover, since only top and bottom quarks will be relevant in the following we
will not consider the lighter quarks and leptons.

Neglecting all the Yukawa couplings but the one for the right-handed top, h;, the

classical Lagrangian is given by

L = —%F“,,F’“’ + (D, Hy) D*Hy + (D.H.) D*H, (6.7)
Ty, Pt + Ry P e + (¢ — b) + he (HEpts — H Erbo) — V(Hy, Ha),
where the most general tree level scalar potential V/(Hy, H») is given in Eq. (3.24).

In Eq. (6.8) we have also omitted tha SU(2)r gauge part, which will not be
relevant in the following.

Note that of the two phases of the Higgs fields, 8, and 65, defined by Hi(z) =
v;(z) exp[ifi(z)], only the gauge invariant combination § = 0, + 0, appears in the
scalar potential.

The orthogonal combination, x = 61 — 5, is the gauge phase, corresponding to
the would be Goldstone boson after spontaneous symmetry breaking.

One can now write down the equations of motion coming from the Lagrangian in

(6.7), with the tree level scalar potential V(Hy, Hz) replaced by the (finite tempera-
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ture) radiatively corrected one, V(Hj, Ha).

We assume that the parameters of the effective potential (and the temperature) are
such that it has only one minimum in the charged directions, given by H* = H~ =0,
whereas there are two minima in the neutral Higgs directions. Then, a bubble solution
exists, with v, 5(z) changing from a non zero value inside to zero outside, and H* = 0
everywhere.

At zero order, we will also take the fermion fields and currents to be zero, so that

the background is given by the solution of the following field equations:

ov. 1
B2+ 5— — 7912 (8,6 F Dux)’ = 0 (6-8)
6’1)1‘2 4
e
BuF* = 7 (v} —v3)0"8 — (v} +v3)D"x] (6.9)
1 . . ov
100 [(0F + 03276 — (o] —0)D"x] = — =, (6.10)
where the gauge invariant quantity D, x is given by
Dux = Oux + eA,. (6.11)

Assuming also that there are no electric or magnetic fields at zero order, ie.
F,, = 0, and choosing the unitary gauge A, = 0 (see below), we obtain from Eq.
(6.9)

v28,0, = v38,0,, (A.=0) (6.12)

so that Eq. (6.10) now reads

ov

—a (6.13)

o (vf@nﬁl) =

Inserting the solutions of the above equations into the expansion in Eq. (6.4) we

will now be able to compute the various contributions to the expectation values of
the currents as a loop expansion.

In the following Sections we will see that the Higgs currents get a contribution

already at the tree level, whereas, consistently with our assumptions, the contributions

to the fermionic currents, and to (8,F*¥), arise only at one loop.
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Before concluding this Section, we want to show explicitly that the expectation
value for a gauge invariant operator, as obtained by the expansion in Eq. (6.4), is
independent on the gauge in which the classical background has been computed.

In our discussion above, we have looked for a solution of the field equations with
no electromagnetic fields, z.e. with F,, = 0, so that it was possible to chose a gauge
in which 4, = 0 everywhere (see Eqgs. (6.12,6.13)). Choosing a different gauge gives
rise to a different background, in which A, is different from zero, and we want to show
that the result for the gauge invariant operator O(z) is the same as in the original
background.

Following the usual procedure for the derivation of the Ward identities it is

" straightforward to obtain the relation

éazaua# + au% — zg (Hfg% — Hf*gg)* - Hgggg + Hgg:) =0 (6.14)
where a is the gauge parameter, a,, HY ,, and ng* are the classical gauge and neutral
Higgs fields, and we have put the charged Higgses and the fermion classical fields to
zero.

Differentiating the above expression with respect to the source A(z) keeping the
background fields fixed, and then putting A(z) = 0 we obtain the relevant identity
containing the functional O of Eq. (6.3),

50 e 0 60 ox 00 0 80 o 60\
6lié-au ""'7/2 (Hl 6H10 - Hl 5Hi)* - -Hz 5Hg + H2 5]-:{8* = 0. (615)

The Green’s functions entering the expansion (6.4) have to be computed in the
‘unbroken phase’ i.e. for vanishing background fields ®; = {H?,, H7, ,a,}. Taking
®¢ = 0 in Eq. (6.15), one gets

650
o =0, (6.16)
bay ®¢=0
while, differentiating with respect to H?,
e 60 520
—f sz —y) + y——— =0 6.17
2 S gy’ P T O @) g (6:17)




6.1. The ezpansion 99

and similar identities are obtained differentiating with respect to the other fields.

Now, let’s indicate with ®; = {H1 0y H 2*,41“ = 0} the ‘bubble’ solution of the
field equations discussed a.bove, and with ®; = {F? 21,_{1)2/ ,a@, = —1/e 0,0} the

solution obtained from the former by a gauge transformatmn. Then, we consider the
functional O on the background @ and expand it according to Eq. (6.4). Since
@), # 0 in this case also Green functions involving gauge fields in the external legs
will contribute to the expansion whereas, if we consider the background &,;°, only the
Green functions with neutral Higgses in the external legs contribute. However, by
" means of the above identities, one can easily show that there are cancellations among
these new contributions, so that the result is the same as for 3,°. Indeed, at the linear

order in @), in the expansion we have

d4 /d4
/ 5&,,(:13 " ba #( )
where the last equality is due to Eq. (6.16). At the linear order iﬁ -E—(I), we have
50
die —— o) = [ d's
/ * §H(z) 6H°

The contribution O(6(z)) is canceled by the ﬁ?,EL term in the expansion by virtue
of Eq. (6.17),

8(z) =0 (6.18)

®$=0

H,(2)(1—18(z)/2) + O(6%). (6.19)

®¢=0 P¢=0
1 l

4w 520 -0/ _
4 o, T 05~
%/d“mdd‘y 6”#)5%{16@—) Q‘?:Oﬁ?(y)g(y) +0 (92) = (6.20)

H)(2)8(z) + O (6%) .

<I>:?=O

/ d's 551

The contribution of n-th order in 6 in Eq. (6.19), is canceled by the terms coming
from the H ( ) (: = 0...n) orders in the expansion, due to the appropriate Ward
identities obtained by dn‘ferentiating Eq. (6.17) with respect to a,.
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This result generalizes to the other terms of the expansion: all the contributions
of the same order in the primed Higgs fields and of any order in a,, in the expansion

for O[If?l] sum up to the corresponding term of the same order in the non-primed

Higgs fields in the expansion for O[&;], so that

087 = O[F;). (6.21)

1

Since in practical applications one has to truncate the expansion to a finite order

in the fields, it is clear from the above discussion that this can be done in a sensible

. way only if we consider the background &, where the classical gauge field is zero, 2.€.

in the unitary gauge.

6.2 Computation of the currents

We will now apply the method illustrated in the previous paragraph to the com-
putation of (J'(2))eo(s), the expectation value of the current operator Jf'(z) (i =
HY,, H*, tL R, br,r) on the background ®¢, = {H7, H", HY, HJ"}, which, for defi-
nif;eness, we assume to be the bubble solution to the field equation. of motion discussed
in the previous Section.

The computation of such currents is crucial for the spontaneous baryogenesis
mechanism.

In the following, we will assume that there are no chemical potentials. Then, it is
easy to realize that a necessary condition for the presence of non vanishing expectation
values for the currents is a non trivial space-time dependence of the background.

Indeed, if H{z(m) were constant then the only two vectors available for the con-
struction of (J}'(z))es would be z” and u* (the quadrivector which identifies the
motion of the thermal reference).

By using translational invariance, we are left with (JE(2))as ~ comst x u, but
this is forbidden by C PT.

Also, by applying a charge conjugation transformation both to the operator and

to the background, we see that

(JE(2))as(@) = —{JF (2))as(er (6.22)
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i.e. the expectation value for the current would vanish also if the background were
real.

From these two considerations one can conclude that the expectation values we
are looking for, will depend on space-time derivatives of a complex background, so that
the two phases 8;(z) and 6(z) discussed previously, (or §(z) and x(z)), constrained
by (6.12), will play a crucial role.

Computing the expectation value as a functional expansion on the background,

as in Eq. (6.4), the problem is reduced to the calculation of 1PI Green’s functions

" with one J(z) insertion in the unbroken phase, as in Eq. (6.5).

We will work in the imaginary time formalism, so that our expressions for the

™ Qreen’s functions and for the currents are valid in the reference frame of the thermal

bath, where the bubble wall is moving. _

The zero order of the expansion in Eq. (6.5) vanishes since it is given by the 1PI
part of (Jf'(z))es=o Which is zero since translational invariance holds in the unbroken
phase.

The linear order is also zero, as can be realized observing that in the unbroken
phase the theory has still a global U(1) invariance, whereas (JIH(Z)H,?(]}»@;:O is not
a singlet under such symmetry. '

The first non-vanishing contributions then come from the quadratic terms z.e.

1 ' &°T | &<, A s \me
(JE(2)) = 5%/#% dty 5@’@(33)522(3/)62]2(2) ®%(z)P%(y)- (6.23)

J e —A,—
B¢, =A,=0

Using again the global U(1), one can see that the only possible non-vanishing con-
tributions to the above expression come from the 1PI part of (Jf(z)f{g(z)ﬁg(y))@j:o,
or (Jz.”(z)H?(m)H?(y)*)@Fo (z = 1, 2). These Green’s functions will now be computed
as usual in perturbation theory, and the result inserted into the expression (6.23).

We start with the Higgs currents
T =i (H,TD#H,- _ D“HJHJ . (6.24)

In the case of the neutral Higgses a contribution already appears at the tree level,
see Fig. 8. Inserting this contribution into the expression (6.23) we get the classical
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current

(T (N = 2 02(z) 570,(2). (6.25)

Note that, as expected, the individual Higgs currents are zero if the phases are con-
stant.
Moreover, from the equation of motion (6.12), we see that the total Higgs hy-
pecharge current vanishes at the tree level.
At one-loop there is a contribution to the neutral and charged Higgs currents given
by graphs like that in Fig. 9.
" Since the computation has to be performed in the unbroken phase, we must use

resummed propagators for the Higgs fields in order to deal with the infrared diver-

~ gencies [80].

In the unbroken phase, the Higgs spectrum contains two complex electrically neu-
tral fields and two charged ones. At the tree level, the squared masses of one of the
neutral states and of one of the charged ones are negative, since the origin of field
space becomes a minimum of the effective potential only after the inclusion of the
finiteé temperature radiative corrections.

The resummation can be achieved by considering the propagators for the eigen-

states of the thermal mass matrix, which has positive eigenvalues given by

m¥(T) + m(T) F /(m3(T) —m3(T))’ + 4 m3(T)
2 b]

M;o(T) = (6.26)

where the m?(T') are the thermally corrected mass parameters of the potential (3.24),
m2(T) ~ m?+3¢*T?/16, m3(T) ~ m3+hiT?/4, while m3(T) receives only logarithmic
corrections in T, which were computed in ref. [30, 31].

Correspondingly, the neutral complex eigenstates are given by

L = cosaHY + sinaHY
, (6.27)
H = —sinaH? + cosaHY
where or2(T
sin 2a = my(1) (6.28)

ME(T) — MZ(T)
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Completely analogous formulae hold for the charged eigenstates.
The loop in Fig. 9 gives

83T — —i)s sin2a §9(a — y)/_cﬁq__eiq-(z—z)Hu(q) (6.29)
§AL(2)6 HY(z)s HY(y) (2m)! ’

where the function H¥#(g) is the analytical continuation to Minkowski external mo-

mentum g of the finite temperature integral,

nlay P . 2 o M2
w0 Yo Gy Gy~ (OO < @) 6

where qs = iQO, gi = gi, Po = 27"in’ P2 = Pg + !ﬂ27 and

?Sdp = %D:./ ((2175;3'

Note that the only quartic coupling contributing to the Higgs currents is As,

whereas there are no contributions from A and A;. Moreover, the contribution van-
ishes\if there is no mixing m2(T) between the two Higgs gauge eigenstates (see Eq.
(6.28)).

It is easy to check that Green function in (6.30) is ultraviolet finite, due to the
minus sign between the two terms in the integrand. After some algebra, the integral

in p can be casted into the form

BlzY — i"# 52 2 1
(6) = 5 [0+ M) 90 G ey = g+ MG 77+ W)

— ((M3(T) = M(T))]
(6.31)
Now, the scale of the external momentum g is set by the bubble wall width, which, in
the case of interest for us of thick bubble walls, is given by L' ~ (1 —100) T. Then,
since we have ¢ < M7,(T) < (2xT)*, we approximate the integral by neglecting
the § dependence in the integrand and by considering only the zero Matsubara mode

for po. Inserting the result into the quadratic term of the expansion (6.4) we obtain

(T () = (Ttg(2)® = As T my(T)

= S QAT 1 My 0 EelF) s (6:32)
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Each charged Higgs gets a contribution equal to that of the neutral Higgs belonging
to the same doublet. As expected, also the Higgs currents vanish in the limit of
vanishing v;(z).

The first contribution to the fermionic currents arises at one-loop and is given by
graphs like that in Fig. 10.

Once inserted into the expansion (6.4), they give, in the case of the left-handed

top,
(T (N = ik [ d'zd'y Im (B (2)H3(4)) G"(2,v,2), (6.33)
where h; is the top Yukawa coupling and
dl d*m :
p _ il(e—2) g1 m(y=2) Qk(m, | 6.34
g (:Z:’y)‘z) (271_)4 (27‘_)46 € (m7 ) ( )

is the Green function corresponding to the diagram in Fig. 10, with

;Sd [(K+ ) K(E— D]
(k+m>2k2( —yp

and the zero component of the fermionic loop momentum is k% = (2n 4+ 1) 7.

GH(m, 1) (6.35)

Contrary to the case of the scalar loop, this fermionic loop integral is now infrared
finite, since the zero component of the loop momentum never vanishes. As a conse-
quence, we will work with the tree level fermion propagators, without of resummation.

Again, in presence of a thick wall ba.ékground we can perform a high temperature
expansion.

This is achieved by approximating G*(m, ) ~ GH(m,0) + GH(0, [) (note that
GH(r,l) = —G#(I,7)), and neglecting terms of order I?/T? in the computation of
GH(0,1).

Now the integral has a logarithmic ultraviolet divergence, so renormalization is

needed (see also the next section). In the M S scheme we obtain

(JE (2))® ~ _%g v2(2)0"0,(2) (log ( Af;) + g) : (6.36)

where A; = w?exp(3/2 — 2vg) ~ 13.944.
Eq. (6.36) shows the expected dependence on A} and v3(z) which, in comparison
to the original result given in ref. [28], gives a suppression factor O(hyva/7 T')*.
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Note that Fig. 10 has the straightforward explanation: a left-handed particle
leaves the point z and is scattered of the Higgs background at the point = where it
becomes a right-handed particle. The latter is then reconverted into a left-handed
fermion at the point y through another scattering off the Higgs bacground. Since
these scatterings are C' P violating, a net nonvanishing current arises.

A graph similar to that in Fig. 10 for the right-handed top quark leads to a
contribution to (Jf (2)) given by (Jf(2))®) = —(Jf. (2))). For the other fermion
species, one finds analogous results, in which h; is replaced by the appropriate Yukawa
" coupling, and v,(z) (v1(2)) appears for the up (down) type fermions.

A contribution to (J{:(z)) proportional to Im(H{HYJ) = wvivssiné, and to A7,

appears at two-loops, given by the graph in Fig. 11.

The corresponding integral is
1
I(k) = ;qu
8 = L8 (g vy + T + M)
where ¢ is the bosonic loop variable and G*(m,[) has been defined in (6.35).

G*(—q — k,q) (6.37)

Gomputing the fermionic integral in the approximation described above, we are
left with a ultraviolet finite bosonic integration which receives important contributions
only from the zero Matsubara mode. Inserting the result into the expansion we obtain,
again in the high temperature approximation,

n 4 N_)‘5h? ng(T) o ———~’u'2 § v (2)ve(2) sin 8( =
ey -2 T (g () + 3) @ e ; ) )

As for the one-loop result, the two-loop contribution with neutral Higgses in the

internal lines for (Jf,(z)) is opposite to the one for (Jy, (2)).

This is no longer true when the graphs with charged Higgses in the internal lines
are taken into account. In such a case, (Jf,(z)) gets a a contribution equal to Eq.
(6.38), whereas the result for (J/; (z)) is analogous but proportional to hj instead of
RZ.

The charged Higgs loops give also rise to a non-vanishing left-handed bottom
density opposite to Eq. (6.38).

When applying our calculations to the interesting case of spontaneous baryoge-

nesis, one has to remember that the typical values of v;(z)/T are smaller than one,
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as required in regions of the bubble wall where sphalerons are still active. This fact
enables us to stop the expansion series at the second order, being the remaining terms

suppressed by powers of v;(z)/T with respect to it.

6.3 Current renormalization

In the previous Section we have seen that in order to calculate the finite temperature
average of the particle currents, the expansion (6.4) can be used, whose coefficients
are the 1PI Green’s functions with the insertion of current operators J!, computed

in the unbroken phase. With J/’s we have indicated the current for the i-th particle,

>~ expressed in terms of the renormalized fields.

In general, the computation of Green’s functions with the insertion of a com-
posite operator requires the introduction of new counterterms besides those nec-
essary for the renormalization of the basic lagrangian (see ref. [81] for a thor-
ough discussion). For example, the one-loop computation of the Green function
GH(=yy,2) = (Jf#(z)Hzo(:c)Hg’*(y)), defined in Eq. (6.34), gives a divergent part (in
the WS renormalization scheme, and in the momentum space) -

GHi¥(m, 1) = +8_%h?ﬂ13-)% (m* —I*). (6.39)

where m, | are the momenta associated to the external Higgs fields and € = 4 — n.
This divergence may be expressed as

__t 1

16 w2 e

G (e,y,2) = (Tho (2) Hy () Hy™ () (6.40)

it i.e it is proportional to the tree level Green function involving the HJ Higgs field
current, corresponding to Fig. 8.

This is an example of a quite general phenomenon: a renormalized current [J1,
can be defined as a linear combination of the currents J

[JE] =Y (& + 62i)TF (6.41)

J

in such a way that all the possible Green’s functions with [J!] insertions are finite.

In the example discussed above, we have 6Zp; = —u?h?/(167% €). The 62;; are in
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general new renormalization constants which are not contained in the counterterm
lagrangian, so that new renormalization conditions are needed.
An important exception to this is the case in which J* is a conserved current for

the renormalized lagrangian

L = Lyasic + Ect; (642)

where Ly, is expressed in terms of renormalized quantities and L., is the countert-
erm Lagrangian. Let’s consider here the simple case of a lagrangian containing only

left and right-handed top quarks and the neutral Higgses, which will be enough for
'! discussing the renormalization of the Green’s functions relevant for this Chapter.

The conserved current under the group U(1) is then

T+ 80" = qr (14 621) JE +ar(1+6Zr) Ja+ a1 (14 621) Jho + a2 (1 +622) Thyo,

(6.43)

with g2 = qr — qz = —¢1 = 1/2 and §J* is the part of the current coming from L.

The §Z, (o = L, R, 1, 2) are now the wave-function renormalization constants for
the different fields, coming from L.

In this case, being the current conserved, no new counterterms besides those

already present in (6.43) (and hence in L) are needed [81], i.e.
JH 4 8T = [T = qr TE) + ar [TE] + @ [Tho] + @2 [ T2 - (6.44)

Recalling this property of the conserved current it is possible to reduce the number
of linearly independent renormalization constants §Z;; (where now 7+ = L, R, 1, 2)
necessary in order to define the renormalized currents according to Eq. (6.41).

Indeed, from (6.44), recalling (6.41) and (6.43), the number of new linearly inde-
pendent renormalization constants §Z;;’s is reduced from 16 to 8.

The most general renormalization matrix is then given by

1+6Zp 6Zr — 6ZRrR YA VAR
57 — 5ZLL 1+6Zpr —8714 —8Z14
5Z1L 5Z1R l+ 5Z11 5Z12

82y + 6871, — 671, 8Zir—6Zrp+8Zr 87, + 8211+ 82 1+68Zy+ 6715+ 621
(6.45)
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We see then that, in general, eight extra renormalization conditions are required in

order to define the set of renormalized currents {[J}]}.

The only divergent graph encountered in Section 6.3, is the fermionic one-loop
(see Eq. (6.36)), so, for the present application, and to our order of computation, it
is enough to compute the matrix (6.45) only to order (g)°h?.

To this order, only one of the eight extra renormalization constants is non zero,
§Zr, and moreover we obtain, again from (6.44), that §Z;, = —6Z, (+ higher order

terms), so that no new renormalization condition is needed.

The mixing matrix is then given, at this order, by

4] 1 6Zp 0 —6Z, )\ [ Tt
T §2, 1 0 6z 3
R r ’ S (6.46)
78] 0 0 1 0 h
. [J] —87, §Zp 0 1 Tt

where § 21, = —62Z, = (—p*h? /16 w2 ¢), §Z;, = §Zr = (—p’h} /32 % ¢).

Working at higher order, we would need new renormalization conditions, defining

the physical currents [J}'] at a certain scale.

Due to the interactions, at a different scale the renormalized currents will be given
by different mixings of the unrenormalized ones, so that, in general, the definition of

‘pure’ (i.e. non-mixed) currents is scale dependent.

As we have already stressed, this is not the case for the conserved currents, which

do not suffer any mixing and do not require any new renormalization condition.

As we will discuss in the following section, the only relevant currents in the imit of
local thermodynamical equilibrium are just the conserved ones, so that in this case,
the state of the system is completely determined without the need of introducing

extra renormalization conditions.
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6.4 The limit of local equilibrium

Up to this point, we have computed the expectation values of the individual particle

numbers starting from a partition function of the form
207, A;) = Tr exp [—ﬂ (H + | A]-Njﬂ (6.47)

where H is the Hamiltonian of the system and we are now considering only the zero
components (N; = JJ(-’) of the currents considered in the previous Sections. We assume
that all the chemical potentials are zero.

If we take generic values for the sources J; and A; the partition function (6.47)
will not correspond to the one describing the limit of thermodynamical equilibrium,
in which the individual particle numbers assume values such that the free energy of
the system is minimized.

In t};e case under consideration of a épace—time dependent Higgs field background,
the limit of local equilibrium is achieved only if all the interaction rates are much higher
that the inverse of the typical space-time scale of the variation of the background,
1.e. the bubble wall width.

This condition is fulfilled in reality only by a few interactions (the gauge flavour
conserving ones, the top Yukawa interactions, and possibly some Higgs-Higgs inter-
actions), however it is anyway instructive to consider first this limit before discussing
the more realistic situation in which some of the interactions are out of equilibrium
inside the bubble wall.

The free energy of the system is obtained by performing the Legendre transfor-
mation of the functional defined in Eq. (6.2) with respect to the sources A; of the

density operators,

F 05, N] =W i, Al — 5 J d'adi(2)®(e) — Z;f d'ed(2)N(2)
=T[35,4) - 3 [ dan(2)N () (6.48)

= (H) - TS.
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The last equality in the above equation is straightforwardly derived recalling that the
entropy S is given by S = —8W/0T and that W = —T log Z (we are taking the three
dimensional volume Q =1) . |
The classical densities NVj(z) are defined as usual,
6T(%;, Al

A/;C(m) = (SAJ((B) A0 )

(6.49)

where the background is, as before (Eq. (6.6)), the solution of the field equations
with appropriate boundary conditions, i.e. we have Ji(z) = 0in Eq. (6.47).

Now, the local equilibrium situation on the background ®;(z) is obtained once
all the processes have driven the free energy to its minimum possible value. This
" condition corresponds to a system of M equations (where M is the number of processes
in equilibrium) of the form
§F [&5, Ni]

OF [8c. N¢| = o
) F{@Z,Af]] zj:u] 5/\[]?(@

=— ivj(-l)Aj(:c) =0 (I=1,...,M), (6.50)
=1

where z/J(-l) is the multiplicity of the j-th particle in the [-th process (7.e. in the process

A+92B < C+ D wehavevy = —vg = —vp = 1,and vp = 2).

The system (6.50) is of course strictly analogous to the usual system of equations
that one has to solve to determine the equilibrium chemical potentials. In this case,
it restricts the set of the linearly independent sources to {AL} (a =1,..., N), corre-
sponding to the set of the N conserved charges N, of the system. This means that

the only composite operators that appear in the equilibrium partition function

gl Jiy AL] = Tr exp [—ﬁ (H +f A;Naﬂ (6.51)
Al =0
are those corresponding to the conserved charges,
6T [®7, A]
Ni(z) = — o~ 6.52
§A(z) AL=0 ( )

where T, is obtained from Zeq in the standard way.
After solving the system (6.50), the sources for the individual particle numbers,

A,;, are expressed in terms of the new sources A! as

A= a AL (6.53)
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where ¢{!) is the a-charge value of the particle 7. Then, the equilibrium values for the

individual particle numbers are given by

eq . 5Peq [55 ’ Ala]
N (z) = Z §A!(z)

a

i =3 Ni(=)d?, (6.54)
AlL=0 a
where the G{*)’s are found inverting the system (6.53).

Concerning renormalization we see that since now the only Green’s functions that
have to be computed are those involving the conserved charges, no new renormaliza-
+ tion conditions for the composite operators are necessary when one is dealing with
the local equilibrium case.

However in many interesting applications not all the processes have rates fast
enough such that a complete local equilibrium situation can be attained.

In this case one can consider an adiabatic approximation, in which the slow pro-
cesses are freezed out inside the bubble wall, while the fast ones are in equilibrium.
As a consequence, on the bubble wall only the equations corresponding to such fast
processess will contribute to the system (6.50) and one can repeat the above analysis
with new effectively conserved charges now playing the role of the N,’s.

There is in this case a, mainly conceptual, problem, since these charges are now-
not conserved by the full theory, but only by the effective one obtained by sending
to zero all the couplings contributing to the slow processes. Then they do in general
mix one another under renormalization, as was discussed in the previous section, so
that the interpretation in terms of physical currents will be scale dependent.

However, since the mixing is due only to the small couplings which are neglected
in the effective theory, it will be in most of the practical applications a neglhgible

effect.

6.5 Implications for the spontaneous baryogene-

sis mechanism

In this Chapter we have made use of a field theoretical approach based on a expansion

in the background fields around the unbroken phase to compute in a consistent way
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the perturbations to the particle currents induced by a C'P violating bubble wall
background.

We have shown that the various contributions arise at the tree level, in the case
of the Higgs currents, or as loop effects. In this way it has been possible to avoid the
various ambiguities inherent to the traditional approach [28] based on the rotation
of the fields, recovering all the expected suppression factors and including the Higgs
fields.

Indeed, the proportionality between an individual particle density and its hyper-
charge in the original treatment was a direct consequence of the hypercharge rotation
made to make the Yukawa couplings real.

Making a different rotation, the proportionality would of course drop. For in-
stance, one could rotate the right-handed top and leave the left-handed one untouched,
absorbing the anomaly by a proper rotation of the light fermion fields. In this case, in
principle, the final value for the baryon asymmetry might come out to be dependent
on the rotation that has been made.

In order to get a feeling of the implications of our results for the spontaneous
baryogenesis mechanism, we can first consider an adiabatic approximation similar to
that discussed in ref. [35]. '

Inside the bubble walls the (B + L) violating sphaleron transitions are biased
since a non zero local equi]ibl;ium value for (B + L) is induced. (B + L)gq is a linear
combination of the expectation values of all the currents conserved by the interactions
in equilibrium inside the bubble wall.

Assuming that gauge flavor diagonal, top Yukawa and Higgs-Higgs interactions
are in equilibrium, the conserved charges are Q’, (B — L)', BP' = B3 —1/2(By + Bs)
and Y =Yg+ Y, + Vi, + Y, +1/3 op Where the prime means that only particles
in equilibrium must be considered, and Yj., is the hypercharge of the leptons in
equilibrium.

The values of these conserved currents are made up by the background pertur-
bations computed above. Neglecting the contributions to the fermionic currents not
proportional to k2, it is straightforward to see that the contributions to (B + L)rq

from the two Higgs currents cancel each other both at the tree level and at one-
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loop, and among the conserved charges only Y’ vgets a non vanishing contribution at
one-loop.

The two-loop diagrams where charged Higgses are exchanged give a further con-
tribution to Q and Y.

The local equilibrium value (B + L)gq enters the rate equation of the form
B~ —T(B + L)gg/T?.

As a consequence, the force driving baryon number violation is just a one-loop
effect.

Regarding the final value for the baryon asymmetry in the adiabatic approxima-

tion, the suppression terms that we have found would give rise to a suppression factor

T O(R? W2 7 T?).

Taking ve,/T ~ ayw /g we see that typically a suppression O(10™*) arises.

In this case, it might be hard to reconcile the observed value for the baryon
asymmetry with this mechanism for baryogenesis in the adiabatic limit, both in the
case of spontaneous and of explicit C' P violation in the Higgs sector.

In practice, however, the system is well far away from the idealized situation of
perfect adiabacity.

Aa better description of the evolution of particle numbers can be achieved by
employing a system of kinetic equations. For each particle number, the values ex-
pressed by (6.54) would then represent the infinite time limit of the corresponding

rate equation,

Ni ~ Tig(Nj = N59). (6.55)

As we have already stressed, the dependence of such equilibrium values on the cou-
pling constants and on the value of the Higgs background should not be confused
with the dependence of the rates I';; on these quantities.

Also, the quantities we have computed here are just the perturbations induced by
the C' P violating background. They should be used as source terms for the departure
from equilibrium in the equations describing dynamical processes, like gauge and
Yukawa interactions, baryon number violation and particle diffusion.

Indeed, we know that particle diffusion may play an important role in the descrip-

tion of the spontaneous baryogenesis mechanism.
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As a consequence of the perturbation induced by the bubble wall background, and
of the different diffusion coefficients of different particle species, asymmetric densities
are formed not only inside the bubble walls, as in the adiabatic approximation, but
also in front of it, where the sphaleron transitions are not suppressed. These asym-
metries are then transformed into a baryon asymmetry mainly in the region in front

of the bubble wall, in a scenario similar to that occurring in the case of thin bubble

walls.

In order to improve the adiabatic approximation a system of kinetic equations
describing particle interactions and diffusion should then be solved, along the way of,
e.g., ref. [35, 36]. Indeed, it is now evident that transport processes, omitted in the
original thick wall calculations, significantly enhance the baryon asymmetry produced
during the EWPT. In fact, it has been suggested that the 7-lepton plays a leading
role in baryogenesis due to its large diffusion constant [84]. However, due to the
results found in this Chapter, we believe the 7-lepton is likely to be less important
than_the top quark for baryogenesis in the two Higgs doublet model, because the
source of axial tau number is suppressed relative to the axial fop source by a factor

of R2/R? ~ 10+

The results of this Chapter have been recently confirmed by Huet and Nelson [38].
Although they adopted a semiclassical approach quite different from the one discussed
in this Chapter, their results are in quantitative agreement with ours. In particular
the same dependence on h; and v(z) is found. They also applied their formalism to
the interesting case of EWB in supersymmetric models [39]. This will be the subject

of the next two Sections.

Let us conclude this Section by saying that, due to its generality, we believe that
the method illustrated in this Chapter can be easily applied to similar situations of
interest in Cosmology, in which some of the fields acquire a space-time dependent
classical value as for instance in inflationary models [82], or in presence of domain

walls, as considered in in ref. [83] in the case of the Next to Minimal Supersymmetric

Standard Model.
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6.6 An alternative approach

An alternative method to calculate the effects of C P violation from extensions of the
SM on the mechanism of EWB has been recently developed by Huet and Nelson [38].

This method reflects in a direct way the interplay between the coherent phe-
nomenon of C P violation and the incoherent nature of the plasma physics, properly
incorporating the decoherence effects which have been shown to have a major negative
impact on the generation of a a C P violating observable in the SM [19, 20].

Tt is also valid for generic wall shape and size, reproducing the thin wall and the
thick wall calculations with significant improvements over the original treatments.

In particular, when taking the thick wall limit, it predicts the correct behaviour
with the mass background ~ (M(T)/w T)? in perfect agreement with the results
described in the previous Sections and found in ref. [37].

Let us first consider a set of particles with (not necessarily diagonal) mass matrix
M(x) and moving, in the rest frame of the wall, with energy-momentum (E, k).

At their last scattering point Xo, these particles emerge from the thermal ensemble,
propagate freely during a mean free time 7r, then rescatter and return to the local
thermal ensemble in the plane xq + 71 v, v being the velocity perpendicular to the
wall, |k, |/E. ]

During the time 77, these particles evolve according to a set of Klein-Gordon,
Dirac or Majorana equations coupled through the mass matrix M(x). It is in the
course of this evolution that C'P violation affects the distribution of these particles.

To be specific, let us define Ji the average current resulting from particles moving
towards positive (negative) x between xp and xo + A, A =71 v.

The current J receives contributions from either particles originating from the
thermal ensemble at point X, moving with positive velocity and being transmitted
at xg+ A, or from particles originating at xo+ A, moving with velocity —v and being
reflected back towards x, (a similar definition exists for J_). Ji are C'P violating
currents associated with each layer of thickness A moving along the wall. Once
boosted in the plasma frame, these currents provide C P violating sources, which fuel

EWB.
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Let us work, for simplicity, with a Dirac mass M(x) = m(x) ™) for a single
fermion. It might be the top quark having its mass generated from the two Higgs
doublet model, in which case 7r is the free mean time for quark-gluon scatterings.
As for the current, we follow [38] and choose the axial current’.

The four-vectors currents Ji. take the form

L) = [ (—j%g([n(Eav) (B, —5)] Q (%0, k1)), (1,0,0,7),

1) = [ (31133([71,(15’,1))—11(1?,—17)] Q (0 7))o (1,0, 0, —2).(6.56)

In this expression, v = |k, |/E is the velocity at the point Xo, ¥ is the velocity a

“ distance A way, 52 = v? + [m3(x0) — m?(xo + A)] /E?, and n(E,v) is the Fermi-Dirac

distribution boosted to the rest frame of the wall,

1

’TL(E,’U) = eqer(l—vv,_,,) + 1

(6.57)

Q (%o, k, 71) is the charge asymmetry which results along the axis x from the propaga-
tion .of particles of momentum k in the interval (xo,%o+ A). In our specific example,

@ is the chiral charge given by

Q (o, X, 7r) = [T = |Tal” = | Tl + |Tal’, (6.58)
where Ty, is the amplitude for the left-handed spinor to propagate over a distance A,
Tr = To(M — M') and Ty = Ty (M — M*). Finally the brackets (- )x, average
the location of the point X, within the given layer (parallel to the bubble wall) of
thickness A as scattering occurs anywhere within the layer.
The standard thin wall and thick wall limits are obtained taking 7r/L, to oo to
0, respectively. In particular, in the thick wall situation, the currents J. yield, after
a boost to the thermal frame, a locally defined space-time dependent source S (z,t)
which generalizes the local C' P violating operator used in the original work [28].
As the wall crosses a small volume, it deposits into it the current density (Jy-+J_)

every time interval 71 so that the source per unit volume per unit time, located at

1y the two Higgs doublet model a combination of the axial top number and Higgs number diffuses
efficiently into the symmetric phase and is approximately conserved by scatterings in the symmetric
phase [36].
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the point z fixed in the plasma, at a given time ¢ is, to first order in v, and 7r/L,,

fyw Uy Xo+4/2 d[xJ_l 3 Q (x k,7r)
S(z,t) = d
(Z ) / / —-A/2 Tw m(X) BE dE( ) T ’

xiol=rw(|ZL]-vwt)

(6.59)

where x| represents the projection of x onto the direction perpendicular to the bubble

wall.
In general @ (x, k, 7r) is a charge asymmetry produced along the x axis by particles
moving with momentum k between the planes xq and xog + A. Its calculation may
+ require a different technique depending on the relative values of time scales involved
and on the choice of the charge.

The physics of the generation of a C P violating observable is the physics of quan-
tum interference. It is most easily dealt with by treating the mass M(x) as a small
perturbation, i.e. |M(x)|/T < 1.

Using the techniques developed in ref. [20], one has solve the associated Dirac

equation with a space-time dependent mass M(x)

~

(=386 — Po) xu(x) = =i 8(x — x0) x1(x0) + M(x) xr(),
(=48 — Pr) xa(x) = —M'(x)xs(x), (6.60)

_______ where a 6-function source of left-handed particles has been located at xo and x g are
the two component left and right-handed spinors forming the Dirac spinor.
One finds, for the transmitted amplitude (up to an overall phase) along x,

Tr(xo,m1) =1 ——/

Xo

Xo+A X3 .
dlx, .| / dlxy o] e (l=x) prt(xe,) M(xy) + O(M/w),
Xo

(6.61)
where w is the energy of the motion transverse to the wall. This expression has a
straightforward explanation: the left-handed particle is scattered by the quark mass
term M in the bubble at the point x; becoming a right-handed particle which scatters
again, via M, leading to a contribution to the left-handed transmitted wave. A
similar expansion can be written for the reflection amplitude Ry (depending linearly
on MT).
Using the fact that CPT symmetry identifies the amplitude for a particle trans-
mitted from the left with the amplitude of its C'P conjugate to be transmitted from
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the right while unitarity relates trasmission and reflection amplitudes, one finds
Xo+A X1 i
Qiolor) = 8 [ dixral [ dlxia] sinf2e (bl = el
0 0
x Im [M'(x2) M(1)| + O(M/w)*. (6.62)

It is simplest to work out the case of the very thick wall, L, > 7.
Using the derivative expansion M(x;) = M(xo) + (|x:] — [%o|) Ojx| M(*0), one

obtains
Q(xo,k,m) = [4f(wA)fe®] Im[M' G M) .
= [4f(wA)/w’] m® O by, (6.63)
where
f(¢) =sin¢ (siné — € cosf). (6.64)
Inserting this latter expression into formula (6.59) for the source S(z,t) yields
2
S(z,t) =T 7w m’ alxﬂ 9|x0=7w(lz_|.|—vw t) ;EEI(TI"m’T) +0 (v‘z‘” (m/T)z’ (TT/L“")2> ?
> (6.65)
where
oo ev T A/ ~(M/T)?  d¢ 2 u? »
T(rp,m, T) =~ d———/ e . (6.66
rom D)= [ Ao | 7 1O iy ey (699
where
1 M* 292 1 M2
2 -_— — — ——
u? = \/; I T (6.67)
and
M? =m? + M7. (6.68)

Thermal corrections, M, have been included in the mass dependence.

These kinematical corrections are required for the following reason. Constructive
interference is maximal for particle whose transverse Compton wavelength [k, | is of
order of v 7. In such a regime there is a significant correlation between a scattering
and the sﬁbsequent one.

In particular, the assumption that these particles propagate freely over the inter-

mediate distance v 77 breaks down and their dispersion relation must be modified.
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Typically 77 > T~! so that the relevant momenta are < T'. For these values of
|k, |, the effect of scattering on particle propagation can be accounted for by substi-
tuting particles with quasiparticles, in which case 77 is replaced by 1/2 v, where 7 is
the width of the quasiparticle.

Correspondingly, the dispersion relation is to be modified to incorporate self en-
ergy thermal corrections. In the particular case of quarks scattering off gluons,
the width is v ~ g% T?/3 while the thermal mass corrections amount to the shift
E* — E? + M2 with M2 ~ g% T?/6.

The form factor Z vanishes as 7 — 0, it peaks at 71 T' ~ 1 and is well approxi-
mated by ~ 1/7r in the range 70 T' 2 5.

The interpretation of this behaviour is straightforward. As explained earlier, con-
structive interference is maximal for particles whose Compton wavelength |k, | is of
order of 71, that explains the peak at 7r T' ~ 1. As 7r T increaes, fast oscillations
along distinct paths tend to cancel against each other and the resulting asymmetry
drops; as a matter of fact, in the extreme limit v 7' > 1, the propagation is semi-
classical and the asymmetry vanishes as it should. In the opposite limit, v T' — 0,
the asymmetry vanishes as the the quantum coherence required is washed away by
rapid plasma interactions.

Let us apply the above calculation to the case of a top quark propagating in a thick
bubble wall produced during the EWPT in the two Higgs doublet model. Here the
free mean path is dominated by gluon scatterings 7r ~ 3/(2g%T) ~ (1 —2)/T < Ly
while M7 ~ T'/2. One finds

2
S(z,t) = _‘“7wvam28IXJ.| gi[xl,ol t)"'(9 ('Ugn ('m't/T)2) (TT/LW)Z) . (6'69)

52 = |21~

Let us now stress the complete similarity (apart from numerical factors and di-
mensions) between the above formula and Eq. (6.37) found in ref. [37], where CPR
made use of tree level fermionic propagators.

Working with resummed fermionic propagators in [37] would have been equivalent
to treat fermions as quasiparticles, whose dispersion relations are modified to incor-
porate both self energy thermal corrections and imaginary parts giving the width «

of the quasiparticles, which is strictly related to the scattering rate through the optic
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theorem.

Had CPR used resummed fermionic propagators in Fig. 10 one should have ex-
pected (Jf: (2))® to be vanishing in the ideal limit of very large width, v, > T, as
predicted in ref. [38]. This would happen because, in such an ideal limit, resummed
fermionic propagators vanish as 1/7;.

In the opposite ideal limit of very small width, v, < T, and then also small Yukawa
he (since 7, for the top receives also a contribution from the interaction of the top
with the scalar H7), again one should have expected (J:(2))®® to be vanishing as
one can immediately realizes from Eq. (6.33).

We point out here that the dependence of (J/; (2))(® from h,, had CPR made use
resummed propagators, would have been twofold: one in the part of the scattering
rate, or partial top width <, coming from the interaction between the top and the
scalar H3 and the second in the h, factorized out in our expression (6.33). The latter,
of course, remains even in the limit of very large v, or long times.

However, since in the realistic physical situation the major contribution to +, comes
from® the scattering off gluons and v, ~ T, no significant suppression is expected and
then making use of the tree level propagators is pretty reasonable. This feeling is well
confirmed by the agreement between formulae (6.33) and (6.69). ’

A major advantage of the formulation described in this Section is that it is valid for
all wall shapes and sizes and it easily applies to charges generated by flavour mixing
throﬁgh arbitrary mass matrices. In particular, it can be applied to cases, such as

the supersymmetric model, for which there is no known semiclassical approximation.

6.7 EWB in MSSM: the contemporary days

Let us now discuss the application of the method discussed in the previous Section
to the case of the MSSM [39]. As we shall see, taking into account all the previously
neglected effects of transport and thermal scattering, a baryon asymmetry of the right
order of magnitude can be explained provided the ezplcit CP violating phases are
greater than (107° — 107°) and some superpartners are light enough to be relevant

during the transition, which takes place at a temperature of about (50 — 100) GeV.
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Let us consider, for instance, the stop mass matrix (3.37) with
Mip=d° e = h, (]Atl e ®auy + || €98 vl) , (6.70)
the charge axial stop number is defined to be

; = Diag (; ;> . (6.71)

We proceed in computing current sources J: in the wall frame using Egs. (6.56),
" which will then put in Eq. (6.59) to construct the source Si(x,t).
Up to an overall phase and at leading order in M?/lk.|?, one gets

a z1 M3(z5) ME(z1) o M; 3
T=11—---— / d / d i ¢ 2ilk [(z1—22)
[ o ' “ 2 k.| 2[ky] © +0 2|k_[_|( )
6.72
and
a Mg(zl) . M— 3

= ... d A ANEES —2ilk, |z t K

\ R /0 2T +0 (5] (6.73)

where now T and R represent, respectively, the transmission and reflection probability
of particles produced at z = 0 and evolving toward positive z (and analogous formulae
are found for the transmission and reflection coeflicients at the point z = A).

Performing an expansion in powers of M;/T and in first order in v,, one obtains

(J++J_)z = 0,

d*k  g(lki| A
(J++J_)O = Yw Vw If Z / 3 g!ujll ) (QUi)
i=Mg,My +
E:/T :
X e _@17 (6.74)
(1- eB:i/T)? T
where g(£) is defined as
g(é)=1—cos2f —¢&sin2¢ (6.75)
and T; is the C P invariant given by
2t
I; = -0, (6.76)

"'j_‘_s—-
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After a few manipulations, one can derive the following expression for the stop axial
source Si(x,1)

T4

S{(X,t) = Yuw Vw NC '4:—71_—2—

7 (st.”’q + st.”’v) + O (M T, 0%, (7 L)), (6.77)

where N, = 3 is the number of colors and the function SEM is defined as

2

- 1 o dy e¥ "TT(yZ"T >/y 9(6)
SM =\ T —_—— / dé =—=. 6.78

t g V' MiT /Y (1— ey)2 0 ¢ £8/2 (6.78)
Note that S{NI vanishes as 73 as incoherent plasma scatterings become overwhelming,
i.e. as 7r T — 0, tracing the quantum nature of C'P violation conflicting with

the classical nature of the plasma physics. For larger coherence time Sti"‘-[ behaves

approximately as

S?? ~ — (rp M) logry (6.79)

The stop damping rate is dominated by strong interactions and was estimated in ref.
[39] to be of order of (2asT) ~T/5.

Another source of C' P violation can derive from the chargino and neutralino mass
matrices along the same lines of what briefly discussed here for the stops. We refef
the interested reader to ref. [39] for the complete analysis.

Once computed the source per unit time and unit volume of C'P violation, one
can approximate the solution to the Boltzmann equations for particle distribution
functions by writing down and solving a set of coupled differential equations for local
particle densities including the source terms, transport and particle number changing
reactions.

Only those particle species which partecipate in particle number changing tran-
sitions which are fast compared with the relevant time scales, but which carry some
charge approximately conserved in the symmetric phase, can have a significant nonzero
densities in the symmetric phase during the transition. Major simplifications of the
diffusion equations take place when neglecting all the couplings except for gauge in-
teractions and the top quark Yukawa coupling. Neglecting the weak sphalerons (in
the first step) allows to forget about leptons in the differential equations and will turn
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out to be a good approximation when computing Higgs and quark densities. On the
contrary, strong sphalerons will be included.

The particle densities one needs include g = (¢1 + by ), the right handed top quark
t = tp, the Higgs particle H = (H~ + HY + H' + H}) and their superpartners, g, t
and H. The individual particle numbers of these species can change through the top
Yukawa interaction, the top quark mass, the Higgs self interactions, the anomalous
weak interactions and the supergauge interactions.

Since it will turn out that EWB is only feasible if the superpartners of top and/or

" of the gauge and Higgs bosons are light, one may take the supergauge interactions to

f

be in thermal equilibrium

|

g t t H
o oA 6.80
k' k. ki kg kg (6.80)

G

o~

where k; (= 2 for bosons and ~ 1 for fermions) are the degrees of freedom (=~ means
that, for instance, k = 2 for bosons up to mass effects).

Qn can then describe describe the system by the densities @ = ¢+ ¢, T =1t + T
and h = H + H.

When including strong sphalerons (with a rate I'qcp ), right-handed bottom quark-
density will be produced, B = br+bg, as well as first and second family quarks Q1,2)1.,
Ur, Cr, Sk and Dg. However, since strong sphalerons are the only processes which
generate significant numbers of the first and second family quarks, and all the quarks
have nearly the same diffusion constant, we can constrain these densities algebrically

in terms of B to satisfy
Qiz = Qo =—2Ur=-2Dp=-2S8r=-2Cr=-2B=2(Q+T). (681

For simplicity, one can also assume all the squark partners of the light quarks degen-

erate and take
kQu, = kQ.‘ZL =2 kSR =2 kDR =2 kUR =2 kCR =2kp. (682)

Particle transport is treated by including a diffusion term and one can include scat-

tering processes involving the top quark Yukawa coupling with rate I'y, axial top
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number violation at the rate I', in the phase boundary and in the broken phase as
well as Higgs violating processes with a rate I'.

Taking all the quarks and squarks to have the same diffusion constant Dy and
Higgs and Higgsinos to have diffusion constant Dy, one can write down the set of

coupled diffusion equations

Q = D,V?Q-T,[Q/kq—h/kn—T/kr] ~Tm[Q/kq — T/kr]
— 6Tqcp [2Q/kq —T/kr +9 (@ +T) /ks] + 5i,
T = D,V*T—T,[-Q/kq + h/kn + T/kr] — T'm [~Q/kq + T/kr]
+ 3Tqep[2Q/kq — T/kr +9 (Q +T)/ks] — 55,
b = DpyVh—T,[-Q/kg + h/ky+ T/kr) — Tn k/kn + S, (6.83)

where we have also included the C P violating source S provided by neutralinos and
charginos.

Sevéral simplifications can be made. First, one can ignore the curvature of the
bubble wall so that all the quantities are functions of z = |x + vy, t|, the coordinate
normal to the wall surface. Furthermore, assuming the rates I'y and I'qcp fast, one

can write

Q/kq — h/kn — T/kr = O(1/Ty), 2Q/kq —T/kr +9 (@ +T)/ks = O(1/Tqcp)-
(6.84)

Solving the above equations in function of h, the Higgs density satisfies
—vyh + DR —~Th+S=0(1/Ty,1/Tqcp), (6.85)

where D is an effective diffusion constant, ' is an effective decay constant proportional
’ M(T,2) Mi(T, )
4 z 1 T,z
I\m T ~ w 9 h2 2 el w ) .
( + h) 21 gg T t sin IB + 35 92 T 3 (6 86)
and S an effective source term proportional to (S; + Sj). All of them easily readable
from the above expressions.

Eq. (6.85) is easily solved approximating the source as a step function of the
bubble wall width L,,

S = 8., 0<z< L,
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S = 0, otherwise, (6.87)
and similarly for the decay term

I = I, z>0,
0, otherwise, (6.88)

i
I

The effective diffusion constant is also spatially varying since the statistical factors

k; depend on spatially varying particle masses and since the weak interactions cross

* sections depend on the Higgs VEVs. However, making the approximation that D is

a constant and with the boundary conditions hA(+c0) = 0, one easily finds that in the
symmetric phase (z < 0)
h(z) = Aelzv/D) (6.89)

48.D (1 - e[("” DT+ ) D])

A= — (6.90)
) (vw—}—\/élDI‘*—i—vz,)

From the form of Eq. (6.89) one can see that C P violating densities are nonzero for

where

a time ¢ ~ (D /v2) and so the assumption about which rates are fast which were used
to derive Eq. (6.89) are valid provided (D Tqcp/v2), (DT, /v2) > 1, (DTsp/v2) < 1
and the scattering processes due to Yukawa couplings other than top are slow.

Taking the Higgs diffusion constant Dj to be comparable to the diffusion constant
for left-handed leptons, ~ 110/T [27], and taking D, ~ 6/T, one finds that the
effective diffusion constant is quite large

_ 100
D~ "-f", (6.91)
indicating that the most of the transport of C' P violating quantum numbers is done
by weakly interacting particles, i.e. Higgs and Higgsinos. In the above expression
we have assumed that all the supersymmetric particles are heavy compared with the

temperature 7" except for neutralinos and charginos, so that

kQ ~ 6, kT ~ 3, kB ~3 kH ~ 12. (692)
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Since Yukawa interactions readily convert Higgs number into axial top number,
transport of axial top number is surprisingly efficient.

For the scattering rate due to the top quark Yukawa coupling one estimates ') =~
(T/30) so that the assumption that this rate is fast is self consistent, (DT,/v}) ~
(3/v2) > 1 (scattering due to Yukawa bottom quark can be safely neglected for
natural values of tan ).

As far as the anomalous fermion number violating rates are concerned, weak
sphaleron rate may be safely taken to be slow provided

K 4
— 5107, (6.93)

w

and the strong sphaleron rate is fast if

= 25, (6.94)

=

We now turn to the weak sphaleron rate on, assuming it has a negligible effect on
pa,rticle'densities, i.e. Eq. (6.93) is valid, however it provides the only source for net
baryon asymmetry. One can take np, the baryon number density, to be a function of
z sat\isfying

D,ny —v,np —3n, Ty, =0, (6.95)

where T, is the usual sphaleron step function rate (i.e. vanishing in the broken
phase) and ny, is the total number density of left-handed weak doublet fermions. The

above Equation has solution

sp [0 |
npg(z) = -3 Lsp /_ np(z) dz — 3 P

Vw o0 Vw

/ doy np(z1) (1 — € C=0/P) | (6.96)
0

which is a constant fro z > 0 and vanishes as 2 — —oo. Thus, up to corrections
of order of (D T,/v2), the baryon asymmetry inside the bubbles of broken phase is
simply proportional to the integral of ny, in the symmetric phase.

If one neglects mass effects and take the limit I'qcp — 0, it is easy to show that
np = Q+Qi11+Qor =5Q+4T = 0 [33]. Thus, one needs to compute the O (1/Tqcp)
corrections to particle densities. Assuming I'y > I'qcp (5 5 7) and taking

Q = Q@ +86+0(1/Ty),

k
T = TO—]—(EE) 5Q+O(1/FQCD), (6.97)
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where Q° and T are, respectively,the values of Q and T for large I'qcp, one finds
5kQ+4kT ngkT—SkBkT—-5kBkQ]
=— 1 h. 6.98
" ( ko ) ¢ [ kr (kg +9 kg + 9 kr) (6:98)
Assuming now the validity of Eq. (6.92), one finds

1 [(D,h" — vy, W
=T76p=—— T+ " 6.99

so that the baryon asymmetry is proportional to (I's;/Tqcp) =~ (3 aw/8 as). Of

~ course this proportionality disappears if higher order corrections in the masses or

nondegenerate squark masses are considered.
- With heavy squarks, the final baryon asymmetry will be given by
B~ — (5%;‘4?[‘%13—) (1 — g—:) ~ —107% 4, v, sin ¢p AB (6.100)
where we have assumed ¢4 < ¢, AB is the total variation of 8 in the wall and light
neutralinos with mass around 50 GeV and relatively heavy squarks with mass around
150 GeV have been considered.
E\WB is then significant if

|sin 5 AB| 2 1074, (6.101)

These conclusions is altered if, say, left-handed bottom squarks and left and right-
handed top squark masses are rather light, but the other squark masses are heavy.

Then the factor multiplying & in Eq. (6.98) does not vanish. Taking,

kg ~ 18, kr~9, kp~3 ky ~12, (6.102)
we have
np = z—; H, D~ % (6.103)
and _
B~ — (818—?8%%—") , (6.104)

i.e. Bis enhanced by a factor ~ 18 (D I'qcp/v2) over the case with no light squarks.
Taking the squarks with mass ~ T' ~ 60 GeV, one finds

B~ —45x10™° = singg AB, (6.105)

Vw
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where again it has been assumed that ¢4 < ¢p. Thus, there is a significant contri-
bution to B if
k |sin g AB| 2 4.5 x 107°, (6.106)

with v, =~ 0.5.

Note that in the limit of fast weak sphalerons or slow bubble walls, Eq. (6.93) is
no longer valid and the final value of B will be insensitive to the sphaleron rate and
determined by near equilibrium physics, along the lines of what found in ref. [35].

The attentive reader should be surprised by the fact that thermal scattering pro-
cesses not only tend to interfere with baryogenesis by destroying the quantum coher-
ence necessary for C'P violation, but also can enhance the BAU. The ultimate reason
for such a behaviour is that C'P violating charges can be converted to C'P violating
thermal particles distributions inside the wall by incoherent thermal scattering pro-
cesses. These C P violating thermal particle distributions diffuse into the symmetric
phase, by CP even thermal processes, where they bias relatively rapid anomalous
weak processes towards producing net baryon asymmetry.

Since axial top quark number is efficiently transported because the large top
Yukawa coupling allows axial top number to convert to Higgs number, which is trans-
ported by weakly interacting Higgs particles, it is reasonable to believe that top quarké
play a major role in EWB, certainly more important than 7’s whose axial source is
suppressed relative to the axial top source by a factor h2/h? ~ 107, as was first
shown by CPR [37].

One of the main requirement for the mechanism to work is that the ratio of the
Higgs VEVs is not fixed during the transition. The latter requirement implies that
the effective theory during the transition has more than one light Higgs, which in
turn means that at zero temperature the pseudoscalar and charged Higgs masses are
not extremely heavy compared with the lightest Higgs mass. A light charged Higgs
makes a potentially ruled out contribution to b — s [85] unless partially cancelled
by a contribution from a loop containing light charginos and stops. Moreover, with
small phases of order of (10~ — 107%) the neutron EDM will be within two orders of
magnitude of current experimental data.

It is then clear that sufficient baryon asymmetry can be produced with com-
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fortably small explicit CP violating phases provided that either the stop squarks,
the neutralinos or the charginos are light compared with the transition temperature.
Moreover, a relatively light Higgs spectrum is needed.

This fact opens the exciting probability that the next generation of accelera-
tors (LEP2, LHC) might say a definitive word about the possibility of electroweak
baryogenesis in the framework of MSSM or, more in general, about the existence of

supersymmetry.
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‘Figure Captions

M.

Figure 1: The upper and lower limit on the pseudoscalar mass M o as a function
of tan B from the requirement vmax/T < 1. Here Mgy = My = 350 GeV, |u| = 200
GeV, |A;| = 50 GeV and M, = 130 GeV.

Figure 2: The upper and lower limit on the pseudoscalar mass M o (solid lines)
when all the other parameters of the theory vary within their allowed ranges. The

dashed line represents the experimental lower bound.

Figure 3: The path C corresponding to the imaginary time formalism of thermal
field theory.

Figure 4: The path C corresponding to the real time formalism of thermal field

theory. C, lies infinitesimally beneath the real axis.

Figure 5: Schematic representation of the behaviour of 6 and of the rate of the

sphaleronic transitions at the point x = 0.

Figure 6: Lowest order contribution to Dﬁ.

Figure 7: The contribution to D} due to photon exchange.
Figure 8: The tree level contribution to the neutral Higgs current.
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Figure 9: The one-loop contribution to the neutral and charged Higgs currents.
Figure 10: The one-loop contribution to the left-handed top current.

Figure 11: The two-loop contribution to the left-handed top current. The scalar
internal line can be either neutral or cherged Higgs fields.
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