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Prep. SISSA 130/96/FM, to appear in Proceedings of 12th Italian Conference on General
Relativity and Gravitational Physics.



Introduction

Noncommutative Geometry and Quantum Groups theory have become in these last years
an innovative and widespread conceptual tool for both mathematical and physical inves-
tigations.

The richness of the mathematics underlying these two areas is simply astonishing (just
take a breath and look, e.g., at [C], [K], [M-S], [L-G], [V-J], [M-J]), and the trials (and
the success) of applications to many aspects of theoretical physics have been extremely
wide.

However, although Noncommutative Geometry and Quantum Groups theory are both
essentially generated by the perspective induced by the Gelfand-Naimark theorem, which
focuses the attention on the algebra of functions on some space rather then on the space
itself, only in the more recent period the interest for deepening the links between these
two areas has grown up.

An interesting territory to test their possible interplay is Connes’ formulation of the
Standard Model of elementary particles (for its latest version, including also the gravity,
see [ChC]). In the Standard Model, which is extraordinarily successful, there remain still
some fundamental open questions. It is tempting to investigate if some new symmetry
of the quantum group type (perhaps finite) could be helpful to answer them. This seems
quite a natural question having at disposal a noncommutative formulation of the Standard
Model. This version is based on the algebra Cuo (M) ® A, where Coo (M) is the algebra of
smooth functions on space-time M, and A = HGC@® M (3, C) is the finite, noncommutative
algebra taking care of the internal (gauge) symmetries. The unitaries in @ C @ M (3, C)
are indeed SU(2) x U(1) x U(3), which, after elimination of an extra U(1) from U(3) give
raise to the gauge group of the Standard Model.




In the final remark of Ref. [C-A] the exact sequence

1= F—SU/(2) —SU(2)—~1,

where q¢ = e and F is a finite quantum group, has been suggested in relation to the

Standard Model or its possible extensions to higher energy regimes. The statements

appearing in this remark are roughly speaking the following:

e At high energies, physical reality is a g-world, so that, in describing fundamental
interactions, the weakly noncommutative algebra C(M) ® A should be replaced

by a new, quantum algebra.

e In the g-world, Spin(4) = SU(2) x SU(2), is no longer the maximal covering of
SO(4), because even the single group SU(2) admits a non trivial extension given

by the sequence above.

e Some relations exist between the quantum group F' and the finite algebra A.

Furthermore, the attention paid on a cubic root of unity follows the idea, stated in
[AKL] and references therein, that ternary structures may give some hints for a deeper
understanding of many physical theories.

The research work (see [DHS], [DNS]) underlying this thesis has been mainly devoted
to understand what such a sequence should really mean and to interpret its exactness, to
identify the quantum group F' and to try to clarify its relation with Connes’ formulation
of the Standard Model.

Needless to say, in order to answer (part of) such questions, we have met mathematical
machineries of increasing sophistication (for reasons that, hopefully, will be manifest by
reading the contents of this dissertation, the themes we deal with are in the common
horizon of Hopf algebra theory, algebraic geometry, g-bundle theory, etc.), which allowed
us to pursue our investigations in well-established settings.

In considering quantum groups, we have mostly adopted the ”functions-on-groups”
point of view, i.e. we consider the category of quantum groups as the dual category to the
one of Hopf algebras. This implies that we will investigate the quantum group sequence
above by dealing with a sequence of Hopf algebras and Hopf algebra maps obtained by

“reversing the arrows” by a formal pull-back.
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We are then led to consider the sequence of Hopf algebras and Hopf algebra maps
given, for ¢ =1, by

C = A(SU(2)) — A(SU,(2)) — A(F) = C.

A(SU,(2)) is a real form of the polynomial algebra A(SL,(2)), given by the %-algebra
structure defined on generators by a* = d, b* = —¢~'c ¢* = —qb, d* = a. This *-structure
is the g-deformed analogous of the one defining the commutative *-algebra A(SU(2)),
the polynomial functions on the compact group SU(2). Unfortunately, this s-structure
is well defined only -for ¢ real, which is incompatible with the case ¢®> = 1 except for the
trivial situation ¢ = 1. Therefore, forgetting for the moment about *-structures, we have

decided to consider the purely Hopf algebraic sequence
C— A(SL(2,C)) — A(SL,(2)) = A(F) —» C,

for ¢ = 1, where A(SL(2,C)) is the coordinate ring (polynomial algebra) of the unde-
formed SL(2,C) and A(F) is, for the moment, a still to be determined Hopf algebra.
The exactness of the quantum group sequence in SU(2) has been translated in the fact
that there must be a Hopf algebra injection Fr : A(SL(2,C)) — A(SL,(2)) (the reason
for this notation will be clear in the sequel) and the exactness in F in the existence of a
Hopf algebra projection 7 : A(SL,(2)) — A(F'), A(F) thus appearing as a quotient Hopf
algebra of A(SLy(2)). On the other side, requiring that the exactness at SU,(2) should
mean that Im(F'r) = ker(m) would lead to a trivial result, because, being A(SL(2,C)) an
algebra with unit, it would follow that ker(m), which is an ideal of A(SL,(2)), contains
the unit of A(SL,(2)). This would imply that ker(r) coincides with the whole A(SL,(2)),
and consequently that A(F) = A(SL,(2))/ker(r) = {0}.

This initial difficulty led the authors of [DHS] to put momentarily aside the problem
of an axiomatic definition of a short exact sequence of Hopf algebras, deciding to interpret
the sequence in terms of quantum principal bundles [BM], guided by the fact that in the
commutative case, under suitable smoothness conditions, the exactness of a sequence of
groups G — G’ — G” implies that there exist a principal fibre bundle with principal space
G', structure group G acting on G’ by multiplication, and base space G = G'/G. Now,

the most immediate dualization of (some of) the properties of a principal fibre bundle is
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achieved via the notion of Hopf-Galois extension [KT]. Namely, if H is a Hopf algebra, P
is a right H-comodule algebra and B = P*# (the space of coinvariants of the coaction),

we say that P is a Hopf-Galois H-extension of B iff the canonical map
(mp®id)o(id®pAR) : PR P— P®H

is bijective. In the classical case, when P is some algebra of functions on the principal
space X and H is the Hopf algebra of functions on the structure group G, the algebra
of functions on the base space is identified with the subalgebra B of functions on the
principal space that are constant on the fibres. The canonical map is then just the pull-
back of the map X x G — X xpr X given by (z, g) — (z,zg), whose bijectivity means
that the action is free an transitive on the fibres.

With this idea in mind, the strategy was the following:

o define A(F) as a quotient Hopf algebra of A(SL,(2)) for ¢* = 1, so that it coacts
on A(SL,(2)) by push-out Ap = (Id®@ 7)o A;

e embed in a suitable way A(SL(2,C)) in A(SL,(2)) by a Hopf algebra map F'r :
A(SL(2,C)) — A(SL,(2));

e prove that Fr(A(SL(2,C))) = A(SL,(2))***) and that the canonical map is bi-

jective.

The simplest non trivial choice for A(F) is to quotient A(SL,(2)) by the two-sided
ideal generated by a® — 1, d® — 1, b3, ¢. The fact that ¢ = 1 ensures that this ideal
is a Hopf ideal, so that A(F’) is a well defined finite dimensional Hopf algebra, neither
commutative nor cocommutative. Next, to embed A(SL(2,C)) into A(SLy(2)), we have
considered the map defined by sending the generators of A(SL(2,C)) into the cubic powers
of the corresponding generators of A(SL,(2)). This map, which is in general defined for
any primitive, odd n — th root of unity, is called in literature Frobenius [PW], by analogy
with the same named map defined for commutative rings over a field of characteristic n.
The cubic powers of generators, again because ¢*> = 1, span a central Hopf subalgebra
in A(SLy(2)), and the Frobenius map is a Hopf algebra homomorphism. (Notice then
that the defining ideal of A(F) is generated by the image of the augmentation ideal -
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kernel of the counit - of A(SL(2,C)).) Now, it is a matter of immediate calculation to
prove that the image of A(SL(2, C)) is included in the subalgebra of coinvariants. Proving
the opposite inclusion, and consequently identifying the image of A(SL(2,C)) with the
subalgebra of coinvariants, would end the game, since being A(F) a quotient of A(SL,(2))
the canonical map is automatically surjective and, being A(F) finite dimensional, it is also
injective by a theorem in [S3].

The entangled algebraic structure of A(SL,(2)), due to the fact that the monomi-
als a and d are not linearly independent, makes the direct computation of coinvari-
ants a laborious struggle. To circumvent this difficulty, in [DHS] alternative strate-
gies have been successfully carried on to achieve this goal. The first approach makes
use of H and H_, two quotient Hopf algebras of A(F) defined respectively by impos-
ing the relations ¢ = 0 and b = 0, and it is based on the fact that, by construction,
A(SL,(2))*4) ¢ A(SLy(2))°"+ N A(SL,(2))*"-. The second relies on the existence of
a unital, left A(SL(2,C))-module map s : A(SL,(2)) — Fr(A(SL(2,C))). In this disser-
tation we will also present a third one, which creates a link with the study of differential
calculi on quantum principal bundles.

During our research work we have encountered in literature a categorical notion of
(short) exact sequence of Hopf algebras [PW], and a further refinement [S2] in the concept
of strictly exact sequences. These notions rely on the definition of Hopf-kernel and Hopft-
cokernel of a Hopf algebra homomorphism. The Hopf kernel, or for short H-kernel, of a

Hopf algebra morphism f : X — Y is given by the Hopf subalgebra.
H-ker(f) = {r € Xz ® f(z(9)) @23y =21y ® 1 ® 7} ;

1t is the equalizer of f and the zero morphism in the category of Hopf algebras. On the
other side, the Hopf cokernel of f is given by the quotient Hopf algebra

H-coker(f) = Y/Y f(X)Y

where X is the augmentation ideal of X. Then, a short sequence of Hopf algebras
B % A D H is exact iff i is an injection and H = H-coker(¢). For strictly exact
sequences, one has in addition that ¢(B) C A is a normal Hopf subalgebra and A is

a faithfully flat module over B, or, equivalently, that Ai(B*)A is a normal Hopf ideal
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of A and A is a faithfully coflat H-comodule. Here, “normality” for a Hopf subalgebra
means invariance under left and right adjoint action, whereas for a a Hopf ideal means
coinvariance under left and right adjoint coaction; in both cases these concepts generalize
the notion of normal subgroups. In particular, for strictly exact sequences one has the
equality i(B) = H-ker(r) = A% where the coaction of H on A is given by push-out.

The Frobenius sequence A(SL(2,C)) L A(S L,(2)) = A(F) is then exact by construc-
tion. Moreover, being F'r (A(SL('Z, (C))) central, it is trivially a normal Hopf subalgebra
of A(SLy(2)). Furthermore, being A(SLy(2)) Noetherian as a ring, it is a faithfully flat
module over all its central Hopf subalgebras by Theorem 3.3 in [S2]. We have then that
the Frobenius sequence above is a strictly exact sequence of Hopf algebras.

At this point we achieve the goal of understanding our exact sequence of quantum
groups both in the quantum principal bundle and in the Hopf algebra settings. We also
make clear the links between these two approaches: in the datum of an exact sequence
of Hopf algebras B 5 A5 H we have H coacting by push-out via 7 on A, so that one
can inquire on the coinvariants A%, If, in addition, such a sequence is strictly exact one
gets i(B) = A and, furthermore, by Remark 1.6 in [S2], that the canonical map is
bijective.

The quotient Hopf algebras H.. and H_ of A(F’) introduced before, describing quantum

Borel subgroups of F', suggest to investigate the quotient sequence
Fry T4
B+ — _P+ g H+ 5

where B, = A(SL(2,C))/ < ¢ > (we label with “ ” the generators of commutative
A(SL(2,C))), Py = A(SLy(2))/ < ¢ > and Fry is the analogous of the Frobenius map-
ping in this restricted case. By the same reasoning as above, this sequence is strictly exact,
but actually one gets more, namely that P, & B,#,H,, where the latter is a cocycle
bi-crossproduct Hopf algebra in the sense of [M-S], namely the tensor product By ® H
with twisted algebra and coalgebra operations. Indeed, in [DHS] a family of unital co-
cleaving maps ¥ : P, — Fr,(B,) is exhibited, allowing to establish the isomorphism
P, =2 B, #,H, as Hopf algebras.

We now turn our attention in more detail to the finite dimensional Hopf algebra A(F).

In [DHS] it is showed, by finding a faithful representation, that, as a vector space over C,
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A(F) is 27-dimensional. Furthermore, via the study of integrals (left or right invariant
measures) in and on A(F'), it is shown that A(F)is neither semisimple as an algebra, nor
cosemisimple as a coalgebra. In addition, being the integrals non normalizable, it follows
that there is no Haar measure on A(F), and, consequently, that A(F) is not compact
matrix quantum group in the sense of [W-S]. At any rate, the fact that M(3,C) is a
quotient of the quantum plane for ¢* = 1, allows to see the quantum group F as a quantum
symmetry of M (3,C), obtaining a first link between our picture and Connes’ formulation
of Standard Model, that, we recall, employs the algebra M (3,C) in the description of
chromodynamic interactions. Indeed, there exist a well defined algebraic coaction of
A(F) on M(3,C), fitting in a commutative diagram of coactions and Hopf algebra maps
[DHS].

Wondering if any nontrivial finite symmetry of the remaining piece H & C of Connes’
algebra .4 can be also obtained in the same spirit, we have used the embedding of the
quaternions into M (2, C), trying to repeat the above construction for ¢*> = 1. Unfortu-
nately, the Hopf algebra naturally coacting in this setting on H is just a classical A(Z,).
Moreover, as far as C is concerned, we obtain nothing but the trivial Hopf algebra.

A parallel approach to our formulation has been performed in [C-R] in the framework
of universal enveloping algebras, in terms of H, a 27-dimensional quotient Hopf algebra
of Uy(sl(2)). As a vector space, H has an intriguing splitting in terms of a semisimple
algebra, M(3,C) @ M(2,C) @ C, very close to Connes’ finite algebra, plus the Jacobson
radical (the intersection of the kernels of all irreducible representations of ). In [DNS]
the Hopf duality between A(F') and H is established, by explicitly showing the existence
of a non degenerate Hopf pairing.

This pairing has allowed us to investigate representations of H# on A(F)-comodules, in
particular on M (3, C), Indeed, being M (3,C) a right A(F)-comodule algebra, it becomes
via contraction with the Hopf pairing, a left H-module algebra. In this way, the Cartan
generator K of H acts on M(3,C) as an inner automorphism, i.e. via conjugation by a
matrix K whereas the other two generators X, act as twisted derivations. Also these
operators can be seen as internal operations, in terms of Zs-graded g-commutators with

some matrices Xy. The matrices K and X are not univocally determined, and can be
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arranged to obey some, but not every, commutation relations defining H.

This dissertation is organized as follows.

We will start with a brief section, in order to introduce some basic definitions and to
fix the notations.

Then, in the first chapter, we will introduce most of the mathematical background we
will deal with in this thesis. The notions of ezact and strictly ezact sequences of Hopf
algebras will be stated. The links with the theory of Hopf algebras extensions of algebra
and with the dual picture of extensions of coalgebras will be established. A particular
emphasis will be given to an important class of algebra extensions, the cleft ones, and to its
coalgebraic counterpart given by the cocleft extensions. We will be then led to the notion
of cleft sequences of Hopf algebras, which will turn out to be in bijective correspondence
with equivalence classes of data defining Hopf bi-crossproduct algebras.

In the second chapter we will discuss the Frobenius mapping Fr : A(SL(2,C)) —
A(SL4(2)), for q being a primitive, odd n-the root of unity, showing it is a Hopf algebra
map. We will canonically complete this map to an exact sequence of Hopf algebras, which
we will show to be strictly exact. We will then specialize to the case of our interest, by
choosing ¢ = ezg‘i, and we will show that the quotient Hopf algebra A(F) completing the
Frobenius sequence is 27-dimensional as a vector space. Subsequently, we will present
the three alternative paths discussed above, to show that A(SL,(2)) is a faithfully flat
Hopf-Galois extension of A(SL(2,C)) by A(F). We will consider the “quotient” Frobenius
sequence involving Borel subgroups, showing that this sequence is cleft by giving a family
of cleaving and cocleaving maps. These maps provide an explicit identification of the
quantum Borel subgroup with a non trivial cross product of the classical Borel with a
9-dimensional quantum subgroup of F.

In the third chapter, the coaction of A(F) on M (3,C) which is induced by the iden-
tification of the latter with a quotient of the quantum plane for ¢3 = 1 is investigated.
Possible extensions of such a strategy to the other sectors of Connes’ algebra are discussed.
Then, the non degenerate Hopf pairing between A(F') and the Hopf algebra H of [C-R] is
explicitly computed. The representation of H on M(3,C) is analyzed in detail and it is
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described in terms of internal operations. We close the chapter with the study of integrals

in and on A(F) and H.

We will conclude the dissertation with a brief chapter devoted to conclusions and

future perspectives.
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Basic definitions and notations

Throughout this dissertation, the following basic definitions are assumed. For a deeper

insight, see [Sw2]. A good reference text is also [K].

An algebra A is a vector space on a field k, such that a product, i.e. a bilinear mapping
-t Ax A — Ais defined. The bilinearity of the product is equivalent to define it as a
linearmapm: A A — A, ma®b) =a-b.

(Throughout this dissertation, the unadorned tensor product symbol will mean tensor
product over k).

The algebra A is called unital if there exist an element 1 € A, the wnit, such that
l-a=a-1=a,Va € A, it is called associative if (a-b)-c=a-(b-c), Va,b,c € A; it is
called commutativeif a-b=1"0-a, Va,b € A.

The unit element 1 allows to define an algebra map n: k — A as n(A\) = Al.

In the following, unless stated differently, we will consider unital, associative algebras,

and we will skip the dot for denoting the product.

A coalgebra C is a vector space C over a field k such that there exist two maps, the
coproduct A : C — C @ C, and the counit ¢ : C — k, such that the following properties
hold:

(A®id)o A= (id®A)o A, (coassociativity)
(e®id)oA=(id®e)oA=1id.

A coalgebra C is called co-commutative if To A = A, where 7 : C® C — C ® C the

usual flip exchanging the legs in the tensor product.
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The coassociativity property makes consistent the Sweedler notation for the coproduct

and its iterations, e.g.:
) ® c) = Ale) 5 ¢y ® ¢ ® ¢z = (A @ 1d)A(c) = (id ® A)A(c) .

Given a coalgebra C, an algebra A and two linear maps f,g : C — A, one defines

their convolution product f xg:C — A as

(f % 9)(0) =ma(f ® 9)Ac(c) -

In Sweedler notation this reads:

(f % 9)(c) = flew)g(cw) -

This product makes the set Lin(C, A) a (non abelian) semigroup, the neutral element

being 14 o e¢.

A bialgebra B is a vector space over k which is both an algebra and a coalgebra,
such that the coproduct A and the counit € are algebra maps, or, equivalently, such
that the multiplication m and the unit 7 are coalgebra maps. (Here the algebra struc-
ture on B ® B is given by (a ® b)(a' ® ') = aa’ ® b/, and the coproduct is given by
Ala®b) = ap) ® by @ ap) @ be); finally, the coalgebra structure on the field k is given
by the trivial one A(A) =A®@1=1®@ A=)

If on a bialgebra H there exist a linear map S : H — H, called the antipode, such
that:
mo(S®id)oA=mo(id®S)oA=noc,

then H is called a Hopf algebra.
Such an S, if it exist, is unique, being, by definition, the convolution inverse of the identity

of H. It satisfies the following properties:
S(hh') = S(h)S(h), S(1)=1, AoS=70(S®S)oA, eo0S=¢,

meaning that S is both an algebra and coalgebra antimorphism.
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Two Hopf algebras we will often deal with in the sequel are k[G] and F(G), respectively
the group algebra of a group G, and the algebra of (k-valued) functions on G.
As a vector space, k[G] is defined as the vector space freely generated by the set G, i.e.
any element u € k[G] is a finite linear combination of elements of G with coefficients in
k. If G is finite, then k[G] is finite-dimensional, with dim(k[G])= card(G). k[G] becomes
an unital algebra by linearly extending the product of G; the unit of k[G] is given by the
neutral element e € G. Clearly, k[G] is non commutative, unless G is abelian. A Hopf
algebra structure is defined on k[G], by linearly extending the following definitions on
group elements:

Alg)=g®g, elg)=1, S(g)=g".

It follows then that k[G] is cocommutative as a coalgebra.
Consider now F'(G), the algebra of k-valued functions on G, with sum and product defined
pointwise: (f+ f')(g) = f(9)+ f'(9), (f- f')(g) = f(9)f'(g), the unit in F(G) being given
by the function 1(g) = 1, Vg € G. With these definitions, F(G) is a commutative algebra.
One can define linear maps A : F(G) = F(G x G),e: F(G) = k, S: F(G) — F(G), by

A(f)(g,h) = fgh) , e(f)=fle), (SFg)=F(g7"),

which are the pull-back, respectively, of the group multiplication, the neutral element
induced map, and of the inverse in G. Now, the algebraic tensor product F(G) ® F(G)
is embedded in F(G x G) via the map defined by i(f ® f')(g9,h) = f(g)f'(h). If G is a
finite group, this map is also surjective, so that A(F(G)) C F(G) ® F(G). At this point,
the axioms of group multiplication imply that F'(G), endowed with the above defined

structures, is a Hopf algebra.

We end this chapter by recalling that, given a vector space V and a coalgebra C, a
right coaction is a linear map Ag : V — V ® H such that (Ar®id)oAr = (id®@ A) o Ap
and (¢ ® id) o Agp = id. If, in addition, V is an algebra, C is a bialgebra, and Ay is an
algebra map, then V is said a right C-comodule algebra. Left counterparts exist for such
notions, in terms of left coactions Ay : V -V ® C.

Also for right coactions a Sweedler notation is introduced. One sets:
V(o) ® V) = Ar(v) , v0) ® V) ® V) = (AR ® id)Ar(v) = (id ® A)Ag(v) .
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Chapter 1

Exact Sequences of Quantum Groups

In this chapter we will introduce the basic notions leading to a satisfactory definition
of eract sequence of quantum groups, showing the intersections with the theory of Hopf
algebra extensions of algebras and coalgebras. We will work in a purely algebraic setting,
defining, as in the usual trend in literature, the category of Quantum Groups to be the
dual category to the one of Hopf Algebras, which will be the objects we will deal with.

In the first section, we will give a set of definitions, namely the definitions of Hopf
kernel and Hopf cokernel, creating the algebraic background for a reasonable notion of
exact sequence of Hopf algebras. Most of them are basically motivated by categorical
issues; we will try to keep track of everyday life by often looking at the commutative
limit, thinking of Hopf algebras as (some kind of) functions on groups, and Hopf algebra
morphisms as pull-backs of group maps.

In the second section, we will give a first definition of exact sequence of Hopf algebras,
we will consider its drawbacks, and we will solve them via the notion of faithful flatness for
modules or comodules, leading to a more appropriate definition of strictly ezact sequences
of Hopf algebras.

In the third section, we will highlight some links with the theory of Hopf extensions
of algebras, introducing the notions of Hopf-Galois extensions and cleft extensions, estab-
lishing the correspondence between the latter ones and the cocyle cross-products.

In the forth section, we will do the same with the theory of Hopf extensions of coal-

gebras, stressing our attention on cocleft extensions and co-cocycle cross-products.
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In the final section, we will put things together, introducing the notion of cleft se-
quences of Hopf algebras, which we will show are in bijective correspondence with equiv-
alence classes of data defining Hopf bi-crossproducts.

The main references for this chapter are [PW], [S2], [AD], [BM]. Anyhow, above all
as regards the notion of Hopf extensions of algebras, the mathematical literature is very
rich, so that we will try to give satisfactory references in the text, each time some new

object will be introduced.

1.1 Some introductory notions

In the category of Hopf algebras over a field %, the field k itself is a zero object, i.e. it
is 4nitial (the unit 1: k& — X is the unique morphism of Hopf algebras with this domain
and codomain) and it is final (the same holding for the counit € : X — k). Thus the zero
morphism between two Hopf algebras X and Y is given by 1y oex. Let now f: X - Y
be a Hopf algebra morphism. By definition, if it exists, the kernel of f in the category
of Hopf algebras is the equalizer of f and the zero morphism, i.e. a Hopf subalgebra of
X such that, for any Hopf algebra morphism h : Z — X st. foh = (ly oey) o h,
one has that the image of h is included in it. The naive candidate would be the set
{z € X|f(z) = ex(z)ly}, which, unfortunately, is a subalgebra but not a sub Hopf
algebra of X. It turns out that the right object is given by the following

Definition 1.1.1 Let f : X — Y be a Hopf algebra homomorphism. The Hopf subalgebra
H-ker(f)={z € X].’L‘(l) & f(fl?(g)) QT3 =T(1)® EX(:E(Z))IY QzE =z1®1lY 1‘(2)}
is called the Hopf kernel, or for short, H-kernel of f.

H-ker(f) is not empty (the field & is included in it as multiples of identity), and it is

included in both the subalgebras of right coinvariants

X = {z € X|z0) ® f(z2)) = 2 ® 1}
and left coinvariants

“YX = {z € X|f(z()) ®T02) = 1 ® 7},
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which are both included in the subalgebra {z € X|f(z) = ex(z)1ly}.

Together with the notion of H-kernel we have the notion of H-cokernel.
Let f : X — Y be a Hopf algebra homomorphism and consider the two sided ideal I of
Y generated by the set

{f(@) —ex(@)ly} = f(XT) = F(X)7,

where X+ = {z € X|ex(z) = 0} is the augmentation ideal (kernel of the counit) of X. I

is evidently a Hopf ideal, so that we can introduce the following

Definition 1.1.2 The quotient Hopf algebra H-coker(f) = Y/I is called the H-cokernel
of f.

Ezample 1.1.83 Let N and G be two finite groups, and h : N — G a group homomorphism.
Then, the pull-back h* : F(G) — F(N) is a Hopf algebra mapping. We have that
[ belongs to H-ker(h*) iff Vg,¢' € G', Vn € N one has f(gh(n)g’) = f(gg’). Then,
[ belongs to H-ker(h*) iff f is constant on both left and right cosets determined by the
subgroup h(NV), so that it descends to a function on both the quotient spaces G/h(N)r and
G/h(N)g. On the other side, the ideal I defining H-coker(h*) is generated by the set of all
functions in F'(V) which are the pull-back of functions in F(G) vanishing on the identity of
G. Theideal I is evidently contained in the ideal of functions in F'(N) vanishing on ker(h).
The converse holds too: any function f vanishing on ker(h) can be written as f = ff, with

f an arbitrary function in F(N) and f defined by f(n) = { Oifn&her(®) 14 is easy to see,

1 otherwise
then, that f is the pull-back of the function f' in F(G) defined by f'(g) = 10 itfhg -c
oitherwise

We have then, that H-coker(h*) = F(N)/{ f vanishing on ker(h)} & F(ker(h)).

Let us now see how the notion of normal subgroup translates in the Hopf algebra setting.

Definition 1.1.4 Let f : X — Y be a Hopf algebra homomorphism.
[ s called normal if f(X) is submodule for both left and right adjoint action of Y, i.e. if

Vs € X, y €Y, one has: y)f(2)S(ym) € F(X) and S(yw) @)y € F(X).

Definition 1.1.5 Let f : X — Y be a Hopf algebra homomorphism.

[ s called conormal if ker(f) is a subcomodule for both left and right adjoint coaction of
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X, i.e. if Vz € ker(f), one has: z2) ® S(z))z(s) € ker(f) ® X and z(1)S(z3)) @ z(2) €
X ® ker(f).

Notice that if Y is commutative resp. X is cocommutative, then f is always normal resp.
conormal.

We can then introduce the following notions.

Definition 1.1.6 Let A be a Hopf algebra.
A Hopf subalgebra B is called normal if the canonical inclusion i: B — A is normal.

A Hopf ideal I is called normal if the canonical projection w: A — A/I is conormal.

If A is commutative, then any Hopf subalgebra is normal. On the other side, if A is

cocommutative, any Hopf ideal is normal.

Ezample 1.1.7 Let N be a subgroup of a group G; then the group algebra k[V] is a Hopf
subalgebra of k[G]. One has that k[N] is a normal Hopf subalgebra iff NV is a normal
subgroup of G.

Assume furthermore that G is a finite group; the restriction mapping i* : F(G) — F(N)
given by the pull-back of the canonical inclusion 7 : N — G is a Hopf algebra surjection, so
that F'(N) = F(G)/ker(:*). Then ker(i*) = { functions vanishing on #(/V)} is a normal
Hopf ideal iff IV is a normal subgroup of G.

Given a Hopf algebra map f: X — Y, we have at our disposal a Hopf subalgebra of X,
H-ker(f), and the Hopfideal I =Y f(X )Y of Y defining H-coker(f). A natural question,

then, arises, wether H-ker(f) and I are normal. An answer is given by the following

Lemma 1.1.8 (see Lemma 1.3 in [S2]) Let f : X — Y be a Hopf algebra homomor-
phism.

1. If f ts conormal, then H-ker(f) is a normal Hopf subalgebra of X and one has:
H-ker(f) = XY =YX,

2. If f is normal, then Y f(X )Y =Y f(XT) = f(X)Y is a normal Hopf ideal of Y,

and Y — H-coker(f) is conormal.
Proof.
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1. First we show that XY =Y X, If z € X°V, then
TR Tp) —r®1 € X ker(f).

Since ker(f) is normal, applying on the second factors the right adjoint coaction we
have

) ® T3 ® S(z@)Twy —20101€ X ® ker(f) ® X.

Multiplying the first and the third factors one has
:17(1)5(:6(2))3](4) ®x3 —IT® le X® ker(f).

But since, for the defining property of the antipode, one has z(1)S(z(2))z) @ z(3) =
Z(2) @ (1), this give
Ty @ T —1®x € ker(f) ® X,
implying
flzy) @z =1®«z, ie e X

The other inclusion is shown in a similar way, by using the property of left coinvari-
ance of ker(f).

To show that H-ker(f) = XY we recall first that H-ker(f) is included in XY
(just apply id ® id ® ). Let z € X°Y; then

T ® T —2®1 € X ®ker(f), hence
Ty ®z(2) ®T3) —T(1) T ®L E X®X® ker(f), therefore
T ®zp) €EX® XY = X @Y X, so that

1) ® f(z2)) ® z(3) = z(1) ® 1 ® z(2), i.e. € H-ker(f).

It remains to show that the Hopf subalgebra H-ker(f) is normal in X. Let z € X,
b € H-ker(f) = XY and define ¢ = z(;)bS(z(3)). Then

¢y ® flew) = zaybwyS(zw) @ flzwe)f(be)f(S(z@))
= z1)bS(z) ® f(z@)f(S(z()) since b € XY

= zubS(ze)®1.
Hence z1)bS(z(2)) € XY = H-ker(f). Similarly one gets S(z(1))bz () € H-ker(f).
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2. First we show that Y f(X*) = f(X*)Y. Let y € Y and f(z) € f(X), then

yf(2) = ya) f(2)S(y2)ye) € F(XT)Y, since f is normal.

The other inclusion follows analogously, so that one has Y f(X*) = f(X*)Y =
Y(XT)Y.

It remains to show that the Hopfideal I =Y f(X )Y is normal in Y. It is sufficient
to test this on the elements of the form y = f(z)z, with e(z) = 0 and z € Y. One
has, mod I ® Y

Y2 @ Stymlye = flz@)iy © S(zw)S(f(zw))f(ze)2e)
= e(f(z@))z@ ® S(z@)S(f(zw)) f(2@)2a)
= 22 ® S(z1))S(fzw)) f(z(2)) 23)
= &(f(z))z@) ® S(z1))zs =0.

Analogously one proves that y1)S(y@) ® yo) €Y @ 1.

O

Remark 1.1.9 In [PW], Proposition 1.5.1 (2) and 1.6.1 (1), it is claimed that, for any
Hopf algebra mapping f, the ideal defining H-coker(f) is normal. This is false, as showed
by the counterexample 1.2 in [S1]. The error in the proof of Prop 1.5.1 (2) comes from the
fact that adjoint coactions of a Hopf algebra X on itself makes X a comodule coalgebra
(see Example 1.6.12 in [M-S]), and not a comodule algebra, as implicitly assumed in that
proof. At any rate, referring to the situation in Example (1.1.3), since in the commutative
case any Hopf algebra map is normal, the ideals of the kind {functions vanishing on

ker(h)} are normal. O

For a deeper insight of Hopf kernels and Hopf cokernels, in particular for the analysis
of the relations of such objects with monomorphisms and epimorphisms of Hopf algebras,

the interested reader will enjoy Section 1 of [AD).
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1.2 Exact sequences of Hopf Algebras

Let us go back to the situation described in Example (1.1.3). Given a short exact sequence

of groups and group morphisms
e NSHGEM—e ,

consider the dual sequence of Hopf algebras and Hopf algebra maps obtained via pull-back:
k= FM) S FG) S FIN) > k.

Exactness of the group sequence in N and M implies that #* is an injection and i*

is a projection. Being i* surjective, one has F(N) = F(G)/ker(i*), where ker(i*), by

definition, is given by the functions on G vanishing on i(N). Exactness of the group

sequence in G implies i(N) = ker(w), so by Example (1.1.3) one has F(N) = H-coker(7*).

We are then led to the following [PW]

Definition 1.2.1 A sequence of Hopf algebras and Hopf algebra maps
k—=BY AL H ok

15 called exact iff
1. 1 18 an injection;

2. H 1is the H-cokernel of i, i.e. H = A/Ai(B%)A, and © is the canonical projection.

Unfortunately, although perfectly working in the commutative case, this definition pro-
duces some inconvenience in the noncommutative setting. The first is the following: if
H is by definition the H-cokernel of 7, one would expect that i(B) is the H-kernel of =,
which is in general not true if A is not commutative or cocommutative. The second, is

that there can be two exact sequences

kE—BS5ASH Sk

kB S5 ASH Sk,

with B and B’ not isomorphic Hopf algebras: in fact it can happen that the ideals
Ai(B*)A and Ai'(B'*)A may coincide.

23




To avoid these inconveniences, in the general (noncommutative) case one needs some
extra structure, namely the concept of faithful flatness for modules and comodules, that
we will briefly describe in the following , leaving to [B-N] for a fully detailed presentation.

Let then A be a ring, E a right A-module and M a left A-module, so that the tensor
product F®4 M, which is a Z-module, is well defined. It is well known that if 7 : M — M”
is a surjection of left A-modules, then the map id@7m: EQ M — E®4 M” is surjective
too. On the contrary, it is not true that if i : M’ — M is an injection of left A-modules,

then the map id®i: E®4 M' — E ®4 M is injective. We are then lead to the following

Definition 1.2.2 Let E be a right A-module.

If, for any ezact sequence of left A-modules and homomorphisms
0O-M ->M->M -0,
the sequence (of Z modules)
0 EQuM - EQ, M —-E®,M” -0
s exact, then E 1s called flat.

Examples of flat modules are given by free modules, and, more generally, by projective
ones. Furthermore, modules over semisimple rings are projective and consequently flat.
Flat right A-modules allow to tensor exact sequences of left A-modules preserving
exactness. In the opposite situation, can we simplify tensor products from exact sequences
in order to obtain exact sequences of left A-modules? To do this, we must enforce the

previous definition to the following

Definition 1.2.3 A right A-module E is called faithfully flat if, for a sequence
0->M—->M-—->M -0
of left A-modules to be ezact, it is necessary and sufficient that the sequence (of Z modules)
02FEQsM - E®usM -+ E®s M” =0
15 ezact.
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It is proved in [B-N] that this definition is equivalent to require E to be flat, and that,
for every homomorphism v : M’ — M of left A-modules, the relation idg ® v = 0 implies
v=0.

If E is a faithfully flat A-module, it is a faithful A-module: if an element a € A is such
that za = 0 Vz € E, then a = 0.

Every (non zero) free module is faithfully flat. On the other hand, there exist projec-
tive, hence flat, modules that are faithful but not faithfully flat.

A parallel notion of faithful (co)flatness can be defined in the category of comodules.
Let C be a coalgebra, V' a right and W a left C-comodule. Then the cotensor product
VOcW is defined as the kernel of the map (Ay ®id—id@Aw) : VW - VCW.

In analogy with the module case, we give then the following

Definition 1.2.4 A right C-comodule V 1is called faithfully coflat if, for a sequence
0—=>W W —W” =0
of left C-comodules to be exact, it is necessary and sufficient that the sequence
0= VOcW = VOcW = VOsW” — 0
18 ezact.
When the objects at our disposal are Hopf algebras, we can give the following
Definition 1.2.5 Let X, Y be Hopf algebras and f : X — Y be a Hopf algebra map.

1. f is called right faithfully flat if Y is a right faithfully flat X -module with module
structure y @  + y f(x).

2. f is called right faithfully coflat if X is a right faithfully coflat Y -comodule with

comodule structure T +— z(1) ® f(z()).

Notice that right faithfully flat (resp. coflat) maps are injective (resp. surjective).
With these notions at our hands, we can start facing the problems stated at the

beginning of this section, by means of the following
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Proposition 1.2.6 see [S2], Theorem 1.4.] Let A be a Hopf algebra. Let S(A) be the set
of all normal Hopf subalgebras B such that A is right faithfully flat over B. Let Z(A) be
the set of all normal Hopf ideals I such that A is right faithfully coflat over A/I.

Then the maps @ : S(A) — Z(A), ¥ : T(A) — S(A) given by ®(B) = AB™T, ¥(I) =

AAIT gre bijections inverse one to the other.

Proof. Let B € S(A). Then I = &(B) = AB™ is a normal Hopf ideal by Lemma (1.1.8).
Then, by Theorem 1 in [T2], A is right faithfully coflat over A /I and B = A®4/1,

Let now I € Z(A). Then B = ¥(I) = A%4/T is a normal Hopf subalgebra by (1.1.8).
Then, by Theorem 2 in [T2], A is right faithfully flat over B and I = AB™. O

Remark 1.2.7 Theorems 1 and 2 in [T2], which give the desired result in the Proposition
above, are formulated in a strongly categorical manner. For the less “categorical”-minded
readers, including the author himself, in the next chapter we will give alternative paths

to conclude that B = Ac A/ABT O

The question whether a Hopf algebra is faithfully flat over a Hopf subalgebra of its
has been object of wide investigation. A positive answer has been given by Takeuchi in

the hypothesis of commutativity or cocommutativity:

Proposition 1.2.8 [T1], Theorem 8.1. Let A be a Hopf algebra and B C A be a Hopf
subalgebra. If A is commutative or cocommutative, then A is a faithfully flat right (or

left) B-module.
Another fundamental result in the finite dimensional case is due to Nichols and Zoeller:

Proposition 1.2.9 [NZ] Let A be a finite dimensional Hopf algebra, and B C A a Hopf
subalgebra. Then A is a free (left and right) B-module, hence faithfully flat.

Generalizations of these results has been obtained in [T2], [R-D], [S2], [M-A], [MW]. Let
us only present part of Theorem 3.3 in [S2], applying to the case of central (i.e. included

in the center) Hopf subalgebras, which will be useful for our purposes.

Proposition 1.2.10 Let A be a Hopf algebra and B C A a central Hopf subalgebra. If
A is left or right Noetherian, then any A is a faithfully flat B-module.
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( Let us recall that an algebra A is called left Noetherian if any left ideal of A is finitely
generated, or equivalently (see Proposition 1.8.1 in [K]) if any ascending sequence of left

ideals of A is finite.)

At this point, having at our disposal Lemma (1.1.8) and Proposition (1.2.6), we can

introduce the basic definition of this chapter (see Definition 1.5 in [S2]).

Definition 1.2.11 A sequence of Hopf algebras and Hopf algebra maps
kB3 ASH—E

15 called strictly exact iff
1. 7 is normal and right faithfully flat;
2. H 1is the H-cokernel of i, i.e. H = A/Ai(B™"),
or equivalently, by Prop. (1.2.6), iff
1’. m is conormal and right faithfully coflat;
2’. i(B) is the H-kernel of w, i.e. i(B) = A%®H.

It is easy to see, now, that, due to Proposition (1.2.6), the problems involving the previous
definition of exact sequence of Hopf algebras do not arise, because for strictly exact se-
quences B is totally determined, modulo isomorphism, by A and H, being i(B) = A®H =

H-ker (7).

1.3 Hopf extensions of Algebras
In the data of an exact sequence of Hopf algebras
k—+B5ASHk

we have, in particular, an Hopf algebra H coacting via push-out Ar = (id ® m) o A on A,
so that we can consider the set of coinvariants A°°? | and we have discussed in the previous
section under what conditions (normality, faithful flatness) one has i(B) = A%,

This is a particular (since all the objects are Hopf algebras) case of the more general

one, in which, in place of A, we have a right H-comodule algebra P, i.e. an algebra
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P, an Hopf algebra H and an algebra map Ar : P — P ® H such that (Ag ® id) o
Ap = (1d® A) o Ag and (e ® id) o Agr = id. Then, the set of all right coinvariants
B=pel ={pe P|Ag(p) =p® 1y} is a subalgebra of P.

We also say that P is a right H-extension of B and we denote it with P D B, to stress
that we are dealing with algebra extensions. A morphism of H-extensions f : P — P’ is
both an algebra and comodule map. Such a f maps coinvariants to coinvariants.

The notion of extension dualizes the classical picture in which one has a group G
acting with some regularity on some manifold P and one can consider the quotient space
of equivalence classes B = P/G. Passing to (some kind of) functions over these sets, we
have by pull-back a coaction of H = F(G) on P = F(P). The properties of the group
action translate in the aforementioned axioms for a coaction. Furthermore, the functions
on B, identified as the functions on P constant on the orbits, coincide with the subalgebra
of coinvariants B = P®FH,

When one has an action of a group on a manifold, one may wonder if the action is
transitive, or free, etc. Under suitable conditions, one can also wonder if the triple (P, B,
G) is a principal fibre bundle. As usual, these extra requirements for a G-space can be
dualized into properties of a comodule algebra that make sense also in the noncommutative

case. In particular, we have the notion of Hopf-Galois extension given by the following

Definition 1.3.1 Let H be a Hopf algebra, P a right H-comodule algebra, and B =
Pl = {p e P|Ag(p) =p®1}.
We say that P is a right H-Galois ertension of B if the canonical left P-module right

H-comodule map
can = (mp ®id) o (id®@p Ag) : P P—+P®H, p®pq— pgo) ®qq)
1s bijective.
(Here we have used the Sweedler notation for right coactions given by Ag(p) = p)®p().)
In the classical case, the canonical map above defined is nothing but the pull-back of
the map P x G — P xg P given by (z,g) — (z,zg), whose bijectivity means that the

action is free and transitive on the fibres.

Going back for a while to the Hopf algebra case, we have an interesting situation

(Lemma 1.3(1) in [S1], see also Remark 1.6 in [S2]).

28



Proposition 1.3.2 Let A be a Hopf algebra, let B C A be a subalgebra such that A(B) C
A Q® B (in particular, let B be a Hopf subalgebra), and consider H = A/BTA. Then the

canonical map
can: AQgA—> AQH , p®BQ'—>PQ(1)®7T(Q(2)) )
is bijective, with inverse p ® 7(q) g™ 1S(90)) ®B 4)-

Proof. First of all, can is well ‘deﬁned. In fact one has:

P ® bg = pbya) @ (b)) = Pbuyan) ® 7((be) — e(be))ae) + e(bwe))ae)

= pb)qq) ® (b)) (q2)) = Pba) ® 7(qr2))

and pb® g — pbguy ® m(q(z)). Let now ¢’ € A such that n(¢') = 7(q), i.e. ¢ = q+1, with
i € B*A. We have that p®m(¢) — pS(gq01)) ®B q2) +1S(i(1)) ®B i(2) , S0 that, in order to
can™" be well-defined, we must have pS(i¢;)) ®p i(y = 0. In fact one has: S(byypp)) ®=
be)pe) = S(pw)S(ba)) ®5 beypey = S(p))S(by)be) @5 pe) = €()S(p)) ®p pe) = 0. Tt
is then a matter of simple calculation to see that can™! is the inverse of can. (Notice that
both the third equalities in the proofs that can and can™! are well defined come from the
fact that A(B) C A® B.) O

In this situation, the only things missing to conclude that A D, B is a H-Galois
extension are that H is a Hopf algebra and B = A®H, Norrﬂality of B and faithfully
flatness conditions fill this gap, so that if a sequence of Hopf algebras k — B A RN
H — k is strictly exact, then one has that A D, #(B) is a H-Galois extension.

Another class of extensions is given by the cleft ones:

Definition 1.3.3 A right H-eztension P Dy B is called cleft iff there ezist a unital,
convolution invertible, linear map ® : H — P, being right coinvariant, i.e. satisfying

Apo® = (2®id)oA. We call ® the cleaving map.

Notice that if ® is right covariant, its convolution inverse ®~! satisfies
Apod 1= (®'®S)oT0A,
where 7 is the ordinary flip.
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The definition of a cleaving map is motivated, in the classical case, by the properties
pull-back of a global coordinate ¢ : P — G, which, together with the canonical projection,
provides a global trivialization P = B x G!. Notice however that, as shown with an
example at the end of Section 2.4, there are commutative cleft extension, such that the
corresponding principal bundles are not trivial.

We have the following:
Proposition 1.3.4 Let the H-extension P Dy B be cleft. Then P Dy B is Hopf-Galois.

Proof. 1If the extension P D, B is cleft, via the cleaving map ® we can construct an

inverse to the canonical mapping can : P ®p P — P ® H. Just set
can ' (p®h) = p® (k) ®s () -

1

Actually we have more: If P D, B is a cleft H-extension, then P is isomorphic (as

an extension) to B#,H, where the latter is given by the ordinary tensor product B® H
with a modified multiplication rule.

Let us give a precise definition of this new structure.

Definition 1.3.5 Let H be a Hopf algebra, B an algebra. A linear map > : H® B — B,
h®b+— h>b, is called a left weak action is the following conditions are fulfilled, for all
a,be B, he H.

ht>ab= (hgy>a)(ho>b), h>l=eh)l, 1l>a=a. (1.1)
If, furthermore, one has:
he>(I>b)=hl>b, VhleH YoeB, (1.2)
we have an actual left action.

Given an algebra B with a weak action of an Hopf algebra H, for any linear map o :
H®H — B, we can define an algebra structure (neither necessarily unital nor associative)

on the vector space B ® H as follows:

(@®@h)(b®1) = alhq) > b)o(he) @ 1) @ k)l - (1.3)

It is worth to remember that the existence of a globally defined map ¢ : P — G such that p(zg) =

@(z)g allows to conclude that the action of G on P is free.
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The vector space B ® H with the aforedefined algebra structure is denoted by B#,H.
It turns out that 1 ® 1 is the identity of B#,H if and only if

c(1®h) =c(h®1) =c(h)l ,Vhe H . (1.4)

Furthermore (e.g. see Corollary 4.6 in [BCM], Lemma 10 in [DT], Proposition 6.3.2 in
[M-S]), assuming fulfilled the condition above, the product in B#,H is associative if and
only if, for any h,l,m € H, b € B, the following two conditions are satisfied:

1. (cocycle condition)
(hy > o(lay ® mpy)) o (b ® lgyme) = o(hqy ® ln))olhele ©@m);  (1.5)
2. (twisted module condition)
(hy & (I > b)) ohey ® Lizy) = o(hqyy ® Uy (heplzy) & b). (1.6)

If conditions (1.4,1.5,1.6) are fulfilled, the algebra B#,H is called a H-cocycle cross

product of B, and the map o is called a cocycle.

Remark 1.3.6 If H is cocommutative (e.g. a group algebra k[G]) and B is commutative,
we fall in the situation described by [Sw1] (see also [B-NP] and Example 6.3.3 in [M-S]).
In that formalism, condition (1.5) above means that ¢ is an element of degree 2 of a
complex, and that it belongs to the kernel of a suitable defined differential §, i.e. that o

is a 2-cocycle in the common notion of such a term. O

Remark 1.3.7 For any algebra B and Hopf algebra H, there are always a trivial action
h>b = e(h)b, and a bilinear mapping ¢ = ¢ ® € satisfying the aforementioned conditions.
In this case, B#,H collapses to the ordinary tensor product B® H. Notice, furthermore,
that for the trivial cocycle e ®¢, condition (1.6) becomes condition (1.2), so that the weak

action must be actually an action. <&

An H-cocycle cross product P = B#,H is, in particular, a right H-extension of B, with
the right coaction of H given by Ar(b® k) = b ® h(1) ® h(z) being an algebra map, and
with the subalgebra of coinvariants given by the set B ® 1 that we identify with B. We

are now ready to state the following
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Proposition 1.3.8 Let P Dy B a cleft H-extension. Then P is isomorphic to a H-
cocycle cross product B#,H, with o convolution invertible.
Conversely, let B#,H be a H-cocycle cross product, with o convolution invertible. Then

P = B#,H is a cleft extension of B by H.

Proof. Let P Dy B be a cleft H-extension. Via the cleaving map ® one can define a

weak action and a convolution invertible cocycle by:
h>b= ®(hw)b@~ (hey) (1.7)

o(h®1) = @(ha)) ()2 " (helw) - (1.8)

The properties of right covariance of ® and ®~! ensure that both the right-hand sides do
belong to the subalgebra of coinvariants B, so that we can construct the algebra B#,H.
Now the mapping j : B#,H — P given by j(b® h) = b®(h) is an invertible algebra and
right comodule homomorphism, the inverse being given by ;7! = mjp 0 (id ® ®~! ® id) o
(Ar ®id) o Ag, or in explicit Sweedler notation, j7}(p) = py®~ (p)) ® P2)-
Conversely, let P = B#,H be a H-cocycle cross product with the cocycle o being
convolution invertible. Then the map ® : H — P given by ®(h) = 1 ® h is unital,
convolution invertible, the convolution inverse being given by ®(h) = o7(S(h()) ®
h()) ® S(hqy) (for the explicit computation see Prop. 1.8 in [BM]), and right covariant,

so that P D, B is a cleft extension. O

Remark 1.3.9 Notice that from formula (1.8), it turns out that the cleaving map @ :
H — P is an algebra homomorphism if and only if the corresponding cocycle is trivial.

In fact, (1.8) reads also as
o=[mpo (2@ Q)] [27" ompyen] ,

where the convolution product is defined with respect to the coproduct in H ® H. By
applying *(®ompgy) from the right, one sees that o = £ ®¢ if and only if @ is an algebra

map. <o

Given two H-cocycle cross products B#,H and B#,H, a natural question arises

whether these two algebras are isomorphic. First of all, one sees that, given a H-cocycle
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cross product B#,H, and given a unital, convolution invertible map v : H — B, one can
define a new weak action [>, and a new cocycle o, such that the H-cocycle cross product
B, H is isomorphic to B#,H. Let us formalize this situation with some notation and
a proposition.

Let Reg, (H, B) be the group of unital, convolution invertible linear maps v : H — B.
Let Z,o(H, B) be the set given by couples (>, 0) with > a weak action and ¢ a cocycle.

Then, armed with patience, one can prove the following

Proposition 1.3.10 1. There is a left action of Reg,(H, B) on Z1¢(H, B), denoted with

v (>,0) = (>, 0,), given by the formulas '
hyb = y(ha))(he > )7 ha) , (1.9)

oy(h®1) = v(ha)(he) > 1(w))o(he ® lg)1™ (hels) - (1.10)

Moreover, if o is convolution invertible, so is 0., in fact one has:

o (h@1) =" (haylw)o  (he ® L) (ha) > 7 e)7  h) -

2. The mapping F : B#,H — B#,. H given by F(b® h) = by~ (hu)) ® ha) is a left

B-module, right H-comodule, and algebra isomomorphism preserving B.

Proof. Point 1. is just a matter of tedious computations. Let us prove Point 2.
First of all F is obviously invertible, with F~}(b ® k) = by(h()) ® h(z). Left B-module
and right H-comodule properties are easy to obtain. As regards the algebra structure,
one has:

F(be hM(c®l)=F (b(h(l) > C)U(h(g) ® l(l)) ® h(3)l(2))

= b(h & 0)o(hez) ® lny)v ™ (hala) ® heayls) -
On the other side,

FO®RF(eo!l) = b7 (ha) ® hexy)(erv (o) ® lw)

= 077 (b)) (hezy By (677 (k)4 (hes) ® L) ® heayls) -

At this point, by inserting the definitions of >, and o, and using the properties of left
weak actions, one finds the desired equality. O

We have also the following converse statement:
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Proposition 1.3.11 Let B#,H and B#, H be two isomorphic (as left B-modules, right

H comodules and algebras) H-cocycle cross products. Then, there ezist v € Reg,(H, B)
such that (>',0') = - (>, 0).

Proof. First of all, let us show that any right H-comodule and left B-module mapping
F : B#,H — B#, H is of the form F(b® h) = bf(h(1)) ® h(z), with f : H — B a linear
map.

In fact, suppose that such a F exists. Set f(h) = (id®¢)F(1®h) and denote F(1®Qh) =
F*® FY. So one has, by definition:

bf(hy) ® by = b(id ® €) F(1 ® k() @ Az -

By the right H-covariance of F and the definition of the coaction in the crossed products,

one has:

(F@id)(1® hg) ® b)) = F* @ Ff)y ® Fhy

so that

b(id® ) F(1 ® hq)) ® by = b]:xé‘(]:(yl)) ®-7:(y2)
=bFFQF=0bR1)(F°@F)=b-F1@h)=F(b®h),

where the last equalities are due to the definitions of the left B-module structure and of
the multiplications and to the fact that F is a left B-module map.
Furthermore, F is bijective and unital iff f € Reg;(H, B). Now, suppose that F is an

algebra morphism, then:

F(b@h)(cal))=F (b(hu) > c)a(hz ® ly) ® hele)

= b(hq) > c)o(h) @ 1)) f (hale) © hls) -

On the other side,

Fo@h)F(c®l) = (bf(ha)) ® he)(cfly) @)
= bf(h))(he) B (cf (U)o’ (h@) ® lz) ® higyls)

= b(hq) >} ¢)o(he) ® lny) f(he)le) ® huals) -
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Imposing these expressions coincide, by applying id® f~! and multiplying in B, we obtain:
(h(l) > C)Cf(h(g) ®l) = (h(l) I>} C)O}(h(z) ®1),

for any c, h,l, which, by setting respectively [ = 1 and h = 1, implies > = D% o= o,
which, setting v = f~1, gives (>',0') = v - (>, 0). a

Defining now
Zyo(H,B) = {(>,0) € Z1y(H, B)|o is convolution invertible}

and denoting with Hjo(H, B) the set of equivalence classes in Zj,(H, B) given by the
action of Reg, (H, B), we have that Props. (1.3.8) and (1.3.11) can be summarized in the

following
Proposition 1.3.12 The map
© : Hy y(H, B) — { Isomorphism classes of cleft extensions}

induced by (1>,0) — B#,H is a bijection.

1.4 Hopf extensions of Coalgebras

Let us now consider the dual situation. Suppose to have a Hopf algebra B and a coalgebra
P such that P is a left B-module coalgebra, i.e. P is a left B-module such that the module

structure satisfies:

Ap(br> p) = by > ) ® by > Py , ep(b>p) = ep(b)ep(p)

Then, the left B-submodule given by BYP = {p' € P|p’ =b>p ,p€ P ,b € ker(ep)} is a
coideal of P, so that it is well defined the quotient coalgebra of covariants H = P/B*P.
In this situation we say that P is a (left) B-coalgebra extension of H and we denote
it with P D, H. Morphisms of B-coalgebra extensions are left B-module and coalgebra
maps. Such morphisms map covariants to covariants.
It is evident now, that in the datum of a (even not strictly, but still in the hypothesis

of normality) exact sequence of Hopf algebras
k—-+B5P5 H—k,
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we have that P is a B-coalgebra extension of H, being P, in particular, a left B-module
coalgebra, with the module structure given by b > p = i(b)p, and being H = P/i(B)*P.
Like in the case of algebra extensions, we will define now a particular class of coalgebra
extensions, the cocleft ones, and we will show that if P is a cocleft extension, then it is
isomorphic to a co-cocycle cross product B7#H, i.e. to the tensor product B ® H with
a deformed coalgebra structure.
Denoting with Reg, (P, B) the group of the counital (e oy = £p), convolution invert-

ible linear maps 7 : P — B, let us introduce the following

Definition 1.4.1 Let P D, H be a left B-coalgebra eztension.
If there exist U € Reg, (P, B) such that ¥ is a left B-module mapping, i.e. U(b> p) =
b¥(p), then the extension P D, H is called cocleft. We call ¥ the cocleaving map.

Notice that if ¥ is a left B-module mapping, then the convolution inverse W~! satisfies
U= b p) = TN (p)S(b).

Let us furthermore consider the following

Definition 1.4.2 Let B be a Hopf algebra, H a coalgebra.
A linear map p: H — H ® B is called a right weak coaction if it satisfies:

(Ag®id)op=moso(p®p)oAy, (eg®id)op=cylp, (idRep)op=id,

where mys : HIBOH®B -+ HQH®B is given by hQb QK QY — h @ KW ® bl
If, furthermore, one has

(ld®@ Ap)op=(p®id)op,
it turns out that p is a right coaction and H becomes a right B-comodule coalgebra.

Given a coalgebra H with a weak coaction of a Hopf algebra B, for any linear map
7:H — B ® B, we can introduce a coalgebra structure (neither necessarily counital nor

coassociative) on the vector space B ® H as follows:
A ®h) = by (hn) ® 7 (hz)) ® by (hay)p* (h(z) ® hgs) (1.11)

where we have denoted p(h) = p®(h) ® p¥(h) and 7(h) = 7%(h) ® 7Y(h).
The vector space B® H with the aforedefined coalgebra structure is denoted with B TH#H.
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It turns out that ep ® £ is the counit of B"#H if and only if
(ep®id)oT =eglp=(id@ep)oT. (1.12)

Furthermore, assuming fulfilled the condition above, the coproduct in B7#H is coasso-
ciative if and only if the following two conditions are satisfied (see, for example [AD]):

1. (co-cocycle condition)

mpes(Ap ®id® T @1id) (T ® p)Ay = (id @ mpe2)(id ® Ap ® id @ id)(r ® T)Ay ; (1.13)
2. (twisted comodule condition)

(id @ mpse2)(1d @ Ap ®id ®id)(p® T) Ay = mis:(id ® id ® p® id) (T ® p)Ay ; (1.14)

where mpe: and mpss are the canonical multiplications in the double and triple tensor
product of B, and m};, : BRB®HQ®B®B — H®B® B is given by bV @h@c®c
h®bc®b'c.

If conditions (1.12, 1.13, 1.14) are fulfilled, the coalgebra B"#H is called a right

B-co-cocycle cross product of H, and 7 is called a co-cocylcle.

Remark 1.4.3 Co-cocycle cross products were first introduced, in the case of one factor
commutative and the other cocommutative, by [SI-W]. In a more general contest, they

appeared as dual to cocycle cross products in [M-S1] O

Remark 1.4.4 For any Hopf algebra B and coalgebra H there are always a trivial coac-
tion p(h) = h®1p and a co-cocycle 7(h) = ¢(h)15® 1. In this case B "#H becomes the
ordinary tensor product B ® H. In analogy with the algebra case, the trivial co-cocycle

forces the weak coaction to be an actual coaction. O

A co-cocycle cross product P = B7#H is a left B-coalgebra extension of H, via the
definition &' > b ® h = ¥'b ® h, and the coalgebra of covariants P/B* P is identified with
H via the map [b ® h] — &(b)h.

Denoting with Zg,(H, B) the set consisting of the couples (p, 7) with p a weak coaction
and 7 a co-cocycle, we have the analogous of Props. (1.3.8, 1.3.10, 1.3.11).
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Proposition 1.4.5 Let P D, H be a cocleft B-extension. Then P is isomorphic to a
B-co-cocycle cross product B™#H, with T convolution invertible.

Conversely, let B™#H be a B-cococycle cross product, with T convolution invertible. Then

P = B7#H is a cocleft extension of H by B.

Proof. Let P D, H be a cocleft B-extension. Via the cocleaving map ¥ one can define

twomaps p: P+ HQ®B,7: P— BQ®B as
p(p) = 7(p) ® TH(pw)¥(n() (1.15)

7(p) = As(Y () (¥ (pe) ® ¥(pg)) - (1.16)

Both p and 7 descend to H, and the so defined maps p: H - HQBand7: H - B®B
satisfy the axioms for a weak coaction and a co-cocylcle, so that we can construct the
coalgebra B7#H.

Furthermore, 7 is convolution invertible, the convolution inverse being given by

7 (7(p)) = (T (p)) ® T (p))) Ar(¥(pe)) -

Now the map ¢ : P — B7#H given by i(p) = ¥(pn)) ® 7(prz)) is an isomorphism of
B-coalgebra extensions of H (see [AD] for details), the inverse being induced by the map
BQP =P, b@p— (bY ! pu)) > pr).

Conversely, let P = B"#H be a cococycle cross product with the cococycle 7 being
convolution invertible. Then the map ¥ : P — B given by ¥(b® h) = be(h) is a left
B-module map that is counital and convolution invertible, the convolution inverse being
given by U~ (b®h) = (771)=(h)S (b(r~1)¥(h)) (it is a non trivial computation, see [AD]),

so that P D, B is a cocleft extension. O

Remark 1.4.6 Notice that, dually to the algebra case, the co-cocycle defined by the

formula (1.16) is trivial if and only if ¥ is a coalgebra map. In fact we have that
T = [ABO‘I’—I]*[(\I’®\P)OAP] .

So, by applying on the right [Ago U~1"1 = [Ago U], one has that 7 = eplg ® 15 if and

only if ¥ is a coalgebra map. &
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Proposition 1.4.7 1. There is a right action of Reg,(H, B) on Zy1(H, B), denoted with
v - (py7) = (py, 7y), given by the formulas

py(h) = (g ® v (hw))p(he)(1a ® (k) , (1.17)
() = As(vH(hw))T(he) (v ®id)(p(hs))(1s ® v(hw)) - (1.18)

Moreover, if T is convolution invertible, so is T, in fact one has:

7 () = (15 ® 77 (b)) (v ® id) (p(h)) 7" (h3) (1z ® ¥(hey)) -
2. The mapping G : B™#H — B™#H given by G(b ® h) = by(ha)) @ k) is a left
B-module and coalgebra isomomorphism preserving H.
Furthermore, if two co-cocycle cross products B"#H and B™#H are isomorphic, then
there exist v € Reg.(H, B) such that (o', 7") = v+ (p, 7).

Proof. Again, proving Point 1. is just a matter of long computations. As regards Point
2., first of all one notices that G is evidently a left B-module map and it is invertible,
with G~ (b ® h) = by~ (k1)) ® hz). Furthermore, G induces a well-defined map from
covariants to covariants that, due to the counitariety of «, is the identity on H. Then, to
prove the coalgebra properties one follows the same lines as in Prop.(1.3.10).

To prove the converse statement, one sees that if G : B™#H — B™#H is a coal-
gebra mapping preserving H, i.e. such that 7 o G = 7, then G is also a morphism of
H-comodules, with H coacting by push-out. Now one can invoke Prop. (1.3.11) to say
that G is of the form G(b® h) = by(h(1)) ® h(2), with v € Reg.(H, B). Then, following
the same lines of Prop. (1.3.11), one discovers that (p/,7') =7 - (p, 7). O

Again, defining
Z5.(H,B) = {(p,7) € Zo1(H, B)|7 is convolution invertible}

and denoting with Hg,(H, B) the set of equivalence classes in Zy;(H, B) given by the
action of Reg.(H, B), we have that Props. (1.4.5) and (1.4.7) fall in the following

Proposition 1.4.8 The map
Q: Hy,(H,B) = { Isomorphism classes of cocleft extensions}

induced by (p,7) — BT#H is a bijection.
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1.5 Putting things together: Hopf extensions of Hopf
algebras

We have seen in the previous sections that having at disposal a (strictly exact) sequence
of Hopf algebras B 2 P % H one has that P is botha H -algebra extension of B and a B-
coalgebra extension of H. We have also seen under what conditions P is a H-cocycle or a
B-cococycle cross product, relating this fact to its cleftness or cocleftness. In this section
we want to discuss the requirements that a pair of couples (&>, 0), (p, 7) must satisfy in
order to make a cross product B "#,H a bialgebra, and furthermore a Hopf algebra, and
we will see how these constraints translate in terms of the cleaving and cocleaving maps.

Let us start with the following

Proposition 1.5.1 Let B, H be Hopf algebras. Let (>,0) € Z1o(H, B), (p,T) € Zo1(H, B)
and consider the cross product P = BT#.H.

7

Then, P is a bialgebra if and only if the following conditions hold, for any h, | € H,
be B:

1. (compatibility with unit and counit)
p(lg) =1p®1p, 7(lg) = 15®1p, cpoo =ex®eg , ep(h>b) = ex(h)ep(d) . (1.19)
2. (compatibility between the product and the coproduct)
(hy > B)wya () © L) 7" (kelka) @ (hy & b)@o(he) ® L) (Aele)

= 7"(hw) (1" (he) B by (ly)) @ (0 (he)) ® p° ()
7Y (b)) 0¥ (b)) 0¥ (hezy) (heay & by (I ¥ (l2))) o (hs) ® Us))

P” (ha)l2)) ® (hry &> b)o (k) ® l1)) ¥ (ha)le)
= 7" (hw)P* (L) ® p*(h(w) (A2 > bp* () (hs) @ L) - (1.20)

Furthermore, assume that:

3. (compatibility with the antipode)
exn(h) = Sp(r7(h))7(h) = 7% (h)Sp(T¥(R)) ,
eu(h) = o(hq) ® Su(he)) = o(Su(hy) ® k) , (1.21)
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hold, then P is a Hopf algebra with antipode given by:

S ®h) = (Su((p"(h))») > Sp(p” () ® Su((P"(h))w)) (Se(b) @ 1r) . (1.22)

Proof. As usual, the proof is a matter of (terrible) computations. The world thanks [M-S]
and [AD] for doing that. =

Remark 1.5.2 In [M-S], Theorem 6.3.9, alternative conditions replace (1.20). The proof

of the equivalence between the two sets of conditions can be found in [AD], pag 40. <

Remark 1.5.3 Let us remark that conditions (1.21) above, are only sufficient but not
necessary to have an antipode on P, and that, in general, the problem to find necessary
condition for having an antipode on a cross product is still unsolved. Anyhow, in a
moment we will see that under convolution invertibility hypotheéis on ¢ and T no extra

conditions are necessary to have an antipode. O

If the pair of couples D = ((>>,0),(p, 7)) € Z19(H, B) x Zy1(H, B) satisfies the con-
ditions (1.19, 1.20), we say that D is a compatible data.
If, furthermore, D satisfies the condition (1.21), we say that D is a Hopf data. Let us
define

Z1(H,B) ={D = ((>,0), (p, 7)) |D is a compatible data} ,
Zi(H,B) ={D € Z,(H, B)|o, T are convolution invertible} ,
Z,(H,B) ={D = ((>,0),(p,7)) |D is a Hopf data} .

As promised above, we have the following

Lemma 1.5.4 (see Lemma 3.2.17 in [AD]) Let D = ((>,0),(p, 7)) € Z;(H, B).
Then the bialgebra B™#,H is a Hopf algebra and its antipode is given by

S®®h) = (07 (Su(p(he)) ® (k) ® Su(p*(hy))]
[T % (b)) SB (067 (hy) ¥ () ¥ (hea)) T ¥ (hw)) ® 1) . (1.23)

Proof. Being o and 7 convolution invertible, by Props. (1.3.8, 1.4.5) the cross product

BT#,H is both a cleft and a cocleft extension, with cleaving and cocleaving map given
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respectively by ®(h) = 15 ® h, U(b® h) = eg(h)b. Now, for any p € P = B #,H, the
equality p = ¥(pq)) ® 7(p()) reads in the algebra End(P) as idp = (i o ¥) x (® o 7),
where ¢ and 7 are the canonical injection and projection. But, being ® and ¥ convolution
invertible, such is idp, and one has idp* = (®~! o x) * (i o ¥~1) But the antipode Sp is,
by definition, the convolution inverse of the identity, so that, by substituting the explicit

expressions of ®~! and ¥™!, one obtains the formula (1.23). 0

Suppose now that D € Z;(H,B) or D € Z;(H,B). It is clear, from Props. (1.3.11,
1.4.7), that given v € Reg, .(H, B) = Reg,(H, B) N Reg.(H, B), the map F(b® h) =
by~ (hq))®h(2) provides an algebra and coalgebra isomorphism F : B #,H — B ™1 #, H.
Recall now that if X is a bialgebra and Y is both an algebra and a coalgebra, and there
exist f: X — Y being an isomorphism of algebras and coalgebras, then Y is a bialgebra

and f is an iso of bialgebras. In our case, this implies the following

Proposition 1.5.5 (see Proposition 3.1.7 in [AD]) Let D € Z,(H, B).
1) The map F : B74,H — B™ ‘4, H, given by F(b® h) = by~ }(hy) ® hey is a
bialgebra isomorphism.

2) The set Zy(H, B) is stable under the left action of Reg, .(H, B) given by

v (> O—)’ (P, T)) = ((D’W U’r)a (p7—1, 7_'7"1)) (1'24)
where (>4,0,) and (p,_,,T,-1) are given via the formulas (1.9, 1.10) and (1.17, 1.18).

Proof. Point 1) comes from the reasoning above.
Point 2) comes from points 1. and 2. in Proposition (1.5.1), since these points are

necessary and sufficient conditions for a cross product to be a bialgebra. a

Corollary 1.5.6 Let D € Z;(H,B) or D € Z,(H, B), then F above is a Hopf algebra

1somorphism.

Proof. It D € Z;(H,B) or D € Z;(H,B), then such F is a bialgebra isomorphism
between a Hopf algebra and a bialgebra, which implies that B ™! #., H is a Hopf algebra
and that F is a Hopf algebra isomorphism. ]
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Proposition 1.5.7 The sets Z;(H, B) and Z,(H, B) are stable under the action of Reg, .(H, B)
giwen by Formula (1.24).

Proof. Just make the computations. O

Remark 1.5.8 Notice that, contrarily to Proposition (1.5.5), Corollary (1.5.6) above
does not directly imply that Z;(H, B) or Z,(H, B) are stable under the action of Reg, . (H, B).
In fact, belonging to Z; (H, B) or Z;(H, B) are only sufficient but not necessary conditions
for B4, H to have an antipode. &

Corollary 1.5.9 Let D = ((>,0), (p, 7)), D' = ((>', '), (', ")) belong to Z,(H, B).

If the cross products B™4#,H and B #,H are isomorphic as left B-modules, right H -
comodules and bialgebras, then there exist v € Reg, .(H, B) such that ((>',0"), (¢, 7)) =
7 ((>,0), (p, 7).

The same result holds if D and D' belong to Z7(H, B) or Z,(H, B) and the cross products

are isomorphic as Hopf algebras.

Proof. Being, in particular, B"#,H and B" #,H isomorphic as left B-modules, right
H-comodules, algebras and coalgebras, by Props. (1.3.11, 1.4.7) the isomorphism is of
the form F(b® h) = by~ (h)) ® h), with 7 € Reg; .(H, B). Now, following the same
lines of these propositions, one finds that ((>/,0"), (¢, 7)) = v (>, 0), (p, 7)). a

Now, we have already mentioned in the proof of Lemma (1.5.4), that if B and H are
Hopf algebras, and D = ((>,0), (p, 7)) € Z;4(H, B) x Z§,(H, B), then the cross product
P = B7#,H is both a cleft and cocleft extension. If, furthermore, D belongs to Z(H, B),
so that P is a Hopf algebra, some relations are expected between the cleaving and the

cocleaving map. To establish this situation, let us introduce the following

Definition 1.5.10 (see Definition 3.2.13 in [AD]) Letk + B 5P S5 H — k be a
strictly ezact sequence of Hopf algebras. We shall say that this sequence 1s cleft if there
exist a cleaving map ® € Reg,(H, P) and a cocleaving map ¥ € Reg, (P, B) such that the

following equivalent conditions hold:

L @ Y(n(p)) = Sp(p)i(¥(pe)) ,
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2. &(n(p)) =¥ (pw))Pe2) 5

3. U Yp) = ®(n(p))Se(P)) ,

4. ¥(p) =puy® ' (r(pw)) ,

5. Tod =eplp . (1.25)

Proof of the equivalence. First of all one can check that ® and &' are well defined and
that the right hand sides of points 3. and 4. do belong to the algebra of coinvariants
i(B). Furthermore, to prove 1. <= ---4. == 5. is easy. Let us prove 5. = 1..

Set n(7(p)) = Se(pw)i(¥(p)). Now & *n(r(p)) = 2(r(pw)))Se(pe)i(¥(pe)) =
i (¥ (2(n(pwy))Sp(p@)pE))) = i (¥(®(1(p) = i(en(r(p)ls) = en(r(p))lp. Since,
by hypothesis, ® is convolution invertible this implies that n = ®~*. 0O

Remark 1.5.11 Notice that point 5. above implies that the cocleaving map ¥ must be
also unital, and point 2. implies that the cleaving map ® must be also counital. Notice
furthermore that the formulas above allow to build up a cocleaving map starting from
a counital cleaving map, and conversely to define a cleaving map starting from a unital

cocleaving map. <

Remark 1.5.12 The above links between cleaving and cocleaving maps has been gener-
alized in [DHS] in the setting of principal homogeneous extensions, i.e, the case in which
P is a Hopf algebra and a (P/I)-Galois extension, with I a Hopf ideal of P. In this case,

the subalgebra of coinvariants B needs not to be a sub Hopf algebra. &

Now, given D € Z;(H, B), one can construct the sequence B 4B T# H 5 H, where
i(b) = b®1, 7(b®h) = e(b)h. It is a matter of computations to prove that such a sequence
is strictly exact, and, by point 5. in Def.(1.5.10), it is cleft. Denoting with H; (H, B) the
set of equivalence classes in Z}(H, B) given by the action of Reg; .(H, B) as in Formulas

(1.24), we are then ready to state the main result of this section.
Proposition 1.5.13 (see Theorem 3.2.14 in [AD]) The map
Y : Hy(H,B) — { Isomorphism classes of cleft sequences}

induced by
D = ((>,0), (p,7)) = B B"#,H S H
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18 a bijection.

Proof. By considerations above, this map is well defined on Z;(H, B). Then, by Corollary
(1.5.6), it descends to H;(H, B).

As regards surjectivity, first one sees that every sequence B % P 5 H with both
a cleaving and a cocleaving map allows to construct a data D = ((>,0),(p,7)) €
Z7o(H, B)x Z5 ,(H, B) such that P is isomorphic as an algebra to B#,H, via the map p
p)® (7(pe))®7(p)), and as a co‘algebra to B7#H, via the map p = ¥ (pq)) @7(p(a)).
Then, by conditions (1.5.10) we have that these two maps coincide. This implies that
P = B7#,H as a bialgebra, and consequently that D € Z;(H,B). By Lemma (1.5.4),
we then have that B7+#,H is a Hopf algebra, so that P = B7#,H as Hopf algebras.

Finally, the injectivity comes from Corollary (1.5.9). O
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Chapter 2

The Frobenius induced sequence for

SLg(2)

The knowledge acquired in the previous chapter will be now used to study particular
examples of exact sequences of quantum groups. These come from the fact that, for ¢
being a primitive, odd n-th root of unity, there exist a Hopf algebra homomorphism, a
quantum analogous of the Frobenius map for commutative algebras over a field of char-
acteristic n, mapping the generators of A(GL(N,C)) and A(SL(N,C)), the coordinate
rings of GL(N, C) and SL(N, C), into the n-th powers of the generators of the g-analogues
A(GL4(N)) and A(SL,(N)). By canonically completing this map one gets interesting ex-
amples of strictly exact sequences of Hopf algebras. Such a construction can be repeated
on suitable quotients of these Hopf algebras, giving exact sequences of quantum sub-
groups. For sake of simplicity, we will consider the case N = 2, and from the third section
on, we will mainly deal with the case n = 3.

In the first section, we will present the objects of our interest, namely the bialgebra
A(M,(2)) and the Hopf algebras A(GL,(2)) and A(SL,(2)), we will discuss some of their
algebraic properties and we will show the appearing of huge centers for g being a root of
unity.

In the second section, we will fix ¢ being a primitive, odd n-th root of unity and
we will introduce the Frobenius mapping for A(M,(2)), showing it is a bialgebra map,

inducing Hopf algebra maps for A(GL,(2)) and A(SLy(2)). We will then canonically
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complete these mappings to obtain exact sequences of Hopf algebras, that we will show
being strictly exact.

In the third section, we will focuse our attention on A(SL,(2)), for ¢ = %" being
a primitive third root of unity. We will first show that the neither commutative nor
cocomuutative Hopf algebra obtained by quotienting A(SL,(2)) by the ideal generated
by the image via the Frobenius map of the augmentation ideal of A(SL(2,C)) is 27-
dimensional as a vector space over C. We will denote this Hopf algebra with A(F'),
viewing the ”quantum group” F' as a quantum finite subgroup of A(SL,(2)) for g = €%,
namely the kernel of a A(SLy(2))-covering of A(SL(2,C)). We will then present three
alternative paths to show that A(SL,(2)) is a faithfully flat Hopf-Galois extension of
A(SL(2,C)) by A(F). This strategies are characterized by the fact that they do not use
the hypothesis of faithful flatness, rather they arrive to it, and are focused on proving the
identification of Fr(A(SL(2,C))) with A(SL,(2))*A®.

In the final section, we will consider the case of quantum Borel subgroups, namely we
will deal with uppertriangular matrices, by quotienting the Hopf algebras we deal with
by suitable ideals. We will show that the so obtained sequence is cleft in the sense of
Definition (1.5.10), and we will give a family of cleaving and cocleaving maps, so that we
will be able to provide an explicit identification of the quantum Borel subgroup with a
non trivial cross product of the classical Borel with a 9-dimensional quantum subgroup
of F.

As regards the preliminary notions about the Frobenius mapping, we have mainly
followed [PW], Section 7. Other references are [T3], Section 5, and Section 4.5 in [M-Yu].
See also the end of Part Iin [C-P]. The rest of the contents of the chapter, from Section

3 onwards, is original and can be mostly found in [DHS].

2.1 The Hopf algebra A(SL,(2))

Recall that A(M,(2))is the complex algebra generated by the symbols a, b, ¢, d, satisfying

the following relations:

ab=gba, ac=qca, bd=gqdb, bc=ch, cd=qdec,
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ad —da = (¢ —q )b, (2.1)

where ¢ € C\ {0}. For ¢ = 1, this algebra becomes commutative, reducing to the
undeformed A(M(2,C)), the coordinate ring of M(2,C).

As a ring, A(M,(2))is Noetherian and has no zero divisors (see [K], Theorem IV.4.1.).
A basis for the underlying complex vector space is given by the set of monomials
{o(a)io(b)io(c)fo(d)'}i sk iz0, for any permutation o of the set of monomials {a, b, ¢, d}.

One can introduce the quantum determinant as the following element of A(M,(2)):
det, = ad — gbc = da — g~ *bc. It is easy to see that det, is central, i.e. it commutes with
every element of A(M,(2)).

On A(M,(2))one can introduce a bialgebra structure, with comultiplication A and

counit € defined by the following formulas:

Ald) =a®a+bQc, AD)=a®b+b®d.
Alc)=c®a+d®c, Ad)=cQb+d®d. (2.2)

ela)=¢e(d)=1, e(b)=¢€(c)=0. (2.3)
With these definitions, the quantum determinant becomes grouplike, i.e. it verifies
A(det,) = det, @ dety , e(dety) =1. (2.4)
With the help of the quantum determinant one can define the algebras
A(GL,(2)) = A(M,(2))[8)/(tdet, — 1) (2.5)

and
A(SL,(2)) = A(M,(2))/(dety — 1) = A(GLg(2))/(t - 1) . (2.6)
Roughly speaking, the algebra A(GL,(2)) is the extension of the algebra A(My(2)) by
the extra variable ¢ , which is then declared to be the inverse of det,, whereas A(SL4(2)) is
given simply by A(M,(2)), quotiented by the extra condition det, = 1.

By Proposition 1.8.2 and Theorem 1.8.3 in [K], both A(GL,(2))and A(SL4(2))are
Noetherian. A basis for A(GL,(2)) is given by the set

{aibjckdl}i.j’k’lzo U {ambpcrts}m,p,r,go,»o ) {b)‘c#dutp},\,,uzo,u,p>6 3
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whereas a basis for A(SL,(2)) is given by the set {at/c}; ;x50 U {b7c°d ) s50.050, (see
Lemma 1.4 in [MMNNU], Exercise on p.90 in [K]).

As regards A(SL,(2)), it is easy to see that the ideal generated by det, —1 is a coideal,
so that the formulas (2.2,2.3) induce well defined coproduct and counit on A(SL,(2)).
The same conclusion holds for A(GL,(2)), provided one defines

A)=t®t, et)=1.

Setting now, in matrix form:

a b . —1p
S = detq’

c d —qc a

,S(t) = det, 2.7)

one has that S is well defined on A(GL,(2)) and descends to A(SL,(2)), and satisfies the
axioms of an antipode, so that A(GLy(2)) and A(SL,(2))become Hopf algebras.

Notice that S is bijective, but in contrast to the commutative (g = 1) case, it is not
involutive, i.e. S # Id. Anyhow, if ¢" = 1, one gets S = Id.

From the commutation relations (2.1), it is clear that in the case of g being a n-th
root of unity, a huge center appears in A(M,(2)), A(GL,(2)) and A(SLy(2)), given by the
subalgebra generated by the n-th powers of the generators. Actually, a difference arises
if we consider A(M,(2)) and A(GLy(2)) or if we deal with A(SL,(2)). More precisely, we

have the following

Proposition 2.1.1
1. Let q be an odd root of unity of ordern, i.e. ¢" =1, n =21+ 1. Let (T;) = (Z Z),
formally denote the generators of A(M,(2))or A(GL,(2)).
Then, for alli,j = {1,2}, T} belong to the center of A(M,(2))or A(GL,(2)).
2. Let g be an arbitrary root of unity of order n. Let T;; as before denote the generators

of A(SLy(2)). Then, for all4,j = {1,2}, 13 belong to the center of A(SLy(2)).

Proof. If ¢™ = 1, it is immediate to see, in both cases, that " and ¢ commute with all
the algebra generators, which is a necessary and sufficient condition in order to belong to
the center. As regards a™ and d™, still in both cases they trivially commute with b and c.

The difference arise when considering the commutation relations of o™ with d and of d”
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with a. If we deal with A(M,(2)) or A(GLy(2), we find
ad = da" + (1 -+ q2 R q2(n—1))(q _ q~1)an—1bc '

If ¢ = 1, the proposition is trivial. If ¢ # 1 is an odd n-th root of unity, one gets
1+¢2+---+¢*" 1 =0, so that one achieves a™d = da”, and, by similar computations,
d"a = ad®. If we deal with A(SL,(2)), the commutation between a and d is furthermore
governed by the g-determinant relations ad = 1+ gbc, da = 1 + g 'bc, so that one has,
eg., a*d — da® = a™ ! + ga™lbc — a1 — g2 V=1gn"lpe. So, if ¢* = 1, one has
g 2v-1-1 = ¢=2ng = ¢ s0 that a"d = da™. In a similar way one also achieves d"a = ad".

a

2.2 The Frobenius mapping

Let us first introduce some notation (see Section IV.2 in [K]) defining g-analogues of

factorial and binomial coefficient:

(/'s;)q:=1+q+...+q’c 1_%:__ 1, keZ, k>0;

— 2 _ E_
(Bt 1= g2 (0 = CEZDEZD g,
(k)qz-(-g—% 0<i<k. (2.8)

The above defined g-binomial coefficients satisfy the following equality:

(u+v)F = i (f)qu’vk”l,

=0

b b . . .
Z d), with (Z d) denoting in matrix form the

generators of A(M,(2)), A(GLy(2))or A(SL4(2)), one has

where wv = ¢ lvu. Now, if (T3;) = (

k
ATE = (Ta®Ty; + To®T5) =) (’f ) TaTs ' ®T1T5 - (2.9)
1=0 a2

We have seen in the previous section that, if ¢® = 1, then the subalgebra generated by
the n-th powers of the generators of A(SL,(2)) is central, the same thing holding for
A(GL,(2)) and A(M,(2)) if n is odd. Suppose now that ¢ is a primitive n-th root of
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unity, i.e. n is the minimum integer such that ¢" = 1. If n is odd, then also ¢? is primitive
of order n. In this more restrictive hypothesis we will find that the above mentioned

subalgebras are also subcoalgebras. In fact, we have:

Proposition 2.2.1 Let g be a primitive odd n-th root of unity. Let (T3) = (Z Z) be the
generators of A(M,(2)), A(GL(2)), or A(SL,(2)). Then one has:

2
ATR=> Th Ty . (2.10)
k=1

Proof. From formula (2.9) one has

n

n o __ n k rn—k k rn—k
atg=32(;)  mimaterimt.

E=0
It turns out from formulas (2.8) that, for ¢ being a primitive n-th root of unity, the q-

binomial coefficient (:) is different from zero if and only if k = 0 or k = n. If n is odd,

q
then also ¢?, and consequently g2 is primitive, so that the formula above collapses to the

equality (2.10). ]

Corollary 2.2.2 Let g be a primitive odd n-th root of unity. Let (TH) = (Z Z) de-
note the generators of A(M,(2))or A(SLy(2)), and {(T;,t)} denote the generators of
A(GL4(2)). Then the following facts hold:

1. The (central) subalgebra generated by T7 is a sub bialgebra of A(M,(2)).

2. The (central) subalgebra generated by {T%,t"} is a sub Hopf algebra of A(GL,(2)).
3. The (central) subalgebra generated by 17} is a sub Hopf algebra of A(SL,(2)).

Proof.  As regards A(M,(2)), everything is already proved. As regards A(GL4(2)), the
thesis comes from the fact that the extra generator ¢ is grouplike, and from the properties
of the antipode. As far as A(SL,(2)) is concerned, one simply uses the (anti)algebraic

properties of the antipode, to see that this subalgebra is closed under the antipode. O

The above corollaries suggest how to embed the undeformed bialgebra A(M(2,C)) and
Hopf algebras A(GL(2,C))and A(SL(2,C))in their g-analogues. In fact, (see [PW], Sec-

tion 7.) we have the following
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Proposition 2.2.3 Let q be a primitive odd n-th root of unity. Let Tij denote the gen-
erators of A(M(2,C)). Then the map

Fr: A(M(2,C)) — A(M,(2)), Tijr 17, 4,5 € {1,2}, (2.11)
is a bialgebra injection, called Frobenius map.

Proof. First of all, since T} commute, Fr is well-defined on generators of A(M(2,C)),
and extends to the whole A(M(2,C))as an algebra map. Then, since

2 2
(Fre Fr)AT; = (FroFr)Y Tx®Ty =y Th @ Ty = A(Fr(Ty)) ,
k=1 k=1

and

e(Fr(Ty)) = e(Tj) = b; = &(Ty) ,

F'r is a coalgebra map, hence a bialgebra map. Furthermore, it is injective, since it maps

linearly independent elements into linear independent ones. O

Remark 2.2.4 The name Frobenius (see e.g [C-P]) for this map comes from the following
analogy: let k a field of characteristic n and let A a commutative algebra over k. Then
one has that n-a = 0, for all a € A. Consequently the map Fr : A — A, given by
a — a™, is an algebra homomorphism. In particular, one gets F'r(a+b) = F'r(a) + Fr(b)

because, since in this characteristic (7) # 0iff Il = 0 or I = n, it turns out that
(a+0b)" Zlo(> alb"t = a" + b &

To pass to A(GLy(2)) and A(SL,(2)) we first need the following lemma, whose proof
can be found in [PW], Lemma 7.2.3.

Lemma 2.2.5 Let det=ad — b¢ the ordinary detrminant of A(M(2,C)). Then one has
Fr(det) = dety.

With this lemma at hand, one can see that the Frobenius map can be extended to
A(GL(2,C)), putting Fr(¢) = t*, and factors down to A(SL(2,C)), generating Hopf

algebra maps. So we can state the following
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Corollary 2.2.6 Let g be a primitive odd n-th root of unity. Then the map
Fr: A(GL(2,C)) — A(GLy(2), {Ti,1} = {T3,1"}, i,5 € {1,2}, (2.12)

1$ a Hopf algebra injection.
The same map factors down to a Hopf algebra injection Frr : A(SL(2,C)) —s A(SL,(2)),

Tij = T35 We will still refer to this maps as Frobenius maps.

Proof. The above lemma ensures thai these maps are well defined. Together with the form
of the antipodes, it also ensures that they are Hopf algebra maps. As regards injectivity,
for A(GL(2,C)) this comes from the fact that A(GL,(2)) is a free A(GL(2,C))-module
with the action of A(GL(2,C)) given via the Frobenius map (see Theorem 7.3.1 in [PW)),
whereas for A(SL(2,C)) it simply depends on the fact that this map sends a basis into

linear independent elements. o

When considering A(GL,(2)) or A(SLy(2)), we can link the present situation to
the general theory of exact sequences of Hopf algebras, by completing the Frobenius
‘mapping with the canonical projection on the quotient Hopf algebra obtained via the
ideal generated by the image of the augmentation ideal of A(GL(2,C)) or A(SL(2,0)).

Being Fr(A(GL(2,C))) and Fr(A(SL(2,C))) central sub Hopf algebras respectively
of A(GLy(2)) and A(SL,(2)), the Frobenius mapping is normal (recall Definition (1.1.4).
Furthermore, being A(GL,(2)) and A(SL,(2)) Noetherian algebras, one can invoke
Theorem 3.3 in [S2] to state that they are left and right faithfully flat modules over,
respectively, A(GL(2,C)) and A(SL(2,C)), where the module structures are given via
the Frobenius map. Recalling Definition (1.2.11), we can then state the following

Proposition 2.2.7 Let q be a primitive odd n-th root of unity. Then the following se-
quences of Hopf algebras and Hopf algebra maps

A(GL(2,0)) I% A(GLy(2)) = A(GL,(2))/1,, (2.13)
A(SL(2,0)) I5 A(SL,(2)) < A(SLy(2))/L, (2.14)

where I, = A(GLy(2))Fr(A(GL(2,0)") and I, = A(SL,(2))Fr(A(SL(2,C))"), are

strictly exact.
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The augmentation ideals A(GL(2,C))" and A(SL(2,C))" are respectively generated by
{t-1,a—1,d—1,b,¢}, and {a—1,d —1,b,¢}, so that the Hopf ideals I, and I, are given
by I, =<t"—1,a" —1,d" — 1,b",¢* > and I, =< a" — 1,d" — 1,0",c" >.

The quotient Hopf algebras A(GL,(2))/I, and A(SL,(2))/I; are then finite dimen-
sional vector spaces, a set of linear generators (not a basis) being given respectively by

{z(t)}, 7(a)?, 7 (D), 7(c), w(d)™} and {7 (a)’, 7(b)F, 7 (c)', w(d)™}, {4, 4, k,[,m} € [0,n—1].

2.3 A(SL 2 (2)) as a faithfully flat Hopf-Galois ex-
tension

For the sequel, we will concentrate our attention on A(SL,(2)) for ¢ being a primitive
third root of unity, e.g. q¢ = e . We will provide direct proofs that A(SL,(2)) is a
Hopf-Galois extension of A(SL(2,C)).

Obviously, we now have ¢~2 = ¢, and the comultiplication on the basis elements of

A(SL4(2)) is given by:

p,T,8
A(apbrcs) — Z (i) (;) (z) ap—’\b’\a”br_“cs"”dy ® ap—)\c)\budr—uas—-ucu ’
q q q

Ap,pv=0

k,lom
Apkddm) = > (’;) (l) ("‘) VAR d™ Y @ A dF el et br d™ Y L(2.15)
I v
Ap,v=0 q q q

where m is a positive integer and p, 1, s, k,l are non-negative integers.

In this situation, let us denote with A(F) = A(SL,(2))/I, the quotient Hopf algebra
defined by the sequence (2.14), thinking of it as the algebra of "functions” on some finite
quantum group F. A(F) is neither commutative nor cocommutative, and, as a vector

space over C, it is 27-dimensional, as stated in the following [DHS]

Proposition 2.3.1 Let us denote with a,b, & the elements m(a),7(b), w(c). Then, the set
{@PV &}y rseion) i5 a basis of A(F).

Proof. Guided by the left action of A(F) on itself, we define a 27-dimensional represen-
tation ¢ : A(F) — End(C?* @ C* ® C*) by the following formulas:

o(@a) = Joli®ls,
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o) = QeN®I;,
o) = Q®IL;®N, (2.16)
where
0 01 1 0 O 0 00O 1 00
J=11001],Q=]0 ¢! 0 ,y N=1100 |, B=}010
010 0 0 g2 010 001
(2.17)
(It is straightforward to check that o is well defined.) Assume now that
> e =0.
p,r,s€{0,1,2}
Applying o, we obtain
Y e PO N @ N =0 (2.18)
p.rs€{0,1,2}

On the other hand, let us consider the linear functionals A*'™ : M;3(C)®° — C, k,I,m € {0, 1,2},
given by the formula

R*™(A® B® C) = ArBioCrmo (2.19)

where we number the rows and columns of matrices by 0,1,2. From (2.18) we can conclude
that
pFim > a4 PQTP RN @N° | =0, Vi I me{0,1,2}.

p,r,s€{0,1,2}

Consequently, since

hklm (Jpqr—}—s Q N’ ® Ns) — 5pk5r16ms ,

we have that a5 = 0, for any p, r, s. Hence aPb™¢* are linearly independent, as claimed.

a

Corollary 2.3.2 (cf. Section 3 in [S-A]) The representation g : A(F) — End(C? ®
C* ® C®) defined above is faithful.

Remark 2.3.3 Observe that we could equally well consider a representation with Q

replaced by Q~%, J by J* and N by N, where ¢ denotes the matrix transpose. -0
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Let us now present three alternative strategies to show that A(SLg(2)) is an A(F)-
Galois extension of A(SL(2,C)). All of them are centered on the identification of
Fr(A(SL(2,C)))with the subalgebra of coinvariants A(S L,(2))°4®), and are character-
ized by the fact that they do not use the hypothesis of A(SL(2,C))-faithful flatness of
A(SL,(2)), rather arriving to it as a final result.

The first is more direct: as a first step one shows, by computations making use of
two quotient Hopf algebras of A(F’), that Fr(A(SL(2,C)))coincides with the subalge-
bra of coinvariants A(SL,(2))°°4®), then one uses Proposition (1.3.2) to show that the
A(F)-extension A(SLy(2)) D Fr(A(SL(2,C))) is Hopf-Galois. At this point, being
Fr(A(SL(2,C))) commutative and A(F') finite dimensional, Corollary 1.5 in [S3] allows
to conclude that A(SL,(2)) is a faithfully flat A(SL(2,C))-module, and consequently,
that the sequence A(SL(2,C)) LN A(SL,(2)) — A(F) is strictly exact.

The second approach starts from Proposition (1.3.2), that allows to say that the
canonical map can : A(SL,(2)) ® asr.0) A(SLg(2)) — A(SLy(2)) ® A(F) is bijective.
Then, a new lemma is introduced to show that Fr(A(SL(2,0))) = A(SLy(2))4H),
provided the existence of a section s : A(SL,(2)) — Fr(A(SL(2,C))). Faithful flatness
and strictly exactness are then achieved as above.

The third is less direct, supposing known the subalgebra of coinvariants. We propose
it because it makes use of a lemma linking the present picture with some features of dif-

ferential calculus for quantum principal bundles.

First path.
Direct proof (see also [DHS)) that Fr(A(SL(2,C))) = A(SLy(2))*4").

Let us recall that A(F) coacts on A(SL,(2))by push-out Ag = (id®m)o A. It can be
quickly verified or concluded from Lemma 1.3(1) in [S1] that A(SL(2,C)) is embedded in
the algebra of A(F)-coinvariants, i.e., Fr(A(SL(2,C))) C A(SLy(2))°4®). Let us then
introduce two quotient Hopf algebras H, = A(F)/ < ¢ > and H_ = A(F)/ < b>. Both
H, and H_ coact in a natural way on A(SL,(2)), that is, we have A¥ := (id®ms) 0 A,
where A(SLy(2)) 3 H, A(SLy(2)) = H_ are the canonical projections. By construc-
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tion, A(F)-coinvariants are necessarily in the intersection of H, and H_ coinvariants of

A(SL,(2)). By showing that
A(SLy(2))°"+ N A(SLy(2))°"- C Fr(A(SL(2,C))) ,
we will achieve
Fr(A(SL(2,C))) = A(SLy(2))%AT) = A(SLy(2))°H+ N A(SL,(2))H- .

Let’s write, then, a general element of A(SL,(2)) asw =3 | Cprs@PU7 437, | BrimbEctd™,
with p,7,5 > 0 and &, > 0, m > 0. The condition for w to be coinvariant under the right

coaction of H, or H_ is then:

AR <Z aprsaPb’c’ + Z ,Bklmbkcld’”) = (Z OprsaPb"c’ + Z ﬁklmbkcld’n) ®1s

P,TyS klm DTS k,lm
(2.20)
From equations (2.15) it follows that:
Af(apbrcs) — (r> q_u(2r+s—2u)ap+ubr—ycs ® &2r+s+p-—2u5u ,
©=0 # q
AR (b ™)
k,m
= Z (k) (m) qu(m-—u)~,\(2k+2m+l~2()\+u))a/\bk—,\cl+udm—u ® a2k+2m+l—2(}\+u)g)\+u ’ (221)
Av=0 A q g q
and
p.s
A}j(al’brcs) — z (P) (3) q-,\(2r+5—u)ap—Abr+Acs—Vdu ® &p+s+2r—()\+u)é)\+u ,
A,v=0 A q v q
l
Af(bkcldm) — Z (1> qpmbkcl——p.dm—{—u ® a2k+2m+l—péu ) (222)
I
=0 q

Due to the fact that in H, we have 5* = 0 and in H_ we have & = 0, the sums in the pre-
vious equations are actually limited to the cases: u = {0,1,2}, A\+v = {0,1,2}. Writing
explicitly these sums and grouping the first legs of the tensor products as coefficients of

linearly independent elements of H, or H_, we have that the coinvariance condition then

'implies for H,:

~2 k ~2k+2m+1
E Qprs@Pb7C® @ @*T TP 4 E Brmb*c'd™ @ a*F+m+

p,T,S klm
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= (Z 0prsaPb7Cc’ + Z ﬁk,mbkc’d’"> ®1;. (2.23)

p.T,S k,l,m
For p,r,s and k,I,m such that 2r + s + p = 37 and 2k + 2m + [ = 3¢’ this equality hold
trivially, whereas for any other values of the indices we have, due to linear independence,

that a5 and By, must vanish. Using this fact, now we can pass to the @b coefficients.

We have:

Zaprs (;) q—(2r+s——'2)ap+1br—-lcs + Z IBklm (]1“) q2abk—lcldm
q

PTsS q k\l,m
+ > Brim ( ) T =0 (2.24)
k,lm

Using the relation ad = 1 + gbc we obtain:

Zaprs ( ) —(2r+s—2)ap+lbr~— + Z Brim ( > l+kbk—-lcldm-—1

P78 k,lm

+ Z Brim [( ) +k+2 (T) qm—I:I bettigm-1 — ¢ . (2.25)
q

k,l,m

Due to the presence of the term aP*!, the first sum is composed by elements linearly
independent from the ones in the other sums, so it decouples and, since for ¢ being a
cubic root of unity one has (3:) = 0, tells us that the only nonvanishing ap,; are
the ones such that r = 37, which qalso implies that p + s = 3j'. The other two sums
give us more complicated relations on Fiin. We will come back to them after retriving
informations from the requirement of coinvariance under H_ coaction. In the H_ sector,
no new informations come from the ®1_ coefficients. From the ®a?¢ part we have the

following equation:

S T 5— -5, p=1pr s ! -
Zcxprs (1) aPb’c 1d+Zapr5 ( ) g aP et + Z Brim (1) g b ld™ = 0.
P78 DT, q k,l.m q
(2.26)

To avoid ambiguities, we again use the relation ad = 1+ gbc, and we split the sum in this

way:

ZaOrs <i) et 1d+ Z aprs( ) qs—lap-lbrcs—l
T,S q

p>0,1,s

+ Z Qprs [(:) +¢° (11)) ] q’aP” lpr+ies 4 z Biim ( > qmbkcl*ldm'}'1 :(0,27)
q q

P>0;7',3 k l m
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The first sum is identically zero, since the only nonvanishing aq,, are the ones with r = 3;
and s = 37, but in this case (:) vanishes. The last sum, due to the presence of the d™+!
term, again decouples and givesq the condition [ = 35, which implies also k +m = 3§’
The second and the third sum, which in principle should be grouped after a rescaling of
indices, must vanish separately due to the presence, respectively, of b” and b"*! terms, and
to the fact that the only nonvanishing a,,, are the ones with 7 = 3i. This implies that
s = 37 and consequently that p = 35". Now we can go back to the H, sector. The relation
k +m = 3j make the third sum in equation (2.25) vanish identically, so the other sum
tells us that the only nonvanishing S, must have k = 3i, from which follows m = 37’.
We obtain, then, that any w € A(SLy(2))°"+ N A(SL,(2))°"- is of the form w =
2 s Cprs @O + 30 BymbFdd™, with p,7, s, k, [, m multiples of 3, implying that
w € Fr(A(SL(2, Q).

&

Second path.

Lemma 2.3.4 (cf. Lemma 1.7 in [DHS]) Let P be a right H-comodule algebra and C
a subalgebra of P# such that the map ¥ : PQc P 3 p ®c p' PPy ® Py € PO H
15 bijective, and such that there ezists a unital right C-linear homomorphism s : P — C

(cf. Definition A.4 in [H]). Then C = P°H  and P is an H-Galois eztension of C.

Proof. Note first that the map v is well defined due to the assumption C C P Now,

let z be an arbitrary element of P, Then
1@cz=¢"'(P(1®cz)=v  (z®1)=1®c1. (2.28)

On the other hand, we know from Proposition 2.5 of [CQJ that P ®¢ (P/C) is isomorphic
with Ker(m, : P®¢c P — P). In particular, this isomorphism sends 1 ®c z — z ®c 1 to
1®c [z]c € P ®¢ (P/C). Remembering (2.28) and applying first s ®¢ id and then the

multiplication map to 1 ®c¢ [z]c, we obtain [z]c = 0, i.e. z € C, as needed. O
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Remark 2.3.5 Observe that the assumption of the existence of a unital right C-linear
homomorphism s : P — C can be replaced by the assumption that P/C is flat as a left
C-module. Indeed, we could then view C ®¢ (P/C) as a submodule of P ®c¢ (P/C), and
consequently 1 ®¢ [z]c as an element of the former. Now one could directly apply the

multiplication map to 1 ®¢ [z]c and conclude the proof as before. &

Lemma 2.3.6 (see Lemma 2.5 in [DHS]) Letp,r,s,k,I,m € Ny, m > 0. The linear
map s : A(SL,(2)) — Fr(A(SL(2,C))) defined by the formulas
aPb’c® when p, T, s are divisible by 3

s(afb’c’) =
0 otherwise

. 1 bectd™ when k, 1, m are divisible by 3
s(b*cd™) = (2.29)
0 otherwise,

is a unital Fr(A(SL(2,C)))-homomorphism.

Proof. The unitality is obvious. Next, as F r(A(SL(2,C))) is a central subalgebra of
A(SL,4(2)), the left and right F'r(A(SL(2,C)))-module structure of A(SL,(2)) coincide.
Now, we want to show that s(fw) = fs(w), for any f € Fr(A(SL(2,C))) and w €
A(SL,(2)). In terms of the basis of A(SL,(2)), we have a natural decomposition f =
L+ 2w = wh +w?, where f1 = 3 fLla®6 ¥, 2= 3 o famb T, Wt =
Swis,aPer, w? = 3w}, bctd”. (Unless otherwise specified, we sum here over
non-negative integers.) It is straightforward to see that s(f'w!) = f?s(w') and s(f?w?) =
f25(w?). We will demonstrate that s(f2w!) = f2s(w?). (The remaining equality s(f'w?) =

fls(w?) can be proved in a similar manner.) We have:

21__5:2 3k3l3m§ 1 ard __E 2 1 3m op3k+6 31+
f w" = fklmb C d waﬁ,y(l b C’Y = fklmwa,@‘yd a b ﬁc T

m>0 m>0

_ E 2 1 3m—a jo . 01.3k+8 3+ 2 1 3m 3m a—3m13k+8 3l+y
= fklmwaﬁ'yd d a b C + fklmwaﬂvd a a b C
Im>a 0<3m<La

= Z flglmwéﬂ'ydam_a a(b1 C)b3k+ﬂcsl+7+ Z fl?lmwclxﬂ'yaa—smpm(bss63)b3k+ﬁc3l+77 (230)
Im>a 0<3m<La .
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where, due to the relation da = 1 + ¢ !bc, the monomials d®a® =: Pa(b,c) and

d’"a®™ =: p,, (b, c*) are polynomials in b, ¢ and b3, ¢ respectively. Applying s yields:

s(f 2‘01) = Z f I?lmwé)\,ﬁ;/s(d3(m_)\)p3)\(b7 C)b3k+ﬂc3l+7)

m>A

-+ Z fx?lmwsluu,zus(UJB(A"m)Pm(b3,03)53(k+”)03(l+u))
0<m<A

— Z fl?lmwé,\,ﬁ,’ys (dBAGBA b3k+ﬁc3l+7d3(m—A))
m>A

. 2 1 3(A—m 3 3\23(k+p) 3(l+r
- E fklmw3/\,3u,3ua ( )pm(b ,€")b (ki) 3(0+)
0<m<A

- Z lem wé,\,au,&/ d3* g3 b3(k+u) c3(l+u) da(m—A))

m>A

- Z f lzlmwé,\,su,wa?’()\—m)d3m03m53(k+“) A (2.31)
0<m<A

On the other hand, we have:

fQS(wl) — Z f]?lmb3kcsld3m Z w;/\3#3ya3/\b3u03u

m>0

_ 2 1 3m_ 3\13k-+3u 3l-+3v
= E fktmwz,\3u3ud a’*b c

m>0

_ 2 1 3m—3X 33X 3An3k+3u 31430
= E fklmw3)\3u3ud d>*a’*b c

m>\

2 1 3m . 3m  3A\—3m 1 3k+3u 3l+3v
+ § : fklmw3/\3u3ud aa b c . (232)
0<m<A

Hence s(f?w!) = f2s(w'), as needed. O
(Note that it follows from the above lemma that A(SLy(2)) = FT‘(A(SL(Q,C))) &

(id — 5) A(SLy(2)) as A(SL(2,C))-modules; cf. Lemma 3(3) in [R].)
)

Third path. (cf. with the Appendiz in [DHS])
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Lemma 2.3.7 Let P be a Hopf algebra and I a Hopf ideal of P. Also, let H denote the
quotient Hopf algebra P/I, ng : P — P/I the canonical surjection, and B = Pl yhere
P is considered as a Tight H-comodule algebra with the coaction Ag := (id @ my) o A.
Then P is an H-Galois estension if and only if (mp o (S ® id) o A)(I) = 0, where

75 : P® P — P Q®pg P is the canonical surjection.

Proof. If P is an H-Galois extension of B, then we have the following short exact sequence

(see the proof of Proposition 1.6 in [H]):
0— PO'BP < PQP % PR P/I — 0, (2.33)

where Q'B = Ker(mp : B® B — B) and T = (mp®my)o (id®A). 1t is straightforward
to check that (T o (S ® id) o A)(I) = 0. Hence it follows by (2.33) that (S®id) o
A)(I) C PQ'B.P. Consequently, (75 o (S ®id) o A)(I) = 0 due to the exactness of the
sequence

0— PQ'BP+P®P -5 PegP —0.
Assume now that (7p o (S ® id) o A)(I) = 0. Then the map
¥:P®H3p®p] — pS(ply) ®p oy € P®s P
is well defined. It is straightforward to check that ¥ is the inverse of
Y:P@pP2p@pp — ppy) ®@[p(plr € POH.
Hence we can conclude that P is an H-Galois extension of B. O

Lemma 2.3.8 Let B denote Fr(A(SL(2,C))) = A(SL,(2)<4"), let I =< Fr(A(SL(2,C))") >
and

m5 : A(SLy(2)) ® A(SLy(2)) + A(SLy(2) ®5 A(SLy(2))
the canonical surjection. Then one has
(rpo(S®id)o A)(I)=0.

Proof. Taking into account of the centrality of the T, g-’s and remembering that an arbitrary

element of of the ideal I =< T3 — §;; > can be written as 3, ;cr) o P (T3 — di5), P €
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A(SL4(2)), 4,7 € {1,2}, we obtain

(”B o(S®id)o A) (Zwe{l 2}p ( za))
= Z (7o (S® zd))(p(l)T ® p(Q)TkJ Z (rpo(S® idD(PH)@j ® Pg))

i,5,k€{1,2} i.j€{1,2}
i,7,k€{1,2} i,7€{1,2}
= D (CrepaS@TOTE)SEE) @npl)— Y. 65501 @apih =0,
i,j€{1,2} i,je{1,2}
where the last equality comes from the relation S(7; k)T,f’j = Fr(S(Tu)Tx;) = di;. a

&

Remark 2.3.9 In our situation, finite dimensionality of A(F) can strongly come to our
aid to show that A(SL,(2)) is a A(F)-Galois extension of A(SL(2,C)). In fact, for any
Hopf algebra P, the canonical map PO P 5 pQp' PPy ® Plzy € P ® P is bijective.
Consequently, for any Hopf ideal I of P, the canonical map P ® peoeny P — P ® (P/I) is
surjective. (As usual, we assume the natural right coaction (id@r)oA : P — P® (P/I).)
Now, since in our case we additionally have that P/I = A(F) is finite dimensional, once
identified Fr(A(SL(2,C))) with A(SL,(2))*AF), we can conclude that A(SL,(2)) is
an A(F)-Galois extension of F'r(A(SL(2, C))) by Theorem 1.3 in [S3] (see [KT]). &

2.4 Quotients of A(SL i (2)) as cleft and cocleft ex-

tensions

Let us now consider the case of (quantum) Borel subgroups. To abbreviate notation, we
put Py = A(SL,(2))/(c), By = A(SL(2,0)/(2), and Hy = Py /(a*~1, ) = A(F)/(3).
(In the sequel, we will often abuse the notation by not distinguishing formally generators
of P, Py, P_, Py, etc.) It is easy to check that all the ideals we quotient by are Hopf
the ideals, so that P,, B,, H, are Hopf algebras. It is also easily checkable that the
Frobenius homomorphism (cf. [PW, Section 7 5]) Fry : By — P, given by the same

formula as (2.12) is well defined, so that we can consider the associated exact sequence of
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Hopf algebras:

F L
B. 5 p, I H, .

Before proceeding further, let us first establish a basis of P, and a basis of H .

Proposition 2.4.1 (see Proposition 3.1 in [DHS]) The set {a®b"},rcz,r>0 is a basis
Of P+.

Proof. This proof is based on the Diamond Lemma (Theorem 1.2 in [B-G]). Let C{«, £, §)
be the free unital associative algebra generated by «, §, 6. We well-order the monomials of
C(a, B,6) first by their length, and then “lexicographically” choosing the following order
among letters: o < § < f. In particular, this is a semigroup partial ordering having
descending chain condition, as required by the Diamond Lemma. Furthermore, we chose

the reduction system S to be:

S=1{(as,1), (6a,1), (Ba,q 7 f), (85,q58)} .

It is straightforward to check that the aforementioned well-ordering is compatible with &,
there are no inclusion ambiguities in S, and all overlap ambiguities of S are resolvable.
Therefore, by the Diamond Lemma, the set of all S-irreducible monomials is a basis of
Cle, 8,8)/J, J == (a6 -1, 6 — 1, fa — g 'af, 35 — ¢58). The monomials a?g", 5" 4,
p, 1, k,1 € Ny, k> 0, are irreducible under S and their image under the canonical surjec-
tion spans C(a, 8, 6)/J. Consequently, they form a basis of C(c, 8, 6)/J. To conclude the
proof it suffices to note that the algebras C(w, 3,6)/J and P, are isomorphic. O

Proposition 2.4.2 The set {&Pér}p,re{g,l,z} is a basis of H,.

Proof. Analogous to the proof of Proposition 2.3.1. a

This time, the formula for the right coaction of H, on P, is not so complicated and

reads:
.

Ag(aPb’) = Z <T) q~ﬂ(2r~2u)ap+ubr—u ® G2 HP2HpH (2.34)
p=0 K q
With the above formula at hand, it is a matter of a straightforward calculation to prove

that P, is an H,-Galois extension of Fr.(B,). In particular, we have P+ = Fr,(B,).
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Moreover, since P, is generated by two group-like elements a abd d and a skew-primitive
one, b, it is not hard to convince oneself that P, is a pointed Hopf algebra, i.e. all its
simple subcoalgebras are one dimensional. Consequently, by Corollary 4.3 in [S1], (see

also Theorem III in [S4]) we obtain [DHS]:
Proposition 2.4.3 P, is a cleft H,-Galois extension of Fr, (B.).

We will actually have more: we will find a family {¥,} of unital cocleaving maps
W, : P, = Fr(B,), and consequently by Remark (1.5.11), a corresponding family {®,}of
counital cleaving maps ®, : H; — P, achieving, according to Definition (1.5.10), that the
sequence B Iry p, 5 H, is cleft, and, by Proposition (1.5.13), that P, is isomorphic
to a cross product B7#,H.

To do this, let us start with a lemma, that we can give in more generality for ¢ being
a primitive, odd n-th root of unity, with P, and B, now defined as in the beginning of

the section with this more general value of g.

Lemma 2.4.4 Let q be a primitive odd n-th root of unity. Then the set {apbr}p,re[o,n_l]

is a basis of the B, -module P,.

Proof. This set clearly generates P, as a (left and right) B,-module. Let us show that
it is B -free, i.e. that Z;;io BpraPb” = 0, with B, € Fr(By), implies 8,, = 0, Vp,r €

[0,n — 1]. Since we can write Bor = Y iez JeN Yor,i;a™0™, with Yorii € C, we have:

n—1 n—1 n—1
S =5 S e 5§ )aeo

p,r=0 p,r=01i€Z jeN k€Z,leN \p,r=0
where we have set ni+p =k, nj +r = [. Being {aFb'}rez sen a linear basis of Py, this

n-—1

implies 377"y, bz Lo afb! = 0,Vk, . Now, considering that £ must belong to Z and
l—;1 must belong to N, by fixing the values of k and letting [ scroll over N, one finds that
Ypr,ij Must vanish Vp,r € [0,n—1], Vi € Z,j € N. (To illustrate the procedure we give an
example for k = 0: for [ € [0,n — 1] one gets Yor,00 = 0, V7, for | € [n,2n — 1] one obtains
Yor,01 = 0,Vr, and so on...) This implies that 8,, = 0, Vp, 7 € [0,n — 1], which gives the
desired result. o

With this lemma at our hands, by the following Proposition, that we again propose

for ¢" =1, we are now able to construct a family unital cocleaving maps.
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Proposition 2.4.5 Let q a primitive, odd n-th root of unity. The B, -linear maps ¥, :
P, — Fr (By) defined by the formula

W, (aPb") = 6,00°P™ , p,re[0,n—1], (2.35)

for all v : [0,n — 1] = Z arbitrary functions such that v(0) = 0, are unital cocleaving

maps.

Proof. Being the set {a?b" }p reo,n-1] a basis of the B,-module P, , the above formula gives
well defined B, -linear maps. Furthermore, they are evidently convolution invertible, the

convolutions inverses being given by ¥ (a?b") = 6,0a™*®)". O

Corollary 2.4.6 Let g be a primitive, odd n-th root of unity.
Then the sequence B Iry P, kN H, is cleft, and Py is isomorphic as a Hopf algebra

to a cross product B™#,H, the explicit isomorphism and its inverse being given by
p U(p) ® T4 (pe) , w®h— w®,(h) ,

for any v : [0,n — 1] = Z, v(0) = 0.

In order to work with a more concrete example and to have an explicit picture of the
cross product structure, let us return to the case ¢ = ez‘g‘i,'and let us select a particular

cocleaving map ¥ by choosing, e.g., v(1) =0, v(2) = 1, so that we have:
U(1)=1, ¥(a) =1, T(a®)=a®, U(a?")=0,forpe(0,2],r€[1,2]. (2.36)

Since we know, by Proposition (2.4.5) the explicit expression of ¥~', then, by point 2.
and 1. in Definition (1.5.10) we can construct the corresponding counital cleaving map

® : H, — P, and its convolution inverse. They are given by:

1) =1, @) =a, ®@)=at, d0)=b, &*) =aV?,
B(ab) = a2, (@) =a b, @@b*) = a%?, (@) =a'?. (2.37)

() =1, '@ =0a"', @@ =a, () = ¢, 71 (b*) = ga~ b%(2.38)
®1(ab) = —a~'b, @ 1(a%) = —ga~%, ®71(a@b%) = a710?, ®7H(a%?) = ¢*a* .
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We have now all the ingredients to build via formulas (1.7) and (1.8) a weak action
> : Hy ® By — B, and a convolution invertible cocycle o : H, ® H; — B,, and via
formulas (1.15) and (1.16) a weak coaction p : Hy — H, ® B, and a convolution invertible
co-cocycle 7 : H, — B, ® B. We also recall (cf. the proof of Proposition (1.5.13)) that
these data fit together to make B, "#,H, a Hopf algebra.

The situation is actually simpler then how it looks, being B* a central subalgebra of
Py, so that the weak action is trivial, and, being ¥ a coalgebra map, so that the co-cocycle
is also trivial, letting p to be an actual coaction.

The explicit form of ¢ and p are given by:

ola®a)=ad o(@®®a?) =a3, o(b®b?) = a3,
o(b® ab?) = ¢2a=3p, o(b® a%?) = qb®, o(b® ®b) = a3,
o(b® ® ab) = qa53, o (0?2 ® a2b) = q2a=3b3, o(ab @ b2) = a=5b3,
o(ab® ab?) = a3,  o(ab® a%h?) = ga=3b3, o(@b®b?) =a?,  (2.39)
o(a% @ ab%) = ¢®a=3%, o (a%h @ a2b?) = qa3b®, o(@b? ® b) = a313,
o(ah? ® ab) = qa~%b®,  o(abh® ® a%b) = q%a=3b°, o(a%0® ® b) = b°,

o(a*0? @ ab) = qa~3b3, o(a%h? @ 6%b) = ¢2a~%1®, O |other basis elements = € ® € .

p@®)=a @1, pb)=b®1, pab) =ab®a™?, p(a%h) =a*h®a™3,
p(B*) = ®a"®, pab®) =a’ ®@a?, p(ah?) =2’ ®a® . (2.40)
The algebra and the coalgebra structure on B, ® H., that are equivalent to the corre-

sponding structures of P, are then given by the formulas
(z®h) (1) =zyo(hn®ly) ® he)le) - (2.41)
Alz @ h) = z(1) ® p"(hy) ® w(z)p¥(ha)) @ hey - (2.42)

Furthermore, by formula (1.22), the antipode is given by
S(z @ h) =[S, (p*(h) ® Su,. (" (W))][SB, (z) ® 1n,]- (2.43)

In principle, the above defined algebra and coalgebra structures on B, ® H, could be
”hidden” forms of the ordinary ones. In this case, by Propositions (1.3.11) and (1.4.7),
the cocycle and the coaction should be ”gaugeable” to the trivial ones. This is not the

case, as stated by the following propositions [DHS].
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Proposition 2.4.7 The cocycle o given by (2.39) is not equivalent to the trivial one.

Proof. Suppose that the claim of the proposition is false. Then there would exist a
convolution invertible map v : Hy — By, such that 0, = € ® ¢, with o, given by formula

(1.10). Via the expression (1.8), this would be equivalent to
[mo (@®M]+[(®") " om]=¢c®c¢. (2.44)

Here ®” := v x ® and the middle convolution product is defined with respect to the
natural coalgebra structure on H, ® H,, namely A® := (id ® flip ® id) o (A ® A).
The same argument of Remark (1.3.9)(apply *(®” o m) from the right to both sides of
(2.44)) allows us to conclude that ®7 is an algebra homomorphism. Again, it is well
known that ®” must be always injective: It is a restriction to H, of the isomorphism
B ®H, 3 2z®h — z®"(h) € P, . Hence we can view H, as a subalgebra of P, . In par-
ticular, there exists 0 % p € P, such that p? = 0. (Put p = ®7(b%).) Write p as > ez @ Pu s
where the coefficients {p,},cz are polynomials in b. Let pq(p) := max{y € Z| pu # 0}
It is well defined because a#b", u,n € Z, n > 0, form a basis of P, , and exists because
p # 0. Now, due to the commutation relation in P, and the fact that the polynomial ring
C[b] has no zero divisors, we can conclude that uy(p?) exists (and equals 2u4(p)). This

contradicts the equalitv p* = 0. O

To put it simply, H. cannot be embedded in P, as a subalgebra.
Proposition 2.4.8 The coaction p given by (2.40) is not equivalent to the trivial one.

Proof. Suppose the contrary. Then, there would exist a counital convolution invertible
map § : Hy — B, such that p(h) = h@) ® £ (hqa))€é(h(s)) . With the help of Proposi-
tion 2.4.2, applying this formula to b implies £~1(@)¢(a2) = 1, and requiring it for 5% gives
£71(a*)¢(a) = a75. Since @ is group-like, £(a) and £(@%) are invertible, and we obtain

1 =¢"1(a)é(a?) = a®. This contradicts Proposition 2.4.1. 0

Remark 2.4.9 Notice that, throughout this section we could equally well have tried to
use the lower (quantum) Borel subgroups P_, B_, H_. The Hopf algebras H, and H_

are naturally isomorphic as algebras and anti-isomorphic as coalgebras via the map that
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sends @ to @ and b to &. They are also isomorphic as coalgebras and anti-isomorphic as
algebras via the map that sends @ to @2 and b to &. It might be worth noticing that H,
and H_ are not isomorphic as Hopf algebras. Indeed, if they were so, there would exist
an invertible algebra map ¢ : H, — H_ commuting with the antipodes. From direct
computations, it turns out that any such map has to satisfy ¢(b) = k(@ — ¢2a2)&, with «
an arbitrary constant. This implies ¢(h)? = ¢(b?) = 0 contradicting, due to b # 0 (see
Proposition 2.4.2), the injectivity of ¢ . O

To end this section, let us consider the Cartan case: We define the Hopf algebras
Py, By and H. by putting the off-diagonal generators to 0, i.e., Py = P/(b,c), By :=
B/(b,c), Hy := H/(b,&). Everything is now commutative, and we have P, = B, =
A(C*), Hy = A(Zs), where C* := C\ {0}. It is immediate to see that, just as in the
above discussed Borel case, we have an exact sequence of Hopf algebras B.. gt P.— H,,
and Py is a cleft H.-Galois extension of F r+(Bs). A cocleaving map ¥, a cleaving map
®, the corresponding cocycle o and the coaction p are given by the formulas that look
exactly as the a-part of (2.36), (2.37), (2.39) and (2.40) respectively. In this case, p is
trivial, so that the coalgebra structure on A(C*)® A(Zs) is the ordinary one, whereas the
algebra structure still remains non trivial, being o not equivalent to the trivial cocycle. (In
this case the proof relies on the fact that there does not exist an algebra homomorphism
from A(Zs3) to A(C*) except the trivial one given on generators by @ ~s 1, Vp € [0, 2],
which is not a right covariant map.)

It might be worth to emphasize that, even though this extension is cleft, the principal
bundle C*(C*, Z3) is not trivial. Otherwise C* would have to be disconnected. This is

why we call ® a cleaving map rather than a trivialisation.
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Chapter 3

A(F) as a quantum symmetry

In this chapter we will investigate more on the finite dimensional Hopf algebra A(F) and
on its dual Hopf algebra H.

In the first section, we will continue the study of the matrix algebra M(n,C) in a
noncommutative geometrical setting started in [DKM1], recalling that M (n,C) can be
viewed as a quotient of A(C?). the algebra of the polynomial functions on the quantum
plane, when ¢" = 1. Being A(C?) a comodule for A(SLy(2)), and being, for ¢ = e, A(F)
a quotient of A(SL,(2)), this will imply that M (3,C) is a comodule for A(F). A(F') will
then appear as a quantum symmetry of M (3,C), the algebra that in Connes’ formulation
of the Standard Model of fundamental interactions, describes the color (chromodynamic)
sector. We will discuss in detail this coaction, also paying attention to the action of Zs,
the classical subgroup of F, and we will investigate the possible extensions of analogous
strategies to the other sectors of Connes’ algebra A.

In the second section, we will identify #, the dual Hopf algebra of A(F’), with a finite
dimensional quotient of U,(s!(2)), the quantized universal enveloping algebra of sl(2), for
¢® = 1, by explicitly showing a nondegenerate Hopf pairing. An intriguing vector space
splitting of #, discovered by [C-R], in terms of a semisimple part very close to Connes’
finite algebra plus the Jacobson radical, will be then discussed.

In the third section, by duality, we will turn the aforementioned coaction of A(F’) into
a representation of # on M (3,C), that we will describe in terms of an automorphism and

twisted derivations. These operators will be described in terms of internal operations of
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M(3,C). At the end of the section, we will also consider two representations of H on
A(F).

In the final section, we will recall the notions of integrals on and in a Hopf algebra and
we will explicitly compute them for A(F) and # in order to achieve more informations
on their algebraic and coalgebraic structure. As a main result, we will show that no Haar
measure exist on A(F'), which, as a consequence of a well-known theorem of [W-S], turns
out not to be a C*-algebra.

Most of the results appearing in this chapter are taken from [DHS], [DNS]. The

reference texts we have used have been mainly [K] and [Sw2].

3.1 A coaction of A(F') on M(3,C)

Recall first that, given ¢ € C\ {0}, A(C2), the polynomial algebra on the quantum plane, is
defined as the quotient algebra A(C2) = C{z,y}/I,, where C{z,y} is the free algebra over
C generated by the two variables z and vy, and I, is the ideal generated by the elements
zy —qyz. For ¢ =1, this algebra becomes commutative and collapses to A(C?) = Clz, 7],
the ordinary algebra of polynomials on the complex plane.

It turns out (e.g. see [K], Proposition IV.1.1) that A(C?) is a Noetherian algebra with
no zero divisors, and that the set of monomials {z*y}; j>o is a basis for the underlying
vector space.

It is well known that A(C?) is a right A(SL,(2))-comodule algebra, i.e. there exist a
right coaction

P+ A(CY) — A(C]) ® A(SLy(2))

such that p, is algebra map, given on generators by
p(z) =2®@a+y®c, p(y) =z@b+y®d. (3.1)

From the commutation relations of A(CZ) and A(SLy(2)), and from the properties
of the g-binomial coefficients, it follows that the value of pg on a basis monomial ziy’ is
given by:

ooy .
pq(xi,yj) — Z (1«) (J) qu(A—i)zA+ﬂyi+j~)\—u ® aACi—Abpdj—u )
g2 b g2

A
Ap=0
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It is then evident that, defined the degree of a monomial u = 'y’ as deg(u) =i + j,
the spaces of monomials of fixed degree are subcomodules of A(CZ) under p,.

We can now state the following

Proposition 3.1.1 Let the right coaction p, : A(C2) — A(C2) ® A(SL,(2)) be defined by
Formula (8.1). Then one has: A((Cg)“’A(SL‘I(z)) = C, for any ¢ € C\ {0}.

Proof. It is a matter of computation, to be eventually performed by using “quotient”
techniques such as the one performed in the First path proof of Section 2.3. o

In our “functions-on-spaces” perspective, we are then led to consider A((Cg) as a quan-
tum homogeneous space of A(SLy(2)). Actually, A(CZ) is an embeddable homogeneous
space in the sense of [B-T], Definition 3.1 (see also [P-P]), whose definition we now recall

in its right-handed version.

Definition 3.1.2 Let H be a Hopf algebra and P a right H-comodule algebra, with a
coaction Ar : P — P ® H. If there ezist an algebra injection ¢ : P — H such that

Aoi=(i®1id) o Ag, then P is called an embeddable quantum homogeneous space.

Proposition 3.1.3 The right coaction pg : A(C2) — A(C2) ® A(SLy(2)) defined in For-
mula (3.1) makes A(C})an embeddable quantum homogeneous space of A(SLq(2)).

Proof. Just take for ¢ the map defined by z — a, y — b. o

Suppose now that ¢ is a n-th root of unity. Then (see e.g. Section IV.D.15 of [W-H]),
for any n € N the algebra of matrices M(n,C) can be identified with the quotient al-
gebra A(C?)/(x" — 1, y" — 1). (Set my the canonical projection and map Z = my(z) to
( 2 I"O‘l ) and § = mp(y) to diag(1,q,...,q"1).)

With the identification above, we have that the set of n? elements given by {Z"7°} seo,n-1,

are a basis for M(n,C). The formula to pass to the canonical basis {Eij}i,qu,n] defined

by (Eij)pq = 0ip0j4 and its inverse are given by

n n—1
. 1 .. .
fi‘rﬂs — E :q8(z+r—1)Ei it s Eij — ;;ij_z § :qs(l—g)gs ) (3‘2)
=1 s=0

72



The algebra M(n,C) has been object of interest in Noncommutative Geometry since
the pioneering works [DKM1], [DKM2], [DKM3], studying the geometry of M (n,C) re-
lated to the derivation based differential calculus Qp (M (n, C)). Any derivation of M (n, C)
is an inner derivation, so that the Lie algebra Der(M(n,C)) identifies canonically with
sl(n,C), the Lie algebra of traceless matrices. If one chooses a basis {Ak}eenn2-1) of
(eventually antihermitian) traceless matrices, so that {1, A} is a linear basis of M (n, C),
it follows that the set 0; = ad(Ay) is a linear basis for Der(M(n,C)). The derivation
based first order differential calculus on M(n,C) is defined as the M(n,C)-bimodule
Qp(M(n,C)) = Lin (Der(M(n,C)), M(n,C)) Der(M(n,C))* ® M(n,C). The differ-
ential d : M(n,C) — Qp(M(n,C)) is defined as dm(v) = v(m). A basis for the free
left and right M (n, C)-module Q}, (M (n, C)) is given by the set {0*}1eq1 n2_1j, defined by
0%(0;) = 6F1, i.e. by the dual basis of the set &;. Although the left and right M (n, C)-
module structure do not coincide, the 6% are characterized by the property mé* = 6%m,
for any m € M(n,C).

- In more recent years, M(n,C) has been object of interest in the search of an appro-
priate notion of metric and of linear connections in Noncommutative Geometry, in order
to create links with General Relativity. In [KMMZ], [DHLS], and references therein, the
relevance of the bimodule structure of the space of 1-forms, in this case of QL (M (n,C)),

has been stressed.

Here we focuse our attention on quantum symmetries of M(n,C), for n = 3. In fact,

when ¢ = €%, the identification M(3,C) =2 A(C2)/ < z* —1,® — 1 >, induces the

following

Proposition 3.1.4 Let ¢ = €. The linear map pp : M(3,C) — M(3,C) ® A(F),

defined on generators by

pr(Z) =

ST

Qa+iRc, pprl)=i@b+i®d. (3.3)
is a right coaction such that M(3,C) becomes a right A(F)-comodule algebra.

Proof. It is easy to see that, due to the defining relations of A(F') and to the properties

271

of g-binomial coefficients when ¢ = 3", this definition preserves the defining relations of
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M(3,C), extending as an algebra map. ]

On the linear basis of M(3,C) given by
e1=1,e=12, e3 =7, 6425,‘2, es = Iy, eg = Y°, 67:5023/, 68233@2, ey =T

the formula pr(e;) = e;® Nj; allows us to determine the corepresentation matrix N:

100 0 0 0  a2(b+¢*&@) a(b®+ ¢%¢ — qb?) 0

0abd 0 0 0 0 0 a2 (b? — ¢d)

0 ¢ d 0 0 0 0 0 a(g*b?c + q&* - b)
000 & ab b? 0 0 0

0 0 0 —¢?aé (1—be) —g°bd 0 0 0 (3.4)
000 & éd d? 0 0 0

000 O 0 0 a -b 0

000 O 0 0 —é d 0

000 O 0 0 0 0 1

It is clear that N is reducible. By restricting the comodule M(3,C) respectively to
the linear span of 1,%%7,%7” and the linear span of Z,7,Z?7?, we obtain two “exotic”

corepresentations of A(F):

1 @b+ ¢®@) a(d®+ g% — gbd®) a b a2 (b — qc)
Ni=10 a ~b ., No=|¢ d a(g®c+q2—b)
0 —é d 00 1

It is easy to check that the subalgebra of coinvariants of M (3,C) under the coaction
of A(F) is one dimensional: M (3, C)*4(F) = C. This again leads us to think of M (3, C)
as a quantum homogeneous space of A(F). Notice, however, that M(3,C) is not an
embeddable A(F)-space in the sense of Definition (3.1.2), because there does not exist
any algebra injection ¢ : M(3,C) — A(F) (in particular, contrary to A(F), the algebra
M(3,C) has no characters).

Now, in analogy with the Frobenius map F'r, we can define a “Frobenius-like” algebra

injection fr: A(C?) — A(C?) by 7 — 2°, § — 13, to construct the following (not exact
q
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sequence of algebras and algebra homomorphisms:
A(C) 5 AC?) 5 M(3,C) = A(C)/(e® — 1,17 — 1) . (3.6)

Let us note that although A(C?) and A(C?)®M (3, C) are isomorphic as A(C?)-modules
(see [DHLS]), the isomorphism being given by

ipgr ® j.kgl — $3p+ky3r+€ ’
their algebraic structures (cf. (2.41)) are slightly different:
(27" ® jkgl) (f'sﬂt ® :-Z-:mﬂn) — jp+s+[k+m]1gr+t+[£+n]1 ® i[k-%m]zg[é’-i‘n]z , (3.7)

where 3[n]; + [n]y = n, [n]i,[n]: € N, 0 < [n], < 3. Incidentally, the associativity of this
product amounts to the identity [k+m],+[[k+m]o+u]; = [m+ul;+[[k+[m+uls+ul;.

Remembering the canonical right coaction p of A(SL(2,C))on A(C?), given by the
same formulas of (3.1) referred to the classical generators, we observe that combining the

sequence (3.6) and the Frobenius one given by
A(SL(2,C)) 5 A(SL,(2)) 25 A(F)

together with the aforedefined right coactions on A(C?), A(C?), and M (3, C) respectively,
one can obtain [DHS] the following

Proposition 3.1.5 The following diagram of algebras and algebra homomorphisms:

A@) L5 A@) @ ASLE2,C))

| |

AC) 5 A(C) ® A(SLy(2,0)) (3.8)

M l l TMOTR

M(3,C) 55 M(3,C) ® A(F) .

1s commutative.

Proof. Appearing in the diagram only algebra maps, it suffices to check the commutativ-

ity on the generators, which is a straightforward task. O
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To end with this considerations, let us remark that the diagram above suggests us to
see A(C?) as an A(F)-comodule algebra via the right coaction given by (id ® 7)o p,. It
turns out that, very much like the Frobenius map Fr, the “Frobenius-like” map fr allows

us to identify A(C?) with the subalgebra of coinvariants of A(C?):

Proposition 3.1.6 Let ¢ = 3. Consider A(CZ) as an A(F)-comodule algebra via the

right coaction given by (id ® 7p) o py. Then one has:
fr(A(CY) = AT, (3.9)

Proof. Indeed, since we can embed A(CZ) in A(SL4(2)) as a subcomodule algebra
(e.g., z = a, y > b), equality (3.9) follows directly from the equality FT(A(SL(Q, (C))) =
A(SLq(Z))COA(F) and the lemma below. |

Lemma 3.1.7 (see Lemma 6.1 in [DHS]) Let P, and P, be right H-comodules, and

j : PL = Py an injective comodule homomorphism. Then PfH = j=1(PgoH).

Proof. Denote by p; : P, = P, ® H and py : P, - P, ® H the right H-coactions on P;
and P, respectively. Assume now that p € Pf°#. Then po(j(p)) = (j®1id)(p1(p)) = j(p)®1,
ie., p € j7H(P{°H). Conversely, assume that p € j7'(P°#). Then (j®id)(p® 1) =
p2(j(p)) = (j®id)(p1(p)). Consequently, by the injectivity of (j®id), we have p;(p) = p®1,
ie., p € P, O

Viewing F' as a quantum group symmetry of M(3,C), it is interesting to see the
action of its classical part. The classical subgroup of F' is, by definition, given by the set
of characters of A(F’), i.e. non zero algebra morphisms x : A(F) — C, endowed with the
convolution product (x - ¥)(u) = (x ® ¥) o A(u) (remember that any non zero algebra
morphism ¥ is convolution invertible, its convolution inverse being given by £7! = £0 5).
It is easy to see that there are only three characters x;, 1+ = 0,1,2. Their action on

generators of A(F') is given in matrix form by

Y
o>

Qﬁ.
o

i

Xi - ] (3.10)

o
ISH
]
]
5]
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The classical subgroup of F is then isomorphic to Zz. The Hopf algebra A(Z;) =
spanc{l,d,a’} appears as the quotient of A(F) by the ideal generated by b, & Notice
that this ideal is the intersection of the kernels of the characters.

Consequently, A(Z;) coacts on M(3,C) via push-out. In terms of the basis of M (3, C)
given by Z7y° ; r,s € {0,1,2}, it is not hard to prove that

M(3,C)°4%3) = spanc{1, 77, 227} = C3 . (3.11)
Actually one has more:
Proposition 3.1.8 The A(Z3)-extension M(3,C) Dy C° is a cleft extension® .

Proof. Tt is easy to check that a cleaving map @ : A(Z3) — M(3,C) and its convolution

inverse ®~! are given by
0@ =z, 3@ =5, o7'@) =4*, 2@) =%.

O

Being @ an algebra map, it follows from Remark (1.3.9) that the corresponding cocycle

is trivial. On the contrary, the corresponding left action > : A(Z;) ® C* — C3 given by

Formula (1.7) is not trivial (notice that C* is a commutative subalgebra of M (3, C), but

not a central one). The explicit form of the action of generators of A(Zs) on an element
ue spanc{1,zg, z2§°} = C° is given by

1 2

a>u=7iuil, @’ u=7%ui"?. (3.12)

By Proposition (1.3.8), we can then infer the following

Corollary 3.1.9 M (3,C) is isomorphic as an algebra to the cross product C}*#A(Zs),

endowed with the algebra structure given by
(u@h)(v®l) =ulhy) > v) ® hyl .

Remark 3.1.10 This cross product is not equivalent to the ordinary one: if it were so,
by Proposition (1.3.11), the action above should be gaugeble to the trivial one. From the

commutativity of C?, using formula (1.9), one can easily see that this is not possible. <

This result holds in general for any root of unity ¢" =1, so that M(n,C) D C" is a cleft A(Z,))-

extension.
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Making use of the coaction Ag of A(Z3) on M(3,C) and of the characters of A(Zs),
we can define three algebra endomorphisms of M(3,C) by

F;=(Id®x;)oAr, 1=0,1,2. (3.13)

Explicitly one has:
Fi(z)=¢%, F(§)=4¢"7. (3.14)
The mapping x; — F; identifies Z3 as a subgroup of the group of algebra automorphisms
of M(3,C), that are all inner. This group is isomorphic to SU(3)/ 23 where 73% =

{13,¢13,¢*13}. More precisely, e.g. the generator x; of Zj corresponds to an inner

automorphism via the adjoint action (of the Z38-class) of the matrix

0 0 ¢
U, =23#=]10 0. (3.15)
0 ¢2 0

Hence the quantum finite symmetry A(F') has Zs as an overlap with the classical sym-

metry group SU(3)/Z3%¢ of M(3,C).

One may now wonder if any nontrivial finite symmetry of the remaining piece H&® C
of Connes’ algebra A =H& C@ M (3,C) for the Standard Model can be also obtained in

the same spirit.
As far as the algebra of quaternions H is concerned, it embeds, at least as a real

algebra, into M (2, C) via the mapping

w=atpgim| P apec. (3.16)

-3 a
By making use of formulas (3.2), it is easy to see that, in terms of the basis of M (2,C)
given by Z"§° ; r,s € {0,1}, a quaternion u is then expressed as

1 P N~ =\
u= g (a+ @)1+ (B—PB)z+(a—a)j— (B+P)I7) .

The identification of M (2, C) with A(CZ)/ < z®—1, y*~1 > works now for ¢* =1, i.e.
for ¢ being an even root of unit. In this situation, the search for an analogous of A(F') can-

not go through a Frobenius mechanism, as clearly deducible from the proof of Proposition
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(2.2.1). At any rate, it turns out that, for ¢> = 1, the ideal I, of A(SL,(2)) defined by
the relations

a’=1=d% b=0=c, (3.17)

is a Hopf ideal such that a right coaction p; : M(2,C) — M (2,C) ® A(SL,(2))/1; is well
defined. Unfortunately, in this case A(SLq(2))/I; is nothing but the commutative algebra
A(Zy), so that we obtain only a classical symmetry.

Quaternions are a (real) subcomodule of M (2,C), since one has
p2(u) = (Re(a) + Re(B)7) ® 1+ (Im(a) + Im(B)j) ®a .

By composing the coaction with the nontrivial character of A(Z,), we find that the gen-
erator of Z, acts on M (2,C) as the inversion ¥ ~ —Z, § ~> —7, i.e. via an inner
automorphism by the matrix
U:i(o_l . (3.18)
1 0
This action preserves H and amounts to the complex conjugation of @ and of 3 in (3.16).

Next, as far as the algebra C = M(1, C) is concerned, it leads, obviously, to a trivial
group {e}.

We remark also that, since we can embed M (3,C) & M (2,C) @ C (e.g. in a diagonal
way) in M (6, C), we have also checked possible quantum symmetries of M (6, C). Repeat-
ing our construction, there is a quotient Hopf algebra of A(SL,(2)), ¢ = €™/, defined
by the relations

a®=1=4d% B*=0=¢. (3.19)

However, this situation (even neglecting the problem of coinvariance of the subalgebra
M(3,C) ® M(2,C) @ C) seems not very interesting, for the reason that the dimension of
the quotient Hopf algebra is 54, i.e. just the dimension of A(F x Z,) = A(F) @ A(Z,).

Obviously, the coaction pr can be extended to the whole A in a trivial way by
pm+u+l)=mey@my +u®l+Ii®1, (3.20)

(where we have used Sweedler notation: pp(m) = m) ® mq) € M(3,C) ® A(F)), for all
me M(3,C) ,ueH, I eC, so that 4 becomes an A(F)-comodule algebra.
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A less trivial extension should involve a coaction of another Hopf algebra on H. So

far the only candidate we know is A(Z,), in which case it gives rise to the right coaction

of A(F) ® A(Z,)
,[)(m-{—’ul-i-l) = myg) @ m(y) ®1+U(0) ®1®U(1)+l®1®1 . (3.21)

With this definition, .4 becomes an A(F') ® A(Z;)-comodule algebra.

3.2 The dual Hopf algebra H

Being A(F) a finite dimensional Hopf algebra, its algebraic dual A(F)" = {a : A(F) —
C |« linear} carries, by pull-back, a Hopf algebra structure (e.g see [Sw2]).

Being A(F) a quotient Hopf algebra of A(SL,(2)), for ¢ = €?™/3, and being A(SL,(2))
in duality with Uy(sl(2)), the g-deformation of the universal enveloping algebra of sl(2),
one expects some relation between A(F)* and U,(sl(2)). The naive expectation would be
an isomorphism with a finite dimensional Hopf subalgebra of U,(sl(2)) (F is a ”subgroup”
of SL,(2), so one expects A(F)", the ”Lie algebra” of F' to be isomorphic with some
subalgebra of U,(sl(2))). What we will show, on the contrary, is that A(F')" is isomorphic
to a finite dimensional quotient Hopf algebra of U,(sl(2)), this situation crucially relying
on the fact that ¢ is a root of unity.

Let us go with order: U,(sl(2)), the quantum enveloping algebra of sl(2) , is defined
as the algebra freely generated by the the elements X, X_, K, modulo the following
relations:

K-—-K1
KX.=q7X K, [X;,X ]|= T iog

It is a Noetherian algebra and has no zero divisors. Furthermore, (see [K], Proposition
VIL.1.4.) the set {X% X7 K'}; jenjez is a basis of U, (sl(2)).
U,(sl(2)) is a Hopf algebra when endowed (see e.g. Chapter VI in [K]) with the

(3.22)

following coproduct, counit and antipode:

AX)=X,®1+K®X,, A(X)=X_0K'+19X_, A(K)=KQ®K,
e(Xy)=¢e(X)=0, e(K)=1, (3.23)
S(Xy)=-K'X,, S(X_)=-X_K, S(K)=K™".
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Notice that S? # Id. For ¢ being a n-th root of unity, anyhow, It is easy to prove by
the commutation relations above that S$?* = Id.

Now, if ¢° = 1, it is easy to see that the ideal I generated by X3, X3 and K®—1isa
Hopf ideal, so that it is well defined the quotient Hopf algebra H= U,(sl(2))/1.

As a vector space, H is 27 dimensional (see [K], Proposition VI.5.8.), and the set
{X:Xx 1K "}ijselo,2 is a basis of H. (Here, and in the following, we denote the generators
of Uy(sl(2)) and of the quotient # with the same symbols.)

At this point we are ready to state the relationship between # and A(F). It is well
known (see e.g. Section VII.4 in [K]) that there is a Hopf duality between A(SL,(2)) and
Uq(sl(2)), in the sense of [T4]. This means that there exist a bilinear form < , > on
Uy (s1(2)) x A(SL,(2)) such that, for any u, v in U,(s!(2)) and for any z, y in A(SL,(2)) one
has:

<UY, T >=< U, T(1) >< U, T2) > 5, <UTY>=<Uq),T >< U@,y > ,

<lLz>=¢(z), <u,l>=¢u), <Su),z>=<uS(z)> . (3.24)

Such a definition ensures that the maps ¢ : Uy(sl(2)) — A(SL,(2))" and 1 : A(SL,(2)) —
Uq(sl(Z))* given by ¢(u)(r) =< u,z > and ¢¥(z)(u) =< u,z > are Hopf algebra maps.
(In this case, since A(SLy(2)) and U,(sl(2)) are infinite-dimensional, one should actually
consider the restricted duals, see e.g. [Sw2])

Explicitly, this pairing makes use of the fundamental representation of U,(sl(2)) given

by:
px )= ° 1) , p<X+>=(O O) , p<K>:<q "l e
00 10 0 gt

Writing for any u € U,(sl(2))

one sets:
<u,a>=A(u), <u,b>=B(u), <u,c>=C(u), <u,d>=D(u),

and then extends the definition to arbitrary elements of A(SL,(2)) by using the properties
(3.24).
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It turns out that for ¢™ = 1 the pairing is degenerate and has a huge kernel. In particular,
for ¢® = 1 the kernel contains both the defining ideals of the Hopf algebras A(F') and H,
so that the pairing descends to the quotients.

It is convenient to analysee the 27 x 27 matrix of this pairing using as a basis for A(F)
the more symmetric set ab"é®, b7, db'e*; r,s € {0,1,2}. Setting deg(X_-) = deg(B) =
—1, deg(K) = deg(a) = deg(d) = 0, deg(X,) = deg(é) = 1, it turns out that monomials
with different total degree are orthogonal, generating a block diagonal matrix with five

diagonal blocks that we show in Table 3.1.

(-]) || b2 ab2e* db®e®| be @b dbc | 1 & d
<.|.> =2 Gé2 cia?

x2x301 ¢ q¢ |0 ¢ 0|0 0 O
x| -1 —¢* —q

x2x2k1 1 110 ¢ 0|0 0 0 .

\ xik | —¢* —¢* -¢°

xxx2k2|l 1 q ¢ 0o 1 010 0 O
xix? || —¢ —¢* -1

xx:l 0 0 01 ¢qg ¢*|0 1 0

xxkl 0 0 0|1 ¢ q|0 ¢qg O
(ol e @ @

x-xyk2l 0 0 0|1 1 0 ¢ 0
x2ff -1 -1 -1

1y 0 0 0|0 O 0|1 1 1
X2k | —q —q¢* -1

k| 0O 0 0|0 0 0|1 g¢q ¢*
x2k? || —¢* —q -1

k2|0 0 0|0 0 0|1 ¢ ¢
(-]) || %2 abe de%e | b ab b (-|-) || 8 @b db2| & s de
x2xy |l -1 —q —¢*| 0 =1 0 xxzfl =1 —¢*> —¢| 0 —¢ O
xX2x.k||—¢> —q¢q =10 =1 0 X-xtk| —¢ —qg —-g¢| 0 =1 0
xX2xyK? ||l —q —q —q| 0 =1 0 xxik*||—¢> -1 —q| 0 —-¢* 0
x| 0 0 0|1 1 1 x|l 0 0 0|1 g¢q ¢
xk|l 0 0 0 |¢ 1 ¢ x5kl 0 0 0 |q 1 2
xkl 0 0 0 |qg 1 ¢ x| 0 0 0 |q¢ ¢ ¢

Table 3.1: Diagonal blocks in the pairing of H and A(F)

Now, the determinant of our 27 X 27 matrix is given by the product of the determinants

of nine 3 x 3 subblocks on the diagonal. It is easy to convince oneself, by looking at the
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linear independence of the rows (or the columns) of these sub-blocks, that the determinant
is different from 0, so that the pairing between H and A(F) is not degenerate. We are

thus in a position to state
Proposition 3.2.1 # and A(F) are dual Hopf algebras.

In [C-R] it is shown that the underlying vector space of # has an intriguing splitting
as a direct sum of the semisimple subalgebra M (3,C) ® M(2,C) & C, that is very close
to Connes’ finite algebra A4, and the radical ideal R. The radical R is the intersection
of kernels of all irreducible representations of # and it is isomorphic with the algebra of

3 X 3 matrices of the form

a11616; Q120162 f1361 + 71305
10,0, 0226102 Pzt + Y36,
B3161 + 13102 B2l + a202 Q330102

where 60;, 0, are two Grassman variables satisfying the relations 6? = 62 = 0 and 6,0, =
—0,0;.
It is known (e.g. see [K], Section VI.5), and it is explicit in this presentation, that,
modulo equivalence, there are only three irreducible representations of H, respectively of
dimension 1, 2 and 3, and that there are no irreducible representations of dimension greater
than 3. If, guided by the links with .4, we want to give a physical interpretation, then the
basic multiplets of representations of # describe, respectively, a singlet with an arbitrary
value of hypercharge, null isospin and no color, a doublet of isospin with zero hypercharge
and color, and a triplet of color with zero isospin and hypercharge. Such representations
do not fit in any canonical multiplet appearing in the Standard Model; moreover, using
tensor products of basic representations of H via iterating the coproduct doesn’t solve
the problem, since, as stressed in [C-R], the subalgebra M (3,C) @ M(2,C) & C is not a
subcoalgebra, so that the physical ”charges” are not additive. Representations of H are
in general not totally reducible, becoming so only when restricted to the semisimple part.
In the sequel, we will give some examples of representations of this kind.

Connes’ formulation of the Standard Model uses a 90-dimensional (three families of
leptons and quarks are considered, together with their antiparticles) representation of Ap,

using the embedding of H in M (2, C), so that it is actually obtained by a representation
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of the semisimple part of H (for a good reference, see [MGV]; see also [LMMS] and [GIS]
for problems of such a formulation). This representation can be trivially extended to the
whole H, by setting to 0 the action of the radical R. It is an open question whether such

an extension is unique.

3.3 Some representations of ‘H

Having established the duality between H and A(F), M(3,C), being a right A(F)-
comodule algebra via the coaction pg, becomes a left H-module algebra, in the sense

that there is a representation (left action) of H on M (3, C) defined by
h>m= mp) < h,m(l) >,

such that h > 1 =e(h)1 and h > (mm') = (hq) > m)(h@g > m').
From these properties, it follows that the generator K acts on M(3,C) as an automor-

phism, whereas X. act as twisted derivations [DNS]:

Xi> (mm') = (Xip>m)m'+ (K >m)(Xy>m)

X_>(mm) =X_>pm)(Ktem)+m(X_>m)

On the basis of M (3,C) given by z"¢*, r,s € {0, 1,2}, the action of generators X., K

is given by:

K D (jrgs) — qr——s i.rgs’

T r

X (@79) = %—»_:71—_—1— i, (3.26)
qS —s 1 1
X (i,r,ys) — po q—l jr+ ys— ’

where the exponents are meant modulo 3 and where repeated indices are not to be summed
on. It is easy to see that there are three 3-dimensional invariant subspaces, generated
respectively by {z2,%79,7°}, {%, 7, 225°}, {1,%%7, Z4°}, such that on the first one H acts
irreducibly, whereas the last two are reducible indecomposable representation spaces.
Since M(3,C) is simple, the action of K is an inner automorphism, given in fact as

the adjoint action of e.g. K = 7272 and corresponding to the matrix U; in eq.(3.15). In
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addition, the action of X, as twisted derivations can be also expressed as a particular
kind of internal operations. Indeed, M (3,C) can be viewed as a Zs-graded algebra with
the grade of the monomials m = Z"y° being given by |m|=r — s mod 3.

‘Then on any element m of grade |m| we have [DNS]:

X+>m=)?+m—q|m|m)?+,

X_>pm=¢™X_m-mX_, (3.27)
where
c _ %] - _ &
X, = LOLENR, X = + C_z%j? 3.28
+ —g +TY g —q-1 ( )

with C, C_ being arbitrary constants.

Note that as elements of M(3,C), K and )?i do not obey exactly the same commu-
tations rules of K and X, in H. For example, to get 5('; = 0 one can set the constants
Cy=mpm, C_ = =15 but, with this choice one has KX, # ¢PX.K, and so on.

We remark that by dualizing (3.20), we can extend this representation of % on M (3, C)

to a representation on .4, obtaining
h>(m+u+1) =mygy < h,mg) > +(u+De(h), (3.29)

for any m € M(3,C), u€ Hand [ € C.
Also, in the same way we obtain from (3.21) a representation of # ® C(Z,) on A, where
C(Z,) is the group algebra of Z,, which is in a natural duality with A(Z5) [M-S]. Explicitly,

the action of a simple tensor A ® z in H ® C(Z) on an element m + u + [ turns out to be

h@zp> (m+u+l)= m) < h,m() > e(z) + ugo) < 2,ua) > e(h) +le(h)e(z2) . (3.30)

Using again duality we can compute two different commuting representations of 4 on
A(F) [DNS]. One of them is given by < R(h)(¢),h >=< ¢, h'h >, or in Sweedler
notation '

h> o =@u) < h,pg >. (3.31)
This representation, which corresponds by duality [M-S] to the comultiplication in A(F),
makes A(F) aleft-7 module algebra. In table 3.2 we present the values of the action of

the generators of H via this representation on the basis of A(F).
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R(h) X X4 K
1 0 0 1
a 0 b qa
d c 0 q2cf
b a 0 q2l~)
ab || d — qdbé + ¢2db>e b2 ab
db 1—bé 0 qdb
b2 —ab 0 q52
b2 —db + qdb?é 0 qab>
db? ~b 0 db?
¢ 0 d qé
ac 0 g — qbé q2ac
dé ¢ ¢%a — qabé + ab?@®  dé
bé qac db bé
abé q2dc — dbé? gb — gb’c qabé
dbe | ¢%¢ + b& + qb? q2ab — qab%e ¢2dbé
b2G —g*abé db? b2
ab%c || —q?dbé + db2® gb? ab%
db?é —q?bé q2ab? qdb?e
&2 0 —qdé &
ac 0 —q% ac
de> 0 — ¢ + ¢2abd qdé*
b2 qac? —qdbé qbé®
Qb2 qdc? —q2bé q2abé>
dbé qé* —abé + g2ab®d@  dbé>
b2 —qabe® —qdb?c b2
ab?é —gdbé? —g2b%¢ qab?e>
db2é2 —gbé? —ab2%é g2db2e>

Table 3.2: Action of the generators of H via the representation R
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The other representation is given by < L(h)(p), h' >=< ¢, S(h)R’ >, or in Sweedler
notation

The representation L is such that h > (o) = (h(g) > @)(hqy > ¥), h> 1 = g(h), and
corresponds to the right coaction of A(F') on itself given by Ag = (id® S) oT 0 A, where

7 is the flip operator. In the table 3.3, we present explicitly the action of generators.
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L(h) X- X4 K

1 0 0 1

a —q%c 0 q*a

d 0 ——ql; q&

b —¢*d 0 q%b
ab —1+bé q ab
db | —qa + abé — gab*& —p? db
b? db 0 qb?

ab? gb 0 ab*
db? q2ab — qab®e 0 g2db*
¢ 0 —q@ qé
ac —*& —qd + ¢*dbé — db*@  aé
dé 0 —q + gbé ¢*de
bé —q*dé —ab bé
abé —E+ b —db + qdb®é q2abé
dbé —qac + abé® —b+b% qdbé
b2 dbé —q2ab? ¢2b%¢
ab2ée qbé —g2db? qab%é
db%e || q2abe — qab*e —q%b? db2e
& 0 qaé &
ac? 0 qdé — ¢2dbé> qac
dé> 0 qé dé?
bé? —g2de? abé qbé?
abc? —& dbé — qdb*& abe?
dbé> —qad® bé ¢2db?
b2 db® gcab’e b2
ab2e2 gb? ¢2db%é gab*é
db2&2 q2abe> b qdb2é®

Table 3.3: Action of the generators of 74 via the representation L
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3.4 Further properties of H and A(F)

Recall that a left (respectively right) integral on a Hopf algebra H over a field k is a linear
functional h : H — k satisfying:

(id®h)oA=1g-h (respectively (h®id)oA =1p-h). (3.33)

(For a comprehensive review of the theory of integrals see [M-S, Section 1.7], [Sw2, Chap-
ter V].) A Hopf algebra H is called unimodular if the space of left integrals on H coincides
with the space of right integrals on H.

In the case of the Hopf algebra A(F'), we have the following result [DHS]:

Proposition 3.4.1 A(F) is a unimodular Hopf algebra. In terms of the basis {apgrés}p,r,sé{o,lﬂ}
of A(F), for any integral h, we have by h(aPb'&) = 2686555, z € C.

Proof. By applying the projection 7+ : A(F) = Hx to (3.33), it is easy to see that any
left (and similarly any right) integral has to vanish on about half of the elements of the
basis. With this information at hand, and using the fact that on a finite dimensional Hopf
algebra the space of left and the space of right integrals are one dimensional [LS], it is
straightforward to verify by a direct calculation the claim of the proposition. O

It is then easy to see from the explicit pairing between H and A(F) presented in Table
3.1 that, in terms of the basis of # = A(F)", h = CX2X2(1 + K + K?).

A two-sided integral on a Hopf algebra H is called a Haar measure iff it is normalized,

ie, if h(1) = 1. As integrals on A(F) are not normalizable, we have [DHS]:

Corollary 3.4.2 There is no Haar measure on the Hopf algebra A(F) (cf. Theorem 2.16
in [KP] and (8.2) in [MMNNUJ).

Remark 3.4.3 ([DHS]) Since the Hopf algebra A(F) is finite dimensional, F can be
considered as a finite quantum group. However, it is not a compact matrix quantum group
in the sense of Definition 1.1 in [W-S]. Indeed, by Theorem 4.2 in [W-S], compact matrix
quantum groups always admit a (unique) Haar measure. Furthermore, as A(F) satisfies
all the axioms of Definition 1.1 in [W-S] except for the C*-axiom, there does not exist a -

structure and a norm on A(F) that would make A(F) a Hopf-C*-algebra. In particular, for
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the x-structure given by setting a* = a, b =0, =g d* = d, this fact is evident: Suppose
that there exists a norm satisfying the C*-conditions. Then 0 =|| & ||=|| (&%)*¢* ||=]| & |?,

which implies ¢ = 0 and thus contradicts Proposition 2.3.1. O

We recall also that an element A € H is called a left (respectively right) integral in
H, iff it verifies oA = e(a)A, (respectively Aa = e(a)A) for any o € H. If H is finite
dimensional, an integral in H corresponds to an integral on the dual Hopf algebra H™.
Clearly, an integral in A(F) should annihilate any non-constant polynomial in b and ¢,
whereas it should leave unchanged any polynomial in a. It is easy to see that the element
Ar = (1+a+ a2)b%& is a left integral and the element Ap = b¢%(1 + @ + a2) is a right
integral. Thought as integrals on H, Ay = (X2X2K)* and Ap = (X2X3K?)*. Hence
in this case left and right integrals are not proportional, so that we can conclude that
H is not unimodular. Again, since A(F) is finite dimensional, any left integral in A(F’)
is proportional to A, , and any right integral in A(F’) is proportional to Ag. It is evident,
now, that, as stated in Proposition 7 in [LS], there exist (left and right) integrals in and
on A(F) and H such that < h, A >=1.

In addition, by Theorem 5.18 in [Sw2], the property e(Ar) = €(h) = 0 assures us that

both A(F) and H are neither semisimple as algebras nor cosemisimple as coalgebras.
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Final remarks

So far, so good: most of the questions addressed in the introduction have been answered.

The quantum group sequence
1= F—=SU,2) - SU(2)—1,

for ¢ = e%‘i, has been studied, forgetting about *-structures, via the sequence of Hopf
g g

algebras and Hopf algebra maps
A(SL(2,0)) £ A(SL,(2)) = A(F) ,

where Fr : A(SL(2,C)) — A(SL,(2)) is the Frobenius mapping. We have shown that
this sequence is strictly exact, and, in particular, that A(SL,(2)) is a faithfully flat
Hopf-Galois extension of A(SL(2,C)) by the 27-dimensional Hopf algebra A(F).

Extra interesting informations have been obtained on the ”quantum (Borel) sub-
groups” sequence

F +
B, %P, 5 H,,

which we have shown to be cleft, leading to construct a concrete example of Majid’s Hopf
algebra bicrossproducts.

Some features of the finite dimensional Hopf algebra A(F) and of its Hopf dual # have
been studied in detail, through the analysis of invariant measures on them. In particular,
A(F) is not a compact matrix quantum group in the sense of Woronowicz. As a corollary,
we have shown that it is not even a C*-algebra.

The quantum group F' appears a a ”quantum symmetry” of M (3,C), the color sector
of Connes’ finite algebra A = H& C @ M(3,C). In fact, on M(3, C), which is a quotient

of the quantum plane for ¢® = 1, there exist a coaction of A(F). This coaction gives raise,
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by duality, to a representation of H on M (3,C), which can be expressed in terms of inner
operations, namely a conjugation and two Zj-graded g-commutators.

A similar construction has been repeated for the quaternion algebra H, the other non-
trivial sector of Connes’ algebra, in the case ¢ = 1. In this case no ”quantum symmetry”

arises from quotienting A(SL,(2)), but just a classical group Zs.

So far, so good, so what? As usual, answers generate questions.
First of all, the Frobenius sequence studied by us actually dualizes the following formal

(quantum) group sequence:
1= F — SL,(2) = SL(2,C) =1,

for ¢* = 1,with SL(2,C)) being the universal covering for the proper orthocronus Lorentz
group L}. In the quantum group setting, then, SL(2,C)), the spin group for Minkowski
space, is itself covered by SL,(2), for ¢ = e%* or more generally for ¢ being a primitive,
odd root of unity, with a finite kernel F' whose dimension depends on the order of g. One

should then consider the sequence
1= F' = SL,(2) =Lt —1,

with F”' a new quantum group, in principle bigger then F', dualize it in the Hopf algebra
setting and prove its exactness. The study of such a sequence of Hopf algebras would
therefore be a very interesting object of investigation. In this setting, the role of the
quantum group F’ could be object of speculation similar to the ones addressed by Connes
on the quantum group F. More generally, could a theory of “noncommutative spin struc-
tures” (see final remarks in [KAS]) spread some light on our (often heuristical) physical

models?

On another side, the quest for realizing the action of H on M (3, C) in terms of internal
operations is linked to the possibility of implementing this action in representation spaces
of M(3,C); for instance, in the 90-dimensional space describing in Connes’ approach the
physical particles appearing in the Standard Model.

As far as the generator K is concerned, it acts on M(3,C) as an inner automorphism

given by conjugation of the matrix K. Let us recall that, given an automorphism F of an
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algebra A, and a representation p: A — End(V), we say that F is implementable in the

vector space V' iff there exists an invertible linear operator Uz such that
p(Fa)=Upp(a)Us', Ya € A.

For A = M(3,C) and the automorphism given by the action of X, such an operator
exists for every representation p and it is given, not uniquely, by Ux = p(R’ ).

If we have a derivation D, namely an infinitesimal automorphism of the algebra A,
still there exists a natural definition of implementation. We say, in fact, that a derivation

D is implementable in V' iff there exists a linear operator Up in End(V) such that
p(D>a)=[Up,p(a)], Va € A.

In the case of our interest, however, the generators X, of A do not act as pure
derivations, but as twisted ones by the action of the automorphisms K or K~!. It is an
open question, then, whether there exists a natural notion of implementation for this kind
of operations. Since we have realized the action of the generators X, as internal operations
in terms of Zs-graded g-commutators, a possible definition for the implementability of
such operations could rely on the existence of linear operators Ux, and a Zj-graded

g-generalization of the commutator [, ]4 such that
p(Xe>m)=[Ux,,mi,Vm € M(3,C).
A reasonable definition for [, ]4 would be then

U, Ve =0V - Vv,
U, V)L =g Moy —vU

with | | a Zs-grading of End(V) eventually induced by a Z3z-grading of the representa-
tion space V. Furthermore, the natural candidates for U x, would be p()?:t), and the
representation p should be grade-preserving.

Also passing over the immediate remark that such definitions seem to be a little bit “ad
hoc”, we must say that, since no general theory exist for such operations, we are not as-

sured neither that there is only one way to express twisted derivations in terms of internal
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operations, nor, consequently, that the above suggested form of implementation is unique.

Another interesting question is the notion of invariance of a Lagrangian, defined in
terms of “fields” leaving in representation spaces of M (3,C) under the quantum sym-
metry H. Whereas it is clear how to define this notion if we have an algebra acting by
automorphisms or derivations, it is absolutely open how to proceed in case of twisted
derivations. Linked to such themes, there raises the question regarding a hypothetical
Noether current induced by the quantum symmetry.

As you can see, all the questions above raised are of interest independent from our
specific setting, and we think they are really crucial for any future investigation linking
g-pictures to physical reality.

Dear friends, it’s a hard world. (But fascinating, L. says.)
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