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Introduction

This dissertation is concerned with the Cauchy Problem for a 2 x 2 system of conservation

laws:

u(0, z) = u(z) (2)

where u: [0, +oo[ x R +— R? and F:R? — R? is smooth. As usual, the system (1) is assumed
to be strictly hyperbolic and with each characteristic field either linearly degenerate or genuinely

nonlinear.

If F is linear, then (1) is a linear system with constant coefficients and the characteristic speeds
A; and )y do not depend on the values of u. Hence, the solution u(t,z) can be explicitely written

as a superposition of two travelling waves and the regularity of the initial data @ is preserved, see

Figure 1.
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If F is non linear, then elementary examples show that after a finite time a gradient catastrophe
may take place, even if @ is C*, see for example [J]. Indeed, the dependence of A\; on u may cause a
smooth wave—front to develop into a shock within finite time, as shown in Figure 2. This behavior
reflects well known physical phenomena, such as the formation of shock waves in one—dimensional
gas dynamics.

An extensive body of literature indicates that the natural framework for (1)-(2) is provided by
the space BV of functions with bounded variation. Thus, by solution to (1)-(2) it is meant a weak
solution and derivatives are interpreted in distributional sense.

The first existence result for global solutions to (1)-(2) with data in BV goes back to the funda-
mental paper [G] by Glimm (1965). Since then, the uniqueness and continuous dependence of these

solutions has remained a major open problem. Even within the class of piecewise smooth functions,
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Introduction

the requirement that u be a weak solution (i.e. the Rankine-Hugoniot conditions) is not sufficient
to uniquely select a good solution, whenever a discontinuity is present. Aiming at a uniqueness
result, various authors have introduced suitable entropy-admissibility conditions (see [La2], [Li4],
[Sm]) often motivated by the Second Principle of Thermodynamics. These additional conditions
imply some sort of stability of the jumps in a solution of (1).

The simplest initial value problem with discontinuous data is the Standard Riemann Problem

us + [F(u)]aC =0

_Jum iz <0 (3)
1L(0,1:)—-{u+ ifz>0

where 4™, uT are constant states. For this particular problem, the Lax shock inequalities [Lal]
determine a unique self-similar solution, continuously depending on the data «™, u™ provided that
“u’" — u+l| is sufficiently small.

As soon as a unique global solution is canonically associated to every Riemann Problem (3), we
can then determine a unique local solution to (1)—(2) for any @ in PC, the set of piecewise constant
functions. Indeed, because of the finite propagation speed, one can construct a local solution first
by solving the various Riemann Problems generated by the jumps in % and then by glueing together
these solutions. This construction however breaks down when wave-fronts generated by distinct
Riemann problems begin to interact with each other, since the solution to (3) is in general not in
PC.

For the Cauchy problem (1)—(2), up to the present date, a gap has remained between existence
results and uniqueness results. Indeed, the former provide solutions in BV, while the latter apply
only to solutions within a smaller space of more regular functions. Usually, one requires additional
assumptions such as: a finite number of discontinuities, a finite number of centered rarefaction
waves, one-sided Lipschitzeanity ... As a consequence, no results have been obtained concerning
the dependence of the solution to (1)-(2) on @ and F.

In [B5] and [B6], a new approach is introduced. A unique good solution to a given Cauchy
Problem is obtained by proving the existence and uniqueness of a canonical semigroup generated
by (1). More precisely, a Standard Riemann Semigroup (SRS) is defined as a continuous semigroup
5:[0,400[ X D+ D, defined on a closed domain D, such that

() DD {ﬁ e L1: TV () sufficiently small}
(i) I8 — Sswllys < L (1t — s+ l|la— @lg1)
(#44) % € PC = S;u coincides with the Lax solution for ¢ small

for some Lipschitz constant L.
By Theorem 1 in [B5], there can be at most one semigroup S with the above properties, up to
the domain D. If it exists, this semigroup is thus well defined and canonically associated with (1).

Furthermore, the following holds:
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Introduction

e Each semigroup trajectory is a weak entropy—admissible solution of (1).

e Approximate solutions of (1)-(2) constructed by the Glimm scheme [G] or by a wave-front
tracking algorithm [B2] converge to a unique limit, which coincides with the corresponding
semigroup trajectory. '

e If a local, entropic and piecewise Lipschitz solution of (1)—(2) exists, then it coincides with
the corresponding semigroup trajectory.

e The semigroup trajectories can be characterized as viscosity solutions of (1), according to
Definition 2 in [B5].

All of the above properties indicate that, if a Standard Riemann Semigroup S exists, then the
trajectory t — S;u should be considered the one and only good solution of the Cauchy problem (1)-
(2). Therefore, the crucial problem at this stage is clearly the construction of the semigroup. In [B3]
the existence of a SRS was proved for a class of n X n systems of conservation laws with coinciding
shock and rarefaction curves. The main result of this thesis is the existence of a SRS for general
2 X 2 systems.

We remark that, in all previous literature, existence results were always based on a compact-
ness argument. By various methods, such as Glimm’s scheme, vanishing viscosity or wave-front
tracking, a sequence of approximate solutions is constructed. This sequence is shown to be rela-
tively compact, typically by means of apriori bounds on the total variation together with Helly's
theorem, or else a compensated compactness argument in connection with Young measures. The
limit of any convergent subsequence is then proved to be a weak entropic solution. Relying merely
on compactness, however, nothing can be said about the uniqueness of the solution or its continuous
dependence.

A major feature of the refined wave—front tracking algorithm developed here, on the other
hand, is that it yields a Cauchy sequence of approximate solutions. By the completeness of L1,
this sequence converges to a unique limit depending Lipschitz continuously on the initial data. In
addition, a Gronwall-type estimate on the distance between an approximate solution to (1)—(2) and
the exact solution is obtained, provided that the approximate solution always takes values within

the domain D of the semigroup.

It is remarkable to note that while scalar conservation laws fall within the framework of the
general theory of contraction semigroups (see [Cr]), no abstract semigroup theory presently available

seems applicable to systems of conservation laws.

Here, uniform Lipschitz continuity is obtained by introducing a suitable distance d such that
¢ d is equivalent to the L! distance, restricted to the domain D.
e S is contractive with respect to d.

We regard d as a Riemann distance on D C BV in the following sense. For n > 2, let E,
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denote the set of piecewise constant functions u € L with exactly n jumps. On each E,, which can
be identified with an open subset of an Euclidean space, we introduce a suitable Riemannian metric
dy, uniformly equivalent to the L1 distance. We then consider the limit distance d, as n — o.
This metric can be extended by continuity to the whole L closure of | J En, which contains D. By
carefully choosing the coefficients of the metrics d,, on each Ep, it follows that the semigroup S is

contractive with respect to d, on a suitably small domain D.

For general systems of conservation laws, the total variation of a solution may well become
unbounded in finite time. To ensure the global existence of solutions within the space BV, some
assumption on the initial data % is needed. Usually, one asks that TV(z) be sufficiently small. In
the second Chapter of this dissertation, other types of initial conditions are considered.

Let ™, uT be two states, with Hu- — u+H not necessarily small, but such that the Riemann
problem (3) is solvable. We show that, if certain stability and non-resonance assumptions hold.
then there exists a (unique) semigroup S, with the properties (ii) and (iii) above, whose domain P

contains all suitably small BV perturbations of the Riemann initial data in (3).

Figure 3 Figure 4

The non-resonance condition rules out the possibility of a small wave exponentially increasing
in size, while bouncing back and forth between two large shocks, as in Figure 3. In fact, assume
that (3) is solved in terms of two large shocks and consider a perturbed initial condition, containing
also a small wave on the left of the 1-shock. As the time when the small wave first hits the 1-shock
tends to zero, the reflected wave—fronts bounce back and forth an arbitrarily large number of times
(Figure 4). If each double reflection increases the size of a wave, the solution of the Riemann

problem (3) would clearly be unstable.

Having extended the solution semigroup S to a domain D containing suitable perturbations of
various Riemann data, it is then possible to locally solve (1)—(2) also in the case of TV (a) large.
In Chapter 2 this is achieved relying on the finite propagation speed and on a glueing procedure.

To prove the uniqueness of this solution, some further assumption on its local structure is

needed. For this purpose, we extend the definition of interaction potential to general BV functions.
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Uniqueness is established within a class of functions whose interaction potential is locally small in
a forward neighborhood of any point (¢, z).

Finally, we establish a uniqueness result for solutions of (1)—(2) with arbitrariy large variation.
More precisely, we show that any two viscosity solutions, defined on the same domain [0,7] x R
must coincide, provided that all of their discontinuities are stable and non-resonant, and their
interaction potential is locally uniformly small. Thus, uniqueness is here proved within the same
class of solutions for which local existence holds.

On the other hand, when TV (&) is large, no general result on the continuous dependence of
solutions of (1)—(2) upon the initial data seems available. Indeed, the time interval on which the

solution exists in BV does not depend on % in a lower semicontinuous way.






Chapter 1

By means of a new algorithm, based on wave—front tracking, a Cauchy sequence of approximate
solutions to a Cauchy problem for a 2 x 2 conservation law is constructed. The solutions so
obtained yield a Lipschitzean semigroup defined globally in time and on all integrable functions

with sufficiently small total variation.






1 — Introduction to Chapter 1

Consider the Cauchy Problem for a strictly hyperbolic 2 x 2 system of conservation laws in one

space dimension

ug + [F(u)], =0 (1.1)
u(0, z) = u(x) (1.2)

assuming that each characteristic field is either linearly degenerate or genuinely nonlinear. In order
to construct global weak solutions, three main techniques are currently available, namely:
(i) The Glimm scheme [G], [Lil],

(ii) The vanishing viscosity method [D3],

(ifi) The wave—front tracking algorithms [B2], [D2], [Ri].

All of the above constructions rely on a compactness argument: a priori bounds on the total
variation, or a compensated compactness lemma [M], [Ta], guarantee that some subsequence of
approximate solutions actually converges in Lo to a globally defined weak solution.

The basic feature of the new algorithm developed below, on the other hand, is that it yields a
sequence of approximate solutions for (1.1)-(1.2) which is Cauchy in the L! norm. Therefore, the
entire sequence converges to a unique limit, depending continuously on the initial condition @. The
solutions that we obtain constitute a uniformly Lipschitz continuous semigroup S, defined on a set
D of integrable functions with small total variation. We also derive a Gronwall-type estimate on
the distance between an approximate solution of (1.1)—(1.2) and the semigroup trajectory ¢ = S:u.

Our main result is

Theorem 1. Let F be a smooth map from a neighborhood of the origin  C R2? into R%. Assume
that the system (1.1) is strictly hyperbolic and that each characteristic field is either linearly degen-
erate or genuinely nonlinear. Then there exists a closed domain D C L1 (R;R2), constants L > 0,
50 > 0 and a continuous semigroup S: [0, +oo[ X D +— D with the following properties.

(1) Sot = u, S;Ssth = SpysU.

(ii) Every function 4 € LY with TV(a) < 6o lies in D.

(i) (1823 — Syllgs < L- (It = s+ |5~ Bllgs)-

(iv) Each trajectory t — Sy yields o weak solution to the Cauchy problem (1.1)-(1.2).

(v) If & € D is piecewise constant, then for t > 0 sufficiently small the function (t,z)

(S) (z) coincides with the solution of (1.1)-(1.2) obtained by piecing together the stan-

dard self-similar solutions of the corresponding Riemann problems.

In the related paper [B5] it is proved that a semigroup with the properties (i)=(v) is necessarily

unique. Moreover, the approximate solutions of the Cauchy problem (1.1)—(1.2) constructed by a

7
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wave-front tracking method ([B2], [D2], [Ri]) or by the scheme of Glimm with uniformly distributed
sampling ([G], [Lil]) actually converge to the trajectory t — S;i. The semigroup constructed in
the present Chapter is thus canonically associated with the system (1.1).

The well-posedness of the Cauchy problem for particular 2 x 2 systems arising in gas dynamics
was studied in [M], [P]. Moreover, the existence of a Lipschitz continuous semigroup of entropic
solutions was proved in [B1], [B3] for nxn systems with coinciding shock and rarefaction curves. The
additional assumptions used therein, however, play a purely technical role within the construction
of approximate solutions, and apparently are not necessary for the well-posedness of the Cauchy
Problem. Indeed, the variational analysis performed in [B4] suggests that, for general n x n systems,
there exists a domain D C L! and a Riemann—type metric on D, equivalent to the usual L distance,
which is contractive w.r.t. a semigroup generated by (1.1). An alternative construction of such a
metric was proposed in [B3] (p. 365). This chapter contains a rigorous proof of this conjecture for
2 x 2 systems, with shock and rarefaction curves not necessarily coinciding.

For each ¢ > 0, the wave—front tracking algorithm developed in this Chapter produces a contin-
uous semigroup S¢ of e—approximate solutions, which depend on the initial conditions in a uniformly
Lipschitz continuous way. To show this Lipschitz dependence, the basic idea of our approach con-
sists of differentiating a family of approximate solutions w.r.t. a parameter which determines the
locations of the jumps. More precisely, let @, w € L* be any two piecewise constant initial condi-
tions with small total variation. Observe that there are infinitely many Lipschitz continuous paths
~v:6 + @ which connect % with @ by merely shifting the positions of the jumps. A simple example
is

6Hﬂ'X]—~oo,6]+@'X]9,+oo[’ (1.3)
where x I denotes the characteristic function of the set I. In the following, we shall always consider
paths v which are obtained as a concatenation of elementary paths of the form

GHﬁG:Zavax 0 0 :cg::i'a—!—ﬁaﬁ.
= et
Here the states @, remain fixed for all values of the parameter 4, while the locations z, of the
jumps shift at the constant rates &,, as 6 varies.

Now consider a parametrized family of approximate solutions u® = u?(t, z) of (1.1), having @’
as initial conditions, obtained by a suitable wave—front tracking algorithm. By construction. each
function w? will be piecewise constant in the (t, z)-plane, with jumps occurring along finitely many

polygonal lines, say = = z(t). If at some time ¢ > 0 we have

N
u’ ,x) = We, zER, a, b,
)= 2 00,2000 R el
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Iy

Figure 1

with z0(¢) < --- < 2%(t), then the L' length of the path vs: 6 +— u¥(t,-) is computed by

u%u:[f; |

where Au® = wy i1 — wg is the jump of u? at 29,
By carefully studying how the integrand in (1.4) varies in time, we will prove that the length

d2at)| 45 (1.4)

A <t, z? (t)) 50

of 7 satisfies the uniform estimate
el < L - flvoll (1.5)

for some constant L and all ¢ > 0. Calling u, w the corresponding approximate solutions of (1.1),

and connecting the initial conditions @, w with a suitable path ~o, from (1.5) one obtains

u(t, ) = w(t, )[ga < Il S L-lvoll = L-la = @llps - (1.6)

This will establish the Lipschitz continuous dependence of approximate solutions on their initial

data.

Example 1. Consider a piecewise constant approximate solution u = u(t,z) of (1.1) which, for

t > 0 small, contains three shocks located along the lines z = z(t), say

. , 3
z1(t) = =2+ 2t :cz(t):—§+t, z3(t) =1—t.
Assume that these shocks interact at the points Py, Py (see Figure 1), and that the waves emerging
from these interactions travel with speeds
3
2 b

Now let 8 — u? be a one-parameter family of solutions, obtained from u by shifting the location

Ty = 5= —2, Tg=—2, 7 =2.
z9 of the second shock. For ¢ > 0 small, u? is thus piecewise constant, withjumps occurring across
the lines
L) =-2+2, fB)=0+t, 23 =1-t.
As 6 varies in a neighborhood of —3/2, the points of interaction Py, P29 shift at constant rates,

together with the lines z4,...,z7. An elementary computation yields



Chapter 1

PY=(0+2,20+2) Pﬁs(%,l—gﬁ)
z§(t) = (204+2) + 3(t—0-2) z9(t) = (260 +2) —2(t — 6 — 2)
2§(t) = 142 -2 (1 452) () = 52 +2 (1 - 452)

When the positions of the shocks at t = 0 are shifted at the constant rates

&$=0, £2=1, &=0,
the waves along 2%, o = 4,..., 7 are thus shifted with speeds

oz 1
=tes, G=4, &=

90 27 3 67:_'_'

— [ RIS

Letting the parameter 6 range over an interval [a, b] C |-2, 1], from (1.4) we obtain the estimates

“ub(o, ) — u%(0,-)

3
L= lholl=(~a)- 2:3 [Au(za)[[léal = (0 = a) |[Au(za) |,

[, ~ (e )] < bl = - ) i |Auea) i (>3)-  a

Observe that, when 6 crosses the critical value § = —1, the points Py, Py collapse to the single
point P = (1,0) and the overall configuration of wave—fronts suddendly changes. Of course, (1.7)

is no longer valid when b > —1.

An estimate such as (1.7) clearly implies the Lipschitz continuous dependence of u? w.1.t. the
parameter §. One of the main goals of this chapter is to derive a uniform bound on the Lipschitz
constant L in (1.6). To understand the basic idea involved in this estimate, assume that for each
9 all wave-fronts in u? interact two at a time. Let P? be the point in the (¢, z)-plane where an
interaction takes place. If the two incoming waves shift at constant rates as 6 varies, the same holds
for the outgoing waves. Hence, for any given 6, the quantity

z? o
Z ”Aue(tf xa(t)) |§a[ (s‘:a - éﬁ(ﬁ) (1'8)

o8

Is a piecewise constant function of ¢, with discontinuities occurring precisely at times of interaction
between wave-fronts of u?. '

A bound on (1.8) in turn implies a bound on the length |v;]| in (1.4) and hence on the
Lipschitz constant L in (1.5), (1.6). The behavior of (1.8) at interaction times is illustrated by the

next example.

Example 2. Let u be a piecewise constant solution of (1.1) which initially contains two approaching

shocks of distinct characteristic families, located at z1(t), zo(t) with z1(t) < za(t). Let 6 —

10
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be the family of solutions obtained by shifting these two shocks at the constant rates &;,&2. The

shocks of w? thus occur on the lines = 22 (t), with
21(6) = z1(t) + 616, §(t) = wa(t) + £26.-

Assume that the interaction produces two outgoing shocks, at z§, z8 (see fig. 2). Standard interac-

tion estimates on the size and speed of the outgoing waves imply

lig — o] = O(1) - || Au(z1)]], lis — 21 = O(1) - ||Au(z2)]], (1.9)
HAu(:m) — Au(xl)“ + HAu(mg) — Au(mg)“ =0(1) HAu(:cl)H“Au(zg)H . (1.10)

With the Landau symbol O(1) we always denote a quantity which remains uniformly bounded (in

absolute value) by some constant C, depending only on the system (1.1).

Figure 2 Figure 3

Let P? be the point in the (¢, z)-plane where the interaction takes place. An easy computation

vields

ap? _ (& & Gz — 6172
o ’

By —dp &1 — 2

The shift rates of the outgoing shock are therefore

0z]  &(dy — #3) — &1(F2 — F3)

53: P - )

. Lo (1.11)
_0zf  gold —d4) — (2 — 24)
o= —+= - .
o0 &1 — &2

Using the bounds (1.9)~(1.10) and observing that the difference &1 — %3 is bounded away from

zero because of strict hyperbolicity, from (1.11) one obtains the basic estimate

T Jputaflia € 3 Ao |ltal + 0Q) - [Au)l[Aute) ]| (6l +lel) - (112)

a=3,4 a=1,2

Next, consider the case where the two incoming shocks belong to the same characteristic family,

and assume that from the interaction an additional shock of a different family emerges (fig. 3). In

11
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this case, (1.11) still holds, but now the denominator #; — &5 may be arbitrarily small. Genuine
nonlinearity implies

:i:l - i‘g Z C - (HAu(ml)H -+ ”Au(mz)“) (113)

for some constant ¢ > 0. Replacing (1.9)-(1.10) with the bounds

[Au(za)]| = 0(1) - [Aue)|[|Awte)]| ([au(@)] + [[Aute2)]]) (1.14)
”Au(:u;) — Aufzy) — Au(:cg)” = 0O(1) - HAu(a:l)“HAu(:cg)” (1.15)

”Au(ml)”ﬁcl + ”Au(xg)”:cg
[Au(@r) ||+ [|Au(z2)]|

Ty —

= 0(1) - ”Au(xl)HHAu(:cg)H (1.16)

from (1.11) we recover once again the fundamental estimate (1.12).

Although the quantity in (1.8) may well increase in time, the bound (1.12) indicates that a

weighted sum of the form

ldvl = > | Au(za) ||[€al Ra - 6] (1.17)

will be non-increasing, provided that the weights R, are suitably chosen, depending on the total
amount of waves which approach the wave located at z,. In this chapter, we choose weights of the

form

Ro=rq1+K > [Au(g)|p-exp K > ||Au(zg)|]|Aulzs)] ¢ (1.18)
(a,B)EA (8.8)eA
where A denotes the set of couples of approaching waves, K is a suitable constant and x = 3 or
& = 1 depending on whether the wave at z,, is a rarefaction or a shock.

One can now use (1.17)-(1.18) as the starting point for the construction of a Riemann—type
metric, equivalent to the usual distance in L. Since the infinitesimal length ||d~| does not increase
in time, this new metric is expected to be contractive w.r.t. a semigroup of solutions to (1.1).
Note that the above analysis is not at all in contradiction with [Te], because the class of metrics

considered by Temple is quite different from ours.

At this stage, a major technical difficulty must be pointed out. Indeed, the previous heuristic
analysis was made under the assumption that the wave-front configuration of v in the (t,z)-plane
remained the same for all values of 4. In practice, however, the order in which the wave—fronts of 1%
interact with each other may well be different for various values of the parameter. To estimate the
length of a path +; by the integral formula (1.4), the following regularity hypotheses are essential:
(H) As the parameter 6 ranges in [a, ], let u® be the approximate solution constructed by a given

algorithm, with initial data u%(0,-) = @® as in (1.3). Then there exist countably many disjoint

open intervals Jj, and countably many points 6, such that

12
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(i) [a, 8] = (UJn) W {61,02...},

(ii) As 8 varies inside each Jp, the wave—front configuration of the solution u? remains constant.

(iii) The map 8 — u? is continuous at each point ;.

Looking back at the algorithms in [B2}, [D2], [Ri], it is easy to see that they do not satisfy the
crucial property (iii). Indeed, for the purpose of keeping finite the total number of discontinuities
present in the approximate solution, at certain stages one is forced to disregard some waves of small
amplitude. The choice of the waves to be suppressed is essentially determined by the order in which
the initial waves interact. Of course, this order may change suddendly at some critical parameter
values.

We remark that, for the scalar conservation law, the first wave—front tracking algorithm pro-
posed by Dafermos [Da] actually does satisfy (H). The same is true for the algorithm developed
in [B3], (p. 355-365), which we regard as a natural generalization of [7] to a class of 2 x 2 systems.
In the scalar case, anyway, the existence of a contractive semigroup of entropy—admissible solutions
has been known since the classical papers of Kruzkov [K] and Crandall [Cr].

To appreciate how difficult it is to satisfy (H) in the general case of systems, consider a one—
parameter family of exact solutions u® which initially contains shocks across the lines z = 29 (t).
Let the second shock be shifted as 6 varies, while all the others remain fixed. As the parameter

crosses a critical value 6, assume that the wave—front configuration changes as in Figure 4.

Figure 4

In the presence of additional shocks at z4, T3, . - -, the number of wave—fronts may well become
infinite within finite time. An infinite number of different wave—front configurations can thus occur,
as 0 ranges over every open interval. In this case, the family {ue} of exact solutions will not
satisfy (H). Instead of exact éolutions, it is thus natural to work with a family of approximate
solutions v?, constructed by a wave—front tracking algorithm. Such an algorithm will remove
from the exact solutions all but finitely many shock fronts. As 6 varies, the number of different
configurations for the wave—fronts in »? will thus remain finite.

Unfortunately, the removal of these shock fronts (the finer lines in fig. 4) causes the map

70 — v2(t,-) to be discontinuous at 6 = 8, hence (H) again fails. In this case, the length [yl

13
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can no longer be computed by (1.4), missing the additional term

v§+(t, ) - vé—(t, )

. (1.19)
Needless to say, the estimate of terms such as (1.19) is usually a hopeless task.

At the present date, for general n X n systems this technical problem remains unresolved.
For 2 x 2 systems, the modified wave—front tracking algorithm developed below can overcome this
difficulty thanks to a careful approximation of shock profiles and thanks to the existence of a
coordinate system of Riemann invariants.

We recall that, for a standard Riemann problem with data (u“, u+), the self-similar solution
is constructed as follows [Lal], [Ro], [Sm]. Through each point v € R?, for i = 1,2 one defines
a parametrized curve o +— v¥;(0)(u) which coincides with the rarefaction curve for ¢ > 0 and
with the shock curve for ¢ < 0. Unique parameter values 01,02 are then found, such that u™ =
bo (¥1(u™, 01), 09).

In the new algorithm, for a given € > 0, an e-approximate solution of the Riemann problem
is obtained replacing the maps v; with ¥, where ¥{(-,0) coincides with a rarefaction curve for
o > —+/e and with a shock curve for ¢ < —2y/e. For o € [—2\/2, \/E] a smooth interpolation is
used. Centered rarefaction waves are then partitioned into pieces of size < € and approximated by
rarefaction fans.

The uniform bound on the total variation implies that the number of shock waves with strength
lo| > /€ is a priori bounded, while all other waves behave as rarefaction waves. The existence of
a system of Riemann coordinates implies that every interaction between waves of strength < /=
does not change the size of the interacting waves and does not produce any new wave. Therefore,
our algorithm does not need any provision for killing small waves in order to reduce their number.
The number of wave—fronts present in any approximate solution remains automatically finite, for all
t > 0. A detailed analysis will show that the hypotheses (H) are indeed satisfied. For every ¢ > 0,
we thus obtain a Lipschitz continuous semigroup S° of piecewise constant approximate solutions.
Letting € — 0, we then prove the convergence S° — S, for some uniformly Lipschitz continuous

semigroup S: [0, +oo[ X D+ D.

It remains a challenging open problem to extend the present result to general n x n hyperbolic
systems. In our construction, the assumption n = 2 plays a key role at two occasions. First. it
implies the existence of Riemann coordinates, introduced at (2.1). At a later stage of the proof, it
guarantees the local boundedness of the number of wave—fronts, at (5.7)—(5.8).

We remark that, if a globally Lipschitz semigroup exists, then the estimate (10.1) shows a poste-
riori that the approximate solutions constructed in [B2], [D2], [Ri] by wave—front tracking constitute

a Cauchy sequence, uniformly converging to a unique semigroup trajectory. In order to cover the
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general n X n case, apparently one should derive these same estimates on the distance between ap-
proximate solutions using some alternative a priors method, without already assuming the existence

of the semigroup.

This Chapter is organized as follows. In Section 2 we describe an algorithm which constructs
a family of piecewise constant approximate solutions. Section 3 contains an outline of the proof of
Theorem 1, given as a sequence of propositions. The technical details involved in the proof of these

propositions are then worked out in the remaining sections 4 to 10.

2 — The Algorithm

It will be convenient to work with a set of Riemann coordinates v = (v1,v2). We can assume
that the origin in the u—coordinates corresponds to the origin in the v—coordinates, and that the
map v — u(v) is a local diffeomorphism. In these new variables, the rarefaction curves through a

point v = (vy,v2) can be naturally parametrized as

—+
T

d)‘{(b, O') = ('Ul + o, UQ) , o (’U, o') = ('Uly vy + 0‘) . (2.1)

On the other hand, since shock and rarefaction curves have second order contact, the shock curves

through v can be written in the form
1 (v,0) = (v1 + o, vo + (52(17, o) - 0'3) , ¢y (v,0) = (vl + @1(7), o) - o vy + O') , (2.2)-

where 551, g?)g are suitable smooth functions of their arguments.
We denote by A1(v), Az(v) the eigenvalues of the Jacobian matrix A (u(v)) = DF (u(v)),
numbered so that A; < Ag. Ifu~ = u(v™) and u™ = u(v™), by Ai(v™,v") we denote the eigenvalues

of the averaged matrix
1
Alu=,ut) = / DF (ou* + (1= 6)u™) a6 (2.3)
0

It is well known [Lal], [Sm] that the Rankine-Hugoniot conditions hold for the states u™, v~ if and
only if
Alw™,u ) u —u7) = Ao, v (ut —u7).

Performing a linear change of coordinates in the (¢, z)-plane, we can assume that
AL <0< Ao, 0 < AT < \] < AT (2.4)

for some constants A™ N\
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Now let € > 0 be given. For i = 1,2, through each point v we construct a parametrized curve
o + ;7 (v,0) which coincides with the rarefaction curve ¢ for ¢ > —+/z and with the shock curve

¢; for o < —2/e. This is done by choosing a smooth function ¢: R — [0, 1] such that

o(e) =1 if o <-2,
o() =0 if o>-1, (2.5)
©'(0) €10,2] if oe[-2,-1].

and by defining

¥{(0,0) = 9(0/VE) - 67 (v,0) + (1= wl0/v3)) - 6 (v,0). (2.6)

In connection with the curves Y3, the next lemma guarantees the existence of an approximate
solution to the Riemann problem (1.1), with initial data given (in terms of the v—coordinates) by
b if <0 ~
0,z)=¢vlv) it =<, 2.7
u(0,2) {u(vu) if x>0 27
Lemma 1. There exists a neighborhood V of the origin, independent of €, with the following
property. If vb,vu €V, then there ezists a unique intermediate state vi € V and parameter values
01,09 such that

ot = S oq), vt = g5 (vl ap) . (2.8)

Proof. For each ¢ > 0 and v in a neighborhood of the origin, consider the composed map
U(a1,00) = 45 (¥1(% 01),02) -

From the definitions (2.1)-(2.6) it follows that ¥ is smooth and that its Jacobian at o1 = o = 0
is the identity matrix. Therefore, by the implicit function theorem, the equation U(oy,00) = ot
admits a unique solution for every v! in a neighborhood VE'e) of b,

To prove that the size of this neighborhood can be chosen uniformly w.r.t. &, by the theorem of
Kantorovich it suffices to show that the second derivatives of the map ¥ remain uniformly bounded
as v* ranges in a neighborhood of the origin and € — 0. Since ¥ is the composition of two maps,
it suffices to show that the partial derivatives of the functions %¢ in (2.7) remain bounded. When
i = 1, recalling (2.1) and (2.2) we obtain

_h8¢1;:’0) = 5% (v1 +o,v2te (0/\/5:)> - p2(v, 0)03)

= (1720 () -batvoie®+0 () [ﬁ%}ﬂaa + 3&z<v,a)02] 29)

%95 (v,0) ¢~ 5 29 |00 3 s 9 8% ¢o 3 9o 9 -
— =0 = —= |5 ' . 66— 6 2.10
902 2 P20’ + NG Fyad + 320} + o 5520 T pyad + 6¢a0 (2.10)

16
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By the properties (2.5) of ¢ we have

o' (0] VE) = ¢ (a/v/e) =0 Vo ¢ [—zﬁ, \/g] .

Therefore, the quantities (2.9)—(2.10) remain uniformly bounded as e — 0. Differentiating (2.6)—
(2.9) w.r.t. the components vy, vz one obtains quantities with the same order of magnitude. The
computation of the partial derivatives of ¥§(v, o) is entirely similar. Therefore, the C? norm of
the composed map ¥ remains uniformly bounded as € — 0. By Theorem 5.A in [Z] (p.210), the
size of the neighborhoods Y®@".€) can be chosen uniformly w.r.t. e. This completes the proof of the

Lemma. N7

Remark 1. From the above proof it follows that there exists a constant C independent of £ such

that, for all »°, v € V, the values 01,02 in (2.8) satisfy the bounds

1

Co

o — Pl < jou] + o] < Co- [|of =2 (2.11)

Remark 2. The exact solution of the Riemann problem corresponding to the initial data (2.7) is

found in terms of the C? functions

) P q’bi—-(vv O') if o < 0j
iv,0) = {(b:r(v,a) it  o>0.

Here ¢ (v,-) and ¢; (v,-) are the maps introduced at (2.2) and (2.1), which parametrize the i~
shock and i-rarefaction curve through v, respectively. As e — 0%, from (2.9)-(2.10) it follows the

convergence

WS — Py, Y5 — P2 in C2. (2.12)

Because of this key property, all of our future estimates concerning the interactions between wave-

fronts of e—approximate solutions will remain uniformly valid as e — 0.

Now assume that o", v" and v! are three states related as in (2.8). If oy > 0, then the jump
(vb, vh) corresponds to a centered rarefaction wave. This wave will be approximated by a piecewise

constant rarefaction fan, inserting intermediate states as follows. Assume

v = (v?,v%) = (vg + o1, vé) ; (2.13)

he <o) < (A + 1)e, ke <ol < (k+1)e. (2.14)

for some integers h < k. Then define
w{i(jg,ug>, w{—<’; e,ug), j=h,.. .k (2.15)

17
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VP if < t- /\1(3?),
v(t,z) = ¢ Wl it M@ ) <z<t- M@ j=h41,...k, (2.16)
o it t-a@F) <z <o,

On the other hand, if o1 < 0, then the states v, v will be connected by a single jump, which is a
true shock when o1 < —2+/e. The speed assigned to this jump by our algorithm is determined as
follows. Call

A (e o1) = A <'Ub, ¢1_(vb,01)> (2.17)

the speed of the true shock with size o1, connecting the two states v* and qﬁf(vb, o1). Then consider

the averaged speed

meas ( [je, ( + 1)e] N [, v8] A
)‘Z(vbyal) = Z ( lo1] — ) A @7) | (2.18)

J

where &3{ are the states along the rarefaction curve through »”, defined at (2.15). Finally, interpolate

between the two previous speeds by setting

M (,01) = 6(01/vE)  MF 1) + (- p(o1/vE)) - MGk, o) (2.19)
and define
v’ if oz <t-AP(0,00),
v(t,z) = (2.20)
vt if t-A2(h,01) <z <0,

The previous formulas (2.16) or (2.20) thus determine the values of a piecewise constant approximate
solution to the Riemann problem (1.1)—(2.7), on the quadrant ¢t > 0,z < 0, in terms of the v—
coordinates.

On the quadrant where z > 0, our approximate solution is constructed by applying the same
steps (2.15)—(2.16) or (2.17)~(2.20) to the jump (v, v!) of the second family (of course, interchanging
the roles of the indices 1, 2). In particular, if o3 > 0, then the approximate solution will contain a

rarefaction fan of the second family. Assuming
ot = (v%,‘vg) = (vlll,vg +o9),

he < vl < (b +1)e, ke < vl < (E+1)e

for some A < k, we thus define

. . 2i+1
7 . b . -~ . b "‘] .
wé = <v1,]e) , w% = <v1, 5 e), j=h,...,

o

(2.21)
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ot if 0<z<t-A(h),
v(t,z) = { W) it tex@ <z <t @) j=h+1L. Lk, (2.22)
o if t-x(@F) <z <O,

On the other hand, if oo < 0, then we define

ol if 0<z<t-Af(h o),
v(t,z) = (2.23)
vl if x>t /\g(uh,(rg).
Here the speed
AL(wh,02) = {00/ V/E) - A0t 1) + (1= 0(a1/VE) ) - N(oh ). (2.24)

is an interpolation between the true shock speed
AS(0h, o9) = Az (Uh, ¢2_(Uh,(72)) (2.25)
and the average of characteristic speeds

meas (Jje, (j + 1)l 1 v},

ozl

) |
) SUED (2.26)

/\g(vh"f?) = Z

Remark 3. Let some value v} for the second coordinate be fixed. Consider the scalar conservation

law for the single variable v;:

(1) + [Fb(vl)] =0, (2.27)

x

where v1 — F”(v;) is a continuous, piecewise linear map such that

dF®
dvl

(v1) = A (@7)  if v € e, (G +De]

h

with 53{ as in (2.15). In the case where vy = vg and 'UE = vi{ + 0 for some o1 € [—+/¢, £}, we observe
that the first coordinate v = vy (¢, z) of the function v defined at (2.16) or at (2.20) provides a weak,
entropy—admissible local solution to (2.27). This key property motivates the definition (2.18) of the
speed of a small shock. Of course, the same property is true for waves of the second characteristic

family.

Remark 4. If the i—th characteristic family is linearly degenerate, then the shock and rarefaction
curves coincide. In (2.1), (2.2), (2.6) we thus have

61 (v,0) = ¢7 (v,0) = ¥ (v, 0) Ve, 0. (2.28)

19



Chapter 1

Since the characteristic speed is constant along these curves, the interpolation at (2.19) or (2.24)

in this case is trivial.

At this stage, for every fixed ¢ > 0, we have defined an algorithm for solving the Riemann
problem within the class of piecewise constant functions. Let now # be a piecewise constant initial
condition with bounded support and small total variation. An e—approximate solution to the Cauchy
problem (1.1)-(1.2) can then be constructed, in terms of the Riemann coordinates (v1, vy), simply
by applying the previous algorithm each time where two wave fronts interact. More precisely,
we first solve the Riemann problems at time ¢ = 0 determined by the jumps in 4. Then, the
piecewise constant approximate solution v(%,-) is continued up to the time ¢; where the first set of
interactions takes place. These Riemann problems are solved applying again the above algorithm.
This determines the solution v up to the time t» where the second set of interactions takes place,
etc. ..

We will eventually prove that the approximate solutions generated by this algorithm are well
defined for all ¢ > 0 and depend continuously on the initial data, with a Lipschitz constant inde-
pendent of e. Letting ¢ — 0, the limit will yield a uniformly Lipschitz continuous semigroup of

weak solutions for (1.1).

Before closing this section, we give an alternative characterization of the e~approximate solu-
tions constructed by the algorithm. This will prove useful for later purposes.

To remove any ambiguity, by a piecewise constant function o:R +— R? we always mean a
function with finitely many jumps. We say that a function v defined on a subset of the (¢, z)-plane
is piecewise constant provided that every strip [t1, t2] X R contains at most finitely many segments

of the form z = 7, + At where v has a jump, and v is constant outside these segments.

Definition 1. Let v = v(t,z) be a piecewise constant function. An e—admissible wavefront of
the first family is a line z = z(t) across which a function v has a jump, say with v~ = (v{,v5),
vT = (v],v5), satisfying the following conditions.
(i) If v > o], then v = vy and, for some integer k one has
ke <vi <o < (k+1)e, =M@,
where @ is the state with coordinates <(2k + 1)e/2, v2'>
(ii) If vi7 < o7, then vt = 4$(v™,01) for some o; < 0 and & coincides with the speed
AY(v™,01), defined according to (2.19).
We regard (i)—(ii) as a set of approximate Rankine-Hugoniot conditions. The e-admissible wave-

fronts of the second family are defined in an entirely similar way.

Definition 2. A piecewise constant function v = v(t,z) is an e—approzimate solution (or simply

an e-solution) if all of its lines of discontinuities are e~admissible wave-fronts.
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Remark 5. For any piecewise constant initial data , the e-approximate solution constructed by
our algorithm is precisely the unique e-solution (according to Definition 2) v = v(t,z) such that

v(0,-) = o. Using a semigroup notation, this unique solution will be denoted by

ult,) = 557 . (2.29)

The above claim about uniqueness can be proved as follows. Since we are working within
a class of piecewise constant functions, it suffices to show that for any left and right states v,
u! the piecewise constant function v constructed by the algorithm at (2.16) or (2.20), and (2.22)
or (2.23), provides the unique e-solution of the Riemann problem. Let w = w(t,z) be any such
e—solution. By strict hyperbolicity, among the values of w one can isolate an intermediate state ol
which is connected to the right of v* by e~admissible waves of the first family and to the left of vt
by e-admissible waves of the second family. If v* and v are connected by one single wave, then
we certainly have v = $(vb,01) for some o1 < e. If »? and v are connected by more than one
e—admissible wave—front, since the speeds of these wave—fronts must increase from left to right, this
implies vT = ¢7 (0", 01) = ¥$(v°, 1) for some oy > 0. Similarly, vt = 9§ (vf, 02) for some o3. By the
implicit function theorem, we conclude that ! coincides with the intermediate state v¥ constructed

by the algorithm. The uniqueness property is thus proved.

Remark 6. For e-approximate solutions, the following rescaling property holds. If v is an e-

solution, then for every t,% and p > 0 the rescaled function

o(t,z) =v (,u(t —1), plz — i)) (2.30)

is also an e—solution. Of course, exact solutions have this same property as well.

3 — Qutline of the Proof

In this section we state a chain of propositions which together imply Theorem 1.

In the initial part of the proof we fix ¢ > 0 and show that the e—approximate solutions con-
structed in Section 2 by our wave—front tracking algorithm are well defined for all £ > 0 and depend
Lipschitz continuously on the initial data.

In the analysis, it is convenient to use always the Riemann coordinates v = (v1,v2). The first
step consists in deriving a priori bounds on the total variation of approximate solutions. After the

classical paper of Glimm [G], the technique for deriving such estimates has now become standard.
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Let v: R +— R? be a piecewise constant function with bounded support. Call z; < --- < zn
the points where v has a jump. Assume that the Riemann problem at each point z, is solved by

our algorithm in terms of waves of size o, 0§, i.e.

v(zat) = U5 (¥ (v(za=), oF), oF) | (3.)

with ¥ given at (2.6). The total strength of waves in v is then defined as

N
Ve@) =D D ed, (3.2)
a=14i=1,2

while the interaction potential is
a B

. (3.3)

Q(v) =)
A

As usual, the sum ranges here over the set A of all couples of approaching waves. We recall that,
when z, < z3, the two waves o3, 0;3 approach if either 1 = 2,7 = 1, or else i = j, the i—th family is
1Y ;g

genuinely nonlinear and min {or‘?‘ cr‘“-?} < 0. Notice that, for a given function v, the quantities (3.2),

(3.3) also depend on &, because at each point of jump z, the wave sizes o are defined in terms

of (3.1) and (2.6).
Proposition 1. There exists a constant §* > 0, independent of €, for which the following holds.
Let v be a piecewise constant initial condition with bounded support, such that

VED) + Q%(v) < 67, (3.4)

and let v = v(t,z) be the corresponding e—approzimate solution constructed by the algorithm on

some initial interval [0, T[. Then the quantity

Ve (v(t, )) + Q° (v(t, )) t€[0,T] (3.5)
18 a nonincreasing function of time.

Throughout the following, we fix some 6§* > 0 according to Proposition 1, and define the
g g )

domain

Df = {U € L' (R;R?); v is piecewise constant, V°(v) + Q°(v) < 6*} (3.6)

By Proposition 1, if v(0, -) € D¢ and if the approximate solution v can be constructed on some initial
interval [0, T'[, then v(¢,-) € D¢ for all t. In particular, the total variation of v(t, -) remains uniformly
bounded. Lemma 1 thus implies that every Riemann problem generated by an interaction can be

uniquely solved according to the algorithm. In order to prove that v can actually be defined for all
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times t > 0, it remains to show that the total number of wave—fronts and of points of interaction

remains finite.

Proposition 2. Letv be an e—approzimate solution constructed by the algorithm, with v(t,-) € D°
for all t € [0,T[. Then all of the shocks of v with size ¢ < —+/€ are located along a finite number
of polygonal lines, say x = z4(t), t € [t7,tL] € [0,T], «=1,..., N.

a) ol —

By (2.5), (2.6), outside these finitely many polygonal lines the approximate solution behaves
as in the case of a system with coinciding shock and rarefaction curves. In particular, small waves
cross each other without changing their size and without generating any new wave. Thanks to this

key property, one has

Proposition 3. Letv be an e—approzimate solution constructed by the algorithm, with v(t,-) € D¢
for allt € [0,T[. Then the set of all points where two or more wave—fronts interact has no limit

point in the (t,z)-plane.
Recalling the definition of the domain D° at (3.6), Propositions 1-3 together imply

Proposition 4. There ezists §* > 0 such that, for any e > 0 and every initial condition v(0,-) =
o € D¢, the corresponding e—approzimate solution v = v(t,z) constructed by the algorithm is well
defined and contains a finite number of wave-fronts and interaction points in the (¢, z)-plane.

Moreover, v(t,-) € D° for allt > 0.

To denote this unique, globally defined e—approximate solution, we shall often use the semi-
group notation (2.29).

The next section of the proof works toward an estimate independent of € of the Lipschitz
constant, in the L' norm, for the semigroup S°. The key idea is to shift the locations of the jumps
in the initial condition o at constant rates, and then study the rates at which the jumps in the

corresponding solution v(t,-) = Siv are shifted, for any fixed ¢ > 0.

Definition 3. Let ]a,b[ be an open interval. An elementary path is a map ~:]a, b =+ L of the
form

a-11Tq

N
"/(G)ZZwa'X} o 9}, 20 = Zq + Eal, (3.7)
=1 z

withz%_, < 2 for all § € ]a,b[and a = 1,..., N. Otherwise stated, for each 0, the function v(#) is
piecewise constant with bounded support. As § varies, the values w1, . .., wn remain constant while
the locations of the jumps z§,. ,z?\, shift with constant speeds £o,...,En leaving the ordering
28 < --- < 2 unchanged.

Definition 4. A continuous map ~: [a, b] — L is a pseudopolygonal if there exist countably many

23



Chapter 1

disjoint open intervals Jj, C [a, b] such that:

(i) The restriction of v to each Jj is an elementary path.

(ii) The set [a,b] \ Up>; Jn is countable.
As remarked in the Introduc?tion, it is clear that every couple of piecewise constant initial conditions
¥, W can be joined by a pseudopolygonal, say v,: 8 — @°. For each 6 € [a,b] let v2(¢,-) = S£5¢ be
the corresponding e—approximate solution constructed by the algorithm. A remarkable property of

our algorithm is that it preserves pseudopolygonals:

Proposition 5. Let v,:0 — ©° be a pseudopolygonal, with 5% € D° for all 0 € [a,b]. Then, for all
7> 0, the path

Yr = S2 079, ( pe. v 0 00(r, ) = Siﬁo) (3.8)
15 also a pseudopolygonal. Indeed, there exist countably many open intervals Jp, such that [a,d] \
(Uh Jh) is countable and the wave—front configuration of the solution v® on [0, 7] remains the same

as § ranges on each Jp.

More precisely, for 6 € Jp, the functions v% have the same number of wave-fronts, interacting
at the same number of points inside the strip [0, 7] x R. As 6 varies, the locations of these fronts
and of the points of interactions are shifted with constant speeds in the (¢, z)-plane.

We recall that the L! length of a continuous path ~:[a, b] — L is
vl = sup ¢ > (0 = v (0| s N 21, a=6< by < <Oy=b

From the above definitions, it follows that the L' length of the pseudopolygonal ~y, is just the
sum of the lengths of the elementary paths obtained by restricting +, to each subinterval J,. To
estimate this length, we now study in detail the case where the map v,: 8 — v%(0, -) is an elementary
path and the wave-front configurations of the corresponding solutions v? = v?(¢,z) on the strip
[0, 7] X R are the same for all § € ]a,b[. For a fixed t € [0,7], let v?(¢, ) be the piecewise constant
function

Ue(tvx Zwax} 0 (t), 29 (t)] (), xfﬁ) = Zo(t) +Eal (3.9)

To—1 a

The length of the path v;: 6 +— v%(¢,-) is then measured by

dg

za)| 46, (3.10)

lvell =

where Av?(z4) = wa 1 — wg is the jump of vo(t, -) at the point z,. In order to relate the length of

v¢ with the length of the path «, of initial conditions, for any given 0 €]a, b[ we study how the sum

dx
>|

'Ave(ma)

(3.11)
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varies in time. Clearly, this sum can change only at times { where some interaction takes place
between two or more wavefronts of v%.
To fix the ideas, consider an interaction between two incoming waves, say with sizes 04,03 and

located on the lines
22 (t) = z4(t) + £ab, 2 (t) = zp(t) + a0 -

Before the interaction, as the parameter # varies, the incoming wave—{fronts thus shift at the rates

 azl(1) _ dzp()
ga_—jé_é—) 5,3“ 90 .

(3.12)

Assume that the interaction produces n; waves of the first characteristic family, with sizes
O1,1,---,01,n,, and ny waves of the second family, of size ¢21,...,02,n,- The point of interaction
PY = (7?9, :E‘9> in the (t,z)-plane will then shift at a constant rate, as well as the locations of the

outgoing wave—fronts, say
z = 2?,(t) = 2;2(t) + &0, i=1,2, £=1,...,n;. (3.13)

The next Proposition provides the basic estimate on the strength of waves and on their shift
rates, before and after an interaction. It represents the analogue of (1.12), stated here for the

e—approximate solutions generated by our algorithm.

Proposition 6. There ezists a constant K, independent of & such that, whenever two wave—fronts

interact, with the above notations one has

ST 5 loustiel < loakal + |osts| + Ko|oaop] (Isal + léﬁt) : (3.14)

i=1,2 £=1
In general, the L' length of a path v;: 0 — v9(t,-) of e~approximate solutions may well increase
in time. Thanks to (3.14), however, this increase can be controlled in terms of an interaction
potential. Indeed, we will introduce on D an equivalent Riemann-type metric, which is contractive
w.r.t. the semigroup S*.
First, let v:]a, b[ — D¢ be the elementary path at (3.7). We then define the weighted length of
~ by setting

vl =D > (6—a)|oféal - BY, (3.15)

a 1=1,2

Re = @4sge?) 14K 3 ‘Uﬂ eplK S \J?%@,’; . (3.16)
(a‘?,a?)GA (U?,afll yeA
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Here of, 0§ are the sizes of the two waves generated by the Riemann problem with data wg, Watl,

so that
Wat1 = U3 (zﬁi (war o), aé") , (3.17)
while A is the set of couples of approaching waves and K is a suitable constant whose value will be
determined later. Observe that the weight R® essentially depends on the total strengths of waves
which approach o*. Because of the first factor in (3.16), the weight assigned to a rarefaction wave
(with off > 0) is three times larger than the weight assigned to a shock (with o < 0). Clearly, the
length ||v]|, depends on e through the wave strengths ]a?l, determined by (3.17).
In the more general case where v is a pseudopolygonal, we define the weighted length Il as
the sum of the weighted lengths of its elementary paths. Observe that, by (2.11), there exists a

constant Cy independent of ¢ such that

Co Ivllza < lvlle < Collvllga (3.18)

Proposition 7. There ezist constants K and §* > 0 such that, with the definitions (3.6), (3.15)
and (3.16), for every e the following holds. For 0 € |a,b, let vo: 6 — %% € D° be an elementary

path, as well as v,:0 — v0(7,-) = 5559, for some v > 0. Assume that, on the strip [0,7] x R, the

e

wave-front configuration of the e-solutions v” remains constant for all 8. Then, as t € [0,7], the

weighted length of the path v; is a non—increasing function of time.

On the domain D* of the semigroup S° we now define the Riemann—type metric

de(, w) = inf {|}7]|.: v is a pseudopolygonal with values inside D°, joining ¥ with W}, (3.19)

Proposition 8. There ezists 6 € |0, 6] such that, restricted to the domain
DE = {v € L' (R, R?):v is piecewise constant , VE(v) + Q°(v) < 5} , (3.20)

the distance d. in (3.19) is uniformly equivalent to the usual LY distance. Moreover, d. is contractive

w.r.t. the semigroup S¢ generated by our algorithm, i.e.

d. (Siv, S;w) < d.(3, ) Vvt >0, ©,w€D". (3.21)

In terms of the L distance, (3.18) and (3.21) imply
1555 — 5|, < Lo — @ga Vt >0, 5,@ € D°, (3.22)

for some constant L independent of «.
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To complete the proof of Theorem 1, we consider a sequence of semigroups S*», with e, = 27"

and construct the limit semigroup as n — co. More precisely, let De be as in (3.20) and define the

domain
D= {5: o, — ©, B € D ‘v’n} ,
For v € D, set
Siv = nan;O S5m0, (3.23)

where v, € D" is any sequence converging to ¥ in L. One concludes by proving

Proposition 9. The semigroup S in (9.23) is well defined and satisfies the conditions (i)-(v)

stated in Theorem 1.

4 — Basic Interaction Estimates

Beginning with this section, we fix some ¢ > 0 and consider a piecewise constant e—approximate
solution v = w(t,z) constructed by the algorithm in Section 2, always working with Riemann
coordinates v = (v, v2). Since we are eventually interested in the limit of approximate solutions as
e — 0, it it not restrictive to assume 0 < ¢ < v < 1.

The first two lemmas provide the basic estimates on the total strength of waves emerging from
the interaction of two incoming waves. By O(1) we always denote quantities uniformly bounded
by a constant which depends only on the system (1.1), and not on & or on the particular solution

considered.

Figure & Figure 6

Let v*,0¥ be the left and right states near an interaction point. Call v* the middle state before
the interaction and v! the middle state after the interaction. In the following, for i = 1,2 we denote

by cr,;" the total size of outgoing waves of the i—th family. Recalling (2.6), we thus have
of = us (vt o) od ) - (4.1)
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Lemma 2. Assume that the two incoming waves have sizes o7 and o5 and belong to different

families (fig. 5). Then

0 if o], 05 > —/€,
+ — + — 05 | = G
‘01 71 (_’_ ‘02 72 l o(1) - IUI—U;' (,0’1—1 -+ IU;D otherwise. (4.2)
Proof. The above assumptions imply
vt =3, 07), of = 9§ (v*,07),
ol = ${ (", 07), ol = y5(vh, o7) .
By the implicit function theorem and by the definition of ¥$ at (2.6), it follows
2
St = o] = 0 ot (w5 o)1) — v5 (ui0h o3 )|
i=1
- Sy oy N I
= O(1){ (o7 /V3)|a(e",07) = b2 (5" 07), 07 ) |07 |
- . i b -y — P I I
(o7 /VE) |91 (¥5(eh07), 07 ) = (%) o7 |
0 if o], 00 > —v/5,
) o@)- Iorl’az" [(0‘1_)2 + (02')2} otherwise.
which is even stronger than (4.2). s

Lemma 3. Assume that the two incoming waves both belong to the first family and call o/, o’

their sizes (see fig. 6). Then
0 if o', 0" > —/¢/2,
+ / 'z +| .
IUI e )l + IUZ l - {(9(1) . [a’o-”| (IO’/I + |cr”!) otherwise. (4.3)
In the case where both incoming waves belong to the second family, one has

0 ifU,7U,l Z _\/E/Q: )
|U;rl + ’U; — (o' + U”)} - {0(1) . [U’cr”] (‘O"] + ‘O'HD otherwise. (4.4)

Proof. Assume that both incoming waves belong to the first family. By the implicit function

theorem, we have

JIF _ (U/ + U//) Uu . T/Jf(vbya', + a_l/)

+ la;': o@1)-
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If o/, 0" > —+/2/2, the conclusion is clear because, by (2.5),
o' 1V3) = (o VR = ¢ (0" + 0")/VE) =
In the other case, from (2.6) and (2.2) it follows

— (b, 0" + o) = 8107, 00 (0" /VENS) + 1, 0o (0 VRN ()

_ (131(017,0’ + o) ((0’ + O_//)/\/'E‘> (o + 0//)3
,/‘/E)IOJ|3

IA

5108, 0") = b1, 0" + o) ol VAo + 10 0) = G160 + )
+ |50 + ") {lw(a’/\/z) —o (' + o")IVE) [aﬂﬁ}

o' +o” ’n / " B
go( 7 )-3|001(|0‘+|0 l) (4.5)

Recalling the properties (2.5) of , one checks that each term on the right hand side of (4.5) is
uniformly bounded by a constant multiple of }cr' " l (|0 l—i— la"l). The case where both waves

o3

o' + 'w(d"/\/g) o (o' +o"/1V7)

— g%l(vb,a'/-kcr")

belong to the second family is entirely similar.

Our next goal is to extend the previous estimates to the case of interactions involving an
arbitrary number of incoming waves. The basic inductive step is provided by the following Lemma,
analogous to Theorem 2.1 in [G], which deals with the coupling of two Riemann problems.

For notational convenience, we introduce the function

- N {O ich O’"> \/—5—/2, (4.6)'

;ony -
Qo' 0") = l ! ”l otherwise.

Lemma 4. Let vb,vh,vu be any three nearby states. Assume that the Riemann problems (vb,vh)
and (v1,v!) are solved by waves of size o1, oy and of size o, o4, respectively. Then the Riemann

problem (v", vﬁ) is solved by waves of size UT,O‘E’ satisfying the bound

o, — (cr'1 + a’l') 4+ oo — (aé + o-é’)

{cz(al,oz ) (lot ]+ |o]) + Gt o) (|64 + o) + Qo8 (|| + |31 }
(4.7

for some constant Cy independent of €.

Proof. Introduce the points
v = u5 ($56P,oh +ol)oh +of).
1 b 2 s 3 N 4
w = wi(” 7011) W= wl(wballl) w = ¢2(w27 0—/2) w = wg(w& Ul2l)7
o=y ol +oy) vt = vi(ws ontod).
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Using the previous estimates (4.2)-(4.4) we obtain

of — ¥l <

T A ey L R
=0(1)- {l E(vh,a'l’) — w3|| + Hw4 — ’U2“ + ”Ul - wzn}
<Gy {@w;ca'z) (lo71+ [o%]) + @, ot) ([ot| + [o4]) + Olep,o5) ([oa| + |ag|)}

for some constant Cj independent of . By the implicit function theorem, this proves the lemma. "X

In the following, for a given s—approximate solution v = v(¢, z) constructed by the algorithm,
we denote by V(t) = V¢ (U(t ) and Q(t) = Q¢ (vw(t, -)) respectively the total strength of waves
and the interaction potential for v(t,-), defined as in (3.2)-(3.3). For the one-sided limits and the
jumps of V, Q@ we use notations such as

V(r+) = t}ig1+V(t), V(r—=)= lim V(¢), AV(r)=V(r+)=V(r—) .

t—T—

In the sequel, with abuse of notation, we sometimes simply say the wave o;, referring to the wave—
front whose size is o;. If the solution v contains n waves of size o1,...,0n, for 7,7 = 1,...,n we

introduce the quantities

@(01‘, i) = |or,<aj| if the waves 0, 05 aTe approaching, (4.8)

0 otherwise.
Lemma 5. At time t = 7, let n waves with sizes o1,...,0, interact all together, with o1,...0my,,
belonging to the second characteristic family and opyv1, . .., 0op to the first (fig. 7). Moreover, assume

that

Vi) + Q=) <min{ g 5. (49)

where C1 is the constant in (4.7). Calling af, o';' the total sizes of the outgoing waves, one has

n

o — Z ol + |og — ZUJ < |AQ(r)] (4.10)

j=m+1
1
AQ(r) < —3 > Qo oy) (4.11)
1<i<i<n
V() Q) S V() + Q). (1.12)

Proof. To estimate the left hand side of (4.10), we work by induction on the number of interacting
waves. More precisely, for each k = 1,...,n, consider a slightly perturbed configuration where the

first k waves interact together at some time 7/ < 7 (fig. 8). Let o, 0% be the sizes of the outgoing

30



Basic Interaction Estimates

Figure 7 Figure 8

waves generated by this preliminary interaction, and call Vi, Qy the corresponding total strength
of waves and the interaction potential at this intermediate stage. By induction on %k, we will prove

that

Vi 4+ Qi < V(r—) +Q(r-), (4.13)
k min{k,m}
of — Z |+ o8 — Z 0| £Q1— Qs (4.14)
j=m+1 j=1

with the understanding that the first summation in (4.14) is zero if £ < m.
Since V1 = V(r—), Q1 = Q(7—), the case k = 1 is a trivial consequence of the definitions.
Let now k& > 1. To fix the ideas, let the k~th wave belong to the first characteristic family (hence

k > m), the other case being entirely similar. We now have

k m
of— Z o+ og—ZUj
(4.15)
k-1 m
<[l 5ol b= S| o (-t bt ).
j=m+1 j=1
The inductive hypotheses imply
Vi1 + Qp—1 S V(r—) + Q(7—), (4.16)
k—1 m
oFl o ST o+ o =Y oy Q1 - Qkr (4.17)
j=m+1 =1

To estimate the second term on the right hand side of (4:17), call v’ the state to the left of o,
call v the state between ox_1 and ok, and let v be the state to the right of o, (fig. 8). We shall

apply Lemma 4 to vP, vl vl observing that the Riemann problem (vb, vh) is solved by waves of size
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ol = ot ol = o571, while the Riemann problem (v¥,v!) is solved by waves of size ol = og,

of = 0. Lemma 4 together with (4.16), (4.9) now yields

c k—1 k-1
of = o} + on) ok — o

& {@(af—l,m (|af—1| o) + Qa3 00) (Joi |+ o) }

<G <Q( ox) + Q(ob k))Vk—-l
<5 (aEs, k)+@(a§—1,ak)) (4.19)

Recalling the definition (3.3) of the interaction potential, since Vix_; < 1, from (4.18) it follows

Qk < Qr—1— [@(Ufwl,cfk) + @(Uf_l,ak)] + {’af — (4 O'k)l + ldéﬁl - aé}} Vi1

IN

Qs = [0 o) + Gk >]+§[@w'f-aak)m(as-aaw}
< Q- —-[Q( L) + Qo5 o) (4.19)

Indeed, comparing the definitions (4.6) and (4.8), one checks that Q > Q whenever they occur
n (4.19). Together, (4.18) and (4.19) imply

Vi — V-1 < ldf A crk)l + ,05—1 - afl < Qr-1— Qk (4.20)

The estimate (4.13) is now a consequence of (4.20), (4.16), while (4.14) follows from (4.15), (4.17)
and (4.20). By induction, when k£ = n we thus obtain (4.10) and (4.12). ‘
To complete the proof of Lemma 5, observe that (4.10), (4.9) and the definition (3.3) imply

n

AQ(r) £ Z Q(oi,05) ol — Z oi|l+ |og — Zcrj (r—)
1<i<ji<n J=m-+1
- Y Qs 05) +]AQ(7)] - .-. (4.21)
1<i<j<n
The estimate (4.11) is now an easy consequence of (4.21). o3
Proof of Proposition 1. Choose a constant §* such that
1 1
0<6™ < 4.22
< min {2 5, } (4.22)
where C1 is the constant in (4.7). If v(¢,z) is an e~approximate solution such that
vV (v(0,4) + Q (v(0,-)) < 6, (4.23)
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then by Lemma 5 the map ¢t — V (v(t, )) +Q ('u(t, )) is nonincreasing and remains always < 6.
This establishes Proposition 1. s

We conclude this section by proving some additional interaction estimates, for later use. They

all refer to an e-approximate solution v = v(t, z) which satisfies (4.23), with 67 as in (4.22).

Lemma 6. Let several wave—fronts interact all together at time 7. Assume that among the wn-
coming waves there is a shock of the first characteristic family with size 0~ < 0, and let o be the

total size of the outgoing waves of the first family. Then
2
IAQ(T)! > glo'lla+ — 0",. (4.24)
The same result holds for waves of the second famaly.

Proof. Besides o™, let o1,...,0, be the sizes of the other incoming waves of the first family.

By (4.10) one has
}H—a—‘ <lot -0 —;;:aj + ;aj <A@+ > asl- (4.25)
From (4.11) and (4.25) it follows
2@ > 5lo| ; o3 = 5o (l(ﬁ -] - laczml) : (4.26)
Since |0~ | < V(r—) < 1/2, (4.26) implies

z18a) 2 5ol -7

YR

This establishes (4.24).

Lemma 7. At some interaction time T, assume that the n incoming waves of the first family have
sizes oy > —+/€/2 for alli = 1,...,n. Assume that o shock of the first family emerges from the

interaction, having size o7 < —+/g/2. One then has

NG

Ve
32 '

ot + 5 (4.27)

|AQ(r)| 2

The same result holds for waves of the second family.

Proof. Two cases can occur. If

N
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then (4.10) implies

0‘++

|AQ(r)| >

M

1
2

and the lemma is proved, since ¢ < 1. In the opposite case, one has

s_;_zlaj<%<a+—l§) <—\./72. (4.28)
iz

Since o; > —+/e/2 for all j, there must be some index k € {1,...,n—1} such that the corresponding

partial sum satisfies

k
O TR

From (4.28), (4.29) it follows

¢ 1 Vel Ve _ 1 Ve
g = g = + 4, V= v R )
vZaJ S—-5'<8 4<O‘+2)+2_4<a+2 (4.30)
7=k+1
Using (4.11) we find
k n
1 3 1 \/— ot \/~
[AQ()25 > Qoo > 520,- Z o; |5 s > = +—§—'. (4.31)
1<i<j<n j=1 j=k+1
Indeed, this follows from (4.28) and
. 1s| 1] . vE
|5"| = max {|'). |s”|} -min {[5"], |s"] } 2 S - 7)ot + 2.
34

Lemma 8. From an interaction at time 7, assume that two shocks emerge, with sizes o7, cr; <

~v/€/2. Then

€

A > — 4.32
[AQ(M)| = - (4.32)
Proof. Call o11,...,01, the sizes of the incoming waves of the first family, and 021,---,02,nq
those of the second family. If (4.32) fails, then (4.10) yields

ZU“ +log — 2023 ]AQ(T ] < :35 (4.33)
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Since € < 1, (4.33) implies

_S_nl a1-<-—GIL< ve EM o2 <U;< ve
i - J< 5 <Tr
— 2 4 & 2 4

Observing that each wave o1 ; is approaching every wave og,j, from (4.11) it follows

1 [ na 1 ni no 1 \/E \/E R
lAQ(T)l > 2 Zl(fl,i‘ ZlUQ,j‘ > 3 Zdl’i . Zo’z,j > 5 T =3

i=1 =1 i=1 j=1

K

establishing (4.29).

5 — Estimates on the Number of Discontinuities

Throughout the following we consider an e—approximate solution v = v(t, z) defined on some

initial interval [0, T', which satisfies the bound
Ve (vt ) +Q° (v(t,-) < &7 vt € [0,T] (5.1)

stated in Proposition 1. Recall that 6 > 0 is the constant chosen at (4.22). For convenience, we
first work out all proofs assuming that both characteristic fields are genuinely nonlinear. At the
end of the chapter, we shall mention the few modifications needed to cover the case of a linearly
degenerate family.

By a Big Shock Front of the first (resp. second) characteristic family we mean a polygonal
line in the (¢, z)-plane, with a finite or countable number of nodes (to, zo), (t1,21), - .., having the
properties:

(i) The points (tx,zx) are all interaction points, with 0 <tp < --- <tp—1 <t <---<T.

(ii) On each segment joining (tg—1,zx—1) and (tg,zx), the solution v has a shock of the first
(second) family with size o* < —/2/2. Moreover, there exists some integer v > 1 such
that o¥ < —/e.

(iii) If there are two or more shocks all with size < —\/2/2, belonging to the first (second)
family and entering the point (t, zx), then the shock coming from (tk—1,Zg—1) is the one
travelling with the largest speed, i.e. the one coming farther from the left.

A Big Shock Front which is maximal w.r.t. set—theoretic inclusion will be called a Mazimal Shock
Front (MSF). Observe that each Big Shock Front is contained in some MSF. Moreover, because

of (iii), any two MSF either coincide or are disjoint.
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Proof of Proposition 2. The number Ny of MSF starting at ¢t = 0 is finite. Indeed, by (5.1), the
initial data satisfies V= (v(0,-)) < 6*. By (ii,) we thus have Ny < 26*/+/.

On the other hand, if a MSF starts at a point (¢, zo) with tg > 0, then its strength must grow
from |o| < 1/e/2 before ty to a value |o| > /e at some time t,. This implies that some decrease
in the interaction potential @ must take place along the shock front. From the a priori bounds on
AQ, we will derive an estimate on the number of MSF.

More precisely, consider a MSF with vertices at (tg,zx), k& > 0, starting at ¢¢ > 0. For
notational simplicity, we shall assume that at each time t; the only interaction occurring between
wave—fronts of v takes place at z;. The general case can be covered by obvious modifications. Call
Uf, ey aﬁzk the sizes of the waves of both families entering the node (¢, 1), distinct from o*. The
maximality assumption implies that each wave entering (¢, zo) has a size crg > —+/e/2. Therefore,

Lemma 7 implies

e -
> — —_— . .
|AQ(t0)| > 557 T3 (5.2)
At every other interaction time ty, since o* < —+//2, Lemma 6 yields
'AQ(tk)I > %I(f’c”vk”Ll — O’k! > Lg—% oF Tt cfkl . (5.3)
Combining (5.2), (5.3) and recalling that ¢ < —+/¢ for some v > 1, we obtain
v—1 v—1
Vel Ve R e
IAQ(tO)I+Z[AQ(tk)‘Z§§'U +7 +Z—5“0 —a I
k=1 k=1
Ve Vel Ve Ve -
A PP A [ S i 5.4
=3 ” T TR 2 (5-4)

By (5.4), each MSF starting at some ¢y > 0 forces the interaction potential @ to decrease by an
amount > ¢/64. Since Q(0) < 6%, the total number of these MSF cannot be greater that 646* /<.

This completes the proof of Proposition 2. o3

Proof of Proposition 3. By contradiction, as ¢t — T—, assume that the set of interaction points
has a limit point (7,Z) in the (¢,z)-plane. By Proposition 2, there are finitely many MSF which
approach T as t — T'—. Let these MSF, of the second and first characteristic family, be located at

—
Qt
o

~——

x2’1(t) <--- < x27n2(t) < xlvl(t) <---< zl7nl (t) ’

with

li (t) = i t) = Z.
S 2150 = i eas(t) = 2
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sl

Tor Tom, Fri Fin,

Figure 9

Choose &, p > 0 so small that all of the above shock fronts are defined on the common interval
[T — 6,T[, and such that the trapezoid

F:'{(t,w): tE[T—-5,T], lx—i[gp_,_(T_t),\mam} (5.6)

does not intersect any other MSF (fig. 9). Here A™%% is the upper bound for all characteristic speeds
introduced at (2.4).

We claim that the total number of wave—fronts and of interactions inside I' remains finite.

It will be useful to call the waves strong or weak respectively if their strength |o| is greater
or smaller than /. Observe that rarefaction waves are always weak, having size o € [0, €], while
shocks may be strong or weak. By construction, every strong wave inside I' is contained in one of
the MSF considered at (5.5). Moreover, by (2.4), no wave—front may enter I' across the oblique
sidesz=z+ (p+ (T — t)Amae®). To keep track of the number of weak waves, to each weak wave

of the i—th family located at & = y; o(t) We associate a weight W , as follows:

position weight weight

vialt) € ifi=1 ifi =2

-0, z2,1(t) | 1 N, +1
lozp(t), zopaa (] (Ve + 1) (Ne + 1)F

]372,712 (t)axl,l(t)[ (Ns + 1)n1+n2 (Ns + 1)m+n2
Jere(t), zrpea(t) | e+ 1)M7FE (N 1)™F
}l:l,n].;oo[ NE+1 1

with N, = (6%/e) + 1.
At each time ¢ € [T — 6, T, call
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the weighted number of weak waves inside I. By assumption, the number of wave—fronts at time
t =T —§ is finite, hence W (T — §) < oo.

At any point in I' where an interaction occurs involving only weak waves, the number of
outgoing wave—fronts of each family is < 1, and is not greater than the number of incoming fronts
of the same family. Hence, the weighted number of weak waves cannot increase.

Next, consider an interaction point located along one of the MSF in (5.5), say at ('r, ;ri,k(r)).
To fix the ideas, assume i = 1, the other case being entirely similar. In the most general case, the
set of incoming waves will consist of

e vy weak waves of the second family, on the left of = x;

e 1] weak waves of the first family, on the left of z x;

o the strong shock of the first family, along z x;

o v} weak waves of the first family, on the right of zy .
From the interaction, a strong shock of the first family will emerge, together with a number v
of weak waves of the second family. If v > 1, these wave—fronts are obtained by partitioning a
rarefaction curve along a grid of step size . Since the total strength of these waves is certainly
< 6%, we conclude that 0 < v < (6*/e) +1 = N..

Calling W~ and W the weighted numbers of incoming and outgoing weak waves at the

interaction point (’r, ycl’k('r)), we thus have (assuming k > 1)

W™ = vp(Ne + 1)™ L (N + 1)™7FF2 L (v, 4 1)m R

W =v(Ne+1)"7F < NN +1)™7F
Since vg + v] + 4 > 1, (5.7) implies

wWt<w™ —1. (5.8)

The computation in the case £ = 1 also yields (5.8). By (5.8), the weighted number W = W (¢)
of wave fronts inside I is strictly decreasing at every interaction occurring along one of the MSF.
Therefore, the total number of these interaction points must be finite, and the total number of
weak waves remains < W(T' — §) at every time ¢t € [T — §,T[. On the other hand, since any two
weak waves can interact at most once, the total number of interactions among weak waves is also

finite. This contradicts the initial assumption that (7, z) is a limit of interaction points, proving

Proposition 3. es

Together, Propositions 1-3 already imply that, if the initial condition v(0,-) = ¥ is piecewise

constant with bounded support and satisfies
V@) +Q°(v) < 6" (5.9)

(ie., if o € D%, according to (3.6)), then the corresponding e-approximate solution constructed by

the algorithm is well defined for all ¢ > 0. All previous results admit a straightforward extension
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to the more general class of initial conditions, not necessarily with bounded support:

v piecewise constant,

D= uR— R /. v . (5.10)
Vv U'X[—ZVI M] +Q 'U-X[__M M] <&, VM >0
Observe that, if ¥ € D, then for every interval [a, b] the function
o(z) if z € [a,b],
o(z) = { (a) if z<a, (5.11)
o (b) if x>0,

lies in D°. In the following, for & € ﬁs, we still use the semigroup notation (2.29) to indicate the
unique e-approximate solution taking v as initial condition. By the previous analysis, S°: [0, oc[ x
D — D is a well defined semigroup. For certain e-solutions, we now prove that the set of
interaction points in the (¢, z)-plane not only has no limit point, but is actually finite. The proof
uses the fact that, for ¢ large, these solutions approach the self-similar e—solution of a Riemann

problem.

Lemma 9. Let v € D°. Assume that the e-solution w = w(t,z) of the Riemann problem with

initial data

W= ]jx_noo{z(w) if  x<0,
w(0,z) = ' (5.12)
o = 1i]_:[|_1 () if x>0,
T—rT OO0

does NOT contain two shocks of sizes o1, o2 both < —/€/3. Then the e-approzimate solution

u(t,-) = S§o contains finitely many wave—fronts and interaction points in the (¢, z)-plane.

Proof. By Proposition 2, the function v contains finitely many MSF. Hence, after some time 7
sufficiently large, the number of MSF of the first and second family remains constant, and no

further interactions occur between two or more of these shock fronts. To fix the ideas, call

z11(t) < - <m0, (t) < z91(t) < - < T2, (t), t € [r,+o0] (5.13)

the locations of these MSF, of the first and second family.

First, consider the case where ny,np > 1. In order to estimate the number of weak waves

located outside the interval [z} n,, 2,1, to each weak wave of the i—th family located at z = y; o(t)
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we assign a weight W; , according to the following table:

position weight weight
Yia(t) € ifi=1 ifi=2

J—o0,z11(t)[ (N + 1)mtt (N, + 1)™

Jeia(t), zipri ()| (Ve + D)™~ (N, 4 1)ma—k

Je1n (8), 22,1 () [ 0 0
]xlk(t): z2,k+1(t) [ (N. + 1)k (N, + 1)F+1
Jeom @), +oo[  (Net D)™ (Ne+ 1)

At each time t > 7, call

W)= > > Wia (5.14)

i=1,2 «
the weighted number of weak waves. As in the proof of Proposition 3 one now checks that ¥ does
not increase at each time where two or more weak waves interact, or when a weak wave from the
inner region

T={(tz): t>7, zin(t)<z<z21(t)}

hits one of the strong shocks at z;,, or z3;. On the other hand, W strictly decreases at each
interaction between a weak wave outside I' and a strong shock. Therefore, there can be only
finitely many interactions of this type. In particular, after some time 7/ > 7, we can assume that
no interaction takes place between a strong shock and a wave coming from outside I. Of course,

this implies that no waves of the second family are located in the region
I'i= {(t,x): t>7', z< xl,nl(t)}
and no waves of the first family remain in the region
Ty = {(t,x): t>7, z> xzyl(t)} .

If the first characteristic family is genuinely nonlinear, then the first wave—front to the left of z1 ,,
would eventually interact with the shock at =1, or with some other front, against the assumptions.
Therefore, one must have n; = 1 and no wave—front exists on the left of z1 1, for ¢ > 7/. Similarly,
if the second family is genuinely nonlinear, then ny = 1 and no wave—front exists on the right of

zg1 fort > 7.
The proof of Lemma 9 is thus reduced to the following three cases:
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CASE 1: For t > 7 sufficiently large, the solution does not contain any strong shock. Then the
number of weak waves cannot increase after time 7. Since any two waves can interact at most once,

the total number of interactions and of wave-fronts in the (¢, z)-plane is finite.

CASE 2: For ¢ > 7 sufficiently large, the solution contains only one strong shock. To fix the ideas,
let this shock be located at = = z1(t) and belong to the first family, the other case being entirely

similar. To each wave—front of the i—th family, located at = = y; o (t), we assign the weight

NE + ]. if i = 1’
Wia=< Net+1 if i=2and y2,0(t) < z1(t),
1 if i=2 and ya2,a(t) > z1(t)-

With these new weights, consider again the quantity W (t) defined at (5.14). An easy computation
shows that W does not increase whenever two or more weak waves interact together. Moreover,
W (t4+) < W(t—) — 1 whenever a weak wave interacts with the strong shock at z1(t). Therefore,
the total number of interactions involving this strong shock is finite, and the total number of wave—
fronts remains < W (7). Since any couple of weak waves can interact at most once, the total number

of interaction points in the (¢, z)-plane is finite.

CASE 3: For t > 7 sufficiently large, the solution contains exactly two strong shocks (one of each

family), located at z1(t) < z2(t). Moreover, all weak waves remain inside the region

Because of genuine nonlinearity, every weak wave either cancels by interacting with other weak
waves of the same family, or else it eventually hits the strong shock of its own family. Therefore,
as t — 400, the interaction potential Q¢ (v(t, )) and the total strength of weak waves inside the
interval ]:cl(t), :L‘Q(t)[ both approach zero. In particular, this implies
i -~ t)=)) i =0. 5.16

Jim ”v (t, 21 ()+) — v (&, z2() ))” 0 (5.16)
By construction, for all ¢ sufficiently large, the two states W= (t, xl(t)—) and v (t,a:l(t)—{—) are
thus connected by a 1-shock of size o1(t) < —+/2/2. Moreover, the two states v (t,a:z(t)—) and
v (t,xg(t)—l—) — ot are connected by a 2-shock of size oa(t) < —+//2. By (5.16) and by the
continuous dependence of the e-solution of the Riemann problem, this yields a contradiction with

the basic assumption of Lemma 9. Hence CASE 3 cannot occur, and the lemma is proved. Y

Proof of Proposition 4. By assumption, the initial condition v(0,-) = ¥ € D has bounded support.
We can thus apply Lemma 9, with v’ = vf = 0, and conclude that the corresponding e-approximate

solution v = v(t, ) contains finitely many wave—fronts and interaction points. s
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The previous analysis yields some further information on the asymptotic structure of an e-
solution, as t — +o00, which we record here for future use. For a correct statement of the result, a

preliminary definition is needed.

Definition 5. Let v = v(t, z) be the self-similar e-solution of the Riemann problem with data v,
v¥, constructed in (2.16)—(2.23). The family of generalized wave—fronts of v is defined as the set
including all rays through the origin on which v has a jump (i.e. the usual wave—fronts), together
with the following lines (which we regard as null wave—fronts) in case o1 > 0:

o the line z = ¢t (©F 1) if in (2.14) one has he = v!,

o the line z = tA;(GF?) if in (2.14) one has (k + 1)e = vg,

o the line z = A\1(©F) if in (2.14) one has he < o} = ’UE < (h+ 1),

and including the analogous lines corresponding to the second characteristic family, in case o5 > 0.

Observe that, according to the above definition, the generalized wave—fronts of v are precisely
the limits of wave—fronts of e—solutions to perturbed Riemann problems. In other words, a line
x = At is a generalized wave—front of v if and only if there exists a sequence of Riemann data
(vh,v!l) converging to (v”,v!) such that the corresponding e-solutions v, have jumps on lines
T = Apt, with A, — X as n — 4-00. If the size of these jumps approaches zero, we have the case of

a null wave—front.

Lemma 10.. Let v be the e—approzimate solution with initial value v(0,-) =¥ € 135, and let w be

the self-similar € solution of the Riemann problem at (5.12). Then

oo
lim

dz =0 Vvt > 0. (5.17)
0—0+ J_ o

Moreover, if w does NOT contain two shocks both of size < —+/e/3, then on each strip [0,T] x R
as 8 — 0+ all wave—fronts of v%(t,z) = v (t/@, x/G) are contained within an arbitrarily small

neighborhood of the generalized wave—fronts of w.

Example 3. Consider the initial condition

(0,0) if ze€l]-oo,-1],
. . - (¢,0) if  zel-1,0],
i(z) = (91(z), v2(z)) = (0,3¢/2) if  ze]0,1],
(0,¢) if  ze]ll,+ool.
Introducing the states
Gl=(/2,0),  &3=(0/2),  T3=(0,35/2),
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the e—solution with initial condition o is given by

(0,0) it ze]-oo,tA(@]) — 1] U tAi(@]), the(@ nl
(e,0) if oz e]ta@) - L@,

vbe) = (0,¢) if @ e ]tAa(@), tha(@3)] U tAa(@3) + 1, +oo,
| (0.3¢/2) itz € ]tAa(@3), tha(@3) + 1]

On the other hand, the e—solution of the corresponding Riemann problem (5.12) is

(0,0 if oz < tha(5)),
w(t,z) = {(0’5) if T > t/\z( z)

Set v(t,z) = v(t/8,z/0). As 8 — 0+, the limit (5.17) holds, while the wave—fronts of v? collapse
to the three lines
z = t\ (D7), z = tAo(D3), T = tAa(03). (5.18)

Observe that only the second line in (5.18) is a genuine wave—front for w. The first and third line

are generalized wave—fronts, according to Definition 5.

Proof of Lemma 10. Two cases are in order.

Figure 10

CASE 1: The Riemann problem at (5.12) is NOT solved in terms of two shocks both of size

< —+/e/3. Then by Lemma 9 no interactions take place beyond some time 7 sufficiently large.

For t > 7 the solution thus consists of a finite number of constant states W = v, v1,..., o8 = vl

separated by families of parallel lines (fig. 10). Let
z = Mgt + &k ; 1<j<n,l1<k<N t>r, (5.19)
be the equations of the wave—{ronts separating the states

vk—1 = (Vk—1,1,Vk—1,2) and v = (Vk1, Vk,2)-
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In (5.19) it is understood that
Ay <--- <A, k1 <o <k

For a fixed k, assume that the wave-fronts in (5.19) belong to the first family. If ny > 1, set
v) = vg_1 and let vi = (vi,l,vi o) be the state to the right of the line z = Azt + & ;. Since all

wave—fronts are e-admissible, for some integer £ we must have
Vgp—12 = vg,z = v,ﬁjz == UZ"‘2 = Vg 2, vi’l € [Ee, (£+ 1)5] Vi=0,...,nk (5.20)

Ap = /\1(55), with &= ((25 + 1)5/2, 'Uk,Z) .

Therefore, a wave—front joining the states vg—; and vz, travelling with speed Ay is e—admissible.
The same result of course holds for waves of the second characteristic family. We conclude that

the function

vo if T € ]"‘007 Alt[;
w(t,m) =< v if T € ]Akt, Ak+1t[,
UN if z € |Ant, ~+o00],

is the (unique) e-solution of the Riemann problem at (5.12). The conclusion of the Lemma is now

clear.

CASE 2: The e-solution w of the Riemann problem at (5.12) contains two shocks, both of size
< —/€/3, say

VP if T < At
w(t,z) = { ol if At <z < Ast,
o if z > Agt,

for some shock speeds A; < 0 < Ay. From the proof of Lemma 9 it follows that, for ¢ > 7 sufficiently
large, the e-solution v(t, -) contains exactly two strong shocks (one of each family), say, located at
z1(t) < za(t). Moreover, all weak waves remain inside the region I defined at (5.15). By (5.16)

and the uniqueness of the e—solution of the Riemann problem, one has

. R
t—ligloo v (t, T (t)+) v tll_]%loo v

(t, za(t)—) . (5.21)
Since v (¢, z1(t)—) = 2", v (t,z2(t)+) = v for all t > 7, (5.21) implies
tiil_}l_’loo:il(t) = A1, t—l}I-fI-loo ig(t) = Ag. (522)

The limit in (5.17) now follows from (5.21), (5.22) and the fact that, as t — oo, the total strength

of all weak waves contained between z1(¢) and z5(t) approaches zero. ey
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Figure 11

Observe that, in CASE 2, the set of generalized wavefronts of w consists of the two lines
z = At, = = Aot only. On the other hand, as t — o0, the solution v(t,-) may contain an
arbitrarily large number of weak waves bouncing back and forth between the two shocks at z1, =2
(Figure 11). As 6 — 0+, the wave—fronts of the rescaled solutions v? may thus become dense in
the sector {(t,z): x1(t) <z < z2(t)}. When this happens, these wave-fronts are NOT contained
within a small neighborhood of the lines z = Aqt, z = Aat.

For the exact solutions obtained by the Glimm scheme, asymptotic estimates of the form (5.17)
are well known, together with accurate convergence rates [GL], [Li2], [Li3]. In the present paper, we
shall use the limit (5.17) only for proving the continuity of certain paths of e-solutions. Therefore,

a detailed study of convergence rates is not needed.

We conclude this section by outlining the few modifications needed in the previous arguments,
if a characteristic family, say the first one, is linearly degenerate.

In this case, all waves of the first family are contact discontinuities. Therefore, the definitions
of Big and Maximal Shock Front now refer only to waves of the second family. Regardless of
their size, all waves of the first family are defined to be weak. With these conventions, the proofs
of Propositions 2-4 and of Lemmas 9-10 remain valid. Indeed, whenever a contact discontinuity
crosses a weak wave of the second family, the sizes of the interacting waves remain unchanged and
no new waves are generated. Contact discontinuities thus behave in the same way as weak waves
of a genuinely nonlinear family.

Observe that the basic assumption of Lemma 9 is now trivially satisfied by every initial condi-

tion % € D¢ , because no shocks of the first family ever occur.
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6 — Approximate Semigroups Preserve Pseudopolygonals

This section is concerned with the geometrical properties of the wave—front set of a family of
e-solutions v?, depending continuously on the parameter 6.

A general lemma on pseudopolygonals is proved first.

Lemma 11.. Letv:[a,b] — D¢ be a continuous path with the following properties. There exists a
countable set of disjoint open intervals Jo = |aa, ba[ C [a, b] such that

(i) [a, 8]\, Jo is countable,

(i) For each 0 € J,, there exists 5§ > 0 such that the restriction of v to [(5-— 5,0+ (5] 5 a
pseudopolygonal. Then ~ itself is a pseudopolygonal.

Proof. For each «, the assumptions imply that each of the compact sets
Jo,0 = lag + 1, b0 — 1], Jap = [aa +(v+ 1)—1,aa + 1/_1] U [ba — I/_l, b — (v + 1)—1}

can be covered with finitely many intervals I, g;,,, such that the restriction of v to every I g"y NJgp is
a pseudopolygonal. Hence there exists a countable family of open intervals (J g{:) o such that
the set
g\ 7ir
m>1

is countable, and the restriction of v to each J2™ is an elementary path. Observing that the family

N

of all open intervals J27* is countable, and that the set

o\ |J 7

&, 7,10

*I*

is also countable, it follows that « itself is a pseudopolygonal.

We now study how the wave-front configuration of an e—approximate solution changes, de-
pending on a parameter § which controls the initial locations of the discontinuities.
For 9 € [0, 6y], let v? be the e-solution which, for ¢ > 0 sufficiently small, is defined by
N-—1

7] = C v
vO(t, z) = kZ:l URTX)Z 4 At — 1) + k0, + Apgr(t — 1) + S 6] ) (6.1)

T X oo,z 4 Ayt — B +00) TN XNg 4 An(e— B + b, +oo [

where vy, ...,vxy € R2 are constant states. We here assume
Ay >---> Ay, t>0 (6.2)
g < €k+1  whenever Ap= Apiq. (6.3)
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Observe that, by (6.1), as & — 0 the wave—fronts having a common speed collapse to a single line.
For 0 = 0 we obtain an e—solution whose wave-fronts interact all together at (t,z). The next lemma
shows that, for # > 0 sufficiently small, all functions v? can be obtained from one single e-solution

w, via suitable rescalings.

Lemma 12. Consider the one-parameter family of e-solutions v? satisfying (6.1) for t =0. Call
w = w(t,z) the unique e—solution, defined for allt € R, which saotisfies

N-—1

w(t,z) = g;lvk X Axt + g, Mgt + Erral (@) +vo- X]—oc0, Ayt + &1 ) (6.4)

+ N X]ANt YN, +OO[(:C) Yt € ]-—OO,T} ,

for some T (possibly negative). Then, for some 6 > 0, the e—solutions v? admit the representation

Wit z) =w (f_;_t,x—g—i) t € [0, 400, 6 €10,6], (6.5)

Moreover, for every t > 0, the map v:0 — v(t,-) is a pseudopolygonal, defined for 6 € [0, 4].
Proof. Because of (6.2)~(6.3), when ¢ takes sufficiently large negative values, one has
AMt+& <~ <Ant+En-

By the results in Section 5, a unique e—solution w satisfying (6.4) exists and can be prolonged to
all times ¢t € R.

The basic rescaling property (2.30) implies that both sides of (6.5) are e—solutions. Because
of the uniqueness of e-solutions, in order to prove the identity (6.5) it thus suffices to check that
the two sides comc1de at ¢ — 0. Choose § > 0 such that —t/6 < T. To simplify the notation,
in (6.1) we shall assume that vy = vn = 0, the general case being almost identical. For § € 10, 6],

comparing (6.1) with (6.4) one obtains

i e—z N-1 r—T
w<_9_., ; ): ;vk~X]Ak(_{/e)Jr,gk,AkH(——f/H)+€k+1]( 6 )

N—-1

- Z:lw” X :c—tAk-I—gkﬁ :c~tAk+1+sk+16}( z) (6.6)

N-—-1

M

—~ Uk Xz g 4 &30, Tt + Ext10) ()
= 9(071)
Hence (6.5) holds. For each fixed ¢, by (6.5), it is clear that the map 8 — v%(¢,-) is a pseudopolyg-

onal. e
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An entirely similar argument yields a representation formula for the e—solutions of a one-

parameter family of Cauchy problems, where all the initial jumps collapse to a single point z, as

g — 0:

Lemma 13. Consider a one-parameter family of e—-solutions v?, with initial conditions
N—-1
6 _ R .
v(0z) = ; Yk X]E + 610, % + a6 (=) (6.7)

o X]—00, z + £16] (@) +on - X1z + £no, —|~oo[(x) ’
where § > 0, & < -+- < €. Callw = w(t, z) the e-solution with initial condition
N-1
_ ; . -y . 6.
w(Ow’B) Z vk X]&kﬁék—:l] (J:) + v X]_Dozgl](w) toN x]Sl\fyhi'_oo[(a:) ( 8)

k=1

Then, for § > 0, one has
t z—2 .
9
(T = - — ] . 6.9
v ( ? :r) w (0 ? 0 > ( )
The following lemma, needed in the proof of Proposition 5, is concerned with the stability of

the e—solution of the Riemann problem, w.r.t. small L perturbations.

Lemma 14. Assume p > 0 and let (T,,)m>0 be a sequence of piecewise constant initial conditions

in ﬁs, such that

limsup TV {om:  [—p, —6]U[6,p]} < &3 V6 €10, p] , (6.10)
mM-—+-+00

p
m . |om () — To(z)|dz = 0. (6.11)

Assume that vy 15 o standard Riemann data, i.e. it is constant for x < 0 and for x > 0, with a
single jump at x = 0. Calling vy, = v (¢, ) the corresponding e—solutions, one then has

p—tATAE
lim lvm(t,:c) - vo(t,x)]d:c =0 vVt € [0, p//\mam] . (6.12)

m—+00 —p-+tamaz

Instead of working out a long direct proof of Lemma 14, we shall postpone the proof to Section 9.
Indeed, the techniques developed in Section 8 will then allow us to establish the above result by a

much simpler argument.

Proof of Proposition 5. We first give a complete proof, independent of Lemma 14, under the

additional hypotheses
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(H) The pseudopolygonal vp: 8 — 7% is the concatenation of finitely many elementary paths.
Moreover, no e—solution v? contains any interaction point from which two outgoing shocks
emerge, both of size < —+/2/3.

Then, we shall prove Proposition 5 in the general case, relying on Lemma 14.

Assume that (H) holds. It then suffices to show that, for each 6 € [a,b] and 7 > 0, the map
Fri B ve(r, -) is continuous at § = g and there exists § > 0 such that the restrictions of v, to
]é — 6,5[ and to }[9_, 6 + 6[ are elementary paths. Call 0 = tg < &1 < -+ <t, <7 <tpq1 the times
of interactions between (generalized) wave—fronts of »?. We remark that the additional null wave-
fronts introduced in Definition 5 play the same role as weak waves, at interaction times. Therefore,
the total number of these (generalized) interaction times is still finite.

By assumption, the restriction of 4o to some open interval ]é, 6+6 [ is an elementary path.
Therefore, there exists points ) << m%o and constant states vjj such that, when 6 — 6>0is

sufficiently small, the initial data 7? has the form

N;—1
_9
P@) = 3 v x ] (@)
,; ! ]x? +&50(0 = 0), 2] + & k11(0 — 0) [ (6.13)
+U',O'X —. x +'U',N,~‘X — ),
? ]—wﬂ§+§J@—9ﬂ() ’ P?+@wﬁ9“@rmov)
for all z € [(m?_l +x?)/2, (:c? -+ mgﬂ)/Q}, j =1,...,np. Here, for convenience, we set z§ = —o0,

0 - .
Tpg+1 = -+00, Vj,N; = V5+1,0 for all 7.

We can now apply Lemma 13 and conclude that, on a forward neighborhood of each point

(0, asg) in the (¢, z)-plane, the e-solutions v? admit the representation

0
) 0 t T
Ot z) = wl | —— —2L |, 6.14
vt ) w’(a—o 8- 0 (6.14)

for suitable functions wg. Moreover, by Lemma 10, as § — 0+ the wave—fronts of v? collapse to the

generalized wave—fronts of v?. Let t; be the first time of interaction between generalized wave—fronts
of v?. One can then partition the strip [0,%1/2] x R into finitely many regions 09, .. .,Q%o such
that (6.14) is valid for all (¢,z) € Qg For t € [0,%1/2], the representation (6.14) implies that the
map 0 — v?(t,-) is a pseudopolygonal, restricted to some interval 6,0 + 6], with § > 0 sufficiently
small. Lemma 10 is here used to establish the L!-continuity at § = 6.

We now proceed by induction. Assume that, for some integer £ > 1, the strip [(ts—2 +
te—1)/2, (te—1 +t2)/2] x R can be covered with finitely many domains Qﬁ"l, j=1,...,np-1 such

that, for § > 0 small enough, one has the representation

-1
t—tgq T o
W (t,z) = wi? ( ; 251, ; Z ) (tx) e Q10 €]0,6+6], (6.15)
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Figure 12

for suitable points mf"l and e-solutions wf_l having a finite number of wave—fronts (fig. 12).
Call ¢, .. .,:cf” the locations of the generalized wave—fronts of v? at time ¢,. Cover the strip
[(te—1 + t2)/2, (te + te41)/2] X R with open domains ,---, Q% such that each Qﬁ» contains all

Mg

generalized wave—fronts of v? passing through the point (te, ;1:5) By the inductive hypothesis (6.15),

we can now apply Lemma 12 and obtain functions wf such that

0 p[t=te z—7 ¢ i
vO(t,z) = w} T (t,z) € Q5,0 €16,6+6], (6.16)

for some 6 > 0, possibly smaller than the one in (6.15) (fig. 13).

Figure 13

For ¢ € [(tg_1+tg)/2, (tg—l-tg.,:_l)/z], the representation (6.16) implies that the map 6 +—
v9(t,-), restricted to the interval [0,6 + 6], is a pseudopolygonal. Again, Lemma 10 here ensures
the continuity at § = 6. By induction on £ = 1,...,v, the result is thus proved for all ¢ € [0,7]. An
almost identical argument works when 6 € [§ — &, 4].

By covering the interval [a,b] with finitely many subintervals of the form [6; — &;, 8; + &),

Proposition 5 is thus proved, provided that the hypotheses (H) hold.

We now prove Proposition 5 in the general case, relying on Lemma 14. Let 8 — % be a

pseudopolygonal, defined for 6 € [a, b].
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We claim that the map 0 — v%(¢,-) is continuous w.t.t. the L1 distance, for all ¢ > 0. Indeed,
assume that continuity fails at § = 6, for some time ¢ > 0. By Helly’s compactness theorem, one
can select a sequence v, = vPm with 6, — g, such that

-0 Vi >0 (6.17)
Ll

lim
m—4cC

omlt ) =12, )

for some limit function v!, continuous from [0, +-oc] into 55, distinct from v?. For some 7,7 and all

p > 0 we thus have

.’7)+P——(tk _{))\-mam
~/52“"P+ (tk _i)A‘rnaz

for a suitable sequence (tx)x>1 decreasing to i.

oG, =00, ), (6.18)

dz > 0 vE > 1 (6.19)

ol (tg, z) — '”é(tk,-'”)i

Call .y, the measure of total variation corresponding to vpm,. By possibly taking a subsequence,

we can assume that p,,, — p weakly, for some positive measure . Choose p > 0 such that

p(lz—p2lU1E,Z +l) < et

With this choice of p, by (6.17)-(6.18), the sequence of functions v (%, ) satisfies the assumptions
of Lemma 14, with the origin replaced by z. By (6.12) we thus have
FHp—tATE®

lim
m—+-+00 F—pttamas

vt T) — vg(t,:c)“ dz =10 Vit € [E,E—F p/,\mam] )

Recalling (6.17), this yields a contradiction with (6.19). Therefore, the map 6 — v?(¢,-) is contin-

uous for all ¢

We can now establish Proposition 5, using Lemma 11 and an inductive argument. As inductive

hypothesis, we assume that the conclusion is true for every pseudopolygonal 8 +— %% such that

sup Q°(2%) < ke?. (6.20)
ocia,b]

Let (6.20) hold, and let vo: 0 — %% be a pseudopolygonal for which

sup Q°(3%) < (k+1)2. (6.21)

écia,b]
By the previous analysis, for each ¢ > 0, the map v4: 6 +— v?(t,-) is continuous w.r.t. the L?! distance.
In order to apply Lemma 11, we thus need to show that, if vo restricted to an open interval J C [a, b]
is an elementary path and if § € J, then the restriction of each v; to some interval of the form

[6 — 6,0 + 6] is a pseudopolygonal.
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Let 0 =ty < t; < --- < t, < 7 < t,41 be the times of interactions between (generalized)
wave—fronts of v?. If these interactions never produce two outgoing shocks, both of size < —/2/3,

then we are in a situation where the hypotheses (H) hold, and the result is already proved.

Otherwise, let tz« be the first time at which some interaction produces two large outgoing

shocks. Working by induction on £ =1,...,£*, we can again cover the strips

[(te—1 +te)/2, (te+ te1)/2] X R

with open sets Qﬁ», ji=1,...,ny and find e—solutions wf such that the representations (6.16) hold.
However, the previous inductive process now breaks down at the stage £ = £* + 1, because the

assumptions of Lemma 12 are no longer satisfied.

To complete the proof, we thus use a different argument. The representation formula (6.16),

still valid for £ = £*, implies that the restriction of the path

Vitg i)z 0 o ((ter + te41)/2,) (6.22)

to some interval [#—6, §-+6] is indeed a pseudopolygonal. By Lemma 8, at time ¢ = ¢,« the interaction
potential of v? decreases by an amount > ¢/32. By semicontinuity, the same is true for all functions
v? with @ sufficiently close to 6, as ¢ varies in a small neighborhood of tz-. Recalling (6.21), since
/32 >> €2, it follows that the restriction of the path Voo tt0e10)/2 in (6.22) to some neighborhood
N of 0 is a pseudopolygonal which satisfies (6.20). The inductive hypothesis thus implies that, for
all ¢ > (tp« +tg4+1)/2, the restriction of v to NV is a pseudopolygonal. An application of Lemma 11

now completes the proof of Proposition 5, in the general case. B3

7 — Estimates on Shifting Interactions

The general guideline for proving Proposition 6 is provided by Example 2 in the Introduction.
Indeed, the case of interacting waves of distinct families will be proved by deriving estimates of the
form (1.9)—(1.10). On the other hand, estimates such as (1.13)—(1.16) will be used in the case of
incoming waves belonging to the same family. Since we are dealing here not with the exact solutions
but with the e—approximations constructed by our special algorithm, much longer computations

will be required.

To help the reader, we collect here the various wave speeds, introduced in Section 2, which will
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be used in the sequel.
\;(v) = i-th eigenvalue of the matrix A (u(v))
Xi(v™,vh) = i—th eigenvalue of the matrix A (u(v—),u(v+)>
A (v,0) = A; (U, é; (v, 0'))
- meas ([j&, (j + 1)e] N [v; + o, vi] i
o) = 3o R lim b L@

o]

(7.1)

A (0,0) = 0o Va0, 0) + (1= w(o/ VE)) N (v:0)

\

Here v = (v1,v2), o < 0, while A(u~,u") is the averaged matrix defined at (2.3) and Cf was
defined at (2.15) or (2.21). We recall that the shock and rarefaction curves ¢; , ¢; were introduced
in (2.2), and that the interpolating function ¢ satisfies (2.5). Observe that the last two speeds
in (7.1) depend on ¢, while the first three do not. In particular, \;(v) is the i—th characteristic
speed at v, while A}(v, o) is the speed of a shock with left state v and strength |o].

As usual, by O(1) we denote a quantity whose absolute value satisfies a uniform bound depend-
ing only on the system (1.1), and not on the particular values of v, o appearing in the formulas. In
particular, these bounds will be independent of e.

Given a function of two variables, 81 and 9, indicate its partial derivatives w.r.t. the first and

second argument, respectively. For example, by 82,\i (v, é; (v, a)) we mean the partial derivative
of the function \; = \;(v™,vT) w.r.t. the second argument vT, computed for v~ = v and v7 =
é; (v,0). Using Riemann coordinates v = (v1,vs), as a basis of eigenvectors for the matrix 4 = Av)
we simply choose r1 = (1,0), rz = (0,1). By rj e \; we denote the directional derivative of A; in

the direction of 7.
For i = 1,2, the following estimates concerning the speeds of shocks are well known [Sm]:
N(@,0) = Nilv) + Z(ri e X)) + 0(1) - o (7.2)

AN (0,0) = i o X)) + O(1) -0 (73

Lemma 15. Fori=1,2, 0 < 0 and any v = (v1, v2), with the notations (7.1) one has

o0@)-c  iflo] <2,
X (v, 0) ~ /A (67,0 do’| =3 O)-lo| Lol 222 (7.4)
bl o) o] i lol = Ve/4.

Proof. Assume i = 1, the other case being similar. Observing that

-~
(W13
Nat?

T(v,0) = M(v) + O(1) - max {e, ]0]} , (7.
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0
A1 (v) — L A (gbi(v,a')) do'| = 0(1) -,

the first two estimates in (7.4) are clear. Next, assume |o| > /e/4. For notational convenience,
define the speed A(s) = A1 (v(s)), where v(s) = ¢7 (v, s—wv1) is the point with Riemann coordinates
(s,v2). By (2.18), the quantity |o|- \](v, o) is precisely the Riemann sum for the integral
vy
/ A1 (v(s)) ds
v1+0o
obtained by partitioning the domain into subintervals of the form [js, (G + 1)6] and evaluating the
integrand function at the mid—point of each subinterval. Since the integrand is smooth, assuming

that (j' — 1)e < v; + o < j’e < j”e < v; < (5" + 1)e for some integers j’ < 7, we have

ol Xi(or0) = [ 7 A(s)ds

rto
_ Zj:meas ([, G+ D] N s +o,1]) -A (G + 1/2)) - /W A(s) ds
< LH (AU +1/2)2) = A(s) ) ds
+ ;:1 /J:HDE (A (G +1/2)e) — A(s)> ds
+ /Jv: (A (" +1/2)e) — A(s)) ds
=0(1)-2+0(1)- (" - i)+ 0(1) - . (7.6)

Observing that j” — j* < |o|/e and dividing the right hand side of (7.6) by |o|, the third estimate
in (7.4) follows. B3
Lemma 16. Fori= 1,2 and o < —\/2/4, the following estimates hold:
N (v, o) = Xi(v) + %(ri o \)(v) +O(1) - o2 (7.7)
1,
02/\’{(1), o) = :Z-(rl e \)(v)+0O(1) - 0. (7.8)
Proof. The bound (7.7) is an easy consequence of the third estimate in (7.4). To prove (7.8), let

i = 1. Then ¢1" (v,0) is the point with Riemann coordinates (vi + o, v3). If v1 +0 € [js, G+ l)s)],
call &7 the point with coordinates ((2j + 1)e/2, v2). Using (7.7) one obtains

L, 1/
(92/\71'(?),0') = :9—;/\1(1),0‘) = (Al(wj) - ,\{(v,a))

a
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B ?.1? { (M) + arr e 2)(v) +0(1) - max{o?, e}) - (Al(v) + (e M)() +O(1) - (,2)}

- %(Tz' °X;)(v) +0(1) o,

proving (7.8) when i = 1. The case 7 = 2 is entirely similar. o3
Lemma 17. Fori=1,2 and o < —/e/4 one has

A (v, 0) = Mi(v) + %(ri o ) (0) + O(1) - o2 (7.9)

BN (v,0) = %(m o)) +O(1) o (7.10)

Proof. The first estimate is an immediate consequence of (7.1), (7.7). When o € [—21/€, /¢, since
Al (v, 0) — A (v,0) = O(1) - o2, (7.11)

differentiating the last equality in (7.1) and using (7.3), (7.8) we obtain

0 1
—\? =
5o ) = 7

ol /VR) - api,0) + (1= p(e/VE)) -8, (v,0)

‘Pl(o—/ \/g) (’\Z<v7 o) — /\;'(U, U))

_o(1)- -\j—ga? + %(ri o ) () +0(1) o,

proving (7.10). If o ¢ [~2+/€, —\/€], then (7.10) follows directly from (7.3) or (7.8). Y
Observe that, more generally, for all & we have
A (v, 0) = As(v) + %(ri e 2:)(v) +O(1) - max{c?,e} . (7.12)

The next lemmas are concerned with the difference between wave speeds before and after an
interaction. Consider first the interaction of two e—admissible wave—{ronts, belonging to different
families. Callo; and A (respectively o; and A the size and the speed of the incoming (outgoing)
wave of the i—th family. Note that, according to the construction described in Section 2, if o > 0
there may be more than one outgoing i-wave. In this case, in the following estimates by A: we
shall refer to the speed of any one of the outgoing i-waves, while crzjL will stand for the total size of
all the outgoing waves of the i—th family. The left, middle and right states after the interaction are

denoted by v”, vl and v" while v* is the intermediate state before the interaction takes place (fig. 5).
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Lemma 18. Consider the interaction of two wave—fronts belonging to distinct characteristic fam-

ilies. With the above notations, the wave speeds satisfy

'Af - A;‘ =0Q)- o5, |A;,r - Az" =0(Q1)-oT. (7.13)
Proof. Note that, by (4.7), the choice (4.22) of §* ensures that |0 —o; | < |07 |/2, so that

+
;i

—| 3
9 219

1
E{Q‘

. } N [-6,67]. We shall prove the first estimate in (7.13), the second being

entirely similar.

CASE 1: o7 €[-6%,—4V/a]. |
Then o) € [~6*, —2/€], so that AT = M (v*,v%) and A] = A1 (v%,v*). Using the smoothness of

the function A\; = A1 (v™,v™) w.r.t. its two arguments, one obtains

]Aj . A;[ = A (0", %) = AL (o™, 1)

—o(1) - <|a;' + |a§“]) —0(1) o5

CASE 2: o5 €[-22/3,¢].
Then oy € [—\/—s—, 35/2] so that vg = v] and UE = v%, thus o] = o). Then, if o; < 0, using the
smoothness of \; one has

AT = (T VAN o7) + (1 - 00T /VE)) A (P, 07)

Af = (o VN (", o) + (1= 0(of /VE) ) M (%, o7

AL = AT| S oloT/VA Pt or) = A4 o) + (1= 0(o7/VE)) P, o7) = AT, o)

meas { |je, (j + 1)e v*,vb
o o+ T (e, G + Del o, o4))

J ]”1[

- A(@5) = 2 (©5)]

<0(1) 05 .
Here w;, @; are the points with Riemann coordinates

~ . ((2i+1e w25+ 1) _
wj::(—T-—,vQ s wj = ———2——-—,v2+0'2 .

On the other hand, if 07" > 0, then Uf = o] €[0,¢] and

b f b * 1 * i i

Vg = Uy U]_:Ul v2:U2 UIZ'U]_.

Hence, for some integer j,

A7 = AT | = @5 - @) = 0(1) -0 -
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CASE 3:

o

< 4,/% and }agi > 2,/2/3.

This of course implies O’i_l < 6‘0’2_| and o5 < —4e. Using (7.7) one obtains

s

AP 0f) = A, 07)|

+001) - (e + ]ai] + ]a;D

< l/\l(vb) — A1 (v™)

<0(1) o5 .

The above three cases exhaust all possibilities, hence the lemma is proved.

;14

Next, we study the interaction of two waves with size o/, o’/ belonging to the same (genuinely
nonlinear) family. As before, the left, middle and right states after the interaction are denoted by
v*, vl and v, while v* is the middle state before the interaction takes place (fig. 6).

Lemma 19. Assume that two e—admissible wave—fronts interact, both belonging to the i—th family,

with max{la", la”‘} > \//2. Then the difference between their speeds satisfies

b
‘)\,‘ip(v ,o') = A (v*, o)

> e (Jo’|+ ") (7.14)
where ¢ is a positive constant, independent of o', o” and .

Proof. Assume lcr'[ > 'O’”l, so that o/ < —+/2/2. By (7.12) one has

g(m o)) (") +0O(1)- !U/|2

_2_(” o \)(v*) +O(1) - (lO—/IIZ + s)

’ "
2 e )6+ 0Q) - (0 4 [+ e)

b b
A (@, 0') = A(v") +
AL (v, 0) = Xi(v™) +
= \i(0") +

Since the i—th characteristic field must be genuinely nonlinear, it follows

’ "
AP, o) = AF (0" = | T e A 6F)

+0(1) - (Ia'|2 + |<f”]2 + 5) > cln'! .

proving (7.14). The case ]a”‘ > |cr" is entirely similar.

Y4

Lemma 20. Assume that two s-admissible wave—fronts of the i~th family, with size o/, o”, interact
and generate an i-wave of size o . If max{‘a", lo*"l} > \/e/2, then the speed AT of this outgoing
wave satisfies

o\ (v, ') + oA (v*, 0”)

o + o

At —

<0O(1)- IO’IO"" . (7.15)
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Proof. To fix the ideas, assume i = 1, the other case being entirely similar. Then A™ = A‘f(vb, o).

By the triangle inequality,

)\‘P(Ub 0'+) _ U’/\f(vb,a') + O_//’\glo(v*’ o’”)
1 ’ e
b b ! o o AP 0) + 0 AT (v, 0”) 10
<A@, 0t) =AY (P, 0" + ")+ (0,0 + o) - —

0./ + a./l

By the regularity of AY and (4.3) or (4.4), the first term on the right hand side of (7.16) can be
bounded by

,\f(‘vb, ot) — Af(vb, o + ")

— 0(1) - lo’+ o a")l = 0(1) - |o'a"|. (7.17)

To estimate the second term on the right hand side of (7.16), we consider the cases [(T'[ > lo"l and

IU" < |o"’l separately.

CASE 1: |o/| > |o”].

Hence ¢/ < —+/e/2. Recalling (7.10), we obtain

o' A (W°, 0’) + "\ (v*, o)
UI +0.Il

o'+a INPb 7 MNP, % N
b b oA (v°, 07) + "N (v*, o)
A (v, o) +/ 82,\919('0 ,o)do — 1 e

/\(’f(vb, o+ U//) _

0/

144

g 0
- / AN (", 0) do +
o

"

m (,\(f(vb, o’) =AY (v*, a”))

o +o

" "

o’
= [Z s a0+ 0 (076 o) + T (M) = 20|
14 124
= %(rl ® Al)(vb) -+ g (A‘f(ub, o) — ,\‘f(v*,a”))l +0(1) - |U'cr" . (7.18)

To estimate the right hand side of (7.18), observe that (7.9) yields

/

M (,0') = M) + Sl e )@ +0() - (o). (7.19)
Moreover, recalling (7.12), one has

N, o) = ,\‘f(w‘f(vb, '), ")
= (100)) + Folra o) (50,00 ) +0)- (Jo"] <)
= Al(vb) + a'(rl ® Al)(vb) + %(”‘1 e /\1)(1’[7) + 0(1) : (I"llz + lalanl + |U”!2 + 5)
20" + o

= A (o”
1(v”) + 5

(r1 0 A1) (@) +0O(1) - (Ia'lz -+ Ia"lz) . (7.20)
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Using (7.19) and (7.20), from (7.18) we now obtain

a'/\‘f(vb, o) + " \Y (v*, ")
U,_“O—,,

R =l G s U LR U OR (A ”)\

o'+ o

=0@)-Jo"| (|o'] +1o"1)

=0(1)-|o’e"]. (7.21)

/\(’f(vb,o’/—l—o"')—

Indeed, ¢” < €, hence Ia' —!—cr"1 > <‘a'! + 1(7”0 /2. Using (7.17) and (7.21) in (7.16), one recov-
ers (7.15).

CASE 2: |o'| < o]
Hence o < —+/2/2, o' € [¢”,¢]. As s ranges in the interval [0,0'], define the point a(s) and the
speed A(s) by setting

a(s) = vi(’,s), A(s) =AY (afs), 0’ + 0" =) . (7.22)
Observe that
a(0) =, () =", AQ) = A00h o), AW =APERe").  (T23)
The second term on the right hand side of (7.16) can thus be written as

,\‘f(vb701 + 0'/) — a’,\‘f(vb7 o)+ 6”)\(5(11*,0")

o +d”
“Td AL, 0') + A (v, o)
= A, 0") - /0 {&;\T (a(s), 0’ +o" - S)i‘ ds — R
“Td o' .
= —A {ds/\l (a(s) o +o" = s):\ ds + ] (/\(f(v*,o”) AP (w 70/)> (7.24)
We now study in detail the integrand function appearing in (7.24):
d
_._)\ (ae(s), 0" + )
- d
<,D<U +o” 3) ds’\s(a(s)a"hf -—.s)
(7.25)
+

(1 (p( +\‘;€_—S>)-dii;>\{ (a(s), 0’ +0" — s)

i (“”7;) (¥ (a0 +0" =) =2 (oe), 0" " =)
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From the estimates

5—;&(3) =r (") +0O(1)- o, :;—i;qﬁf (a(s), o' +o"—s)=0(1)- (|a"i + IO'"D ,  (7.26)
we deduce

dii;,\; (als), 0 + 0" — 5) = —;—(7'1 e 3)0*) +00) - (|o'] +[o"]) | (7.27)

5-5—/\{ (a(s), o’ +0" —5) = %(rl e \)(") +0O(1) - (,cr'l + lo"!) , (7.28)

as long as la’ +o — s| > v/2/2. Concerning the third term on the right hand side of (7.25), observe
that it can be # 0 only when ¢’ + ¢” — s € [-2+4/¢, —/2]. In this case we have

Al (a(s),a’ +o” — s) — AT (a(s), o’ +0" — s)=0(1)- |o" +o” - 5] =0(1)- |0”12 . (7.28)
Finally, the last expression on the right hand side of (7.24) can be estimated by

A (v*, o) =AY C

=) + G2+ 00) [0 = [ule) + Gl a6 + 0 (o +2)]
= () + :Zi}i(m X)) +0(1) - (o' + o)
— [Al(vb) + ?Zi(rl e M)W +0(1)- <|a’!2 + e)}
o' +o” 2

(7.29)

=73 (r1e A1) (") +0(1) - |o"]".

Together, the above estimates (7.24)-(7.29) yield

(T//\Sf('vb,a') + 0'")\(1‘9(’0*,0”)

a.l + O.I/

,\‘f(vb, o + U//) _

7T o’ o +o” 2
- [ [peeesaenvom o] ast o2 (C5 L e + o) |o)
= O(1) - Iala" ,
establishing (7.15) also in this second case. S

Relying on the previous estimates on wave speeds before and after an interaction, we now study
how shifts in the incoming wave-fronts are related to shifts in the outgoing fronts. By a shift we
always mean a displacement along the z—direction.

We begin with a simple geometrical computation. Consider two families of lines, parametrized

by 6, having equations
0 _ 0 0 __ 0
z—z =A(t—1t")+0¢&1, z—z = Ag(t —t")+ 0&2, (7.30)
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with Ay < Ag. Then, for each fixed 6, the two lines in (7.30) collide at the point P? = (¢¢, %), with

R — <
f -0 = {-Z—_-sze 20— 20 = Hﬁe. (7.31)

Observe that a wave—front with speed AT emerging from the intersection point P9 will have equation

. (AT = A1) — (AT — Ap)éy

20 AT 40
z—z =AT(t-1") Y

9. (7.32)

In particular, if the incoming wave—fronts are shifted by £16, €26, then the outgoing wave—front is

shifted by the amount £16, with

AT —A — (AT - A
et = ( 1)2 - 1(\1 2)é1 (7.33)

Lemma 21. Assume that two incoming waves belonging to distinct families have size o, oy

and are shifted by &, €5 along the x—direction. Call o;’ra (a=1,...,n4, 1 =1,2) the sizes of the

) (734)

Proof. Observing that the sizes o7, Uia all have the same sign, by the triangle inequality one

outgoing waves, and g;fa their displacements. Then

ny

+ et c—
1 0810 S2

~|ozez| = 0 |o7 o7 (|5f| +

no
— + o+
—"7151 + E |02,a§2,a
a=1

obtains

ny Ty 1
Solotasial | = lre| < || Tota | —or|ler|+ X |ota| e -a| @39)
a=1 a=1 a=1
Using (4.2), for the first term on the right hand side of (7.35) one derives the bound
n
Soota | —ot ||| = 0) - Joroz|fer]- (7.36)
a=1

Concerning the second term, call Aia the speeds of the outgoing waves of the first family. Us-
ing (7.33), (7.13), (2.4) and (4.2) we obtain

- = (Ao =AD& — (A —A9)Er
0_+a C+a P o_+a . e 1 i _1,0: 2751 -
; 1, S1, ST ; 1, Az ._Al <1
=0(1)- 3 |ofa|[Af — AT <|§5| + i@?l)
—0(1) - |a;a;l (55 + ‘g;l) . (7.37)
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Inserting the bounds (7.36) and (7.37) in (7.35) and deriving the corresponding estimates for the

second characteristic family, we obtain (7.34). s

Lemma 22. Assume that the two incoming waves both belong to the first family and call o, ¢
and o', £ their respective sizes and displacements. Let o, & be the size and the shift of the
outgoing wave—front of the first family and call a;’a, Eza the sizes and shifts of the outgoing waves

of the second family. Then one has

oter|+ 3 lotattal - (€] + oe]) <o) oo (jel + ) - (79
a=1

In the case where both incoming waves belong to the second family, with the obvious meaning of

notations, one has

loF e | + i o atial = (lo'¢'|+ [o"€"]) < 0Q) - oo J¢'] + ). )
a=1

Proof. Assume that both incoming waves belong to the first family. Then only one outgoing wave
of the first family can be present, while there may be many outgoing waves of the second family.
Call A’, A” the speeds of the incoming waves and let AT, A;“’ ., be the speeds of the outgoing waves.

Two cases will be considered.

CASE 1: max {lo", ia”[} < Ve/2.

In this case, the single outgoing wave of the first family has size o = o’+0"”, while no waves of the
second family are present. By Remark 3 in Section 2, our e-solutions then coincide with the exact
solutions of a scalar conservation law, which constitute a contractive semigroup. This immediately
implies

+ ot
l"l &

_ (|a'g’| + ]a"g”}) <0, (7.40)
proving (7.38).

CASE 2: max{la’|, lcr"l} > Ve/2.

In this case, the previous Lemmas 19 and 20 apply. In particular, from (7.15) it follows

IAT(OJ + O_II) _ U_IA/ _ U_/IAII

=0(1)- Ia'o*” (\0" + |0'"D . (7.41)
Using (4.3), (7.14), (7.41) and (7.33), with A; = A, Ay =N, & =¢", &= ¢, we obtain
\Uf’gf‘ _ (lo_lgll n lguglll) < !Uifi‘— _ (a'&'—}-o‘”{")!

o (eF =€) +o" (& - s)l

< ‘a;t - (a'+a~)Hg;r\ +
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<0(1) - |o’e”| gl
R WAV + AN + _ AMNe T _ ANe”
y {(Al A)E - (4] - Mg _g,} o {ml A)E = (] - Mg _g,,]
—0@1) - |0 (|§ |+ 1c”[) A” o' (AF =AY+ o (AF = A7)
= 0()- |o's"| (|| +1¢"]) - (7.42)

no 0
§ + ot | § ’ +

}GZ,a'gQ,a - !UQ,ai AN — AV
a=1 a=1

~0(1)- (10’ " (Je]+ 10”!)) / ‘(lTé%l%ﬁ
—oQ)-o'o"[ (j¢] + I¢"]) - (7.43)

Moreover, using (4.3) and (7.14) one obtains
(Ag,a . A/I)gl _ (A‘;—,a . A’)&" \

Together, (7.42) and (7.43) yield (7.38). 23

The previous analysis completes the proof of Proposition 6. Indeed, Lemma 21 provides a
proof of (3.14) when the interacting waves belong to distinct families, while Lemma 22 covers the

case of waves belonging to the same family.

8 — Estimates on Weighted Lenghts

Tt will be convenient to introduce some new notation, representing the weigthed length (3.15)-
(3.16) in a more compact form.

Let v be a piecewise constant function, with jumps at #; < --- < znN. Assuming that at each
point z, the corresponding Riemann problem is solved by a single e—admissible wave, we simply
call o, the size of this wave (omitting the index i = 1,2 referring to its family). Given an N-tuple
of shift rates ¢ = (&1, ...,£n), define

VE(U) = Z (2 + sgn(ara)) ‘O'agal
v) = Z Z 2+ sgn(oa)) l”ao'ﬁ“fai (8.1)

a (0a,05)€A
= (Ve(v) + KQe (v)) KR
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As usual, A is here the set of all couples of approaching waves, and @ is the interaction potential
defined at (3.3). Note that, with some abuse of notation, we often write o, while actually meaning

the wave whose size is 0.

Let {Ug}ee]a,b[ be a family of e—solutions satisfying the hypotheses of Proposition 7. In par-
ticular, we assume that v?(¢,-) € D° for all 0, t and that the wave—front configuration of each v?

remains the same as the parameter 6 ranges in |a, b[. For any given 6, consider the function

£ Te <v9(t, -)) (8.2)

where z9(t) < - -- < z%(t) are the locations of the jumps in v?(¢,-) and
. ozt
€0 = (G0 en®) (= 2o

Comparing (8.1) with (3.15)—(3.16), in order to prove Proposition 7 it suffices to show that the
quantity T¢(t) in (8.2) is a non—increasing function of time. Clearly, T¢ is piecewise constant with
discontinuities occurring only at those times where two or more wave-fronts of v? interact. Relying
on the estimates developed in Section 7, we will first prove that T; decreases whenever two wave—
fronts interact. By an inductive argument, we will then extend the result to an arbitrary number

of interacting waves.

Lemma 24. There exist constants K and 6* > 0, independent of €, such that the following holds.
Let D° be the domain in (3.6) and let T¢ = Ye(t) be the functional defined at (8.1)—(8.2). Let
{ve}ge]a’b[ be a family of e-solutions satisfying the assumptions of Proposition 7. Then, for every

given 0, at each time t where two wave—fronts of v¥ interact one has Te(t+) < Te(t—). Equivalently,

[Ve(t+) — Ve(t—)] + K [Qe(t+) — Qe(t—)] + | (Ve(t—) + K Qe(t-)) (1 - eK(Q@-)—Q(HD)} <0.
(8.3)
Proof. Call o7, o5 the sizes of the two incoming waves, and let £;, &5 be their shift rates, before
time ¢t. Call Wf ,W;r the sets of outgoing waves of the first and second characteristic family,

respectively, and define Wt = Wi UWj . Moreover, let A~ and A" denote the set of couples of

approaching waves before and after time ¢, respectively. We shall consider three cases.

CASE 1: The two incoming waves belong to distinct families.
Let o7 belong to the first characteristic family and o5 to the second. Observe that in this case the
sign of the outgoing waves is the same as the sign of the incoming ones, i.e.:

sgn(og) = sgn(o]) Voo € Wi, sgn(og) = sgn(oy) VYog € Wy . (8.4)

64



Estimates on Weighted Lenghts

Using (8.4) and (7.34), the first term in (8.3) is estimated by

Ve(o) - Ve(t=) < CoTog | (15{] +er]). (85)

for some constant C. To estimate the second term, we again use (8.4) and (7.34), together with (4.2).

Denoting by [[q]]+ = max{g, 0} the positive part of the real number ¢, one obtains

-0t s S e (4 smm(oa)) el + (24 sm0(e) [6])

T EWH,(0,04) EAT
((2 tsgulor)) [er |+ (2 +semloz )) )
Cn e (G emen) | i) )

(o) ,04)EAT oyF0,

Y e (ermen) |+ e 5)

(05 ,07)EAT Oy FEOL

< T (2+semEeD) | X loakel

1=1,2 Oa EW:_

. |a;a; &

-
51

—loi &

I, p Vi)

_Ui

)

I Ve(t-)

+ 2 0 > el

=12 \og,ew;"
e
<0(1) - |oi o7 ( + e l) V(=) + 0Q1) - |07 | (!af} + j«r;D Ve(t-)

S xn ( 2 +ls;D

51
1y - - -
<~ oot

SERE)

e—
S1

o
52

) + %‘Ufag'Vg(t——), (8.6)

provided that V (t—) remains sufficiently small. Concerning the last term in (8.3), using (4.11) we

obtain
(Ve(t=) + KQe(t-)) (1 - eK(Q(f—>-Q(t+>)) < K (Q(t-) — Q(t+)) (Ve(t—) + KQe(t-))
< ~Sloror | (Ve(t-) + K Q)
< ——g\a;aglvg(t—). (8.7

We now take K > max{2C, 1}, where C is the constant in (8.5), and choose §* > 0 so small that (8.6)
holds whenever V (t—) < 6*. With these choices, the bounds (8.5)—(8.7) together yield (8.3).
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CASE 2: The two incoming waves belong to the same family, and both have negative size.

To fix the ideas, let 07,05 < 0 both belong to the first family. In this case, the set W;" will contain
a single wave, of size o"l1L < 0, while W2+ may contain several waves. By (7.38), the bound (8.5) still
holds, for some constant C. Using (7.38) and (4.3), the second term in (8.3) can be estimated by

Qe(t+) — Qe(t—) < Z {‘70“77! ((2 + sgn(oa)) |€a] + (2 -+ sgn(av)) |§7|)
o €W, (04,04)EAT

(

_ 3 o7 0| (ff{[ + (2 + sgn(o-)) [§7|>

(07 ,04)EA~ ,04F0T

- Y e ( &5

52
(05,04)EA- 0 F0o]

3

&+

- I‘Tl 02

+ @+ sealer) |er])

< {[Iai*ef‘i—(lafsf +|a;55{>11++3 > [oatal p V(-)

TaEWS
et = (foi [+ s )1+ X el prece)

oo EWT
— lal 0'2" ( )

<o- |ores |(|er | +]es

GES

<~ t]oroz] ( |+ |55}> + 3loroz |vett) (8.8)

SHENISY

Jve)+0):fora | (Jo] +[ea] ) veeo)

.
S1

S1

provided that V' (t—) remains sufficiently small. Concerning the last term in (8.3), using (4.11) we
again obtain (8.7). The proof is then completed as in CASE 1.

CASE 3: The two incoming waves belong to the same family and have opposite signs.
To fix the ideas, let both waves belong to the first characteristic family, and have size o7 >0,
o5 < 0, respectively. In this case, the set Wf will again contain a single wave, of size af € ]az—, 0 [,

while W;’ may contain several waves. Concerning the first term in (8.3), using (7.38) we now obtain

Ve(t4) — Ve(t—) = ‘ajgﬂ + 3 (2+s8n(0a)) loakal - 3'a;§;l - lagggl
sLEWS

< Cloroz] ( |+ Isg‘l) —2|orer | (8.9)

S1
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for some constant C. Using (7.38) and (4.3), the second term in (8.3) is now estimated by

G- E N el (s el + 0 omlen) )

0o EWT,(0a,04)EAT

<3t§;] + éED
_ T o7 o] (31§;| + (2 + sgn(oy)) Iivl)

(of Oy )EAT Oy FOoy

- S 0507, (|§2‘ l + (2 + sgn(o4)) l%l)

(05 .09)EA™ 0407

~ ot oz

3\

<At |- Jorez)l, +3 X loakal (V)
caEWS )
+| 3 el vz@—»-—lafogl(}s; +~k5!)

O EW;'

<o(1)- Ig;a;l (lg{] + ,QD V(t-)+ \of&f

+0Q1) - ta;a;\ Oofl + l(fz"l) Ve(t—) — ‘UIJE. (IEI] + )

< tloes| (]5;\ + ‘55]) +oloror |vem) +orer [y (@10

V(t-)

33

2

provided that V (¢t—) is sufficiently small. We now take K > max{2C, 1}, where C is the constant '
in (8.9). Then we choose §* > 0 such that K¢ < 2 and so small that (8.10) holds whenever
V(t—) < 6*. From (8.9), (8.10) and (8.7), the estimate (8.3) thus follows.

%

By choosing the same constants K, 6 in all three cases, the lemma is proved.

The next tesult extends Lemma 24 to the interaction of an arbitrary number of small waves,

all of the same characteristic family.

Lemma 25. There exist constants K and §* > 0, independent of e, such that, in the same
settings of Lemma 24, the bound (8.3) also holds at each time t where an arbitrary number of waves
oy ,-..,0, interact all together; provided that all these waves belong to the same characteristic

family and that their sizes satisfy

En: |a;l < Ve (8.11)
a=1

Proof. Let all waves belong to the first family. In this case, the interaction produces a single
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outgoing wave of the first family, having size
n
of =Y oz <0. (8.12)
a=1

Moreover, by Remark 3 in Section 2, the first coordinates of the e—solutions v? locally coincide with
the exact solutions of a scalar conservation law, which are embedded in a contractive semigroup [C],
[K]. This implies

otef| < 3 Jonez]- (8.13)
a=1
From (8.13) it follows
Ve(t+) = Vel(t—) = ]«ﬁsi] =Y (2 +sen(on)) joata| < - D 2lonen]. (8.14)

o5 >0

Calling W™ the set of incoming waves, by (8.12) and (8.13) one obtains

Qt) - Qet-) < 3 ooy

(01‘—:0’)’) €A+

-2

(ls;f| + (2 +sgn(o,)) |'5'7|>

=

= <(2 +sga(oz)) [¢7] + (24 senloy)) 1;-:,1)

Sa
(05,0¢)EA 0, EW—
<tlotef |- 3 Jorezl v
oo <0
<Y rezjve). (8.15)
oo >0
Since Q(t+) < Q(t—), the assumption K §* < 2 guarantees that (8.3) holds. P

In the remainder of this section, §* and K denote some fixed constants for which the conclusions
of Lemmas 24 and 25 hold. To complete the proof of Proposition 7, we will show that (8.3) remains
valid also for interactions involving an arbitrary number of waves, of any size. A considerable

simplification will be achieved by using an inductive argument. Assuming that (8.3) holds whenever
Q (ve(t—-, )) < mée® (8.16)
for some integer m > 0, it suffices to show that (8.3) still holds whenever

Q (ve(t—, -)) < (m+ 1), (8.17)
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o+

Figure 14

Ll

Figure 15

The basic idea of the proof is illustrated by figures 14 and 15.

Assume that, when 8 = 8, the s—solution »? contains n waves of size o1, - .., which interact
all together at the point P = (%,z), as well as other wave-fronts o, (fig. 14).

We can assume that no other interactions occur within the interval [t — 6,t+ 6]. As the
parameter @ varies, let £1,...,8&n, £y be the corresponding shift rates. By assumption, the wave—
front configuration of »? remains the same for all 8. In particular, v% will always contain n wave-
fronts interacting at some point PY = (t%,2%). Calling Ay = 1(t),..., An = &, (t) the speeds of

these approaching wave—fronts, their corresponding shift rates therefore satisfy

Eo = T — U1Aq Vao=1,...,n (8.18)
where
) dt? dz? dp?
23— (139 T0) — —_— —— = — 819
] (Ll,UQ) (d@’ dG) a0 ( )

Let w = w(t, z) be the self-similar e—solution, defined on the whole (¢, z)—plane, such that
Atz)=wt—fz—z) for  txbzmz
Observe that, in a neighborhood £ of po , for 0 ~ 0 the functions v admit the representation
Pz =wit—t -2 =w(t—t—-(0-0)t,z—2—(0- 0)72) . (8.20)

We will construct a perturbed e—solution 'ZJ, obtained from w by slightly changing the locations of
the incoming wave—fronts o1,...,05, in such a way that they no longer interact together at one
single point. On the strip [t — 6,% + 6] x R, we then define a one-parameter family of e—solutions
w? by setting

Wt z)=ot—1%z -2t =0(t—t—(0-0)71,2—2(0 - 6)72) (8.21)
for (t,z) in a neighborhood €2 of PP and letting w? = v? outside 0 (fig. 15).
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If all of the interactions in w take place at positive times 0 < 7y < 73 < -- -, the above definition
implies
Te (wo(z— s, -)) = T (ve(f— 5, -)) (8.22)
for § > 0 suitably small. Moreover, the wave—front configuration of w? remains the same for all
~ 0.
To prove (8.3), for any given & > 0 we thus need to construct a perturbed family of e~solutions
w? of the form (8.21), with the properties:
(P1) All of the interactions occurring in w? satisfy either the assumptions in Lemma 24 or 25,
or else the inductive hypothesis (8.16).
(P2) Te (v9(5+ 5, -)) e < T (w9(5+ 5,)).
Indeed, (P1) and (P2) together imply

Te (ve(ﬂ 5, -)) —e< T, (w9(5+ 5, -)) <Te (w9(5~ 5, -)) =T (v(’(f— 5, -)) (8.23)
proving (8.3), since ¢ is arbitrary.

For the analysis of multiple wave interactions, the next lemma will be useful. All of its state-
ments are easy consequences of the definitions (2.15)—(2.20) or (2.21)-(2.23).

Lemma 26. In a given e-solution v, assume that n waves of size o1, ...,0, all belong to the same
i~th family and interact together at some point. Then
(i) If oo > 0, then the adiacent waves (if present) are both shocks, i.e. 0o 1,001 < 0;
moreover |oo—1| > 0o and |oa+1| > 0.
(it) The interaction produces one outgoing wave of the i—th family, of negative size.
(i) If ming oo > —e/4 thenn <3 and y .~ _, |oa| < 3e/4. In particular, if n > 4, then there

s at least one shock with o, < —¢/4.

(iv) Ifn > 8, then there is a pair of interacting shocks of size 04,03 < —g/4.

Proof of Proposition 7. We now describe the construction of a suitably perturbed e—solution w, in
the various possible cases.
CASE 1: The incoming waves o71,..., 0, all belong to the same family and satisfy |o,| < /2/8
for all a.

If 3~ loal < v/, we are in the situation already covered by Lemma 25, and there is nothing
to prove. Otherwise, call k the largest integer such that

> loal < V. (8.24)
a<h
By part (iv) of Lemma 26, among the waves o1, ..., op, at least two shocks of size 04,05 < —¢/4

must be present.
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Figure 16

Let A; > --- > A, be the speeds of the incoming wave—fronts. Define w as the function
obtained from w by shifting the waves opy1,...,0r, (along the z—direction) respectively by the

amounts
n— Aps1n?, .. .n — Ann?, (8.25)

where n > 0 is a suitably small quantity (fig. 16). As a result of this shift, in w the waves o1,..., 0
still interact all together at the origin, while the remaining waves op41, ..., 0n interact together at
the point P = (n2,7). Now consider the corresponding family of functions w? defined at (8.21). At
time t = ¢, the interaction of the first & waves satisfies the assumptions of Lemma 25, hence the
funtion Y¢(w?) decreases. Moreover, at time ¢, by (4.11) the functional @ decreases by an amount
> £2/32, as a consequence of the interaction between the two larger shocks o4+, 0g«. Hence, for all

subsequent interactions the inductive hypothesis (8.16) holds, allowing us to conclude:
Te (we(f—i— 5, .)) < T (we(z— 5, -)) : (3.26)

CASE 2. The incoming waves o1,...,0, all belong to the same family. There is exactly one
incoming shock with size oo+ < —+/2/8, while all the other waves have strength |oo| < /¢/8.

In this case, the perturbed e-solution & is constructed by shifting the wave—fronts of w so that
they interact as follows.

If the waves o1, ...,04_1 to the left of g4+ satisfy ), o«
1. Welet A < o* be the largest integer such that (8.24) holds, and we shift the waves opt1,...,0n

ool > Ve, then we argue as in Case

by the amounts (8.25). As in CASE 1, in the corresponding family w?, the interaction of the first
h wavefronts satisfies the assumptions of Lemma 25. For all subsequent interactions, the inductive
hypothesis (8.16) can be used, so that (8.26) holds. An entirely similar argument applies in case

Za>a* O_a[ > \/g

We are thus left to deal with the case where the quantities ), _ ..

< Ve

0ol are both

Ual: Za)a*
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Figure 17
In this case (fig. 17), we first let the waves o1,...,0q 1 interact all together at some time
1 > 0, producing a single outgoing shock o'. Then we let the waves og«41,-..,0n interact all

together at some time 72, producing a single outgoing shock o’”’. Afterwards, we let o’ interact
with o4+, producing a shock ¢” and possibly some additional waves of the other family. Finally,
at some time 74, we let o’ interact with ¢’”. Observe that the first two interactions satisfy the
assumptions of Lemma 25, while the last two involve only two incoming waves, so that Lemma 24
can be applied. After time 74, some additional interactions may occur among the wave—fronts of
the other family, emerging from the interaction points at ¢ = 73, 74- However, either the potential
Q has decreased by an amount > £2 at one of these times, or else the total strength of these
newly generated waves is certainly < v/e. Therefore, for the corresponding family of e-solutions w?
in (8.21), the inequality (8.26) again holds.
CASE 3: The incoming waves o1,..., 0, all belong to the same family. There are at least two
incoming shocks with sizes 04,08 < —V/€/8.

Clearly, we can assume that all waves o; with o™ < i < §* satisfy |o;| < +/2/8. In the case

where

Z los| > Ve, (8:27)

a*<i<fp*
the same technique of Case 1 can be used. Let  be the largest integer such that Zm<i§h los] < Ve
We then shift the wave—fronts of w in such a way that the first interaction involves exactly the
incoming waves oo+ 11, ---,0h. Lhis first interaction is covered by Lemma 25, while all subsequent
interactions are covered by the inductive assumption (8.16). Therefore, the corresponding family

of e-solutions w? satisfies (8.26).

If (8.27) does not hold, we first let the waves og=11,..., sigmag-—1 interact all together at
some time 71, producing a single outgoing shock of size ¢/ < 0 (fig. 18). Then we let the shocks
0.+ and o’ interact together at ¢t = 7o, producing an outgoing shock of size o’/ < oo+ < —v/2/8 and
possibly some waves of the other family. Finally, we let the shocks o/ and og- interact at some time

5. Observe that the first interaction satisfies the assumption of Lemma 25, while the other two
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involve only two incoming shocks, so that Lemma 24 applies. Moreover, at time 73 the interaction
potential Q decreases by an amount > &2, hence all of the interactions which occur at later times

are covered by the inductive hypothesis (8.16). Once again, we conclude that (8.26) holds.

Uk
Figure 18
CASE 4: The incoming waves belong to both families.
Let 0},...,05% and of,...,07" be the sizes of the incoming waves, of the second and first

family, respectively. Four subcases will be considered.

*

1. Assume first that w contains two incoming shocks of the same family, with size crf"' , o <

K]

—e/4. In this case, we can shift the wave—fronts of w in such a way that the waves o7, o™ < j < 8*
interact among themselves before every other interaction occurs. The order of the interactions can
be arranged as in Case 3. After these first interactions, the potential @ has decreased by at least
£2/32. Hence, all subsequent interactions are covered by the inductive assumption (8.16) and (8.26)

holds.

2. If w does not contain any shock of size < —e/4, of either family, then part (iii) of Lemma 26
implies nq,no < 3. In this case, we simply let the 1-waves interact together, producing a single
1-shock o’, then we let the 2-waves interact, producing a single 2-shock o”, then we let ¢’ and o”
cross each other. The first two interactions are covered by Lemma 25, the last one by Lemma 24,

and no other collisions occur.

1

3. Assume that each family contains exactly one shock with size < —e&/4, say 07" and o5*.

The wave—fronts of w are then shifted as follows (fig. 19). First, we let the waves rf% , g < 7 < no,

interact together, say at time 71, producing the single outgoing shock ¢. Then we let the waves o7

1 <j < a1 interact at time 75, producing a 1-shock o/. Then we let o}, collide with o5 producing
the shock ¢, and of collide with 0! producing the shock . Finally, at time 75 we let o7 collide
with of. Observe that the first two interactions are covered by Lemma 25 while the last three are
covered by Lemma 24. After time 75 the interaction potential has decreased by an amount > &°.

Therefore, all subsequent interactions are covered by the inductive assumption (8.16).
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Figure 19

4. Assume that one family (say the second) contains exactly one shock with size o5? < —e/4,
while the other contains none. We then shift the incoming wave-fronts of w so that they interact
as shown in fig. 20. Observe that, for ¢ < 7, all interactions are covered by Lemma 24 or 25. After
time 7, the only interactions that may occur involve waves of the first family. Since the total size

of all these waves is < v/¢, Lemma 25 applies.
In all subcases 1-4, the corresponding family w? in (8.21) therefore satisfies (8.26).

At this stage of the proof, for a given family of s-solutions vP satisfying (8.20), we have
shown how to construct a second family w®, defined by (8.21), such that (P1) holds. In order
to achieve (P2), we now observe that in (8.21) we can replace the e—solution @ with any rescaled

function
t x

Gg(t,m)i5<-—,—~) 0€]0,1] .
e o

For every fixed p, the corresponding family of e-solutions wz will still satisfy (P1). We claim that,
choosing ¢ > 0 small enough, the property (P2) also holds. To show this, two cases must be

considered.

Figure 20

CASE 1: The solution of the Riemann problem determined by the interaction does NOT contain
two shocks, both of size < —+/2/3.
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Then, by Lemma 9, the function & contains finitely many interaction points. By choosing
o > 0 small enough, we can thus assume that all of the corresponding interaction points of wg fall

within the time interval [£,f + §]. An application of Lemma 10 now yields
Te (v9(5+ 5, -)) < Te (wg(£+ s, -)) . (8.28)

Indeed, for every outgoing wave o, with speed A, present in the self-similar e-solution w, the
function & contains one or more parallel wave—fronts. The corresponding waves have sizes 0q,
with Zz Oai = 0q. At time t + 6, the e—solutions v? contain a corresponding wave of size og,
shifted at the rate

o = op) “‘Aaﬁl -

On the other hand, w? contains a family of parallel wave—fronts of sizes 0y q, all shifted at the same

rate £,. Recalling (8.1), the inequality (8.28) is now clear.

CASE 2: The Riemann problem determined by the interaction is solved exactly by two shocks,
both of size < —/2/3.

Call o7, 0% the sizes of these outgoing shocks, and let A7, A% be their speeds. By the proof of
Lemma 9, for ¢ sufficiently large the e-solution w contains two shocks with sizes o;(t) and speeds
Ai(t) (1= 1,2), satisfying
We now observe that, at time ¢ -+ 6, inside Q the functions v?Y contain two shocks of sizes o7, 03,
shifting at the rates _,

¢f = vp — A 01, i=1,2. (8.30)

4

? contain two shocks of sizes o:(6/0), shifting at the

On the other hand, the rescaled functions w

rates

& = v2 — Ni(6/0)01, (8.31)

and possibly some additional small waves, bouncing back and forth between the two shocks.

1 i P O + (; - > £ 1’; “I’— - .

Hence, for ¢ small enough, (P2) holds.
This completes the proof of Proposition 7.

YK
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9 — The Approximate Semigroups Are Contractive

We begin by proving Lemma 14, stated in Section 6.
Proof of Lemma 14.  Let (9m)m>0 be a sequence of initial conditions in 55, satisfying the assump-
tions of Lemma 14. It suffices to prove that some subsequence satisfies (6.12). Let vy, = vp(t, z)

be the corresponding e-solutions and consider the interaction potentials
Qm(t) = Q° (vm(t:-)) -

Since each Q,, is non-increasing, by possibly taking a subsequence we can assume that, for some

T >0,
lillﬁiuog |Qm(7) - Qm(r)] < &3 v’ €10,7] . (9.1)
For ¢ € [0, p/A™%7], define the interval I(t) = [—p + tA™%%, p — tA™*], and consider the triangular
domain
L= {(tz) |z|<p— tAm L (9.2)

Observe that, by (6.10), for m large, nearly all waves in v, (0,-) are concentrated within a
small neighborhood of the origin. Therefore, there will be a short time interval [0, ¢,,] where most
of the interactions take place. After the time %, the waves in v, will be essentially decoupled.
Following a technique of DiPerna [D1] (p. 86), we claim that there exists a sequence {t,,:m € N}

decreasing to zero slowly enough so that the following condition holds:

(C) For each m sufficiently large, there exists a pseudopolygonal " :6 — v (tm,-) connecting
v0(tm, ) With v (tm, -), with the following properties:
(i) ¥ is a concatenation of finitely many elementary paths.

(ii) The length of the restriction of v{?, to I(tm) satisfles

L T(En) <C- Hvo(tm, ) = Vi (tm, ')HLI(I(tm))

|+

for some constant C independent of m.
(iii) For every #,m, the corresponding solution v, defined for t > ty,, does not contain any
couple of shocks, both of size o < —+/2/3, emerging from a single interaction point located

inside the triangle I' at (9.2).

If the above claim holds, then Lemma 14 follows. Indeed, by the special case of Proposition 5 which
was proved in Section 6 (relying on the hypothesis (H) and not using Lemma 14), we conclude that
the restriction of v/ to the interval I(¢) is still a pseudopolygonal, for all ¢ > im. Therefore, its

length can be computed by (3.10). Using Proposition 7 and the uniform equivalence between the
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weighted length and the standard L' length of a path, stated in (3.18), for some constant L and

all £ > t,, we obtain

HUO(t7') - vm(t’.)”Ll(I(t)) < “’Y?”Ll(I(tm)) <L- ’YZZ L (I(tm))

<LC- H’Uo(tm, ) - Um(tm’ ‘)HLI(I(tm))’

Egi‘ig [vo(t, <) = v, )l gs gy < L€ - limsup [[vo(tm, ) = vmltms | L7

m—-+oo
< LC-lmeup {”‘fo(tmv ) = ol g,y + 180 = Bmliza gy + [[Fm — v (tm, ')”Ll(I(tmD}
—0,

proving Lemma 14. Throughout this argument, we used the fact that all results on pseudopolyg-
onals, previously stated for e-solutions v = v(t, z) defined for all z € R, remain valid when v is

restricted to a domain of the form (9.2).

We are thus left with the task of selecting the times ¢, and the pseudopolygonals 4. By as-
sumption, the function vy = vo (¢, z) is the e—approximate solution of a standard Riemann problem.
To fix the ideas, let vy contain a rarefaction fan of the first family, of total size o1 > 0, and a large
shock of the second family, with size o2 < —1/¢/3 and located at z = Ast. The other cases are very

similar.

va(tm )7 )
0 At o)
Figure 21

For m large, using (6.10) and (9.1), we can then find ¢, satisfying the following conditions (fig. 21).

(C1) On [0, p — t;,A™*], the function v, (tm,-) contains a 2-shock, say located at z™(tn,).
Except for this shock, the total strength of all other waves is < 2.

(C2) On [—p + tmA™3% 0], the total amount of 2-waves in vpm(tm,-) is < 2. Moreover, no

1-wave of size o < —+/¢/6 is present.

In order to define the path v} joining vo(tm,-) With vm (tm, ), we first introduce the intermediate

function w = (w1 (z), wa(z)) by setting

v (tm, ) if z >0, 2*(tm) = Aotm,
w(z) = { vm(tm,z) if z >0, 2%(tm) < Aatm, (9.3)
(wl(m),wg(m)) if z>0
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where
wy (z) = max {vo,1 (tm, x), Vm,1 (tm, z)} wa(z) = vo,2(tm, T) (9.4)

Here (vm,1,vm,2) are the coordinates of vp,. We then define 4 as the concatenation oA

of the paths

7' (9) = voltm, ) - X|~c0, 9] tw- X]9, +o00] (9.5)
'7”(79) = 'Um(tmv ) : X]__oo7 _,(9] +w- X]—-’z‘}, +oo[ - (9.6)

As § increases from —p to p, the path v” connects vy (tm, -) with w and 4 connects w with vo(tm, )
One easily checks that the properties (i)-(ii) in (C) are then satisfied. Indeed, for some constant

C’ one has

I llgs + 11l = Moot ) = wllga + fom(m, ) = wllgz < € floo(tm: ) = vmEm: Mg -

To prove (iii), observe that for any given 9 € I(tm), the set of discontinuities of the function
79 = +/(9) contains some of the jumps in v (tm, -) or in vg(tm, -), together with the jump occurring
at z =9 and z = 0.

If ¥ > 0, then by (9.3) and the condition (C1) the Riemann problem at z = ¥ is solved in
terms of a 1-wave of strength < € and a 2-shock. If # < 0, then by (9.4) and the condition (C2),
the jump in the first coordinate of 39 can only be positive, while the jump in the second coordinate
is < € in absolute value.

For any 9, consider now the e-solution v?, with initial condition v(tm,-) = 7’ (9). Observe that
the amount of 1-waves in the region where z > 0 and the amount of 2-waves in the region where
z < 0 both remain < 2e. Therefore, after time ,,, no point of interaction can exist where two

outgoing shocks are produced, both of size < —/€/3.

~—

An entirely similar argument applies to the e—solutions with initial condition V(tm, ) = 7" (9

N

This establishes our claim, completing the proof of Lemma 14.

Proof of Proposition 8. Choose 5 > 0 independent of ¢ such that, for every couple of initial data
v, W € 1/5’:, all functions
6

V=T X 0,0 TP X]g, oo

remain inside the domain D¢ defined at (3.6). The path v:6 — 7% is clearly a pseudopolygonal and

satisfies
vl < Il = llo =3l < Collvlle

because of (3.18). Hence the distance d. restricted to D¢ is uniformly equivalent to the L distance.

The estimate (3.22) is now a consequence of Propositions 5 and 7. K
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10 — The Final Limit

Recalling the definition (3.20), let ¥ € D and consider a sequence o, — v with v, € D" for
all n > 1. To prove that the semigroup S is well defined, we need to show that, for every 7' > 0,
the sequence S;"@, is Cauchy. The next lemma will be used to estimate the distance between

trajectories of different approximate semigroups.

Lemma 27. Let S:[0, +oo[ x D + D be a globally Lipschitz semigroup. Let v € D and let
v: [0, T] ++ D be a continuous map whose values are piecewise constant in the (t, z)-plane, with jumps
occurring along finitely many polygonal lines, say {ac = xa(t)}azl N Calling L the Lipschitz

constant of the semigroup, one then has

_ _ T . Hv(tJrh) “Shv(t)ll N
v(T) — S, ) <L- ”v(O) - v“p +/0 (hffi%]i:p - L) at (10.1)
Proof. The assumptions on S imply
S0 825 <L [|v(0) = 3|, - (10.2)
L1

By the particular structure of the function v, the integrand on the right hand side of (10.1) is

piecewise constant, with jumps corresponding to the nodes of the polygonals To(-), say at ¢ =

T4y, Tm. Fix any € > 0 and define 7 as the supremum of all times ¢ € [0, T] such that
) t v(s + h) — Spvu(s ,
S wu(t) =S _v(0) < ZE-Q—’+ L-/ e + lim sup ” (s ) = Sn )HLl ds. (10.3)
T—t T L1 et 4] h__,O_i_ h

The continuity of the left hand side and the lower semicontinuity of the right hand side imply
that (10.3) holds also at t = . If 7 < T, two cases can occur.

CASE 1: 7=17; for some j € {1,...,m}.

By continuity we then have

+279¢ vt € [r, 7+ 6]
Ll

<
Lt

ST—tv(t) - ST'U(O) ST__T'U(T) - STv(O)
for some § > 0 suitably small. This yields a contradiction with the maximality of 7.

CASE2: 1¢{m, ..., Tm}-
Choose §* > 0 such that the integrand in (10.3) is constant for s € {7, 7 + 6*] and such that

ot +8) = Sev s o ol ) = Siol),

V6 €10,67 . 10.4
- m s - elo.]. (104
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By continuity, (10.4) implies

S v(r +6) — STU(O)

T—7—6 L
<|[Sp_,_sv(T+8) - Sp__s55v(T) o + S, v(r) - S,v(0) L
T t 4+ h) — Spv(t)]|<a .
<L-|lv(r+6)—Sv(r) +L-/ s-f—linlsup“v( ) =Sl dt+Zs~2"‘
d L1 0 h—0+ h =

T+6 v(t + k) — Spo(t)|l;. .
SL-/ 5+ﬁmsup” ( ) h()”L dt + Z e-27"

0 h—0-+ h T <7486

for all § € [0, 6*], against the maximality of 7.

The contradictions obtained in both cases show that 7 = T. Since e > 0 was abitrary, (10.1)
holds. 2]

Proof of Proposition 9. Applying Lemma 27, the difference between trajectories can be bounded
by

S L- ”{’n - ﬂm“]’_ﬁ

S;” Tp — S;’" U

11
(10.5)

o (S5 Bm) — SThUm e

T
+ L - / lim sup
0 h—0+ h

As m,n — oo, by assumption we have ||, — o[/ — 0. We now show that also the integrand on

the ight hand side of (10.5) approaches zero in L ({0, T]).
Indeed, let &, > €, and fix any time ¢ where no interaction occurs between wave—fronts of the
function v(t,-) = Si™ . Call {zq:a = 1,..., N} the set of points where the piecewise constant
function v(t,-) has a jump, say with left and right states v, v, Call w?, wy respectively the

em— and the e,~approximate solutions of the Riemann problem with initial data v, v}. By the

previous definitions, w™ consists of a single wave—front, say

UZ = "v[’fm (U;, ‘7&)

for some o, and i € {1,2}. On the other hand, wy may contain several lines of discontinuity. By

the self-similarity of the solutions of the Riemann problem, one has

SEn (S5 ) — S5 B
]jmsupi i (S )h K Z/ “wm(l z) —wi(l, ”d:c (10.6)

h—0-+

We now consider several cases, depending on the size o,.
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CASE 1: 04 < —2/em,.
In this case, the construction of e—approximate solutions described in Section 2 implies w' = wy,

hence the corresponding integral on the right hand side of (10.6) vanishes.

CASE 2: o4 €[0,5p,).
To fix the ideas, let i = 1, the other case being almost identical. By construction, there exists an

integer j such that the coordinates of v, v} satisfy
jem Svgy <van < 0+ em, Va2 = Vaz-

The function w™ then contains a single wave—front, travelling with speed A\1(&;), where w; is the
point with coordinates ((Qj + em /‘2,11;’2). Meanwhile, since &, < &, the g,—solution w2 may

contain several wave—fronts, travelling with speeds \1(w,), where the points w, satisfy
Ge= (204 Den/2072) | [2m, (24 1)2n] N [v;,l,v;jl} £0.

Since A\1(&) — A1 (we) = O(1) - 04, we have

/ - ”w:kn(l,:c) - wZ(l,x)Hdm =0(1) - [UQ]Q =0(1) - enloal - (10.7)

-0

CASE 3: o,¢€ {-—2,/5,,1,0}.
To fix the ideas, let the single shock in w™ belong to the first characteristic family and travel with

some speed AT*. By construction, this speed satisfies
AT = X(v)+O(1) - Vem - (10.8)
On the other hand, the e,-solution w} will contain an intermediate state vl such that
vi = 9" (va, 0%), vl = w3 (" 0%).
for some o/, oll. The states v, vl are separated by a wave—front with speed AT, satisfying
T=Mvy)+0(1) o, (10.9)

while the states vl v} may be separated by several wave—fronts. The contruction of wg, according

to the algorithm in Section 2, implies that the quantities o4, o), ol are related by
2
ol — Tal+ |0Z| <O(1)-|oal”- (10.10)

Together, the estimates (10.8)—(10.10) imply

+co
/ w1, z) — wi(L, )||dz = O(1) - loalvem - (10.11)

-0
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Using (10.7), (10.11) and the a priori bound on the total variation, from (10.6) it follows

Sim (Sf™om) — Sy Um

L~ 01) vem- (10.12)

lim sup
h—0+ h
This establishes that the sequence of approximate solutions is a Cauchy sequence and by the com-

pleteness of LY it converges. Hence, the map S: [0, +o00[ x D+ D in (3.23) is well defined.

At this stage, we return to the original coordinates u, which are the conserved quantities for
the hyperbolic system (1.1). With some abuse of notation, we still write S, D for the semigroup
and its domain, in the u—variables.

It remains to show that the properties (i)—(v) stated in Theorem 1 actually hold. The con-
dition (i) is clear, because each S~ is itself a semigroup. The uniform estimates on the sizes of
the domains 1/5“’", proved in Section 9, imply (ii). The condition (iii) holds, because the same is
true for each semigroup S°», with a constant L independent of ¢,,. Next we observe that, for any
given Riemann problem, as ¢ — 0 the corresponding e-approximate solution constructed by our
algorithm approaches the unique, entropy—admissible, self-similar exact solution. Therefore, the
property (v) also holds.

Finally, we prove that each trajectory of the semigroup ¢ — u(t,-) = Siu is a weak solution of
the Cauchy problem (1.1)-(1.2), i.e.

+o0 -+00 —oC 7
/— #(0, z)u(z)dz +/0 [ (p¢(t, T)ult, ) + oo (t, ) F (ult, z))) dzdt =0 (10.13)

for every C! function ¢ with compact support in the (¢,x)-plane. Let un(t,-) = S;™ i, be a
sequence of approximate solutions, with e, — 0 and ”un(t, ) — ult, ')”Ll — 0 uniformly for ¢ in

compact sets. Since F' is uniformly continuous on bounded sets, it suffices to prove that

—
n—-+00 —00

lim {\/‘*“’ #(0, z)un (0, z)dx + A+®[1“ (qbt(t,x)un(t, z)+ ¢z(t, z)F (un(t, m))) drdt} =0.

Choose T such that ¢(t, z) = 0 for ¢t > T. At any time ¢ € [0, 7], call z1(t) < -s < zn(t) the points

where u,(¢,-) has a jump, and set
Aup(t, o) = un(t, zot) — un(t, za—), AF(un(t,z4)) = F(un(t, za+t)) — F(un(t,za—)) -

Using the divergence theorem, the expression within square brackets in the limit above can be

written as

T
A Z [ia(t) cAun(t,za) — AF (un(t,ma))] ¢ (t,za(t)) dt (10.14)
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Call o, the size of the wave at z,. If 0o < —2+/€n, then by construction the Rankine-Hugoniot

equations are exactly satisfied, hence
Za(t) - Aun(t, zo) — AF (un(t, z4)) = 0. (10.15)

In the remaining case o, € [—2,/5,,, en], our construction implies the estimate

Go- Aun(t,za) — AF (un(t,a:a))l — 0(1) |oal? = O(1) Venloal - (10.16)

By (10.15), (10.16) and the a priori bound on the total variation, it follows that the expression
in (10.15) is bounded by O(1) - \/e,, hence it approaches zero as e, — 0. This completes the proof

of Proposition 9. s

Remark 7. If u = u(t,z) is any piecewise constant function whose values u(t,-) remain inside
the domain D of the semigroup S considered in Theorem 1, then Lemma 27 can be applied. The
formula (10.1) thus provides a Gronwall-type estimate on the L distance between an approximate

solution and the unique semigroup solution of the Cauchy problem (1.1)-(1.2).

Remark 8. By the same argument followed in the proof of Lemma 27 it is possible to prove
also the continuous dependence of the semigroup S from F. In fact, call S and S the semigroups
generated by the two systems of conservation laws

ug + [ﬁ‘(u)] =0 and ug + [Ig’(u)} =0.

I T

Then by the method above it is possible to show that there exists a positive constant £ such that

“S*ta - sta“ <c- ”DF’ - Dﬁ‘l (10.17)

L co’

Due to (10.1), in fact, proving (10.17) amounts to prove the analogous statement in the case of the

approximate semigroups S¢, S¢ applied to Riemann data.
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Chapter 2

The semigroup generated by 2 x 2 conservation laws constructed in Chapter 1 is extended to a
domain containing all suitably small perturbations of a solvable, stable and non-resonant Riemann
problems. Relying on this extension and on the finite propagation speed, a local existence and
uniqueness result is obtained. Uniqueness is proved in the same class of solutions for which existence

is provided.






Introduction to Chapter 2

1 — Introduction to Chapter 2

This Chapter is concerned with the local existence and uniqueness of weak solutions to the

Cauchy problem for a 2 x 2 hyperbolic system of conservation laws:

us + [F(-u)]x =0 (1.1)
u(0,z) = u(z) (1.2)

assuming that the total variation of # is bounded but possibly large.

In order to study the continuous dependence of solutions of (1.1) on the initial data, a new
approach was recently introduced in [B5] and [B6]. Its main steps are:

(i) Within a suitable class of functions with bounded variation, construct a Lipschitz contin-
uous flow compatible with the self-similar solutions to the Riemann problems.

(ii) Prove that such a flow is necessarily unique.

(iii) Characterize the trajectories of this flow as solutions of (1.1) in a suitable viscosity sense.
In the previous Chapter, a globally Lipschitz continuous semigroup of solutions of (1.1) defined on
a set of functions with sufficiently small total variation was constructed. In the first part of the
present Chapter, we prove the existence of a Lipschitz semigroup defined on a more general domain
D, containing all functions which are sufficiently close (in the norm of total variation) to a given

Riemann data
b

oa-{5§ i =
A linearized stability condition on the Riemann problem (1.1)~(1.3) will be assumed.

The trajectories of the semigroup are obtained as limits of piecewise constant approximations,
using the wave—front tracking algorithm developed in Chapter 1. Thus, the uniform Lipschitz
continuity is proved by introducing a Riemann—type metric, equivalent to the usual L' distance,
which is non-increasing w.r.t. the flow generated by (1.1). The coefficients of this metric, however,
must be chosen in a quite different way, since the domain D of the semigroup now contains functions
with large total variation. As soon as a Lipschitz semigroup has been constructed, its uniqueness
and the characterization of its trajectories as viscosity solutions of (1.1) can be proved exactly as
in [B5].

Relying on the finite propagation speed of the system, we then establish a local existence
and uniqueness theorem for general initial data @ € BV, provided that at every large jump the
corresponding Riemann problem satisfies our linearized stability conditions. We remark that, in
the standard literature, the existence of solutions is proved in the space of BV functions, while
uniqueness is established only within a smaller class of functions satisfying additional regularity
conditions [DG], [DP], [H], [Li5], [Sm]|. A major feature of the present Chapter is that the existence

and the uniqueness of solutions are both proved within the same class of BV functions.
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The local existence of solutions for large BV initial data was established in [A] for the equations
of isentropic gas dynamics and in [Sc| for general n x n systems. In the case of a 2 x 2 Riemann
problem solved in terms of two shocks, the stability condition (2.12) is somewhat stronger than the
corresponding one in [Sc|. In Section 8 we show that the assumption (2.12) is sharp: if the opposite
inequality holds, local solutions to (1.1) may still exist in BV, but they do not depend Lipschitz
continuously on the initial data, in the L' norm. This section is also concerned with the equations

of isentropic gas dynamics in Lagrange coordinates:

(u1)e — (u2)z =0 @
(ug)e + [p(u1)], =0

assuming p’ < 0, p” > 0. We prove that, if a given Riemann problem is solved without the

appearance of the vacuum state, then the stability condition (2.12) holds.

2 — Notations and Main Results

In the following, |-| and (-, -) denote the euclidean norm and inner product on R?, respectively.
Let 2 C R? be an open convex set, let F: Q + R? be a smooth vector field and call A(u) = DF (u)
the Jacobian matrix of F' at u. Throughout this Chapter, we assume that the system (1.1) is strictly
hyperbolic and that each characteristic field is either linearly degenerate or genuinely nonlinear.

For u,u’ € 2, define the averaged matrix
1
A(u, ) —;-/ DF (bu+ (1— 0)u') dé. (2.1)
0

For i = 1,2, let Ai(u,w’), ri(u,u’) and l;(u,u’) be respectively the i~th eigenvalue and a right and

left i-th eigenvectors of A(u,u’), satisfying
1 if i=3j .
wer={s & iz 22

If u = u then A(u) = A(u,w) and A;(u),r;(u),1;(u) denote the eigenvalues and eigenvectors of

A(u). For simplicity, we shall assume that
SATE <A (u,u) < AT < 0 < AT < Ag(u,uf) < AT Yu,u' € Q (2.3)

for some positive constants A™", \™a%,
By the Rankine-Hugoniot equations, two states u’ ub € Q are joined by a shock of the first
characteristic family if and only if they satisfy the scalar equation

Bo(ud, ul) = (lg(ub, uh), ul — ub> = 0. (2.4)
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Similarly, the states ull, u! are connected by a 2-shock if and only if
q)l(uhv un) = (ll(uha uu)7 uﬁ - uh> = 0. (25)

The differentials of ®; w.r.t. its first and second argument will be written as D1 ®;, Do®;, respec-
tively. For example
Po(u’ B — @y (ub, ul
qu)g(ub,uh)~vi*lim 2(u” + v, ul) 20w, u )

e—0 €

We say that the 1-shock joining u’, u" is stable provided that

Da®p(u’,u) - ra(uf) # 0. (2.6)
Similarly, we say that a 2-shock joining u!, uf is stable if

Dy (uf, uf) -7 () # 0. 27)

Now assume that the Riemann problem (1.1), (1.3) admits a solution with two shocks, having
u! as middle state. Consider an infinitesimally small wave—front bouncing back and forth between

the shocks (Figure la).

L

Figure la

At a time #; where the front interacts with the 1-shock, the ratio between the size of the outgoing

2-wave and the incoming 1-wave is given by

Da®s(ub, ul) -y (uh)

T Da®y(ub, ub) - ra(ul) (2.8)

K1 =
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Let u: [0,T] x R — R™ be a locally integrable function with u(t, -) € BV for each , and fix any

oint (7, ¢) in the domain of u. Call w = w(t, z) the self-similar solution of the Riemann problem

wt -+ [F(w)]l =0
: [ u(r,€-) if x<0 (2.16)
w(0,z) = {u(T,E—F) if x>0

Let A% be an upper bound for all characteristic speeds, as in (2.3). Fort > 7, define

" . w(t—T1,2—E§) if |:z:~§‘_<_/\max(t-—T)
Ul (b:2) = {u(T, z) i e —gl> AT —T)

The function t U?_u; T,E)(t’ -) is then Lipschitz continuous w.r.t. the L' distance, and ap-
>roaches u(r,-) as t — 7-+.

Next, call A = DF (u(T, g)) the Jacobian matrix of F computed at the point u(r,€). For
t > 7, define U gum&) (t,z) as the solution of the linear hyperbolic Cauchy problem with constant

coefficients
we + Awy, =0

w(r,z) = u(r, )

In the following, TV {u('r); I } denotes the total variation of the function u(r,-) over the set
1.

Definition 1. Let u:[0,T] — BV be continuous w.r.t. the topology of Llioc. u is a viscosity
solution of the system of conservation laws if there exists a constant C > 0 such that, at each point

(r,€) € [0, T[x R, for all p, s > 0 sufficiently small one has
G
A
1 E4p—eXTE
-8— /5 —pteAmaz

If also u(0, -) = @, then we say that u is a viscosity solution of the Cauchy problem (1.1)-(1.2).

)"

dz < C - TV {u(r);]€ — p,€[VIE €+ o[} (217)

u(r +e,x) — U?u;"_’&)(’l‘ +e,)

w(r +6,8) = Ul (T + 5, x)H dz < C - (Tv Lu(r);le — p, € + p[})2 (2.18)

If D is the domain of the semigroup S constructed in Theorem 1, the same arguments used
in [B5] now show that a continuous map u: [0,7] — D is a viscosity solution of (1.1)-(1.2) if and
only if

u(t,-) = Sit vt > 0. (2.19)

Thanks to the finite propagation speed, from the previous results we shall obtain a local
existence and uniqueness theorem for viscosity solutions with large BV data. At this stage, however,

a technical difficulty should be pointed out. Indeed, the characterization (2.19) for a viscosity
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solution u was proved under the crucial assumption that all values u(t,-) lie within the domain
D of a given semigroup. On the other hand, functions with large total variation may not be
contained in any such domain. We thus need to replace the assumption u(t,-) € D with a weaker
condition. Roughly speaking, we shall require that, in a forward neighborhood of each point (¢, Z),
the restriction of u(t,-) lies within the domain of some semigroup, possibly depending on ¢,z. A
more precise condition is formulated below.

Let w: R — R? have bounded variation. Then u = wu, is a vector measure, which can be
decomposed into a continuous and an atomic part: g = p®+ p® For i = 1,2 we define the signed

measure u; = u§ + pf as follows. The continuous part of y; is the Radon measure such that

/cﬁdﬂf:/li(u)'sﬁduc

for every scalar continuous function ¢ with compact suppport. The atomic part of x; is the measure
concentrated on the countable set {zo:a = 1,2,...} where u has a jump, and pf ({ra}) is the
strength of the i—th wave in the solution of the Riemann problem with data u(zq+), u(ze—). Of
course, we assume here that a basis of left eigenvectors /;(u) has already been selected, continuously
depending on u, and that all of the above Riemann problems are uniquely solvable.

Call ", p; the positive and negative parts of the signed measure y;, so that p; = By —py
while its total variation is given by |u;| = pj” +p;. We then define the interaction potential among

the waves 1n u as

Q) = (lual i) ({(e9) € B2 <} )
(b7 % ] ({(x,y) ER%:z # y}) (2.20)

+ (u:T X luzl) ({(xvy) ER*:z# y}) ~

Observe that, when u is piecewise constant, the above definition coincides with the standard one.
For convenience, a wave of negative size is here considered to be approaching every other wave of
the same family, even in the linearly degenerate case.

Now fix any point (¢, %) and consider the forward triangular neighborhood
A= {(t, D)t >E z€[F—pF ATt =), F+p— AT(t — 5)}} (2.21)
for p > 0 small. Given any function u = u(t, z) defined on a domain containing A, we set
u (5,5:+) if (t,z) ¢ A and z < Z,
u, (t,z) = u(t, z) if (¢,z) € A, (2.22)
u(t,z—) if (t,z) ¢ Aandz >z
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We now introduce an assumption, stating that the interaction potential of the truncated functions

N is small, in a forward neighborhood of each point. More precisely:

(A3) At every point (¢, %), for every £ > 0, there exist p > 0, p’ € ]O,p/,\m‘”] small enough

such that the corresponding function u in (2.22) satisfies

Q (uA(t, -)) <e vie [t,i+p] -

The condition that w locally lies within the domain of some semigroup will be derived as a conse-
quence of (A3). Using the above condition, an existence and a uniqueness theorem for solutions of

the system (1.1) with large data can now be stated.

Theorem 2. Let F:Q +— R? be as above. Let u: R +— R? have bounded variation and toke values
within a compact set K contained in ). Assume that at each point x where & has a jump, the cor-
responding Riemann problem admits a unique self-similar solution, satisfying the conditions (2.6),
(2.7), (2.14) and (2.12) in case of shocks. Then the Cauchy problem (1.1)—(1.2) admits a viscosity
solution satisfying (A3) defined on [0,T] x R, for some T > 0 sufficiently small.

Theorem 3. Let u:[0,T] — BV be a viscosity solution of (1.1)-(1.2), satisfying (A3). Assume
that, at each point (t,z) where u has a jump, the Riemann problem with data u(t,z+), u(t,z—)
is stable and non-resonant, so that (A1) and (A2) hold. If v is a second solution with all of the

above properties, then u = v on [0,T] x R.

3 — Qutline of the Proof of Theorem 1

To prove Theorem 1, three different cases will be considered, depending on whether the Rie-
mann problem (1.1)-(1.3) with large data admits a self-similar solution consisting of
(RR) two rarefaction waves,
(SS) two shocks,
(SR) a shock (say, of the first family), and a rarefaction wave (say, of the second family).
Let ! be the intermediate state occurring in the solution of (1.1)-(1.3). For a fixed e > 0, a
family of piecewise constant approximate solutions will be constructed by the wave—front tracking
algorithm introduced in [BC], which is now briefly described.
As a first step, we construct local Riemann coordinates v = (v1,v2), so that a basis r1, 72 of right
eigenvectors for the Jacobian matrix A(u) = DF (u) in these coordinates takes the form r1 = (1,0),

ro = (0,1). More precisely, in case (RR), we construct a single set of Riemann coordinates, defined
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on an open connected neighborhood of the two rarefaction curves joining v’ with ub and ub with
ul, see Figure 2a. In case (SS), we choose three sets of Riemann coordinates, defined on disjoint
neighborhoods of the points u? ub ul, see Figure 2b. In case (SR), we choose two sets of Riemann
coordinates, defined on a neighborhood of the point u” and on a neighborhood of the rarefaction

curve joining ul with u#, respectively, see Figure 2c.

Figure 2b Figure 2c

In a given set of Riemann coordinates, the i—rarefaction curve qu and the i—shock curve ¢

through the point v can now be parametrized as

¢T(’U, J) = (Ul + g, U2) ’ ¢I'(’U, U) - (’()1 + o,vU2 + (};2(”7 0-)0-3) ]

, . (3.1)
o5 (v,0) = (v1,v2 + ), g (v,0) = (v1 + ¢1(v,0)0%, v2 +0),

for suitable functions ¢1, $9. Choose any C® function ¢: R +— R such that

p(s)=1 ifs <-2,
(P/(S) € [07 2] ifse ["‘“2, _1] )
e(s)=0 ifs>—-1,

and, for a fixed £ > 0, define the interpolation between the i—shock and the i—rarefaction curve
vi(v,o0) =¢ (U/\/E)'qb;(v,a)—}— (l—cp(a/ﬁ)) -qu(v,a) i=1,2. (3.2)
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Given a right and a left state u!,u”, assuming that they both belong to the domain of the same
chart and have Riemann coordinates v™ = (vT,v5), v' = (vi,v}), an approximate solution to the
Riemann problem with initial data
l .
v Ju ifz <,
(@) = {ur ifz >0,

is constructed as follows.
First, using the implicit function theorem, we determine unique values o1 and o2 and a middle

state v™ such that
v =5 (vm,02> , =3 (v 01> . (3.3)
If o¢ > 0, then the states v!,v™ are connected by a rarefaction wave. Let the integers h, k be such
that
he <vh < (R+ 1)e ke <o < (k+1)e

Introducing the states

. (2741
w{ (je, vlz) w{:(J; e,v%) j=h,...,k,

we construct the e—approximate solution on the quadrant where z < 0 as a rarefaction fan:
b ifz < A (D)
vltz) = ol M@ i<z <@t i=htl.k (3.4)
o™ I AGF) <2 <0.
On the other hand, if o1 < 0, the states v} and v™ are connected by a single shock:
uhoifr< /\‘f(vl,al)t ,
v (t, T) = (3.5)

™ if,\f(vl,al)t< z<0.

The shock speed \Y is here defined as

/\‘f(v 01) (01/\/_) f(vlﬂfl) (1—90(01/\/—)) (U 01)

with

204 o) = a (v er (o)

meas ([js, (j+1elu [ﬁ“,vﬂ)

o1

NG =S A (@)-

J
Observe that the jump in (3.5) provides an exact solution to the Rankine-Hugoniot equations as

soon as 01 < —2+/2. The construction of the e-approximate solution on the quadrant where z > 0
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is entirely similar, repeating the above construction with waves of the second family. See [BC] for
details.

On the other hand, if the data u! and u" are not contained within the domain of a single chart,
the Riemann problem is solved with the introduction of a large shock, satisfying the Rankine-
Hugoniot equations and the entropy—admissibility conditions as well. For example, in case (SS), if
u! lies in the neighborhood of u! and ™ lies in the neighborhood of uf, we choose a unique middle

state u™ such that, in the corresponding coordinates v, one has
= st (o)

for some oy, while ©™ and u” are connected by a true shock of the second family. On the quadrant
where 2 < 0 the piecewise constant e—approximate solution is then constructed as in (3.4) or (3.5),
according to the sign of o1.

Let now u be a piecewise constant initial condition. An e—approximate solution to the Cauchy
problem (1.1)-(1.2), within the class of piecewise constant functions, is constructed as follows. At
the initial time 79 = 0 we solve the Riemann problems determined by the jumps of % applying the
algorithm previously described. This yields a piecewise constant approximate solution u = u®(t, )
defined up to the time 7; > 0 where the first set of wave—front interactions takes place. We then solve
these new Riemann problems by applying again the above algorithm. The solution is prolonged up
to the time 79 where the second set of interactions takes place, etc. ..

We will show that, if the initial condition # lies in a suitable domain D§, then the corresponding
e-approximate solution u®: [0, +oo[ x R+ R? is well defined and satisfies u®(t,-) € Dg forallt > 0.
In particular, on any bounded time interval [0, 7] the number of wave—front interactions is finite,
and each of the new Riemann problems determined by the interactions can be uniquely solved by
the algorithm. The definition of the domain Dj is given below, in the three distinct cases. We shall

always be concerned with piecewise constant functions u = u(z) of the form

n—1
b o g
w=u X]—oo,xl] -+ Zlu X]$a7$a+1] + X]xn,—!—oo[' (3.6)

1 1

Whenever ©u®™, u* belong to the same chart and have coordinates v, v*, we shall assume that
the Riemann problem determined by the jump at z,, can be uniquely solved by the above algorithm

in terms of waves with sizes 01 4,092 . Recalling (3.1)—(3.2), this means

v = 5 (V50" 10,000 ) - (3.7)

Case (RR).
In this case, there exists a single set of Riemann coordinates covering a neighborhood of the

rarefaction curve I'; joining u® with u! and a neighborhood of the rarefaction curve I's joining !
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with wf. In particular, if »® of v are the coordinates corresponding to the left, intermediate and
right state in the solution of the Riemann problem (1.1)—(1.3), we can assume that the domain of

the chart contains the set

U= {(vl,vg):vl € [v[i — 50,1;5 + 60] , lvg - vg

U{(vl,vz):
i

for some §p > 0. Observe that v; = vg and v? = v].

< 50}
(3.8)
v —vi‘l < bg,v2 € [vg - ao,vg+50]}

A positively invariannt set Dj of piecewise constant functions is now constructed as follows.

Define

n 2
T =V +Qu), V@)=Y | Q= > loieoisl (39
a=1i=1 ((5a).(3.8))€A
where, as usual, A denotes the set of all couples of approaching waves. Here and in the following,
in connection with a fixed system of Riemann coordinates, we can regard T,V,Q alternatively as
functions of u or as functions of the coordinates v = (vl(u),vg(u)). The wave sizes 0; o Will be

always defined by (3.7), in terms of the coordinates v. In connection with (3.8)—(3.9), define
R ) - ~ 6
D§ = {u as in (3.6):v® € U for each o, T(u) < o1+ 02+ 6, Qu) < 5} , (3.10)
where o1 = vllI — vg and og = vg - vg are the sizes of the first and second rarefaction waves in the
solution of (1.1)~(1.3). Observe that, for fixed states v®~ 1 v®, the wave sizes 0; o in (3.7) actually

depend on e. In turn, the functions T,V, @ in (3.9) depend on & through these wave strengths, and
so does the set Dj.

Case (SS).
We begin by introducing three sets of Riemann coordinates on disjoint neighborhoods of u’,
u and ul, respectively. We can assume that, for some 6o > 0, the domains of these charts contain

the disjoint sets

L{b e {("U]_,'UQ)I ’U.,j“‘vl,z S 607i:: 172}

-

Ut = {(‘%W)I v; —v;| < 6o, = 1,2} (3.11)

E=-3

Ut = {(U11U2)3 v — Uil < bg,1 = 1,2}

Let u be as in (3.6) and assume that the corresponding coordinates v satisfy

O ey , v . L eyt , ‘vau,...,vn ceut. (3.12)

7 3 LA
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The piecewise constant function u thus contains several small jumps, together with two large jumps
connecting u® =1 with 4 and u® ~! with «®'. We assume that:
(i) For every a # o’, o, the Riemann problem at z, is solved according to (3.7).
(ii) The Riemann problem at z, is solved in terms of a middle state u. such that the following
holds. The states «® ~! and u, are connected by an admissible 1-shock satisfying the
Rankine-Hugoniot conditions, while u, and u® are éonnected by a 2-wave of size o .

The corresponding coordinates v, v € Ut satisfy

b
v = Y5 (ve, 09 0 ) -

(iii) The Riemann problem at z,; is solved in terms of a middle state u* such that the following
holds. The states w* and u® are connected by an admissible 2—shock satisfying the
Rankine-Hugoniot conditions, while %=1 and u* are connected by a 1-wave of size oy ,:.

The corresponding coordinates v"‘u_l, v* e Ul satisfy
i
v = ¢§(v® 1:0'1,aﬁ) .

We shall consider separately the strength of waves and the interaction potential in the regions on

the left, in the middle and on the right of the two large jumps. More precisely, we define

ab—1 2
Trw) = VP +Q(w) VW)=Y Y |oial QFw= S |oiarisl
a=1 i=1 ((3,a),(5,8))€Ab
ot 2
Yhw) = Vi(u) + Q¥(u) Viu) = Z Zcilvi,a[ QM (u) = Z CiCjloi.a0s,3).
a=a’ i=1 (i), (4.8)) €At
n 2
Tw) = Vi) + Q') Vi = > Ylea] QM= S 0i,005,3]-
a=al+li=1 ((i,a),(j,ﬁ))€A3

(3.13)

To simplify the notation, the convention oy ,» = 075 o¢ = 0is here used. C; and C3 positive constants

whose precise value will be determined later. The set A" indicates all couples of approaching waves

with a, § < o’. The set A denotes all couples of approaching waves with o < o, 8 < of, while A!
indicates couples of approaching waves with a, 8 > af.
For suitable constants C3,C7 > 1, we then define

T(v) = C3T"(v) + Th(w) + CsTH(v) + 51—7—

v — ol H (3.14)

and set
Ds = {u as in (3.6), (3.12): T(u) < 6} . (3.15)

Case (SR).
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In this case there exist two disjoint sets of Riemann coordinates, covering a neighborhood of ub

and a neighborhood of the rarefaction curve I'; joning ub with u!. We can assume that the domains

i:1,2}

< bo,v2 € {vg~50,vg+5o]} .

of these charts contain the sets

ub = {(vl,vz): vi —

(3.16)

vy — ’Ug

Ut = {(vl,m);

Call o = vg - vg the size of the rarefaction wave of the second family, in the solution of (1.1)-(1.3).

Let u be as in (3.6) and assume that the corresponding coordinates v satisfy
vo,...,va_léub, vo‘,...,vnEL{h. (3.17)

The piecewise constant function u thus contains several small jumps, together with a single large
jump connecting u® =1 with u® . We assume that:
(i) For every a # o, the Riemann problem at z, is solved according to (3.7).
(ii) The Riemann problem at z; is solved in terms of a middle state u. such that the following
holds. The states u® —! and u, are connected by an admissible 1-shock satisfying the
Rankine-Hugoniot conditions, while u, and u® are connected by a 2-wave of size o .

b
The corresponding coordinates vy, v® € U # satisfy

b
'Ua - wg (’U*, U’z’ab) .

For suitable weights Cy, Cg, C3, we then define

ab—1 2

HOESY Z e Q= >, l|oiaosgl
o (), (.84
(3.18)
Vi(u) = Z Q(u) = Z Cicjlai1aaj’5|
i (G0 (58)e A
Thu) = V¥ (u) + @ (u) Th(u) = Vi) + Q% (u)
T(v) = CaT"(v) + Th(v) + ||[p® — o (3.19)

As before, we use here the convention oy 5+ = 0. The set A" indicates all couples of approaching
waves with «, 8 < o, while the set A! indicates all couples of approaching waves with «, 3 > o
1

Calling o9 = v — vg the size of the large rarefaction wave in the solution of the Riemann problem

(1.1), (1.3), we define
Di = {u as in (3.6), (3.17) : T(u) < o2 + 6} . (3.20)

With the above definitions, in all cases (RR), (SS) and (SR), one has
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Proposition 1. Let the Riemann problem (1.1)-(1.3) satisfy the stability assumptions (Al)—
(A2) in Theorem 1. Then there exists 6 > 0, and constants C1,Cq,C3 > 0 in the (SS) or (SR)
cases, independent of e such that, for any u € D, the wave—front tracking algorithm constructs a
unique approzimate solution u®: [0, 400 x R R2 of (1.1)-(1.2), with the following properties:

(i) us(¢,-) € D§ for allt >0,

(ii) the function t — T (us(t, )) is non increasing,

(iii) Any strip of the form [0, T] x R contains finitely many interaction points of u®,

(iv) TV (uE (¢, )) 18 uniformly bounded.

In all the three cases, to denote this unique, globally defined, e—approximate solution, we use
the semigroup notation

wS(t,") = S5 (3.21)

As in the previous Chapter, the next section of the proof works toward an estimate of the
Lipschitz constant for the semigroup S¢, in the L! norm, independent of e. The basic technique is
to shift the locations of the jumps in the initial condition @ at constant rates, and estimates the

rates at which the jumps in the corresponding solution u®(t, ) are shifted, for any fixed ¢ > 0.

Definition 2. Let ]a, b be an open interval. An elementary path is a map +:|a, b[ — L1joc of the

form

Ta—1:Tq

N
y(6) = u- X} . s [ 2l = Zo + £af (3.22)
=1

withz? | < 2 for all § € |a,b] and @ = 1,..., N.

Definition 3. A continuous map 7:[a,b] — Llioc is a pseudopolygonal if there exist countably
many disjoint open intervals Jp, C |a, b] such that:

(i) The restriction of v to each Jj is an elementary path.

(ii) The set [a, 8] \ (>, Jn is countable.

Exactly as in Chapter 1, one can prove:

Proposition 2. Let vp:0 — @? € D§ be a pseudopolygonal. Then, for all 7 > 0, the path
V10— ue(r, )= Siﬁe 15 also a pseudopolygonal. Indeed, there exist countably many open intervals
Jr such that [a, ]\ J, Jn is countable and the wave—front configuration of the solution uw® on[0,7]xR.

remains the same as 6 ranges on each J.

For a fixed ¢ > 0, we now introduce the weighted length of the elementary path v in (3.22),
given by
vl = (b — a)Te(u) (3.23)
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where the functional T¢ (also depending on ¢) will be defined below, in the various cases.

Definition 4. The weighted length of a pseudopolygonal is the sum of the weighted lengths of its

elementary paths. For any two piecewise constant functions u, w € D%, their weighted distance is
de(u, w) = inf {H'y\[:fy: [0, 1] +— D5 is a pseudopolygonal joining u with w} . (3.24)
By carefully defining the functionals T¢, we will show that the distance (3.24) is uniformly
(w.r.t. €) equivalent to the L1 metric, and that the the function
t— de (S5, Siw)

is non-increasing, for all @,w € D%. This will imply that the semigroup S°¢ is uniformly Lipschitz

continuous w.r.t. the usual L distance. Observe that, by taking

Te(u) = ||u

a

o __ a1l

u €a]

the expression (3.23) would give precisely the length of v in the usual L! metric. This length,
however, may be non decreasing along the flow of the semigroup S°. For this reason, we shall

consider a weighted length of the form
Te=_ |oialléaWia
7,0
where the weights W; ,, are defined below, in the various cases. To motivate the following definitions,

we remark that, as in [BC], the weights should be essentially of the form
Wia =1+ {total strength of waves approaching O’iya] + [interaction potential] .

Observe that, if o; o < 0 is a shock of the i~th family, the amount of i-waves which can interact in

the future with ¢; 5 can be bounded by
2% loial_—loial_-
B#a
Indeed, a negative i-wave cannot interact with positive i-waves in an amount greater than its own

size, otherwise it would be completely annichilated.

Case (RR).
Let u € D be as in (3.6). With the notations introduced in (3.9)-(3.10), we then define

n 2

a—1 n
Sia=2|>.> losal_| —loial_ Ro= ool + > lousl, (3.25)
B=1

B=1 j=1 B=a+1
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n 2
Tg = Z Z lo‘i,aga[ (1 + KISi,a) e2lat@ (326)
a=1 1=1
where [s] = (|s| — s) /2 denotes the negative part of the real number s. A precise value for the

constants Ky, Ko will be selected later.

Case (SS).
Let v be as in (3.6) and let (3.12) hold. We then set

Pia = 1+ &0 - sgn(04,0) (3.27)

for some ep > 0 suitably small. In connection with the quantities defined at (3.13), we now introduce

certain functionals V¢, Q¢, which also take the shift rates £, into account:

a’—1 2
Vsb - Z Zpi’o‘ s,0a| QZ = Z |os.005.5] (Pi,als‘al +Pj,ﬁ‘§5‘l)
a=1 i=1 ((3,@),(7,8))eAb
ot 2
VEE NS Cipialoiatel  QEE Y. CiCiloiacis| (pualtal +pislis]) (3:28)
a=ab =1 ((3,0),(5,8)) €Al
n 2
VIS 37 S pialrieta) Q= YD oiaoigl (P~i,aI§ai +Pj,,6!€5|)
a=al+1 i=1 ((5,0),(4,8)) € A}

Again with reference to (3.13), we define
TE=VE(1+Q)+ K@k Ti=via+QY)+K3Q)  TE=via+oh)+KsQl  (3.29)

Denoting by El, Eg the shift rates of the two large shocks and recalling (3.14), we then set

)

where K3,... Kg are suitable constants whose precise value will be selected later.

—~

3.30)

&2

Te= (T@H{S (7t +1h) + K (]5'4—

Case (SR). Let (3.6) and (3.17) hold. We then define

a’—1 2
ng = Z Zpi,alo'i,agal QZ = z la‘,;,ao'j,,gl <Pi,a|§al “f’Pj,ﬁ{&BD ’ (331)
a=1 i=1 ((3,@),(7,8))€.A
n 2
Si,a =2 Z Z ﬂ:o-.j’ﬂ]]__ - ‘Igi,a]]__
B=ab J=1
a—1 n f
Bo= S Joagl+ 3 Joug] (3.32)
B=ab B=a+1
Qh = Z |<7,-,acfj"3’
((3,a),(4,8)) € A
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with p; o as In (3.27). Above, Al is the set of couples of approaching waves (04,4, 75,8 with «, 8 > ab.

Moreover, we set
= V(1 +Q°) + KsQ;

b n 2 : KsR, i (3.33)
T = Z ZKiI(T.i,afal(l + K4Si,a)€ s Rat+Q ’
a=a’ i=1
and finally
e <K8TZ HTEH]G > et (3.34)
where K3, ..., Kqg are suitable constants.

Using the above definitions of T¢ in the formula (3.23) for the weighted length of a path, in
each of the three cases (RR), (SS), (SR) one has

Proposition 3. Let the Riemann problem (1.1)-(1.3) satisfy the stability assumptions (A1)
(A2) as in Theorem 1. Then there exists § > 0 and positive constants K; in the above definitions
of T¢, independent of €, such that the following holds. If v0:6 — a’ e D5 is o pseudopolygonal,
then the weighted length ||v-| of the pseudopolygonal v:0 — ud(r,-) = Ssu? is o mon increasing

Sfunction of time.

Proposition 4. Given 6 > 0, there ezists some &' € ]0,6] such that any two functions u, u in
D5, can be joined by a pseudopolygonal entirely contained in D§. Moreover, the weighted length of

this pseudopolygonal is uniformly equivalent to the usual distance Hu — u,“Ll‘

Proposition 5. Let the Riemann problem (1.1)-(1.3) satisfy the stability assumptions (Al)-

(A2) as in Theorem 1. Then there exists 8 €0, 6}, independent of e, such that the semigroup
5%: [0, +oo| X Dgr — D

defined by (3.21) is uniformly Lipschitz continuous w.r.t. the L1 distance, with a constant indepen-
dent of .

As in [BC], to complete the proof of Theorem 1 we now consider a sequence of semigroups
Sén with , — 0, and construct the limit semigroup as n — 4oco. More precisely, we fix >0

according to Proposition 5 and define the closed domain
D = {: Hiy, — @, Un € D§Vn} . (3.35)
For % € D and t > 0, we then define
Siti = l@m S iin (3.36)
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where @, € D§ is any sequence approaching # in L. One concludes by proving

Proposition 6. The closed domein D in (8.35) and the semigroup S in (8.96) are well defined
and satisfy all conditions (i)-(v) in Theorem 1, for suitable constants L,p > 0.

4 — Bounds on the Total Variation

Throughout this and the following section, the value of & will be kept fixed. Hence, to simplify
the notation, the dependence on ¢ of the various functionals will not be explicitly written. Since we
are eventually interested in the limit of e—approximate solutions as & — 0, it is understood that all
of the estimates given below remain valid uniformly w.t.t. ¢, as € ranges in a suitably small interval
10,e4]. In all three cases (RR), (SS), (SR.), the same argument used in [BC] shows that, as long
as the total variation remains uniformly bounded, the set of interaction points of an s—approximate
solution can have no limit point in the (¢, z)-plane. In particular, the interaction times will satisfy
limp—st60 7 = +00. To prove the global existence of piecewise constant approximate solutions,
stated in Proposition 1, it thus suffices to derive apriori bounds on the quantities Q(u), Y(x), valid
for all t > 0.

With the Laundau symbol O(1) we denote a function whose absolute value remains uniformly

bounded. The positive and negative part of a real number s are written

L slts L lsl—s
[s], = [o]_=2°
For convenience, we use the sup-norm on the space R? of the Riemann coordinates, so that
Hv'—v“imax{[vi—vl ,lvé——vgl} , B(v,8) = {v’:im:%*(2 |v£——vi[<5} . (4.1)
Observe that, if v® = 5 (v*7 1, 0y ,); then (3.1)~(3.2) imply
3
vy — ’af’*l = Gja, vy — v;?‘—li =0(1)- (ﬂ%‘,a]]_) for j = 4. (4.2)

We consider the case (RR) first. In this case the Riemann problem (1.1)-(1.3) is solved in
terms of two rarefaction waves of sizes 61 = ulh — vi, oo = vg — vg. The definitions (3.8)—(3.10) are

in use.

Lemma 1. For § > 0 sufficiently small, the following holds. Let the values v°,... v™ € U
satisfy (3.7), with v0 = v°, v = ot Qv) <6/2, T(v) <oy 402+ 6. Then for every a one has

v* € ([vt{—\/g,vg-k\/g} X [vg— \/g,vg—l-\/g])

(4.3)
U([Ug — V6,0 4 V3] x [Ug_ﬁ,vgwg]).
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Proof. Since 51, 52 > 0, from
é
3 (Sl | [ Dol | 001 <5 (1.4)

we deduce

S loral_+ Y lozal_=0(1)-5. (4.5)

For 6 > 0 sufficienly small, (4.5) and (4.2) yield

vE v =Y il =0(1)-6° < 52 (4.6)
B<a
If now
vf‘*<vg——\/g, vg > vh+ V6
for some o, then
6
Qv) 2 Z |U1,a| Z laz,al _>_(\/<§~—52)'(\/5—52)> 7"
a>a* ala*
This contradiction proves (4.3). s

Proof of Proposition 1 in case (RR). Let 7 be a time where a wave—front interaction takes place.
Assuming that u(t,-) € D§ for t < 7, we need to show that the quantities @ (u(t, )), T (u(t, )) do
not increase across the interaction, hence u(t,-) € D§ also for ¢t > 7.

Following [BC], we observe that any simultaneous interaction of three or more incoming waves
can be approximated by a sequence of separate interactions, each one involving exactly two incoming
wave—fronts. Hence, it is not restrictive to assume that at time 7 only two wave—fronts interact.

Assume first that the incoming waves belong to distinct families. For i = 1,2, call o, 0;' the
(total) size of the waves of the i~th family before and after the interaction (Figure 3a). Because of
the existence of local Riemann coordinates, for some constant C4 the following sharp interaction

estimate holds.
o = o] + o 07| = aforar| (Jor] + oz ). @)
If both incoming waves belong to the same family (say, the first), call o/, 0" the sizes of the incoming

waves (Figure 3b).

Then one has the estimate

/ 14
0']—_*_“‘0' - g

+ IJ;I < Cylo’a” (la" + ‘O‘”I) } (4.8)
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Figure 3a Figure 3b

Recalling that V(u) < oy +02+ 6, Q(u) < §/2, we can assume that
e<s, 07| o] o], 10| < €58 (4.9)
for some constant C5 independent of 6. In the two above cases, (4.9) yields

10;05‘

2 7

AQ(r) < —|a;a;’ + 04[a;a;| (‘g;l + ‘@D (51 +5246) < — (4.10)

"
0',0' !

2 b

AQ(r) < — 0/0'”| + C4|G’,0'” (!0'] + IO_IID (01 +02+68) < — (4.11)

provided that é is sufficiently small. In both cases, AY(r) < 0. By Lemma 1 we conclude that
u(t,-) € D§ also for ¢t > 7. By induction on the sequence of interaction times {7 }n>1 the proof is

completed. 3

Next; consider the case (SS), recalling the definitions introduced at (3.11)—(3.15). Observe that
the product x1x9 in (2.10) does not change if the basis of right eigenvectors r1,rg is replaced by
any other basis, say ¢171, ¢or2, with &1, ¢2 smooth scalar functions. Therefore, we can assume that
these eigenvectors are chosen so that, in the local Riemann coordinates, one always has r; = (0, 1),
ra = (1, 0).

Consider the 1-shock connecting »” with ul, If UE is the strength of a 1-wave colliding on the
right of the shock, and og denotes the size of the 2-wave produced by the interaction (Figure 4a),
from (2.4)-(2.6) and the implicit function theorem it follows

glf_g B _qu’z(ub,uh) -7 (uh)
 Da®@y(ub, ub) - ro(ul)

h = K. (412)
do

b
T L
From (4.12) we now derive an estimate on wave strengths, valid for more general interactions.

Lemma 2. Let a left and a right state, with Riemann coordinates v',v", be connected by a 1-

shock. Let three wave—fronts with sizes 05, 0? and o*tf impinge on this shock, as in Figure fa. Call
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Figure 4a Figure 4b

ag the size of the outgoing 2-wave, generated by the interaction. Assume that v',v" are close to the

reference states v? v and that the perturbing waves are small, 1.e.

ot — || <8, o — oh

Sé,max{lag‘, ]o‘%‘, \ag‘} <6. (4.13)

Then, for some constant Cs and every é > 0 sufficiently small, one has

|gg| < Ce (l&{\ + \UZD + |#1] (1+ Cs0) ‘oﬂ . (4.14)

Proof.  Observing that the sizes of the outgoing waves are C2 functions of the incoming waves

and of the left and right states u!,u”, the bound (4.14) is an immediate consequence of (4.12). =

Recalling (2.9), an entirely similar estimate holds for interactions involving the large shock of A

the second family, namely (see Figure 4b)
Jof] < c (laﬂ + ]a%l) + (L4 Cod) Inal - o] (4.15)

Denoting by v", 7" the states to the right of the large 1-shock before and after the interaction,
from (4.14) it follows

i - <o (‘a‘{] + ‘a&’ + MD (4.16)
for some constant C7. 58
Proof of Proposition 1 in case (SS). The proof is divided in several steps.
STEP 1: Choice of the weights in (3.13)—(3.14).
By the assumption (2.12) we can choose positive constants C1, Cy such that
Cy — C2lk104] > 2 Cy — C1|r202| > 2. (4.17)
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Recalling that ©1, @y < —1, from (4.17) it follows that, for § > 0 sufficiently small,
02|R1|(1+055)(1+5)—Cl < =2 Cl‘ﬁgl(1+055)(1+5) — Oy < =2 (418)

with Cg as in (4.14)-(4.15). We let C7 be the constant in (4.16). Recalling (4.7)—(4.8), we then

choose

C3=2+2C4Cs. (4.19)

STEP 2: 7T decreases at interactions that do not involve the two large shocks.

By an approximation argument, it again suffices to consider interactions involving only two
incoming wavefronts. To fix the ideas, consider two incoming 1-waves of size o’,¢”, interacting
in the region between the two shocks. In this case, at the interaction time 7, the quantities
T, — oY)l remain unchanged. Using (4.8) and recalling (4.9), (3.15), we have

ATHr) < (Cliaf ~o' ="

|a;D (14 Vi) - 2o’
< max{Cy, Ca} - C4l0' " (]0’[-}— la"D C’lzla' "
o'a"| /2 (4.20)

provided that § is sufficiently small. All other cases of interactions can be handled in the same way,
using (4.7) or (4.8).

STEP 3: 7T decreases at interactions involving one of the large shocks.

Assume that, at time 7, an interaction of the type sketched in Figure 4a takes place, involving
the large 1-shock. Observing that no outgoing wave emerges on the left of the 1-shock, the decrease
in T? is estimated by

AT (1) < —|a§} - Ia;‘. (4.21)
By (4.14) and (4.18), the change in T is bounded by
AYI(r) < Cg‘dg] - C’llagl + CQlUgIVh(T-“)

<O

e ([ 4]) + 0+ o0 la‘il} (14V4)) - crlo

< C3C6 <|a§1 + |a;|> (1+6) + (Calma|(1+ Co6)(1 +6) — C1) ]a‘;l
< 2C5C% (lcf‘{i + lJ;D - ‘UH. (4.22)
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From (4.19) and (4.22) it now follows

~ T
v —w

AT(r) < C3AY(7) + AYH(r) + C7
< =co (Jot]+ o4]) + 2020 (|e4]+ 4]) 2ot + GEEE ) e
< (Hl + ‘0‘51 + HD .

The analysis of an interaction involving the large 2—shock is entirely similar.

STEP 4: uv(t,-) remains in the domain Dj as long as T (v) is non increasing.

Recalling the notations in (3.12), because of the finite propagation speed one always has

0= lim w(t,z)= v’ v* = lm wv(t,z)= ot
I——00 : T—++400
Hence
&
ifg=1,...,0 WP b SZ va—va—liigTb(t)gé,
a=1
o
ifﬂ:al’—l—l,...,cxztt W — b < uab——vhH+ Z Ua~va_1‘I§C’7T(t)_<_C76,
a=ab+1
n
fe=al+1,...,n W8 — ot < Z Hva——vo‘—lngTﬂ(t)_{é.
a=abt+1l
For 6 > 0 sufficiently small, the above inequalities imply (3.12), completing the proof. 4

Proof of Proposition 1 in case (SR). Recall the definitions at (3.16)—(3.20). As in the previous
cases, we have to choose the weights C; In (3.18)—(3.19) so that, for 6§ > 0 sufficiently small, the
quantity T(v) does not increase at interaction times.

Consider an interaction involving the large 1-shock, as in Figure 4a. By the estimates (4.14),
(4.16), still valid in this case, there exists a constant Cg such that

< Oy (H' + ;ag‘ + IUQD . (4.24)

~T T
v —v

i

‘We then choose
C1=C3=1+Cs(2+02) Co=1. (4.25)

With the above choices, consider a time 7 where a wave—front interaction takes place. If the
interaction does mot involve the large 1-shock, by (4.7)—(4.8), the same arguments used in the

previous cases show that the quantities T?, T! do not increase, provided that 6 is sufficiently small.
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Next, let the interaction involve the large 1-shock, with the incoming waves as in Figure 4a. We

then have
AT ) < —|ok| - |o4], (4.26)
ATHr) < 10‘5] (1 + Vh('r——)) — Clkdgl + |07 ="
<Gy (‘a*{( + ]a;] n |a§D 2+ 52) — 01[02 ] : (4.27)
By (4.25), the two previous estimates imply AY(r) < — (105' + Iagl -+ IUED 5

5 — Estimates on Weighted Lengths

This section contains a proof of Proposition 3. With a judicious choice of the various constants
K ; which define the metric, in the three cases (RR), (SS) and (SR)we will show that the infinites-
imal path length Y ¢ decreases at every simple interaction, i.e. at every interaction involving just two
incoming wave-fronts. The same limiting argument used in the proof of Proposition 7 in Chapter 1
will then imply that T, still decreases, when any number of wave-fronts interact together.

For convenience, we shall often denote a wave—front simply by its size, writing for example the
wave o; in place of the wave whose size is 0;. Some basic estimates on the strength and on the shift
rates of waves involved in a simple interaction are collected below.

Assume that a 1-wave o1, shifting at rate £], collides with a 2-wave o5, shifting at rate £;.
Call 01"’ 2 O‘;: ; the sizes of the outgoing wave—fronts of the first and second family, respectively, and

let Eft P 5;: , be their shift rates. By Lemma 2 and 21 in Chapter 1, one has
o] — Zail + |og — ZU;’Z < C’4l01—02_| (‘01_’ + 'UQ_D , (5.1)
¢z £

+ ot - + s+ — = - —
Z"Tugl,zl - l“l & +Z]"2,3‘52,2| - 102 P ] < 09;‘71 P } (
‘ P

for suitable constants Cy, Cg. Next, assume that two waves o’ and o’ of the first family collide,

& |+e D . (62

shifting at rates ¢/, £”, respectively. Call o] the (single) outgoing wave—front of the first family and
USL, , the outgoing fronts of the second family, and let Ef’ , E{ ; be their shift rates. From Lemma 3

and Lemma 22 of the previous Chapter it follows
+3 o
£

lafg‘ - (|a’§’\ + |a”5"|) +3 ‘a;feé;ie
4

of — (o’ +") < C'4|o"(r”| (Io-'l -+ ltf”[) (5.3)

< C’glo’a" (’5,] + |§”|> . (5.4)
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We assume that entirely similar estimates hold (with the same constants) for interactions of two
waves of the second characteristic family.

Let the domain D§ be defined as in (3.10), (3.15) or (3.20). Then, in all three cases, the
assumption u € D§ implies that all wave—fronts of u (except possibly the one or two large shocks)
satisfy

|loia| = 0(1)- 6. (5.5)

Proof of Proposition 1 in case (RR).
STEP 1: Choice of the weights in (3.26).
Choose the constants K1, K2 so that

Ko > 4Cg, Ky > 4CgeK2(;1+62+1) (56)

STEP 2: Estimates at interactions of waves of the same family.
Let the interaction take place at the point (7, ). It is convenient to estimate the change in T¢

across the interaction time 7 as
ATE(T) = [ATE]int + [ATE]nonint . (57)

The first summand on the right hand side of (5.7) accounts for the wave—fronts directly involved
in the interaction, while the second term collects the contributions to (3.26) of the wave—fronts not
related with the interaction (i.e. with zo # Z)-

For a wave—front located at a point z, # Z, not involved in the interaction, call R;,RY,
Sia

mate (5.3) it follows

SZ ., the corresponding quantities in (3.25) before and after the interaction. From the esti-

Rl - R; < lail"l"ll“la”l if zo <2
> ‘0';:2‘ fzg>Z

< 0410,10// (Ia_l, + |0_uD ’ (5.9)

St = 57 < 20400""| |0/ +10"]) (5.9)

Concerning those terms in (3.26) which correspond to non interacting waves, recalling (4.11)

and (5.5) we thus have

[ATE]nonint - Z lai"‘gal <6K2R§+Q+ — el +Q—> (1 + K15:a>
TaF#T

+ Ky Z lgi,afateKzR‘;+Q_ (Sj:a — Si—,—a)
ToFE
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< {“%+C4Kz (la']—l— |lo”| )J o'o”| Z |os 0o |ef2fat@” (1+K15;’*&)

TaFE
+2cikilo'a"| (o] +16"]) 3 fratole
:L'a';é:i

<0 (5.10)

provided that §, and hence [a’ |, lo” |, are sufficiently small.

To derive estimates on the waves directly involved in the interaction, call R, R”, S’,S” the
quantities in (3.25) corresponding to the incoming wave-fronts, and Ry, R;’ o ST, 52' ¢ those con-
nected with the outgoing fronts. Since at least one of the incoming waves is negative, we now have

the estimates

'0_1/ 10,/l }
R// R/ | /Il’ S]—.l— . S’ S ____ 2 |’ S S// "‘é"" . (O 11)
More generally, one has

Jﬁ<T( ) < (01+02+5) Sj,ﬁ:O(l)’(S Y7j, 5. (5.12)

Using (5.11), (5.12) and (5.4), and recalling (4.11), for 6 sufficiently small we obtain

+ + N
[AT¢ling = lUi“"L et 97 (14 K185,)

KaRE+QY(1 4 g, 57) +Zl02'£5+
— |o€ |6K2R’+Q (1+K18') — lg”g"lelﬁR TOT(1+ K15”)

= ([aféil ~|o'e’| - lff”ﬁ”l) R (14 K8

(ngRf+Q+ _ eKszrQ_) (14 K157)

, ) —+ +
+ZIGZ}-’£§£EIEK2R2,Z+Q (1+K15{£)
¢

+ | et

¢ Ko (5 )
+ o"e"| (eKzR” _ eKzR') e? (1+ K157)
+ Ky |0 [FRF (5 — 57)
P <_K1+4096K2r—+q>‘) EZd (l |+ I“ND
o (5.13)

provided that (5.6) holds. The case of two interacting wave—fronts both of the second family is
entirely similar.
STEP 3: Estimates at interactions between waves of different families.

111



Chapter 2

Again, consider first the quantities related to non interacting waves. By (5.1) and (5.5), the

outgoing waves have the same sign of the corresponding incoming ones. From (5.1) it also follows

N B ‘af‘—]al—‘ fzg>%Z
Ra = flo = ‘a;‘—laz_‘ fza<Z
< C4lal_a§'i ((Jfl + ’05') , (5.14)

Sie—Sia < 20410;02"‘ <lcrl—1 + la;\) :
Hence, by (4.10) and (5.1),
[Tlf]nonint < Z ‘Ui,agal (6K2RZ+Q+ - eKzR;+Q") (l + Klsz‘-l,-a>

+K; Z lai,aga!eKzR;—}—Q— (S:a - Siia)

< \:—% + (2K2Cs + 2K1C4) (‘Ofi + 10":2—')} ldfa;l Z lo—iaafa|eK2R;+K3Q_

1,0

<0

, are sufficiently small.

provided that 6, and hence also ial' , ‘02'

To estimate the terms related to the interacting waves, from (5.1) it follows

ri-rr <=l st s <aaorer| (o] + |3l
. U;l (5.15)
Rf,— Ry <=5~ S -85 < 204|a;a;| (\a;l + la;l) .

Recalling (4.10), by (5.1), (5.2) and (5.15) we deduce

i

2 + +
AT < S lofiey ™Rt 1+ Kast) =
il 7

KR +Q7 (1+K3S])

&
U,L S

< [Tl SR =or D+t ) ) [5;‘ +204la;a;l (IU;I + \agm
it \ €
=3 e |eRe T (L4 K )
1

Ka(R7—%
e 3

+ oot
o, 080

- lorer

A SR [s; A (]afl + la{l)}
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+3 ST +2C’4|0f02_i (;a;l + fm;lﬂ

i#i
+ 204K1Ia;a;‘ Oa;] I ,UZ—D Z
< (209 - %K2> |gl—az—| (lgl—| " ‘52—!) S ol -

+oQ)- Jor 3] (|a;] + ]agl) (]a;&;] +|orer D

<0 (5.16)

o &

(€1<2(R:—-%I%'IHQ+ - eKﬁRf_*Q') 1+ Ky

—e— | KaR +Q~
o; & K2R 1@

o et

provided that (5.6) holds and 6 is small. This completes the proof of Proposition 3 in case (RR).

Proof of Proposition 3 in case (SS). In the following, those waves that do not take part in the
interaction are denoted by o; o, 07 3; their shift rates by &4, £g. The set of wave—fronts approaching
0;, is denoted by A; ,. The quantities related to the small interacting waves are o‘f , pf:, gj: for
i=1,2, or o', p/, &, o”, etc... The shift rate and the speed of the large i—shock are denoted by
é}, Kzi By A’, A", A7 we indicate the set of wave—fronts approaching o', ¢”/, o], respectively.

Observe that from the definitions (3.13)-(3.14) it follows
vivivi=o)s @LQhet=0(1)s. (5.17)

Together with the bounds (5.1)-(5.4), concerning interactions between small waves, we now list
some estimates valid at interactions involving one of the large shocks. Assume first that a small
wave—front with size 0~ and shift rate ¢~ hits the large 1-shock from the left. Let E{ , ;C\f be the
shift rates of the large shock before and after the interaction, and call 03: 2 5;‘: ¢ the sizes and shift

rates of the outgoing 2—waves. Then, for suitable constants C; > 0, one has

Sl <o)

S -&| < Gmlo‘l (

& +|§;|>,
S Jogati| < oo (|5‘| + ‘5{[) ,

AT < —‘0"1.

(5.18)

Next, let a small 1-wave o, shifting at rate ¢, hit the large 1-shock from the right. With the
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above notation, calling A7, A:{e the speeds of the small wave-fronts, one has
St = 0o conimaes]

< ufr] (i) ). 629

A'I'_<_—'crfl,

]51* —&

(Az ; Af)ff + (A5, — Al—)gf
5ot = 3ok L |
7 7 AT — A7 (5.20)

< cw|a; &

Far cwa)m@l]'a;g; | .

STEP 1. Choice of the weights.
The strong non-resonance condition (2.12) ensures that there exist two weights Cy, Ca such
that (4.17) holds. Referring to the constants C; in (5.1)~(5.4) and in (5.18)—(5.20), we then choose

K3s=1+4Cy K4 =1/(8Cho)

. . , . 5.21
Ks=2+4C;C1g Ko = 1+ C2CsCq + 8C10 (10 +2C2C10 + Cio) (5.21)

Finally, we choose § > 0 sufficiently small and g9 = Ve.

STEP 2. Interaction between two small waves of different families.

To fix the ideas, assume that the waves o7 and o5 collide in the region on the left of the large
1-shock, producing the outgoing waves O‘-Itl, RN cftn of the first family and crz Lre-es a:{nz of the
second family. Observe that the waves o7, UI’L’ , all have the same sign, and the same holds for the
waves g ,O’Z ¢~ Hence the corresponding coefficients in (3.27) satisfy p:e = p; . The only terms
in (3.31) that change at the time of the interaction are Y? and Y. The latter decreases, as shown

in the proof of Proposition 1. Recalling (4.10) and (5.2), we now have

b + |t et —| ==
AV = Zpi,l o5 08ie| Zp-i o; &
4 i
p— 4 ! —_——
= Zpi Z “T»i,zgel = o &
i [

<+ so)cg{a;a;| (lg;l +|ez )
2= X ot (i

wE (j.8)eAf,
i 75, 61 (PL l i +Pj,ﬁléﬂl> - l”i—‘fz_\ <pf

&5 +Pj,ﬁ,55|>

-2

i(5.8)EA]

+py

S 3

)
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";‘Si—l v

— o |[Ve™ - '23?{01_02—} (}&_l " [6})
)

+0(1) |o7 o3| ("’1_| + I‘IED V- gl"l_"z—l <|£1—| " QED

<ot o] (| o) - Sbres] s+ )

provided that (5.5) and (5.17) hold, with § > 0 small enough. Recalling (3.29), from the above

+ ot
a i,efi,e

SZ:;DZ Ze:

<+ eo)cg'a;o;] ( &7

+
;¢

|+£5

s < L]

inequalities we obtain
ATE = AV! + KsAQ¢ + (AV2) Q" + V{AQ" <. (5.22)

An entirely similar argument applies to interactions taking place in the region between the two
large shocks, or in the region at the right of the 2—shock.
STEP 3. Interaction between two small shocks of the same family.

To fix the ideas, let o/,0” < 0 be two incoming shocks of the first family, and denote by o7,
cr;: Treees O';, n, the outgoing waves. Assume that the interaction takes place on the left of the large
1-shock. Then by (5.3)

AVE < Co(1+20)[o"o”| ([¢'] + |¢])

while
AQi= > Iafrffj,ﬁl (p{r & +Pj,5|55|) DY Ingawi (piﬂlgz"l +pj""3|§'8|>
(G,B)EAT ¢ (5,8)eAf,
= Y lolossl (P1€]+raslesl) = S0 1o"esal (€] + prsles])
(7.8)eA (7.8) A"
|o_/ " <p’]£’!+p”|§”])
< (1—60) la_]-.réf‘l“ ’O_IEII__ l /Icll +(1 —}—{-:O Ztlf{pf{gl Vb—
¢

+ [ =eo)|or = (0" + )

+ ke o] | v - 310" (J€] ¢ 1e")
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< 0ot + eo)e'a”| (€] + e ) V> + 0 | (1] + ") Vi = 3l 1€+ "))
<o le's”| (o] +[o"]) v = 51" (J€1+ Ie"1)
AQ" < — la' ”.
By the choice of K3 in (5.21), we again obtain (5.22) for § sufficiently small.

STEP 4. Interaction between two small waves of the same family but of different sign.
To fix the ideas, assume that o/ > 0 and o” < 0, both belong to the first family, the other
case being similar. Observe that in this case one must have of‘ < 0, otherwise the two incoming

wavefronts would have exactly the same speed, and could not interact. We now estimate

AVE = (1-eo)|oi&;

+ szelagxfﬂ\ — (14 20)|o’¢'| = (1 — o) ||
£
= Co(1 + =0) 0’0" (]g’l + lg"\) — 2e00’¢/|

Q= Y <]a?aj,3[<pi“ _L+Pj,l3‘§l3l))+z 3 (la;gajﬁ

3 (Pie SZeI + Pm\éﬂl))
(4.B)EA} L (j,B)eA},
- 5 (sl (et rmsalesl)) = 5 (o7l (15714 psalal))
(3.8)eA (5,8)eA"
t"l i (p/l£/l+p//|€//l>
< ((1—50) lafgil - [a”g”]l + (1+50)Zla;£g;jel) Vb
Z
1+€0 21‘722“ sb— _ g // (‘§ ‘_{_l,_-//D
SO ‘J/ " <I§l+|€/,|> Y/’b_-{- !UlcllVb——l-O(l ‘O_I " ('a,l'l_lJHl) ng_

2ot (J¢/]+ e
<o o'o"] (/| + fo"]) e~ + [o'g v = 5le'a"| (11 1)

Hence (5.22) still holds for § sufficiently small.

STEP 5. Interaction between the large 1-shock and a small wave coming from the left.

Let the small incoming wave o~ have shift rate £ 7. By the estimates (5.18) and (5.21) one has

AVEb = —p~ 10'~E_
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AQb = — Z |0’-0j,g] <0
(4.8)EA-
ATE < —210_5_]
£="1 :

By (4.14) and (5.18)
AV = S o ot i < -+ sncaculo| (|| + )
£

AQE: = Z Z C2Cj“7§tz‘7j,ﬁl (Pg,zlgzel +P3}ﬂ|§5‘)

¢ (.BeA],

<ow | (|

S

+ ‘gl_D vim (14 50)0208V§h—lf7—’ ,

AQl= Z Z 0203"‘7;,@%,,3' = O(1) la‘|vh—,

¢ (j.B)EAT,

ATE < 20201010_\ (li_‘ +18

o
s1

) +2K3CCg

-1 =
o lVE
By (3.30) and the choice of the weights in (5.21), for 6 small enough it now follows

ATe = (AT!+ KsATS + K4A|§1 JeKoT*

+ (Tg“ +Ks(Ty +TE) + K4 OE{‘ + }ggl)) (KoTT _ KT
Efi

< {QCzcwla“l ( >

+cscalo (Je |+ [6]) [ = molom| (18 + o+ 7 e safir )

S—| + ‘g;l) +2K3C’208Tg_'0_‘ —

o~ &7

<0.

STEP 6.

Interaction between the large 1-shock and a small 1-wave coming from the right.
Call 0] the 1-wave that hits the large 1-shock and let {7 be its shift rate. Let a; 1r--- ,0'3: -
be the outgoing small waves. From (4.17), (5.19) and (5.20) it follows

AVéh = ZCgpzz{oiﬁzzl — C’lpflal—gl_t
£
< (14 e0) (1+0(1)8) ol ] = (1= £0)C1 ) o €7 | + Crolor &7 |
+ ClO’Ufff‘

204=Y X cufeiims| (v

¢ (i.B)eA;,

< -|orer

&, +Pj,5[£ﬁl)
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<0Q) ‘qg;,vh“ +0(1) ‘U;E; tvh' +(1+ 066)1m|’a;1v§‘

AQY = Z Z CQij;fleeajvﬁl = 0(1) ]Jl—‘Vh”
L (G.peA],

T

ATY < (-% +o(1) 5) ‘a;g;l + (C1o +0(1)6) ‘J;E;j + (K3 + 1)(1 + Co6)|51]

Vi
s
The previous estimates, together with the choice of the weights K; n (5.21), yield

AYe < (ATE+ K4A|E1

JeKoT 4 (T‘g‘ + K4\§;D (KX — FOTT)

< <_%— +0Q)- 5) ‘afgl‘l +(Cro+0(1)-6) ldfgf

R
51

+(Ks+1)(1+ Csﬂi“l‘\”flvéh— + K‘icml"l—‘ (léﬂ N

) ng‘r’f

— Ky

o‘f\ (Tg— —I—K4|§1—|) HoT™
<0.

The remaining cases, concerning interactions involving the second large shock, are entirely simi-
lar. YA

Proof of Proposition 3 in case (SR). As in the previous cases, the estimates (5.1)-(5.4) hold at
interactions between two small waves. Moreover, if a wave-front o~ with shift rate £ hits the large
1-shock either from the left or from the right, for some constants Cg, C1o we can assume that the

estimates (5.18) still hold. Observe that the quantity T is strictly decreasing at every interaction.

STEP 1: Choice of the weights in (3.33)-(3.34).

Similarly to the previuos cases, let

K1 =1+4+3Cw Ko=1 Kz =1+4Cy
K4 =1+ 4Cqe(1T4C9)7241 g =14+ 4Cy Kg=1+6C10 (5.23)

Kg = 1+3010+2(2Kv4+K5+32+1)08.
Then choose § > 0 sufficiently small and set eg = V.

STEP 2: Interactions between two small waves on the left of the large 1-shock.
In this case, we clearly have AT = Alg
as in Steps 2, 3 and 4 of case (S8S).

= (0. The fact that Tg decreases is proved exactly

STEP 3: T¢ decreases at interactions on the right of the large shock.
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In this case we have ATZ = Alé\ll = 0. The fact that Tg decreases across the interaction is

proved as in Steps 2 and 3 of case (RR).

STEP 4: YT, decreases when the wave o~ shifting with speed £~ and coming from the left hits the
large 1-shock.
With the same notation used in (5.18), for any wave—front not involved in the interaction,

located on the right of the large 1-shock, one has

|

Sia $26  ASia <23 || <2007,
14
Moreover, since
Q"=0()-5, Ri,=0Q)-5 Sf,=0()-5 0<AQ'< G2+ §)C’8la_',

choosing § > 0 small enough we can assume
a1 +K4Sz£)eK5R;g+Qh+ <2,
A ((1 n K45i,a)eK5Ra+Q“> < (14 K4S, )e eRatQ <2K4AS,-,a T 2K5ARG + QAQh) (5.24)
<1+ KaST)e T (26 + Ko+ (52 +1)) Cslo |
Recalling (3.31); and (3.33)1, since p~ > 1 —gg > 1/2, it follows
ATY(r) < —%‘a*g—[. (5.25)
Using (5.18) together with (5.24)-(5.25), we obtain
AT{ < ZKzl“SieéSie\U T e T

' Z ZK 750l [ L+ KaSi)e BRI (14 K4Si“,a)eK5R5+QE—]

a>al =1

sl (]

& ) + T2 Q2K+ K5 + 52 +1) C’gia‘—-’. (5.26)

The change in the right hand side of (3.34) across the interaction can now be estimated by

ATe < {2}(2010!0«—[ < |+

T

_ (KSTZ“ + Tg‘ + lE{D Kolo

<0

<
S

& D +20Y (2K + K5 + 52+ 1)Cglo_l
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because of the choices of the constants K; in (5.23).

STEP 5: T¢ decreases when a small 1-wave o™, with shift rate £, hits the large 1-shock from the
right.

In this case we have ATE = 0, while all estimates in (5.18) remain valid. Concerning Tg, in
place of (5.26) we now have

&

AYE < 2K,010]07 | ('E—l *

> +2TI @Ky + K5+ a2+ 1)cg|a—‘ - Kl‘a”§”$ .

The previous estimates together yield

AT, < {21{201010—‘ (
-ropee el () )
)k

because of the choices of the constants K; in (5.23). This completes the proof of Proposition 3 in
case (SR). ed

<
S

+ \E;D + 2T @K+ K5 +52+ 1) CS\U"‘

+
ngT

—
51

- (KgTz_ + TE:_ +
<0

6 — Proof of Theorem 1

Relying on the estimates proved in the previous two sections, we complete here the proof of
Theorem 1.

Let ¢ > 0 be given. In all three cases (RR), (8S)and (SR), for 6 > 0 sufficiently small, the
wave—front tracking algorithm described in Section 3 constructs a globally defined e-approximate
solution for every initial condition @ € D§. The properties (i), (ii) and (iv) in Proposition 1 follow
from the estimates on the total strength of waves, proved in Section 4, while (iii) follows by the
same argument as Proposition 3 in [BC].

Proposition 2 is proved here exactly as Proposition 5 in [BC]. Because of the estimates obtained
in Section 5, the length of a pseudopolygonal is a non-increasing function of time, i.e. Proposition 3

holds.

Proof of Proposition 4.  Let u,u’ € D§ be given, with §' > 0 small. Observe that the

construction of a pseudopolygonal joining u with v’ must be performed with some care. For example,

120



Proof of Theorem 1

by taking
7(0) = X _oo,0) T X9, 1o

4

it would certainly follow |v|| = ”u - HLl‘ However, for certain values of #, the waves u” may be

much larger than those in w or v/, so that u¥ ¢ D, in general. We describe below the construction

of a suitable pseudopolygonal, in the three distinct cases.

Case (RR). We follow here the same technique used in Section 9 of [BC|. Assume that
u(z) = u/(z) =’ for z < a, u(z) = v/ (z) = ! for z > b.

Recalling (3.8), let (v1,v2)(z) be the coordinates of u(z), and (v}, v5)(x) those of w'(z). Introduce

the function w whose coordinates are
wy = min {vl,v'l} wo = vg .
The functions v and w can be joined by the pseudopolygonal ~1: [a, b} — Dj,

1) =)o, gy T Xg, +oo]
Next, define w* as
wi = mjn{vl,vll} wy = min{vg,vé} R

and connect w with w* by the path ~vo: [a, b] — Dg,
72(0) = X)_oo 0] T2 Xg, ool

Since u and v/ play here a symmetric role, we can construct a pseudopolygonal joining w” with v/,
in the same way. It is now easy to check that, for u,u’ € D§ with §' > 0 sufficiently small, all these
pseudopolygonals take values within D and the weighted length of their concatenation is bounded

by a constant multiple of Hu - u.’HLl.

Case (SS). Fori= 1,2, call z;, =} the positions of the i~th large shock in u and v’ respectively.
One can then connect v with u/ in such a way that each intermediate state u? contains exactly two
large shocks. For example, assume z; < z§ < zo < zb, the other cases being entirely similar. We

first define the path ~1: [z2, z5] — D,

’

7(8) =u- X]—co, zo] U8, +o0] tu Xz, 6]

joining v with the intermediate function

w(z) = u(z) if x € |—00,z0] U ]:1,'2, +oo[
’ u'(z) if T € ]xg,xé].
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We then connect w with «’ by setting

IR -
72(0) = @ X|_oo ] + ¥ X]g, yoo[
The concatenation of 41 and v yields the desired path.

Case (SR). To fix the ideas, let z; < z’ be the locations of the large shocks in u and u’ respectively.
In this case, we first define the path ~1:[z1, 21| — Dj,

b.

o
N0 =v" X _o g U]ah, +oo[ T ¥ X]6, 1]
connecting v/ with the intermediate function
v (z) if  z€]-oo,21]U ]:zc’l, —l—oo[
w(z) = h if o
U 1 T € ]11,1'1].

Next, we consider the function w’ = (w/, wh) whose coordinates are
. ’ .
w] = min{wy, w1} we = min{ws, ug} .

Both u and w can be connected with w’ by the paths

72(0) = W' X oo g] T X9, oo 73(0) =W X)_oo, 0+ ¥ X]p, oo

A concatenation of v1, 2, ¥3 now provides the required path, joining u with u/. This completes the

proof of Proposition 4. X
Proposition 5 is an immediate consequence of the two previous ones.
Concerning Proposition 6, to show that the r.h.s. of (3.36) is a Cauchy sequence, we use the
estimate

[u(r) = S|, < L- {”u(O) — n|| . + A ].i}fl::%l}rp —}lzllu(t +h) = Siru(t)|| L. dt} . (6.1)

valid for any piecewise constant function u constructed by a wave—front tracking algorithm. When
u(t) = S§™ @y, the right hand side of (6.1) tends to zero, as m,n — co. Hence the limit semigroup
S = lime—c0 S° is well defined by (3.36). The properties (i)-(v) in Theorem 1 are now proved
exactly as in Proposition 9 of Chapter 1.
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7 — Proof of Theorems 2 and 3

Let @: R — RZ2 be a BV function satisfying all of the assumptions in Theorem 1. Applying

Theorem 1, we can cover the real line with finitely many open intervals, say
Ilz]—OO,bl[ —[2:]“271)2[ IN:]GN,+OO[

such that the following holds. For each j = 1,..., N, the Cauchy problem with initial data

(a;) if z€]—00,a;]
ﬁj(x) = 11(:::) if ze€ }aj, bj[ (71)
ﬁ(bj) if =z G]bj,+00[

admits a viscosity solution u; taking values within the domain of a suitable semigroup S7. More
precisely, u;(t,-) = Sgaj. Let A™% be an upper bound for all characteristic speeds, as in (2.3). For
t>0,z R, set
u(t,z) = uj(t.z) if [z — A,z +AT] C ]aj, bj[ . (7.2)
We claim that the function u is well defined on a strip [0, 7] x R, and provides a viscosity solution
to (1.1)—(1.2) satisfying (A3) at every point.
As a preliminary, with reference to the triangular neighborhood defined at (2.21), let

Ty = Ja £ A™ATE b — ATeT] (7.3)

Lemma 6. Let S:[0,+00] X D +— D be a semigroup constructed as in Theorem 1. With the
notations introduced ot (2.21), (2.22) and (7.2), let u: A — R? satisfy (2.17)-(2.18) at every point

of A. Moreover, assume that the map t — uA(t, -} is continuous in Llioc, with values inside D.

Then, for each T € [0, o [, the function u(r,-) coincides with .S’TuA(O), restricted to the interval J..

The proof relies on the same techniques used for Theorem 2 and Corollary 3 in [B5]. Denote
by L the Lipschitz constant of the semigroup. Because of the finite propagation speed, for any
u,v €D and 0 < 7 < 7/ < p’ there holds

f;,,

with J; as in (7.3). One then establishes the bound

T 1
<L- / lim sup —
L1 (Jy) 0 h—0+ P

Using the fact that u is a viscosity solution, we check that the integrand on the right hand side

S u—3S8 v

7' —T 7! —T

dz < L - |l — v] dz,
L J.

di (7.4)

STuA(O) — u(T) .
t+h

ShuA(t) —u(t+ h)

of (7.4) vanishes for all ¢, proving the lemma. 23
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If now a; < aj < b; < bj for some i,j € {1,..., N}, consider the overlap triangle
Agj = {(tx):t > 0,05 + AT <z < by — AT} (7.5)

Since u;,u; are both viscosity solutions, an application of Lemma 6 now yields u; = u; on Ay
Therefore, the function u in (7.2) is well defined.

Proof of Theorem 2.  To prove that the property (A3) holds, let (¢,z) € [0,T[ and e > 0 be given,
and set v’ = u(f, z—), ul = u(f,z+). Then there exists p > 0 and a semigroup S:[0, +oo[x D — D
with all properties listed in Theorem 1, such that

Q <uA(Z, -)) <e, uA(E, Y eD. (7.6)

with u, defined as in (2.22). By Lemma 6 we have

u(t,z) = (St_{uA(f)‘) (z) V(t,z) € A. (7.7)
By (7.6), the estimates proved in Section 4 now imply

@ (m0) <0 (5 ,0) 20 (1®) <= 79)
This completes the proof of Theorem 2. <

Proof of Theorem 3.  Let two solutions to (1.1)=(1.2) u, v satisfy the requirements (Al). (A2)
and (A3). We want to show that u = v. By continuity and finite speed of propagation, there exists
a point (£,z) € [0,T[ x R such that u(f) coincides with v() on the interval [z — 1,z + 1], while

pINTEE pEp—(t—E)ATE
A / HU(t, T) — v(t,ac)“d:cdt >0 (7.9)

—pt{t—DAmes

for all p > 0. By the assumptions (A1)-(A3), there exists p € ]0,1], p' € ]0, p//\m‘”] and a
semigroup S: [0, 0o[ xD + D such that, with v, v, as in (2.22), one has

u, () €D v (t)eD vt e [t,t+p].
We can thus apply Lemma 6 and deduce
u(t,z) = (St_ZuA(f)> (z) = (St_va(f)> (z) = v(t, x) v(t,z) € At €[t T+ ]

proving Theorem 3. Y
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8 — Remarks on the Non-Resonance Condition

Assume that the Riemann problem (1.1), (1.3) admits a self-similar solution @ containing two

shocks, say

u if oz <Aty
w(t,x) = { ub if Ayt <z < Ast, (8.1)
ul if oz < Agt.

and let the stability conditions (2.6), (2.7) and (2.14) hold. Aim of this section is to show that, if

the non-resonance assumption (2.12) is replaced by the opposite inequality
II‘L]@]_| . |I\12@2| > 1, (82)

then the conclusion of Theorem 1 cannot hold. More precisely, recalling (2.15), for every p > 0 the

system (1.1) cannot generate a Lipschitz continuous flow, on any non trivial closed domain D D ﬁp.

Indeed, let T > 0 and n > 1 be given. Call z,(t) = Ait, z9(t) = Agt the positions of the two

shocks in the self-similar solution (8.1). Then there exists 7 > 0 and two polygonal lines
¢ 1 (t), ya(t) te[rT]
bouncing back and forth exactly n times between the large shocks, with

AT < yl(’l’) < yg(r) < ApT, MT < yl(T) < yz(T) < ALT,

Gi(t) € a(ul)  or gi(t) € Az(uh)

and with 7;(t) = A1(ul) at the initial and at the final time (see Figure 5 for the case n = 2).
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We now construct a family of perturbed solutions u® as follows. Let ¢ be a non negative C*°

function such that

Supp(y) C [yl(’r)7yz(7')], /ga(s) ds=1.
For £ > 0 small, let u®: [r, T] x R — R? be the solution of (1.1) with initial condition
uf(r, @) = (7, z) + ep(a)ry (u). (8.3)

For & € [0, eg] sufficiently small, the perturbed solution u® remains piecewise smooth on its domain,
with two large shocks located at z5(t) < z5(t). Therefore, it admits a first order approximation in
terms of a generalized tangent vector, according to the theory developed in [BM].

Let (v,£) € L' x R? be the solution of the following linear hyperbolic mixed problem:
ve + DF (@)vy = 0 (8.4)
outside the shocks, together with the boundary conditions
(Dlo(ul, u®) - (v(t, tA1+), v(t, tA1 =), uf — ) + (I (uf,ub), w(t, tA1+) — v(t,tA1=)) =0 (8.5)

&= DA (ul,w’) - (v(t, tAr+), v(t tAL—)) (8-6)

along the 1-shock,
(D13 (uh, ut) - (v(t, tho+), v(t, tho—)) ,ub — uf) + (1 (uf, ul), v(t, thot) — v(t,tA—)) =0, (8.7)
g0 = Do(ub, uh) - (v(t, tAs+), v(t, tha—)) (8.8)
along the 2-shock, and with initial conditions
v(r,z) = o) (uh), €1(r) = &2(7) = 0. (8.9)
We can now introduce the first order approximation

wi(t,z) = a(t,z) +ev(t, 2) + Y Aat, z(E)X (g, (1) - eg;, 24(8)]

HO< (8.10)
- Au(t,zi(t))x
' i(t), zi(t) + €&
Py fs(t), 4(6) + <6
By Theorem 2.2 in [BM], we have
. 1 & &
EEI(I)I+ llw (t,-) —w (¢, )H =0 Vte [r,T]. (8.11)
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Observe that, at time ¢ = T', the component v of the solution to (8.4)—(8.9) can be readily computed,

namely

. n T—Yy (T) ;
(T, z) = (k1K2) cp(yl(T) + ~—-——-——-’91@12ln ) ri(ul). (8.12)

From (8.11)—(8.12) it now follows

“ue )= a(TN)HLl‘ im Lie N — (T, -
LN P e i e AR R

A s = ot lea)
> o)y

= |k1#20102[". (8.13)

By (8.13), any Lipschitz constant for the flow generated by (1.1) in a neighborhhod of @ must be

greater than |k1x201032|". Since n is arbitrary, if (8.2) holds, no Lipschitz constant can exist.

The remainder of this section is concerned with the p-system (1.4), assuming p’(v) < 0, p"(v) >
0. We claim that, for any Riemann problem solved in terms of two shocks as in (8.1), the non-
resonance conditions (2.12) are always satisfied.

Indeed, calling
A p(v”) ~p(v')
(v, v") = =

after some elementary computations one finds

2
D1®, (uh, ut) - rg(uh) \/jQ(ukllv ug) - \/”p/(“g)
K == = == 9
o Dadyful ) () \/’*Q(ug,ug) + \[—p'(ug)
, (8.14)
DQ‘I’Q(ub, uh) -1 (uh) \/—'q(ul’ ul \/_ ug
[{2 = T e
Do®s(ub, ul) - ra(uh) \fq(ul,ul )+ \/— u‘i

Furthermore,
b
0 A — /\\Q(uh) \/"Q(ulv ug) + "pl(ug)
1 - == y
Ag — A (ul
1= A () \/ZQ(ug,ul{) - \[—P’(ug)
(8.15)
o Bam () el ed) b /w0
2= =

Ao=a(l) [l ) -\ f—prud)
Together, (8.14) and (8.15) yield the identities

| = —— < 1 | = —— < 1
K| = —% ’ K| — —5 ’
N 102

which imply (2.12).
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