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PREFACE

This is a thesis about an exciting theme of modern Cosmology: the large scale
structure and the dynamics of the universe.

Unlike other physical sciences, astronomy, and even more so Cosmology, does not
allow one to directly interact with the subject of its research and thus it is impossible to
carry out experiments in the classical sense. All one can do is to observe the content of
the universe. The astrophysical analogous of setting up the experimental apparatus is the
selection of a particular class of objects or phenomena. In other words one has to pick
out those ‘experiments’ that the universe has already performed on his behalf to obtain a
dataset analogous to the outcome of an ordinary experiment. Of course it is possible to carry
out numerical simulations to study the evolutionary behaviour and the features of different
cosmological models, but even in this case the observational data that the theoretical models
should match are products of a unique realization. These data may be used for statistical
analyses provided that their number is large enough and they have been acquired in a
homogeneous way.

Such a peculiar condition makes observational data extremely valuable and explains
why it is so important to increase efforts to obtain complete and statistically homogeneou.s
data. Observational biases and intrinsic limitations do not allow us to gather such an ideal
dataset. Nevertheless, one can try to improve their quality a posteriori by making theoretical
assumptions to recover missed data or to account for biases. In practice one wants to
restore the original information contained into a system (the observed universe) that has
been degraded by some known physical process.

In this thesis we will be mainly interested on the reconstruction methods used in
the study of the large scale structure of the universe. The layout of the thesis is as follows.

Chapter 1 provides the basic framework and definitions of background cosmology
that we will be using for the rest of the thesis. We summarize there the fundamental concepts
of the Standard Cosmology and its description of a homogeneous and isotropic universe. We
stress the relevance of the cosmological information contained in the spatial distribution of
density fluctuations and its link with the distribution of luminous objects. We also discuss
the assumptions underlying the gravitational instability picture and we describe the growth
of density fluctuations within this framework.

In Chapter 2 we review the main reconstruction methods that have been applied

to the study of the large scale structure and dynamics of the universe. We discuss methods



that allow us to reconstruct the density field from the observed peculiar velocity field as
well as those that allow us to recover the density field from the redshift space positions of
luminous objects. The time reconstruction methods that predict the primordial density field
from that presently observed are presented as well.

The main part of the thesis is divided in two Chapters containing original research
contributions on two different reconstruction techniques; their implementation, reliability
and application to real data. Chapter 3 describes an iterative method for reconstructing the
density and the velocity field of galaxy clusters from their observed distribution. The study
of the large scale dynamics have revealed that the knowledge of the mass distribution over
very large scales is fundamental to properly understand the cosmic dynamics even on local
scales. This is a strong motivation for extending the study of the density and velocity fields
up to very large scales. For this reason we have decided to apply an lterative reconstruction
technique to the cluster distribution since they allow us to trace the large scale density and
velocity field. In Chapter 3 we discuss in detail the selection of a homogeneous subsample of
clusters, the implementation and reliability of our method. The subsequent analysis of the
density and velocity field allow us to constrain the value of the cosmic density parameter
while the comparison with simulated data provides us with enough discriminatory power to
rule out some cosmological models at a confidence level larger than 1-o.

Besides the exploration of the cosmic fields at the present epoch, it is also important
to trace them back in time in order to understand the evolutionary proceéses that lead to the
formation of the observed cosmic structures. This is the aim of the reconstruction technique
we present in Chapter 4, which uses the least action principle to describe the growth of
the density fluctuations assuming the gravitational instability picture. After reviewing the
subject end discussing the relevance of the method as a cosmological test, we concentrate on
its general reliability that we test using N-body techniques. The outcome of the analysis
allow us to estimate the validity of the method in an Einstein-de Sitter universe and to

define the limits within which the method can be reliably applied.



Chapter 1

BACKGROUND COSMOLOGY

In this Chapter we summarize the fundamental concepts of the Standard Hot Big
Bang Cosmology. A complete treatment of the subject can be found in many excellent text-
books and reviews [Coles & Lucchin (1995), Kolb & Turner (1990), Lucchin (1990), Narlikar
(1993), Padmamanabhan (1993), Peebles (1971, 1980, 1993), Primack (1984), Weinberg
(1972), Zel'dovich & Novikov (1983)], here the aim is just to set up the fundamental tools
that we will be using in this thesis.

In the first section we discuss the properties, the dynamics and thermal history of
an expanding homogeneous and isotropic universe. In section (1.2) we discuss the inhomo-
geneities in the mass distribution and we develop those statistical tools that describe the
spatial properties of the cosmic density field. In the last part we consider the evolution of
the density fluctuations in the gravitational instability (GI hereafter) framework and their

relation with the peculiar velocity field.

1.1 THE HOMOGENEOUS UNIVERSE

The Standard Hot Big Bang model relies on three basic assumptions:

¢ The observed universe is homogeneous and isotropic and therefore its geometrical and
dynamical properties are well described by the Friedmann—Robertson-Walker (FRW)

model.

e The evolution of the space-time can be described using General Relativity. although

for many cosmological problems the Newtonian approximation is accurate enough.
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e Homogeneity and isotropy hold on large scales. On scales smaller than our horizon the
universe can be described by a perturbed FRW model in which metric fluctuations are

small.
The Standard model is supported by three main observations:

1. During the thirties Hubble carried out a series of observations during which he discov-

ered that galaxies are receding from us according to the simple linear relation
Uy X T, (1.1)

where v,. is the recession velocity and r the distance of the galaxy (Hubble 1934, 1936).

This systematic effect was interpreted as a geometrical space-time expansion.

9. An isotropically distributed electromagnetic radiation has been serendipitously de-
tected by Penzias and Wilson (1965) in the microwave range. This cosmic microwave
background (CMB) is interpreted as the relic blackbody radiation of an epoch in which
the universe was very hot and dense. Subsequent measurements confirmed the original
discovery founding that the CMB is fully consistent with the blackbody radiation hav-
ing nearly constant temperature 1"~ 2.73° K (Smoot et al. 1991) with fluctuations

AT/T ~ 1075 on a scale of 7° (Smoot et al. 1992).

3. The Standard model predicts the existence of an epoch in which the the universe was
hot enough to allow the nucleosynthesis of the light elements (Wagoner 1973). The
predicted abundances are in accordance with experimental determinations (c.f. Walker

1991)

1.1.1 The Cosmological Principle

The fundamental assumption of the Big-Bang Cosmology is the fact that on large
scales the universe is homogeneous and isotropic. This statement, originally formulated
by Einstein, constitutes the so called Cosmological Principle. A stronger version of this
assumption is the Perfect Cosmological Principle stating that the universe is the same not
only everywhere but also at all times. The Perfect Cosmological Principle constituted the
basis of the now disfavoured Steady State Cosmology (Bondi & Gold 1948, Hoyle 1943)
Attempts of justifying the Cosmological Principle have been made both on a philosophical
basis and on more direct physical grounds (for a review on this subject see Barrow & Tipler

1986).
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1.1.2 The Robertson—Walker Metric

Let us model the universe as a continuous fluid in which we label each element
using three spatial comoving coordinates 2% (a = 1, 2, 3). Each point in the-space time
1s then characterized by its comoving coordinates, z*, and the proper time ¢ measured by a

clock moving with the fluid element. The metric
ds® = gy dzide® (1,k=0, 1, 2, 3) (1.2)

represents the space-time interval between two points labelled by z* and z* + dz*, and
accounts for the geometrical properties of the space-time through the metric tensor Jik-
It can be shown that the most general space-time metric [called Robertson-Walker metric
(R-W)] describing an homogeneous and isotropic universe is of the form

dr?

2 _ 2 _ 2 _ 2 _ N2
ds® = (cdt)® — dI* = (cdt)? — a(t) T~ oo

+ r?(df* + sin? 0dé?) | , (1.3)

where dl is the spatial distance between two points measured at the same universal time #
while (r,0, ¢) are comoving coordinates, a(t) is the expansion parameter and K is the space

curvature that can only take the values (—1, 0, +1).

1.1.3 The Hubble Law

From the Cosmological Principle, which allows one to describe the geometrical
structure of space-time with the R-W metric, follows that the space-time is expanding.
This prediction has been experimentally verified by Hubble (1934). Let us introduce the
proper distance, dp,, of a point P from another point P, that is placed at the center of
the coordinates (without loss of generality). The proper distance is defined as the distance
measured by a chain of rulers held by a set of observes connecting P and P, at the same

time ¢. According to this definition d,, is the integral of dl along r:

r adr
dp,,. :/(; m = G,F(T), (14:)

where a is the expansion factor which depends on the universal time ¢. From eq. (1.4) we
can notice that the proper distance changes with time and thus the source at P has a radial

velocity
d(d,, . a .
Vp = (d: ) = aF(T‘) = gdp,- (1.0)

with respect to P;. Equation (1.5) is the so called Hubble law and the parameter

H(t) = g (1.6)
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is the famous Hubble parameter. Its value at the present-epoch H, is loosely constrained

by observations to be in the interval
30 km/sec h~*Mpc < H, < 100 km/sec R~ Mpc

and is often expressed using the dimensionless parameter h = H,/(100 km/sec h~'Mpc). If
galaxies have negligible proper velocities then eq. (1.5) predicts their systematic recession,

as observed.

1.1.4 The Cosmological Redshift

To actually measure the velocity of a galaxy one takes advantage of the R-W metric
properties which predict that a monocromatic wave emitted by a receding galaxy is system-
atically Doppler-shifted towards larger frequencies. Let us consider an electromagnetic wave
emitted from a distant source at the time t, with a wavelength A.. The redshift = of that
source is defined as
Ao ;—e Ae , (1.7)

where ), is the wavelength of the radiation detected at ¢, by an observer placed at the center

Zz =

of the coordinates (from now on the subscript , indicates the present—epoch). Since the light
travels along null geodesic (ds? = 0), from equations (1.3) and (1.4) we obtain that for a
light ray

/:’fflf = F(r). (1.8)

. a
Another wave emitted at . + §t. reaches the observer at t, + 6t,. Since F(r) is time inde-
pendent we can write the analogous of eq. (1.8) for the second light ray and, by comparing

the two relations, we obtain

ot, Ot
= = (1.9)
o Qe
If, in particular, 6t, o A, and 6t. o A, we have
o Qe
do _ Ge 1
Ao Ae (1.10)
and therefore
Qo
14+2z=—. 1
ro= (.11

Because of the one-to—one correspondence of the redshift and the expansion parameter, the
former is commonly used as a label of a given epoch. For small z the redshift of a source
is directly related to its recession velocity and to its comoving distance, provided that the

source does not have a peculiar motion superimposed to its recession velocity.
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1.1.5 The Cosmological Horizon

An important cosmological quantity for studying the evolution of the cosmic struc-
tures is the portion of the universe that has the possibility of being causally connected with
which a generic observer at time ¢. This concept is quantified by the so called cosmologi-
cal horizon (also called particle horizon) Ry, which is defined as the radius of the sphere
containing all the points that could have communicated with the observer in the interval
between t = 0 and .

Ru(t) = a(t) [ £ (1.12)
0 a(t)
where the observer has been places at the center of the coordinate system.

1.1.6 The Friedmann Equations

The Standard model uses General Relativity to relate the space-time geometry to
the matter content of the universe. The link is given by the Einstein equations:

1 8rG
R — 590 B — Agir = —g;“Tikv (1.13)

where A is the cosmological constant introduced by Einstein to allow static cosmological
solutions, Tj is the energy-momentum tensor, gir 1s the metric tensor, R;: is the Ricci
tensor, R = g** R is the Ricci scalar, G is the Newton’s gravitational constant and cis the
speed of the light. The energy—density tensor, of cosmological relevance, is that of a perfect
fluid

T;j = (p+ pc*)U:U; — pgsj, (1.14)
where p is the pressure, pc? is the energy density and U; = gik% is the four—velocity of the
fluid. With the transformations:

Act N Ac? (115)
—_ _— .
P—P=3G P PTG

we can formally recast eq. (1.13) in the standard form

1 v
B — Sgufl— = *——*7: Tik. (1.16)
Z C

From the time-time component of eq. (1.16) one obtains
4
i=-G (p+3§)a (1.17)

while substituting & from eq. (1.17) in the space-space component on has

SrG

a* + Kc* = pa’. (1.18)
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Space-time components give the trivial relation 0=0. The relationships (1.17) and (1.18) are
the so called Friedmann equations. They are not independent: eq. (1.18) can be obtained

from eq. (1.17) if one assumes an adiabatic expansion of the universe:
3y _ _qP 2
d(pa”) = —3—a"da (1.19)
c

The set of equations (1.17), (1.18) and (1.19) together with the equation of state
F(p,p) = 0 allows, in principle, to compute the time evolution of the expansion parameter.
The qualitative behaviour of a(t) at t < t,, however, can be already deduced by noticing that
o > 0 since the universe is expanding and that @ < 0 at all times, provided that p+3% > 0,
a condition fulfilled at any time except during the so called inflationary ei)och (during which
& > 0). This means that the expansion parameter has a monotonically increasing behaviour
in the time interval [0,%,]). To predict the space time evolution at ¢ > o, however, one has
to solve the Friedmann equations.

The standard model assumes a perfect fluid with equation of state
p = wpc?, (1.20)

where w lies in the ‘Zel’dovich interval’ 0 < w < 1. In the case of dust (i.e. pressureless
matter) p = w = 0, while for a non—degenerate relativistic fluid in thermal equilibrium (e.g.
photons) w = 1/3. Substituting eq. (1.20) into eq. (1.19) allows to relate the density, p, to
the expansion factor, a, by

pa®1+) = constant (1.21)

so that for a — 0 (which occurs for ¢ — 0) the density diverges. The explicit solution, a(t),

depends both on w and on the value of the density parameter at the present—epoch:

po _ poSTG

Qs = =
Pocr 3H?

(1.22)

and can be obtained by integrating

(i)z = B [Q <fi‘_°>(l+3w) +(1- Qo)} , (1.23)

Qo
that can be easily obtained from eq. (1.18). Simple solutions of eq. (1.23) exist for Qo = 1,
i.e. for the so called Einstein—de Sitter model:

a o 13 for w=0 (1.24)

and

axt’?  for  w=1/3 (1.25)



CHAPTER 1. BACKGROUND COSMOLOGY 13

At the present-epoch w = 0 since the universe is dominated by matter because the

matter density, pom, is much higher than the energy density associate to the CMB, p.,:

Pom 4 x 10" Qoh2. (1.26)
Por

For ¢t < 1, the expansion factor is an increasing function of ¢ and thus, according to eq.
(1.21), the CMB energy—density has decreased faster than the matter density. This means
that an earlier epoch existed with p, > p,, which then means that the universe has been
dominated by radiation in the early stages. The epoch in which the two densities are equal
is called equivalence epoch. From eq. (1.21) and (1.26) it turns out that equivalence occurred
at z = 4.3 x 10* Q,h%.

Since the CMB has a nearly perfect blackbody spectrum, the energy density and
the temperature of the radiation are linked by the Stefan-Boltzmann law:

o7y,

)
c?

Por = (1.27)

where o is the so called blackbody constant and 7, is the radiation temperature. From

equations (1.21) and (1.27) one sees that the temperature of the radiation scales as

T.(t) = Ty (f—) (1.28)

and thus it increases going back in time. Besides the equivalence epoch, there are two more
important timescales in the thermal history of the universe: the recombination and the
decoupling epochs.

Since the universe is cooling, there has been an early era in which the universe was
hot enough to be fully ionized. The recombination time is defined as the epoch in which the
temperature fell below 4000° K (z ~ 1500), when 50 % of the matter gets in the form of
neutral atoms.

The decoupling occurred when the collision time between photons and atoms became
larger than the characteristic evolutionary timescale of the universe. In the cosmological sit-
uation the dominant mechanism of matter-radiation interaction is Thomson scattering by
electrons while the universe timescale is the expansion time. Equalizing these two charac-

teristic times one obtains that matter and radiation decoupled around z ~ 300.

1.2 THE INHOMOGENEQUS UNIVERSE

Up to now we have considered a homogeneous and isotropic universe. Observations,

however, point at a different direction since the distribution of galaxies appears inhomoge-
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neous and anisotropic. This implies that if galaxies are correlated to the mass distribution
the cosmological principle is violated, at least on small scales. The Standard model, how-
ever, will still be valid provided that the metric fluctuation are small within our horizon,
i.e. provided that we live in a perturbed FRW universe. Since requiring small metric fluc-
tuations does not put stringent constraints on the amplitude of the density fluctuations on
small scales, the basic hypotheses of the Standard model and its properties are consistent
with the current observations of the galaxy distribution.

A complete theory should be able to describe the statistical spatial properties of
the cosmic density field together with its evolution. In this section we describe the more
common statistical tools employed to describe and to study the spatial features of the density

field and its relation to the distribution of luminous objects.

1.2.1 The Density Fluctuations Field

It is convenient to define the density fluctuation field §(x) :

_ o)~ {p(x)
50 = E= (1:29)

In the statistical framework, §(x) is treated as a random field, i.e. as a set of random
variables, one for each point x, so that our universe is a random realization ‘picked up’ from
a statistical ensemble of universes. In this framework the average (-) in eq. (1.29) is intended
as an average over the ensemble.

The Cosmological Principle implies that §(x) is a homogeneous and isotropic ran-
dom process and that the average over the ensemble are invariant with respect to spatial
translations and rotations. Furthermore, the Ergodic Hypothesis holds which states that
ensemble averages coincide with spatial averages if one considers a single realization of the
random field. This is essential since all the needed information is contained in a single §(x)
sample.

A convenient way of describing the density fluctuation field is to think of the per-
turbation, §(x), as a superposition of monocromatic plane waves which, as we shall see,
evolve independently when the fluctuations’ amplitude is small. Let us consider a cubic
volume V = L? larger than the maximum scale at which a significant density fluctuation can
be detected. In this case V is a ‘fair sample’ of the universe. The density fluctuation field

within the volume V can be expressed as a Fourier series:

§(x) =) brxexp(ik - x), (1.30)
k
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where k is the wavenumber that, because of the periodic boundary conditions

6(L,y,z)=6(0,y,2); 6(z,L,z) = 6(z,0,z2); 6(z,y,L) = 6(z,y,0), (1.31)
has components
27
k, = A with n==t,y, % (1.32)

where n, are integers. The Fourier coefficients dx are obviously obtained by Fourier trans-
forming §(x):

S = f/l—/vé(x) exp(—ik - x)dx (1.33)

One can formally take the limit V' — oo in which case the Fourier coefficients

become a continuous function of k, 6(k), that form a Fourier pair with 6(x):

5x) = — [~ s exp(ik - x)dk  ©  6(k) = 7 00 explik g (139

273 Jo

1.2.2 Power Spectrum

Clearly, the expectation value of §(x), (6(x)), is null by construction while the
variance o = (6%(x)) is generally not. From the first of equations (1.34) it is straightforward
to see that

o? = 5%/g°°<|52(k)1>k2dk, (1.35)
where the quantity (|62(k)|) = (|63]) = P(k) is the power spectrum of the density fluctua-
tions.

Together with the P(k), which measures the amplitude of the Fourier coefficients
as a function of k, to fully characterize §(x) one needs to know the probability distribution
of the fluctuations. For this purpose let us consider N realizations of §(x) within different
boxes with volumes V;, V3, .... Vi identical to the volume volume V and let us measure
the probability distribution of the Fourier coefficients 6 = |y|exp(ifx). If the phases are
independent and randomly distributed in the interval [0,2], as predicted by most of the
popular mechanism of generating the primordial density fluctuations (like many inflationary
models), then the |éx| follow a Rayleigh distribution

BV (_ 6V
{6} \ 2018

P([6xl, Ok )d| 6k |dOx = ) d|éx | dfy (1.36)

which represents the probability of having |fx| in the interval [|6k|, |6k| + d|0k|] and Ok in
the interval [0y, 6 + dfx]. In this case it is easy to show that the distribution P(§), which
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represent the probability of measuring in the point x a fluctuation in the range (6,6 + dé], is

Gaussian:
2

and the fluctuation density field, §(x), is called Gaussian as well.

It can be shown that for a Gaussian field the N—variate joint distribution of a set
of 6(x;), P(6(x1),6(x2)......6(xn)), can be written as a multi-variate Gaussian distribution
which is a function of the P(k) alone. Therefore a Gaussian density fluctuations field is
completely characterized by its P(k).

~ The variance o? carries information about the amplitude of the density fluctuations
but does not depend on their spatial distribution. In general eq. (1.35) does not converge
and, in any case, it does not contain any information about the relative contribution to the
fluctuations from different scales. Since the r.m.s. density fluctuation on a given scale is
important for understanding the evolution of cosmic structures it is convenient to define the

mass variance, o2, as the variance o? measured within a spherical volume V;. If (M) =

m?

Vi(p(x)) = 27 R3(p(x)) is the average mass contained within V;, then

2 _ (M = (M))*) (1.?;8)

T
where (-) means spatial average within V;. It can be shown that
1 o
2 _ 1 3 27277, :

Tn =53 ), P(k)W (kR)*k*dF, (1.39)

where
3[sin(kR) — k k
W(kR) = 3[sin(kR) — kR cos(kR)] (1.40)

(kR)?
is the window function that contain contributions to o2, from wavelengths A > R. W(kR)

is the Fourier transform of the top hat filter

F(lx —x|,R) = 47r3R36 (1 —~ JE‘JR—X') , (1.41)

where © is the Heaviside function, that in real space delimitates the spherical volume V.
Using a spherical window with sharp edges may cause problems since W (kR) has an extended
tail in the k-space and thus it can pick up undesired contribution from small k¥ modes. To

avoid this problem the Gaussian window is often used:

. 1 [x — x? :

together with its Fourier transform

PR L. ]
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1.2.3 The Correlation Function

A more complete description of the spatial properties of §(x), besides the mass
variance, can be obtained using the autocorrelation function (or covariance) of the the density

field 6(x) which is defined as the expectation value of the two—point function:
E(x) = (8(x)6(x + 1), (1.44)

where the average is over all the points in the volume V. In a homogeneous and isotropic
universe {(r) does not depend on either the origin or the direction of r but only on its
modulus [r| =7 and thus [£(r) = £(r)].

Taking the limit V' — oo it is possible to show that £(r) and P(k) form a Fourier

pair (Wiener-Kintchine theorem):

£(r) = (—9%5 [ Py expl—ik rydk = I p(kﬁ%kl’dk (1.45)
and .
P(k) = /0 ¢(r) exp(ik - r)dr = dr /0 f(r)smk(fr)rzdr. (1.46)

The two-point autocorrelation function £(r) can be generalized to define the auto-
correlation function for N > 2 point. For example the three point autocorrelation function
( 1s defined as

C(r,s,t) = (6(x)6(x +1r)é(x +8)), (1.47)

where the average is over all the points in the volume V' and over all the directions of r and
s such that ¢ = |r — s|. The generalization to a larger number of points is straightforward.
Let us now consider a discrete distribution of masses within a volume V and with

a number density ny. The continuous density field can be formally expressed as
p(x) = Y mibp(x — xi), (1.48)

where the sum extends to all the points found at x; with masses m; and §p is the Dirac
function. If m; = m for each point then the average density is (p) = nym and the probability
of finding a mass point in a randomly chosen infinitesimal volume 6§V is 6P = m™p(x)5V.
Analogously, the joint probability of finding a point mass in the volume §V; and a point
mass in the volume §V; separated by a distance r is

s2p = $POVPXET)) o oy nZ (1 + £(r)]6Vi6Va, (1.49)

m2
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where ¢(r) is the two-point correlation function. If the points were randomly distributed
then £(r) = 0. Thus a positive correlation at a given scale r can be interpreted as an
excess probability over random, while the anti-correlation, —1 < ¢ (r) < 0, means a lack of
probability with respect to the Poissonian case.

The different terminology used for £(r) derives from its different meaning: in case
of a continuous field the autocorrelation function measures the degree of spatial correlation
of density fluctuations while in the discrete case {(r) is defined in terms of conditional
probability of founding discrete objects at specific points.

The two—point correlation function is the more popular statistical tool for describing
the galaxy distribution together with its generalization to the N points case. Assuming that
galaxies trace the mass, there is a one-to-one relation between the two—point spatial galaxy
correlation function and the autocorrelation function of the underlying density field. We will
discuss this point in the next section.

In the usual case of two—dimensional (projected) galaxy catalogues it is convenient

to define the two—point angular correlation function w(#):
§2P = nd[1 + w(0)]dQ:1dQs, (1.50)

which represents the probability of finding two galaxies within the two infinitesimal solid
angles df); and dQ, separated by the angle 6 on sky; nq 1s the number of galaxies per unit
solid angle. £(r) and w(f) are connected trough the Limber equation. The relation between

them is particularly simple in the case of power law behaviours:
fF)ocr — w(@) x0T (1.51)

Groth & Peebles (1977) computed the angular correlation function of the Shane-
Wirtanen Lick galaxy counts and found that w(0) is well fit by a power law of slope 0.77 for
scales smaller than 2° with a sharp break on larger angular scales. More recently Maddox
et al. (1990) computed the angular correlation function for APM galaxies and found that
it matches the Lick one on small scales but its power law behaviour breaks at a somewhat
larger scale. The spatial correlation function has been determined essentially from redshift
surveys (Davis & Peebles 1983, Shanks et al. 1983, de Lapparent, Geller & Huchra 1988,
Strauss et al. 1992 and Loveday et al. 1994). All the analyses agree that the galaxy-
galaxy spatial correlation function, £y, is well approximated by a power law in the range

0.1 A~~*Mpc < r < 10 A~ Mpc:
r\~" =
€y(r) =~ (—-) : (1.52)

To
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with v ~ 1.8 and the correlation length r, ~ 5.4 A *Mpc which is consistent with the
behaviour of w(9). |

Besides galaxies, the two—point correlation function has been measured also for
other classes of objects. The spatial two-point correlation function of the Abell clusters of
galaxies was found to be (cf. Bahcall & Soneira 1984, Klypin & Kopilov 1983, Plionis et al.
1991)

€e(r) =~ <I—> o (1.53)

Toc

where 12h7*Mpc < ro. < 25 -7 Mpc and 7 = 1.8 for separations in the range 5h~*Mpc <
r < 70h~'Mpc. The 7, value is quite uncertain and varies with the cluster richness (the
number of galaxies contained within the Abell radius of ~ 1.5 A7 Mpc). No correlation with

cluster richness was found for the exponent v which is remarkably close to that of galaxies.

1.2.4 The Bias Parameter

In order to link the matter density field to the observed galaxy distribution we have
assumed that the density field is well traced by the discrete distribution of luminous objects.
However, it is well known that most of the mass in the universe is in a dark form that can
be revealed only through its dynamical influence and to fulfill the previous assumption all
the matter should be concentrated in dark haloes surrounding the visible galaxies. Although
there are good arguments to believe that the distribution of luminous objects trace the mass
on scales larger than 5-10 A~'Mpc, there is very little evidence that this is true also on
smaller scales.

Because of our ignorance on the processes that lead to the formation of galaxies
we do not have a physical model to relate the galaxy and mass distributions and one has to
resort to simple statistical arguments. Kaiser (1984) suggested a model in which the galaxies
form at the high-density peaks of the density field. In this case the galaxy distribution is
said to be biased with respect to the matter. Kaiser (1984) was interested in studying the
biasing of clusters relative to galaxies. It was soon realized that a similar mechanism can
be extended to study the galaxy distribution with respect to the underlying density field,
causing the clustering of the galaxies to be stronger than that of the mass. The peak biasing
model introduced by Kaiser (1984) makes a definite prediction for the relation between the
spatial two-point correlation functions of the biased and unbiased distribution, at least on

large scales,

ébiased(r) s bzé.unbiased(r)a (154)
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where b is the biasing parameter, which is assumed constant, independent of scale and re-
lated to the threshold at which the objects are selected. In some sense the biasing factor
parametrizes our ignorance about the formation of luminous objects. The peak biasing
model naturally explains the fact that, as we have seen, £, and £, have the same shape but
different amplitudes. Dekel & Rees (1987) proposed a physical mechanism to justify the
Kaiser prescription (1984) although alternative biasing schemes have been proposed more
recently (Babul & White 1991, Bower et al. 1993, Catelan et al. 1993).

In practice and in what follows we will assume the simple linear biasing scheme
6biased(x) - b6unbiased(x)- (155)

Equation (1.55) implies eq. (1.54) while the vice-versa is certainly not true. When & > 1
and the unbiased field refers to the mass density field, eq. (1.55) cannot be strictly correct

since 6 > —1 always. To avoid this problem the scheme

1 + 5biased(x) = [1 + 5unbiased(x)]b (156)

has been sometimes employed in the literature. It is worth stressing that the linear biasing
model is just the simplest possible model for relating the density and the galaxy density
fields but it would be surprising if there were not some kind of non-linear dependence at

least on scales smaller than 5~*Mpc (Coles 1986, Coles 1993).

1.3 THE EVOLVING UNIVERSE

There is one crucial observation that any evolutionary model has to explain: at the
present-epoch the matter distribution is very clumpy and density fluctuations corresponding
to visible galaxies are very large while the CMB isotropy suggests that at the recombination
epoch the density field was highly homogeneous and the amplitude of density fluctuations
was very small.

This constraint ruled out many models; among them one proposed in the sixties
according to which galaxies were formed as a result of primordial cosmic turbulence. The
standard GI scenario was proposed in the late sixties as an alternative model by several
authors (Doroshkevich, Zel'dovich & Novikov, Peebles & Yu, Weinberg and Field among
the others). The GI implements the gravitational Jeans instability theory in Cosmology
and considers the adiabatic longitudinal solutions (while the cosmic turbulence considered

the vortical modes of the Jeans theory) to describe the growth of initially small density
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fluctuations. The GI is able to explain the high degree of isotropy in the CMB and the
observed relationship between cosmic density and peculiar velocity fields. This success makes
the GI the most popular scenario for understanding the LSS evolution, although some class
of non GI models (e.g. some types of explosion scenarios) cannot be ruled out (c.f. Babul
et al. 1994).

The simple idea underlying the Jeans theory is that small fluctuations in the den-
sity field develop via gravitational instability when the self gravitation of the overdensities
becomes larger than the stabilizing effect of the pressure forces. In this case the density
fluctuations grow until they eventually collapse. Jeans showed that the instability develops
if the size of the fluctuation { exceeds a characteristic lengthscale (the so called Jeans length,
);) that depends on the local density and the sound velocity. Therefore if I > A; the GI.
enhances the fluctuations otherwise the velocity dispersion dissipates them.

The growth of fluctuations within the Standard model is a much more complicated
process in which, besides the phenomenon of the gravitational instability, one also needs to

account for

e The expansion of the universe.

o The mass components of the universe. The simplest acceptable model is one of three
components: baryonic material, non-baryonic material (made of one single type of
particles) and photons. Moreover curvature adiabatic perturbations (in which all the

three components are perturbed) are assumed.

e Physical processes that affect the growth of fluctuations during the radiation dominated

era.

The net result of the evolutionary process mainly depends on the nature of the non

baryonic mass component and can be divided in two categories:

o Hot Dark Matter (HDM) Scenario: In this case the universe is dominated by non-
baryonic particles that were still relativistic when they decoupled from the other com-
ponents. In this case the first structures to form are on large scales (having masses
similar to that of clusters or superclusters of galaxies ~ 10" — 10" Mg). Galaxies
form by successive collapse and fragmentation of these primordial structures. This is

the so called top down scenario.
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e Cold Dark Matter (CDM) Scenario: The universe is dominated by particles that de-
coupled when they were no longer relativistic or that have never been in thermal equi-
librium with the other components. In this scenario structures form by aggregation of
smaller overdensities (~ 10% Mpg) that cluster under the effect of gravity (hierarchical

clustering). For this reason the CDM scenario is also called bottom up scenario.

Here we will not discuss in detail the growth of density fluctuations and we will
mainly concentrate on the so called ‘linear approximation’, that describes their GI evolution
when 6 < 1, and on the possible generalization to the non-linear regime. An overview of

the growth of density perturbation will be given at the end of the section.

1.3.1 Linear solutions

Let us consider a density perturbation field, generated somehow in the early stages
of the universe, that starts growing when the non-relativistic matter begin to dominate the
density of the universe (any relativistic component is thought to give a negligible contri-
bution). We also assume the existence of post-recombination density fluctuations in the
non-relativisitic components of the matter. Here we treat the matter as a pressureless ideal
fluid. The equations of the motion for the matter fluid are the classical Poisson equation
(which states that density fluctuations originate by metric perturbation given by the Newto-
nian potential ¢), the continuity and the Euler equations (that state the conservation of the

mass and of the momentum, respectively). In an expanding universe these equations can be

written as
a6 1 -
-a—g-%—EV(l-{"(S)V—O, (1.0()
ov 1 a 1 o
V24 = 4w G(p)a’s, (1.59)

where the peculiar velocity v and the density fluctuations § are both functions of the co-

moving coordinates x. Also the gravitational potential ¢ is a function of the comoving

coordinates:
6(x,1t)
— (152 T
(x,1) = —Ga <p>/ o (1.60)
as well as the peculiar gravitational field g
V¢ 5(%,1)

Gal(p) dx (1.61)

t) = — .
glxt) === % — xJ?
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Assuming small fluctuations (6 < 1) and reducing to the case of fluctuations much
larger than the Jeans length, we can recover the lowest order solutions to the equations of
motion by linearizing the system of eq. (1.57), (1.58) and (1.59). It makes sense to look for
linear solutions since at early stages § < 1 on all scales (as confirmed by the COBE results).
The linear approximation is also valid at the present-epoch provided that §(x) is smoothed

on large enough scales.

Linear § Solutions:

Combining eq. (1.57) and eq. (1.58) and linearizing allows to obtain the equation

for 6(t) (Peebles 1980):
9*6  _ads
R 7 R et 2
5z T2 4rG(p)é = 0. (1.62)

The general solution has the form
§(x,8) = 6(x)[D(t) + D(t)], (1.63)

where D(t) is the growing mode and D(t) is the decaying mode that, since it disappears
rapidly, will not be considered in what follows. The solution (1.63) is self similar so that th¢
initial density field retains its characteristic features and what changes is just the amplitude
of the original fluctuations.

Substituting the growing mode of the solution (1.63) into eq. (1.62) gives
D+22D — 4xG(p)D = 0. (1.64)
a

In the case of an Einstein de Sitter universe a(t) o ¥ and p o t72, therefore eq. (1.64)

becomes .
.. 4D 2D
D+2—=— 1.65
that admits the solution
5(x,t) = &§(x)t?3. (1.66)

Linear v Solutions:

The time behaviour of the Newtonian potential can be straightforwardly deduced
from equations (1.60) and (1.63). To solve for v let us write the linearized analogue of the
Euler and continuity equations:

dav)
5 =98 (1.67)
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and

G
V-v=—a. 1.68
v s (1.68)
Equation (1.68) is particularly important since it returns 6(x) once v(x) is known. Intro-

ducing the quantity
dlog D

= 1.
! dloga (1.69)
eq. (1.68) can be rewritten in the standard form:
V-v
= - . 1.7
5(x) = ~ 777 (1.70)

The behaviour of f as a function of ), is given quite accurately by the approximate relation
f ~ Q%6 Note that in the GI picture vortical modes decay with times so that the peculiar
velocity field is curl-free and can be expressed as the gradient of a scalar function ®y called

the velocity potential:

Vo _
v=-—— (1.71)
a
Substituting eq. (1.71) into eq. (1.70) gives
V2®y = Hfdé (1.72)

that, compared with the Poisson equation (1.59), shows that ¢ < ®y and thus v o< g:

2f -
V=0 (1.73)

from which the time behaviour of v can be easily deduced. Equation (1.73) indicates that in
the linear regime the peculiar velocity is proportional to the local gravitational acceleration.

From eq. (1.73) one obtains

aHf 5(x) X —X
4

v(x) = &z, (1.74)

X —x?

a relationship that will be very useful in the rest of the thesis.

1.3.2 Beyond The Linear Regime

Linear theory allows us to predict the time behaviour of the density and peculiar
velocity fields and it also relates the two fields through a simple, invertible formula. It
should be kept in mind that linear relations are valid when § <1 and therefore can lead
to non negligible errors if they are used to describe what happens within the high density

regions. Unlike the strong non-linear effects in virialized systems which tend to erase the
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memory of the initial conditions, mildly non-linear effects can still carry crucial information
about the large scale structure (LSS) of the universe. It is therefore very important to follow
the growth of density fluctuations and the evolution of the peculiar velocity even in the
quasi-linear regime (i.e. when § ~ 1).

The first improvement over the simple linear theory should be attributed to Zel’dovich
who proposed an ingenious extrapolation of linear GI into the non linear regime (Zel’dovich
1970). He expressed the displacement of particles from their initial, Lagrangian positions q

to their Eulerian position, x(%) at time ¢ as function of the peculiar velocities:
x(q,t) —q=D(t)Vq®(q) = a(H f)" v, (1.75)

where the potential ®(q) is proportional to the velocity potential and the gradient Vg is
taken with respect to Lagrangian coordinates. Under the hypothesis of no multi-streaming,

relation (1.75) can be interpreted in the Eulerian space as:
q(x)=x—(Hf) " av. (1.76)

Nusser et al. (1991) have shown that the solution of continuity equation yields

av .

— |7 - 127 L.77

60) = |1~ (722, (L.7)

where || - || is the Jacobian determinant and I is the unit matrix. This relation allows to

compute the density field once the full 3D peculiar velocity field is known but it is difficult to
invert to provide v when ¢ is given. For this purposed the following empirical approximation

proved to be useful
fé
(1+0.188)°

An even better approximation has been obtained by adding second order terms

V.v= (1.78)

to the (x — q) Zel'dovich displacement and by truncating all the expressions to the second
order. Using this strategy and solving the continuity equation Gramman (1993) obtained

the following relation

dv; Ov;  Ov; v,
-1 -2 1 7 1 7 ~
= — : 4/7 — - 1.79
00) = =f7V v 4/1f Z;(ax 9z, axjaxz-) (1.79)
which can be inverted in second order to provide V - v given §.

Another approximation has been obtained by Bernardeau (1992) assuming Gaus-
sian fluctuations and vanishing variance:

3/2

§(x) = [1 = gf‘lv-v — 1. (1.80)
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that has been recently generalized to the case of non-vanishing variance (Dekel 1994).
Other non-linear methods, like those based on the least action principle will be

presented in the next chapter.

1.3.3 Growth of Fluctuations: an Overview

As we have anticipated, the evolution of the density fluctuations is a quite compli-
cated process. An evolutionary model should describe not only the growth of fluctuations
under self gravity but also explain how primordial fluctuations form, how physical processes
affect their evolution, how they evolve in the linear, mildly non-linear and highly non-linear
regime. A complete discussion of this subject is beyond the scope of this thesis, here we will
present briefly the evolution of density fluctuations by describing how their power spectrum

gets modified which then allows us to characterize the evolution of the cosmic structures.

e Primordial density fluctuations: The common assumption is that overdensities are
generated by quantum fluctuations at some very early epoch. Such fluctuations are
naturally accounted for in the inflationary scenario that provides a physical model in
which perturbations are generated during the epoch of vacuum energy domination,
when @ > 0, and the primordial scalar field, driving inflation, exhibits quantum fluc-
tuations. Since inflation does not pick out any characteristic scale, these primordial

fluctuations can be described by a scale-free primordial power spectrum
P,(k) < k7, (1.81)

where n is the so called spectral index.

Before inflation, several authors attempted to justify the choice of a primordial scale
invariant F,(k) and to specify the relative primordial index. Harrison (1970), Peebles
& Yu (1970) and Zel’dovich (1972) proposed the so called Cosmological White Noise
or Harrison-Zel’dovich spectrum which has n = 1 and predicts scale-independent
fluctuations in the metric. Later on, inflation provided a justification for the Harrison—
Zel'dovich spectrum which is not only predicted by many inflationary models (see
Mukhanov, Feldman & Brandemberger 1992 and reference therein) but also by the
cosmic strings scenario (Vilenkin 1981) and by the global textures model (Cen et al.
1991, Gooding et al. 1991). There are other models, however, which predict a different
primordial spectrum like the power law inflation that allows for a tilting of the spectral

slope (which means n # 1, Adams et al. 1993).
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Furthermore, inflationary scenarios predict the shape of the PDF, which is expected
to be Gaussian, and the nature of the density fluctuations, which are expected to be
adiabatic. Isothermal initial conditions are quite unlike and seem to be ruled out since
they predict temperature fluctuations in later stages comparable with those of the

adiabatic perturbations (Mukhanov, Feldman & Brandemberger 1992).

o Evolution outside the horizon: The cosmological horizon at early times is very small
so that all the fluctuations relevant for the structure formation are outside the horizon
after the inflationary epoch. The amplitude of the density fluctuations outside the
horizon grows according to linear law, 6(x,t) = D(t)é(x), so that the super-horizon
evolution does not modify the spectral shape. As time passes the horizon size increases
and perturbations of larger and larger scale enter the horizon where they start inter-
acting with the rest of the universe. At this point their evolution depends on the epoch
in which they cross the horizon: fluctuations of small size enter first when the universe
is dominated by radiation and thus they start interacting with the photon gas causing
the power spectrum to get modified on sub-horizon scales. Large scale fluctuations
enter the horizon later on when the universe is matter dominated and therefore they
continue growing at the same rate via gravitational instability. As a consequence the

power spectrum maintains its primordial shape on large scales.

o Evolution during the radiation dominated epoch: The details of the spectral bending
during the radiation dominated epoch depend both on the cosmological parameters
(h, %) and on the nature of the non-baryonic matter. Assuming a given set of cos-
mological parameters, and thus fixing the horizon scale at the epoch of equivalence
between radiation and non-baryonic matter, there are two main modes in which the
spectrum can be modified which correspond to the two evolutionary scenarios described

in section (1.3):

- In the HDM scenario if a matter fluctuation crosses the horizon before the equivalence
it starts suffering from the free streaming effect. The free streaming distance Ay, is
defined as the average distance covered by non-baryonic particles since they decouple
until they become non-relativistic. Collisionless dark matter particles stream away and
rapidly dissipate the fluctuations of size < Ay;. HDM particles, like the neutrino, are
characterized by a large value of A;, (of the order of ~ 20 27" Mpc). As a consequence
the power spectrum at an epoch successive to the equivalence (the standard choice is

to take the recombination as a reference epoch) shows a dramatic cutoff around Ay,
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and its overall shape is modified as follows:
for k> 1/\;s — P(k)~0

while

for k < 1/X;s — P(k) =~ P,(k).

- In the CDM model Ay, is much smaller than the size of cosmic structures and thus
the free streaming is not important. There is, however, another relevant phenomenon
that affects the growth of density fluctuations: when a perturbation enters the horizon
and photons (which are the dominant component) and charged particles oscillate as an
acoustic wave, the driving term for the growth of the associated CDM fluctuation dis-
appears and the density fluctuation stops growing until equivalence. Even in this case
the shape of the power spectrum gets modified: on scales larger than the horizon scale
at the equivalence the spectral shape is unaltered while going towards smaller scales
the amplitude of the spectrum decreases since those scales correspond to fluctuations

of smaller size which spent most of their time within the horizon.

The scenarios sketched above are quite simplistic, there are other phenomena which
have to be accounted for. The combined effect of the various processes affecting the
growth of density fluctuations is usually described by the so called transfer function,

T(k), which is defined through the following expression:

Pk, t;) = [g((if))} T2(k, t,)P(k, ), (1.82)

where P(k, ;) is the processed spectrum at an arbitrary final epoch (usually the recom-
bination), ¢; is the initial epoch (the inflationary era) and the term g—((i% parametrizes

away the linear growth that the density fluctuations experience outside the horizon.

e FEvolution in the linear regime:

After the recombination epoch density fluctuations grow via Jeans gravitational insta-
bility. Since at that epoch the amplitude of the fluctuations is very small on all the
scales, we can describe the evolution of density fluctuations in the linear approxima-
tion, as we did in section (1.3.1). Equation (1.30) ensures that the linear evolution is
self similar which means that, in the linear regime, the power spectrum maintains the

shape it had at the recombination.
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e Fvolution in the non-linear regime: The linear approximation breaks down when the
overdensities § become of the order of unity, which first happens on small scales where
the mass variance is larger. In this case one has to resort to nonlinear approximations
which can account, however, only for the mildly-nonlinear regime (i.e. for § ~ 1).
Following the growth of density fluctuations beyond this point is a non trivial task
since the non-linear evolution, unlike the linear one, mixes up the different Fourier
modes. The result is a scale dependent spectral bending which is more severe on small

scales where the non-linear regime sets up earlier.

An analytical, self consistent treatment of the problem does not exist. However Hamil-
ton et al. (1991) and Peacok & Dodds (1994) have semi-empirically worked out an
analytical formula which accounts for the nonlinear spectral bending and is valid in any
regime. Their result relies on two hypotheses (a simple relation between the primordial
and the evolved density contrast plus the assumption that the non—linear correlation
function is a universal function of the linear one) whose validity has been tested using
N-body simulations. Their method can describe the nonlinear evolution of the power

spectrum but does not predict how the PDF is modified by the non-linear evolution.

Ideally, measuring the present-shape of the power spectrum and knowing the phys-
ical processes that modify P(k), it is possible to trace its shape back to the recombination
epoch, which then allows us to cast light on the nature of dark matter, to the primordial P(k)
shape, and to understand which mechanism generated the primordial density fluctuations.
As we will see in the next chapter, this task is not so trivial since experimental uncertainties

and our ignorance of galaxy formation reflect in serious uncertainties.
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Chapter 2

THE RECONSTRUCTION
METHODS

In this Chapter we present and discuss some of the reconstruction methods that
have been used in the studies of the LSS. «

The term reconstruction is used here in a broad sense: it indicates a phen()?;len@
logical procedure by which, étarting from the available noisy and incomplete observa:éiona,l
data, one attempts to recover the true cosmic density and velocity fields using a theoretically

justified reconstruction procedure, as displayed in the diagram below:

Observational Data s Reconstruction Procedure — 6(x), v(x)

Clearly, to obtain §(x) and v(x) one has to face two distinct problems related to

the two entries of the diagram above:

2.0.4 Treatment of the Data

Experimental data need to be homogenized to avoid possible biases in the recon-
struction procedure. In the LSS study one would ideally like to use all-sky catalogues of
extragalactic objects selected with the same criteria and observed using a unique experimen-
tal apparatus. In practice this is not possible and very often one has to face the problem
of properly merging several different catalogues to obtain an all-sky homogeneous sample.
The samples available for studying the LSS can be grouped in two general categories:

1) All-sky redshift surveys containing thousands of objects which are already com-

pleted or will be available in the near future. From these surveys it is possible to extract
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homogeneous catalogues of objects with a large sky coverage but with some small unsurveyed
regions which are either due to galactic extinction (or cirrus emission) near the galactic plane
or due to instrument limitations. The major drawback with redshift surveys is that peculiar
motions cause the z-space density field, §(s), to be systematically different from the true
one, 6(x) (s is the redshif space position of a generic object). In what follows we will discuss
some techniques aimed at correcting for this effect.

2) Galaxy catalogues with redshift-independent distance estimates, in which case
the z—space distortions are unimportant. In this case, however, one has to face different and
more severe problems. These catalogues are compiled by collecting several samples of galaxies
with Tully-Fisher (Tully & Fisher 1977), D,~c (cf. Lynden-Bell et al. 1988) measurements,
accumulated by different authors. Merging different catalogues in a self-consistent sample
is not an easy task since the observers differ in their selection procedure, the quantity they
measures, the calibration techniques and the recipes they use to correct for possible biases.
Examples of homogenized merged sets are the Mark II catalogue compiled by D. Burstein
and its updated version, the Mark III catalogue. Clearly, the resulting merged catalogue has
neither an homogeneous nor an isotropic sky coverage and it is composed by a small number
of objects. Finally, these catalogues are relatively shallow since the errors on the objects’
distances increase with the distance itself which does not permit to extend their estimates

to large distances.

2.0.5 Choosing the Reconstruction Algorithm

The second requirement is that of finding and implementing a reconstruction al-
gorithm suited for the problem under study. Recovering the cosmic density and velocity
fields at the generic time ¢ is a particular case of the more general reconstruction problem
in information theory. Roughly speaking, the problem consists in restoring the maximum
amount of information of a system in which the original information has been degraded by
some known process, or, vice-versa, to find the minimum amount of information needed to
preserve those fundamental features that characterize the system itself.

This problem appears in many different astronomical contexts (the most popular
example is the reconstruction of noisy pictures like those obtained by the Hubble Space
Telescope before its restoring) and it has been faced using several different recipes, ranging
from the very empirical ones (e.g. the methods for filling the unsurveyed regions) to the

better theoretically grounded ones [e.g. the maximum-entropy algorithms of Gull & Daniel
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(1978) or the fractal pixons restoration technique of Yahil (1995)].

The choice of the reconstruction method depends on the nature of the system to
which it has to be applied and to the problem studied. For example for low density systems
where non-linear effects are negligible one can design the reconstruction algorithm assuming
a one-to—one correspondence between density and velocity fields while more sophisticated
methods need to be implemented when the effects of the non-linear evolution cannot be
neglected. For example, the shape of the P(k) is nearly unaffected by non-linear evolution
on scales > 10 = Mpc; therefore we can recover the linear P(k) by filtering the present—
epoch density field on a proper scale. On the other end if one is interested in studying the
linear probability distribution function ([PDF], that together with the linear P(k) completely
characterizes §(x) as a random field) one need to trace 6(x) back in time since the PDF
develops a strong skewness even in the mildly non-linear regime.

In this section we will review some of the most commonly used reconstruction
methods aimed at studying the LSS of the universe.

We start by discussing the phenomenological reconstruction of the P(k)=This is
a simple case in which, starting from different kind of observations one recover a statistical
quantity (the P(k)) that contain all the information about the present-time density field
provided it is Gaussian. In section (2.2) we present some methods for recovering §(x) from
observations. We discuss how to properly fill the unsurveyed regions, how to minimize the
shot-noise, and how to eliminate redshift-space distortions."We also discuss the POTENT
method that allows to reconstruct the true density field from the observed peculiar velocities.
Finally, in the last section we review the techniques used to trace the present—time density

field back in time to the linear regime.

2.1 RECONSTRUCTING THE POWER SPECTRUM
OF DENSITY FLUCTUATIONS

The P(k) completely characterizes the density field in the linear regime if the phases
are randomly distributed. Furthermore, since it is considerably easier to reconstruct than the
whole density fluctuation field, it is not surprising that many authors have tried to directly
recover the P(k) from the available observations.

Direct measurements of P(k) have been performed using a number of galaxy redshift

surveys (Baumgart & Fry 1991, Peacock & Nicholson 1991, Park Gott & da Costa 1992,
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Vogeley et al. 1992, Fisher et al. 1992, Feldman et al. 1994, Park et al. 1994, da Costa et
al. 1994, Lin 1995). These studies allow to sample the P(k) only up to a limiting depth of
~ 100 A~"Mpc where it is subjected to significant z-space distortions and non-linear effects
that modify its shape in a scale-dependent fashion. Furthermore, different authors utilize
different catalogues (TRAS galaxies, Optical galaxies, radiogalaxies, Abell /ACO clusters etc.)
that are thought to trace the underlying density field in different ways.

To sample the shape of the P(k) on a range of scales as wide as possible, several
authors have derived empirical spectra by fitting various data sets. The general attitude is
that of assuming an arbitrary shape for the P(k) and fixing the free parameters of the model
to match the available observations on small scales (to account for the clustering of luminous
objects) and on very large scales (to recover the observed angular two—point correlation
function, w(f), or to fulfill the COBE constraints). For example, Peacock (1991) constrained
his phenomenological spectrum using available redshift surveys of luminous galaxies and the
APM angular two-point correlation function (Maddox et al. 1990). Padmamanabhan &
Narashima (1993) extended that analysis by using the TRAS and CfA redshift surveys data,
the angular two-point correlation function from the APM survey, constraints from large scale
streaming velocities and COBE data. Jing & Valdarnini (1993) computed their P(k) from
ITRAS galaxies and Abell/ACO clusters catalogue and constrained the tail of the P(k) at
small k using COBE observations. Similarly, the Torres, Fabbri & Ruffini (1994) P(k) was
derived by reproducing the shape of their generalized spatial two-point correlation function
and by satisfying the COBE constraints.

To look closer to the procedure through which phenomenological power spectra are
derived we describe here a novel analysis (presented also in Branchini, Guzzo & Valdarnini
1994) and the Peacock & Dodds (1994) [PD] analysis in more detail.

In the first case we build a model for P(k) starting from general considerations on
the present-time shape of the £(r) computed from the CfAs55 and the Perseus-Pisces [PP]
redshift surveys. More precisely, we show that the 1 + £(r) autocorrelation function can be
approximated by a broken power law up to ~ 30 A~ Mpc. We have interpreted the slope
of 1 4 £(r) at small scales as the outcome of the combined effect of non-linearity and of
‘Fingers of God’ z-distortions. Assuming that at large scales the power law behaviour of
1 4 €(r) reflects its linear shape, we were able to constraint the P(k) shape on small scales
(P(k) o< k7>2). To fix the large scale P(k) shape, we adopt the simple functional form

Ak®

P(k) = TT b/ k)

(2.1)
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where o = —2.2 and k., = 0.08 "' Mpc from the consideration on the {(r) shape while the
normalization factor A depends both on the value of the bias factor for the luminous PP
galaxies, b, and on the P(k) amplitude enhancement generated by linear z—space distortions
(Kaiser 1987). Using the rms temperature fluctuations at 10° measured by COBE and
following two independent routes, we constrain the (n,b) pair in the range [0.75,1] and
[1.4,1.9]. The resulting P(k) matches extremely well the directly measured power spectra on
scales smaller than 100 A~'*Mpc. To check how our phenomenological P(k) behaves when
non-linear gravitational evolution set in, we perform N-body simulations of an Einstein—de
Sitter universe with spectra given by eq. (2.1) with n in the allowed range. This also allows
to better constrain the (n,b) pair: it turned out that the two-point correlation function of
the simulated galaxy distribution matches the observed one for (n, ) = (0.85,1.8). N-body
tests revealed that our power spectrum, which is very similar to a tilted CDM P(k) with
n = 0.85, allows us to obtain a small scale velocity dispersion in accordance with observation
while a drawback in our model is that the angular two—point correlation function seems to
lack some power on very large scales when compared to the APM data. =

PD also performed a through phenomenological reconstruction. Their work extends
those previously quoted by collecting information from a much larger set of data: the real
space clustering of galaxies (by deprojecting the angular clustering of APM galaxies), the
redshift-space galaxy clustering (QDOT and CfA surveys), the z-space clustering of the
Abell/ACO clusters and the cross correlation between IRAS galaxies and Abell clusters or
radiogalaxies. PD assume a scale-independent bias factors for the various population of
objects. The power spectra they derive are normalized to that of JRAS galaxies, which then
forces byras = 1. Furthermore they account for non-linear evolution on small scales by using
the Hamilton et al. (1991) treatment. Furthermore, they account for z—space distortions by
applying an analytical correction that account for both the large scale linear enhancement
of the P(k) amplitude (Kaiser 1987) and the small scales ‘Fingers of God’ effect (Peacock
1992). Finally, PD account for the rms CMB temperature fluctuations revealed by COBE.
They obtain:

1. The bias factors of various populations of objects relative to the IRAS galaxies:

bAbell . bRadio . bOpt. B bIRAS = 45 . 19 . 13 : ].

2. From the amount of redshift-space distortions, 26/b;ras = 1.040.2 while the amount

of non-linear corrections required disfavour low {2, values.
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3. The shape of P(k) is extremely well described by a CDM transfer function

Ak

I CORICORRICoN

with a shape factor I' = 0.25. Also, tilted models appear to be disfavoured by their
lack of power at ~ 100 2~ Mpc.

It seems difficult to reconcile our results with those of PD; generally similar con-
tradictions arise when comparing the different empirical P(k). These incongruities probably
derive from having considered different datasets homogenized with different procedures, dif-
ferent recipes for correcting redshift-space and non-linear distortions and from adopting
simplifying hypotheses (like the assumption of a linear biasing scale-independent scheme).
Therefore a word of caution is due about the reliability of the phenomenological power spec-
tra (c.f. Efstathiou 1995). However, this argument can be reversed: despite the simplistic
assumptions, the use of inhomogeneous datasets and different data treatment it is quite
surprising that most of the phenomenological models agree in predicting some fundamental

features:
¢ There is more large scale power that predicted in the standard CDM model.
e The slope of P(k) is steeper at small scales with respect to the SCDM.

e There is a peak around k = 0.05 A Mpc™1.

2.2 RECONSTRUCTING THE COSMIC DENSITY
FIELD

Discrete data can be transformed into a continuous density field S(X) by smoothing

on a given scale under the assumption of linear biasing:

R 1 X .
5(x) = — Z W(lx — x| )w(x) — 1, (2.3)
where n is the number density of objects, W is a window function characterized by a smooth-
ing scale R, normalized to unit integral, b is the biasing factor and w(x) is a weighting
function that accounts for missed objects (e.g. in a magnitude or flux limited sample it

1s the inverse of the probability of finding an objects at a given position). Note that 6(x)
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is different from the true density field, §(x), since it is subject to errors from a number of

sources:

e Shot-Noise: Galaxies sparsely sample the underlying density field. Having a limited
number of mass tracers within each smoothed volume generates the so called shot-noise

error that can be quantified as

N 1/2

o == |5 (W —xiDw(x))*| (24)

Since the shot-noise increases with the sparsness of the sampling and with the incom-
pleteness of the catalogue, it is particularly important for small and for magnitude or
flux limited galaxy samples. A more complete discussion of the shot-noise error will

be given in Chapter 3 and in Appendix.

o Incomplete Sky Coverage: All the extragalactic object samples, even the so called ‘all-
sky’ surveys, are incomplete due to the extinction or cirrus emission near the galactic

plane, a region of the sky called the zone of avoidance (ZoA).

e Redshift Space Distortions: The most complete and modern all-sky catalogues list the
angular positions of the objects together with their observed redshifts. However, the
presence of gravitationally driven peculiar velocities cause systematic distortions in the

z-space mapping of the density field which need to be corrected for.

e Non-linear Effects: The non-linear evolution in high density regions spoils the simple
one-to—one correspondence between density and peculiar velocity fields predicted by
linear theory. Non-linear models can account for the distortions that would otherwise
affect (a) the reconstruction of the density field from the observed peculiar velocity

field and (b) the attempts to trace the present-time density field back in time.

In this section we review some methods for properly deriving the density field at the
present—epoch, leaving to the next section the problem of reconstructing 6(x) at a generic

time t.

2.2.1 Filling in the Zone of Avoidance

Extrapolating the density field to the ZoA is particularly important for dynamical

studies since one needs to know the whole sky distribution of matter up to very large distances
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to compute the peculiar velocity in a point. A number of filling techniques, either empirical
or theoretically motivated, have been used for this purpose.

Not taking into account the unsurveyed regions will cause systematic errors in any
dynamical modeling since such regions would act as a void, generating a systematic outflow.
Filling the region with a random distribution of objects having the mean density estimated
from the rest of the survey reduces the extent of the problem without however solving it
completely. A better scheme is to interpolate the density field from higher latitude regions
using cloning procedures (c.f. Lynden-Bell, Lahav & Burstein 1989) linear interpolation
(Yahil et al. 1991) or a mixing of the two (Branchini & Plionis 1995). More sophisticated
approaches expand the angular distribution of galaxies in spherical harmonics (cf. Yahil et
al. 1986, Lahav 1987, Plionis 1988, Scharf et al. 1992) or combine the spherical‘ harmonics
decomposition to the Wiener filtering to reduce the shot-noise problem (Lahav et al. 1994).
An example of such a filling procedure will be used in Chapter 3 as a part of a more
general reconstruction algorithm. The best although extremely difficult alternative to such
reconstructions is obviously to survey the zone of avoidance itself (see Balkowsky & Kraan-

Kortweg 1994 for a review of this subject).

2.2.2 Reducing the Shot—Noise Using the Wiener Filter

The shot-noise problem can be minimized by properly filtering the data. If § (x) is
the observed density field and osy is the shot-noise then the true and the observed density

fields are simply related by:
6(x) = 6(x) + osw, (2.5)

where the shot-noise is assumed to be independent of the position. The Wiener filter F is
defined so that the variance o between the true and the measured density field is minimized

(Rybicki & Press 1992). In practice one has to minimize the expression
o= [ dx[6(x) — FEJ)P = [ Eks(k) - FRdK)L, (2.6)

with respect to F(k). The equality in eq. (2.6) follows by the Parseval’s theorem. After

minimizing one obtains the following expression for the Wiener filter:

(6(k)?) .
F(k) = W’ (2.7)

where (6(k)?) is proportional to the P(k). Thus the Wiener filter F(k) requires a prior
model for the P(k).
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The above minimization procedure defines the Wiener filter in the k-space but an
expression for F(x) can be derived as well. Let us assume that the density field 6(x) is a
linear functional of another field u(x) (this holds for example in linear theory, where there
is a one to one correspondence between the density field and the line-of-sight component
of the peculiar velocity, u). Then, given noisy data u; and an assumed prior model for 6(x)

one obtain the optimal estimator for the density field d,p::
Bopt(%) = (8(x)us) (wiwsj) ", (2.8)

where the sum is over repeated indices (Hoffman 1994, Stebbins 1994). Assuming that the
observed peculiar velocities can be written as u; = u(x;) + ¢ with ¢; independent random
errors with zero mean, then the autocorrelation matrix is (usu;) = (u(xi)u(x;)) + €6;;.
The matrix the (u;u;) has a large number of elements and its inversion is a nontrivial
computational problem. From the first applications of this method (Zaroubi et al. 1994)
different density fields came out from different priofs producing fits with similar x*. This
means that data are not sufficiently good to constrain the density field.

The major drawback of the Wiener filter is that it over—corrects the density field in
the regions of poor data in which the filter returns the most likely value for the density field,
i.e. § = 0. In other words the method filters the original field with a variable smoothing
length that increases in the ill-sampled regions. To avoid this problem and to obtain a
uniform smoothing a power—preserving filter defined as the square root of F, which preserves
the P(k) of the original field has been recently proposed. Of course this filter does not share
the minimum variance property of F but it has been shown that the difference between the
true and the filtered field are always below the 10 % level.

The Wiener filter is also at the heart of the so called regularized multi-parameter
models. As we have seen in the previous Chapter, the density field can be expanded in a

discrete set of basis functions. A Fourier expansion similar to eq. (1.30) gives
6= [axsin(k - x) + by cos(k - x)]. (2.9)
k

Its analogous for the velocity field, assuming linear theory, is

V= %Z[ak cos(k - x) — by sin(k - x)]. (2.10)
k

One can try to fix the parameters ax and by by minimizing the likelihood, but the large

number of coefficients involved wouldn’t lead to believable results because noisy and sparse

data would weakly constrain the coefficients. A regularization has been proposed by Kaiser &
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Stebbins (1991) and Stebbins (1994) in which one maximizes the probability of parameters
subjected to the data and assumes a prior model for the probability distribution of the
Fourier coefficients. They assumed a Gaussian distribution with P(k) = Ak™ = (af) = (b%)-

2.2.3 Recovering the §(x) from the Observed 4(s)

The efficient techniques for measuring redshifts have provided us with deep, dense
and uniform all-sky redshift surveys. Assuming linear theory or some approximation to
account for mildly non-linear evolution, it is possible to derive the real space density field
from the z-space observed one. Strauss & Davis (1988) where the first who proposed and
implemented an iterative method for recovering §(x) from é(s). In Chapter 3 we will ap-
ply a similar technique to recover the real space distribution and peculiar velocities of the
Abell/ACO galaxy clusters, and we will describe the method with more details. Here we
just sketch the general idea.

As we have seen in Chapter 1, if the velocity field is curl-free then linear theory

predicts
V.v=-—f§, (2.11)
that can be inverted to :
H,f X—X . )
_ ) 2.12
v = B2 [ o= (2.12)

This relation returns the peculiar velocity at any given point given the density field 6(x).
Assuming a linear biasing scheme 6op5 = b6 the peculiar velocity can be computed from the
observed density field that, in turns, can be obtained by smoothing the discrete distribution
of luminous objects:

_ Hf(9)
V( - 476065 /5Obs

W(Ix x|)d® (2.13)

Let us assume that we have obtained 6u,(s) after smoothing, filtering and properly filling
the unsurveyed regions of an all-sky distribution of luminous objects. The iterative recon-

struction algorithm works as follows,
1. Assume 6Obs(x,-) = b,bs(s), where () refers to the 0" iteration.
2. Compute v{9(x;) from eq. (2.13) at the objects’ locations x;.
3. Compute the new object’s distance r; from the relation

HOY',' = Ccz; — )A(,' . [V(X,') — V(O)], (2.14)
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where z is the redshift, %; is the unit position vector and v(0) is the peculiar velocity

of the observer at the center of the coordinates.
4. Calculate the new density field §(+1)(x) after smoothing the new distribution of objects.

5. Evaluate the difference between 8¢+ (x) and §()(x). If this is larger than a given

tolerance level then go back to step 2.

Several authors have modified, improved and implemented similar iterative schemes
[Yahil et al. 1991, Strauss et al. 1992, Hudson (1993), Freudling et al. (1994), Branchini
& Plionis (1995) and for a review see Strauss & Willick (1995)] with the aim of reducing
possible biases and source of errors. The previous iterative scheme assumes linear theory
and thus cannot reconstruct the density field within the triple valued zones, i.e. in those
high density regions in which a given redshift can correspond to three different locations.
Although the smoothing procedure significantly reduces the extent of the problem. there
remains a few regions in which it is necessary to introduce some local trick that allows
to place the objects at the more plausible position among the three allowed (Yahil et al.
1991, Strauss & Willick 1995). Besides the few triple valued zones, the smoothed density
field contains regions in which the volume averaged density contrast is of the order of unity,
necessitating a quasi-linear treatment. One possible way out is to find an inverse 6—v relation
of the sort Vv = F(Q, 6,5) (Dekel 1994) in which a more physical non-linear biasing scheme
may be included as well. The numerical action method, which will be discussed in Chapter
4, represents another possibility being a non-linear method that can be used to predict the
present—time positions of the objects given their observed redshifts (c.f. Shaya, Peebles &
Tully 1995).

A non-iterative method for removing redshift-space distortions has been proposed
by Nusser & Davis (1994). They point out that, according to the Zel’dovich approximation
leq. (1.75)] , the difference between the real space and the z—space position of the objects
is just proportional to the displacement of that object from ¢t = 0 to the present. Starting
from this observation and assuming irrotationality and conservation of the objects’ number
they obtain a differential equation for the velocity potential ®v. The peculiar velocity field
can then be obtained by differentiation assuming linear theory. The major drawback of this
method is that it does not account for triple valued regions.

A different non-iterative technique has been proposed by Fisher et al. (1994). The
idea is to decompose the densityr field with spherical harmonics and spherical Bessel functions

for the radial component. They notice that since redshift-space distortions do not couple
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the different angular modes then the coupling matrix is analytic and can be inverted. The
inverse matrix allows then to compute §(x) directly from §(s), one spherical harmonic at a

time. Other authors have taken different approaches for recovering 6(x) from 6(s). Among

them Kaiser et al. (1991), Taylor & Rowan-Robinson (1994) and Gramman (1993).

2.2.4 Recovering the ¢(x) from the Observed u(x)

The true matter density field can be obtained directly from the observed radial pe-
culiar velocity field assuming the GI picture. Bertshinger & Dekel (1989) noticed that if the
gravitational instability holds then the peculiar velocity field is irrotational since initial vor-
ticity decays in an expanding universe just as the initial peculiar velocities do. Furthermore
the flow remains curl-free even in the quasi-linear regime as long as it is laminar. In this case
the peculiar velocity field can be derived from a scalar potential ®y as v(x) = ~Voy(x)
and the radial velocity field u(x) should contain enough information for reconstructing the
whole peculiar velocity field.

The POTENT procedure takes the discrete and noisy Mark II and, more recently,
the Mark III radial velocity data u; at x; and first smooths them. Then, using the gravi-
tational ansatz of potential flow, compute the scalar potential by integrating the smoothed

radial velocity field u(x) along radial trajectories:
By (x) = — / "u(r, 06)dr. (2.15)
0

Once ®v(x) is known everywhere, tangential components of the peculiar velocity can be con-
structed by taking its gradient. Indeed, there is no need to choose radial paths of integration
and the optimal ones, for recovering the potential, may depend on the field considered (Sim-
mons et al. 1994). Finally, the POTENT technique applies a quasi-linear approximation
with an assumed value of Q, to reconstruct the true mass density field. The POTENT as

currently implemented uses a non-linear generalization of the linear approximation to GI

leq. (1.77)]
4, 0v
dx

that reduces to eq. (2.11) in the linear limits. I is the unit matrix and the bars denote the

I—-(fH)

SporTeENT(X) = -1, (2.16)

Jacobian determinant.
The nontrivial step in the POTENT procedure is the smoothing of the discrete
data into a continuous radial peculiar velocity field u(x). The idea is that of reproducing the

u(x) that would have been obtained had the true v(x) been sampled densely and uniformly
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and smoothed with a Gaussian window of radius Rgm. With the discrete data available,
u(x.) is taken to be the value at x = X, of an appropriate local parametric velocity model

v, X — Xc) obtained by minimizing
S Wilui — % - v(ak, Xi — %)% (2.17)

in terms of the parameters ok, within an appropriate local window W; = W(xi,%:). The

window function is chosen such that it reduces:

e The so called window bias (Dekel et al. 1994), coming from the fact that POTENT
uses a tensor window smoothing coupled with a model for v(ag,x — x.). The conical
symmetry of the tensorial window may causes spurious flows if an improper velocity

model is used.

o The statistical noise in the velocity field due to errors in the individual peculiar veloc-

ities.

o The sampling gradient bias which is due to the inhomogeneous sampling of the velocity

field within the smoothing window.

POTENT is also subject to Malmquist bias, both homogeneous and inhomogeous (Strauss
& Willick 1995, Dekel 1994), since it utilizes peculiar velocities obtained from ‘forward’
distance estimate. This problem can be solved using a Malmquist-free inverse-analysis in
which one minimizes the analogous of eq. (2.17) both for the parametric velocity field model
and for the parameters of the distance indicator relation.

Initial apparent inconsistencies between the mass density field obtained with the
POTENT analysis (Dekel, Bertshinger & Faber 1990) and the IRAS galaxy density field
have disappeared in a subsequent more careful analysis (Dekel et al. 1993). An even better
similarity between the POTENT density field obtained from the Mark III catalogue and
the optical galaxies density field, reconstructed using iterative techniques, has been recently
obtained (Hudson et al. 1995). The similarity among the matter density field derived by
POTENT and the density fields traced by optical and IRAS galaxies is the best evidence that
the linear biasing prescription cannot be strongly violated on scales larger than ~ 12~ Mpc

(i.e. the POTENT smoothing scale).



CHAPTER 2. THE RECONSTRUCTION METHODS 43

2.3 BACK IN TIME

The problem of reconstructing the density field back in time is strictly connected
with that of removing non-linear effects that spoil the simple proportionality between the
initial (e.g. at the recombination epoch) and the evolved density field. A large number
methods for describing the non-linear gravitational clustering have been proposed in the
recent past. Sahni & Coles (1995) have recently reviewed the state of the art of this subject.

Non-linear methods can be grouped in two general categories:

® Non-linear extensions of eq. (2.11) (Nusser et al. 1991, Bernardeau 1992, Gramman

1993, Giavalisco et al. 1993, Mancinelli et al. 1994)

e Non-linear schemes that allow to approximate the clustering in regions where the
overdensity is of the order of unity (Peebles 1989, 1990, 1994, 1995, Weinberg 1991,
Matarrese et al. 1992, Bagla & Padmanabhan 1994)

Tracing the evolution of the density field back in time in the GI framework is a
mixed boundary value problem in which some conditions are specified at the present and
some others at an earlier epoch. Reversing the evolution using an N-body simulation (i.e.
using an initial value problem approach) has a negligible probability of recovering the quasi-
homogeneous initial state characterized by very small peculiar velocities. The major problem
is the presence of decaying modes that, having left no detectable trace at present. would
amplify the noise in the backward integration.

One method of reconstructing the linear field, under the assumption that initial
fluctuations were Gaussianly distributed, has been proposed by Weinberg (1989, 1991). This
technique, called Gaussianization, assumes that both gravitational instability and biased
galaxy formation preserve the rank order of density in cells. The idea is to reassign the
density at different points under the constraint of preserving the rank density order to fit a
Gaussian form. This procedure can be applied to z-survey data. One measures the P(k)
of the Gaussianized field then evolves this field using an N-body code and finally compute
the final P(k). The evolved and the measured P(k) are then compared and the procedure is
repeated until convergence. The method has been applied to the PP z-survey by the same
author who found a P(k) consistent with the standard CDM one. A bias factor b = 2 turned
out to be necessary to reproduce the observed filamentary structure of the data.

An important reason for reconstructing the density field back in time is to check

if the initial PDF was Gaussian, as predicted by common inflation. Non-linear evolution
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causes the PDF to develop a positive skewness because peaks collapse to large densities while
the density in voids cannot become negative; as a result the overall PDF shape becomes log—
normal (Coles & Barrow 1987, Lucchin Matarrese & Vittorio 1988, Coles 1989, Coles &
Jones 1991, Koffman et al. 1994). The observed PDF agrees with N-body evolution of an
initial Gaussian field (Bouchet et al. 1993), but such a fest has a limited discriminatory
power since some class of non—Gaussian initial conditions can also develop a log-normal
shape similar to the observed one (Messina et al. 1990, Messina et al. 1992, Moscardini
et al. 1991, Matarrese et al. 1991, Weinberg & Cole 1992). It is therefore important
to reconstruct the initial density field without assuming an initial Gaussian PDF, as the
(aussianization technique does. One possibility is the so called Zel’dovich time machine
(Nusser & Dekel 1992), which eliminates the problem of the decaying modes. The authors
express the Zel’dovich equation in Eulerian coordinates from which they obtain a first order

equation for the velocity potential, ¢,, expressed in units of aD:

o — —g(wu)?‘ =0, (2.18)

which only allows for growing modes. Eq. (2.18) can be integrated bi;ckwards to obtain ¢,
at early times. The initial density and velocity fields can be derived fgom ¢, assuming linear
theory, while the boundary condition ¢,(t,) can be extracted from observations of gala}iy
velocities and densities. Consideration of continuity in the context of the Zel’dovich equation
has lead Gramman (1993) to insert a correction term, Cj, in the right hand side of eq. (2.18):

Vo, -2 5450 - (e

F t J L

where ¢, is the gravitational potential in the new units. N-body tests showed that solu-

tions of eq. (2.19) matches the simulated data better than those of eq. (2.18) and that,

(2.19)

in both cases, the solutions represent a considerable improvement over the simple linear
approximation.

In another version of their time machine Nusser & Dekel (1993) use the full dynami-
cal field. Assuming laminar flow they transform the tensor dv;/dz; derived from v(x) (which
can be obtained from POTENT reconstruction) in Lagrangian coordinates g(x). Assuming
linear theory they are able to relate the eignevalues of the transformation, Ov;/Oz;, to the

initial density field:
3 Bv; [ 0z;
5£ni .= —-D g : .
t 2 1 — (Ovi/0z:)(Ho f(2o)
The authors have applied this strategy to the TRAS 1.936 Jy and recovered an initial density

(2.20)

field fully consistent with Gaussian density fluctuations.
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The natural way to deal with a mixed boundary value problem is given by the
least action formalism. Peebles (1989) applied the least action principle to the gravitational
growth of density fluctuation in an expanding universe. We will expand the subject in
Chapter 4, here we just recall the general idea. Assuming that all the mass is associated to
the visible galaxies and that they maintain their individuality at early times then it is possible
to apply the principle of least action to reconstruct the orbits of the galaxies back in time
provided that we can fulfill the boundary conditions. One bound is respected by specifying
the position of the galaxies at the present—epoch the other is given by the GI which predicts
negligible galaxy velocities at early times. Having satisfied the mixed boundary conditions
we can reconstruct the galaxy orbits by minimizing the action of the system. In practice
this step is done by parametrizing the galaxy orbits using arbitrary trial functions, specified
by unknown coefficients. Minimizing the action allows us to determine the coefficients and
thus the orbits. The form of the trial functions is quite arbitrary and a judicious choice
should account for the problem studied. As pointed out by Giavilisco et al. (1993) a natural
choice for the trial functions exists through which the numerical action method generalizes
the Zel’dovich approximation.

The Least Action method has been mainly applied to study the local group’s dy-
namics (Peebles 1989, 1990, 1994, 1995, Dunn & Laflamme 1993) and only recently it has
been modified to be applied to a redshift sample of galaxies within 30 A=*Mpc (Shaya, Pee-
bles & Tully 1994, 1995). In this last implementation the least action method is used to
recover the present density field §(x) from the z—space galaxy positions and thus it represents

a natural generalization of the iterative reconstruction method to the nonlinear case.
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Chapter 3

RECONSTRUCTING POSITIONS
AND PECULIAR VELOCITIES OF
GALAXY CLUSTERS

In this Chapter we apply the linear iterative reconstruction method described in
Chapter 2 to reconstruct the density and velocity fields traced by galaxy clusters within 20000
km/sec. This method relies on the GI pictures, on the linear biasing hypothesis and, in the
present implementation, assumes also linear theory. As we have seen, to reconstruct the 3D
objects’ distribution we need to smooth the force field on scales large enough for linear theory
to be valid. The natural smoothing length is the average separation of the objects, which for
Juminous galaxies is close to the typical scales where non-linear effects become important.
Therefore, adopting linear theory to reconstruct the density field may lead to non negligible
errors when high density regions are considered. One possible solution is to oversmooth
the discrete galaxy distribution at the price of loosing a large amount of information. A
better alternative is to improve the algorithm by using non-linear approximations or some
ad hoc treatments of the high density regions. A further possibility is to consider objects
characterized by large relative separations. Because of their low number density, clusters of
galaxies are ideal candidates for applying the linear iterative reconstruction method (/LIRM]
hereafter). Of course this advantage is associated to its complementary problem: clusters of
galaxies sparsely sample the underlying density and velocity fields. In other words the price
to pay for exploring the large scale density and velocity fields is a loss of resolution on small
scales and an increase of the shot—noise error amplitude.

In this Chapter we show that volume limited subsamples of the Abell/ACO cluster
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catalogue contain enough information to reconstruct the cosmic density and velocity fields
on large scales, allowing not only to explore the large scale cosmography but also to perform
quantitative studies of the large scale structure and dynamics. In fact, what we obtain at the
end of the reconstruction procedure is an ideal all-sky catalogue of galaxy clusters endowed
with redshifts, peculiar velocities and relative errors, complete up to a limiting depth of

20000 km/sec with which we can investigate:

e The Dipole: whether the large convergence depth of the cluster dipole found in Plionis
& Valdarnini 1991 (PV91) and Scaramella et al. 1991 (SVZ91), its asymptotic ampli-
tude and its alignment with the CMB dipole, are artifacts of redshift-space distortions.

e The Peculiar Velocities: those predicted from the clusters’ distribution by using linear

GI theory and their comparison with observations and cosmological models.

3.0.1 Dipole

If linear gravity is responsible for the observed peculiar velocities then according
to the linear GI theory (cf. Peebles 1980) the peculiar gravitational acceleration should
be aligned and proportional to the peculiar velocity; the constant of proportionality being
a measure of the present—time growth rate of mass fluctuations and therefore a measure
of the cosmological density parameter, ,. The gravitational acceleration of any galaxy
(or other extragalactic object) can be estimated by calculating the dipole moment of the
distribution of mass surrounding it. Since, however, the latter is unknown one has to resort
in estimating the dipole moment of the distribution of luminous extragalactic objects using
some simplifying assumption about the relation between fluctuations in the matter and light
distributions; which is non other than the linear-biasing assumption in which, as we have
seen, galaxy fluctuations &, are related to those of the matter distribution § by a constant
factor 6, = b6.

Further difficulties arise from the fact that one can observe galaxies or other extra-
galactic objects limited in magnitude or flux, which then implies that distant contributions
to the dipole could be missed if the characteristic depth of the galaxy catalogue is less than
the convergence depth of the dipole. Moreover, most catalogues of extragalactic objects have
also limited sky coverage which is usually due to light absorption near the Galactic plane.

Up to now the dipole of various populations of extragalactic objects has been deter-
mined: optical galaxies (Lahav 1987; Plionis 1988 1989; Lahav, Rowan-Robinson & Lyvnden-
Bell 1988; Lynden-Bell, Lahav & Burstein 1989; Hudson 1993b), IRAS galaxies (Meiksin &
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Davis 1986; Yahil, Walker & Rowan-Robinson 1986; Villumsen & Strauss 1987; Strauss &
Davis 1988; Strauss et al. 1992; [hereafter SYDHF92] Rowan-Robinson et al. 1990; Plionis,
Coles & Catelan 1993), X-ray active galactic nuclei (Miyaji & Boldt 1990); X-ray clusters
(Lahav et al. 1989) and Abell clusters (Scaramella, Vettolani & Zamorani 1991; Plionis &
Valdarnini 1991 and Scaramella, Vettolani & Zamorani 1994 [hereafter SVZ94] ). In all cases
the dipole moment was found to be quite well aligned with the CMB dipole suggesting that
gravity is indeed responsible for the Local Group motion and that light traces mass.

An interesting historical fact, originating from these studies, is that the estimated
dipole convergence depth has been a function of cosmic volume sampled; the deeper the
catalogue the larger the dipole convergence depth: Lynden-bell et al. (1989) analysis, based
on the shallow MarkIl catalogue claimed that the mass fluctuations responsible for the
local group (LG hereafter) motion are contained within ~ 40h~'Mpc, i.e. the distance
to the QGreat Attractor region. Subsequent analyses, based on the deeper ITRAS galaxy.
sample, indicate that the dipole converges within ~ 80 — 100 A 'Mpc (Rowan-Robinson
et al. 1990 and SYDHF92). Analyses based on the cluster distribution revealed that a
significant contribution to the LG velocity comes from scales larger than 100 h~'Mpc (PV91,
SV7Z91 and SVZ94); this requirement comes also from the smaller scale analysis of Shaya &
Tully (1992) and Hudson 1994. According to SVZ91, SVZ94 and PV91 mass fluctuations
beyond 100 A~'Mpc contribute to ~ 90 % of the total LG velocity, and the final convergence
depth for the cluster dipole, Reony = 17000 km/sec. This implies that the apparent dipole
convergence of the shallower galaxy catalogues (being optical or IRAS) is probably artificial,
determined by their limiting depth. In fact a careful investigation of the QDOT-IRAS
sample showed some evidence for a contribution to the dipole from scales comparable to the
cluster Reony (Plionis, Coles & Catelan 1993).

A further interesting outcome of the Abell/ACO cluster dipole analysis is the fact
that there seems to be a coherent dipole anisotropy out to ~ 17000 km/sec; i.e., the differ-
ential gravitational acceleration induced on the LG by the distribution of clusters in lai'ge
equal-volume shells is roughly aligned with the CMB dipole in each shell (PV91).

The probability that these alignments may occur by chance is, in fact, very low: the
random joint probability of having the cluster dipole, the optical and [ RAS galaxy dipoles
aligned with the CMB dipole within a few degrees (~ 10°, ~ 10° and ~ 25° respectively),
assuming that they are independent, is < 3 % 10-6. Furthermore, as we discussed previously,
PV91 found evidence for a coherent dipole anisotropy, in which the differential cluster dipole

in each equal-volume shell roughly points towards the CMB dipole. In fact, the dipole in the



CHAPTER 3. RECONSTRUCTING CLUSTER POSITIONS & VELOCITIES 49

first shell (RS 100 2~! Mpc) has 60 20° while in the most distant shell (1405 RS 160 R1
Mpc), for which the dipole is aligned with the CMB, it has §6< 10° and the distance between
the centers of the two shells is ~ 90 A1 Mpe, a distance at which {..(r) < 1, where e 18
the spatial cluster—cluster correlation function (note that even the edges of the two shells are
~ 43 h~! Mpc away). Therefore, these two volumes could be considered independent which
would then decrease even further the probability of random alignment with the CMB dipole
to & 8 x 108!

3.0.2 Peculiar Velocities

The study of the large scale cosmic flows is of great interest in Cosmology since
it could provide clues about the origin and the evolution of the LSS of the universe and
constrain the 2, value. We are now in the position to achieve this goal since technical
advances in spectrographs and detectors in both visible and radio wavebands allowed in the
last decade the large scale dynamics to become a mature scientific field in which observation
and theory can be confronted in a quantitative way. An increasing number of reviews and
books of this field is available, the most updated being those by Dekel (1994) and Strauss &
Willick (1995); here we will just briefly recall the status of the art. '

Two major developments seeded the study of the large scale dynamics. The first
was the confirmation of the CMB dipole (Smoot et al. 1977), commonly regarded as a
Doppler effect originated by a motion of ~ 600 km/sec of the LG with respect to the
CMB frame. The second was the measurement of the radial peculiar velocities of galaxies
using z-independent distant estimators like the Tully-Fisher (Tully & Fisher 1977) and the
Faber-Jackson (Faber & Jackson 1976) relationships. Significant advances in observational
techniques together with the introduction of improved versions of distance indicators allowed
to compile catalogues containing several hundred objects endowed with peculiar velocities,
in which distance errors are reduced to a level of 15-20 %. In the same period all-sky
mégnitud&limited redshift surveys containing several thousand of galaxies, like the CfA, ;
(Huchra et al. 1983), CfA;55 (de Lapparent et al. 1986), PP (Giovanelli & Haynes 1991)
SSRS (da Costa et al. 1991) and IRAS (Soifer et al. 1987, Strauss et al. 1990, Rowan-
Robinson et al. 1990) ones, became available. As we have seen, redshift surveys can be use to
infer the peculiar velocity field under the GI and linear biasing assumptions. The comparison
between the observed and predicted velocity fields constitutes the heart of the large scale

dynamics study. Amongst the many and sometimes contradictory results in this field, one of
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the most generally accepted and particularly important for this thesis is the strong evidence
for the existence of coherent large-scale galaxy flows in the local universe, extending from
the Perseus-Pisces region on the one side to the Hydra-Centaurus /Great Attractor region on
the other. These flows are well established both for elliptical (cf. Lynden-Bell et al. 1988)
and spiral galaxies (cf. Rubin et al. 1976; Dressler & Faber 1990; Mould et al. 1991; Willick
1990; Han & Mould 1990; Courteau et al. 1993; Hudson 1994; Mathewson & Ford 1994)
and point in the general direction of the CMB dipole. Although the extent of this volume
may still be under debate the existence of the bulk flow seems to be certain. These results,
together with the large-scale coherence of the cluster dipole, present a consistent picture in
which the LG participates in a large-scale bulk motion induced by gravity, encompassing a
large volume of radius ~ 6000 — 15000 km/sec.

As outlined by Babul et al. (1994) it is not possible to test the validity of the
GI plus linear biasing picture by exploring the correlation between the the density field,
traced by luminous objects and the velocity field. This limitation derives from the fact that
the spatial properties of the GI equations are identical to a system of equations in which
irrotationality and continuity are assumed. The only possibility to distinguish between a
GI and a non-GI scenario is to look at the temporal behaviour of the equations, which in
practice means that one should explore the correlation between CMB relic fluctuations and
the present—time velocity field.

Although the velocity—density correlations do not constitute a GI test, it has to be
stressed that such correlations are consistent with the GI + linear biasing scenario. This is
the reason why the recent Lauer & Postman (1994) [LP] result represents a serious challenge
to the standard picture. LP have extended the cosmic flow studies to very large scales, those
traced by galaxy clusters, by using as a distance indicator the relationship between metric
Juminosities of the brightest cluster galaxies and the slope of their brightness profiles (Hoessel
1980). They find that the LG motion with respect to the frame defined by Abell/ACO
clusters, within 15000 km/sec moves in a direction ~ 80° away from that of the CMB dipole
which then implies that, if the CMB dipole is a Doppler effect, the whole cluster frame
is moving with respect to the CMB rest-frame with ~ 700 km/sec. Such a large velocity
on such large scales is in contradiction with bulk flow velocities on smaller scales and it is
difficult to reconcile with current models of structure formation (cf. Strauss et al. 1994;
Feldman & Watkins 1994; but see Jaffe & Kaiser 1994).

If the alternative interpretation were true, i.e. if the CMB dipole were not Doppler

in its origin, then it should be extremely difficult to understand why the LG peculiar accel-
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eration should be aligned with the mass dipole (PV91; SVZ91; Branchini & Plionis 1995)
as it is expected in the linear GI theory, while the Lauer & Postman LG peculiar velocity,
with respect to the same sample of clusters, points ~ 80° away. Understanding this apparent
contradiction within the GI framework is an open challenge. Under the linear GI hypothesis
our reconstruction procedure, which assumes that Abell/ACO clusters trace the mass, allows
us to explore the dynamics on scales much larger than those probed by luminous galaxies.
In other words we are in the position of estimating how likely the LP result is within the GI
+ linear biasing framework.

The relatively large smoothing we had to apply to the cluster distribution to recon-
struct the underlying density field does not allow us to characterize the velocity field with
a resolution comparable to that obtained from galaxy samples, but we are able to visualize
the qualitative aspects and large scale features of the linear velocity field since the typical

errors of the 1-D cluster peculiar velocities are < 150 km/sec, within the sampled volume.

This Chapter is divided in three sections.

o In the first part we describe in detail the iterative reconstruction method and the
tests we performed to asses its intrinsic reliability. Then we describe the Abell-ACO
cluster subsample used, and the procedure we have adopted to obtain a statistically
homogeneous all-sky cluster catalogue from it. Finally, we discuss from a cosmographic
point of view the main features of the reconstructed density field and we compute the

two—point spatial correlation function of the reconstructed cluster distribution.

e In the second part we concentrate on the cluster dipole. After discussing how the
z-space distortions may affect the dipole amplitude, we discuss the techniques for
measuring the dipole and the possible errors that affect its estimate. The dipole of the
reconstructed Abell-ACO cluster distribution is then computed both in the z— and the
3D-space which allow us to estimate the 2, value. Finally, constraints on the various

cosmological models are derived from the shape of the cumulative dipole.

e In the last section we analyse the Abell/ACO cluster velocity field and we compare it
with the cluster velocity produced by numerical simulations. The simulated datasets
are from Borgani et al. 1995 (B95, hereafter) and refers to several different cosmological
models. We discuss the errors that affect both the reconstructed and the simulated
velocity field. The analysis of these fields is then performed both from a qualitative and

a quantitative point of view using low order statistics such as the bulk flow velocity,
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the two—point velocity correlation function and the velocity probability distribution.
Finally, we compare the reconstructed cluster velocities with the observed ones with

the aim of constraining the value of the cosmological density parameter (.

3.1 THEITERATIVE PROCEDURE & THE CLUS-
TER DENSITY FIELD

In this section we describe in detail the iterative algorithm, its reliability and the
Abell/ACO cluster subsample to which the reconstruction procedure is applied. A cosmo-
graphic description of the cluster density field is given as well. The plan of this section is
as follows: in section (3.1.1) we present an extended discussion of the two (Abell and ACO)
cluster subsamples used, selection effects and homogenization procedures. In section (3.1.2)
we present the reconstruction method and its reliability tests. In section (3.1.3) we present a
qualitative analysis of the reconstructed cluster density field and in section (3.1.4) the spatial

cluster—cluster correlation function is computed both in the redshift and 3D space.

3.1.1 The Cluster Sample

Our present analysis is based on a cluster sample extracted from the original Abell
sample (Abell 1958) and from its southern extension, the ACO cluster catalogue (Abell,
Corwin & Olowin 1989). The north declination limit of the ACO sample is 6 = —17, so that
the two catalogues overlap in the strip —27 < § < —17. The overlapping region has been
used by Abell, Corwin & Olowin (1989) to calibrate the J magnitudes of the ACO to the
Abell magnitude system. However, systematic differences in the two calibrated catalogues
have been noticed by ACO (1989), Batusky et al. (1989), Scaramella et al. (1990) and PV91
which cannot be ascribed to the suspected incompleteness of the richness class £ = 0 clusters
since the differences are evident, although less pronounced, even in the R > 1 samples (see
PV91).

The problem of obtaining a composite and statistically homogeneous catalogue
from the Abell and ACO samples, is particularly important in dipole studies since artificial
systematic differences (density gradients or global density variations) can enhance or even
produce a dipole signal. Although this issue has been addressed by a number of authors
(cf. Scaramella et al. 1990 and PV91) we will also discuss it, following the PV91 line of

reasoning.
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Cluster distances, r, are estimated from redshifts using the standard relation:

P A (e (1-2az+1)], (3.1)

where ¢ is the speed of the light and ¢, the deceleration parameter at the present-epoch:
go = a(to)ao/a(t,). The number of clusters within our subsample is not fixed since the
distances slightly depend on ¢, which we do not fix a priori. We also merge cluster pairs
with relative distance < 3 A~! Mpc into unique ‘clusters’ having as position their center of
mass and as mass their combined total mass. We made this approximation to avoid non-
linear effects on small scales for which our reconstruction method fails to account for. The

combined subsample we consider is composed by:

1. Abell clusters of richness class R > 0 in the roughly volume-limited region r < 250 A™*
Mpe, |b] > 13° and with me < 17. myg is the magnitude of the tenth brightest galaxy
in the cluster in the magnitude system corrected according to PV91. This sample is
100 % redshift complete. Note that the number of objects in this subsample varies
between 269 and 276 for ¢, = 0.2 and 0.5, respectively. Out of these we have merged

5 cluster pairs.

. ACO clusters of richness class R > 0 with » < 250 A~ Mpc, |b] > 13° and myo < 17.

S

Among the 217 objects within the sample ~ 77% have measured redshift. For the
remaining objects the redshift is determined using the mqo — z relation used by PV9L.

Note that we have merged 7 cluster pairs.

Note that although Abell cautioned that the R = 0 cluster sample is not complete
and therefore probably not suitable for statistical studies, many recent studies have been
interestingly utilizing them (c.f. Tully 1987; Postman et al 1989; Huchra et al. 1990; Tully
et al. 1992; Scaramella et al 1994). Furthermore, the density distributions and clustering
properties of both the R = 0 and R > 1 Abell samples have been found to be similar out
to z ~ 0.2 possibly indicating the weakness of such effects (Postman et al. 1992; but see
Peacock & West 1992). In any case the stability of our main results as a function of cluster

richness will be discussed in the relevant section.

The Selection Biases:

In order to obtain a statistically homogeneous all-sky sample of clusters we quantify
separately the observational biases of the Abell and ACO subsamples and then we calibrate

these subsamples by applying a homogenization procedure.
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At low galactic latitudes, absorption of optical photons makes it unlikely to observe
luminous objects. In the galactic strip |b] < 20°, to which we refer as the ZoA, there are
only 20 clusters in our subsample. The galactic absorption outside the ZoA has been always

found to be consistent with a cosecant law:
log P(b) = a(l — cosecl|b|), (3.2)

where P(b) gives the probability that a cluster in the range b to b + Ab would have been
included in the catalogue. There is no general agreement on the precise value of c. Bahcall
& Soneira (1983) and Postman et al. (1989) found 0.3 for Abell clusters, Batuski et al.
(1989) found a ~ 0.2 for ACO clusters while LP94 found an even lower value (a ~ 0.15)
for both ACO and Abell clusters contained in a volume-limited 15000 km/sec sphere. To
allow for this experimental uncertainty we will consider, in what follows, two different sets
of values: (o, a)= (0.3,0.2), that better matches the behaviour of the number density of our
cluster as a function of the galactic latitude and (0.2,0.2). The first value in each set refers
to the Abell sample while the second to the ACO one.

The finite depth of the cluster sample was modeled with the redshift selection
function that was estimated as in Postman et al. (1989). We modeled the probability that

a cluster in the range z to z + Az would have been included in the cluster catalogue as:

1 if 2 < 2,
P(z) = (3.3)
A exp(—z/z,) ifz> z

where z, is the redshift up to which the space density of clusters remains constant (volume-
limited regime). We obtain z. ~ 0.0787 and 0.0664 for the Abell and ACO subsamples
respectively. No appreciable declination dependence has been detected in the Abell/ACO

subsample (but see Scaramella et al. 1990 for a possible zenithal dependence).

Homogenization of the Abell/ACO sample:

In this work we will follow the PV91 homogenization scheme, used to minimize the
density variations of the Abell and ACO subsamples. The estimated observational biases

allow us to assign the following weight to clusters:

1

w5 = PRy

(3.4)

The individual number density of clusters of the two subsamples is therefore n = V=15 wi(z,b),

where the sum extends over all clusters within the sampled volume V. Since at low galactic
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latitudes the patchy galactic absorption is not well described by eq. (3.2) we compute n
above [b| = 30°. We divided V into equal volume shells with §V ~ 2.6 x 106 A~3 Mpc?
in which we estimated the Abell and ACO cluster number densities separately. Due to the
complex geometric boundaries, the volumes were computed by Montecarlo calculations.

Within ~ 200 2~! Mpc the space densities of the R > 0 Abell and ACO samples
are constant (P(z) = 1) with n ~ 1.6 £ 0.3 x 107° and ~ 2.7 + 0.3 x 10~ A3 Mpc3,
respectively, while the corresponding values for the R > 1 samples are n ~ 8.2+ 1.3 x 1075
and ~ 11£1.2 x 107® A% Mpc™>. The scatter was computed from the density fluctuations in
the different bins. These values would be reduced by ~ 18% if no obscuration correction is
applied (i.e., assuming P(b) = 1). Note that although the Abell-ACO density differences are
reduced in the R > 1 sample they are still present, indicating that these density differences
are not due to the possible incompleteness of the R = 0 clusters (see also Postman et al.
1990; PV91). This is also supported by the fact that the Abell-ACO density differences in
the richest subsample (R > 2) are a factor ~ 3 larger even than those of the R > 0 one.

An approximate homogenization of the two samples was then applied by equating
the number density of the two catalogues in each equal volume shell. Assuming that the

two catalogues are simply radially inhomogeneous, we computed the following weighting

function:
1 ifé>—~17
Wra(r) = - (3.5)
stlh 5 < -1

where r; is the distance of the i** bin. No significant difference was found when using the
two different sets of absorption coefficients. Note, however, that this is not the only possible
homogenization scheme since we do not know a priori which is the true value of the cluster
density. We could, therefore, homogenize the two samples by using the inverse of eq. (3.5),
Wea(r)™. As we will show in what follows our main results remain stable on the choice of

the homogenization scheme.

3.1.2 The Reconstruction Method

The whole reconstruction procedure can be schematically represented by the fol-
lowing diagram:

Zobs — Zig — 3D obs

Starting from the observed sky z-space distribution of galaxy cluster, z., we generate a

synthetic cluster distribution to account for unobserved clusters. This procedure allows us to
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reconstruct the whole-sky cluster distribution in the z—space, zq. An iterative reconstruction
algorithm, similar to that proposed by Strauss & Davis (1988), is then applied to minimize
the z-space distortion, allowing us to recover the real-space distribution of the observed
clusters 3D, and therefore also their peculiar velocities. The intrinsic reliability of the
entire procedure has been tested using a simulated catalogue of clusters kindly provided to

us by S.Borgani.

z-Space reconstruction scheme:

To reconstruct the whole-sky z-space cluster distribution, z4, we adopted a phe-
nomenological approach. The basic idea is to fill the artificially (due to galactic absorption)
low density regions of the surveyed volume with a synthetic cluster population having the
same clustering properties as the distribution of the real clusters and then generate many
Monte-Carlo realizations of this population. To this end we divide our procedure into two
steps; one to reconstruct the cluster density field above |b| = 20° and one to fill the ZoA.

|b] > 20°

The first step is to recover the cluster distribution for |b| > 20°. We divided our
volume in two regions: an inner sphere with a radius of R;,=200 2~' Mpc, which we consider
as the region of reliable determination of the cluster density field, and an external region Rix
<1 <250 A7 Mpc.

In the inner part, in which P(z) ~ 1, we used a Montecarlo rejection method
to generate a population of synthetic clusters distributed according to the adopted P(b)
probability function and weighted them by 1/P(z) with the further constraint of being
spatially clustered around the real clusters according to the observed spatial cluster—cluster
correlation function (cf. Bahcall & Soneira 1983; Postman et al. 1992; Plionis, Valdarnini &
Jing 1992). The following weights are then assigned both to real and mock clusters:

o Wea(mi)
)= TPz

(3.6)

Finally, the total number of synthetic clusters outside the ZoA is determined by requiring

the overall number density of clusters to be:
1
= > iz, b), (3.7)
where 0;(z,b) = Wie(ri)wi(z,b). This requirement is fulfilled by imposing:

S (2, b) = Do w(r) + Y w(r), (3.8)

real real synth
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where the first two sums extend over real clusters and the last one over synthetic objects.
Beyond 200 A~ Mpc the radial selection function, mainly for the ACO sample, falls below one
roughly exponentially. Therefore weighting clusters that sparsely trace the density field with
1/P(z) can introduce non negligible shot-noise errors. To avoid this problem and keeping in
mind that we will limit our analysis within R;, we reconstructed the cluster distribution in
the external regions as following: the mock cluster distribution was Montecarlo generated to
account for the P(b) selection with no spatial correlation with real clusters; then the cluster
redshift was determined according to P(z) but, instead of weighting them by 1/P(z), we
generated 1/P(z) synthetic clusters at the same b and z but with a randomly chosen I. Both
real and synthetic clusters in this external region were simply weighted by W,¢(r) and their
total number was determined by equating the local density with that of the central region.
Filling the ZoA
The second step is to fill the ZoA. Several different methods have been proposed

and discussed in literature. As we have anticipated in section (2.2.1) and we have verified
with Montecarlo simulations, the simple ‘average mask’ solution, i.e. filling the ZoA with a
population of objects randomly distributed with the same number density as the real ones, is
not satisfactory since it lowers the cluster dipole amplitude by ~ 25%. We decided therefore
to use a different method close to that proposed by S. Faber and used by Yahil et al. (1991).
We divided the equatorial strip —20° < b < +20° into 18 bins of 20° in longitude. In each
bin we divided the distance range into bins of 2000 km/sec. The clusters were then sampled
in the two northern and southern adjacent strips, defined so that their Joint solid angle is
equal to that of the ZoA. This requirement leads to the following limiting latitude for the
strips:

[brim| = 90° — cos™" [2 x cos 70°] = 43.16° .

The number of synthetic clusters in each ZoA bin was then set equal to the sum of the
clusters (real and synthetic) found in the two bins of the northern and southern, adjacent
to the ZoA, strips; while their position, inside the ZoA bin, was randomly assigned. Finally,
the real clusters in the range 13° < |b| < 20° are inserted and the total number of synthetic
ZoA clusters is adjusted by subtracting a few at random until the average number density
of real clusters is reached. ‘

In what follows we will refer to the above 2-step z-reconstruction scheme as the
Randomized Standard Cloned Mask; [RSCM]. At the end of the whole procedure nearly 50
% of the cluster population is composed by synthetic objects.

Variants of the RSCM
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Other variants of the previously described method can be implemented as well. In
the first one, which we call Randomized Heavy Cloned Mask [RHCM], we fill independently
the northern and southern parts of the ZoA by applying the [RSCM] to the northern and
southern adjacent galactic strips (20° < |b| < 43.16°) separately. With this mask the
randomization applies to smaller bins and the cloning effect 1s expected to be enhanced.

Tn the second variant, which we call (Randomized Thin Cloned Mask [RTCM, ), we
identify the ZoA with the equatorial strip |b| < 13°. Then we consider the two adjacent
strips defined so that their individual solid angles are equal to that of the ZoA. The [RSCM]
is then applied by half counting the number of clusters in the adjacent bins. The purpose of
this scheme is to account for the spatial clustering on larger volumes.

Finally, we also use an alternative scheme to reconstruct the r > 200 A~ Mpc
region which is based in extending the reconstruction technique used for the r <200 A~
volume to the external region. The ZoA filling method used is the standard one, described

in the previous subsection. We call this scheme Modified Standard Scheme [MSS].

The z;y Cluster Distribution:

A typical z;g RSCM reconstruction is shown in panels (a) and (c) of Fig. (3.1).
Black dots represent real clusters while open dots are synthetic objects. The figure displays
the projection of the reconstructed cluster distributions onto the supergalactic plane (Xsup-
Y4y projection; panel a) and orthogonal to it (Xsup-Zsup projection; panel c¢). A simple
visual inspection reveals that the synthetic clusters fill the ZoA and smoothly reproduce the
clustering observed in the two nearby galactic-latitude strips. Outside the ZoA, as expected,
synthetic objects are clustered with the true ones and their density decreases towards the
galactic poles.

However, éince cach cluster has a different weight a more relevant visualization of
the z-space cluster distribution is presented as smoothed density maps in panels (b) and
(d) where we have overlayed a 20 x 20 grid (each cell being 2000 km/sec wide) on the
cluster distribution of panels (a) and (c) and smoothed the projected distribution using a
9D-Gaussian kernel with R, = 1 cell, while weighting each cluster by w;. What, in fact,
we present in these figures is the ‘mean’ smoothed density field; an average over 10 random
realizations of the z-space reconstruction procedure. Note that in panels (b) and (d) the cell
units used have 0 and 20 corresponding to the Cartesian supergalactic coordinate -20000
and 20000 (in units of km/sec) respectively. It is interesting to note in panel (d) [Xsup-

Zsup Projection], the existence of a ‘cross’-like structure with low-density cylindrical regions,
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Figure 3.1: (a) and (c): The projected whole-sky z-space cluster distribution in Cartesian
supergalactic coordinates. Filled symbols represent real Abell/ACO clusters while open
symbols the synthetic objects. Short dashed lines delineate the b] < 20° region. (a) X,y,-
Ysup projection and (¢) Xsup-Zswp projection. (b) and (d): The projected smoothed whole-sky
z-space cluster density field (of panels (a) and (c)). A 2-D Gaussian kernel was used with
smoothing length R, = 2000 km/sec. (b) Xsup-Y sup projection and (d) Xsup-Zsup projection.

Note that cell units are used (see text for definitions).
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passing through the cluster distribution and having a length of ~ 20000 km/sec. A more

detailed discussion of the apparent structures will be presented in section (3.1.3).

3D—Space Reconstruction Scheme:

Our 3D reconstruction scheme is based on the assumption that the peculiar ve-
locities of clusters are caused by gravitational instability and that linear perturbation the-
ory applies on the scales relevant to the cluster distribution. The distribution of clusters
in redshift-space differs from the true three-dimensional one by a non-linear term in the

redshift—distance relationship:
cz; = Hori + % - [v(x:) — v(0)], (3.9)

where x; is the position of the i** cluster, v(x;) its peculiar velocity, v(0) the peculiar velocity
of the observer placed at the centre of the coordinate system and H, is the Hubble parameter.

Linear Theory

As we have seen in linear theory the peculiar velocities at the present epoch are
proportional to the peculiar acceleration according to eq. (1.73)
H.f L X—X
v(x)= — [ (X))
() 4z ( )lx —x|?
where §(x) = [p(x) — ps]/ps is the mass density fluctuation about the mean p, and a(te) = 1.
We assume that cluster density fluctuations are related to the mass fluctuations by a constant

linear biasing factor:

5.(x) = b.6(x), (3.11)

where b, is the bias parameter of clusters with respect to the mass. We can therefore replace
§(x) with 6.(x) in eq.(3.10) provided that we substitute f({) with 028 /b, (= B.)

In order to apply linear theory we need to smooth the discrete cluster density field
on an appropriate scale, where non-linear effects could be important. Since we are using
galaxy clusters to probe the density and the peculiar velocity fields, a natural smoothing
scale, large enough for linear theory to be valid, would be the cluster correlation length (i.e.
the distance 7, at which the spatial cluster—cluster correlation function is unity). Recently
Croft & Efstathiou (1994), analysing large N-body simulations, found that the velocity
fields traced by galaxy clusters are non-linear below ~ 10 h~! Mpc. Therefore we allow
the smoothing radius to vary in the range [10, 30] A~! Mpc. Although, as we will see,
the peculiar velocity field does depend on the choice of the smoothing lehgth, the dipole

parameters depend only weakly on its choice.

& | (3.10)
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The discrete cluster distribution was smoothed with a top hat window function on
a scale R, which is equivalent to smooth the peculiar acceleration with:
B if x—x| < R
W(k—xl)={ B XX < (3.12)
1 if |Xx —x|> Rsm
where R, is the smoothing length. Since z;; is reconstructed up to Rmer = 250A71 Mpc,
* the integral in eq.(3.10) is converted into a sum over all the observed and synthetic clusters

within Rz

V09 = 2 5 () Wk = xhat)

4rn,

)\(i—-—X X
e 3.13
= xpp T3 (3.13)

where distances x are measured in km/sec, i.e. we set that A = 1: an assumption that
allows us to avoid problems related to the definition of distance and to the uncertainties on
the Hubble constant and that will be valid throughout the rest of the Chapter. The average
cluster density n. is obtained by dividing the average cluster mass density p. with Mc (mass

of Coma cluster); p. is given by:
1
%:vZMﬂm) (3.14)

where M; is the mass of the generic cluster. As in PV91 and SVZ91 we assume that cluster
masses are proportional to the the Abell-catalogue listed number of galaxies per cluster,
M; < Na; (and N = 106); while the mass of the synthetic clusters was set equal to the
average mass of the real clusters. The last term corrects for the net gravity of the homo-
geneous density background. The correction is necessary since the summation calculates
the contribution from the density rather than from overdensity. Eq.(3.13) measures the true
peculiar velocity only if density inhomogeneities outside the surveyed volume can be ignored.

As shown by Vittorio & Juskiewicz (1987) and Juskiewicz, Vittorio & Wyse (1990)
in a multipole expansion of the external gravitational field the leading term is the dipole. Its
effect is naturally removed if the peculiar velocities are evaluated in the LG frame because
the dipole contribution is constant for all objects and does not affect the relative peculiar
velocities. The only disadvantage of the LG frame is that the correction for the solar motion
relative to its barycenter is uncertain by ~ 50 - 100 km/sec (Yahil et al. 1977) which, as
we will see, is smaller than the errors on the predicted LG velocity. For this reason we used
eq.(13) to evaluate the cluster peculiar velocity in the LG frame. The higher order terms in
the multipole expansion of the external gravitational field fall off faster than the dipole with

distance and are generally negligible for distances smaller than Brmaz/2 (Yahil et al. 1991).
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Possible systematic errors when computing peculiar velocities are therefore expected only at
larger distances and should not appreciably affect the reconstruction reliability within 200
h~! Mpc.
The Reconstruction Algorithm
To reconstruct the 3D density field we used a LIRM which is close to those described
by Strauss & Davis (1988), Yahil et al. (1991) and Hudson (1993a) in which, starting from the

observed z—space cluster distribution, one recovers the cluster true positions by iteratively
computing their peculiar velocities according to eq. (3.10). As we already discussed in
Chapter 2, this method is self consistent as long as the density fluctuations we are dealing
with are linear, the clusters trace the mass and the mass fluctuations responsible for the
peculiar motions of objects are within the volume sampled.

The general idea has been already discussed, here we describe our implementation.

The steps of our iterative scheme are the following:

1. All the clusters are initially placed at their observed distance, r® = ¢z, with no
peculiar velocity and with an arbitrary value for the input B, parameter. The index

(©) refers to the 0" iteration.

o

The weighting function w(x;) is computed and its value is kept constant in the sub-
sequent iterations (i.e. the selection function is not upgraded). This speeds up the
algorithm while it also does not lead to appreciable errors, since P(z) =~ 1 within

20000 km/sec.
3. The average density n. within the sampled volume is computed and its value is updated.
4. The window function I/V(lxgk) — x®)]) is computed for each object.

5. The peculiar velocity of the i** cluster v(¥)(x;) is computed according to eq. (3.13)
taking into account both, the clusters within Rz and those that during the iterations

were placed beyond the volume limits (we will refer to these as ‘passive’ objects).
6. Radial positions of ‘active’ clusters are updated. Their new positions are given by
) = ez — g [v()® = v(0)®)] (3.15)
Positions of ‘passive’ objects are not updated.

7. For each real active cluster we compute the difference of its position between the last
two iterations. If the difference is larger than 0.5% r, then we jump back to step 3.

The convergence is typically reached within 10 iterations.
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Since the smoothing scheme treats clusters as spheres of radius Ry, clusters in the
spherical shell X — Rypaz| < Rsm need to be Wéighted properly by computing how much of the
sphere lies within Rp,... But since we will estimate the dipole and the cluster velocity field
only within 20000 km./sec and since we regard the cluster distribution beyond this radius as
an improvement over a simple homogeneous distribution, we do not need to implement this
correction.

Our iterative reconstruction algorithm can fail to recover the true 3D object position
within high cluster density regions (‘triple value regions’) (cf. Yahil et al. 1991: Hudson
1993a). In our case, however, the objects are so sparsely distributed (which is the reason
why the smoothing scale used is relatively large) that this problem is negligible. Obviously,

the sparseness of the clusters introduces different problems, as we will discuss below.

3.1.3 Testing the Reconstruction Reliability

To test the intrinsic reliability of the whole reconstruction procedure and to opti-
mize its performances we considered a catalogue of mock clusters extracted from a simulation
performed by Borgani et al. (1994) in which the present-time cluster positions were deter-
mined by the Zel’dovich approximation in a standard CDM model Universe. The mock
clusters were identified as peaks above a density threshold which was chosen so that their
space density matches that of the observed clusters (~ 2 x 1075A% Mpc=2). We considered
a spherical volume centered around a LG-like observer (see B95). Each cluster peculiar
velocity was determined according to linear theory after having computed the gravitational
acceleration generated by all the clusters within the sampled volume. This ideal cluster
distribution was then degraded by Montecarlo rejecting clusters according to the probabil-
ity distributions P(z) and P(b) and by devoiding the ZoA. Finally, an artificial Gaussian
distributed noise was added to the cluster velocity to mimic experimental errors in their mea-
sured redshifts. According to observational indications we used a variance of 200 km/sec
(Strauss, Cen & Ostriker 1994). At this point we applied the RSCM together with the LIRM
to recover the original object distribution and velocities.

Four different indicators were used to assess the intrinsic reliability of the recon-

struction procedure:

e The differences between reconstructed and true peculiar acceleration acting on the ob-

Server.

To estimate these discrepancies we evaluate the true and the reconstructed peculiar
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Radius A~'Mpc Ag og A af
100 8% 5% 6% 4%
150 4% % 2% 4%
200 3% 6% 2% 5%

Table 3.1: Dipole Errors: Per cent discrepancies and variances between the true and the
reconstructed gravitational acceleration at different radii. Columns 2 and 3 refer to the
amplitude discrepancy while column 4 and 5 list the average misalignment and its variance,

respectively.

acceleration g at the observer’s position from 10 different reconstructions. The recon-
structed peculiar acceleration turned out to be very close to the original one: the per
cent discrepancy between the amplitudes of the true and the reconstructed peculiar
acceleration at the limiting depth of 200 A™'Mpc was 3 & 6% and the two vectors were
misaligned by 2° & 5°, where the errors have been computed from the 10 independent
realizations. Similar results are found when the analysis is restricted to smaller vol-
umes: in Table (3.1) we list the difference in amplitude and the vectors misalignment

(together with the relative variances) at different radii.

o The wvolume averaged discrepancy between the true and the reconstructed position:
(€5) = (| Xtruei — Xrec,il/lxzme,ﬂ)
The most straightforward way to quantify the goodness of the reconstruction algorithm
is that of computing the volume averaged discrepancy between the original cluster
positions and the reconstructed ones based on 10 different Montecarlo reconstructions
of the same distribution of synthetic clusters. In Fig. (3.2) we present the distribution
of the ¢; values which peaks at S 1% and has a mean value of (¢;) = 1.6% (it is skewed

towards large errors); while the probability of having € > 3% is quite low.

We also found, as expected, that ¢; depends on the initial displacement of the i
cluster with respect to its true position |[Xirue; — x|, The reliability of the method
greatly improves if clusters are initially placed close to their real positions, which would
be possible if reliable z—independent distance measurements were available for some
nearby clusters. We found that if the position of 30% of the objects where known then

the previously quoted 1.6% error decreases to ~ 1.1%.
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Figure 3.2: The distribution of relative percentage differences, ¢;, between the true and

reconstructed positions of simulated clusters.

e The spatial distribution of the ¢;.

More information on the reconstruction reliability can be obtained by exploring the
spatial distribution of ¢; since there is no reason for the errors to be homogeneously
and isotropically distributed. We have found that ¢; correlates with ¢, defined as:
|Xtruei — x§°)] thus if the generic object is initially placed at its redshift distance, then

€; is expected to be correlated with

Xiruei — x| [(vip(x:) = v,(0))] - %; ‘
.= : = . 3.16
‘ Xtrue,i Ho'f'i ( )

This means that the spatial distribution of errors is expected to be

— anistotropic: e, is larger for objects placed along the direction of the observer’s

motion,

— inhomogeneous: the ratio &ﬁ%ﬂm decreases with the distance,

Other sources of inhomogeneity in the errors distribution are the presence of a shear in
the velocity field and selection effects. The present-analysis assumes a negligible shear

while selections effects are already taken into account by the reconstruction procedure.
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Radius h~'Mpc (€:)
100 2.6 %
150 1.6 %
150 1.2 %
250 1.0 %

Table 3.2: Radial reconstruction errors: Per cent discrepancies between the true and the

reconstructed positions within different shells are listed as a function of the shell radius.

To directly appreciate the inhomogeneity of the errors distribution we computed ¢;
averaged within shells of increasing radius. The results are quoted in Table (3.2)
where we list the average per cent errors (e;) within different regions of increasing
radius. The average error within a 100 A~"Mpc sphere is ~ 2.7 %. This value is larger
than the volume averaged one but is smaller than the best experimental determination
of the cluster distances based on redshift-independent distance indicators (~ 5%, see

Jerjen & Tamman, 1993).

The radial dependence of the reconstruction errors is not the only expected spatial
feature and thus we searched for other systematic effects. For this purpose we computed

the variance of the reconstructed cluster position from the 10 different reconstructions:
oi = ((x: — %)), (3.17)

where the average is intended over the different reconstruction, the index  refers to
the ith cluster and %; is the average reconstructed position. To visualize the spatial
distribution of o; we plot, in supergalactic Cartesian coordinates, the projected dis-
tribution of o; within a slice of 8000 km/sec wide centered on the supergalactic plan.
[Fig. (3.3)]. The variance is smoothed with a 2D Gaussian filter with 300 km/sec

radius and it is arbitrary normalized to unity.

Two distinct features can be noticed. Fist of all, comparing Fig. (3.3) with Fig.
(3.6), o; appears to be larger in correspondence of the high density peaks, where the
reconstruction procedure is expected to be less reliable. Superimposed to this pattern
there is a second feature: the variance is large near the galactic plane (i. e. along the
line connecting (X,Y)=(0,20) to (X,Y)=(0,40) and decreases when the galactic latitude
increases, being nearly zero on the plane orthogonal to the galactic one [the (20,0)-

(20,40) connecting line]. Again, this behaviour is not surprising since the reconstruction
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Figure 3.3: Surface plot visualization of the smoothed spatial distribution of o; within

—4000 < Z < 4000 km/sec, projected onto the supergalactic plane.
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within the ZoA strongly depends on the Montecarlo realization as the distribution of

synthetic objects does.

o The spatial cluster—cluster correlation function

Using the standard procedure described in section (3.1.5) we computed the cluster-
cluster spatial correlation function, e, both for the redshift and real space distributions
of the simulated clusters and we compared them to the analogous quantities computed
from 10 different LIRM-reconstructed cluster distributions. Errorbars are intrinsic

errors computed from the 10 different realizations.

Fig. (3.4a) shows the two-point correlation function for the simulated Z-space cluster
distribution (open dots) and for the reconstructed one (starred symbols), the dashed
line represents the function &.(r) = (20/r)"®, that fit the Abell and ACO cluster
correlation function. Fig. (3.4b) displays an analogous plot for the 3D-space cluster
distribution. The RSCM and the LIRM reproduce very well the original correlation

functions over a wide range of scales.

We stress that the above tests are aimed at assessing the intrinsic reliability of the
reconstruction method; cluster velocities are computed according to linear theory and no
allowance for contribution from external gravitational fields is made (a set-up that needs not
be true in the real universe). To get an estimate of the actual uncertainties in the whole
procedure we need to account for several other effects, which will be quantified in the next
section. The intrinsic uncertainty will be assumed to be independent from the other sources
of errors and will be added in quadrature to compute the total uncertainty on the peculiar

velocities.

The Reconstruction in the CMB-Frame:

As we have previously discussed, the reconstruction procedure naturally applies in
the LG—frame. It is nevertheless interesting to check how well this method applies when it
is used in the CMB-frame. The LIRM has been implemented under the assumption that
excternal contributions to the acceleration of the generic object within the sampled volume
can be modeled as a simple dipolar external field. If the strength of this dipolar field is large
then systematic errors are expected if the reconstruction is performed in the CMB frame.
This uncertainty originates from the fact that, if Vobs(0) 18 the observed LG velocity with

respect to the CMB and z is the redshift of a generic object as measured in the LG frame,



CHAPTER 3. RECONSTRUCTING CLUSTER POSITIONS & VELOCITIES

10

o True Z-Distribution

IIIIHI

* Reconstructed Z-Distribution

&
*'é \\\\\\\e
D Redshift Space -
.03 —
o1l ] | |
7 10 29 30 50
R (Mpc h™)
10 I T ] ’ =
i R ) True 3D-Distribution Z
3 Tl *  Reconstructed 3D-Distribution |
1 T~ —]
2 - e :
< 3 S
" ~~.

N 3-D Space =
.03 — \g
il 1 ,

7 10 20 30 50
R (Mpc h™)

Figure 3.4: Spatial two-point correlation function of the simulated cluster distribution.
Filled dots represents £(r) of the simulated data and starred symbols refer to the recon-
structed distribution. The experimental £,,(r) = (20/r)*® function is plotted as a dashed

line. Fig. (a) refers to Z-space while Fig. (b) refers to the 3D distribution.
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then the redshift in the CMB—frame, 2 is
cze = cz — Vops(0) * X. (3.18)

Therefore, when the reconstruction 'is applied to the CMB-frame cluster distribution, eq.
(3.15) becomes
P = erp— % v () B = V(0 4 Vb (0))]. (3.19)

Unless the external contributions are very small v(0)®) # v5(0), leading to a systematic
errors. Of course if Voss(0) Were generated by the mass distribution contained within 200
h~'Mpc (i.e. there were non dipolar contribution from the external force field) then the CMB
would be the best frame for reconstruction purposes since it would avoid the uncertainties
deriving from the correction for the solar motion needed when working in the LG frame
(Yahil et al. 1977). However, although the z-space cluster dipole flattens at 170 A~ Mpc,
it is impossible to a priori exclude further contributions from larger scales. To avoid these
unpredictable uncertainties we have decided to perform the reconstruction in the LG frame
also taking into account the fact that if the objects share a common bulk flow, as shown by
experimental data, then their starting positions in the LG frame are very close to the true

ones which minimizes the reconstruction errors.

31.4 Smoothed Cluster Density Maps in z— and 3D—Space

In Fig. (3.55) and (3.5b) we plot in supergalactic Cartesian coordinates the recon-
structed whole-sky smoothed density field for a slice of 8000 km/sec wide, centered on the
supergalactic plane, in z-space and in 3D space, respectively. Note that the same Gaussian
smoothing and cell units are used as in Fig. (3.1b) and (3.1d). As also outlined by Scaramella
(1994) who derived and discussed similar maps but only in z-space, the sparseness of the
cluster distribution and the heavy smoothing could miss some features of the cosmic density
field. Nevertheless, our reconstruction technique should reveal the main large-scale features
of the 3D cosmic density field.

From these plots it is evident that eliminating the distortions due to peculiar ve-
locities suppresses significantly the amplitude of the density peaks in 3D with respect to
that in the z-space. This effect is particularly evident in the Virgo-Hydra-Centaurus (or else
Great Attractor) region [centered at (X,Y) = (8.5,11)], in the Leo region [centered at (X,Y)
= (11,14)] and around the Ursa-Major supercluster [centered at (X,Y)=(15,18)]. Interest-
ingly, in the Perseus-Pegasus region [centered at (X,Y)=(13,10)] the opposite is true, ie.,
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Figure 3.5: The projection onto the supergalactic plane of the smoothed cluster density
field with —4000 < Z,,, < 4000 km/sec. Fig. (a) refers to z-space, while Fig. (b) to

reconstructed 3D-space. The smoothing procedure is described in the text.
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the 3D density amplitude is slightly higher than in the z-space case. This could be easily
understood if there exists a coherent gradient of negative peculiar velocities, increasing in
amplitude towards the near side of this structure (towards smaller X’s, ie., towards the LG).

Also, the shape of the density peaks, in the 3D case, appears to be slightly elongated
along the line of sight. This effect, which is mostly prominent in the Great Attractor and
in the Shapley concentration [centered at (X,Y)=(3.5,14)], arises from the fact that in the
linear regime the infall peculiar velocities within high density regions are coherent and tend
to twist the isodensity contours along the line of sight.

A different representation of the cluster density in this slice is also presented in
Fig. (3.6) where we plot a 3D surface-plot visualization of the density field (similar to that
presented by Dekel 1994), again in both z-space (upper panel) and 3D (lower panel)

In Fig. (3.7) we present the 3D cluster density field for the four slices, each of 8000
km/sec width, above and below the supergalactic plane. Panel (a) and (b) correspond to
the 4000 < 7 < 12000 km/sec and 12000 < Z < 20000 km/sec slices respectively, while
panel (c) and (d) represent the corresponding slices but for negative Z’s. Our intention is
not to present a detailed analysis of the structures evident in our contour plots (for such
a task see Tully 1987 and Tully et al. 1992). However, we would like to emphasize the
fact that, most structures found in the supergalactic plane extend not only to the first 8000
km/sec wide slice, above or below the supergalactic plane, but also to the second such slice.
For example the overdensity corresponding to the Shapley concentration extends to both
negative 7 slices. Also the Great Attractor region is connected to the Lepus region [centered
at (X,Y)=(8.5,10) in panel ¢| which seems to extend even further to the next slice (panel
d) while a similar behaviour is found also for Perseus-Pegasus region. From panels (a) and
(b) we see that the same is true for the Ursa Major supercluster, the Grus-Indus region
[centered at (X,Y)=(3,2.5) in the supergalactic plane slice], the Leo region which seems to
be connected with Hercules [centered at (X,Y)=(10,14) in the (a) and (b) slices] as well as
the Pegasus-Pisces region [centered at (X,Y)=(17.5,4)] which is evident in the supergalactic

plane and the two positive 7 slices.

Comparison with Reconstructions on Smaller Scales:

Clusters of galaxies allow us to trace the density and velocity field on scales much
larger than those possible when using galaxy samples. Clusters sparse sample the underlying
density field and it is interesting to compare the cluster density field with that traced by

galaxies which have a much higher resolution. A qualitative comparison is given in Fig. (3.8).
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20

Figure 3.6: Surface-plot visualization of the density field of the slice —4000 < Z,,, < 4000

km/sec; the upper panel represents the density field in z-space and the lower panel the

corresponding 3D-space density field.
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Figure 3.7: Xup-Ysup projections of the smoothed 3D-space cluster density field for 4
slices in Zoup. (a) 4000 < Zgyp < 12000 km/sec. (b) 12000 < Zspy < 20000 km/sec. (c)
—12000 < Zgup < —4000 km/sec. (d) —20000 < Zsup < —12000 km/sec.
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The plot on the bottom is the same of Fig. (3.6) while the two plots on the top show the
results of two different reconstructions based on galaxy catalogues (from Fig. 2 of Hudson
et al. 1995). The top left panel shows the outcome of a POTENT reconstruction based
on MarkIIl galaxies while the top right one displays the result of an iterative reconstruction
applied to the Hudson’s redshift catalogue of optical galaxies. In both cases a surface plot
visualization of the reconstructed density field, projected onto the supergalactic plane is
shown although with a smoothing and an orientation slightly different from those in Fig.
(3.6). The area spanned by the two top plots has been delimitated, in the bottom panel,
by a thick line. Although in the cluster density field small scales features have been washed
out by the large smoothing, all the fundamental features can be recognized in all the three
plots: the peaks in the Great Attractor, Coma and in the Perseus regions as well as the
prominent local void (Dekel 1994). Interestingly, in both the cluster and the optical galaxy
based reconstructed density fields, the amplitude of the Perseus—Pisces peak is larger than

that of the Great Attractor.

3.1.5 The Cluster Two—Point Correlation Function

We computed the spatial two—point correlation function of the reconstructed Abell—
ACO cluster distribution both in z— and in 3D space. Obviously, the reconstructed z-space
correlation function is expected to match the observed one since synthetic clusters have been
distributed with the constraint of reproducing the observed spatial two-point correlation
function. However, comparing the redshift and the 3D space correlation functions allow in

principle to determine the value of 3..

The Z—-Space Two—Point Correlation Function, ¢,:

We computed the two-point correlation function separately for the Abell and ACO
clusters subsamples. We used the standard estimator:

Ncc(r) : NCR

52(7') +1= Ncr(T') Neg

(3.20)

where N.(r) is the number of cluster pairs in the interval r — or/2 <r < +6r/2, No(r) is
the number of cluster random pairs in the same interval, N¢g is the total number of cluster
random pairs in the catalogue and Ng¢ is the number of cluster—cluster pairs. &.(r) has
been evaluated in 19 logarithmic intervals in the range [4-200] A~'Mpc. We generated the

random population by fulfilling the real cluster sample’s P(b) and P(z) selection functions



76

CHAPTER 3. RECONSTRUCTING CLUSTER POSITIONS & VELOCITIES

OPTICAL

POTENT

Comparison between surface plots of the reconstructed density field traced by

MARK III and optical galaxies (upper part) and by Abell/ACO clusters (lower part). The

upper plots are from Hudson et al. (1995).

Figure 3.8
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and in the same volume. Distances of the random clusters have been assigned using the
Mattig relation [eq. (3.1)]. The two—point correlation function of the reconstructed z-
space cluster distribution depends on (@, @), g, and on the weighting scheme adopted. We
therefore computed ¢,(r) for several different combinations of these free parameters and for
each combination we performed 10 independent realizations of the random sample. The
scatter between all the different correlation functions is used to estimate the total error.
Final errors are computed by adding in quadrature the total errors to the bootstrap variance
of {;, o¢,, that, according to Mo, Jing and Bérner (1992), can be analytically approximated
by

ol ~3 X ap,. (3.21)

The Poissonian variance op, was estimated as

1/2
or, = (LHE T (3.22)

In Fig. (3.9) we plot the Z—space correlation function estimated with the following
choice of parameters: (a, ) = (0.3,0.2), g = 0.5, B, = 0.25, direct homogenization scheme
[see section (3.2.2)] in which the relative Abell/ACO weights have been computed after
dividing the 200 A=* Mpc sphere into 10 equal volume shells. The plot on the top refers to
the ACO clusters while the correlation of the Abell clusters are shown on the bottom.

For a more quantitative discussion, we characterized the ¢.(r) shape by the usual

power law

&,(r) = 10478 = (-"'-)7. (3.23)

To

The parameters A and B are derived by x2 minimizing the following expression

Xzzi[loggi(r)_plogr_/a], | (5.24)

Wy

where w; = 0;/¢;. The sum is restricted to the distance range [9-70] A~'Mpc to allow a

useful comparison with the analogous parameters of the correlation function estimated in

the real space. It turned out that for Abell clusters
4 =23£0.6 and B3, =—-1.840.3
while for the ACO sample

A%co =3.0+0.6 and B3, = —2.1+ 0.4.
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Figure 3.9: The z-space cluster—cluster spatial correlation functions for the ACO (Fig. (a))
and Abell clusters (Fig. (b)). The plot refers to the parameter choice specified in the text.
The continuous line is the best fit to the data.
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These values can be compared to those obtained by Plionis, Jing & Valdarnini (1991) who
computed the correlation function for a slightly smaller although similar Abell/ACO sub-
sample:

A% =24405 and Bl = —1.8+0.2

and for the ACO sample
Aio =2.6+05 and B3, = —1.8+0.2.

Although the parameters for the Abell sample are remarkably similar, the correlation slope of
the reconstructed ACO cluster distribution is steeper that that of Plionis, Jing & Valdarnini
(1991) with also a larger correlation length; note, however, that our sample has many more
measure ACO redshifts. Because of the large uncertainties, however, the significance of the

differences is below 1-¢ level.

The 3D—Space Two—Point Correlation Function, &p(r):

Using the same technique we computed the correlation function for the recon-
structed 3D cluster distribution. Besides the free parameters used for the z-space recon-
struction we also need to choose the smoothing radius that we allow to vary in a plausible
range. We found that if the cluster distribution is smoothed on small scales (< 10~ *Mpc)
the correlation amplitude is severely depressed below 10 h~*Mpc. This effect can be under-
stood as follows: removing overestimated peculiar velocities unnaturally separates physically
close cluster pairs and thus depresses the correlation on small scales. Applying the recon-
struction algorithm with R,, < 10 h~*Mpc, has the effect of separating most of the close
cluster pairs. Since observations indicates that close clusters do exist, this effect provide us
with one more argument, besides that of Croft & Efstathiou (1994) for preferring smoothing
radii > 102 'Mpc. For this reason we computed A and B by minimizing the expression
(2.25) in the interval [9-70] A~ Mpc.

From the fitting procedure we obtain
A%} =225406 and B3P =-1.8+0.3

and

Ao =29405 and B3® =—-22+0.3,
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Constraining §. Parameter:

The above results can be in principle used to constrain the density parameter since
in the linear regime (which is the framework where we are working) the amplitude of the
3D correlation function is expected to be smaller than in the z-space according to the

relationship

£.(r) = &an(r) (1 + 256 + %) : (3.25)

while the slope of the correlation function should remain the same (Kaiser 1987). This
prediction turned out to be qualitatively correct and, using the average A and B values we
obtain fA4% = 0.3 and BACO = 0.2. The large uncertainties, however, do not allow us to
strongly constrain the (), parameter, although we do obtain central f. values which are near
the expected ones (PD) and also very similar to those we will obtain in what follows using

completely different methods [see sections (3.2.5), (3.3.3), and (3.3.6)].



CHAPTER 3. RECONSTRUCTING CLUSTER POSITIONS & VELOCITIES 81
3.2 THE CLUSTER DIPOLE

3.2.1 The Cluster Dipole and its Redshift Space Distortions

The main scope of this section is to compare the cluster dipole as measured in z-
space with the reconstructed one in 3D-space. A simple eye inspection of Fig. (3.5) and (3.6)
reveals that for all but the PP high density regions the peaks of the true density field have
a larger amplitude when observed in z-space [see discussion in section (3.1.3)]. To see how
these distortions affect the estimate of the cluster dipole, requires a quantitative discussion.
From a theoretical point of view the problem has already been addressed by Kaiser (1987). He
showed that gravitationally driven peculiar velocities can have a large effect on the peculiar
acceleration acting on an object. If D, is the amplitude of the true dipole (which measures
the peculiar acceleration) and D, is the z-space dipole, then the relationship between D,
and D, depends both on the selection function ¢ and on the power spectrum considered.
Recalling the Fourier decomposition of the overdensity field we consider each power mode

separately. The &** plane wave density perturbation is
op/p(x) = Ay cos(k - x + 6), (3.26)

where A, is related to the spectral amplitude and k is the wavenumber vector. In this case

the peculiar gravitational acceleration is simply given by
D, = ——llﬂrék2 sin(6). (3.27)
In the limit kR, > 1, Kaiser has shown that
Rumax dr dlng . . .
2r — —— - br + 0) — sin(9)] » |
27 / ,u/o " (2 + dlnr) [sin(ukr + 0) — sin( )]}

(3.28)

where A, is the amplitude of the generic k-mode and # 1s the cosine of the angle between

D, =D, +ﬂc{

the wavevector k and the position vector x. An approximate evaluation of eq. (3.28) gives

D.-D, 1 .
5 =3 AL+ ER)], (3.29)

where
E(k) ~ log[(kRmaz)*¢(Rimaz)/$(k71)] . (3.30)

The sign of E(k) depends on the selection function and on the sample’s depth. Although
a precise E(k) evaluation requires an accurate determination of the selection function, we

are confident that in our case ¢(Rmaz) ~ 1 which then implies £(k) > 0. The final value
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of D, — D, can be obtained in the linear regime by combining each mode separately (for
large k the non-linear evolution couple the different modes, and this approximation does not
hold). To properly combine the different modes requires knowledge of the P(k). However,
unless one considers cosmological models with very large power on small scales, which are
in conflict with observations, we expect that for our cluster sample D, — D, > 0.

Assuming naively a single mode fluctuation as being responsible for the cluster

dipole, gives E(k) ~ 3, where we have used k = 21 and thus

Rz:onv ?

D,— D,

=~ 1. .. 3.31
D 1.33 8 (3.31)

We will see further below that our estimate of 8., derived by combining the resulting 3D
cluster dipole and the LG peculiar velocity is roughly consistent with eq. (3.31), which
provides also a further, although weak due to the naive assumption made, consistency test
of our whole procedure. Having said that, we would like to point out, however, that the
coherence of the dipole (see Plionis 1995 and references therein) on a scale comparable to
k-1 indicates that this mode could dominate the cluster dipole, partially justifying the above

assumption.

3.2.2 Dipole Estimation

The cluster dipole vector, for an observer placed at the center of the coordinate

system, is defined as

3 X
= — [ po(x)—zdx, .32
D = o [ pbo)p i (3.32)
which, in linear theory, is related to the peculiar velocity by
H,D
v =B == 3.33
3(pe) (8.32)
For our discrete cluster field density field, smoothed with a top hat window, the dipole
becomes:
3Mc ( M; ) X
= — IOW(r))—= 3.
2% () W I (334
The monopole of the smoothed field is defined as:
Me M; 1
M= e <—-—> W (r) —— 3,
o 5 (3 wlraW ) e (3.3

Since the value of D/M has a smaller scatter than that of D (see PV91) it can be used to

compute the LG peculiar velocity, assuming that the dipole has converged to its asymptotic
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value within the volume sampled. In this case the relationship between the peculiar velocity

and D/M is:
HORCOTL’U

M(Reony)

However, based on Montecarlo experiments, we found that a better estimate of the peculiar

v(r) = 24.D(r) (3.36)

velocity of the observer is obtained directly from eq. (3.13). The average 1o scatter between
v, computed from eq. (3.36), and the true one is ~ 12% if 850 ‘clusters’ are used, a number
comparable to that of our cluster (true and synthetic) sample. The discrepancy originates
from the fact that the monopole is a good estimator of the average density only in the limit
of continuous density field. Using 8500 objects, for example, reduces the scatter to 7%. This
effect could introduce a further uncertainty in the LG peculiar velocity computed via eq.
(3.36).

Computing the dipole and the monopole separately is nevertheless important for
assessing the effective convergence of the peculiar velocity vector since a necessary condition
for final convergence is that while the dipole converges, the cumulative monopole continues
to grow linearly with distance. This condition, however, is not sufficient to guarantee the

final convergence of the dipole, which could still increase after having reached a plateau (cf.

Plionis, Coles & Catelan 1993).

Possible Systematic Effects:

The reconstructed cluster distribution could depend on a number of free parameters
that are only partially determined by observational constraints and theoretical requirements.
We systematically explored the influence of the parameter choice by allowing each free pa-
rameter to vary within an experimentally plausible range. In practice the reconstructed
cluster dipole, and therefore the predicted LG peculiar velocity, can be regarded as a func-
tion of niany variables (the free parameters) that are listed in Table (3.3). Boldface quanti-
ties refer to what we call the standard case, defined by the following choice of parameters:
(o) = (0.3,0.2), Rym = 20 2" Mpc, ¢o = 0.5, 8. = 0.25, direct homogenization scheme
(eq. 3.5) with the 200 A~' Mpc sphere being divided into 10 equal volume shells. For each
of the 48 possible combinations of the free parameters, to which we refer to as ‘models’, we
performed 10 independent reconstructions and we computed the corresponding 3D dipole.
To explore the influence of each variable on the predicted LG dipole separately we adopted

the following procedure:
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Galactic Absorption (0.2,0.3)  (0.2,0.2)
Deceleration Parameter g, 0.2 0.5
Smoothing length Mpc h™* 10 20 30
W,e(r) Binning 10 15
Homogenization Scheme Direct Inverse

Table 3.3: Experimental Parameters: Each model explored is characterized by a different

set of parameters. Boldface quantities represent the ‘Standard Model’ set.

Parameters Au Al Ab
(0.2,0.3) vs. (0.2,0.2) —14+10% +3 +5° —2+4°
B. = 0.25 vs. B, =0.114 —84+12% 04 5° —1+£4°
Rsm = 20 Mpc vs. Rg, =10 Mpc -3+11% 0+4° +3+£3°
Rym = 20 Mpc vs. Rgpn =30 Mpc —24+11% +1+£4° +1+4° =
bin = 10 vs. bin=15 —44+11% +1+£4° 0+ 4°
Direct vs. Inverse +4 £11% +1+4° 0£4°

Table 3.4: Dipole Comparison: First column displays the parameters defining the two
compared categories. Column 2 shows the % difference of the dipole amplitude at 170 A"
Mpc together with the relative standard deviation. Columns 3 and 4 contain the average

misalignment and its standard deviation at 170 h~! Mpc along [ and b, respectively.

e The parameter of interest is selected and models are divided according to the value
chosen for that parameter (e.g. go = 0.2 or 0.5). Models having the same parameter

values are grouped in the same category.

¢ The average dipole at 170 A~! Mpc is computed for all the models in the same category

and the same procedure is repeated for all different categories.

e The different average dipoles are compared. The differences in amplitude and the

misalignment angles between different average dipoles are listed in Table (3.4).

Tt is evident from Table (3.4) that the only appreciable systematic effect comes from
the choice of the f. parameter. Varying the other experimental parameters (i.e. the galactic
absorption coefficients, the smoothing radius and the homogenization procedure) generates

systematic errors much smaller than the intrinsic uncertainties of the reconstruction.
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To appreciate the influence of the B, parameter on the reconstruction process we
have to disentangle two different effects: the role of the deceleration parameter, ¢,, that
enters through eq. (3.1) in defining the outer limits of the sample, and that of the B. factor,
whose arbitrary initial value has to be specified for the LIRM to be applied. The first effect
turned out to be much smaller than the second one.

The effect of varying the 8. parameter in the LIRM was explored by performing
the reconstruction with the same g, value but using two different 3, values (0.25 and 0.114).
Although these values are different by a factor ~ 2, the asymptotic amplitudes of the re-
constructed dipole are very similar, differing only by 8%, being smaller for the standard
B = 0.25 case, while the direction does not change a,ppreciably; The complete analysis
was performed by exploring two different class of models having (B = 0.25, g, = 0.5) and
(B = 0.114, g, = 0.2), respectively, confirmed the above results (see Table 3.4). It is there-
fore clear that there is a small, although systematic, effect related to the value of the Be
parameter which enters as an input in the reconstruction algorithm.

It is interesting to compare this result to that obtained by SYDHF92. The asymp-
totic amplitude of their reconstructed JRAS galaxy dipole on scales larger than ~ 100 A1
Mpc strongly depends on the input 8. value. The origin of this effect, to which they refer
as the 'Kaiser effect’, was ascribed to z-space distortions that in their case are mainly due
to the LG motion with respect to the distribution of distant galaxies. This problem has
been theoretically addressed by Kaiser & Lahav (1988). Let us consider the mapping from
real-space coordinates x to the z-space coordinates s:

x - (v(x) — v(O))> , (3.37)

Ir|?

s-_—x<1+

where A = 1. Kaiser (1987) showed that the linearized apparent density fluctuation in the

z-space 1s
p/, r /. din(r) Ir|? Ir|  dr
The apparent peculiar velocity vector for an object placed at the center of the coordinates is
_ B S :
Vo= /5(5)[3|3d s, (3.39)

that, using eq. (3.38), gives

[T (R (o ) 2 o)

V —
° Smin IT'|3 ITIZ |T‘ dr
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This expression has general validity. In our case we are interested to distortions caused by
the LG motion with respect to the distant masses that do not contribute to the LG motion.
Thus the problem reduces to the case of a rocket—born observer who resides in a uniform
universe at rest with respect to the CMB and its peculiar acceleration originates locally.
In this idealized case the redshift-space distortions lead to a discrepancy between the true
peculiar velocity induced by the mass distribution at the observer’s location, v(0), and the
peculiar velocity generated by the redshift—distorted mass distribution v:

_Bv(0) pdr [, dng 5.
v, = 22 /T <2+Cﬂm). (3.41)

In the case of volume limited survey we have ¢ = 1 within the sample and the Kaiser effect
reduces to the z—space distortions caused by the locally generated observer motion and it can
be easily removed by properly account for the local sources of acceleration. The situation
is less trivial when the selection function falls below one well within the sample’s depth as
for the the TRAS galaxy sample studied by SYDHF92, in which ¢ <« 1 well within 100
A=! Mpc. In that case the Kaiser effect is mainly caused by the LG motion with respect to
distant galaxies and has a dramatic effect when determining the scale of dipole convergence.
Since the magnitude of the Kaiser effect depends on the amplitude of v(0), that in the
reconstruction procedure is fixed by the input . parameter, the typical signature of the
Kaiser effect is the dependence of the convergence depth on the 3. parameter used.

For our cluster sample P(z) is close to unity within 200 h~! Mpc and the Kaiser
effect should be negligible, which is indeed the case as demonstrated by the stability of
our dipole against the variations of B.. A very different behaviour is found by SYDHF92
especially at large depths where the sensitivity to the input §. parameter is manifested by

large variations of the dipole amplitude shape as a function of B, (cf. Fig. 6 of SYDHF92).

3.2.3 Error Estimate

To obtain a reliable error estimate of the reconstructed dipole we need to account for
several different sources of errors. We estimate the intrinsic error, o, in the reconstruction
algorithm from the 10 independent reconstructions performed for each model explored. Other
sources of errors, which will be described below, are the observational error o, and the shot-
noise error o,. In what follows we will assume that all these errors are independent so that

the total uncertainty or will be simply estimated by adding the errors in quadrature.
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Observational Error:

We define as observational error the uncertainty derived from the different free pa-
rameter choice, listed in Table (3.3), whose separate influence on the reconstructed dipole
was explored in the previous subsection. The reconstructed dipole can be therefore regarded
as a function of the smoothing length, the homogenization scheme and its binning, parame-
ters that we allowed to vary in a plausible range of values. The galactic absorption set and
the f. factor, instead, are considered fixed by observations to (0.2,0.3) and to 4, = 0.25,
respectively. We chose (3, = 0.25 since, as we will see in section (3.2.4), this value is closer
to that one derived from the comparison with the CMB dipole. We found that varying
these parameters does not produce any systematic effect in the dipole determination and
thus we can consider them as Gaussian variables and the dipole as a multivariate Gaussian
function of the explored parameters. F ollowing this argument we compute o, as the variance
of the dipole obtained by averaging over all models having (o, a) = (0.3,0.2) and 8. = 0.25
(our standard case). The observational error at 170 A~} Mpc produces an uncertainty of
~ £65 A1 km/sec in the dipole amplitude and of +4° and +2° along b and [ directions

respectively.

Shot—Noise Error:

The usual shot-noise estimate assumes that luminous ob jects have been drawn by
a Poisson process from the underlying density field while the reconstruction procedure relies
on the hypothesis that clusters of galaxies are biased tracers the mass. A more meaningful
and self-consistent estimate of the shot noise error has been proposed by SYDHF92 that

accounts for two different effects:

¢ The Poissonian error due to the fact that luminous objects become random tracers of

the density field when the selection function falls below unity.

e An uncertainty due to the fact that cluster masses are randomly taken from an un-
derlying mass distribution. In our case we estimated the mass of real clusters from
their Abell listed number of galaxies while for the synthetic clusters, which constitute
~ 50% of the whole cluster population, their mass was set equal to the average real

cluster mass.
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Using our formalism, the SYDHF92 shot-noise computed for the W = 1 case,

reduces to (see in Appendix):

2 N, 2
2 /30 - vV(TZ) [~ N 249
ol = (47mc) ; ————-r? K [0(r;) 1], (3.42)

where the sum extends only over the N synthetic clusters, n. 1s the average cluster density
defined from eq. (3.14), K = (p?) — 1, with p; being the mass of the real clusters in units of
average mass and ,from the real clusters mass variance, K=0.25. To compute the influence
of the shot-noise on the amplitude and the direction of the dipole, we will assume that
each component of the dipole is a Gaussian with zero mean and Osnz = Osny = OTsn,z- The
1-dimensional shot noise error at 170 b1 Mpc reflects in an ~ £60 Bt km/sec amplitude

and a ~ +4° directional uncertainties.

3.2.4 The 3D Cluster Dipole

After reconstructing the cluster distribution with the RSCM and the LIRM, we
computed the cluster dipole both ‘n »— and 3D-space. Figure (3.10) shows the amplituﬁde
of the peculiar velocity for the standard model, computed using eq. (3.13), as a function
of distance. Open dots refer to the z-space dipole while filled symbols represent the re-
constructed 3D cluster dipole. We also plotted, for reference, the dipole computed without
any Abell/ACO homogenizing scheme (i.e. Wra = 1) in z-space (continuous line). Er-
rorbars represent 1-o total errors. Our main result is that the asymptotic value of the
3D dipole, D,, is significantly less than the corresponding z-space one, D, as predicted
by eq.(3.31). Removing z-space distortions erases the artificial redshift-space clustering,
leading to (D, — D.)/D. = —0.23 or else (D, — D,)/D» = 0.3. Although the amplitude
of the 3D dipole is significantly less than what previously found in cluster-dipole z-space
studies (PV91; SVZ91), the qualitative dipole behaviour is similar in z-space and 3D-space:
a ‘bump’ of the velocity amplitude around 50h~! Mpc followed by a decrease due to the
competing pull of the Great Attractor with the Perseus—Pegasus regions, a secondary in-
crease after a plateau and an asymptotic convergence beyond ~ 170 A~* Mpc once that the
Shapley concentration has entered into the sampled volume. The mass distribution beyond
60 h~! Mpc is responsible for ~ 30% of the total LG peculiar acceleration. As already
noticed from the qualitative analysis of the density field maps, the effect of eliminating the
apparent z-space clustering is particularly important in local high density regions, such as

the GA area, which is clearly responsible for the significant decrease of the ~ 50 A™! Mpc
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Figure 3.10: Left Panel (a) Dipole amplitude as a function of distance with open symbols
representing the reconstructed whole-sky z-space dipole and filled ones the reconstructed
3D dipole. The continuous thin line refers to the z-space dipole without any Abell/ACO
homogenizing scheme (i.e. Wy =1). In arbitrary units, we plot also the 3D-space monopole
(small filled squares). Right panel (b) Dipole cumulative direction as a function of the
distance. The starred symbol indicates the CMB dipole apex, while the skeletal symbol
represents the same but after correcting for a Virgocentric infall component of the LG motion,

with an amplitude of 170 km/sec. Errorbars are 1-o total uncertainty.
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bump in the 3D cluster dipole case. In Fig. (3.10a) we also plot, in arbitrary units, the 3D
space monopole term, which grows linearly out to the depths sampled which indicates that
the dipole convergence at ~ 170 A1 Mpc is not an artifact of ill sampling.

Figure (3.10b) displays the cumulative direction of the LG velocity. The starred
symbol indicates the CMB dipole apex, while the skeletal symbol represents the CMB di-
rection after correcting the LG for a Virgocentric infall of 170 km/sec. Errorbars represent
the 1 o total errors. Note that the relatively large error (< 10°) in the dipole direction,
along b, is due to the uncertainty related to the amplitude of the Virgocentric infall (here we
have used Vips o~ 170 + 100 km/sec from observations). The reconstructed 3D dipole points
~ 10° away from the CMB apex when the Virgo infall is taken into account. No significant

differences between the 3D and z-space dipole directions was found.

The Effect of Varying the Mask Model:

It is interesting to investigate the influence of the Mask model, adopted to re-
construct the whole sky z-space cluster distribution, on the reconstructed dipole. Here we
compare the RSCM reconstructed standard dipole with the two obtained by using the same
set of standard parameters but adopting the RHCM and RTCM mask models. In both cases
there is a small increase of the dipole’s amplitude, by ~ 3% — 4%, and the direction points
~ 4+ 4° away from the original one (uncertainties refer to the intrinsic errors). We conclude
that no significant dependance was found on the Mask choice, which is to be expected since
all of them are based on a cloning scheme.

A more relevant comparison is probably between two conceptually different meth-
ods. For example between our RSCM and the spherical harmonic method (see PV91 for use
of this method in the cluster dipole context). In Fig. (3.11) we compare our standard RSCM
z-reconstructed dipole with that derived using the PV91 method for the same sample and
the same set of parameters. In the insert we plot the relative velocity fluctuations, defined
as 2 X (vrscm — vsw)/ (vRscm + vsgr). 1t is evident that both methods give identical results,
except in the inner volume (S 50 h=* Mpc) where the number of clusters is extremely small
and therefore shot—noise effects are large. This is quite extraordinary given the completely
different methods used.

Finally, we explored the effect of using the MSS with which the reconstruction
scheme adopted in the inner region (S 200 h~! Mpc) is extended up to the limiting sample
depth (250 A~' Mpc). With the MSS the 3D dipole differs from the standard one only
beyond 200 k™! Mpc, where the amplitude monotonically increases (by ~ 8%) and the
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Figure 3.11: Comparison of the z-space dipole derived by using our standard RSCM method
to reconstruct the whole-sky cluster distribution and that derived using the spherical har-
monic method (cf. PV91) for the same sample and the same set of parameters. In the insert

we plot the relative velocity fluctuations between the two determinations.
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direction systematically drifts towards lower galactic latitudes. Using the MSS increases the
shot—noise errors in a region where the selection function is significantly smaller than unity.
The shot-noise errors are probably responsible for the drift in the dipole direction, while

they also enhance the "Kaiser Effect’ which causes the dipole amplitude to increase.

Abell Richness Dependent Effect:

As discussed in section (3.1.1), our Abell/ ACO sample includes also richness class
R = 0 clusters which although suspect of being incomplete, such effect is not apparent within
the volume considered in our analysis. However, we have tested, using the above mentioned
Spherical Harmonic method, the effect of excluding them from our dipole analysis. Using
R > 1 clusters we reduce our original sample by ~ 57% but we still find that their dipole
has a similar overall shape with that of the R > 0 case; similar convergence depth (~ 170
h~! Mpc) and CMB-alignment (80:mp S 20°) while their amplitude difference is 6v ~ —15%.
We are therefore confident that the possible incompleteness of the R = 0 sample does not
significantly affect the behaviour and asymptotic value of our cluster dipole and it probably
becomes important only at distances considerably larger than the apparent cluster dipole
convergence depth (see Postman et al. 1992).

We point out, however, that the R > 1 dipole increases initially in a much smoother
fashion than the corresponding K > 0 one, which is due to the fact that 10 out of the 12
clusters within ~ 60 A~! Mpc are R = 0 clusters and it is these clusters that constitute the
large overdensities seen 1n the Great Attractor and Perseus-Pisces regions (see Fig 3.5), and

thus responsible for the initial Kkick of the LG peculiar acceleration.

3.2.5 Cosmology from the Cluster Dipole
Constraints on the Value of S

From the measured asymptotic value of the cluster dipole it is possible to constrain
the value of B. by matching it with the CMB dipole amplitude. An estimate of this parameter
can be obtained by assuming that the cluster 3D dipole has converged to its final value at
~ 170 h~!' Mpc, in accordance with SVZ91 and PV91. We have, however, to take into
account a zero-point offset in the cluster-dipole which originates from the fact that the
Abell-like Virgo cluster, due to its proximity and thus low surface brightness, is not included
in the Abell/ACO catalogue and therefore its contribution to the cluster dipole has been
missed. A possible way to deal with this problem is to merge the cluster dipole with that of
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some galaxy sample that trace more densely the local mass distribution (Scaramella et al.
1994). With this approach, however, the offset can be evaluated only assuming an a priori
value of the cluster-galaxy relative bias, whose value is very uncertain (for a complementary
approach see Plionis 1995). Instead we adopt a simpler phenomenological correction by
identifying the zero point offset with the LG Virgocentric infall, the velocity of which we
take to be Vj,; ~ 170 km/sec. We choose this value to be the average of the traditional
~ 260 km/sec value with the lower one of Faber & Burstein (1988) [~ 85 km/sec].

Comparing the cluster dipole amplitude to the LG peculiar velocity (as inferred by
the CMB dipole) via eq. (3.13), we then obtain:

(3.43)

622 — 170 cos 67

Be = 0.21(£0.03) f(Vins) , F(Ving) = {622 — Ving cos MJ

where the function f(Ving) represents the parameterization of Vins and 89 is the angle be-
tween the Virgo and CMB dipole directions (~ 45°). If we erroneously did not account for
the Virgo infall we would obtain B = 0.26 and similarly if the Virgocentric infall veloc-
ity is underestimated then a lower value of B: can be obtained (for example if Ving = 260
km/sec then B, ~ 0.18). The quoted uncertainty in eq.(3.43) comes from the total dipole
scatter, as discussed in section (3.2.3), Although this uncertainty is quite wide, our estimate
of the value of B, is still more than ~ 2o larger that previous estirﬁates based on the z-space
cluster distribution (PV91, SVZ91 and SVZ94). Assuming Q, = 1 we obtain a cluster bias

parameter with respect to the underlying mass distribution of:
b = 4.8(£0.8).

According to the linear biasing prescriptions if b4 and bg are the biasing factors of objects A
and B with respect to the matter with ba > bp, the following relation holds: bap ~ ba/bg,
where b4p is the biasing factor of objects A with respect to objects B. If the biasing factor
of Abell/ACO clusters with respect to IRAS galaxies is by ~ 4.5 (cf. PD; Jing & Valdarnini
1993) we have that the above b, value is consistent with a bias parameter of IRAS galaxies
with respect to the mass of b ~ 11592

It is interesting to note that putting our derived B value in eq. (3.31) we get
(D. — D,)/D, =~ 0.28 which is in good agreement, taking into account the naive use of eq.
(3.31), with the value of ~ 0.3 which we obtained directly by our reconstruction algorithm,
thus providing an independent, albeit weak, consistency check of our whole procedure.

Although the dipole convergence at ~ 170 A1 Mpc is real, since at that distance

the cluster monopole is still linearly increasing, it is impossible to prove that the dipole has
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converged to its final value. The only way out is to evaluate the amplitude of the external
contribution to the observed dipole using statistical methods.

Juskiewicz, Vittorio & Wyse (1990) computed the probability distribution of the
peculiar velocity of a generic observer, constrained to be moving with a velocity of 620 km/sec
with respect to the CMB, as a function of the sampled volume. From this distribution they
computed the expectation value for the estimated LG velocity and its variance (their eq. 3a
and 8b). The expectation value at 170 h~! Mpc weakly depends on the cosmological model
adopted. We explored a number of possible models ranging from the Standard CDM one to
the phenomenological model proposed by Branchini et al. (1994) that resembles a tilted CDM
with n = 0.7 and to the Peacock & Nicholson (1991) spectrum with more power on large
scale. In all these cases the expectation value for the LG velocity, at 170 h~! Mpc coincides
with the true one. Also the variance slightly depends on the cosmological model, being larger
in correspondence to the Peacock & Nicholson (1991) spectrum (~ 158 B km/sec that,
to be conservative, will be used as the typical cosmological variance). A probably better,
although exaggerated, estimate of the B, uncertainty can be therefore obtained by adding
in quadrature the cosmological variance to the total error. The resulting 3. value is thus

constrained into the range

,Bc = 021tg(1)§)’

assuming a Virgo infall of 170 km/sec. Assuming o =1 we obtain a value for the cluster

bias parameter

b, = 4.8733.

Constraining Dark Matter Models:

The observed cumulative acceleration acting on the LG can be used to discriminate
between different cosmological models. Useful constraints can be imposed by requiring a
cosmological model to reproduce the observed cumulative dipole. As outlined by SVZ94,
the dipole increases beyond 80 h=! Mpc which is a characteristic feature that can be used
as a cosmological test. To quantify the constraint we consider the ratio of the peculiar
velocity induced on an observer placed on the origin from fluctuations within a sphere of
radius Ry to that induced from fluctuations within a sphere of radius Rz > Ri, X(Ri,R2)-
Juskiewicz, Vittorio & Wyse (1990) computed the probability distribution for this ratio as a
function of the cosmological model through the power spectrum P(k) [their eq. (10)]. Here

we compute the probability density distribution for ratio X(r,,g,) of the peculiar velocities
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Figure 3.12: The probability density distribution for the dipole amplitude ratio between
the two spheres with radii B, = 100 and Ry =160 A~ Mpec.

generated within the two spheres of R; = 100 and R, = 160 A~! Mpc. Thus we constrain
a cosmological model to reproduce the observed ~ 20 % increase of the dipole amplitude
in the [100 — 160] A~*Mpc range. The probability distributions computed for the three
cosmological models previously used, are displayed in Fig. (3.12). The continuous line
represents the experimental values from the 3D standard dipole in Fig. (3.10a) assuming a
Gaussian distributed total errors. Short dashed line represents the CDM standard model,
long dashed line refers to the Branchini, Guzzo & Valdarnini (1994) phenomenological model
while the Peacock and Nicholson (1991) model is displayed as a dot—dashed line. As already
noticed by SVZ94, models with a large scale of coherence are preferred by the observed
cluster dipole even when z—space distortions are removed. A detailed analysis, using large
Zel’dovich simulations of the cluster distribution, on the constraints put by the cluster dipole

on the different Dark Matter models is presented in Tini Brunozzi et al. (1995).
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3.3 THE CLUSTER VELOCITY FIELD

In this section we analyse the reconstructed peculiar velocity of the Abell/ACO
clusters. Since the errors are small enough, besides a qualitative description we have also
performed a number of quantitative analyses and statistical tests that are presented and

discussed in what follows.

3.3.1 A Qualitative Analysis

To qualitatively characterize the peculiar velocity field we have plotted the peculiar
velocity of the objects versus their galactic coordinates.

In Fig. (3.13a) and (3.13b) (the two upper plots) the line of sight peculiar velocities
of the objects averaged over all the models and over all the Montecarlo reconstructions, Vipb,
are plotted versus the galactic longitude (on the left) and latitude (on the right). The empty
region delimitated by two vertical lines is the ZoA. While the behaviour of Vip versus galactic
latitude is featureless, apart for the presence of objects with high peculiar velocity that are
found to reside within high density regions, the peculiar velocities show a typical dipolar
structure when plotted versus galactic longitude, as outlined by the superimposed sinusoidal
fit. A strong infall is visible at [ ~ 260° while at [ ~ 80° the majority of clusters is receding
from the LG: the signature of the large scale bulk flow that we will discuss in section (3.3.4).
The plot shows the Ry = 10 h~'Mpc case but the same behaviour with an even smaller
scatter is found for larger smoothing radii.

From a more cosmographic point of view we show in Fig. (3.14) the cluster peculiar
velocity field for two smoothing radii (Rsm = 10 and 20 h=1 Mpc) in a 8000 km/sec wide
slice projected onto the supergalactic plane, where most prominent superclusters lie (Hydra-
Centaurus, Coma, Shapley, Perseus-Pisces and Ursa-Major).

Open and filled dots refer to inflowing and outflowing objects, respectively while
the length of each vector is proportional to the line of sight component of the peculiar
velocity in the CMB frame projected onto the supergalactic plane. The small circle at the
center represents the typical region spanned by dynamical analyses based on galaxy peculiar
velocities (see Burstein 1990 and Dekel 1994 for comprehensive reviews), while the large
circle represents the boundaries of the 20000 km/sec sphere.

The most prominent feature is a large coherent motion in the general direction of
the CMB dipole towards the Shapley Concentration (X,Y) = (—13000,+9000) km/s. It is

interesting to note that as the smoothing radius increases the coherent bulk flow becomes



CHAPTER 3. RECONSTRUCTING CLUSTER POSITIONS & VELOCITIES

1000 = =,

Vid

~1000 |- 5 -
1 ! 1 ' 1 1 1 i I 1 I ! 1 l ! i
0 100 200 300
gallongitude
T T T T ] T T T T ‘ T T T T T -
400 |- -
300 — -
> r R x ]
b - .. ]
200 = | . . P
o ‘, . % o N o » 7]
£ ~ X ‘I - . ox . —
. - R B
N L, 5 = I, B LA
1001- ':""'.'."';‘!'-”',3&" . "‘u".l"a;l' E o
L T e, AT e
L TR, r x x P x, & "
LT g L A S R Ak
[ . x S L
0 i 1 [ ! ' 1 1 1 ] ' 1 ! L 1 ' ! i

(=]

400 —

300

200

100

. B ]
* x
. .
. 4
- . —]
L3 - = -
« . ..
Eoowox . R -
Tax o * o a x o
- «x 1 B
. .

" .x‘,:__,‘..,;& ":& 5 i : |

FRREY ne e T
B LSt 1 Y —

. - Ll ¥ T
W xR A e, .
R g H
P el el T R

ol =t Ol 7
RN R ]
B S 4

9

1000

-1000

i ] [ L 1 L

0
gallatitude

[T T T T T T T l T T T T i T T T ]
400 |— " —
300 |- - —
200 - . - T
- . " i -
L R T -
- el e B e L Y
100 — '- '.”..-.:iyfg- ‘}':‘ W ::'};":&‘_ by "', —]
e T Ek s L ERT . T
[ 32 o S B e M 'a 21§
—l::‘t:}"‘.‘..-?.":‘ : e AT
et Hlar iel 2
0 I S | I 1 1 . 1 ' 1 i Il 1 } i Il 1 —1
-50 0 50
gallatitude

400 T T T T T ! T T T I T T T T
300 — * - —
200 {— T T e -
L e e 4
= - - P -

. o Mo *

- T L L TR
100 = « 70 encd orel Padrie e Y

| Y = - '-n‘;&-l‘ e TP 1 Tl " R

= * x x b e gx g N *

. [ ~: -\;‘L‘&lw‘%'?' i .

et xRl “-'i"s".-{g{r‘-' _

-, o A il 2

0 ! 1 , ] ] 1 ‘ 1 ! 1 ' 1 ] i ! ! ! 1

redshift

Figure 3.13: Average peculiar velocities and variances for the standard case. Their be-

haviour with respect to the relevant parameter of the cluster spatial distributions is shown.
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Figure 3.14: The cluster velocity field of a 8000 km/sec strip projected onto the super-

galactic plane. Open dots are inflowing clusters while filled dots are outflowing ones.
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more evident, since the local, small scale, gravitational effects get damped by the smoothing.
Besides the extent of the bulk flow, other secéndary features have been studied in the smaller
scale galaxy analyses, like the presence of back infall in the Great Attractor region (Dressler &
Faber 1991, Mattewson et al. 1992), the motions in the Perseus-Pisces region (Willick 1990)
and the existence of a ‘quiet’ region around the Coma cluster (Courteau 1992). In our case,
the coarness of the cluster sampling and the relatively large smoothing we have used does not
allow to analyse such fine details of the peculiar velocity field. However, we have found, in
agreement with galaxy studies, that the reconstructed line of sight peculiar velocities of clus-
ters in the Coma region are consistent with ~ 0 km /secfor all the R,,, used. Again in agree-
ment with galaxy studies, we have also found that the large-scale coherent motion does not
have a constant amplitude; it is small in the Perseus-Pisces region (X,Y)= (48000, —4000)
km/sec then rises in the Great Attractor zone (X,Y)= (—4000, +500) km/sec while drop-
ping on the backside of the Great Attractor. Furthermore, due to our large volume sampled
we are able to identify other important features of the large-scale peculiar velocity field
not previously studied. For example, it is evident that the bulk velocity rises again near the
Shapley concentration where a large back infall is also apparent. Also in the Ursa-Major and
Grus-Indus regions at (X,Y)=(7000,14000) and (X,Y)=(14000,-15000) km/sec, respectively
a strong local infall is present (in accordance also with an analysis recently presented by
Scaramella 1995 in which the large scale dynamics is probed by solving the Poisson equation

where the source term is given by the cluster distribution but in z—-space).

3.3.2  Error Analysis and Systematic Effects

We evaluate here the uncertainties of the peculiar velocities of clusters reconstructed
using the RSCM and the LIRM, together with the systematic correlations between the

velocity errors and the spatial distribution of clusters.

The Reconstructed Cluster Velocity Field:

As for the LG cluster dipole, we identified three major sources of uncertainty for the
peculiar velocities: the intrinsic, the observational and the shot—noise errors. The meaning of
the different errors is the same as in the discussion of the LG cluster dipole, the only difference

being the definition of the shot-noise error. These errors are considered independent.

e Intrinsic Error (o;): The intrinsic error is defined as the variance of the generic clus-

ter velocity based upon 10 different reconstructions of the same ‘model’. This error
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amounts, on average, to ~ 100 km/sec.

e Observational Error (0,): The observational error on the peculiar velocities is computed
as the variance relative to different ‘models’ explored. Its amplitude o, ~ 100 km/sec

is similar to that of o;.

e Shot—Noise Error (o,,): In the case of cluster peculiar velocities 1t is not possible to
use eq. (3.42) for the shot-noise error since the reconstructed cluster distribution is
not symmetric about the generic cluster. To quantify the shot-noise effect we use the
rough assumption that clusters are uncorrelated samplers of the velocity field. In this

case the shot-noise for the peculiar velocity of a source at the position x relative to

the LG is

Osn(X) = osn(X - (V(X) = Vig)) = /
B (5 (3)" 02 fie [ (e = xR — W () 35 SR

The amplitude of this shot-noise error is nearly independent on x and its averageijfalue
is ~ 80 km/sec, ranging from ~ 20 to ~ 200 km/sec. Eq. (3.44) overestimates the
shot—noise error since, as we have discussed in section (3.2.2), theoretical arguments
and observational evidences suggest that luminous objects are not random samplers

but tracers of the underlying density field.

The total uncertainty of the cluster peculiar velocities is computed by adding osn,
o, and o; in quadrature. However, since our o,,, which is slightly smaller than o, and o,
overestimates the true shot-noise error we will not consider its contribution in what follows.
The total error o2 = o2 + o? represents therefore a reasonably close estimate of the actual
reconstructed velocity variance. It turned out that 50 % of the clusters have a total velocity
variance < 100 km/sec. and that only 20% of the clusters have or > 160 km/sec.

Besides a simple volume-averaged evaluation of the errors, it is also interesting
to look for systematic effects by exploring the spatial distribution of the errors. The two
central plots in Fig. (3.14) display the total errors (ov in the plots) versus galactic longitude
(left panel) and latitude (right panel). There is an evident correlation between o7 and the
galactic latitude b as already found in section (3.1.3). This behavior depends on the fact
that the number of real clusters is an increasing function of the galactic latitude and so is
the reconstructed velocity. As displayed in the two plots on the top of the figure, no strong

correlation is found either between o and V;p or between or and the redshift of the objects.
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Tmaz  Rsm  |V|Le (km/sec) ! b E€x10*  80.mp  X%/d.f.
100 5 265+100 284° £ 36°  30°£22° —1.140.9 6° 44/38
10 256+ 95 283°+ 39° 31°+ 24° -1.240.9 5° 42/38
20 302+80 280° +23° 22°+£16° —0.24+0.9 9° 27/38
150 3 520490 282° £15° 28°+10° —-1+£0.6 5° 217/115
10 470+ 90 276°+ 16° 28°+ 11° -0.7+ 0.6 2° 202/115
20 440465 277° £12° 28°£8 —-1.6+0.5 2° 103/115
180 ) 67070 280° £ 9° 18°+6° —0.24+£03 13° 445/167
10 635+ 70 277°+ 9° 18°+ 6° 0+0.3 12° 337/167
20 592455 276° £ 7° 19°+£5° —-04£03 11° 194/167

Table 3.5: Local Group motion with respect to the cluster frame within distance ., and

for 3 different smoothing radii (both in A™! Mpc).

Finally, we found that the total uncertainties o7 correlates with the local density: o1 ng‘g

where n, is the number of neighbours within 1500 km/sec around the generic cluster.

3.3.3 The Local Group Velocity with Respect to the Clusters

Similarly to LP we compute the LG peculiar velocity with respect to the cluster

frame, vig, by using a x2-minimization of the real cluster peculiar velocities:

W = g: { [czi = di(1 +&)] = vig - X }2’ (3.45)

i=1 aT,i

where d; is the reconstructed 3-D cluster distance in the LG frame, %X; the unit position
vector and or; is the total error computed by adding in quadrature oy;, 0,; and o.(= 300
km/sec) which represents an uncertainty in cz;. The quantities to be fitted by eq. (3.45)
are the LG peculiar velocity vector, vrg, and the fractional error, ¢, in d;.

In Table 3.5 we present the solution of eq. (3.45) for the R, = 5, 10 and 20 A~ Mpc
cases and for three limiting radii of the volume used for . = 0.21 (boldface quantities refer
to our standard case). It is important to note that out to the limiting depth of the LP
sample (rpp ~ 15000 km/sec) our estimate of |v|.c has not reached its asymptotic value.
In fact we find |v|zg(rp) = 470 £ 90 km/sec with a misalignment angle with respect to
the CMB dipole apex of only 6. = 5° while its asymptotic value (= 635 & 70 km/sec) is

reached at ~ 18000 km/sec. Our result, which is expected in the GI picture, is in strong
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Figure 3.15: Comparison between the LG peculiar acceleration, |v|y, as derived by the

cluster dipole and the LG peculiar velocity, |v|Lg, for the Rem = 10% km/sec case.

disagreement with LP who found |v|zg(rzp) = 561 & 284 km/sec but with 80emy = 80°.
Figure (3.15) shows |v|re computed within spheres of increasing radius together with the
analogous quantity, |v|;, obtained from the gravitational acceleration acting on the LG, after
including a contribution of a ~ 170 km/sec Virgocentric infall and for (error bars indicate
1-o total uncertainties). There is a good matching between the two quantities while their
misalignment with the CMB dipole direction 1s < 14° at the convergence depth. We stress
that the vy g—v, matching constitutes a non-trivial demanding test of our reconstruction
procedure. In fact v, is estimated from the cluster dipole at the position of the LG while vie,
is a nonlocal quantity in the sense that it requires knowledge of all the sample cluster peculiar
velocities which are the outcome of our dynamical reconstruction algorithm. Furthermore,
contrary to the |v|, case where we have a relative freedom to adjust its value according to
what we believe is the Virgocentric infall velocity (see eq. 3.43), the |v|Le determination is
independent of this ‘zero point’ uncertainty.

As discussed before there are different factors that could affect the estimate of
vig. Increasing Ren in the range [5-30] h™*Mpc causes a weak but systematic decrease of
|v|Lq following the empirical law |v|re « B2 with @ = 0.12 + 0.02, shown in figure (3.16).

Furthermore, the value of |v|zg scales linearly with 8. Therefore we can write:

Rom __\ " B
~ 635 — k 3.46
|v|ze ~ 635 (£70) (103 km/sec) 051 m/sec (3.46)
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Figure 3.16: LG peculiar acceleration, vig, obtained by minimizing the velocity residuals
versus smoothing radius R,,. The points represent the Vg averaged over all the models
and the Montecarlo realization. Errorbars are 1-¢ total uncertainties. The insert shows the

same plot in logarithmic coordinates. The thick line is the best fit model, vi¢ RO:12



CHAPTER 3. RECONSTRUCTING CLUSTER POSITIONS & VELOCITIES 104

To obtain consistency with the CMB dipole, the peculiar acceleration, |v|y, induced on the
LG of galaxies by the Abell/ ACO cluster+Virgo distribution [which gives eq. (3.43)] and
the LG velocity, |v|re, with respect to the cluster frame [eq. (3.46)] while keeping in mind
that Rom 0.3 % 10° km/sec (imposed by the expected strong non-linear effects below this
radius) and that Vin2 100 km/sec, we require:

0.185 8.5 0.23 (3.47)

(the lower limit is imposed by Rsm ~ 0.3 X 10® km/sec, which then gives Vin = 270 km/sec
and the upper limit by Rsm ~ 2% 10® km/sec, roughly corresponding to the cluster correlation
length, which gives Vin ~ 120 km/sec). Eq. (3.47) implies that for Q, = 1 the cluster biasing
tactor should satisfy 5.55 bS5 4.4 . A word of caution is due, however. This analysis is based
on only one point in space (the LG) and 1t has been shown (Tini Brunozzi et al. 1995) that
cosmic variance and sparse sampling of the density field by the clusters can introduce a quite
large scatter in the estimated . parameter. In section (3.2.6) we will try to set more stringent

constraints on . by correlating the reconstructed peculiar velocities with the observed ones.

3.3.4 Statistical Analysis of the Cluster Velocity Field

In what follows we will perform a more quantitative analysis of the velocity field
traced by galaxy clusters. The small number of objects available (we limit our analysis within
the central 20000 km/sec.) force the order of the statistic used to be low. We will compute
the probability velocity function, the bulk velocity and the two point velocity correlation

function of the reconstructed velocity field.

The Velocity Probability Function:

The 3D velocity probability function, P(Jvsp)) is the probability of observing a
peculiar velocity having an absolute value in the range [[v] ; |v| + d|v|] as well as the
analogous distribution function for the line of sight peculiar velocity vig = V- %, P(v1d)-
We only consider the reconstructed real cluster peculiar velocities (i.e. we do not consider
synthetic clusters in the present—analysis, although, as we verified, including them does not
significantly alter the final results). Three cases, corresponding to three different choices for
the smoothing radius (Rsm = 10, 20 and 30 A~!Mpc) have been explored. The results are
displayed in Fig. (3.17).

Since our iterative scheme is based on linear theory, each component of the recon-

structed peculiar velocity should be Gaussian and the magnitude of the peculiar velocity
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Figure 3.17: Differential velocity probability functions for the absolute value (v3¢) and the

line of sight component (vig) of the cluster peculiar velocities. Three cases corresponding

to three different choices for the smoothing length are shown. Errors represent 1-o total

uncertainties. The Maxwellian and Gaussian fits are shown as dashed lines.
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will therefore possess a Maxwellian distribution. The results shown in Fig. (3.15) confirm
this prediction and therefore constitute a check of consistency for the method. Using differ-
ent smoothing radii results in a modification of shape of the probability distributions that,
however, maintain their Maxwellian and Gaussian nature as confirmed by a goodness of fit
analysis. Heavy smoothing peculiar velocities reduces the extent of the large velocity tail
in the distributions, and, more generally decreases the magnitude of the peculiar veloci-
ties: their average values turned out to be (|v|) = 756 & 405, 640 % 285 and 548 £ 219 for
R, =10, 20 and 30 A~ Mpc, respectively.

A better way to check the consistency of the reconstruction procedure would be that
of comparing the reconstructed velocity distribution with the observed ones. The best statis-
tic to use in this case is the 1D cumulative peculiar velocity distribution function P(> v14),
i.e. the probability of having a line of sight component of the peculiar velocity > |v14/, since
it has a signal much more stable than that of the differential distribution function. However
even the P(> vy4) would not be very effective since the number of Abell/ACO clusters for
which the measured peculiar velocity is available is very small. Moreover, comparing the true
and the reconstructed peculiar velocities requires to select only isolated clusters for which
non-linear effects are negligible, further reducing the size of the sample. Using such a small
sample (that contains few Abell/ACO clusters) leads to large errors for the experimental

P(> v14) making this test not useful.

The Bulk Velocity:

Given a selection function describing the observed region ¥(x), the bulk velocity is
defined as the velocity of its center of mass x,. Its expected value is given by the integral of

the peculiar velocities v(x) over the volume descibed by ¥(x):
Vi (x) = [ U(x) v(x) dx = [ e W (), (3.48)

where the second relationship follows from the continuity equation that the generic k~-mode
in k-space and is

vi = —iHqa f%ék = k. (3.49)
For an isotropic ¥(x) the scalar window function W (k) is simply the Fourier transform of
U(x)

W(k) = / U(x) 5 dx. (3.50)
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In a homogeneous and isotropic universe the mean value of V54*(x,) has to be zero, while

its variance can be obtained from eq. (3.48) and (3.49):

o = (Z;{) / P(k)W (k)? dk. (3.51)

If the density field is Gaussian so will be each component of v and thus |v| will have a
Maxwellian distribution. As a consequence there will be a 90% probability of finding a
measured bulk velocity within the range
3'31 < VIR < 1 60, (3.52)
Because eq. (3.51) is weighted towards lower & than the analogous mass variance, which
has an extra k? factor, bulk flows are potentially useful for probing large scales. and thus
the linear regime of P(k), beyond those which we can probe using the spatial clustering
properties of galaxies. In general one deals with density and velocity fields smoothed over
some suitable scale R;, to remove unwanted non-linear effects. The smoothing is described,
in the k-space, by a scalar window function W'(k, R;n) and can be taken into account by
simply substituting W(k) with W(k, Rym) = W/(k, Rem )W (k) in the previous formulae.
All we can measure is the velocity of a discrete set of luminous objects (galaxies,
clusters etc.) which we hope that trace the underlying velocity field without biases. In the
discrete case eq. (3.48) modifies as

2o Viw;
Zi Wy ’

where v; is the smoothed velocity of the i** object, w; is a weight that account for its mass

Vieulk (3.53)

(or for its spatial extension) and for selection effects in the sampling procedure.
Another way of defining the bulk flow is as the residual velocity of the whole cluster
frame. Therefore an alternative estimator of the bulk velocity, which utilizes only the line

of sight component of the real cluster peculiar velocities, which was also used by LP. is:
Vi (r) = C = vie(r) : (3.54)

where C is the CMB dipole vector and vie(r) is given by minimizing eq. (3.45).
Juszkievicz, Vittorio & Wyse (1990) have shown that V84 and VE4k(r) does not

coincide a priori and the following relationship holds:

HOQO'G
Vip'(r) = Vap'(r) = =5 Xem, (3.55)
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where X.,, is the position of the center of mass of the sample. However, we have verified
from our sample that for any meaningful choice of H, and o, VE4¥(r) o~ VE4E(r) since the
center of mass of our real+synthetic cluster sample is very close to coordinate center (i.e.
to the LG position). In the subsequent analyses both the estimators Vi%*(r) and V34*(r)
have been employed.

To actually measure the bulk velocity, however, three major problems need to be

faced.

e The fact that several different choices for the weighting scheme are possible. The
simplest one is the number weighting, where w; = constant. Its major drawback is
that it ignores the effect of the errors in the peculiar velocity measurements. A second
possibility is the inverse variance weighting, in which the weight is proportional to
the inverse of the uncertainty in the rﬁeasured velocity, giving more weight to the
more reliable data. Dekel et al. (1990) have shown that this weighting scheme suffers
from the so called ‘sampling gradient bias’, overestimating the contribution of the well
sampled regions over those poorly sampled. To overcome this problem Dekel et al.
(1990) proposed to multiply the inverse variance weighting by the distance of the i
object from its fourth nearest neighbour, giving more weight to isolated objects (see
however Tormen et al. (1993) for problems associated to this scheme). In our case the
set of reconstructed clusters ideally provides us with a perfectly sampled distribution
for which the uncertainty over the reconstructed velocity is roughly the same for each
object. This means that the inverse variance scheme reduces to a simple number
weighting which we therefore decided to adopt. We have also implemented the mass
weighting scheme in which w; & m;, where m; the mass of the cluster assumed to be
proportional to its number of Abell listed galaxies and we found very similar results

to those obtained with the number weighting scheme.

e A second concern in handling observational data is that very often the volume sampled
does not have sharp edges (e.g. in the case of a magnitude limited sample) and thus
U (x) represents the probability of picking up an object at the position x. As shown by
Kaiser (1988) the use of non volume limited surveys coupled with the implementation
of an inverse variance weighting scheme causes the window W¥(x) to shrink in a way
difficult to model analytically. In our case this is not a problem since we deal with a

nearly volume limited cluster sample and we use the number weighting scheme.

e Similarly, no significant problem arise, in our case, from observing only the line of sight
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velocity component. As shown by Szalay (1988) and by Regos & Szalay (1989), the
bulk flow of a galaxy distribution with peculiar velocities, can be defined through a

least square fit of

T M1 5. u?wi )
(Vap™) = )Ziwi ; (3.56)

where the sum over repeated indices is understood and u$ = (v; - X;)X;* is the a =

(1,2,3) component of the radial peculiar velocity. The weighted projection matrix

“on
> Wity riﬁ

Do W

takes into account the geometry of the sample. Even in the case of isotropic sampling,

M =

the use of line of sight peculiar velocities has a nonegligible effect, overestimating the
expected r.m.s. velocity up to 25 %. This effect is further enhanced in the case of
anisotropic sampling. This observational bias has a twofold effect: it modifies the bulk
flow amplitude and causes a spurious alignment between the expected bulk velocity
and the dipole moment of the objects’ distribution. However, this bias does not affect
our bulk flow estimate since the reconstruction procedure provides us with the full 3D

velocity field.

Besides the previous theoretical arguments we obtained direct evidence of the ro-
bustness of our dipole estimate by noticing that both the independent estimators V3p and
V.p give very similar results. Further evidence that our measurement is reliable has been
obtained as follows: we computed the smoothed peculiar velocity generated by the cluster
distribution on a 10 x 10 x 10 grid with cell size of 20 2~*Mpc and we verified that the bulk
velocity computed from the velocity at the gridpoints is similar to that one computed using
peculiar velocities at the cluster position.

To estimate the reconstructed cluster bulk velocity and the related errors we used
the following procedure. We consider a single reconstruction and, by applying eq. (3.53)
and eq. (3.54), we measure the cumulative bulk velocity within spheres of increasing radius
around the LG. This procedure is repeated for each of the 10 reconstructions performed for
one given ‘model’. The ‘model’ bulk velocity is then computed by averaging over the different
realizations, together with its intrinsic dispersion o;. The mean bulk flow is then obtained as
an average among the ‘model’ bulk flows, which also allows us to compute the observational
variance, o,. Finally, the total uncertainty in the bulk flow, oy, has been obtained by adding
o; and o, in quadrature. Note that the amplitude of cluster bulk velocity has been fixed

using B, = 0.21, consistent with the cluster dipole analysis. It is also worth mentioning that
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Tmaz[Teff Ry V2R (km/sec) [ b 80 ot

100/75 5 358 272° 30° 5°
10 366 273° 29° 3°
20 324 273° 37° 3°

150/113 5 113 248° 37° 25°
10 152 280° 36° 7°
20 182 277° 34° 4°

Table 3.6: Residual bulk motion of cluster frame within distance r.

our bulk flow estimate is not sensitive to the smoothing adopted: varying Rsm in the range
[1000-3000]km /s produces a variation of the bulk flow amplitude of < 5%.

Tn Table (3.6) we present the average bulk flow estimated using eq. (3.34) as a
function of sample limiting depth. Note that the bulk flow at rzp has an amplitude of ~ 150
m/sec, much smaller than that found by LP (~ 700 km/sec) and thus in comfortable
agreement with currently accepted cosmological models. '

In Fig. (3.18) we plot, for Rem = 10° km/sec, both estimators V4* and ViH*
as filled dots and starred symbols respectively, but now as a function of the effective depth
(ress = 3/4rmas). Note that for the Vip estimator we have used a limiting depth r > 10000
km/sec in order to have sufficient data for the x? minimization to be stable. Error bars rep-
resent 1-o total uncertainties. Although the two estimators are based on different velocities
(Vap is based on the full 3D velocities; while Vip only on the line-of-sight components) and
different total numbers of clusters (Vap is based on real+synthetic objects while Vip only on
real ones) they provide a consistent estimate of the bulk velocity. We also plot as open dots
the bulk velocity obtained by the POTENT reconstruction of the velocity field traced by
Mark I11 galaxies (Dekel 1994) and as starred symbols the recent da Costa et al. (1993) bulk
velocity. At the region where both the galaxy and cluster bulk velocity estimates overlap (at
ros; ~ 40 — 60 h™'Mpc ), they appear to be in very good agreement with each other.

The Velocity Correlation Function:

A full statistical description of the linear peculiar velocity field is given by the

velocity correlation tensor, which is defined as

W5 (x1, X2) = (vi(x1)vj(%2))- (3.58)
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Figure 3.18: The cluster bulk velocity as estimated by the two methods described in the
text together with the galaxy based POTENT and da Costa et al. (1995) values.

Here x; and x, are the position vectors of two objects having peculiar velocities v(x;) and
v(x2) respectively (see, e.g., Gérski 1988; Gérski et al. 1989) and the average is over the
sampled volume. In practice what one estimates is the scalar velocity correlation function

&u(r) which is defined as the trace of the velocity correlation tensor,
§w = Z Uy = (v(x1) - v(x3)). (3.59)
One can show that this quantity is related to the power spectrum P(k) via the relationship

(Hf)? e sin(kr) _
6= / P(k) =" d. (3.60)

According to its definition, £, is a measure of the coherence of the velocity field: if at some
scale a bulk flow coherence dominates the velocity field, ¢, will be positive, while both infall
and outflow velocities result in negative ¢, values.

We estimated the scalar velocity correlation function of our reconstructed cluster
velocity field, considering only real clusters within a 200 h~'Mpc sphere about the LG. The
~results are shown in Fig. (3.19) for two different smoothing radii. Errorbars represent 1-o

total uncertainties. The velocity correlation function has a monotonic decreasing behaviour,
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Figure 3.19: The scalar velocity correlation function of the 3D cluster velocities. Two cases

corresponding to two smoothing radii (Rem = 10 and Rsm = 20 A~1Mpc) are shown.

indicating that the velocity field is dominated by a coherent bulk motion on small scales.
The correlation between the behaviour of the bulk flow and that of the velocity correlation
function suggests that the bulk flow is the main feature of the velocity field. This is in
part expected since, besides the bulk flow, the other sources of systematic motions typically
originate from non-linear dynamics on small scales (e.g. the infall) which, in our analysis,

have been smoothed out in order for linear theory to apply.

3.3.5 The Simulated Cluster Velocity Field and its Reliability

The simulations we consider here mimic the gravitational dynamics through the

Zel’dovich approximation (ZA; Zel’dovich 1970; Shandarin & Zel’dovich 1989):
x(q,t) = a+ D(t)Vq®(q). , (3.61)

The simulations have been throughly described in B95 to which we refer for more details.
Here we just remind that the initial power spectrum is convolved with a Gaussian window,
P(k) — P(k)e"kQRi, in order to suppress the shell crossing at small scales (e.g. Coles, Melott
& Shandarin 1993; Melott, Pellman & Shandarin 1994). The filtering radius £ is chosen
in such a way that the average number of streams at each Eulerian point (Kofman et al.
1994) is N, = 1.1. After assigning the linear potential on a grid, particles are moved from
their initial grid positions according to eq. (3.61). The density and potential fields are then

reassigned on the grid and clusters are selected as the highest local density maxima, so as
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to reproduce the observed Abell/ACO cluster number density, n. ~ 2 x 107543 Mpc3.
The velocity of clusters is computed’through the gradient on the grid of the evolved

density field (see also Tini Brunozzi et al. 1995). This amounts to assume that, although

the density field has undergone a substantial non-linear evolution, velocities and density

fluctuations are still connected by the linear relation
v x —Va. (3.62)

A detailed analysis of the Zel’dovich simulation reliability for describing the large scale
dynamics in different cosmological scenarios is given in Moscardini et al. (1995). Here we
Just present some results aimed at assessing in a quantitative way the reliability of this
approach by comparing the Zel’dovich velocity field with that obtained from an N-body
simulation. In particular we consider the same Particle-Mesh simulation used by B95 for a
similar comparison. The initial spectrum corresponds to the hybrid Cold+Hot DM (CHDM)
model with Q4e = 0.3; for simplicity we do not distinguish between hot and cold particles.
The box size is 320 A~'Mpc (with A = 0.5) and the number of grid points and particles is
128°. In the N-body simulation clusters are identified as local maxima on the grid, following
the same prescription outlined in the previous section. In order to define the cluster velocity,
we follow a standard procedure (e.g. Kofman et al. 1994). |

Starting from the same initial conditions and adopting the same number of particles
and grid points, we run for comparison a Zel’dovich simulation in which the peculiar velocities
of the evolved field were computed using eq. (3.62) (ZEL) and a simulation based on the
pure Zel’dovich approximation in which peculiar velocity were computed by applying eq.
(3.62) to the initial Lagrangian density field (LIN). We show the results at two different
evolutionary stages, corresponding to o5 = 0.67 and og = 1. In Fig. (3.20) we compare the
cluster velocity fields within a slice 60 A~'Mpc thick for PM, ZEL and LIN simulations.

At the first stage (o5 = 0.67) there is a strong correspondence between the velocity
fields recovered in the different simulations: all main figures are reproduced in the correct
locations. The situation at og = 1 is slightly different: even if the main stream lines are
roughly individuated, there is a tendency for both ZEL and LIN to overestimate the am-
plitude. In order to have a more quantitative assessment of the reliability of the Zel’dovich
approach, we have applied the same statistical tests on the simulated data. The tests are: the
3D velocity probability function, the velocity correlation function and the bulk flow. F igure
(3.21) summarizes the results at both evolutionary stages for PM, ZEL and LIN simulations.

At early times the PM and ZEL approximations give almost identical results, while
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velocity correlation function, é,, and

‘the bulk flow velocity, Vyuy, for the LIN, ZEL and PM approximation at og = 0.67 and

O'gzl.
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Model Qo QA h as Rf
OCDMO02 0.2 0.0 0.70 0.31 0.5
OCDMO03 0.3 0.0 0.65 0.50 1.6
OCDMO04 0.4 0.0 0.65 0.75 3.1
OCDMO06 0.6 0.0 0.60 1.10 4.9
OCDMO08 0.8 0.0 0.55 1.30 5.8

ACDMO2 0.2 0.8 0.87 1.20 5.8
ACDMO3 0.3 0.7 0.78 1.44 6.9
ACDMO04 0.4 0.6 0.72 1.54 7.2
ACDMO06 0.6 0.4 0.64 1.47 6.6
ACDMO8 0.8 0.2 0.58 1.43 6.3

SCDM 1.0 0.0 0.50 1.36 6.0
CHDM 1.0 0.0 0.50 0.78 3.3

Table 3.7: The models. Column 2: the density parameter {lo; Column 3: the cosmolog-
ical constant term 4; Column 4: the Hubble parameter h; Column 5: the linear r.m.s.

fluctuation amplitude at 8 »~*Mpc og; Column 6: the filtering radius Ry (in h™'Mpc).

LIN produces a small excess of objects with low velocity and a slightly larger amplitude for
the two—point correlation function at large separations. When og = 1 LIN is still producing
an excess of small velocity objects and a lack of high velocity clusters. The two-point
correlation function for PM and ZEL are quite similar at all separations while the linear &,
has a smaller amplitude when r < 40 27*Mpc. Similarly PM and ZEL produce the same
bulk velocity on all scales, while LIN produces a slightly lower amplitude for the bulk flow
at small radii (< 30 A™'Mpc).

We can conclude from this analysis that our Zel’dovich approach gives a very good
representation of velocity cluster field as far as the particular tests are concerned when we
consider suitable scales even at og = 1.

Using the above Zel’dovich simulation we have explored several different cosmolog-
ical scenarios in the framework of CDM models. In Table (3.7) the value of the cosmological
parameter (), is reported for each of the 12 model explored.

The CHDM model has a 30% of hot component. The cosmological term {24, when
present, is chosen in order to have a flat geometry: Oy =1 — Q, We refer to the Moscardini

et al. (1995) work for a complete description of the normalization used; here we only list in
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Table (3.7) the values of og for all the models considered together with the filtering radii R
of the P(k) used to suppress the shell crossing in the ZA. For each pair of (Q,,Q,) values,
we choose the Hubble parameter % in such a way that the age of the universe

oo dz
to = H;?
/1 2/ Qr® + (1= Qy — Qn)a? + Q4

(3.63)

(see e.g. Peebles 1993) is t, = 12 Gyr for all the models, except for SCDM and CHDM, for
which we assume £ = 0.5, giving t, = 13 Gyr.

For each model we run a single realization within a box of 960 h~*Mpc aside. using
256° grid points and particles. The very large size of the box ensures that: (a) no appreciable
box-to-box variance is present in the final results (we verified this by running two realizations
for ACDMO02 and CHDM); (b) fluctuation modes with wavelength larger than the box size
provide a negligible contribution to bulk flows and velocity correlations, whose analysis is
anyway confined within 180 A~ Mpc.

The aim of these simulations is twofold. The first is that of comparing the cluster
velocity fields produced in different cosmological scenarios. The second is to constrain the
cosmological models by comparing the output of the numerical experiments with real data
that, in our case, are provided by the reconstruction procedure. This second step is less trivial
since to properly test numerical simulations against observations requires the knowledge of
the observational biases and their effect on the statistic one wishes to use. This concern
is greatly alleviated in our case since we will compare a simulated velocity field with a
reconstructed one, i.e. with a full 3D field in which selection effects have been minimized.

To perform a proper comparison with our reconstructed cluster velocities one should
substitute the simulated peculiar velocities, evaluated from eq. (3.62), with those obtained
from the local cluster dipole assuming linear theory and a linear biasing scheme. This
procedure uses a local bias parameter which need not be the same for different clusters. We
have used the simulations to measure the value of the local bias defined as the ratio between
the dipole velocity [eq. (3.13)] and the Zel’dovich velocity. We found that the distribution of
the local biases has a large scatter (see also Tini Brunozzi et al. (1995) for a similar discussion
in the study of the dipole structure). This scatter is a non trivial problem if one want to
study the velocity fields, especially when using local statistics, like the probability velocity
function. This scatter would be probably reduced by selecting observers more carefully
(for example by requiring them to reproduce the observed large scale coherence of the LG
dipole and of the observed streaming motion), and we hope to explore this point in the near

future. For the time being and to be conservative we will compare the simulated and the
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reconstructed velocity fields using average or integral statistics, like the two point velocity

correlation function and the bulk flow.

The Bulk Velocity as a Cosmological Test:

The simulated bulk flow is measured from the full 3D velocity field which allows
a direct comparison with the reconstructed cluster bulk flow computed in the previous sec-
tion. The simulated cluster bulk velocity has been computed as follows: for each numerical
experiment we selected 2000 observers randomly placed in the simulation box. Then we
measured the bulk velocity in spheres of increasing radius around the observer’s position,
using eq. (3.53). Due to the large intercluster separation we started with a sphere of 50
h=! Mpc to gather enough clusters. A limiting depth of 180 h~! Mpc has been fixed to
allow a meaningful comparison with real data. The cumulative bulk velocity, averaged over
the 2000 observers, is displayed in Fig. (3.22) for each cosmological model. The two thick
lines represent the 1-o strip of the reconstructed cluster bulk flow. Note that the quantity
displayed in the abscissa is the limiting depth and not the effective one. A simple visual
analysis reveals that the only models we can rule out at a level > 1-o are the OCDM ones
with Q, < 0.4. Flat models with non-vanishing cosmological constant but with Q, < 0.4
together with the CHDM one are in good agreement with data on scales larger than ~ 10000
km/sec, while the SCDM model predicts a too large bulk velocity on small scales.

A more quantitative analysis has been performed as well. For each model we mea-
sured the fraction of the observers that measure a bulk flow with certain specified properties.
The relative probability of observing that particular feature is reported in Table (3.8). In the
third and fourth columns we listed the probability of measuring a bulk flow at 5000 km/sec
within 1 and 2—¢ from our reconstructed value, P& and P2 respectively. We have chosen
this depth since it is still within the range spanned by galaxy catalogues where cluster bulk
velocity overlaps with that obtained from the POTENT analysis (Dekel 1994) and with
that measured using the recent the da Costa et al. (1995) data. Similarly, columns 5 and
6 contain the same probabilities measured at 15000 km/sec (Pig and PX,). This is the
limiting depth of the LP sample. The probabilities of observing a bulk flow within 1 and
9o from the LP one is listed in columns 7 and 8 (Pi% and PZ%). Finally, we measured the
fraction of observers whose cumulative bulk velocity is within the 1 and 2-¢ strip throughout
the whole range (5000 to 15000 km/sec) covered by the data (columns 9 and 10, P, and

a

P respectively). Comparisons with the data at 5000 and 15000 km/sec confirm the visual

a

impression: the only disfavoured models are the OCDM ones with , = 0.2 and 0.3 and,
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Figure 3.22: The simulated cluster bulk velocity predicted by different cosmological model

is compared with the real cluster bulk flows (thick lines).
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Model Qo P 50 P, P, P PEp P Px
ACDM 0.2 0.396 0.678 0.385 0.735 0.003 0.051 0.038  0.278
ACDM 0.3 0.299 0.531 0403 0.715 0.004 0.072 0.012 0.161
ACDM 0.4 0.274 0495 0418 0.727 0.006 0.063 0.009 0.141
ACDM 0.6 0.312 0.547 0.375 0.721 0.001 0.034 0.004 0.135
ACDM 0.8 0.310 0.532 0.382 0.739 0.001 0.009 0.006 0.119
OCDM 0.2 0.017 0.307 < 10-% 0.028 <107* <10 < 10~* 0.019
OCDM 0.3 0.046 0.413 0.013 0.129 <107t <107* 0.009 0.094
OCDM 0.4 0.383 0.783 0.108 0.379 <107 <107* 0.023 0.228
OCDM 0.6 0.409 0.681 0.300 0.631 < 10~*  0.004 0.010 0.187
OCDM 0.8 0.343 0.609 0.379 0712 < 10* 0.013 0.006 0.151
SCDM 1.0 0.293 0.508 0.365 0.705 <10™*  0.023 0.015 0.109
CHDM 1.0 0.437 0.704 0315 0.653 < 107* 0.015 0.018 0.237

Table 3.8: Bulk flow probabilities in different cosmological scenarios.

more marginally, the {2, = 0.4 case. Moreover for all the models the LP result is a very low
probability event. Finally, a small fraction of observers measure a cumulative bulk velocity
in accordance with the data throughout the whole range of spanned scales. Even this test,
however, lacks of discriminant power since only open CDM models with Qo = 0.2 and 0.3
perform significantly worse than the others.

Tt is interesting to note that very similar results are obtained if, instead of selecting
observers at random, we would have chosen the observers such that their properties are
similar to those of the LG region (i.e. those with —0.2 < § < 1 density peaks having a
peculiar velocity 600 < |vrg| < 650 km/sec.).

The Velocity Correlation Function as a Cosmological Test:

In this analysis we use the whole simulation box. This has the effect of minimizing
the box—to—box variance which should, however, be accounted for if one wants to compare
simulations with our velocity field reconstructed within a 200 h~*Mpc sphere.

In Fig. (3.23) we plot &,(r) for the cosmological models explored at scales r >
920 h~'Mpc, where the ZA description of the velocity correlations has been shown to be reli-
able. OCDM models are characterized by a progressively larger &,(r) as Q, increases. A quite
evident discrimination between different €2, models is possible up to scales r =~ 60 h~*Mpc,

while above 100 A~*Mpc all these models converge to a similar value rather quickly. Among
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the ACDM models, instead, the only model that have a quite different behaviour is ACDMO2:
all the other spectra provide almost indistinguishable velocity correlations. As we have veri-
fied the large simulation box keeps the cosmic variance at a very low level: we analysed two
different realization of CHDM and ACDMO02 models finding only a few percent of difference
in their &,(r).

In Fig. (3.23) we also plot the 1-o confidence strip relative to the reconstructed
velocity correlation function (only the Rem = 20 h~'Mpc case is considered). It is evident
that the £, does not put stringent constraints on the cosmological models. As in the bulk flow
analysis, the only disfavoured models are the open CDM ones with {2, < 0.4, for which the &,
exhibits a too low amplitude on scales smaller than 50 h~'Mpc. For all the other models &,
lies within the 1-o strip except on scales smaller than 30 h=*Mpc. This consistency, however,
is only marginal since all the remaining models but the SCDM and the A = 0.2 CDM ones,
predict a velocity correlation with an amplitude very close tho the upper edge of the 1-o

strip.

3.3.6 Comparison with Observations: an Q,—Test

We have already evaluated the 3. parameter by matching the asymptotic amplitude
of the gravitational acceleration induced on the LG by the Abell/ACO clusters distribution
to the amplitude of the CMB dipole. Another method we used was that of equating the
amplitude of the CMB dipole to the LG velocity obtained from the minimization procedure
described in section (3.2.5). These comparisons give a reliable . estimate only if the cluster
dipole has converged within the sample depth. Several different effects, however, makes this

f, estimate very noisy. In section (3.2.5) we obtained

22 — Vi cos 6V
6 Vin cos }’ (3.64)

. +0.09 . g —
fe = 020500 f(Vin) - fVn) = {622 — 180 cos 69

where most of the quoted scatter is due to the cosmic variance reflecting the fact that we
are dealing with a single . measurement. An effective way to reduce the scatter upon e
is therefore that of making several independent comparisons between the reconstructed and
the observed peculiar velocities of different ‘observers’.

In what follows we achieve this purpose by using two different categories of objects:
first we consider those Abell/ACO clusters for which a reliable distance estimate is available
and we compare their observed peculiar velocities to those reconstructed by our iterative

method. A second analysis has been performed as well: we selected a subsample of objects
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from the grouped version of the Mark II catalogue (Tormen et al. 1993) and we compared

their velocities with that obtained from our reconstruction at the MKII objects’ locations.

Abell/ACO Clusters:

The dataset we use is composed by three cluster subsamples:

o Abell clusters with IRTF distances extracted from the Giovanellj et al. (1994) sample
(GTF). Amongst the 8 Abell/ACO clusters they list we exclude A262 because of its
discrepant 7' — F and D,, — o distances, A3526 (Cen 30), whose dynamics is known
to be affected by non-linear effects and A1060 (Hydra) which has 4 Abell neighbours
within 30 27'Mpc. Similarly, A2199 is excluded from the present-analysis since in
our catalogue it has been collapsed in a unique object with its close Abell neighbour.
Finally, to be conservative we double the uncertainty on the A1367 velocity, that in

the Giovanelli et al. (1994) catalogue was very small.

o Abell clusters with IRTF distances extracted from the Hudson (1994) work, with dis-
tances corrected for inhomogeneous Malmquist bias (HTF). Excluding A3526, A1060

and A3742 (again discrepant T — F and D, — ¢ distances) reduces the number of listed
Abell/ACO clusters to 4 objects.

© Abell clusters with D, — o distances extracted from the Hudson (1994) catalogue
(HDN). The Abell/ACO subsample contain 6 objects and does not include Cen 30 and
the Hydra cluster.

After scaling the reconstructed peculiar velocity to 8, = 1 we looked for a linear
relationship between the observed wu,,, and the line of sight component of the reconstructed
peculiar velocity, (v, - X):

Uops = A+ /Bc (Vrec : }A(): (365)

where X is the unit position vector of the generic cluster. We expect a value of A consistent
with zero. We already quantified the magnitude of the errors in the reconstructed velocities
(o7 = 04,) and we discussed their origin. However, in our case we must also account for
errors in the observed velocities (,) whose amplitude increases with the object’s distance
and it is typically larger than o,,. To do so we use a linear fit to the data by minimizing the

x? merit function

IV * — — . . . 4 2
XQ — Z [uobs,z A ,Bc lvrec,z X” ) (366)
=1

2 2.2
Gvo,i + ﬁc avr,z’
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Figure 3.24: x? fit to the GTF cluster peculiar velocities. A262 and Cen30 are excluded
from the minimization procedure and are shown for reference only. Dashed line represents

the best fit line while continuous line refers to the B. = 0.21 slope.

The major drawback of this method is that it assumes that datapoints are statistically
independent which is not true for the peculiar velocities because of the large coherence scale
of the velocity field.

Figures (3.24) and (3.25) show the results of the fit to the GTF and HTF data in
the case of Rym = 10 *Mpc. All the reconstructed velocities are normalized to 3. = 1. A
simple visual inspection already reveals the most important result: predicted and observed
peculiar velocities are linearly correlated, which constitutes a non trivial success for the GI
model. From a more quantitative point of view it is clear that, due to the large uncertainties
in the peculiar velocities, a large number of clusters (presently not available) should be used
for determining the parameters’ fit with a good precision. In fact, the small number of
clusters generates a large uncertainty in the B, value. In Table (3.9) we report the values of
A and fB. (and their relative errors oA and of,) together with the 2 value, the number of
clusters selected, N., and the Q) parameter (quantifying the probability that a value of \?
as poor as the listed value should occur by chance). The different entries correspond to the
different cases we have explored which are characterized by the different smoothing applied.
Both GTF and HTF samples give a 3. value somewhat smaller than that obtained from the

cluster dipole analysis but still compatible with it due to the large scatter: a result that does
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Figure 3.25: 2 fit to the HTF cluster peculiar velocities. A3742 and Cen30 are excluded

from the minimization procedure and are shown for reference only.

Sample R,, N, A oA B B x*/df Q
GTF 10 b) -23 100 0.14 0.08 05 0.89
GTF 20 5 -51 100  0.13  0.07 0.9 0.92
GTF 30 5 -78 100 0.13  0.07 0.3 0.96
HTF 10 4 -130 250 0.19  0.20 0.3 0.89
HTF 20 4 -149° 300 0.19 0.22 0.3 0.93
HTF 30 4 -180 270  0.20 0.21 0.2 0.98
HDN 10 7 -50 180  -0.15 0.16 4.6 0.56

Table 3.9: Parameters for the linear fit to the vy versus v,.. - X relation. Abell/ACO
clusters from Hudson (1994) with IRTF and Dy, — o distances (HTF and HDN, respectively)
and Giovanelli et al. (1994) (GTF) are considered.
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not depend on the smoothing adopted. Including A262, Cen30 and A3742 further lowers the
f. value, while the inclusion of the Hydra cluster does not appreciably affect the results of
the minimization. Although the scatter is too large to put stringent constraints on the S
parameter, this results is particularly significant since it 1s consistent with the cluster dipole
analysis.

Using the HDN dataset, however, gives completely different results. From Table
(3.9) we see that the fit, which is worse than in the previous cases, formally gives a negative
value of fB., although it is consistent with zero at a 1 o level. The consistency amongst
the dipole analysis, the results of the minimization applied to IRTF clusters and that one
applied to MKII objects (see below), however, make us confident that this discrepancy arises
from some unknown bias in the D, — o distances of the clusters we have analysed or to a

statistical fluke ascribed to the small number of clusters used for the minimization.

MarkII Objects:

To evaluate 3, one can compare the predicted peculiar velocity at the generic lo-
cation where a test particle with measured peculiar velocity is placed. In principle any
luminous object can be used for this purpose. In practice, however, one must keep in mind
that the reconstructed peculiar velocity field, has been obtained by heavily smoothing the
non-linear contribution on small scale in order to apply linear theory. Therefore, to per-
form a self consistent comparison between the observed and predicted peculiar velocities one
should either properly treat the observational data or select a subsample of objects having
some special attributes.

One possibili'ty ‘s to smooth the observed peculiar velocities on a specified scale
to allow a homogeneous comparison with the predicted smoothed velocity field: a way out
similar to that adopted in the POT ENT analysis (Bertschinger & Dekel 1989, Bertschinger
et al. 1990). Another method, less rigorous but considerably easier to implement, is that
of restricting the analysis to a class of objects for which non-linear contributions to the
peculiar velocities are thought to be negligible (i.e. isolated objects for which the predicted
peculiar velocity weakly depends on the smoothing adopted). In this work we use this second
strategy. Its major drawback is that the amount of useful information is heavily reduced
after the selection procedure.

The sample we consider here is the Mark I1 catalogue where galaxies have been
grouped together by Tormen et. al. (1993) following the rules in the original papers (Lynden-

Bell et al. 1988, Faber et al. 1989) and considering the Aaronson clusters of spirals as single
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objects. The total number of galaxies in the catalogue is 1184, grouped into 704 objects [for
the content of this grouped MKII catalogue see Table (1) in Tormen et al. (1993)]

As a first step towards the selection of the best subsample for our analysis, we com-
pute the difference between the observed and the predicted peculiar velocity for each MKII
object (AV). We found a strong nearly-linear correlation between AV and the absolute
value of the observed peculiar velocity |Vobs|. This is not surprising since objects with large
peculiar velocity typically reside in high density region where non-linear effects increase
the galaxy velocities. More interesting is the behaviour of AV versus the number of MKII
galaxies grouped in each MKII object, Nyx: AV is nearly constant for Nygr > 1 but is
appreciably larger when Nyrx = 1. These indications allow us to select a first subsample
from the original grouped MKII catalogue; from now on we consider only those objects with
Ny > 1 and [Vabs| < Viim, where Vi, is of few thousands km/sec (i.e. the typical velocity
of a galaxy located in dense cluster).

Theoretical arguments provide further constraints forcing us to reduce the size of

the sample even further.

e To minimize non-linear effect we exclude from the analysis those MKII objects with
a MKII neighbor closer than a minimum distance, dysx. The tests we performed have
revealed that, in order to keep the results stable, we have to impose dyrgx > 1A~ Mpc.
An upper limit to dysx has been imposed as well since the isolation is likely an artifact
due to the fact that the MKII catalogue is incomplete and some nearby galaxy not
listed in the catalogue is probably present that may affect the local dynamics. For this

reason we set dyx < 5 A7 Mpe.

¢ For the same reason we should not consider those MKII objects too close to an
Abell/ACO clusters. However, the non-linear effects generated by close clusters are
already minimized by the smoothing procedure and we do not need to set any further
constraint but, for the sake of consistency, when we consider ‘“models’ characterized

by a given R;, we will exclude from the analysis all the MKII objects having an
Abell/ACO cluster closer than Rjy,.

e Errors on the observed peculiar velocities increase with the distance and thus to avoid
large uncertainties we will consider only objects within a given distance d,,,. In

practice we found that including distant objects does not affect appreciably the results.

e Also MKII objects close to the LG should be excluded from the analysis since, as
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Rsm dmin dmax I/min V;naz NM’K dMK Ntot A dA /Bc J,BC X2/df Q r
10 20 oo -2000 2000 5 2 6 20 1600.18 0.06 2.2 1072 0.53

10 20 oo -1000 1000 3 2 5 100 180 0.20 0.06 2 1.5-107% 0.71
10 20 c©o —c0 +o0 5 2 7 65 180 0.21 0.07 3.3 3-107° 0.33
10 20 oo -2000 2000 5 1 8 -130 170 0.16 0.06 2.3 4-107% 0.51
10 20 oo -2000 2000 3 2 14 -40 90 0.19 0.05 2.6 2-107* 0.52
10 0 oo -2000 2000 3 2 15 -120 80 0.19 0.05 2.7 4-107* 0.51
10 0 40 -2000 2000 3 2 9 -500 300 0.17 0.07 1.2 1071 0.54
5 20 oo -2000 2000 5 2 10 180 130 0.17 0.07 1.7 2-1072 047

Table 3.10: MKII subsample characteristics and parameters for the linear fit to the V,,

versus V,.. - X relation.

we have seen, the exclusion of nearby clusters from the Abell/ACO sample causes
the local dynamics to be ill reconstructed. For this purpose we have considered only
objects beyond z; minimum distance d,;,. Even in this case, however, this bound is
quite ineffective since including nearby objects has a very little effects mainly because
most of the nearby MKII objects are close to some other MKII object and thus are
already excluded from the analysis.

e We found that in order to keep the significance of the fit at an acceptable level we
need to set a more stringent limit on Njx. A reasonable value for () is achieved by

imposing NMK Z 3.

The above constraints allow us to define a ‘standard’” MKII subsample (whose char-
acterizing parameters are shown in Table (3.10) as boldface quantities) to which we applied
the x? minimization procedure. This standard sample has been subsequently modified to
assess the robustness of the analysis. The results are listed in Table (3.10). The first column
contains Ry,,, the minimum and maximum distances from the LG are listed in columns 2
and 3 while columns 4 and 5 contain the minimum and maximum allowed values for V,;.
Columns 6, 7 and 8 display the minimum Npsg, dyx and the number of MKII objects
selected for the y? minimization V., respectively. The remaining columns list A & oA,
B, + oB., X%, @ and the correlation coefficient, .

The main feature is the stability of the results when the standard subsample is
slightly modified, provided that Nyx > 3 and dyx > 1h7*Mpe. The offset A is always

compatible with zero while the 3. parameter stabilizes around 0.18 although with a large
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Figure 3.26: x? fit to a MKII subsample. Continuous line represents the linear fit while
dashed line refers to the case of 5. = 0.21.

scatter which, however, is smaller than that obtained from the previous minimization that
used Abell/ACO clusters observed velocities. The small value of @, however, tells us that
the fit is not very good. This fact may indicates that the errors are underestimated or that
they are not Gaussian distributed. Errors on Vs come directly from the MKII catalogue
while errors on V... have been computed by adding in quadrature o; to o,.

Figure (3.26) displays Vs versus (vye.-X) for the MKII objects. This plot refers to
case listed in the fifth row of Table (3.10) for which the largest number of MKII objects is
available. It is interesting to note that adding in quadrature the shot-noise error (which we
know to overestimate the true error) improve the significance of the fit () ~ 0.2) increasing
the value of 3. to 0.22, very close to the outcome of the dipole analysis, and leaving unaltered
the value of A. This indicates that using a more reasonable shot-noise error, larger than
zero but smaller than o, would result in a better fit and a value of 3. larger than those
listed in Table (3.10).

Contrary to the case of GTF and HTF samples analyses, varying the smoothing
radius R,,, has a non negligible effect on the final results since 3. decreases as R, increases.
This is not very evident from Table (3.10) but we verified that this is the case by exploring
more extensively the space of parameters when Ry, is kept fixed. For R, = 5h~" Mpc we
found B, ~ 0.1540.8, while for R, = 20h~! Mpc 8. >~ 2+2. These results are not surprising
since, as indicated by the Baugh and Efstathiou (1994) analysis, Rsn = 5h™' Mpc is not
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sufficient small to wash out non-linear effects. On the other side increasing the smoothing
radius to Rem = 20! Mpc increases . and its variance. To explain the second effect one
must keep in mind that we are selecting very few isolated objects (the smoothing radius in
this analysis coincides with the minimum allowed distance from another Abell/ACO cluster)
for which the dynamics is likely to be dominated by nearby objects not listed in the MKII
catalogue.

It is clear from Table (3.10) that we are not able to put stringent constraints on
B.. However, as we outlined in the previous section, the present—analysis is remarkably
consistent with the previous one and with the cluster dipole, making us confident that
our reconstructed velocity field reproduces the true one. The large errors in f. probably
arise from the sparse sampling of the velocity field when using Abell/ACO clusters or the
incomplete MKII catalogue.

3.4 CONCLUSIONS

We have applied the RSCM and the LIRM to a heirnearly volume limited sample of
Abell/ACO clusters with the aim of recovering their true spatial distribution and velocities.
Our analysis is very powerful and allows us to obtain an enormous amount of information
that can be used, in principle, to put constraints on the cosmological models, to estimate
the value of the . parameter, to assess the validity of the GI picture up to very large scales
and to make prediction on the large scale structure and dynamics. In practice, however, the
large uncertainties limit the strength of part of the analysis. The origin of the errors does not
reside in the reconstruction method but mainly originate from the sparsness of the sampling
which lead to a twofold problem. On one side the relatively small number of clusters causes a
large scatter in the statistical analyses of the velocity field, allowing only to weakly constrain
different cosmological models. On the other side the coarness of the reconstructed density
and velocity fields makes a comparison with the observed peculiar velocities very noisy.

Among the many outcomes of the reconstruction procedure and of the analyses

performed on the cluster density and velocity fields some are particularly worth stressing:

e The reconstruction algorithm proved to be very reliable, keeping the intrinsic errors of
the reconstructed cluster position sat a very low level which are typically to within 1.6

%, while usual observational errors are of the order of 10%.

e From a cosmographic point of view the underlying density field appears to be dom-
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inated by few extended prominent structures (the Shapley Concentration, Great At-
tractor, Perseus—Pisces supercluster, the Coma, the Ursa Major and the Grus-Indus
regions). The large scale high density regions are not isolated but seem to be inter-
connected, suggesting a large coherence of the density fluctuation field. Furthermore,
the smoothed cluster density field is consistent with that of galaxies (MARK IIT and

optical) at least within the survey limits of the galaxy samples.

e The qualitative analysis of the peculiar velocity field reveals the existence of a large
coherent motion in the general direction of the CMB dipole, towards the Shapley
region, involving the Perseus-Pisces, the LG, the Great Attractor and the Shapley

concentration itself, where a large back infall is observed.

e Redshift-space distortions have a non negligible effect on the cluster dipole amplitude.
Removing them results in a ~ 23% decrease of the dipole amplitude, while its direction
remains unaffected. The extent of this effect does not seem to depend on the details

of the reconstruction procedure.

© We estimated f; using two semi-independent procedures: (a) we equate the CMB
dipole amplitude with that of the 3D cluster dipole and (b) we minimize the recon-
structed cluster peculiar velocity residuals in the LG frame. The results depend rather
weakly on the value assumed for the Virgo infall and on the smoothing applied. Vary-
ing these parameters in a plausible range and taking into account the various sources

of errors we obtained

0.18 < 6. <0.23.

This . value is larger than what found by previous cluster dipole analyses which is
due mostly to the fact that we have taken into account z-space distortions. Assuming
{3 = 1 we obtain b. ~ 4.8, in good agreement with other independent estimates. This
B determination is based on one point in space (the LG) and thus its uncertainty is
largely affected by the cosmic variance which we found to be ~ 0.07, clearly too large

to put useful constraints on the 2, value.

e With the aim of better determining the 3, value, we compared the observed TF or
D, — o cluster peculiar velocities with our reconstructed ones, also extending the
analysis to the velocities of the Mark II objects. The main feature is that our predicted
and observed velocities velocities linearly correlate which constitutes an evidence in

favour of the GI hypothesis. Unfortunately the available dataset is so small that it
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turned out very difficult to set stringent constraints on 8., although its central value

was found consistent with that obtained from the cluster 3D dipole analysis.

o We measured the bulk velocity of galaxy clusters using two independent methods,
obtaining very similar results. Using B. = 0.21 the cluster bulk flow turned out to
match that of galaxies in the region in which the two samples significantly overlap
(50-60 h~'Mpc) then it decreases with its amplitude becoming very small beyond 100
h~'Mpec, in accordance with most of the commonly accepted cosmological models and

in strong disagreement with the LP result.

e We compared the cluster reconstructed velocity field with that produced by numerical
simulations of different cosmological scenarios. The comparison, aimed at constrain-
ing the various cosmological models, was made using low order statistics such as the
bulk flow and the velocity correlation function. It turned out that these tests lack of
discriminative power since the only models ruled out at a confidence level > 1-o were
the Open CDM ones with {1}, < 0.4 and to a lesser degree the flat CDM models with
A > 0.6 (note that the best models as far as these tests are concerned are the CHDM
and the ACDM with A =0.2). |

Finally, there are a number of possible ways that may improve the strength of this

procedure some of which have been already outlined by Scaramella (1994):

o Use other cluster catalogues containing more clusters objectively defined like those from
APM and COSMOS, and merge them with the Abell/ACO sample in a homogeneous
way. This would allow to increase the number of clusters available. Also, unlike the
Abell/ACO catalogue that on large scales (~ 200 A=*Mpc) starts suffering of statistical
inhomogeneity problems, the automated catalogue would provide us with homogeneous

cluster samples suited for statistical analysis.

o Merge the cluster catalogue with a shallower galaxy sample. A self consistent merging
of these two datasets would allow to trace the local velocity and density fields with
higher precision while galaxy clusters would certainly improve the modeling of the ex-
ternal gravitational field. With this strategy it is still possible to trace the dynamics on
large scales without, however, loosing information on local scales. Applying the recon-
struction procedure to such a hybrid catalogue would allow a more effective comparison
with Mark II velocities and would naturally alleviate the iero—point uncertainty of the

dipole determination (not only at the LG location).
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e Improve the LIRM to account for non-linear effects: an upgrade that is necessary when

dealing with galaxy catalogues which are typically smoothed on smaller scales.
o Gather more cluster redshift to reliably extend the depth of the sample.

® Measure the distance of a larger number of Abell/ACO sample using TF or D, — ¢ to
reduce the uncertainty on the 4, determination when comparing the observed and the

reconstructed cluster velocities.

o Improve the treatment of the ZoA taking into account the newly discovered clusters

(e.g. Puppis).

¢ Automatically account for the shot—noise errors by properly Wiener filtering the density
field.

We plan to develop the present-work along some of the above directions.
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25 APPENDIX: The Shot—Noise Error

As in SYDHF92 we assume that luminous objects trace the density field. In this
case the shot-noise arises from selection effects and from the unknown mass of the objects.
In an ideal system of N clusters contained in a volume V, the peculiar velocity at the origin

due to the clusters within the shell [s,s + As] is

. Nr s
VT = ——————-—'BC(MJ W(s)g (—%l—;\—?’, (A1)

4mp.

N oar.
where M; is the mass of the ith. cluster, (M) is the average cluster mass, pe = ~—JT—H— is

the cluster mass density, W(s) the window function and Ny the number of clusters within
the shell. In the reconstructed cluster distribution we have N1 real clusters and Ng syn-
thetic objects generated to account for selection effects. By averaging over several differ-
ent reconstructions, we have Np =N + Ny (a relationship valid also in the generic shell:
N7 = Ny + Ny). For the reconstructed cluster distribution we can express the velocity at

the origin as

5c<#i> Ny . .
Veee = g {Z GTTeE ZISJF’}’ (42)

where we have assumed that the cluster masses in the reconstructed distribution (i) 1s

proportional to the Abell-listed galaxy number and we have set each synthetic cluster mass

equal to {p;). With the above assumptions we can rewrite R = m%ﬁ—;éy—’l —"—/if—)%é—‘ﬂ We
will not consider the case in which Abell/ ACO clusters are weighted in different ways (i.e.
when W, # 1) since this more general case, which is more complicate to work out, leads to
very similar results.

We can compute now the velocity difference Veec — VT by splitting eq. (A.2) in two

parts each of them containing a sum over N and N, clusters respectively.

Ny

Viee = VT = R {Z(m rm)l + Z mj)éj—'lgl . (A3)

i=1

where m; = ﬁ-‘; and m; = (%7 By construction (Viee — vr) = 0. The variance in the

velocity difference, to which we refers to as shot-noise, can be computed as the expectation
value of the square of the velocity difference. Since the expectation value of the cross terms
is zero then the variance in the shell is

2 1
02 = (|[Vree = v|*) = ti [Z ((6mi)? +Z 1 — ;)% 2} . (A4)

Is* |z
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where ((6m;)%) = ((rfi; — m7;)2) 2 0 being a second order term.

Since our notation the generalized .selection function is P(b)P(z). We have that
Ny = 47rncﬁ°f—) [P(b)P(2)] and N, = 47mc%:—)[(1 — P(b)P(z))], where p.(s) is the cluster
mass density within the shell and n. is the cluster number density within the volume V.
The global variance can be computed by summing over shells containing Ny =1 or V, = (
objects giving

) 8, 2 [N, I/V(si)z {I*P(b)P(z)] . N
0 :[W} [Z st P()P(z) LT >J7 (4.5)

where ((1 — m;)%) = (m2) — 1 = K that can be evaluated from real data assuming

1=1

(m?) = (%) (which naturally follows from the assumption that the mass of real clusters is

proportional to the Abell listed galaxy number). We then obtain

AT B . o

which is eq. (3.42).
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Chapter 4

THE NUMERICAL ACTION
METHOD

In this chapter we describe in detail a method introduced by Peebles (1989 [P1],
1990 [P2]) for reconstructing the orbits of luminous objects back in time and the associated
mass density distribution.

The orbit reconstruction within the GI framework and the related growth of density
fAuctuations are mixed boundary condition problems, some of which are specified at the
present—epoch and some at early times, in which one predicts the present-time velocity field
given the density field or, vice-versa, the density field that can be obtained from the observed
peculiar velocities. The boundary conditions are obtained by specifying the present—time
galaxy positions and by requiring negligible peculiar velocities at early epochs (a condition
contained in the GI hypotheses). One possible way of reconstructing galaxy orbits is to
integrate the motions back in time using an N-body code. Despite the time reversibility of
gravity this strategy would be completely hopeless when applied to virialized systems where
memory of the initial condition has been erased, but it would also be ineffective in linear
systems since the use of N-body codes is restricted to initial value problems. Within the
QI framework, in fact, one finds the motions of particles under the hypothesis that their
physical separations vanish at early times. This requirement makes generic backward N-
body solutions unacceptable since the resulting primordial peculiar velocities are unbound,
representing an unphysical evolution from chaos towards order in an expanding universe. A
further difficulty is the presence of decaying modes that, having left no detectable presence
at the present-time, would amplify the noise at early epochs. P1 and P2 noticed that mixed

boundary conditions in the GI picture naturally lead themselves to an application of the
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Hamilton’s principle in which solutions represent stationary points of an action subject to
fixed boundary condition at both the initial (vanishing peculiar velocities) and final (either
observed present-time positions or redshifts) time.

The Least Action Principle (LAP) can be numerically implemented as a fully non-
linear Lagrangian method to reconstruct the orbits of luminous objects from their present—
time positions (or redshifts) or, when the distribution of objects is properly smoothed, to
recover the primordial density field from the present-time one. When applied to the linear
or quasi-linear regime, in which there is a smooth one-to—one correspondence between the
final and initial positions, the solutions are minima for the action. In the non-linear regime,
l.e. when considering systems with crossing time shorter than the age of the universe, the
method find multiple solutions which represent stationary points that are not minima for the
action, and one is left with the problem of deciding which is the ‘true’ solution. This is why
the method is difficult to apply in the highly non-linear regime, but, as we will see, it can
be useful in the mildly non-linear regime in which multiple orbits exist only for few objects
in the system. As we will discuss in what follows, the numerical LAP implementation relies
on the GI hypothesis and assumes a biasing scheme in which all the mass is associated to
visible objects that are treated as pointlike massive particles having the same M/L ratio.
Despite this simplified mass model, the method is able to account for the dynamics on a
quite wide range of scales (from 200 Kpc up to 30 2~ Mpc).

Since the original Peebles’ work (P1), the LAP method has been applied for many

purposes:

o It can be used to determine the trajectories for the galaxies of the system considered.
This allows us to study how the external masses influence the system’s dynamics (e.g.
whether the system is gravitationally bound or unbound), to which extent the sys-
tem can be considered isolated and if tidal torques generate spin angular momenta
comparable with observations (Peebles 1994 [P3], 1995 [P4], Dunn & Laflamme 1993
[DL1]).

¢ When this method is applied to redshift catalogues it allows us to reconstruct peculiar
velocities and 3D positions. With this respect the LAP is an improvement over the
iterative reconstruction methods since it naturally accounts for non-linear effects. In
practice, to avoid multiple solutions, this LAP implementation has been restricted to
system large enough for non-linear effects to be minimized (Shaya, Peebles & Tully
1993, Shaya, Peebles & Tully 1995 [SPT]).
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o The LAP method is suitable to study the character of the primeval mass fluctuations
needed to produce the present galaxy distribution and motions. This gives a useful
measures of the primeval density contrast from which small systems have evolved or,

on larger scales, to explore the statistical character of the primeval mass fluctuations

(P2 and P3).

e Finally, with the LAP method one can recover the value of the density parameter,
Q,, the Hubble constant and the M/L ratio of the system considered. In the LAP
implementation these quantities play the role of free parameters that can be fixed by

matching the observed redshifts (P1, P2, P3, P4, SPT).

Because of its intrinsically non-linear nature, the LAP method can be applied to
systems with different sizes in which the dynamical regime ranges from the quasi-linear to
mildly non-linear. It has been successfully applied for reproducing the dynamics of the
spheroidal companions of the Milky Way (i.e. to a system with size r < 300 Kpc, P4),
to recover the dynamical history of the LG galaxies and of its neighbouring groups within
r < 3 Mpc (P1, P2, P3, P4, DL1) and to reconstruct the present—time positions of luminous
galaxies within 30 h~1Mpc from their observed redshift (Shaya, Peebles & Tully 1993 and.
SPT).

The LAP method is also an Q-test that gives the unique possibility to evaluate
the Q, value on very different scales using the same method. This issue is particularly
important for the present debate about the ), value since the dynamical estimates of the

density parameter show an apparent contradiction:

o On scales < 100 A~ Kpc the Milky Way satellites’ dynamics (Faber & Ghallagher
1979; Little & Tremaine 1987; Zatrisky et al. 1989), the timing argument (Khan &
Woltjer 1959; Gunn 1975; Gott & Thuan 1978; Mishra 1985; Einasto & Lynden-Bell
1982; Raychaudury & Lynden-Bell 1989) and the internal dynamics of spiral galaxies
(Salucci et al. 1993), all agree with a density parameter value well below 1. Similar
indications come from larger scale density determination based on the application of the
Cosmic Virial Theorem (Peebles 1976), on the pairwise velocity dispersion of galaxies
(Bean et al. 1983; Davis & Peebles 1983; Hale-Sutton et al. 1989), on the virial
estimation of galaxy clusters’ mass and on analyses of the galaxy groups’ dynamics
(Huchra & Geller 1982). The bulk of the evidence indicates a low Q, value (< 0.35)
on scales < 10 h™'Mpe.
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e Dynamical analyses based on the large scale velocity field give different results. The
comparisons of the radial peculiar velocity field with the predicted velocities obtained
from the observed galaxy number density (Strauss & Davis 1988; Kaiser et al. 1991),
the IRAS/POTENT method (e.g. Dekel et al. 1993, Dekel 1994, Hudson et al. 1995),
redshift-space distortions (PD, Fisher 1994) and the analysis of the outflows in voids
(Dekel & Rees 1994) are consistent with an Q0o = 1 universe. Similarly, dipole estimates

based on IRAS galaxies (Rowan-Robinson et al. 1990; SDHYF92 but see Plionis et
al. 1993) are consistent with Q, = 1. Finally, previous discrepancies arising from the
cluster dipole analyses that seemed to indicate a low {2, universe disappear when, as we

have seen in the previous Chapter, z-space distortions effects are minimized. allowing

us to reconcile the cluster dipole amplitude with Q, = 1.

If true, these observations indicate that ~ 90% of the mass in the universe clusters
only on scales larger than 10 h~'Mpc. Alternatively, one may think that some svstematic
bias affects the dynamical 2, estimate either on large or small scales. For example the
velocity bias detected in a number of numerical experiments (Carlberg & Dubinski 1991;
Katz & White 1993; Carlberg 1993 Carlberg & Couchman 1989; Carlberg, Couchman &
Thomas 1990; Carlberg 1991; Couchman & Carlberg 1992) together with hydrodynamical
effects (Cen & Ostriker 1992) may reconcile the density determination on scales dominated
by non-linear dynamics with an Einstein-De Sitter universe. On the other side the large
spread that characterizes the measurements of 0, on large scales does not allow to rule
out a low (, universe. Finally, a possible cause of this dichotomy may originate from the
use of different measurement techniques, a problem that can be solved by using the same
technique over the largest possible range of scales. The LAP method is flexible enough to be
applied over a large range of scale ([0.1 - 30] A~*Mpc), allowing a homogeneous analysis over
different dynamical regimes and scales. To accomplish this task, however, the LAP technique
needs to be carefully tested to identify and eliminate the possible biases. In particular the
major concern is that the LAP assumes that luminous objects can be considered pointlike
also at high redshifts where the overdensities from which galaxies form overlap in a quasi-
homogeneous density field.

In this chapter we describe in detail the LAP technique and we implement its
‘standard’ numerical version (P1 and P2). To test our LAP code we have reproduced the
P1 and P2 results, which also allows to discuss with more details the LG dynamics and the
local Q, value. In the last part we will address the problem of the LAP reliability. More

precisely we will use N-body simulations to appreciate the existence of possible mass biases.
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4.1 THE LEAST ACTION PRINCIPLE METHOD

In this section we implement the LAP in a Friedmann expanding universe, assuming
the GI picture. We describe the ‘standard’ P1 and P2 technique and the modifications that

have been proposed in the literature.

4.1.1 The Least Action Principle: Basics

The Least Action Principle (also known as integral Hamilton’s Principle) describes
the motion of those mechanical systems for which all forces are derivable from scalar potential
that may be function of the coordinates, velocities and time.

The principle can be stated as: The motion of the system from time t; to time t;

is such that the line integral
t
§=[" Ldt, (4.1)

11
where L is the Lagrangian of the system, has a stationary value for the correct path of the

motion.

The quantity S is referred to as the action of the system.  That is, out of all
possible paths by which the system’s point could travel from its position at time ¢; to its
position at time t,, it will actually travel along that path for which the value of the integral
(4.1) is stationary. The term “stationary value” for a line integral means that the integral
along the given path has the same value to within first-order infinitesimals as that along
all neighbouring paths. The notion of stationary value for a line integral thus correspond in
ordinary function theory to the vanishing of the first derivative.

It is possible to summarize the LAP principle by saying that the motion is such

that the variation of the line integral S for fixed t; and t; is zero:

t2
55 =6 [ L(zy, e, Tny i1,y &n)dt =0, (4.2)

t1

where z; is the position of the i~th particle and #; its time derivative.

Let us consider now a system of N particles interacting by the potential V. The

o AN oy (dx?
S= [ dt [Z—é— (%) - V} , (4.3)

action of the system is

3}
where m; is the particle mass. Under the infinitesimal change of orbits x; — x; + 6x;(t), the

action changes by the amount

t2 &x; 9V dx; 1" ,
= dtéx; - |— i———l - 10X, =1 . .
6S 3 X [ mi 6}{1} + {m ox o L (4.4)
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If the last term vanishes, then the orbits satisfy the Euler-Lagrange equations. This
condition is usually satisfied by fixing the positions, so §x; = 0 at t = ¢; and t = ¢5; but
note that the principle also applies if dx;/dt vanishes at the extrema; it is thus suitable for

dealing with mixed boundary values problems.

4.1.2 Implementing the LAP in an Expanding Universe

Peebles’ implementation of the LAP assumes that the peculiar gravitational accel-
eration of a galaxy can be estimated by concentrating the mass of the system around the
visible galaxies. The gravitating system can therefore be regarded as a system of pointlike
objects labelled by 7, with masses m; at the comoving position x;(¢) at the time ¢. In the
GI+hierarchical clustering framework the above picture can be questioned at high redshift,
when the mass distribution must be nearly homogeneous, and at present—epoch for most
of the cosmological models with Q, = 1, in which galaxies are surrounded by extended
overlapping haloes.

This simplistic mass assignment scheme, however, is not so unphysical if one sup-
poses that at early epochs the masses of the protogalaxies were in regions with simple
boundaries so that it is possible to concentrate the mass within each region in such a Way
that the gravitational field at the neighboring positions approximates that of the true mass
distribution. In practice, one assumes that each pointmass traces the motion of the mass
component out of which it is assembled, and it is assumed that the gravitational effect of
these components on the motions of the other mass elements at high redshifts is well approx-
imated by replacing the distributed mass with a single particle at the center of mass. This
assumption is realistic provided that the clustering is not strong so that galaxies develop
most of their motion at low redshifts, when there is ample room for the existence of galaxies
as well defined mass concentrations. We will discuss the limits of this assumption and the
possible biases that it can generate in the next section.

In an expanding universe it is convenient to write the proper separations between

two particles r(t) as

r(t) = a(t)x(2), (4.5)

where x(t) is the separation expressed in comoving coordinates and a(t) is the expansion

factor. In these coordinates the proper velocity of a particles u is

u = ax + ax, (4.6)
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where ax is the peculiar velocity, and ax is the recession velocity. The Lagrangian for the
particle’s motions is |

L = —m(a%x + ax)* — m®(x, 1), (4.7)

SR

where ®(x,t) is the gravitational potential. After the canonical transformation (Peebles

1980)
ik
dt’

the Lagrangian for a systems of N particles becomes

L'—L- = }Q-madmg, (4.8)

2
L':Zméa ( ) Z|mm3 + wpraQmez, (4.9)

X; — X

where py(t) is the mean background density. The action S in comoving coordinates is there-

5/[

where the integration limits formally correspond to the present—epoch, t,, and to the Big

fore

Xi il

(@J ZWW“+wwWZm}, (4.10)

2
e

Bang epoch in the Friedmann universe.

The variation of the action after an infinitesimal change 65 of an orbit is

to
6S:/todt6xi‘ @ ) + mia®6x; - 28 (4.11)
o at " a dt |

where the peculiar acceleration g; is

Xy — X

4 G ;
;= G 1 - ]
g 3 prax; + 0 Ej m; |Xy

P

(4.12)

The last term on the r.h.s. of eq. (4.11) comes from integration by parts. To satisfy the
Lagrange-Euler equations of motion the last term must vanish, implying

dx;
9 )
T

éx; =0 or =0 (4.13)

at t = 0 or at + = t,. The above requirements constitute the mixed boundary conditions
that the LAP orbits must satisfy. The condition éx; =0 at t = t, can be fulfilled if we
can measure the position of the luminous objects within the system. The second bound
is automatically satisfied when assuming the GI framework in which the primeval peculiar
velocities vanish at early epochs:

dXi
dt

a

—0 when a—0,
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which is more stringent than the second condition in eq. (4.13). Therefore, assuming the GI
picture and provided that we know the positbions of the galaxies, 65 = 0 (that is the action
is at a stationary point) when the orbits satisfy the equations of motion.

To implement the LAP we need to model the orbits using some trial functions:
3(t) = af (to) + 30 Crnful?), (4.14)

where @ = 1, 2,3 are the components of the orbits, f,(¢) are functions satisfying the boundary
conditions in eq. (4.13) and z{(t,) represent the initial positions of the galaxies. In this work
we use the same P1 set of ‘standard’ trial functions f, = a™(1 —a), n = 0,1,2,3,4 . As
already pointed out by P1, the final results weakly depend on the choice of f,. For example
very similar results are obtained with the set of trigonometric functions f, = sin(nwa/2).
A judicious choice of the trial functions, however, depends on the problem considered, as
discussed below.

The derivative of the action with respect to an expansion coefficient C&, is

as’ o to d deL'za ‘% 2 o G ) 7 : ,
acs, = mz/o dt fn(t) [—dta 7 + 37erba z7(t) + - > m . (4.15)

The orbits that are minima for the action satisfy the set of equations

as
5Cr = 0. (4.16)

Here we consider a cosmologically flat universe with a non-vanishing cosmological
constant, thus the time interval is

a'%da

[0 + al(1 — Q)]

H,dt = (4.17)

where [ = 1 if A = 0 and [ = 3 if the model is cosmologically flat. In the present imple-
mentation we will just consider the case in which [ = 3 since open models with vanishing
cosmological constant give similar results as the cosmologically flat ones with smaller ex-
pansion times. Using (4.15) and (4.17), it is easy to show that orbits satisfying (4.16) also

satisfy the cosmological equations of motion

1724 30X 3(1‘“90)‘14@_1'_ Q, x; + R m;(x; — X;)
da"  da 2F da 2F |7 Mr 5w - xif?

a

(4.18)

where F' = Q, + (1 — €,)a® and R, is the radius of the sphere that would contain the LG

total mass, Mr, in an homogeneous universe at the present-time.
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The equation of motion for the particle orbits expressed in physical length units,
r(t), is |

dzri ij(rj - I'i) A 4 9
ez Z lr; —rif® TRnT §WG(ph + 3pw/ )i (+19)

where the last term accounts for a mass component hot enough to resist clustering on the scale
of the system considered, with a local density close to the local mean. Its gravitational effect
‘s similar to that of a cosmological constant. From eq. (4.19) it is clear that if A vanishes
and in the absence of a hot component, the physical orbits r(t) are independent of 2, for
a given expansion time, while the peculiar motions depend on the background Cosmology.
Furthermore, when the expansion timet, is held fixed there is no large difference between the
prediction of an open model and a cosmologically flat one with the same Q, value. Similar
considerations hold in presence of a hot, diffuse mass component.

In the present LAP implementation we use the P1 scheme to find the minima of
S, in other words we adjust the coefficient CF, by stepping down the gradient of S with

increments

a5
aCs,

mﬁCffn o —

(4.20)

starting from the trial set {Cf"n}o — 0. The action S and its derivatives have been
numerically evaluated from the integrals (4.10) and (4.15) using 100 uniformly spaced steps
in a.

Knowing positions, redshifts and luminosities of all the objects to which we assign

the same M/ L ratio, we obtain the LAP orbits following the procedure below:

ju—

_ Choose the initial set of unknown coeflicients {C’f‘n} .

o

Assume a cosmological background [the (€0, Ho, A) set].
3. Select a M/L value.
4 Minimize the action by following the gradient and find the final {C’{’n} set.

5. Compare the observed redshift of anyone object to its recession velocity found by
the minimization procedure (the LAP-redshift). If the difference between the two

quantities is larger than a tolerance fixed a priori then back to step 3.

6. Compare the observed and the LAP-redshift of all the objects. If their residual are
too large then back to step 2.
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7. If one wants to estimate how the choice of {Cﬁn} affects the final results then back

to step 1.

At the end of the whole procedure we are able to trace the galaxy orbits back in time,
to constrain the M/L value within the system and to determine the preferred cosmological

background.

Finding Multiple Solutions:

With our procedure one finds the {Cf‘n} set that minimizes the action. As a
consequence the related orbits will represent galaxies approaching each other for the first
time. This configuration is plausible for dynamically young systems for which the crossing
time is larger than the typical evolutionary timescale (the expansion time in our case). When
the clustering is large enough for the crossing time to be smaller than the Hubble time, other
solutions representing stationary points that are not minima for the action, appear. In this
case the LAP method finds multiple solutions and one has to decide which one describes
the true dynamical history of the system. In practice this means than the LAP is not
useful in the strongly non-linear regime when the number of solutions is very high, but it
can be successfully employed in the mildly non-linear regime when the number of possible
configurations is small enough to make a decision possible.

A convenient way to find multiple solutions at stationary points has been proposed

by P2. In this case the increments 5Cﬁ can be obtained by solving the equation

%S

= 4.21
aca = 280 aceac? 2
where the sum is over repeated index and
a8 to 24fn dfm C e,
A g MY t 10504 nJm : io{ ’ 4.22
T0m 007 =™ [ [515 ﬁ( nEn WCpba fufm) + =T (4.22)
with p
Jzlx )
of YR af . .
TS = z[_.x_ff;_l :c%-J’ for 1+
apB
=S m [3—Tﬁ§’i - —‘;ﬁJ , for i=j (4.23)
ik Tk Zik

and Xij =X — X;.
This matrix inversion method has been applied by Peebles to study in detail the
orbits of the local group’s members (P2 and P3). The problem of deciding among the sets
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of possible solutions is not easy to solve since very often different configurations reproduce
the observed galaxy recession velocities equally well.

The existence of multiple orbits does not affect very much the reliability of the
LAP as a cosmological test since the different acceptable solutions find similar A//L ratios
and (9, Ho, A) sets. The number of solutions increases with the clustering; a first attempt
of using the LAP in these conditions has been recently performed by P4 who modified the
standard LAP method to study the dynamics of the dwarf spheroidal companions of the
Milky Way (Fornax, Leo I and Leo II). The approach used in that case is to parametrize the
orbits of the companions by their positions at a discrete set of world times. The solutions
are found by iteratively relaxing random orbits. The procedure is similar to the Feynman
path integral formulation of quantum mechanics and the hope is to assign a probability to

the different orbits to quantify the likelyhood of the different possible system configurations.

Parametrizing the Orbits:

The choice of trial orbits is not completely free but it should depend on the problem
studied. For example, the simple trial orbits f,, = a®(1 —a) satisfies the boundary conditions
eq. (4.13) so that they have to be modified if, instead of distances, the orbits are constrained
to observed redshifts. Furthermore, to avoid unphysical oscillations a necessary requirement
is that the set of trial orbits f,(¢) sample in a continuous way the time axis. This constraint
comes from the fact that orbits have to be such that the integral in eq. (4.15) vanishes,
which means that the LAP orbits must satisfy the equations of motion in a time average
sense, the trial functions f, being the temporal weights. To avoid unphysical solutions the
orbits have to satisfy the equations of motion at any time and thus f,(t) must overlap to
evenly sample the interval of integration.

A judicious choice of f, should also account for the dynamical status of the system
considered. In the mildly non-linear regime P3 showed that it is better to iterate to solutions
starting from a random set of trial orbits, {C’f"n}o, that twist around each other with the
further requirement that the present-time position is approached with relatively small ve-
locity. On the other extreme when dealing with quasi linear systems composed by thousand
of particles one is not interested in studying the single orbits. The main requirement in that
case a rapid convergence of the sum (4.14) which should also reproduce linear theory in the

limit of small perturbation. Giavalisco et al. (1993) proposed the following set of orbits:

22(t) = 22(to) + CH[D(2) — Do) + C{o[D(t) — Do)*....., (4.24)
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where D(t) is the growth function of linear modes and D, its value at the present—epoch.
Clearly (4.24) generalizes the Zel’dovich approximation (Zel’dovich 1970) to which it reduces

in the limit of small displacements.

Applying the LAP to Redshift Survey:

A homogeneous and complete sampling of the dynamically relevant mass tracers
1s required to properly apply the LAP. Our ‘standard’ LAP implementation uses observed
distances to predict recession velocities. Unfortunately reliable distance estimates are avail-
able for a very limited number of galaxies and the further requirement of complete sampling
put very stringent limits on the dimension of the system to which the LAP can be applied.
In practice, using the standard ‘distance scheme’ one cannot hope to study the dynamics
on scales much larger than those of the LG. To extend the LAP analysis to larger scales
one has to implement the so called ‘redshift scheme’ in which, starting from observed red-
shifts, the LAP is used to predict present-time galaxy positions, similarly to the iterative
reconstruction we presented in the previous Chapter.

As outlined by Giavalisco et al. (1993) and by P3, when one uses the ‘redshift
scheme’ the matrix of the second derivatives, 925/ acgnacﬁ

im0 general cannot be derived

from a scalar function of the unknown coefficients {C&}. To overcome this problem SPT
have proposed an iterative scheme in which the objects are initially placed at trial positions,
then the LAP orbits are found by following the gradient and, after having compared the
observed and the LAP-tedshifts, the points are replaced at new starting positions. The final

orbits are found by iterating the whole procedure.

4.2 A LAP APPLICATION: THE LOCAL GROUP’S
DYNAMICS

The LG is essentially an isolated binary system composed by two nearly equally
massive galaxies (Milky Way and M31) surrounded by dwarf companions (N6832, 11613,
WLM, Sex A, N1309 and N300). The characteristics of the LG member galaxies are sum-
marized in Table (4.1).

The line-of-sight velocity of M31 with respect to MW is —125 km/sec. This is an
unexpected result, since most galaxies are moving apart with the general Hubble expansion.

One possible explanation is that M31 and MW have a random velocity dispersion relative to
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Name Tq { b M. Vg
MW - - - 0.7 -
M31 0.72 1212 -21.6 1.0 -125
NGC 6822  0.49 25.3 -18.4 0.025 44
I1C 1613 0.72 129.7 -60.6 0.025 -159
WLM 0.96 75.9 -73.7 0.025 -67

Sextans A 1.6 246.2 39.9 0.025 164
NGC 3109 1.6 262.1 23.1 0.1 193
NGC 300 1.8 299.2 -79.4 0.1 102
Sculptor ~ 2.66A™' 105.8 -85.8 2.0 219
Maffei 2.66R~1 1364 -0.4 2.0 168

Table 4.1: LG Galaxy Parameters. Column 1: Galaxy Name, Column 2: Distance to
MW (Mpc), Column 3: Galactic Longitude, Column 4: Galactic Latitude, Column 5: Mass
relative to M31 mass, Column 6: Radial velocity in the MW frame (km/sec).

the Hubble flow. In this case, the LG would be an accidental and temporary superposition.
However, the probability of having such a superposition is quite low (5% +10% according to
van den Bergh 1971). Moreover, according to the gravitational instability picture, in which
galaxies have developed from small amplitude perturbations of the primordial density field,
random velocities are expected to decay with time as #2/3_ and the present peculiar velocities
would require a much higher velocity dispersion in the past, which can hardly be generated
by any plausible physical mechanism.

It seems, therefore, that M31 and MW constitute a self-gravitating system. In
this case, the Hubble flow has been locally halted and reversed by the mutual gravitational
interaction. Classical Mechanics predicts the relative motion of these two objects: their
relative separation r evolves with time according to Kepler’s equation

a3

r = a(l — cosn) ; t= W(” —esinn) + ¢, (4.25)

where ¢ is a constant, M is the LG mass, a, e and 7 are respectively the semi-major axis,
the eccentricity, and the eccentric anomaly of the orbit. At high redshifts r — 0 and ¢ — 0,
therefore e = 1 and ¢ = 0.
Their relative radial velocity can be written as
dr _ dr/dn _ \/EM sinp Csinn(n —sinn). (4.26)
dt  dn/dt a 1—cosny t (1—cosn)?
At the present-epoch t,, 1o 2~ 0.75 Mpc and (%)O ~ 125 km/sec. From eq. (4.26) it

is possible to evaluate n by constraining the age of the universe t, in the range of the
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commonly accepted values. If we suppose that M31 and MW are approaching for the first
time (7 < 7 < 27), as confirmed by the succe;ssful LG formation model proposed by Peebles
et al. (1989), then it is possible to determine the LG mass. The first value, obtained by Khan
and Woltjer in 1959 (~ 1.8 x 10'2 M), has been enhanced by a factor ~ 2 in subsequent
analyses.

Furthermore, dynamical influences of external groups cause the orbit of the binary
system to be inevitably subjected to torques. The timing mass for orbits with angular
momentum has been evaluated by Einasto & Lynden-Bell (1982): the LG mass turned out
to be in the range 3 ~ 6 x 1012 Mg. A different analysis carried out by Raychaudury &
Lynden-Bell (1989) yielded that the effect of neighbouring galaxies on the M31-MW orbit
does not greatly affect the radial-orbit timing mass estimate of the LG.

Even though we are considering an infalling system, in which the dark component
and the galaxies are expected to have the same velocity (Carlberg 1991), these measures can
only show that the Q, value on scales < 100 Kpc is far below unity and, therefore, that the
mass in an Q, = 1 universe cannot be concentrated around visible galaxies. As shown by
Kroeker and Carlberg (1991) in their analysis based on IV —body data, the timing argument
for M31 and MW is consistent with the existence of extended galactic haloes in an Q, = 1
universe, '

Since the LG is thought to be a dynamically-young system composed by galaxies
with known distances, it is a a good candidate for applying our numerical LAP code. In
order to minimize the action we need to know positions, masses and peculiar velocities of
the member galaxies. The masses of the objects are unknown, but all we actually need is
their relative masses, i.e. the masses normalized to the mass of an arbitrarily fixed galaxy,
under the assumption of constant M/L ratio for all the LG members. The reference mass
is that of M31. As we have seen, one has to specify also the set cosmological parameters
(s, R, A). Since we will consider only flat universes, the cosmological constant A is simply
1 — £2,. Orbital parameters, masses and a reliability estimates for the set of cosmological
parameters are then obtained by minimizing the action under the condition that the line—of—
sight peculiar velocity of M31 is reproduced. P1 and P2 found that the preferred cosmological
model to reproduce the LG dynamics is (% =01, 2 =0.75, A = 0.9). In what follows we
use our LAP code to look at this result in detail.

To eliminate the singularity in the gravitational acceleration at zero separation, P1
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modified the last term in eq. (4.12)

X — X5
[xi — % + €]

(4.27)

with corresponding changes in the derivatives of the action. The softening parameter, ¢;;,
has been imposed to be the same for each galaxy (e = ¢;) and has been set equal to 3 %
of R,. This large softening is not unrealistic because, according to the methods described
previously, observations indicate that the large mass detected is distributed in halos, even
in a low—density universe. However, as we have verified, quite similar results are obtained
with € = 0 because the derived LG-galaxies’ orbits are seldom close.

The LG galaxies considered in the standard P1 solution are listed in Table (4.1) in
which the neighbouring Sculptor and Maffei groups are considered as well. Their distances,
however, are based on the infra-red Tully-Fisher relation, calibrated to the redshift of more
distant galaxies. The Hubble parameter enters therefore in two ways: by fixing the distance
of the two external groups and by determining the present—epoch t,. A cosmologically flat
universe with Qo = 0.1, gives t, = 12.6 Gyr. In this model A = 0.75, therefore ¢, = 17 Gyr,
which is in the range of the acceptable values.

Figures (4.1a) and (4.1b) show the orbits found with the standard solution both in
comoving and physical coordinates, respectively. The orbits are traced back in time up to
an expansion factor of 0.1.

Figure (4.2) shows the LAP-redshifts against the observed redshift corrected to
the center of MW, relative to the solution in Fig. (4.1a). The results are fully consistent
with those obtained by P1, constituting a consistency check for the numerical code we have
developed. In the standard solution NGC 6882 is approaching the MW for the first time,
but its peculiar velocity is too negative. According to P2 this probably means that the
actual orbit can be found at a stationary point that is not a minimum for S. NGC 6882 is
in fact close enough to MW to have already completed an orbit, in which case now would
be falling toward MW for the second time. In this case the 65 =0 solution is not unique
and the matrix inversion method need to be applied. Starting with a particular set of initial
condition, P2 found this stationary solution which closely reproduces'the observed recession
velocity of NGC 6882. The lack of this solution in the our analysis is not a serious concern
since NGC 6882 has a low mass and its orbit does not affect final velocities of the other
galaxies but only their initial positions. In other words one finds nearly the same mass for
M31 irrespectively of the NGC6882 orbit.

The total mass of the LG turns out to be 6.4x10'* Mg, with MW having a mass
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Figure 4.1: The local group LAP-reconstructed orbits for the Q, = 0.1, A~ = 0.75 case.

Black dots represent the present time galaxy positions. The radius of the sphere (= 6.77
Mpc) is the radius of that sphere that would contain the total mass of the system if the
universe were homogeneous. The orbits are plotted in (a) co-moving coordinates and (b)

physical coordinates.
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Figure 4.2: Peculiar velocities found using the LAP technique versus the true peculiar

velocities. The same experiment as in fig. (4.1a) and (4.1b) The large discrepancy refers to

the galaxy NGC 6882.

of 4.8x10'2 My. The radius of the sphere that would contain the LG total mass in a
" homogeneous universe is R, = 6.7 Mpc
The LAP method also allows us to estimate the transverse peculiar veiocity vy of
M31 relative to MW. This is an important issue since it allows us to understand whether the
MW-M31 system is gravitationally bound or not. The standard solution with Maffei and
Sculptor group yields v, = 110 km/sec but this result is very sensitive to the presence of
external mass distribution: if the Maffei and Sculptor groups are ignored it would decrease
to v, = 20 km/sec while a larger transverse velocity is found when more distant galaxies are
taken into account (DL1). This problem is closely related to the mechanism thrdugh which
M31 and MW acquire their angular momenta. The study of the M31 and MW dynamics,
however, is a difficult one since, as shown by P3, different LAP solutions exist in which M31
and MW reach their present-time positions following very different orbits. Once more the
central problem is to select the ‘true’ solution from the set of plvausible ones.
Starting from our ‘standard’ solution, it is now possible to explore the effect of

changing the cosmological parameters b and {,.
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Figure 4.3: The same as in fig. (4.2). Open circles refer to the LAP experiment with

o = 0.1, h = 1.0; open triangles represents the {2, = 0.1, A = 0.75 case, and open squares
are the (0, = 0.1, A = 0.5 galaxies.

The effect of varying h

The value of the Hubble constant affects the solution through the timescale ¢,
and determines the distance of the Sculptor and Maffei groups. We have ran three LAP
simulations with A = 0.5,0.75,1. The predicted peculiar velocities for the three cases are
plotted in Fig. (4.3).

For all the galaxies but NGC 6822 (for which P2 found that the passing solution
does not exist when A = 1) good fits are obtained for & = 1 and A = 0.75. When A — 0.5
the age of the universe is ¢, = 25 Gyr., which means that in this model galaxies had a lot of

time to experience gravitational interaction. As a result the velocities of NGC 300, Sextans

A and NGC 3109 are systematically underestimated.

The Effect of Varying Q,

Besides the low (1, model, we have considered an Einstein—De Sitter universe with
h = 0.5 to obtain an acceptable time scale ¢, = 13 Gy. Fig. (4.4) shows the LAP orbits in
comoving coordinates relative to (,. The orbits are qualitatively different from the standard
case, the main difference being in the relative motion of the three groups, that will be

discussed in the next section. For the Einstein—de Sitter case the mass of the LG turned out
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Figure 4.4: The The local group LAP-reconstructed orbits in physical moving coordinates
for the Q, = 1, b = 0.5 case. Black dots represent the present time galaxy positions. The
radius of the sphere (= 3.9 Mpc), is that one that would contain now the total mass of the

system if the universe were homogeneous.

to be Mrg = 5.3 x 10*2 M and R, = 3.9 Mpc. .

Despite of the different orbits, as shown in Fig. (4.5), the predicted peculiar ve-
locities of the LG members match the observed velocities almost as well as in the standard
case. Varying Q, does not affect appreciably the motions within the LG. Since, as we have
seen, this is also true for the Hubble parameter and for the cosmological constant (P3) it
is possible to generalize this statement by claiming that the background cosmology weakly
affects the dynamics within the LG.

The Dynamical Influence of the Sculptor and Maffei Groups.

As for the background cosmological model, Sculptor and Maffei groups do not
influence appreciably the dynamics of the LG galaxies. The Sculptor and Maffei groups’

motion, relative to the LG can be used, however, to discriminate among different cosmological
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Figure 4.5: LAP peculiar velocities versus true peculiar velocities. The open triangles
represent the standard Q, = 0.1, A = 0.75 solution while open circles refer to {2, = 1,
h = 0.5.

models.

| As reported in Table (4.2), the standard solution yields a negative line-of-sight
velocity for the Sculptor group which is reasonably close to the observed ome, though an
even better agreement is achieved with A = 0.5. In the Einstein-de Sitter solution, however,
the two groups are receding from the LG, contrary to the observations. This difference
can be easily understood: in the low—density solution, the three groups are in an overdense
region, causing them to approach each other, while in an Einstein De-Sitter universe these
groups are in a local underdensity. This is the reason why, when Q, = 1 the Sculptor’s
recession velocity found by the LAP is larger than H,r as reported in Table (4.2). Given the
present observational uncertainties, however, it is difficult to decide if this is a significant
discrepancy.

The situation for the Maffei group is more complicated. In the low density model
the LG is in an overdense region, so that the peculiar relative velocity of Maffei group is
negative, indicating an inward motion. This result is in accordance with the Maffei distance
assumed by P2, but it is inconsistent with the Mc Call’s (1989) distance estimate of 1C342
which is a likely member of the Maffei group, placed at ~ 1.5 Mpc. If true, this measure would
imply a positive peculiar velocity of IC342 that could be explained only with the existence of
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Name Vg vy Vg V3 on
NGC 6822 44 -178 -169 -155 -165
IC 1613 -159 -146 -153 -141 -159
WLM -67 -83 -74 -69 -95
Sextans A 164 88 125 184 103
NGC 3109 193 101 145 199 "110
NGC 300 102 25 78 130 38
Sculptor 219 189 147 105 290
Maffei 168 167 130 69 260

Table 4.2: Peculiar velocity. Column 1: Galaxy Name, Column 2: Observed v,, Column
3 v1 (% = 0.1, h = 0.5), Column 4: v, (2 = 0.1, h = 0.75), Column 3: vz (2, = 0.1,
h = 1.0), Column 6: vy (Q, = 1.0, A = 0.5).

a massive system which is hidden by the ZoA. When (), = 1 the Maffei group has a positive
relative peculiar velocity, according to Mc Call’s distance determination. However, in the
solution shown in Fig. (4.4), the relative peculiar velocity of Maffei group is close to zero and:
adopting the Mc Call’s distance instead of the P2 one, would cause a reduction of the peculiar
velocity, contrary to the observations. Thus, it appears that the Maffei group’s motion when
using the McCall distance , is anomalous both in high— and low—density universe.

Finally, although the motion of Sculptor and Maffei groups depends on the value of
the density parameter, it is not a very discriminant test because of the presence of external

masses which we have not accounted for.

4.3 (), from the Local Group’s Dynamics

We have seen that, until the uncertainties on the distance of the Maffei group is
not reduced and external masses are not properly accounted for, the motion of the Maffei
and Sculptor groups will constitute a rather weak evidence for a low {2, universe. Such a

case, however, is supported by two other arguments.

e The first one is closely related to the recent LAP applications (P4 and SPT): a value
of M/L = 150 allows the LAP method to reproduce the observed redshifts on a wide
range of scales. Locally, it recovers the observed recession velocities of the Milky Way
dwarf companions and the motion of the LG galaxies (P4). On large scales, besides

the motion of the neighbouring groups, a low ), universe turns out to be the best
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model for reproducing galaxy and group redshifts up to 3000 km/sec (SPT). If true
this last result is particularly important since, as discussed in section (4.3.1), it should
be unaffected by the mass bias. Moreover, it would indicate that if we live in an

Einstein-de Sitter universe then the mass clusters on scales larger than 30 A~ Mpc.

o A second argument for a low §2, value comes from the observed local galaxy distribu-
tion. The LG is located near a region empty of galaxies with a size of ~ 8 A7 Mpc.
Since we can survey the galaxies in our neighbourhood considerably further down the
luminosity function, we can exclude the presence of faint galaxies in this local void.
The straightforward interpretation of this depletion is that gravity has pulled out the
matter from the local void to the local concentration. This is possible in a low—density
universe in which the material to form the groups is gathered from a region of radius
R, = 6.7 Mpc, a size comparable to that of the local void, but seems to be implausible

in an Q, = 1 universe since, in that case, R, = 3.9 Mpec.

4.4 LAP N-BODY TESTS

According to most of the commonly accepted cosmological scenarios, in an Einstein-
de Sitter universe galaxies are surrounded by extended overlapping haloes. As we have
seen we implemented the LAP under the hypotheses that the mass in the universe is now
concentrated around visible galaxies and that, at early epochs, protogalaxy masses were
in regions with simple boundaries: an assumption that can be questioned in an Q, = 1
universe. In this section we test the goodness of this assumption, and thus the reliability of
the method when , = 1, by comparing the galaxy masses and orbits found by the LAP with
the analogous quantities measured in 0, = 1 CDM N-body simulations. In practice we will
apply our numerical LAP code to the data extracted from N-body simulations as if they were
real data. We start by identifying galaxies using a minimal spanning tree technique and then
we characterize the galaxies belonging to a group by their center of mass positions, velocities
and masses. The LAP method is then applied to mock galaxy groups and we recover both
the absolute masses and the orbits of galaxies by matching the relative velocities of the two
largest bodies in the system.

In section (4.3.1) we analyse the simulation of a single galaxy cluster. The galaxies
in the simulation are identified at the peaks of the density field and contain a number of

particles large enough to make a direct comparison between LAP and N-body orbits possible.
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A second test aimed at improving the statistical significance of the previous analysis
is presented in section (4.3.2). In this second case the LAP is applied to a mock catalogue

of LG candidates extracted from a CDM cosmological simulation.

4.4.1 High Resolution N-Body Test

The data are obtained from the Carlberg (1993) collisionless N-body simulation
designed to mimic the evolution of a galaxy cluster with enough particles to resolve galaxy
scales.

A sphere of 12.5 A~ Mpc comoving radius containing a peak extracted from a CDM
0, = 1 universe realization was initialized with N = 10° particles each having a mass
2.27 x 10° h~' M. The gravitational evolution of the system has been followed using a
multistep quadrupole TREECODE (Barnes & Hut 1986, Dubinski 1988), taking into account
the effect of an external quadrupole tidal field. The experiment was evolved using a softening
length ¢; = 3.9h7*Mpc and a minimum timestep of 0.025 time units. The inverse of the
(linearly estrapolated) mass variance at 8 h™'Mpc, bs, was unity at z = 0. The problem of
galaxy identification in this simulation is greatly simplified by the existence of dense pieces of
long-lasting self-gravitating substructures with a velocity dispersion of ~ 100 km/sec. This
feature guaranteed the stability of the results when different galaxy identification procedures
were used.

At the final epoch the cluster is a virialized triaxial anisotropic object with half
mass radius 71/ = 1.1327'Mpc and a one dimensional RMS velocity dispersion of 1030
km/sec.

Since our ‘standard’” LAP method applies only to dynamically young systems we

adopted the following rescaling of the original N-body data:

e First of all we applied a time transformation such that in the new final epoch the
system is composed of galaxies approaching each other for the first time that, in this
case, means that we have to consider the N-body simulation at an earlier epoch. It
turned out that at ¢ = 17.8 the simulated cluster is composed by infalling galaxies,

The first transformation to apply is therefore:

Length transformation: | — I' =1/a
Time transformation: t — ' = t/a®/?

Mass transformation: m — m/ =m
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Where a is the expansion parameter at ¢t = 17.8. assuming ¢ = 1 at ¢ = 31.6.

e Then the new system must be scaled to the LG dimensions. Therefore a second trans-

formation of the comoving coordinates is applied:
Length transformation: I — (" =1I'f = 1§/a
Time transformation: ¢ — t" =t/ = t/a®/?
Mass transformation: m’ — m/ = m’/3® = mp>

The complete set of transformations preserves the form of the equations of motion and

the Q,-value

The new system is still composed by 10¢ particles and has a comoving radius of 2.5 A~*Mpc.
The total mass contained in the simulation, M7, turns out to be 1.8 x 10'® A~! My which
we consider as the total mass of the group. This rescaling, however, introduces two incon-

sistencies.

1. The original quadrupole tidal field is computed by considering a sphere with a comoving
radius of 12.5 h~'Mpc, while the size of the transformed system is a factor of 5 smaller.

As a consequence the tidal field applied is slightly smaller than the true—one.

o

The second more serious incongruity refers to the galaxies’ haloes. The size of the
system has been modified by transforming the comoving coordinates of the points
which implies an unwanted reduction of the galactic haloes’ extension. In practice we
obtain a group of galaxies surrounded by haloes having the typical extension of those
expected in a low Q, CDM universe while the background Cosmology is the standard
CDM. Since the effect we are exploring are presumably caused by the existence of
extended haloes, the rescaling we applied is expected to artificially improve the LAP
reliability. To avoid this unwanted bias different analysis with no rescaling has been

performed, as described in the next section.

To identify the galaxies we used two procedures. In the first one we selected all
the groups at a percolation length ad(t), where d(t) is the mean interparticle separation
at time ¢t. The overdensity associated with the corresponding peaks is %" x (ad(t))™2. All
the peaks above this threshold and containing a specified minimum number of points are

then recognized as galaxies. We applied this procedure using several different overdensity
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# bplp N Myp/Mpap
1 45 9 1.47
2 125 13 1.25
3 1000 13 2.11
4 2500 9 1.60
5 6000 14 1.60
6 43000 9 1.77
7 125000 10 1.30
8s 8000 10 1.76

Table 4.3: N-body test parameters. Column 1: Identification Number, Column 2: Over-
density threshold, Column 3: Number of selected peaks, Column 4: M,/Lp4p ratio.

thresholds in order to test the dependence of the LAP solution on the éf used. A second
two—step procedure was also applied. In this case we identified the protogalaxies at ¢ = 6
with groups containing at least 10 particles, found at a percolation length of 0.2 x d(t).
These particles are then relinked at ¢ = 17.8 (the final epoch) using a percolation length
of 0.05 x d(t), corresponding to a minimum épﬁ = 8000 (see Carlberg & Dubinski 1991 for
more details on the link algorithm). The aim here was to test the possible dependence of
the results on the adopted galaxy identification procedure. Finally, fhe LAP technique was
applied to reconstruct the orbits of the largest selected galaxies. In Table (4.3) we report,
for each experiment, the overdensity threshold %, the number N of peaks considered , and
the ratio between My and the group’s mass found using the LAP technique (Mpap). To be
consistent with the N-body background cosmology we used Q, =1 and A = 0.5

Figure (4.6) shows the time evolution of a typical peak identified at a éf = 8000
overdensity threshold using the two-steps procedure. The high merging rate causes the
motion of the center of mass to poorly describe the history of a galaxy orbit within the
system. Peaks identified using different criteria evolve in a similar way.

In Fig. (4.7) (a) and (b) the orbits of galaxies with Qf = 128 and épe = 8000
respectively, are compared with their true center of mass trajectories obtained from N-body
data. In both cases a general qualitative agreement is found, but there are exceptions.

The LAP orbits for bodies 6 and 7 in Fig. (4.7a), as well as for body 12 in Fig.
(4.7b), are significantly different from the true trajectories. Moreover the orbits of bodies 3
and 4 in Fig. (4.7a) are exchanged (although in this case we recovered the correct solution by
slightly varying the density threshold). Probably in these cases the correct orbits represent

stationary points which are not minima of the action (analogously to the N6822 case in P2)
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=105 . 1=17.8

dp/p= 8000

Figure 4.6: Time evolution of a density peak identified at ¢ = 17.8. The X-Y projections
at times ¢ =6.0, 10.5, and 17.8 are displayed. The merging processes clearly characterize its

dynamical evolution.

that could be found by using the more sophisticated matrix inversion scheme.

The second main result, shown in Table (4.3), is that My .p is systematically lowef
than My. The average M7 /My ap value is 1.6 with o = 0.27. The stability of the mass ratio
in all the different experiments indicates that this result depends neither on the galaxy iden-
tification procedure, nor on the overdensity threshold chosen. The magnitude of the mass
discrepancy depends on definition of the system’s mass. In this case the quoted Mr /My ap
value should be regarded as a lower limit since, as we have already pointed out, the adopted
rescaling artificially truncates galaxy haloes, hiding possible LAP failing which would oth-
erwise occur in this case.

Figures Fig. (4.8a) and (4.8b) compare the true peak velocity vrpy g from the N—
body data with the same quantity found as a LAP solution (vzap). The same experiments
as in Fig. (4.7a) and (4.7b) are considered. The underestimation of the mass causes vy 4p to
be larger than vrgyg. Interestingly the mass needed to match the peculiar velocity of the
outer galaxies turned out to be very similar to Mry.

The Effect of Varying the Number of Galaxies, N,:

After considering the peaks selected at an overdensity threshold 5" = 8000 with
the two-step procedure, we have applied the LAP technique using four dlfferent values of
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Sp/p= 128

Figure 4.7: X-Y projections of the orbits for galaxies selected at %’3 = 125 and %‘3 =
8000 respectively. Dashed lines represent the true orbits from the N-body experiment.
Continuous lines are the orbits found by the LAP method. Black dots are the final positions
of the galaxies. The orbits are traced back to a redshift 7. The circles have a radius of 5
Mpc. LAP orbits are quite similar to the true orbits. Significant differences in the orbits of
bodies 6 and 7 (fig. 4.7a) and 12 (fig. (4.7b) probably indicate that true orbits represent

stationary points which are not minima of the action.
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N,: 8, 10, 14 and 17. The solution is not affected by changing this parameter: the same
qualitative agreement between the LAP and the N-body orbits is found, and no significant
variations in the ratio My /My ap are observed (=1.75x 0.02). This N,-independence arise
since most of the system mass resides in the three largest bodies and thus variations in the

number of light bodies considered do not appreciably affect the dynamics of the system.

The Effect of Varying the Final Epoch:

Since the two largest galaxies in the simulation are surrounded by extended over-
lapping haloes, one might suspect that their relative velocity is biased with respect to the
dark component, even if they are approaching for the first time. The mass determination
procedure would thus underestimate the total mass of the group. To test this hypothesis we
considered the system at an earlier epoch (I = 10.5), when the velocity bias is expected to
be negligible, or at least smaller than at ¢ = 17.8. An overdensity threshold §pﬁ = 8000 was
considered to identify galaxies at ¢ = 10.5. We found that Mz /Mpap = 1.45, only a factor
1.1 smaller than the average of values reported in Table (4.3). Thus, the velocity bias in the
relative motion of the two largest bodies at ¢ = 17.8, if present, has to be very small and

cannot be the cause of the observed mass underestimation.

The Effect of Varying the Cosmological Parameters h and {2:

P2 has shown that the LG dynamics is almost independent of ;. As the density
parameter, however, strongly influences the motion of the neighbouring groups, the LAP
method was used to constrain the value of Q,. In this dynamical {2, test a hidden h-
dependence is present because the distance of external galaxies is based on the infrared
Tully-Fisher relation which is calibrated to the redshift of more distant galaxies (Peebles
1988). In practice this causes the LAP-0, determination to be model dependent. As we have
seen P2 chose (o, h) by constraining the expansion timescale, t,, in the range of currently
accepted values and he allowed for a non vanishing cosmological constant to obtain t, = 17
Gyr in his Q, = 0.1 A = 0.7 preferred cosmological model. In our case the cosmological
background is known since we are considering N-body data. Nevertheless, as shown in
Fig. (4.7) (a) and (b), the LAP method fails to reproduce the correct peculiar velocities.
An interesting test is to apply the LAP method varying (Qo,h), in order to explore if a
wrong cosmological model can bring the peculiar velocities closer to the correct values. We
considered the 10 largest galaxies selected at a épﬁ — 8000 threshold and we added six peaks

containing more than 100 particles and having a distance from the center of mass of the group
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in the range 4.2 — 4.8 h™*Mpc. To reproduce the observational uncertainties we introduced
an h dependence in the outer peaks’ distances. Using the correct cosmological parameters
(h =05 and Q, = 1) we found that the average vrap/vrryp value for these peaks is 1.45.
We analysed again the same N-body data, but considering it to be an Q% =01, 2 =0.75
flat universe (with A =0.9). The presence of a cosmological constant weakly influences the
dynamics within the group but there is no appreciable difference between the predictions
of an open model and a cosmological flat one with the same values of Q, and to (P3).
Analogously, the dynamics of the central part of the group was not appreciably influenced
by introducing small external objects, or by changing the Q,-value. However, in the low
density flat model, the value vLap/vTRUE averaged over the outer galaxies turned out to
be 0.83. Thus, paradoxically, the LAP method gives similar or even better results when an
incorrect cosmological model is used. This suggests that, if Q,=1, the LAP technique cannot
reliably determine the density parameter value in the LG neighborhood. A better proof that
this is in fact the case will be given by the N-body test presented in section (4.3.2).

The Effect of Varying the Softening Parameter ¢;:

Extended galactic halos can be partially modelled by altering the 1/r potential to
1/4/r? 4 €2, where ¢; is a softening parameter. After taking galaxies selected at a %" = 8000
threshold, we applied the LAP technique using several different e;,~values. The original
¢ = 0.03 x R,, corresponding to a value of 200 Kpec, was chosen in previous works (P1 and
P2) to take into account the mass distributed in the halos. We increased the softening by
a factor 2 and found that neither the orbits nor the Mr[Mpap ratio were greatly changed.
Very similar results were obtained when € was set equal to 0, i.e., point-like galaxies. As
already pointed out by P2, the observed e-independence for ¢; in the range 0 — 100 Kpc.
derives from the fact that the softening parameters has a local effect, while the galaxy orbits
found in the LAP solution are seldom close.

In an Q, = 1 universe galaxy halos can be larger (1 —2A~ Mpc). It is interesting
to explore if the LAP method can take such extended halos into account. Since in the LAP
implementation the galaxy extension is quantified by the softening parameter, the question
can be modified as follows: how large should the softening parameter be in order to repro-
duce the dynamical effect of extended halos ? To answer this question we ran again the same
LAP simulation with several different softening parameters until we obtained Mr/Mpap = 1.
The N-body experiment indicated that galaxy halos have a constant extension in physical

coordinates back to z = 1.15. Since ¢ is expressed in comoving coordinates, we modeled
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a time-dependent softening parameter €(t) to keep its value constant in physical coordi-
nates back to z = 1.15. At earlier times the softening was fixed equal to €(z = 1.15). The
present-time ¢;—-value for which Mr = M ap was ~ 1 Mpc. This large time-dependent soft-
ening parameter causes the external bodies to be more bound, resulting in a better match
to their N-body peculiar velocities. However, the LAP-orbits of all the galaxies become
shorter than the true ones. In spite of the larger, time dependent softening parameter, the
LAP solution is still different from the N~body. These results can be accounted for if, as we
will verify in the next section, galaxies are embedded in extended haloes which act as a hot
mass component on the scale of the galaxy group. In this scenario the peculiar gravitational
acceleration of galaxies within the group is determined by the mass concentrated around
visible objects. A small softening parameter is therefore sufficient to reproduce the motion
of inner galaxies. However, a large fraction of the mass is distributed in a weakly clustered
intragroup background which causes the outer galaxies to have systematically smaller pecu-
liar velocities, as observed. Therefore it is not surprising that a large softening parameter
cannot both alleviate the missing mass problem and reproduce the motion of galaxies within

the group.

4.4.2 Low Resolution N-Body Test

In this test tlhe data were obtained from Couchman and Carlberg’s (1992) cosmolog-
ical N-body simulations. In this case the background Cosmology is also an {1, = 1, h = 0.5,
CDM model. Two computational cubes with sizes of 100 and 200 R~ Mpc respectively, were
considered. The total number of particles in each simulation is 1283, Here we analyse the
100 h~'Mpc cube data, thus the particle’s mass is 2.65 x 10" My (h = 0.3). The mass
variance at 8 ™ Mpc is unity after 305 equal timesteps. The equivalent softening parameter
for a Plummer potential corresponds to 15 h=! Kpc, constant in physical units. Since no
rescaling has been applied to the data, we avoid tidal field and halo—extension problems
discussed in Section (4.3.1).

We adopted the galaxy identification procedures described in the previous section.
In the first analysis we selected all the peaks at the final epoch, using the previous link
method, at three different overdensity thresholds (%p* = 125, 8000 and 64000) containing at
least 5 particles. The second two-step procedure identified, after 50 timesteps, all the peaks
having %— > 125, and then relinked the selected objects at the final epoch, using the same

criteria followed in the former selection.



CHAPTER 4. THE NUMERICAL ACTION METHOD 167

The next step was to consider binary galaxies resembling the Milky Way-M31
system to construct fictitious catalogues. We started by considering only objects having
masses in the range 1.32 — 3.97 x 10'> My (i.e. peaks containing 5 — 15 points). This
is approximately the mass of our Galaxy when determined within a radius of ~ 100 Kpe,
which turned out to be the typical radius of the sphere containing a 5 — 15 points peak in
the %’5 = 8000 threshold experiment.

The algorithm for finding binaries was: for each galaxy;
1. Find the closest neighbor and its distance ry.

2. Find the next closest galaxy to the center of mass of the binary system and its distance

Tg.
3. Compute the ratio ro/ry.
At this point the following constraints were applied:

® 0.3 <r; <2 (in Mpc units). The lower limit was imposed to avoid interacting galaxies

in the sample. The upper limit was required to obtain a system similar to LG.

® r; 2 5 Mpc, since the observed nearest groups are at a distance of 5.32 Mpc (h =0.5)
from the LG.

e Only approaching binaries were considered.
e r3/ry > 2.5, in order to eliminate binaries which are members of a cluster.

One more condition, based on the total energy of the system, was applied. The

sign of the energy can be calculated using the formula for a two-body system
E v @
1"1111/,[2 B 2M 7‘1’

(4.28)

where E is the total energy of the system, M; and M, are the masses of the individual
galaxies, M is the total mass of the system, whose definition is given below, and v is the
total relative velocity. Our purpose was to select LG candidates, but the question of whether
the Milky Way-M31 system is bound or not does not have a clear answer because of the
lack of information on the relative transverse velocity v;. For example, according to P2 and
the DLI results, the Milky Way and M31 fail to be bound because of the influence of the
external groups. However, if v, were zero then the system would be bound. Therefore, we

replaced v with the radial velocity v, in eq. (4.28), and we required the Lh.s. to be negative.
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As in the previous analysis, the magnitude of the possible discrepancy between
M 4p and the true mass depends on the definition adopted for the total mass of the system.
We know from the work of Kroeker & Carlberg (1991) that the timing mass for approaching
isolated binaries is well approximated (in an 2, = 1 CDM N-body simulation) by the
mass contained into two spheres centered on the galaxy positions and with radius equal
to r1/2 (= Mg). Moreover, for first—approach binary systems, the LAP method gives a
similar result to the timing argument (Mg ~ Mpp). Here we use two different definitions
for the total mass of the system:
1) M5 is the mass contained within a sphere of 5 Mpc radius centered on the center of mass
of the binary system, as measured from the N-body data. This is analogous to the My
definition previously adopted.
ii) M, is the mass contained within a sphere of radius r = ry — 0.5 Mpc, centered on the
center of mass of the system. The 0.5 Mpc gap between r and r; has been introduced to
avoid possible contamination from the outer objects’ halos.

If the mass of the system was actually concentrated around the seen galaxies, then
My, Myap, Ms and M, would coincide.

For each binary we computed the crossing time and the free fall crossing time ¢/,

T ™ 7‘3
fe= ——, trre = =] ==, 4.29
v, | e~ 9\ agM (4.29)

where M can be either M5 or M,. Then, we divided the selected binaries into three different

categories.

e The first one contains “wide” binaries, defined as those systems having both ¢. and

tssc larger than ,.

e In the second category are the “quasi-wide” systems having

13

to to
-93 <t. <t and —

trre < —. 4.30
7 Stire<3 (4.30)

e All other binaries have been included in the third category.

Since these last systems are likely to have already completed at least one orbit, the relative
LAP solution could not be unique. Therefore they will be included only for reference.
Finally, we applied the LAP method to find the masses of the selected binaries. Results of
LAP experiments performed using the different binary catalogues are summarized in Table

(4.4).
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#  6p/p Ny Mean; oy N, Mean, o, Npg Means Meany
1t 32 0.5 (02124} 05 |0.2

212 | 125 47 1.0 105 46 1.0 105 3 0.6 0.7
33 49 1.6 1.0} 49 1.7 1.0

411 19 0.4 0.2 12 0.4 0.2

52 | 8000e | 31 0.8 04129 08 |04]| 4 0.7 0.9
63 38 1.3 0.7 39 1.4 0.7

il 2 04 104] 1 0.8 -

82 | 64000 | 11 0.8 (03| 8 0.9 03] 1 1.4 1.44
93 18 1.3 0.7} 20 1.3 (0.6

10 17 0.4 0.2 12 0.5 0.2

11%2 | 125% 33 0.7 |04 32 0.8 04 2 0.65 0.87
123 39 1.1 0.71 40 1.3 0.7

13*% 5 0.3 0.2 2 0.5 0.2

14%2 | 8000° 13 06 (03] 11 0.8 04| O - -

15 17 1.1 0.7 18 1.2 10.7

16% 1 0.6 - 1 0.7 -

172 | 64000° 41 06 |02y 4| 06 (03] O - -

183 11 0.7 1031 18 0.7 10.3

Table 4.4: N-Body test parameters.
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The first column contains the experiment reference number and the second the
overdensity threshold. In the remaining columns each row is divided in three subrows to
take into account the three different categories defined above. The first subrow contains
the parameters of “wide” binaries only. In the second, data from the first two categories
are listed, while in the last all the objects are included. Columns 3, 4 and 5 contain the
number of binaries found, the average value of log(Ms/Mpap) and the relative standard
deviation respectively for the M;s case. Columns 6 to 8 contain the same parameters for the
M. definition. The last three columns contain the number of best LG candidates and the
corresponding average values of log(Ms/Mpap) and log(M,/Mrap) . The best LG candidates
are constrained to have r, and |v,| in the range 600 — 850 Kpc and 100 — 150 km/sec
respectively.

In this analysis the results depended slightly on both the galaxy identiﬁcatioﬁ
procedure and the overdensity threshold. We mainly considered results from the catalogues
containing galaxies selected at %3 = 8000 since it was found that peaks above this overdensity
threshold are good galaxy tracers (Carlberg & Dubinski 1991; Couchman & Carlberg 1992).
In all the performed experiments the LAP method underestimated the system’s mass. The
average Ms/Mpp rtatio is ~ 5, significantly larger than in the previous analysis. As in
the last section this mass underestimate suggests an intrinsic failure of the LAP method,
presumabably related to the assumption that mass is concentrated around galaxies. To test
whether mass is strongly clustered around density peaks or distributed in extended halos,
we measured the mass contained in spheres of increasing radius centered on the midpoint of
the binary system, normalized to the mass contained in a sphere of radius rmi, = r1/2+0.2
Mpc. The same procedure was repeated for each binary in the catalogue considered. Though
the details depend on the selection criteria, we have found a result which is common to all
catalogues considered: the mass is preferentially located on extended halos weakly clustered
around the binary system. This is clearly shown in Fig. (4.9a) and (4.9b), in which we
have plotted the quantity M(< R) = NGO

T (p(r)—pe)d®r
two different catalogues. This is the mass distribution one would expect to find in a biased

averaged over all the binaries of the

galaxy formation scenario.

The Effect of Varying the Softening Parameter e:

Analogously to the previous section, we have looked for a softening parameter value
which would give Mr/Mpsp = 1. If we select binaries at % = 8000 using the two-steps

procedure, and the softening is kept constant in physical coordinates up to a = 10, then
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Figure 4.9: M(< R) averaged over all the binaries vs. R — Tmin (in Mpc units). Binary
galaxies selected at an overdensity threshold 6—: = 8000 using two different selection criteria

are shown. The existence of extended haloes surrounding the binaries is inferred.
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we find € = 1.4 Mpc. As expected, this value is higher than the previous one since in this
simulation the haloes’ extension have not been spuriously reduced by the transformations

described in the last section.

Dynamical Influence of the Outer Galaxies:

Using N-body data we can study the effect of the tidal field induced by the outer
galaxies on the binary dynamics by increasing the size of the system, centered around the
LG candidate, to which the LAP method is applied. Thus, using the sample of the binaries
selected at %—’ = 8000 we consider all the galaxies within a sphere centered in the center of
mass of the binary system with radius 1.5 x rs.

We have computed the new mass of the system Myp finding that Mrip/Mpap =
1.3 + 0.2; this indicates that the dynamics of the binary is only mildly affected by external

galaxies and that its contribution to the LAP mass underestimate is quite small.

4.5 DISCUSSION AND CONCLUSION

The two different analyses carried out in Sections (4.3.1) and (4.3.2) indicate a
substantial failure of the LAP method to describe the dynamics on LG scales in an Q, = 1
universe. In section (4.3.1). we applied the LAP method to a group of galaxies obtained
by transforming the data from a high resolution N-body simulation. Inconsistencies related
with rescaling N-body data to reproduce the LG characteristics, reduce the extension of the
haloes associated with the member galaxies and therefore this test will not reveal the full
extent of the problem of using the LAP technique in an £, = 1 universe. There are two

main outcomes from this first N-body test:

e The LAP method succeeds in qualitatively reconstructing the galaxy trajectories. A
not obvious result since the high merging rate and the presence of large halos sur-
rounding the objects cause the center of mass displacement to be a poor tracer of the

group’s dynamics.

e The mass of the system determined using the LAP method turns out to be system-
atically underestimated. The quoted Mr/Mp4p ratio is 1.6 + 0.23. Although the
magnitude of the discrepancy depends on the definition adopted for the mass of the
system, the effect is undoubtedly real as indicated by the motion of external members

of the group.
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The above results do not depend on the peak identification procedure: Table (4.3) shows
that varying the overdensity threshold by a factor 10* does not seriously affect the Mz /My 4p
ratio. This stability should have been, at least in part, expected since the peaks in the simu-
lation analysed constitute a well-defined, long-lasting population of objects, easily identified
by linking algorithms using different linking lengths. Tests performed to find the origin of
this discrepancy indicate that the LAP solution depends neither on the number of peaks con-
sidered nor on the softening parameter chosen. Similarly we have found that the velocity bias
in the simulation is very small and does not appreciably influence the M} 1p determination.

In section (4.3.2) we applied the LAP method to fictitious catalogues of binary
galaxies extracted from a large volume N-body experiment. No rescaling was applied to
the data. From this second test we confirm the above result since the mass discrepancy was
found to be even larger than in the previous test.

The bulk of the evidence indicates that the origin of the {2, underestimate has
to be found in the LAP method itself and it is not an artifact due to some systematic
bias in the LAP-N-body comparison. One of the key assumptions of the LAP method’s
implementation is that all the matter in the universe is concentrated around visible galaxies.
This approximation is well justified in an Q, = 0.1 universe, in which the galaxies are
surrounded by halos extending up to 200 Kpc. However, as we have verified, our 2, = 1 CDM
N-body simulation is characterized by the presence of much more extended overlapping
halos weakly clustered around the peaks of the density field, as expected in a biased galaxy
formation picture. Since the LAP technique can only reveal the mass clustered around visible
objects, a dependence of the mass discrepancy on the relative separation of galaxies would be
expected. In Fig. (4.10a) and (4.10b) we have plotted the mass discrepancy log(Vs/Mrap)
versus the galaxy separation r; for binaries of two different catalogues. Even if a large scatter
is present, the mass discrepancy anti—correlates with the relative separation of the galaxies.
Moreover, this trend does not depend on the adopted galaxy identification procedure.

In a standard CDM cosmogony the resulting LAP mass at ~ 1 Mpc is ~ 20% of M5,
while at 2 Mpc Mp.4p is close to Ms. Although these numbers depend on the shape of the
power spectrum and on its normalization, it is reasonable to think that this effect is common
to all the hierarchical clustering scenarios in which galaxies form in correspondence to the
peaks of the density field and then accrete extended halos from the pressureless dark matter.
We have verified that the quasi-homogeneous mass component missed by the LAP cannot
be modeled by simply softening the gravitational force. According to the above evidence we

conclude that:
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Figure 4.10: log(Ms/Mpap) vs. r1. Binaries selected using two different overdensity thresh-
old are shown. Black dots refers to ‘wide’ binary systems, filled triangles are for the binary
included in the second category and small dots refers to bodies belonging to the third cate-
gory (see text). The best LG candidates are contained in the region delimitate by two vertical

lines. In both case the mass underestimate anti-correlates with the relative separation of

the galaxies.
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e The LAP technique reliably measures the clustered mass inside the system’s orbits,

which are qualitatively well reconstructed.
o The LAP method applied to the LG cannot rule out an 2, = 1 value on the LG scales.

¢ Inan {2, = 1 universe the LAP can be safely applied to systems in which the average
relative separations between objects is larger than ~ 2 Mpc, that is, much larger than

the size of the collapsed galaxies.

The LAP method, however, is a powerful Q-test when applied to systems large compared to
the collapse radius of galaxies. If this picture is correct then the SPT result, who used the
LAP to analyse the motion of groups and isolated galaxies on scales of 30 A"'Mpc, is free
from mass biases and thus it would constitute an important evidence for a low {, universe.

The above interpretation of the LAP mass underestimate has been recently chal-

lenged by DL2. They analysed an Q, = 0.2 CDM N-body simulation and found that

o The LAP orbits are very discrepant from the N-body ones.
o The LAP underestimates the value of Q, by a factor 4-5.

¢ The discrepancy between the N-body and LAP line-of-sight galaxy peculiar velocities
is due to the presence of CDM particles which are not linked to halos (the so called

‘orphans’)

It is quite difficult to reconcile these results with ours. In particular it is not easy
to understand why we found a good agreement between the LAP and the N-body orbits
in an {}; = 1 universe while DL2, who analysed a low 3o CDM simulation in which haloes
should be more concentrated, found very discrepant LAP orbits. Similarly, it is difficult to
understand how the results shown in Fig. (4.10a) and log(Ms/My4pb) may be accounted
for in the ‘orphans’ picture. The DL2 analysis is based on a large N-body simulation in
which the LG candidates are 15 Mpc systems composed by ~ 10 galaxies (two of which form
a central MW-M31 system-like pair). They identify galaxies by linking haloes of 2 Mpc
that, due to the limited resolution of the N-body simulation, contain ~ 200 particles. In
our high resolution N-body analysis we verified that to reliably trace a galaxy orbit back in
time one has to consider systems like that one shown in Fig. (4.6), i.e systems that contain
a similar number of particles within a much more concentrated region. Tracing back in time

the motion of a more diluted system may be quite misleading, especially in a low {2 universe
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where a 2 Mpc region surrounding a density peak sampled with low resolution, is an ill
defined dynamical system.

To reach a definitive estimate of the LAP reliability, the DL2 and our analyses
should be repeated using a high resolution low Q, N-body simulation like that one presented
in section (4.3.2) with which it will be possible to evaluate the influence of the ‘orphans’ and
to test the unexplored role of mergers through which a significant fraction of the total kinetic

energy of the system might be dissipated.
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