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1 Introduction

The successful description of second order phase transitions and equilibrium critical phe-
nomena through Scaling, Universality and the Renormalization Group (RG) technique are
in itself one of the major achievements in the last 30 years physics [1]. Power law decay of
correlations, the universality of the singular behaviour in the thermodynamic quantities at
the critical point have a pletora of verifications and collective critical behaviour has become
a widely used paradigm also in experimental physics.

The creative work of B.Mandelbrot on the Fractal Geometries and Self similarity has
enlarged over the realms of physics the phenomenology where a statistical description seems
to be the most appropriate, ranging from finance and economical sciences, up to geology
and biology [2].

Scientific community working in the area of statistical physics are trying to extend the
thermodynamical statistical description to the realm of non equilibrium critical phenomena.
This thesis wants to be a contribution toward this challenging purpose .

The development of non equilibrium statistical mechanics can be considered, to date,
at a stage comparable to that of its equilibrium counterpart in the days before Maxwell
and Boltzmann. Non Equilibrium Critical Phenomena (NECP) are ubiquitous and using
intuition we are able to recognize and classify some common behaviors far from equilibrium,

but, due to the failure of well honed arguments based like competition between energy
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and entropy, we lack of general arguments that allow for a qualitative and quantitative
investigation of such systems.

We are therefore left with an old difﬁcult problem like the comprehension of non equilib-
rium behaviour and a new numerical and experimental evidence of critical properties arising
in a number of different areas like a typical behaviour (no tuning condition is required), in
contradiction to the exceptional nature of critical properties in thermal physics.

These and other observations show that understanding NECP is more than a technical
extension, but a whole redefinition of the statistical description to the case where collective
behaviour cannot be reduced to a sum of weakly interacting subunits.

The emergency of critical behaviour at the macroscopic level is caused by the competition
between microscopic degrees of freedom. This compromises even the definition of the steady
state in the thermodynamic limit; the study of metastability and the interplay between the
temporal asymptotic limit ¢ — oo and the spatial thermodynamic limit ¥V — oo become
then essential for the quantitative description of the critical behaviour in non equilibrium
phenomena.

From a probabilistic point of view the central limit theorem granting exponential sup-
pression of large deviations from normal behaviour fails to be valid, due to strong depen-
dence between different degrees of freedom; moreover large events statis’-cics becomes essen-
tial in order to characterize steady state properties, therefore also numerical investigation
becomes extremely hard.

The belief that a unifying physical principle underlies the spontaneous appearance of
critical properties in non equilibrium spatially extended systems concretized in the definition
due to Bak and co-workers of the so called Self Organized Criticality (SOC) [3]; essentially
an attempt to fix in a theoretical framework the common properties of those non equilibrium

dynamical systems that spontaneously reach a critical state in the sense of equilibrium phase
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transitions.

Since a lot of discussion has been done on what is SOC and what is not, we intend to
adopt a different point of view with respect to the standard one, we will consider SOC a
working hypothesis and we will test if it can be useful in giving a common explanation to
phenomena that share critical properties in the steady state.

We will analyze popular models extensively studied in the scientific community ranging
from the physics of granular systems and Sandpiles and ending with the physics of interface
growth phenomena. As we will try to explain in the specific cases, although these models
do not completely describe quantitatively physics of the underlying phenomena, they are
believed to catch the essential methodological problems present in their description and

explanation even at the experimental level.

1.1 Working plan

In this introduction we will briefly review how scaling properties can be mathematically
described. It is intended to give a common language rather than the rigorous definitions
that can be found in a large number of textbooks [4].

In the first chapter we will carefully investigate RG and scaling in Abelian Sandpiles. We
will derive a real space RG rescaling procedure very similar in spirit to the one introduced
by Pietronero et al. for SOC systems [5]. It can be used for both a classical uncorrelated
Branching Process evolving on a lattice (which needs of a tuning condition in order to be
critical) and for the Abelian Sandpile model, historically the first toy model introduced to
explain SOC. We will see that in the case of the 2d Sandpile the treatment given in [5] can be
better understood introducing a new critical exponent . Such a novel exponent describes
how the scaling properties of Avalanches in Abelian Sandpiles and the Renormalization flow

intrinsically depend on the SOC dynamics of the model. It is zero in the case of the classical
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BP while it signals SOC criticality in the 2d Abelian Sandpile taking a non trivial value.

In view of these results a new scaling theory is introduced and numerically tested, solving
an old controversy on the avalanche critical exponents in the 2d Abelian Sandpile model.

The second chapter is devoted to the development of mean field for interface growth
phenomena; striking result of this treatment is the description of the high dimensional
behaviour of X' PZ when the number of neighbors becomes very high. Non Markovian long
memory effects are shown to appear in the strong coupling phase.

As we will pictorially show in the case of Sandpiles, statistics of rare events strongly
affects analysis and interpretation of numerical data in most of non equilibrium critical
phenomena. To understand how the scaling picture is modified by such rare events statistics,
we will finally (third chapter) study the simplest case in which such tails appear: directed
polymers in disordered media. We will extend the RG introduced by Derrida et al. [6] to the
case of Levy distributed disorder; Multifractal scaling and Non Self Averaging properties
are shown to appear in this description as unavoidable in order to characterize their critical

properties.

1.2 The mathematical description of Scaling Properties

Scale invariance is a symmetry property of sets: a dilatation or a contraction leaves the
set unaffected. Let as consider now a real function f, it is said self similar with critical

exponent A if under a dilatation of a factor A the homogeneity property :
fla)y=x"Hf(x) (1.1)

holds. Mandelbrot works have given evidence of a large number of physical quantities shar-

ing this particular type of statistical symmetry (average properties are scale invariant and

are described by self similar functions). Using Equilibrium Statistical Mechanics it has

been shown that the singularity of the thermodynamic quantities approaching a second
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order phase transition are well described from homogeneous functions and from a set of
critical exponents that are universal, in the sense that they are independent of the micro-
scopic details of the model but depend only on the nature of the symmetries and on the
dimensionality of the system. These critical exponents can be calculated with some degree
of accuracy using the Renormalization Group (RG) technique.

From a physical point of view one can understand the RG considering it like a progres-
sive reduction of the effective degrees of freedom; since at the critical point all the scales
contribute to the macroscopic fluctuations, correlation functions will be self similar and the
essential physics of the problem is left invariant by a rescaling of the lengths transformation.

In its simple version it works as follows: near a critical point the free energy will be

composed of a regular part and of the singular part :

FHE}) =V (g({K})+ 1™ ({Ki})) (1.2)

where V is the volume and b is some microscopic length. Due to self similarity the change in
the singular part of the free energy due to a coarse graining (averaging over some microscopic
degrees of freedom) of the system can be reabsorbed simply rescaling the lengths and by a

change in the microscopic parameters from which it depends:
b — b (1.3)
B Ky — s ({xH) (14)

Imposing that the functional form of the singular free energy remains invariant under such
a transformation, a flow called the RG transformation is generated in the space of the

coupling constants, that maps the old parameters in the new ones:
RN ({K:)) = {K}} (1.5)

If, iterating the transformation, the parameters converge to some fixed point { K} and

under the central hypothesis that R is a regular function [7] of the parameters, it will describe
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Trajectories under
RG transformation

Ky

Figure 1.1: the RG flow in the space of coupling constants

the macroscopic critical behaviour of the system (or at least it will allow for a perturbation
scheme describing such a behaviour). Linearizing the RG transformation around the fixed

point and looking at the eigenvalues of the Jacobian:

/\ -

SORUED ey 0 )

OK; . R a ’
it will give some information on the scaling properties of the coupling constants. The
’ul(n) are called scaling fields and are linear combinations of the deviation of the coupling
constants from their fixed point value; asymptotically the rescaling transformation will act

(n)

on the scaling field »;"’ multiplying it by a factor (™, therefore the vz(n) will behave like a

homogeneous function with critical exponent obtained by the formula:

log (™ ()

(n) =
y log A

(1.7)

This is a consequence of the semigroup structure of the RG transformation: imposing that
two consecutive rescaling transformations by factors A , A’ have the same effect of a single

one by a factor AN, implies that the eigenvalues are of the form (™ (A) = AV such that
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£ (V) = £ (A)el) (A1)

The scaling fields are called to be relevant if (™ > 0, marginal if y(® = 0, irrelevant if
y(™) < 0. Irrelevant scaling fields can be neglected since under iteration of the transformation
they are exponentially depressed of a factor AU as | — 0.

The divergences of the thermodynamical quantities will depend on relevant and marginal
eigenvalues. The critical exponents of the thermodynamic quantities can be obtained {rom
the derivatives of the free energy with respect to the microscopic parameters {K;} using
scaling relations. In fact not all the critical exponents are independent but the consistency of
the RG scheme implies that the entire scaling properties can be related to the scaling indices
of the relevant and marginal fields. Models that under the flow of the renormalization group
transformation will converge to the same fixed point will have the same critical behaviour;
for this reason such quantities are said to be universal since they do not depend on the
details of the microscopic models but only on the fixed point of the RG transformation.

Also the numerical investigation of scaling properties is far from being trivial, this is
easily understood observing that they are related to the singularity of the physical quantities
and therefore by definition they can only be extrapolated from numerical finite precision
data using some statistical inference procedure. This problem strongly affects both data
analysis from simulations and experiments.

In the case of numerical simulations the so called finite size scaling analysis is a widely
accepted method for the analysis of scaling properties: the simulations are carried out
on lattices of different sizes L and data g(z, L) of some specific observables are collected.
If the measured quantity obeys to a scaling relation of the form: L7 f(z/L%), plotting
on é log-log plot the quantities /L% and LPg(z, L), they will collapse on a single curve
indicating that a rescaling of the lengths leaves the functional form of g invariant apart

from an homogeneous rescaling. The empirical estimation of critical exponents can be done
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considering the values a,  giving the best collapses [8].

1.3 Self Affinity: the case of anisotropic self similarity

Working with roughening of interfaces we will face with anisotropic Self Similarity or Self
Affinity; we remember that an affine transformation is a transformation that sends a point
T = (z1,...,z4) of a vector space (in our case R% ) in the new point rz = (riz, ey TAT4)
where the coefficients (ry,....,rq) are not necessarily all equal. A bounded set S is self-
affine with respect to a ratio vector r if it is congruent with its image under the affine
transformation r. Loosely speaking self affinity is the case in which the self similarity
exponent can be different if dilatations are taken with respect different directions; isotropy
is therefore lost and the scale invariance can no more be described by a unique critical
exponent. In the case of the interface this is related to the fact that growth of the interface
is driven along some fixed direction, so if one is looking at the growth of the roughness w
(the typical fluctuation length of the surface) along the growth direction it will scale with

an exponent different from 1 with respect to the linear size I of the substrate (orthogonal

to the growth direction) therefore we can define an exponent y like:
w~ LX (1.8)

a rescaling along the direction of the substrate will obey a different homogeneity relation
with respect to a rescaling along the growth direction and consistently an affine transfor-

mation will in general rescale the system in an anisotropic way.

1.4 The end of the story: multifractality.

Self similarity as it has been defined, is a strong constraint on the behaviour of a spatially

extended system, since scaling properties are completely independent of the place in which
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the rescaling is carried out; they are a global property of the system.

Still the system can show non trivial rescaling properties even if strictly they are not
scale invariant in a global way. In order to describe the rescaling properties in the most
general way the Multifractal formalism has been introduced by Mandelbrot et al.[9] and
reformulated in many versions [10].

Suppose we are interested in the probability that some event happens in some place;
for example in chaotic systems one measures time series asking the probability that some
measure belongs to some interval. Considering the frequency of measures in a particular
box p;, the measure of the attractor is generated as time goes on.

Let us imagine to subdivide a set S in N boxes of linear size §; then we can define the

concentration of the measure in cell 7 using the ¢ dependent quantities:

N(@,8) doi f (2 N(1,6) v
Malad)= 3 (—[}7{—%—)) > (1.9)
=1

this quantity will diverge as 6 — 0if H < 7(g) or it will be 0 if H > 7 (¢) with 7 (q) that is
said to be the mass exponent for the moment g. The mass exponent is therefore given by
the relation:

(1.10)

Large values of ¢ favor contributions from cells with relatively high values of yx;, in fact
pwi>> u? if p;i > p; and ¢ >> 1 while large negative values of ¢ favor cells with small
values of ;.

In a self similar fractal measure 7 (g¢) is a linear function of the self similarity exponent

H of the form:

T(@)=H(1-q) (1.11)

therefore we define the generalized self similarity exponent like:

D(q) = (17(2) (1.12)
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Figure 1.2: Typical multifractal spectra arising in Anderson theory

Moments are highly non local functions of the density f(z) while it would be desirable to
have a characterization of the multifractal measure in terms of local quantities. For this
purpose it can be shown that the Legendre transform of the function 7(g), let us call it

f (@), defined by the relation:

f(a):=s%p(aq4—r(qn (1.13)

is exactly the fractal dimension of the set of points having Lipschitz-Holder singularity of

[f(z+6)=f(z)]~6% §—0 (1.14)

Therefore roughly speaking « is a sort of local measure of the siﬁgularity of the function
in that point, f(a) can be thought like the fractal measure of the set of points with this
singularity. Multifractal spectra can describe the rescaling properties of arbitrary singu-
lar measures and functions, their computation is however very difficult and no systematic
approach is known in standard cases. They have been applied in very different contexts;
most successful applications are in turbulence [10] and in localization theory [11]. We will
see that there’s a smooth migration between scaling behaviour and multiscaling behaviour

in directed polymers in random media when passing from standard gaussian distributed
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disorder to the heavy tailed and anomalous generalized Levy one, with diverging first and

second moments.




2 Scaling theory and RG in

Abelian Sandpiles

SOC models are commonly described, at the level of Mean Field (MF) theory, in terms of
uncorrelated Branching Processes (BP). BP are a classical topic in Probability Theory to
which a huge literature is devoted [12]. The branched structure represents the propagation
of activity in the system. The BP description of SOC requires however the tuning of an
external parameter (the mean number of branches at each generation) in order to keep the
system in the critical state. In view of the tuning condition, BP criticality can not be con-
sidered as self-organized in a strict sense. Most recently, a new Real Space Renormalization
Group method was intioduced {5] that, while using concepts typical of BP, like branching
probabilities, is intended to improve on the non-interacting approximation typical of the
BP, by allowing to calculate the avalanche size critical exponent, 7.

By iterating a set of equations obtained through the imposition of stationarity with re-
spect to a scale invariant dynamics, approximate weights for the steady state configurations
can be obtained. Such a scheme has been applied to different SOC models [5], obtaining
encouraging estimates of the critical exponents. Due to the lack of an agreement on the
exact definition of SOC models, these pioneering RG techniques have been successfully ap-
plied to specific models to clarify the nature of their critical properties, drawing a clear cut

between spontaneously reached critical state and a tuned, ”standard” criticality.

12
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Although reproducing remarkably well some numerical results, this RG poses some prob-
lems of interpretation. These problems, which we try to solve here, are mainly connected
to the relatively incomplete understanding of the basic scaling in Sandpiles and of the role
of conservations in determining them.

To this purpose, we decided to discuss how the scheme works in the simplest case of an
uncorrelated critical BP occurring on Euclidean lattice (explicit analytical calculations can
be easily carried out for the 1D case).

By definition this system is not Self Organized Critical since criticality is reached only
when the branching ratio is tuned to a specific value, but shares with the SOC models (in
particular with the Abelian Sandpile model) the same phase space and phase variables over
which renormalization is carried out. We are able to fully clarify, in this solvable case, some
crucial issues concerning the RG approach, like the physical meaning of the Coarse graining
procedure, the interplay between normalization conditions and semigroup structure of the
RG transformations, how the relations between fized point quantities and critical ezponents
are different when dealing with SOC dynamical systems or standard critical ones.

This chapter is intended to carefully analyze the path starting from standard BP, going
through a redefinition of a new RG rescaling procedure for classical uncorrelated BP on a 1d
Euclidean lattice, a test situation, and ending with a dynamical interpretation of the issues
present in RG. This will clarify the ability of the RG introduced in [5] to select the correct
asymptotic (large times and large regions) limit that in the case of the abelian sandpile is
not diffusive as local dynamics could naively suggest.

Such results indicate that a new scaling theory consistent with RG treatment and nu-
merics can be introduced under the phenomenological assumption that grains move like a
continuous time random walk with power law waiting times. (CTRW).

In the nezt two sections we review the known results on SOC and its MF description in
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terms of BP and formulate the RG transformation, with particular attention to the relation
between the phase space parameters introduced in [5] and non-interacting BP variables. In
the third section we introduce the Abelian Sandpile model.

In the fourth section we show that the new formula for the exponent r given in [5],
in the renormalization of the Abelian Sandpile, can be actually reinterpreted as a precise
determination of a new exponent (, that has to be introduced in order to relate the time
scale over which conservation of grains is guaranteed T' with the linear dimension of the a
lattice L. It is shown to discriminate between SOC behaviour and standard diffusive one.

In the fifth section we better specify the new scaling theory for Abelian Sandpiles in 2d,
showing how the theoretical considerations developed in the previous sections find a better
theoretical and numerical collocation relating the deviation of 7 from the diffusive value
7 = 1 with the value of (.

The last section is devoted to conclusions and perspectives.

2.1 The Sandpile as a prototype of a Self Organized Critical
System

Self Organized Criticality (SOC) was introduced by Bak Tang and Wiesenfeld in 1987 [3]
as a paradigm in order to explain the spontaneous appearance of critical properties in non
equilibrium spatially extended open systems with dissipative transport.

Main achievement of this scheme is that when the system becomes very large the asymp-
totic time limit will be no more described by the equilibrium one, but by a non equilibrium
critical state.

The reason of this behaviour can be understood observing the relaxation of the system
starting from a configuration far from equilibrium. It will relax dissipating energy on

arbitrary large length scales, until the network of interactions will reach a state such that
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any additional reduction would destroy the long range character of correlations and therefore
the ability to dissipate energy at every scale. One can think of the structure of correlations
like those in a percolating cluster at the percolation threshold. Due to the dynamical critical
nature of the state, activity will take place in bursts and spatio temporal intermittency
will characterize the macroscopic behaviour of such systems. Numerical evidence of SOC
properties has been given for the first time in toy models of Sandpiles, however the fuzzy
physics of real sand and of granular systems [13] cannot be deduced from this simple picture
and some additional theoretical effort has to be done in order to understand it in a satisfiable
way.

The best experimental verification of the above qualitative picture of a SOC system has
been obtained in the simulation of the avalanche dynamics in a rice pile [14]. The grains
are dropped onto a pile one by one, and the pile ultimately reaches a stationary ”critical
state” in which its slope fluctuates about an angle of repose, with each new grain being
capable of inducing an avalanche on any relevant size scale. Nature of avalanches is chaotic
in space and time and large fluctuations are induced on the discharge events. Experimental
data are shown in fig. 2.1; experiments on plates of different sizes seem to collapse quite
well giving evidence of scale invariance. The so called universality property is not verified
in these cases, since different types of rice give different power laws.

The microscopic energy dissipation mechanism and the slow driving condition are in
this case relevant in the determination of the critical properties of the correlations.

At present the only unifying description of SOC phenomena is at a MF level, in terms
of the classical uncorrelated BP. Following [3] Bak way of thinking we have to identify an
equilibrium system that, at the critical point, describes propagation of activity from site
to site. We will consider the system in a mean field approximation: we neglect spatial

fluctuations and we consider the propagation independent of the site where it happens.
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Figure 2.1: The avalanche size distribution in the rice pile experiment for different sizes of plates.

Moreover, since we want to describe stationary state properties we suppose that parameters
describing propagation are time independent (we neglect temporal fluctuations: mean field
in a dynamical sense).

These two approximations allow for defining a common phase space for such processes:
the behaviour of a site is completely determined specifying the probabilities p; for the
number of directions of propagation when the site has already been activated. The problem
stated in this way is from a mathematical point of view equivalent to a classical probabilistic
topic [15][12] called branching process. In terms of random variables the problem can be
stated in this form: let Xy,.....,Xx N integer random variables equally distributed with a

generating distribution function of the form:

P(z)=)_ pa’ (2.1)
=1

and NV itself a random variable; let us consider what happens if we generate a succession

N in the following way:
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N(l) =1
(2.2)

N = X1 4 oo+ Xpynen)

Then we can interpret the random variable N as the number of branches generated from
a common ancestor if in every step each branch ramifies independently and the number of
branches is the random variable X.

If we take the correspondence between sites activated and branches then we obtain some

useful results:
e The branching process undergoes a phase transition:

The extinction of the activity is the event that, starting from an arbitrary n, N =0,

the total probability of extinction ¢ is then given as a solution of the fixed point equation:

¢=P(q) (2.3)
this statement can be easily understood observing that the probability of extinction at the

n-th generation ¢{® is given by the recursive formula:

q(l) = Po

o = P (g0

Since P is monotone, for 0 < py < 1 the succession of ¢(® is growing and the limiting value

(2.4)

is given by the solution of eq.(2.3). We can discuss the solution observing that the graph
of @ (z) is a convex curve starting at the point (0,po) and ending at the point (1,1) on the
bisector. Only two situations are possible:

i. The graph is entirely above the bisector and the only solution of the equation eq.(2.3)
is given by ¢ = 1; in this case it is easily to observe that P'(1) <1

ii. The graph intersects the bisector at some point o < 1 s0 ¢(™ — & as n — o and

P (1) > 1.
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Let us observe that m = P’(1) is the expected number of directly activated sites; we

obtain therefore that the extinction probability is 1 if m < 1; while it is o if m > 1.

e The total number of sites activated has a critical distribution when m = 1: asymp-
totically the probability of having M sites activated in a single process has a power

law distribution:

Poo (M)~ M™7 (2.5)

Let us define the random variable Y, = 1+ Zy + - - - + Z,, it will equal the number of
descendants up to generation n; the generating function for the distribution of Y, that we

will call P™) (z) obeys a recursion formula of the form:

P (g) = oP (P") (2)) (2.6)

The sequence of P(™) (z) decreases monotonically and is limited from below so it converges

to a function P (z) that is the root of the algebraic (Watson’s equation):

t=2P () (2.7)

It can be proved [15] that the P (z) is the generating function of the random variable
total number of activated sites Y during a relaxation process.
Solving for t in eq.(2.7) we obtain an explicit form for the probabilities P, (M) of having

M descendants; the asymptotic estimate of these coefficients is given to be [12]:

Poo (M) ~ mM M3 + higherorders (2.8)

When m = 1 the process becomes critical and the moments of this distribution diverge. Let

us give an explicit example of how the calculation can be carried out in a specific example:
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let P (t) be the function:

P (t) = po + pit + pat’ (2.9)

The extinction probability for m < 1 is the solution of:

g = po + p1q + p2g?

(2.10)
_ 1=p1—+/(1—p1)*—4pop2
7= 2p2
It is easy to note that when m = p; +2p; — 1, ¢ — 1.
Let us now calculate the generating probability distribution function P (z):
1—pz) — /(1 — prz)® — 422
P°°(:1;):( pz) \/( pz) Pop2 (2.11)

2paz
Now the asymptotic estimate of the coefficients of the series expansion of P* (z) can
be obtained observing that P (z) has a singularity for 2 — 1~ such that expanding around

1 we obtain:

P> (z)= 1+a(1——a:)% +a(1—z)+ .. (2.12)

and, as usually, we can relate the behaviour of Py (M) with the leading singularity term:

Pe(z)=1+a(l—2z) " +.. (2.13)

so we obtain the estimate for m = 1, P (M) ~ M~E.

The network of correlations is in this way described like a branched polymer with inde-
pendent probabilities of branching at a second order phase transition. The analogy between
second order phase transitions and SOC steady state can be extended also to dependence

of critical properties on the geometry of the system.
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It is well known in standard equilibrium critical phenomena [16] that geometric prop-
erties of the system can modify the critical exponents and the correlations in the system;
they are indeed very useful in classifying the universality classes. It is a striking result that
the same property is shared by SOC systems and such a phenomenon was predicted and
observed for the first time in [17]. A general deduction of the mean field avalanche critical
exponent when the avalanches are starting from a boundary 7., can be given in terms of
classical uncorrelated branching process predicting a numerical 74, = 7/4 [18].

In order to characterize finite dimensional avalanches we introduce some critical ex-
ponents in order to characterize the scaling of avalanche clusters; we will call D (M) the
probability to have an avalanche with a number of activations greater of equal than M:;

then

D (M) ~ M~(Tm=1) (2.14)

the distribution of the probability to have an avalanche of extension (number of sites on a

lattice interested by the avalanche) greater or equal than s of the region interested by the

avalanche will have a distribution:

12 (R IR i

D(s)~s~(71) (2.15)
considering its linear extension:

D(r) ~ (1) (2.16)
its time duration:

D(t) ~ t=(re=1) (2.17)

Not all these exponents are independent; since these quantities scale homogeneously we can
define a fractal mass dimension Dj such that M ~ 707, a geometric fractal dimension such

that s ~ 7P a dynamical exponent z such that ¢ ~ r°. Then the following scaling relations
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hold:

Df(T]WMl) = (TT—I) (2.18)
D(r-1) = (rr = 1)

z(n=1) = (n—1)

In the next section we will study in detail the 7 exponent in Abelian Sandpiles. Avalanches
are known to be compact, therefore D = 2 and the knowledge of 7, is sufficeint in order to

determine 7.

2.2 The uncorrelated branching process on a lattice and the

RG transformation

Let us consider a BP occurring on a 1D lattice (the discussion, however, could be made
more general). The BP evolution is defined as follows: at ¢ = 0 there is only 1 active site
(tag) at a fixed lattice point, say 0; at a generic time ¢ each active site of the BP will branch
independently with probabilities {px};_g; » to k nearest neighbors making them active for
the branching stage ¢ + 1. The generation tree originating from an initial single active site
is an avalanche, which lasts until all tags become inactive.

Asin a standard BP, every active site either branches, with probability 1 —pg = 3 ;50 Pi,
or becomes extinct and does not branch anymore; with probability po. At a given lattice
point more and more distinct active or extinct sites of the BP can overlap as time goes on.

Let us consider the set of all possible BP extending over an infinite lattice, let us call
it G and let G be one of them (we can visualize it with the graph of the BP). G has a
statistical weight pg that is a product of pg’s (each tag contributes with a term py where
k is the number of its branches). Let us consider the set of BP extending over a lattice of

extension ™ = 2" with adsorbing boundary conditions. Each of these BP’s will belong also
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to §. The sum of all their probabilities will not be normalized and in 1 it will assume some
value 1—¢€(b") where ¢ (b™) is the probability of having a branching process with linear size
grez;Lter than 6™. Therefore, by definition, a change of scale of a factor b will change €(b™)
for a factor ()" *1; the same rescaling will change the linear size of a factor i

One can then derive that for a generic lattice of linear size I, ¢ (L) has to scale, in order

to be consistent with the finite size scaling, under a rescaling of the length of a factor b like:

(L) =e (é) (B (2.19)

7r — 1 can therefore be obtained analyzing the rescaling properties of € (L) with respect
to a change of scale of size b. Our real space RG transformation derives this information
introducing the generating function of the BP on a finite lattice of linear size b that will

be called P(") (z) defined as:
P (z)= 3" P (k)2 (2.20)
k=0

where P(®) (k) is the probability of having a branched structure that has k active tags going
out of a cell of size b™. Since P(™) (0) represents exactly the probability that a BP becomes
extinct before reaching a linear size comparable to ", then P(") (0) = 1— €(b™). Observe
that at the lowest level the P(m) (z) coincides with the generating function of the classical
BP defined in eq.(2.1).

Let us consider the set of BP extending over a lattice of extension ™ = 2" with adsorbing

boundary conditions. Eq.(2.19) is therefore equivalent to:
[1- Pt (0)] "= [1 - B (0)] (b~ (2.21)

To the extent that the leading contribution to ¢ (b") is reproduced correctly, P(™) (z)
at each scale can be assumed to take, for each n, the functional form of a single step BP

generating function, now with n-dependent branching probabilities p(") :

T
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® c(0,0)

c(1,0) e— o(0,1)

e— + &— + +—e—> o(l,1)

Figure 2.2: the graphic definition of the generating function

P (2) = ZP( Vol = p{ + ( (n)) ol (z,2) (2.22)

where o(™) (§, D), is the site generating function introduced in [19] in order to take care of

the direction of branches, that in the 1D case is:

~(n)
o™ (S, D) = pl (S + D)+ (SD) (2.23)
where ﬁf ") pz(n)( pgn))‘l, @ = 1,2, is the probability of having ¢ branches, conditioned
to the fact that branching of the tag out of the site on a lattice of size b occurs, in the
directions S, D or simultaneously in both of them (see fig. 2.2).

We have therefore defined the natural phase space variables; observe that the renormal-
ization procedure cannot be carried out directly on the variables pﬁ"‘); since the classical BP
is known to become extinct with probability 1 and therefore we would have found a trivial
fixed point (pg, p7, p3) = (1,0,0) and no information could be obtained on the critical spatial
properties of the avalanche. On the other hand the variables (pj (n+1) ”{"H),ﬁgnH ) take

care also of the asymptotic relative decrease of the branching probabilities in 1 or 2 direc-

tions and therefore also of the spatial properties of the avalanche cluster. The RG rescaling
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transformation R, will therefore map the branching probabilities at different scales:

(pgn+1),ﬁ(1n+1)7ﬁ(2n+1)) =R, (pg"),ﬁ”),ﬁé”)) (2.24)

As in usual real space techniques a change of scale is readsorbed in a change of the parame-
ters preserving the functional forms of some invariant quantities, in our case these quantities
will be o (S, D) and P (z). We will now explicitly define Rj.

At scale 0™t a coarse grained system corresponds to a site, while, at scale 8™, it consists
of b = 2 sites. Using the standard composition rule of classical BP we are able to write the
generating function for all the processes evolving in the cell in terms of ¢(™ (S, D).

Each of them will belong to one of the following classes: those that do not span the
cell, those that span the cell but do not propagate activity out of the cell, those that span
the cell and propagate activity in one (5 or D ) direction and finally those that propagate
in both directions (S and D). In order to consider the cell an activated tag at scale 57+1
the minimal requirement is (at least in 1D ) that the tree spans the cell, therefore only the
spanning processes will give a contribution to the rescaled generating function o™+ (S, D),
while the non spanning ones will contribute to pénH) (processes already extincted at a scale
smaller than b™).

An additional simplification comes from the fact that we will study the transformation
near a fixed point such that im, . p(()n) = pg = 1 (we have seen that this is the case for a
critical avalanche that will estinguish with probability 1), therefore we need an estimation of
the contributions to ¢("*1) (S, D) only at the leading order term in the quantity (1 - p(()n)) ).
Since (1 —pén)> multiplies o™ (z,2) in the eq.(2.22), in o™ (S, D) are retained only
those processes that, activating the cell, proliferate for a minimal number of generations.
The relevant contributions to ¢("*1) (S, D) at scale b" are therefore represented by the

generating function (graphs are represented in fig. 2.3):

(n+1)

(5, 0) = 7" 4 T (S 4 D) 4 1"V (S D) (2.25)
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¥( S,D)=

+ simmetric terms

Figure 2.3: the graphic representation of the contributions to the rescaled generating function &

with
(1) AN (n41) _ ~n) (B )
m = 2 (B ) b)) < (—12—+2pz )a("“), (2-26)
(n)
where the normalization:
AN
amtl) =m0+ (1 1)71 = (2 <1 — %)) (2.28)

is taken over the set of spanning processes.
Although ("1 (S, D) is still a polynomial in § , D the presence of the additional

7'('[()”-'-1) term avoids the possibility of taking o(**1) (S, D) = £+ (S, D). The quantity

n(gnH) has however a central meaning in defining the RG transformation: the factor F‘gk+1)

takes into account the fraction of those processes that are active if observed at scale b(*)
but eztinct at a coarse grained scale 5(571). In terms of the absolute extinction probabilities

(k+1)
pgk),pgc“) at scales (k), (k4 1), respectively, holds the equality (1 - w(()k+1)) = (%)
—p§

and asymptotically it will coincide with the ratio:

=P .
)= e (229)

(1 _ 71_(()/lﬂ-l)




26 § 2. Scaling theory and RG in Abelian Sandpiles

and therefore only the rescaling transformation for o{(n+1) (z,) is required, the generating
function for the processes that propagate activity, in order to determine Tr — 1t
The coherent RG procedure must then be defined as follows: the parameters ]')'gk'*'l),

(k+1) (k)

Dy are defined in terms of the f)ﬁk) , ka ,as the conditional probabilities of having prop-

agation in 7 directions given that propagation occurs at scale 5(:*1) and in terms of the

7rz~(k+1)’s as follows:
Sk (k1) ( 1
pl - 7T1 k+1 ) (230)
1- 7ré )
k1) (k1) ( 1
P2 = T k+1 )
1- 7r((, )

) (k)

If the parameters ]'5§k ,Py / converge to some P}, Py leaving ¢(°) ($, D) invariant, then the

singularity in the series can be estimated through the relation:

1 — P*+1) () (k+1) koo 1
—_—t =] — 7 = 1-K(b)=(b)"" 2.31
B TR < (5)= ) (2.31)

where K (b) is defined like 1— 7§ = 1 — 7o (5%, %) ; P} and 75 are the fixed point values for
the rescaling transformation of eq. (2.26). While in general for correlated processes or in
dimensions higher than 1, in order to determine R, a feed-back or stationarity condition is
required, in our case the processes that give a contribution to the rescaled site generating
function o(®+1) (§, D) are uniquely defined by these rules.

Observe that this coarse graining procedure preserves at each scale the separation be-
tween those processes that are still active (contributing to U(”)), asymptotically a van-
ishingly small fraction of all the branches, and those extincted at a smaller scale. We
can observe already at this stage that, in order to preserve Self Organized Critical prop-
erties of a system, the probabilistic weighting of large and rare events is crucial. Only
single avalanches reaching the boundary will in fact guarantee conservation (in the case of
sandpiles of grains) on large regions, while the small ones, although very frequent, will be

irrelevant in the dynamical evolution of the Sandpile.
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We have thus succeeded in obtaining a new and general formula relating the exponent
to the microscopic phase state variables {p;}. The rescaling transformation of the probabili-
ties is based now on a coarse—graining of the processes such that after n rescaling operations
the site generating function will describe processes that extend on a scale b(™) . Since the
set of processes that contribute to K (b) now depends’ explicitly on the cell structure, the
natural semigroup structure induced by the fact that n rescaling of size b must give the
same result as a unique rescaling of size b is now preserved.

The explicit iteration carries out a simple and appealing result in 1D: the iteration
procedure gives as a fixed point p; = 1,p5 = 0 therefore the unique fixed point compatible

with the condition m = 7, ip; = 1 is exactly:

po=0,p1=1,p3=0 (2.32)

Therefore we obtain that critical clusters of branched structures in a 1d uncorrelated BP
will be equivalent to those of a Random Walker evolving on the same lattice. Still the
derivation of the 7 exponent deserves an additional comment in order to take into account
of possible divergences in the scaling quantities. We can fix in a definite way the right
normalization remembering that the avalanche clusters according to eq.(2.32) will evolve
like the density of probability for a diffusing RW, in the transient RW case (d> 2)the

converging integrals that give K(b) in terms of the clusters probabilities are:

bk+1
K (3)= tim e DD)dT

e N~ _ —(’rr_l) 9 3°
k—co [z P(r)dr 1-b (2.33)

(since P(r) is decreasing at co ). In the case of a recurrent RW ( D < 2 ) the converging

formula will then given by:

pk+1

K (b) = lim 22 P(r)dr

= dok L ATVET L1~ plrD) (2.34)
koo I P (r)dr

since the integral is diverging at co but P (r) can be normalized considering it to be the
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conditional probability for the RW (having activity) to be at a distance smaller or equal to
r before the RW leaves the system (the avalanche stops).

Inserting the quantity:

~\ 2
K(2)= -z(pi) _1 (2.35)
in eq.(2.34) the result for 7, will be:
In(1- K (2 .
o= n ( (2) -0 (2.36)

In (2)

in agreement with Zhang’s result; notice that in the marginal case d = 2 both the definitions
of 7 given in eq.s (2.33) and (2.34) give the same correct result 7, = 1.

We want to emphasize that the procedure we have introduced is a static (new) real
space renormalization for an ensemble of branching structurés whose statistical weight is
defined like in the usual classical BP. For this reason up to now no SOC property has been
shown. This is the resnlt evpected if the dynamics of the system under coarse graining
can be eliminated, and static uncorrelated probabilites represent the steady state of the
system also in the thermodynamic limit. Here we do not need any additional condition in
order to close the RG scheme, this will have as a consequence the triviality of 1d Abelian
Sandpile. Ambiguity in the definition of the 7 exponent and interesting SOC phenomena
arise when the dynamical evolution of the system has to be taken into account in order to
close such Renormalization Equations. We are now left with the problem of understanding
how the RG procedure can deal with such dynamical properties of SOC systems. We will
discuss how the interplay between the thermodynamic limit L — oo and the asymptotic
time regime ¢ — oo can be taken into account using such a Renormalization Approach to

the case of a 2d Abelian Sandpile model. Before going on let us introduce such model.
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2.3 The Abelian Sandpile model

In the present section we will study the Abelian Sandpile model, the original toy model
introduced by Bak and coworkers in order to simulate the behavior of a real Sandpile. An
algebraic formulation has been introduced by Dhar that allowed him for finding exact results
in finite size models like the steady state measure, the equivalence of the steady state with
the Spanning Tree problem and in 2d to the conformal invariant model in the continuum
corresponding to the g states Potts model with ¢ — 0.

Let us introduce and review the model and some terminology in order to understand

the technical details.

An Abelian Sandpile is a cellular automata defined on a lattice of NV sites as follows:

1. Every site is labelled with an index 7,7 = 1...V ;
C

2. On every site ¢ it is defined an height value z; and a critical height value z¥; a set of

heights values {z;},_, » -
3. A set of grain addition probabilities p; are defined, such that Zfil pi=1

4. The Toppling Matrix is a NV X N matrix defined as follows:

A; >0 Vi
(2.37)
Aj; <0 Vi#jg
with the conditionzzj Ay > 0. Ay is the threshold height and —A;; is the number of

bonds between the site 7 and the site j.

5. The system evolves under the following rules:

o Grain Addition (G.A.) if Vi z; < z¥ (the configuration is stable) then with

probability p; a grain is added at the site 7 that is: z; — 2; + 1
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o Toppling rule (T.R.) if z; > z¥ then: 2z; — z; — A;; ; the grains diffuse to

their neighbors
6. Two discrete time scales are defined at this level:

* A microscopic time scale: the counter is updated by one at every application

of one of the rules T.R. or G.A.

e A macroscopic time scale: the counter is updated by one at every application

of the G.A. rule

It must be observed that the order of relaxation of the sites or topplings (application
of the T.R.) is irrelevant so the macroscopic time scale is well defined, the number of
microscopic time units that are needed to pass from the initial stable configuration to the
final one, given that a grain has been added at a fixed site i, is fixed.

Under the same conditions, fixed the initial configuration and fixed the site where the
addition is done, also the number of topplings of every site is unique; this implies also that
the final configuration is determined in a unique way.

We can therefore define a set of abstract grain addition operators, one for every
site a;; given a configuration C, a;C is the unique configuration obtained adding a grain at
the site when the configuration is C. The set of operators forms a semigroup and satisfies

some closure relations:

o = [ af® (2.38)
j=1,7%#1

From a probabilistic point of view we can deduce that the set of height configurations
forms the space of events for a Markov stochastic process; the Markov process is defined

given the grain addition probabilities p; by the time transition operator:

W => pa; (2.39)
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Solving the Abelian Sandpile model consists in determining the stationary state proper-
ties of this Markov Chain or, in other words, to determine the stationary state expectation
values for all the observables of the systems.

This can be done determining the probability for the system to stay in a specified
configuration at the stationary state. In our case, since the system is spatially extended,
the quantity of interest has to be the spatial density of this probability measure, therefore
the probability for the system to occupy a fixed subconfiguration for a subset of sites of the
sandpile.

For a I x L 2D Sandpile on a square lattice with and a toppling matrix defined as

follows:

AN;;=4 Y 1 1in the bulk
A;=3 Y 1 on the boundaries
Aj=2 Y i on the corners (2.40)
Ay =-1 Vj€nn (i)

Ay =0 otherwise

The Abelian property allows for the exact determination of the stationary state probabilities,
as Dhar demonstrated in [20]: configurations can be divided in two classes; recurrent and
transient. Transient configurations are occupied with 0 probability in the stationary state,
while all recurrent configurations are occupied with equal probability.

Since the number of the recurrent configurations is det A each of them will be occupied
with probability 1/ det A.

When the addition operators act on some recurrent configuration a simple algebraic
relation is valid:

adett =1 (2.41)

1

that in terms of grain addition is simply stating that adding det A operators all the recurrent

configurations are explored and the final configuration is exactly the starting one. This
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L=64, 128, 256, 512, 1024, 2048, 4096

Figure 2.4: Avalanche size probability distribution for different lattices (Usadel et al.)

indirectly shows that the steady state of a sandpile on a finite lattice is ergodic for each set
of probabilities p; assigned.

The avalanche cluster distribution properties are at present an open question. While
giving good agreement for dimensions higher than 2 [21], the scaling theory introduced by
Zhang et al. [22] for a similar continuous version fails to predict the result of simulations in
the 2d discrete case since the predicted 7 = 1 underestimates the result of simulations of a
factor between .2 and .3. On the numerical side no simple finite size scaling analysis can be
carried out and the value of critical exponents have to be extrapolated adding corrections
to pure scaling [21].

Since each recurrent configuration of the Sandpile is in one to one correspondence to a
spanning tree and therefore to the ¢ — 0 limit of the Potts model on the same lattice, a
transfer matrix approach to this problem allows for the determination of the central charge
¢ = —2 of the conformal invariant model corresponding to it. Therefore the determination of

the scaling properties of the system is reduced to the identification of the physical quantities
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corresponding to the scaling fields in the exactly solved conformal model [4].
The non-equilibrium nature of the Abelian sandpile model has up to now avoided a
simple interpretation of the avalanche cluster critical properties in terms of conformal ex-

ponents.

2.4 RG of Branching Processes vs Abelian Sandpiles.

Renormalization group prescribes the way through which a continuum description is ob-
tained starting from a microscopic discrete one. In non equilibrium statistical physics the
continuum limits that have to be taken are those of asymptotic time limit and of infinite size
of the system. These two limits are in general non independent; in the case of the sandpile,
even if grains during a toppling diffuse out of the site like a RW, because of the threshold
condition, the macroscopic behavior is not the usual diffusive one, since the characteristic
expectation time for a grain to leave a region of size I has a critical distribution and scales
with the size of the region. In the case of a 2d sandpile one can verify this fact through a .
simple numerical experiment that we are going to describe.

In the present section we will see that the RG rescaling procedure introduced in the
previous section and inspired by [5] is suitable to deal with such a situation. Moreover we will
see that the additional feed back condition used in order to extend the RG approach to 2d
AS by Pietronero Vespignani and Zapperi [5] is consistent even in those cases in which such
critical distribution of diffusion times appears, énd their new formula introduced to derive
the critical exponent 7 from the fixed point parameters is better understood introducing
a new critical exponent ( describing the (dynamical) deviation from the standard diffusive
behavior. Later we will relate ¢ with the critical properties of the avalanche cluster.

Let us start considering the results of an interesting numerical simulation. In order to

have conservation in a 2d sandpile of linear size L on a time scale ¢ at least an avalanche has
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Figure 2.5: Collapse plot of the Time interval between two consecutive avalanches reaching the

boundary in a Sandpile of linear size L

to reach the boundary in such an interval of time. Plotting the statistics of the time interval
¢ (the number of grains one has to add) needed in order to have an avalanche starting at
the center of the Sandpile and reaching the boundary, one obtains that the distribution of
such times D (t, L) collapses on the plot of fig.2.5. It indicates with good accuracy a finite

size dependence of the form:

D(t,L)= L% (fg's') (2.42)

This and other numerical measurements give a clear evidence of the fact that for a 2d

Abelian Sandpile the average number of avalanches needed to restore conservation in a
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sandpile of linear size L diverges at least like L%, while in usual diffusive systems it is
needed only one avalanche (it evolves like the conserved probability density for RW). Let
us call ¢ the critical exponent such that the frequency of avalanches reaching the boundary
scales like L7¢. The numerical value measured for ¢ is 0.5.

Scaling theory and RG predictions depend strongly from this observation; how does our
RG analysis take into account such a situation? Does the measured value of 7 change due
to this reason?

As we have understood looking at the simulations, the processes relevant for the conser-
vation of grains on a region of a fixed linear size are those that at least span a region of such
linear dimensions. Moreover the frequency with which such processes occur will determine
the rescaling of the time scale over which conservation is granted.

This correspondence suggests to consider the set of the spanning processes and that of
the non spanning processes together as representatives of the ensemble of generic avalanches
between scales b™ and scale b™*1. Of course there are other processes at scale b which are
not able to span the cell corresponding to the avalanches not reaching the boundaries. One
can then expect that the ratio between the probability of occurrence for a spanning process
and for a generic process is proportional to the relative frequency of occurrence during the
dynamical evolution of the avalanches reaching the boundary, that by definition will scale
like 5=¢. The probability weight of a non spanning process in a b = 2 cell is simply given in

terms of the microscopic fixed point parameters by:
T=(2) = Y v (v5) (2.43)

the well known formula given in [5] as the formula needed for the prediction of the r value.
Indeed, these processes are those that activate at least a site at scale 5" but do not

span a cell of size ™! (they do not activate a site at scale n 4 1 ); the probability of these
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processes will be asymptotically proportional to 1 — b=¢ therefore imposing:
T=(2)=1-27¢ (2.44)

we obtain the value for the exponent ¢ as a function of the fixed point probabilities.

Up to now we discussed the coarse graining of the pis within a class of uncorrelated
branching processes spanning the cell. Also the local evolution of avalanches can be mapped
on a particular type of branching process, called the burning procedure [20], it allows for
identifying the branching probabilities in the Abelian Sandpile model and pis turn to have
an exact microscopic meaning (see [19]), a site will belong to the graph when, due to
the addition of a grain will be activated (it will topple). However the probability for a
particular avalanche (BP) to appear is no more given by the product of the single pis being
the BP process correlated due the threshold condition. As usual, we expect that such
correlations will not modify the fixed point values if under coarse graining they flow toward
an uncorrelated BP, while they will modify the fixed point values if interactions influence
the macroscopic behavior and change the universality class of the system.

Therefore according to our analysis, the expoﬂent ¢ must have value 0 if diffusive theory
is still applicable, while it has to be non zero if the dynamics of the Abelian Sandpile
dynamics is changed from the standard diffusive universality class. Moreover our numerical
experiment measures a a value: { = 0.5.

In the 1d version of the Abelian Sandpile model it gives 7*(2) = 0 and ( = 0 in
agreement with the fact that at the fixed point the BP is equivalent to a RW. As we already
said, the triviality of the fixed point is reflected in the fact that no dynamical (feed back)
assumption in 1d is necessary in order to obtain the fixed point weights pZ.

The situation changes completely when dealing with the 2d system. Here the weights p;
cannot be determined uniquely without introducing some additional dynamical hypothesis.

While the hypothesis of strict conservation at the smallest time scale corresponding to
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the assumption of a diffusive propagator fails (indeed it contraddicts the previous numerical
simulation since not all avalanches conserve the number of giains), the scale invariant con-
servation condition, introduced -in [5], that we are going to review, is still applicable even in
those situations in which conservation of grains can be effectively realized on times scales
diverging with the system size. Such a condition consists in introducing a balance condition
between the density of active sites p (in [19] densities for sites to have heights z = 1..A;
are introduced but the scheme remains the same) corresponding to 1 — pg in our notation,
and the set of p;’s.

In fact spanning condition does not grant that all sites in the cell are affected by activity.
Different propagation networks have therefore to be weighted in the RG transformation in
order to describe dynamics at a coarse grained level.

Since in average conservation on the number of grains has to be granted at each coarse

graining level, this is done in [5] introducing a mean field dynamical condition
1=3"(1-pm) 5" (2.45)

corresponding to fix the condition of conservation independently at each coarse graining
scale (it is imposed on the relative probabilities ;55") ). This implies that also the time over
which conservation is granted can have non trivial scaling. We are now in the condition to
deduce from fixed point values also an estimate for ¢ using eq.(2.44).

Using the scheme of Ivashkevich [19] in which the microscopic dynamics is taken into

account with great accuracy, the fixed point values for the ¥ obtained will be:
1 —p5=0.496 p1 = 0.295 P =0.433  p5 =0.229 7y = 0.041 (2.46)

Inserting these values in eq.(2.44) we find ¢ = 0.506 in good agreement with numerical data.
Remarkably enough in the analysis of [5], T* (2) was used as an approximate expression

for the calculation of K*(2). We will show in the next section that a new scaling theory
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can be introduced in order to relate in a consistent way the conservation scaling theory

introduced in [22], and this RG treatment.

2.5 Dynamical Scaling properties of Avalanches.

In the previous section we observed that the scaling properties of the time required in
order to grant conservation are non trivial and using the RG fixed point values we gave an
estimation for the exponent (, relating the scaling properties of T'(L), the typical number of
avalanches needed in order to grant conservation, with the linear size of the lattice L. Such
a situation is no more consistent with a microscopic purely diffusive model for which in each
single avalanche the number of grains is conserved representing the continuum limit of a
diffusing density for a RW; therefore standard scaling theory arising from the conservation
argument has to be revisited in this particular case.

We will show that a microscopic model of grain diffusion consistent with the above
macroscopic picture is that of a continuous time random walk (CTRW) with a power law
distribution of waiting times.

In terms of this model the grain diffuses, but, due to the threshold condition, it has a
probability to stay inactive in a fixed site for a time ¢ (number of grains added) that decays
like P(t) ~ t~ and similarly, since we have now assumed a unit time that corresponds
to an entire avalanche, during a single time unit, the grain can make steps longer than a
lattice spacing.

Of course on a finite lattice we expect that P (t) obeys a finite size scaling relation with
a cutoff on the waiting time depending on the size of the lattice. Slightly generalizing this
quantity we can expect that the probability gz, (r,t) to find a grain at a distance r from the

injection point on a lattice of size L after a time t will be an homogeneous function of the
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form:

. —dto— r 1 ~
gr(r,t) = L~ g (f,ﬁ) (2.47)

( Pp(t) ~ L™4+2ng (%,ff) is the finite size scaling function for P (%)) therefore a =
((d=24m)/¢)) the case of ( = 0 corresponds to the diffusive case. The normalization
condition of Pr, (¢) implies that d — 24+ 7 = (.

Since in this case a single avalanche doesn’t restore conservation, defining 7' (L) like the
typical number of avalanches necessary in order to restore conservation in a region of linear
size L and 7 . (r,t) like the average outflux per unit time from a region of size 7, we will

have that the correct macroscopic conservation constraint will be:

7(L) - . .
2(1;):/0 /W(L). 7o (rt)-do(r)dt =1 (2.48)

the average outflux ¥ (L) for added grain from a sandpile of linear size L after a time T (L)
will be 1. By conservation ?L (r,1) is given by ‘7gL (r,t) where g, (r,1) is exactly the
probability to find a grain at a distance r after a time ¢ . £q.(2.48) can then be written in

terms of gr, (7,t) using the theorem of divergence:

T(L) . (L)
/ dt/ dV (r)V - ng(T,f)zf dt/ AV (1) Agr(rt) =1 (2.49)
0 V(L) 0 V(L)

Supposing that each avalanche reaching the boundary restores conservation (such that 7' (L)
is the time interval between two avalanches reaching the boundary) and using for gr (r,?)
eq.(2.47), we get from the previous numerical simulation that in d = 2, ( = n = 0.5
consistent with the previous RG argument.

The last step consists in relating gr, (r,?) with the distribution of activated clusters
(avalanches) of linear size r: D (r). Grains can be transferred to a site [ at a distance r from
0 only if an activation cluster contains both 0 and the site . Therefore the grains arrived in

r will contribute to avalanches of linear size greater or equal than r. The stationary scaling
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can be obtained sampling a lot of avalanches and evaluating:

1 T
gE (1) = lim—co: / dtg (r,1) (2.50)
1]

the average probability to find a grain at a distance r from the injection point after the
evolution of the avalanche has been terminated (that in our units corresponds to a single
time unit). We can consider the probability of having a grain that has reached position
7 < L related to the probability D (r, L) of having an avalanche with linear dimension larger

than r therefore:
/ D (r, L)dr = g (r) (2.51)

imposing scaling D (r, L) = L=t (r/L) ~ L% "1g (/L) and therefore:
Tr—1=d+n-2 (2.52)

Due to compactness of avalanches (fractal dimension of the support D = 2 , s~ 1D ) the

distribution P (s) of avalanche sizes is given imposing the relation:
D (r)dr = P(s)ds (2.53)

and therefore:

T—l:%(d—[—n—?) (2.54)

and in ¢ = 2; 7 = 1.25. Best numerical simulations are compatible with such a behavior
[21]. Moreover the main assumption in this derivation, the assumption about the scaling
properties of T'(L), has a microscopic justification in the previous RG argument: the fre-
quency of spanning avalanches scales like L=¢ and using the formula of eq.(2.44) we got a
value for ¢ = .503. As a final remark observe that in the new scaling prescribes the scaling

relation 7 = 1+ (/2 that explains the numerical agreement found for the 7 value in [5].
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2.6 Conclusions.

In the present chapter we revisited the scaling theory for the Abelian Sandpile starting
from the complete static Mean Field assumption and then introducing an RG approach
very similar in the spirit to that of [5] but applying it to a 1d uncorrelated BP. As a
result we obtained that properties of the BP can be deduced without any reference to the
dynamical picture and this implies the triviality of the 1d Abelian Sandpile model. In
the 2d Abelian Sandpile dynamics can no more be neglected, since not all the avalanches
conserve the number of grains and the time scale over which such a conservation is granted
scales with the size of the system. We introduced the formula of eq.(2.42), from which in
[5] was deduced the value of 7, explaining its dynamical meaning: it takes into account
the relative frequency (and therefore their probabilistic weight) of large and rare events
spanning the system. We showed that their frequency scales in a non trivial way with the
size of the system obtained a prediction to the value of the related critical exponent C.
Such considerations modify the scaling theory from the pure diffusive case making it and
the RG procedure for the 7 exponent introduced in [5] consistent. The pure dynamical
nature of SOC phenomena is here clearly showed, since critical exponents depend also on
the dynamical properties of the BP and not only on their static renormalization procedure.
Moreover we want to emphasize that the power law waiting time is in the Abelian Sandpile
case spontaneously induced arising from the threshold condition; this suggests that such a
threshold dynamics could explain the large phenomenology of anomalous scaling and weak
ergodicity breaking properties that have been extensively studied in the case of disordered
systems, where power law distribution of waiting times is usually introduced without any
microscopic justification [23],[24],[25].

In order to complete the scaling picture of avalanche clusters, still it has to be under-

stood the internal structure of avalanches and waves. This would be essential in order to
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understand the relation between our scaling theory and conformal invariant results.[26]



3 Mean Field approach to KPZ

A possible explanation for the ubiquity of the critical behavior in non-equilibrium phenom-
ena relies in the multiplicative character of their stochastic dynamics. Its analytic treatment
presents however some well know difficulties related with strong coupling behavior between
the degrees of freedom. Such a situation is at the origin of the problems in the analytical
treatment of the first model for interface growth: the Kardar Parisi Zhang (KPZ) equation
[27].

In the present chapter we will consider a novel approximation scheme becoming exact
when d — oo, we will show that in the limit of high dimensionality, the Roughening transi-
tion is strictly related to a change in the regime of the fluctuations, between a weak coupling
phase in which statistics is dominated by a large number of small events, the usual gaussian
central limit theorems holds, and a strong coupling phase in which large events dominate
statistics. In this phase the system evolves under an effective stochastic dynamics described
by a fractional Brownian motion, a self similar non time translat‘ion invariant stochastic
process that gives rise to persistency effects.

A conventional scheme used to deduce the scaling limit for a system on euclidean lattices
from those of the infinite range case suggests that in the strong coupling phase critical
exponents change continuously with the diffusion constant D.

In the first section we will briefly review the known results on KPZ equation and scaling

43
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in growth phenomena, in the second we will discuss the discretization procedure, a crucial
step in determining the validity of our approach, in the third section we will derive our main
results; in the fourth section we will discuss critical exponents, the fifth one is devoted to

conclusions and open problems. The last one is devoted to technical details.

3.1 The Kardar Parisi Zhang Equation as a paradigm for

non-equilibrium critical phenomena.

The Kardar Parisi Zhang (KPZ) equation has been introduced [27] as the simplest non linear

evolution equation for a continuous height field A (r,t) driven by Gaussian white noise:

Oeh(r,t) = vV2h(r )+ % (VA (r,6))? + 1 (r 1) (3.1)

(n(r,t)n (r',t’)} = D¢ (r - rl) ) (t - t/) (3.2)

It was introduced by the authors as a model for growing interfaces and it appears in various
other non equilibrium and disordered statistical modelsf A phenomenological explanation of
its form can be given: the Edwards ‘vVﬂkinsonA terrﬁ vV?h (r,t) takes into account the effect
of those forces that tend to smooth the interface (for example surface tension effects), while
the non linear correction %(Vh (r,1))? is the first order expansion of the term 1/1 + (V)2
It describes a local growth force that drives the translation of the interface along a direction
locally normal to the surface. Due to the non equilibrium nature of the problem, the
derivation of a continuum stochastic growth equation starting from a discrete microscopic
physical process is in general a highly non trivial task; the only general principles that can
be invoked in this derivation are the preservation of symmetries and conservation laws (28],
and the reparametrization invariance principle introduced in [29]. While this procedure
gives the complete form of the stochastic equation, usually, after an expansion in some

parameter, only small order terms are retained. A complete justification of this procedure
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relies ultimately in the RG analysis of the models and on the classification of relevant and
irrelevant perturbations, that, as we will see, is far from being clear in the non-equilibrium
context.

Different growth regimes are characterized by a change in the scaling properties of the

Roughness w (L, 1), the average fluctuation of the interface width:

1 - ,
w?(L,t) = <-—d/ d%x(h (z,t) — h(t))2> (3.3)
Le Jra
where d is the dimension of the substrate, L the linear size of the system and h(t) =

L [radizh z,t) the spatial average. It has been conjectured [30] that this quantity obeys
LdJL g
a scaling law (Dynamical Scaling Hypotesis):

w (L, 1*t) = 1*w (L,1) (3.4)
implying:

w(L,t)=L*f(t/L?) (3.5)
the exponent o and z characterize respectively the self affinity and the dynamical scaling of
the surface. Since for large ¢ and large fixed L (t/L* — oo) , w is expected to saturate, f(z)
converges to a constant as z — co. On the other hand for fixed large L and 1 << t << L=

correlations of height fluctuations should be independent of L and thus eq.(3.5) implies that

f(z)~2f as 2 << 1 with B = a/z, therefore the dynamic scaling hypothesis postulates:
w(L,t); ~ P ;B=qajz l<<i<<I® (3.6)
w(L,t) ~ L% t>> 7
This scaling is not applicable to the initial transient regime in which the heights are expected
to grow independently.

Eq.(3.1) has a local symmetry named Galilean Invariance: the equation doesn’t change

under a coordinate transformation of the form:

h—h+ea2 z— 2+ et (3.7)
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As a consequence of this invariance it has been shown that the critical exponents obey the

scaling relation:

a+z=2 (3.8)

The reason is that the coupling constant A enters in the symmetry transformation of
eq.(3.7) and therefore cannot renormalize under coarse graining [31].
KPZ equation arises in a wide range of problems: a simple change of variables: v = —Vh

maps it onto the stochastic Burger equation [32] describing a turbulent irrotational flow :
b= vV — - V- f(z,t) (3.9)

where f (z,t) = V(z,1).
Another physically relevant mapping is the Cole Hopf transformation. The Cole Hopf
transformation allows for mapping the interface problem to that of the thermodynamics of

a polymer starting at 0 at time 0 and reaching at time ¢ position :

Z (2,1) = exp (%h(m,t)) (3.10)

The equation then becomes:
. 2 A
Z(z,t) = {vV°+ —V—n(w,t) Z (z,1) (3.11)

And the partition function can be written in terms of a Feynmann functional path integral

as:

(z,¢) , t " 2
Z(z,t) = /(00) Dz exp {—-/0 dt |:1/ (i%,—) - ;}/\—'r] (x',t)}} (3.12)

The problem of a directed polymer evolving in a random medium (DPRM)[28], is known
to describe fluctuations of the interface in a random bond Ising model, flux lines in a dirty
type II superconductor and shows the deep connection between non equilibrium critical

phenomena and physics of systems with quenched disorder .
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Despite of its clear analytical formulation, at present still lacks any type of well founded
approximation scheme that allows for the investigation of the strong coupling phase in
finite dimension. In fact main analytical results have been obtained through dynamical RG
techniques that indeed fail to reproduce the strong coupling fixed point [33]. Best result
have been obtained in the scenario of replica symmetry breaking in a 1/d approximation
[34], [35], [6] and on Bethe lattices [36], however their relation with finite dimensional
systems and scaling exponents is not simple. In particular the detailed treatment of [36] on
the Bethe lattice for the polymer version, lacks of a simple relation with finite dimensional
lattice problem and for this reason it is very difficult to understand its physical meaning in
terms of the interface problem.

The exact solution of the 1+ 1 dimensional DPRM problem due to Kardar (28] through
Bethe Ansatz techniques can be considered as the first result connecting physics of mean
field disordered systems (strong fluctuations are treated through replica a,pproachj with
finite dimensional realistic systems. |

Reviews of the numerical work and of the analytic treatments of this equation can
be found in [28] for the polymer problem and in [22] and [37] for the interface growth

phenomena.

3.2  Formulation of the problem

In the present approach we will focus on the growing interface version of the equation
when the substrate dimension d becomes high. We will start from a discretized form of the
equation introduced by Newman e Bray [38]; they have recently introduced it after a critical
analysis of the naive discretization procedures used in previous numerical simulations and
integration procedures that failed to reproduce the correct behavior in the strong coupling

phase. Some pathologies increase their effect when the coupling constant A — oo and the
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non linear evolution term becomes important; let us briefly review their remarks.

They show that the common discretization scheme:

hi (8 +1) = hi (1) = vBizh; (1) + A (Vhi ()" + 7 (2) (3.13)

(A;; ,V are respectively the discrete laplacian and gradient on the lattice; sums over re-
peated indices are omitted) fails to reproduce the continuum K PZ behavior for at least two
reasons: a direct integration the continuous deterministic version, for an initial condition
with the form of an hat, does not correctly reproduce the time evolution of the contin-
uum version (maxima do not show the typical freezing) for sufficiently high A; moreover
a numerical diagonalization of the transition matrix for a finite size system indicates that
the correct stationary state is unstable and other ones, peculiar of the discretized model,
appear.

A novel scheme is proposed, such that these problems disappear: it is obtained discretiz-

ing the equation after performing a Cole Hopf transformation; the equation then becomes:

2

- Y —2(hi=hj) _ 1) L 7. ,

Ohi = 3 > (e D= 1) + 75 (1) (3.14)
Jj€nn(1)

< ()7 ) >= Da~%;;6 (t — 1) (3.15)

Indeed the problems arising in this context are a clear signature of the fact that the RG
treatment of the strong coupling phase is non conventional, in fact the two-discretization
schemes of eq.(3.13) and eq.(3.14) differ only for irrelevant terms, while direct integration
shows that they are essential in order to stabilize dynamical evolution. Such phenomena
have been observed and analyzed also in other interesting papers dealing with controlled
discretization procedures [39].

This new approach to the numerical integration of X' PZ has allowed for a significant

improvement in the simulations of the strong coupling regime; in a recent paper Newman
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1 10 100

Figure 3.1: Values of the 3 exponent for different noise distributions (with finite moments) and d=4

and Swift [40] implement the following integration algorithm:

hi = hi+ AY? 1) ~(3.16)

by + 2 2 ~ A (hi—h;
hi(t+A) = hi+'/\”1n{1+A1//a, Z (e pl J)ml)}

JEnn(7)

when A = oo the scheme greatly simplifies and becomes:

hi (t+A) = ma,x) (/;1, [E;D (3.17)

j€nn(s
corresponding to a zero temperature algorithm for DPRM . Quite surprisingly they verify
that universality hypothesis breaks down at A\ = oo and high moments determine scaling
properties as shown in the figure (fig. 3.1).

A big question mark and a well known problem of all the numerical approaches to
interface growth is that the discretization procedure determines in ultimate analysis the
introduction of an additional unknown factor in the coupling constant whose scaling can be
controlled only if RG flow is known'[41]; it is therefore extremely hard to deduce definite

results and conclusions about the continuum model from the simulation.
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Since at present even the presence of a Roughening transition in high d is not completely
clear and is still lacking a detailed analysis of the finite (high) dimensional behavior, in the
present chapter we will partially cover this gap showing how the phase diagram of the K PZ
equation, when the number of neighbors becomes high but still finite, can be characterized
identifying the Roughening phase transition with a qualitative change in the nature of

fluctuations.

3.3 The d — co limit

3.3.1 The Self Consistent approximation

Our starting point will be eq.(3.14) that, after a suitable rescaling, can be rewritten like:

g =\fe—=ny) _ ot
ohi = 5q B (1) 4R0) (5.13)

nn(1)
< m(O)7F; (') >= Da46;;6 (t — ') = D6; ;6 (t — 1) (3.19)
where the effective coupling constant is:
(3.20)

observe that the whole dependence in g and D could be reduced to a single coupling constant
through a rescaling of the lattice unit a (both depend on it). We leave them independent
since this rescaling procedure plays a crucial role in the determination of the dependence
of the results on the dimensionality d. We intend to discuss separately this issue. As we
have explained, the quantity v; (t) = exp (h; (¢)) has a natural interpretation in terms of
the partition function for an ensemble of polymers starting in 0 at time 0 and ending in
at time ¢, evolving in a random environment with quenched randomness with 0 mean and

white noise fluctuations with correlation: Dé§; ;6 (t — t').
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The Mean Field approach that we will use starts from the simple observation that
eq.(3.14) can be rewritten like a multiplicative process plus an interacting part:

M(ﬂ so > [wi ()= (9= Dywi(t) +m (8) wi (1) (3.21)
JEnn()

(since we need to use the Ito prescription while usually it is taken the Stratonovich one, a
correction terms Dw; (1) is added [42]). The interaction term is the mean of the partition
functions of the n.n. sites. Usual variational Mean Field Approximation at equilibrium
consists in finding the probability distribution factorized over sites that is the better ap-
proximation to the solution; this is due to the expectation that the main contribution to the
free energy density is given by the single site interacting with some effective self consistent
field arising from the superposition of interactions with nearest neighbors sites. Increasing
the dimension and consequently the number of n.n. 2d — oo it is expected that the approx-
imation becomes more and more valid until, over the upper critical dimension, it becomes
exact.

In this spirit its natural generalization in this non-equilibrium case is the self consistent
approximation obtained substituting the interaction term 5 Lienn.(i) [wj ()] with a ran-
dom field W (¢) for which also the evolution has to be determined self consistently. In the

spirit of the infinite d approximation we will consider the field w (¢) defined by the relation

N
Z w; ()] (3.22)

where N is the total number of sites. In order to determine the solution we will proceed in
two steps; as a first one we will determine the evolution of the w; for fixed W, then using
the steady state solution for the single w; at fixed W, we will derive an effective evolution
equation for W in order to test the self consistency hypothesis. Observe that the central
assumption is here that a field, W (t) can be defined such that every w; 18 in a relative steady

state with respect to it.
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In those cases in which the distribution of w; has finite mean, the solution to eq.(3.21)
considering W an independent random variable is an exact expression for the conditional
probabilities P (wj,t |w =% wl> when N — co, since each term in the sum gives a
vanishing relative contribution to @ and therefore in the limit of big N the distribution
of W converges to a delta function. This will be self consistently tested at the end of the
calculation and it will turn to be exact for each finite D up to order N.

From now on we will use the usual but sometimes misleading notation that identifies
the name of the random variable (i.e. X ) with the argument of its pdf ( P(z) = prob (
X=2))

Since the interface is expected to grow, we will measure the fluctuation in a moving
reference frame. For this reason, we consider the evolution equation for the quantity z; =
hi — h where h is the spatial average over the h;. In order to simplify formulas we will
adopt the following change of notation when passing from the normal reference frame to

the moving one: A — z, w — v = we™". The evolution equation will then assume the form:
Oroi = g (exp (—wi) — b) + 7; (3.23)

(the noise term 7 = 71721- n; is neglected since it is a 1/N vanishing contribution and is

dominated by 7;). Also the quantity:

R ,
b_ﬁ;a (3.24)

will be determined self consistently, indeed the required convergence to a delta function
of this random quantity in the stationary state is automatically satisifed when the same
property holds for . The stationary state solution for eq.(3.23) in terms of the variables v;

is then given by:

Pl D =Newp (=57} ) H (325

13
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with A normalization constant given by:

VL
I' (& (bv))

(3.26)
Observe that the stationary state distribution has an algebraic decay in the v;, therefore

the finiteness of the variance will crucially depend on the value of the exponent: 1+ £ (b7).

Moments of <v§“>_ and ((In;)"); can be exactly calculated obtaining:

<v’?>v = (g —>k L (f(00) —¥) (b%) > k (3.27)

g
: D) "TH®) D
n “T(& (D) - «

Although self-consistencies have to be imposed with respect to the whole stationary prob-

ability distribution (still we do not know the distribution of 7 = & S vi ), calculation is

greatly simplified observing that:

_ 1 1 1 ()
o= (7 20) (72 = g 529
and therefore:

D
bt =14+ —g— (3.29)

is independent of ¥ and the dependence on 6% in eq.s (3.27) can be eliminated already at this
stage. We will now proceed to the determination of the evolution equation for o: summing

over ¢ in eq.(3.21) and changing the reference frame, we obtain:

Jv o 1 1 .
5= 97 (b —-1)+ ﬁzi:mm— —ﬁzi:mv (3.30)
Note that in this expression the vls appear explicitly while it would be desirable to have a

closed equation for 7. Using the previous results it is possible to define an effective white

noise £y

«SN:%ZW (%) _]%f—z;m (3.31)

]
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for D < g this effective noise in the stationary state will be a pure white one when N — co

(linear noise approximation [42] ):

(Ev)y = 0 (3.32)

<§N (t)én (tl)> = §(t—1t) —?f <<w2>1‘5% + 1) =D'6(t - t)

T(1+4-2 D 1
D= 73‘((%) ’%?zjl*l) =N (‘@T:j“)

When D > g the effective diffusion constant diverges (a signature of the failure of the white
noise approximation). Let us consider for the moment the weak coupling phase ( g > D
noise is well defined); we will now show that the point g = D corresponds to the roughening
transition: the roughness of the surface diverges. The stationary state solution to eq.(3.30)
is given by:

P (@) = Aexp (—-———bv) ()5 (3.33)

(solution to the equation is easier in the In% variable ) with:

N' = (bg—,) > po (-g—,) (3.34)

/1

observe again that for g < D, P (7) conveiges as expecied to a delta function § (67

/

4.
when N — oo (I'? (—,% ~ (e/—’%) D' ); we can then calculate the moments:
*L(gr+k)
) = ( ) —LD (3.35)
)= ) T
9 (9" T(fta)

(o)) = —(——> oo
() = 5 (5) 7 (%)

In order to impose the self consistency on b we observe that the stationary condition on

eq.(3.30) implies: b () = 1; the averaging procedure of eq.(3.28) can then be completed

b<7>:<<§725—>_><—;\72v> = (—5-—1) (3.36)

and therefore self consistency is not in contradiction with stationarity when N — co . By

over v:

definition the z; have zero spatial average, therefore we fix b imposing:
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1L
0=(— ; 3.37
(72) @50
this average can now be explicitly carried out, again averaging first with respect to P (v;,t | ¥)

and then with respect to P (,t) giving:

o (&)
b= "exp —L (3.38)
I'(5)
3.3.2 Roughening transition
The stationary state roughness will then have the expression:
1/2 1/2
1 & D 1 I (1+ %)
oo _[L1s 2\ _|D SN I il sV 3.39
" <N§;”"’> N((l_g-)+)+r<1+%> (3:39)

showing as predicted a divergence at D = g. Observe that the divergence and consequently
the transition appears as a 1/N effect and therefore couldn’t be guessed from the strict
N = oo case.

The stationary state takes into account only for the roughness behavior in the asymptotic
regime. The scaling picture described above shows fhat two different regimes are determined
by the condition that the roughness is growing or it has reached the steady state value. In
finite dimensions the crossover time depends on the lattice and scales like L. We can give
an estimate of the crossover time in our mean field considering a simple argument: the
driving force term —g(bexp (%) — 1) equilibrates in an exponentially small time, at that
point we can consider the effect of the stochastic noise term as the driving one; therefore
the variance of the interface heights will grow under the effect of the noise, up to some
crossover time ¢* such that the effect of the noise on the roughness becomes comparable to
that due to the driving force; at that point the variance saturates at his stationary value.
The crossover time t* can be evaluated to be of order N. This is done observing that in the

moving reference frame by definition (Z) = 0, therefore a typical driving force —g (b — 1) is
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acting on the interface; it will be of the same order of the stochastic term after a time ¢~

given by the relation:

g(b—1)¢" ~VDit* (3.40)

from the definition of & when N — o0: b —1 ~ —?]—1 therefore since D' « N71; t* ~ N. We

will discuss later how to deduce the critical exponents in finite d starting from this estimate.

3.3.3 The Strong Coupling Phase

Let us now consider the strong coupling phase: the linear (white) noise approximation for
the dynamical evolution of the effective field fails to describe the stochastic noise term since
the steady state variance of P (v; | 7) diverges (the argument is the generalization to stochas-
tic processes of the Central Limit Theorem; when the variance diverges the distribution fails
to converge to a gaussian).

Let us forget for the moment the average drift term and let us consider the evolution of

z under the effect of the noise term; let us study the equation:

Although the stochastic process solution of eq.(3.41) is no more a white noise, it can be
obtained directly integrating the stochastic equation using the original definition of the
noise term £y = 7 ;7 (%) (we neglect the pure diffusive irrelevant term). The detailed
procedure will be given in the appendix; where we will carry out the calculation of the
characteristic function for the stochastic process Z. Let us calculate the effective two times
correlation function for Z; we will obtain it expanding the cumulant generating function
In P (A, t) at the second order in A. Due to the power law decay of P (w; | W) with exponent

1+ g/D, the leading behavior (A — 0) will be of the form:

In P (A1) *=° j—lv)—v 142/ (/D) (3.42)
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therefore its time correlation function has the form:

C(1,0) = <(7L (1) - E(o))2> o |12/ 0+9/D) = [y2H (3.43)

We have therefore obtained that the solution to the equation is self similar in time and non

time translational invariant due to the anomalous exponent H = 1/ (1 + g/D):

C (bt bs) = <(7z(bt) - E(bs))2> oc |bt — bs|/ (/D) y [/ At/ D) 1y 2/ Oa/D) o p2H G (4 o)

(3.44)
such a two time correlation function coincides with that of a stochastic process introduced
by Mandelbrot [43], self similar in time with self similarity exponent H ; it is the time
integrated fractional brownian walk of exponent # = 1/(1 + g/ D).

Our main achievement is therefore that in the strong coupling phase the evolution of the
effective field T is no more described by a time homogeneous stochastic process but has to
be substituted with a fractional brownian Noise.

This conclusion has a physically relevant meaning. We remember that non time trans-
lational invariance implies long memory effects: fluctuations will be persistent and will
depend on the entire path followed by the single realizations of the process. Due to this
reason a discussion of the complete solution to eq.(3.30) becomes now a non trivial task,
since Fokker Planck approximation to the Master Equation becomes meaningless, in fact
the truncation at second moment of the transition matrix is now unjustified.

For this reason our analysis is limited to the investigation of the roughness (Z2) behavior
and to the derivation of critical exponents. Rephrasing the qualitative argument previously
given (that is still valid) we expect an equilibration of growth of the roughness due to the
stochastic noise term and to the deterministic growth one at a characteristic time scale ¢
defined by the relation:

g(b—1)t* ~ (7 (3.45)

=I5)
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Figure 3.2: Fractional Brownian walk for different values of the fractional index H

14g/D . . .
therefore t* ~ N 72 . Again such time t* resembles the time L time constant separating

the growth of the roughness from the constant value reached in the stationary state.

3.4 Critical exponents in the Strong Coupling phase and

the D — oo limit

A straightforward derivation of the explicit value for critical exponents in finite dimension

is not possible due to the substitution of the gradient term gVw; (scaling with a=2 ) with
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the averaged interaction term g (W — w;) scaling as a~%[44]. A possible way to overcome
this problem is to use the following prescription: the time dependence ¢ is substituted with
t5 when passing from infinite range model to the finite dimensional one [45]. The origin of
this prescription can be easily understood: the change in the scaling of g corresponds to
assume that the microscopic time discretization unit 7o scales like a~¢ instead of the usual
a™?. One can expect that the new continuum limit corresponds exactly to the standard one
apart from the the substitution in the continuum of standard time dependence with ¢4/2
Using such a procedure, everything becomes then consistent with Galilean invariance
and with the dynamical scaling picture. The usual expronents for the K PZ equation in the

weak coupling limit are then recovered: #* ~ L?=2 the roughness exponent a defined by:
W (L,t)~ bW (b71L, ) (3.46)

is 0, confirming the RG calculation [33]. In the strong coupling phase the system shows
non trivial scaling properties, in fact the exponent z is related to H by the simple relation
z=1/H since t* ~ [*=1+5 Through Galilean invariance we obtain: o = 2 — (1+¢/D)=
2-1/H and finally: § = a/z=[2~(14+¢/D)]/(1+¢/D)=2H -1

We again want to underline that the ultimate Justification of such a procedure relies in
the renormalization group flow of the coupling constants, that as we will see in the next
chapter in the case of non gaussian scaling limits is far from being well understood; indeed
treatments of similar problems with multiplicative dynamics, strongly confirm the depen-
dence in the strong coupling phase of the critical exponents from the coupling constants (46].
It would be interesting to understand if such a case implies necessarily that universality is
lost or only a redefinition of standard universality concept.

As a last hint we discuss the behavior around the DD = 0o point; in this extreme case the
solution inferred from the weak coupling limit shows clearly that (v;) diverges; this implies

that the self consistency scheme will be no more reliable; indeed the scenario becomes very
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similar to the so called replica symmetry breaking transition in which the typical value is
no more defined by the most frequent events, but from the largest and rare ones. Moreover
the inconsistency between the definition of the parameter b in eq.(3.36) and the stationarity
condition in eq.(3.30) suggests that such a transition should come up even for finite values of
the diffusion constant D. This can be simply understood observing that the inconsistency

is related to a lack of self averaging property. In fact when at D = g/N the condition:

(e )=

is not fulfilled even for N — oo. A series expansion in € = % shows clearly that this
happens when the term (€?) becomes of order 1; this is the signature of the non self averaging
property for the variables v; [47]. As we have shown, however, a detailed discussion of the
strong coupling phase needs for a general treatment of non time homogenous self similar
stochastic processes that deserve a careful and difficult investigation; it is indeed relevant
that also in this case persistence effects appear before of the replica symmetry breaking
transition that is believed to be related to metastability and divergence of equilibration

times [24].

3.5 Conclusions and perspectives

In conclusion we considered the high d limit of KPZ equation considering the corrections
to the strict d = co limit. These are essential in order to find the roughening transition
and their effects seem to explain the difficulty in its analytical investigation in the strong
coupling phase, since it has been shown that persistency effects and a fractional Brownian
motion appears; this fact strongly suggests that even Fokker Plank approach and its steady
state could mystify the real nature of the strong coupling phase. Simple arguments suggest

that such a picture is consistent with recent results that show [46] a dependence of the
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critical exponents on the coupling constants values and perhaps non universality in the
Strong Coupling phase.

A complete understanding of the physics behind such phenomena relies ultimately in
extending the RG approach to strong coupling phase; in the case of interface depinning a
similar mean field was the starting point for a functional renormalization group approach
[44], our hope is that the solution here presented can be the first step (”the saddle point™)

toward such a goal.[48]

3.6 From White noise to Fractional Brownian motion

In the present section we are going to show that below the transition at D /g = 1, in the
strong coupling phase the effective noise £ is a fractional Brownian motion of self similarity
exponent H = 1/(1+ ¢g/D).

Let us now evaluate the quantity: (exp _’\E>[O,t) on a time interval [0,¢). In order to

compute the average of the formal solution to eq.(3.41) we perform a Taylor expansion

ER) (w2 ee))

n=1 =1

around A = 0 :

(the index 7 plays no role here due to permutation symmetry).

The non trivial task is the computation of the averages . One is tempted to separate
the two averages over the white noise and over the vis. Following standard Ito calculus
prescription this is allowed only for a combination of white noises and non anticipating and .
non diverging functions [49]. In order to use such separation to average the n-th term of the
series, we discretize the time interval [0, t) in T steps of duration 7y, and consider the time
ordered set of the n white noise terms n; (r1) ...7; (") labelling them with a growing index
I'=1...n. In each time interval we are left with a combination of white noise and non

anticipating functions, however the average over vis has to be taken with care, due to the
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divergence in all the moments higher or equal than the second. This divergence is related
to the power law decay of the steady state pdf‘ of eq.(3.25). We can however overcome
this difficulty using a simple trick, we consider a cut-off on the tails of the pdf depending
on 75! and send it to zero as the continuum limit is taken. The calculation can therefore
proceed as in the weak coupling phase. Using Markovian property of white noise (7;), we
can consider the steady state pdf over an interval ¢ like the convolution of T' pdf of the form
p(Av;, Am). Moreover each of these pdf will have the same form due to stationarity. We
can therefore consider the variation of v; in a period ¢ like the sum of 7" independent random
variables identically distributed, each of them with a pdf p (Aw;, 7p). Since the steady state
distribution belongs to the basin of attraction of a Levy distribution with exponent 1/H
(infinite divisibility) the same will be true for each of the p(Aw;, ) being such property
left invariant from the summation of an arbitrary large number of terms. Let us carry out
the averaging procedure step by step: since < fg drn; (7‘)> = 0, only terms of even power will

survive; moreover averages over white noise factorize over two point correlation functions

. co )\21: 'Uz
<\’5KP =A j{) AT }> Z LI19k Nk ( v‘ < %“ (Tzi)> {7
k=1"" \{1’1 7‘2"}C 70,270, T'70] M=
(3.49)
where the sum is over all the possible ordered subsets {7’1, ey Tk} with £ elements belonging

to 7o, .., T'7o] (possibly repeated). At this point averages are factorized; each two point noise

correlator gives a factor D7g6 Observe that we can take the average over (v; () /%)%

TsyTa41"
k > 1 considering a cut off at v; ~ TO_H and sending it at oo as 7' — oo in order to avoid
the divergences (we require convergence in probability); we can thus separate the average

over v; and over 7 in each subinterval. In order to recover the average over the interval, we

use the homogeneity property:

Dy <52k >15 = D1y (;(;> =2k i} (3.50)
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We perform then the average Ef%f—‘l .Taking the limits 7o — 0 and 7' — oo it is easily
g = g

To

obtained that ( ¢ > 0):

vk 2Hk

R _ .

D %) = Dt (3.51)
¢

the variable v; can be written like Ele v; (7% ); under rescaling a factor T comes out from

the average and is compensated by 747 then the continuum limit becomes the usual white

noise one; resumming the series we get:
D
exp /\2—N— |12 (3.52)

by definition a discrete fractional Brownian motion [50] with index of self similarity H =
1/(1+g/D). A complete definition of the continuous limit for fractional Brownian motion
involves standard technicalities of the Wiener stochastic process; we only quote from [50]

the rigorous definition of the continuous fractional Brownian motion of index H :

By (t) — Bu(0) = m /_; K(t-t)dB(t) (3.5{3)
with:
K@-t) = -7 o<¢ <t (3.54)

K(@—t) = (=)o ()12 ¢y <o




4 RG approach and Levy distribu-

tions

As we has seen, evidence of Self-Similarity and non trivial scaling properties in non equi-
librium systems, have done of the RG approach the most used technique in the analyti-
cal treatment of non-equilibrium phenomena. Indeed, the real space approach adopted in
the previous chapters has given evidence that in these systems large and rare events (the
spanning ones) dominate statistics and therefore the macroscopic behavior and even the
derivation of critical exponents from fixed point quantities are modified.

In terms of probability theory, the dominance of large fluctuations corresponds to the
presence of heavy tails in the distributions of observable quantities: probability of non fre-
quent events is decaying only algebraically, implying divergencies in high moments. Char-
acterization of heavy tails is a well known long standing problem in a vast area of research,
ranging from turbulence [10] to localization theory [11] and finance [51]. As we explained
in the previous chapter standard dynamical RG fails to predict the behavior in the strong
coupling phase for directed polymers in a Random environment. Indeed we obtained from
the MF calculation that the rough phase is characterized by power law tails and critical
fluctuations in space and time.

In the present chapter we will see that the drift from usual critical behavior to heavy

tailed extreme large events statistics implies a qualitative redefinition of the RG procedure.

64
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This is done in the simplest analytically solvable case. We will consider a, Directed Polymer
Evolving in a Random Medium (DPRM) when the disorder of the medium is distributed like
a symmetric Levy stable distribution (Random Variables that under summation preserve
their probability distribution function (pdf) apart from trivial rescaling under summation).
Although being interesting in itself, describing electron transport in highly disordered media
[52], such problem is a prototype for those situations where heavy tails appear without any
a priori assumption. We will find that multiscaling analysis becomes unavoidable in order
to have a correct description of the scaling properties of the ground state energy and its
fluctuations; due to this reason 1 + ¢ RG expansion as it was formulated in the case of
gaussian disorder [6], becomes unuseful to predict the spectrum of exponents. Multifractal
spectrum can be better understood in terms of non self averaging effects, sample fluctuations
will persist even in the thermodynamic limit. A relevant open question is if universality is
preserved.

In the first section we will review and reformulate the probabilistic version of the 0
temperature RG 1+ € expansion in the case of polymers on a hierarchical lattice introduced
by Derrida and Griffiths [6] in a slightly generalized version; later we will show that the
theory of regularly varying functions explains how to extend such an approach for a general
stable law. In the second section we will show that already in the trivial 1d generalized Levy
case a non trivial multifractal spectrum appears and the above perturbation theory fails to
predict the macroscopic behavior because fluctuations are affected by the non self averaging
properties of the system. The last section is devoted to conclusion and perspectives. Some
technical details on the definition of generalized Hermite polynomials introduced in order

to carry out the RG procedure are given in the appendiz.
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4.1 Directed polymers in a disordered medium: a hierar-

chical lattice approach.

Directed Polymers (DP’s) in random media [53] have been one of the major topics in the
study of disordered systems in the last decade. The problem is very simple, the determina-
tion of the thermodynamic properties of a polymer evolving on a directed lattice where the
bond energies are random independent variables, the energy of a polymer will be the sum
of the energies of the bonds it occupies. In the case of gaussian disorder in 1+1 dimensions
the critical properties of the ground state has been established, as well as its connections
in two dimensions with other problems such as domain walls in dirty ferromagnets. All
these systems have been recognized to belong to the same universality class, characterized
by two exponents that for DP’s are the wandering exponent ¢ = % and the energy fluctua-
tion exponent w = % [54]. The two exponents are related in any dimension via the simple

+1

relation w = 2¢ — 1 {28]. Ouly more recently some attention has

fons

of different distributions of disorder on the universality class of DP’s.

The case of broad and stable distributions (with diverging second and first moments)
are indeed very interesting in itself since they explicitly realize the anomalous case in which
even the renormalized pdf fails to be a gaussian. Their investigation can indeed give some
insight in the relation between fixed point quantities and critical properties of the system
in the anomalous cases of diverging moments even at the fixed point. Such a situation is
quite typical in localization theory [11]; later such similarity will be very useful.

We will therefore consider the generalization of the Derrida Griffiths [6] approach to
random polymers on a hierarchical lattice performing a 1+¢ expansion at zero temperature

in the case of disorder with Levy symmetric stable distribution L, () of arbitrary coefficient



4.1. Directed polymers in a disordered medium: a hierarchical lattice approach. 67

a) — e O — d=2

Figure 4.1: the hierarchical diamond lattice

p. These distributions can be defined simply giving their characteristic function that is:

<e’.k”>L“(z) = exp —C |k|* (4.1)

where C is a real constant, for a nice review of their properties see [23]. The hierarchical
lattice has the nice property that can be generated iterating a simple transformation; in
our case such a transformation is represented in fig. 4.1

In the case of gaussian disorder considering a hierarchical lattice with d = 2 the fluctua-
tion exponent w is found to have a value of 0.30 quite near to the exact value of 0.33 found
by Kardar [28] for the 1+ 1 problerﬁ.

The ground state energy E(™*1) for an ensemble of polymers starting at zero and evolving
-on a hierarchical lattice with branching ratio b, energy is given by the sum over the occupied

bonds and at generation (n + 1) can be written as
ECH) = min(EY + EPY EM 4 M, B 1+ B, (4.2)

where the Ei(n) are the ground state energies of lattices of generation n.

The Renormalization Iteration can be explicitly written for general b like:

1 0

+oo b
Pgnt1) = [RyPgw] (z) = "5, 08 U (Ppny * PE(n))(y/alb)dy:l (4.3)

( [RyP](z) is the pdf of the minimum between b random variables obtained as the sum of

two energies each of them distributed like P). Our goal is to consider an expansion in the
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parameter b around the case of b = 1 that for a Levy distribution is easily solved. Since it

is stable under convolution, that is:
Lu(2)* Lu(z) = 278 L,(2 % z) (4.4)

eq.(4.4) can then be interpreted as an exact solution for the polymer problem in the
1—dimensional case since it is a Fixed Point Equation for a Renormalization Transfor-
mation:

[R1P](z) = 2" Y4(P « P)(z/2'*) (4.5)
We now move onto the analysis of the b = 1 4 ¢ problem:
Bipe[(1+e(1+ @) Lu]=Q1+e(l+0)) Ly (4.6)

that at the first order in € coincides with:

ORb 1

[(1+ &) Lu](2) = [Lu](e )+ [(1+~)L 1(2) (4.7)

where %}%l is the derivative of the RG transformation with respect to b evaluated at b =1,
%f,l is the functional derivative with respect to P of the unperturbed operator R;.

The solution is explicitly found imposing that the iteration of R4, converges to some
fixed point. In order to classify perturbations let us consider an eigenfunction expansion

for %%l. We rewrite the last term of eq.(4.7) % @l (14 @) L] () as:

W(l+@(z)) =2—Lu(z) u(ﬂ?) 1+ &(z)) (4.8)

W is the generalization to the Levy case of the so called Gaussian Operator, its explicit

diagonalization is carried out in the appendix; eigenfunctions are of the form:

ho(e) = (-1 L7 (2)(32)" Lu(2) (+9)

and the corresponding eigenvalues are:

T |

(4.10)
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Ifp=2,L,is a Gaussian distribution and the {hs} functions are the Hermite polyno-
mials. If 0 < p < 2 (4.32) they are new non-polynomial functions and the set {h,} is non
orthogonal with respect to the natural scalar product; a dual basis {f;} has therefore to be
used in order to determine the projections on each direction (see appendix).

In the case g = 2 there are two non irrelevant eigenvalues \; = 21/2 and A, = 1; notice
that Hy is a marginal operator. Hence for b = 1 it gives a logarithmic corrections to the
scaling properties; on the other hand when considering b = 1 4 ¢ for € — 0 but finite it
gives a non trivial perturbation to critical exponents, therefore it has to be considered from
the beginning as relevant, for this reason we consider an eigenvalue 2'=2/# with a factor

= (2+ a) such that Ay > 1, ¢ must be sent to zero at the end of the calculation. Let us

define:
~ . 1 1 ©
¢(z)=~1— ( Hy(z) Ky ey P +H2(1?)K2"—‘*‘~—21_2/u__1 + anHn(m) (4.11)

n=3
where ¢ (z) = 2B=1 [ 1(2) = log [T dz z) and K; 7 = 1,2 are given by the projection
a6 u 8Jz p g

of ¢ (z) along the first two Hermite polynomials:

K = /~ Z Lu(2)Hi(2)g(2)dz (4.12)

the coefficients s, will be specified below. We will verify that @(z) is a solution to the
fixed point relation of eq.(4.6) and € corrections to the values of critical exponents can be
obtained from it.

As a first fact observe that, applying W to &(z), projections along each eigenvector are
left invariant, therefore eq.(4.6) has to be satisfied independently along each direction, let

us consider first the relevant ones; applying W we get:

1-s/n
L ) 2 H,(2)K, = H, (2) K,

VV (Hs(:r>fx521_s/u 1 = 21—3//;_1

DTy + H, (z) K

(4.13)
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the last term coincides by definition with the projection of g%%;l [L,](z) along Hs; therefore
eq.(4.6) is immediately satisfied along each relevant direction. The irrelevant directions
do mnot influence the critical properties, (they define the form of the finite size scaling
function) and therefore we will not explicitly determine the coefficients s,. They can be
easily obtained imposing eq.(4.6) to be verified along each direction Hp.

The variation on the average ground state energy due to the perturbation is simply
obtained considering the variation in the average value due to the perturbation. One can

directly verify that it is exactly the projection along H; of the new solution, therefore:
e=—Kie/ (V2 1) (4.14)

For the exponent w one has to consider how the variance is asymptotically changed by a

single application of Rp—14; at the linear order in € one gets that:

—~——<?2’>‘+ N/ P fK? (4.15)

We can therefore determine € —correction to scaling of the energy fluctuation exponent
from the relation:

2¥ = /2(1 - ¢K>) (4.16)

4.1.1 The Non Gaussian Case

The divergences in high moments caused by the power law decay of the pdf change com-
pletely the RG scenario.

As a first fact observe that in the p < 2 case the number of relevant fields becomes 1
for 1 < < 2and 0 for 0 < g < 1. Let us consider for the moment the case 1 < p < 25
in this case Ay = 2172/# is irrelevant. However trying to explicitly compute projections on
the eigenfunctions it is immediately evident that for each function belonging to the basin

of attraction of the Levy distribution, the projection onto the A, direction is divergent (due
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to the power law decay at infinity) therefore we cannot conclude that such a term will
not influence the scaling properties. Observe that quite curiously these divergences are a
necessary condition in order for a function to belong to the basin of attraction of a Levy
distribution. A well known result due to Gnedenko states that [15] for a pdf I(z) to belong

to the basin of attraction of a (symmetric) Levy stable law of index i < 2 the condition:

2 [1— F(z) + F(—g)] °=° 2 10 (4.17)

must hold, where F'(z) = [ dzl(z) and L () is a function satisfying:

L(s2) s

10 (4.18)

it is a slowly varying functions [15]; roughly speaking two functions differing for a slowly
varying term have the same behavior at infinity (logarithmic terms are a typical L (z)).
This result will be useful later.

In order to obtain the corrections to critical exponent we try to repeat the Gaussian
approach taking care also of the eigenvalue Ay < 1 (as if it was relevant). Repeating
the previous derivation (eq.s(4.2-4.33) we will try a perturbed solution of the fixed point
equation eq.(4.7) of the form: L, (z) (1 + ¢(1 + @, (z))) where:

~ . 1 . d

p(z)=-1- (HI” (z) Ky - PYES Y + s HY (z) I&f) + ,;,Sﬂﬂn (z) (4.19)
The procedure to deduce K% and therefore the e—correction to the scaling of the average
ground state energy can be easily carried out as in the gaussian case. The deduction
of the critical exponent for the energy fluctuation exponent deserves more work due to
the irrelevance of Ay = 2172/# and the divergence in the projection along HY. In the
unperturbed case the rescaling factor of the energy due to a doubling of the lengths is 21/#
as we stated in eq.(4.5). If the perturbation induces a change in the critical exponent w we

expect, in analogy with the gaussian case, that the normalization factor after n passages
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27/t is changed by a factor 6% such that a new normalization af = on/ugk is required in
order to reach a fixed point, or equivalently for the perturbed solution to converge to the
stable Levy distribution (the relation: 2 = 21/#§% | /6# as n — co holds).

From Feller book [15] we get that, given our perturbed solution, the required sequence
of normalization constants af such that it converges to the Levy distribution as the number
of iterations n — oo, is fixed by the condition:

271,"1’5 (a"fb) — C ¢
ST (4.20)
where p (1) :

pe) = [ dolu (@)1 + e+ Bula) o (4.21)

indeed one can easily show that p (¢) /u () is a slowly varying function and therefore the

condition is equivalent to:
2”/1«(“251) ~C (4.22)
(af)
that will be trivially satisfied with 6, = 1.

Therefore we have to conclude that for 1 < u < 2 the fluctuation exponent w has no
correction at least at order ¢ to the 1 dimensional case.

In the case 1 < 1, following the previous classification scheme the whole perturbation
doesn’t change the value of exponents. We want to emphasize, however, that the whole
RG scheme must be questioned, since the definition itself of critical exponents, pure scaling
and universality properties are a non trivial ansatz in the case of a Fixed Point distribution
with divergencies in high moments. Numerical simulations are from this point of view even
less clarifying, it is a well known [55] that long tailed power law distribution change the
macroscopic behavior even in the case of finite first and second moments. On the other hand
accurate numerical simulations due to Kardar [28] show that in general universal behavior

can be found if an accurate analysis of the scaling properties of each moment are carried

out. In the next chapter we will clarify which is the reason of such behavior
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4.2 Fractal vs Multifractal measures.

We will now show that divergencies in the moments require the introduction of Multifractal
formalism and a generalized spectrum of dimensions. As we will see it implies a complete
redefinition of the scaling picture.

Multifractal formalism was introduced in 1974 by Mandelbrot in order to describe lo-
cal physical quantities (densities) that do not show self similarity but possess non trivial
rescaling properties. Main physical applications are turbulence, time series analysis [10],
Localization theory and Quantum Hall effect (11]. Here we consider multiscaling for the
local energy density fluctuations.

As a starting point let us consider some positive measure associated to the local fluctu-
ations of the energy density, on a 1d lattice of length unit length. We build such a lattice
considering it like a hierarchical lattice with b = 1; let us consider the n — th iteration;
the energy density is specified at this resolution by the random variables E; in each of the
N () = 2™ bonds of length A = 2=™. Let us consider the relative energy fluctuation in the

bond ¢:
N _Ei= (B)]
C XN B (E)

Since each E; is an independent random variable extracted by a well defined pdf, we are

(4.23)

able to compute the moments of u:
N A\ 9 )
T(q,N(N) = <Z () > (4.24)
=1

The scaling properties of each moment are therefore completely described by the function:

(0) = - iy L@V () (4.25)

In our case an anomalous normalization condition holds:

N
<Z | Ei — (Ei>l> ~ ALk (4.26)
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Figure 4.2: The multifractal spectra in the case of pure scaling
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Figure 4.3: Multifractal spectra in the case of a Levy distribution

due to the fact that energy along each bond is a random variable.

In the case of Gaussian disorder each moment turns to be finite and 7 (g) is given by:

(1-4¢) (4.27)

[N

7(q) =

shifting to the Levy case, for ¢ > p moments are all diverging, however <Z{\_f__1 (/,L;«V)q> can
be computed and in the limit of A — 0 they are independent of N [47] the complete T (9)
is then given by:

T(q)=%(1—q) q< p (4.28)

0 qg>pu

we are therefore left with a non constant D (¢g). This fact has relevant consequences on
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the spectrum of singularities; as we explained in the introduction, it is obtained like the

Legendre transform of the function 7 (g) (see [10] ) and therefore:

fla) = sup [eq + 7 (q)] (4.29)

in this case we are able to compute it using a geometric construction: we have to evaluate
the maximum difference at fixed ¢ between a line passing through the origin with slope o
and the value of 7 (g).

In the case of gaussian disorder (a straight line see fig. 4.2) we obtain a function that has
a finite value in a single point and exactly at the point o = 1/2 as we should expect, since
in this case the system is obeying pure scaling and a single critical exponent is sufficient in
order to characterize the singular behavior of the measure.

On the contrary the Levy case shows a continuum of singularity indexes, as can bhe
immediately understood performing directly the Legendre transform of 7 (g) (see fig. 4.3)
It is defined in an interval between 0 and 1 /p and in this interval it grows linearly from
0 reaching the maximum value at the extreme point @ = 1/u . This new picture requires
a new physical interpretation: the average () can be interpreted like an ensemble average
over a set of samples and the scaling properties of the local physical quantity |[E; — (E)| are
non self averaging; in the thermodynamic limit fluctuations will persist and the spectrum
of exponents describing its distribution will not converge to a delta function, even when the
number of samplings goes to infinity.

One can easily verify that Energy Fluctuations do not self average observing that for
small A the quantity (T (2, V' ()))) becomes finite and independent of A (the calculation
repeats exactly the treatment of Derrida in [47]) indicating that the fluctuations do not
decrease as A decreases (when the system is reaching the thermodynamic limit).

This fact implies that a modified definition of the w exponent has to be considered: being

the quantities no more self averaging due to the broad distributions, it is expected [9] that
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the typical case, the one that will be macroscopically significant, will be that corresponding

to the maximum of the f (a) spectrum:

Piyp (A) = exp [(Inp (A))] ~ A% (4.30)

and finite size scaling will hold if one calculates the typical fluctuations scaling exponent
wiyp = - This explains why searching for € corrections to the w exponent for the average
scaling of fluctuations is not completely correct. In gemeral [11] the typical sample will
have fluctuations that are described by the critical exponent wyy, = 1/u corresponding to
the maximum of f (@) and perturbation will change the value of wy, and the form of the
spectrum.

What we discussed here is strictly speaking valid only for the case d = 1 and explains
why usual RG perturbation scheme has no hope to work in the peculiar case of distributions
with diverging first or second moments; an interesting question is to understand how such an
RG perturbation scheme must be modified when d is increased and what are the universal
properties of such multifractal spectra. To our knowledge no systematic treatment of such
a situation has been done. Moreover one has to question what are the universal quantities
in this new situation, if there are some; of course this explains clearly what are the reasons
that generate confusion both in analytical and numerical work.

A interesting argument can however be used when p < 1 for positive levy distributed

disorder.

4.3 Conclusion and perspectives

As we have seen, broad distributions change completely the scaling properties of statistical
systems. The standard RG formalism valid in the normal (Gauss distributed disorder)
predicts no corrections to order e. We have however understood that sample fluctuations

appear even in the infinte system size limit. Multifractal formalism is the most appropriate
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in order to deal with such properties; still it would be desirable to have a more clear
understanding of the relation between multifractal spectra and universal properties, to this
aim some more efficient perturbation scheme is required, taking into account possible replica

symmetry breaking schemes in order to predict such non self averaging effects.

4.4 Appendix: Diagonalization of the generalized Gaussian

operator.

As a straightforward generalization of the Gaussian case we define the generalized Gaussian
operator as the functional derivative with respect to P of the Renormalization operator,
eq.(4.3)in b = 1 evaluated at L, and generalized Hermite polynomials as its eigenfunctions.

An explicit calculation shows that its form is:

Wlg(e)] = 20,7 (2) {Lu(2) * [Lu(2)g(2)]} (4.31)

Its diagonalization can be easily carried out, we will call H #(z) its eigenfunctions, they are:
n sr—1 d s
Ai(2) = (=1° L (2) (=) Lu(z) (4.32)
and the corresponding eigenvalues are:
A =215 (4.33)

The main difference with respect to the gaussian case is that W is not an Hermitian operator

with respect to the natural scalar product:

(£,9), = [ doLu(@)f (@) 0(2) (4.34)

This implies that the set of {H #(2)}421 oo is D0t an orthonormal basis for the Hilbert space
of square integrable measurable functions with respect to dzL,(z). A practical drawback

of this fact is that we need for a second basis (biorthonormal basis) in order to calculate
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projections of a generic function on {H#(z)},_;

the eigenvalue problem for the adjoint operator: ‘

Wity () = 150 (2) [ Tule =05t = Doy

. This second basis is obtained solving

(4.35)

Eigenvalues are those of W . The eigenfunction equation for the adjoint operator is easier

to be solved in the Fourier representation:
o z 1 z
2w e fo(2¥E) = Ap fo(k)
while the explicit form of the eigenfunctions in the Fourier space is:
k) = e (6 k)
i dk

By construction they verify the relation:

[}

< S HH2)>= [ L)) HE @) (@) = 6

—0Q

(4.36)

(4.37)

(4.38)



5 Conclusions and Perspectives

Main issue of the present thesis was the extension of a statistical mechanical description
to a class of Non Equilibrium Critical Phenomena. These are mainly characterized by
the presence of a multiplicative amplification of local perturbations that generates critical
correlations in the steady state. Their investigation was carried out extending standard
techniques of Equilibrium Critical Phenomena.

As it was emphasized in specific cases such an extension implies a redeﬁm’tion of standard
procedures like Mean Field and Renormalization Group; the analogy with conventional
equilibrium critical phenomena has to be taken with great care: non e(iuﬂibrium phenomena
are qualitatively different and ”common beliefs” about their properties have to be taken
with care.

Indeed our results show that in particular cases critical correlations and spatio temporal
scale invariance can be explained suitably modifying the equilibrium framework. Some
general considerations can be done on the new statistical description.

As a first fact it must be emphasized that the interplay between ergodic properties
and thermodynamic limit plays a central role in determining the macroscopic stationary
behaviour. Moreover as we have seen in the case of the Abelian Sandpile model and of
the strong coupling phase for the K PZ, separation of time scales is lost and dynamic self

similarity is appearing. This fact introduces a large number of technical difficulties related
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to the lack of a unique way to select the properties of microscopic models that are relevant
to determine the macroscopic behaviour. The multiplicative character of the propagation of
activity generates highly non linear response and persistence effects, the usual white noise
approximation in modelling stochastic terms is no more reliable and must be substituted
by more complex self similar stochastic processes like fractional Brownian motion.

Competition between microscopic degrees of freedom and the complex hierarchy of inter-
actions give rise to a completely new probabilistic picture; strong interactions are essential
to deal with strongly dependent random variables and large and rare events dominate statis-
tics.

This implies the failure of the standard central limit theorem and of the standard RG
picture that is based on the same grounds; the passage from experimental measurements
and numerical data to a continuum coarse grained (analytically tractable) description of
physical phenomena is in such a situation an hard task, in our opinion the main obstacle
toward a description of non equilibrium behaviour.

As we have seen, modified renormalization procedures suggest that such a relation can
be recovered even in the non equilibrium case ai the price of introducing novel statistica
concepts, like scale invariant constraints in the case of Sandpiles or multiscaling formalism
and non self averaging fluctuations in the case of disordered polymers.

Hopefully such novel schemes could increase our ability both in the description and in

the comprehension of the general time dependent cooperative phenomena.
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