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Introduction

This thesis is devoted to the study of some particular aspects of the N-Body Problem in Classical
Celestial Mechanics (NBP). The NBP is at the roots of the Mathematical Physics and in spite of
progress obtained since Poincaré [1] many questions remain open.

Let us fix the notation (see [2]): we consider a system of N masses my, ..., my in the euclidean
space & ~ R3. The configuration space of the system is given by M = V. Each configuration
is described by a set of coordinates z;,...,zy with ; € R3. The time-evolution of the system is

governed by the Newton’s equations:

2z, — m;m;(z; — ;) .
mi—r = =Gy — 2 97 fori=1,...,N (0.1)
"t ; llzi — 5°
where G ~ 6.67 x 10~*m3/s?Kg is the universal gravitational constant (we will choose units in
which G =1 for), ||.|| is the standard norm in R3. The system (0.1) is defined out of the coincidence
set:
Ke={z=(z1,....2x) ER¥N | z; = z; for some i # j}

The general problem of Classical Celestial Mechanics is to study the possible solutions of (0.1).

in particular to find the condition under which (0.1) admits periodic and/or quasiperiodic solutions
which do not enter the coincidence set X..
In this thesis we will consider the periodic problem for (0.1) in the case N = 3, in particular we
study the problem of periodic orbits when the total angular momentum J of the system is zero.
We use variational methods combined with local analysis of the flow and the theory of reduction of
Lagrangian systems with symmetries.

We study the NBP (and in particular the 3BP) using a combination of global and local analysis.
The motivations of the study of the trajectories fulfilling the condition J = 0 can be found in two
groups of results where the two complementary aspects are involved: The first group of results is
due to K.F.Sundman who studied, in a very old paper [3], the asymptotic properties of the collision
solutions of the NBP (solutions which enter in the coincidence set K.). He also showed that the
N-body collision solutions (total collision solutions) lie in a particular submanifold of the phase
space of the system. In order to introduce these results we give the following definition:

Let the set I, be:

IL.={teR|z(t) e K.}

Definition 0.0.1. We term z : IR — M a classical collision solution of (0.1) if:
(i) (1) < o0,

(11) 2(t) € C*(R\1.) and (0.1) is satisfied,

(i11) for all t € R\I. the Energy associated to (0.1) is conserved.




If z(t) is a classical collision, z(t.) € K. and z;(t.) = z;(tc) Vi # j then z(t) is called total
collision solution of NBP.
Sundman’s result is:

Sundmann’s Theorem. (i) For any total collision solution the total angular momentum is zero.
(ii) For any collision solution there erists Cy, Ca > 1 such that:

& < minliminf|t - o]/ *ai(t) - 25(0)] <
< maxlimsup [t —tc["%3||z;(t) — z;(t)]| < Ci (0.2)
2] t—t,
1 . . . 1/3 . . .
o, < minliminfft — tc[7[: (8) — 25 (8)]] <
< maxlimsup [t — t¢|Y/3||z;(t) — z;(@)]| < C (0.3)
TRt -

where C1, Cy depend on the central configurations.

In particular for the cases N = 2.3 total collision solutions have the following form:

e | & (e =131+ g7 (te — ) fort <t
s = { Ft =21+ g (to — 1)) fort > 1. (0-4)
and
ceon  f & (e =)L+ fT(te —t]) fort <t .
.L‘i(t) - { ‘Sj-(t —fc)_1/3(1+ff(|ic~t|)) for t > t. (00)

with g (t. —t) = O((te —=1)%), fE(te—1t) = O((te —=1)*) 0 < d < 1 and &F are central configurations.
Definition (Central Configurations). £ € £V is a central configuration of the NBP iff, there
erists a solution x(t) of (0.1), at least for sufficiently small t, such that can be ezpressed as follows:
I,‘(t) = T‘(t)R(t)fi = l, ce ,N (06)

& € R3, r(t) € Ry Vt and R(t) € SO(3) vt

It turns out that the central configurations are solutions of the following system of algebraic
equations:

e = _%VE,V(@ i=1,...,N (0.7)
V(E)
where v= ——r——
i mallél?

In Sundman’s result there is a local information on the time behavior, and global information on
the manifold on which total collisions lie. We term Jp the manifold defined by the vanishing of the
total angular momentum:

N
Jo={(z,8) €R®| D midi Awi =0} (0.8)



The modern approach to the problem of existence of periodic orbit for the NBP is essentially
based on the Calculus of Variations and Critical Point Theory (see [4], [5]). These theories provide
methods to study the topology of the trajectory space of the system, and to obtain informations
about the global features of the system.

Let us consider the problem of finding T-periodic solutions. One chooses period T > 0 and considers
the critical Action principle for for the following functional:

T
Arlz] = / dL(x(t), i(t))

where L(.,.) is the Lagrangian of the system.

The functional Az[] is defined on a suitable Sobolev space of T-periodic functions. The vanishing
of the first variation of the Action gives the Euler-Lagrange equations which are equivalent to the
Newton’s equations. This provides a correspondence between regular critical points of the Action
and the T-periodic solution of the equations of motion.

The second group of results which we refer to can be found in [4] and in particular in [6]. In
the monograph [4] A. Ambrosetti and V. Coti Zelati describe results due to several authors which
use the local properties of collision solutions to study the existence of non-collision periodic orbit
for the Kepler Problem in generic dimension and also the NBP. In [6], G. Dell’Antonio uses the
geometry of the central configuration and the asymptotic properties of collision solutions to study
the (generalized) Morse index of collision solutions in the NBP and then to prove the existence of
non-collision T-periodic solutions.

In [6] there is a fundamental assumption on the geometry of central configurations:

Assumption. For the given set of the masses my,...,my of the NBP, every non-planar central
configuration for any subset of k < N bodies is isolated modulo rotations

This assumption is known to be satisfied for N < 4 and no counterexamples are known for \" > 5.

Note that, in general, the study of the classification of the central configurations is far from being
complete (see [7], [8] and [9]).
Under the assumption on central configurations and using the (ii) of the Sundman’s Theorem, in
[6] it is proved that collision solutions are not minima of the Action. Then information on collision
solutions w.r.t. the topology of level sets of the Action is used to prove that the minimizing trajectory,
if it exists, is a T-periodic solution of the NBP without collisions.

Non-collision solutions exist under suitable assumptions. Total collision solutions lie on the

manifold Jy. This leads to the following open problem: can one find on J a non-collision solutions?
This is the question we address in this thesis.
The study of the NBP on the level sets of its integrals of motion dates back to the famous works
of Smale [10] that dealt with the topology of the planar NBP and relative equilibria. Due to the
collision the flow is singular. It is known that one can deal with double-collision solutions using
regularization methods (see [11], [12], [13]), while triple-collision solutions are not regularizable in
any known sense and near them chaotic phenomena take place (see [14], [L5], [16], [17]). But an
analysis of the flow may shed light on the behavior of the trajectories near collisions.

The Lagrangian for the planar NBP on Jy is constructed in Chapter 1, using the theory of
reduction (see [2], [18], [19]). Notice that for the 3BP on Jy the planar construction is completely
general, since the motions are planar. The plane is fixed by the initial conditions and may change
only after a collision.

The Theory of reduction is described in Appendix A. We consider the reduction of Lagrangian
system with symmetries first described by Routh (see [18]). About the reduction of the 3BP in
the euclidean space one can also refer to [20] where the reduction is performed in the hamiltonian
framework. For the modern approach to the theory of reduction we refer to [21], [22], [19].

Given a Lagrangian system with symmetries Noether’s theorem determines the associated integrals
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of motion. The theory of reduction provides methods to construct a new Lagrangian system defined
on a submanifold determined by the level sets of the integrals of motion. In Appendix A we study
the problem of the reconstruction of periodic orbits, i.e. we give a condition under which a periodic
orbit for the reduced system determines a periodic orbit for the unreduced system. This is an
application of the reconstruction of orbits. We also apply the reconstruction to give a different
proof that collision solutions of the 3BP never enter in infinite spin. This fact was proved in [23]
in a detailed study on the NBP. We show that if one reconstructs a total collision solution in the
unreduced 3BP then one finds that the angle describing the global rotation of the system has a finite
limit.

The reduction methods provide local constructions of the reduced dynamics. The difficulty resides
usually in the study of the geometry of the reduced configuration space.

In Chapter 1, we consider the reduction of the SO(2,R) symmetry for the planar NBP. We construct
the reduced Lagrangian in different systems of coordinates, and in order to define the variational
principle for the reduced NBP, we study the global geometry of the reduced phase space. The planar
NBP reduced on J = 0 has 2N — 3 degrees of freedom, we will term M, the reduced configuration
space which contain also K.

We denote with ., the reduced spaces, let be Ry = {p > 0}. The reduction gives that (M\K.), ~
IRN L x [0,27]Y=2. To consider a reduced configuration space with inside the coincidence set K., we
ﬁnd that it is useful to describe M, in terms of 2V — 3 relative distances among the bodies. In order

to do that we consider N — 2 triangles and their oriented areas; M, turns out to be a submanifold
of R2V=3 x RV-2 defined as:

P11 P27 P32 yeeea P 1 P2 )p3
3

|2 Y2 = 1A, A 2 1 =1, N = 2)

i

{C“( 1y (1) (1) _(1) (N=-2) (N (N-2) ’z(N—Z)) ERiN"E' « RN-2

where A(p1, p2, p3) is the area of a triangle whose sides are p1, p2, p2.
For any {( € M, we can choose a chart such that

(= (zgl) zél) A ,z%N_Z),z.gN_z),z(N“z))
where ,.§) and z“ are two sides of the ! triangle and z() is its oriented area.
In the plane the set of all the relative distances RD is a submanifold with boundaries of R
in fact, chosen N — 2 triangles, their oriented areas and two of their sides, then any other distance
pi; between body ¢ and body j can be written as function of the known distances. For V = 3 we find
that M, is a ramified covering of RD: this is due to the fact that the symmetry group is O(2,R),
while the reduction takes account of SO(2,R) only, i.e. the action of the planar reflections group is
not reduced. We also show that M, can be describe by the attaching of two copies of RD:

N(N-1)/2

.«’wr =RD x R+ U; RD x (R\R+)

where 1 : ORD — RD is the identity map.
We find that non-trivial involution ¢ acts on M, ; its fixed points are the collinear configurations.
We describe the o[.] action on a generic configuration by

o(2(M, 20, 20, AV AN Dy 2 (o0 G, G AN, oy

Now o[.] corresponds to a planar reflection modulo a rotation.

In Chapter 2 we define the reduced Action functional it can be expressed in terms of the relative
distances as:

T NP T mim;
Aald = [[ et + [ > T o

i#j



where r = (ry,...,ron—3) and M(.) is a (2N — 3) x (2N — 3) symmetric matrix depending on
the masses and with entries smooth functions out of the coincidence set K,. The Action functional .
is defined on trajectories which are locally in H'([0,T], M,.).
We study the Action Ar[.] on the trajectories which satisfy

¢eHY0,T|,M,)
such that at least one of the triangle, formed by three of the N bodies, changes its area

For such trajectories we prove a weak form of the Poincaré’s inequality.

T
[ e, 2 G i 00) + p0) = petr(0)
(0.10)

with a; > 0, where A is the set of all possible triangles formed by the N bodies, P([i, , k]) is the
set of all permutations of the vertices i, j, k of the triangle [¢, j, £].

This inequality holds also for trajectories ¢ € H%(M,) such that at least one triangle changes its
orientation.

Using this inequality we show that the variational problem loses compactness along unbounded
collinear trajectories; it is possible to construct a family of sets which are compact in the uniform
topology.

In Chapter 3 we restrict the attention to the 3BP and study the critical points for the reduced
Action. We show that collision solutions are not minima for the reduced Action.
Then we study the gradient flow of the reduced Action on the family of compact sets previously
constructed. These sets are not invariant w.r.t. the gradient flow. We point out the connection
between the lack of invariance with the existence of critical points at infinity. These critical points
correspond to periodic solutions in which one of body escapes to infinity and the other two bodies
follows a Kepler orbit. For the unreduced NBP this problem was studied by Bahri and Rabinowitz
in [24].
In order to explore further the connection, we study the problem of periodic orbits without collisions
by perturbation method. We consider a system formed by two different masses smaller than the
third. The unperturbed system is the sum of two different Kepler problems, the perturbation is the
interaction between the small masses and the correction to the motion of the center of mass. The
unperturbed system admits a nondegenerate critical manifold of circular solutions. Each critical
point has Morse index equal to —1. We prove that the critical manifold can be continued, for small
values of the masses. The continued manifold is composed of T-periodic solutions of the reduced
3BP; by means of the Theory of reconstruction we can choose the small masses in such a way that
the T-periodic solutions of the reduced 3BP are also periodic solution for the unreduced 3BP.
In the last part of Chapter 3 we return to study the gradient flow of the Action but now of the per-
turbed problem. We find that the gradient vector-field has an unstable manifold which is asymptotic
to the critical point at infinity.

In Chapter 4 we study the critical points problem for the reduced 3BP using the ”strong force”
(SF) method.
The Action is modified in such a way that the functional on collision solutions takes the value 4+
(see [25], [4]). The new Action is defined as:

T
AL [¢] / dtZM,] ()7 (2) +/ dtZ m‘m’ +5/ dtz (0.11)
0 0 7 pi;(

p’l]

the primed sum means the sum on the cyclic permutatlons of 1,2,3. This allows to cut out the
coincidence set K, from the reduced configuration space M,. Since the trajectories considered as
still continuous, and since




o

=

the homotopy classes can be used to define variational classes.

We find that the simplest useful class is composed of periodic trajectories which pass, in a given
order, through at least four collinear configurations. On the variational classes, we consider, the
following inequality holds:

3

T
/O dtZMij(r(t))h(t)i'j(t) > %Z sup r;(t)? (0.12)

i i—1 t€[0,7]

for some constant C' > 0.

On these classes of trajectories we prove that the SF Action is coercive and therefore attains minima.
When ¢ — 0 minimizing trajectory converges weakly in H([0, T}, M,) and uniformly in [0, 7] to a
weak T-periodic solution of the 3BP; this solution is then a generalized T-periodic solution for the
reduced 3BP. In general this solution is not T-periodic in the unreduced configuration space. Until
now we have no arguments to check the existence of non-collision solution or to estimate the number
of collisions.
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Chapter 1

Lagrangian reduction and reduced
configuration space

In this Chapter we consider N-point particles on a plane interacting through a newtonian potential.
This system has four integrals of motion: linear momentum, total angular momentum J and total
energy E. For this system we construct the reduced Lagrangian for the NBP on the submanifold
defined by the vanishing of the total linear and angular momentum.

1.1 Lagrangian reduction

N point-like particle of masses m; ... my lie on a plane, interacting through a newtonian potential.
The configuration space is taken to be R* = {2; € R%i = 1,...,N} with z; = (z},27). The
system has 2V degrees of freedom.

The dynamics of the system is described by the Lagrangian function L : R*Y — R.

N N
L= FallP+) —2 (1.1)
L9 “ ||z — a5
i=1 t#]

where < .,. > ||.|| are the scalar product and the norm in R2.

The Lagrangian L is defined outside the coincidence set:
Ke={(z1....,en) €R™ |Ti £ j z; =2;} (1.2)

The linear momentum P = (P;, P) and the angular momentum J (a scalar)
N N
Po=Y mif k=12 J=) mzli} —ofsl] (1.3)
i=1 i=1

are integrals of motion.
For fixed values of J we describe the motion through a reduced Lagrangian obtained by the proce-
dure described by Routh (see [18] and the Appendix).

Remark 1.1.1. In the three-dimensional NBP, for N = 3 the condition J = 0 implies that the
smooth motions lie in a plane defined by the initial conditions. The solutions entering the set K,
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(collision solutions) are not regular and in the case of triple-collisions the piane of motion may

change after the collision.

Let the center of mass be at rest in the origin, and consider the class of frames defined by selecting

one of the bodies, say the Nt one | and setting:

g1 = TN — T}

N-1 = TN —IN-1
We term such frames my-frames.
We denote by M the reduced configuration space.

The Lagrangian takes the following form

N-1 N-1 —— el
L= ZM;(di 4;) + S -
; A ; llai — sl
where |/ = (¢, ¢)
m; _mim;
M = M (1 - "; ) H
1 -_ _m;m,- ms (1 _ &)
@ * ©

and p = Y2 m; is the total mass of the system.
By the further change of variables

T REYIINE, — RV [0, 27)V 0
(q1---qv-1) — (p1,01...pn=1,0n=1)

{ q} = p; cosb;
: .
g = pisinb;

where Ry = {p > 0}.

The Lagrangian becomes:

N-1 1 N-1 1 . N-1 .
L= Z -Q-Aij/')ibj + Z ‘2“Bij9i9j + Z Cijpib; +Vip1...pn-1,01...08-1)
ij=1 ij=1 ij=1
where:
4= ﬁ/[," ——]V[ij COS(@,’ - 9]')
S —-J[,'j COS(B,‘ - Bj) M,-~
B = ( Asip? Aijpipj )
Aijpip; Aiipi
and

C = 0 ]\/I,‘jpj sin((?,- bt 9]')
.i‘fj,'p,' sin(Gj - 9{) 0

11

(1.4)

(1.5)

(1.8)

(1.9)

(1.10)

(1.11)

(1.12)



Figure 1.1: my-centric coordinates

N-1 N-1

, . mym; m;m;

Vipr o opyo1, b1 Oyog) = Y =t 3 — ] (1.13)
i1 P i#j \/pi + pj — 2pipj cos(0; — ;)

The system is defined on M ~ Rf =1 x [0,27]Y~1. We have excluded the configurations on
which p = 0 for some k, they correspond to subsets of the coincidence set K.. After completing
the reduction we will consider again the set K.

The matrices A, B, and C' are functions of py...pny—1 and 6; — 8; with4,j = 1...N — 1. The
Lagrangian (1.9) is invariant under rotation

b 0+, a€l0,2n]

One can then introduce a cyclic coordinate conjugated to the total angular momentum and apply
Routh’s construction of the reduced Lagrangian (see the Appendix).

Setting:
To: M\K, = M\K,

@y = 02 — 61
(1.14)

fiinei = Onv_1—0Nn-2

one finds the following form for L:
L=y Yapepi + oy ABy S 1 Y0y ot
+ Ci2s Cighi Tima 17
+07 Y0 Bij + 0 [Zi%llz (ij (Zf:z Gt Vi) + Cz‘j#z‘)] +
+V(pr...pN-1,92.. . oN-1) (1.15)
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Figure 1.2: cluster frame coordinates

61 1s the cyclic coordinate and the total angular momentum is given by

N-1
= Z ( i (Z*Pl +Z¢z) +C,Jp,) + 6y Z Bij (1.16)
i,j=2 i,j=1

Now the Routh prescription (see the Appendix) gives the reduced Lagrangian for J = 0:

R= Zzg 1 9‘{¥Jp’p1 + Zz g_.z zBU 21_2 @1 Zm:Z Pm+

_[ :‘/'];2( 17 (21:2 ‘Pl+zl=2 ‘Pl)'l‘CuP;)]
221\,’{-_313 j

+Zﬁj—l Cijf')j Z;:Z (F.’l + V(plw ce PN=1,P2, - :‘pN—l) (117)
The reduced system has Configuration space given by:

(M\Ko)r = (M\K.)/SO(2,R) ~ RY ™1 x [0, 2]V =2

+

For later use we give explicitly the form taken by the lagrangian reduction which describes the the
N-body system in terms of clusters of bodies. We term this frame cluster frame. This description
will be useful when we will consider the critical points at infinity” of the Action functional.

We think of the N bodies as divided into n clusters of N bodies,

N :i./vk (1.18)

We denote with the subindex the cluster number e.g.: m;,, z;, denote respectively the mass and
the cartesian coordinates of particle i in the cluster & composed of N} particle.

Then we write the Lagrangian L as follows:

L=) Le+V, (1.19)
k=1
Ly is the Lagrangian of the cluster k:
Ny
m; mi, m;j
Ly = Z —5 &, |2 + Z T T 0 (1.20)
ip=1 TeFETk ! Tk

13



and the interaction between the clusters is given by:

vV, = ZZ L (1.21)

P ” T —Z’Jk”

The centers of mass of the clusters and of the system have coordinates respectively:

gk : - Z mtkmlk (122)
'lk._
= Zuk&c (1.23)
k=1
with
N n
Mk = Z My, p= Z#k
=1 k=1
with the change of variables:
Ti, = Qi + 1k + & (1.24)
§k =1 + & (1.25)

and fixing in the origin the center of the mass of the system,

€=0 ,6=0
the cluster Lagrangian becomes:
Ng
m;, m;
Ly = Z == |ldi, + e[ + Z ”—k_]‘kﬂ (1.26)
Pt Py Qi — Qi

and the interaction between the clusters is given by:

n N

- m,-,mjk —
V. = (121
=20 llgi = @i +m — il )

k£l ik,
We now use the polar coordinates:
i, = (p‘ik cos eik)pik Singik) (128)
Mk = (R cos Yg, Ri sin i) (1.29)

The Lagrangian depends only on the difference of the angles and hence we can find a cyclic variable.
We use the the following change of variables:

eik = @ik +¢1 (130)
Ve =g + 9y (1.31)

1 is cyclic and 1t is conjugated to the total angular momentum. We find:

T= > " mi (O, + 1) + Y e RE (Ve + 1) + p1RIn

E=1 iy k#1

14




-2

o

.,

Routh’s reduction can be applied, and for J = 0 we find:

- 1% + W
R=[Ry, + OM] + ——2+ 3" vy

k=1 s#l
where
mikmjk
=3 my P +
Z o ”;k (0%, + £3, — 2pipj, cos(©i, — ©;,)]1/2

1 .
CM, = §,Uk(Rk + Ri‘l’i)
these are the Lagrangians of the center of masses of the clusters.

sl = Z m; my, pzs +pu +R2 + Rl

'Jyl'
—Qpigp,', COS(@{s - @iz) — QpisRl COS(@,’S —_ \Ifl) -+
—2R,p;, cos(¥, — ©;,) — 2R, Ry cos(¥, — ¥;)]*/?

' g . n Ny X . .
W=D g B i i+ (b — b R
s {

n N

n 1
Wy = ZZ Tllup,k Z Zmi Pi, +/*‘1Rl mizpiz,)eik + Z mirpgreir +
s

ir#'ik
n
+ E Hs Rf)]2
s#1

We will use later this form of the reduction.

1.2 Reduced 3BP

Let us return to the formulation of (1.17) and describe the reduced system.
We have seen that M ~ RY ! x [0,27]V~! and then

(M\K.)r = RY ™1 x [0,27]V 2

and the reduced Lagrangian R : T(M\K,), — R is written as follows:

2 ZN[(I PtPJ ZA{( 2) PzSD]

3ZM(3) V@i + Vipr, .o pN=1, 02, .., PN-1)

the matrices M), M) and M®) forms a positive definite quadratic matrix on R2V-3,

(1.33)

(1.34)

(1.38)

(1.39)

(1.40)

(1.41)

In the case N = 3 we introduce another description of the reduced configuration space (M\A%),.

We now show that (M\K.), is diffeomorphic to the algebraic manifold

3
N\K: = {(p1,p2,p3,2) €RL x RY | 22 Y~ pF = [A(p1, p2, p3)]*}
i

15

(1.42)



where A(p1, p2, p3) is proportional to the oriented area of the triangle whose sides are p;, pa, ps:

[A(p1, p2, p3)]* = % [sz} TL (o +p5 = pe)

1Lk
Hz’,j,k is the product cyclic in the indices ¢, 7, k. From the definition of A, one verifies

I ) ) =90
(Px;PQ,P;?l(O,Oyo)Z(pl P2 Pa)

Proposition 1.2.1. (M\K.), is diffeomorphic to N'\K..

Proof. In (M\K,), ~ JR?{_ x S we take ¢ and we describe it by the local coordinates (r;, 73, ); the
we define the map f as follows:

pi =r; 1=1,2

2
ps = (r}+r} —rirycosp)l/?
~ —_ ryrasing

Zﬁ\/rf+r§—r1r2 cosp

At the coincidence set K, the jacobian is not defined. One verifies that the rank of the jacobian of
f equals three out of K,. Indeed the jacobian has the following form:

ri=TsCoSp Ta—T1 COSQ r1r2sin @
\/rf+r§—2r1r2 cos \/rf+r§—2r1rg cos ri+ri—2rirycosg
5 sin @ rf sin ¢ rgrl[(rf-{-r;)cosw—rlrg cos 2]
Qﬁ\/rf—frg—rlrz cos 2v/§\/rf+r§—rlr2 cos 2\/5\/1'%-}-1'3—7'11‘2 cos @

The transformation f can be inverted, f~! is given by:

ri =p 1=1,2
o :{ —arccos [(pf + p3 — p3)/(2p1p2)]  if 2(p1, p2, p3) <0
+arccos[(p} + p3 — p3)/(2p1p2)] i 2(p1, p2, p3) > 0

Therefore (M\K.), and N'\K, are diffeomorphic. O

In the sequel we often consider (M\K,), ~ M\ K,.
About M\ K, note that:
(i) The expression defining [A(p1, p2, p3)]? must be positive, then p; + p; > p for all permutation
of 4,7, k. These are the triangular inequalities.
(i) 2 =0, p; >0, i =1,2,3 then for some indices ¢,j,k p;i + p; = px, this corresponds to a
collinear configuration of the three bodies.
(iii) In the closure of A'\K, there are p; = 0 for some 7 then triangular inequalities imply that
Pi = Pk with ],k ?‘-’ 1.
We term N the closure in R* of A\ K..
Now A can be embedded into RD x R! where

RD ={r=(r1,r,r3) € 1_%3_ | ri + 7 — 7& > 0 cyclic permutations of i, j, k} (1.43)

where R =R, U {0}.
RD is the set of the relative distances among the three bodies. Note that RD # §:
aRD = Ui,j,kﬂ-;'k
where 1r§
mhe={r=(r,r,r3) €RS | ri 4 rj — rp =0} (1.44)

& aTe:
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Using that (M\ K.), ~ M\ K. and local charts we can write the reduced Lagrangian in terms of the
relative distances.

R(Cy(:) = Z Mz](c 7’17’] + Z m“m] (145)

1,j=1 1,7,k

The 3 x 3 symmetric matrix M has entries smooth homogeneous functions of the r’s (see [20]):

1/2(1/ma 4+ 1/ma3) —(r'f + r% - T%)/errgmg —(7*% + 1’§ - r%)/?rlrgmg
M™t= | —(r2+r2—r2)/2rirams 1/2(1/my + 1/ma) —(r2 +r3 —r?)/2rsramy
—(r? + 72 —r3)/2riramy  —(r: +r} —r)/2rsrom, 1/2(1/mq + 1/mo)

In the application of variational methods we will need that the reduced Lagrangian written in term
of local coordinates z = (21, 22, z3) € (M\K), hence:

- ; m,m
R(¢,€) Z M;; (€)% +Z o J (1.46)
i,y=1 i

We now extend, at least formally, the Lagrangian on the space A that contains the coincidence set
K.. In the next Chapter and in Chapter 4 we will show that we consider trajectories which are
classical collisions (see the Introduction). These solutions have the tangent vector with a finite
number of discontinuities.

1.3 Reduced NBP

For N > 3 the reduced configuration space (M\K.), can be described as follows: (M\KC), is
diffeomorphic to a submanifold N\ K, C RiN’G x RN=2, For any N the configuration of the bodies
is given by by two sides and one angle:

Pi-1,Pi, Pi i:2,... yN—]-

These elements identify N —2 triangles that can be described, up to a reflection, by their three sides:

Ti—1 = pi-1

r; = pi

: _ ? 2 2 1/2
rN-24i = (pi + pi_y — 2pipi-1 cos i)

— pipi—1 8N p;
22\ /pF+p3_ —pipi—1 cos @i

=

For each triangle one defines the area by the Heron’s formula.
In R3V=% x R¥~2 we define the following submanifold:

3

N\E, = {¢ e RAN=3 x RN=2 | (¢ Z N2 =140V, o0, )2 1=1,... , N=2}  (1.47)
where ¢ = (p\1), p0, p{D) (1) pIN=2) pIN=2) (N=2) (N-2)y

The coordinates 4§ ) with ¢ = 1,2, 3 are the sides of N 2 triangles. Note that for generic N the set
of the relative distances is

RD = {pij € Ry | pij + pjr > pri forall i, j, k with i # j # k}

where p;; is the distance between m; and m; (1.48)
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RD is a submanifold of I@f(N—l)/z, moreover JRD # .

From the construction of A, it turns out that if zg) =0foralll =1,..., N — 2 then all the NV
bodies are collinear, therefore we define the submanifold of the N-collinear configurations as follows:

Ny ={CeN,|V=0V=1..,N=-2} (1.49)
Now we state that:
Proposition 1.3.1. (M\K.), is diffeomorphic to N'\K..
The proof is analogous to the case N = 3; for each triangle we construct the map f and we form
a map on all (M\K,),.

Now denoting with A the closure of A\ K,, we define for N > 3 the reduced configuration space
as:

M, ~ N
The reduced Lagrangian R on M,
) 2N-3 e
RGO =) Mi(Qéiz+ )  ——= (1.50)
=1 i Pi (=)

here p;;(z) are the relative distances between the masses m; and m; and they are functions of
Z1,...,%23N-3. Note that there are local coordinates on M, such that zy1, ..., zoy.3 are independent
coordinates. In the next Section we will study the global properties of the reduced configuration
space. This analysis is required in order to study the reduced Action functional.

1.4 Geometry of the reduced configuration space

We now consider geometry of the reduced configuration space.

The Lagrangian L is invariant under the lift on 7M of the diagonal action of the group 0(2,R) (for
the lifting action on T'M see the Appendix).

We denote this action as follows:

®:02,B)x M — M
(g.2) — @4z)=(9 -21,...,9 TN=1) (1.51)

where g- denotes the standard action of O(2,R) on the plane. The action of O(2,R) on the whole
M is not effective because the origin of M ~ RV,
Recall the following properties of O(2,R):

Proposition 1.4.1. The group O(2,R) is generated set Sy of all reflections with respect to indepen-
dent lines in the plane.

Proof. Here we consider the natural action of O(2,R) on the vector space R2 The proof is elemen-
tary, it is given noticing that in the plane the product of two reflections is a transformation with
unit determinant. This transformation is a rotation.

Now we want to give an explicit matrix construction:

In a chosen coordinate system we take a direction [v] = [v; : va] € RPL. One can show that the
reflection Spy,.y,] € S2 w.r.t. the direction [v; : vq] takes the following matrix form:

S 1 vE — 03 2uyv9
fvrwa] = ||v||2 2uive Vi —0v?
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If one considers [vy : vp] = [cos @ : sina]

5. = ( cos2a sin2a )

sin2a  —cos 2«

Now given two directions in plane defined by two angles, respectively o and 3, by means of
simple manipulations one finds that:

_ cos2(f—a) sin2(f—a)
Se S = ( —sin2(f—a) cos2(f—a) )

and so:
So - S = Rg(ﬁ..a) € SO(2,R)
Therefore we have:

0(2,R)/SO(2,R) ~ Zy (1.52)

By means of the explicit expression of Sy and Rg one can show that:

Proposition 1.4.2. Chosen a frame in the plane, let S, and Rg respectively a reflection w.r.t. the
direction a and a rotation of the angle 3. In polar coordinates the action of S, and Rg is given by:

Ry((p, ) = (p, o+ 8) , Sallp, ) =(p, 20— ¢)

The reduced configuration space is given by the quotient:

(M\K.)/SO(2,R)

We now consider the the geometry of reduction of the 3BP:
The symmetry s is not reduced, one can describe the reduction of the configuration space by the
following diagram:

With F we denote the diffeomorphism describing the coordinate transformation from ¢; to 7, ;. 8;.
The map 7 describes the quotient of (M\K,) w.r.t. SO(2,R) action. The map p = 7 o F' provides
the reduction and induces a map p : (M\K,)/SO(2,R) = RD\K..

The map p is the transformation between the coordinates (rq, 72, @) and (p2, p2, p3):

pi =r 1=12
ps = (17 + 713 —rirzcos )t/

Note that:
p(r1,r2,0) = p(ry, 72, 2m — @)

If one studies the configuration space in terms of the RD it turns out that:
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Proposition 1.4.3. The map p : (M\K.) = Ry x [0, 2x] induces a map p : (M\K.)/SO(2.R) —
RD\K. which is a ramified covering with a monodromy group isomorphic to Z,.

Recall the definition of ramified covering:
Definition 1.4.1. A quadruple (S.S,Z,,ps) where ps : S — S is a ramified covering if:
(i) S, S are manifolds,
(ii) There exists a closed subset K C S such that (S\K, S\ps(K), Zn,ps) is a covering with mon-
odromy group Zn,
(11i) For all s € S there exist a neighborhood V(s) homeomorphic to a ball in S such that the
connected components ofpgl(V(s)) are homeomorphic to a ball in S

Proof. Consider the quotient manifold (M\K.)/SO(2,R). Any class [¢] € (M\K.)/SO(2.R) is
composed of configurations which differ by a rotation.

Now chosen a direction [v; : vs] € R P! any element of S, can be written as the product of a reflection
w.r.t. a fixed chosen direction times a rotation:

52 3 Syya] - Ba = Ry - Sy, va)

for some Ry, Rg € SO(2,R).
Therefore on (M\K.)/SO(2,R) we define the action of S» as follows:

B : 8y x (M\K.)/SO(2,R) — (M\K.)/SO(2,R)
(Stwywap la]) — és[uliugl([q]) = [@5[1,1:02](‘1)] (1.53)

Then the action of Sy on (M\K,.)/SO(2,R) is equivalent to the action of only one reflection w.r.t.
a chosen line [v; : vo] € RP'. The direction [v1 : vo] corresponds to the classes A[v] with A € 2\{0}.
Consider the group G = {Spy,.v,], id}. The action of G on (M\K.)/SO(2,R)\{A[v]} is proper and
discontinuous without fixed points, then

(MAK)/SO2, R\ {AR]} — {(M\EK.)/SO(2, R\\{A[v]}}/G

is a covering. In fact we can use the following result (see [26]):

Theorem. Let X be a connected, locally arcwise-connected topological space and let G a properly
discontinuous group of homeomorphisms of X. Let p: X — X/G the natural projection of X onto
the quotient space. Then the couple (X, ) is a regular covering space of X/G.

In our case X = (M\K.)/SO(2.R)\{A[v]} and the rank of G is finite and equals two, then we
have a ramified covering whose monodromy group is Z,. The map p can be defined as

p([q]) =p(g) = (ro F)(q) =n € RD

One verifies that § is not a homeomorphism at {A[v]}. One can also verifies that for any [¢] €
(M\K.)/SO(2,R)/G there exist a neighborhood whose connected part, homeomorphic to a disk, is
mapped by 57! into open set in (M\K.)/SO(2, R) homeomorphic to a disk.

Therefore we can conclude that

B (M\K.)/SO(2,R) — {(M\K.)/SO(2,R)}/G (1.54)

is a ramified covering whose branching points are A[v] with A € R,
The thesis is obtained noticing that

{(M\K)/SO(2,R)}/G = (M\K.)/O(2,R) ~ RD\K.
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Figure 1.3: Reduced Configuration Space for N = 3. The couple of surfaces (4;, A:-), 1=1,2.3 are
identified (glued) ’

Now we want to extend the reduced configuration space adding the coincidence set K.. Note
that there is only one configuration where the quotient is singular, this is the total coincidence
configuration K*, i.e. the origin in .M. We define the reduced configuration space M, as:

M, = p_l(RD)

where we define p(R*) = K*.

We give a geometric description of the ramified covering. M, is embedded into R* and M, is an alge-

braic manifold: for any (p1, p2, ps) € RD\ORD we have two values for z, z = +A(p1, p2, ps)/\/ S0 p2.
In the figure 1.3 we show that .M, can be thought as two copies of RD {two infinite dihedra)

embedded in R3 with common vertex and common faces. They form the two sheets of the covering

that are glued along the coHiI,lea_r configurations, (thin and dashed lines represent the gluing). The

surfaces A;,i = 1,2,3 and A;,7 = 1,2,3 are the two copies of the collinear configurations = = 0.

Heavy lines correspond to the coincidence of two bodies, while the common vertex is coincidence of
three bodies. Indeed, consider the two spaces RD x Ry and RD x (R\R.). Define the map:

i:0RD — RD
¢ = U0 =¢ (1.53)

now take the disjoint union
RD x Ry URD x (R\Ry)

then the following equivalence relation is defined:

¢~ iff:
cither ¢ =¢
or () =¢

then, by i, we define the gluing

M, = (RD x Ry URD x (R\R,))/ ~=RD x Ry U; RD x (R\R,)
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For N = 3 we define the following involution:

oM, = M,
C = (rlz 7’2>S0) - U[C] = (7‘1,7’2,27{' - (P) (156)

The action of ¢ on M, corresponds to the action of S on M and in fact it has a manifold of fixed
points corresponding to dRD.

For generic N the geometric structure of M, is more complicated but on M, we can introduce
the involution o.
Indeed let us consider the action of the reflection w.r.t. a direction for V bodies in a plane. To take
the reflection w.r.t. a direction is equivalent to invert the orientations of all possible triangles with
vertices three of NV bodies.
N bodies in R? form N(N — 1)(N — 2)/6 triangles, and the configuration is determined fixing one
of the bodies (say my) and giving N — 1 relative distances py; [ =1,...N —1 with N — 2 relative
angles ;43 [ =2,...N — 1. This means that any triangle is determined knowing N — 2 triangles
defined by (pn1, ¢1141, pvi+1), and since we know the definition of o on a single triangle, using r’s
and ¢’s coordinates ¢ is given by:

U:J\Ar — J\/tr
¢=(r0, o) = o= (P, e, 2w — o) (1.57)

If we consider M, C R3Y~=5 then the action of the involution ¢ reads:

oc: M, — M.,
- ! -
¢=(0 A0 0.0 5 o= 60,0, ) (1.58)

The action of ¢ on M, corresponds to the action of Sy on M and in fact it has a manifold of fixed
points corresponding to Ay .
To be more explicit, we describe a smooth trajectory ¢(.) such that after a time 7 is ¢ transformed:

{(r) = a[¢(0)]

For N = 3 a continuous path between ¢(0) and {(7) has a time 7* at which the triangle area vanishes,
hence {(7*) is a collinear configuration. For N = 3 this is the only possible case and for the covering
it possible to define a ”cut”: the collinear configuration.

For N > 3 the path {{(.) may reach ((r) passing through an sequence of partial collinearitiesi.e. there
exist a sequence {7}, (possibly infinite), at which the areas of some of the V — 2 triangles vanishes.
If the sequence {7 }x is constant then the trajectory goes through a total collinear configuration.
For N > 3, for the covering it is not possible to define a unique ”cut”.

22




Chapter 2

Reduced Action functional and
weak Poincaré inequality

In this Chapter we define the reduced Action functional on a suitable space of trajectories on .M.,
then we show that the geometry of the reduced configuration space allows to prove a weak analogue
of the Poincaré’s inequality. By means of this inequality we will construct a family of C%-compact
sets of trajectories.

2.1 Reduced Least Action Principle

Consider M, as submanifold of R3Y~3 We specify the functional spaces of trajectories on .M, in
order to study the solutions of the Euler-Lagrange equations as critical points of the reduced Action
functional.

Choose T > 0 (the period), on R3¥~3 and define the space of continuous functions C%(R3¥-3) as
follows:

CP(R*=%) = {¢(t) € C°([0, T, R* %) [ C(t) = ¢t + T), IKlloo = sup[(] <o} (21)

with |¢] = maxi=1 |zi].
We now define the functional space on trajectories on M,.
First we define the space of continuous periodic trajectories on M,:

CO[0, T, My) = {¢(.) € C([0, T, R*M %) [¢() € Mr,  [I¢(H)lloo < o0} (2.2)
We also define:
C([0, T), M,) = {¢() € C([0, T, R*N=5) [¢(t + T) = ¢(t), <(t) € M.} (2.3)

In the construction of the reduced Lagrangian we found a positive definite quadratic form defined
on TM,.

(M(¢)v,v) = ZM,J (€)' (2.4)

).7

with { € M, and v € TM,.
We describe a trajectory ¢ : R — M, with p1,...,pn=1,91,...,9N—2, then using (2.4) we define
HZ}(M,) the following Sobolev space:

HE(Mr) = {C() € C=([0,T], M) [ S(t) = St +T), Iz o,y < o0} (2:3)
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where chgl(M Yy © fo dif(M(Q)¢(2), (1)) + > pi(t)], and
(M), E(1)) = Z {zvfé-l)(c:)pmj - Mf?(g*)mbj + MP(Q)pit5]
ij
By Hi(M.,) we define the following space:

AF (M) = {C() € HF (M) |
pit+T/2) =pi(t)i=1,....N=1, @{t+T/2)=2r—¢(t), I=1,...,N -2} (2.6)

The space A%(M;) can be described using the involution ¢ introduced in the preceding Chapter:
AF(Mr) = {C€ Hp (M) | C(t+T/2) = o(C(t)), () € My V€0, T} (2.7)
On H}(M,) we define the following (Action) functional Az[]

T .
rfe)= [ RO 2.)
0
- with { € Hp(M,)
The Action Ap[.] is defined on the set:

{CEHTM [/ dty %<oo} (2.9)

Since D4 contains the collision solutions then the Action is not everywhere differentiable on D 4.
The Least Action Princple states that if Ap[] is differentiable at ¢, then ¢ solves precisely:

(DAr[¢],v)=0
for all v € Ty HA (M) =~ Hp(Te M)

Since the reduced Lagrangian expressed in terms of the 2N — 3 independent coordinates:

3
m,m
3 iyt + 3 T

Here M is the kinetic metric written in z’s coordinates. The reduced Action functional takes the
form:

l\D|0——-l

Ar[C(6)] = / { > ity >4Z~J+ZZ;"”} (2.10)

i,j=1

2.2 The weak Poincaré inequality

The Poincaré inequality bounds the sup norm of z(.) in terms of the L? norm of &(.):
llzllz> > \/-llmlloo

This inequality holds on {z € H*([0,T],R") | z(¢t + T/2) = —=(t)}, the subspace of antisymmetric
functions. Poincaré’s inequality provides compactness of the sublevel sets of the Action Ar[.] with

T
Arfe] > ellélBaqoryms + / 4tV (z (1))
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For the analysis of the reduced system, the requirement of antisymmetry under £ — —=z is no
longer applicable. We replace the antisymmetry with the request of a particular behavior with
respect the involution o. This new notion is completely different from the standard request about
antisymmetricity. The resulting inequality is weak since there are non-trivial trajectories which are
fixed points of o.

One could consider for example trajectories in A%(M;), but we now introduce the weak-Poincaré
inequality for a bigger subset of HL(.M,). We term Ag the following set:

Ar(M,) = {¢(.) € H:(M,) | there exist at least one of N(N — 1)(N — 2)/6

triangles that change its orientation along the motion} (2.11)

Introducing relative distances and relative angles Az (M) can be described as:
Ap(M;) ={¢() e HA(M,) | A e{l,... N=2}, t"€[0,T]
such that sin;(t™ — €) - sin o (t* + €) < 0 for some € > 0} (2.12)
Observe that A% (M) C Ar (M),
We now introduce the weak-Poincaré inequality. First of all observe that:

Remark 2.2.1. There are N! possible choice of my-centric frame. In any possible frame the kinetic
term of the reduced Lagrangian R is a positive definite quadratic form i.e. we write the kinetic term
as:

2N-3
(x‘[l Z ”U,"l)j
i,j=1
where withl =1, ..., N refers to the N'! possible forms of the Lagrangian depending on choice of the

my -frame. Then there exist two strictly positive constants a} < ab, depending on the masses such
that:

=3 P 2N-3 z 2N -3 , -
ay Z vi] Z r)viv; < ay Z [vi] (2.13)
g i,j=1 i

Theorem 2.2.1. Let be ((t) € Ar(M,). The following inequality holds:

T 2N-3
.o 160:1 . . 9
dt Mf,-l-rrir~>—————su min min ii(7(8)) + pik(r(s)) — pri(r(s))}”
/ O b0tz g s i i (0100 + 9] = 6]

(2.14)

where a; = min @} and we denote by P([i, ], k]) the set of all permutation of the vertices of the
triangle [1, j, k], and by A the set of all tmangles

Proof. First notice that if the term in the r.h.s. of (2.14) is zero then the thesis holds. Therefore we
assume that the r.h.s. of (2.14) is different to zero.

For each {(.) € Ar(M,) there exists a triangle [3,7,k] € A on which the minimum in (2.14) is
attained. We can choose the set of 2V — 3 independent distances in such a way that r;, r;, rx belong
to this set. At this point Then:

| a
0

and it is sufficient to give the proof for N = 3. Without loss of generality we assume that “sup” is
attained in ¢t = 0 and we denote the r.h.s. of (2.14) by:

1601 ,
ZLI((0))

2N-3 ”
> Mimtiim > a1 / dt[rf + 72 + ]
0

I,m
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By assumption I'(#(0)) > 0 and by antisymmetry I'(r(7/2)) > 0. Therefore (0) is not a collinear
configuration and we can use the relative distances as coordinates for the trajectory in [0, 7i;%) where:

ik = inf{t € [0, 7] | {(¢) the triangle [7, j, k] is degenerate} (2.15)

Notice that 7;;% exists by continuity, since [¢, 7, k] has the same sides and opposite orientation at
t=0and t="7/2.

In the following for simplicity, we write = for 7.
Consider now the triangle [1, 7, k] and denote by ry, 7o, 75 the lenght of its sides. We know that there
exists a; > 0 such that

K:/ dtZM’U(T)ﬁji’izal/ dt||7|f?
0 ij 0

For each r; by using the fundamental theorem of the Calculus and Schwartz’s inequality one has:

Iri(r) = ri(O) < 7 / a4

and hence
3

- 91 2 9 1R
K> 2N () — g 2.16
(> = g[ () = r:(0)] (2.16)

Let us now put for simplicity
ri(T) = @ (2.17)
ri(0) = v (2.18)

with 1 = 1,2, 3.
There are three possible collinear configurations
Ty +T2=1z3
T3+ = T2
Ty + T3 =1I1
We have to minimize (2.16) over all possible collinear configurations at time 7. For simplicity we

consider but the case =1 + z5 = 3.
Elementary computations give

RY
K>a (11 +y2 —y3)
= 3r

taking into account the other choices for the collinear configuration at time 7 we get

(2.19)

} (v Y —w)? .
{ > — 2.2
2o iy S 22

Now since 7 < T'/2 we have:
T
K= / dt(M*(r)7, ) >
0

/ dt(M*(r)#, ) >
0

16a1
3T

r'(r(0)) (2.21)
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This concludes the proof.

a

The r.h.s. of (2.14) does not bound the sup norm of r, therefore Az is not coercive. One has in
fact:

Proposition 2.2.1. For any k > 0 the set
S = {g elrnHy | Ar[C()] < A}
are non compact in the L*-topology.

Proof. For each k& > 0 we exhibit a sequence in the sublevel which does not converge. By the
Theorem 2.2.1 we find easily that

Let us take a triangle formed by 3 of the 2V — 3 relative distances. We assume that all the others
edges remain bounded. Without loss of generality we denote the edges of this triangle with 71, 7, rs.
We take a sequence of T'/2-periodic trajectories in Ap, we define it in the interval [0,7/2] while in
[T'/2,T] is obtained by the conjugation . Consider the following sequences in n € N, v; € R:

M) =1 M0) +ut te0,7/4 i=1,2,3

P () = r0) + w(T/2—t) te[T,T/2] 1,2,3

r§")(0):n+a rgn)(O)zn-{-a ré")(o):2n+a a>0

which are in Ap.

These trajectory are 3-collinear at t. = 70—, (we choose v;’s such that 7'/4 = t.)

() = rM () +ri ()

It is easy to see that

we choose a so that

16&1
3T

a=k

the sequence stays always in the level Ap = k.

But a simple computation shows that:
s > en®

for some ¢ > 0 so that there is no convergent subsequence. O
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Compactness can be proved for suitable subsets.
Let

M, = {C eArn H}Mr such that: supge[o’T]g(C(s)) > c}

with ¢ > 0 and

. - 1 i ii (r(s £ (r(s)) = pri(r(s))}?
9(¢(s)) = ol [z-,}l,}}]’éa{f,,»,kfé’%‘(‘[i,j,kp{(p”( (8)) + pir(r(s)) — pri( ( )}
where
p(s) = (pr2(r(s)), ... pv-1 N (r(s))
and

N
R =||p(s)|| = \} Z (pij(r(s)))?

ij=1
We show that for any ¢, k& > 0
My = M. N Sk
is compact in C°([0, T, M,).
Theorem 2.2.2. Given k,c € Rt the set M., = M. N Sk has compact closure in the topology of
C°([0,T], M,).

Proof. We have to show that p;;(.) are bounded functions. From the definition of M, we deduce
that for all triangles [i, 7, k]

{(pi3 (r(5)) + ik ((5)) = pri(r(s))}* >

SUp —— min
LN ti.dkrer i

hence it is enough to prove the Theorem for N = 3.
On My . we have:

k> Ar[(]

thus by the weak Poincaré’s inequality

. 3Tk

SUP {(pij (r(8)) + pir(r(s)) — pri(r(s))}” < T6a,

Now there exists so € [0, T] such that

1 i ,
R(s0) {i,j,k}rélg(l[i,j,k]) {(pii(r(s0)) + pjk(r(s0)) — pri(r(s0))}” > ¢

hence we deduce that for s = sg

3Tk
R <
(s0) < 16ca;

Now

R(s) - Riso) = | CdtR(1) < VTRl
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thus

sup R(s) < 1o+ VTIRlze

[ (L) a

The last expression can be written as follows:

We have to evaluate

2N-3

T
/ ds Y Nij(r(s))ir

i,7=1

The matrix Nj;(r) is positive definite since it defines a strictly positive quadratic form. There exists
b1 > 0 such that:

2N -3 T 2N-3
/ ds D Nij(r(s))iery 561/ ds > i} (2.22)
1,7=1 0 i=1
But
T
-2
dzay / dt?
T Jo
using the polar coordinates one, we get:
Trd 2 ay [T 9, e
k> Ar[C] > al/ (—R(s)) dt+ = R(s)*(Z, ¥)dt
where:
. P
U=
llell

so we deduce that ||R|[3, < &, hence M, is uniformly bounded and formed by equicontinuous
functions. By Ascoli-Arzeld Theorem we conclude the thesis. a

Remark 2.2.2. The above result holds also for the sets:

My ez = {C € Hp(M) / 3t €[0,T] / o(¢(t") = C(t* +T/2), Ar[(] < ku, t:[lélzp]g[é"(t)] > kz}

(2.23)

The functional A7 is continuous hence it attains a minimum on each M k. Let JV[ u  be the interior
of the set considered:

M2 = {C € AZ7(M,) such that: sup g¢({(s)) > c}
3€[0,T]

M2, = M2N S,

If for some c, k the minimum on M, is attained in Mf) x then DAr = 0 at the minimum. We
will verify in the next chapter that collision solutions are not minima. Therefore minima in the
interior of some My . are non-collision T-periodic orbits with zero total angular momentum. A
better understanding of the homology structure of M, is however needed before being able to
prove that there are ¢, k such that there are minima in the interior of the set M k.
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Chapter 3

Some results about the critical
levels of the reduced Action of 3BP

In Chapter 2 we constructed the reduced Action functional for the NBP; this functional is defined
on the T-periodic trajectories for which total angular momentum is zero. The existence of twice
differentiable solutions of the Newton’s equations is equivalent to the existence of critical points of
the reduced Action functional in its domain of differentiability.

Remark that periodic orbits for the unreduced system are periodic orbit for the reduced one, but
the converse is not always true. Given a periodic orbit for the reduced system , whose configuration
space is a quotient, one has to lift the trajectory to the original configuration space. This is the
subject of reconstruction theory and we recall it in the Appendix A.

The Action functional of of the 3BP is continuous but not not differentiable at collision solutions;
in [6] it is proved that they are not minima for the unreduced 3BP.
In this Chapter we show that collision solutions are not minima even for the Action functional of
the reduced 3BP.

Then we study the gradient flow on the compact sets Mc,k. It turns out that, for ¢ small enough,
these sets are not invariant under the gradient flow and we point out a connection with the existence
”critical points at infinity”. These are critical points of a limit functional, and represent, roughly
speaking, a system formed by a couple of bodies following a closed Kepler orbit while the third body
follows an orbit at ”infinite” distance from the Kepler one.

To gain more informations in the structure of the level sets of the reduced Action functional we
consider a system composed of three masses: my, ms, mg with my; >> my and m; >> m3. We
study the system in which the interaction between msy and mg is neglected. Then we perturb the
system considering the interaction between the small mass.

For the unperturbed system we verify that circular periodic orbits are critical points of the Action,
with Morse index —1. These critical points form a non degenerate manifold which can be continued
for small values of the masses my and mj3, to provide a strong solution of the equations of motion.
We apply the reconstruction theory to show that there exists a choice of the small masses my, ms
for which periodic trajectories in the reduced configuration space can be lifted to periodic orbits in
the unreduced configuration space.

Then we study the gradient flow of the unperturbed problem restricted on the uniform circular
orbits C. We prove that the flow is tangent to C and we demonstrate that there exists an unstable
manifold containing the critical points.
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3.1 Action functional

In the preceding Chapter we have introduced the Action Ap[].
T 2, . m;m;
AT[C] = / dt ZZ\/[-;]'(Z)/‘.",’Z.‘]' +Z—-—-z—-:‘-7— . (31)
0 ij i Pij (“)

This functional is defined on the Hilbert space termed H}(M;).

In the study of the 3BP it will be useful to consider another form for Az[.]. This form follows
directly from the Lagrangian R that results from the Routh reduction.
If N = 3 the Lagrangian R reads:

1 .0 o 9 . 9
R= 1 57 Myid 4 Vipw, oo, ) + S (0de(D) + 8151/ s+ [Ay o/ Ty + A& = ATy (32)

i=1,2
where:
P .A/fll ~Mis COS((,O) /s
M= ( —Mjiacos(p) Moo (3.3)
. Mi1p? —M2p1p2 cos(p) )
1= 3.4
< —Myap1p2cos(ip)  Maopl (3.4)
Iy = -%-(]11 + L2 + I22)
I, = §(111 — I1a + Is)
Iye = §(111 — Io2) (3.5)
Ay = ‘éu(ﬁlpz — p2p1)sing
Ap = F2(p1p2 + pop1)sing
and
ma mym
V(pt, pr,p) = o2 4 TLT2
pP1 P2
mam
e (3.6)
VPl +pi—2pipzcose
In these coordinates the involution o reads:
oM, — M, (3.7

(p1,p2,9) —> (p1,p2,27 — @)

Note that in the reduction transformations ¢ is the relative angle between the two bodies, measured
from the oriented segment joining them. Therefore ¢(t) € [0, 27].
On HL(M,), defined in Chapter 2, one has

T
,%m=ﬁdmm%m@ (3.8)
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3.2 Collision solutions

We now consider collision solutions with at least one isolated collision; we will show in the next
Chapter that variational methods lead to solutions for which either there is no collisions or there
are isolated collisions.

Recall (see Introduction) that if z(.) is a solution in the unreduced planar 3BP with an isolated
collision at ¢t = ¢, one can find d € (0,1) and {ff:}i € R? with i = 1,2, 3 such that z(.) has the
following asymptotic expansion:

ey _ | & te =031+ g7 (Jte —t])) fort <t.
(t)"{ *(t—tc)2/3(1+§;“([tc—t|)> for t > 1, (3.9)

1

and

3

ey _ [ & (e — )R+ FT (ke — ) for t <t .
Iv(t)—{ Gt — 1)1+ i ([te —t]) fort> 1, (3.10)

In (3.9) {£F}; are Central Configurations, and ||g£(t)|| = 0%, ||fE )|l = Ot%).

Proposition 3.2.1. Let (. € f\T(,\/fr) be a T-periodic collision solution of the reduced 3BP with at
least one isolated collision. Then there exist a continuous functions h(t) = (wiw(t), waw(t), wsw(t)) €
C°([0,T),RY), and ¢ small enough such that:

Ar[CEt)] — Ar[¢(®)] € —CeH? Ve < (3.11)
with C' > 0, where (S(t) is defined by relative distances r;:
ri(t) = ||ef(t) — 25 (t) + e(w; — wk)w(?)|| cyclic permutation of 1,7,k

and w;w(t) € C°([0, T), R?)

Proof. In the proof of the Theorem we consider only triple collision. Double collision solutions can
be studied with the same method.

We fix the collision time to ¢, = 0 for simplicity.
We have seen that the asymptotic form of the regular collision solution depends on the Central
Configurations. For the 3BP there are the Lagrangian c.c. (equilateral central configuration) and
Eulerian c.c. (collinear central configuration). Modulo the permutations of the bodies there are two
Lagrangian c.c. and and three Eulerian c.c.. Following the denomination of the c.c. on the two sides
of the collision we have the following cases:
Lagrangian-Lagrangian, Eulerian-Lagrangian, Lagrangian-FEulerian, FEulerian-Eulerian.
To give a more explicit description of the geometry of the collision, in the proof of the theorem, we
write the Action in terms of the redundant coordinates z = (z1, z2, z3) € RS.
In Chapter 1 we have see that ¢ corresponds to reflection w.r.t. to planar direction. Recall that
given u € R? the reflection w.r.t. u is the operator S,(.) is defined by:

[lull?

Su(v) =2 —v (3.12)

where v € R? and (., .) is the standard scalar product in R2.
Now we put:

ri = ||lz; — zx|| i, 7, k cyclic permutation (3.13)
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so the Action reads:

AT[C(t)]:-/Tdt liﬁ] (C)ri(z)2 +Z _mimy
0 2 & i(z);( s — ;]

Let z.(t) = {2£(t)}2_, be the collision solution For the variation we take
9(t) = {wiw(t) iz
where for all i = 1,2,3 w; € R? and
1 [tl < €
w(t) =4 0 [t| > 2e0
Ze“%lt' e0 < | < 2ep

with e € R*. Thus w(.) € Cj_ ([0, T],B?).
The varied trajectory is:

zi(t) = zf(t) + ewjw(t)

taking account that z{’s may be different on the two collision sides.
By the fundamental theorem of calculus:

GE — Ar (0] = [ dok Arice, o)
where (¢, s) is defined by:
ri(t,s) = ||z () — x5 (t) + se(w; — we)w(t)]| cyclic permutation of i, j, k
We shall verify that the integrand belongs to L?.

Consider first the contributions for ¢ > 0 (right-side of the collision).
The contribution to (3.15) to from:

1 ! T d ~ €V (€N €
-2-/0 ds/o dtg;%Mij(C )7i(z)75(z)

the derivative w.r.t. s gives rise to two terms A;, As:
We estimate the first term as follows:

Ay = 2/1(1 /TdtZM (Cf)dfjiﬂ (z)
- s (i
' o 0 i; 7 ds 7

where
e dri _ (2§ — zf, &5 — £F)
bt ll=5 — 2|l
and
dri (:L'; — T, Wi — W) (wJ Wi, & ] xk) (2: xI\.Vx] rk)(r — T, wj — W)
e € € +e € —€ € PITE]
ds Iz — 2]l llz§ — =l llz§ — =il
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We now show that %‘i is a bounded function of s, in [0, 7] x [0, 1]. In (3.18) we use the asymptotic
of collision solution given by Sundman’s results. The first term is bounded for all ¢, s because w(t),
each of the other terms are separately not bounded but there are cancellations. Indeed, we have:

1/3(“’1 — Wi, § f5 (1) — &k f(t))
llz§ — 2|
—e(&1°3g;(t) — Et*Pgr(t) + se(w; —wi), &3 f5(8) — &tV £ (1)) -
(&1%/39;(t) — Ext*/Pg1, (1) + se(w; — wy), wy — wy)

-+

5 — =3P @1
this is equal to:
173
TEtT35510) — &t Togn 1) + sely —wp 7 T OIGE =Al)
[(€5 = &k, w; (1) — wi (1))? = 1€ = Exll*[[w; (8) — wi (D)II°] (3.20)

this is bounded in [0, 7] x [0, 1] for € > 0.
In A, there is the product of two bounded functions and #;7; are integrable in ¢ = 0, therefore:

Al = 60(1)

Second term:
The second term involves the derivatives of the matrix M:

OM;; dzt .
/ds/ dtz ‘%: dk z€)7;(z°)

Using the regularity of M and (3.18) we find that:

A2 = 60(1)

We now consider the terms due to the potential, which can be written as:

. 1 T d m;m; _
b= [ o) UG L O w F sw@ GO

with:

.—_—-e/ ds/ dt Z |m”"f zi(®) 1‘5(” wi(t) — w;(t))

)+ se(w; (t) — w; (1)|[2

i 26(t), w;i(t) — w;(t
B “6/ ds/ ‘”Z 1(2ch~ 5 +’s(€()w,( g )—wjé()))u)a
In the term I, the integrand is integrable because in [eq, 2¢p] there are no collisions. Therefore:
I, =€0(1)
To study I; we now perform the following substitution:

er =13, dit= (3/2)63/2T1/2d‘r
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and we obtain

_ /e mim; (&T(1 + gi(e7)) — & (1 + gj(er)), wi — wy)
_—_\/—/ ds/ dr\/—zll& T(L+gi(e7) = &7(1+gj(e7)) + s(wi — wy)]?

The integrand is integrable at oo uniformily in ¢ for € — 0, and therefore

9 . mym; (&ir( 1+91(6T))‘fjr(l'*'gj(fr)))wi—wj) —
& f/ s [ VT L 1+ ai(er)) &L 950 + s(ur— )P | = O

Now define

=l ds/ drr32 5 il = &), i~ wy) 3.21
\/_/ Z“T (& _fy + s(wi “’wj)“B (3:21)
Since the functions g;(.) are infinitesimal then

|11 ~ ]| = eO(1)

In order to complete the proof we show thatone can choose functions g;(.) in (3.21) such that
I, = —/€eC for some C > 0 irrespectivelly on f,-i.
The sign of the integral [1 is defined by the sum of scalar products:

D mimg (& — &, wi — wy)
ij

and therefore a sufficent condition for the positivity of I; is given by the following set of 6 inequalities:
(& =& wi—wy) >0
(& =& wi—w;) >0 (3.22)

More precisely I; is positive if, for each side of the collision, there are at least one strictly positive
scalar product.

We now consider the possible collisions:

Lagrangian-Lagrangian

First we consider the case in which the trajectory, at the collision, change the orientation of the
triangle.

In this case for the o symmetry we have that

Su(&) =¢
for some v € R?. Using the properties of (3.12), the conditions (3.22) can be written:

(& ~ & wi—w;) >0
(& =& Suwi —wy)) 2 0 (3.23)
For simplicity we define:
nE = {J.i — fki, v =w; —wg ¢, 7,k cyclic permutation
then (3.23) reads:

(nf i) >0
(nF, Sulvi)) > 0 (3.24)
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In the Lagrangian configuration we have that

Il =, Yk, D> nf=0
k

this implies that:

1
i mj) = =5, Yi#]

We chose for v;,1=1,2,3 and u:

v = 2Anf
Vo = “/\Uf- —&
vy = =Anf +&
u=nf (3.25)

With this choice (3.25) we have that (3.23) are all strictly positive for A > 2(1 ++/3/2).

If the triangle does not change orientation at collision the conditions we have to solve (3.22). We
have two cases:

(i) If (", m;7) > 0 for an index 7, then we take:

vi =nf + 7

(ii) If (pf,n7) < 0 for an index i, then we have the following set of choices:
Consider index i, define (n;7)* such that ((n7)*,n7) = 0, then:

v = +(07) if (0, (07) ") > 0
vi = (07 ) if (o, (77)1) <0
These choices of v;’s are always possible because from }; nE =0 3 (v,n¥) = 0 always holds. for
any v € R2,
Lagrangian-Eulerian
We assume that the Eulerian collision is on the right-side of the collision. Then:

't = am
for some n € R? with 5. a; = 0. The conditions (3.22) reads:

ai(n,vi) >0
(i vi) 20 (3.26)

Note that )", a; =0, a — i # 0 imply not all a;’s have the same sign. We will use the following fact
Recall that given u,v € R? with (u,v) > 0 there exist u* such that (ut,u) =0 and (ut,v) > 0.
We have the following cases:

(1) if a; > 0 and (n;,7) > 0 we take v; = n,

(2) if a; < 0 and (57, n) > 0 we take v; = n*,

(3) if a; > 0 and (n;,n) < 0 we take v; = (n7)*,

(4) if a; < 0 and (n;,n) <0 we take v; = —1.

With these choices we have that on both sides of the collisions we have at least one positive scalar
product, while the others are vanishing.

Eulerian-Eulerian

The central configurations on both sides are collinear. We have:

= ail
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for some 7 € R* with Y.;ai=0,a; #0 and
0= b
for some 7* € R* with Y, b; = 0, b; # 0. Now the conditions (3.22) becomes:

ai(n,vi) > 0
bi(n*,vi) >0 (3.27)
We have the following cases:

(1) if (n,7*) = 0 then we take v; = a;n + bin*,
(2) if (n,7*) # 0 then we take v; = an+ Gy* with

3 () P
3 >m“{ e (n,n*>}

With these choices we have that on both sides of the collisions we have positive scalar products.
This complete the proof that collision solution cannot be minima of the reduced Action. O

3.3 The gradient flow of Ay

We have seen that collision solutions are not minima of Az [.] and moreover it is possible to verify,
that there are collision solutions in My .. Therefore we are lead to study the gradient flow of the
Action on Mk,c. The form of the functional Ar[.] and the definition of Mk,c make the general study
very difficult. Therefore we restrict the analysis to particular subsets of Mk,c.

In the sequel we describe the trajectories in M, with the coordinates (ry, 72, ¢):
Let k, ¢ be the positive constants parameterizing My o, we define,

Definition 3.3.1. We term Cq, 4, the set of uniformly circular T-periodic orbits whose radii r; and
7y are two of the edges of the triangle formed by the three bodies. The radii fulfill the following
conditions:

ry>dy >dy, ro=dy, @(t)=2x/T)t+ vo (3.28)

Any trajectory is determined by giving r; € Ry and g € [0, 27, thus Cq4, 4, is Ry x [0, 27] and
the time-symmetry of the trajectories in Cy4, 4, is the same as required in My ..
In order to have
Cardo N Mo # 0
the following two conditions have to be fulfilled by ¢(.) € C4, .4,

Ar[(] <k, Sgpg[C(t)] >c (3.29)

For a ¢(.) € Cq4,,4, we choose the following parameterization:

71 = cost, 7o = cost

ra(t) = \/rf+r§ — 2ryrycos (2nt /T + q) (3.30)
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Using (3.30) the conditions (3.29) can be written in the following form:

T ) B 1672 sin® (27t /T + o)
{‘”33(’“)’2 (T (ra/m)? = @rafr) cos @nt/T S )]

mims mims mammsg
+ _ + <k
riv/ 1+ (ra/r1)% = (2r2 /1) cos (27t /T + o)) ra 1 } -
2v/2r3(1 + cos (27t /T + g))? 4
t | rin/1+ (ro/r1)? — (2r2/r1) cos (27t /T + q)
! 50 >cC (3.31)

[1 +ra/ry +y/1+ (ro/r1)% — (2r2/r1) cos (2nt/T + goo)]
Now using the condition (3.28) inequalities (3.31) we prove the following Proposition:

Proposition 3.3.1. Consider the case of the 3BP with equal masses.
Given ds > di > 0 there ezist cg > 0 and kg > 0 such that

édlyd'.’ : Cdl,dn n Mk,c # 0

for k > ko and ¢ < ¢y = /2d3/(dy — do).
In Cq, 4, there are trajectories such that

ri € [d1, da + V2d%/¢]

Proof. Fix dy > dy > 0. 3
For the trajectories ((.) € C4, 4, We can compute explicitly the supremum

sup g(¢]
t

It is easy to see that the supremum is attained at t = (1 — ¢o/27)T and it is equal to:

d3v2

ry —ds

sgpg[@'] =

Now one needs to find ¢ and a condition on ry, such that

ry > dy (3.32)
2 /7
B2 (3.33)
ri—dy T

These inequality are verified for:
c<ecg i €[dy,ds+V2d3/c]
Now kg can be estimated evaluating the Action on the trajectories such that:
ro=ds, 1 €[d1,d2+ ﬁd%/c]

We consider the case m; = my = m3 = m, and we find:

(T rér2(1672/T2) sin? (27t /T + o)
ko= /0 dt {M?’a(r) (r? +r? — 2riracos (2nt /T + pq))

2 2 2
— m + (3.34)
Vi3 = 2riracos 2nt /T +po)) T2 T
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where
ﬂ/f33(7') =m
((—cos(@)? +4) 722 + (—cos(¢)* +4) 1% + (~8cos(¢) + 2cos(¢)®) rary)
/((—-cos(qS )2 +3) ro? + (—cos(¢)? +3) r1® + (—5cos( @) +cos(¢)?) rary)

with ¢(t) = 27/Tt + o.
This concludes the proof. O

Note that the set Cy, 4, is an intersection of a closed set with a compact (in the C°-topology) is
therefore compact.

We can describe the behavior of the gradient of the Action functional.

Proposition 3.3.2. Consider the 3BP with three equal masses m.
Given v = (v(t),0,0) € THH(M,), with v(t) = v > 0 for all t € [0,T) then there exist di > 0 and
d5 such that for all dy > d} and d2 < d5

(DAr[¢],v) <0 (3.35)

Proof. Let us evaluate the gradient:

9

T
(DAz[],v) = - / 3
0 T3
7’2 — r1 COS ¢( )
/ dtv 7’1 + 7‘1 — 2rry COS¢( )]3/2 "

+/T &t OMss (47/T?)(r3r}sin’ ¢(t)
0 "o, [r? 4+ r? — 2717y cos ¢(t)]

T 2 22
 (4w/T*)(ryrisin® ¢(t)
+/ dtv[\/fg;;[ 24+ 12 — 2r 79 cos P(t)]
dtv OMssz (41/T?)2(rq — 71 cos ¢(t)) (r3r? sin? 4(t)
/ Ora [r? + r} — 2riry cos ¢(t)]

where ¢(t) = 27/Tt + ¢¢ and

62;{33 =m ((12 cos(¢) —12cos(¢)® +2cos(¢)®) r12re® — 271° cos( ¢)?
2

+2r5° cos(¢) + (2cos(9) +2cos(¢)?) r1*ra
+ (cos( 05)3 —cos( ¢ )4 - 4) rotr + ( —cos( ¢ ) — 4+ 3cos(¢ )4> 3 7,22) /(r2

( —~6cos(9)% +9+cos(d)?) ri*+ (—6cos(¢)? + 9+ cos(¢)*) ra?
(18+13cos $)%+cos(9) —8cos(¢)*) ro?ri?

(—2cos(¢ ——30cos( ) + 16 cos(¢)3) rori®

(-

+
+ ¢)

+ (=2 cos( —30cos(¢) + 16cos($)?) ro? 7’1>)

In the expression of the gradient we have five integrals. From the form of M33 given above, one can
observe that for large r; and constant ro the first integral is negative definite, the second one is of
order O(1/r?), the third integral is O(1/r1), the fourth integral is of (4/3)O(1) and finally the last
one is O{1/r1). Now for dy small and d; large enough we prove the thesis. O
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Now we can state:

Corollary 3.3.1. Under the condition of the preceding Propositions, for any () e (fdlydg C My
(with k > ko) then for the flow ®,(.) with A € Ry defined by

dix(t) _
a0

there exists Ag > 0 such that ®,(¢(.)) = G() ¢ Mk'c for A > X

Proof. Take k > ko. Along the flow determined by v(t); the flow ®,(.) it is explicit given by:
T'l(t, /\) =r;+ Av
ra (t, /\) =7y
w(t,A) = (1) (3.36)

The flow ®,(.) does not leave (fdl,d? invariant and in particular does not leave invariant ﬁ—fc’;.. In
fact along the flow ®,(.) the condition sup, g[¢] > ¢ is violated because

ALWE I
Tl(t,/\) —_ Tz(t,/\) - ry + Av — doy

for any A > A\g = d3v/2/c + ds — rq, and hence ®,(C) ¢ My .. O

We expect that the behavior of the gradient holds also in the case of different masses. In fact. in
order to define the positive function a(.) complicated masses relations must be verified.

We want to point out that in Cy, 4, (with k& > ko and ¢ < co) there are sequences of unbounded
trajectories for d; — +o0o0. Note that the set é_,,oo,dz is no longer compact. Among these diverging
sequences there are the elements which are instrumental for the definition of the critical points at
infinity.

In the next section we will study the critical point at infinity for the reduced 3BP.

3.4 Critical points at infinity

We will study the Action functional on the space:
Am, ={CEH | pi(t+T/2) = pi(t) =0 i=1,2p(t+T/2) —p(t) =7 Vt€[0,T]} (3.37)

Now we give the definition of the critical points at infinity.

In general (see [24],[25]) given a functional .A[.] on a Banach space X critical points at infinity are
particular sequences on which the functional does not fulfill the Palais-Smale (PS) property. The
sequence {z,(.)}n C X is a PS-sequence if:

(1) [A[zn]| < ¢,

(2) limp o (D A[z,],v) = 0 for v € TX, _

If there exists a sequence {z,} satisfying (1) and (2) and has no convergent subsequence, then A[]
does not satisfies PS at level c.

In some cases it is possible to find a different criterion for the convergence of the subsequences. The
NBP is the case.

In the NBP the Action can be written (not uniquely) as a sum of two functionals:

Ar[(] = AT [(] + AT [(] (3.38)
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where AF[] is a functional depending only on a submanifold £ C M,. In the reduced 3BP £ ~
Ry x [0,27] U {0} x [0, 27].

We term H1L(L) the first Sobolev space of functions valued in L.

This property suggests to give the following definition:

Definition 3.4.1. We term critical point at infinity a sequence {¢\™)(.)}, C H:(M,) such that:
(i) limp 0 ”C(H)HH,}(AA,.) = 400,

(1) limp, 00 iAT[C(n)] — A7 [C(n)]l =0,

(i11) limy o0 | < DAP[C™M], v > — < DAP[CM], 0 > | = 0, for all v € THL(M,),

(iv) From {¢™)()}, it is possible to extract another sequence {cc(,;‘)(.)}n such that:

(a) Cc(,:)(t) € L for alln and?t,

(b) Iinlnéoo(DAé,’?[Cc(g)],v) = 0 and the sequence {Cc(,g)(.)},1 has a convergent subsequence in the
space H} (L)

Note that if a sequence {¢(™}, satisfies also |A7p[¢(™]| < ¢ then is a PS-sequence for Ap[].
Condition (iv) defines a convergence criterion for some non convergent PS-sequences for the 3BP.
We observe that the Action functional Ar[.] defined on H:(M;) (with (3.37)), has a lack of coer-

civeness on sequence of trajectories ¢{™) for which:
)3 / sup, p{™ () = o0
i) [T ds(p()(s))2 < o0

This follows from the inequality

2

)2 ”90‘[%2 + O(l/plr 1/P2)

. alag(supt P1)2(Supt p?)
A < i 22 +
r[¢] < E; ll:llz a1 (sup; p1)? + az(sup, p2

then one finds lim, o A7[¢(™] < .

Remark 3.4.1. In the definition of the critical point at infinity there is a choice of a set of sequences
of trajectories. A natural choice should be the set of those sequences of trajectories which represent
asymptotically free bodies. This set of trajectories allows to define critical points at infinity that we
shall not consider. In fact this critical points, due to symmetry requirement, are constant collinear
trajectories.

We will therefore consider only configurations in which the relative distance of one body with respect
to the center of mass of the other two goes to infinity.

In order to simplify the procedure, we rewrite Az[.] using (3.2) as (3.38).

Some modifications are needed in the transformation by which the Reduction "a la Routh” was
made. Since we want to consider the case when one of the three particles escapes to infinity, it is
natural to use a system of coordinates which contains, as a coordinate, the distance of one particle
from the center of the mass of the other two. Hence we use the reduction in the clusters frame
introduced in Chapter 1. In the new coordinates p will be the distance between m; and ms, R the
distance between the center of mass of the system m; , my and ms. © is the angle between my and
mg.

After some computation, and performing the Routh reduction the Lagrangian becomes:

©% M, M,p®R?
2 Myp®+ MyR2

R= .;_ [0 + M, 8] + + mlp"” +V(p, R, O) (3.39)

where

V(p, R,©) = +mym3[R? + 2mypRcos(0)/(my + ma) + m3p*/(my + my)?]1/ 2+
+mams[R? — 2mapR cos(0)/(my + ma) + m3p%/(my + ma)?]}/? (3.40)
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and M) = s, My = mm—fﬁ—’l, B= D i

We can now write explicitly the terms appearing in (3.38):
. M
api= [ a[Me g per 4 i)
o p
A% [] is defined on HL(L) where £ ~ S x R%,

res . A/[') 2 Mlz(pge)z
A [ ] = [J dt{ =R +V(p, R, @) 2(M1p? + M2 R?)

Remark 3.4.2. The two coordinates systems (ry,72,¢) and (R, p,®) are connected by a standard
transformation. It implies the correspondence of the periodicity conditions: (p, R, ©) have the same
periodicity condition of (r1,rs,¢); therefore we consider the space HX(L) whose elements will be
denoted with ¢ = (p, R, ©).

We study Ar[] on H:(M,) with the usual condition (3.37). In the sequel the canonical embed-
ding of H! into CV is often used.

Now we state some Propositions which describe the behavior of the Action functional on trajec-
tories describing the escaping at infinity of mg.

Proposition 3.4.1. Let {¢*)(¢)}52, € HL(M,) be a sequence of continuous functions satisfying
(3.37) for all k, and such that limy_, o, inf; p*) = oo, limy_, o, inf; R¥) = 0o then:

lim Ar[c®)(t)] = +oo

Proof. All the terms in Ap[¢] = ff dtR(¢(t)) are positive, hence we have:

i 0% M;M,p*R? o
Arld > | S M 4 I (341)
Now since p(t) > inf; p(t) and the same for R lmply L+ —l < (_lﬁ%ﬁj? + (—iglf%ﬂl;)—g—
Therefore:
ul My My My, 17° ,
2 |7 p— 3.42
Arle) 2 20l |+ (3.42)

Now we have only to remember that by means of (3.37) for & one can prove that: ||©]3, > 5;—:—
Using (3.42) with the sequence prescribed by hypothesis, the Proposition is proved. 1

In the next Proposition we use the decomposition (3.38).

Proposition 3.4.2. Let {¢*)()}2, € HA(M,) be a sequence of continuous functions satisfying
(8.87) for all k, and such that limy_,« inf; R*) = co and limg o0 HR( )||z2 = 0, while uniformly in
Elp o < C1 |Ip®)]|12 < Co and ||6P))|2 < Cs with Cy, Cy, Cs > 0, then:

Jim AP [(®)] — APCPN =0
and

Jim | < DA7[¢®],v > — < DAF[¢¥], 0> | =0

for all variations v = (f1(2), f2(t), w(t)) in HA(TM,).
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Proof. In order to prove the thesis, by means of (3.38), we have to prove: limy_, oo ]A’"“[C('“ =0
and

Jim | < DAF? KELv> =0 (3.43)
—00

The first condition is proved by the following estimates

]\/_[2 A/I")
[t Moy,

/T s MO M|l 19]]22)
o 2(Mip® + MyR?) = 2(My(inf, p)2 + My (inf, R)?

and using that az® + yb? & cxycos p > ax® + yb® —cxy z,y,a,b,c> 0 one has:

T . . 27s 99—1/2
. 2moinf, pinf; R~ m3(inf, p)
dtv < T(s > R)? — 2
/o V(P R.6) £ T{mima 4 mams) [(Htlf ) (M1 + ma) (my + ma)?
All these terms go to zero when evaluated on the sequence defined in the hypothesis.
For (3.43) we have:
| < DA [CW] 0 > | < [T dt| MR fol+
+Jy dt| Sew+ S fi+ 55|+
M3 5
+Jy dtsp el +
+ Iy deiriges of — R (3.44)
Now
nf 2 2
2, N2 < [ 2p2 | 1y inl; p
(Mip? + My R?)? > (inf R)*R? | My (Supt R) +Mg}
inf, p 2 ’
; 2L MeR2 : 3 t ;
(Mip? + MaR?)? > (inf R)°R | My <Supt R) + M,
By the Schwartz inequality one has:
| < DAF[CM], 5> | < Mol | Rl[zalf2l o+
11550 e wllze + | 52| 1Ailles 1850 e Mo llzat
+ 3 %ﬂf&i"m, )2 10l zlw]|za+
+UEMIALlIOI el nf ) |1 (5e) 4 0]+
N -2
+MEMI ol O )2t ) | (3587) "+ o (3.45)

Evaluating the r.h.s. of (3.45) on the sequences defined in the hypothesis one achieves the thesis. [J
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Remark 3.4.3. Consider a sequence {p‘*),0%)}, of Proposition 3.4.2. We call it {C&c)}k. Now
HC@HH}(:) <C

hence there erists a weakly convergent subsequence {géﬁ"},. We term ¢ uts limat.
But f:

lim (DAF[¢("¥)],0) = 0
k=00

then (*° 1is a critical point at infinity. This trajectory corresponds to a Kepler orbit of the two-body
system described by the Action functional A% |[.] and with the configuration space L.

Denote by = the set of sequences in H}(M,), satisfying (3.37), which fulfill the hypothesis of the
previous Proposition. In = there are also sequences converging to the critical points at infinity.
We show that for all k2 > 0 any sequence in Z* does not converge in Mg, x,.

Proposition 3.4.3. There exist ky > 0 such that Z° N Mk],kz =0 for all ks > 0.

Proof. The constant k; is computed, by means of Proposition 3.4.2, using AT evaluated on the
Kepler System which remain in the finite part of the configuration space.
Given a sequence of continuous function in 2%, in (p, R, ©) coordinates, we are left to prove that:

. (" 4 - )
lim sup min RN
nrelo T R (30 ()M

=0 (3.46)

where:

r1=p=2~& +&
ro = \/Ef + R%2 - 26 Rcos ©

rg = \/gg + R? —26Rcos ©

It is easy to see that if inf; R — oo |[p|lcc < Cy then, inf, 73 — 0o infsry — o [|[71]lee < Ch.

Now since 7" and r{™ have a divergent sup-norm and r{™ is bounded, one has that

07 4oy
SR TR 3¢ .(n)yay1/2
elo Tk (S ()

this is equal to:
o 4
OHCIDDEE

Using the expression for 3 and r; one finds that the last term goes to zero as O(1/ inf; 'rgn) ) since
™ 2{") < sup, 7™ /inf, r{® and sup, P <oy a

3.5 The perturbation problem

The aim of this section is to gain insight in the problems left open in the preceding sections by consid-
ering the special case of a system composed of two small different masses interacting with the third
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larger mass. This system will be regarded as a (small) perturbation of a simpler system, in which
the small masses are neglected. We will prove that the circular periodic orbits of the unperturbed
system are saddle point for the reduced Action, and these critical points survive perturbation. We
will use the Lagrangian (3.2).

Let us choose now:
my=1m ms=1mai€ M3 = mase (3.47)

where € is a small parameter (0 < € < 1), a1, a3 € (0,1) m will be chosen later on. From (3.47) the
entries of the "mass” matrix M are:

1+ ase 1+ ase
My = _ Moo = —
1 m€a11+(a1 + az)e 2 m€a21+(a1 +az)e
1\[13 = m€2 4192

1+ (a1 +az)e
The potential V(ry, rs, ) becomes:

V= m2a1€ m2(12€ B) omz.alagez ;/9 (348)
p1 p2 [pf + p3 — 2p1pa cos p] /2
The Lagrangian takes the following form:
ma; m?a;]  mayas(p1payp)?
R.=¢ —pi + ]+ - + V. 3.49
‘ fzzl:z l: 2 & Pi 2 Z'i:l,Z afp;"z ‘ ( )

where V is of order O(¢). This term includes the contributions due to the gravitational interaction
between the the smaller bodies and due to the kinetic energy.
One has explicitly

. apr o) B2
Ve = me {—‘ Z,‘(aipi)z - %%+

2
m~a1G2€
+ [ri+r2—2riracosgp]l/? +

+REZEE (5192 — pap1) + (PrLpz + papr))¢ sin w} +o(e) (3.50)

The collision sets (double and triple collision) are
K = {(pr, p2,9) €B° x [0,27] / (9,9, 0) V (0,02,9) V (1,0, 0)} (3:51)
K& = {(p1,p2,9) € R* x [0,24] / (0,0,0)} (3.52)

It can be verified that V' i1s smooth function out of T(Mr\Kéz) U K’c(3)), and lim,,o V. =0 V(€
MAKR,.

We can now define the perturbation problem. Chosen 7' > 0, we consider Ar|., €] as Action functional
for Three Body Problem reduced on M,:

T
ArlC,d = /0 dt(Ro(C(t) + Ve(C(2))) (3.53)
which can be written as:
T % 5 | 4] | a1as(prpap)?
Arled = €/o . {:L;z [_é.pi ;] " 23 im1,2 0ifF v (3:54)

Without loss of generality we have chosen m = 1. The Critical points of Ar[.,€]/e and Ar[., €] are
the same for € > 0; moreover Ar[., €]/e has limit .A%[.] when ¢ goes to 0. Therefore perturbation
theory can then be applied to A%[.] to find the critical points of Ar[., €].
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3.6 Critical manifold and perturbation of critical points

In this section we construct a family of solutions for the unperturbed problem, as regular critical
points of Agp[.]; a continuation method will be used to provide, for € small enough, critical points of
Ar[., €]

We consider A% [(] defined on the Hilbert space A, Recalt that:

If A an open subset of H}(M,) such that Ap[.] € C1(N), and ¢y € A such that:

<DAT[C0], ‘U> =0
for allv € CO(TN) (3.55)

then (o satisfies strongly the Euler-Lagrangian equations. The Morse index of ¢y as the dimension
of the negative eigenspace of the operator:

D? Ar[Co]

Now consider:

T .
A2 = / dtRo(C, )
0

where

a; . i aras(p1pa)? -
Ro= =5+ —’] + st 3.56)
’ =1,2 { 2/ pi 2 Zi:m a;p; .

%

The Lagrangian (3.56) describes a system of two non-interacting masses aq as, each of which is
attracted to the origin by a Keplerian force, under the constraint that the total angular momentum
be zero.

The corresponding Euler-Lagrange equations are:

,dzgi — g ¢? ;o

4 a o Tapr t= 12 (3.57)
— DI TI )

P = aiaz2(p1p2)?

'The system (3.57) admits circular solutions ¢ : [0, 7] = M, given by:

c?/a? i=1,2

0
pi(t) = z
{ Q) = P 0)+ut 5w = (ad+ad)/(c%) (8.58)
parameterized by ¢ and ¢(0). We choose ¢ so that (o € Mk, &, and (3.37) holds.
Substituting (3.58) in (3.37) one finds
To(af +a§)]"°
— 2 .59
[ S (3.59)
Remark 3.6.1. By Schwartz’s Inequality the second condition of (3.37) implies:
ot > 2 (3:50)
Plirz: 2 To )

In the unreduced configuration space this trajectory is described by (3.58) and in addition by

_2m,a;—ay
31 43
Ty a$ + a3

vot) = +%(0) ¥(0) € [0,27] (3.61)
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This is a simple instant of the reconstruction of an trajectory from the trajectory in the reduced
configuration space. The reconstruction theory is described in the Appendix.
From (3.61) one sees that the reconstructed trajectory is periodic in M iff:

<g§)3 cQ (3.62)

When (3.62) is satisfied, the minimal period is qT} where p/q is the minimal decomposition of
(af —d3)/(a} + af).

Now we show that (o(¢) is not a minimum for the Action functional .A%[.]. This trajectory lies
in a non-degenerated critical manifold. This fact will allow us to continue (y(t) for € small.

Definition 3.6.1. Let H be an Hilbert space and F : H — R a functional of class C*. Let ¥ C H

be a compact and connected manifold. ¥ is a non-degenerate critical manifold for F iff:
(i) ¥ has no boundary

(i) DF(z) =0 forallz € &
(i) ker D*F(z) = T, X for all x € .

Proposition 3.6.1. The manifold © = U0)((t; 9(0)) C A, is a non-degenerate critical manifold
for the Action functional Ag [.].

Proof. Obviously ¢y € X, and we verify that any solution ((t; ©(0)) is in Aaq,.. In fact, considering
the definition of Aa4,, ((¢; (0)) has two times ¢; < t5 < T such that o(¢(t1; (0))) = ¢(ta; (0)) for
any o(0).

Since X ~ [0, 2] mod 2, condition (i) is verified, condition (ii) holds since for all (0) ¢(¢; (0)) is
a regular solution. We verify now (iii).

Let a = %; modulo rescaling the reduced Lagrangian becomes:

1., a., 1 a a(p1p29)?
Ro=gpr"+5p2"+ —+ —+ e
ST T 2(pt + ap3)

Since ¢ is cyclic in L, the Action is invariant under ¢ — ¢ + o with a € R so the critical points
of A%[] degenerate in this direction.

The variations in the orthogona.l directions are given by p;(t) — pi(t) + fi(t) and ©(t) — o(t) —
o(t) + h(t) with fo dth(t) = 0, so setting g(t) = h(t)

the reduced Hessian of the Action at ( is

To %Ry - 82Ry 2Ry 2Ry
2 40 - . 2
< D Az, (Q)v, v >_/0 th {6 . g 8pa ——fifi + Bpiagbﬁg+ 52 0 }

where fi,g € H}(M,), v(t) = (fi(t) fa(t) g(t)) with [T g(t)dt = 0.

Since

{ filt) =fHE+To/2) i=1,2 Yt €0, Ty
g(t) =g(t+To/2) Vt€[0,Th]

a simple computation by Fourier series gives

< D2AZ (Q)v,v >> > v Hewg + v Az o (3.63)
k=1
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where:

1

. 2k A +4w?k2A, wh
'vk=( 3 ) Hk:( ’ wht ' 4w20>

kg
where:
- (10 L (T3(1+a%))/3
m=(pa) o="ghn
and
L 4r? 3-d® 443 . 2(2m)tB 1
A= e i @0 b= e | o
G (1+a) : TH3(1 4 a3)4/3

If v(t) in (3.63) is constant (v(t) = vg Vt) one has:

< DA% (C)v,v >= vl Asvg

One easily verifies that the matrix A, has a negative eigenvalue for all values of a; hence (p(t) is
not a local minimum for the Action functional.

Remark 3.6.2. Note that the negative eigenvector of the Hessian corresponds to variations of the
radiz by constant function.

We can compute ker(D> A [Co])-
By means of the expression for the second variation, computed above, one can find the equations
for the kernel:

%Ry 0%Ry .\ . O*Ro . _ {8°R0 }
ZJ:{ dt{ f’} 0pi6pjf]}+5m6¢>g‘0 9 =0

for ¢ = 1,2, with obviously the periodicity condition on the variations f = (f1, f2),g. This system
can be rewritten as:

2

&2 f Cod
Al;ﬁg = A2 f +bg a‘t‘{CQ} =0

The second equation gives Cg = d d € R. The first equation is a nonhomogeneus system whose
homogeneous part is given by:
d*f
dt?

4= 472 3—a® 4d°
T (1 +a%)3 \ @t (3¢°-1)a’

This matrix A has eigenvalues with alternate sign for all a € R. Using the form of matrix B,
and the periodicity condition, the allowed periodic solutions are given by f = (0,0), d = 0 then
ker(D2AZ, [¢o) = {(0,0,90) ; 9o € R}.

One derives that (ker(D?A%[¢o]))* { fi, fa,9 fo dsg(s) = O}

By the symmetry of D2A%[(o] we have: (ker(D? .AT0 D))+ ~ rank(D? A%, [Co]). Therefore the kernel
of D?AY is one dimensional and coincides with T¢ X for all ¢ € . O

= Af

where
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Now we prove:

Theorem 3.6.1. There exists eg € R and an HL(M,)-neighborhood U, of (o(t) such that for all
0<€e<eg Ary[., €] has a critical point (. (t) in Ue.

Proof. Since ¥ is non-degenerate one must show that for every w € (ker(D?A$, [¢o]))* one can solve
DAr,[Co+ew, €] =0 (3.64)
for ¢ small enough. Now equation (3.64) can be rewritten as:
DAF, [Go] + e D% AT, [Go] (w) + R(Go, ew) = 0

with lime0(1/€)R(Co, we) = 0 for all w such that [[w|[gy(m,) < 0. D? A, [¢o] is invertible on
(ker(D2AJ, [¢o]))*, hence by the Implicit Function Theorem we conclude that one can find ¢q > 0
such that for all 0 < € < €q there exists a unique C* function w((s, €) such that

DA [Ce,e] =0 e = (o + ew(Co, €)

Notice that (. depends parametrically on az/a;. By means of the preceding result, the Lagrangian
is smooth for as/a; # 0 hence also ¢, turns out to be a smooth function of as/a;.

The nondegeneracy of DAr,[., €] in (. can be deduced by means of standard arguments. d

We now apply the reconstruction of orbits to study periodic solutions in the unreduced configu-
ration space. In the Appendix we discussed that the periodicity condition. In the present case this
condition is:

1 To/ 241 A, — T .
P%Q/Z[CE) al,ag] = ~—/ ds._lp_‘l.v_x.p.f.gf. = rT r E Q (365)
7 Js ”
with Ty > 0 and ¢ € Ue({o) Ve < eo-
If ¢ = 0 one has:
3 3
4] _ _al _ a2 _
Pry/2(Co, a1, 02] = pp €(-1,1)
Set r of (3.65)
3_ .3 _q1/8
s S S P A [1 ”] (3.66)
aj + a3 ax 1+r

In the sequel it will be useful to consider the following change of coordinates in the mass parameters
space a = az/a; , a = aj -+ ag, so that we can write P, 1,/2[(c, a1, az] = P 1y/2[Ce, @, a].

Theorem 3.6.2. Given Ty > 0, r rational in (—1,1) and o € R, there ezist €(a) > 0 {(t) € Uc(Co)

; ; = ae
and a continuous function a(e), such that for 0 < € < €, with masses m, ml—"‘_i:%- and mf_l_a

pTo/2[(:6:a:a(€)] =r (367)

50 that (c(t) ts a periodic solution of the 3BP.

Proof. We have already seen that given Ty > 0 and a rational number r € (—1,1) one has
P%O/Z[Co,a,a*] =rfora*=[(1-r)/(1+ ,,)]1/3_
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First notice that ¢, depends continuously on a,a and ( is continuous in e. We use the Im-
plicit Function Theorem to find the continuous function a(e) such that Ve < €, for some € > 0:
pTg/E[CE) a, a(e)] =7 with (¢ € Ue(Co)-

Given a; and as, Ar,[., €] is a regular function of € near € = 0; this implies that the constant €p
appearing in Theorem 3.6.1 can be chosen uniformly in the parameter a; in fact the Theorem holds
for all positive values of a.

We are left to prove that E&Tf’—z‘c

in a and ¢, and

dPr,/2 odjl1- a®
Ia::a‘ = 27— 3
da da |1+a
(a* # 0 is equivalent to r < 1).
Hence the Implicit Function Theorem can be applied and we conclude that given Tp > 0, r rational

in (~1,1), @ € R, one can find &7y, 7, a) < € such that for all 0 < € < € there exists a continuous
function a(e) such that:

_ . #0. For ¢ =0 and a = a” from Theorem 3.6.1 (.(¢) is ct

=0.a

a*2

:| la:a‘ :—14Wm¢0 Va*;éO

PTO/Q[CE} «, a(e)] =r
with (. € Ue(Z) so p$(t +To/2) = p1(t) , p5(t + To/2) = p2(t) , ©(t + To/2) — o(t) = 7. Let us
observe that, considering » = p/q p,q € N we have:
Ot +qTo/2) — p(t) = qm  Y(t +qTo/2) — ¢ (t) = pr
therefore the minimal period of (.(¢) in @ is ¢Tp. O

Remark 3.6.3. The problem of reconstructing the periodic orbit in the unreduced phase space can
be also studied solving the condition (8.67) w.r.t. to the period T', i.e. to find a continuous function
T'(€) such that (3.67) holds with r a rational number.

The family of periodic solutions c(¢;¢(0)) for € < & is obtained by a continuation argument,
therefore it corresponds to regular critical points for the Action. Since collisions are not regular
critical point Cc(t;(0)) is a strong solution of 3BP (with two small masses) with zero angular
momentum. Since the compact sets My, , invade Hx(M.,) the following results hold:

Proposition 3.6.2. There erits e; > 0 such that for all 0 < € < €1 (p(t) € Mkhk; with k1 <
min; j prerpereae and k2 = 3(20)* 2 [To(1 + a®))°.

Y
)

and one concludes:

Theorem 3.6.3. Let Ar,[., €] be the Action functional for the Three-Body Problem reduced on J =0
with two small masses m1 =m ms = maj€ M3z = mase. _
There exist ki, ko > 0 € > 0 depending on m, a; and ay such that for all 0 < € < € the set My, k,
contains a neighborhood U, of (o (critical point for A%, []), and Az, [., €] has a regular critical point (e
in U.. This critical point gives a periodic strong solution of the Lagrange equations in the unreduced
Configuration space M.

The problem of continuation for all ¢ is open, as well as the existence of a regular critical point
for e > €.

3.7 Gradient flow of the unperturbed Action restricted to
the circular trajectories

In conclusion of this Chapter we study the gradient flow of the A%[.]. This allows to us to point out
some connection with the critical points at infinity.
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we show that the gradient of Ar[.]% is tangent to the set of uniformly circular trajectories. There is
a unstable manifold which will be described explicitly. The gradient flow on the unstable manifold
connects neighborhood of the critical point to the critical point of the unperturbed system.

The set of uniformly circular trajectories:
Cr = {C € HE(M,) | ;1 {t) = cost, pa(t) = cost, p(t) = 97r/T} (3.68)

Note that Cr ~ R2 Recall the Action:

T . B N9 92 2
. 1, a a(p)? pip3
AO :/ dt{p—l +ap2 + —+ + s 3.69

il = J) 2772 T U pe 2 pldapd (3:69)
Now we prove the following Proposition:

Proposition 3.7.1. The gradient of A%[] restricted to Cr is tangent to TCr and given a neigh-
borhood U C HL(M,) of (o, there are circular trajectories homotopic to a critical point at infinity.
This homotopy is realized by the gradient flow of (3.69).

Proof. We evaluate (DA% (¢), v) where ¢ € Cr and v € (T;Cr)*.
Now

(TcCr)* = {ue HY([0,T],R%) | (vg, u)a = 0}

The gradient becomes

pi+ap3
T . N2 2 2
o1 3 (a(¢)® pip3 )}
/o 2 7 e T2 )0
T : N2 2.2
aps @ 9 a(p)® pip )] -
) ILC, SNAU R BT (3.70
+/0 [ 2 P%+<8pz 2> mra)| (370)

For ¢ € Cr then all the time derivatives py, po, ¢ are zero hence in (3.70) all the terms depending on
the p1, p2, ¢ are constant in time. By the definition of T'C one concludes that

(DAZ(¢),u) =0 C()€C, u() € (TCr)*

and hence the gradient is tangent to Cr.

We study the gradient flow of (3.69). For simplicity we set:

z(t,s) =p1(t,s

y(t, s) = paft, s)

z(t,8) = o(t, s) {3.71)

where s is the parameter of the gradient flow. From (3.70) we find that:

dr __ 1 32a2x 4
a5 {2.2 [z‘ﬂ+ay2]3}
dy _ a _ _zlaz'y 3.72
ds = {ya2 [r2+ay2]2} (372)
dz __
=0
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with (z,y) e R3, z € R.
By the third equation of (3.72) we conclude that the gradient flow leaves invariant the ¢(¢) of the
orbit. Fixed T'> 0, in Cp N H:(M,) there are the trajectories with z = w* = 27/T.
The critical point is given by:

14431 1+a3)%°
Te = - y Yo = T;—
W a“w

The gradient vector field is C* in the region z >z, , y > ve..

Without loss of generality we assume that a > 1. Note then z. > y. this gives a circular orbit in
which the first body stays on a circle of a radius larger than the second. We show that it is possible
to deform this orbit to a degenerate orbit with z = co.

If £ — co then (3.72) gives:

de _
=0
(3.73)
dy _ & (,%)2
# = {&- W) ey}
and the critical point at infinity reads:
(xoo, yoo) — (OO,(JJ*—‘Z/B)
Note that y. > Yoo.
We construct the curve z = ¢(y) such that:
dy .
zl;(ga(y),y) <0 with z >z, and Yoo <Y< Yo
The second equation of (3.72) gives:
—(wy® — Dzt + 20’2 + a®y* < 0
This is a biquadratic equation in z, one finds:
dy -
Zlp(u), 1) <0 for 2> (1) (3.74)
(3.75)
dy —
lply)v) 2 0 for e <z < ply) (3.76)

where:

. ayZ + aw*y7/2 L
ply) = \/—“‘w*zys — (3.77)

Note that ¢(yc) = z. and limy_,,_ ¢(y) = co.
The points of (3.77) are minima of Action along the section z-constant. On this curve we can
compute the the component of the gradient vector field along z direction, we find:

dz . _
—(pv),y) = (@7 - 1) (3.78)
(3.79)
1 aw*Z "
ay? + aw*y?  (aw=lyd + aw y’/?)? V(@ 2y — 1)(ay® + aw*y"/?) (3.80)

52




AR PRV

il

s

P

B 1

s

HHNLAT ¢

ik

Brodbl

dr

]

This vector field is positive along z = ¢(y) in Yoo < y < Y, moreover one can easily verify that

along ¢(y) that:

dAT(¢]

0.4

ds

-~

Oz

y

Therefore in any neighborhood of (z.,y.) one can find a point belonging to (3.77) and which goes

to (00, Yoo along the gradient flow.
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Chapter 4

Generalized solutions for the

reduced 3BP

In this final chapter we study the critical Action principle for the reduced Action using the ”strong
force” (SF) method to find weak solutions of the dynamical problem. Note that the form of the SF
we use does not break the O(3,R) symmetry and the reduction on Jp = {J = 0} is not modified.
We consider the Action Ap[] expressed in terms of (r1, re, ) (see Chapter 2) and we define the new
Action

2

T < T
) )
A‘5C:'AT(+/ dt ————+/ dt ———— (4.1)
7Kl il 0 ; rit) Jo o ri(riry,9)
The new Action (4.1) is differentiable on its domain of definition it takes value 400 on collision
solutions. In the domain of definition of the Action, using the geometry of the coincidence set K,
we define equivalence classes of non-contractible trajectories. On many classes I' an inequality of
Poincaré type holds and we can prove the coerciveness of the A%[].

On each such class T' the Action attains minima which are strong T-periodic solutions of the
reduced 3BP with SF. We prove that when § — 0 the sequence ({ converges weakly in H! to a
trajectory (r which is a weak 7T-periodic solution of the reduced 3BP. Then we show that (r is a
generalized solution with a finite number of collisions. In general in our context we cannot prove
that (r # (p for T' # T'. There is also the question of the lifting of the T-periodic orbit into the
unreduced configuration space. In this general context it is not possible to apply the reconstruction
theory to see under which condition the T-periodic solution is T-periodic also in for the unreduced
problem because the periodic orbit is not explicit given.

4.1 The ”strong force” method

We describe any trajectory on M, using as local coordinates those defined in Chapter 2 and given
by:

e = Zi 1= 1,2
rg = \/2? + 2 — 22123 cos z3

here z3 is the angle between r; and rs.
The the Action is now expressed in terms of ¢ = (21, 22, 23), some times we indicate { = (r1, 72, 23).
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Now Ar[.] will be written as follows:

T 3 !
" .. mim; mimso
Ar[(]l = / dt E Mi;(2)z:2; + g S AN (4.2)
[ 0 i,j=1 ’ ) ’ ij,k#£3 2k 7’3(2)

For the study of systems of Newtonian type with SF one can refer to [4].
The functional A%[] is defined on H}(M,) by

AS[C] = Ar[¢] + FOL¢]

5 T ) T )
ith Fola]= [ @ty —— + / S 43
b =] /o Z () Jo 13 (49)

(21, 22, 23)

For every § > 0 the A%[] is of class C! on its domain of definition and it formally takes value +x
on collision solutions of the NBP.
Then we study the sublevel sets of the Action A% [].

Se = {AF[¢1 < ¢}

We will show that we can find a set of T periodic trajectories T such that S, NI is not empty if
¢ > 0 and it is invariant under the gradient flow and A%[] is coercive on S, NT. Then S, NT is
compact in C°([0, 7], M,) and one concludes the existence of minima ¢°.

To obtain a solution for the 3BP without the SF we study the limit of (¢ when § — 0. We prove
that this limit exists, we call it ¢°, it corresponds to a weak T-periodic solution of the problem i.e.

Definition 4.1.1 (Weak solution). We term (°(t) a weak solution of NBP iff:
(1) ¢° is a strong solution for AS[] for any § > 0

(2) limso0 ¢° = (O weakly in H:(M,) and uniformly in [0, T]

(3) AS[(%] < oo forall d > 0.

Then we prove that ¢° is a generalized solution i.e. it fulfills the properties collected in the
following definition:

Definition 4.1.2 (Generalized solution). Let I.(¢°) be the subset of [0, T] such that
L(¢°) = {t € [0, 77| ¢°(t) € Ko},

we term (o(.) a T-periodic generalized solution of the Euler-Lagrange equation iff:
(0) ¢°(t+T) = ¢°t) for allt € [0,T)

(1) 1.(¢°) has zero Lebesgue measure

(2) ¢° € C*([0, TI\I.) and satisfies the Euler-Lagrange equations.

(3) ¢° has the same Energy for all t in [0, T\ L.

(4) Ar[¢°] < 0.

In particular we show that the set of collision times I.((p) is discrete. This implies that if ¢ is
a collision solution, then there are only isolated collisions.

4.2 Class of non-contractible trajectories

For the modified Action A%[] the coincidence set K, is a singularity. In fact one can prove that
the Action increases without bound on any sequence of trajectories converging weakly in H Ju, and
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Figure 4.1: non-deformable loops 71, 72 and 3 with the ”strong force”

uniformly in [0, 7] to a trajectory intersecting K.
We now study the space of non contractible loops of M, \K.. We show that there exist classes of
non-contractible loops on which the Action is coercive.

The first homotopy group of M,\K. can be computed. Consider the picture 4.1, M \ K, is
arcwise connected and it is homotopic to B® minus three independent half-lines I;,[5,l3 having a
common origin. Denoting with 4; a continuous loop around /; and with and with [v;] its homotopy
class, one can prove that:

[vil + [v;] = [v] with 4, j, k cyclic permutation of 1,2,3 (4.4)

hence the presentation of m (R3\{l1,12,[3}) is given by two of the cycles [y;] =1,2,3 and one of
the relations (4.4). Therefore we have:

Proposition 4.2.1. The first homotopy group of the space M \K. is given by:

i (MA\K) ~Z®Z A (4.5)

Proof. We know that:

m (./\/i,-\f{c) ~ T (Rs\{ll, lg, 13})
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Without loss of generality we identify the space R3\{ly, 2,13} with R® with the negative half-axes
removed.

Now we apply a corollary of the Siefert-Van Kampen Theorem which states that if a space X can
be covered by two open arcwise connected sets U and V such that

m(UNV)~0
then
7 (X) = m(U) & mi (V)
We take X = M, \K. and define

U={(z,y,2) ER® |z >0,y #0,z# 0}
V={(z,5,2) €R®|y> 0,2 # 0,24 0} N{RN\{z > 0,z =y = 0}}

One verifies that:
m(U)=2Z m{(V)~Z m{UnNV)~0

and this concludes the proof. 0O

Note that the classes n[v;] —m[y;] with i # j, n,m € N are not homotopic to one of the generators.
On these classes we now evaluate the Action.

Lemma 4.2.1. For all i = 1,2,3 for any A € [vy;] there exist t; < ty (depending on \) such that
A(t1) and A(ts) are different collinear configurations.

Proof. Indeed in M, collinear configurations forms three planes. We define the varieties 7r§ . as the
subset of M, such that:

r; = rj +rr  cyclic permutation of 7, j, k
We have three ﬂ';»k, they have co-dimension one, M, has three dimension. Now the union U;’j’kﬁ;k
(that is ORD see Chapter 1), disconnects M,. Now coincidence configurations are:

li= ”gk m”fj

Any element A(t) € [v;] is homotopic to a generator of w1 (M,\K.) which does not intersect /; and
must have points in the two connected part of M \ORD. by the continuity of A(t) we conclude that
there exist two different times t; # t-» such that

The Action A%[] is finite and C* on the open set
Lp(M;) = HR(M,) N {¢(t) ¢ K. YVt €[0,T]} (4.6)

We now define the classes of trajectories where we study the Action.
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Definition 4.2.1. We term S the set of all smooth, closed trajectories y(t) = vyt +T) in M\ K,
homotopic to an element of

n[yil = my;]
for some i # j and m,n € N\{0}.

Remark 4.2.1. Using the preceding Lemma 4.2.1 we can always choose the parametrization of
A [0,T] = MK, homotopic to a foundamental cycle, such that:

if A~ i then A(t1) € 7 ; and A(t2) € w, withty <,

if A~ —v; then A(t1) € m, and A(t2) € ij with 1, < ts.

We now prove an important property of the elements of Xp:

Proposition 4.2.2. For any v € St there exist at least four times 0 < t; <12 <t3 < te < 7T such
that:

relts) = rolte) + elta), mte) = rilta) 4 mu(ts) (47)

for a sequence of the indices 1, j, k.
Proof. Without loss of generality consider the class [y;] — [y;]. Take A, one of its element. Now we
can continuously deform A in such a way that it becomes the union of A; € [v;] and A; € —[v;].

Up to a reparametrization we can write that \; is defined in [0,7/2) and A; is defined in [7'/2,7].
Now we can apply the preceding Lemma 4.2.1 and Remark 4.2.1 to A; and A; and we conclude that

N(t) €7y Nits) €7
with ¢3 <tz in [0,7/2) and
Aj(ts) S Tr;:k /\(t4) cmw
with t3 < t4 in [T/2,T]. This concludes the proof. O

Definition 4.2.2. We call Ty the ||.||co-completion of L.

In T4 there are trajectories which enter the coincidence set K., these are the collision trajectories.
We can define a subset of I'y which does not contain collision trajectories, in fact we have:

Proposition 4.2.3. For any ¢ € (0,+00) and § > 0 the set
Ay =Tyn{Celp(M,) | AL[¢] < ¢} (4.8)

does not contain collision trajectories.

Proof. By contradiction we assume the there exists a sequence {{(.)»}» C A4 which converge in the
|]lec to a trajectory ¢(.) which enters in K.. Therefore there exist 7 € [0, T] such that {(7) € K_.
The bound on the Action implies:

/dt / ™ ()2 <_ fori=1,2
1

/dt Ty 70 /dt Rt
o (ra(ry” (1)), 3 (1), 20 (1)
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but for i = 1, 2 we have
. T 1
(7)) = (e ) < 1PN [t < =
o (r7(t))?
taking n — co we get a contradiction. i

For any trajectory in L7 a Poincaré’s inequality holds. We now study the trajectories in Y7 that
have four collinear times. Since we consider with time intervals where the trajectories are not
collinear we can use as coordinates the relative distances r1, ro, r3.

Proposition 4.2.4. For all { € X7

dt{M(r rr>——su mmrt 4.9
/ )2 Tte[oT]’G{1 3} ) (4.9)

Proof. By symmetry, it is sufficient to consider only the case in which:

ra(ty) +ri(t1), ra(ts) = ra(ta) + ri(ta)
ra(ts) + ra(ts), ra(te) =7r3(ta) +ri(ta)

ra(t1)
r1(ts)

I

The proof is very similar to the the proof of the weak Poincaré inequality in Chapter 3. In this case
we have to estimate the kinetic energy of a trajectory which passes through at least four collinear
configurations. Three collinear configurations are different.

For simplicity we put:
ri(0) = z; = sup ri(t) withi=1,2,3and ; < z2+z3
te[0.T]
ri(t1) =& withi=1,2,3 and {3 = &2 +&
ri(t2) =m withi=1,2,3and 2 =n1+ 73
ri{ts) =v; withi=1,2,3and v; =va+vs3
ri(ta) = xi withi=1,2,3and x2 =x1+ x3

Now we have:
T 3. ptim
/ dt(M (r)7, 1) > Z/ dt(M(r)?,7)
0 t

then

T 3 3
/0 dt(M (r)r, 7y > Z ™ -—tz [Z(Ti(tl) —ri(tig1))?

=0 i=1

Now in each interval [t;,%;41] we minimize the auxiliary functions:

3

frroer) = 2 (rilt) = riltis1))?

i=1
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Taking account of the constraints of collinearity one finds:

. 1
min fig,¢,] = g(l’g — 2y —11)?
9

min fg, 1] = ég(zl +x3+ T — 1‘2)2

9

min fe, ¢ = ﬁ(ml + x5+ 21— 22)?
92
min fiz, ¢ = ?(31‘3 + dzows + 23 — 1)

2

Taking account of the triangle inequalities and that ¢;1; —t; < T' one concludes the proof. O

4.3 Generalized solutions of the 3BP

We can now prove the main Theorem.

Theorem 4.3.1. In the set Ay = {A%[C] < ¢} NTy there exist (° strong T-periodic solution of 3BP
reduced on Jy with SF. The solution (° converges uniformly in [0,T] to ¢° that is a weak T-periodic
solution of the reduced 3BP. The limit (° is a generalized solution of the reduced 3BP.

Proof. On Ar we have that:

AL 2 T min { sup 1300, 5up 1300, sup 1304 1), 72(0, 20 +

2 T § T 5 | |
+Z/ I, T (+.10)

For any sequence {(,}n € A4 such that ||(s][cc — o0 we have

A%[Cn] — +o0

hence the Action is coercive. The Action is C'! on A4 since no trajectory has a collision. The Action
is bounded from below and hence by standard argument:

§ a0 — i Al
Ar[¢°] = min A7[(]
therefore ¢? solves the Euler-Lagrange equation for A%[].

We now prove that when one removes the SF one obtains a weak solution for the 3BP.
For all 6 € (0,1) we have:

AP[CT < Ap[C = a < oo
this implies that

a
¢l < 3

therefore (° converges weakly in H4(M,) and uniformly in [0, 7] to trajectory ¢°.
¢Y is different from zero since

1
T m;mg
a > Z —
0 Gk i
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(here rg = r3(ry, ra, 2)). The preceding expression would give a contradiction for § — 0.

Now we prove that (7 is a generalized solution of the 3BP.
From the previous inequalities we have that:

!

T
L mim; 4
lim inf dt + <a

(here 73 = r3(ry, 9, 2)). Using that ¢° — ¢° uniformly in [0, 7] and Fatou’s Lemma one finds that
the set of collision times has zero Lebesgue measure.

The complement of the collision set is open and dense, we call it /. Take a smooth function w with
support in I C [0,T]. Consider the equations of motion

(DAF[C°], w) =0
- o 8 - 5
J S et == [0S v M)t +
ij ij k v

/
iM; 20
~far] S w e S
I (25) ()

ij k#3 - k#3

/dt [ mimsa +w 26 ]
- w3 - 3
I (7’3(2%,2’%,2%))2 (T3(‘7<157226vzg))3

For all ¢ € I and for § € [0, 1] we have

OM (%)

and

‘'~ omym 26 m m 24
m;m; 1mMg
Z (z0)2 +Z (r0)3 + ()2 + (r3)3 <cs
ijk#3 \°k E#£3 N\ K 3 3

with cs, ¢35 > 0 by Lebesgue’s dominate convergence Theorem we can pass to the limit § — 0 getting
the weak form of the equations of motion. The strong form of the equations of motion out of the
collision set is obtained using standard regularity arguments.

To prove that ¢° is a generalized solution we have to prove that the mechanical energy has the same
value in all 7. The energy is:

1 ~ s ‘\ omym; ) mims )
Es==Y M;j(z%): - L -~ — T
2 LA = ) T LR T AD P

ijk#3 Tk k#3 NV K

then one finds

T
/0 a3 ()2 — ASLCT

1
E; < =
T k

therefore Ej is bounded when § — 0. Then for any t* for which ¢°(¢) is generalized solution we
have:

1 - . . L omim; mims
Eo=2)Y M(:°(t")z)(t")2) (t)) — L >
0 9 ; ( ( )) ( ) ]( )> ijlz__;s Zg(t*) Tg(zo(t*))
where E; — Eg (up to a sub-sequence). Ey does not depend on ¢*. O

61



Now we can prove:

Corollary 4.3.1. The weak solution (°(.) has at most a finite number of collisions.

Proof. Note that I.(¢°) C [0,7T] is bounded and if there are not accumulation points then 7,(¢°%) is
finite and hence the collisions are isolated.

We now prove that there are no accumulation points in I.(¢°).

We have seen that (°(.) is a strong T-periodic solution. Let us define the function:

3
Ad(g) = %Z(r;’(t))? (4.11)

We define the function (4.11) using the the relative distances because the finite dimensional metric
defined by matrix M is equivalent to the Euclidean metric.
Let us assume that along (%

;ﬁ;—A‘S(t) >0 for all t,4 such that A%() < p with g > 0 (4.12)

Then for any t € [0, T]\I.(¢°) such that A°(t) < p/2 we get A%(¢) < p for § small enough.
Now ¢% — ¢° uniformly in [0, T]\7.(¢°) we obtain

LAY >0 fort € [0, TNL(C) and A%() < /2

By contradiction, if £ is an accumulation point of I, ((_,"0) one can take a sequence {t, }, with t, < t,41
such that ¢, — . Then there exists f, € [tn,%,11] where A%(.) attains its maximum at ,. Now
AP(t) is convex then A%(f,) = /2. Hence we get:

PO 0/F \
u/2 = nlgIgOA (th) =0
and this is a contradiction.

Now to conclude the Corollary we have to prove (4.12).
We evaluate the second time derivative of (4.11) along ¢® we write A in the coordinates rq, ro, r3.
This can be done because any strong solution ¢°(.) is collinear at most on a discrete set of times
(see [20]). We have:

1d? . : .
s 2 D= el 4 Y () (4.13)

i i i
Now the Euler-Lagrange equations are:

For : = 1,2 and j, k are determined by the cyclic permutation

d . 0 e
2-(—1-2 Z J\/fiﬂ‘? = 5;—3- Z ]VI[mr,‘srfn -+
I P oim
mgm; 26
(rd)? ()®

moreover the conservation of the energy gives

]_ » F S\ -8 ! m,m (;
521‘/[!‘]‘(” >7'irj:E5+Z .6J+Z(,.g)2
i k

r
ik k

(4.14)
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Substituting into the expression (4.13) we obtain:

d2 .

Z 6M~— P fn+

ijlm

_10M, -
+2 Z Mt 0r‘;" il ot — A (%) (4.15)

z]lm i
where
mﬂn]

APy =2E° + - Z

mk

(4.16)

Now one can evaluate the derivatives of the matrix M by the formula 0M = —M -OM ~1- M. Matrix
M has smooth entries. Using the explicit form of M ~! given in Chapter 1 we find:

(AY

]
Tm

-y W_lau,m. Z Jw_ﬁM,m,

ijlm 1]!m
cZ( Tk Z_"( )Z(ﬁ?)z (4.17)

The constant C' depends only on the masses. Considering the properties of regularity of the matrix
M, we see that we can choose r{(t) so small that A;(¢%) is positive definite and it is the main
contribution to (4.15). So there exists u such that (4.12) holds. g
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Appendix A

Lagrangian Reduction and
Reconstruction theory

In this Appendix we describe the Routh reduction method and the reconstruction of orbit.
Reduction methods are a set of procedures which allow to reduce the study of the dynamics of
the whole system to the study of the dynamics on a submanifold defined by integrals of motion.
Routh defined one of the first methods in the context of Lagrangian mechanics. Reduction has a
very natural formulation in Hamiltonian mechanics (see [19], [28]; our interest in the Lagrangian
formulation is due to the fact that we use a variational approach.

We consider the reduction and the reconstruction problem for a generic Lagrangian system with
an abelian symmetry group. In this case the standard Routh’s reduction method is applied but, for
general Lagrangians, it has not a clear geometric interpretation. A geometric picture appears for
Lagrangian whose kinetic part is a quadratic form.

Basically the geometric idea of this reduction is to define a connection for a principle bundle
with base the reduced configuration manifold while the fibers are isomorphic to a subgroup of the
symmetry group. This connection is called mechanical connection (see also [18]).

We also present the solution of the infinite-spin problem for the 3BP. For the 3BP the solution
of this problem can be found in [27], recently the solution for the NPB was given in [23]. We study
this problem in the contest of the reconstruction, and we give a different proof that total collision
solutions never enter in the infinite spin.

A.1 Lagrangian system with symmetry

We now introduce the Lagrangian description.

Definition A.1.1. A Lagrangian system is the datum of a differentiable manifold Q and a smooth
function L on the tangent bundle TQ

L:TQ — R (A1)
(¢,v) —> L(g,vq)

We are going to present constructions holding for Lagrangian systems with symmetry defined as:

Definition A.1.2. A Natural Mechanical system is a couple (Q,V) where: Q is a Riemannian or
pseudo-Riemannian manifold of dimension n, and V : @ — R a function (the potential) which is in
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general smooth excluding at most only a finite number of closed compact sets of co-dimension greater
than 1.

For this system in each chart the Lagrangian is defined to be:

1
L(q: Uq) = ‘2' <K Vg, Vg >2>¢ +(V ° TQ)(Qrvq)

where

TQ :TQ —
(q,‘vq R

Q (A.2)
g

~—

and << .,. >> is the pseudo-Riemanian structure on Q.

The equations of the motion are given by the Critical Action Principle. Let be Ap(Q) the set of
trajectories of class C?, valued in @ with the proper boundary conditions b. In the following we will
fix periodic boundary conditions i.e.:

Ar(Q) = {+(t) € C*([0,T1, Q) | v(t) = +(t + T)}

A curve v : R — Q it is locally represented by v(t) = (g1(t)...qn(t)). On Ay(Q) we consider the
following Action-functional:

Aply] = /;dtL(q,Uq) v; =g¢(t) i=1.n

In the domain of differentiability of the Action the Euler-Lagrange equations are given by the
vanishing of the first variation of 4[] in Ap(Q):

(DA[v],v) =0
for all v € A(TQ)

which in coordinates is equivalent to:

d oL 0L ,
The equations of motion on TQ define a second order vector field Z; € T(TQ) i.e. Tro(ZL) =
7r9(Z1) where 7rg is the standard projection T(T'Q) — TQ. The correspondence of the critical
points of A,[.] with the solution of the Euler-Lagrangian equations depends on the smoothness of L.
We assume that L be C*(Q) out of a finite number of compact sets of Q. Under these conditions
the Action functional is defined on a space where it is finite.

The periodic problem for (A.3) consists in the requirements that the solution of (A.3), for chosen
T > 0 fulfill the conditions:

t+T)=q(t) i=1,...,n Vte€[0,T]

The Sobolev space H1([0,T], @) with T > 0 is usually used. Now it turns out that smooth critical
points correspond to strong (classical) solutions of the equations of motion, while non-smooth critical
points may correspond to weak solutions.

In the present analysis the above possibilities are considered and we are going to study some
geometrical properties of the solutions. Analytic assumptions will take a role in the reconstruction
of orbits by periodic solutions of the reduced system.
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We now introduce continuous symmetry groups of the system.
Let G be a compact, connected Lie group whose action on @ is free and proper:

®:0xG — Q (A.4)
7,9 — @4(q)

The Lie algebra of G and its dual will be denoted respectively with g and g*. By means of the
exponential map exp : g ~ T.G — G we can construct curves exp s€ on G with assigned tangent
vector § € T.G at s = 0. For the action ® on @ we have that the infinitesimal generators is given
by:
. d
Ealg) = E“pexpﬂf(Q) §€g
§ s=0

which can be lifted to the tangent bundle T'Q:

T . TOxG — TQ (A.3)
(,vq),9 — (@g(q), TPy (vq))

Its dual action is the cotangent bundle action on T Q:

7" :TOxG — TQ (A.6)
(0.p9),9 — (24(q), T"®4-1(pg))

We assume that G is a symmetry for the system, so that:
Lo ‘I’g(q, vg) = L(q,vq)
For the mechanical system this implies that ® is an isometry on Q such that:
Vod, =29,
Under these conditions one has:

Noether’s Theorem. For any & € g there exists an integral for the lagrangian flow if and only if
the action @gT (for g € G) leaves the Lagrangian L invariant.

In local coordinates, if the infinitesimal generator of ®4 is £o(q) = 5{2(q)£; then the integral of
motion has the following form:

. oL
Ie = ZE‘Q(Q)@

A.2 Reduction and Reconstruction of periodic orbit in the
classical Routh’s approach

We now consider a Lagrangian system with an ¥ < n dimensional abelian group of symmetry. We
apply the Routh method to reduce the system on the submanifold where the integrals of motion are
fixed. Then we assume that the reduced system has periodic orbits and we will study the conditions
under which these orbits are periodic also for the unreduced system. This the problem is called the
reconstruction of a periodic orbit.

Let us consider a system defined by a Lagrangian L and configuration space which is a connected
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manifold @ (dim @ = n). On the configuration space Q there is a smooth and transitive action ®
of an abelian k£ < n dimensional Lie group G. We assume

For any g € G we assume

Lo@?:L

To any @g’ is associated an infinitesimal generators Eg € T(TQ) and, since G is abelian, they are
pairwise commuting vector fields. By means of the Frobenius’ Theorem we can consider a system of
coordinates into which the flows on @ generated by {g are the first k coordinates. In this coordinates:

Q3 q= (61..0k,$k+1“1}n) = (0,;1?)
the action of G is given by:
By —0:;+XN i=1,... k (,—\.7)
=z i=k+1,...,n (A.8)

with A\; € R for all 7.

Remark A.2.1. If Q is a compact manifold Liouville’s Theorem implies that the 8’s coordinates
parametrize a k-dimensional torus.

We will construct the dynamics on the configuration space which is the quotient of @ w.r.t. the
action of G. The reduced configuration space is:

Q. =Q/G

The Lagrangian L will be written as function of 6,z and % i.e.
L =L(z,06)

L is invariant under the action of G and therefore it is defined on T°Q,..
Now the Euler-Lagrange equations give the integrals of motion

oL

=— 1=1.%
80;

Hi

the condition on the Hessian allows to define locally

éi = 01($i$:/‘t) (‘&9)
The reduced Lagrangian given by Routh prescription is the following:

k
Ry(x,2) = L(z, 2,6i(z, 2, p)) — Y mibi(, &, ) (A.10)
i=1

Now given u® € R* then R, is defined on

I (W) = {mi(z, £,0) = p) i=1,... Kk} CTQ,
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Remark A.2.2. In this construction Q, may occur that it is not a differentiable manifold but a
variety. Indeed if the action ®4(.) is not effective then there are orbits with different dimension,
(e.g. for SO(2,R) x R? — R? the origin in R? is a fized point). Also the level sets Zg"l(u) contain
such singular points.

In Chapter 1 we considered the implications of this analysis in the case of the NBP.

The reduced form of the variational principle with periodic boundary conditions is given by:

T
ALl :/0 dtRy(z, ). (A.11)

The Euler-Lagrangian equations for R, coincide with the equations of motion of L on the subman-
ifold of T'Q given by fixed values of g1, ..., k.

Assume to have a T-periodic trajectory +(¢;u) which is a critical point of the reduced Action.
Given v, the motion in the unreduced configuration manifold is obtained by means of (A.9) hence:

0;(t) = 6:(0) + /t dst; (z(s), 2(s), ). (A.12)

One has a T-periodic motion for the unreduced system if for any t the following condition holds:

T+t
/t dsti(z(s), z(s), p) = 0. (A.13)

(If §’s are angles equivalence is meant equal to 27). To fulfill this condition one can only use. if
possible, the choice of the momenta p = (p1, ... , k).

Now we want to generalize this construction to the case of a non-abelian symmetry group G.
This generalization can be achieved following the approach of [19], [28] introducing the mechanical
connection. This approach is based on the following observation:

Remark A.2.3. If the Lagrangian L with symmetry has a quadratic kinetic part then the equation
(A.13) can be interpreted as the equation for the parallel transport along a closed path for a connec-
tion. The vertical distribution of this connection are the infinitesimal generators of the symmetry
on Q. The horizontal distribution can be defined by means of the Riemannian metric on @ t.e.
its orthogonal complement is the vertical distribution. One can prove that these distributions form
a connection on the principal bundle @ — Q. with the fiber isomorphic to G. We wull term this
connection the mechanical connection.

A detailed account of the preceding remark can be found in [18].
In order to illustrate the idea let us consider a simple example:
We consider a Natural Mechanical system with an abelian group. We assume that the metric g does
not depend on all the coordinates. The Lagrangian has the following form:

1 . . Lap 1a
L=3 {gaﬁ(l’)r“zﬁ + 2906(2)26° + gav ()0 Gb} + V(z)

Denote with v a generic vector field on TQ

o ) N 0
v= vg(:z:,ﬁ)aw—i-vx(m,ﬁ)ama

The vertical part of a vector field has the form:

d
o6e

ver(v) = vg
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Using the metric one finds that the horizontal part of v is given by:

9
Oz

One can verify that horizontal and vertical vector fields form an connection. In fact the following
properties hold:

(i) Vertical and horizontal vectors form two smooth distributions.

(ii) Vertical and horizontal vectors are complementary, they generate all T'Q.

(1i1) Horizontal distribution is equivariant under ® action , i.e. for any vg horizontal the following
transformation holds

d
hor(v) = —g%%gpav® (i, H)W +v2(z,0) (A.14)

&7 (vg) = va,(q YREG.
Now the momenta associated to the cyclic variables #’s are given by:

)

b
= — = JaaVs + JabV
89a , aa Vs abVp

Ha

The momenta are 1-forms on Q. We see that the momenta allow to fix the vertical part of the
reduced configuration. In fact the Routh function is defined to be:

R= %[]hor(v) + ver(v)”zg + V(z)— < p,ver(v) >

Putting vJ = 5"§—: and v§ = %1 we obtain the Routh function for the reduced system.

Assuming to know the motion of the reduced system then one reconstructs the motion of the
unreduced system by the equations:

% = g% (z)ps — 9%°(2)gba(2)E® a=1,... k (A.15)

these equations are analogous to (A.12). The form of the horizontal vector-fields implies that for
uy = 0 (A.15) gives the equations of the parallel transport associated to the connection. The terms
depending on the momenta describe the motion along the fibers of @ — Q,.

Remark A.2.4. Let us mention some differences between the Lagrangian and the Hamailtonian re-
duction.

Lagrangian reduction ts based on the ezplicit construction of the reduced Lagrangian finding the
Ycycelic variables” and then using the Routh method. Then one has to study the topology of the
reduced configuration space and the reduced flow. The reduction does not involve any particular
structure.

In the Hamiltonian formulation the dynamics is given by the Hamiltonian function and the sym-
plectic structure on T*Q. This is equivalent to the dynamics given by the Poisson brackets on the
ring of differentiable functions on T™Q.

If the system has a symmetry group G the reduction wants construct a dynamics onto the submanifold
defined by the inverse image of the momentum map J

J:T"Q —»g"

The momentum map J is the form of the integral of motions in the Hamiltoniam formulation.
Marsden and Weinstein (see ([22]), ([19])) gave a construction of the reduced dynamics in terms of
the reduction of the symplectic structure from T*Q to the level sets of J. This construction holds only
when the symmetry group G acts freely and properly i.e. all the orbits of G have same dimension.
If the group G does not acts properly the orbit space is no longer a differentiable manifold it is a
variety. In this case many authors (see [29]) no longer consider the symplectic reduction but the
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reduction of the Poisson structure (see ([30])). Indeed Poisson structure is much more general than
the symplectic structure, in fact any symplectic manifold has a Poisson structure but the converse is
not true. Poisson structure can be defined even on varieties.

In ([28]) the problem of reconstruction is considered for the symplectic reduction, we do not a similar
theory for the Poisson reduction.

Now we show that using the reconstruction of collision solutions one can prove that total collision
solutions never enter in the infinite spin.
One should refer to the reduction of the Lagrangian of the NBP described in Chapter 1.
The reduced angle ¢ describes the global rotation of the system, we show that for a regular total
collision solutions of the 3BP ¥(t) has a finite limit when ¢ — t., t. the collision time.

Proposition A.2.1. In the 3BP collision solutions never enter in infinite spin.

Proof. For simplicity we fix t. = 0.
For the proof we use the reduction expressed in (p1, p2, ¢) coordinates.
The reduced angle is given by:

=L lew?
Iy

In the interval [4, 7] the increment of ¥ is:

{gb M1 pF = Mazp3 _ 2(p1p2 — p2p1)sing }
Mi1p? 4 Mazpd — Mispipacose  My1p? + Maspd — Miopypa cos o
(A.16)

6= = [ "

)

we show that lims_,o[t/(7) — ¥(8)] < oo hence we need to verify the integrability along a collision
solution. Collision solutions in r’s coordinates are given by:

[ e — )31 7 (e —H]) fort <t :
w0 ={ B Tl Tl s (A.17)
fori=1,2,3. We take t. = 0.
Now in (p1, p2, ) coordinates we obtain the form of () using the relation:
2, .22
Pi+p2—T3
= arccos ————-=
4 2p1p2
Putting the form of collision solution into (A.16) we obtain two terms:
sin (1) (A.18)
M1 (14 g1)* + Maa(1 + g2)? — Mi2(1 + g1)(1 + g2) cos
Mii(14g1)% = Maa(1 + g2)° (A.19)
Mii(1 4 g1)% + Maa(1 + g2)? — Mia(1 + g1)(1 + g2) cos ¢
These terms are bounded due to the form of g’s. We are left to prove that:
gi(g2 + 1) — ga(g1 + 1) (A.20)
o (A.21)

70




are integrable in 0.
Using the form of collision solution (A.21) becomes:

[(1+g1)d1 + (1 +92)92 — (1 +g3)ga] — [(1 4 g1)g1 + (1 + g2)go] cos ¢
VAL + 1)2(1+ 92) — [(1+ 1) + (L +92)* = (1 + g3)*]

We obtain two integrals which are essentially the sum of integrals of the form:
T
| aitinto
§
where a;(t) is bounded in ¢ = 0 and the series

gi(t) = > eltox with op € Ry
k=0

converges absolutely. Thus g; is integrable and we get:

lim [ dty(t) < oo
60 /5
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