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Introduction i

Introduction.

This thesis is concerned with the initial-boundary value problem for the n X n system of
conservation laws in one space dimension
uy + [F(u)]ac =0. (1)
The main results are the global existence of weak solutions for the n X n case, with two types of
boundary conditions, and the continuous dependence for n = 2.
The system (1) is considered on the domain O = {(t, z)eR?2:t>0and z > \Il(t)}, for a suitable
boundary profile ¥: R* — R. Fis smooth and (1) is assumed to be strictly hyperbolic, with each

characteristic field either linearly degenerate or genuinely non linear. An initial data

u(0,2) = &(z) (2)
having sufficiently small total variation is given.
Systems of the form (1) provide models of nonlinear wave phenomena. A well known example is

the system of Euler equations for gas dynamics.

It is known that problem (1), (2), together with a strong Dirichlet condition

u(t, ¥(t)) = a(t) (3)
is not well posed, as shown by elementary examples (see for instance [S]). It is then necessary to
weaken (3) in order to have a meaningful condition. Two different approaches have been followed
in this thesis, leading to two distinct problems.

The first approach is motivated by the classical theory of hyperbolic problems. This requires
the boundary to be Non Characteristic.
For smooth solutions, (1) is equivalent to u; + DF(u)u, = 0. If the speed ¥ of the boundary is
bounded away from the eigenvalues of D F(u), it is natural to impose a number of scalar conditions
equal to the number of incoming characteristics.

The second condition analyzed here uses the notion of Riemann problem and has been first
introduced in [DF], in the case of linear boundary.
A ji;u”np between the solution and the boundary data in (3) is allowed, but under a suitable condition.
In this approach, there is no need to make assumption on the slope of the boundary, hence the
boundary profile may well be tangent to the characteristic lines. This case will be referred to as
Characteristic.

In Chapter 1, the existence of solutions to (1), in the = X n case, is proved, for both types
of boundary conditions. A family of approximate solutions is constructed by a wave-front track-

ing algorithm. By compactness, a limit u is found, which is a weak entropic solution inside the
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domain. However, by simply passing to the limit, nothing can be concluded directly on the point-
wise behaviour of u near the boundary. Local uniform estimates on the approximate solutions,
quite different in the two cases, allow us to prove that the boundary condition is satisfied. In the

Characteristic case, this requires a particularly refined analysis.

In Chapter 2 the Semigroup approach ([B4]) is followed. A definition of Standard Riemann
Semigroup (SRS), generated by the boundary value problem for (1), is given in the n X n case.
The semigroup is required to be continuous and to extend the standard solutions of local Riemann

problems and boundary problems with constant data.

Due to the dependence of the data also on time, the problems are suitably reformulated in functional

spaces for which there are invariant domains, and the evolution operator is indeed a semigroup.

Moreover, it is shown that, if such semigroup exists for both problems, then it is unique and its
trajectories provide the same solutions obtained by the wave-front tracking algorithm described in
Chapter 1. Note that the existence of a SRS would imply, on one hand, that the solutions obtained
in Chapter 1 depend continuously on the initial data, the boundary data and the boundary profile.
On the other hand, as a very consequence of the definition, the trajectories of the semigroup
are solutions of the initial-boundary value problem, hence satisfy the boundary condition in the

specified sense.

In Chapter 3, we construct explicitly a Standard Riemann Semigroup for both problems, in
the 2 x 2 case, using the basic technique of [BC1]. With a refined wave-front tracking algorithm, a

Cauchy sequence of approximate semigroups is constructed.

The key point of this procedure consists in finding a suitable distance, with respect to which the
approximate semigroups are contractive. Due to the presence of the boundary profiles, shifting
independently from the data, such a distance requires a very careful definition.

Now, let us briefly introduce these problems.

(NC) Non Characteristic Case. Assume that the boundary profile z = ¥(¢) is Lipschitzean
and that its speed ¥ is always in between two characteristic values, say A727 and Aﬁ’i‘;,_,_l, for
some p € {1,...,n}. Hence a fixed number p of conditions, equal to the number of characteristics
entering the domain, can be assigned at the boundary.

In the literature, problems of this type have been treated, concerning particular systems and us-
ing methods specialized for such problems. For general systems of conservation laws, the Non-
Characteristic problem has been considered by Goodman [Go] and Sablé-Tougeron [ST]. They
used an adaptation of the Glimm scheme and proved that the boundary condition is satisfied in

the same integral sense as the initial data. In [ST] the problem of two boundaries has been also

considered.

The precise form of the boundary condition in the Non-Characteristic case varies slightly from
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author to author. Here we deal with a nonlinear condition of the type

b (u(t, ¥(2))) = 9(2) (4)

where b : R” — RP? is a smooth map, |b(0)] is small and g : Rt — RP? is a function with sufficiently
small bounded variation. For the solvability of the problem, a condition on the rank of Db(@) is
imposed, at a suitable point .

In Chapter 1, weak solutions to problem (1)-(2)-(4) are constructed in the general n X n case,
provided that the total variation of the data and the jump at the origin are small enough. An
accurate local analysis near the boundary allows us to prove that (4) is satisfied in the sense that,

for all but countably many ¢ > 0, the solution u has limit at the point (¢, ¥(%)) and

ey ) = 109

Moreover, in Chapter 3 we prove the Lipschitz dependence of the solution on the initial data @,
on the boundary data g and on the boundary profile ¥, for n = 2. Choose two triples @, g’, ¥’
and @", g”, 9" of initial data, boundary condition and boundary profile for the Non-Characteristic
initial-boundary problem for (1). Let v/(¢,z), u” (%, z) be the correspondmg solutions given by the
Semigroup. For any T > 0, the following estimate holds

(2, = (@l < 2 (= 2o+l = 9" ago g + 12 = " llopo,my)

where L depends only on the system (1). Above, the solutions v/, u” have been extended to zero
for z < ¥'(t) and ¢ < ©"(t), respectively, in order to compute the difference in L. Moreover, the
solutions depend also in a Lipschitz continuous way on time.

The estimates obtained in the proof of (4) fail, in general, if the boundary is characteristic at some
point. If this happens, only under suitable assumptions it is possible to give an equivalent form of
(4) (see [ST]). Clearly, if no assumptions are made on the slope of ¥, the main reason for which

(4) cannot hold is that no fixed number of condition can be satisfied at the boundary.

" (C) Characteristic Case. In this case, the boundary condition is formulated using the notion
of Riemann problem, that is a Cauchy problem for (1) with data

LODES S ©

Using this notion, a set of admissible values of the solution near the boundary is defined. This

approach is particularly suitable for constructive algorithms.
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The boundary condition can be stated as follows. It is well known ([La]) that, for two sufficiently
close states u™, u™, there exists a weak, entropic, self-similar solution to (1)(5), composed at most
by n + 1 different constant states, separated by n elementary waves, that is centered rarefaction
waves, shocks or contact discontinuities.

Let 2 : Rt — R™ a boundary data, with small total variation. The solution u(t,-) is required
to be continuous in L' w.r.t. time and to be of bounded variation w.r.t. x, for all £ > 0. Hence
lim,_,g(¢)+ u(t, z) is well defined. In place of (3), we require that:

the Riemann Problem for (1) with data

_ [um =a(t) ifz <0
'U,(07 Z) - { ’U+ — ]j-mx-—r\ll(t)+ U(t, Z) ifz >0 (6)

is solved in term of elementary waves with speed < A, where

A=D_%(t) = hggx_lf :]?_(%_:__‘Iis_)
is the lower left Dini derivative of ¥, at time ¢. This condition is the substitute for (3) in the
present case.
Hence a jump in (3) is allowed, but the waves generated by this jump must point outside the
domain. With a careful local analysis, this condition is proved to be satisfied at every time except
at most countably many.
Note that, in the condition above, no assumption whatsoever is required on the slope of ¥, so that
we can assume, with great generality, that ¥ is merely continuous. Furthermore, we remark also
that this condition is indeed a weakening of (3).
In the first Chapter, the existence of solutions to the general n X n Characteristic problem is
shown. Proving that the boundary condition is satisfied by the limit has been the major difficulty.
In fact, the a.e. pointwise convergence of the approximate solutions to u is not enough to derive
the boundary condition in the above sense. Thus, very accurate estimates on the behaviour of the
approximate solutions along the boundary must be obtained, allowing us to prove the main result

in Chapter 1: the global existence of solutions to (1) in the Characteristic case.

For n = 2, we prove a continuous dependence result of such solutions. Let u'(¢,-), u”(t,-) be
solutions to (1)(2)(C) with initial data, boundary condition and boundary profile (@,a’, ¥'),
(z”,u",9") respectively.

If ¥/, ¥" are Lipschitzean with constants L', L”, then we show that

”ul(Ta ) - “"(T’ ')HLl <L- (”ﬁ, - ﬁ"“Ll + ”‘I” - QHHC"([O,T]))

+L-(14+ I+ L") |7 - 12HHLI[O,T[
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for a constant L > 0. On the other hand, if ', ¥ are not both Lipschitz continuous but @' = @”,
the last estimate is replaced by

@)= @ < 2 (I = g + 1% = 2 lleoomy) -

Moreover, in the other variables, that is the boundary condition % and the time T, the solution is
proved to be continuous. If the boundary profile is merely continuous, then the resulting semigroup

may well turn out to be non Lipschitzean.
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Chapter 1

1. Introduction to Chapter 1.

In this Chapter we consider the initial-boundary value problem for a nonlinear hyperbolic system

of conservation laws in one space dimension:
u; + [F(u)]m =0, t>0,z€eR. (1.1)

Here F is a smooth map with values in R™, defined on some open convex set neighborhood of the
origin in R". We assume that the system (1.1) is strictly hyperbolic and that each characteristic
field is either genuinely nonlinear or linearly degenerate; let A;(u) < ... < Ap(u) be the eigenvalues
of the matrix A(u) = DF(u).
Let @ : [0,00) — R™ be a function with bounded variation, and let ¥ : [0,4+00) — R be
continuous; it is not restrictive to assume that ¥(0) = 0. We can then consider the domain
Q= {(z,t);t > 0, = > ¥(t)}, together with the initial conditions
u(z,0) = @(z), =z > ¥(0). (1.2)
In the literature, two distinct types of boundary conditions have been considered:
(C) Let @:[0,00) — R™ be a BV map; call u(t, ¥(t)+) = limg_,y(s)+ u(t, ) and let
D_9(t) = limint 20 =%0E)
s—ri— t—s
be the lower left Dini derivative of ¥, at time f. As boundary condition, one then requires

that, for all except countably many times £, the Riemann problem with data

u” = at if 0
w0y) = {u"‘ = uEt?‘I’(t)—!-) ifz ; 0

has a self-similar solution w = w(,y) containing only waves with speed less or equal D_¥(t);
in other words,

w(r,y) = u(t, ¥(t)+), for %’_— > D_%(t). (1.3)
(NC) Let ¥ be Lipschitz continuous, with A,_,(u) < $(t) < An_pr1(u), Yu, for some fixed p in
-{1,...,n}. Let b be a smooth function defined on a neighborhood of the origin in R", with
values in RP, such that the differentials Db(u) are injective on the vector space generated by
{rn—p+1(w),...,rn(u)}, as u varies, and consider a BV function g : [0,00) — RP. We then
look for a weak solution u to (1.1) on (2, that satisfies (1.2) and such that for all except at

most countably many ¢ > 0, there holds

ooy b(u(T, 2)) = g(t)- (1.4)

(r,2)en
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In the first part of this Chapter we prove a global existence theorem for solutions of (1.1)-(1.2)-
(1.3). For an arbitrary continuous function ¥, provided that the total variation of the data @ and
 is small enough, approximate solutions are constructed using a wave-front tracking algorithm; by
compactness, a globally defined weak solution is found in the limit. The boundary condition (1.3)
is proved by a careful analysis of the behavior of wave-fronts near the boundary, in the approximate
solutions.

In the second part of the Chapter we construct a weak solution for (1.1)-(1.2)-(1.4). In this case,
existence theorems for weak solutions to (1.1) and (1.2) satisfying (1.4) a.e. were already known
for general nonlinear systems; see Goodman [Go] and the paper by Sable’-Tougeron [ST]. They
used an adaptation of Glimm scheme to the case of domain with boundary. With our technique
we improve their results, showing that the condition at the boundary can be satisfied pointwise for
all but countably many times.

The main theorems are the following.

Theorem 1.1. Assume that the system (1.1) is strictly hyperbolic, with smooth coefficients,
and that each characteristic field is either genuinely monlinear or linearly degenerate. Let ¥ :
[0,00) — R be any continuous function, and K a compact subset in R", contained in the domain
of F. Then there ezists a constant § > 0 with the following property: for every initial and boundary
conditions @, & € BV (0, c0) with

TVa+TVa+[a0+) - a(0+) < 6  lim a(z)€ K, (1.5)

the problem (1.1)-(1.2)-(1.3) has a weak solution, defined for all t > 0.

With the same hypotheses on the system (1.1), there holds
Theorem 1.2. In the setting described in (NC), if K a compact set in R", contained in

the domain of F, there ezists a constant § > 0 with the following property: for every functions
u € BV (0,00; R™), g € BV (0, co; RP) with

TVZ+ TV g+ [b(a(04)) — g(0+)] < 6, IETOO i(z) € K, (1.6)
the problem (1.1)-(1.2)-(1.4) has a weak solution, defined for allt > 0.
Condition (C) is a natural generalization to continuous boundaries of the condition proposed by
Dubois-Le Floch [DF], and coincides with it in the case of ¥ piecewise linear. Indeed, for the
quarter plane, they define a set of admissible values at the boundary, as follows. If u(t, z) is a weak
solution to (1.1), (1.2) such that u(¢,-) € BV (0, co; R), then u(0+,t) = lim,_o4 u(z,t) is defined.
Moreover, if u™, ut € R™ are sufficiently close, denote with w(z,t) = w(%;u~,u") the self-similar
solution to the Riemann problem with data

_Ju ifz<0
w(z,O)_{u+ ifz>0
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and define, for A€ R
V(iyu) = {uw(dsu,ut) = ot}

In [DF] the authors introduced the condition
u(0+,t) € V(0; &(t)) (1.7)

and proved that problem (1.1)(1.2)(1.7) with constant data is well-posed, provided that the constant
states @, u are sufficiently close to each other. In these terms, our condition (1.3) can be rewritten

as follows

u(¥(t)+,t) € V(D-¥(1); 4(t)),

for all except countably many times ¢. Observe that this is sharp pointwise condition, while
the continuity of the boundary is a very general hypothesis. If the boundary is C' and non-
characteristic, then, for each ¢, V(¥(t), @(t)) is a smooth manifold of dimension p < n and the
boundary condition (C) can be regarded as a special case of (NC). The main novel feature of
this work is the analysis of the case where ¥ is only continuous, or possibly characteristic at every
point.

Chapter 1 is organized as follows. Section 2 contains preliminary definitions and notations, while
Section 3 describes the wave-front tracking algorithm used in the construction of the approximate
solutions. In Section 4 we establish bounds on the total variation of the approximate solutions to
(1.1)-(1.2)-(1.3); in Sections 5, 6 the behaviour of the solution near the boundary is studied, in case
(C). Finally, in Section 7, the (NC) case is treated and the proof of Theorem 1.2 is given.
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2. Preliminaries.

For u in a neighborhood of the origin in R", denote by A1(u) < ... < A,(u) the eigenvalues of
the Jacobian matrix DF(u) = A(u), and let 7;(u), l;(u) be the right and the left eigenvectors,

respectively, normalized according to
Il =1, G(w) i@ =19 157
0 2#7.
If w, w' are two states in R™, sufficiently close to the origin, we define the averaged matrix
1
Aw, w') = / Alow + (1 - o)w') do
0

and denote with A;(w, w') its eigenvalues, with r;(w, w'), l;(w, w') the right and left eigenvectors re-
spectively. As w,w’ range over the domain of F, A\;(w, w') ranges within some interval [API?, Am2x];
we assume that these intervals are disjoint, for ¢ = 1,...,n. For the system of conservation laws
(1.1), it is well known how to construct an admissible solution to the Riemann problem
_ _Ju ifz<0
s + [F(u)]: =0, u(0,z) = { ot iz 0 (2.1)
within the class of self-similar functions u(¢,2) = v(%). From basic results, for any ¥ in a neigh-

borhood of zero in R"™, n parametrized curves are locally defined:

£ — 1,[;,-(5)(1’)),

with the following property:

i) if € > 0, ¥:(e)(8) = exp(er;)(v) corresponds to the i'" characteristic curve through the
point 7, parametrized by arclength;

ii) for ¢ < 0, v;(e)(?) corresponds to the i" shock curve passing through ¥, i.e. the curve
implicitly defined by

| li(v,2) - (v—-9) = 0, j#1,
and parametrized by arclength;
-iii) t; is of class C? at e = 0.

By standard results, if ju™ —u*| is small, the solution to the Riemann problem in this class assumes

the values w; inductively defined by

wy = Yi(e)(v7), wi = B;(e;)(wsia), vh = Palen)(wn1) (2.2)

for someeq, ...,€Ep, uniquely determined (see [S]). Referring to [B1], [B2], we approximate the exact

solution to the Riemann problem (2.1) as follows. First, determine €1, ...,€, and the intermediate
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states as in (2.2). Rarefaction waves of genuinely nonlinear families are approximated by piecewise
constant functions in two possible ways. Let the i-th characteristic family be genuinely nonlinear,
€; > 0,and w; = 'gb,-(e,-)(w;-l).

I) Here, the wave is divided into v parts, where v is a fixed integer. Set w; o = w;_, and

l
wi | = ¢i(;€i)(wi,z—1), zia(t) = tAi(wig), 1=1,...,0
Then, in place of the rarefaction wave, define

wi_q if t)\i-nin <z <L Zg’l(t),
'v(t, :Z:) = < wjy, if mg,z(t) <Lz <L 9:,',1+1(t), I=1,...,v—-1, (2.3)
w; if AP >z >z, ,(1).

II) The rarefaction is replaced by a single discontinuity. Set z;(¢) = tA;(w;) and

w;_y if tAinin <z < mi(t),
= 2.4
v(t,2) { if AP > 2 > z4(t). (2:4)
In this construction, shocks and contact discontinuities are not modified at all. If the i'! charac-
teristic field is either
- linearly degenerate, or
- genuinely nonlinear and ¢; < 0,
the discontinuity propagates along the direction ¥ = A;(w;_1,w;):
wioy PR <z < (w1, wi)
t — i—1 N 1 1 sy Wi )y 25
'U( ’z) {w,- ift)\,-(w;_l,'w,-) <z < tAl;nax ( )
In the remaining regions of the half plane { ¢ > 0 }, v(¢,z) assumes the intermediate states w; as

follows: )
wo =u" ifz < EAP"
v(t,z) = { w; ifeamex < ¢ < tART, i=1,...,n—1 (2.6)
w, =ut AT <z

An approximate solution v(¢,z) to (2.1) can be thus defined in terms of (2.3) - (2.6). Given a point

(z,t),t > 0, an approximate solution to

QoW

vt Pl =0, i) = {1 125

is given by v(t — ¢,z — ).
The algorithms in Section 3 and 7 are based on this construction, where either (2.3) or (2.4) is used

for rarefactions, according to the case.

If the three states u;, u;,, u, € R™, in a neighborhood of the origin, are connected by

Uy = ¢n(7n) o "‘pl('fl)(ul)’ Ur .= ";bn(a'n) e '¢1(01)(um)
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we say that the i® o-wave approaches the j** y-wave either if i > j,ori = j, the i*# characteristic
family is genuine nonlinear and at least one of them is a shock. With a slight abuse of nomenclature,
if A is the set of approaching waves between o- and vy-waves, we shall call

D(y,0) = Y. |ylleil

(vio;)eA

the interaction potential between the solutions to the Riemann problems (2.1) with data u~ =
v, ut =uy, and 4T = up,ut = u,.
In the following Lemma, a basic interaction estimate is recalled; the proof can be found in Glimm
[G1] or Smoller [S].

Lemma 2.1. For every compact set K C R™, there ezist positive constants C, § such that, if
u; € K and
Um = Ya(yn) - Pr(n)(w), ur = $n(on)---di(o1)(um),
with |7;| < 6, |o;| < 6, then there ezist €1,...,&, such that u, = ¥,(en)---¥1(e1)(w) and there
holds
lei =i —oi] < C-D(y,0).

In the setting (NC), the Riemann problem has a corresponding version at the boundary. To
slightly simplify the notations, system (1.1) will be considered on the domain at the left of the
boundary ¥, instead that at the right. Assume that constant states v~ € R™ and g € RP are
assigned respectively at ¢ = 0 and along the boundary. By the assumptions in (NC) and the
implicit function theorem, if |b(u~) — g| is enough small, there is a unique way to connect u~ to
the set {v € R™; b(v) = g}, through the first p characteristic curves (see also [Go], [ST]):

Lemma 2.2. For any compact K C R", containing the origin, there ezist positive constants Cy, §;
such that the following holds. Let b: R™ — RP be a C* map, p < n; assume that the differentials
Db(u) satisfy

Rank {Db(u) - r1(u),...,Db(u)-rp(u)} = p (2.7)

as u varies in the domain of b. Ifu~ € K, g~ = b(u™) € RP, and |g — g~| < &1, then there is

a unique choice of €1,...,e, such that u = 1y(ep,) -+ -91(e1)(u™) satisfies b(u) = g. Ifa~ € K,
b(a™) =g~ and b(2) = b(vpp(€p)---¥1(E1)(27)) = § 1s such that |§ — G| < &, then there holds
p
Slei—al < c(lo-al+lg™~571)-
i=1 ,

In the following, we shall use the notations [s];, [s]- to indicate the positive and negative part
of s € R, respectively, and by O(1) we shall mean a quantity uniformly bounded by a constant

depending only on the system, and not on the particular approximation.
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3. Construction of approximate solutions.

In this section, a family of approximate solutions to problem (C) is constructed. Before proceeding,
we recall the scheme used in [B1], [B2] to solve the Cauchy problem

w+[Fwl.=0, u(0,z)=v(z), z€R (3.1)

since our definition of approximate solution in the problem with boundary relies heavily on this.
Let v : R — R"™ be a piecewise constant map, with small total variation. For any v € N, a
v-approximate solution v, is defined as follows. At each point of jump z; in v, the corresponding
Riemann problem centered at (z;,0) is solved approximately according to (2.3)(2.5)(2.6), with
each rarefaction wave divided into v parts. For small £ > 0, the v, is defined by glueing these local
solutions.

If an interaction between two wave-fronts occurs, a new Riemann problem arises, between the state

at the left of the faster wave and the state at the right of the slower one (Figure 3.1).

Figure 3.1

More precisely, let two waves interact at the point (Z,7). Let u;, um, u, be the left, middle and
right states between the discontinuities. The new Riemann problem has data u~ = v; and ut = u,.
In a forward neighborhood of (Z,1), v, is prolonged with the approximate solution of this Riemann
problem, centered at (Z,%), which is defined as follows. If one of the interacting wave-fronts is
a rarefaction, say of the i'M characteristic family, by standard estimates the i"-wave after the
interaction is also a rarefaction, and it is now approximated by (2.4). For the newly generated
rarefactions, (2.3) is applied, while (2.5) is used for shocks or contact discontinuities.

With our terminology, a wave-front of the 7*® family is intended to be prolonged, after an interaction,

by the line of d_iécontinujty of the same family produced by the interaction.
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Then v, is defined after the interaction time, till a new interaction occurs; the same procedure now
described is repeated, and so on. Note that (2.3) is used to approximate new rarefactions, while
(2.4) is applied to rarefactions already preexisting.
In order to avoid the number of wave-fronts to become infinite in a finite time, a standard procedure
is followed. To each discontinuity a generation order is assigned, an integer in {1,...,v + 1}. In
this way, if two wave-fronts interact and one of them has order > v, we let them simply cross each
other, without producing any new wave. This gives a small error, which can be controlled.
The generation order is assigned, inductively, as follows. At time ¢ = 0 each wave-front has order
1.
Let two waves interact at (Z,%), with order ki, k; respectively. Different cases are considered,
depending on ki, k».

(1) k1, k2 < v. Let i, i3 be the characteristic families of the incoming waves. The order of a

new wave of the j'P characteristic family is given by

( max{k;, kr} +1 if j #41, %
min{ky, &k ifj =12 =1
{ 1y 2} o ’1 '2 (3.2)
kl lf] = #22
\ k2 i.f] = ig # il.

(ii) max{ky, k2} = v. Let the three states u;, um, u, be related by

um = i (e1)(w), ur = ¥i,(e2)(um)

for some €, €} and i1, 72 € {1,...,n}. We then set

e = ) ) 2

¥i, (61" + &2")(w) if i1 = 1

With such a definition, the Riemann problem with data (u~,u%) centered in (Z,%) is solved in
terms of the two waves of sizes €}, ¢} (if the interacting waves belong to distinct characteristic
families) or in terms of a single discontinuity of size €} + ¢} (if 7 = i, and one of the two waves is
a shock). The generation order of the waves after interaction is assigned according to (3.2).
Clearly, in general one has u™ # u,. A discontinuity of order v + 1 is then produced, with value
uT at the left and u, at the right. Its speed is X, which is a fixed real number, strictly bigger than

all characteristic speeds:
i< ’\linin1 Amax o A (3.3)

(i) by = v+ 1, ky < v. If iy € {1,...,n} denotes the characteristic family of the wave-front
at the right, and

ur = Pi,(€3)(tm)
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define u™ = w;, ut = 1, (&) (w).

Again, the Riemann problem with data (u~,u™) centered in (Z,?) is solved in terms of a single

wave-front of the i,*® family, with size e, and order ky. As in (ii), in general ut # wu,, hence a

discontinuity of order v + 1 outgoes from (Z, 1), with speed A, value ut at the left and u, at the

right.

The previous cases cover all possibilities, since two wave-fronts of order » + 1 have the same speed

and hence cannot meet. Note that, with the above definitions, each wave-front, until it exists, keeps

the same generation order.

In this setting, if the initial data has total variation sufficiently small, the v-approximate solution

is defined for any ¢ > 0, and the number of polygonal lines, along which v, is discontinuous, on

the half-plane { ¢ > 0 }, can be bounded from above and thus is finite.

We stress that, with this construction, if v, has a discontinuity between two states w;, w, that

propagates with speed A, one of the following cases occurs:

I) w, = v;(e)(w;), for some ¢ and some i € {1,...,n}; the i*" family is genuinely nonlinear,

e > 0. Then A = X;(w,).

) w, = t;(e)(w), the i*" family is genuinely nonlinear, ¢ < 0, or the 'M family is linearly
degenerate. Then A = X;(wy, w,).

III) X = X defined at (3.3).

Next, we shall describe some properties of these approximate solutions. Let us consider three

nearby states u;, ¥, Uy, a constant § > 0 and define

Uy if z<0
vs(z) =< um if 0<z<$é (3.4)
u, if é<z

At the initial time ¢t = 0 the Riemann problems (u;, ) and (um,, u,) are solved as in (2.3)(2.5)(2.6),
for some fixed integer v. Let v, s(z,t) the v-approximate solution to the Cauchy problem (3.1) with
initial data vs, defined following the previous scheme. Since the total number of wave-fronts is finite,
there exists a time 7' = T'(v, §) at which last interaction occur and, after that, the wave-fronts get

far from each other. Let
Wi 1, i:l,...,n, lZO,...,N,'——]., w;\’l, l“—:O,...,Ni—-l

be the intermediate states such that, for ¢ > T(v, §)

y =wypy << 231’1(t)
w; :Ci';(t) <z < zi,l-}-l(t); forl=1,...,N; -1
w; o zi—-l,N.'-l(t) <z <L :c,-,l(t)
vs(2,1) = 4 w; Tan,(t) <z <z),
wﬁ\:z 501 <:c<a:5‘,,,’ forl=1,...,N; -1
| ur z > 25 N (1)
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where

zig(t) = 2i2(0) + migt,  z5,(t) = z5,(0) + M

are the lines of discontinuity after time T. Clearly, there holds m;; < m; 4y, forl=1,...,N; -1
m; N; < Mit1,1, by the choice of T

7

By construction, each discontinuity between two states w;;—; and w;; corresponds to one of the
above cases I), IT), if it has generation order k;; < v, or to case IT), if k;; = v + 1.
The approximate solution v, s has a remarkable property. As § becomes smaller and smaller, (see

Figure 3.2), the global configuration in v, s remains the same (is homothetic w.r.t. the origin).

I 0 &2
Figure 3.2
Indeed, the slope of a polygonal line along which v, s is discontinuous, depends only on the left
and right states of the discontinuity, and not on the relative position w.r.t. the other wave-fronts.
More precisely, there holds
v,6(0t,6z) = v, 1(¢t, z)

As a consequence, T(v,§) tends to zero as § — 0. Moreover, in the previous constructions, the
slopes m;; do not depend on §. Then it makes sense to consider the ”limit configuration”, as § — 0.

This is done by defining
wy(t,z) = ﬂlim v, 5 (0, ¥c) (3.5)

which does not depend on § and is defined on {¢ > 0} except at most finitely many rays outgoing
from the origin. Indeed, the limits exist, because v, s has a finite number of jumps along each ray
in the half plane {t > 0}. Moreover, w, is self-similar w.r.t. the origin, and has discontinuities,

possibly, occurring along the half-lines
Zi,z(t) = mygt, mi(t) = At

Clearly, there holds

u;  if

it 2) = {u if

< Amin
> A

18] |y
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If the 3" characteristic family is linearly degenerate, then m;; = m; 1. Letting ¥ tend to
co in (3.5), all waves of this family collapse in one single discontinuity, with left and right values
respectively w; o and w; y,. What is found in the limit is then a single wave-front of the it family,
that satisfies the Rankine-Hugoniot conditions. The generation order of the wave-front front is
defined to be the minimum between the orders of the i*"-waves in U5

Since all wave-fronts of order v +1, in v,,, have the same speed, at most one single discontinuity
with speed ) appears in the limit, with order v + 1.

In the genuinely nonlinear case, only one of the following cases occurs:

i) there is a unique shock discontinuity;

ii) there are a unique shock wave and some rarefaction waves at its right.

iii) only rarefaction waves appear.

Indeed, consider three states w;;_1, w;;, w;+1, separated by two discontinuities z;, i 14+1 with
speed m;; < m; 1.

If the first two states are connected by a shock wave, then the wave at z;;.; cannot be a

shock, because

mig = X (wig—1,win) > Ai (i, wing1)
However, it can be a rarefaction, with size larger than half the size of the shock. On the other
hand, if the first two states are connected by a rarefaction, then z;;+; may well be a rarefaction,

but it cannot be a shock, because
mig = Ai(wig) > Ai (win, wigg1)

Observe that, in case ii) above, it may well happen that the shock wave and the rarefaction at its
right, appearing in v, 5, have exactly the same speed, that is m;; = m; ;1. This cannot occur in
the other situations. In the limit (3.5), this gives a discontinuity between the states w; -1, wi 1+1,
which in general is a non-admissible shock. By slightly raising the speed of the rarefaction, by any
positive quantity < 27, the two wave-fronts have distinct speeds, so that they both remain in the
limit.

Note that all this construction can be performed if, in addition to the initial data (3.4), we
assign an initial configuration set.
More precisely, instead of solving the Riemann problems in (3.4) using (2.3)(2.5)(2.6) (that is
considering the exact Lax solutions and dividing each rarefaction in v parts), we can use any given
two patterns of wave-fronts at time ¢ = 0, centered at (0,0) and at (6,0), provided that all wave-
fronts either have speed A and generation order v + 1, or have an assigned order < v, and satisfy
(2.4) or (2.5), according to the case. Then, with the above procedure, a final configuration is found
as § — 0. We remark that this is possible because an approximate solution to the Riemann problem

is used.
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Let us turn to the definition of the algorithm for the boundary problem (C). In the (C) setting,
let ¥ :[0,+00) — R be a continuous map. Construct a sequence of continuous, piecewise linear

(saw-tooth shaped) functions ¥,,, such that, as v — oo
sup |¥(t)— ¥,()] —» 0, |¥,]>A

t€[0,00)

(see Figure 3.3). We may well assume ¥(0) = 0 = ¥,(0).

L WO 2y

Figure 3.3

Assume that the initial and boundary data @, @ have small total variation, and that the jump at
the origin is small. For any fixed v > 1, choose a sequence of piecewise constant functions u,(z, 0)

and 1,(t) that approximate @ and @ respectively, pointwise and in L!. Assume that u,(z,0) and

i, (t) have finitely many jumps and

TVu,(-,0) + TV i, + |u,(0+) — @,(0+)| <

(3.6)
< TVa+TVa+|a(04) — a(0+)].

The approximate solution u, will be defined on the domain Q, = { (z,t); t > 0, z > ¥,(¢) }.

Solve the Riemann problems arising at every point of jump in u,(z,0), for ¢ > 0, as described in
(2.3)(2.5)(2.6).

At the origin, construct the solution to the Riemann problem with data

u” = 4,(04) = lim; o @, (¢)
ut uu(O‘l’) = lim:c—>0+ 'U.,,(Z!, 0)7
as in (2.3)(2.5)(2.6), and take its restriction to the domain §,, for small times. By the choice of

¥, (very steep), either all wave-front enter the domain, or all wave-fronts (solving the Riemann

problem at the origin) do not appear at all.
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At every time t, call

B(t) = { (Waswa+1)y @ =0,...,N =15 wp = 1,(t=), wy = u (2, T,(t)+),

(3.7)
Wo = U;_ (€a)(Wa-1) has order b, < v +1, Ap < Aat1}

the set of wave-fronts sticking to the boundary. This set will be referred to as the wave-front
configuration at the boundary. Here )., denoting the speed of the wave-front between the states
(Wa—1,Wq), is determined according to the algorithm. Either

1) If kg = v+ 1, then A, = X
or wy is on the i,-shock-rarefaction curve through w,—; and

ii) If the it family is linearly degenerate, then by (2.5) Aq = Ai, (Wa—1, Wa)-

iii) If the io'? family is genuinely nonlinear and e, < 0, again Ay = Aj_ (Wa-1,Wa)-

iv) If the i,'" family is genuinely nonlinear and ¢, > 0, by (2.4) Ao = A;, (wa)-
By construction, B is empty if \i',,(O—{-) < 0. On the other hand, if ¥,(0+) > 0, B is well defined

and each k, is set to 1.

The approximate solution u, is then piecewise constant and is defined until the first time ¢, where

one of the following situations occurs:

a) two or more discontinuities interact,

b) one or more discontinuities hit the boundary,

c) the boundary condition i, has a jump,

d) the slope ¥, changes sign.
Observe that it is not restrictive to assume that no more than two waves interact, only one dis-
continuity hits the boundary and only one of the previous situations can occur at any given time.
In the following we shall treat only simple interactions. Indeed, in order to avoid that multiple
interactions occur, it is enough to change the speed of a single wave-front at a time, by a quantity
<27,
In each of cases a) - d), u,(z,t) can be defined after time t;, respectively, as follows.

a) Proceed exactly as described for the Cauchy problem, in the definition of u, and in the

assignment of the generation orders.

- b) Let u® and u? be the values at the left and at the right of the discontinuity, respectively.

The solution is prolonged after time #; by u,(t,z) = u? for small t —¢1, ¢t > t1, 2 > ¥, (t) ina
right neighborhood of ¥,(¢;) (Figure 3.4).
To define B(t+), consider the Cauchy problem with initial data (3.4), with u = 4,(t), um = v’,
u, = ud. Assume that the first jump (u;, %) is solved by the waves in the configuration B(t-),
together with their orders, while the jump (um, u,) is solved by the wave-front interacting with the
boundary at time t;. The solution v, s to this problem is well defined.
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As in (3.5), letting ¥ — oo, a self-similar map w,, is found, which is discontinuous along some
half lines outgoing from the origin, say z1(t) < ... < zx(t). Then, for some integer N’ and some

states w), a = 1,..., N/ — 1, there holds

iy (1) 2 <zy(1)
wy(7,z) = { w, zo(T) < £ < 2g41(7) @ =1,...,N -1
wh, =u? > zy(r)

and

w,, = i, (ea)(wh_y), Wave-front with order k., and speed )., AL < ALp

The set B(t+) is defined in terms of these wave-fronts, that is B(t+) = {(w,wyrq), @ =
1,...,N'}.

Figure 3.4
o If ¥,(t;) < 0, the Riemann problem (2.1) with data
T =d,(th4),  ut = (t, O (0)+)

is solved approximately as in (2.3)(2.5)(2.6). This solution, centered at (¢;, ¥,(t;)), is then glued
to u,, in a forward neighborhood of ¢; (Figure 3.5). The new wave-fronts have generation order 1.
On the other hand, assume ‘i’u(tl) > 0. In this case, u, is simply prolonged, after time ¢; and near
the -blounda.ry, by the constant state u,(t1, ¥, (¢1)+).

To define B(t+), consider the Cauchy problem with initial data (3.4), where

up = '&u(tl"“)y Uy = '&u(tl—)y Uy = uu(tla ‘I}u(tl)'*")

The jump (u,um) is solved using (2.3)(2.5)(2.6), and the wave-fronts have order 1. The jump

(&m,ur) is solved in terms of the wave-front configuration B(¢—). An approximate solution v, s to
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the Cauchy problem with data (3.4) is defined. As in b), a new set B(t+) is defined, by letting
§— 0.

d) If the slope of the boundary changes from negative to positive, u, is simply prolonged by
the constant state u, (i1, ¥,(¢1)+), and there holds B(t1+) = B(t;—) = 0.
On the other hand, if the slope changes from positive to negative, some wave-fronts sticking to
the boundary may appear after time ¢;. More precisely, u, is prolonged after time ?; in terms
of the wave-front configuration B(¢;—), centered at the point (¢1, ¥,(#1)). Thus B(t;+) = 0 and
u,(t1+, -) satisfies the boundary condition.
Observe that, if ¢) occurs at time ¢, and ¥,(¢;) > }, or if b) occurs, the value of the approxi-
mate solution is not affected by the jump in the boundary condition, but the configuration at the

boundary changes.

Then the solution can be continued until a time ¢ > t;, where one of these situations again occurs
and this procedure is repeated. We remark that, as long as this construction can be performed, u,
satisfies the boundary condition (1.3), at any time, w.r.t. the boundary condition #,.

Indeed, by the choice of slope of the approximate boundaries, (1.3) becomes trivial: if 'il,,(t) < =X,
condition (1.3) is fulfilled only if the boundary data is attained; by c), d) this is the case. On the
other hand, when @, (t) > A, (1.3) is satisfied by any state in a neighborhood of @, (t—); this holds,
clearly, provided that the total variation of u,(t,-) is enough small.

It is easy, now, to derive an upper bound on the number of polygonal lines along which u,(z,t) is
discontinuous, until u, is defined. Consider the Cauchy problem (3.1) with initial data

o i,(—z) ifz<0 (3.8)
v(2,0)= uy(z,t) fz>0 .

Define the v-approximate solution v,(z,t), as in the first part of this Section, assuming that all
jumps are solved using (2.3)(2.5)(2.6) and assigning 1 as generation order at time ¢ = 0. By
construction, the total number of all possible discontinuities of u, is bounded by the total number
of polygonal lines in v,,, which is finite ([B2]).

Remark. The definition of this algorithm for the boundary value problem (C) may appear a
bit tricky. Indeed, it could be defined in a simpler way and all the estimates on the total variation
would work as well. However, this approach seems to be more consistent with the problem. In
this way, the refined estimates near the boundary, performed in Sections 5 and 6, become easier
to manage. The constructive algorithm used in Chapter 3 for problem (C), in the 2 X 2 case, is
defined in a much simpler way, because the proof that the boundary condition is satisfied needs

not to be performed.
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4. Bounds on the total variation.

Yor any v > 1 fixed, let u, be a piecewise constant approximate solution with initial and boundary
data u,(z,0) and @,(t). In this Section we shall estimate the total variation of u,(t, ), uniformly
with respect to v. To do that, we need some definitions.

Let z(z,t) be a map, defined for ¢ > 0, z € R, such that z(-,t), has small total variation and is
piecewise constant in the z-t plane, with jumps occurring along finitely many polygonal lines. For
any t > 0, let z;(t) < ... < zxN(t) be the locations of the jumps. Assume that each jump is solved
in terms of a single wave-front, with a given order. If the discontinuity at z, is of type 7, and order

k. < v, then one has
u(t,zot) = ¥i,(€a)(ult, za"))

for some e,. We call |e,| the strength of the a-th jump.
On the other hand, if k, = v + 1, the o'} wave is non-physical and its strength is simply defined
by

Ea = |u(t,zot) — u(t, zo—)]

Two waves, of order ko, kg and located at z, < zg respectively, are said to be approaching if one

of the following cases occurs:
Dke=v+1lkg < v
2) ko, kg < v;if iy, ig denote their characteristic families, the usual definition is considered :
2.1) iy > ig
2.2) i, = ig, the 3" characteristic family is genuinely nonlinear and at least one of the two

waves is a shock.

With such notations, we define the total sirength of waves in z at time ¢t and their interaction

potential, respectively as

V()= Y lel
Qz= Y Jeallesl

(a,B)EA
where A is the set of all couples (a, B) of approaching waves, according to this definition.
Now consider the approximate solution u,(z,t); set,fort > 0 and z € R
L (t+TL(E) —2) if 2 <TL(2),
v (z,t) = ) (4.1)
uy(z,t) if z>9,(t),
Let v,(-,7) be the approximate solution defined by the algorithm, for 7 > %, assuming that the
jumps in 4, are solved approximately using (2.3)(2.5)(2.6); each wave-front has generation order

1, while the jump at the boundary is solved in terms of the configuration set B(t). Define
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V.(t) = V(v,; t+) total strength of waves in u at time t

Q.(t) = Q(v,;t+) interaction potential.
These definitions keep into account not only of the wave-fronts at time £, but also of the ones that
are ”glued” to the boundary or that can be generated by the jumps in the boundary condition,
after time t.

In next lemma we give a basic estimate on the total variation of any v-approximate solution.

Lemma 4.1. In the previous hypotheses, for any compact set K C R", there ezist constants
C], (51 > 0 such that, 1f

TV a,(-,0)+ TV 4, + |, (0+) — 4,(0+)] < &1, lig_n 4,(z,0) € K,
then one has, for anyt > 0
TV(uy(-t)) < Cy - (TV (- 0) + TV @, + |%,(0+) — ©,(0+)]) (4.2)

Proof. Choose § = 0 such that K' = {y; d(y,K) < &'} is contained in the domain of F.
Then there exist positive constants C, § such that Lemma 2.1 holds for the compact set K'.
If §' is small enough and TV (v,(,t)) < &', the quantities V() and @, (t) are well defined for some
t > 0, are piecewise constant and have jumps, possibly, when one of cases a) - d) occurs. We claim
that the quantity V,(t) + 2CQ,(t), is non increasing in time, if V,,(0) is enough small. Indeed, we

can prove that at every time there holds
AV, (t) + 2CAQ,(t) < 0, (4.3)

provided that V, (t—) is enough small.

a) Let ¢ > 0 a time when two waves interact, with strengths |e.|, |¢g| respectively. By Lemma 2.1

one has

AV, (8) = V,(t+) = Vi (t=) < Cleats| (4.4)
AQUY) < —leats] + Vilt=) - Cleatsl, (4.5)

provided that |e4], |eg] < §, and the values of u remain inside K'. But this is certainly the case
if V,(t—) < min{é,6'}, because of the assumption lim,_,o #,(z) € K. Together, (4.4) and (4.5)
yield (4.3), assuming that V,(t—) < (2C)71; this also gives AQ,(t) < —1—5525’3—‘.

b) A discontinuity z, hits the boundary at time t.

Let A > 0 and consider v,, defined at (4.1) at time ¢t — h. Denote with w, 4(7,-), for 7 > 0, the
v-approximate solution to the Cauchy problem (3.1) with initial data v,(-,¢ — k). If h was chosen
sufficiently small, the wave-front configuration at the boundary, B(t—), interacts with z,(t), before
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that other interactions occur. Hence, after a small time 7, w,, 4(7, ) has the same configuration of
wave-fronts as v,(-,i+), by the very definition of the algorithm.

Thus, proving (4.3) is very simple. It is enough to evaluate the variation of (V + 2C - Q) for w,, 1,
between time 7 and 0, by using (4.4) (4.5) at simple interactions of type (I). Then (4.3) holds.

c) Assume that there is a jump in the boundary condition at time t: ,(t—) # @, (t+). If ¥, < 0,
by construction, one has simply AV, = AQ, = 0.

If instead ¥, > 0, the same procedure followed in b) is applied. As a consequence of (4.4) and
(4.5), inequality (4.3) holds.

d) If the boundary changes the slope from negative to positive, at time £, no new waves appear.
On the other hand, if the slope changes from positive to negative, new wave-fronts may exit from
(t,%,(t)). Their total strength was already counted in the potentials, for T < &; thus there simply
holds AV, (t) = 0 = AQ,(¢t).

In all cases considered, the obtained estimate implies

Vo(t) < Vu(t) +20Q,(t) < Vo(0+) +2CQ.(0+), (4.6)

valid as long as V, remains smaller than min{§,§’,(2C)~1}. Since for a suitable constant C,,

independent on v, there holds
TV(2,(0, ) < Vi(04) < G2 TV(u,(0,-)),
and, moreover, Q,(0+) < V,(0+)Z%, then (4.6) leads to the following inequality -
V,(t) < (Cy+2CC3) - (TV4(0,-) + TV 4, + |8, (0+) — ©,.(0+)]) (4.7)
valid if TV(v,(0,-)) < § < 1. Choosing §; € (0, §'] such that
(C; +2CC%)6; < min{§,6,(2C)71},

the assumption TV(@,(0,-)) + TV @, + |,(04) — @,(0+)| < & implies that the estimates (4.7)
continue to hold for any ¢ > 0. This yields (4.2) with C; = C; + 2CC2. Observe that, by (3.6),
the bound in (4.7) can be chosen uniformly w.r.t. v.

Remark 4.1. Other properties of these approximate solutions are derived by the analysis per-
formed for approximate solutions to the Cauchy problem, constructed by wave-front tracking algo-
rithm in [B1], [B2]. With the same procedure used in [B2], it can be proved that
o the total strength of all "non-physical” waves in the solution u,(t,-), at any time ¢ > 0, is
bounded by O(1) 27%, uniformly w.r.t. time.
e the maximum size of a rarefaction wave present in the approximate solution u, approaches

zero as v — -co.
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5. Existence of solutions.

In this section we prove the existence of a weak solution u : & — R” to the initial boundary value

problem (1.1)(1.2) (1.3). We then look for u satisfying the following conditions:

C1) for every continuously differentiable function with compact support ¢ in {(t,z):¢ > 0,z >
¥(t)}, one has

- #(0, z)a(z) dz + /O * /q::) bu(t, z)u(t, z) + ¢2(t, =) F(u(t, z)) dzdt = 0, (5.1)

¥(0)

C2) for all except countably many times ¢t > 0, the Riemann problem with data

u” = ’&(t)
{2 i) (52)

is solved by waves with speed less or equal D_¥(t), where

D_%¥(t) = lim inf w,

g—t— t—s

is the lower left Dini derivative of ¥, at time £. ,

Consider two approximating sequences u,(0, -), 4, satisfying (3.6), u,(0,-) — @(-), @, — @in L1,
converging pointwise everywhere. Fix a sequence of continuous piecewise linear boundaries ¥, :
[0, 00) — R, that approximate ¥ uniformly as v — oo, and satisfy |¥,] > A, where X is a fixed real
number satisfying (3.3). A family of piecewise constant approximate solutions (u,), > is defined
by the algorithm in Section 3. A comnstant § > 0 can be chosen in such a way that, if condition
(1.5) is satisfied on the total variation of the data, the conclusion of Lemma 4.1 holds.

Since the bounds on the total variation of u,(t,-) were depending only on the bounds on the initial
data, the approximate solutions u, and their total variation w.r.t. = are equibounded. By Lemma
4.1 there exists a positive constant C such that TV u,(¢,-) < C,for allt, v. Since all discontinuities
in u, travel with a speed uniformly bounded by some constant ), for any bounded interval [a, 3],
we obtain

lluw(t,-) — (s, )llLr(apire) < Cilt - s

for.all s,t € [t1,t2) and for all v big enough for which [a,b] X [t;,%2) is contained in the domain
Q,={t >0,z > ¥,(t)}. Now by standard arguments (see [B2]), the sequence u, admits a
uniformly bounded subsequence u,:, converging to some function v in L} _(£;R"). The proof of
(5.1) is now completely similar to the one performed for the Cauchy problem (see [B1], [B2]).

It remains to check that property C2) is satisfied.

The functionals V,, and @, : [0,00) — R, introduced in Section 4, are uniformly bounded and have

equibounded total variation; by Helly’s theorem there exist subsequences converging pointwise to
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some functions V' and @, respectively. We shall prove that condition C2) is satisfied at every time
t at which @ and the boundary condition % are both continuous, hence for all but countably many
t.

Indeed, let ¢ be a point where Q and @ are both continuous. This implies that, for any sequence
T, — t, there holds

7, —0,asv—>o00 = TV, , 1@u(m) —@u(t)| — 0 (5.3)
[70,1]
Denote by A = D_¥(t) the left lower Dini derivative of ¥ at time ¢. In all what follows, ¢ is fixed;
we shall prove that the boundary condition C2) is satisfied at time ¢.
As a preliminary, for any two nearby states u~, ut € R™, we introduce a function that
measures the total size of the waves, in the solution of the Riemann problem with data (u~,u"),

having speed larger than A. Let X = x[s ) and define

&

(u,ut) - pMu,ut) = Z |e;|XA(A;(w,-_1,wi)) + Z/ X/\(/\;(exp(ar;)(w;_l)) do. (5.4)

i€s icr Y0

where wg = u”, w; = ¥;(e;)(wi—1), wn = ut, R denotes the set of rarefactions, S the set of shocks
or contact discontinuity in the solution to the Riemann problem (u~,u"). Recall that };, in the
first sum, denotes the propagation speed of the shock (or contact discontinuity) of the i** family.
For later use, we now introduce two approximate versions of (5.4). Given two states u™, u™,
let us consider the v-approximate solution to the Riemann problem with this data, defined using

(2.3)(2.5)(2.6), see Section 2. For any § > 0, in the previous notations, define

n N;
¢3+25(u_,u+) = ZZIEi,lIXA+25(Ai,l)

i=1 =1
N N (5.5)
i‘u(u‘,u*’) = §3+‘5(u‘,u+) = E Z IE,‘)[‘ [A,‘yl - (}\ + 6)]+
i=1 I=1
These maps are related by the inequality
6.4, (w7 ut) < (w7, u) (5.6)

In these terms, condition C2) is satisfied at time ¢ if we prove that, for the Riemann problem with
data (5.2), there holds ¢*(u~,ut) = 0.
To help the reader, we sketch the main steps of the proof.

Step 1. There exists a sequence 7, — 0 such that

u(t, ¥(H)+) = Bm w,(t, Tu(t) + 7).
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By assumption, there holds ,(t) — 4(t), as v — oo. Thus, it is enough to prove that, for any
§ > 0, the solution @, to the Riemann problem with data
u = 4,(t) z<0
v 5.7
{uj =u,(t,Y(t)+m) =2>0 (5.7)
satisfies

¢ P(uy,ul) -0, asv - (5.8)

Indeed, if there were ¢*(u~,u") > 0, one could prove, by continuity arguments, that (5.8) would
not hold, for some § > 0. Now, by inequality (5.6), the problem is reduced to show that, for any
§ >0,

338 =3, (u;,uf) >0, asv— oo (5.9)

124 e %4

Step 2. Consider the v-approximate solution v,(7,-), 7 > t, to the Cauchy problem with
data at time 7 = ¢
u,(t) ifz < ¥,(1),
v(t,z) = < uu(t, z) HfO,(8) <z<E()+ 7, (5.10)
u (t, Cu(t)+7,) ifz > U, (t)+n

and denote with »(7) the interaction potential of v, (7, -). Recalling that ), denotes the interaction

potential of the approximate solution u,, observe that there holds

éu(t) =Q, (t)

[2.(2), T,(t) + )

With the same procedure used in Section 2, ”recenter” the map v, at (£,0), defining
wy(7,z) = lim v, (d9(r — t),9z)
J—o0

The map w, is a good approximation of the (approximate) solution @, to the Riemann problem
with data (5.7); indeed

lim w, — @, =0 inL} .
Udamde el

Thus we shall estimate the quantity of waves, in v,, with speed "too large”, as 7 — oo.

To tI}js end, consider for 7 > ¢
&,(r) = Y leal [Aa = (A +8)], (5.11)

where the sum is extended to all discontinuities in v,(7,-), for 7 > ¢. This map is piecewise

constant in time, and at interaction times one has

A%,(1) < Co|AQ(7)| (5.12)
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for a suitable constant Cp, independent on v. Letting T tend to co, we obtain
$,(00) = lim &,(7) < 3, () + CoQ,(t), (5.13)

The r.h.s. of (5.13) tends to zero, as ¥ — oo, hence the conclusion follows. Indeed, there hold
i) @,(t) — 0, as v — co.

11) éu(t) = Qu

— 0, as v — c0.

[9.(2), ®.u(2) + 7]

Step 3. &,(t) —» 0, as v — 0.

Denote by I',, the closed region bounded by the curves ¥,(7), 7,(7) = ¥,(¢) + 7, + (A + 8) (7 — 1)
and 7 =t (see Figure 5.1); let ¢, be the last time before ¢ where ¥, and 7, intersect.
Observe that t, — t, as ¥ — oo, by the very definition of A. Using (5.12), an approximate

conservation law for &, on T, is deduced. Indeed, define
B(w(r,)) = B(1) =) lealda— A+ 8] + D lepllés — (A + 6, (5.14)
o B

where the first term concerns the jump at the boundary, solved by the configuration B(7), intro-
duced at (3.7), while z1(7) < ... < zn(7) < 7,(7), are the locations of the jumps of u, at time T,
in the interval [¥,(7),v.(t)], and eg are the corresponding strengths.

(t’Wv(t)"'nv)

Yy

Figure 5.1

4 There hold
() = 0, Bu(t) < Co- (Qult) — Qult) + TV{ai 1,11},

hence lim, _. @u(t) = 0, by continuity of Q and % at time t.
Intuitively, this means that, in the interval I, = [¥,(t), ,(t) + 1,.), the total amount of waves with
speed > A + § is very small.
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Step 4. If it were not @u(t) — 0, as ¥ — 00, since all waves in v, are concentrated in an
arbitrarily small interval I, the functional @, would decrease by a uniformly positive amount,

immediately after time ¢, against the continuity of @ at time ¢.

6. Local behavior near the boundary.

In this Section, we work out in greater detail each step of the proof of Theorem 1.1, stated in

Section 5.

Lemma 6.1. There ezists a sequence , — 0 such that
u(t, ¥(t)+) = ulgglo uy (8, o (t) + 1)

Proof. Fix a sequence §,, — 0, §, > 8,11, such that | € — ¥, || < §,. For any ¢ > 0, there exists
k such that

€
|’U,(t, ‘P(t)"l‘) - u(ta l*‘[J(t) + 519)‘ < '2‘:
for k > k. Eventually passing to a subsequence, for any k¥ > k there exists v, such that

£

lup(T(2) + 6k, t) — u(T(L) + &, )| < 3

for any v > wi. If we choose 1, = ¥(t) — ¥, (t) + 6 > 0,for vpp1 > v > vp, kb > k, we get
lu(t, ¥(t)+) — wu(t, Lu(t) + m)| <
< u(t, T(E)+) — ult, B(2) + 66)| + |ut, Tut) +m) — w(t, () + 1)l < €
forv > vg.

Lemma 6.2. There ezxists a constant Cy such that the following holds. Assume that, at time

T > 0, an interaction between two wave-fronts in any approzimate solution w, occurs. Then
A%, (1) < C’OIAQV(T)[ (6.1)

Proof. Indeed, assume that at time 7 an interaction between two wave-fronts of order kq, kg
occurs; let |o4|, |og| be the strength of the two waves, with velocities A,, As respectively. If
max{k,, kg} < v, denote with i,, ig their characteristic families. After the interaction new waves

with strength |0} | and speeds A\{ are produced. One has

ur = $i,(0p) - Pi, (0a) () = Pn(0f) - Pr(o7)(w)

and AQ,(7) < __Ia_azg_,s_l_ We have to distinguish between two main cases.
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I) in # ig. If the waves belong to different characteristic families, there holds

A%, (1) < D 1o IAE = (A +8)+
l#a,8

+1oF 1N — A+ ) - lollrs - (A+ )]+
o2 I = A+ 6] = [oallha — (A + 8)]4

By standard estimates on the wave strengths, the following inequalities hold
A5 = sl < O(W)loal, 1AL = Xal < O(1)logl, (6.2)

and this yields
A2, (1) < O(1)|oqog| = O(1)(—AQ,).

II) i, = ig = i. If the two waves belong to the same characteristic family, the variation of &,

satisfies

A3, (7) <O)|oaopl + low + ool AF = (A4 )] —
— loallha = A+ )]+ — lopllo — (A + &)

In the case that both are shocks, since their speeds are exact, by standard estimates one gets

(6.3)

AoOq + Ago
F_ 22T ABYB _ o 4
IAx Oo O'ﬁ I (1)Iaao'ﬂl . (6 )

and this leads to

Aaloa| + Aglog]
{acx + U'ﬂl

|°'a+°'ﬂl[ -(A+ 5)] = loal Ao = (A +0)], —

+
—losl s = (A+8)], <

< [raloal + Aslos] = (4 8)(oal + loa)] | = [Aaloal = (A+8)loal]
~ Prslosl - O+ )leal] | <
<0
Then there holds A®,(7) < O(1)|o,0s| and hence (6.1). On the other hand, if one of the interact-

ing waves is a rarefaction, say the one with size oy, (6.4) does not hold anymore and the following

cases can occur.

ILi) o4+ 0p > 0. Thus, last terms in (6.3) become

(00 +08) A = (A4 5)]+ —oa[ha = (A4 ‘”L ~ losl[3s - (,\‘+ 5)]+ =

= oa (0 = A+ )1 = Do = O+ 0)14) — Lol (X = (A4 8)]s + Do — A+ 8))1 ) <
S 00])‘+ - Aa!
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Since there holds |A* — A,| = O(1)|ogl, (6.1) follows.
ILii) o4+ 0 < 0. In this case, the previous calculation becomes
- +_ — — - — =
(0a +02) [ = A+ 8)] | —a[a= (A4 6)] ~lopl s - (14 8)]
= —oa (V= O O + P — O+ 6011 ) + ol (= (A4 8 = o = A+ 8)L4 ) <
<losl|AT = Agl

Now, by the estimate |At — Ag] = O(1)|oq/|, (6.1) follows.

If max{kq, ks} = v, a new wave-front with speed ) is produced. One has

A2 (T) < lo'aHAZ — Ao+
+1ogllXg = Al + (A= (A +8)) - Cloaog]

In this case (6.2) holds, hence (6.1).
Finally, if max{k,, kg} = v + 1, one has simply

AB,(r) < logllXf = Agl +1oF = al - (A= (A4 6)) < O(D)loaosl

Then again there holds (6.1) for a suitable constant Cy. This completes the proof of Lemma 6.2.

The following Lemma states a property of the functional ¢, needed in the future. Let u: R — R"
be a piecewise constant map, with finitely many jumps. If its total variation is small enough, we
can construct the v-approximate solution v, to the Cauchy problem for (1.1), with initial data
v,(0,z) = u(z) and an assigned initial configuration, according to the algorithm of Section 3. Let
3,(t) = ®(v,(t,-)) be the functional that measures the amount of waves with speed > X + §, and

@V the interaction potential. If u~, ut are two nearby states and the Riemann problem with data

w(z) = {u" ifz<0

ut ifz >0,

is solved by using (2.3) (2.5) (2.6), then simply @V(t) is constant in time and 5,,(0) =&, (u",ut),
introduced at (5.5).

Lemma 6.3. For anye, § > 0 there exists vy, §; > 0 such that the following holds. Ifv: R — R"
1s a piecewise constant function and such that @u(O) <eg, QU(O) < &, for some v > vy, then in
the v-approzimate solution to the Riemann problem with data

{U“ v(~o0)

ut = v(0)

o

the total amount &,(u~,u™) of waves with speed > A + § is less than 2¢, for v sufficiently large.
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Proof. In relation with the v-approximate solution v, of (1.1) with initial data v,(0,-) = v,

consider the quantity @U(T) + C()@L,(T). By inequality (6.1) one has, for any 7 > 0,
2,(1) < 8,(7) + CoQu(7) < 2.(0) + CoQu(0).
In particular, if @,(00) = lim,_,cc 2,(7), then
,(00) — 3,(0) < CoQ.(0).

After some time T = T(v), no more interactions occur and all wave-fronts in v, leave each other.

By the analysis performed in Section 3, the map
wy(t,z) = ‘91im v, (9t, ¥z) (6.5)

is self-similar and may be discontinuous along some rays exiting from the origin. By uniqueness,
the sequence w, converges in L}, _, as v — oo, to the exact solution of the Riemann problem with
data u~ = v(—o0) and vt = v(c0).

To convince about this, we refer to the analysis performed in Section 3. By definition of w,,, there

holds
v(—o0) if z < tAPD

wy(t,2) = {'u(-}-oo) ifz>tA

Eventually passing to a subsequence, w, converges to a weak, entropic self-similar solution to

system (1.1) with initial data
v(—o0) ifz<0
v(+o0) ifz >0,

hence it must coincide with the exact solution to this Riemann problem.

Thus, for v sufficiently large, the conclusion of the Lemma follows by

=~ 13
® (u_,uy) < @,,(oo)«i-i <

INA

8,(0)+ Co@.(0) + § < 2

for §, < 2(510‘
Step 3. If v, is the straight line passing through the point (¢, ¥, (¢) + 7,) with slope A + §, the
approximate boundary ¥, intersects v, at some last point (¢,,¥,(t,)) before time ¢; denote with
T, the region {(7,y);t, < 7 < ¢, ¥,(r) <y < 7.(7)} (Figure 5.1).

For any 7 € [t,,t], the map

T 6”(7) =3, (u,(T, '))l[‘lip(f),‘yu(r))
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measures the total amount of waves of u,(7,-), with speed greater than A + §, whose location lies
in the interval [¥,(7),v(7)); this includes the jump of the approximate solution at the boundary,
solved as described in Section 2.

Observe that ¢, — t, as v — oco. Indeed, assume by the contrary that, for some h > 0, there holds
[t — h,t] C [tu,t], for all v sufficiently large. Then for any 7 € ¢ — h, ]

T, () <T@+ + A+ 8)(r—1)

hence, letting v — 0o, we obtain
— W(i
TG ELTONGN
T—1
against the definition of A.

Lemma 6.4. In the previous assumptions, for v — oo one has

3,(t) = &, (wlts Nwo (), v ()4 [ — O (6.6)

Proof. It is not restrictive to assume that A > A, otherwise &, = 0 and (6.6) holds trivially.
Moreover, there holds

3,(t,) = 0. (6.7)

Indeed, since the slope of the boundary is either > X or < —J, it is enough to show that
Hm, e, 7>, li’,,(‘r) = ‘i’u(tu-{—) < . If this happens, the configuration set B(t,) is empty, hence
the approximate boundary condition is satisfied and (6.7) ilolds.

By construction, one has ¥,(¢,) = 7,(t,) and ¥, () < 7,(7) for £, <7 < t, hence

'I’u(TT) - zy(tU) < %(2 - Z:(tv) = A+6.
Letting 7 tend to t,, one obtains that ‘i!,,(t,,—l—) < A + § and therefore the conclusion, for § small
enough.
In order to estimate the quantity ?i\),, at time ¢, we need then to evaluate how much 5,, increases
in time between ¢, and t. Let us denote by p,(7) the total variation of v, in the interval [r,t]. We

claim that for a suitable constant Cy there holds
A, (1) + Co(AQu(r) + Agu(r)) < 0 (6.8)

for any T between ¢, and ¢. As u,(7,-) is piecewise constant, 5,, is also piecewise constant and may
have a jump when an interaction occurs or when the data at the boundary changes. When two

wave-fronts interact, (6.8) follows simply by (6.1) and Ap, = 0. On the other hand, assume that a
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wave-front of the i!" characteristic family hits the boundary at time 7. With the same procedure

as in case b) in the proof of Lemma 4.1, the variation of 3, at time 7 can be estimated by
A%, (1) = O(1)(-AQ.(r)).

If a wave-front with speed > X + § escapes from T',, crossing the boundary 7,, we simply have
A%, <0,AQ, < 0.
Finally, assume that at time 7 the boundary condition %, has a jump: @,(7+) # @,(7—). In this

case, the variation of @,, at time 7 satisfies
A%, (1) < O()[E(t+) - w(t-)| = O(1)lAe(r)l.

Indeed, let w be the constant value of the approximate solution near the boundary. With the

procedure followed in this case, the variation of :f,, is estimated by the interaction potential of the

map
a(t+) =<0
a(t—) 0<z<§
w z>40

with respect to the assigned initial configuration. Clearly, this quantity is bounded from above by
|a(t+) — a(t—))|.
The previous analysis shows that

3,() < B(b)+ Y, A (1) <
9, <7<t

CO(TV '&ul[t,,,t] + [QU(tv) - Qu(t)])

IA

and last term approaches zero by (5.3). This concludes the proof of Lemma 6.4.

Step 4. By (5.13) and Lemma 6.4, the conclusion of Theorem 1.1 holds if we prove that

Q.(t) = Q, ;70 asvoo (6.9)

where I, = [¥,(t), ©,(t) + n,], that is, the quantity of interactions between waves, in the interval
I, is arbitrarily small. Due to genuine nonlinearity, this is not a consequence of (5.3) and of the
fact that the length of I, tends to zero as v — oo.

Recall that @,, denotes the interaction potential related to the piecewise constant function
v,(t,), introduced at (5.10).
On the other hand, assume that (6.9) does not hold. The map Q, can be written as a sum, as

follows

0, =QL+...+Q"+ Q2
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where Q7 denotes the interaction potential between couples of waves, both of the 70 characteristic
family, while @7 is concerned with the possible interaction between waves of different families or
with non-physical waves.

In the following, we shall try to understand how (6.9) can fail and what happens in this case. We
shall see that, even if (6.9) does not hold, we are able to estimate directly the total amount of waves
with large speed in the Riemann problem with data (5.7).

Since the length of I, tends to zero and by (5.3), situations in which there holds a positive in-
stantaneous interaction, uniformly w.r.t. v, after or before time ¢, are not admissible. That is, it

cannot happen that there exists a > 0 for which, chosen any § > 0, there holds
l@u(t) - Qu(t + B)| > «, for all v sufficiently large
In fact, due to (5.3), for any sequence 7, — t, 7, > ¢, there holds
Q.(t) — Qu(r) = 0, v— o (6.10)
Let us consider different cases. First, observe that there holds
Q.(t) = 0, as v — (6.11)

Indeed, let ¢ be a positive bound from below on the difference between characteristic speeds of
different families. Then if B is positive, consider » big enough to have x < f; all possible
interactions between waves of different families existing at time ¢ will take place until the time

t + 3. Hence one gets, for a suitable constant C, independent of v

G.(t) - G,(t+B) > CQx5(t) > const. > 0

in contradiction with (6.10).

Assume now that, for some j € {1,...,n}, @QJ(¢) does not approach zero as v — co. In this case,
clearly, the j* characteristic family is genuinely nonlinear.
Let J, be any sequence of intervals containing a uniform quantity of shocks and rarefactions of the
7P family, that is such that

uli»Igo Z [€j,0]=s lim Z [ej,al+ exist and are both positive (6.12)

v—oC

o€y T €J,

here €, denotes the strength of the j-wave located at z,. We claim that: for any sequence of such

intervals J, = [a,,b,] C I,, there holds

lim > [ejal-— Y [ejals = 0. (6'13)

o €J, o €Jy
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In other words, shocks and rarefactions, if there are, are uniformly distributed in the interval J,,.
Indeed, assume that (6.13) does not hold, and that there exists a sequence of intervals J,, for which,
if
W)= Y [eal-— Y [Eialss
zo€Jy za €J,
there holds lim,,_,. W(J,) > r; > 0. In this situation, two possibilities arise.

Case I). There exists a shock with strength > |&], for some & uniformly positive as v — co.
Clearly, there cannot be more than one shock with uniformly positive strength, otherwise there
would be a uniformly positive interaction in an arbitrarily small time, in contradiction with (6.10).
Thus, the maximum size of the wave-fronts in J,,, different from &, approaches zero for v — co.
For v fixed, let u~ and u™ be the values at the left and at the right of the shock z,(7). By genuine
nonlinearity, there exists a constant r € (0, 1) such that

Aj(u”,ut) € [rAs(u), (1= r)As(u”)] (6.14)

Then consider A_, (resp. A.), the maximum set of consecutive waves (eventually all) located to
the left (resp. to the right) of z, at time ¢, with total strength not greater than $7&; at least one
of these sets is non-empty and has a uniformly positive strength. By (6.14), there exists ¢ > 0 such
that, if A” is the speed of a wave in one of these sets, there holds |A;(u~,u*) — A*| > e

This determines a uniformly positive interaction, taking place before any fixed time ¢ + 3, for v
sufficiently large, leading to a contradiction.

Case IT). The maximum size of a shock of the j'! family at time ¢ tends to zero as v — co.
Consider A_ (resp. A:) the maximum set of waves at the right of a,, (resp. at the left of b,) with
total strength < Z- . The difference between the speed of a wave in A_ and of one taken in A,
is uniformly positive. Then, for any 8 > 0, the interaction potential decreases uniformly between
times ¢ and ¢ + f3, if v is sufficiently large, again in contradiction with (6.10).

On the other hand, assume that there holds lim inf, _, o, W(J,) < 0. Then there exists a subsequence
of interval J, such that
fim Y fesale = Y sl >0
T, €J, za€J,
Since the maximum size of a shock tends to zero as v tends to co and by (6.12), one can find small

positive constants ry, di, dy for which
J,=lav,a, +di], J) =1[b,—ds,b,)], I'.NJ"' =9

and such that
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Using the fact that limsup,_, ., W(J]]) < 0, for v sufficiently large one has

T2 T9
> legals 2 Y legal-—7 2
4 4
To €JY 2. EJY
The difference between the speeds of the rarefactions in J! and the shocks in J], is uniformly
positive. Thus this situation can occur only if a positive interaction takes place before time ¢. For
any 8 > 0, one can choose v sufficiently large to have a uniformly positive interaction between
times t — B and ¢, in contradiction with the continuity of @ at time £.

Now, if a fixed sequence J, = [ay,b,] satisfies (6.13), we claim that there holds
lup(au,t) — uy(by,t)] = 0 as v — oo.

In other words, the total quantity of waves in J,, is very small, for v sufficiently large. Indeed, these

values are connected by the intermediate states

wp = Yile)(wi-1), [=1,...,Nj,  wo =uy(an,t), wy; =u(bs,t),

for some integer N;. With an error that vanishes as v — oo, by (6.11), we can neglect waves of

different families in the interval J,,. If ¥ = Zfl’ €;, denote by u¥ = exp(e”r;)(u.(a,,t)) and recall

that if £; < 0, one has
wip1 = exp(err)(wi) + O(e}).

This gives
(b t) —uyl < C 3 af® <
g1 <0
<C- . !
< G- (maxler])-( ) la) < C'(max |edl),
l:e; <0

and the right hand side in last inequality becomes small for v big enough. On the other hand, by
(6.13) it follows that

lim ¥ =0, lim |u,(ay,t) —u;| = 0

V—>00
This proves last claim. By continuity, the total amount of waves with large speed in the Riemann
problem between u,(a,,t) and u,(b,,t) approaches zero, as n — co. Then for the Riemann problem

with data (5.7) there holds &,(u;,u}) — 0, as v tends to co. This completes the proof.
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7. Non Characteristic Case. Existence result.

In the (NC) setting, stated in the Introduction, consider system (1.1) on the domain =
{(z,t);¢t > 0, = < ¥(t)}, with initial condition (1.2) and boundary condition (1.4). We may
assume that ¥(0) = 0. Let @, : [0,00) = R", g, : [0,00) — RP, v € N, be sequences of piecewise
constant functions that approximate @ and g, respectively, in L}, ., converging pointwise everywhere

and satisfying
TVa, + TV g, + [6(2.(0+) — g.(0+)] < TVE+ TV g+ [6(7(0+) — g(0+)].

Here, differently from the construction in Section 3 for the (C) case, we do not need to approximate
the boundary in a piecewise linear continuous way. Indeed, the Boundary Riemann problem for
the (NC)-case can be defined also for a boundary profile ¥ which is non linear in time, provided
that it satisfies the basic assumption on the slope: there exists p € {1,...,n}, such that

ApEE < ¥(t) < At for a.e. t

If b satisfies condition (2.7) and the constant states u~ € R"™ and g € RP satisfy the assumptions

of Lemma 2.2, a unique state ut is determined, that satisfies

buh)=g,  u =) dule)(w)

The solution to the Boundary Riemann problem is the restriction to the domain Q of the exact
solution to the Riemann problem (2.1) with data (u~,u").
For t > 0 enough small, we construct the approximate solution as follows.

Let u,(0,z) = wu,(z). At each jump of u, solve the corresponding Riemann problem as in
(2.3)(2.5)(2.6) in Section 2. At z = 0, the boundary Riemann problem with data u,(0+) and
9,(04) is solved, as in Lemma 2.2, in terms of simple waves of the first p characteristic families;
each wave is then approximated as in (2.3)(2.5)(2.6). It is possible to start the algorithm if the
total variation of the initial data and the jump at the origin are enough small. As already described
in Section 3, an integer (’generation order’) to each wave-front is assigned; at first level (¢ = 0) the

orders are 1. The approximate solution is then defined until one of the following situations occur.

(I) Two wave-fronts interact. In this case, proceed exactly as in the analogous construction
in Section 3. Due to the choice of the domain {2, here the "non-physical wave” are chosen to have
very negative speed, equal to —J), defined at (3.3).

(II) A discontinuity hits the boundary at the point (7, ¥(7)). Let u~ and u be the values at
the left and at the right of the discontinuity, related by u = ¥p(o)(u™), for some h > p. Using
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Lemma 2.2, find the unique u't, connected to u™ by the first p characteristic families, such that
b(u) = b(u™).

If the order of the discontinuity is & < v, the waves solving the Riemann problem (u~,u") are
approximated by (2.3)(2.5)(2.6) and exit from the point (7, ®(7)), with order k + 1 (Figure 7.1).
On the other hand, if k = v, the jump (u~,u") is propagated along a single wave-front with speed
— 1, with order » + 1 (Figure 7.2).

v (0 v (D)

t=0 > =0

v

Figure 7.1 Figure 7.2

(1) At (7, ®(1)), 9, has a jump (Figure 7.3). Define v~ = lim,_,g(r-) w(7—, ). If‘[‘_/kgu('r)l
is enough small, one can determine the unique state u* that satisfies
ut = tp(ep) - pr(en)(u7), b(ut) = gu(T+)

The solution to the Riemann problem (u~,u") is approximated with (2.3)(2.5)(2.6) and the new

waves will carry order 1. In terms of these new wave-fronts, centered at (7, (7)), u, is prolonged

after time 7.

v (1)

1=l

Figure 7.3

By slightly changing the speed of one wave-front, it is not restrictive to assume that at most

one of the above three cases occurs at any given time. Since the initial and boundary condition 4.,
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gv, have a finite number of jumps, the total number of wave-fronts of first generation is finite. By
the same analysis performed for the Cauchy problem ([B2]), one can deduce that the total number
of the polygonal lines along which u,(t, z) is discontinuous can be bounded from above, for v fixed,
as long as the solution is defined. The total variation of u,(t,-) is estimated by means of suitable
functionals V,, and @Q,, defined as follows.

For any ¢ > 0 at which no one of events (I), (IT), (IIT) takes place, let z1(¢) < ... < zy(t) be the

points at which u,,(t, ) has a jump. By construction, if the discontinuity at z, has order < v, then

uy(t, Tat) = Pi, (e5)(Uu(t, 2a—))
for some ¢, and i, € {1,...,n}. In this case, the strength of the o'! jump is defined by e, = H;_e!,,
where H;_ is a constant to be determined. If the discontinuity at z, has order v + 1, the strength
of the jump is defined as

€a = Hl|u,(t, zo+) — uu(t, za—)| (7.1)
where H is a constant that will be fixed later.

For the definition of approaching wave, we refer to the one given in Section 4. If two waves,
located at z, < zg, have order ko, kg < v, the definition is the same as in Section 4. Moreover,
the waves are said to be approaching if their generation orders satisfy k, < v, kg = v + 1.

Then V,(t) and Q,(t) are defined as follows

Vt) = ) leal + Y 18gu(7),
o

t<r<oo

QD) 2 Y Kasleatsl + X leal- 3 1800 + (3 8g.()1)’
o, a

T>1 T>1

(7.2)

Here K, g € {0,1,2,3} are suitable weights, assigned according to the following.

K, =2 , K5 =2

Figure 7.4
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Let £ be a time at which no one of situations (I)-(III) occur, and let z,(t) < z4(t) be the locations
of two wave fronts with order k, and kg respectively. If max{k,,kg} = v + 1, K4 g is either 1 or
0 depending on if the two wave-fronts are approaching or not.

On the other hand, if max{k,,ks} < v, assume that they belong to the i, and ig characteristic
family, respectively. Then K, g is equal to

( 0, if 74, i3 < p and the waves are not approaching
1,if 1., ig are both < p and correspond to approaching waves, or i, < p, ig > p

(7.3)
2,ifi, > p, ig < porig > i, and are not approaching

3,if 74, i3 > p and correspond to approaching waves

(see Figure 7.4) The idea behind these formulas is quite simple. We want to count the the number
of times that two wave-fronts will interact, together with their reflections on the wall. This is done
in order to prevent the interaction potential ¢, from increasing, when a wave-front impinges on
the boundary and is then reflected. Note that

- If two discontinuities interact in the interior of {2, their weight K, g decreases in any case by
1, due to the interaction.

-If 24(t) < z5(t) and zg(t) impinges on the boundary, producing some new wave-fronts zg:(t),
then K, g < Ko .

In next Lemma, we pro've that if
A(t) = TV w8, ) + b(w (6 T(6)-)) - 0. (t4) + D 1Ag(7)]
t<r<o0
is small enough for t = 0, then the previous construction can be performed for all t € [0, ), and
the total variation of u,(t,-) remains bounded.

Lemma 7.1. For any compact K in Q, there exist positive constants C’,g > 0 such that, if

i uu(zio) € K, AU(O) < 5

T——

then for anyt > 0 there holds A, (t) < C"A,,(O). In particular,
TV u,(t,-) < C- (TVu,(0,-)+ |6(u,(0,0) — g.(0)| + TV g,(]0, oo[))

Proof. Choose §' such that K = {y;d(y,K) < §'} C §, and denote with L(> 1) the
Lipschitz constant of b on K'. Let §, §;, C, C; > 1, be the positive constants for which Lemmas
2.1 and 2.2 hold for K’. Choose the constants

H;=H= =1,...,p, H;j=1, j=p+1,...,n

2C,L" 7
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in the definition of the strengths. With the above choice of the constants, the wave-fronts getting
far from the boundary have lower weight than the others. This corresponds to a reparametrization
of the first p—characteristic curves.

Next, let ¢ be a time at which one of the following situations occurs.

(I) If two waves interact, with strengths |e4|, |es]| respectively, the number ks decreases by 1 in
any case, according to the previous scheme. By Lemma 2.1 there holds, for a suitable constant C’,

independent on v
AV,(t) < Cleacsl,  AQu(t) < —leasal + C' - Vi(t=)leass|
These inequalities lead to
AV,()+208Qu(1) < 0, AQ(1) < - E=tel

provided that V,,(t—) < min{é’, 6, 6;,(2C")71}.

(IT) A discontinuity with size o and order k < v hits the boundary. IV, (t—) < %, the approximate

solution can be prolonged after time ¢; indeed, in the same notation as (II) before, there holds
b(w)=g, |b(u7)—g| < Llu” —u| < Llo| < 6.

New waves reflected from the boundary appear. By definition (7.3), their weights w.r.t. any

preexisting wave, in the interaction potential, is < k. By Lemma 2.2 it follows

AVU) = Y leil = Lol < 5z[b(w) — b(u){ ~ o]

< glu-w|-lo < -1
AQu(t) < (Z |£i[ - “ﬂ) 'TVgu(tvoo) < 0
1

On the other hand, if ¥ = v, one has the estimates

1
2C,L
AQ,(t) < AV,(t)- TV g,(t,0) < 0

AV(t) = —[o]+

_ 1
[t -] < —5lol,

(OI) If g,(t—) = ¢~ # gt = gu(t+), there holds b(uv™) = g~. Since |g~ — gT| < V,(t-), if
V.(t—) < &, the solution can be prolonged after time t with

- 1 - - gt —g-
AQ, () < —lg” —gT|*,  AV(t) < 5—5!9““—9 |—lgt—g7| < —'——§—-l
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The previous analysis shows that, for a suitable constant c,
Vi (t) < Vo, (0+) +2CQ,(0+) < CA,(0), (7.4)

since there exists a constant C5, independent on v, such that V,(0+) < C3A,(04) and Q,(0+) <
3V, (04)%. If § < &' is so small that

- n ‘ ]
C6 < min{#', s, (20')-1,—1%},

then A,(0) < § implies that (7.4) is valid for any positive ¢ and the conclusion of the Lemma

follows.

With the same technique in [B1], [B2], one can prove that the total size of the wave-fronts with order
v+1, at every time t > 0, approaches zero as v — oo. Define, for v fixed and k € {2,...,v}, V¥(t)
as the strength of the waves, at time ¢, with generation order > k, and Q*(t) as the interaction

potential of these waves:

W= Y kasleassl + VR Y 1800
max{ia,ig}>k T>1
Note that, in this construction, @, is not strictly decreasing at every interaction of type (II) or
(III). In order to apply the same recursive procedure one has to consider Q, =Q,+cV, for a
small constant ¢, independent on v, and thus Q% = Q¥ + cV*. Relying a similar argument in [B2],

one can prove that

VE@) = 0(1)2*F Vi > 0, (7.5)
if A,(0) < 6, where § is chosen small enough. In particular V**1(¢) = O(1) 2!~~.

Next Lemma shows that the maximum size of a rarefaction wave present in the approximated
solution u, tends to zero as v — 0.

Lemma 7.2. Under the assumptions of Lemma 7.1, there ezists a constant C3 such that, for any
v, every rarefaction wave in u, has strength < —(“:—}

Proof. We proceed in a very similar way to the analogous proof for the Cauchy problem ([B2]).
Denote with ¢ = z,(t), t € [r9,71) C [0,00), the location of a rarefaction wave of the k,-th
(genuinely nonlinear) characteristic family, and with £,(¢) > 0 its strength. Again, when the wave
is éeherated, there holds e4(7p+) < K”—(—;-"i'l; recall that ¢, is piecewise constant and may have a
jump when one of cases (I) - (II) occur. Denote with V() = 3 kagples] + 20 crcoo 1294(T)| the
total strength of the waves, at time ¢, which are approaching z,.

(I) Let 7 be a time of interaction between two waves of strength €3, €. Then one has Aey(7) = 0
and AV<(r) < 3C|ege,|, and therefore

AVE(r) + 6CAQ(T) < 0. (7.6)
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If a wave at =, with strength g < v and order kg, interacts at z,, and they belong to the same
characteristic family, then z3 must be a shock, Aéy(7) < 0 and (7.6) holds. On the other hand,

if i5 # 14, assume that new waves of strength |e!|, i = 1,...,n, are generated by the interaction.
Then there hold

AVE(r) < —legl+2 ) e}l <
a,B#1
2
< ~legl + 20leacs] < ~lepl( — 20Vi(r-)) < =3 legl,

by the estimates on V,. These inequalities imply that
3
Aey(T) < Cleags] < —~§CIEQIAVQ(T).

Finally, if kg = v + 1, there simply holds Ae, = 0.

(IT) If z,, intersects the boundary at time 7, then it does not exist anymore for ¢ > 7. If a different
discontinuity s intersects the boundary at time 7, then Aey(7) = 0, AV(7) < 0.

(IIT) At time 7 the boundary condition g has a jump, i.e. g(t—) # g(7+), and new waves of
strength |e4],..., [ep| appear. Then

p

AVE(r) < ) el - 2lg(r=) — g(7+)| < 0.

Summing over all times between 7y and 71, previous inequalities imply

alt) < calm)exp(5C 3 [AV(r)]}.

To<7<E
Since there holds

> AV < V(n)+ > AV <

To<T<LLE To<T<t
< 3(VU(TO) + 2CQU(TO))7
and last term is uniformly bounded w.r.t. 7y and v, we get the conclusion of the Lemma.

We are now ready to give the proof of Theorem 1.2. Proceeding as in the proof of Theorem 1.1, the
sequence of approximate solutions {u,} admits a subsequence {u,.} converging to some function
u(t,z) in L} .. This map u satisfies the condition of weak solution for (1.1) with initial data (1.2),
for test functions with support entirely contained within the domain = {t > 0,z < ¥(t)}.
Near the boundary, we first have to check that the solution u has limit at the point (¢, ¥(t)), for all
t except at most countably many, that is for any ¢ > 0 there exists a neighborhood T of (¢, T(¢))
such that

‘u(mlatl)_u(zhh)! S £, (77)
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as (z;,t;) range over I'NQ. By Helly’s theorem, the sequences {Q,} and {V,.} admit subsequences
convergent to some limits @, V respectively. Let ¢ be a time for which @, V and g are continuous;
since are functions of bounded variation, this happens at every time except at most countably
many.

By the assumption on the slope of the boundary, there exist constants A;, Ay such that

T(s) — ¥(s")

max
Ap <A <L P

< Ay < AT

for any 5, s’ > 0. If h > 0 is a small constant, denote with 1 (s), 72(s) two half lines escaping from
(t,¥(t) — k) and passing through the boundary at the points (1, ¥(%1)) and (i, ¥(%2)), t1 < t2,
with slope satisfying

min

AP <1 <Ay, Ag <2 < ATY
and call T the non-characteristic region bounded by 71, 72, ¥ (Figure 7.5).
We claim that for h small enough, condition (7.7) holds for any choice of point (z;,7;) in I'. By
triangle’s inequality one has
lu(z1,71) — w22, )| <lu(z1, 1) — w(¥(m)+, )|+
+ lu(z2, 72) — w(¥(72)+, 72)| + [w(¥(n1)+, 1) — w(¥(72)+, 7))
so it is enough to estimate the total variation of u along the sets {r = cost} N T and along the

boundary.

(tz,y(t))

(ty, vty

Figure 7.5

If € > 0 is fixed, there exist h small enough and v, sufficiently large such that, for v > v, there
hold TV ng[tl.tz] S & and

Q) - Q") < & Vu(t) -Vt < &,

for any t', t" € [t1,%2]- Let us estimate the total variation of u,(¥(7)+,7) between t; and t5. The

value of u, near the boundary can change only if one of the following situation occurs:
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(I) a wave-front impinges on the boundary (Figures 7.1, 7.2).”In this case
u—ut] < fu-u|+ o - ut| < OQ)IAVL)
(II) the boundary data has a jump (Figure 7.3). Then
[u™ —u*| < O()lg™ - g*| = O(V)|ATVg,|.
As an immediate consequence we get, for  small and » big enough

TV U, (2(), ity < O(1) TV guliey o + O (Valtr) = V(u(t2)) < ¢, (7.8)

Next, for v fixed, let us define V(7) as the total strength of waves, at time 7, whose location is
inT'N{s =7} = [y(7), ¥(7)), where 7 denotes the left boundary of I'; clearly one has V(t;) =
V(t2) = 0. It is convenient to split V in the sum V' + V", where V' (resp. V") concerns the waves
belonging to the first p (resp. to the last n — p) characteristic families. Wave-fronts of the first p
characteristic families may appear in one of the following situations:

(I) a jump in the boundary data occurs; then AV’ < ATV g,;

(II) a wave-front impinges on the boundary; in this case one has AV’ < —AV,;

(ITI) an interaction inside T' occurs; there holds AV’ < O(1)|AQ,|.
Collecting together these terms, one has, for h small and v big enough

V)= D AV(s) € TV gl
t<s<T
+O(L)(Vo(t1) - V(7)) + O(1)(Qu(t1) — Qu(7)) < e

Moreover, wave-fronts of the last n — p characteristic families can enter in T' through the boundary
71, and can disappear due to cancellation with other waves of the same family or due to interaction
with the boundary ¥. Precisely, call E(T')|s;) = X_; |7il the sum of strength for the waves entering
the domain I' between time 7 and 3, and with L(T')|(,.s,) the total amount of waves leaving I in
that interval of time (that is, the waves that interact with the boundary). Observe that, when an

interaction between two waves occurs, there holds
AV" > AV, +2CAQ, (7.9)

Indeed, using AV, = AV), + AV], (7.9) follows by observing that, if an interaction occurs inside
the domain 2, there holds AV, < 2C|AQ,|. Inequality (7.9) and the previous considerations lead

to
Vi) =0=V"(r)+ > AV'(s) >
T<8<ts

> V'(r) + E(T)irtq — L(T)|(r,2q + Z AV, +2CAQ,

T7<s<ty
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Using (7.8) and the bounds on the total variation of V,,, Q,, we get

L(I‘)![T,t;)] < 0(1) TV uU(‘I’(-), .)][T,tg]
V(1) < LO)irea) + (Vi) = Valm2)) +2C (Qu(7) — Qu(72))
< O() TV, (¥(+), )irag + (1 +2C)e < O(1)e

IA

By last inequality and (7.8), one can conclude that for any € > 0 there exists a neighborhood I' of
(t, ®(t)), uniform in v, for which ‘

luy(21,t1) — uu(z2, t2)| < &, (7.10)

for (z;,t;) € T and v sufficiently large. By eventually passing to a subsequence, (7.7) holds and

thus limy, gy _2,0(2)) w(7,¥) = u(t, ¥(t)).
To complete the proof of Theorem 1.2, consider a sequence ¢, — ¢ such that, for any ¢ > 0

l9.(t.) — g(t)] < ¢

for v big enough, and such that at time ¢, the approximate solution satisfies the (approximate)

boundary condition. Hence there exists (t,,y,) — (¢, ¥(t)) such that

b(uu(ty, y,,)) = gu(tu)- LT

Using last equality one has

[b(u(t, ¥(£)+)) — 9(t)] < Lluu(ty,yn) — ult, T(E)+)| + lgu(t) — 9(2)]-

Moreover, by (7.7), (7.10), eventually passing to a subsequence, there holds, for (¢,y) in a close
neighborhood of (¢, ¥(t)) and v sufficiently large

IUV(tUa yu) - u(ta \P(t)+)| < |UU(tw yU) - uu(t: y)]+
+ (b, y) = ut, y)| + |u(t, y) — u(t, ¥(8)+)] < ¢

Since € was arbitrary, one can conclude that b(u(t, ¥(t))+) = g(t).
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Chapter 2

1. Standard Riemann Semigroup for Boundary Problems .

This Chapter is devoted to the definition and the main properties of the Standard Riemann Semi-
group (SRS) generated by the initial-boundary value problem for the n X n system of conservation
laws '

u; + [F(u)]Z =0 (1.1)
Here, as usual, F' is a smooth map, and (1.1) is assumed to be strictly hyperbolic, with each
characteristic field either genuinely nonlinear or linearly degenerate.
In Section 1, for both problems (C) and (INC) , we define a semigroup whose trajectories yield
the same solutions constructed in Chapter 1. In the case of piecewise constant data and piecewise
linear profile, the solutions provided by the semigroup coincide, for small times, with those obtained
by locally solving the boundary problem and the Riemann problems at the points of jump of the
initial condition.
In Section 2, we prove that if such a semigroup exists, then it is unique up to the domain of
definition. An estimate on the dependency domain near to the boundary is also derived.
In the next Chapter, such a SRS will be constructed in the 2 x 2 case. Due to the presence of the
boundary data and boundary profile, the initial-boundary value problem is not time-homogeneous,

thus we introduce suitable functional spaces where there are positively invariant domains.

The Characteristic Case
Recalling the definition of the Characteristic boundary problem given in Chapter 1, consider the
set D~ of triples (z, @, ¥), where

2€ L' (R,R*)NBV(R,R") and #(z) = 0 for z < ¥(0)

ie Ll (R+ ,R”) NBV (R+ ,R")

¥ e CO (R+ ,R)
and introduce the product distance

d ((ﬁ,, ’EL,’ lPI), (i—LII, ?‘l",‘I’")) = “ﬁ” _ ﬁI“Ll + “,&N _ ﬁl”Ll + ”‘PH _ ‘PI“CO
We define S a Standard Riemann Semigroup for problem (C) if it satisfies the following

assumptions.

S is a continuous semigroup acting on a suitable subset D of D~, in the sense that

S : [0,400] X D — D
t y (8%,%) - (ut,), Ta, TY) = (U(g, 3, ©), Ta, T, )
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T7; being the translation operator, i.e. (7;&) (s) = @(t+ s) and (7; %) (s) = ¥(¢+ s). Moreover, there
exist positive L, § such that § satisfies

(1) D contains all triples (&, &, ¥) in D= with TV(@) + TV(z) < §;

(2) if @ and @ are piecewise constant, and if ¥ is piecewise linear and continuous, then for ¢ >
0 sufficiently small, u(¢,-) coincides with the solution of (C) obtained by piecing together
the standard solutions of the Riemann Problems at the points of jumps of %, and of the
Characteristic Riemann Problem with Boundary at ¥(0);

(3) fix two triples (@', @, ') and (@”,%",¥") in D. If &', ¥” are Lipschitzean with constants L',
L",and ¢/, t" > 0, then

4 (Su(@, 8, ¥), (@, @, 9") <I- (& - @[, + [~ 2] )

(1.2)
+L-(1+ L +1")- (||a' — ")+ - t”[)

At (2), by standard solutions of the Riemann Problems at the points of jumps of % we mean

the Lax solutions as defined in [Lal, while the Characteristic Riemann Problem with Boundary are

solved as follows.

Fix some m in R and let = {(t, z) e R?:t>0,2> mt}. Choose two constant states  and @ in
R". Referring to [DF], the standard self-similar solution to the Characteristic Riemann Problem
with Boundary

ut+[F(u)]x=0 fort >0, z > mi
u(0,z) = forz >0
u(t,z) =1 for ¢ = mt

is the restriction to 2 of the Lax solution to the standard Riemann Problem
u + [F(u)] =0
LCUR H
Note that the continuity of S and (3) together imply that, if @' = @”, then
4 (5.0, 9, 5, 5, 9) < L+ ([ = @] + ¥ - 9],

is valid also if the boundary profiles ¥’, ¥" are not Lipschitz continuous.

The Non Characteristic Case

Referring to the definition of the Non-Characteristic boundary problem given in Chapter 1, we define
S a Standard Riemann Semigroup for problem (NC) if it satisfies the following assumptions.
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Let pin {1,...,n} be fixed and let b be a smooth function defined on a neighborhood of the origin
in R™, with values in RP, such that |6(0)] is sufficiently small and, for v in the domain of b,

the differentials Db(u) are injective on the vector space generated by {r,_pr1(),...,7a(u)}
(1.3)
Denote with D* the set of triples (z, g, ¥), where

z2€ L' (R,R")NBV(R,R") and @(z) = 0 for z < ¥(0)
ge L (R+ ,RP) NBV (R+ ,RP)
T ecC’ (R+ ,R) , is absolutely continuous and A72) < ¥(t) < D Ve for a.e. ¢

and define

d((@,q,9),(@"g",9") = |7 = @[ s +lg" - ¢l + 2" - ¥l o

A SRS for problem (NC) is a continuous map of the form

S ¢ [0,4+00f X D — D
t , (3,9,%) = (ult,"), Ty, Tt¥) = (U@, g, %), Teg, T:9)
7; being the translation operator. We ask the semigroup S to satisfy
(1) there exists § > 0 such that D contains all triples (%, g, ¥) in D* with TV(z) +.TV(g) +
b (v (2(0) - 500
(2) if Z and g are piecewise constant, and if ¥ is piecewise linear and continuous, then for ¢ > 0

sufficiently small u(¢,-) coincides with the solution of (NC) obtained by piecing together the

N

solutions of the local Riemann Problems at the points of jumps of % and Riemann Problem
with boundary at ¥(0);
(3) § is Lipschitz continuous.

At (2), by standard solutions of the Riemann Problems at the points of jumps of & we mean
the Lax solutions as defined in [La], while the Riemann Problem with boundary in the case (NC)

is solved as follows.
Fix some m € R with AT?X < m < A2, and define = {(t,z) € R?:t > 0, = > mt}. Choose
a constant initial data & € R™ and a constant boundary condition g € RP. Let b be any smooth

function satisfying (1.3). As introduced in [Go] and [ST], the standard solution to the Non Char-

acteristic Riemann Problem with Boundary

u(z,0) =1 forz >0

{ u + [F(u)] =0 for (t,z) € {(t,z) € Q:z > mt}
b(u(t,z)) =g for z = mt
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is the restriction to  of the Lax solution to the Riemann Problem

u + [F(u)] =0
Lo 1.4
u(z,0)={’_‘ do <0 04
o ifz>0
where u™ is defined by the conditions
(a) b(ut) =g, and
(b) the Riemann Problem (1.4) is solved by waves of the last p characteristic
families.

Remark that (a), (b) and (1.3) ensure that ut exists and is uniquely determined.

2. Uniqueness of the Standard Riemann Semigroup.

In this section, assuming that a Standard Riemann Semigroup exists in the (C)-case, we prove that
the solutions to problem (C), obtained in Chapter 1, actually coincide with the ones provided by
the SRS.

As a consequence, the trajectories of the semigroup § provide weak, entropic solutions to (1.1),
satisfying the boundary condition in the specified sense (see Introduction to Chapter 1 for the
precise definition). Moreover, if a SRS exist, then it is unique up to the domain of definition.

By means of a similar technique to the one used in this Section, one can recover the same results
for the (NC)-problem.

Lemma 1. Let § : R* x D — D be a Standard Riemann Semigroup for problem (C). Denote
with U : Rt x D — L its first component and with L the Lipschitz constant in its first and third
argument, as in (1.2).

Let v : Rt — R™ be piecewise constant and ¥ : RT — R. be a piecewise linear and continuous. Let
v:[0,T] - L' (R;R") be a continuous map, piecewise constant in the t-z plane, with discontinu-
ities occurring along finitely many polygonal lines, that vanishes on the set {(z,t);z < ¥(¢)}, and
such that

p(t) = (v(t,), 7%, %) € D,  foranyt € [0,T]

Then it holds that, for any T > 0

H‘U(T) - UT(v(0: ')7 'b’ ‘P)”Ll =d (p(T)a STP(D)) S

T t+ k) — Un(o(t), %, T0)|| ., 2.1
<1 [ tmsup [|v(t + k) = Un(v(t), Tet, 7:9)|| . 5 (2.1)
0 h—o+ h
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Proof. Fix T > 0. By assumption, the integrand on the r.h.s. of (2.1) is piecewise constant, and
may have a jump at the nodes of the polygonal lines along which v is discontinuous, at the edges of
¥, or at the times when ¥ has a jump. Hence there are a finite number of times, say t; < ... < .,
of discontinuity in [0, T].

Let € > 0 be fixed and define 7 as the supremum of the times ¢ € [0, T'[, such that

d(S7-ep(2), S7p(0)) < D e27 4+ L- ,/t (5 + lim sup [ote +2) - Uh(q;z(S)’Tﬁ, =0l ds)

ti<t h—0+
(2.2)

Clearly, (2.2) holds if t = 0 for any choice of €. By left continuity of two sides in (2.2), this inequality
also holds at time ¢t = 7. If 7 < T, two cases can occur.

(1) 7 = t;, for some j € {1,...,m}. Hence, for small § > 0, by the L1-continuity of v as a
function of time, it holds that

4 (Sr—(r+5yp(r + 6), S7(0)) <

<d (ST—(T+6)p(T + ), ST—TP(T)) + d (S7-.p(7), STp(0)) <

. . T h) — 1,0, 1,9
€277 + Z e27 '+ L / (e + lim sup “v(s *h) = Un(v(s), 7.5 )HLI) ds
0

ti<T h-04 h

IA

This is in contradiction with the maximality of 7.
(2) 7 ¢ {t1,...,tm}. For small § > 0, by the Lipschitzeanity of S in the first argument, one
gets

d(S7-(r+5yp(7 +8), 570(0)) <
d (ST—(TJ,&)P(T +6), ST—(T—{-S)S&p(T)) +d (S7--p(7), S7p(0)) <

l'v(T+6)“U5(v§7)77;f’:’];‘y)”L1 + Z 62-i+

IN

L6l

IN

t; <7468

+ L. /T (a + lim sup “v(s * h) _ Uh(v(s)’Zﬁ’le)“Ll) ds
0

h—0+ h

Observe that the integrand in the last term is constant in a neighborhood of 7. Using definition of
lim sup, the last inequality is in contradiction with the maximality of =, for § sufficiently small.

Lemma 2. Let S be a Standard Riemann Semigroup for (1.1) in case (C). Let ¥ : RT — R be
any continvous map, and @ € L* (R* ,R™). Given a continuous map u(t,-): [0,7] — L*(R;R"),
assume that u is a weak, entropic solution to (1.1) with data (u,u, ¥) € D.
Let (uy,)ven be a sequence of piecewise constant approzimate solutions of (1.1), in the sense that

they satisfy the assumptions
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a) the data are approzimated by u,, 4, € PC, ¥, € PLC such that
u,(0,-) =%, »@in L', 4@, — @in L',
T, - Tin C%  (u,t,-), T, T,%,) € D,Vi € [0,T)

b) the instantaneous rate of error is uniformly bounded w.r.t. v and tends to zero as v — oo,

for a.e. t:

lim sup “'Ll.,,(t + h) - Uh(uu(t)a ’I;.'&va :Z;‘:EV)“LI

— 0, asv-—> o
h—0+ h

¢) u, — u in L}, (R?), and u vanishes on {(z,t); t € [0,T], = < ¥(t)}
Then (u(t,-), T4@i, T;¥)) € D and u(t,-) = Uy(#, %, ¥) for all t € [0,T].
Proof. Indeed, by the continuity of the semigroup, it holds that

d (S¢(, @, ®), S¢(t,,%,)) -0, asv— oo (2.3)

In particular, ||Us(a, &, ¥) - Uy(8, &, T,)|| ., — 0.
Assume for the moment that Lipy, - ||, — ||y, — 0. By simply applying Lemma 1 and the
Lipschitzeanity of S, one finds
lun(t, <) — Ue(@, %, 9,)|| 12 = d (w2, ), Trts, T:9,), Si(E, @, ¥,)) <
< Lffu(0,) = @l + L(1 + 2Lipg, )|l — &g+
+ [luw(t ) = U (0,-)s 0, B <
L{|u(0,-) = @f| ;o + L(1 + 2Lipg, Mt — a@l|g, +

t u, (7 + h) = Up(u,(7), Tritp, .9,
+ L/ lim sup ” ( ) Gt h( ) .
0 h—O0+

IN

)HL1 dr

By a), b), c), last term tends to zero as ¥ — co. On the other hand, if Lipy - ||&, — %||: does not
converge to zero, take a subsequence of ,, say i, , with the property Lipg - ||ﬂky - '&HLl — 0.
Denote by 4, the approximate solutions constructed by the algorithm with approximate data

Uy, U, ,¥,. By a) and c), eventually taking a subsequence, it holds
u,(t, ) — Ui, u,¥), as v — oo (2.4)

and, using triangle’s inequality,
[k, (&) = B, )| <

< lue, (8 +) = Us(uk, (0,-), B, , ¥i,)
+

Lt + “al’(t") - Ut(uu(oa')aﬁkua‘l}u)HL1+ (25)
| Ui, (0, ), s Tk, ) = Ui(w(0, ), ik, , €)1
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By the Lipschitzeanity of § in the first and third arguments, the last term is bounded from above
by

Lk, (0,7) = 000, g + 2k, — 2],

Since the last terms converge to zero, by means of (2.4), also (2.5) vanishes and the proof is

concluded.

Lemma 3. Let ¥ : Rt — R be continuous. For the (C) problem, consider a family of
approzimate solutions constructed in Chapter 1, converging to a solution u of (1.1)(C) with data
(g,2,¥) e D.

Then u(t,-) = Us(u, @, ¥), for t > 0.

Proof. It is enough to prove that the assumptions of Lemma 2 are satisfied. By construction,
a) and c) clearly hold. Below we prove that b) follows from the properties of the piecewise constant

approximate solutions defined using (2.3)-(2.6) in Chapter 1.

Let t be any fixed time, at which no wave-front interacts with the boundary, the boundary condition
has no jump, and the boundary profile is locally linear. This excludes not more than a finite number
of jumps on any interval [0,T]. Denote with z4(t), @ = 1,..., N the discontinuities of u,(t,-)
corresponding to wave-fronts with generation order < v, and with yg(t) the discontinuities with
speed X. Recall that the jumps at zo(t) approximately satisfy the Rankine-Hugoniot equation,
with an error that vanishes for ¥ — co. On the other hand, the jumps of the second type do not

satisfy these condition, but their total amplitude approaches zero, as v — oo.

Let S be the set of indexes a such that u,(t,zo—) and u,(f,z,+) are connected by a shock or
by a contact discontinuity, and call R the set of indexes a corresponding to a rarefaction wave of
a genuinely nonlinear family. In the following, w® denotes the self-similar (exact) solution to the

Riemann problem for (1.1)

{u‘ ifz <0
ut ifz>0

with data u® = u,(t,z4(t)%), centered at (t,z4(t)), while wP is the solution to the Riemann
problem with data u® = u, (¢, ys(t)£), centered at (¢,ys(t)). Recalling the basic property (2) of S,
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one has
h‘msup “uV(t + h) - Uh(uv(t)a zﬂua 72\1’11)“ _
h—0+ h
1 zq(t)+o
= Z (hliISiZ/ |uy(t + h,z) —w“(t-[—h,:z:)[dz)
a€RUS - zo(t)—e
N’ vs(t)+e
+3 (hﬁrg+ i [ e+ o) - P+ h,m)ldz)
g=1 \" vs(t)—e

1

N
< Y Gl + G Y lu(t ysa(t)+) — w(tya(2)-)]
a€ER B=1

< . .27V
= Elea-%sa (QEZ'R-ClEa)‘l‘CZ 2

for p > 0 suitably small and some constants C;, Cs, independent on v. By Lemma 4.1 in Chapter

1, last term is uniformly bounded w.r.t. to ¢ and v. By Remark 4.1 in Chapter 1, it vanishes for

VvV — 00.

As a consequence of the above Lemmas, one can conclude that, if a Standard Riemann Semigroup
for problem (C) exists, then it is unique and its trajectories yield the same solutions obtained by
the wave-front tracking algorithm in Chapter 1. In particular they satisfy the boundary condition
as stated in case (C).

With the same procedure used in [B2] for the Cauchy problem, one can prove the following corollary,

where the domain of dependence of a solution to (1)(C) is determined.

Corollary 4. Let ¥ : Rt — R be continuous, and let [¥(0),b] be an interval, possibly
unbounded. If (1,11, %), (ds,U,¥) € D and

iy = 4y on [¥(0),d], 4y = Uy on [0,]
then U, (@1, @y, ¥) = Uy(dy, ©ta, ¥) on the interval [¥(t),b — Xi[.

If, in addition, ¥ is Lipschitz continuous of constant Ly, then for smallt > 0 one has

b—At
/ Uy, @1, ©)(z)  Ui(8a, i, ¥)(2)| de
(1)

b t .
< L/\m) |8 (2) — @ (2)] dz + L (1+2Lq,)/0 [ (s) — ia(s)] ds
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Chapter 3

1. Introduction to Chapter 3.

In this Chapter we consider the initial-boundary value problem for the 2 X 2 system of conservation
laws

| ue + [F(u)], =0 (1.1)
on the domain 2 = {(t, z)eR?:t>0and z > ‘Il(t)}, for some boundary profile ¥: R* — R. As
usual, (1.1) is assumed to be strictly hyperbolic and with each characteristic field either linearly
degenerate or genuinely non linear. An initial data u(0,z) = #&(z) having sufficiently small total
variation is given. We consider two different kinds of boundary conditions along z = ¥(¢) and in
both cases we construct a Lipschitzean flow whose trajectories are solutions of an initial-boundary
value problem for (1.1). Thus, we prove the continuous dependence of the solution upon the initial

data, upon the boundary condition and upon the boundary profile.

The existence theory for global BV solutions to the Cauchy Problem for (1.1) goes back to the
fundamental paper [Gl] by Glimm. More recently, in [B3], a new approach has been introduced.
It relies on the construction of a Lipschitzean semigroup, the Standard Riemann Semigroup (SRS),
whose trajectories extend the local standard Lax [La] solutions of Riemann Problems. At present,
such a SRS has been constructed in the 2 x 2 case in [BC1] and [BC2], while for the general n X n
case see [B4] and [BCP]. For the construction of the SRS in other cases, see [BB]. In the present
Chapter, we show that this approach can be applied also to the initial-boundary problem for (1.1)
in the 2 X 2 case.

The initial-boundary problem for particular systems of type (1.1) has been considered in [DG],
[NS], [Li]. For a more general treatment, see [DF] and [Go], [ST], where global existence results
in the n X n case are proved. In these papers, existence of solutions is proved by a compactness
argument. Here, on the other hand, we construct a Cauchy sequence of approximate solutions
whose unique limit is a weak solution continuously depending on the data, i.e. on the initial data

i, on the boundary profile ¥ and on the condition at the boundary.

Our constructive technique is based on the wave—front tracking algorithm introduced in [BC1].
Two different initial-boundary problems for (1.1) may be defined and will be referred to as Charac-
teristic and Non Characteristic. The two problems differ not only in the assumptions on the slope
of the boundary profile ¥, but also in the boundary condition and, hence, in the very definition of
solution. Correspondingly, we state two different results. If the boundary profile is Lipschitzean,
then the resulting flow is Lipschitzean in the initial data, in the boundary condition, in the bound-

ary profile and in time. As in Chapter 1, in the Characteristic case we consider also the problem
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of a boundary profile which is only continuous. The flow thus obtained is continuous and it is a

Lipschitzean function of the initial data % and of the boundary profile ¥.

The statements of the two problems and of the corresponding results are in Section 2 for the
Characteristic case and in Section 3 for the Non Characteristic case. The outline of the two proofs

is given in Section 4. The technical details are deferred to the last two sections.

2. The Characteristic Case.

The initial-boundary value problem for (1.1) in the Characteristic case is:

u; + [F(u)]:c =0
(C) w(0,z) = u(z)
u (¢, ¥(t)) = a(t)
where it is assumed that the initial data % and the boundary condition @ are L' functions with
small total variation, so that “ﬁ (‘I’(O)) - '&(0)} is also small, and that the boundary profile ¥ is

continuous.

We briefly recall here the definition of solution to (C), as stated in Chapter 1.

Definition C:  Callu (, lIl('r)-i-) = lim,_,g(+)4 (T, z). For every 7 > 0, let w” be the self-similar
Lax solution to the Riemann Problem
_ fa(r) ifz < ¥(7) (2.1)
w(r,z) = {u (’T, ‘I’(T)-{—) ifz > ¥(7)
where u (7, ¥(7)+) = lim; (-4 u(7,z). A function u: Q — R? is a solution to (C) if
(i) for t > 0 and = > ¥(t) it is a weak solution to (1.1),
(ii) it coincides with @ at time ¢ = 0,
(iii) it satisfies the boundary condition in the sense that for all but countably many 7 > 0
z—-9(r)>D_%(r)-(t — 1)

w”(t,z) = u (1, ¥(7)+) for all (¢,z) such that (2.2)
t>T

where D_¥(¢) = liminf, ,;_ \P—(’%&g—(ﬂ is the lower left Dini derivative.

By (i) and (ii) we mean that u satisfies the equality

+oo ptoo oo
/{; /_ (u- ¢+ F(u) - ¢5) dz dt + /- (z) - ¢(0,z)dz =0 (2.3)

[e o]

for any C! function ¢ with compact support contained in the set {(t,z)eR*:t<0orz > ¥(t)}.
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At (ii), the above definition requires that all the waves in the solution w™ to (2.1) are directed
towards the outside of the domain Q. Note also that not only there may be a jump between (%)
and u (¢, ¥(t)+), but this jump may well violate the Rankine-Hugoniot conditions.

Remark that no assumption whatsoever is asked directly on the slope of ¥. Hence, char-
acteristic lines may well be tangent to the boundary, justifying the denomination Characteristic.
Nevertheless, if D_®¥(r) is sufficiently large, then (2.2) is always satisfied independently from %
under the only assumption that the total variation of u(t,-) and of the boundary condition @ are
both sufficiently small.

In the theory of Cauchy Problems of conservation laws, a key role is played by those problems
with Riemann data. In the present case, the analogous role is played by those problems with linear
boundary profile and with both the initial data and the boundary condition constants. We will

refer to this kind of problems as Characteristic Riemann Problems with Boundary.

Example C: Fix some m in R and let © = {(¢,z) € R?:t > 0, ¢ > mt}. Choose two constants
i and % in R?. Referring to [DF], the standard self-similar solution to the Characteristic Riemann

Problem with Boundary

u + [F(u)] =0 fort >0, z > mit
u(0,z) =17 forz >0
u(t,z) =1 for z = mt

is the restriction to £ of the Lax solution to the standard Riemann Problem
U + [F('Ul)]z =10

2 ifz <0
we,0)= {2 Ho <t

Due to the presence of the boundary data and of the boundary profile, the flow map (0, )
u(t,-) is in general not time homogeneous. To recast our problem in a semigroup framework, it is
convenient to incorporate the functions % and ¥ in the domain of the semigroup. More precisely,

consider the set D™ of triples p = (@, @, ¥), where
e} (R,R?) BV (R,R?) and 4(c) = 0 for = < (0)
ae 1! (R*,R?) nBV (R R?) (2.4)
¥ e (R+ ,R)
Define
TV(p) = TV(@) + TV(4).

and introduce the product distance

dp',p") = [~ @ + [~ @l + ]2 - | (2:5)
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With the above notation, we construct a semigroup S acting on a suitable subset D of D*, in
the sense that
S : Rt x D — D (2.6)
¢, (2,2,%) - (u(t,), T, T0) :
u being the solution to (C) and 7; the translation operator, i.e. (7;&) (s) = @(t+s) and (7; ) (s) =
U(t + s).

In the characteristic case, our main result is the following:

Theorem C. Let F be a smooth map defined on some neighborhood of the origin in R? and with

values in R?. Assume that (1.1) is strictly hyperbolic and that each characteristic field is either

linearly degenerate or genuinely non linear. Then there ezist positive constants I and §, a closed
domain D C D~ and a continuous semigroup S of the form (2.6), such that

(1) D contains all triples (@, @, ¥) in D* with TV(g) + TV(a) < §;

(2) the map t — u(t,-) yields a solution to the initial-boundary problem (C);

(3) if @ and @ are piecewise constant, and if U is continuous and piecewise linear, then for t
positive and sufficiently small, u(t,-) coincides with the solution to (C) obtained by piecing
together the standard solutions of the Riemann Problems at the points of jumps of & and of
the Characteristic Riemann Problem with Boundary at ¥(0);

(4) fiz two triples (@',%',9’) and (@”,%”,9") in D and call v', u" the solutions to (C) provided
by S.

(4.1) If @' = 4" then, for any T > 0,

(T, ) = u"(T,-)|| . < L- (“a’ —a"|| . + ax, |@'(t) - ‘I’”(t)l) (2.7)

(4.ii) If ', ©” are Lipschitzean with constants L', L" and t' < t", then

Hu'(t',-) _ U"(t",')”Lx <L- (“ﬂ’ - ﬁ'"HLl 4+ max I‘I"(t) - QI,U)I) (2.8)

tefo,t)

LGRS 7R OB ([ M T t”|)

At (3), by standard solutions of the Riemann Problems at the points of jumps of & we mean
the Lax solutions as defined in [La]. The solution at ¥(0) is as in Example C.
In Section 5 the estimates (2.7), (2.8) on the Lipschitz constant will be slightly improved,
see (5.19).
Recalling the definitions given in Chapter 2, for the Characteristic Problem, the semigroup §
of Theorem C turns out to be a Standard Riemann Semigroup, since it is continuous and satisfies

(1), (3), (4.ii). Note that the continuity of § and (4.ii) together imply (4.i).
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3. The Non Characteristic Case.

The initial-boundary value problem for (1.1) in the non characteristic case is:
up + [F(u)], =0
(NC) u(0,z) = u(z)
b(u(t,2()) = o)
where the initial data @ and the boundary condition g are L* functions with small total variation; b
is smooth. Call A;(u) and 7;(u) the i-th eigenvalue and the corresponding —th right eigenvector of

the matrix DF(u). By means of a change of coordinates that leaves the shape of (NC) unchanged

it is possible to assume that
—ATEX A (u) < —Amin AT < Ay (u) < AMX V.
for two suitable constants A™®, A™2%_ We require that ¥ is absolutely continuous and that
—AMIn () < Amin for a.e. ¢ (3.1)

which ensures that no characteristic line may be tangent to the boundary, motivating the denomi-
nation Non Characteristic. Note that (3.1) implies the Lipschitzeanity of ¥. Moreover, b is required
to satisfy the hypotheses

Db-ry # 0 in the origin of the u plane and

b (u (4(0)))

sufficiently small. (3.2)

We recall here the definition of solution to (NC), see also [Go], [ST].

Definition NC: A function u: Q — R? is a solution to (NC) if
(i) for t > 0 and = > ¥(t) it is a weak solution to (1.1),
(i) it coincides with @ at time t = 0,
(iii) it satisfies the boundary condition in the sense that for all but countably many 7 > 0
lim b (u(t,z)) = g(7). (3.3)
(t,2)—=(r,%(7))
(t,x)eR

By (i) and (ii) we mean that u satisfies (2.3) for any C?! function ¢ with compact support contained
in the set {(t,z) e R:t < 0 or z > ¥(t)}.

Remark that in the Characteristic case (C) there may be a jump between the solution near the
boundary and the boundary condition, while in the present Non Characteristic case (NC) there is

no such jump and the value of the boundary condition is attained in the sense of (3.3).
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The following is the equivalent to Riemann Problems in the present case, and will be referred

to as the Non Characteristic Riemann Problem with Boundary.

Example NC: Fix some m € R with —A™i" < m < A™in and define Q = {(t,z) eR?:t >0,z >
mt}. Choose a constant initial data % € R? and a constant boundary condition g € R. Let b be
any smooth function satisfying (3.2). As introduced in [Go] and [ST], the standard solution to the

Non Characteristic Riemann Problem with Boundary

ut-l-[F('u.)]I:O fort >0, z>mt
u(z,0) =1 forz >0
b(u(t,z)) =g forz = mt

is the restriction to § of the Lax solution to the Riemann Problem
up + [F(u)]x =0

+ .
u(z,O)z{u ifz<0

a ifz>0

where ut is defined by the conditions
(a) b(u*) =g, and
(b) @ is on the shock-rarefaction curve of the second family through ut.
Remark that (a), (b) and (3.2) ensure that ut exists and is uniquely determined, hence also the

(self-similar) solution to the Non Characteristic Riemann Problem with Boundary is unique.

As in the previous case, we incorporate the boundary condition g and the boundary profile
¥ in the domain of the flow. We can thus obtain a semigroup acting on the set D* of triples

p = (@,9,%), where
ieL! (R,R2) NBV (R,R?) and a(z) = 0 for z < ¥(0)
ge L (R+ ,R) NBV (R+ ,R)
TecC’ (R“*’ s R) with Lipschitz constant A™",

Similarly to the previous case, for a suitable subset D of D*, we will construct a semigroup of the

form
S : Rt x D — D
i 3 (ﬁ7 g9, ‘I’) (and (’U.(t, ')7729,7211’)

u being the solution to (NC) and 7; the translation operator. Define

(3.4)

TV(p) = TV(a) + TVI(e) + o (s ((0) - o0)

d(e',p") = [[@" = @ + 9" = o'l + 1127 - ¥l (3-5)
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Our main result in the Non Characteristic case may be stated as follows.

Theorem NC. Let F be a smooth map defined on some neighborhood of the origin in R? and

with values in R2. Assume that DF is strictly hyperbolic and that each characteristic field is either

linearly degenerate or genuinely non linear. Then there ezist positive constants L and §, a closed
domain D C D* and a semigroup S such that

(1) D contains all triples (4,9, ¥) in D~ with TV (@) + TV(g) + ‘b (u (‘P(O))) - g(O)! <é;

(2) the map t — wu(t,-) yields a solution to the initial-boundary problem (NC);

(3) if & and g are piecewise constant, and if ¥ is continuous and piecewise linear, then for t positive
and sufficiently small, u(t,-) coincides with the solution to (NC) obtained by piecing together
the standard solutions of the local Riemann Problems at the points of jumps of 4 and of the
Non Characteristic Riemann Problem with Boundary at ¥(0);

(4) Fiz two triples (¢, ¢',¥') and (¢",¢",¥") in D and call v/, u" the corresponding solutions
to (NC). Then

o) =, e < B (8 = @ 19 = 0l + ¥~ @ go + ¢ = 2']) (39)

At (3), by standard solutions of the Riemann Problems at the points of jumps of % we mean
the Lax solutions as defined in [La]. The solution at ¥(0) is as in Example (NC).

In Section 6, an estimate on the Lipschitz constant slightly better then (3.6) will be provided,
see (6.12). g

Recalling the definition of Standard Riemann Semigroup for the Non-Characteristic boundary
problem, given in Chapter 2, by (1), (3), (4) it follows that S is indeed a SRS. Hence property (2)

turns out to be a consequence of Lemma 3, Chapter 2.
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4. Outline of the Proofs.

Throughout this Chapter, F' is assumed to be sufficiently smooth and such that for all u, the
Jacobian matrix DF(u) is strictly hyperbolic. Each characteristic field of (1.1) is either linearly

degenerate or genuinely non linear. Let
1
Alu,w) = / DF (su + (1 — s)w) ds
0

and call Ai(w, w), ri(u, w), li(u, w) (i = 1, 2) the eigenvalues of A(u,w) and the corresponding right
and left eigenvectors, respectively. Set A;(u) = A;(u,u). By strict hyperbolicity, there exists a
suitable change of coordinates that leaves the shape of (C) and (NC) unchanged and such that

=AM < A (u) < —Amin and  A™T < Ay(u) < AmEX, (4.1)

for two positive constants A™i" Amax and for all u. The eigenvectors r; and r, are chosen of unit
length and directed so that the directional derivative DA; - r; is non negative.

In case (NC), it is natural to assume that the boundary profile ¥ is Lipschitzean, due to (3.1).
We begin by assuming also in case (C) that ¥ is Lipschitzean with constant, say, £ > A™2* 4+ 1.
The more general statement in Theorem C relative to a merely continuous boundary profile will

then follow by a limit argument.

In the spirit of wave—front tracking algorithms, we shall first approximate the initial data @
and the boundary condition % or g by means of piecewise constant functions %4* and %° or g. The
boundary profile ¥ is approximated by a piecewise linear and continuous function ¥ and moreover
we require that

In case (C): \Iie(t)l > A

(4.2)

In case (NC): l‘IIE(t). € [O,/\mi"]
Define p* = (@*,4%,¥°) in (C) and p* = (u%,¢% ¥¢) in (INC). Note that in both cases p° €
D=. The approximation above is meant in the sense that lim. ,od(pc,p) = 0. Let Q° =
{(t,z) ER?:t>0,z> ‘I’E(t)}.

The Riemann Problems arising at the jumps in @° and at ¥¢(0) are solved by means of
the approzimate Riemann Problem Solver introduced in [BC1] which we briefly recall below for
completeness. A standard glueing argument will then allow to define an approximate piecewise
constant solution to (C) or (NC).

In a given set of Riemann coordinates v, the i-rarefaction curve (,bf' and the i—shock curve ¢;

through the point v can be parametrized as
¢ (v,0) = (v1 + o, v3) ¢f(v, o) = (vl + a,v3 + ¢a(v, 0')0'3)
#7 (v,0) = (v1,v2 + 0) &5 (v,0) = (vl + d1(v,0)03, vy + a)
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for suitable smooth functions ¢;, ¢2. Choose any non increasing C™ function : R. — R such that

p(s)=1 if s < -2,
©'(s) € [-2,0] forall s,
e(s)=0 if s > -1,

and, for a fixed £ > 0, interpolate the i—shock and the i—rarefaction curve
$i(0,0) = ¢ (o/VE) - 67 (v,0) + (1 ¢ (o/ﬁ)) #f(vo) =12

Given a left and a right state u! and u”, assume that they both belong to the domain of the same
chart and have Riemann coordinates v" = (v],v5), v' = (vl,v}). An approximate self-similar
solution to the Riemann problem with data
I .
u ifz<0
u(0,z) = ’ 4.3
( b ) {ur i.f T > 0, ( )
is constructed as follows.

First, using the implicit function theorem, we determine unique values o, o and middle state
v™ such that

v" = 1p5(v™, 09) ™ = dzf(vl,a'l) . (4.4)

If o1 > 0, then the states v/, v™ are connected by a rarefaction wave. Let h,k € Z be such that

he < v < (h+1)e ke <" < (k+1)e.
Introducing the states
Y ~i. (27+1 .
wl = (je,vd), o] = (—Q—E,vé) j=hy.. ok,

we construct the e-approximate solution to the Riemann Problem with data (4.3) on the quadrant

where z < 0 as a rarefaction fan:
ol ifz < A (BP)¢
v(the)=< o] EMN@T)t<e < M@t i=h+1,.. .k, (4.5)
v™ i AGF) <z <.
On the other hand, if o7 < 0, the states v! and v™ are connected by a single shock:
vl ifz < AY(v), o),

vi(t2) = | (46)
v™ i AT (v, 01)t <z <0.
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The shock speed AY is here defined as

X{(0,01) = (o1 /v/E) - (o, 1) + (1= p(on/v6)) - X(', ),
with
Ai(vl7 Ul) = A1 (vla 45;(”120'1)) ’
meas ([js, (5 + De]n [ol, !

|os|

) (@)

Ar(v!,op) = Z

JEZ

where meas(B) stands for the usual Lebesgue measure of the set B. Observe that the jump
in (4.6) provides an exact solution to the Rankine-Hugoniot equations as soon as o; < —24/z.
The construction of the e-approximate solution to the Riemann Problem with data (4.3) on the
quadrant where ¢ > 0 is entirely similar, repeating the above construction with waves of the second

family.

At the initial time ¢ = 0, for £ > ¥¢(0) solve the Riemann Problems arising at the jumps in the
approximate initial data @ by means of the Riemann solver above. The Riemann Problem with
Boundary arising at (0, #%(0)) is solved by the same technique, provided the states u', u” in (4.3)
are chosen as described in Example C for the Characteristic case and in Example NC for the Non

Characteristic one.

Glueing the local approximate solutions above, a piecewise constant approximate solution
u®(t,-) to (C) or (NC) is defined up to the first time ¢; at which one of the following events takes
place:

(I) two waves collide in the interior of Q¢

(II) one wave hits the boundary

(III) the value of the boundary condition changes

(IV) the slope of the boundary changes
In case (I), the approximate solution is extended beyond t; by the same procedure used in the
solution of the Riemann Problems arising at the jumps in @° for ¢ = 0 and = > ¥*(¢). In cases (II),
(III) and (IV), the extension beyond time ¢; is achieved by applying the Riemann Solver above to
approximate the solution of the Riemann Problem with Boundary arising at (t,, ¥°(¢1)). In other
words, a suitable Riemann Problem is introduced (see sections 5 and 6) and the corresponding
approximate solution is then restricted to °.

This procedure can be iterated, leading to an approximate solution defined up to the next
interaction time t; > t;, and so on. This iterative method is applicable as long as the total variation
of the approximate solution remains sufficiently small, and as long as the points of interactions do
.not accumulate. Here, by interaction point we mean a point where one of the events (I), (II), (III)
or (IV) takes place.
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By the same arguments used in [BC1], essentially relying on the properties of 2 X 2 systems
and of the definitions (4.5)—(4.6), it is proved that the number of interaction points is finite in any

compact subset of Q2°.

By a technique which has now become standard ([BC1], [BC2]), it is shown that the total
variation of the approximate solution is bounded uniformly in . This technique is based on the
introduction of a function T¢ which is a suitable modification of Glimm functionals total strength
V' and interaction potential Q. More precisely, the function Y€ is defined on the sets

In Case (C):

Dipp = {(#,4,¥) e D:2€ PC,i € PC,¥ € PLC with Lipschitz constant > A™** 41}
In Case (NC):

Dipp = {(a, 9,¥) € D*: € PC,g € PC,¥ € PLC with Lipschitz constant ,\mi“}

where PC is the set of piecewise constant functions with finitely many jumps, and PLC is the set

of piecewise linear and continuous functions with finitely many corners on any compact subset of
R. Define the domain

D¢ = {p € D3pp: T(p) < 6} (4.7)
and set
In Case (C): pe(t) = (uF(t, ), T, <)
In Case (NC): pe(t) = (uf(t,), Tug®, T:¥°)

u® being the approximate solution defined above.

Proposition 1. Let the problem (C) or (NC) satisfy the assumptions of Theorem 1. Then there
ezist a positive § and a function Y: D%’ — R. such that for any triple p* € D, the wave-front
algorithm above defines a unique approzimate solution u®: Q¢ — R? satisfying

(i) pe(t) is in D¢ for allt € RT;

(ii) the function t + Y€ (p5 (t)) 1S MOn increasing;

(iii) ¢71-TV(p) < T¢(p) < ¢-TV(p) for a suitable positive ¢ and for all p € D%, the constant

¢ being independent from § and ¢;
(iv) Any strip of the form Ute[o,T] [llls(t), -l—oo[ contains finitely many interaction points of u®;
(v) TV (pe(t)) is bounded uniformly w.r.t. t € RY, p° € D% and c.

T¢ is explicitly defined at (5.4) for case (C) and at (6.2) in case (INC). In Section 5 (resp. 6) we prove
that in case (C) (resp. (INC)), if a simple interaction takes place at (., z.), then T° (u(tat,-)) <
T (u(t.—,-)). The extension to more general interactions is then achieved as in Section 4 in [BC1].
(i) and (ii) then follow immediately. (iii) is a consequence of the definitions (5.4) and (6.2) of T*.
(iv) is proved exactly as in Section 5 of [BC1] and, finally, (v) follows from (ii) and (iii).
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As soon as a global approximate solution u® is constructed, by (i) above it is possible to define
an e-approximate semigroup S¢:R* x D% s D%, By the uniqueness of the definition of the
approximate solution, it is in fact immediate to verify that S¢ satisfies the characteristic semigroup
properties, i.e.

Sy = Identity Sio08; = Sf+8 .
In terms of the e~semigroup S, (ii) above states that for any triple p, the map

t— T°(S7p) is non increasing (4.8)

We now proceed (see [BC1]) to work towards an estimate of the Lipschitz constant for 5§
independent of ¢. Below, we introduce a class of suitable continuous paths (pseudopolygonals),
such that any two triples p’, p” in D%’ can be joined by a pseudopolygonal 4. For any such path,
define a weighted length ||7||, so that the distance

d*(p’,p") = inf {“7”5 such that 7: [a, b] — D is a pseudopolygonal joining p’ with p"} (4.9)

is equivalent to the distance d at (2.5) or (3.5), uniformly in . A careful definition of || - ||, allows
us to prove that the function '
t > d° (S (p"), Si(p"))

is non increasing for all pairs of triples p’, p” in D%¢. This will imply that the e—approximate semi-
group §°¢ is Lipschitzean w.r.t. the distance d at (2.5) or (3.5). In other words, the e-approximate
solution u®(¢,-) depends Lipschitz continuously from the initial data and from the boundary condi-
tion w.r.t. the L1-distance, and from the boundary profile w.r.t. the C°-distance. To ensure that
any two triples in D*® are at a finite distance, we limit the construction below to a bounded time
interval [0,T], for an arbitrary T > 0.

Concerning the initial data and the boundary condition, the definition of the class of elemen-
tary paths introduced in [BC1] is used also in the present case, and is here briefly recalled. The
underlying idea is that of shifting the locations of each jump in the initial data and boundary
condition at constant rates. This is accomplished through elementary paths. Pseudopolygonals are
countable concatenations of elementary paths.

Definition 1. Let ]a,b[ be an open interval. A PC-elementary path is a map 7:]a,b] — PC of

the form N
7(8) = Z v X1, 0 2l =z, +¢£.0 (4.10)
a=1 [zaaliza[

with 28 _; < 2 for all § € Ja,b[ and @ = 1,..., N.

Concerning the boundary profile, a new definition of PLC-elementary path is needed. In

fact, it is necessary to interpolate continuous functions within a class of continuous functions.
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Furthermore, the following condition is of key importance: locally, in a PLC—elementary path the
boundary profile should shift in the same way in which the waves in the approximate solution shift
when a P C-elementary path is applied to the initial data.

Let two PLC boundary profiles ¥’ and T" be given. Assume first that ¥'(t) < ¥”(¢) for all
t. Then, a PLC-elementary path joining ¥’ to ¥” is the map

y:0 s y(8) where y(0)(t) = min{¥'(t)+6,%"(¢)} (4.11)

Note that each segment in ¢ = ®’(¢) shifts to the right until it reaches the curve z = ¥"(%).
Locally in 8, the movement of the segment in the boundary profile through (i., ¥(t.)) is the same
of that of a wave with propagation speed %(t*) shifting to the right with shift speed either 1 (if
@'(t.) < ©”(t.)) or 0 (if ¥'(t.) = ¥"(t.))-

Moreover, for all 4, 4(6) is in PLC. Furthermore, if ¥’ and ¥" are Lipschitzean with constants
L' and L", then v(8) is Lipschitzean with constant max {L', L"} (see Figure 3.1).

v, el e v, P’ ¥ AN

....
g

-
oo
o'
..
.
S,
.
.......

Figure 3.1

In general, to join two arbitrary boundary profiles ¥’ and ¥”, we first join ¥’ to ¥™** =
max {¥', 9"} with the elementary path v defined as in (4.11). Then we join ¥™** to ¥” by
means of a path y_ obtained reversing the one defined at (4.11). Below, the elementary path
joining ¥’ to ¥” is defined as the concatenation of y4 and y_.

Definition 2. Let ¥/, ¥” be in PLC and T > 0 be fixed. If ¥’ # ¥” on the interval [0,T], the
PLC-elementary path joining ¥’ and ¥" is the curve

y:|— sup [®"(t)-¥'(¢)] , sup [¥'(t) - ¥'(t)] |~ PLC v:0 — v(6)
t€[0,7] + te[0,T] +

where
)+ [[2"@) -2 ()] +6] ifé<o0
7(0)(t) = T (4.12)
¥+ [[2(0) - ¥'(0)], - 6] £0>0
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and [[:a:]]+ = max {z,0}. If ¥' = 9" on [0, T], for any a,b € R, the constant map 7:]a, b[ — PLC
defined by v(6) = ¥’ is also a PLC-elementary path. '

In order to have a finite length of the PLC—elementary paths, we limit the following construction
to any fixed time T > 0.

We stress these two properties of PLC—elementary paths, which are of key importance in the sequel.
P yp y
(i) Let ¥’ and ¥" have Lipschitz constants L' and L"”. Then the values attained by the PLC—
elementary path joining ¥’ to " are functions with Lipschitz constant max {L', L" }.
ii) In a PLC-elementary path, each segment of the boundary shifts with horizontal speed
y gm :
either +1 or 0.

Recall that D= is a set of triples p = (&, &, ¥) or p = (&, g, ¥), hence the three canonical projections
m; (1 =1,2,3) are defined on D=°.

Definition 3. Let t € R*. A continuous map 7:]a, [ = D% is a D=¥-elementary path if each
of the projections m; o v is an elementary path according to the definitions above. A continuous
map 7: [a, b] = D= is a DS*—pseudopolygonal if there exist countably many disjoint open intervals
Jh C [a,b] such that the set [a,b]\ U,y Jn is countable and the restriction of v to each Jy, is a
D¢ ®—elementary path.

The e—semigroup S5¢ preserves pseudopolygonals, in the sense that

Proposition 2. Let7,:[a,b] — D4 be a pseudopolygonal. Then, for allt > 0, the path v;: [a, b] —
D% defined by v¢ = Sf 07, is also a pseudopolygonal. Indeed, there ezisi couniably many open
intervals Jy, such that [a,b]\ U, Jp is countable and the wave—front configuration of the e—solutions

with data 7,(6) on {(r,z) € Q:7 € [0,t]} remains the same as § ranges on each Jy.

The above statement is a consequence of Proposition 5 in [BC1]. The Definition 3 above is given
so that the movement of a segment of the boundary along a PLC-elementary path is equivalent
to the movement of a wave with the same support along a D%-elementary path. Likewise, a
(vertical) shift of a jump in the boundary condition leads to a (horizontal) shift in the waves that
are eventually caused by this jump. Hence, representation formulas equivalent to (6.5) and (6.9)
in [BC1] still hold also along the boundary. The continuity of the composition §¢ oy for any
elementary path - is proved relying on Lemma 14 in [BC1].

The weighted length ||- ||, of pseudopolygonals is defined as the sum of the lengths of their
elementary paths. The length of a D*%—elementary path, in turn, is defined as the sum of the
lengths of its three projections.

The L*-length of the PC—elementary path 7 at (4.10) is

ua+1 . ua

Ml = (b—a)- 3 al.
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Aiming at a similar equality for PLC-elementary paths, we introduce the following function. Let
v be a PLC—elementary path. Then define »

=)0 if 6 — ~(0) is constant 4.13
~(7) { 1 otherwise (4.13)

~and observe that the C%-length of the PLC—elementary path < defined at (4.12) is bounded by

lle < (b—a)-&(7) < 2llico

where with a slight abuse of notation x(v) stands for (w3 0 7).
The most immediate definition for the length of a D*’~elementary path 7, namely

71l =l e 7llps + llwz 0 7l + liws 0 7llco (4.14)

turns out to be possibly increasing along the approximate solution also in the case of a fixed
boundary, as explained in the Introduction to [BC1]. Hence, it is necessary to introduce suitable

weights in (4.14), passing to the weighted length

Il = (6= a) - (5(9) + w(m) (4.15)

where T¢ is a suitable function defined on the set of Def—elementary paths. The explicit definition
of T¢ is at (5.15) for case (C) and (6.7) for case (NC). 7
Furthermore, we introduce the function 2¢ on the set of D**%—elementary path defining

=°(7) = (b— a)- T§(7) (4.16)

If 41,79, ... are the elementary path making up the pseudopolygonal v, we set

7lle = 2 Il E(1) = ) E(1n)

n

It is now necessary to verify that (4.9)—(4.15) indeed is a distance on D=,

Proposition 3. Given § > 0, there ezists some positive §' € |0,6] such that any two triples p’,

p” in D=4 can be joined by a pseudopolygonal 4 entirely contained in D=°. Moreover, there exists

positi;ve constants k and K, such that

| Ellyl < [l < K - [l (4.17)
Bl 07l < Z5(r) < K- (lIm 0 vllgs + Iz 0 1llga + (TV(R') + TV(2") - w3 0 7|0 )4-18)

uniformly in . As usual, p' = (@',%',¥) and p” = (&",%",9"). In case (C), the constant K

above depends on the Lipschitz constants of ¥' and ©", while k does not.
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Above, we used the standard definition of length of a continuous path v:[a,b] — X, for a

normed space X

n
l7llx = sup Z 17(8n) = 7(6n-1)||y:a =60 < 61 <---< b=
h=1
in the cases X = L1, X = C°.

The proof of the first part of Proposition 3 can be deduced from the analogous proof of
Proposition 8 in [BC1]. Indeed, in case (C), let p’ = (#’,%',¥') and p” = (u",%”,¥"”). Then,
construct a first elementary path -; joining p’ to (@',%', ®") as in (4.12). Then, by the same
constructions as in [BC1], define two pseudopolygonals v, and v3 joining (@, @', ") to (@', 3", ")
and (@', %”,¥") to p”. The concatenation v of 1, 72 and 73 is a pseudopolygonal joining p’ to p”.
Case (NC) is entirely analogous.

The estimates (4.17) and (4.18) are immediate consequences of the explicit definitions (5.15)
and (6.7) of Y. The aim of (4.18) is to allow better estimates on the distance between approximate

solutions.

Note that (4.17) ensures that the weighted distance d® is uniformly equivalent to d. In fact,
choose p’ and p” as above. Define the pseudopolygonal v by

=N

= gl .
TOT =X co,0) T " X]g, 4oof
oo ~1
20T = X0, 6] T " X], oo
73 0 as in (4.12).

then by (4.17)

& (p,p") <l <K-llyll = K-d(p',p")
1 1
d(p',p") <i < Z . = = .d(p".p"
(¢ p") <infllyll < £ -inflyll. = £ - d° ('

Note that (4.17) is a generalization of the analogous statement (iii) in Proposition 1.

The definition of the function T% is quite delicate, for we want the weighted distance d* to be

non increasing along the semigroup trajectories.

Proposition 4. Let the problem (C) or (NC) satisfy the assumptions in Theorem 1. Then there
ezists § > 0 and a function Y such that for any pseudopolygonal 7:]a, b[ D=9, the two functions

t—E°(Sfoy) and te|S5o 7”5 (4.19)

are both non increasing.
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The above result is a more general version of (ii) of Proposition 1, as it clearly follows from
comparing (4.8) with the first of the two functions above.

The proof of Proposition 4 amounts to show that ¢ — =° (Sf o 7) does not increase at any
interaction time, since by (4.13) it immediately follows that £ i & (5',3E 0 7) is non increasing. We

consider the case of simple interactions, leaving to the perturbation method introduced in [BC1]
the passage to the case of general interactions.

More precisely, it is necessary to consider one more type of interaction point, namely the points
where

(V) - the boundary stops shifting.
At those interaction points of type (I), (II), (III) and (IV) & remains constant, while in case (V)
it passes from 1 to 0. Concerning T, more careful estimates are necessary. Indeed, T depends
upon the shift speeds £, of the waves in u®. These quantities may well increase not only due to
interactions among waves in the interior of Q¢ (see the discussions in [BC1], [B4]), but also due to
the interactions of the waves with the boundary.

Consider the interaction (II) in case (NC). A wave o~ with propagation speed A~ and shift
speed {~ that hits the boundary at some time ¢, may lead to a wave o exiting the boundary
towards (¢ with propagation speed AT and shift speed £1, where

g -8 - (- 3) &

A= — U ,

&g is the shift speed of the boundary, i.e. 1 if the boundary profile at time ¢. is shifting to the

rigl';t, —1 if it is shifting to the left and 0 if it is not shifting. The denominator in the r.h.s. above
is bounded below by a positive constant due to (4.1) and (4.2). The shift {* is thus bounded by

(4.20)

]6*} < Cr- (lf”i + n) : (4.21)

where CF is a suitable constant depending only on F.

For an interaction of type (II), in case (C), the situation is entirely different. In fact, if a waves
o~ hits the boundary profile at time ¢., then no wave may exit the boundary towards the interior
of 2° at the same time t., due to the choice (4.2). Some wave ¢ may eventually exit the boundary
towards the interior of Q at a future time £ > t., when the slope ¥¢ of the boundary profile
changes sign from positive to negative. At time £, the shift speed ¢ of o is given by |£+l = K,
entirely independently from the shift speed £~ of o~. This introduces a technical problem since the
amplification of the shift at time Z cannot be controlled in terms of £ . In Section 5, this difficulty

is overcome by introducing suitable generalized shift speeds.

In Case (III) a shift in the boundary condition with vertical shift speed ¢ parallel to the

boundary leads to a horizontal wave exiting the boundary towards ¢ with pfopagation speed A
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and horizontal shift speed
E=(F-X)-E+¢&g. , (4.22)

In the two cases (C) and (NC), the estimate on the r.h.s. of (4.22) are entirely different and it
is this that makes the constant K in (4.17)—(4.18) depend on the Lipschitz constant of the boundary
profile, in case (C). Hence it causes the differences between the Lipschitz type estimates (2.8) valid
in case (C), and the estimate (3.6) valid in case (NC).

In this latter case, in fact, due to (4.2), the r.h.s. in (4.22) is bounded as

€1<Cp - |€] + (4.23)

where C i is some positive constant depending only on F.

On the other hand, in case (C) similar estimates can not hold, since the r.h.s. in (4.22) depends
on the Lipschitz constant of the approximate boundary profile ¥¢. Hence, the Lipschitz constant
of the semigroup depends on the Lipschitz constant of the boundary profile, as in (2.8).

Note that (4.17) and the second in (4.19) imply that the e-approximate semigroup §¢ is
Lipschitzean uniformly in ¢ w.r.t. the metric d. In fact, fix p/, p” and a pseudopolygonal joining
them. Then

d(Sip', Sip") < = -d° (Sip’, Sip") < = -d° (p',p") <

K
7; . d(p’,p”) .

ol
o]

To complete the proof of the main results, we now consider a sequence of semigroups S;* with
€n — 0. Following the technique used in [BC1], we fix §’ > 0 according to Proposition 3 and define

the closed domain
D= {p € D*: 3 {pn cp=fine N} with h_gl d(p,,p) = 0} (4.24)

Note that D contains all triples such that TV(p) is sufficiently small. Let p = (%, %, ¥) be in D,
and ¥ be Lipschitzean. Consider p,, = (&n,@n, ¥,) as in the definition of D and assume that
the Lipschitz constants of ¥, are uniformly bounded w.r.t. n (clearly, this is always true in case
(NC)). Fort € R*, we then define

Si(p) = lm S5;"(pn). (4.25)

The uniform Lipschitzeanity of the S;" ensures that the sequence in the r.h.s. above is 2 Cauchy
sequence, as can be shown using the same technique of [BC1], Section 9. Hence S is well defined
on D, in the (NC) case, while in the (C) case is defined only on a subset of D. Moreover, S is
Lipschitzean, proving (2.7) and (3.6).



The Characteristic Case ~ Technical Proofs 69

The estimate of the Lipschitz constant relative to the dependance upon time follows by stan-
dard arguments. Indeed this constant is proportional to the maximum propagation speed (of waves
or of the boundary) which is bounded by A™* in case (NC).

It is now necessary to verify that the the trajectories of S satisfy the requirements (i), (ii)
and (iii) in Definition C or NC. To prove (i) and (ii), follow the same procedure used in Section 10
of [BC1].
In Chapter 2, it is proved that, if a SRS exists for problem C or NC, in the n X n case, then
it is unique and its trajectories provide weak solutions in the specified sense, coinciding with the
solutions obtained by wave-front tracking methods in Chapter 1. As a consequence, the semigroup
S constructed here for problem C or NC, in the 2 X 2 case, satisfies (iii).

Finally, in Section 5 below an argument based on a limiting procedure allows to define the

semigroup in case of a merely continuous boundary profile.

5. The Characteristic Case — Technical Proofs

Aim of this section is to provide those details of the proof outlined above that are typical to

the characteristic case.

Fix some (small) e™** > 0. To simplify the notation, as long as & € ]0,e™**[ will be kept fixed,

it will be omitted. -

We first state precisely how the approximate solution u(t, -) is extended beyond an interaction.
We will always assume that at some positive time ¢, a simple interaction takes place, i.e. only one
of the cases (I), (II), (III) or (IV) happens.

Assume that u(t,-) is defined for ¢ € [0, t.[, with £, > 0 and (¢, z.) being an interaction point.
Consider cases (II), (III) and (IV), where z. = ¥(t.). Then, the approximate solution u is extended
beyond time t, by applying the Riemann Problem Solver introduced in Section 4 to the Riemann

Problem
u; + [F(u)]x =0
_Ja(t.+) ifz < =z,
u(ts, 2) = { u(t.,z.+) ifz>z.
(WHeie u(ts, 2.+) = limz—. .4 u(ts, z) and @(t.+) = lim;_,¢_ 4 @(t)) and then by taking the restric-
tion to Q of the approximate solution so obtained. In other words, we apply the Riemann Solver

to the following Characteristic Riemann Problem with Boundary:

w + [F(u)] =0 for (t,z) € {(t,:c) €Qiz >z, + U(t.t)- t}
u(t., z) = u(t., z.+) forz >z,
u(t,z) = u(t.+) forz =z, + ¥(t.+) -t
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where ¥ (t.4) = lim,_,_4 ¥(2).

Fix some positive time ¢ in a past neighborhood of t.. The approximate solution u(t,-) has

the form

n
u(t,-) = }: u”‘x[za_h 2o with  v*H = ¢S (1,{)f (‘UQ,O'LQ) ,0’2,,1) fora=1,...,n-1 (5.1)

=1

v* being the Riemann coordinates of u®. Similarly, write the approximate boundary condition as

= g ﬂax[Taq,Ta[ with 32t = s (gbf (1'1"‘,51,a) 15'2,a) for @ > 1 (5.2)
a2l

and introduce the waves solving the Riemann Problem at the boundary, i.e. if t € [To—1, 74|
71,0 and 72,0 are such that 1)1 = 'l/); (’([)f (’5&, ;.09 0'2’0)) (53)

and let g; o =2+ sgno; o fori=1,2and @ =0,...,n. It is now possible to introduce the function

T:

2 n-1
V=)D tialoial Q= Y, (te+98)|oiacigl
i=1 a=0 (U;'a,a’j,g)E.A (5.4)
2
V=33 |6ial T=V+Q+K-V
i=l o

for a suitable constant K. Here A denotes the usual set of pairs of approaching waves, i.e. of those
pairs (0 q,0;) located at z, < zg with a, 8 > 0, such that either
(a) i=2, j =1, (the wave on the left belongs to the faster family, the one on the right to the
slower), or

(b) min{0;4,0i5} <0,%=1,2, (at least one of the two waves is a shock).

Proving that ¢ — Y(t) = T (p(t,-)) is non increasing, amounts to prove that for any interaction
time £., the inequality T(¢.—) > Y(t.+) holds. To this end, we need a few estimates on simple
interaction. To simplify the notation by C we will denote a positive constant whose value depends
on the function F, on the radius §™** of some neighbourhood of the origin in the u space and on
e™2*, For any pair o', ¢, define

¥ 0 ifo',o" >0 '
Py - y
Qo' 0") = { |o'c”| otherwise. (5.5)
Case (I).
If the 1-wave o hits the 2-wave o, then the total size of the outgoing waves o) and o

satisfy
ot = o]+ ot —r| < lovor| (for| +or]) (5.6)
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If on the other hand the colliding waves o' and o both belong to the first or, respectively, to the

second family, then the estimate above becomes respectively
ot = (0" + 0" +|oi | < Clo'o"] (o] + |"]) -
5.7
o[+ |ot = (0" + 0M)| < €lo'e] (jo'] +1"])
see [BC1] for details.
Case (II).
Call o}, (resp. o,) the size of the i-wave solving the Riemann Problem with data i, u' before

(resp. after) the interaction. Let o~ denote the size of the wave hitting the boundary. By (4.6)
and (4.7) in [BC1], if o~ belongs to the first family, then

ot (esa s )l o] < 0@tz (o] o) o] (fa] + o)
(5.8)

As a consequence
oty oio <0 = |ofo|—|o-|<C- [é(aljo,a-) (l"l—vo, + |a—|) + o700 (1a;0| + |o"i)}

‘71+,0"7_ <0 = crl+,0 — laiol <C- {é(aio,o—‘)(lo‘iol + la_l)-i— IU;’OU—i (laiol + ]or“[)]

Uio-a£0<0 = cr;"’o SC'[Q(Of,o""“)(laio[+|‘7~I)+|‘72_,00'_’("’ZOI'*'IO'_I)]

(5.9)
If on the other hand o belongs to the second family,
Io';r,o - "1_,0; + oo — (U'z_,o '*‘U—)I <C- Q(U;,Oa"-) O‘Tz_,ol + 'f"“l) (5.10)
and similarly to (5.9)
01‘:0-01_’0 <0 = Uiﬁo < C-Qv(az':o,cr“) (ta£0| + Io“|>
ofo 050 <0 = oyl = |07 < C-Qor4,07) (lm;,ol + |a-[) (5.11)
0':',*”,0 oT <0 = 0';:0 — 10'2",0‘ < C-Q(aio,a’) (‘a‘z_,ol -’rIO"l)

Case (III).

Let the value at the boundary change from @4~ to @". Assume that the Riemann Problem
with data

_Jat ifz<o0
”(0”")“{&- ifz>0
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is solved in terms of waves &1, &;. Call o] (resp. of,) the i-wave solving the Riemann Problem
at the boundary before (resp. after) the interaction. Then, by (4.7) in [BC1]

22: <C- (la;,ozml (la;OI + [&2|) +§:;|5',-a;0] (lc‘n! + |a,.jo|)) (5.12)

i=1
Note that by the estimates above it follows that if § is sufficiently small

+ -~ —
Oio— (Ui + ‘Ti,o)

3
if ofy-07,<0 then |&1|+l&2!21

agjoi . (5.13)

In case (IV) no estimate on the wave sizes is necessary.

Lemma 1. Let a simple interaction take place at (t.,z.). Then, if § is sufficiently small, in any
of the cases (I), (II), (III) and (IV) one has T(t.+) < T(t.—).

Proof. Choose K = 9 and § small enough. We start considering Case (I). Let o; and o5 be the
total size of the wave—fronts colliding at time ¢.. Call .A,-i the set of (indexes of) waves approaching
of. Then by (5.6) or (5.7)

AV < 30‘0'1’02"1 (‘a‘i‘l + IU{D
<Joe]

2

ag<-2loior |+ | X (4 +dia) lotoial = 3 (4 +dia) |77 05

i=1 (],Q)EA;‘- (],Q)E.A:-

< (=24 V7)|o7 o3|
while V remains constant, hence
AT < —%IU{U{'.

Consider now case (II). Then, if o~ belongs to the first family, by (5.8) and (5.9)

a0 Qo) (Jral o) + e | (o + 7))
< é(aio,a_) + ia{ocr_l
AQ < - (41—,0 + ‘1_) é(”l—,m o7) -~ (‘1;,0 + q_) iaf,oa'—|

+ Z (Qi'—,o + q:’,a) lo'i*_,oo'i,oe\ + Z (qzo + q:',a) io_;:oa'i,a

(i,o:)E.Ato (i,a)EA;‘o

- Z (ql-:o + Qi,a) }0'1_,00'1’,0: - Z (Qé_,o + Qi,a) to'z_‘oo'i,ai

(i,0)€AT, (i,a)GA;O
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- Z (q— + Qi,a) la_ai,a

(i,a)e A~

< —252(0'1"’0,0'_) — 2l0£00"‘ + (é(crl—,o, o)+ laz"oa‘D V-
<(-24V7) (é(%—,m o7)+ Io'z—,oo'_l)
1/~ _  _ - -
AT < D) (Q("l,o,” )+ "72,00r D
If on the other hand o~ belongs to the second family, by (5.10) and (5.11)

AV

IN

6C 'é(dz_,ov”_) (lo’iol + IJ—D
< Bo50re") |

AQ < - (q_ + ‘12—,0) Q(o2,0,07)

+ 0y (q{*, ot Qi,cx) T EIEDY (quo + Qi,a) 03000
(i’a)EAio (i,a)EA;"O

- Z (Q]:o + gi,a) Ul_,oo'i,a - Z (QZ—,O + Q£,a) |0£00i,a
(i,a)eAT, (,2)€A;,

- > (q‘ + qz-,a) 'a”ai,a
(i,a)e A~

< (=24 V7)Q(o55,07)
AT < —-%Qv(cr{,o, o7)

Note that (II) is the only case in which there can be an interaction without any decrease in T.

In case (III), use the same notation as in (5.12). Consider first the case in which ¥ (t.) > 0.
Then by (5.12), (5.13)

AV < Qiolgfot - 91’,0‘”1—,0} + qzolgioi - ‘.72—,01"2_,0|

< 8(|51] +1521)
2
AQ < }: (q;*,“o + Qi,a) Iaﬁom,al - Z (qi‘,o + Qi,a) laf,om,a
=1\ (i,a)eAf, (i,0)€AT,

51| + 1721)
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If on the other hand ¥(¢,) < 0, then
AV <3 (|a1] +162]), AQ<6(ja1]+]a2]) V™
AV = —|51| - |72l AT§~% (161] + 152])
In case (IV), due to the choices (4.2) and (5.4) of the slope of the boundary and of the function
T, if ¥ changes from negative to positive, then V, Q and V all remain constant. If ¥ changes from

positive to negative, then the change in v amount to a renumbering of the wave sizes. Thus, in

both cases T remains constant. This completes the proof of the Lemma.

To define the function Y., we preliminarily introduce the generalized shift speeds, i.e. the

quantities

£
where ¢; o is the shift speed of the wave o; q, £, is the (vertical) shift speed of the jump at 7, in
the boundary condition, see (5.2). & is defined at (4.13), while £ is the maximum between the

(5.14)

i« = ma'X{K’a lEi,al} 7i0 =K ".]a =k-+2C

Lipschitz constants of the two boundary profiles connected by the elementary path.

The introduction of the Lipschitz constant of the boundary in the latter definition above is
motivated by (4.22). We remark again that, if a wave hits the boundary (case (II)), then no wave
may exit the interaction point towards {1, due to the particular choice (4.2) of the slope of the
approximate boundary profile. However, the wave ’attaches’ to the boundary. Its speed becomes
the same speed of the boundary at that point, hence it may well increase due to the interaction
with the boundary. The wave may enter again the domain at the next time at which case (IV)
occurs. The first definition in (5.14) prevents from increasing the weighted functional Y¢, below
defined.

We refer to the notation introduced at (5.1), (5.2) and (5.3). Let

2 n-1 2 m
V€ = Z Z Qi,alai,ani,al I:rE = Z Z la'i,aﬁal
i=1 a=0 i=1 a=0
Qe= D |oiaoig| (qi,alm,al + Qj,ﬁ]m',ﬁl)
(0i,a0:05,8)EA
Te= (Vet Hi- Qe+ Hy - V) - 7. (5.15)

Lemma 2. Fiz an elementary path . Let a simple interaction take place at (t.,z.). Let T¢(t) =
T¢(Sf o). Then, for suitable positive constant Hy, Hy, H3 and §, in any of the cases (I), (II),
(I11), (IV) and (V) one has Te(ti+) < Te(ta—).

Proof. Choose the constants H;, Hy and H; as follows

H, =1+2C Hy=9 Hy =8+ 16C (5.16)
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and § sufficiently small.
Case (I).

Call (t.,z.) the interaction point. Assume that o3, £; a:ud’o'ﬂ_, {5 are the interacting waves
and their shifts speeds, while ‘7?,-1: E& for £ =1,...,n; and ¢ = 1,2 are the analogous quantities
related to the outgoing waves. Then, by Proposition 6 in [BC1] and by (5.6) or (5.7)

2 ng
>3 Ia'?:lfj:gl < a,;g;'[ + lagggl +C|a;a;[ (lg; + ’550

i=1 £=1

2 n;
ZZ !aj:lnl L|og&
i=1 £=1
for a suitable ¢ > 1 and for § sufficiently small. Hence

2 n;
> I" S

+ ln;;D (5.17)
i=1 £=1

Due to the formal similarity of (5.17) with (3.14) in [BC1], the proof that T, decreases in interactions
of type (I) is as in [BC1], Section 8.

+ IUE&I 4 20,0';0'515

< |oaMa Mo

+ [05’75! + CIG;’-UEI (

Case (II).
Use the same notation as in Lemma 1 and call nfo, 71~ the generalized shift speed of ‘7;‘:‘,:0 and
o~. Then observe that
Nip =5 1" 2K o=k (5.18)
Assume now that o~ belongs to the first family. Then, by (5.8), (5.9) and using the same technique

as in Lemma 1

AVe < (Q(a;‘o,a—) + IUz—,OO'-i) K

ATe < (AVg + HiAQe + Hy - AY -V ) 7"

1 v
< (n —2Hi1k+ H1V ™k + HiVy — §H3V€') (Q(a’f,o,a) + Ia{oa‘!) eHa YT
0

If now o~ belongs to the second family, by (5.10), (5.11)
- AV < Q070,07 )k
AQe < (<26 + V7 r+ V) G(o70,07)
ATe < (AVe+ HiAQe + Hy - AT - V) et

1 o
S (Ii - Q.Hlii -+ H1V_f§ -+ Hlvg— - 5H3V5_) Q(U;,O’ U)eH3T+
<0
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Case (III).
Use the same notation as in (5.12) and call 7; the generalized shift speed of &;. Assume first
that ¥(z.) > 0. Then 7; > & and by the same procedure as in Lemma 1

AV <8 (1] + |62

AQe < 4 (V‘n—}— VE‘) (11 + |521)

AVe < — (|61 + 152])

AT < (AVe+ HiAQe + H AV + HAY - V™) T

S (SK- + 4H1V_R -+ HIV{ - HQK; - %H3V£_> (I&ll + I&ZI) eH3T+
<0
If on the other hand ¥(¢,) < 0, then call of, (i=1,2,£=1,...) the waves entering { and

f?,-t their shift speed. By the choice (5.14) of the generalized shift speed, 7; > ‘fj’t! and 7; > k, so
that 7; > 77;‘:1.

AVe < 3 (|617] + |27 1)

AQe < 3 (1517 + 16272]) V™ + 3 (|64] + |62]) Vi~

AVe = —|517i1| — |G27s]

ATe < (AVe+ HiAQe + HyAVy + Hy - AT - Vet) et

< ((3 +3H,\ V™ — Hy) (|6171| + 6272]) + (3H: — -;—Hs) (1521 + 1521) Vg—) et
<0

Case (IV).
It is immediate to verify that in this case T, remains constant. In fact, a change in the slope
of the boundary simply amounts to a renumbering of the waves in the sums in (5.15).
Case (V).
Before the interaction & = 1, while after x = 0, and there are changes neither in the waves nor

in the shifts in (5.15). Hence proving AT, < 0 is immediate.

Passing now to the limit € — 0, we obtain a Lipschitzean semigroup § as described in Section 4.
Remark now that by definitions (5.14) of the generalized shift speeds, (5.15) of T¢, (2.15) of the
metric d, repeating with the function Z° at (4.16) the same procedure followed with the weighted
length ||-||,, it is possible to state the following inequality which slightly improves (2.8). Fix two
| triples p’ = (@',4',9') and p” = (@”,%", ") both in D. Call L' (resp. L") the Lipschitz constant
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of ¥’ (resp. ¥"). Then

Hu'l(t", ) - ul(t,’ ')”Ll <L (”ﬁ” - ﬁ’“u + (TV(p') + TV(p")) ’ H‘I'" - ‘p,”C")

(5.19)
+ Lomax {1, 1"} - (@ - @], +]¢" - ¢])

The same perturbative procedure used in [BC1] allows to prove the Lipschitzeanity of §¢ under
the assumption that the boundary profile is Lipschitzean. Passing to the limit ¢ — 0, we obtain
a Lipschitzean semigroup S satisfying (2.8). Note that the Lipschitzeanity of each S¢ essentially
depends on the Lipschitz constant of ¥.

We now wish to extend S to boundary profiles that are assumed only continuous.

Denote by D i, the domain of the semigroup S obtained so far, i.e. Dy;p is the subset of D,
as defined in (4.24), consisting of those triples with a Lipschitzean boundary profile. For a generic
p = (@, %,¥) € D, consider

P, = (%,%,%9,) € Drip with ].i1+I_1 | —¥,|lco =0
and denote by £,, a Lipschitz constant for ¥,,. Then define
Si;p= lim S;p, (5.20)
n—-

Note that by (2.8), the sequence in the r.h.s. above is a Cauchy sequencét, hence S is well defined
on the domain D. To prove (2.7), consider two triples p’ = (@, %,9') and p” = (#",%,¥") in D

and choose two sequences
{(ﬁ’,ﬁ,@;) €Drip:n € N} {(‘il",'i'l., ‘I",’l) € Dripin € N}
converging to p’ and p”. Compute

d (S.(@', @, '), Se(7",4,8")) < d(S:(@,4,¥), Se(@, 2, T,)) +
+L- (Hﬁ' —a"|| .+ |2 - \pguco) +d (S(2", 1, TL), Su(w", 1, ¥"))

passing to the limit n — +o0, the first and third summands in the r.h.s. above converge to 0, hence
d (8w, u,3"), S«(a",a,¥")) < L-d(p',p") (5.21)

uniformly in % and ¢, proving (2.7).

We now prove the continuity of § for fixed @ and ¥. Consider a sequence p,, = (@, &, ¥) € D
converging to some (&, %, %) € D. Let {tn eRt:ne N} converge to some t > 0. Choose a
sequence {(ﬁ, 2, ¥,) € Drip:n € N} with £, such that

lim En'”'ﬁ"'an”L1=0 lim En-lt—tn|=0

n—+oc n—-oc
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and using (5.20) and (5.21), compute

d(S:(8, %), Sy, (, in, ) < d(Se(a, @, V), Si(, & €n)) + d (Se(@, @, Tp), St (8, i, 7,))
+ d (8¢, (@, &, ¥1), St,, (T, n, T))
< d (S4(T, , ), 58 % ¥a)) + L+ (142L0) - (18— Ballga + |t — a])
+ L% -yl o

which converges to 0. The continuity w.r.t. all variables easily follows.

6. The Non Characteristic Case — Technical Proofs.

Aim of this section is to provide those details of the proof outlined in Section 4 and that are

typical to the non characteristic case.

Fix some (small) e™** > 0. To simplify the notation, as long as ¢ € ]0,™*[ will be kept fixed,
it will be omitted.

We first state precisely how the approximate solution u(t, -) is extended beyond an interaction.
Assume that u(t,-) is defined for ¢ € [0,t.[, with t. > 0 and ({.,z.) being an interaction point.
Consider cases (II), (IIT) and (IV), where z, = ¥(t,). Then, the approximate solution u is extended

beyond time . by applying the Riemann Problem Solver introduced in Section 4 to the Riemann

Problem

u(t*,z)z{tﬁ— %fz<z*
u(t., z.+) ifz > z.
where ut is uniquely determined by the conditions
(a) b(ut) = g(t-+), and
(b) u(t.,z.+) is on the shock-rarefaction curve of the second family through ut.

The approximate solution so obtained is then restricted to Q. In other words, we apply the Riemann

Solver to the following Non Characteristic Riemann Problem with Boundary:

ug + [F(u)]x =0 for (t,z) € {(t,:z:) €z >z, + F(t.4)- t}
U(te, ) = u(tx, Tot) forz >z.
b (u(t,z)) = g(t-+) forz =z. 4+ ¥(t.+)-t

Fix some positive time ¢t. The approximate solution u(t,-) has the form (5.1), while the

approximate boundary condition can be written

— o,
7= Z J X[Ta77a+1[ (6.1)
a2l
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Referring to the above expression of g and to (5.1), the function T at time £ is defined as
V= Kil|oial Q= Y KiKj|oia0,l
ha (0i,a05,8)€A (6.2)
V=TV{glt,+o[} T=V+Q+K-V
where K, = K is a suitable positive constant and K5 = 1. The set A of approaching waves is
~ defined as in the preceding section. Above, TV {g: [t +oo[} stands for the total variation of the

function g restricted to [¢,+oo].

We now pass to the basic interaction estimates.
Case (I)

The following estimates are consequences of the analogous estimates (5.6), (5.7):

Kliaf — o—;l + K;‘a;‘ - a{l < C(K1+ Kz)icrl"on;l (la;l + la{l) (6.3)
Kllaf — (o' + 0'")1 + Kzlag'l < C(K1+ Kg)la'a"l ({U’l + |c7”|) (6.4)
Klla'ﬂ +K210';' — (o' + a'")l < C(K:1+ K2)|0',0'”| (|a"| + |¢7"D (6.5)

Cases (II) and (III)

Since a first order argument is sufficient to provide suitable estimate, we assume that at time
t. = 7, (see (6.1)) some waves of the first family with total size o; hit the boundary and the same
time the boundary condition changes value from g to g>*!. Call Ag* = go+1 _ g®  Then the

total size 0';' of the wave that enters ) at time £, is bounded by
ot| < (|or|+1207) (6.6)

Lemma 3. Let an interaction take place at (t.,z.). Then, if K = 14 C and § is sufficiently
small, in any of the cases (I), (II), (III) and (IV) one has T(t+) < Y(t-).

Proof. In a simple interaction of type (I), repeat the same procedure used in [BC1]. Consider
case (II) or (III). Then, by (6.6),

AV() < -Kl|of|+C (la{[ +[Ag(i)|)

K
AQ) < C < o | + |Ag(t)l) V(t-)

AV (t) = —|Ag(t)]
AT(t) < (—K +C+ —é) (laf‘ + lAg(t)l)

<- (lcrfl + lAg(t)l)
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By the same inductive method used in [BC1], it is possible to show that Y decreases at any

more complex interaction.

Referring to (5.1) and (6.1), let g; o =2+ sgnoiq (1 =1,2,a=1,...,n) and define

Vf = EHiQi,alUi,agal VE = Z |Agal éa‘
i, a:Te 20

Qe= D, HiHjl|oiaosgl (qz',a|5i,a| + Qj,ﬂlfj,ﬁ!) (6.7)
(01,005,8)€A

Te= (’Vf-i-ﬂs'C2£-|-H4'f/'s-I-JETs-fi'T)fiH‘"’T

above, k is defined as in (4.13); Hy, ..., Hg are suitable positive constants, to be determined below.
The basic interaction estimates concerning shifting wave—fronts are as follows.
Case (I).
With the same notation as in (5.1), the basic interaction estimate with weight H; for all waves
of the i—th family is

>3 |otr] < ot teal) 6
£=1

i=1

+ Hlla,jgér,g| +C(H; + Hz)lrf; o5 ] (léj‘,a

Case (II).
Let o1, §; denote the wave size and shift speed of the wave hitting the boundary at time t..

K is defined in (4.13), while a;: ¢, and E;’ ; refer to the wave exiting the boundary towards 2. Then,
by (4.21) and (6.6)

;l‘fiﬁm < Cldfl : (lffl +n) (6.9)

Case (III).
Call £, the speed of the shift in the boundary condition. Then, by (4.22) and (6.6)

; I"'j.tfitzl < C|(Aga)] - <l£-a! + n) (6.10)

where t, = 1, is the interaction time.

Lemma4. Let(t.,z.) be an interaction point. Then, there exist constants Hy,..., Hg and § such
that in any of the cases (I)~(V), the map t — T(t) is non increasing, i.e. Te(t+) < Te(ta—).

Proof. Choose
Hy =4C Hy=1 Hy =1+2C +8C?
H,=7C  H;=7C  Hg=2C(1+2C +8C?)

and § sufficiently small.

(6.11)
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Case (I). ’
By the same method used in (C), but based on the interaction estimate (6.8), one obtains
AT < 0.

Case (II).
Call o7 the size of the wave hitting the boundary. Then by (6.9)

AVe < (~Hy +3CH)|o7 &7 |+ 3CH o7 x|
AQe < 3052|01’| (IE?I + n) V-4 C.Hg‘a'l—lVE"
stz 3]

so that

AT, <

~

AV + HyAQe + HskAT + HyV AT) X

<

(—H1 +3CH(1+ H3V—)) ]a'i‘.E{'|

H H
(——2-5 L 3CH(1+ HsV')) o x|+ (—-2—9 ' 052H3> [o;ln“)ef"’“

© +

<

thanks to the above choice (6.11) of the constants H; and §.
Case (III). )
Assume that at ¢. the boundary condition changes by Ag, and thisi jump shifts with speed
{o- Then, by (6.10), -
+ J)

+ Ii) V™ + CH2|Aga|V£—

€a

AV < 3CH,|(Agy)] (

€a

AQ¢ < 3CH,|(Aga)) (

AvE S "“'(Aga)ga

AT < _%lAga!
so that using the same method as above
ATe < (AVe+ H;AQe + HinAT + Hy AV + HoV AT) ™"

< ( (* 5 +3CH,(1+ H:*,V—)) lAgaéa

a 1
+ (_?4 + 3CH2(1 + H3V_)) IAgaK,I + (CH2H3 — §H6) lAgalVEw) 6H6T+
<0 '
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completing the proof of the Lemma. In fact, in case (IV) T remains constant, while in case (V)

T, trivially decreases.

Passing to the limit ¢ — 0, the semigroup S is defined and satisfies (1)—(4) in Theorem NC.
Remark now that definition (6.7) of T¢, (3.5) of the metric d, and (4.16) of Z¢, allow to state
the following inequality which slightly improves (3.6). Fix two triples p’ = (', ¢/, ¥') and p” =
(a", 4", ¥") both in D. Then

u"(¢",-) = w'(¢,)|| ;. < L (“'&" — @' + (TV(P') + TV(P")) - |¥" — ¥'|| o+

(6.12)
+ [l = g'llpa + 1" - ¢])
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