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Introduction

In this thesis we study the problem of a system of interacting spinless fermions in

a one-dimensional periodic box of length L. The model we consider is defined by
the Hamiltonian

= _thzi "‘P%:v
H = T—}-Q/\Zv(mi—-mj)

i=1 i<J
where m is the particle mass, pp the Fermi momentum and v(z) is a smooth,
symmetric, short range (pg) potential. This is a rather realistic model since in the
potential one includes the effect both of the electron-electron and electron-lattice
interaction; its physical interest is related not only to the one dimensional systems
but also, as suggested in Ref. [1], in connection with the theory of two-dimensional

Fermi gases which could exhibit similar behaviour.
The problem of main concern to us is the theory of the low temperature

grand canonical Schwinger functions; in particular the pair Schwinger function at

(z,t) € R? is defined by:

—(B—)H ,— —tH ,+
S(z,1) = Tre poe @0
’ Tre—BH

where ¢ are the creation annihilation operators.

It is well known that in the free case, A = 0, one finds that at zero tempera-
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ture the pair Schwinger function is the Fourier transform of the usual Fermi step
distribution. The central question in the study of our model is: what happens
when the interaction is switched on? A possible approach to this problem is the
perturbative one. This approach started with a series of papers (23] where it was
proved how it is possible to express the Schwinger functions with a formal func-
tional integration with respect to the free propagator; this crucial point permits
to attach the problem with the powerful tools used in statistical mechanics and

constructive quantum field theories.

The method and the techniques we follow are known under the name of “renor-
malization group procedure”. This is a rather general theory not yet completely
formalized nor fully unified, although it seems that all the necessary knowledge
is at hand. The common base of this approach is the presence of a non invert-
ible transformation with a scale invariance property which is used to reduce the
difficulty of the problem, to capture its essential features and in some case to
solve them (see Ref. [4] and references therein). Generally speaking this procedure
can be considered as a method for resumming formal series and studying their
convergence (asymptoticity) properties. From an analytic point of view the basic
idea underling this approach is to study the convergence properties of the series in
terms of other quantities than the expansion parameter which have a controlled
behaviour in term of it. This is a classic mathematical strategy which, in our
approach 5] is combined in a non trivial way with the powerful cluster expansion

theory used in statistical mechanics.

At the origin of this thesis there are the basic works [6], [7], and in particular
[8]. In this papers the problem of the Fermi liquid is treated with the renormal-

ization group procedure using a technique first appeared in Ref. [5] to study the



problem of scalar fields in four dimensions. The general procedure has the fol-
lowing structure: with a given Hamiltonian, containing the counterterms as free
parameters, one sets out the problem with the effective potential approach which
is equivalent, in principle [*°], to the Schwinger functions one. The singularities
appearing in the free propagator which define the functional integral are treated
slicing in layers, around them, the momentum space or equivalently the position
space. In this way one induces a “scale” decomposition in independent fields, each
field having a well defined propagator with good asymptotic behaviour and the
iight scaling properties; this framework leads to the natural notions of effective
potential at a given scale. The renormalization group is, in this context, the map
from a scale to the next one of the effective potentials trough the martingale in-
tegration. The technical aspects of this procedure bring naturally to the “tree”
summation method which reveals its major power in the “resummation” algo-
rithm: isolating, by a power counting analysis, the relevant and marginal parts
from the irrelevant ones, the tree resummation defines a functional relation, the
beta functional, expressing the running coupling constants at a given scale in terms
of those at the previous ones. The study of the beta functional with its bound for a
given perturbative order and the possibility to define, at least asymptotically, the

connection between the neighboring scale running coupling constants, is a modern

and rather unified way to state the renormalizability of the model.

Adapting the above scheme to concrete models is far to be obvious. In the
case of fermions [®] the crucial step was to recognize that the right field decompo-
sition was the “quasi particle” one; this permitted both to understand the physical
properties of the model and the suitable mathematical strategy to study it. The

notion of quasi particle was essential not only to reproduce the correct scaling
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framework but also to allow to recognize the similarity between the Fermi sur-
face problem and the theory of the anomalous dimension in 4 — ¢ dimensions in
statistical mechanics(!%. The above general strategy does not select in fact the
resummation rule; even in the case of a convergent and analytical beta functional
the resummation can be useless in the case it implies that the running coupling
constants go away from the radius of convergence in a finite number of steps.
The main result of this thesis is a bound for the convergence radius of the beta
function. We show that for small values of the running coupling constants the beta
function is analytic and reduces essentially to a geometric series. This bound is an
adimensional function of the physical parameters of the model, namely pr, m, Do
and of the free scaling parameter 7 which can be eventually used to optimize the
result. Tt is immediate to recognize that, by dimensional arguments, it can depends
only from the ratio f)—’% and not from the mass m. This fact can be directly checked
on the initial potential V (see sect.2 chap.l): its generic term has essentially the

form

—i(kozo+ 7 k1z1)

A/dzodzlv(-‘c—"ﬂ?,%ﬂ)/dkodkle

where v is an adimensional kernel. With the transformations ﬂﬁfﬁ — To, %f’-‘l —

and %‘;{—”— — ko it becomes
[s]

mh e~ i(kozotkiz1)

A}T/dzodmlv(wg,ml)/dkodkl

0

—i2ko + k2 — é;ﬂ

where now all the integration variables are adimensional. This shows that the mass
and, as one expects, the Plank constant are multiplicative factors in the effective

potential elements and can always be included in the definition of the running



coupling constants. For this reason we choose, without loss of generality, A = 1
and £ =1,
m

Calling R(vy, 2>) the bound for the convergence radius we have obtained the result
PF

Do —1pt Do
R(y,=—)= N"'Ri(y,—
PF Yoo

where N is a global combinatorial factor (which is about 7 - 10®) and Ri(y, 2o)
is a function expressed as a minimum between the various adimensional bounds
coming from both the ultraviolet and infrared regimes (see the figures at page 71).
Just to have an idea of the order of magnitude for this bound one can calculate it

for % = 1; optimizing in - the result one finds

R(7,1) =1.3-.1072

where 7 &2 1.6. The expression we have obtained for R permits to see immediately

its asymptotic behaviour:

Ri(z,1) < e~ for large =

Ri(z,1) < 7.6(z —1)* forsmallz —1 ,
Ri(3,y) = e5*" for smally |,
R1(7,y) < 0.5y™% for large y

The last section of chapter 3 contains a discussion of this results. From a
technical point of view the final result is obtained in many sequential steps with
distinct conceptual meaning: both in the ultraviolet and infrared analysis the

starting point is the bound on the propagator at a given scale which is used,
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trough a Gramm-Hadamard inequality, to bound simple and truncated expecta-
tions with the powerful cluster expansion technique. An important point in our
method is that we never decompose the expectations as sums of single Feynman
graph contribution. All along the resumming procedure one take care of both
the “scaling dimension” and of the “physical dimension” of the fermionic fields;
these two calculi are very similar as one expect from the general philosophy of the
renormalization group method. Finally of great importance are the combinato-
rial bounds; one of the interesting feature of our approach is that it reduce them
to a counting problem for trees where there exist a classical powerful counting
theory 1112], In our context we derive all the basic combinatorial bounds from an
exact calculation of the planar rooted trees with a fixed number of vertices; putting
them in one to one correspondence with brownian trajectories in two dimensional

lattice we are able to count them exactly with a reflection positivity argument.

The work is organised as follows. In chapter one we recall some basic fact
about the grassmanian functional integral and we show how the problem of in-
teracting fermions can be treated in this framework. A particular attention is
devoted to the summation and resummation general algorithm trough the trees
formalism; the chapter ends with the decomposition of the free propagator in the
infrared and ultraviolet parts. In chapter two we treat the ultraviolet problem
obtaining the bounds for the effective potentials. The ultraviolet region even if
“trivially” renormalizable and not directly related to the problem of the Fermi
surface cannot be ignored as “trivial”; we will see, in fact, that the ultraviolet
bounds will be needed to obtain the rigorous control of the “full” beta functional
for the problem of interacting fermions. The chapter three contains the discus-

sion of the beta functional convergence properties and the bound for the radius of



convergence. We first introduce the multiscale decomposition and the localization
resumming procedure. A particular attention is devoted to explain the “anoma-
lous scaling” and to adapt to it the iterative equation for the effective potential
kernels. The terms coming from the ultraviolet integration are treated as regular
multibody interaction using the u.v. bounds of the previous chapter. This enable
us to treat the infrared problem with the usual resumming tree procedure com-
bined with cluster expansion technique. The chapter end with a discussion on the
asymptotic property of the bound for beta function convergence radius in term of
the free parameter v and the ratio %‘1. Finally the appendices collects some results
on counting trees, the estimates for propagators, the estimates for the simple and

truncated expectation and other lemmas used along the main procedure to bound

the beta functional.



Chapter 1

The functional integral approach

In this chapter we show, after a brief revue of the classical perturbation theory for
the problem of fermions, how to put the problem in the grassmanian functional
integral formalism. We illustrate the basic summation and resummation trees
algorithm and finally we decompose the free propagator in its ultraviolet and

infrared parts.

1.1 The classical perturbation theory.

As explained in the introduction we ask for the behaviour of the two points
Schwinger function in the interacting case. As discussed in Ref. [13] one expects
that the system describes particles with modified mass and Fermi momentum m/’,
pw and, in general, an anomalous momentum distribution behaving, at k = pl, as
||k| — p'z|?". It is therefore convenient, in order to make use of the perturbations
theory, to introduce a Hamiltonian with more parameters giving us the possibility
of fixing a priori the values m, pr of the theory.

Hence one considers

n

H:Z(:;%:—i—y)—}—aZ(_QAn:‘ —y)+un+2)\2v(wi—mj) (1.1)

.oi=1 i<j
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with pp = (2mp)'/2.

In the second quantization one writes H =T + aT + vN + V with
T= / dn( =gt 057 — gt )
I 2m £ T z T
N = / dept oy (1.2)
L

V= A/ dedyv(z — y)e; o ¢y Pa
LxL

where 7 = L7125 o0 . €“**2a7 are the fields operators on the fermionic Fock
L
space (with periodic boundary conditions in L) and af are the usual creation

annihilations operators. For A = a@ = v = 0 the ground state of H is given by

\Fy =11 «flo) (1.3)

e(k)<0
where e(k) = (k* —p%)/2m and |0) is the vacuum for the a* operators. For general
values of the parameters the system, at inverse temperature 3, is described by the

family of the Schwinger functions

Tr(e~(ﬁ—t1)H oL .e—(ts—1—t,)H‘P:: e—t,H)
Tre—AH ’

S(@1,t1,0100y Tsyts,05) =

(1.4)

where 8 >t > --- > t, > 0,0; = +1. In the classical approach of the perturbation

theory one defines the imaginary time fermions fields as

(p:’t — L—1/2 Z ea(ikz+e(k)t)az = etT‘Pge—-tT; (15)

k:gf—’-n
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then, using the Trotter-type representation for H =T+ oT +vN +V =T +V

e ™ = lim (e7T/"(1 —t/nV))™

(1.6)

one finds that [%8] the Schwinger functions can be computed, for small values of

the parameters, by means of the Wick’s theorem (T is quadratic in the fields),

evaluating Tr(exp —BT(-))/Tr(exp —3T) with propagators

gi(wl - $2,t1 - tZ) = Tre—ﬁT(lofl,tlgoi:g,tg /Tl-e—ﬁT

if t; —¢3 > 0 or, in general time order, with the function

Ty — T2, —1 ift; —t, >0

—g—(zy — 1,82 —11), ift; —1, <O0.

With an easy explicit calculation one finds that

1 e~ (ko(t+07 )+ky2)
g(‘”)t) = 57 Z .
BL = —tko + e(kq)

(1.7)

(1.8)

(1.9)

where the sum runs over the set defined by e~ = —1, e~%1L = 1, In this way

we can obtain the numerator of (1.4) summing, with the Feynman graph procedure

as explained in Refs. [6,8] , the contributions coming from all the admissible graph

configurations obtained starting from the elements:

+ ot o o
_‘A'U(m]_ - wz)‘lozl,t(pzz,t(lomz,t(lozl,t

—(v— I‘a)ﬂoi,f.ﬁa;,t

(a/2m)‘10:,t("A)S";,t
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+ —
Pz and ooy

which are graphically symbolized by:

Xq

A\

Y
Y

Y

\ 4

&
Y
Y

1.2 The Euclidean formalism.

The previous discussion permits to give a concise representation for the Schwinger
function and related quantities in terms of a formal functional integral.
For this purpose let us briefly recall some basic notions of grassmanian

n[1%15 One starts by introducing the Grassman algebra constructed

integratio
from symbols ¥¢, (in our case { € R* and ¢ = =+) and quotiented with respect to

the relations:

{v¢, 5 } =0 | (1.10)

A generic finitely generated element of this algebra can be represented as

FOEHs o) = ot D Figbgibgi + D Fogadbgide wgk+- -+ gl - 2n.
<] 1<j<k
(1.11)

XJI
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On this algebra one can introduce the integration P(di) as a linear integration
with an assigned smooth propagator g({ —n) = [ P(d’gb)'z/)é“l/);r ; this means that
the following Wick rule holds:

JECO R R = D C | ICEE DR CED)

(4,9)
the sum running over the n! way to couple the ¥~ and the ¥™ symbols and =
being the sign of the permutation.
Clearly the interesting object coming from our analysis will be infinite sums

of the type:

o)=Y / desdns - dEndnaOn(Er,ms o Emyin):

'DW; "‘Dn%—,‘D'ﬂ[’jﬁ "'D;z 7;.;

(1.13)

where the kernels O,, are antisymmetric distributions and the D are differential
operators with order uniformly bounded in n. We shall say that they admit the
good “C™” bound if

OW)s=> v / dérdm -+ dndnnlOn(r, s rbmya) S 00 (114)

for 0 < b < b.

In this case an easy calculation shows that

[ Pawow) - >y [ desdns .. déndnaDs .. Dl et ol ~ ).
(1.15)
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A basic fact, due to the Gramm-Hadamard inequality:

|D; ... D, det[g(& —n;)]| < B, (1.16)

is that [ P(dy)O(¥) is integrable if O(%) is.
Our aim is now to map the Fermi surface problem in a well defined grassma-
nian functional integral formulation. The first step is a formal identification. We

start by considering the potential:

V()= A /A (&= YT g dednte /A P (—A), dé+(v—per) /A b g dé

(1.17)
with A = L x [0,8], v(é1 — &2) = 8(t1 — t2)v(z1 — z2) and where A is the second
derivative in the space variables. Interpreting the fields appearing in the potential
as grassmanian fields one can see that the Schwinger functions of (1.4) admit the

concise representation

[ P(d)eVpgr . g2
[P (1.18)

5(61,0'1..., fn, O'n) =

where P(d) is the formal integration defined by the Wick rule with the propagator

—ik(€—n)
9(§—n) = f P(dp)bs ¥y = @i—)z / dkodklw (1.19)

where & = (ko, k1) and ¢(0,z1) is defined as lim, _,o- g(zo,#1). The integrals in
ko and k; should be actually defined as [dkor = 25" _ups__, - and [dk;- =
ZT"' D e-itiz_q +; nevertheless in what follows we will consider, for the propagators,

only the limits L = § = co. The treatment of the finite case, as it will be clear,
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would imply only technical changes, and could be subject of further refined studies;
a similar problem, for scalar fields, has been treated in .Ref. [16]

The object of our main interest will be actually the effective potential defined

as

e~ etr(0) %/P(,‘b)e—V(?/"HP). (1_20)

It is in fact strictly related to the beta functional which is the basic structure in our
renormalization group approach. Before starting with the ultraviolet and infrared
regularization of the propagator (1.19) we briefly describe the tree algorithm which

will be widely used in our work.

1.3 The trees summation and resummation algorithm.

The tree expansion is a very natural and powerful tool for all the problems involved

with renormalization procedure in the functional integral approach 49, It is based

on an iterative use of the classical cumulant expansion of statistical mechanics.
Given the (simple) expectation £(-) with respect to an assigned probability

measure one defines the truncated expectation for the random variables z; as:

an
mlog E(exp zi:wirci) . (1.21)

w;=0

ET(ml,...,zn) =

The relation between the simple and truncated expectation can be given also in a

combinatoric way as 1718l

ET(0) =0, (1.22)
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ET(2) = £(=) (1.23)

E(X) = > ET(Xy)--- ET(X,). (1.24)
Partitions of (X)
The (formal) Taylor expansion for £(e**) evaluated at t = 1 gives

2 ET(zy -
E(e®) = exp [Z _g——g—’;——,—){l . (1.25)

Considering now the case of a product probability measure P = Hg___l Py, and

defining VIV=1 from V as

eV(N“l) — /PNeV (126)
we obtain from (1.25):
- =1
VD =N =RV, V), (1.27)
=17
or, for the general scale h,
1 -
vt =3 FSE(V(’L),...,V(")) =) Vi, (1.28)
p=1%" p=1

where EF is the truncated expectation with respect to the probability measure Pj.

This one step expansion admits the following graphical representation:

V — SRR
H
v ——T (1.29)
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VM = E}!cs,ff"ﬂ(v(’”f’&), L, VDY el P
This means that we pictorially represent the p-order term of the cumulant expan-
sion with a tree having a p-furcating vertex representing the truncated expectation
at the given scale. This representation reveals its power with the generic n-steps

integration; iterating the above arguments in order to express the potentials at

the generic scale h in terms of the initial one, one has

v = > &) (1.30)
TEOL(k,N)

where the symbol £7 (V) represents the iterative truncated expectation along the
tree 7 with the suitable combinatorial factors, and the sum runs over all the rooted
planar trees with n final points at height N + 1 and the root at height k. Thus for

instance if 7 is the tree

E7(V) represents

SR (S ER V), En(V)). (131)

It is clear that this kind of summation, when it is applied to a quantum field prob-
lem, produces an expansion which is essentially equivalent to the old perturbative
expansion: each tree of order n (with n final points) contains the contribution
coming from a large number of Feynman diagrams of order n. This method can

be very useful in order to obtain good estimates for the effective potentials in
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the trivially renormalizable theories as, for instance, the ultraviolet part of our
problem.

The above summation has its major advantage for permitting to obtain, es-
sentially with no extra work, a series lying the running coupling constants at a
given scale with those at the previous ones. One starts to define a linear operator
L which selects, for a given potential, its relevant components; the meaning of
relevant and irrelevant terms relies on the usual power counting arguments and
will be explained in all the details for the concrete case we will treat. For the
moment, in order to explain the resummation trees algorithm, one can consider
the operation £ and its linear complement R (£ + R = 1) as orthogonal linear
projection operators where £ acts as the identity on the linearized renormalization

map and on the initial potential. For each h one writes

v = cy(®) L Ry (M), (1.32)

Our aim is now to express the effective potentials at a given scale in terms of the
relevant parts of the effective potentials at the previous scales. Considering the

first step in symbolic representation:

(N-1) _ ~ . L~ . __<’~
LV T OHed ® = H-3 M N H-1 T (1'33)

one has
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Clearly the general result is

k r
vVil= > ew) (1.37)
TE(:),,(k,N)

where now the sum runs over all the “renormalized” planar rooted trees with n
final points at arbitrary height between £ and N + 1. The contribution coming
from a given tree is of order n in the relevant effective potentials; each vertex, but
the first, symbolizes the successive action of the truncated expectation and of the
R operator. The action of the operator £ (resp. R) on the first vertex will select

out the relevant (irrelevant) contribution. Thus for instance if T is the tree

—8

R

ET(V) represents the fourth-order term

1 1
5‘5,? (LY Dy (kD) ~2—,R£,Z‘ L (LVEFD) oy (Re2)y, (1.38)

In the concrete field theoretical framework the initial potential is a sum of a finite
number of terms (labels); the multilinearity of the truncated expectations implies

that the summation rule (1.30) has to be only modified with an additional sum over
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the suitable final point labels and the resummation rule (1.37) with an analogous
sum over (finite) vertex labels [°l. It is clear that our estimates for the effective
potentials will be based on estimates for the number of rooted planar trees of
a given order; the order counting theory for trees is an open subject of study in
combinatoric. In this thesis we will use an estimate proved in appendix one for the

asymptotic behaviour of the number of different topological rooted planar trees of

a given order.

1.4 The decomposition of the free propagator
The free propagator
e-—-i(komo‘l—klzl)

1
g(zo,z1) = W/dkodkl it T o(kn)

presents ultraviolet and infrared singularity respectively at |x| = co and k¢ = 0,

(1.39)

|k1| = pr. Following Ref. [8] we decompose it by means of the identity (for the

Fourier transform):

1 1 — e—(k3+e(k)®)py?  o—(kPote(k1)*)py?

; = : - 1.40
*-’I,ko -+ e(kl) *—'Lko + e(kl) + —Zko -+ e(kl) ( )

is the range of the interaction |v(r)| < e™Po".

where po 1!

It is possible to select out explicitly the u.v. singularity performing by residues

the ko integration in (1.39); one finds

% Zzap2 maz? PR dk ,
oleo,0) = (=) Ba)e 5o e T - [T Pemthemnein g

2Tz —pr 2

where 6(t) is the step function with §(0) = 0 consistently with (1.19). From (1.40)

and (1.41) one easily obtains:
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1 1 — g~ (ki+e(k))pg” .
w.w = —— [ dkodk —i(kozot+kiz1) —
Ju. .(wo,:vl) (271_)2 / 0 ik + e(kl) e (1.42)

= G(z,1) + R(zo,21)

with

G(zo, 1) = h(mgpg)h(:clpo)O(mo) < ) e'%nf_e— 7m0 (1.43)

2z

where we have introduced, in the cut-off function h, the interaction scale po to

avoid to introduce new extra parameters, and

Pr dkl —1,k z1—2zoe(k1)

R(zo,21) = [1 — A(0po)A(1P0)]gu.v. — P(Zopo)h(z1po) [ ' .
(1.44)
where h(t) is an odd smooth function with compact support that, for definitness,

we choice as

1 if |t| <1,
h(t) =4 e (-,-1)2:(:-1)2'*'(-1-11)2 1<t <7, (1.45)
0 if |t| >y >1.

In this way we have decomposed the u.v. part of the propagatorin a singular part
G(zo,z1) and a regular one R(zo,x1); G(xo,z1) has the singularity in (0,0) since
G(0,z1) = 0 and im0+ G(z0,0) = co. The regular part is a smooth function

with rapid decay at infinity; by direct calculation one can obtain the bound

2

8 PP _%
|R(z0,z1)| < _%5'_(72 — 1)e?mror e~ TR =l (1.46)

The different decay behaviour in the two directions zo and z; of the propagators

is due to the asymmetry of the propagator Fourier transform in ko and k;; since
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we are only interested to the exponential decay of the regularized propagators in

each scale we retain only the e7?* bound. In the general case with derivatives one

finds:

91R(z)| < pItt Cre " rzol+lzal) 1.47
0

where 97 is a differential operator of order ¢ < 2 (in our case it can be simply the

second derivative in the space coordinate appearing in the initial potential (1.17))

and with, for instance,

pz
Cp = (@)(72 — 1)em§‘ﬁ+%, (1.48)
TPo
and
KR = Po- (1.49)
Summing up we have the total decomposition:
9(z0,21) = gi.r(o,21) + R(z0,21) + G(z0,21) (1.50)

which can be used to decompose the original field ¢ (z) in three independent fields

b(z) = bir(e) + Pr(z) + da(z) (1.51)

with the relative propagators. This implies that we will study the existence and

the properties of the effective potential by means of the steps

_y(© 1 .
e~ V(e = T / Pg(dip)eV¥t+e) (1.52)
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_7© N©® _y©®

I = S [ Fata)T O, (159
~Verz(9) N —V O (p+v)
e etf :T Pi,r_(d’g[l)e ) (1.54)

where the normalization constants are introduced so that the effective potentials
vanish in zero. Being the R integration regular, we have to give a meaning to
the G integration and to the i.7. one. As we will show in the following chapters,
the two problems are of very different nature and each one will be treated with
the suitable technique: the u.v. problem will require only the tree summation
technique while the i.r. one, which is the problem of physical interest, will need
the introduction of the quasi-particle fields and a peculiar strategy to adapt the

resummation technique to the presence of an anomalous dimension.



Chapter 2

The ultraviolet bounds.

In this chapter we show how to obtain the bounds on the effective potentials in
the ultraviolet region. These bounds, although not directly related to the Fermi
surface problem, are of fundamental importance in order to control rigorously the
“full” beta functional. We will use the method of the tree summation explained
in the previous chapter; this strategy permits to obtain an iterative equations for
the effective potential kernels which will enable us to give the analyticity bounds
summing over the various tree contributions. The bound we will give are obtained
in many steps; each one has a simple conceptual meaning although it look techni-
cally hard. The starting point are the bounds on the regularized propagators; the
Gramm-Hadamard inequality permits to translate the estimate to the truncated
expectation using the powerful cluster expansion technique for fermions fields. A
crucial point for our procedure both in the u.v. and i.r. case is that we never
decompose the simple or truncated expectation in sums of single Feynman graph
contribution. This enable us to take into account the natural fermionic cancel-
lation which produce the good combinatorial convergent bound without the n!

dependence in the perturbative order, typical of the asymptotic expansions.

Starting from the initial potential
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V() = A/Azv(é—n)ibg’zbﬁlﬁ;iﬁgdédn—i—aA¢§(—A)¢gd§+u/1&¢g¢gd§ (2.1)
it is clear that, as a physical analysis suggests, a good definition of the adimensional
(pure numbers) coupling constants )\, @, 7 is the following A = 5\525;, o= &5%;1—,

v = 17-;1:%.

The chapter is organized as follows: the section one describe the multiscale
decomposition for the u.v. propagator slicing the divergence in the space variables.
In section two we show how to obtain the bound on the effective potential using the
iterative equation for the kernels. Finally in section three we obtain the ultraviolet
bound using the results on simple and truncated expectation which are proved in
the appendices. The result we find is based on a estimate on the number of planar
rooted trees proved in the appendix one with a brownian motion strategy counting.

As a byproduct we obtain an estimate on the single ultraviolet tree contribution

which will be needed to obtain the bound on the beta function in the next chapter.

2.1 The multiscale decomposition

We have to give a meaning to G(zo, z1); one introduces, for this purpose, a cutoff
N and a scale decomposition by replacing in (1.43) the 8(zo)h(wopo) with the

function defined by

N
On(t) = f(7"1) (2.2)

with

F(#) = [R(t/v) = R($)18(t); (2.3)
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consistently with (1.19) one has

Jim_6n(t) = 0(t)h(2) VteR (2.4)

which implies

Iim GN(ZB(),:Bl) = G(a:g,:cl) V(:EQ,ZB;[) € Rz. (25)

N—oo

The previous decomposition induces the propagator scale decomposition

N 2 1 2
Tor m 2 _m:n
Gn(zo,z1) = E f('yhmopg)h(mlpo)e 2m1( ) e e —

27xg
h=1
N (2.6)
=Y 7"?Ch(zort 217™?)
h=1
where
=~ R/2 -@—P—%— m % _Tﬁ
Gh(wo,:xl)=f($0P0)h(:B1PO’)’_ / )62"‘"’" (27r:c ) e %o (2.7)
0

is a well defined “quasi-scaling” propagator, living at the scale h, and verifying

the bound

. 1 p2E m _m
|Gr(zo,z1)| < (77;_1;0) F(y2—1)e Fmror® T Fror ¢ 2y3 (PotED) (2.8)

where we have estimated the compact support function in z, with the fast de-
creasing exponential. As in the case (1.47) we can obtain, in the general case with

derivatives and retaining only a simple exponential decay, the bound

109G (20,21)] < pFOC, e~ Clzol 1) (2.9)
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where 87 is a differential operator of order ¢ < 2 (in our case it is the second

derivative appearing in the initial potential) and with, for instance,

m 4m

3 Pr
Cuw. = (QZZJ (v* - 1)emeor® * 707 | 7077, (2.10)

and

_ (mpo)%

2.11
= (211)

Ku.v.

The decomposition for the propagators can be used to represent the ultraviolet

component field %, as sums of independents fields:

N
h=1
where
fp(h)(d¢)¢;(h)¢;~(h) — ’Yh/zéh(wo’)’h,ivl’)’h/z)- (2.13)

We can now start the iterative integration of the initial potential (1.17) in the u.v.

region; defining VI(\,0 ) by

e—Vz(vo)(so) = —-1———/PGN(cZ1,b)e’V(¢+“’) (2.14)
N

it is clear that the scale decomposition leads to the following natural notion of

effective potential at scale k

e~v,‘v">(sa>—_~'N1(k) / PUD(gp+D) .. POV (@M =V 449740 (2.15)
N

so that
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(k)
eV (0) — va © / PSR(ggp(SM)e Vi (#19+0) (2.16)
N

where we have introduced the normalization factors N 1(\;‘ ) in order to have
v (0) =o.

We can now apply the tree summation method explained in the previous
chapter trying to take advantage from the peculiar properties of the propagators
G for this purpose we first observe that the vanishing in zo = 0 of the propagators
implies that we can consider the initial potential as Wick ordered since it contains
only fields evaluated at the same zy. Another consequence is that all the closed

fermions loops give a null contribution. Applying the (1.30) we find:

Vi Sy = N enw) (2.17)
're®n(k,N)

where now ©,(k,N) are the labeled rooted planar trees with n final points at
height N 4+ 1 and root at height k. More precisely the labels have to be choose

between three possibility representing the three elements in the initial potential

(1.17); pictorially they are:

X

&

A4

v

h 4
W
v

>

N

v
and are called respectively type “4” (with contribution M), type “2” (with contri-

bution v — pa or v in the following) and type “2'” (with contribution ) element.

This means, in particular, that to each tree appearing in (2.17) we associate ny
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final points of type “4” etc. with ns + ny + nyr = n; the field labels in each tree
will be |F;| = 4n4 + 2n3 + 2ny and the coordinate labels |Cr| = 2n4 + 212 + 2y

2.2 Iterative equations for the effective potential kernels.

The iterative structure for the effective potentials can be translated in terms of
the relative kernels. It is clear, in fact, that the contribution at the scale k coming

from a tree T is a sum over the subset of the labeling fields F;:

E(V)y= Y E(V,P) (2.18)

PCF,

and, if h, = k, the £7(V, P) can be expressed in terms of the relative kernel as

E™(V,P) = / dzV ¥ (1, P,z)d (S (P) = / dzPIWE) (7, P, o)) (SR (P
(2.19)
with dz = dz; ---dz|c, |, P(P) = [1;cp ¥5 and where

W(k)(Ta P, m(P)) = /d$(CT\P)V(k)(T7 P,:I}) (2'20)

Now we observe that, essentially by definition of tree expectation, if the tree 7

branches from its first vertex (following the root) vg in the 7q,...,7s subtrees, one

has:

E7(V) = S8 (E7 (V)17 (V)), (221)

and substituting the kernels expression (2.19) we find
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ET(V) = Z /dml cte dws%gg;l <§Z(Sk+1)(Pl)7 cee ,7/’~(Sk+1)(Ps)> :

Pi,...,P,
' (2.22)

) Hv(k+1)(Ti7 Pi7 mZ)

=1

It is possible to select the contracted fields in the truncated expectation using the

identity for the fermionic fields

PERDP) = TT @5V +97") = D (-1)er g*(P\Q)EER(Q); (2.23)

fep QCP

substituting in (2.22) we have:

EWV)y=> /d:cl cooday [TV (7, Py i)
P; =1

(1o S gl (FEDPNQL, . FHI(PAQL)) FED(UQ:)
Qi )

(2.24)

Comparing this expression with (2.19) we easily obtain

V(k)(T7P‘vo?w) = Z HV(k+l)(Ti,pi7a:i)'
F. QP:_)PvO 1=1

s 1 7 = v =
(~1)Ere0 ST (FHD(PAPy), ., BHHD(PAP))
(2.25)
This one-step recursive equation for the kernels can be iterated along an arbitrary

sub-rooted tree 7' C 7 and gives, calling 7' the final points of the tree 7'
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1 -
YO Py = Y I (DR geh (BB \P)
{P,}.r vET\OT' . (2.26)

. H V(h")(Tv,Pv,m,,),
vedT!

where the set {P,}~ (with v € 7"\vg) is a 7'-compatible system of subsets of F::

U Pr 2P, (2.27)

v €Sy
P, ﬂ P, =0 ifvandv' arenotin the same branch (2.28)
P,CF. YverT . (2.29)

2.3 The ultraviolet bound.

The equation (2.26) can be applied to our potential and gives, for 7' = 7:

1 _
—V(k)(T,PvO,CU) — Z H (_1)Hs__'£”i (T/’(hv)(P(s,,)i\Pv)) ;
(P} vemAOT : (2.30)

(=)™ (=)™ ] (=o(zs — ),

,veu4”

where we have simply introduced the final point kernels. We need now some basic

classical results for fermion fields; in appendix 2 it is proved:

Ig;l: (”lz(h)(Pl), e ,,(Z(h) (Ps)) I < poz*'(%‘Pi(l)H%Isz’l)7% Zi ‘P§1)‘7% Zi lpi(z)l-
'(2éu-v-)z‘ g Z g df ()
T

(2.31)
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where

Cu.v.: max (Oé.v.p év) (232)

Ry.v. = 4/ mp0/27

|P| = |PW| + |PP®)|, P(M) are the ¢ fields and P(®) are the —At) fields, the last
sum runs over all the cluster-tree graph between the coordinates from which the

fields P; emerge; finally

i (s) = }_—j (7h|bf)t +7"/2|b§|) (2.33)

where the {b'} are the two-dimensional vectors defining 7.

The (2.31) permits us to obtain the first bound:

V7, Py, )| < la™ ™A™ S ] -

{P,} vEeT\OT

(1) (2)
.POZ;(%W(:").- \PV 31, \P‘EZ)D'y‘Z‘ 22 (1P PR sIP(C) AP (2.34)
~ 1 (hv)
P\l LS e,
(201&17)2" ( ")’\ |‘S_-,j,—' e Ty (0) l l [U(wv “‘yv)l.
T, vE“4”

The regularity of the interaction

[o(z —y)| < e Pl 15(2 — o) (2.35)

permits us to obtain the bound (see App. 2):
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L 1 —n“"’-d(hv)(sv) R«u.v.dgk)
(Vol)/dm H ——!;e o H [v(zy — yo)le o <

S
vET\O71 v vE“4”

—4n4—2n3—2 -2 - Poy); \Po
prineTm nzlagn H y 3hy(so 1)262;* (su); \ ),

0
vET\O7
(2.36)
where

Do
ap = max (1,2y4/=—), (2.37)

m
and Ky.p, < Ky, fOT instance Ky, = %h:u_,,, and where dS,I;) is the length

of the shortest tree connecting the coordinates associated to the vertex vy with

respect to the k-rescaled metric

lzlk = 7*2o| + |21 ].

Considering that, as one can easily prove,

Z‘,(% ]P((: ) \P{M|+2 |p((33 . \P{|)—4ng—2n3—2n, —ngtny—ng+D(Py)
H Po =Dy
vET\87T

(2.38)
with

1 3
D(Po,) = 5|PP| + 1B

the (2.34) and (2.36) permit to arrive at

_D(on)

2«1(V_l)_ a2V (7, Pug, )™ % < C™lapol™ [upy ™ [Apy ™
o

2.39

YT A SRR A gy )

{P,}: vET\O7T
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where

C = (agCh.r2")* (2.40)

where we have simply used the trivial estimate 0 < |P,| < |F,| < 4n. The crucial
step is now to give a positive bound from below for the exponent of v independent
from the factors h,,; for this purpose we use a discrete form of the integration by
parts for rooted trees which can be proved with a straightforward generalization of
the equivalent formula in Z. Given a tree 7 with root at height k£ and considering

a vertex function f, one has:

D hofo=kfo+ Y fo (241)

‘02‘00 'UZ'UO

where f, = > ot>y for. By direct computation one finds that for

fv:-sv_l

it results

fo=n—1 (2.42)

for obvious topological reasons. Similarly for

fo = 3 (IEG P! + 8P \PP))

i

one has

o =~ 1P|~ S|P 4 6 £ D 1. (2.43)
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Summing up the vertex product in (2.39) is:

_k 1
vy ¥ ] 475" (2.44)
veET\OT
with
D, =2n{® 4+ 4n{® — 6 + |PV| + 5| P?)|. (2.45)

Now we observe that, as discussed in all the details iﬁ Ref. [8], D, > 0 except in
some classifiable cases for the small values of the summed integers. The first case
is IP,Ez)I = ng,z) =0 i.e. lP,Sl)I + ns,é) < 6; one can see by direct inspection that the
contribution to the effective potential coming from graphs of this type vanishes
due to the presence of fermionic loops or to the presence of the §(zo — o) in the
interaction line connecting time ordered coordinates. For the remaining cases,
namely |P£1)1 =1, IP§2)| =1, T 0, and IP,SI)I =2, |P£2)| =0, n$? = 0,
n{®) =1 one can prove that if v > vo the bounds (2.44) can be improved, using
the property [ dzAGh(z —y) = 0, with a factor 4~ 3(hv=hy1) where v' is the first
non-trivial vertex preceding v. In the case v = vy the contribution to the effective
potential coming from the last two type of Feynman graphs can be summed ¥ in
n and is logarithmically divergent at small distances as it has to be since it reflects
the behaviour of G(z — y) up to the bare mass renormalization m — m/(1 + «).
The above discussion shows essentially that, excluding the last log-divergent trees,

one has

D, > |P,| —2

which, togheter with D, > 0 implies
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| Ps
3

D, > (2.46)

We can put togheter all the above estimate in order to obtain the final ultraviolet
bound. Observing that

v =Y > Y ewp=> >  &WwPp)

n T€O,(0,N)PCF: n,P 1€0,,7(0,N)

where O, p(0,N) are the (labeled planar rooted) trees of order n producing the
effective potential with external fields P, and that

> &P = / dePIW (P, =z <0(P) (2.47)
TE@n,P(O,N)
where
W)= 3 wO(r, P2
TE®,,p(0,N)

we obtain from (2.39), (2.44)

~D(P
7 (P)

(Vol)

> > L

TE€EOL(0,N) {P, }- vET\B7

r3 (0) :(P) " Mot —1in, —1ling
dm(P)]W((Q;(P,a:(P))Ie w0 a2 @) < o |aepo |2 IVPoll P‘Poll .

(2.48)
where we have overestimated the sum in (2.47) enlarging it to all the trees of order
n, and the number of final coordinates points with 4n. It is now a remarkable fact
that we can prove the convergence of the last expression for all the values of v and

untformly in N. Considering, for this purpose, the convex decomposition
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D, =1D, + (1—n)D,

to be optimized later in 7, we have, calling n, the total number of vertices of the

tree T,

| Po|
3

> Dy 2n(ne—n)+(1-n) >

ver\8r oy

where we have used the (2.46) and the property D, > 1. This gives:

_1D, ¢ . ~3(ne—n) vall 2.49
> I~ <7 > II (2:49)

{P,}- vET\OT {P,}r vET\BT

The last sum can be estimated observing that:

SOOI A= > I = > 11 #B. (2.50)

{Py}: vET\OT {pv}r |Pul=pPv veT\or {pv}r vET\OT

where B, = (Ev' €5 P :'). Starting to evaluate this expression from the first vertex

one finds

£ s () B s

{Pv\Pug}r ‘U>’UQ on {pv\pvo}r v>’Uo

(2.51)
and iterating up to the final points we find, calling b, the branch of vertex v,

3
|5+ ] Y

> 11 gPl = TT | D2¢ S(T}__J*” (2.52)

{P,}, vET\OT vEdT \ =0
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~where we have estimated the geometric sum with its imit (y > 1) and the number

of external fields with 4n. The last step to arrive at the desired analyticity property

is the sum over the labeled planar rooted trees:

S gyl (2.53)

TEGL(0,N)
we perform this sum decomposing it in label, topological and metric sum and
taking advantage from the convergence factors. Clearly the label counting is esti-
mated by the factor 3™. In the appendix it is proved that the topological trees with
n final points are estimated by 16™. The sum over the length of the trees with
fixed topological structure is controlled with the geometric sum over 4~ %" for

each branch connecting two non trivial vertices. Since the branches are bounded

by 2n we find:

—1(n,—n n 1 o
> e gy (=) (2.54)

€O (0,N) 1—v

where we stress the uniformity in the cut-off N. Summing up

~D(P)
Po / dz P[P, 2P))|Fn-d ) <

(Vol) ™ (2.55)
\ngr | (na | s n P_o Tgr+7g _Pi n2
oA or)” () (22)
with
_n\ 72 _(a-m\ T4
I(n) =3 - 2* (1—7 ) (1~~, ) . (2.56)

The above expression depends from the free parameters n and can be easily opti-

mized. Defining
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Po DPF
=)

bo = max (%, 2p0

(2.57)

the previous estimate shows that the effective potential emerging from the u.v.
integration is summable in n» and is an analytic function of the coupling constants

@, 7, A inside a radius € defined by

_ 1\ —6
(3 2%)atboCh, (1-77%) <. (2.58)

We observe that, as a by product of the above C™ theorem, we have obtained the

following estimate on the single ultraviolet tree contribution:

~D(P) . i
p 5 /dm(P)]W(O)(’T, P, m(P))leE”u.v.d( (7)) < & |5] |3

£0
(Vo (2.59)
- —4n
.7_%(7"7_"7‘)0” (1 — 7_111_2',1> ;

this will be very useful in the infrared context to bound the irrelevant terms
coming from the ultraviolet integration. Before to start with the i.r. integration
we have to consider the Pgr(di) integration (1.53). The regularity property of
R(z) (1.46) implies that the effective potential ¥(°)(4) obeys to the same bound
as the potential V(®)(4). This can be seen very easily if we think to Pg as a last
step ultraviolet scale integration; in fact this means that the (2.59) holds for the
kernels W(%)(¢)) where the only difference is that the constant C' appearing in the

formula has to be substituted with

Crw. = (@00}, 27)* (2.60)

where
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C—,;:.v. : max (C’u.v.y OR) (261)
and
Cr =

max (C’I%,C-'

ot

). (2.62)

The bound (2.59) will be used in the following chapter to treat the terms

coming from the ultraviolet integration as a regular multibody interactions.



Chapter 3

The Beta functional.

This chapter contains the discussion of the beta functional convergence properties
and the bound for the radius of convergence. We first introduce the multiscale
decomposition and the localization resumming procedure. A particular attention
is devoted to explain the “anomalous scaling” and to adapt to it the iterative
equation for the effective potential kernels. The terms coming from the ultraviolet
integration are treated as regular multibody interaction using the u.v. bounds
of the previous chapter. This enable us to treat the infrared problem with the
usual resumming tree procedure combined with cluster expansion technique. The
chapter end with a discussion on the asymptotic property of the bound for beta

function convergence radius in term of the free parameter vy and the ratio %.

3.1 The quasi particle multiscale decomposition

In order to understand the right renormalization group transformation we must
first introduce the notion of quasi particle field. Trying, in fact, to perform a naive

slicing of the momentum space for the propagator

—(k2+e(k)?)py?

1 e .
i = — kodk —i(kozo+k1z1) )
gir (o, 1) (an) /d ok~ (k) e (3.1)




THE QUASI PARTICLE MULTISCALE DECOMPOSITION 43

one does not find [} the usual scaling properties typical of the relativistic quantum
field theory or the theory of the critical point in Statistical Mechanics. This lack
of scaling is due to the presence of the natural scale pr in our problem. For this

reason one first introduce the quasi particle fields decomposition defined by

¥I = Y PTUnYY (3-2)

w==1

and successively the scale decomposition

Z PP, (3.3)

h=—co

Each field ¢w’( ) has to be regarded as independent; this means that, consistently
with (3.1) one has:

/ Pir (a5 M) = 606 M (2 — ), (3.4)
with
(h)( ) . (. 1 i(kozotkiz1)
T -—e’PF‘”lpo / do ‘/cll‘:odlcle“1 0ToTRLIEL),
~—32h (271')2

e oot e (PG (kg + ek ))x(wy ™ hn)

(3.5)

where the function

X == [ dsem (=)

is introduced as smooth regularization of the step function.
In order to work with the quasi particle representation we express the potential

V{9 (4) in terms of the new quasi particle fields; with an easy calculation one finds
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7 (%) = f dedy Y ePrltamenmteamednly( —y).

WigeenyWa
¢w1,s¢w2, ’(,[st’y we,y +V/d:1: Z zPF(uu—wz)ml/;wn Yoot (3.6)
wi,W2
+a/dm zPF(w1—w2):c1,¢+ LiBw2 Dy bo,

wy,ws2
with 8 = pr/m and where the operator D is defined as:

1w
Do =8, + —02.. 3.7
2pF T? (3.7)

This operator is the covariant derivative with respect to the internal symmetry

gauge group Zs (w — —w) of our theory; it verifies the important relation

[t (522 )0z =

_Z/dme’”(“’ w)”1¢+ iBw' DL

w,w’

(3.8)

which we have used to arrive at (3.6) and which will be widely used in the following.
As it is easy to see (App. 2) the propagators g&, )( ) have the desired scaling and
regularity properties; nevertheless they are useless to define a consistent pertur-
bation theory of the model. The reason of this pathology is that they imply a
renormalization group flow which, in spite of its well definiteness, go out of the
convergence domain in a finite number of steps. We will show in the next sec-
tions how it is possible to “deform” the i.r. integration in such a way that the

renormalization group procedure permits a consistent perturbation theory.

3.2 The localization procedure.
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In order to introduce the resummation procedure explained in chapter one we give
now the definition of the £ operation of (1.32); it act linearly on the grassmanian

quasi particle fields algebra and in each monomial it is defined as:

E(H¢w.,zg H ¢w“z)“0 n>3

t=n4+1

£(¢w1,21¢w2,’-’:2 ;3,23 ;4,24):
(3.9)

- (¢w1,31 W2,T1 TW3,T1 w4,31+¢w1122¢w2,32 w3,T2 w-urz)’

£(¢2}_,z¢;’ ,y) = ¢j,x¢;',z + (y - m)¢j,mpw'¢;',z

where we use the notation

Dw - (Bt,'D;)

The previous relations tell us that £ is a projection operator which localize the
second and fourth order monomials; it is the analogous of the localization operators
in the renormalization group approach to the theory of scalar fields [} or to the
(19]

Gross-Neveu model . The complementary operator R =1 — L acts as:

2n
R(Hzﬁw,,z, II ¢5:0=1 n2>3 , (3.10)

t=n+1

7?’(1/}0%"1121 w32,z 7W3,T3 w4,:z:4) =
(¢w1,31 21wy Tw3,T3 Twe,Te + ¢w1 fB1¢¢vz,711'D31w3 w4,¢84+
+¢w1,zl wWa,T1 w3,21D41w4 + D12w1¢w2,z2¢w3,z3¢w4,m4+

+¢w1,z2¢wg,ng32w3 ;4,$4+¢w1,m317[)w2,2!3 w3,22D42w4)7

(3.11)
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where

1
ijw = g,z, _1/)w 25 _( i_mj)/ drad)r,_,,w:
0

rij =z +7(zi — z;5),

and in the second degree

R(¢I,z¢;’,y) = - wl)d):—,zazl

y)2¢ /dr/ dso®p

Remembering the resummation procedure structure it is clear that we have to

(3.12)

consider the complete span of the iterated action of the £ and R operators; starting
from the fourth order terms it result that the only new possibility emerging from

(8.11) is ¥, . 0%F, -, %5, 2a%e, =~ An easy calculation show that

£(¢W1,31 Tazhws T W3,T3 w4,9-'4)_

(3.13)

+ )
- (¢w1y32 W2,T2 7 W3,T2 Nwg,T2 1’[)0)1,2:21‘[,&)2,2 ¢UJ3,$2 wq 22 !

however it follows from the translation invariance of the kernels and from the
anticommutation property that we can quotient the grassmanian algebra with

respect to the relation

£(¢w1,21 w2,22¢w3,$3 (;4,,2:4) = 0 (3'14)

Going to the second order monomial we find
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LS DS ) = b2 Doty
LS 005 ) = ¥ Dur b 4y
LS e ) = O s o) = bh Durthy o+
+(y — 2)8(S . Db ),
LOYE Durs,) = 0L Dy L),
LOYE095,) = 0E . Dty ).

Correspondingly the R operator gives:

(3.15)

1
RO Dt ) = (v — o) / D 097,

17'y:r ?

_ 'iw, 1 _ _
RS 0% ) =—-2;;¢as,zail¢wfx+(y-—w)¢jz / drddp7,

R(OWE, 95 ,) = (v - )00, / dra«p;,u—-————zx;m Bb .+ (3.16)
(SO Db+ LD )
RS Dt ,) = 00 Db, — (% . Durb ),
RS 005,,) = 00% 00, — O . Durbs ).

From the above relation it results that in the second order £-span it appears

some new terms in d4 .. The action of £ on them gives:

+ —
ﬁ(Dszd)w’,y) 71!) w’,z +
+(y - mi)¢w,x;Dw'¢; z; (y - mj)¢:,zj Dw'¢;’,zj7
‘C(Dzwa 1/10.:’ ) ¢w :ci’Dw'¢c:’ 2L w:c,D ¢;’ z;?

'C(Dj;st_ku) :(:Z:s - mk)( w ::.D 1P JT ¢w -y le'l,[);,,mj).

(3.17)
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The multiple span is now exhausted and we can conclude that the local part

of the effective potential has, for each scale, the monomials

¢+ (<h)¢+,(Sh)¢ ,’(<h)'1,b (<Lh)

whz ?

¢+ (<h)¢ ,(<h)

(<h) (3.18)
,¢,+ (<h)zw IBDw,,l/)wly
¢+,(Sh)a¢ s(<h)
multiplied by the relative running coupling constants
Ah,w,—w,w’,-—w’, FYth,w,—wa ah,w,w’y Ch,w,u)’- (3.19)

It is now a remarkable fact that we can reduce the analysis to only four terms;

the quartic terms can be summed together to give

where

)\h = Ah’+|_9+a_’ - Aha+1—9—’+ - Ah!_)+7+:_ + Ah7—7+)+:’_'
For the quadratic terms we observe that at each scale, due to the gauge

invariance, the effective potential can be expressed indifferently in particle or quasi

particle fields:

V(’;) _—_/d:cdyuh(:c — y)'gbj'(/); + /dmdywh(:c — y) 7 e(i0y, Y, =

w,yw’

+ Z /dmdywh(m - y)e’”(w”l_w yl)d) zﬂw'D;,'l,b;, o

w,w’
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Applying the localization operator one immediately finds:

Yo —_—/dzeiPF‘”z‘uh(z),
ap, :/alzeipp"le (wh(z) + é—wzluh(z)> , (3.22)
Ch=— /dzeipf'wzlz()uh(z),

which imply that, due to the fact that the kernels are even function of the space co-
ordinates, the running coupling constants are independent from the quasi particle
indices. This last property is fundamental to solve another problem emerging from
the (3.17). One can see in fact that the r.h.s. of these localizations do not vanishes
for z; = z; as it has to be in order to regularize the terms D::j’w; nevertheless the
problem is only apparent. We can see, in fact, that choosing w = w' the translation
invariance of the kernels make possible to quotient again the grassmanian algebra

by the following relations:

L(D;;wqp;y) '—"(113_1 - mi)¢3,zgpw¢;,z;)

+ - — + - —
L(Dijwpw¢w,y) —£(D1]wD ) = 0.

skw

(3.23)

which have the desired properties. The gauge invariance of the running coupling
constants implies that, in the study of the renormalization group flow, we can
consider valid the previous relations for general values of the quasi particle indices.

The functional relation between the running coupling constants at scale A
and those at the scale b + 1, h 4 2,...0 is called the beta functional of the theory.
As discussed in Ref. [6] and Ref. [8] one can show that if all the running coupling
constants stay bounded inside a suitable domain the beta functional is a convergent
and analytical function of all its arguments; nevertheless the analysis of the beta

functional at the second order approximation exclude the previous hypothesis.
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One finds that (8]

Ah—1 = A,

ap-1 = ap + B2l + O(7"), (3.24)

Cho1 = Cn + B2A% + O(7™);
which imply that «p and {, diverges for h — —oo at least logarithmically. This
means, in particular, that our theory is not asymptotically free. In the next
section we will show that it is possible, by means of a deformation of the iterative
functional integration, to define a new beta function which is a kind of rotate of

the previous one; the new approach will permit to study the anomalous scaling in

the singularity on the Fermi surface.

3.3 The anomalous scaling.

The analysis of the previous section suggests the suitable deformation of the i.r.
integration (1.54). It is clear that the multiscale decomposition of P; . (d¥) can
be deformed in terms of a family of parameters Z, as follows: let Zy = 1 and
denote Pz, (d¢(<") and Py, (d9?) the grassmanian integrations with propagator
respectively Z;lg(gh)(m) and Z,:lfj(h)(a:); the propagators g(®(z) are those given
in (3.5) and the §(*)(z) are fixed in terms of the parameters Z; with the following

prescription. Starting with the identity

p 1)\, —(Z1— (€=1) = i(S=1)y_y!
Py (dp(S9) = Py, () ([P, (dip(S70)e (A= Z)$TETTITET) SUOR
(Zr=Zo)(p T (ST Ty (St A
(3.25)

where T is the differential operator 9;+e(i0;) and ¢__; is the normalization constant
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such that the term inside the brackets is the normalized grassmanian measure with

propagator, in Fourier representation,

[ ZoT(R)(Cr () + 2-1)] (3.26)

with

T(h‘,) = ——’Lko + e(kl),
Ch(r) =" <™,

3.27
() = (K3 + ells )i 20
(Zh = Zhy1)
zZp = ————=,
Zht1
Remembering that
g(Sh)(K) _ (3.28)
Cr(x)T(x)
we define g~ (k) by
ZaT(R)(Cos() + 2-)] 7 = 272650 (0) 4 270500 (e). (3.29)
An easy calculation gives
F7V(r) = gV (k) + 70 () (3.30)
with
-1 _ c_ -1
g(_l)(n) = Coalx) 2(r) (3.31)

T(x)

and
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C1(x)'(1 - Ca(s)™) z-1
T(x) 14+ 2.1C_1(k)"1

r(D (k) = (3.32)

Translating the above relations in terms of grassmanian integration we have

Py, (dp'sV) = Pr, (V) Py_, (") Py, (<),

3.33
(Zr=Zo)(p (SN Ty (S e A (33%)

and iterating successively to h = —1,—2,... we arrive at

0
D z 1 '(S) —,(Lh) ?
Pz, (dep(S9) = H Py, (dp®))en Zura(p TSN, Ty h)+th,A;PZk+1( dp(<P)

h=k+1
(3.34)
where

g™ (k) = ¢M(x) + M) (3.35)

with

(h) <) = Ch(K,)_l — Oh_l(n)“l

g (x) () (3.36)

and

Aoy = Cr(r) 11— Ca(k) 1) Zh

(k) = () e (3.37)

The sequence Z, is now fixed in such a way that the subtraction of a term pro-
portional to (¥, T ™) cancels one of the two running coupling constants involved

in T', say ¢ for definiteness. With the position

W(h)(¢(5h)) — thh+1(¢+,(Sh),T¢—,(Sh)) + 1A (3.38)
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we define the (anomalous) effective potential V by

VWIS W () / P (dpBH0)e VP TS0 (5 50

it is useful to define also V by

V() Zh 1S = VO (/ Zpp(SPYY o B (D), (3.40)

Starting the i.r. integration we follow the behaviour of the £ components

which are, expressed in particle fields,

3 [aepruremy,

v [awster,

o / dzipte(i0: )b, (3.41)
¢ [amptou,

t/dm.

With initial data

v = (Z§ o, Zovo, Zoco, Zolo,sto) (3.42)

the Pz, (d(?) integration produces

VD = (2211, Zoney, Zoar, ZBoz—1,t_1); (3.43)

our choice is now to fix the z, of (3.27) equal to the fourth running coupling

constant of V. From (3.38) one has
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W(—l) = (OaO)ZOZ—hZOz—l)t'—l), (34.4)

so that

V(—l) = ()\ 1, 7_1V—176—17077—219 1) =

Z 3.45
(Zzo lyzzonl,z (al—zl)Ot 1 — 1o > ( )

At the generic step the result will be

V(h) = (Ah77hyh75h:077h19h) =

_ (Z}ZLH I Zpt1  Zhy1

, (3.46)
Z,zz Zh nh) Z (a'h - Zh),O,th - th) 9

where the relation (3.27) holds with the z, coming from the V(® and where ), is

given, in the infinite volume limit, by

t = / (%’?)—z—log(1+zhoh(m)). (3.47)

The above discussion shows that we can perform the i.r. integration with a
tree expansion with truncated expectation EF whose propagator is —Zl—h-fy(h); the
localization procedure produce in this case only the local terms of (3.46). Actually
all the calculations will be performed in the quasi particle representation with the

propagator gw (:c) it is possible to prove that (see app. 2) it verifies the bound

18959 (2)| < APATDpEHIC; e T eelt D (3.48)

where 87 is a differential operator of order ¢ (it can be one of the differential

operators appearing in the initial potential or one of those emerging from the



ITERATIVE KERNEL EQUATION IN THE I.R. REGION 55

localization procedure of chapter 3 which act on a single field with order less or

equal to 2) and with, for instance if zj is small enough, say |zp| < ™2

2 4
27 +8y

Cir. = —— (0 = 1+ |aul)(C5)? (3.49)
where k;.», = pg. As explained in chapter 1 section 3, the tree expansion is slightly
different from the ultraviolet one; the trees involved on it are general planar rooted
tree with labels appended on (all) the vertices. The final vertex labels are simply
the running coupling constants at the scale defined by the height of the vertex.
If the vertex is at height one there can appear also the terms coming from the
ultraviolet integration: we will control them with the ultraviolet bounds of chapter
two. The non final vertex label are those emerging from the linear multiple span
of the localization operation; it is important to observe that if the linear span has
dimension NV the possible labels for a tree with 7 non trivial vertex are N2%, where
we stress the independence from the total number of vertices. This is a consequence
of the structure of the R operator: fixed the labels on the final vertices the action
of R on the fields emerging from a given vertex changes the localization label only
two times at most for each branch of consecutive trivial vertices i.e. 27 times
globally. Since in a tree with n final points one has 7 < 2n we can conclude that
the localization labels give at most a contribution N*™. A careful analysis of the
relations (3.11), (3.12) and (3.16) gives N = 19. Clearly all the fields and the
propagators involved in the tree expansion depend from the quasi particle indices;
nevertheless in what follows this dependence will appear only at the final level
where we will estimate its contribution with a factor 2/F| where |F;| is the total

number of fields in the tree .



56 THE BETA FUNCTIONAL.

3.4 Iterative kernel equation in the i.r. region

The estimate for the beta function are based on the iterative equations for the
effective potential kernels in the i.r. region. We can derive them proceeding
essentially as in the u.v. case and making attention to the rescaling factors Z; on
the fields and on the anomalous integrations. For simplicity of notation we will

indicate the product of fields as:

w(P) = I] #s (3.50)

fepP
where one has to remember that the 3 fields carry the quasi particle label, the
derivative label (at most a second order derivative), and the coordinate labels
which can appear in the interpolated form produced by the localization procedure.

Considering a tree 7 which branches from v in 7, ..., 7, subtrees, one has:

B'(V) = S OB (B (V), -, B™(V), (3.51)

where O represents one of the two operators £ and R. As usual it holds

E"(V)= ) E(V,P) (3.52)
PCF,

where P labels the external fields emerging from the tree integration over the total
set of fields F, associated to 7. Expressing the tree contribution as integrals of

the relative kernels one has:

BV, P) = [ eV ¥(r, P, WD (P)(2) 37 =
(3.53)
_ / dePWE (1, P, o PR (P)(7,) 3P,
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W(k)(’l’, P,m(P)) - /dx(CT\P)V(k)(T7 P7 :B) (354)

with dz = dz; - --dz|c,|. Substituting the (3.53) in (3.51) we find, if A, =k

Z fd:l?l -dz (Zk+1) Z | 'I

Pl) 7

‘.;IOEIZ'-{-I ( (<k+1)(P) (<k+1)(P )) Hv(k_’-l)(Tz)Pum )

=1

(3.55)

We observe now that

PP = [T @ +9EY) = 3 (-1)Ter gD (P\Q)u(=R)(Q) (3.56)

fep QCp

and that

B (2s+0(py), ... ,\1f<5’°+1>(Ps)) =

3.57
=(Zp41)" 7 > IB1ET (g ( (SH+1)(py), L. WSk )) (3.57)

where ég are the truncated expectation with respect to the propagator §¢®. Sub-

stituting in (3.55) we find

ET(V) — Z / dml eee d(Bs H V(k+1)(7—i, Pi) :Bz) Z("“l)n{Qi’Pi} .
P; 1=1 Qi

(Zrs)} NOWEDU,Q S8, (BN, .., TH(PAQ.))
' (3.58)

which implies
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Zk %[onl R
(k)(T vo,m) ( Z_]:l> (yvo —y‘:Jo) ve Z HV(k+1) T3 szm )

DPDP
(= 1)11“’ Pyg} ——5k+ (‘P(k+1)(p1\on)7 e ’\Ij(k-l_l)(ps\PvO)) |
(3.59)

where we have used the

OT(Py)] = (3o — 4,) ¥'(Py) (3.60)

with the prime reflecting the eventual change of labels in the fields and where 2, is
a positive integer less or equal than 2. Iterating along the tree the above procedure

we obtain (up to a sign):

1Py

VO (7, Pyz)= Y ] (hv—-1>2 (o — v)™

{5 Jr venor (3.61)
;‘175;{ (‘I’(h”)(P(s");\Pv)) I 7 ] %Pz,

vEDT; . VEDTY. .

where we call 07;. . the final vertices of the tree 7 with an infrared running coupling
constant label r, (the types are A, 7**vs,, 64, , the element 9, does not survive
to a truncated expectation) and 07,.,. the vertices with an ultraviolet subtree label
with kernel Vv('rv, P,,z,) of order n, on the initial coupling constants z = (A, o, v)
of (2.30). As in the u.v. case the set {P,}, is a T-compatible system of subsets of
F:

U P 2P, (3.62)

'Ulesv
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P, n P, =0 if v and v' are not in the same branch , (3.63)

P,CF. Yver . (3.64)

It is clear from the above discussion and in particular from (3.61) that we
are making a definite choice in resumming trees: we do not resum the effective
potential coming from the u.v. integration as in the (2.55). Rather we consider,
on the (h, = 1) final vertex of the i.r. tree, the singles u.v. tree contributions
and we use for them the estimate (2.59). This choice has the advantage to avoid
an overcounting summation over the final points labels. In fact, proceeding with
the resummed u.v. contribution one start with a 3™ label counting estimate for
each term of order n; now, after to collect together all the terms order by order,
we should be able to handle the label sum for the final points of the i.r. tree.
This could be done observing that for a given perturbative order n there are f(n)
terms differing each other by the number and the type of external fields, where
f(n) is a suitable function which in our case admits, for instance, the estimate
f(n) < 4™. The contribution of order n in the i.r. integration would so implies a

label counting equal to:

Fin)y= > J]f) (3.65)

where the sum over p > 1 is understood. One can easily derive the asymptotic

behaviour of F'(n) observing that

STF@Er <Y | Y (@] = 1ft8t (3.66)

n>1 p>1 \n>1
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which implies, by standard arguments, that F/(n) < 8". This means that, follow-
ing this procedure, the final vertex labels gives globally a contribution of (24)"

whereas, as we will see in the next section, our procedure gives simply 3™

3.5 The convergence of the beta function.

In order to prove the convergence and the analyticity of the beta functional we

need some lemma proved in the appendices. Like in the u.v. case one can prove

that

- 1552 2i+n|RYY .
ISZ (W(h)('pl)a o ':‘Il(h)(Ps)) l < Py Z‘ ZJ:O( i |(2Ci.r.)2" 7.

A 2 . ) . (3.67)
,),g Z,- ijo(zJ‘*‘l)!Pg | Z/dre~n;,r,7th(s),
T
where C;, = max (C’}_T_,é'i%.r.), ki = po and where P(9) is the subset of P

whose elements are the field derivative of order j, the integral is over the inter-
polating parameters emerging from the localization procedure and the sum runs
over all the cluster-tree graph between the coordinates from which the fields P;

emerge; finally

Irls) = Y651+ 18) (3.69)

where {b'} are the two-dimensional vectors defining 7. This permits us to obtain,

from (3.61), the bound
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V(e Pya) = T = > ] ( )élpﬂl.

vEBT;. .. {P,}: vET\O7T
1 Z D _0(2J+1)1p(:) \P(J)g( )Z IP(ey): \Pol_ (3.69)

= AN S (2i+1)[PY)) \PY)| by
"](T) Pm,ﬂ?)’)’ : Z' ZJ:O | (2o)s H T
vEBT,

where 7, is one of the pure running coupling constants Ap,, v, , 6n, (the scaling

factor has been explicitly extracted in (3.69)) and

j(T’on’m): H Vv(’rv,Pv,:cv) H (yv“y;)zv

VEOTy v, vET\O7

1 n s (3.70)
HQZ/dTe—R;.r.’Y dr, ()
Ty
In the appendices it is proved the following lemma:
1 T Ri.r. kd'u = * MNu.v.
W/deJ(T,on,iB)le SERART S([ru-”-lcu.v.) : vela:[ Hry
—2n4—21 -—Z z o (371)
py AT Y gl H y~2ho(su=1)=hy 2098 ), |Pey); \Po]
vET\871
with
T L e L (3.72)
VEOTy. v,

where n4.,. is the ultraviolet order of the tree T defined by

>, (3.73)

VEBTY v,

the p., are the convergence metric factor of (2.59)
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Pr, = 7‘%“"1:\3%0, (3.74)

and, for instance, &;.». = %Ei_r_ = ;lipo(l —771), and do, is the length of the shortest
tree graph between the coordinates associated to the vertex vy. Considering that,

as one can easily prove,

3D ?_2i+D)[PY) \P)|-2ns—2n3-2, —n,+ns+D(P,
H Dy Z z.1—-0 (sv)s = p, § (Pug) (375)
vET\O7
with
. 1< .
D(Py) = 5 Y (27 + 1)) (3.76)
j=0

we arrive at

—D(Pyg)

p Ri.r. de My.,v. b
By | 4oV Pyl T < (frawlOL ) T b TT 7

VEITY v, vEDT; .

Z 3Py
bn‘ " I l a 29(_71:.1,. Zi IP(’v)i \P'ul_
( Zh, —1) (a0 )

{P,}, vET\OT
PO DMIRCIEED DT Y \P«Ej)l7—2hv(av—l)—hv2v H e

vEDT,
(3.77)

where the 7, are the (pure numbers) running coupling constants A = Ap, Dp =
Vh%;;n' and &5 = 6,2m, ay is defined in (2.37) and b in (2.57)

We can proceed now to apply the discrete integration by parts along the tree;
remembering that for a tree 7 with root at height k and for a generic vertex

function f, one has:
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Y hofo=kfo+ Y Fo (3.78)

’02’00 'UZ’U()

where f, = Y wr>y Jor, we find that for

fo=58,—1

one has

fv:nv_]-;

similarly if f,S”) is the characteristic function of the v final vertices we find

.7?1(;1/) = ngV)7

(»)

where ny ° is the number of final points in the subtree of root v with a v element

appended. Finally if

2
1 . j ;
fo=5 225 +1) ) 1B \PP) (3.79)
7=0 %
one has, after some algebra,

2
- 1 ) ) ,
fo=%—3 > (25 + DIPD| + 2n, — ). (3.80)
j=0

Summing up the various contribution we find the i.r. scaling dimension of the

fields P,:
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2
) .1 :
D(P,) =2n, -2+ %, —n" — | 5, + 5 > @i+ 1)IPP| | +
j=0 (3.81)

1
—(2n, —n{") = — o
Cne =) = -2+ 3 (5 +ip),
FEP,

where j7 is the derivative order of the field labeled by f. We have now to check
the decay of D(P,) in terms of the number of fields; it follows from the (3.81) that

1
D(P,) 2 5|Py| - 2; (3.82)

the possibilities D(P,) = —1 and D(P,) = 0 which, a priori, could emerge in
the cases |P,| = 2,4 are actually excluded by the localization and resummation

procedure which implies [¢]

D(P,) > 0. (3.83)

The (3.82) and (3.83) immediately give

D(P,) > %val- (3.84)

We have now all the elements to prove the convergence and the analyticity of

the beta functional. Recalling the (3.54) we define

Wi (Poya®) = 37 WE(r, Py, o)) (3.85)
TEén(k)

where the @, (k) are the (labeled planar rooted) trees with root at height k and n
final vertices described in the previous section. We can put together all the above

estimates; defining 7, = (Fi.r.,7u.».) and
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€k = mazp>k|7h|, (3.86)

under the hypothesis that it exist a constant £ and a suitable ¢ such that

er < E, (3.87)
Z _
mazpsk h < 7“2 (3.88)
Zh_1
and, for the (3.49),
|zn] < e7? (3.89)
the following bound holds
p"—D(on) x
Po (Pog) 11a7(R) (Pug)\| pRir. ¥ dug =kD(Pyg) (y—|Pog| v4n 1
(Vo) dz |W(n)(Pv0,a: )| et <7 C C*"ey
lecs v v
. Z H [hr, Z H 7(2 |Py|~D(P, ))’
TEén(k)vEBTu.v. {P'u}-r ‘UET\&T
(3.90)

with C* = a3bo2*°(C*)* and C* = maz(C} , ,C;..) and, for small enough &, for

3

instance 3¢Z — 1 < —% we find, using the (3.84), that the last summation is

Yo II we D> I AP (3.91)

Teén(k) VEBTy. . '{P'u }‘r ‘067'\67'
To show that we can bound this expression with the usual C'™ estimate we
proceed as in the u.v. case adapting the procedure to the slightly different structure

of the tree involved in this case. Starting with the convex decomposition:
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D(P,) = 7' D(Py) + (1 — 7)D(Py) (3.92)
we have

(3.93)

> D(P,) = 7'|r\or| + (1 — 7'

vET\OT

where we have used the (3.83) and (3.84). This implies that

veT\oT

Z H 7—%D(Pv)§7*%"'if\3"l Z H 7"9—:31'_,1!})”‘ (3.94)

{P,}: vET\OT {P,}r vET\O7T

It is useful now to make the choice that the convergence metric factors are

i Whlch is verified for

the same in the u.v. and ir. section of the tree 7u 0. = Vim

instance for Yu.b. = 7i.r. and 7' = n/3. The (3.91) became

3 S UACUID D | -Cepy| (3.95)

r€0,(k) {Py}r vET\OT

We first bound the last sum; proceeding as in the (2.49) we find

) o
YOI ER = Z,,—t@—;%)> =

{Pv},— ‘UET\aT 'veaTi.r.Ua'ru.v. =0

an
( 1 >
< EEEDY) ;
1 - ~ 24

have used the fact that in each final vertex the number of external

(3.96)

where we
fields is bounded by four times the perturbative order. We proceed now summing

over the (planar rooted labeled) trees in the following order: for fixed final vertex
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label (quasi particle label and type label (A,7,§)) it is easy to bound the internal
localization label; as explained in section 3 they give at most a contribution equal
to 19%™. The sum over the quasi particle indices is bounded by a factor 2*” and
the sum over the final type elements by a factor 3. It remains to sum over
the trees; we fix the fopological structure and sum over the length of the various
branch connecting the couple of successive non trivial vertices. Each branch gives
a contribution (1 —~~%)7!, the number of branch is equal the number of non

trivial vertices which is bounded by 2n and finally the topological planar rooted

trees are bounded by 2*"; we obtain

2n
Z —17lm\o7| < 94n ____.1 (3.97)
7 - 1 —7‘% ) |

’rEén(k)

We finally obtain

—D(Py,y)
pO (on) (k) (on) Ri.r. kdvo -kD(on) _"IPV()[ T n
By [ ST B P <G
(3.98)
where
CT =3.2%.19%a%0(C*)* (v, 1), (3.99)

and

ol

)2 (1 o 321”))4 . (3.100)

As in the u.v. case we can optimize in 7 finding 7 = £ and I'(y) = (1 — 47268,

L(y,1) = (1 -

The previous bound gives directly the beta functional convergence and analyticity
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radius; in fact from section 3 it is clear that the beta functional can be expressed

as:

Ak:(Z;rl) P +Y S W)

k by
n=2rcd, (k)

60 (Zk+1) I S ST

n=2 TE@,,, s(k)

v = <Z§+1) VWkt1 +7 Z Z w®(r)] (3.101)

n=2rc®, (k)

% = [Y2 k41 +772F Z Z W ()]

n=2 TE(:)“ g(k)

_l—l—zk——l-{—z Z W(k)(’l‘)

n=21e8, ¢ (k)

Z
Iy

where the sets (:)n,a, o = A, 6, ... are the trees with the operation £ applied to the
vertex vy and summed over all the coefficients of the a-terms. This implies that

the following theorem holds:
Theorem

The beta functional expressed by the (3.101) is convergent and analytical, in terms

of its (adimensional) arguments, inside a radius

R(7,22) = N7IRI(y, 2 (3.102)
PF PF

where N is the global combinatorial contribution of the (3.98) (which is about
7-10%®) and

R'(y, 1%’; = ag*b (C*) T (7)™ (3.103).
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Just to have an idea of the order of magnitude for this bound we calculate it

for f)’—;: = 1 and we optimize it in v; a numerical analysis shows that the optimum

value is for ¥ =~ 1.6 and the bound holds

R(%,1)=1.3.107% (3.104)

3.6 The radius asymptotic behaviour

As it is clear from the proof of the bound (3.103) the value of Ri results to be the
minimum between the various adimensional bounds coming from the ultraviolet
and infrared regimes of our theory. With the help of a computer we can easily show
two typical sections of the surface z = Ri(z,y) (see figure pag.). It is interesting
now to look for the behaviour of the bound (3.102) when v — o0, v — 1, % — 0

and % — oco. A simple analysis of the (3.103) gives

Ri(z,1) < %" forlargez , (3.105)
Ri(z,1) x 7.6(z —1)* for smallz —1 (3.106)
Ri(F,y) < e forsmally , (3.107)
R'(7,y) < 0.5y~ forlargey . (3.108)

The result (3.105) which comes in particular from the i.r. bounds (for instance
the (3.49)) is not surprising because the divergence of the slicing parameter
clearly implies the vanishing of the radius.

The result (3.106) requires some discussions. First of all we observe that it

is possible to obtain it considering that the contribution in v — 1 comes from the
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factor I'(y) in (3.103) which gives a (y — 1)® and from the basic bounds on the
propagators, both ultraviolet and infrared, which have a dependence (v — 1)"2
for each field ((v —1)72 in the perturbative order). This last result is not obvious
because of the presence of the anomalous dimension; in fact looking at the (3.49)
it is clear that we need a dependence from 4 — 1 also for the running coupling
constant zp. For small v — 1 it is possible to prove it in the same iterative way
that we use for the other constants observing that, by definition, zy = 0 and, for
the (3.35), §(® goes like y—1; this implies that z_; has the same behaviour and for
the (3.49) also the infrared bound for A = —1 etc. The result (3.106) is somewhat
unpleasant; in fact the limit y—1 — 0 can be understood as the continuum limit of
our renormalization procedure and one expects that it should be possible to follow
it directly in the form of the “differential equation” approach like in the case of the
Coulomb gas problem (see Ref. [20]). Nevertheless a study of the Fermi surface
problem with the differential renormalization group approach has not yet been
done and it is not obvious, due to the anomalous scaling, to imagine the results by
comparison with similar problems. For this reason further studies are needed to
establish if the result (3.106) can be improved up to order one. Clearly the (3.105)
and (3.106) implies that it exist a value (or more than one) of v which optimize
the radius.

The result (3.107) comes from the ultraviolet bounds (for instance the (2.8)
which dominates all over the remaining ones when % — 0. Finally the (3.108) can
be obtained from (3.103) and considering that, for large values of £ (we remind

that we are in the physical units 22 = 1) a3bo(C*)* goes like yzy%.
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Conclusions

Trying to give estimates with perturbative methods one meets many situation
on which a technical choice has to be performed and eventually an optimal one,
more or less convenient, can be done. When there are many steps to arrive at
the final bound these choices become more and more numerous and it is very
difficult to optimize them globally and in a significant way. Nevertheless, even
if the so obtained bound look as rather pessimistic, it can be used to obtain
interesting informations like its functional asymptotic behaviour in terms of the
physical constants of the problem. This thesis is an attempt to estimate the radius
of convergence of our beta function foﬂbwing the above “naive” procedure; it is,
up to our knowledge, the first attempt to obtain an explicit bound for the radius of
a beta function in a rigorous context. It would be very interesting to compare our
result with those obtained at a more heuristic level or better with experimental
data at least to check how much our bounds are far from the physical regimes and
to give an interpretation of the asymptotic behaviour we have obtained.

Clearly in order to really optimize the bounds and to have a definitive detailed
knowledge of the theory from a perturbative point of view one needs to look in the
details of the “cancellation mechanism” which, in this work, we have completely

ignored. We hope to return on these problems in future works.
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Appendices

A.1 Rooted planar trees

A tree 7 is a connected acyclic graph with vertices V' connected by edges E. A
rooted tree is a tree with a marked point r called root: 7 = (r,V, E). Conven-
tionally, we consider an orientation along the edges of the tree directed from the
root to the endpoints. A rooted planar tree is a rooted tree drawn on a plane;
this simply means that the trees which cannot be superposed with a continuous
two-dimensional displacement are considered different planar trees and both give
a contribution in the counting. For each rooted tree there is a natural partial order
between the vertices. One says that a vertex v follows a vertex v’ (v > v') if they
are connected by a path oriented from v’ to v. In this way each vertex has a set
of first successive vertices s, A trivial vertex has |s,| = 1; the final vertices 7
are those for which |s,| = 0. The notion of trivial vertex permits to consider the
“topological” tree associated to a given tree: it is simply obtained contracting all
the trivial vertices. It is useful to consider also the v-branch b, defined as the set
of vertices that one encounter moving from v toward the root. For the trees there
are two basic and different notions of inclusion: the fix-root inclusion (subrooted

tree) 7' C 7 where 7' = (r,V,E"), 7 = (r,V,E) and V' C V and E' C E; the
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vertex inclusion 7, C 7 where 7, is the subtree which has v as root; obviously
T = 7,. In a tree there is a natural notion of distance between vertices: d(v',v")
equal to the number of edges of the shortest path connecting the vertices v' and
v". This allows to define the relative height of a vertex v as its distance from
the root h, = d(v,r). Our aim is to count or at least to give an estimate for the
number of rooted planar tree with a fixed numbers g5 of final points at height
h. This is the hard “order” counting problem for trees. It is not yet solved: for
this number there are neither explicit expression nor functional relation for its
generating function. The only things one knows are some good estimates which
suffice to obtain the results we need. The problem is, as we will see, reminiscent
of the connective constant computation for a given lattice. All the estimates we
will obtain are consequence of an exact calculation for a slightly different counting
problem for trees, namely the number of planar rooted trees with a fixed num-
ber of vertices. This number has been obtained in different ways and in different
contexts since the Euler calculation for the number of different triangulation of a
regular polygon. We present a calculation involving the probabilistic aspect of the
problem transforming it in a random walk problem in the two-dimensional inte-
ger lattice. Considered a tree T with n vertices we associate to it (in one-to-one
correspondence) a path in Z? with start in the origin, where only the increasing
coordinate steps are allowed. The correspondence is defined as follows: starting
from the root we “walk” around the tree in the clockwise direction; to each edge
we meet in the increasing direction we associate a step in the horizontal direction
in the lattice and to each edge in the decreasing direction we associate an edge in

the vertical direction in the lattice. Some examples are given below.
/

ye
J ¥

’; 77 ;{ - XXYXXYXYYY e

h-3
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In this way a tree with n vertices is mapped in a path going from the origin
to the point (n,n) and staying below the diagonal. The correspondence is, by
construction, one-to-one and the number of rooted planar tree with n vertices is
equal to the number of such paths. We count this number as follows. We observe
that the number of increasing (coordinates) path from (n,m) to (h,k) (with A > n,

k>m)is

(h+iiZ‘m). (4.1)

This means that the paths from (1,0) to (n,n—1) (without the under-diagonal

constraint) are

(%“”D). (4.2)

n—1
We have now to subtract the contribution coming from the path touching the
diagonal at least in a first point (k, k). It is a remarkable fact that these paths can
be exactly counted with a reflection positivity argument: taking one of these path
we divide it in two parts, the first going from (1,0) to (k, k) and the second from

(k,k) to (n,n —1), and we transform it reflecting with respect to the diagonal the
first part (see figure below).

4

v

Clearly there is a one-to-one correspondence between the original path and
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the semi-reflected one and this enables us to conclude that they are counted by all

the paths from (0,1) to (n,n — 1):

(M”“”); (4.3)

T

finally the number of rooted planar tree with n vertices (included the root) is

C%:G$:3>_Gm;n):%€$:y) (44)

From the previous expression we can easily derive the recursive formula for

the c,:

4dn — 6
n= Cn— , A5
C c 1 " ( )

from which one recovers the asymptotic behaviour of ¢,

cn < 4™, (A.6)

Another interesting relation verified by the ¢, is

n—1
Cp = Z CkCr—ly - (A.7)
k=1

It can be proved starting from (A.4) or better directly from a combinatorial
correspondence between general planar rooted trees and trivalent planar rooted
trees (Cayley trees) where trivalent means that each vertex can be a final point
or a bifurcating vertex. The correspondence is constructed using the path rep-
resentation shown above. We have shown how to construct a planar rooted tree
from one of these paths and vice versa; to associate a Cayley tree to a general tree

we construct a Cayley tree starting from one of such paths. The construction is
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similar to the previous one: starting from the root we walk around the tree in the
clockwise direction and we associate a step  to each bifurcating vertex and a step
y to each final vertex (but the last); the bifurcating vertices are to be counted only
at the first time passage. This correspondence is one to one (by construction) and
tells us that the Cayley trees with n final vertices are exactly ¢,. Some examples

are shown below.

——-< -— xxyxyxyy - __<<<‘
ey e

This geometric interpretation immediately gives the (A.7); in fact the Cayley
trees with m final vertices can be constructed glueing together at the root (as

shown below) couples of trees of order k + k' = n and summing over k.

The (A.7) implies that the formal generating series

Ct) =) cnt” (A.8)

n

satisfies the equation



BOUNDS ON THE NUMBER OF CLUSTER-TREE GRAPH. 79

C*(t) = O(t) — t (A.9)

whose solution, with the condition C(0) =0, is

C(t) = 501~ VI~ ). (4.10)

This expression (which is consistent with (A.4) as it is possible to verifies with

the Taylor expansion for the square root) tells us that the formal series expansion

1

converges inside a disk of radius .

This result, or equivalently the (A.6), permits us to obtain the estimate used
in this thesis: in fact in a tree without trivial vertices (topological tree) and with

ny¢ final vertices one has

ny S n S 2nf; (A.ll)

and this implies that the number of topological trees is less than 16™+.

A.2 Bounds on the number of cluster-tree graph.

We prove now the estimate on the number of cluster-tree graph T for a set of 2n
lines (fields) grouped in k cluster. From each cluster emerge ¢; lines, t;=1,..,k.

One of such graph is composed by k—1 edges which form a connected tree between

the points 1,...,k. It holds the bound

1< R (A.12)
T

The bound can be proved dividing (et impera!) the previous sum in three parts
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DD DI P ¢ (A.13)

TET Z ij=2(k~—1) T{ij}

where the third sum is over all the abstract tree T with fixed incidence vertex
numbers, the second one is over all the possible incidence values of the £ — 1
points vertex and finally the first sum is over all the possibilities of choosing the
lines inside a given cluster. The third sum is obviously bounded by k!. The second
sum can be estimated observing that defining F'(2(k — 1)) = }:Z ij=2(k—1) 1 one
has

S rwe =3 ¥ 1o -

k=1 k=1 Zij..__.k

(A.14)
oo oo t
< ) = ——
this gives as the bound
F(2(k — 1)) < 2%, (A.15)

Finally the first sum produce a factor

S 1= = P <2 (4.16)

TeT
where we have used the relation ) ¢; = 2n and we have bounded the combinatorial

factor with the exponential. The (A.15), (A.16), give immediately the (A.12).

A.3 Bounds on the propagators at scale h.
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In this appendix we prove the bound (3.48). Since [jg,h)(z) = gfuh)(z) + rg,h)(:c) we

bound separately the two contributions. Starting from (3.5)

y—2ht2
(R) — LiPPwWzy, —2
9o (a’) € Po /;~2h da(27r)2
.e~a(k§+e(k1)2)1”52(iku + e(kl))x(w’)/_hkl)
(4.17)
(R) (R

and observing that g, ’(zg,z1) = g+1)(a:0,wm1), we have simply to bound the

/ dkodk, e~ (Forotkiza),

y=2ht2 1
h _ _ippzy_—2 —i(kozo+kizy)
¢ M (o, 21) = €P7o1p3 L e / dhodkye -
_e—a(k§+e(k1)2)P§2(iko + e(kl))x(’)’—hkl)
(A.18)

Making the substitutions o — ay?*, kg — yhky and ky; — Y hE 2

we obtain

1 - "{2 1 —ikE—caér(r
g(h)(mo,fcl) = ¢'PFoip 2’Yh/1 da(zﬂ-y /dne ¢—adp(K),

(tko + B&(k1))x (ks + 77 "pr)

(A.19)

k
where 8 = BE, &,(k) = (k2 + B%en(k1)?)py %, en(k1) = k(1 + k1355—) and where
(é0,¢1) = (v*zo,v"z1). In this case the ko integration is Gaussian and can be

exactly performed; it gives

2
. Y 1 ¢2p2 ) .
g(h)(m07$1) pumad ezszlpalvh/ dame_ da /dkle—lklfl-aﬁ Py ei(kl).
1

2
(S22 1 gela)x(ks + 7 )

(4.20)
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We can estimate now the k; integral observing that the integral is an analytic
function over the whole k; complex plane; this permits us to shift the integration
along the axis k; = p +1q where ‘q is positive and the sign is chosen according the
sign of £; in such a way that the real part of —ik;1£; be negative. In this way we

obtain, after some long but trivial integral estimating, the bound

2 2
SQPQ

1 — i - —
19 (20, 21)] < 7"po 4_7r(72 — 1)(po&o + 4mpF1)(%:—)§ e~ 27 ePoll  (4.21)

where we have chose for simplicity ¢ = po which is the natural scale of our problem.
A more refined estimate could be done optimizing in ¢ the above bound. Since in
all our work we use only the fast decreasing property of the propagators we can

give up the quadratic faster behaviour obtaining

19020, 21)| S 7By = )7’ (BEppemitlemlel (4.22)
™ Po
— L &2 (ptipo)+e(
The integrals involved in these estimates are of the type [ dpe 75 w(pkipo) 7); the

results (A.21) and (A.22) can be obtained observing that, from the definition of the
— 1 &2 (pti “+ec _ P '

&n(k), one can easily prove that |Ree *o w(piiro) (‘Y)! <e PrGR) R G+ ()

where for instance c'(y) = 7. Reminding that the derivatives which can act on

the fields are bounded in order (¢ < 2) the bound in the general case is completely

analogous; expressing the propagators with the non rescaled coordinates, one has

_1_(,),2 — 1)672+474(E§)%e—pov"lzole—povhlle_
2T

Do

102 (o, 21)] < 4*CFDp(HD
(A.23)
To bound the (") contribution we follow a similar analysis; from the definition

(3.37) one immediately obtains:
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27—-2’1 1

”(h)(wo,wl):ei”zlpo_z/‘ da(zﬂ')2

,Y-—-2h.
e~ (iko + e(k1))x (7" k1)

dkodk —i(kozo+kiz1),
/ oeme . (A24)

performing the substitutions o — av2*, kg — v Pky and ky — v "k, + v~ hpp

we arrive at

2
r(h)(zo,ml)zfyh/ dar™(a, z) (A.25)

i

where

—2
r(h)(a, (l:) — PFZ1 (22)2 /dkodkle—z(kofcg—i—klzl)—ae(n).
h

(ko + ey + 77 pR) s

zhe*g(") ’

(4.26)

We note an important difference from the ¢{® contribution which is the fact that
the integral in (A.25) is from 1 to 2 and, for this reason, does not presents any
more the dipendence from the factor (72 — 1) (see discussion at the end of chapter
3). The presence of the factor (1 + z,e™%("))~1 in (A.26) makes the ko integration
not explicitly computable; the same factor is responsible, as one immediately rec-
ognizes, of an infinity of poles in (ko, k1) € C%. Nevertheless one can show that if
zp, is small enough the poles of the integrand are sufficiently far from the two real
axes. For instance if |z, < 7% one can easily prove that

|zne ™| < = V|Imko| < po, |[Imki| < po . (A.27)

BN |

This means that the integrand is an analytic function in each variable ky and

k1 separately inside the double strip of width 2p; and we can perform a shift of
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the integration along the axes ko = 7o + ipg and k; = 71 £ ipg according to the
positivity of both koo and ki &1. This implies that we can follows an analysis

similar to the previous case; after some calculations one finds

lT(h)(wo,wl)l < ,yhpo%_lzhkz”ﬂ(_p_}i)%e—Polfole-Pol&l, (A.28)
4 Po

or, in the case with the derivatives,

1697 (20, 21)| < 7h<1+q>p%””%IZhle2”2+8‘f*(35>%e'm"‘“'e-m"‘“‘» (4.29)
™ Po

Summing up we finally obtain, for the global infrared propagator at scale h,
the bound

2 4

27" +8y
|aq§t(uh)($0,m1)‘ < 7h(1+9)p81+9)_e____2—____(72 14 IZhD(BE)%e—po“’h‘z"‘e—PO’thzﬂ.
4 Po

(A.30)

A.4 Bounds on simple and truncated expectations.

Gramm-Hadamard inequalities and cluster expansion.

We prove here the bounds (2.30) and (3.67). The proof is constructed in the frame-
work of the grassmanian integration: we first treat the case of the the simple ex-
pectation where we show that the bound reduce to the classical Gramm-Hadamard
inequality and then we generalize it to the truncated expectation case with the
help of the cluster expansion method for fermion fields 1822, The idea of using the

grassmanian method with the help of the G-H inequality to treat the convergence



BOUNDS ON SIMPLE AND TRUNCATED EXPECTATIONS. 85

problem for fermions can be found essentially in (Ref. [23]) and, later, extensively
used in Ref. [19]. This inequality, which can be proved without difficulty with
elementary algebraic computation, can be found, for instance in (Refs. [14,15] ).

It tells that, given a separable Hilbert space and considering the matrix

Gi; = (gi,h;j) (4.31)

where {g;}1-.; and {h;}7_, are two families of n vectors and (-,-) is the scalar

~ product, the following inequality holds:

|detG| < H llg:llllAs] (4.32)

with the norm induced by the scalar product. This enable us to bound immediately

the simple expectations; in fact considering

$(P) = [ 0% [] 0% ¢, (4.33)
=1 j=1

where the 07 are differential operators of order ¢ = ¢y + ¢1 and global order
|@Q| = >, @i, the Wick theorem implies

n

EB(P)] = ()% T] 0% [] 9% detg(é; —ny) (4.34)

j=1
where g is the propagators of the 7 fields with respect to the measure £.
The inequality (A.32) can now be applied interpreting the propagators as

scalar product on L,(R?) in the standard way trough the Fourier transform; in

fact since one has
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0% 0% g(&: — ;) = / ('é?)?e"i““‘"’")(—in)wf'ﬁ(fs) =

z e~ ie(éi=2) ix)¥u(k +m,(’7"_z) -5 5 (k'
= [ @ [ e e i) [ G (=ix 5w
(A.35)

with, for instance, the identifications

a(x) = (k)|

and

9(k) = |3(s)|7 (x) "

the (A.35) can be obviously interpreted as the Ly(R?) scalar product between the

vectors

ui(z) = (27r)2 e_“‘(s"")( i) i(k) (A.36)

and

e~ (i) 5 37
5(2) [ Goge I a(e) (437

We have to consider now three propagators: the regular part of the ultraviolet
integration (1.44) the ultraviolet part at scale h > 0 (2.8) and the infrared part at
scale h < 0 (3.35). Following the previous prescriptions and using essentially the
good behaviour of the Fourier transform for the propagators one can prove, after

some long but trivial calculation, that the (A.32) implies the following bounds:

ERFP(P)]| < AT G (4.38)
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with, for instance,

= 8 Pz 4m
Cr = (-—EI—:‘—> (72 _ ]_)e;—?%‘r“*_ o , (A39)
TPo
EBP(PY]| < plFF Gp AR s (4.40)
with, for instance,
~ 'r[z,2 % ____F__+4m+4
u.v., — — 1)em™ror y .
Cuo. <27TP0PF> (72 — 1)e™ro (A.41)
- Eid g ¥ <d
ER PP < pp? T G2 4T <o (A.42)
with, for instance,
. 2‘/ +8~*
Cir = —“-——('7 -1+ IZhl)(“*)2 (A.43)

We have obtained the previous estimates taking the supremum between the
various derivative contributions. We note that in the infrared case the bound
presented holds both in the particle and quasi particle fields; in this last case
the L»(R?) Hilbert space is replaced by the tensor product L;(R?) ® C? where
the quasi particle vectors of the representations (A.36) and (A.37) S, = (g:f)
verify the (Su,Sw) = bww and |S,| = |Sw| = 1 and does not modifies the
constants in the Gramm-Hadamard bound. This conclude the estimate for the
simple expectations. The relation between the simple and truncated expectations

can be explicitly found with the help of the powerful cluster expansion technique.

In the case of fermions fields this functional relation is
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b(P;)) = Y (-D)RET(H(Py), o P(P3,)) (A.44)

Part

92)
N.A
<
Ve

where (—1)" is the fermionic sign and the sum runs over all the partitions of the
set {1,...,k}. It is well known that the previous relation between the £ and the
€T is a kind of combinatoric exponential expansion and we are Now interested
in its inversion, which represents obviously a combinatoric logarithm expansion.
To treat this problem one introduce an auxiliary Grassmanian algebra over the
symbols 7;:, 71;,:; the couple of indices (j,1) label the i-th field in the j-th cluster.

A generic monomials in the fields is (with the derivatives eventually understood):

%(P;) = H%, H ¥ (A4.45)

ir=1
where in general g; # p; but ZI; g; = El; p; = n. With the usual notion of

Grassmanian integration defined by

7] 3}
/d'fh s dﬂsf(')']l,...,'f]s) = 57—7; e a ...,T]s) (A.46)

one easily see that it is possible to express the simple expectation as

k k Pj
e[ 3 = (-0 [ 11T éms T dny ™", (4.47)
j=1 j=1l1i=1 i'=1
where
nGn = Z Ay 0 Gzjr o — T )M, (A.48)

323"
and G is the propagator matrix associated with the expectation &€ and with the

derivatives eventually presents in the fields. The (A.47) is a simple algebraic
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translation of the Wick rule. The truncated expectation can be expressed in
various (equivalent) ways in terms of Grassmaniann integrals; one of them (22
make use of the interpolating pa;rameters method and is particularly suitable for
the bounds we are interested to obtain. As it is possible to check from (A.44) and
(A.47) it turns out that the following expression holds:

EX(P(P1), ..., b (Pr)) =

k P

/HHdUJ, HdnJZ’Z H (Vi + Vi ’J)/dP (s)e'ﬂGT"](s)

j=11i=1 =1 T (§,5")eT
(A.49)

where T is a cluster-tree graph, T is an abstract tree graph between the points
_ k

{1, k), Vigr = S8 09 5w Glogr o — 25,0050, 7GTn(s) = Y= Vi +

Z#j, 5,7V and ;5 = Hf':J s;, with s; € [0,1]; finally dPr(s) is a proba-

bility measure on [0,1]*~1. We can obtain the desired bound in two step. First

we observe that

H (Vt?d + VE" 23 Z Z ﬁj'l.i'lﬂjl,ix e ﬁj'k_l,i'k_177jk-1,ik_1‘
(4,3 )ET B1yeenyiio1 P1yenyil oy
k—1
’ H 2G(mj’ui’t — Tj,i);
=1
(A.50)
it is obvious that the choice of the indices {z,7'} and of the abstract tree graph
T is equivalent to a cluster-tree graph T appearing in the definition of the (2.33)
and (3.68). The typical estimates on the propagators

|G(z —y)| < p3+q06_5(130_y0‘+|1’1“y1I)
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(g is the total order of the derivatives acting on the fields ¥ and 1[);) permits us
to obtain the bound

ETB(PL), s B(Pe))] < p 21 lo(km D g Em2) §7 e,

'k pj
I_/ HHdm, H dm,z'z H (Vi +VJ’J)/dP (s)e’lGTn(s)

j=1i=1 T (§,j")eT
(A.51)

where the prime over the integration symbolize the fact it has to be performed
only over the grassmanian variables which do not belong to T'. The final bound
can be reached observing that one can define the vectors e; and Uj;, V;; in such

a way that

7Gn(s) = Y mjile; ® Ujirejr ® Vira)myr,irs (A.52)
drind' o

in fact the vectors U and V are defined, as in the simple expectation case, in such
a way that (U;;,Vy o) = G(zj; — zj ) and the vectors e; are defined starting

from an orthonormal base v; as

e1 = vy (A.53)

ej = sj_1ejo1 +(1—s2 ) Pv; j=2,.,k—1 . (A.54)

The property (e;,e;;) = S; ;7 implies the (A.52) and the Gramm-Hadamard
inequality tells us that

- ~ Lip _ — ~(n— —rdp
ETH(PL)s s B(PR))| < ph7 T2l OGD Gkt N2 omndr (4 55)



THE PROOF OF THE BOUNDS (2.36) AND (3.71). 91

where

C= (1,_]) ”U%JH”VI,J” (A56)

since it holds ||e;|| = 1. Defining € = max{C,C} we finally have

ET(B(Pr), ey B(PR))] < ph21T 3P I2n G 37 gmmdr, (A.57)
T

A.5 The proof of the bounds (2.36) and (3.71).
The regularity of the interaction (2.35) implies that

1 “ﬁu.v. (hv) Sy
wan ) = IL i e T e -wls

vET\OT vEH“4”

N (Vol)/ H Sp 12 —Kuvd( ”)(31,) H TPolEen- yvﬂ&(w 0 — Yo 0)

vET\O7 vE“4”

(A.58)
choosing arbitrarily a point between the integration coordinates, the integral can
be estimated evaluating the remaining integrals starting from the endpoints of the

cluster-tree graph and observing that

/d:ce_‘v"ll’Bl =27 'L

This immediately implies that
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Z —rundr 26 TT fo(es — 90)] <

(VOZ) ET\BT vE“s”
—4Ng—LN2— 4Nyt n -2 Sy — Tv . v
vET\oT v
(A.59)
where
_ Po
ap = max (1,2 —T;) (A.60)
The lemma (A.12) immediately gives
—'Nuu d( 'u)(s ) <
(Vol) o] Z H” [o(2e — 9o)| <
vET\BT vE“L
p;4n4—2nz—2n2: atm H 7—§hv(3v—1)26 D lP(s-,,),'\P'ul’
vET\8T
(A.61)

from which our (2.36) follows. The proof of the bound (3.71) is conceptually
similar to the previous one apart some technical differences due to the presence of
the factors (y, —y,)* and to the fact that the space coordinates can be interpolated
points of the initial simple coordinates. Expliciting the expression for J in (3.70)

we have

J(‘T, P,,,z) = Z H . 1Z/derT(:c,r) H Vo(To, Py, o) (A.62)

T ver\or = VEBTu.v.

where

Ir(e,) = JL el I (= w)™ (4.63)

leT vEITu.v.
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and T is a global cluster-tree graph obtained choosing one of the tree graph for
each vertex of the rooted tree. Clearly the variables ¢ and y appearing in the
previous formulas can be simple ‘space vertices or interpolated space vertices. We
start bounding the product [] . o7, (Yo — Yp)*™. For this purpose we observe
that, as it results from the localization procedure, the coordinates y are convex

combination, eventually trivial, of the coordinates emerging from the vertices s,:

(3

Yo = Z Aiz; Y = Zyiw; z,z' €z, (A.64)
j

with Ay, p; 0 and 3. A Zj p; = 1. This clearly imply that

lyw = Yol < supsjlo: — 2} (4.65)
and for the triangular inequality

supijles — | < Y Jaor — 2] (A.66)
leT(v)

where T(?) is the restriction of the global tree T to the points seen by the vertex

v. By standard convexity arguments one has Ve > 0

'7hv ""'i.r.‘yv - y:,l < 056%7“ Fior. EIET(”) |z -2y (A.67)

where, for instance, C. = 2(e¢)™!. Being Zz, < 2 the previous relation implies that

- - — hy . —
lyo — Yol S kiR OIS T Liieat ler=ail, (A.68)

Taking into account that only two consecutive trivial vertices can act with a z, > 0

we have that
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h ] A ! h
[T & Zert loi=sil < Hezen,.f.m =D ngn, 7

vET\87 leT (AGQ)
[,
leT
This permits us, choosing for instance ¢ = e™! (C. = 2), to bound Jr as
EACROIE | E i (A.70)

leT

with K;p. = i’5’—(1 — 471). Finally we have to consider that the integration vari-
ables are simple space variables whereas the exponential contains interpolated
points. To solve this problem we perform, as in the ultraviolet case, the trans-
formation z = A(r)y defined by z; — z] = yi. The determinant of A depends
from the interpolating parameters; nevertheless it is identically equal to one. An
algebraic proof of this theorem can be found in (Ref. [21]). The geometrical mean-
ing of this fact is actually evident and is a kind of rigid transformation property
which conserves the volumes: for any choice of {A;} s.t. > .A; = 1 (it is not
necessary the convexity) one has that for y = ). Ajz; a translation z; — z; + ¢
gives y — > . Xi(zi + ¢) = y + c. This property and the bound (A.70) reduce the
problem to the case (2.36) which we bound as in the ultraviolet case. Putting all

together we find after some algebra

1 - ; .
= dm]J(T, on,m)lem.rﬂ"duo < (Ifu.v.lc‘:.v')nu.v. L, -
(VOZ) vEoT

—2n4— 277-2-"2 Zy P, P, (A71)
Py atn H y~2ho(sv=D)=he 2098 ), 1Py \Pol

vET\IT

where we have used the symbol |7, ,.|"* for
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I,Fu.v.lnu.'u. — H {Xln4,vlﬂln2,vla|n2',v’ ‘(A_72)

VEBTY 4.

Ny.w, — Z Ty, (A73)

VEDTY. v,

the p,, are the convergence metric factor of (2.59)

PR IGACY (A.74)

Rir. < Rir. and ag is defined in (2.37).
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