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Introduction

1. The Smale-Birkhoff Theorem

This thesis deals with existence and multiplicity of homoclinic solutions
for a class of second order Hamiltonian systems shaped on Duffing-like equa-
tions.

The existence of homoclinic solutions and their importance in the study
of the behavior of dynamical systems has been recognized by H. Poincaré [P].

Considering a diffeomorphism @ : RY — RY with a hyperbolic fixed
point p, the intersection points between the stable and unstable manifolds
W3(p), W*(p), are homoclinic points, i.e. initial conditions for homoclinic
orbits. Poincaré proved that if W*(p) and W*(p) intersect transversally the
system admits infinitely many homoclinics. This result was improved by G.D.
Birkhoff [B] and later by S. Smale [S], who gave a precise description of the
dynamics in the presence of a transversal homoclinic point, i.e., a trasversal
intersection point between W*(p) and W*(p) . Smale proved, by using the
horseshoe construction (see also [M1]), that a diffeomorphism @ with a hyper-
bolic fixed point, whose stable and unstable manifolds intersect transversally,
admits a Bernoulli shift (Smale-Birkhoff theorem). More precisely, considering
the metric space {0,1}* with the standard metric d(s,s') = ez ls’;js“,
there exists n € N, a ®"-invariant set ¥ C RY and a homeomorphism
7 : {0,1}% — % such that ®* o7 = 70 0, where o : {0,1}2 — {0,1}%
is the shift map o(sj) = sj41. Hence, the dynamics of the subsystem (&7, %)
can be described symbolically, studying the orbit structure of o acting on
{0,1}%. The shift map has a countable set of periodic orbits with arbitrar-
ily long periods, a countable set of homoclinics and an uncountable set of
bounded motions. The presence of a Bernoulli shift in the dynamics implies,
in particular, sensitive dependence on initial conditions, which is an index of

a chaotic behavior of the system.
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The Smale-Birkhoff theorem can l;e applied to periodic Hamiltonian sys-
tems through the Poincaré map, obtained by considering the discrete motion
of points after multiples of the period. If the Poincaré map has a hyperbolic
fixed point p and a transversal homoclinic point then a complete description
of a subsystem can be given in terms of a Bernoulli shift.

The transversality condition can be checked for small perturbations of two
dimensional autonomous integrable systems by using the Melnikov techniques
[Me] (see also [Ar]). The Melnikov function measures perturbatively the sep-
aration between the stable and unstable manifolds and it can be computed
once a homoclinic solution of the unperturbed system is known. It turns out
that the manifolds intersect transversally whenever this function has simple
zeros. More recently, in [Pa] the author generalizes the Melnikov techniques
in RY by using the notion of exponential dichotomy.

The geometrical approach is hardly applicable for non periodic systems.
Indeed, many difficulties arise in the construction of discrete time maps de-
scribing the dynamics. For results in this direction, we refer to [W2] for the
case of quasi-periodically forced systems and to [MS] for almost periodic per-
turbations of autonomous systems in R2.

Let us mention that different proofs of the Smale-Birkhoff theorem have
been developed by using the so-called “shadowing lemma” (see [An]). Roughly
speaking, considering a diffeomorphism @ : R¥ — RY, the shadowing lemma
states that given a sequence of points (p;) C RY such that pri; and ®(py)
are sufficiently close, uniformly in k, and lie on a “hyperbolic invariant set for
®”, then the “pseudo-orbit” (pi) is shadowed by an orbit of the map & (see
e.g. [GH]).

In [Pa] (see also [Ang]), under the assumption of exponential dichotomy,
a “shadowing lemma” is proved, which allows also the study of more general
time-dependent perturbations (see e.g. [Sc] for almost periodic forcing).

In the last years, starting from the paper by V. Bolotin [Bo] and V. Coti
Zelati, I. Ekeland and E. Séré [CZES], the homoclinic problem for Hamiltonian
systems has been tackled by variational methods. The variational approach
turns out to be powerful to get “shadowing-like lemma”, and, in particular,

to detect sensitive dependence on initial conditions under weaker assumptions
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than transversality ([S2]). Let us point out that in this approach the existence
of a homoclinic point is obtained as a consequence of general assumptions on
the system where no small parameter occurs. Moreover, the existence of
infinitely many homoclinic solutions can be proved for a large class of systems
without making any additional assumption on the nature of the intersections
between the stable and unstable manifolds. As we will discuss in this thesis,
variational techniques allow also to extend the results on the existence and
multiplicity of homoclinic orbits to almost periodic and even more general

“recurrent” time conditions.

2. Variational approach to the homoclinic problem

The development of the variational approach to the homoclinic problem
begins in the paper by V. Coti Zelati, I. Ekeland and E. Séré [CZES]. The
authors consider a class of first order convex superquadratic Hamiltonian sys-
tems, which are periodic in time and have a hyperbolic rest point. They prove
existence of two homoclinic solutions. We mention also [HW], [T1] and [R1]
for other existence results in the periodic case, and [AB], [BG], [C1], [RT] and
[S3] in the autonomous case.

In the periodic case, the first multiplicity result is obtained in [S1]. Séré
extends the results in [CZES] proving the existence of infinitely many homo-
clinic solutions. In that paper, a novel minimax procedure is introduced which
was later used by V. Coti Zelati and P. Rabinowitz [CZR1] to obtain the same
multiplicity result for second order Hamiltonian systems with superquadratic
potentials.

The proofs in [S1] and [CZR1] are based on an alternative. Indeed, it
is proved that, whenever a suitable finiteness assumption on a subset of ho-
moclinic solutions is given, the system admits a particular class of homoclinic
solutions, called k-bump solutions. These solutions remain in a small neigh-
borhood of the origin most of the time with the exception of & widely sep-
arated intervals of time during which they migrate to a small neighborhood
of a suitable homoclinic orbit, remaining there for a long period. We shall

use the term “bump” to describe the part of the trajectory in which the mi-
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gration takes place. In that results, however, the estimate on the minimum
distance between two adjacent “bumps” increases with the number of bumps
and hence one cannot conclude about the presence of a “Bernoulli shift” in
the dynamics.

This goal was finally achieved by Séré in [S2], where a variational version
of the “shadowing lemma” is given. Séré studies the systems considered in
[CZES] and he proves that, if the following condition (%) is satisfied

(%) the set of homoclinic solutions is countable

the system admits a set of solutions, called “multibump solutions”, containing
countably many homoclinics and an uncountable set of bounded motions.
More precisely, Séré proves that

there exists a homoclinic solution z such that, for any € > 0 one can find

K(e) € N such that for any I C 7Z, finite or infinite, and any sequence

P = (pi)ier C %, such that p;y1 —p; > K(e) (Vi € I), there is a solution

yp satisfying

lus(t) = > z(t—p)l<e  VieR
i€l

In particular, if I is finite, y; is a homoclinic solution.

This class of solutions implies the presence of an “approximate Bernoulli
shift” in the dynamics and that the topological entropy is positive. Hence, in
particular, the system exhibits sensitive dependence on initial conditions.

In [S2], Séré has developed a technique based on a product minimax
procedure that inspired many later works on the subject. Let us mention [CM]
and [CMN] for results about the second order case; [CZR2], which contains
the proof of existence of countably many periodic orbits with arbitrarily long
periods; [M1] and [ACM], where the authors prove existence of multibump
solutions for asymptotically periodic systems verifying (*) at “infinity”; [MN],
[CZMN1], [R3] where, as I will discuss in the following, more general time
dependence are considered.

For other results on the existence of multibump homoclinic solutions we
refer to [Bel], [Be2], [Be3], [BS] and [CS2].

Let us remark that condition (*) is always verified whenever the stable

and unstable manifolds intersect transversally. On the contrary (*) is never
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satisfied in the autonomous case.

As far as I know, the only result about existence of multibump solutions
for conservative systems was obtained in [BS]. In that paper, the authors con-
sider “saddle-focus” systems in dimension four, motivated by the result by
R.L. Devaney [D], which states that an autonomous Hamiltonian system in
dimension four exhibits chaotic behavior if there is a point which is transver-
sally homoclinic to a saddle-focus equilibrium. The systems considered in
[BS] have a mountain pass type solution, and, assuming that is isolated up to
translation, the authors prove existence of multibump solutions. In addition,
in the real analytic case, they prove existence of multibump solutions when-
ever the stable and unstable manifolds to the saddle-focus equilibrium do not
coincide (“global condition”).

For other multiplicity results in the autonomous case we refer to [ACZ],

[Be4], [R2], [T2], [Bul, [CS1], [CN], [BJ] and [CJ].
In this thesis we consider a class of second order Hamiltonian systems
(HS) i=q-W'(t,q)

where we assume

(h1) W' e C(R x RY,R¥), locally Lipschitz continuous w.r.t. =z € R", uni-
- formly in time;

(h2) W(t,0) =0 and |W'(¢,9)] = o(lq]) as |g| — 0, uniformly in time;

(h3) 38 > 2 suchthat 0 < fW(t,q) < W'(t,q)-q for any (¢,q) € RxRN\{0};

The systems (H.S) have been already studied in the periodic case in [R1],
[CZR1] and later in [CM].

Under the above assumptions (HS) has an unstable equilibrium point

at (¢,¢) = (0,0). Homoclinic solutions to this fixed point are functions u €
C*(R,R"), solutions of (HS), such that |u(t)| + |u(t)] — 0 as t — +oo. We

find them as critical points of the action functional
Pl = [ HQl? + o) = Wity )

defined on the Sobolev space X = H!(R,RY).
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The functional ¢ has the geometry of the mountain pass theorem ([AR])
and the Palais Smale sequences are bounded. However the Palais Smale con-
dition does not hold. The lack of compactness is due to the action of the non
compact group of time translations. In fact, in the spirit of the concentration-
compactness lemma ([L]) one can completely characterize this lack of com-
pactness. In particular in the periodic case the Palais Smale sequences can
be represented, asymptotically, in terms of sums of functions corresponding
to critical points vj, translated in time by sequences (J) with the property
that [tJ —#J'| — +oo. In this case the existence of a Palais Smale sequence
at positive level implies the existence of a homoclinic solution.

In this thesis we discuss some “shadowing-like lemmas” for (HS). The
main tools used are the mountain pass theorem, the concentration-compactness

lemma and the minimax technique developed by Séré.

e The periodic case

In chapter 2 we study Duffing-like equations of the type
(1.1) i =z — at)z? (t,z) eRxR

where a € C(R,R) is a positive T -periodic function.

As a particular case of the Séré theorem, equations (1.1) exhibits a multi-
bump dynamics if the set of homoclinic solutions is countable. This condition
is verified in particular if the stable and unstable manifolds to the origin in-
tersect transversally.

We improve this result showing that (1.1) admits multibump solutions
whenever the stable and unstable manifolds do not coincide (see [BS], [CS2]
and [Bel] for other results in this direction).

Considering the Poincaré map @ : R? — R?, &(z,p) = (u(T),4(T)),
where u is the solution of (1.1) with initial conditions u(0) = z, u(0) = p,
the global stable and unstable manifolds to (0,0) are defined by:

W* = {(z,p) € R? : ®™(z,p) = 0, asn — 400}
W = {(.’L‘,p) € R2 . @n(w,p) — 0, as n — ——oo}_
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The solutions of (1.1) with initial data (u(0),%(0)) € W* N W* are then
homodclinic solutions.

We prove the following :
Theorem 1.7 If W* # W?* then (1.1) admits multibump-type solutions.
Precisely, there exists a set K of homoclinic solutions of (1.1) which is com-
pact in CY(R), and for which, for any r > 0 there exists N, € N such that,
for any sequence (p;) C Z with pj41 —p;j > N(r) and o = (0;) C {0,1}%,

there exists a solution v, of (1.1) which verifies

Jnf fvo —ojul = piTllor; mvy <7, Vi€Z

where [; = [Bi=iI2iT BitPisiT) Iy addition v, is a homoclinic orbit when-

ever o; = 0 definitively.

Theorem 1 implies that if W* % W* the system exhibits sensitive de-
pendence on initial conditions. In fact, a stronger property holds. Let us
introduce the following definition of topological entropy (see e.g. [Po])

h(®) = sup lim lim sup % log s(n, €, R)
R>0¢70 n—oo
with s(n,e, R) = max{card(E); E C Bg(0), maxo<k<n |®*(z) — ®*(y)| >
&,Vz #y € E} and & the Poincaré map defined above. Intuitively, topolog-
ical entropy is a measure of the asymptotic distortion of the iterates of the
map along orbits.

We prove that if W* # W* the topological entropy of the system (H.JS)

is positive (h(®) > l_?\%?)’ i.e., the number of points which are separated by

the discrete flow in n-iterations increases exponentially with n.

e Perturbations of periodic systems

In chapter 3 we consider the class of second order Hamiltonian systems

(HS). §=q—Wy(t,q) — eWj(t,q)

! This result is obtained in a joint work in progress with P. Montecchiari and S.

Terracini ([MNT1]).
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where € > 0 is a perturbation parameter, Wy is Tp-periodic in time and
verifies (h1), (h2), (h3). We assume that the perturbation W; satisfies:

(h4) W, € C(R x RY,R¥) locally Lipschitz continuous, uniformly in time,
and Wi(t,0) = W{(¢,0) =0 for all ¢t € R.

By [S2] (see also [CM]) the unperturbed periodic system (HS)o admits

multibump solutions whenever
(¥)o the set of homoclinic solutions of (HS)q is countable.

We prove that this class of solutions persists for the perturbed system
(HS)e, for small values of the perturbation parameter €. This result gives a
variational analog of the stability of transversality (or exponential dichotomy).
We refer also to [Be2] and [Be3] where similar results are given for damped
systems.

We show, in particular, that the topological and compactness properties
of the unperturbed problem, which follow from the mountain pass geometry
of o and the assumption (*)g, are stable under small perturbations. We get
in fact multibump solutions which shadow “pseuso-orbits” of the unperturbed
periodic system.

Precisely, we prove the following theorem:

Theorem 2.2 Let (h1)-(h4) and (*)o hold. Then there is a homoclinic
solution v of (HS)o such that for any r > 0 there exist N, > 0 and ¢. > 0
for which, for every sequence (p;) C Z, with pj+1 — pj > N(r) and for every

€ € [0,¢,], there exists a solution v, of (HS)., which verifies

|lve = 9(- — p;To)llcrz; mvy <r VJiEZ

where I; = [Pi=L¥2iT, PIFPiHiT) In addition ve is a homoclinic solution

whenever the sequence (pj) C Z is finite.

Let us remark that if the assumption (*)o does not hold, as in the case

when Wy is independent on time, there are counterexamples to the existence

2 This result is obtained in a joint work with P. Montecchiari, ([MN]) Multibump

solutions for perturbations of periodic second order Hamiltonian systems, to appear in

Nonlinear Analysis, TMA.
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of homoclinic solutions for (HS)., for any € > 0. Let us consider for instance
the system § = g — (1 + ea(t))q®, with a(t) smooth and bounded. If a(t)
is strictly monotone and € # 0 there are no non trivial homoclinic solutions.
Indeed, denoting H(q(t)) = £|q|* — 3lq|*> + (1 + ea(t))|g|* the Hamiltonian
along a homoclinic solution, we get 0 = [, ﬁ%(i)—) dt = % [pea(t)|q(t)|* dt
which implies ¢ = 0. In this case the unperturbed system has no multibump
solutions, but precisely two homoclinic solutions (the separatrix) which sepa-

rate the periodic orbits of negative energy from the ones of positive energy.

In section 3.5 we specialize Theorem 2 to almost periodic perturbations
and we prove the existence of almost periodic solutions for (HS)., for € suf-
ficiently small.

Before stating this result we recall the definition of almost periodic func-
tion depending uniformly on parameters (see e.g. [Co]).

Definition 1.1 Let f: R xR~ — R be continuous and let K be a compact
set in RY. We say that 7 € R is an (¢, K)-period for f if sup;eg |f(¢47,2) —
f(t,z)] < e forall z € K. The function f is almost periodic in t uniformly
for z in compact set, if for any € and every compact set K in R¥, the set
P, . of (¢, K)-periods for f is relatively dense, i.e., if there exists A > 0 such
that any interval of length A contains at least one element of P, ,. .

~ Assuming that the perturbation W is almost periodic and that the solu-
tions with infinitely-many bumps obtained in Theorem 2 and corresponding to
periodic sequences (p;) C Z are unique, we prove that they are in fact almost
periodic solutions of (H.S).. Moreover, we show that there exist heteroclinic
solutions joining them.

Precisely, given r > 0 and p = (p;) C Z, such that pjy; — p; > N, let
B2 = {ue C*R,RY) : |lu—5(- —piTo)llcrr; mry < v, Vi € Z} (D and N,
as in Theorem 2). Then, assuming
(h8) W'(-,z) almost periodic uniformly on compact sets of R,
and

(H) there exists r > 0 such that the solutions obtained in Theorem 2 are

unique in BP.

we prove the following theorem:
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Theorem 3.®° Assume (h1)-(h5), (*)o and (H). Then for any e € [0,¢,]
(HS). admits infinitely many almost periodic solutions . Moreover, there are
infinitely many heteroclinic solutions of (HS). connecting any two of these

solutions.

Let us remark that, following [Ang] one can prove a uniqueness result on
the solutions obtained in Theorem 2 ((H)) by assuming that the linear oper-
ator Ly : C*(R,RY) — C(R,R") defined by Lyu = —ii +u — Wy'(t,5(t))u
is invertible. Note that this condition is always verified if the periodic un-
perturbed system (HS)o admits a transversal homoclinic point (#(0),%(0)),
since, as proved in [Pa], this implies that Lyu = 0 has exponential dichotomy.

Let us mention here that there are classical results which establish con-
ditions under which all bounded solutions of an almost periodic ODE are in
fact almost periodic solutions (see e.g. [Co]). Moreover, extensive methods
have been developed in the case of dissipative quasiperiodic equations (see
e.g. [F]). However, as far as we know, only few results are known about the
existence of almost periodic solutions in more general cases, in particular we
do not know of any results for (HS)e, except for “small” solutions obtained
as perturbations of the hyperbolic fixed point.

We refer to the pioneering work by J. Moser [M2], where perturbative
results are given for a class of quasiperiodically forced equations using KAM
theory, and to a recent work [Y] where these results are improved for a class
of systems where no small paremeter occurs. We mention also [BC] where
variational methods are used to study equations of the type § = g+ ¢ +h(t),
with h(t) almost periodic. In this case it turns out that all the bounded
solutions are almost periodic functions.

Let us also remark that, as a particular case, in Theorem 3 we get exis-
tence of infinitely many periodic solutions for the unperturbed system (HS)g
and the existence of heteroclinic solutions joining any two of them (see [R3],
[R6] and [R7] for other results about heteroclinic solutions). Note however

that in the periodic case, if there exists a transversal homoclinic point, this

3 This result is obtained in a joint work in progress with V. Coti Zelati and

P. Montecchiari ([CZMN2]).
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results follows directly by the Smale-Birkhoff theorem.
We refer to [CZR2] where existence of infinitely many periodic solutions
with arbitrarily long periods for (HS)g is proved without making any addi-

tional uniqueness condition.

e Almost periodic case
In chapter 4 we study the system (H.S) under assumptions (h1), (h2),
(h3) and
(h6) W'(-,z) € C(R,R") almost periodic uniformly on compact sets of R¥.

The variational approach to the study of the homoclinic problem for quasi
periodic and almost periodic time dependence was initiated in [BB1] and [STT]
(see also [BB2]). In particular in [STT] existence of one homoclinic solution
for the system (HS) is proved using the notion of PS-sequences introduced
in [CZES].

The first multiplicity result for such a system is given in [CZMN1]. In

that paper we assume in addition
(h7) W'(t,z) -z < W"(t,z)z - 2 for any (¢,2) € R x R¥ \ {0}.
and we prove that the system admits multibump solutions whenever a suitable
non-degeneracy condition holds. We use the methods developed in [MN] by
noting that if 7 is an e-period of the potential, for e sufficiently small the
functional ¢-(u) = [ $([u|* + |ul*) — W(¢ + 7,u)dt is a small perturbation
of the functional g .

In order to state our results let us first recall a basic property of almost

periodic functions.

Bochner’s criterion: Let H(f) be the closure in the uniform topology of
C(R,R"), uniformly on compact set of R¥, of the set {f(- +7,z) : 7 € R}.
A function f(t,z) is almost periodic in ¢ uniformly for z in compact sets
if and only if H(f) is compact in C(R,R"). Note that every g € H(f) is
almost periodic uniformly on compact sets.

Togheter with the functional ¢, we consider the functionals “at infinity”
0 WeH (W). It turns out that every functional ¢, has the geometry of
the mountain pass theorem and that the corresponding mountain pass level

coincides with that of ¢, . In [CZMN1], we prove the following theorem:
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Theorem 4. Let (h1), (h2), (h3), (h6) and (h7) hold. Then (HS) admits
infinitely many homoclinic solutions. Moreover, for at least one W € H(W)

the functional ¢, has a critical point ¥ of mountain pass-type at the level

c. If 5 is isolated, then for all W € H(W) the system
(1.2) i=q—W'(tq)

has multibump solutions. Precisely, setting R = ||v||co+1, for any r > 0 there
exists N, € N, t € R and ¢, > 0 for which given any sequence (p;) C P, g,
with pj11 — pj > N,, there exists v solution of (1.2) which verifies

Ilv—ﬁ(-—pj—t—)llcl(jj,RN) <r VieZ

where I; = [t + P:’—12+pj 4 p;+§,~+1]'

Let us mention that in [MS] the authors give a generalization of the
Melnikov techniques for almost periodic perturbations of autonomous systems
in R?, providing a natural extension of the notions of stable and unstable
manifolds and of transversal homoclinic points. In this case, it turns out that
the homoclinic solutions of (1.2) are isolated for all W € H(W), and hence
the non degeneracy condition of Theorem 4 holds, whenever their generalized
Melnikov condition is verified.

We refer to [R3], [R4] for similar results in the case of almost periodically
forced singular Hamiltonian systems.

Note that in the proof of Theorem 4 the hypothesis (h7) plays a crucial
role to obtain the existence of a mountain pass-type critical point for the
functional ¢, , an essential property to apply the Séré techniques.

In a later work, that I discuss in chapter 4, we improve the result described
above by removing this assumption and assuming a weaker non degeneracy
condition. Indeed, analyzing the set A¥ = {u € HY(R,R") : |l¢'(u)] <
v} N{e < c*}, for v sufficiently small and c¢* > ¢, it turns out that if we

assume
(%) the set of homoclinic solutions of (HS) is countable

(or an even weaker non degeneracy conditions), there exists ¥ such that the set

A? is in fact a countable union of uniformly pairwise disjoint sets on which
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the Palais Smale condition holds. This property allows us to localize the
topological structure of mountain pass-type and, adapting the Séré minimax
techniques to the almost periodic case, as in [CZMN1], we get the following
theorem: |

Theorem 5.* Let (h1), (h2), (h3), (h6) and (*) hold. Then there exists ©
homoclinic solution of (HS) for which, setting R = ||¥]|ec + 1, for any r > 0
there exist N, € N and €, > 0 such that for any sequence (p;) C Pe_ g, with
Pj+1 — pj > Ny, there exists v solution of (HS) which verifies

[v—=3(-=pllcrq;mvy<r  VjEZ

Pj—1+pj Pi+Pj+1]
2 3 2 .

In chapter 4 we discuss also a weaker “recurrent” time dependent condi-

where I; = |

tion. Precisely, we assume

(h8) 3(tn) C R, tp, — +oo as n — *oo, such that W (t + t,,z) — W'(t,z)
for any (t,z) € R x R”,

i.e., we require that at least one of the problems at infinity be realized by the

problem itself. We then prove the following result:

Theorem 6.* Let (h1), (h2), (h3), (h8) hold. Then the system (HS) admits

infinitely many homoclinic solutons.

In fact, we prove that if (*) hold then there exist infinitely many multi-
bump homoclinic solutions with “bumps” located along suitable subsequences

of the sequence (¢,) given in (h8).

% This result is obtained in a joint work in progress with P. Montecchiari and

S. Terracini ((MNT2].
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Chapter 1

Preliminary Results and Palais Smale sequences

In this chapter we state some general facts about the variational formu-
lation of the problem of existence of homoclinic solutions for a class of second

order Hamiltonian systems of the type
(HS) G=q—W'(taq)

where we assume:
(H1) W' e C(R x RY,R"Y), locally Lipschitz continuous w.r.t. z € R¥, uni-

formly in time, i.e.,
VYVR>03Cr>0: |W'(t,z)—W'(t,y)| < Crlz—y| VY]|z|,ly|< R, teR
(H2) W(t,0) = W'(¢,0) =0 for any t € R and
36>0: [W'(t,z)| <iz] V|z|<dandteR.

In section 1.2 we study some compactness properties. In particular, we
prove a local compactness property and, in the spirit of the concentraction-
compactness principle ([L]), we give a sharp characterization of Palais Smale
sequences.

Finally, in section 1.3 we show that, if a superquadraticity condition is
satisfied, the action functional admits the geometrical structure of Mountain

Pass Theorem ([AR]) and the Palais Smale sequences are bounded.

1.1. Variational setting and preliminary results

In this section we study some general properties of the action functional

o) = Hull? - /le Wt u(®)) di
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defined on the Sobolev space X = H!(R,R"), equipped with the inner prod-
uct (u,h) = [pu- h+u-h and the associated norm ||u|? = (u,u).

Remark 1.1.1  The assumptions (H1) and (H2) reflect on the potential
W(t,z), noting that W (¢, z) = fol W!(t,sz)-zds. So that, for any R > 0 we
have

[W(t,z)| < 3CRlel>  V|z|<R, VteR

and
]VV(t,a:)!Si—[mP Viz|<é, teR

where Cr and § are given, respectively, by (H1) and (H2).

Remark 1.1.2  The Sobolev space X = H}(R,R") is continuously embed-
ded in Co(R,R"), the set of continuous functions vanishing at infinity. By
the Sobolev embedding theorem IM > 0 such that for any interval ] C R,
with |I| > 1 we have

(1.1.1) sup |u(?)] < M||u||1,
tel

where [ul|} = [;(|e|* + |u]*)dt. Moreover, if u, — u weakly in X then
up, = u in L§S (R, RY).

loc

In the following we denote by C' any positive constant whose value may

change from time to time but is not important in the analysis of the problem.
Under the assumptions (H1) and (H2) the action functional ¢ is well
defined in X and it is Frechét differentiable. Precisely, we have:

Lemma 1.1.3 The functional ¢ sends bounded sets into bounded sets.
Moreover, ¢ € C*'(X,R) and

©'(u)h = (u,h) — / W'(t,u) - hdt Yu,h e X.
R

Proof. Given R > 0 and u € X, with |ju|| < —A%, where M is given by (1.1.1),
we have by (H1) that [p(u)] < Hull? + f [W (e, u(®))| dt < & Jul2 + S [ul?.

Hence the functional is bounded on bounded sets.
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Now we show that the functional ¢ is Gateaux differentiable. We fix
h € X, with ||h]] = 1, then the Gateaux derivative along h is given by
eg(u)h = (u,h) — lim [ L[W(t,u+ eh) — W(t,u)] dt.
R

€—0

By (H1), for any € € (0,1),
(W (2, u(t) + eh(t)) — W(t, u(t))] < Cmax{|h(?)]? |u(t)*}.

Therefore, by dominated convergence theorem, @g(u)h = (u, h) — [ W(t,u)-
hdt. Finally we show that the map u — ¢z(u) is continuous. Indeed, let us
consider a sequence (u,) € X strongly convergent to u € X. Then by (H1)

and (1.1.1), we have as n — oo

()l = Bl < oDl + [ V(120 = W't un)] - b
< o]l + Cllu = un[[|A]]-
for any h € X and the continuity follows. ]

Remark 1.1.4 If W(t,-) € C®(R,R"), (H2) holds and |[W(™(¢,z)| is
bounded on compact sets of R, uniformly in ¢t € R then ¢ € C°(X,R).

By the Sobolev embedding of X in C(R,R") we get that the critical
points of the functional ¢ are in fact homoclinic solutions of (HS). Precisely

we have:

Lemma 1.1.5 If ¢'(u) =0 then u € C*(R,R") and it is a solution of

i=u—W(tu(t) VteR
(P) { u(c0) =0

u(£o0) =0

Proof. Firstly note that ¢'(u) = 0 implies that u € X is a weak solution of
(P), ie.,

W-h+u-h—W'(t,u)-h=0 VheX.
R

Hence we have in particular that @ = v — W'(-,u) € L*(R,R"), so that
u € H'(R,R") and hence |u(t)| + |@(t)] — 0 as t — Foco. Finally, by the
Sobolev embedding of X in C(R,R"), we get that u € C*(R,R") and verifies
(P). : |
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We denote by K the set of criticzﬂ points of ¢, namely
K= {ueX\ {0} : ¢'(u) = 0}.

By (H2) we have an estimate from below on the norm of critical points

of ¢.
Lemma 1.1.6 inf,ex |v||= A > 0.

Proof. For any v € K we have ||v]|?> = [ W'(t,v) - v. If, by contradiction,
A = 0 then there exists a sequence (v,) C K such that ||v,|| — 0. Then
|lvnllze — 0 and by (H2) we get that for n large enough [, |W'(t,v5) - vn| <

5 Jz lvn|?. Therefore we get |lva||> < Z|lval/® in contradiction with the fact

that v, # 0. O

1.2. Bounded Palais Smale sequences

In this section we study some properties of bounded Palais Smale se-
quences for the functional ¢, namely, (u,) € X such that there exists R > 0

for which ||un|| < R and, as n — 400,

limsupgp(ur) < +00 ¢! (ua)]| = 0.

Note that in general these sequences are not precompact, i.e. the Palais Smale
condition does not hold.

Nevertheless, as we will see in the following, (H1) and (H2) allow us to
recover a local compactness property and to give a sharp characterization of
bounded Palais Smale sequences by means of critical point at “infinity” (see
also [Bal).

First of all we prove some general facts concerning Palais Smale sequences.

In the following we will always consider bounded Palais Smale sequences
and we call them just PS sequences. Moreover, if ¢(u,) — b we say that the

sequence (u,) is at level b.

Lemma 1.2.1 Let (u,) C X be a PS sequence at level b, weakly convergent
to v € X. Then ¢'(u) =0 and (u, —u) is a Palais Smale sequence at level

b—p(u).
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Proof. Since un — u weakly in X and strongly in L (R,R") (see remark
1.1.2), one can easily see that for any h € CZ(R,R") we have ¢'(u)h =
<u,h>— fsupph W'(t,u)h = lim ¢'(u,)h and hence ¢'(u) = 0 follows.

To prove that ||¢'(un — u)|| — 0, note that for any T'> 0 and h € X we

have:
" (un — w)h — @' (un)h + @' (w)h| <
<( / W (£t — ) — W (2 ) + W (2, )2 dt) |+
t|<T

4 ( / W/ (6 — ) = Wty )P E[[1l]
[t|>T
o /|t|>TIW’(t,u)I dt)} ]

Now, since (uy) is bounded, by (1.1.1) there exists R > 0 such that |un(t) —
u(t)] < R and |un(t)] < R, for any ¢t € R and n € N, hence, by (H1),

" (un — u)h — @' (un)h + @'(u)h| <

<( (W' (b, un — u) — W'(4,un) + W'(t,u)|? dt) 7 |||
[t|LT

el /| AL

Then, for any € > 0 we can choose T' > 0 so that C(flt!>T lu2)z < > and,
since u, — u in L§S(R,RY), by the dominated converge theorem there exists
N € N such that ¥n 2 N ([i,cp W' (8, un~u)=W'(t, un) + W'(t, u)|® dt)z <
5. Therefore as n — co we get ||’ (un—u)|| < [|¢'(un)||+¢€, with € arbitrarily
small.

Finally, for any e > 0 let us fix T > 0 such that [|ul/jsj>7 < €. Then,

arguing as above, we have as n — +oo

lo(un = u) — o(ua) + (u)| < /

1<

. W (t,un —u) — W(t,un) + W(t,u)|dt+

" /1t|>T (Wt un — ) = W(t, un)l|dt + /

|W(t,u)|dt < o(1) + Ce.
[t|>T
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Now, we prove that PS sequences weakly but not stongly convergent to
zero carry mass at infinity showing that vanishing does not occur.

Given 7 € R, let us introduce the translated functional ¢, (u) = Z|ul|* —
Jg W(t —7,u)dt, for u € X. Note that we have

(1.2.1). pr(u(- — 7)) =p(u) and [l (u(- = )l = lle' (W)

Moreover, in the following we denote 7*u =u(- —7),for T € R and v € X.

Lemma 1.2.2 Let (un) C X be a PS sequence not strongly convergent to
0, then lim sup |Jun||eco > & (with & given by (H2)) and there exists a sequence
(tn) C R such that, up to a subsequence, tn *un, — v strongly in Hj _(R,R")
with ||v]jeo > 4.

Proof. If limsup ||un|le < & then, by (H2), we have as n — oo
lunll® = @' (un)un — /I;VW(ﬁun)undt < Clle(un)ll + 3 llunll®

which implies ||uy|| — 0, a contradiction.

Hence there exists a sequence (t,) C R such that |u,(t,)| > 8 — €n, with
€n — 0. Since t, * u, is a bounded sequence we have t, * u, — v weakly in
X.

Given T > 0 we prove that ¢, * u, — v strongly in H*((-T,T),R").

For any € > 0 let us consider the cut-off function x. € C(R,[0,1]) defined
by

1 for t|<T
xet) = e(T—[t)+1 for T<|t|<T+1
0 for [t| > T + L.

Note that ||x¢||co = €. Then, setting v, = t, * u, — v, we get

lonlfycr < Komxeom)l +¢ [ fonllonl dt < [(on, xevn)| + o(1)
B T[T+

< {tn * tn, xevn)| + (v, Xevn)| + (1) < oy (tn * Un)xevn|+

n / Xl =ty 5 wn)l[on] dt + | (0, xeva)| + o(1).
R
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Now, by (1.2.1) we have that |p} (tn * up)xevn| < Cll¢'(un)|| — 0. Since
vp, — 0 in L®((-T — %,T—k %),]R{N) then, as n — +oo, fR VW(t —tn,ts *

Un)XeUn — 0. Moreover,

[{(v, Xevn)| = |/szii)ndt—l—/vavndt-l—/)'(é'z}vndtl
R R R

S|(X6v,vn)l+|/)'<Em}ndt|+|/j<€1}vndt| < o(1) + €C.
R R

Since € and T' are arbitrary we get v, — 0 in H} (R,R").
Finally we note that ||[v||ec > [v(0)] > |un(tn)]|— |un(ta) —v(0)] > 6 —o(1)
and the lemma follows.

O

Local compactness property
Thanks to (H1) and (H2) we get the following compactness property.

Lemma 1.2.3 Let (un) be a PS sequence such that t, * u, — v weakly in

X, for some sequence (t,) C R. Then, we have:

(i) if 3T > 0 such that sup,sq |tn * un(t)] < &, n € N, then t, * up, — v
strongly in H'((R,+o0),R") for any R € R;

and, analogously

(i) if 3T > 0 such that sup,._g |tn * un(t)] < 8, n € N, then t, *u, — v
strongly in H'((—co, R),R"™) for any R€ R.

where § given by (H2).

Proof. We prove (1), being the proof of (i1) analogous. If there exists T >
0 such that sup,sq |tn * un(t)] < & then we can choose T > T such that
SUpPyS 7 [tn * un(t) — v(t)] < 6.

Since, by lemma 1.2.2, t, *u, — v in H} _(R,R™), it is sufficient to prove
that ||t * up — v||;57 — 0. For any € > 0 let us consider the cut-off function
Xe € C(R,[0,1]) defined by

1 B fort__>_fl~1 B
Xe(t) =S et—T)+1 for T—1<t<T
0 fortST——%.
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Setting v, = t, *u, — v, we get, as n — +oo,

a2, smmmwuw/ o] < I () xonl+

+ (v, Xevn)| + / XE[VW(t tnytn ¥ Up) — VIW(t — tn, vn)||un| dt+

+/ _ XG{VW(t—tn,vn)anldt+o(1).
>T—

LY

Then, by (1.2.1) we have |¢} (tn * un)Xevn| < Cll¢'(un)|| — 0. Moreover,

[{v, xevn)| < [(xev,vn) +e/  |vial + [bva| dt
>T-—-——
and by (H1)
/ Xe|VW(t —tn,tn*uy) — VIW(t —tn,v,)||vn|dt < C [v||ve| dt.
t>T-1 t>T—1

Then, since t, * u, — v strongly in H}, . (R,R"), we have that for any
n > 0 we can choose A > 0 such that, as n — +oo [ 5 1 [v||vn]dt <
o(1) + C||v]lss74a < 0o(1) + Cn. Finally, since ||vall;s7 < 8, by (H2), we get
ft>T 1 IVW(t tn, Un)||vn|dt < O(l) +3 ||Un”t>T

Collectmg the results we get ||/tn * up — ”“t>T < o(1l)+ Ce+ Cn and
since € and 7 are arbitrary (z) follows.

O

As a direct consequence of lemma 1.2.3 we have the following local com-

pactness property.

Lemma 1.2.4 There exists p > 0 such that if (un,) € X is a PS se-
quence weakly convergent to u € X and if there exists T > 0 for which

limsup ||[un||gj>T < p then un, — u strongly in X .

Proof. Let p= Wgﬁ where § is given by (H2) and M by (1.1.1). Moreover,
let p? = limsup||un|||2tl>T, = 1(p®—p?) and T > T such that ”u“|q>T

Since by lemma 1.2.2 u, — u strongly in H} (R,R"), we have, as n — +c0,
i =l < M2t =l S M~ 0l + Al 7+ 2l ) <
M?(o(1) + 25% + 2¢) < 6% — 2M?%e + o(1). Therefore limsup ||urn — |0 < &
and by lemma 1.2.3 u, — u strongly in X. O
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Finally we point out that from lemma 1.2.4 we easily deduce also this

second property.

Corollary 1.2.5 Let (u,) € X be a PS sequence and let suppose that there
exists v € X such that limsup ||u, — v|| < p (where p is given by lemma

1.2.4), then (u,) is precompact.

Proof. For any € > 0 there exists T' > 0 such that [[v]|js5>7 < €. Then we
have |[un||jgj>7 < |un—v|ljgy>7+€. Let € > 0 be such that limsup |ju, —v|+
€ < p, then there exists T > 0 such that limsup unlliy>r < limsup |ju, —
v|| + € < p and by lemma 1.2.4 we deduce that (u,) is precompact. N

Characterization of Palais Smale sequences

In this section we give a characterization of PS sequences which describes

precisely the lack of compactness.

To begin we prove a lemma that will be used, recursively, in the proof of

this result.

Lemma 1.2.6 Let (u,) C X be a PS sequence. If (t,) CR and (v,) C X

are such that
e inp*xup—vy, — 0 weakly in X, ;
® (Un,tn*up—v,) — 0 and Jz lvnlltn * un — vy|dt — 0,
then the following alternative holds: either
(i) tn*un —v, — 0 strongly in X
or

(i) ||tn * un — Vnlleo > & for any n € N.

Proof.  Let us suppose (i) does not hold. Then, by (1.2.1), (H1) and (H2),
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we have, as n — +oc0,
ltn * upn — vnnz = (tn * Un, tn * Up — Uy) + 0(1)

< Clley, (tn * un)|| + /R VW (t — tn,tn * un)|[tn * un — va|dt + o(1)
<o(1) + /R [Vt — £yt i — )b * e — 0|t

+ /R [VW (= by tn * un) — VIW(E = tn, tn % Un — v3)|[tn * tn — vndt
< o(1) + Lltn * un — va||? + C/R |Vntn * tn — va|dt.

and we get ||[t, * up — v,|| — 0. O
Then, we have:

Lemma1.2.7 Let (un) C X be a PS sequence. Then there are vg € KU{0},
k€ NU{0}, v1,...,vx € X, with ||vjllcc > & (8 be given by (H2)) and
sequences (t1),...,(tk) C R such that, up to a subsequence, as n — +o0,
[t7] = 4co, tI*! —t] — +oo, forall j=1,...,k, and

k
[[un — (vo + Zti *v;)|| = 0.

Proof. Since (un,) C X is a bounded sequence, there exists vg € X such
that, up to a subsequence, u, — vy weakly in X, strongly in L2 (R,RY),
and, by lemma 1.2.1, v € KU {0} and (u, — vo) is a PS sequence.

If the sequence u, — vy does not converges strongly to 0, by lemma 1.2.2
we get ||un — volleo > 8, for any n € N,

Therefore, there exists a sequence (t1) C R such that |u,(tL)—wvo(tL)] >
§ — €n, €, — 0, and, since u, — vo — 0 strongly in L (R,RY), we have
|th] = +co as n — +oo. Then, we consider the sequence ul, = ¢, * (up, — vg)
that is a bounded sequence, and hence, up to a subsequence, u}, — v; weakly
in X with ||v1]|ee > 4.

Setting ¢, =t} and v, =t} *vg + v1, for any n € N, the conditions of
lemma 1.2.6 are easily verified. Hence, if (ul) does not converge strongly to

vy, we have that ||ul — v;]|e > 0.
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We can repeat the above argument, defining u2 = (¢2 +t%) * (un — vo) —
t2 x v; and so on. At each step we set t, = t,’H—, R A Z_l;=i+1 )
and v, = Ei:ol tn,i*v; +vg, for any n € N. We have 1, %up—vn — 0 weakly
in X . Then for any € > 0 there exists 7' > 0 such that sup;_q_; ||villjgj>7 < €

and we have
k
/ [n|tn * un — va|dt < Z/ lvi|(tn % un — vn)(- + tn,i)|dt
R 5 Jr

k
< Z/ |0;||(#n * un — vn)(- + tn,i)|dt + Ce
i=0 Vt<T

then, since, for i = 1,...,k, we have (tn * up — v )(- + tn,;) — 0 weakly in

X and e is arbitrary, both the conditions of lemma 1.2.6 is verified. Hence,

setting uX = ¢, xu, — Zfz—ol tn,i * Vi, we have the following alternative: either

k _up — 0 strongly in X or [Juf — vg|leo > 6 for any n € N.

U
Then, we get that uf — vy — 0 strongly in X for some k < k = [%-M],
where M > 0 is given by 1.1.1 and R > 0 is such that |lu,| < R. Indeed,

otherwise, we have, as n — +o0,

[uall® = llun = voll® = llvoll? + 2(un, vo) = llunll* = llvoll* + 2(un, vo)
> [lubll® + llvoll* + o(1) 2 luf I + floa|I* + [leo]l* + o(1)
k+1
> .. > Z lloil|> +0o(1) > R+ 1

a contradiction.

Finally we prove that [t/t! —#/| — +o00 for j = 1,...,k — 1. Indeed,
by construction we have § < |uf (t+1)] = |ud"1(tEF! — 1) — vj_1 (¢5F — 1)
and, since /™! —v,;_; — 0 in LS (R,RY), we get [t —¢1]| — +o0.

loc

O

The previous lemma says that a PS sequence that is weakly convergent
but not strongly carries mass at infinity. As we will see in the next chapters,
it turns out that the masses v; € X given by lemma 1.2.7 are in fact critical

points of suitable problems at “infinity”.
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1.3. Geometry of Mountain Pass Theorem

Firstly we study the behavior of the functional ¢ near the origin. Note
that (H2) implies that = = 0 is a strict local maximum for the potential
V(t,z) = —%|z[*+W(¢,z). This fact reflects on the behavior of the functional

and we have that the origin is in fact a local minimum for ¢.

Lemma 1.3.1 We have that

() 2 llull®
@' (u) - u > gl

(1.1)

as |ju|| — 0.

Proof. By (H2) and (1.1.1) we have that for ||u|| < %

/ W (2, )] dt < L
R

/R (¢, )l dt < L u?

and the lemma plainly follows. ]
Now let us introduce an additional condition on the potential W:

(H3) 36 > 2 such that fW(t,z) < W'(t,z)-z VY (t,z) € Rx RY and
3(t,z) € R xRN, T # 0 such that W({,z) > L|z|2.

Note that we admit potential changing sign (see [CM]). In the case W
positive (H3) reduces to the usual “superquadraticity” condition.

As a consequence of (H3) we find a direction along which the functional

at infinity become negative.

Lemma 1.3.2 There exists u; € X such that ¢(u;) < 0.

Proof. Let (£,z) € R x RY be given by (H3). Note that (H3) implies that
for s > 0 the function s — e #"*W(¢,5) is non decreasing, hence we get
W(t,\z) > \NPW(t,%) for A > 1.
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By continuity, thereis e > 0 such that W(t,z) > 0 for any t € [t—¢,1+¢].
Chosen p € C°(R,R™) with supp p = [t — €,1 + €], we define 4(t) = Tp(t).

Then, we have

p(Ma) = A [all” - W(t, \a) dt
supp p
<Xaf?- | Wt a)dt + Ce
Qa
< Flal? -5 [ o0 Wiez)dt+ Cc
Qx

where Q) = {t : |\p(¢)] > 1} and C = 2max{|W(¢,z)| : t € R, |z| < |Z|}.
Therefore ¢(Ad) — —oco as A — +oco and the lemma follows. UJ
Therefore by lemma 1.3.2 and lemma 1.3.1 we have that ¢ has the ge-

ometrical structure of Mountain Pass theorem. Then, we define the class of

paths
I'={yeC([0,1],X) : v(0)=0, o(v(1)) <0}

and we set

= inf
¢=inf srél[gﬁ]w(v(S))

the corresponding minimax level. By the Mountain Pass theorem we get that

¢ > 0 and there exists a Palais Smale sequence for ¢ at level ¢, namely,
(un) € X such that p(uy,) — ¢ >0 and ¢'(u,) — 0.

Under the assumptions given the Palais Smale condition in general does

not hold. However the Palais Smale sequences are bounded. Indeed, we have:

Lemma 1.3.3 Let (u,) C X be a Palais Smale sequence. Then (u,) is
bounded and inf, ¢(u,) > 0.

Proof. By (H3) we have that

(1.3.1) 3= )lluall® < @(un) — 5l (wn)llllunll

and the lemma immediately follows. ]
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Chapter 2
A global condition for periodic Duffing-like equations

2.1. Introduction

In this chapter we study Duffing-like equations of the type
(2.1.1) i =z — at)z® (t,z) eRxR

where o € C(R,R) is a positive T'-periodic function.

In [CM] it was proved that equations of the type (2.1.1) admits multibump
solutions if the set of homoclinics is countable, condition which is verified if
the stable and unstable manifolds to the origin intersect transversally.

Here we improve this result showing that (2.1.1) admits multibump solu-
tions whenever the stable and unstable manifolds do not coincide (see [Bel],
[BS] and [CS2] for others results in this direction).

Before stating the theorem, let us recall some well known facts about
Duffing-like equations. Since the system is T'-periodic we can consider the two-
dimensional T-map ® : R? — R?, given by ®(z,p) = (u(T),u(T)), where u
is the solution of (2.1.1) with initial conditions u(0) = z and u(0) = p. Then,
we can define the global stable and unstable manifolds to the hyperbolic rest
point (z,p) = (0,0) as follows:

W* = {(z,p) € R* : @"(z,p) = 0, asn — +oo}
W = {(z,p) € R? : ®™(z,p) = 0, asn — —oco}.

The solutions of (2.1.1) with initial data (u(0),%(0)) € W* N W* are in fact
homoclinic solutions and (u(jT),%(57)) € W* N W* for all j € Z.

We prove the following theorem.
Theorem 1. If W* # W? then (2.1.1) admits multibump-type solutions.

Precisely, there exists a set K of homoclinic solutions of (2.1.1) that is compact
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in CY(R) and for which, for any r >.0 there is N, > 0 such that, given a
sequence (p;) C Z, with pj41 —p; > N(r), there exists a solution v of (2.1.1)

which verifies

inf llv = u(- = pT)lor(z; vy <

for any j € Z, where I; = [pj‘12+pj T, & +2pj+1 T). In addition v is a homoclinic
orbit whenever the sequence (p;) C Z is finite. '

The above theorem implies in particular that if W*® # W™ the system
has positive topological entropy.

Indeed, for any u € K, let z, = (u(0),%(0)) € R?. Fix r < infuex 3|zu]
and a sequence (px) C Z such that pr = kN,, (Vk € Z), where K C
C*(R,R"™) and N, € N are given by Theorem 1. Let 0,0’ C {0,1}? such
that o; # cr;- for some j € Z and v,, v, solutions of (HS) obtained in the
above theorem. Since o; # o € {0,1}, setting 7(0) = (v,(0),7,(0)), we

have
@Y (r(0)) = BN (r(o )| 2 in foa| — inE (8 (r(0) = oyl
+1@7 (1(0")) = ojzul))
2 inf |ou] = (inf |lve — oju(- —pj)ller )+
+ inf [lver — oju(- = pi)llorap) 2 inf 5lel
He:ﬁce, for e <infuek 3|7u| and R > sup,cg |zu| + 1, we get s(nNy, e, R) >
2™ and h(®) > 1—01-\%2
2.2. Preliminary results

Let us consider the class of second order equations of the type
(2.2.1) t=z—at)Wi(z) (t,z)ERxXR

where we assume:
(h1l) « € C(R,R) positive and T-periodic;
(h2) W e C*°(R",R) and W(0) = W'(0) = W"(0) = 0;
(h3) there exists 8 > 2 such that 0 < SW(z) < W'(z)-z for any z € R\ {0};
(h4) W'(z) -z < W"(z)z -z for any =z € R\ {0};
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(h5) W(z) = W(—z) for any z € R. \)

Remark 2.2.1  All the results given in this chapter holds with minor change
for systems in RY satisfying (h1)-(h4) and radially symmetric. In this case

the stable and unstable manifolds are defined for the radial coordinates.

Let assume T = 1, being all the arguments exactly the same for any
given T > 0. Moreover, in the following we denote by C' a positive constant
maybe different from time to time.

By (hl) and (h2), we have that for any € > 0 there exists § > 0 such
that |a(t)W'(2)| < €|z], for any |z| < §. In particular, we can fix § > 0 such
~ that

(2.2.2) ()W (2)] < 3e]

for any ¢t € R and |z| < 6.

Therefore the potential V(¢,z) = —3|z|*+a(t)W(z) verifies assumptions
(H1), (H2) of chapter 1 and all the results in sections 1.1 and 1.2 hold true
for the action functional associated to the equation (2.2.1) given by ¢(u) =
sllull? = [ e(t)W(u), for v € X = HY(R,R). Moreover, ¢ € C®(X,R) (see
remark 1.1.4) and ¢'(u)h = (u,h) — [ a(t)W'(u)h, for any u,h € X. We
look for homoclinic solutions of 2.2.1 as critical points of ¢. Les us denote
K={veX\{0}: ¢'(v)=0}.

By the superquadraticity condition (h3) all the results in section 1.3 hold
true for ¢o. We have that the functional ¢ has the geometric structure of the

Mountain Pass theorem. We define the class of paths

I'={yeC([0,1], X) : v(0) =0, »(7(1)) <0}

and ¢ = inf,er max,epo 1) (7(s)). By the mountain pass theorem there exists
a Palais Smale sequence at level ¢. Moreover, the PS sequences are bounded
and at non negative levels.

By (h4), we have:

Lemma 2.2.2 inf{e(u) : ue€K}>c
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Proof. If w € K we have that ||u||®> = [ a(t)W'(u)u dt and hence

d | a "Guyu=s [ a "y — 2 W (su)u
Zoeten) = slulf = [ aoW (s = s [ aOF"(wu = 20 (supu) .

By (h4), for any z € RY \ {0} the function fi(s) = 1W'(sz) - z is strictly
increasing for s > 0. Indeed, & f,(s) = L(W"(sz)sz - sz — W'(sz) - sz) > 0.
Therefore, we have £¢(su) > 0 for all s € (0,1) and Lo(su) < 0 for all
s € (1,+c0). So that the path Au is such that maxysop(du) = p(u), and
we get inf{p(u) : v € K} > c.

U

By the Z-translational invariance of the functional ¢ we have that if
(un) C X is a PS sequence then for any sequence (t,) C Z, (tn * un) is
still a PS sequence. Hence, since we can always assume in lemma 1.2.7 the
sequences (t1)...(t5) C Z, in this case, thanks to lemmas 1.2.1 and 2.2.2 we

can specialize lemma 1.2.7 as follows:

Lemma 2.2.3 Let (u,) C X be a Palais Smale sequence for ¢ at the level
strictly less that 2c. Then there exists a sequence (t,) € Z and v € K U {0}

such that, as n — oo, up to subsequences, ||u, — v(- —t,)|| — 0.

Remark 2.2.4 By the above lemma (and lemma 1.2.1), considering the
Palais Smale sequence given by the mountain pass theorem, we have that up

to translation, it converges to a critical point v € K such that ¢(v) = c.

Let us recall also some well known facts about the stable and unstable
manifolds. By the stable and unstable manifolds theorem (see e.g. [W1])
we have that WW*® and W* are one dimensional C* manifolds and they are,
respectively, tangent at the origin to E* and E*, the stable and unstable
eigenspaces to the differential of ® at 0. Hence, locally, by the Implicit
function theorem, W?* and W" can be represented as graphs of functions
from the configuration space to the velocity space. Precisely, there exists
§ > 0 for which, if we define Wi = {(z,p) € W* : |®"(z,p)| < § for n > 0}
and Wi = {(z,p) € W* : |®8™(z,p)| < § for n < 0}, then there exist f,,

loc
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fu € C=((=4,6),R) such that

Wipe = {(2, fs(2)); |z| < &}

(2.2.3) .
Wise = {(z, fu(@)); |z < 6}

Starting from this two sets, called respectively local stable and unstable man-
ifold, it is possible to recover by backward iterations the global stable and

unstable manifolds. We have:

(2.2.4) W® =Unco® (W) and W™ = Unz0@"(WE,).

Now we introduce the functions TgE : X — [—00,+00] defined as follows.

Definition 2.2.5 Given § € (0,5) we define for any u € X

Ti (u) = sup{t € R : |u(t)| = &}
Ty (u) =inf{t € R : |u(t)| = 6}

with the agreement that Tif(u) = Foo if ||ulle < 4.

Let us remark that the functions T was already introduced in [STT]
(see also [Bel)).
First of all note that as a direct consequence of lemma 1.2.3 we have the

following compactness property.

Lemma 2.2.6 Let (u,) C X be a PS sequence at level strictly less than
2¢. If the sequence (T (u,)) C R (or (Tj (un)) C R) is bounded then (us,)

is precompact.

Proof. Let us suppose (T; (un)) be bounded, then there exists v % 0, such
that v, — v weakly in X. Then by lemma 2.2.3 we get that in fact u, — v
strongly in X. The same argument applies if (T; (u,)) C R is bounded. [J

Now we prove a continuity property of the functions Tgt near critical

points. Precisely, we have:

Lemma 2.2.7 Let (u,) C X be a PS sequence such that u, — v weakly
in X, then
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(i) if the sequence (T (un)) CR is bounded then Ty (un) — T5 (v)
and, analogously,

(i1) if the sequence (T (un)) C R is bounded then Ty (un) — Tj (v).

Proof. By lemma 1.2.1 v € K and by lemma 1.2.2 ||v|lcc = &. Therefore
T (v) € R. Let us prove (i). If there exists R > 0 such that [T} (un)| <
R, we have in particular that there exists a subsequence of (T} (un)) C R,
that we denote again by (T} (un)), that converges to some t* € R. We
claim that ¢t* = T, (v). Indeed, by lemma 1.2.3 we have that u, — v in
HY((=R,+),R¥) and by the continuous Sobolev embedding it converges
in L®((—R,+00),R"). Therefore, by definition 2.2.5, t* < T3 (v) plainly
follows. Now, arguing by contradiction, let us suppose that t* < Tg" (v). By
continuity there exists p € (0, (T3 (v) — t*)) such that |v(t)| < & for any
t € [T; (v) — p, Ty (v)] and, since & = v — a(t)W'(v), by (h2), there exists
a > 0 such that £|v(t)|? < —a for all t € [T} (v) — p, T; (v)]. Hence we get

T (v) =
lo(T5F (v)—p)|* = 52——fT5,(v)_p 4 |y(t)[2dt > 6% +ap. Hence there exists 7 € N

such that for any n > i we have un(T; (v)—p) > § and T} (un) < TH(v)—p,
a contradiction. One can prove (i7) arguing in the same way and the lemma

follows. O

We set 8o = min{é, g}, where § is given by (2.2.3) and ¢ by 2.2.2. Then,

we have the following lemma:

Lemma 2.2.8 If W* # W?* then there exists § € (0,80) such that

#)F 0¢{T(u) : wek} or
#)™ 0¢ {T; (u) : ueK}.

Proof. If W* # W? then by (2.2.4) at least one of the following cases is
verified:
(1) Wipe £ W"
(1) Wi € W
Indeed, if W{,, C W*, since W* is &~ ! -invariant, then ®™*(W} ) C W*
for any n < 0 and W*® C W* plainly follows by (2.2.4). Analogously, if
We . C W?e then W* C W°.
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Let us assume that W, ¢ W*. Thén, there exists § € (—8p,d0) such
that (8, f5(8)) & W*. In addition, by (h5), we have also that (-4, fs(—¢)) ¢
W?*, hence it is not restrictive to assume ¢ > 0.

This fact implies in particular that if v is a homoclinic solution then
T;F(u) # 0. Indeed, if otherwise there exists a homoclinic solution u with
T, (u) = 0, we have |u(0)] = § and |u(j)| < é for any j > 0 and hence, since
by (h5) we can assume u(0) = &, we get (u(0),%(0)) = (6, fs(§)) € W*, a
contradiction. The same argument applies if (i) holds and in this case we get
that there exists ¢ € (0,80) such that 0 & {T; (u) : v e K}.

0

2.3. Topological and compactness properties

In the following we assume that (#)" holds, all the arguments being the
same if instead (#)~ holds.

From (#)* we can start applying variational tecniques to prove the ex-
istence of multibump solutions.

To begin we state some preliminary results.

As an immediate consequence of lemmas 1.3.3, 1.2.1, 2.2.7 and since « is
1-periodic, fixing ¢* € (¢,2¢), we get that:

(2.3.1) there exist n € (0,3) and p > 0 such that for any u € {¢ < c*} for
which T (v) € [k —n,k +n), for some k € Z, we have ||¢'(u)|| > p.

where § is given by lemma 2.2.8.
Now, given v € (0, ), let us define the set
A ={ue X : [|¢'(u)]| <v}n{p <c}
For p € (0,p), with p given by lemma 1.2.4, and for j € Z, we consider the

sets

U, = A" n{ue X : |lul|l <p},
Al=A"N{ueX : T (u)elj+ni+1-n]}
Note that the Palais Smale condition holds in AY, for any j € Z:

Lemma 2.3.1 Let (u, C X be a PS sequence, if (u,) C AY, for some
JE€Z and v € (0,u), then (u,) is precompact.
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Proof. Since un, C AY, the sequencev (T5 (un)) C R is bounded and, since
c* < 2¢, by lemma 2.2.6, we get that in fact u, — v strongly in X.
O

Clearly AZ N A% = @ for all j # j'. In fact, as we will discuss in
the following lemma, for v sufficiently small the sets AY C X are uniformly
disjoint.

Denoting for A,B C X, d(A, B) = infyeca,veB ||u — v||, we have:
Lemma 2.3.2 There exist v € (0,u) and p > 20 such that A” = Ujez A;f U
Uz, Uz C{p < 5} and

(2.3.2) inf{d(A%, A%),d(AZ,UZ) : j# 5 € Z}=ro > 0.

Proof. First we note that for any v € (0, 1), if |Jullec > 6 and [|¢'(u)]| < v
then u € AY for some j € Z. Then we observe that if [luflec < & then, by
(2.2.2), ll¢'(w)]l = 3llull. Therefore, if ||ulleo < & and |lul| > 2v we have
ll¢'(u)|| > v. Hence, for v € (0,1) and p > 2v we have A” = U} U U ez A%.

Now we prove (2.3.2). Arguing by contradiction, there exist a sequence
vn — 0 and sequences jn # j, C Z such that, setting A, = A", A}, = A;’:
and Uy n = U}~ , we have d(An, A,) = 0 or d(A,,Upn) — 0 as n — +oo.

In the first case there exist two PS sequences (u,) € A, and (u}) € A/,
such that ||u, —ul]| — 0.

Now, since j, # j!, for any n € N, we have that |77 (u,)—T"(ul)| > 27,
where we set T+ = T;".

By lemma 2.2.3 and lemma 2.2.2, since ¢* < 2¢, there are sequences
(tn),(t,) C R and v,v’ € K, such that, up to a subsequence, ||u,—v(-—t,)| —
0 and |jul, —v'(- —t)]| = 0.

Now, let R > 0 be such that max{||v|||y>r, [|V'[l|y>r} < %, then we have
that max{|T% (un(- +t )|, [T (u! (- +t.))|} < R and by lemma 2.2.7, we get
T+ (un(- + ) = T+@)] — 0 and [T+ (- + ) — T+ = 0, up 0
subsequence. ‘

Then, we finally get a contradiction. Indeed as n — +oco we have |jv —

v'(- =t +t,)||* — 0 and, therefore, t, — ¢/ — £, up to subsequences. So
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that v = v/(- — ¥) and |TF(v) — T+(v") + ¢, — tl,| — 0. Therefore, we have,

as n — oo,

20 < T (un) = T (up)| < T (un) = T (0(- — ta)) 1+
HITH (W) = TH) + tn = to] + [T (up) = TH(0' (- = £0))] < o(1)

a contradiction.

In the second case, if d(A,,U,n) — 0 there exist two PS sequences
(un) CUprn and (ul,) C A, with |Jup, —ul,]| — 0. Since by lemma 1.2.2 u, —
0 strongly in X, we have also ul, — 0 strongly in X, that is a contradiction
since ||ul|leo > 6, for any n € N. Hence we get that there exists 7 € (0, x)
and ro > 0 such that inf{d(A7, A%),d(A},U;) : j#j €L} =r10>0.

Finally, since ¢ is continuous in X and ¢(0) = 0, taking eventually 7

smaller, there exists § > 20 such that U3 C {¢ < §} and the lemma follows.
U

Let us fix in the following 7 € (0, £

By remark 2.2.4 there exists 7 € Z and a critical point v € A; at the
mountain pass level ¢. Let us denote A = A; and K4 = KN A, that is a
compact set of critical points thanks to lemma 2.3.1.

By (h4) (see also the proof of lemma 2.2.2) there exists a path 4 € T
defined by (s) = sso¥, with sg such that ¢(so?) < 0, satisfying the following
properties:

(71) maxsep,1) ¢(3(s)) = (V) = c;
(v2) Y7 €(0,7) 3h, > 0 such that if y(s) € X \ Bz(K4) then ¢(5(s)) <
¢c—2h,.

Thanks to (1) and (y2) we can characterize from the variational point

of view the compact set of critical points K 4. Precisely, we have:

Lemma 2.3.3 For any r € (0,%) and h € (0,h,) there is a path v €
C([0,1], X) satisfying the following properties:
(1) rangey C {¢ < c+h}
(1) rangey C By(Ka)U{p <c—h};
(111) supp~v(#) C [~R,R] for any 6 € [0,1], R being a positive constant

independent on 6.
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Proof. Given R > 0 we define a cut—off function xr(t) = 0 as |t| > R,
xr(t) =1 as |[t| < R—1 and xr(t) = R—|t| as R—1 < || < R. We
put v = xr7Y, where ¥ is given above. For R sufficiently large, we have that
v([0,1]) C (Bs(Ka)U{p Sc—h})Nn{p <c+h}. U

By lemma 2.3.2 we have:

Lemma 2.3.4 For any r € (0, L) there exists pu, > 0 such that

llo" ()l > pr for any u € (Br(A) N{p < c"})\ Bz(Ka).

Proof. Arguing by contradiction, we obtain a PS sequence (u,) € (Bz(4) N
{¢ < c*})\ Bz(Ka). Since ||¢'(un)|| — O there exists N € N such that
U € A for any n > N and hence by lemma 2.3.1 (u,) strongly converges to

some u € K 4, a contradiction. O

Finally we state a last preliminary property. ;
Let us consider the set (K 4) C R. Then, thanks to the behavior at the
origin and to the regularity of the potential, we have the following property:

Lemma 2.3.5 [0,¢*]\ ¢(K4) is open and dense in [0, c*].

Proof. Since K4 is compact we have that ¢(K4) is a closed subset of R.
Therefore it is enough to prove that |¢(K4)| = 0, where we denote by |A| the
Lebesgue measure of A C R. Following [Be3], we make a Morse reduction.
Fixed v € K4 we consider a partition #; < ... < tx of R, with ¢; < T (v)
and tp > Tg"(v) so fine that for each ¢ = 1,...,k the problem

h=h—al)W"w)h t € (ti,tiy1
(2.3.3) {h(m ) +)

has only the trivial solution. By the Implicit function theorem this implies

that there exists €, > 0 such that for any (zi, zit1) € Be, (v(¢:i))X Be, (v(ti+1))
each problem '

I =z— a(t)W’(:c) t e (ti, ti+1)
(2.3.4) z(ti) = z;
z(tit1) = Tig1
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has a unique solution u; € C*((¢i,ti4+1)).

Moreover, assuming €, < 6 — &, where § is given by (2.2.3), we have that
for any z; € B, (v(t1)) the point (z1, fu(z1)) € W}, and the solution of
(2.2.1) ug € C*(R), satisfying uo(t1) = z1 and uo(t1) = fu(z1), tends to 0
as t — —oo. Analogously, we define uz4+1 € C*(R) to be the solution of (2.2.1)
satisfying ur+1(tr) = zx and ugt1(te) = fo(zk). We have upyi(t) — 0 as
t — +4co. N

Then we define the map 4, : II%_; B, (v(t:)) — X

’U,o(t) t S tl
’I:v(:El,...,:Ek)Z ui(t) tiStStH.l,i:l,...,k
Uk+1(t) i Z tk.

By the Implicit function theorem i, € C°(IIX, B, (v(#:)), X). Therefore ¢ o
iy € C®(IIL, B, (v(t:)),R). Denoting

Ko ={(z1,...,25) € Hf-‘:lBev(v(t,-)) s o' (ip(z1, .o 2k))i (21, - o TE) = 0}

we have by Sard’s theorem (see e.g. [Z]) that |¢(i,(Ky))| = 0 for any v € Ka.
Now, since K 4 is compact in L*°(R) there exist m € N and vy,...,vm €
K 4 suchthat K4 C UL {u € L®(R) : [lu—vjllec < €v; =€} = UL, BE (vj)-
Then, if v € K4 we have u € BZ(vj) and iy, (u(t1),...,u(tr)) = u
for some j € {1,...,m}. Since ¢'(u) = 0 we have (u(t1),...,u(tr)) € Ky, .
Therefore

(,O(KA) - U;'T—l—zlso(ivj (K:’Uj ))

and the lemma follows.

U

Collecting the results obtained above, we have all the ingredients needed
to prove existence of multibump solutions. Precisely, we have the existence of
a compact set of critical points K4 such that the following properties hold:

(1) Annuli property: For any r € (0, 7) there exists p, > 0 such that

(235)  weBA)N{p <N\ Bi(Ka) = ') > por.
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(2) Slices property: For any open interval I C (0,¢*), 3[a,b] C I and 30 >0
such that

(2.3.6) u€ Br(A)N{a<p <b} = |l¢'(w)] > 7.

(8) Topological property: For any r € (0,%) and h > 0 there exists v €
C([0,1],X) such that the following properties hold:
(1) rangey C {¢ < c+h});
(1) rangey C By(Ka)U{p <c—h,}, h, given by (712);
(1i) supp~(8) C [~R, R] for any 6 € [0,1], R being a positive constant
independent on 8.

Let us introduce some notation. For k, N € N we set
P(k,N)={(p1,.-,px) €Z* : piy1 —p; 2 2N? +3NVi=1,... k—1},

and, for p € P(k,N) we define the intervals:

I; = (p;_aé-f-p; ’ p;+§;+1) (z =1,... ,k)

Mi;=(pi+ N(N +1),pit1 = N(N+1)) (1=0,...,k)

and M = Uf:o M;, with the agreement that pg = —co and pri; = +oo.

For any € > 0 we introduce also the set
Mc={ueX : |uljy, <e Vi=0,...,k}.

In addition, given p € P(k,N) we introduce the truncated functionals
@i: X — R defined by @i(u) = llull}, — [}, a(®)W(u)dt, for i =1,... k.
We notice that any || - ||;; is a seminorm on X, |ul|? = Zle llull3,
Y = Z:-;l ¢i, and each ¢; is of class C*° on X with @i(u)v = (u,v);, —
f_,‘ a(t)W'(u) - vdt for any u,v € X.
Lastly, given p € P(k,N), a compact set K C X and r > 0 we set

B.(K;p)={ue X: ig}'{”u—v(-——piﬂh <r Vi=1,...,k}

We point out that B.(K;p) contains functions with k-bumps. In partic-
ular, each of these bumps is localized on an interval I;, near a p; translated

of some point v € K.



2. A global condition for periodic Duffing-like equations 41

For any r € (0,%), h € (0, h,) we consider the surface Gy, : Q = [0,1)F —
X defined by

k
Gh(Br-- -, 6) = ) _v(8:)( = pi)-

where the path ~ is given by the topological property (3). Note that by the 7
translational invariance, the path translated by p; € Z satisfies (1)—(i¢)—(ii1)
with respect to the translated set p; * K4 = {pi*xu:ue€ Ka}.

Note that if the points p; € Z are sufficiently far away one from the
others then the supports of the v(6;)(- — pi) are disjoint. More precisely, we
require N > R, R be given by (3) — (4i1), so that supp(8;)(- —pi) C i\ M

and we obtain

) k k
e(Gr(9)) = Z pi(Gr(9)) = Z @i(7(0:)(- — pi))-

In other words the action of the functional on the surface G} separates into
the sum of the actions on each .

Moreover, we have that G#(Q) C Br(Ka;p) UNiy{pi < c—hr}.

Thanks to properties (1) and (2) above we can construct in B.(Ka;p) a
common pseudogradient vector field for the functional ¢ and each ; to get
a deformation of the surface G(Q).

The existence and the properties of this pseudogradient are stated in the
following lemma (see appendix A for a proof).

For any r € (0, 1), we fix r1,rs,73 for which %r <1 <rg <7ty < 2r.
By property (2), for any h € (0,h,), there exist cy,c. and A > 0 such that
the intervals [c— —\,c_ +2)\] C (e—h,c—%), [ex = A, e+ +20] C (c+2%,c+h)
verify (2.3.6). Then, we have

Lemma 2.3.6 There exist fir > 0 and & > 0 such that: Vé € (0, 1)
there exists Ng € N for which for any k € N and p € P(k, No), there exists
a locally Lipschitz continuous function W : X — X which verifies
(W1) maxicj<k W)l <1, ¢'(u)W(u) 20 Vu € X, W(u) =0 Yu €
X\ Bry(Ka3p);
(W2) @ (u)W(u) > i, if 1y <infyer, lu—v(-—pi)ll <2, u € B.,(Ka;p)N
{vi <erd;
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(W3) @i(u)W(u) >0 Vu e {cy <@i<cy +A}U{e- i <ec +2A};
(W4) (u,W(u))a; 20 Vje{0,...,k} ifue X \ Ms.

Moreover if K N Br,(K 4;p) =@ then there exists pp > 0 such that
(W5) @' (WW(u) 2 pp Yu € Bry(Ka;p).

2.4. Multibump solutions

Now we prove that (#)% implies the existence of multibump solutions.

Theorem 2.4.1 Let (h1)-(h5) and (#)* hold. Then, for any r > 0 there
exists N, € N such that for any k € N and p € P(k, N,) we have B,(K 4;p)N
K # @, where K 4 is given by lemma 2.3.3.

Proof. Arguing by contradiction, there is 7 > 0 such that for any N € N
there exist ¥ € N and p € P(k,N) for which B.(Ka;p)NK = @. We can
assume 7 < min{f,r  }, where 7 is defined in the local minimax above and
.ss is such that |a(t)W'(z)| < §|z| for any |z| <r

To get the contradiction we consider in B,(K4;p) the common pseu-

T s
dogradient for the functional ¢ and each ¢; given by lemma 2.3.6 to get a
deformation of the surface G1(Q) defined in section 2.3. On the deformed
surface we will select a path contained in {¢; < ¢} for some ¢ € {1,...,k}.
Then, with a suitable cut-off procedure we finally get a path g in {¢ < ¢}
obtaining a contradiction with the mountain pass geometry of the functional
©.

We define A = E’—(—r‘;_—”), where [ir is given by lemma 2.3.6 and r1, 7y, 73
are fixed as above. We fix h < %, and cy, c— as above and such that
¢t —c_ < £. Weput G =Gy. Let us fix 0 <6 < min{dy, 4lr2,°—‘{—‘—,r1/8}
and N > max {Ng, R} such that Ny € N is given by lemma 2.3.6 and R by
(3)- (1) relatively to the value of h fixed above.

By the contradiction assumption there exist £ € N and p € P(k, N) such
that B(Ka;p) NK = @. So that there exists a vector field W satisfying the
properties (W1) — (W5) of lemma 2.3.6.

We consider the Cauchy problem

{ 2 =-W(n)
n(0,u) = u.
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Since W is a bounded locally Lipschitz continuous vector field we have that
for any u € X there exists a unique solution n(-,u) € C(R*,X), depending
continuously in u € X . We consider the deformation n(s, G(6)) of the surface
G under this flow.

Firstly, we have

(2.4.1) n(s, G(6)) = G(6) V0€dQVseR™.

Indeed, since infuck, [[pi+v(0)—pivll3, > infuercs [7(0)=vl* —supver, llpi
vllgng 2 r2 —§ > 12, we have G(9Q) € X'\ B, (Ka;p). Then (2.4.1) follows
since by (W1) the flow does not move the points outside Bry(Ka;p)-

Then, for any 6 for which G(6) € X \ By, (Ka4;p) there exists i = i(9)
such that n(s,G(9)) € {pi < c-} for any s € R*. Indeed, if G(f) € X\
B (K 4;p) then there exists i = i(8) for which infyex, llp:i * ~v(6:) — pi *
v||2 > infuex, |lpi * ¥(8:) — pi * v|[3, > r} which implies, by (3)- (%) , that
G(6) € {pi < c_}, that is, by (W3) a positively invariant set.

Moreover, since ¢ sends bounded sets into bounded sets we get that there
exists © > 0 for which Vu € By, (Ka;p) there exists s € (0,7] such that
n(5,u) ¢ Br,(Ka;p). Indeed, if not, by (W5), setting ¢ = sup, weB,,(K4:p)
lp(v) —p(w)| and 7 2 %‘j, we get

o > p(n(r,u)) — w(w)] = / T ! (s, w)W(n(s,w)) > Thyp 2 20,

a contradiction.

Hence, for any u € By, (Ka;p) thereis [s1,82] C (0,7] such that
n(‘Sl?u) € aBrl(I{A;p)J 7’](32,1,1,) € aBM(I{A;p)

and 7(s,u) € Br,(Ka;p) \ B, (Ka;p) for any s € (s1,82). So, for any
9 € Q for which G(6) € By, (Ka;p) there is an index 1 = i() such that, by
(W2), vi(n(s2,G(8))) < wi(n(s1,G(0))) — 2A. Then, since by construction
G(8) € {p; < c4} and since, by (W3), {pi < cq} is positively invariant, we
get pi(n(s2,G(0))) < ey — 208 <c-. Therefore @i(n(r,G(0))) < c— follows
from the positively invariance of {¢; < c_} given by (W3).
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Therefore, collecting the results and setting G(8) = n(r, G(8)), we finally
get

(2.4.2) VoeQ, Fie{l,....k} /] vi(G(H) <c_.

Thanks to this last property we can select on @) a path ¢ joining two opposite
faces {6; = 0} and {f; = 1} along which the function ¢; o G takes values
strictly less than ¢ for some 7 € {1,...,k}. Precisely:

(2.4.3) thereexists 1 € {1,...,k} and & € C([0, 1], Q) such that £(0) € {6; =0},
¢(1) € {6; = 1} and ¢;(G(#)) < c— + 6, for any 6 € rangel.

Indeed, assuming the contrary, the set D; = {6 € Q : ;(G(8)) > c_+6} for
any 1 € {1,...,k} separatesin @ thefaces F? = {6; = 0} and F} = {6; = 1}.
For any i € {1,...,k} let C; be the component of @\ D; which contains the
face F! and let us define a function f; : Q — R as follows:
f-(@)z{diSt_(e’Di) %fGEQ\C,-
! —dist (6,D;) if € C.

Then, f; € C(Q,R), filre >0, filpx <0 and f;(8) =0 if and only if § € D;.
Using a Miranda fixed point theorem ([Mi]), we get that there exists 8 € Q
such that fi(6) = 0 for all 7+ € {1,...,k}, hence (), D; # @, which is in
contradiction with the property (2.4.2). ‘

Note also that, by (W4), the set M; is positively invariant under the
flow and since, by (3)-(111) and the choice of N, G(Q) C M, we have

(2.4.4) n(s,G(Q)) C Ms VseRT,

Now, thanks to (2.4.1), (2.4.3) and (2.4.4) we get a contradiction. Indeed,
let x € C(R,[0,1]) with sup,eg |X(t)] <1 besuchthat x(t) =1if ¢t € [\M
and x(t) =0 if t € R\ I;, where 1 € {1,...,k} is the index given by (2.4.3).
Notice that [ ul3nar < llullhmye and (1 = X)ulnas < 3lullf e for any
u € X. Then, we define a path g : [0,1] — X by setting g(s) = xG(&(s))
for s € [0,1].

By (2.4.1) and (3)-(41) we have that

g(0) = 4(0)(- — pi) and ©(g(1)) < @(v(1)(: — pi))-
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To conclude, we show that ¢(g(s)) < ¢ for any s € [0,1]. Indeed, since
G(&(s)) € Ms, 6 < I~ <r 8a,ndc$<C °= . we get

ol9()) = pi(9()) < i GEEN + Hlal)Bnns
+ [ aEE) - Ws(e))dh S oo+ <o

O

Finally we note that as a direct consequence of the theorem 2.4.1, since
the minimum distance N between two adjacent bumps does not depend on the
number of bumps, we can consider the CL. closure of the set of multibump
homoclinic solutions. Then we get the existence of an uncountable set of
bounded motions for the equation 2.2.1 and Theorem 1 is proved. Precisely,

we have

Corollary 2.4.2 For any r > 0 there exists N, > 0 for which, given a (bi-
infinite) sequence (p;) C Z with pjy1 —p; = Nr then there exists a solution
v of (2.2.1), which verifies

lo—3( —pillcr vy <t VIEZ

Proof. By theorem 2.4.1 we get, for any k € N, a solutions vi of (2.2.1)
which verifies |Jux — 9(- — p)llm ey <7 (Vi = 1,...,k). The sequences
(vi), (%) and (¥x) are bounded sequence in L®(R,R"). Indeed ||villeo <
Mr + ||5)|e, where M is given by (1.1.1). Moreover, and by using the equa-
tion 2.2.1 also ||¥k]|co is bounded. Lastly, by (h2), by using again the equation

9.2.1 and by the Holder inequality, we get [0x(t)] < [9x(s)] + f |k (r)|dr <
fp+ |oe(s)lds + fp+1(f |ik(r)|dr)ds < Cllv||. Hence, by the Ascoli’s theo-

rem, (vr) converges up to subsequence in the C} . topology. O
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Chapter 3

Perturbations of periodic second order Hamiltonian sys-
tems

3.1. Introduction

In this chapter we study the class of second order Hamiltonian systems
(Hs)a g=4q-— W(;(t7Q> - O‘Wl,(t> Q)

where g: R — RY and o > 0 is a small perturbation parameter.
We assume that the unperturbed potential satisfies:
(h1) W} € C(R x RN, RY), Ty-periodic in time and locally Lipschitz contin-
uous, uniformly in time;
(h2) Wo(t,0) =0 and |W{(t,q)| = o(lg]) as |¢| — 0, uniformly in time;
(h3) 38 > 2 such that: SWy(t,q) < Wy(t,q) - ¢ for any (t,q) € R x RY;
3(f,7) € R x RY such that 3|g> — Wo(2,9) < 0.

and that the perturbation W; satisfies:

(h4) W! € C(R x RY,R") locally Lipschitz continuous, uniformly in time,
and Wy(t,0) = W{(¢,0) =0 for any t € R.

In [CM] the existence of multibump solutions for the unperturbed periodic

system (HS)o has been proved. Precisely, if

(¥)o the set of homoclinic solutions of (HS)o is countable,
then

there is a homoclinic solution © of (HS)o such that for any r > 0 there
exists N, > 0 for which, for any sequence (p;) C Z, with pjy1—p; 2 Nr,

there exists a solution v of (HS)o which verifies

lo —5(- = psTo)lcr; mvy <70 VIELZ,

P + . +p
Where I] = [p, ; Pj To,p] 21+1T0]_
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This set of solutions contains an uncountable set of bounded motions and
countably many homoclinics.

In section 3.4 we prove that this class of solutions persists for the per-
turbed system (HS), for small values of the perturbation parameter «. Pre-

cisely, we prove the following theorem.

Theorem 3.1. Let (hl)-(h4) and (*)o hold. Then there is a homoclinic
solution ¥ of (HS)o such that for any r > 0 there exist N, > 0 and a, >0
for which, given a sequence (p;) C Z, with pj41 — pj > N(r), then, for any

a € [0,ar], there exists a solution vy of (HS)qa, which verifies

lva = 3(- = pjTo)|lcrz; mvy <7 VI EZ

where I; = {p"‘;ﬂ”' To, pﬁ;’”‘ To]. In addition vy is a homoclinic solution

whenever the sequence (pj) C Z is finite.

We refer to [Be2] and [Be3] where similar results are given for damped
systems.
Remark. If the assumption (*)g does not hold there are cases in which no
homoclinic solutions occur for the system (HS), for any o > 0. Let us
consider, for instance, the system § = ¢ — (1 + @a(t))q®, with a(t) smooth
and bounded. This system does not admit any homoclinic solution if a(¢) < 0
for any ¢t € R and a # 0. In fact the unperturbed potential is independent on
time and the associated system can not verify the assumption (*)o, moreover

in this case the unperturbed system do not exhibits multibump dynamics.

Remark. We point out that we do not make any assumption on the time
dependence of the perturbation W). As far as we know in this case the

classical perturbation techniques can not be applied.

In section 3.5 we assume the perturbation W; to be almost periodic in
time and we prove that if the unperturbed periodic system admits a transver-
sal homoclinic point then for a sufficiently small the system (HS), admits
almost periodic motions.

Precisely, given r > 0 let Z(r) = {p = (pj) CZ : pj+1 —pj > N;} and
for p € Z(r), B? = {u € C*(R,R") : |lu—5(-—p;To)llcr(; mvy S 7y Vj € Z}
(v and N, given by Theorem 3.1). Then, assuming
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(h5) W!(-,z) almost periodic uniformly on compact sets of RV (see def. 1.1),
and
(H) there exists r > 0 such that, for any p € Z(r), a € [0,ar] (ar given

by theorem 3.1) and W{ € H(W') (see def. 1.1), there exists unique a

solution of § = g — W{(t,q) — aW!(t,q) in B2.
we prove that the solutions with infitely many bumps given by Theorem 3.1,
and corresponding to a periodic sequence (pj) C Z are in fact almost peri-
odic solutions of (HS)s which bifurcate from periodic solutions of (HS)o-
Moreover, we show that there exist heteroclinic solutions joining them.

Let us remark that assumptions of the type (H) are quite natural in the
study of almost periodic solutions (see e.g. the notion of separated solutions
[Co)). |
Theorem 3.2. Let (h1)-(h5), (*)o and (H) hold, then (HS)o admits in
finitely many almost periodic solutions for any « € [0,a,). Moreover, there

are countably many heteroclinic solutions of (HS)q connecting any two of
them.

Let us make some comments on the assumption (H).

Remark. Clearly if Theorem 3.1 is improved by a uniqueness result we get
that (H) holds. Following [Ang] one can prove a uniqueness result by assuming
that the linear operator L; : C*(R,RY) — C(R,RY) defined by Lsu =
—ii4+u — W'(t,5(t))u is invertible. Note that this condition is always verified
if the periodic unperturbed system (HS o admits a transversal homoclinic
point ((0),5(0)), since, as proved in [Pa], this implies that Lyu = 0 has
exponential dichotomy.

We recall that a system & = A(t)z, with A € C(R,RV*N) is said to
have an ezponential dichotomy on R if there is a projection P in RY and
constants C > 1 and A > 0 such that, denoting by X(¢) the fundamental
matrix for the system,

|IX($)PX(s)7] < Ce 2t=9) fors <t
|X(t)(I — P)X~(s)] < Ce™o7 for s > 1.

Remark. In particular in Theorem 3.2 we get the existence of infinitely

many periodic solutions for the periodic system (HS Yo (we refer to [CZR2]
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where periodic solutions are founded without making assumption (H)) and
the existence of heteroclinic solutions joining a pair of them (see [R7] for
other results on heteroclinic solutions connecting periodic orbits). Let us
remark that in the periodic case if there exists a transversal homoclinic point
this results plainly follows since the Poincaré map associated to the system

exhibits an invariant set topologically conjugate to a Bernoulli shift (see e.g.

[W1]).

3.2. Preliminary results

Let us denote Wy(t,q) = Wo(t,q) + aWi(t,q) and fix Ty = 1, all the
arguments being the same for any 75 > 0.

The assumptions (hl) and (h4) imply that W/(¢,-) is locally Lipschitz
continuous uniformly in time, i.e., VR > 0 3Cq g > 0 such that V|z|,|y| < R
and t € R

(3.2.1). [Walt,2) = We(t,y)| < Ca,rlz -yl

Note that (h4) says in particular that the perturbation is uniformly bounded
on compact sets, i.e., VR >0 ICg > 0 such that V|z| < R and t € R,

(3.2.2) ‘IW{(t, z)| < Crlzl|.

Moreover, from (h2) and (h4) we get informations about the behaviour of W,
near the origin. In fact, there exist § > 0 and & > 0 such that V|z| < §,
a€l0,a) and teR

(3.2.3) We(t, )| < 3lal.

Therefore, assuming the perturbation parameter a € [0, @], we have that the
potential W, verifies assumptions (H1) and (H2) of chapter 1 and all the

results in sections 1.1 and 1.2 hold true for the action functional

0a(u) = ul|* - / Wo(t,u)dt. uveX
R
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We have that ¢o € CH(X,R) and ¢, (u)h = (u,h) — Jg Wi (t,u)h dt, for any
u,h € X . We look for homoclinic solutions of (HS )e as critical points of ¢q,
let us denote Ko = {u € X \ {0} : ph(u) = 0}, for & € [0,4].

As proved in section 1.2 (lemmas 1.2.4 and 1.2.5) we have a local com-

pactness property hold for po, a € [0,a].

Lemma 3.2.1 There exists p > 0 for which if u, is a PS sequence for pq
and there exists T > 0 such that limsup, ||ualljg>T < B, OF SUPp m [lun —
Uml|| < P, then un, — u strongly in X.

3.3. The unperturbed periodic system

In this section we study the unperturbed functional

polw) = Hull? = [ Wa(t,u)dt

associated to the periodic system (HS)o.

We recall without proving many results already contained in chapter 2,
since, as we will see, even if here we consider more general periodic systems,
most of the properties hold unchanged.

By the superquadraticity assumption (h3) (see section 1.3) we have that
the functional o has the geometry of mountain pass theorem. We define the

class of paths

T = {y e C([0,1],X) : 7(0) = 0 and @o(¥(1)) < 0}.

and we have ¢ = inf er max,e[o,1) wo(7v(s)) > 0. By the mountain pass theo-
rem there exists a Palais Smale sequence at level c.

Moreover, the Palais Smale sequences of ¢o are bounded and at non
negative level.

As already noticed in chapter 2, by the 7 -translational invariance of
the functional ¢o we have that if (un) C X is a PS sequence then for any
sequence (tn) C Z, (un(- —tn)) is still a PS sequence for ¢o. Hence, since we
can always assume in lemma 1.2.7 the sequences (t1)...(t) C Z, by lemma

1.2.1 we can improve lemma 1.2.7 as follows:
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Lemma 3.3.1 Let (un,) C X be a PS sequence for ¢qo at the level b.
Then there are vg € Ko U {0}, k € NU {0}, v1,...,vx € Ko and sequences
(tL),...,(t8) C Z such that, up to subsequences, as n — oo, |t| — 4o,

¥l —t] — 400 and

lun — o +v1(- = £2) +... + (- = )]l = 0.

Now, we prove that under a suitable non degeneracy assumption on the
set of critical points g, there exists a critical point of ¢g of local mountain

pass-type according to the following definition ( see [H]).

Definition 3.3.2 A critical point v € X of f € C*(X,R) is called of local
mountain pass—type for f in Q if v € Q and there are sequences (v,) C Q and
(rn) C RY such that v, — v, 7, — 0 and 0B, (v,) N {f < f(v)} contains
two points ug and u; not connectible in QN{f < f(v)}, i.e., there is no path
v € C([0,1],X) joining uo and uy, with range v C QN {f < f(v)} (notice

that the balls B, (v,) are not required to contain v ).

As we will see in the next section this topological structure for the un-
perturbed problem will play a fundamental role in the proof of the existence

of homoclinic solutions for the perturbed system (HS)q.
Now, let us introduce the following assumption:

(¥)o there exists ¢* > ¢ such that K} = K§ is a countable set.

Then, fixing for instance § = g, with § given by (3.2.3), and setting T+ = T_bi_h
(see chapter 2 for the definition and the properties of the functions Tg‘: ), b2y
lemmas 1.3.3, 1.2.1, 2.2.7 and the 1-periodicity of Wy, we have that
(3.3.1) there exist t4,t— € R, n € (0, %) and p > 0 such that for any u € {p <
c*} for which T*(u) € [k+tT —n,k+tT+n] or T~ (u) € [k+t~ —n,k+
t~ + 7|, for some k € Z, we have ||¢'(u)|| > u.

Given v € (0,u) we define the set
A = {u € X ¢ ohw)ll < v} N {po < 7}
and, for p € (0,p), with p given by lemma 1.2.4, and for 1, j € Z, we consider
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the sets

Uy =A"n{ueX : |ull <pl,
A;.’J.::AVH{UEX : T+(u)e[z’+t++n,i+1+t+—7ﬂ and
T~ (u) €[j+t" +n,i+1+t" —nl}.

Remark 3.3.3 Note that in chapter 2, thanks to assuption (h4), we consider
the sets A%. Indeed, in that case, the Palais Smale condition holds in AY (see
lemma 2.3.1). Here, instead, to get compactness we need both sequences
(T*(us)) CR and (T~ (un)) CR to be bounded.

We have the following compactness result:

Lemma 3.3.4 Let (u,) C X be a PS sequence. If (un) C A%}, for some
i,7 € Z and v € (0,u), then (u,) is precompact.

Proof. If (un) C AY; then (T*(un)) and (T~ (un)) are both bounded, hence
there exists T > 0 such that supjy>r lun(t)] < & ( & given by (2.2.2)), for
any n € N, then both (i) and (%) of lemma 1.2.3 occur and we get that (un)

is precompact. [

Clearly A¥; N A%, = for all (i,7) # (¢',7")-
Moreover, as we W111 see in the next lemma, for v sufﬁc1ently small the

sets (Af;) C X are uniformly disjoint (see lemma 2.3.2). Precisely, we have:
Lemma 3.3.5 There exist 7 € (0,u) and j > 20 such that A" = U7 U
,]EZAU, uy - {900 } and

(3.3.2) inf{d(A%, AL ;)),d(AL,Uy) : (4,5) # (i',5)) € 72} =1 > 0.

Proof. Arguing exactly as in lemma 2.3.2 (just replacing the sets A% by AY;)
we get AY = U, UU; jez AY; for any v € (0,u) and p > 2v, and that there
exists > 0 such that UY C {po < 5}

To prove (3.3.2) we argue by contradiction, as in lemma 2.3.2, and we
get two PS sequences (un),(uy,) C X such that llun — ul]] — O and, up to
subsequences, either [T (ug) — TF(u)| > 27 or [T (un) =17 (ul)] > 27.
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Now by lemma 3.3.1 there exist k,k' € N, sequences t1,, < ... < tg,n;

tin < < thn C Z and v;,v; € Ko, 1 = 1,...,k and j = 1,...,k" such

that, up to a subsequence, |lun— S r_; vi(- —tin)|| — 0 and ||u/, — Zk, Lo —

j=1Y;
5l = 0.

Moreover, we have that un(- +tin) — vi and up,(- +1},) — v} weakly

in X,forany :=1,...,k and 7 =1,...,k". Since |[up —ul]| — 0, we have,
in fact k = k' and

b

k
Hlun — ulll® = v = v5(- =t} + i)l | = 0.
j=1

Indeed, we have that for any ¢ € {1...k} there exists at most one index
j =3(¢) € {1...k'} such that |t;, —t},| is bounded, then [jup —ul||> — 0
implies that such an index j(¢) in fact exists. Obviously, the argument holds
also reversing the indeces, hence we get k£ = k' and |¢;, — t] .| bounded for
all 2 € {1,...,k}. Then ||lun—ul]|*— Z?zl v (- =tjn) = 05(- =25 I | = 0
plainly follows.
Therefore we get |[v; — v}(- =t , +t;2)||> = 0 for j=1,...,k.
Then, the same arguments of lemma 2.3.2 can be applied, by considering
the sequences (un(- + tk,n)) and (uy(- + 1 ), if [TH(un) = TH(uy)| > 21
and the sequences (un(- +t1,2)) and (u, (- +1; ,)) in the other case.
0

Now, let us simplify the notation. We set A;; = Af’j for 7,7 € Z and
Uy = Z/(g. Moreover, given r € (0, ) we denote A, = min{%ﬂr, $,¢* —c}.

Now, the aim is to obtain analogous properties of (1)-(2)-(3) in chapter 2.
As we have seen, these properties togheter with the periodicity are the ingre-
dients needed to prove the existence of multibump solutions for ¢q. Then, we
will show that they are in fact “stable” under small perturbations, obtaining
hence existence of multibump solutions for ¢, too, whenever a is sufficiently
small. Note that here, differently from the previous chapter, we do not assume
neither smoothness nor the assumption (h4) made in chapter 2. Instead we
analyse some further compactness properties given by assumption (*)g.

To begin, let us note that thanks to lemma 3.3.5 we get the following

deformation lemmas:
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Lemma 3.3.6 Forany r € (0,%) and h € (0,A,) there exists a continuous
function nyp : X — X such that

({0 < ¢+ h}) C Ui jez Br(Ai;) U{po < c— Arl

Proof. By the definition of the set A” we have that |l¢g(u)|| = v for any
u € {po < c*}\ Bz (A”). Then we can build a locally Lipschitz continuous
vector field V : X — X with the following properties:
(i) IVl €1, gp(u)V(u) 2 0 for any u € X;
(i8) @h(u)V(w) > & for any u € {po < c*} \ B(47).

The associated Cauchy problem

{ £n(s,u) = ~V(n(s,u))
n(0,u) = u

defines a flow n € C(RTx X, X). By (i) the functional o decreases along the
flow lines. We have that if 7> £, u € {po < ¢+ h} and nen(u) = n(r,u) €

B.(A”) then @o(n(r,u)) < ¢ — Ar. Indeed, arguing by contradiction, let us
suppose that there is u € {po < ¢+ h} such that n(r,u) ¢ B.(A”) and
wo(n(T,u)) > ¢ — Ar. I n(s,u) ¢ B(A”) for any s € [0,7], then, by (i),

we get

po(u) = po(n(,u)) + /01- po(n(s, u))V(n(s,u))ds > c = Ar+ 57> e+ he

If, otherwise, there is 5 € [0,7] such that n(5,u) € B:(A”), then there
exist s1,s2 € [5,7] such that n(s1,u) € dBz(A”), n(s2,u) € OB.(A”) and
n(s,u) € Br(A”)\ Br(A”) for all s € (s1,52). Hence we have that 7 <
In(s1,) = n(s2, W)l < 2 IV(n(s,u))ll < s2 = s1 and, by (1),

po(n(r; 1)) < po(n(s1,w)— / (s, W)V(n(s,w)ds < c+h—7% < c=Ar.

Hence in both cases we get a contradiction. Finally, since Up C {po < c—Ar},

the lemma follows by lemma 3.3.5.

O
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Then, since the functional ¢ has the geometry of mountain pass theo-

rem, we get the following result.

Lemma 3.3.7 Given r € (0,7%) and h € (0,A;) there is a path v € T' and
a finite number of sets A;, j,...Ai, ;. C AP for which

(4) maxep,1)po(1(s)) < c+h;

(1) if y(s) ¢ UE_1Br(As,;,) then @o(y(s)) <c— A,.

Proof. Given r € (0,%) and h € (0,A,), we take v € I" such that maX,e[o,1]
©(v(s)) £ ¢+ h and we define F(s) = n,1(7,7(s)) for s € [0,1], where
nrn € C(X,X) is given by lemma 3.3.6. Clearly 7 € T', satisfies (i) and if
©(¥(s)) = c—A, then 3(s) € U; jez Br(Aij). Thefamily {B.(A;;) : 1,7 € Z}
is an open covering of the compact set F([0,1])N{p > c¢— A,}, hence there is
a finite number of sets A;,;,...4;,;, C A” such that 5([0,1])N{p > c—A,} C
Uf_1Br(Ai,;,) and the lemma follows.

O

Thanks to lemma 3.3.7 we can define a local minimax in a region where
the PS condition holds.

Let us fix 7 € (0,) (p given by lemma 3.2.1) and A € (0,A;), let
v €T and Ajj,...,Aij, C A?, satisfying (i) and (i7) of lemma 3.3.7, for
r =7 and h = h. By the definition of the minimax level ¢, there exists
p € {1,...,k} such that, setting A = Ai,j,, there exist s1,sy € [0,1] for
which uo = ¥(s1),u1 = v(s2) € 0B#(A) N {po < ¢ — Az}, 7(s) € B(A) for
any s € (s1,s2) and ug, u; are not connectible in {pg < c}.

Then, let us consider the class

T'={y€ C([0,1],X) :7(0) = uo,7(1) = u,
rangey C Br(A)U{p <c— 1A:}}.

Since T # @, we define ¢ = inf, cp max,epo,1) 9(7(s)) and we have ¢ <
c<c+h<cr.

Note that the Palais Smale condition holds in Bz(4), indeed if (u,) C
B:(A) is a PS sequence, then (u,) C A definitively and hence, by lemma 3.3.4,
it is precompact. Then, setting K4 = Ko N A and B(K.) = Uyex, B-(v),
we have
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Lemma 3.3.8 For any r € (0,%) there exists pr,1 >0 such that

loh ()l = iy forany u € (Br(A) N {go < ')\ Bz (Ka).

Now we introduce the set Dg of the distances between points in R4.
Since by lemma 3.3.4 K, is compact, it is immediate to see that Dg 1s a
closed subset of R. Hence, setting Ap, r,(v) = Bry(v) \ B, (v), we have the
following property.
( 3.3.3) Forany r € RY\ Do there exists dr € (0, §) such that [r—3d,,r+3d;] C
R+ \ Do and there exists pr2 > 0 such that llog(w)|| = pr2 for any
uw € Ar_zd, r43a, (V) N {po < ¢}, v € K4

Moreover, by ()0, the set Dg is a countable subset of R. Hence we have

(3.3.4) there is a sequence (ry) C R* \ Do such that r, — 0.

In the following we denote p, = min{pr1,pr2} and by = %min{prdr, Ar}.
Thanks to lemma 3.3.8 and (3.3.3), we get

Lemma 3.3.9 For any r € (0,%)\ Do and for any h € (0,hr) there exist
vep € KaN{c—h < 9o < C+ h}, ug,h,ul,h € B:(A) and a path vrn €
C([0,1],X) joining u?, and uj, such that:

(3) ug,hvui,h € 0Br4a,(vrn) N {0 < T—hr};

(i) w2, and u;, are not connectible in B:(A) N {po < ¢};
(1) rangevyrn C Brya, (ven) N{po <+ h}
(iv) rangeyrh N Ar—d, r+d, (Vrn) C {po < E—h,}.

Proof. We can take d € (0, Z) such that Ba(uo)UBa(u1) C {po < c— 1Az},

Now, given r € (0, %)\ Do, h € (0,h;) and setting Kt =KsU{c-h <

0o < &+ h}, we can build a locally Lipschitz continuous vector field V., on

X such that

(1) |[Ver(w)]| €1 and @f(u)Vrn(u) 20 for all u € X;

(12) Ven(uw) =0 for u € Byja(uo) U Baja(ur) U X\ Bar(A);

(v3) @h(u)Vra(u) = &, u € [({e—h < po < T+RINBL(A)\Uyexy Br-2a, (v)]
U [{eo<c+ h}N Ar—Zdr,r+2dr(v>]7 vE Kfﬁ
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(va) @o(u)Vrn(u) 2 § for u € [Bar(A)\ (B (A)UBa(uo) U Ba(u1))] N {po <
c*}.
Then, there is a continuous function 7,5, : RT x X — X solving the

Cauchy problem

{ f;ﬂr,h(SW) = —Vr,h(n(s,u))

Nra(0,u) = u.

By (v1) the functional (g decreases along the flow lines.

Now we take a path v € I’ such that max,ep,1]¢o(7(s)) < €+ h and,
setting 7 =7, we put v.,1(8) = nra(7,7(8)) for any 6 € [0,1].

Clearly, vr,n € C([0,1],X), by (v1) and (v2) we have that range v, C
{wo < ¢+ h}, 7,1(0) = ug and vy a(l) = uy.

Now we prove that range v.n C Br(A) U {po < ¢ — %A;}.

Fixed 6 € [0,1] let us suppose that v(8) € Bx(4A)N {po > c— $A:} and
Tr,n(6) & BF(A)' |

If nrn(s,7(8)) € Bi(uo) U By(uy) for some s € [0,7], then by (v1) we
get o(vr,(9)) < @o(rn(s,7(6))) < e — 3A.

If otherwise 0y (s, u) € Bg(uo)U Bg(uy) for any s € [0,7] two cases may
arise:

(a) nra(s,u) € Bg(ﬁ) \ Bg(/i) for any s € [0,7];
(b) thereis § € [0, 7] for which n.n(s,u) & B%z(fi) \ B;(A).

With calculations similar to the proof of lemma 3.3.6 we get: in case (a),
by (v1) and (1), Yo(vra(8)) < @o(v(8)) — T2 <e+h—-As<ct+h—Ar <
¢ — 3Az. In case (b), the flow n.4(:,7(#)) crosses an annulus of width I in
B:szj(fl) \ Bg(/i), i.e., there is [s1, 2] C [0, 7] such that I < |5, a(s2,v(8)) —
N (51, YO <[22 |[Vrn]l < 52 — s1. On the other hand, by (v1) and (vs)

1

o1 (6)) < poltnass,u)) + [ o Ven < 0o(1(8)) - B(sz — 1)

<5+h—A;SC—%A;

Hence in both cases we get v,,1(0) € {po < c— %A;.
Collecting the results we obtain v, 3 € T.
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Now we prove that if v,.x(f) € {po > € — h} then ~.x(f#) € B,(v)
for some v € K%. Indeed, arguing by contradiction, if v,1(f) € {po =
¢ — h}\ Uyekr Br(v) two cases may arise:

(a) 7r,n(s,7(8)) & Uyerer Bro2a, (v) for any s € [0, 7], or
(b) 35 € [0,7] such that 1y x(5,v(8)) € Br—24,(v) for some v € K.

Then, by using the same arguments given above we get, in case (a),
wo(yrh(0)) < ¢+ h— %,ur'r < ¢—h. In case (b), the flow crosses the annulus
Areza r(0), and we get 2o(1r(8)) < 9o(mmn(5,7(6)) < E-+h—dopir < E=h.
Hence in both cases we get a contradiction.

Analogously, one can prove thatif v, 4(0) € Ar—d, rtd,(v) then v, (0) €
{po <&~ h,} forany v € K4 U{po < c+h}.

Finally, arguing exactly as in lemma 3.3.7 (using property (1)) we get
that there exists a finite set of critical points vy,...,vx € K% such that
range yr,h C U;?__:IBT(UJ-) U{po <c—h}.

Then, by the definition of ¢, there is at least one critical point v,n € K ﬁ
and an interval [fp,81] C [0,1] such that vr,4(0) € Brya,(vr,n) for 6 €]60,061]
and ¥r,1(60), vr,1(61) € OBryd,(vrr) and they are not connectible in B,—-(fi)ﬂ
{po <}

0

Now, we construct a sequence of critical points v, at level ¢, that con-
verges to a critical point of local mountain pass-type as stated in the following

lemma.

Lemma 3.3.10 The functional po admits a critical point ¥ of local moun-
tain pass type in B(A). Precisely, for any sequence (rn) C R*\ Do, r, | 0,
there exists (vn) C Ka N {po = ¢}, with B (va) C Bi(A), v, — ¥ €
Ko N {wo = &} and such that for any n € N and for any h € (0,h,) thereis a
path v € C([0,1], X) satisfying the following properties:

(i) 7(0),7(1) € 8B, (va) N {po <&~ 3hr,};

(ii) 4(0) and (1) are not connectible in B#(7) N {wo < C};
(i) rangey C B, (va) N {po < T+ h};
(iv) ramger N A, _ya. . (0a) C {0 < 5= Ehr,};
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(v) suppy(0) C [—R,R] for any 6 € [0,1], being R a positive constant
independent on 6.

Proof. Fixed r € (0,%)\ Do, we take a sequence h, | 0. Let vy, € K%,
U p s Uk h, € OBrya, (vrn, )N {po < E—hr} and yrp, € C([0,1], X) be given
by lemma 3.3.9.

We notice that the sequence (v, p,) € B7(4) is a PS sequence at level ¢
so that, by lemma 3.3.4, up to a subsequence, vy p, — vr € Ka N {po = ¢}.

Now, taken h > 0, we choose n large enough so that A, s, .24, (vrh,)
D Ar_14, ry1a,(vr) and 2k, <h.

Then given R > 0 we define a cut—off function xgr(¢) = 0 as |t| > R,
xr(t) =1 as [t| < R—1 and xg(t{) = R—|tj as R—1 < |t £ R and
we set Jrh, = XR7Yrh.- We observe that for R sufficiently large, %,1,
is a path in X such that ¥,4,(0),¥h. (1) € Aryza rysa, (k) 0 {po <
¢— Lh;}, rangerh, C Bria,(vrh,) N {po < €+ 2h,} and ranged,n, N
Ar—%d,,r-f-gd,(vr,hn) C {po < €— 3h,}. We also notice that by (i) of lemma
3.3.9, for R sufficiently large, the two points ,4,(0),7rr,(1) are not con-
nectible in Br(A) N {¢o < €}, hence there is a component of range¥rn, N
B, (vrh,) whose extreme points are not connectible in Bz(4) N {po < €}.
Finally reparametrizing this component of ¥4, , we obtain a path satisfying
the properties (z)-(v). To conclude we notice that, since K4 is compact, for
a sequence (r,) C Rt \ Dy, r, — 0 we get v, — ¥, up to subsequences.

O

Finally, we state a last preliminary property of the unperturbed functional

o which is a consequence of assumption (*)o and lemma 3.3.4.

Lemma 3.3.11 For any open interval I C (0,c*) there exists a subinterval
(a,b) C I and ¥ > 0 such that if u € Br(A)N{a < wo < b}, then |ph(w)|| > 7.

Proof. First of all we note that, by (*)o, @wo(K4) is countable. Therefore,
since the Palais Smale condition holds in B;(4), we have that the set ¢o(K 1)
is closed and countable. So that its complementary in [0, c*] is open and dense

in [0, c*], and the lemma follows noting again that the Palais Smale condition
holds in By(A). O
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Now, using also the fact that Wp is 1-periodic, we have all the ingredients
to prove the existence of multibump solutions. Let us summarize the results
of this section. There exists a critical point of o, ¥ € Ka N {po = &}, for
which:

(1) Annuli property: For any r € (0,Z)\ D there exists d. € (0,%) and
tr > 0 such that

(3.3.5)  u€ Ar—sa,,rt3a,(v) N {0 < '}, vE Ka = lpo(w)ll 2 pr

(2) Slices property: For any open interval I C (0,¢*), 3[a,b] C I and 37 >0
such that

(3.3.6) u € Bx(v) N {a < po < b} = [lpo(u)|l = 7.

(3) Topological property: 3(vj) C KaN{po = ¢}, 3(rj) C (0,5)\ D,
rj — 0, for which By, (v;) C Bz(9), v; — ¥ and such that for any j € N
and for any h > 0 there exists v € C([0,1], X) satisfying:

(3) v(0),7(1) € 8B, (v;) and they are not connectible in Br(7) N {wo <
c};
(i1) rangey C Br;(v;) N{po < €+ h};
(i#) rangeyN Ay _sa, 1 (v) C {po S 2= 55
(iv) 3R > 0 such that suppy(s) C [-R, R] for any s € [0,1].

3.4. Multibump homoclinic solutions

As we have seen in chapter 2, thanks to the properties (1) and (2), we
can constuct a pseudogradient vector field in Br(v;p), for a suitable v € K4,
(we use the same notation of chapter 2) common to the functional ¢ and the
truncated functionals g ;. However, in this case, to prove that multibump
solutions persists for small perturbation we need a pseudogradient vector field
common also to the perturbed functional ¢,. To achieve this task the key

lemma is the following:
Lemma 3.4.1 For any € > 0 and for any R > 0 there exists ag > 0 such
that, for any v € X with |Ju|| < R

sup v (u) —po(u)] < e
«€(0,a0)
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Proof. By 3.2.2 there exists C > 0 such that

sup |(¢(u) = wo(u)hl SAaolW{(t,U(t))llhldtSaoCIIUIIIIhII,

aE(O,ao)
hence the lemma follows taking ag < #5x. ]

Then, by the above lemma and following the same arguments used in the
constuction of the pseudogradient vector field in the appendix A we have the
following result (here the compact set is just one of the critical point v;):

Let (rj) C Rt \ Dg, r; — 0, and (v;) € Ka N {po = ¢} the sequences
given by the topological property (3). Then, given any r, C (rj), let fix
ri,re,r3 such that r, — %drn <ri<ro<ry<ry,— %dr,, ;

By property (2), for any h € (0,h,) there exist cy,c— and A > 0 such
that the intervals [c- — Aje— +2A] C (¢ — h,c — —2’5), [ey — Ner +2)] C
(c+ &, c+ h) verify (3.3.6). Then, we have

Lemma 3.4.2 There exist fi,, > 0, oy > 0 and §; > 0 such that: Vé €
(0, 61) there exists Ng € N for which for any a € [0,a1), k € N and
p € P(k, Ny), there exists a locally Lipschitz continuous function W : X — X
which verifies
(W1) maxicj<k [W()|lr; £ 1, oL (u)W(w) >0 Yu e X, W(u) =0 Vu €
X\ Bry(vn;p),
(W2) ¢y (WW(u) > fir, ifr1 < |lu—vp(-=pi)ll; < 72, u € Bry(va; p)N{po,i <
ct+}s
(W3) @, (u)W(u) 20 Vu € {cq < poi < ey +6}U{c- <o, Sem + 6},
(W4) (u,W(u))m; 20 Vi€ {0,...,k} if ue X\ Ms.
Moreover if Ko N Bry(vn;p) = O then there exists up > 0 such that
(W5) op(u)W(u) 2 pp Yu € Br,(vn;p).

Now we prove the existence of multibump solutions for ¢4, for a suffi-

ciently small.

Theorem 3.4.3 Let (h1)-(h4) and (*)o hold. Then for any r > 0 there
exist o > 0 and N, € N such that, for any k € N, p € P(k,N,) and
a € [0,a,) we have B, (0;p) N Ky # @, where ¥ is given by lemma 3.3.10.
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Proof. Arguing by contradiction, there is r > 0 such that for any N €
N and & > 0 there exist k € N, p € P(k,N) and a € [0,&), for which
B.(t;p) NKq = @. We can assume r < min {7, 7, }, where r  is such
that |W{(t,z)| < %|z| for any |z| <7,,,, t €R,and 7 is defined in the local
minimax given above.

By lemma 3.3.10, taking the sequence (r,) C R*T\D, r, — 0,and (vs) C
K 4, given by property (3), we can fix n € N such that Bar,(va) C Br(7).

Let us define A = E—f—’i%:ﬂ—), where f[ir, is given by lemma 3.4.2 and
ri,72,73 as above relatively to the r, fixed above. We fix A < %, and ¢4,
c— as above and such that c; —c_ < %— .

Then by lemma 3.3.10 we have that there exists v € C([0, 1], X) satisfying
the following properties

(i) 7(0),v(1) € 0By, (vn);

(ii) 4(0) and ~(1) are not connectible in Br(?) N {wo < };
(i) rangey C By, (vn) N {vo < ¢t}

(iv) ranger N Ay, _ya,. (on) € {p0 S e}

(v) 3R> 0 such that suppy(f) C [-R, R] for any 6 € [0,1].

By the Z-translational invariance, the path = translated by p; € Z
satisfies the properties (i)-(v) with respect to the translated point V(s —pi)-

As in section 2.2.3, we consider the surface G : @ = [0, 1]¥ — X defined
by G(61,...,6k) = S5, ~(8:)(- — pi)-

Let us fix 0 < § < min{é;,+d% , 5=}, and N > max {No, R} such that

12
vnl? < &, where R is given by (v) and 61, No € N by lemma 3.4.2.
[t|I>N

By the contradiction assumption there exist K € N, p € P(k,N) and a <
min{@&, o1} (where a; is given by lemma 3.4.2) such that By, (vn;p)NKe = OD.
So that there exists a vector field W satisfying the properties (W1) — (W5)

of lemma 3.4.2.

We consider the Cauchy problem

{%=~WM)
n(0,u) =u

and the deformation n(s, G(#)) of the surface G under this flow.
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Now, following exactly the same argument used in the proof of theorem
2.4.1 in chapter 2 (replacing K4 by v, ) we get the following properties:
(3.4.1) n(s,G(8)) =G(H) VOecdoQVseRT
( 3.4.2) thereexists i € {1,...,k} and ¢ € C([0,1],Q) such that £(0) € {8; =0},
(1) € {6; = 1} and g ;(G()) < c— + &, for any 8 € rangef.
(3.4.3) n(s,G(Q)) S Ms VseRT.
Thanks to these properties we finally get a contradiction.
Indeed, let x € C*°(R,R) with sup,cg [X(t)| < 1 be such that x(¢) =1 if
t € I;\ M and x(¢) =0 if t € R\ I;, where the index ¢ € {1...k} is given by
(3.4.2). Notice that [x ull},qpr < 8llullfnpr and (1= x)ullf,ap < 3llullfian
for any u € X.
Then, we define a path g : [0,1] — X by setting g(s) = xG(&(s)) for
s €[0,1].
By (v) and (3.4.1) we have that

g(0) = v(0)(- — pi) and g(1) = ~(1)(- — p:).

Moreover, ¢([0,1]) C Bar,(va(- — pi)). Indeed, we have that ||g(s) — va(- —

pilll* < 6+ lg(s) —va(-—pi)ll3,, and observing that ||(1—x)von(- —pi)lIF,aar <
36, we get

lg(s) = vn(- = pa)lI* < 36 + 3IG(E(s)) — val- — pi)lI7; < 48+ 3r],

since, by (W1), B, (va;p) is n-invariant and rangeG C B, (vn;p). Then,
since § < $d2 < 1, we deduce that ||g(s) — va(- — pi)||? < 4r2.

To conclude we show that ¢o(g(s)) < ¢, for any s € [0, 1] in contradiction
with (%). Indeed, we have ©o(g(s)) = ¢0,i(g(s)) and since G(£(s)) € M;s and
§< 3di <r?

s We get

#0.4(9(5)) < 9o G(E(N) + 3 la) e+

+ [ W6, GE)) — Wolt, o)) < oo +125 <
IinM
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Remark 3.4.4 For any given r > 0, k € N, p € P(k,N;) and for any
sequence a, — 0, if vy, is a multibump solution of (HS)a, given by theorem
3.4.3, then vy, — w € Ko, up to a subsequence, where w is a k-bump solution
of the unperturbed periodic system (HS)o. Indeed by lemma 3.4.1 (v, ) is
a Palais Smale sequence for ¢o and, since there exists T' > 0 such that

lim sup ||va, || < p, as n — 400, then by lemma 3.2.1 (vq, ) is precompact.

As a direct consequence of the theorem 3.4.3, we get the existence of an
uncountable set of bounded motions of the system (HS), and Theorem 3.1

is proved. Precisely, we have (see corollary 2.4.2):

Corollary 3.4.5 For any r > 0 there exist N, > 0 and «a, > 0 for which,
given a (bi-infinite) sequence (pj) C Z with pjy1 — pj = N, then , for any

a € [0, ), there exists a solution vy of (HS)«, which verifies
”’Ua — 27(- —pjT())”CI(Ij’RN) <r V] €Z

where I; = [%(pj-q + p;)To, %‘(Pj + pj+1)7To].

3.5. Almost periodic and Heteroclinic solutions

In this section we consider the perturbation W be almost periodic in time
((h5)) and assuming a uniqueness condition on the infinitely many bumps so-
lutions obtained in 3.4.5, we prove that the solutions corresponding to periodic
sequences (p;) are in fact almost periodic solutions.

Let Wy be 1-periodic, all the arguments being the same for any period
To > 0. We recall some notation already given in the introduction. Given
r>01let Z(r) = {p = (pj) CZ : pj+1 —p;j = Ny} and, for p € Z(r),
B = {ue CX(R,R) : [lu— (- —p;Tolor (5, ) < 7, V5 € B} (7 and N,
given by Theorem 3.1).

In the following, we say a sequence (p;) C Z(r) k—periodic if 3T > kN,
such that pj4r —pj =T for any j € Z.

We prove the following theorem:

Theorem 3.5.1 If (h1)-(h5), (*)o and (H) hold, then (HS), admits in-
finitely many almost periodic solutions. Precisely, for any k € N, if (p;) C
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Z(r) is a k-periodic sequence, then there exists an almost periodic solution
Vo of (HS)o in BP, for any a € [0, a;].

Proof. By corollary 3.4.5 given a k-periodic sequence (p;) C Z(r), with
pj+k — p; = T € Z, there exists v, € B2 solution of (HS)q, for any a €
[0, r]. Let 7 > 0 be such that (H) holds. We claim that v, is almost periodic.

For any sequence (t,) C R let us consider the sequence (vqo(-+t,)). Since
it is bounded togheter with its first and second derivative (see corollary 2.4.2),
by Ascoli’s theorem, we have that vs(- + t5,) converges, up to subsequences,
in the C}, topology.

Now, arguing by contradiction, let us suppose that v, is not almost
periodic. Hence, by the Bochner’s criterion (see Introduction) there exists a
sequence (t,) C R such that the sequence (vy(- + t,)) is not precompact in
L*(R,R"), i.e., there exists A > 0 such that for any n € N,

(3.5.1) el + ) = ttalloo = A

with va(- +7n) — ue in the C}, topolgy.

Note that since v, is uniformly continuous, we can always assume (tn) C
TZ. Indeed, let t, = 7, + knT, where (1,) C [0,T) and k, = sup{n € Z :
nT <t,}, then 7, — 7, up to subsequences and ||va(-+knT) —ua(- —7)|lco >
[va(: +22) — ttalloo = o(1).

By (3.5.1), there exists a sequence (s,) C TZ, s, — oo such that, for
any n € N,

(3.5.2) sup |va(t +n + sn) — ua(t + s0)| > 3.
1€[0,T]

Note that, setting R > ||vallco, since W{(-,z) is almost periodic uniformly
w.r.t. |z] < R, we get by the Bochner’s criterion that W{(-+%,,2) — W,(-,z)
in L°(R,R") uniformly in |z| < R and it is easy to check that W/ satisfies
(h4) and (h5). Then, since Wy is 1-periodic it turns out that u, is a solution
of the equation & = z — W{(¢,z) — aWi(t,z).

By Ascoli’s theorem, there exist wq, and W, € C(R,R") such that, up

to subsequences, v (- +tn + Sn) — We and ua(- + 8p) — W, in C}OC(R,R").
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Arguing as above we have also that Wi(- + &, + sn,z) — W!(-,z) in
L*(R,R"), and, since the convergences are uniform, also W](- + s,) —
W{(,z), uniformly in |z| < R, with W] satisfying (h4) and (h5).

Therefore, w, and W, are both solutions of
(3.5.3). i=q-Wit,q) — aWi(t,q)

Furthermore, since pj+r — p; = T and t,, s, € TZ we have that va(- + 1, +
sj) € B? for any n,j € Z. Then, passing to the limit in the C[,_ topology,
we get wy € BP as j =n — 40 and, as n — +oo first and then £ — 400,
we have also W, € BE.
Collecting these results we have that, by (H), wy = W4, in contradiction
with (3.5.2).
L]

To prove the existence of heteroclinic solutions we need a preliminary
lemma about sequences of e, -periods. Recall that we denote by P, , the set

of e-periods w.r.t. the compact set |z| < R (see def. 1.1).

Lemma 3.5.2 Let f(-,z) € C(R,R) be an almost periodic function uni-
formly w.r.t. to z in compact set of RY, then for any R > 0 and T € R

there exists a sequence (7,) C P, n NTZ, e, — 0.

Proof. We recall that for any R >0 and ¢ >0,if 7 € P, then —T € P, ,
so that we consider in the following only P, , N TN, being the argument the
same for the negative part. Let us fix R > 0. For any € > 0 let us define
the set Pge = P, , N[kT,(k+ 1)T], for k € N,. Then there exists a sequence
(k5) C N, with k§ — +oo for j — +oo, such that Py # © for any j € N.
Let Gk; € Pk;, we have k; =sup{n € N : nT < Gk;}. Let us denote
75 =0k — KT € [0,T).

Taking a sequence €, — 0 we define the sequences (1, = ) C [0,7)
and (k, = k&) C N we have k, — 400, and 7, + kT € P, ,, for any
n € N.

Then, up to a subsequence, 7; — 7, as j — +oo and, since f(-,z) is

uniformly continuous uniformly w.r.t. |z| < R, we get that (F+k,T) € P, R,
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with €, — 0. Indeed,
sup [[f(- +7 + knT,2) = f(-;2)le0 < sup [[f(- + 7oy 2) — F(- + 7, 2)[|oot
lz|<R |z]<R

+ sup ”f( + Tn + knT,m) - f(,l')”oo
[z|<R

< sup [|F(- + Tny2) = F+7,7)]|o + €n = En — 0
|z|<R

If 7= %T, p,q € N, then, setting T,, = (p + ¢kn)T, for any n € N, we
have (T5,) C P, ,r N TN. Indeed, we have V|z| < R,

sup If(t + Tnyz) = f(t,2)] < sup |f(t + (g —1)(F + kaT), z) — f(t,2)|+
+ igﬂg’lf(t +q(F +knT),z) — f(t + (¢ — 1)(T + ko T), z)|
< sup |fE+ (g = 1)F +kaT),2) — f(t,2)| +&n

< ... < g6,

Hence the lemma is proved, since gé, — 0.

If, otherwise, 1;: € [0,1) \ Q, then there exists a sequence (a) C Q,
such that lim;j_,e 32 o =% and |L - a’] < b2 as 7 — +oo (in fact there are
infinitely many such a sequence, see e.g. [Ro]) Hence, since b; — +oco0, we
get also |bj % —aj| — 0 as j — oco. Since f(- + (a;j — b;%)T,z) — f(-,z)
in the uniform topology (uniformly w.r.t. |z| < R), there exists (§;) C RY,
dj — 0 such that supj,j<psupser |f(t + (a; — b; )T, z) — f(t,2)| < 6;.

Moreover since €, — 0 for any 7 € N we can choose n; € N such
that &, < b €j. Finally, setting T} = (a; + bjkn; )T, we claim that (Tj) C
ng,R NTN and 5 — 0, as j — +o00. Indeed, for any |z| < R we have

sup |f(t + T, 2) = f(t,2)] < sup |f(t + (e - b 8)T + (F 4 kn; )b, T, z)—
= f(t+(a; = bF)T,z) + sup |f(t + (a; = b;7)T,z) — f(t,2)|

S sup f(t+ b (7 + ka; ), 2) = f(t, 2)| + sup|f(t +(a; — bj7)T,z) — f(t, )|
< bjén; + 945

setting Sj = bjén; + 65, we have 5J~ < € +46; — 0 and the lemma is proved.
U
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Now, we have:

Theorem 3.5.3 Let (h1)-(h5), (*)o and (H) hold and let u}, and ug be
almost periodic solutions of (HS)q given by theorem 3.5.1, then the system
(HS), admits infinitely many heteroclinic solution connecting ut to uj.
Precisely, there exist infinitely many solutions v, of (HS)a such that for any
€ > 0 there is T > 0 such that

llva — ud|lor (T 4+00)mY) < €

llva — ugllor((~co,—T)RY) < €

Proof. Let u} and uJ be almost periodic solutions given by theorem 3.5.1
and corresponding to two distinct k-periodic sequences (pj'),(p]—) C Z(r),

T =T, for any j € Z. We have

with pj‘+k —~p;.F = T4 and pj, — p;

ut € B£+ and u; € BE .

Consider a sequence (p;) C Z(r) such that there exist j— < g4 for which
Dj :p;, for all j > j4, and p; = p; , for all 7 < j-.

Then by corollary 3.4.5 and (H) there exists unique v, € BE solution of
(HS)s. We claim that v, is a heteroclinic solution connecting u} and uy.

Let R > max{[[valloo, [1utlloos [uzlleo}. Since Wi(-,z) is almost pe-

riodic, thanks to lemma 3.5.2, there are two sequences rt = kfTy and
7 =—k;T_, n €N, with k* € N, such that, as n — +o0, Wi(-+15,z) —
Wi(-,z) in C(R,R"), uniformly for |z| < R.

+

«
have that the sequences (u}(-477)) and (ug(-+7,;)) convergein C'(R,RY),
up to subsequence, and, since (Tff:) are sequences of €,-periods, e, — 0 for
Wi (-,z) for |z| < R, it turns out that the sequences (uE(-+71Z)) converge to
solutions of (HS)s. Furthermore, since (u(-+ ) € Bfi , for any n € N,

Moreover, since uE are almost periodic, by the Bochner’s criterion, we

these solutions belong, respectively, to B£+ and B?" . Then, by (H), we get

that uZ(- + 7F) — uZ, and hence the sequences (1) are in fact sequences

of e,-periods, €, — 0, also for u} and uj , respectively.
Let us denote in the following ||-|la = ||-|c1(a,rvy, for any A C R and let
us define the sequences v}, = vo(-+7,7) and v7 , = vg (-+7,), n € N. Now,

we claim that there exists € R such that v}, — ul in C((t,+00),RY) as

n — 400 and vy, — uy in C*((—o0,—%),R") as n — +o0.
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Let us prove that v}, — uf in C'((¢,+00),RY). By Ascoli’s theorem,
vj,n — v, up to subsequences, as n — +oo, in the C}_(R,R") topology
and v € C*(R,R¥) is a solution of (HS)s. Moreover, since p; = p}-" for any
j =771, it is easy to see that v € B’T’+. Hence, by (H), we get v = u}.

Arguing by contradiction, let us suppose |[vf . —uflsny > A > 0,
then we can assume that there exists a sequence (t,) € Z such that |[vZ (-+
tn T4 ) —ud (-+taTe )0,y = 2. Then, calling ws and W, the limit points, up
to subsequences, in the C},_ topology of (v} ,(-+t.Ty)) and (u(-+t,T4)),
respectively, we have that wgy, Wy € B£+ and, since wo # We, by (H) we get
a contradiction.

The same argument applies to prove that vy, — ug in C*((—o0,—t),R"),
as n — +oo.

The above claim implies that for any € > 0 there exists 7 € N such that
for any n > 7, ||vi, —ulllpsn < 5, lvan — vallgc—y < 5. Moreover,
since (r7) and (7,;) are sequences of €,-periods, €, | 0, for u} and uj,
togheter with them first derivatives, respectively, we have also ||[uZ — uE(- +
i lcrwryy < £ for any n > i ((eventually taking n larger). Hence, setting
T = T(e) > max{r +f,—m; + 1}, we get

[ve = uflliesty < od s = udllpsey + lud — v+ 7 D)lse <6

and, analogously, ||va — ug ||jt<—1) < €.
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Chapter 4

Multibump solutions for a class of almost periodic, second
order Hamiltonian systems

4.1. Introduction

In this chapter we study the class of second order Hamiltonian systems
(HS) i=z—W'(t,z)

where we assume
(h1) W' e C(R x R¥,R¥) and W'(t, -) is locally Lipschitz continuous, uni-
formly in time;
(h2) W(t,0) =0 and |W'(¢,q)| = o(|g|) as |¢| — 0, uniformly in time;
(h3) there exists § > 2 such that: BW(t,q) < W'(t,q) - ¢ for any (¢,q) €
R x RY; there exists (£,§) € R x RY such that £|g|* - W(%,3) < 0;

In addition we require
(h4) 3(t,) C R, t, — Foo, as n — *oo such that W'(t + tn,z) — W'(t,z)

VteR, z e RY.

The assumption (h4) says that at least one of the “problem at infinity”
(see section 1.2.2) is equal to the problem itself. We prove that this condition
is sufficient to prove the existence of homoclinic solutions. We have:
Theorem 1. If (h1)-(h4) hold, then the system (HS) admits infinitely many
homoclinic solutions.

The proof of the above theorem is based on an alternative. In fact what
we prove is that whenever

() the set of homoclinic solutions of (HS) is at most countable.

the system (HS) admits multibump homoclinic solutions. Precisely, we have:
Theorem 2. If (h1)-(h4) and (x) hold, then there is a homoclinic solution
v of (HS) for which for any r > 0 there exist N, € N and i, € N such that
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for any k € N and py,...,px € (tn)|n|>n,, With pjy1 — pj > N, there exists
a homoclinic solution v of (HS), which verifies
“U—i’—("‘Pj)Hcl(I,«,lRN) <r Vj=1k

. — [Pi—1FP; PitPis
where I; = [H=3=bL HTH4L]

Remark 4.1.1 We remark that assumption (h4) is weaker than

(Rd) W'(-,z) € C(R,R) almost periodic uniformly on compact sets of R¥ (see
def. 1.1).

Indeed, in this case the sequence (¢,) in (h4) can be realized as follows.
For any R > 0, by (h4) there is a sequence (tn,5) C Pe, », with €, — 0,
such that ¢, , — doo as n — £oo. Then, taking a sequence R; — 400, we
can select, by a diagonal process, the sequence t, = t, , that realizes the
sequence (t,) in (h4) (in fact in this case W'(: + t,,2) — W'(-,z) in the
uniform topology of C'(R,R), uniformly on compact sets of R¥).

In the case of almost periodicity we can state a stronger result. Indeed
in this case the “bumps” can be located along the set of e-periods, for e
sufficiently small.

We have the following result:
Theorem 3. If (h1),(h2),(h3), (h4) and (%) hold, then there is a homoclinic
solution v of (HS) for which, setting R = ||U||ec + 1, for any r > 0 there
exist N. > 0 and ¢, > 0 such that, for any sequence (p;) C P, ,, with
Pj+1 — pj = N, there exists a solution v of (HS), which verifies

lv—o( —pi)ler; vy <r  VIEZ

where I; = [pf‘;’LP" , iFPi4L] Iy addition v is a homoclinic solution whenever
the sequence (p;) is finite.

We recall that in the almost periodic case the existence of one solution for
(HS) was firstly proved in [STT] and a first multiplicity result for (HS) (i.e.
infinitely many solutions and existence of multibump solutions) was given
in ([CZMN1]) under slightly more restrictive assumptions. Let us mention
also [R3] and [R4] for similar multiplicity results for almost periodic singular

Hamiltonian systems.



4. Multibump solutions for a class of second order, almost periodic ... 73

4.2, Preliminary results

Firstly note that by (h2) we can fix § > 0 such that
(4.2.1) |W'(t,z)| < 3|z for any |z| < 4.

Therefore, in particular, we have that W verifies assumptions (H1) and (H2)
of chapter 1 and all the results in sections 1.1 and 1.2 hold true for the action

functional

o(u) = % lul|® — / W(t,u)dt u € X.
R

We have o € C}(X,R) and ¢'(w)h = (u,h) = fp W'(t,u)hdt, for any u,h €
X.

We look for homoclinic solutions of (HS) as critical points of ¢. Let us
denote K = {u € X \ {0} : ¢'(u) = 0}.

Furthermore, by assumption (h3) (see section 1.3) we have that ¢ has

the geometry of the mountain pass theorem. We introduce the class of paths

T = {y € C((0,1],X) : 7(0) =0, ¢(v(1)) <0}

and we define ¢ = infer maxsepo,1] ¢ (7(s))- By the mountain pass theorem
¢ > 0 and there exists a Palais Smale sequence at level ¢. Moreover, the
Palais Smale sequences for ¢ are bounded and at non negative levels.

Given 7 € R, let us define the translated functional or(u) = Fllull® =
JrRW(t— r,u)dt, for u € X. Note that we have

(4.2.2) or(u(- — 7)) = p(u) and |ler(u(- =)l = 'l
In the following, we denote 7% u =u(-—7), for 7 € R and v € X.

4.3. Palais Smale sequences and problems at infinity

Let us recall the characterization of bounded PS sequences given in lemma

1.2.7.

Lemma 4.3.1 Let (un) C X bea PSsequence. Then there are vo € KU{0},
ke NU{0}, v1,...,uk € X, with ||Jvjllec 2 § (given by 4.2.1) and sequences
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(tn)y--- ,(iﬁ) C R such that, up to a subsequence, as n — +oo, It{‘! — oo,
i+l —t] — too, forall j =1,...,k, and

k .
[un = (vo+ > _vi(- = )| = 0.
i=1

As stated in the previous lemma a PS sequence not strongly convergent
carries mass at infinity. Now we prove that the masses v; € X given by lemma

4.3.1 are in fact critical points of problems at “infinity” defined as follows.

Lemma 4.3.2 For any sequence (t,) C R there exists W : Rx R - R

such that, up to subsequence, as n — +o0,
VW( +tn,z) = VW (-, z) and W(- +tp,z) = W(-, )

w* — L*(R,R") and w* — L*=(R,R), respectively, uniformly on compact sets
of RY. Moreover VW(t,-) € C(RY,R¥), it is locally Lipschitz continuous
uniformly with respect to a.e. t € R and |VWx(¢,z)| = o(|z]) as |z| — 0,

uniformly with respect to a.e. t € R.

Proof. Let {zj}jen C RY be a countable dense set of RY, by a diagonal
process we can select a subsequence of (¢,) C R, that we denote again by (t,),
such that, for any j € N, VW(: +t,,2;) = F(-,z;), w* — L=®(R,R"). Now,
given z € RY and ¢ > 0 we can choose ; € {z;}jen such that |VW(t,z) —
VW(t,z;)] < € for any t € R. Then given f € L}(R,R"), for any z €
RY it is easy to show that the sequence ([, VW (t + tn,z)f(¢)dt) C R is a
Cauchy sequence. Therefore for any z € R" there exists F(-,z) € L*(R,R")
such that VW (- + t,,z) — F(-,z) w* — L®°(R,R"). Analogously one can
prove that for any z € R" there exists W (-,2) € L*(R,R) such that
W( +tn,z) = Weo(-,z), w* — L=°(R,R).

We claim that the map z — F(¢,z) is locally Lipschitz continuous
uniformly with respect to ¢ € R\ N, with |[N| = 0. Indeed, by (hl)
given R > 0 we have |VW(¢,z) — VW(t,y)| < Cgrlz — y| for any |z|,|y| <
R and t € R, then, since || - || is w*- semicontinuous we immediately
get that for any |z|,|y|] < R there exists Nyy C R, |[Ngy| = 0 such that
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|F(t,z) — F(t,y)| < Crlz —y| for any ¢ € R\ N;y. Now, we want to show
that in fact this last property holds for t € R\ N, with N independent
on the points z,y € RV and |N| = 0. Let consider the countable fam-
ily of points {y;}jen = BR(0) N {zi}ien (where BY(z) is the ball in RY
of center ¢ and radius R) and the sets Njx C R, with |Njk| = 0 such
that |F(t,y;) — F(t,yx)l < Crly; — yx| for any ¢ € R\ Njx. Then, given
z € BY(0) there exists a sequence (yj,) C {yj}jen such that yj — z as
n — +oco. Then, setting N = Uj rez Njk, we get

sup |F(t,y%,) — F(t,y5,)| < Crlyj, — 5,1 =0
teR\N
as n,n' — +oo. Hence (F(t,y},)) converge uniformly on R\ N, as n — +0o0
and it is easy to see that the limit is in fact F’ (t,z).
Now, for any |z|,|z] < R there exist sequences yj — 2 and y5, — .
Then, as n — oo and for ¢ € R\ N, we have

|F(t,2) = F(t,2)] < [F(t95,) — F(,95,)1 +o(1)
< Crlyj, =y, | +0(1) < Crle — 2| +o(1).

Since |N| = 0 the claim is proved.

By an analogous argument one can prove that for any € > 0 there exists
§ > 0 such that for any |z| < § we have |F(t,2)| < €|z| uniformly w.r.t. a.e.
teR.

Now, we prove that VWe(t,z) = F(t,z) for all z € RY and a.e.
t € R. Firstly, we show that given f € LY(R,R") and setting gn(z) =
Jg VW (t+tn, 2) f(t)dt and g(z) = Jg F(t,)f(t)dt wehave that gn(z) — g(2)
uniformly on compact sets. Given R >0 and € > 0 there exists z1,...,2¢ €
{z;};en such that for any |z| < R we can choose z; € {z1,...,zx} such that
VW (t,z) — VW(t,z;)| < e and |F(t,z) — F(t,z;)| < € for a.e. t €R. Then

we get as n — 00

lgn(z) — g(2)] < gn(@) = (i) + lgn(z:) — g(zi)| + lg(=:) — 9(2)]

< 2¢||fllpr +  sup lga(z;) — g(25)l-
je{1,...,k}
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Moreover, by the dominated convergence theorem we have g,(z) = V -
JgW(t + tn,z)f(t)dt, for any n € N and, by the uniform convergence on
compact sets, we get [ F(t,z)f(t)dt = [ VWeo(t,z)f(¢)dt for any f €
L'(R,R") and we can conclude that F(t,z) = VW(t,z) and We(t,-) €
C1(R™,R) for a.e. t € R.

J

Moreover, we have the following result:

Lemma 4.3.3 Forany v € X, as n — 400,

(i) VW(- +tn,v) = VWs(-,v) weakly in L*(R,R")
(ii) W(- +tn,v) = We(-,v) weakly in L}(R,R)
where (t,) C R and W, are given by lemma 4.3.2.

Proof. We prove (i), being the proof of (ii) analogous. For any z € RV let
us denote Up(t,2) = VW (t+1t,,2) — VW (t,2z) and, given v € X ,let R >0
be such that [v(¢)] < R for any t € R. |

By (hl) and lemma 4.3.2 we have that for any € > 0 there exists p > 0
such that for any |z|,|y| < R and |z — y| < p we have that sup, |Un(¢,z) —
Un(t,y)] < € for a.e. t € R. Moreover, by (h2) and lemma 4.3.2 we can
assume p > 0 be such that sup, |Un(¢,z)| < €|z| for any |z| < p for a.e.
t € R. Now, let consider the points zg = 0 and z1,...,z; € BY(0) such that
B (0) C ULoBY (z:). Then, we set Ag = BY(0), A; = Bf,v(a:j)\uf__féAi for
J=1,...,k,and xi(t) = xa,(v(t)),for : =0,...,k. Notice that the functions
Xi are measurable, Zf:o xi(t) =1 and xi(t)x;(t) = dijxi(t) for a.e. t €R
(where 6;; = 0 if ¢ # j and §; = 1). Notice also that for ¢ > 1 we have
suppxi C {t €R : v(?)| = p}.

Finally we set U, (t,v(t)) = Zle Xi(t)Uxn(t,zi). We have, for a.e. t € R

Xo()Un(t,v(2)) = Un(t, ()] = xo(8)|Un(t, v(t))| < exo(t)]v(?)]
XiOWa(tv(t) = Un(t, o) S exi(t) Vi1
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Then, for any f € L*(R,R") we get, as n — +0o0,

k
| [oneysan <31 [ xnttw) = Ot o s+

1=0 R

k
£ 301 [tttz < elellflze+

k
46> [l +o(1) S <Clflzs + o)

and (i) follows since e is arbitrary.

We define
H*(W)={We :RxR" =R : 3(t») C R such that
W+ ta,) "5 Wool,2)}-
Remark 4.3.4 Notice that assumption (h4) require in particular that
W € H*(W). Moreover, if (h4) holds we have that H*(W) = H(W) (see

Bochner’s criterion) and the convergences are in fact in the uniform topology

of C(R,R) uniformly w.r.t. compact sets of RM.

Then, for Woo € H*(W) we introduce the functionals at infinity:

o () = Hull? - / Wao(t, u(t))

Thanks to lemma 4.3.2 and arguing as in lemma 1.1.3, it turns out that
¢w. € CHX,R) and ¢}, (u)h= (u,h) — [z VWeo(t, u)hdt.
We denote by Koo the set of critical points at infinity, 1.e.,

Koo ={ve X\ {0} : W € H*(W) such that c,o'woo (v) = 0}.

Remark 4.3.5 The critical points at infinity v € K are weak solutions
of the corresponding Euler-Lagrange equations b =v— VWx(t,v). More-
over, since by lemma 4.3.2 we have v — VWoo(-,v) € L*(R,RY), we get
o € HY(R,RY) and hence [v(t)| + [0(¢)] — 0 as t — Foo.
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Now, we improve lemma 4.3.1 giving a more precise characterization of

the PS sequences by means of critical points at infinity.

Lemma 4.3.6 Let (u,) C X be a PS sequence. Then there are vy €
Ku{0}, k € NU{0}, v1,...,vkr € Koo and sequences (t}),...,(t¥) C R such
that ||vi]leo > & for all i = 1,... ,k, and, up to a subsequence, as n — oo,

[t1] — +oc0, tit! —t) — 4o and
l[wn = (vo + sz( ~ )l = 0.

Proof. 'We have only to prove that the points v; € X, for j =1,...,k given
by lemma 4.3.1 belong to K. In that lemma we get that for 7 = 1,...,k
the sequences u), = 7 * (ul™! — v;_;) (with 4% = u,) converge Weakly to
v; € X. By lemma 4.3.2, up to subsequences, VW (- —(tL 4...+tL),z) * =2

VWi (-, z), for j = ,k. We claim that go ; (vj) = 0. Indeed, for
any h € C§°(R,R"), by (4.2.2), (hl) and by (z) of lemma 4.3.3, setting
Wi snlz)=W(~ (t, +...+tL),z), we have, as n — +c0,

!, )bl < b} = [ VWA 0] +o(1)
g|<(tzl+...+t}l)*un,h)—/vago(t,v,-)hdt|+o(1)
SOl (Eh A+ tn) wun)|+

/IV i (6 (4. ) *u,) — VWi (tu N||A| dt+

/Wv o (B ul) = VWi 4 (8,05)[|R] di+

+|/(v Sl (t,v) — \VAY ') 2 (t,vj))hdt| + o(1)

< CZ/ (2 + ...+ 1t} ) % vi_q||h|dt + C lul — v;||h|dt + o(1)
i=1 Y supph supph
and we conclude |¢' . (v;)h| = 0 for any 7 = 1,...,k, since the sequences
wl
(¢, + ...+ t.) % v;1), for i = 1,...,7, and (ul — v;) converge to zero in

loc(R RN) D
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4.4. Mountain pass-type critical point and compactness properties

To begin we state in this more general setting the properties of the func-
tions T : X — [~o0,400], with & € (0,6), (& given by (4.2.1)). We refer to
chapter 2 for the definition of T gt.

The continuity property of Tg‘: (see lemma 2.2.7) still holds in this case

near the critical points at infinity. Precisely, we have:

Lemma 4.4.1 Let (u,) C X bea PS sequence such that t,*u, — v weakly
in X, for some sequence (t,) C R, then

(1) if the sequence (T; (tn*un)) C R is bounded then Ty (tn *un) — T5 (v)
and, analogously,

(i3) if the sequence (T; (tn*un)) C R is bounded then Ty (tnxun) — T5 (v).

Proof. Firstly note that, arguing as in lemma 4.3.6, it is easy to see that
v € Koo and ||v]|eo > &, where ¢ is given by (4.2.1). Therefore T, (v) € R.
Moreover, since 9 = v — VWeo(t,v) for a.e. t € R (see remark 4.3.5), where
Weo is given by lemma 4.3.2, we can apply exactly the same argument used

in the proof of lemma 2.2.7 to get the result.
O

In the following let us assume:
(%) there exists ¢* > ¢ such that K* is a countable set.

Then, fixing 6§ = —g—- (6 given by (4.2.1)) and setting T* = T;:t, we have,
thanks to lemma 4.4.1 that ’

(4.4.1) there exist t4,t— € R, n > 0 and i > 0 such that [|¢'(u)|| = i for
any u € {p < ¢*} for which T*(u) € [t —n,t* +n] =17 or T (u) €
[t~ —nt ™ +n=1".

Let us fix h* € (0, 3(c* —¢)). We define I¥={ueX : THu) e IF}n{p <
c+h*},and, for TER, TxIF ={ue X : TE(u)+71 € IF}N{p < c+h*}.

Now we prove that under the assumptions on the time dependence (h4)
or (h4) we get the existence of a sequence 7, — £00 as n — £0o0 such that
for any U € Unez Tn*IT UUpez Ta* I~ we have that ||¢(u)]| is bounded from

below by a positive constant. In this section we prove this result assuming
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(h4) and we refer to the appendix (lemma 4.5.7) for a proof when instead the
weaker assumption (h4) is considered.
The almost periodicity of the potential reflects on the functional in the

following way:

Lemma 4.4.2 For any ¢, R > 0 there exist & R > 0 such that if ||ul| < R
and T € P ., then,
@ e @l = lle' (T )l <e,

(i) lep(u) —@(rxu)| <e.

Proof. If |u|| < R, then by (1.1.1) |juflec < R, where R = MR. Then by
(h1) and (h2) we have that for any € > 0 there exists § > 0 such that for any
T € R and |z| < R, |W/(t,z) — W'(t +7,2)| < (5 + %sup[IlSR|W’(t,m) -
W!(t+ 7,z)|)|z|. Let € = e5% and h € X, with ||| < 1. Then for any

TE Pg,R we have

(" (W)= (7 x u))h| < A (W' (t,u) = Wt + 7, )| |h| dt

<G5+ s W(t,0) - Wt + o)) [ Jullbl < o
lo|<R R

and (i) plainly follows. The proof of (ii) is analogous. |

Lemma 4.4.3 There exist u > 0 and a sequence (mp)nez CR, 7, — Fo0,
as n — Foo, with 7; < Ti41, for all 1 € Z, and 79 = 0 , such that for any
U € UnezTn * T UlUnez n * I~ we have ||¢'(u)|| > 4.

Proof.  First of all note that, by (h3), there exists R > 0 such that ||¢'(u)|| >
fi for all ||ul| > R and u € { < ¢*}, where i is given by (4.4.1).

Moreover, by lemma 4.4.2 we have that for any e > 0 there exist §, R > 0
such that if ||ul| < R and 7 € P, then [||¢'(u)|| — [|¢'(7 * u)||| < € and
lp(u) = @(r * u)] <e.

Therefore, choosing € < 1 min{\,c* — (¢ + h*)}, by (h4), we can find a
sequence (1,) C P p, Ta — £00 as n — Foo, and 7; < 741, for any 1 € Z,
such that, setting p = —i}, we get [lo'(w)|| > ¢ v € Unez Tn* I T UUnez Tn*x I~ .

O
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Then, given v € (0, ) we define the set
Ar={ue X : ¢ <vin{e <c+h’}
Moreover, for p € (0,p), with p given by lemma 1.2.4, 4,5 € Z and (r;) CR

given by lemma 4.4.3, we consider the sets
U= AN {weX : ful <p),
AL =A"N{ueX : TT(u) € tT+n—mi,tT —n—7i_1] and
T™(u) € [t +n—75t" —n—7jal]}

Note that the Palais Smale condition holds in AY; (see lemma 3.3.4).
Moreover, As we already proved in lemma 3.3.5, for v sufficiently small the

sets (AY;) C X are uniformly disjoint. Precisely, we have:

Lemma 4.4.4 There exist 7 € (0,u) and p > 27 such that A" = U} U

Uijez A%, UE C{p < 5} and

(44‘2) lnf{d(A?]a ;7']')’03(*4?1,7/(;) : (Za]) # (il,j/) € Zz} =71 > 0.
We set A;j = A}, for i,7 € Z and Uy = UJ . Moreover, given r € (0, ),
where 7o is given by lemma 3.3.5, we denote A, = min{iz‘/r, 5,c+h* —c}.
Then, as in chapter 3, thanks to lemma 4.4.4 we get:
Lemma 4.4.5 For any r € (0,%) and h € (0,A,) there is a path v € T’
and a finite number of sets A;,j,...Ai ;. C A¥ for which
(¢) max,ep,1)e(v(s)) < c+h;
(1) if y(s) € Uk_1Br(Ai,;,) then o(v(s)) < c— A,.
Let usfix 7 € (0,22) and h € (0,Ar), thenlet v € T and Ai, j,, ..., Aiyjp C
A? | satisfying (¢) and (42) of lemma 4.4.5 for r = 7 and h = h. By the def-

inition of the minimax level ¢, there exists p € {1,...,k} such that, setting

-

A = A;j, , there exist s1,s2 € [0,1] for which ug = ~(s1),u1 = 7(s2) €
OB:(A)N{p < c— A}, 4(s) € Bx(A) for any s € (s1,52) and ug, uy are
not connectible in {p < c}.

Let us consider the class
T'={y€C([0,1], X) :7(0) = uo, (1) = us,
rangey C Br(A)U {¢ < c— 1A:})
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Since T' # @ we define ¢ = inf. cr max,ep,1) ¢(7(s)) and we have ¢ <
c<c+h<c+h*.

Let us denote by K, the compact set of critical points X N A.

Following the arguments used in section 3.3 we prove the existence of
a critical point for ¢ of local mountain pass-type (see def. 3.3.2) with two
additional property: the “annuli” and the “slices” properties (see properties
(2) and (3) in section 3.3).

Let D be the set of distances between points in K 4. Then we get the
existence of a critical point ¥ such that:
(1) Annuli property: For any r € (0,1)\ D, 3d, € (0,%) and p, > 0 such

that

u € Arsd, r+34,(0)N{p < c*hv € Ka = |lo'(uw)]| > pr.

(2) Slices property: For any open interval I C (0,c¢*), 3[a,b] C I and 30 > 0
such that

u€B:)N{a<p<b}= |lo'(w)] > 0.

(3) Topological property: 3(v;) C KanN{p =¢}, 3(r;) C (0, ))\D, r; — 0,
for which By, (v;) C B£(9), v; — 0 and such that for any j € N and for
any h > 0 there exists v € C([0,1], X) satisfying:

(1) 7(0),7(1) € 0By, (v;) and they are not connectible in B(7) N {p <
¢}
(1) rangev € By, (v;) N {p < &+ h};
(1) rangey N A, _1q - (vj) € {p <e— LY
(i) IR > 0 such that suppv(s) C [~ R, R] for any s € [0,1].
where hy; = 1 min{Az, pr, dy; }.

We remark that in the previous chapters, since we were dealing with the
periodic case, the properties (1), (2) and (3) hold unchanged with respect to
the translated point o(-—7) whenever 7 € R is a multiple of the period of the
potential. Here we do not have periodicity anymore, however thanks to (h4)
or (h4) we have that these properties hold, up to a arbitrary small error, for

the point o(- — 7) whenever 7 = ¢, with |n| sufficiently large, in the case of
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(h4), or 7 € P, for € sufficiently small and R = M(||5|| + 7) (M be given
by 1.1.1) if (h4) is assumed.
In this section we prove this result only in the almost periodic case (h4)

and we refer to the appendix (lemma 4.5.8) for a proof in the “recurrent” case

(hd).

Lemma 4.4.6 If (h4) holds (resp. (h4)) then for any j € N and for any
hoe (0,25, there exist [If,13] C (64 2h,2+2h), [I7,15] C (@ — h,e — Lh),
v>0, ; >0 and §R>0 (resp. i € N) such that for any 7 € P, (resp.
T =1, with |n| > n) we have
(1); v € Ay—2d,; rjt2d,, (T v;) N {p <+ 2R} = [l@'(u)l| = 15
)i weBg(r+)N{lf Se<FIU{ly Se<LH ='Wl 2 v;
(3)i

(i) v+(0),7-(1) € OBr,; (7 = v;) and they are not connectible in Bz (r *

)N{p<e—1};

(i) rangevyr C By, (T *v;)N{p <+ 2h};

(iii) range e NV A, _ya, (7% 0;) C {p < 2= 552}

(iv) 3R > 0 such that suppvy,(s) C [-R+ 7,R+ 7] for any s € [0,1];
where the sequences (r;) and (vj) are given by property (3) and we put
v-(s) = T x~(s), v be given by the property (3) of v for this values of j and
h.

Proof. Let us fix 7 € N and h € (0, hg’ ). By the slices property (2) there

exist [at,b%] C (¢+ 2h,e+2h), [a7,07]) C (¢ — h,e— 1h) and © > 0 such
that if uw € B:(9) N ({a™ < ¢ <bt}U{a™ < ¢ <b7}), then [|¢'(uv)]| > 7.
Let i, 1] € (a*, %), (1713 C (a=,b-) and € = min{ja® — B2, [b* ~ 3]}

Let € < 515 min{7, pr, , &, %}, where pr; is given by the annulus property

(1), and o by the slices property.
By lemma 4.4.2 there exists € R > 0 such that if ||u|] < K (here K =
[o]| +7) and 7 € P; p then

(4.4.3) ')l = lle' (7 =Wl < Ce and fp(u) = @(r = )| < Ce.
for any 7 € P .. By properties (1)-(3) of 7, putting i; = “—;L, v = %, we

get (1),(2); and (2¢) — (2i2) — (iv) of (3); by direct computations.
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We prove (7) noting that if there exists g € C([0,1],X) such that g(0) =
7-(0), g(1) = 7-(1) and ¢([0,1]) C Bz (F*+v)N{p < ¢—21, then, since € < 2,
the path (—7)* g connects the points v(0) and (1) in Be(v)N{p <e— by
which is in contradiction with the property (3)-(i) of . U

4.5. Multibump solutions

We prove only Theorem 3, since Theorem 2 can be obtained following
exactly the same arguments, just restricting the locations of the bumps along
the sequence (t,) given by (h4).

So let us assume (h4). We use the same notation introduced in the
previous chapters. The only difference here is that we replace the sets P(k, N)
introduced previously with the following sets: for k € N, N > 0, ¢ > 0 and
R =||7)|cc + 1 we set

P(k,N)={(p1,---,Pk) € (Pe,r)* : pit1—pi > 2N2+3N Vi= 1,...,k—1}.

Note that if otherwise (h4) is assumed, the points p;,...,pr has to belong to
the sequence ().

Now, following essentially the proofs of the theorems 2.4.1 and 3.4.3, we

prove the main results of this chapter.

Theorem 4.5.1 Let (hl), (h2), (h3) and (h4) and (%) hold. Then for any
r > 0 there exist ¢, > 0 and N, € N such that, for any k € N, p € P, (k,N;)
we have B,(0;p) N K # @, where © is the critical point of local mountain
pass-type. '

Proof. Arguing by contradiction, there is » > 0 such that for any N > 0
and € > 0, there exist k € N and p € P.(k,N) for which B,(7;p) NK = Q.
We can assume r < min {#,r,,,}, where r , is such that |W'(t,z)| <

t € R, and 7 is defined in the local minimax given

1/8
%lx[ for any |z| < Tirss
above.

Taking the sequence (r,) CR*\ D, r, — 0, and (v,) C KaN{p <&},

given by property (3), we can fix n € N such that Bs,, (vn) C B(9).
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Thanks to lemma 4.4.6, we can construct in B,(v,;p) a common pseu-
dogradient vector field for ¢ and the truncated functionals ¢; (see appendix
A).

Let us fix vy, ro, 73 such that r, — %drn <ry <rg<ryg <TH— %—drn,
By property lemma 4.4.6, for any h € (0, %hrn), there exist c¢y,c— and A >0
such that the intervals [c— — A,c- + 2\ C (= h,e— L), [ey — N, ep +2)] C
(€4 3h,e+ 2h) verify (2),. Then we have:

Lemma 4.5.2 There exist pr, > 0, ¢ > 0, and é; > 0 such that: V§ €
(0, 1) there exists No € N for which for any k € N and p € P (k, No),
there exists a locally Lipschitz continuous function W : X — X which verifies
(W1) maxigi<r W), £ 1, ¢'(u)W(u) 20 Vu € X, W(u) =0 Vu €
X\ Bry(vn;p),
(W2) @i(uW(u) 2 pir,, if 71 < lu—vn(- —pi)lln <72, v € Bry(va;p) N {pi <
ct}, |
(W3) @i(u)W(u) 20 Vu € {ey Spi S e + A} U{e- S i Sem + 2],
(W4) (u,W(u))p; >0 Vjie{0,...,k} if ue X\ Ms.
Moreover if KN Bry(vn;p) = @ then there exists p1, > 0 such that
(W5) ¢'(u)W(u) > ptp Yu € By, (vn;p).

Let us define A = f‘—'-"(r;—_”), where p,, is given by lemma 4.5.2. We fix
h < %, and c4, c— as above and such that ¢y —c_ < %.

Then, by lemma 4.4.6 there exists € > 0, that we can assume smaller
than e (e be given by lemma 4.5.2) for which for any 7 € P: r there exists
a path v, € C([0,1],X) such that,

() 7+(0),7+(1) € 0B, (7 * va) and they are not connectible in B (7 )N

{p<e—%h
(i3) rangeys C Br, (v % vn) N { < 4 };

(vii) rangevr NA_ _an . (T*vn) C {p <}
n 2 'n
(tv) 3R > 0 such that supp~y-(s) C [-R+ 7,R+ 7] for any s € [0,1];

Now, we fix 0 < § < min{dy, 3d2 , 5(¢—c——£)} and N > max{No, R}
and such that Hv“fth < ;’2—, with Ng € N, §; > 0 given by lemma 4.5.2 and
R by ().
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By the contradiction assumption there exist £ € N and p € P:(k, N) such
that By, (vn;p) NK = @. So that, there exists a vector fleld W satisfying
properties (W1) — (W5).

We consider the Cauchy problem

{ a5 = =Wn)

n(0,u) = u.
Since W is a bounded locally Lipschitz vector field, for any u € X there
exists a solutions n(-,u) € C(R*,X), depending continuousiy on u € X.
Now, we introduce the surface G : Q@ — X defined by G(0) = 2?:1 vp: (03i),
for § = (01,...,6r) € Q and ~,, verifying (i) — (iv) above. We consider the
deformation n(s, G(6)) under the flow. Following exactly the same argument
used in the proof theorem 2.4.1 in chapter 2 (replacing K4 by v, ) we get the
following properties:

(4.5.1) n(s,G(8)) = G(f) VOe€dQVseRT

( 4.5.2) thereexists 1 € {1,...,k} and £ € C([0,1], Q) such that £(0) € {6; =0},

(1) € {6; = 1} and ;(G(8)) < c— + 8, for any 6 € range€.

(4.5.3) n(s,G(Q)) CTMs VseRt.

Thanks to these properties, as in the proof of 3.4.3, we finally get a
contradiction.

Indeed, let x € C*(R,R) with sup,cg |X(t)] £ 1 be such that x(t) =1
ifte;\ M and x(t) =0 if t € R\ I;, where the index 7 € {1...k} is given
by (4.5.2). Then, we define a path g : [0,1] — X by setting g(s) = xG(£(s))
for s €0,1].

By (i) and (4.5.1) we have that

9(0) =v(0)(- —p:) and g(1) =v(1)(- — ps).

Moreover, arguing exactly as in the proof of 3.4.3, ¢([0,1]) C Bz, (va(: — pi))
and ¢(g(s)) < ¢, for any s € [0, 1] in contradiction with (7).
O

Finally, as stated in the following corollary, we get the existence of an
uncountable set of bounded motions of the system (HS) and Theorem 3 is

proved.
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Corollary 4.5.3 For any r > 0 there exist ¢, > 0 and N, > 0 for which,
setting R = ||0||cc + 1, given a (bi-infinite) sequence (p;) C Pe, r With pj41—
pj = N, there exists a solution v of (HS), which verifies

lo—o(—piller;rvy <r VjiE€Z

where I = {3(pj—1 +p;), 2(pj + Pj+1)]-

Appendix. The recurrent case.

In this appendix we prove lemmas 4.4.3 and 4.4.6 under the assumption
(h4).

We recall that by (*) there exist ¢* > ¢, and ¢4 € R such that 77 (u) =
TF(u) # t4 for any u € K N {p < c*}. From this we deduced that there
exists n >0 and g > 0 such that

(4.54) o'l 23 Yue{p <} with TH(u) € Io = [t4 — 0,14 + 7).
By (1.3.1) we also get
(4.5.5) 3R> 0/|lull 2 R, ¢(u) < " = ')l 2 4.

Moreover since by (1.3.1) there are not Palais Smale sequences at negative

levels of ¢ we have that there exists v > 0 such that
1o«
(45.6) o) S —3(" —¢) = I 2 v

By (1.1.1) we can fix ¥ > 0 be such that for any interval I C R, with
|I| > 1, we have

(4.5.7) lullr < 2F = |u(t)] < g Viel

Let us consider the set Sp = {u € X : |Ju|| < 2R, T*(u) = 0} where R
is given by (4.5.5).

If u €Sy and N € N we have 4R? > |ju|2 > X, “u“%ViS!tISN(iH) >
N minj=;,. n ““H?Vig[qu(iH)' Therefore if ¢ € (0,7) there exists No € N
such that

(458) Yue S, El]u € {1,. .. ,No} / IlulljuNoS|t|S(ju+1)No < €p.
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Given u € Sp weset J, = {t € R : juNog < |t| < (Ju +1)No} and we
define B,, 0. € C(R,R) as follows:

0 if |t| > (Ju +1)No
Bul®) = { Gut+1—L i juNo < It < (Ju + 1)No

Bu(t) =1 — Bu(t) for t € R.

It is immediate to verify that if § is any one of the above defined functions
then for any 7 € R, for any A measurable C R and for any h € X we have
(7 # B)hlLa < VI]La.

Let us define Sp = {u € X : ||ju|| < 4R,suppu C [—No(No +4), No(No +
], TT(u) =0} and Vo = {h € X : ||h|| £2, supph C [~No(No+2), No(No+
2)]}. Notice that if u € Sp then B,u € Sp.

We recall that by (h4) there exists (t,) C R such that ¢, — doco and
W' (t+1tn,z) — W'(¢,2z) for any (¢,z) € RXRY as n — foo. Notice that by
(h1) the convergence W'(t+t,,z) — W(t,z) as n — Foo is actually uniform

w.r.t. = in compact sets of RY.

Lemma 4.5.4 For any € > 0 and for any [a,b] C R there exists i € N such
that, for any u € 3’0, heVy, 7 € [a,b] and |n| > 7 we have

(1) le(m*u) = (T +ta) xu)[ <€

(i) o' (rxu)rxh— @' ((T+t) *u)(7+tn) *h] <e.

Proof. 'We prove only (ii) the proof of (i) being analogous.
Firstly we note that by (1.1.1) we have ||ullco < 4MR Yu € So. Then,
by (hl), there exists C' > 0 such that

(45.9)  |[W'(t,u(t)) = W'(t,o(®))] < Clu(t) — v(t)| Yu,v € S, VteR.

Let € > 0. Since So and Vy are precompact in L?(R,RY), fixed any ¢; €
(0, m—)) there exist Ue, = {u1,...,up, } C So and He, = {h1,...,hi,} C
Vo such that Sp C {v € X : infazeu,, lu =il 2@ryy < e}, VoC{heX :

infrey, || —hll2@er) < @l
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For any €; € (0, szragmemogayy)» setting Un(t,z) = W/t + 7 + in,2) —
W'(t + 1,2), we can choose p > 0 such that if =,y € BN(0,4MR) and if
|z — y| < p then

(4.5.10) sup|US(t,z) = Ur(t,y)| <e Vi, TER.
Moreover by (h2) we can assume that p is such that

(4.5.11) lz| < p = sup|U,(t,2)| <elz| Vi, 7eR.

Let 20 =0 and z1,...,zx, € BY(0,4MR) be such that BN(0,4MR) C
UinBN(mi,p). We set 49 = BY(0,p), Aj = BN(:UJ":O) \ Uz';éAi’ J =
1,...,ks and xi(z) =1 if z € A;, xi(z) =0if 2 ¢ A;. Forany u € So
we have that x;(u(t)) is measurable, Z:'Cio xi(u(®) =1, xi(u(®))xe(u(t)) =
8 i xi(u(t)) and if ¢ > 1, xi(u(t)) has support contained in the compact set
{lu(®)] =2 6} C [=No(No + 4), No(No + 4)].

Let U7 (t,u(t)) = Zfil Ur(t,zi)xi(u(t)). By (4.5.10) and (4.5.11), for
any u € So and 7 € R, we get

b (u(®) (U u(®)) — U2 u@))] < eoxi(u(t) Vi {1,...,ks} Vi ER,

xo(u(®))(Ur (¢, u(t)) = Un (¢, u(t)| = Ixo(u(t))Uy; (t, u(®)| < eslu(t)] VieR.

Let [a,b] C R. For any €3 € (0, g
of X, we can choose {71,...,7k,} C [a,b] for which for any 7 € [a,b] there
exists [ € {1,...,ks4} such that for any u € U, , h € H,,

), since U, and H,, are finite subset

(4512) | / U7 (¢ 2 )i (u(®)h(E) — U (4 e)xi(u)h)dt] < e.

By (4.5.12) u € U, and h € H,, we obtain

k3
| /R OO EDN / ST (8 u()) — 5, w(E)h(t)dt [+

1=0 R

ks
+ 301 [ Uzt mnCule)ble)ds
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ks
< 2l + deal{ju(®)] 2 8} + 301 [ ULt s w(e)be)ael

k3
< dex(Rt No(No +4) + Y| /R U7 (¢, 2 (u(£)A(E)d

< dez(R+ No(No +4))+

ks

+ Z | /R Ur(t, zi)xi(u(@)h(t) — Ut (¢, z:)x: (w(t))h(t)dt]|+
&

+_Z| /R U (8 zi)xi(u(t)h(t)dt|

k3
< der(R+ No(No+4)) + hses + 3| /R U7 (2, 20 (u()R(E)dt].

=1

Since for any | € {1,...,k4}, supj<amr|U™(t,2)] — 0 as |n| — +oo
and since U, and H,, are finite subset of X, by the dominated convergence

theorem we get that there exists 7 € N such that

k3
Sl;p;] /R U (t, zi)xi(u(t)h(t))dt| S%

for any |n|>7, u €U, and h € H,,.
Then by the choice of €; and €3 we obtain that for any |n| > 7

| [ Unuohod < e Vet Ve He Vr € o]
R

Given u € S’o and h € V, we choose u € U, and he He, such that
lu — @l L2rrry < & and ||k — Al|p2gryy < €1. Then using (hl) we obtain
that for any 7 € [a,b] and for any |n| > 7

lo'(T*u)rxh — @' (7 + 1) *u)(T +tn) x h| = | /RU;(t, u(t))h(t)dt|
<| /R(W’(t + 7+ tn,u(t)) — Wt + 7+ tn, u(t)))h(t)dt|+

] [ W7 ta, A — B+
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+| [ vzt ae)hdd+
+ I/RW’(t+ 7, 4(t))(h(t) — h(t))dt|+
1 [0V 7,50) = W+ 7 (00

- 3
< 40w — @l p2wryy + 8CR|A — Al p2 ) + ¢

3
S 8061(1 +R)+ ZG S €.

O

Corollary 4.5.5 For any € > 0 and for any [a,b] C R there exists n € N
such that for any u € So, 7 € [a,b] and |n| > 7 we have ||¢'((7 + t,) *

(Bur))ll 2 [l (7 * (Buw))l| — €.

Proof. The corollary follows directly from lemma 4.5.4 observing that for any
|h]l = 1 there exists h € Vp such that ¢'(7 * (Byu))T * h = @' (1 * (Buw))T * b
for any 7 € R and u € Sp.

In fact if we define

0 if [t| > (No +2)No
B(t) =S (No+2)— L if (No+ 1)No < |t] < (No + 2)No
1 if [t] < (No 4+ 1)No

and we put h = fh, since supp Byu C [~No(No + 1), No(No + 1)], we plainly
have ©'(7* (Buu))T*h = @' (7% (Byu))7 * h for any T € R, u € Sy. Moreover
hes. O

The above lemma will be frequently used together with the following one.

Lemma 4.5.6 Vue€ Sy, V7 € R, we have that
1) @' (rxu)ll = 3lle' (7 * (Buu))ll — e
i) le'(rxw)] 2 2@ (7 * (Buw))]] - 3eo

Proof. Let u € Sy, 7 € R and ||h|| = 1. Then

(7 (But)h = (7 5 w)( * Bu)h] = [{Buti, (- + 7)) = (1, Buh(- + 7))+
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- / W'(t + T, ,Buu)'h(t + 1) — W't + 7,u)B,h(t + 7)dt]|
R
= [{Buwt, (- + 7)) g, — (&, Buh(- + 7)) s+
- / W'(t + 7, Buu)h(t + 1) — W'(t + 7,u)Buh(t + 7)dt]|
Ju

< NBuull s 1Bl + lfufl 7 (% Bu)Rll + flull s, 2] < 3v3e

where we have used (4.5.8), (4.5.7) and (4.2.1).

Therefore ||¢'(1*u)|| = supyp=1 l¢'(T*u)h| > -\}—5 SUp|py=1 |¢' (T *u)(7 *
Bu)h| 2 %(Supuhu:l |0 (7 * (Buu))h| — 3v/3e0)

and (%) is proved. The proof of (%) is analogous. U

All the above construction clearly depends on the choice of €5 which will
be fixed below time to time.

Let h* € (0, ctc) be as in section 4.4 and ¢ € (0, min{7,
Let Iy be defined by (4.5.4).

By lemma 4.5.4 and corollary 4.5.5, fixed € € (0, min{h*,u}) there exists
n € N such that

(r*)}

2
4 712

ol

D

[io(7 % (Buw)) = (7 +tn) * (Bur))| < €

(4.5.13)
€' ((r + ta) * (Buw))l| 2 I (7 * (Buw))|| — €

for any u € So, 7 € Iy and |n| > @.

Given j € N we put 7j = tatj—1, 70 =0 and 7_j = t_p_j4+1. Then we
define It = [ty —n+ 7oty + 0+ 7a] , I = {u € % : TH(u) € I} for
nez.

Now we prove lemma 4.4.3 in the part which regards 7. To prove the

other part it is possible to apply the same arguments.

Lemma 4.5.7 3p > 0 such that ||¢'(u)|| > p for any u € Upez ZT .

Proof. Let ueZ,.
If lul]| > R by (4.5.5) we get that [j¢'(u)|| > pu.

If |lu|| £ R then u = 7xv for a certain v € Sp and 7 € I,,. Let us
consider @ = 7 * (Fyv). It can be either: (@) > ¢* — h* or (i) < c* — h*.
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In the first case, by (4.5.7), (4.2.1), (4.5.8), we get

o) = p(i+ 7% (Bov))
= Sl + Sl Bl + (= (Bl = [ Wt 47,00
> $(@) + (7 * (Bov) = |Booll | Booll s, +
— | /J W(t+7,v)—W(E+7,0,0) — W(t+ 7, B,0)dt|

- 3
> c* —h* + (7 * (Byv)) — ez — —2»63

— h*
> ¢t = W+ (7 * (Bov)) ~

which implies that ¢(7%(8,v)) < @(u)—c*+3h* < ¢ —c* +2n* < —3(c*—0).

Then, by (4.5.6), ||¢'(7*(B,v))|| > v and by lemma 4.5.6 we get ||’ (u)]] =
" (7 )l = Fll' (7 * (Be))ll = 360 > &

In the second case we note that T ((—7,)* @) € Ip and that by (4.5.13),
lo((=mn) * )] < lp(@)] + e < e

Therefore, by (4.5.4), ]|<p’((—7'n) *@)|| > 3p. Then by corollary 4.5.5 we
get [lp/(@)] 2 l¢/(~a) < &)l| ~ € > 23« and finally by lemma 4.5.6 [¢'(u)]
' (@) —3e0 > p— 360 > &

The lemma follows taking A\ = min{%, £}. ]

As we have seen in section 4.4 this lemma togheter with the assumption
(*) allow us to show the existence of a critical point ¥ at the level ¢ € [c, c+h*)
which satisfies the Annuli property, the Slices property and the Topological
property (1)-(3) stated in section 4.4.

Here below we prove lemma 4.4.6 under the assumption (h4). We use the

same notation of section 4.4.

Lemma 4.5.8 Forany j € N and for any h € (0, h—gi), there exist [I1, 1] C
(e+ 3h,e+2h), [I7,l;] C (€ — h,c— $h), v >0, i; >0 and 2 € N such
that for any |n| > i we have

(1)i w€ Arj—2d, ry42d,, (En *v;) N {p <8420} = o' ()]l > ;3

(2); w€Bz(tax), p(u) € (I, U7, 5] = [l¢' (W) > v;

(3);
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(1) vn(0),7¥a(1) € OBy, (tn *v;) and they are not connectible in B (t, *
v)N{p<e—1};
(i) rangevyn C By, (tn *vj) N{p < ¢+ 2h};
(iii) rangeyn NA_ ) (tnxvy) C {go<c-———1-}
(iv) AR >0 sucb that supp'yn(s) C [~R+tn, R+ t,] for any s € [0,1];
where we put v,(s)(-) = v(s)(- — t,) being ~ given by the property 3) of ©
for this values of j and h.

Proof. Fix j € N and h € (0, min{c+ h* — c, =1

By the slices property of o there exist [a™,bT] C (¢ + g—h,E + 2h),
[a=,07] C (€= h,e— $h) and ¥ > 0 such that if u € B(9) and ¢(u) €
[at,bF] U [a=,b7] then [|¢'(w)]| > X. Let [IF,if] c (at,6%), [I7,1;] C
(a7,b7) and ¢ = min{|e* — IF|, |p% — [F]}.

Since ¥ is a non zero critical point we have ||#]|cc > 28. Then, by the
choice of 7 we get that there exists an interval I C R such that TH(u) C T
for any u € B#(?).

We put By = {u(- + T"'(u))/u € By(7)}, observing that By C Sp. Let

. d,, HBr; g2 3
eo € (0,min{3, 55, &, 54+ 554 , 2’}4, 5 1) We can assume that the correspond-

ing N is so large that ||5]|ji—rj>n, < €0 and [|vjlje—r|>n, < €0 for any 7 € I.

Then we observe that for any v € By and 7 € I we have

I * (Bo0)l| = lI7 * (Bo)llje—r|>No
<7 * (Bov) = (7 Bv)i_’”u—ﬂzz\ro +V3e < \/5(«;-“ + ) < 27.

Moreover if ~ is the path given by the property (3) of v for this values
of 7 and h we can assume also that Ny > R. Therefore, in particular,
~v(s)(- + T“’“(*y(s))) € 5'0 for any s € [0,1].

, 8, ; , 2}) Let 7 be given by lemma 4.5.4 for this
€ and [a,b] = I. By lemma 4.5.4, we get directly that if |n| > 72 then (3);-
(ii)-(iv) hold.

It remains to prove (1);, (2);, (3);- -(i). Let us first prove (1);.

Let u € Ay, —2d,, 1 +2d,, (v;i(- —ta))N{p < c+2h}, then u=(T+1t,)*v
for a certain v € By and 7 € I. We distinguish the following cases:

1) o((t +tn) * Byv) > c* — 2h;
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2) ”va” 2 dr,' ;
3) @((7 +tn) * Byv) < c* — 2k, ||Byv|| < dry .
In the first case, since ¢ + 2h < ¢ + h*, we get as in the proof of lemma
4.5.7 that @((T +t5) * (Byv)) < —1(c* — ¢). Then we proceed exactly as in
that proof obtaining that [|¢'(u)| > %.

In the second case we first observe that
17 + ta) * Bot)l = 7+ (Boo)le—risny < 2
Therefore from (4.5.7) and (4.2.1) we deduce

(1) * (Boo))(r +10) % (Bu0) 2 2lI(r +12)  (Buv)|?

d; . By lemma

from which, since HvaH > dr; , we get ]|¢’((T+tn)*(ﬁvv))|| >
4.5.6 we finally obtain that ||¢'(u)|| > d;j — 3ep > ig—j—.

In the last case, by lemma 4.5.4 we first obtain that since p((7 + ¢,) *
(Buv)) < ¢* —2h then (7 * (Byv)) < ¢*. Then we observe that 7% (8,v) €

A’r‘j —-3d,.j )T +3d"j ('UJ) . In fact

I (Bov) = vjll < lI7 * (Buw) = (7 * Bu)vjllje=ri<No(Gt1) + V30
<l *v = vjlljemri<ivos, + 3v3e < ri + 3dy,

and since |7 * (B,v)| < dr,
7% (Bov) = vill 2 lIm % v = v;l| = |7 * (Bow)|| = 7 — 3dx.

By the annulus property we get ||¢'(7 * (Buv))|| > pr;. By corollary
4.5.5 we have [|o'((7 + tn) * (Buv))|| = u;,- for any |n| > ©. By lemma
4.5.6 we conclude that ||o'(u)|| > %’; —3e0 > ugi. This proves (1); taking
Aj = min{~gH, G, %),

Let us now prove (2);.

Let u € Br(tn *9), ¢(u) € [1F, 071U I7,0;]. Then u = (7 4t,) v for
a certain v € By and 7 € I. We distinguish the following cases:

1) ”BUUHQ 2 §§
2) [1Buol® < 5.
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In the first case, by (4.5.7) and (4.2.1), we get ¢'((7 + tn) * (Bov))(1 +
tn) * (Byv) = L||(7 + ta) * (Buv)||? which say us, since ||G,v|? > 4§, that
_ 1
o' ((T+1tn)*(Bov))|| = &~ . By lemma 4.5.6 we get that ||o'(u)|| > 5—8-%——360 >
il
16
In the second case we first observe that

I % (Bow) = Bl| < |7 % v = Bllje—r|<ivgj, +3V3e0 < 7.
Then by (4.5.8), (4.5.7) and (4.2.1) we obtain

lp(u) = @((T + tn) * (Buv))| = I-;—(Hull2 = lI(m + tn) * (Bu0)I*)+

_ ﬁ W(t, (1 +tn) *v) — W(t, (T + tn) * (Byv))dt|

< (|W|||2t-r—tn|zNo(ju+1) +465)+

+ / [W (¢, (T +tn) * v)|dt + €
[t—7—tn|>No(ju+1)

£
5

Since € < & and ¢(u) € [, 31U [I7,17] by lemma 4.5.4 we get that
o(r*(Bov)) € [, TV 1T, 15].

By the slices property of o, by corollary 4.5.5 and by lemma 4.5.6 we
conclude that

DN

ST +ta) * (1 = Bo)o)lI* + 3¢5 <

[#'((r + ) # 0| 2 S0/ (7 + ) 5 (o) - 3co

1
> L' * (B — ) — 3eo
A A
> — > —.
Z g0y
Taking A\ = min{%, % property (2); follows.

We finally prove property (3);-(1).

Let (3);-(i) be not satisfyed. then there exists |n| > 7@ and g €
C([0,1],X) such that g(0) = v,(0), g(1) = 7a(1), ¢([0,1]) C B;(tn * D)
and y(g(s)) <e— 4.

We prove now that it is possible to deform g¢([0,1]) into a new curve

9(10,1]) such that (—t5) * §(0) = ¥(0), (—ta) * §(1) = (1), (—tn) *4(s) €
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B:(9) and ¢((—tn)*j(s)) < ¢— 2 for any s € [0, 1], obtaining a contradiction
with the topological property of o.
To this end we construct a vector field on Bi(t, * 7).

First of all we note that since we have assumed that ||9||j;—rj>n, < €0 for
any T € I, we have that |I| < 2Ny. Indeed if u € B(%) we have

lullji—ri>Ne S NOllje=ri>nNe +7 < €0 + 7 < 27

Therefore, by (4.5.7), we get supjy>n, [u(t + 7)] < ¢ for any 7 € I. Since
6 = u(r+ (T*(u) — 7)) for any 7 € I, this implies that |TF(u) — 7| < Ny for
any 7 € I and therefore that |I| < 2Np.

Let 7 be the central point of the interval I. Let

Eo ={u € Br(tn *0) : |[ulljt—r—t,|>No(Not+2) Z 40}

If ue &, putting v=u(- +T%(u)), 7 =T (u) —t,, we have v € By, T € T

and u = (7 + ¢,) * v. Moreover, since |7 — 7| < Ny we get

2 2
“vH|t|2Ng(No+1) = I|u“|t—r—tn|ZNo(No+1)
= ”u”Izt—f'—tn'l-(?—-r)|2N0(N0+1)

2 ||““|2t~=r-t,,,|2No(No+2) > 16¢g.

Then, given u € & we put V,, = (7 + tn) * B,0. By (4.5.8) we get

(u, Va) = (0,850) 2 Iollfy> no (G r1) — !Aﬁvvbdtl > [[ollfys NoGi+1) — €0-

Moreover since ||v|||y>n, < 27, by (4.5.7), (4.2.1) and (4.5.8) we have

~ 1
]/RW’(t,u)Vudt} = IAVV’(t + T +1tn,v)Byv| < 5“1}“?,:{2%(]-”“) + €.

<€0

Finally since ||(=7) * 3||;¢> ~,
(tn % 0, Va) = ((=7) £ 5, B00) 1512805, < €ollvllje1No(ju+1) + 265
Therefore, collecting the above results, we obtain that for any u € &

1
(4.5.14) ?'(WVa 2 SlvlfyznoG,+1) — 266 2 6ed,



98 4. Multibump solutions for a class of second order, almost periodic ...

(4.5.15) (v —tn * 0, Vi) 2 o]l jg> Moo +1) (1 — €0) — 365 > Beg.

Moreover, since |r — 7| < Np, a direct computation shows that V,(t) =
u(t) for any t € R such that [t — 7 — t,| > No(No + 2). Therefore

(4.5.16) (uaVu)[t—?—-tnlzNo(No-i—Z) = ”u”|2t—1‘-—tn|2No(No+2) 2 16€g°

By continuity, by (4.5.14), (4.5.15), (4.5.16), for any u € & there exists
pu € (0,€0) such that

¢ (w)Vu 2 3¢5 Yw € B, (u),
(w—tn x,V,) > 36} Ywe B, (u),

(anu>|t—1‘-—tn|2No(No+2) > 8¢ Vwe By, (u).

We put

&1 ={u € Be(ta *0) : ||ulljt—r—t.1>No(Not+2) = Beo}

Then using the paracompactness property of X, a partition of unity and
suitable cutoff functions it is standard to show that there exists a locally
lipschitz continuous vector field W : X — X such that
Wi1) W) £1, ¢'(u)W(u) >0, and (u—t,*0, W(u)) >0 for any u € X,
W2) Wu)=0i ue X\ (Br(tn*7)U&).

W3) (u, W(u))|t—r—1,|>No(Not2) = 2€5 for any u € &; .
Let us consider the flow 7 associated to the field —W:

{ 5%77(3, u)=-W(n(s,u)) seR
n(0,u) = u.

Since W is bounded and locally Lipschitz continuous n € C(R x X, X).
Moreover, by (W) both the functions s — ¢(n(s,u)), s — ||n(s,u) —
tn * U] are not increasing. In fact o(n(s,u)) = —¢'(n(s,u))W(n(s,u)) <0
and L|n(s,u) — t, * 5)|> = —=2(n(s,u) — tn * 5, W(n(s,u))) < 0. These facts
imply that the sublevels of ¢ and the sets B,.(t, * v), r > 0, are positively

invariant with respect to the flow.
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Finally by (W3) also the set m is positively invariant with respect
to n. In fact if n(s;,u) € X \ & and there exists s, > s; such that
ln(s2, w)|ljt—r—tn|>No(No+2) > 8eo then there exists an interval (31,3;) C
(s1,82) such that the function s — ”77(32’u)||I2t—7‘--—tn|2No(No+2) is increasing
and n(s,u) € & for any s € (51, 32), which is in contradiction with (WS$).

We claim now that there exists 7 > 0 such that n(7,u) € X \ & for
any u € Br(tp, *0).

In fact, if n(5,u) € X \ & then n(s,u) € X\ & for any s > § since
X\ & is positively invariant. If n(s,u) € & for s € (0,s0) then

lIn(so, u)”lzt—?-—tn |>No(No+2)
30
= [l r 2 Moo+ 2) / (n(s, ), W(n(8,8)))jer—tn |2 No(Norr2) 45

< “u”?t—f-ntanNo(No+2) - 230‘5(2)-

Since Hu“]zt--?—tn|2Ng(No+2) < 27 for any u € By(t, *0), a direct compu-
tation shows that if we put 7 = Z5(32¢ — 27?) then so must be smaller than
7 proving our claim. ’

Then we define g(s) =n(7,9(s)). Since ¢([0,1]) C Bg(tn * ) and since
By (tn*0) is positively invariant we have ([0, 1]) C Bz (tn* D) too. Since the
sublevels of ¢ are positively invariant we also get that §([0,1]) C {¢ <z— 2}.
Since v,(0), 7n(1) € X \ & we have W(g(0)) = W(g(1)) = 0 therefore
3(0) = v,(0) and g(1) = vn(1). Moreover by the above argument we have
that [|g(s)|lje—r—tn)>No(No+2) < 8eo for any s € [0,1].

Put
0 if |t — 7 — ta] > No(No + 3)
Bt) =S No+38—L=T=tal 4 No(No +2) < |t — 7 — | < No(INo +3)
1 if It-—f‘——tnl SN()(NQ—I—Q),

and define §(s) = fg(s) for s € [0,1]. We note that §([0,1]) connets ~,(0)

with (1) in B(t,*x0)N{p < c* — %} In fact, since supp g(0), suppg(1l) C

[—No, No] we have §(0) = g(0) = v,(0) and §(1) = §(1) = v»(1). Moreover
1(s) = tn *3]|?

< [lg(s) = tn t_)let-—f——t,,[SNQ(NO+2) + (183l =7 —tn | <No(No+2) + 60)2

=2
<5 (VB 1)) <72
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Then, using (4.5.7), (4.2.1) we get

#(5(5)) < 2(g(s)) + lo(3(5)) ~ o(3(s)]
<& ot SN mr i eovorn) + 51T en <o+

+/ W (t,5(s)) — W(t, B3(s))]dt
[t—F—1tn | <Ng(No+2)

+ %((860)2 + (8\/560)2) + (8e0)* < € — ’Z

4

h
<c— 5
Finally supp §(s) € [T +tn — No(No + 3), 7 + £, + No(No + 3)], therefore,
since |7 + t, — T1(g(s))] < Ng for any s € [0,1], it is easy to see that
supp §(s)(- + T7(g(s))) € [—No(No + 4), No(No + 4)]. We conclude that
G(s)(- +T*(§(s))) € So for any s € [0,1] and using lemma, 4.5.4, since € < LS
we get a contradiction with the topological property of v considering the path

(_tn) *g. O
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Appendix A
Construction of a pseudogradient field of ¢

In this appendix we prove that thanks to the Annuli property and Slices
property there exists a pseudogradient vector field as stated in lemmas 2.3.6,
3.4.2 and 4.5.2.

Here we will consider the functional ¢(u) = 3 ||ull®— i W(t,u)dt, u € X,
with W satisfying the assumptions (H1) and (H2). Let p > 0 such that if
A is a real interval with |A] > 1 then if |Julla < p then sup,c  |u(t)] < &
(& given by (H2)). Then by (H2) we have that if u € X and A is an open
interval of R with |A| > 1, then

(45.17) lulla <7 = [W'(tu(®)] < Lu(®)] VteR.

It is easy to see that lemma 1.2.4 holds with this p.

We will assume the existence of a compact set of critical points K, a
number ¢* > 0 and a sequence (¢;) C R, with ¢; — 400, as j — Foo such
that
(1) Annuli property: there exist r € (0,2), d. € (0, 1) and () C R such

that V7 € (t;)

(4.5.18) u € (Brysq, (T+K)\Brosa, (T*K))N{p < "} = [l¢'(w)]] = por.

(2) Slices property: For any open interval I C (0,c*), 3[a,b] C I and 30 > 0
such that, V1 € (¢;),

(4.5.19) u€By(r*K)N{a<p <b} = [l¢'(w)] =7

Given k,N € N we put P(k,N) = {(p1,...,pr) € R* : p; € (¢;), pi —
pi—1 > 2N(N +2),i =1,...,k}. Given p € P(k,N) we define as in the
previous chapters the sets I;, M;, M and the functionals ;.
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Now we note that for any r > 0, there exists N € N, such that if k¥ € N,
N > N and p € P(k,N) then Yu € B-(K;p) and Vi € {1,...,k} there
exists j € {1,..., N} such that

T2
(4.5.20) lull3n <ie-pa<ienn < 5

In other words if u € B.(K;p) we have that, for any @ € {1,...,k}, the
interval I; contains two intervals of length N, symmetric with respect to pi,
over which the norm of u is small as we want if N is sufficiently large. We
note also that, by construction, M; never intersects any of these intervals and
it is contained between the one which is on the left of pj+1 and the one which
is on the right of p;, for any j € {0,... ,k}. To fix these intervals we call Jui
the smallest index in {1,..., N} which verifies (4.5.20).

For any § € (0,r) there exists Ns € N, Ns > N such that

T2
(4.5.21) max{ sup Hvath& , %v&—} <L
veK

Soif ke N, N > Ns and p € P(k,N), then Vu € B.(K;p) and
Vi€ {l,...,k} we get that

(4.5.22) Il . <lt=pil GutON < 16

Now, for any u € B(K;p) we define the following subsets of R:
Ayi=1pi+ (Juit N, pix1 — (Ju,i+1 + )N[ 1=0,...,k,
Bui={teR/d(t, Aui) <N} i=0,....k,

Ay =UF (A, , By = U¥_oBu,i, and Fui= LN (B, \Ay) i=1,....k,
with the agreement that juo = Juk+1 = 0.

We can rewrite (4.5.22) in the form lull%, , < L, Vue B(K;p), Vi€
{1,...,k} and we note that HUHZB.‘,,\A,‘,I < —g-, ,Vu € B.(K;p) and VI €
{0,...,k}.

We remark that, by construction, we always have that M; C Auy,
therefore |A,i| = |Mi| > N, Vi € {0,...,k}, Yu € B.(K;p). Moreover
|Fuil = 2N and |Bu,;\ Aug| =2N.
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1 tEAu,l
0 tgéBu,I

with B, continuous on R and linear on the connected parts of B, \ A,.

Then, for 7 € {1,...,k}, we set: Bui(t):{(l) 8 B ig?
’ = Pu,i—1 — Pu,i 1

We note that if § is any one of the above defined functions and if A is
measurable C R we have [|Bull} < 3|lul|y, Yu € X. Moreover, if u €
B.(K;p) and 1 € {0,...,k}, we get

For [ € {0,...,k}, we define the cut—off functions: Bu,i(t) = {

(4.5.23) (u, Buju) 2 |lull’,, — 759 -

Now we define, for [ € {0,...,k}, the functions

1 ully,, >4
mw={1 lull,,, > 4

i otherwise

and we set finally W, = Ef___ofz(u)ﬁu,zu .
Using (4.5.17) and (4.5.22), we can prove now that:

Lemma 4.5.9 Let r € (0,%p) and 0 < § < r?. Then Vu € B.(K;p) we

have
' 1 k 2 )
%2 (U)Wu .>__ §Z]=ofl(u)(”u”Au,1 — 4/
k
O (wWa > I fiw)(full3ina,, — £).

Proof. By construction |lufla,, < 4r < p and ||u|lp, \4,, < p- Therefore,
by (4.5.17) and (4.5.22), we get

@' (W)We
2 Shaht) ol & - [ Wiewae- [ w2
u,l u,l u,l

> Do) GIul,, = 158 = 55) 2 1o fl)lulh,, — -

The computation is exactly the same for . O

Remark 4.5.10 We remark that, by lemma 4.5.9, we always have

u,l
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and analogously
eiu)W, > -2 Vie{l,...,k}
for all v € B(K;p).
Moreover if |ul|}.~,,, is greater than &, for a certain couple of index (3,1),

then W, indicates an increasing direction both for ¢ and ¢;. Indeed, by

lemma 4.5.9, we get
O (WWa 2 5(lulld, _, Hlulb,, = 3) =82, e <8, 1(w)
{ellullly, <33

2 3lulfion, =2 = 85 s <8y fi0) 2 Hllullina, - %,
u,l

(4.5.24)

and analogously

(4.5.25) Pi(w)Wa 2 3llullfna, — 5
Let ry,r3 be such that [ry,rs] C (r —3d,,7 +3d;), where r and d, are given
by (1). Let [a,b] C (0,c*) be such that (4.5.19) holds, [l1,{2] C (a,b) and
¢y €(0,c*). We set ¢ = min{la—14],|b—1l2|}, & = ;min{(r1 —7+3d,), (r +
3d, —r3)}, é2 = min{o?, 5} and 51% = tmin{¢1, &2, pr, ¢* — ¢4, 7}, where p,
and U are given respectively by (4.5.18) and (4.5.19). Then, given ¢ € (0,6;)
and N > Ns (Ns be given by (4.5.21)), let k € N and p € P(k,N).
By (4.5.24) and (4.5.25) if € € {&1,&2}, we have:
(4.5.26) u € Bry(K;p) and |[ul|r,na, > ¢ then ¢'(u)W, > & and @}(u)W, > &

Therefore we can restrict to consider the case when ||ul|s,na, < € for
some ¢ € {1,...,k}, case in which we can use property (1) and (2) to get a
common pseudogradient vector for ¢ and the truncated functionals ¢;.

Let us state first a consequence of property (1).

Lemma 4.5.11 There exists p = p(r) > 0 such that if u € B.,(K;p) N
{ri < ct}y llullnna. < & and infoer flu — v(- — pi)llr; = 1, for some
i€ {1,...,k}, then there exists Wy ; € X, ||Wh,i|| <1 such that

(1) i)W, 2 p;

(”) W’(U)Wu,i > K
(#11) supp Wy C I; \ M.
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Proof. Let p, be given by (4.5.18).

Let u € By (K;p) N{pi < ¢4} and infyex ||u — v(- — pi)||r;, = r1, for
some i € {1,...,k}.

If ||lullr;na, < & we claim that Bu,iu € (Br43d,(pi * K) \ Br_sa,(pi *
K))n{e <c}.

First of all, since sup,, ¢z ||v(- '"pi)let—p;PN < & using (4.5.23) , we get

= 16
for any v € K,

1By = v = p)lI* = llu = v(- = )75,
2 [lu = v(- = p)lI7; = (Io(- = p)llnp. + lullz.; + ullnna,)?

>r? — (& 4 6)2 > (r —3d.)%
Moreover
nf 1B u — v — )12 < inf 1B, — v(- — )12 4+ &
inf 1B, = o(- = p)|* < inf 1By, — v = pIIT, + 15

u—v(- = pi)llz)* + 15

< (18u,iu = ullr, + inf
(4.5.27) < (IBusullr, +ra)? + £
< (“u”I;ﬂAu + “/BU;iullfu,; +7‘3)2 + .1_%
52 2, ¢ 1 2 )
S(€1+—2“+7‘3) +i€ S(§1 +§3 +7-3) < (7‘-}-3(1,.) .

Finally we note that since ||u||;nB, < 5, by (4.5.17) we have that

%”““%mBu - fI.-nB,, W(t,u)dt > 0 and f}'w- W(t7ﬁu,iu) dt < %”Bu,iu”%’u,;?
therefore

oBu ) = ¢iBo) < 0i(0) = 5 lulhnm, = [ Witu)a)e

I;nB,
+ 5Bl < @ilw) + 5 <
By (1), there exists Z,; € X, ||Zu,]| <1, such that
’ (pli(-/gu,iu’)ZU,i = @'(Eu,iu)zu,i 2 %‘
Using (4.5.23) and (4.5.17) we get
|90;'(Bu,iu)zu,i - @Ii(u)ﬁu,izu,i! = I(Bu,iu’ Zuﬁ)ﬂ,: —(u, Bu,iZuyi>fu,i+

_ / (W/(t, B ) = W' (£, u)B 1) Zu s ] =
Fu,i .

-y / By (uls — 20 ;) dt — / (W'(t, B st) = W' (t, 0By ;) Zu s ] <
}-ul' £

u,f

< 2llulls, ; + Jullr,, <67 < £,

u, i —
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and the same argument gives also

o' (By i) Zuyi — @' (W)By i Zuyil < B

We put W,,; = %ﬁu’iZu,i, observing that min{@j(u)Wu,:, ¢'(u)Wu i} > &.

The lemma follows setting = £-. L

If u € Bry(K;p) does not satisfy the assumptions of lemma 4.5.11 we set
Wu’i = 0.

Now we state a consequence of the property (2).

Lemma 4.5.12 There exists v > 0 such that if u € B.,(K;p), ||u|lr.na, <
§2 andu € {l; < p; <y}, forsomei € {1,...,k}, then there exists V, ; € X,
IWu,ill <1 such that
(1) ei(u)Vu,i = v;

(1) @' (u)Vu,i 2 v;

(1) supp Vui C L\ M.

Proof. Let u € B (K;p)N{li < ¢; < Iy}, for some ¢ € {1,...,k} and
lullrina, < & . We claim that G, ;u € {a < ¢ < b} N Bj(p; * K).

Indeed, we observe that
lull, = 1B sull?; < lullfina, +38llull%, ; < llulfina, +5 <&+ 3

and that, by (4.5.17),

[ e - Wit B

= / W(t,u)dt + / (W(t,u) — W(t,B, u))dt
IinAu }-u,i
< gllullfina, + %Hu”g;u' < L2 +9).
Then, we haVe
lopi(u) — S‘oi(ﬁu,iu)l
= Iz (IlullZ, = 1Bu ullZ,) - / (W(t,u) = W(t,B, ) dt| <€ +6<0,

1
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which implies Bu’,-u € {a < ¢ < b}. Moreover, arguing as in (4.5.27) we also
have that B—u’iu € Bs(pi * K).

Therefore by property (2), there exists Z,,; € X, || Zu4,]| < 1, such that
@' (B, i) Zui = 0By u) Zui > &
As in lemma 4.5.11 we have |0'(8, ju)Zu,i — ¢'(w)B, i Zu,i| < 57 <
that [¢}(Bu, i) Zu,i = ¢i(u)B,iZusl <63 < £

Therefore n,o’(u)ﬁu’iZu,,- > % and Lp'i(u)ﬁu,izu,,- > %. We put V,; =

and

N

%Bu’iZu,i and setting v = % the lemma follows.

O

If u € By(K;p) does not satisfies the assumptions of lemma 4.5.12 we
set Vyu,i=0.

Now, collecting the results obtained above we prove the existence of a
pseudogradient vector field as stated in lemmas 2.3.6, 3.4.2 and 4.5.2.

Let ry,r9,r3 be such that r —3d, < r; < ry <713 <7+ 3d,, [lf‘,l;’] C
(a*,b%) and [I7,15] C (a=,b7), where both (at,b%), (a™,b7) verify (4.5.19).

Lemma 4.5.13 There exist fi, > 0 and é; > 0 such that: YV € (0, &)
there exists No € N for which for any k € N and p € P(k, N), there exists
a locally Lipschitz continuous function W : X — X which verifies
(W1) maxicj<i W), <1, ¢'(w)W(u) 2.0 Vu € X, W(u) =0 Yu €
X\ B,y (K;p);
(W2) oi(u)W(u) > i if m <infeer |lu—v(- —pi)lln; < 72, v € Br(K;p) N
{pi <ect};
(W3) @i(u)W(u) 20 Vue {If <o <IFIU{T <pi <15}
(W4) (u,W(u))n; 20 Vi€ {0,...,k} if ue X\ Ms, where Ms ={ue X :
lulld, <6 Vi=0,...,k}.
Moreover if K N B,,(K;p) =@ then there exists p, > 0 such that
(W5) @' (w)W(u) > pp Yu € Br,(K;p).

Proof. Let usfix ¢ = min{|a®—IF|, pE -1}, & = +min{(ry —r+3d;), (r+
3d, —r3)}, & = min{c3,5}, ¢y € (0,¢*) and 51% = ¢ min{&, &, pr, 0 —
c4,0}, where p, and % are given respectively by (4.5.18) and (4.5.19) (ot
relatively to the set {I] < ¢; <I1F} and 7~ to the set {I] <w; <17 }).
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Then, given § € (0,61) and N > N5 (N;s be given by (4.5.21)), let k € N
and p € P(k,N).
Given u € B, (K;p) we define
I ={i€{l,....,k} ¢ infoek lu —v(- = pi)ln 2 1, pi(u) < i},
IF={ief{l,....k} : {if <w:i<IF}),
Ty ={ie{l... .k} {if <pi <5
Now let consider the case T =7, = I; = @.

We distinguish between the two following subcases:

2 2
ma; m >4,
Gox llullyy <8 or max Jlullhy, 26

In the first case, by lemma 2.2.6, we obtain that if KN B,,(K;p) = @ then
there exists Z, € X, ||24]| £ 1 and there exists fi, > 0, independent of u,
such that ¢'(u)Z, > %P-

In the other case if we have |lu||a; = maxo<ick [|ullf, = §, we get by
(4.5.24) that
| P (WWu 2 gllullly, — § 2 36

We set

u

o Zy if 7, = I;_ =7, = and maxo<i<k Hu”%’!x < 46

where W, ; 1s given by lemma 4.5.11 and Vui’,- by lemma 4.5.12.
Then we note that

Wallz; < max{||Zullz, 3(IWallz + [ Waillz + max{IVEillz Vel D} < 1.

Moreover by using lemmas 4.5.11, 4.5.12, remark 4.5.10, (4.5.24) and (4.5.25)
we have the following properties:

i) if maxo<i<k [|ull};, > 6 then

<1L7Wu>M1 = %(U')W‘IL)MI > E(I};'Ij”"“?\/ll

and
99'(U)Wu 2> %?I(U)Wu 2> 5674‘;
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i) if ¢ € 73 and ||u|lr;na, < & then

@' (u)Wy > Lo (W)W, + Lo (W)W, > £
P 2 FRL W + Sl Wai 2 & -

o OE

i) if 1 € 77 and ||u||r;na, > &1 then

¢ (W, > 1o'WW, > & — 38 > sz_
i)Wy > Soi(u)W, > —6L — 3> Tg"?
iv) i then
()W > 1o/ (W)W, + Lo/ (w)VE, > 2 - 2 > e*
P W > Lol ()W, + Lol(uVE, > 25— £ > 2

v) if 1 € ZF and |lul|1;na, > & then

P, 2 Lo (W, 2 %~ 8 > &

2 12
~ 2
P, > Lol ()W, > & — 8 > &,

vi) if Iy = I = I; = @ and maxo<i<k ||ul3;, < & then
@' ()W = o' (1) 20 > .

By (1)-(vi), the lemma follows with a classical pseudogradient construc-

+
tion setting ji, = min{$L i %5} and pp = min{j,, 264, gz, =1 [

It is simple to recognize that from the above lemma we can obtain lemmas
2.3.6 and lemma 4.5.2. To get lemma 3.4.2 we observe that, taking eventually
p smaller, property 4.5.17 holds unchanged for the potential V,, if « is suf-
ficiently small. Then, using also lemma 3.4.1, we get that if « is sufficiently
small the perturbed functional ¢, verifies lemmas 4.5.9, 4.5.11, 4.5.12. Then

it is possible to repeat the proof of lemma 4.5.13 with ¢, instead of ¢ proving
in this way lemma 3.4.2.
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