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Introduction.

One of the questions concerning the classification of smooth connected alge-
braic curves in the projective space P2 is the problem of finding all possible pairs
(d,g) which could be the degree and the genus of a curve C. In particular, the
maximal possible geometric genus G(d,t) of curves of degree d not contained in a
surface of degree less than ¢, has been studied by several authors. This problem
was first stated in 1882 by Halphen. He gave the answer for d > #(t — 1), but his
proof turned out to be incomplete.

Next, in 1893, Castelnuovo [C] computed the maximal genus over all non-
degenerate smooth connected curves of P™ in terms of the degree d of and the
dimension n of the ambient space. His proof was based on the idea of estimating
the Hilbert function of the general hyperplé,ne section of a curve. He found that
the hyperplane section verifies the property that no three of the points are collinear
(Trisecant Lemma). As a consequence he obtained a bound on the genus of the
curve.

In 1978, Gruson and Peskine determined the exact value of G(d,t) in the more
general context of integral curves in P® for d > t(t — 1) ([GP1]), later improved
to curves with d > #* — 2t + 2 ([GP3]). In this setting the geometric g genus
is replaced by the arithmetic genus p,. They showed that G(d,t) is attained by
smooth connected curves, and that they lie on a surface of degree t.

We shall describe roughly the idea of their proof, which is based on the tech-
nique of Castelnuovo. In the sequel we shall denote by s(C) the minimum of
the degrees of a surface containing C, and by ¢(C) the minimum of the degrees of
curves passing through the general plane section I'. Gruson and Peskine associated

with I the numerical character x(I'), which is a suitable sequence of integers

X(F):(nOa-"7no—l)) ng>...2MNg—1 20, (*)
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where o = ¢(C) (see Chapter 2, Definitions 2.1 and 2.2). Moreover, the degree d
of C satisfies

d= ) (ni—1) (x*)

0

[

7

In general, any sequence of integers verifying (*) and (*x) is called a numerical
character of lenght o and degree d. |

The numerical character of an integral curve verifies the connectedness condi-
tion n; < niy1 + 1 for every i = 0,...,0 — 2. Furthermore, it is possible to define
the genus g(x(T)) of a character, which bounds from above the genus of a curve.
If we set @4, to be the maximal connected numerical character of degree d and
length o for the lexicographic order, then its genus is greater than the genus of
any other character of the same degree and lenght. Furthermore, it is possible to
show that g(@4,) > 9(Od,0+1)-

Another tool they used is the Generalized Trisecant Lemma ([L] and [GP2]):
any integral curve of degree d > t> — 2¢ + 2 such that s(C) > ¢, verifies o(C) > 1.

This result, together with the facts listed above, implies that any curve C of
degree d > t2 — 2t + 2 has p,(C) < g(©4,:) =: Gear(d, 1)

Finally, Gruson and Peskine showed that any connected numerical character
x is the character associated with an integral curve C, and it is p.(C) = g(x)
if and only if C is arithmetically Cohen-Macaulay. It follows that the equality
G(d,t) = Gea(d,t) holds and that the curves of maximal genus are contained in
a surface of degree t. They also gave a method to construct curves of maximal
genus which are smooth and connected.

Afterwards, several authors treated the case d < t? —2t+2. It has been proved
that any curve of degree d < (t? + 4t + 6)/6 is contained in a surface of degree
t — 1, and that any curve of degree d < (t + 4t + 6)/3 has speciality e(C) <?—1
(Hartshorne [rH2]). This suggested to divide the values for the pair (d,t) with

t > 4 in three ranges:
Range A : (12 +4t4+6)/6 <d < (t* +4t+6)/3
Range B: (12 +4t+6)/3<d<t(t—1)
Range C: d>t(t—1).

The most difficult part is the Range B. There is a lower bound for G(d,1),
due to Hartshorne and Hirschowitz [HH2], and they conjectured that it coincides
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with the maximal genus. This has been proved in some cases ([rtH3], [GP3], [E2],
[ES], [S3], [S4]; see also Chapter 1). However, a complete answer is still missing.

In this thesis we consider the same problem in the more general setting of
locally Cohen-Macaulay equidimensional curves in P%, i.e. curves without em-
bedded or isolated points, over an algebraically closed field K of characteristic
zero. A good understanding of such general curves seems to be useful in several
contexts. For instance, non-reduced reducible curves can arise as sections of rank
two vector bundles on P3. From the study of these curves one can obtain in-
formation concerning the dimension, connected components or smoothness of the
moduli space of stable rank two vector bundles on P® with given Chern classes
(see, among others, [rH1], [M], [BM], [NT]). The minimal curve in a biliaison
class, which plays a central role in the theory of Martin-Deschamps and Perrin
[MDP], need not be irreducible, non-singular or even locally complete intersec-
tion. Recently, Hartshorne [rH5] has developed a theory of generalized divisors on
Gorenstein schemes, which allows to view locally Cohen-Macaulay space curves as
effective divisors on possibly non-integral surfaces.

We denote by P,(d,t) the maximal arithmetic genus of locally Cohen-Macau-
lay curves of degree d and not lying on a surface of dégree less than ¢. It is known
(see, for instance, [rH4]) that the arithmetic genus p,(C) of an arbitrary curve C
of degree d is bounded from above by (d — 1)(d — 2)/2, and the equality holds if
and only if C is a plane curve. The formula for P,(d,2) was found by Hartshorne
[tH4], who proved that all curves of maximal genus lie on a quadric surface.

We give an upper bound for P,(d,t) for all ¢ > 1. We will show that it is
sharp for ¢t < 4 by constructing explicit examples of curves of maximal genus, not
contained in a surface of degree ¢ — 1.

We would like to point out that P,(d,t) is defined for any d > ¢, i.e. the
set which we maximize is non-empty for d > ¢. Indeed, every curve C of degree
d <t —1is contained in a cone over C, and hence verifies s(C) <t —1 (Chapter
2, Lemma 1.1). On the other hand, for any d > ¢, there exists a curve such that
deg(C) = d and s(C) = t. For instance, if L is a line, the divisor dL with d > ¢ on
a smooth surface of degree ¢, is a curve with this property (see Chapter 2, Lemma
1.3). This is the first main difference from the integral case.

Another difficulty which arises in the non-integral case is the lack of infor-
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mation, in general, on the size of o with respect to t, even for large degrees d.
When ¢ = 2, one can show that if d > 3 then ¢ > 2 (Chapter 2, Lemma 3.1).
This allows to estimate the Hilbert function of I', and by applying the technique

of Castelnuovo one gets
Pa(d,2) = %(d —9)(d—3) foranyd>3.

For ¢ > 3, the situation is more complicated. For any d > ¢ > 3, there exist curves
of degree d not lying on a surface of degree ¢ — 1, and such that o < ¢ —1 (Chapter
2, Lemma 1.5).

Our main result is the following:

Theorem

3
B(d,t) :=(d—t)(d—t—1)/2 — (t;1>, if d > 2t + 1.

A(d,t)::(t—l)d+1—(t+2>, i1 < d< 2t
P.(d,t) <

Moreover, the equality holds for t < 4 and any d. The mazimal genus is attained
by curves on a surface of degree t. For d > 2t — 1 the mazimal genus curves are
the schematic union of a plane curve of degree d —t + 1, with a curve of degree

t — 1, not contained in a surface of degree t — 2.

The bound in the first range ¢ < d < 2t is a direct consequence of the fact
that the curves belonging to this interval have speciality e(C) < t — 1. We prove
this using the numerical character, which is defined also in the non-integral case,
and which may be non connected. Since in general any curve verifies e(C) < ng—3
Chapter 2, Lemma 4.5), it suffices to show that no < ¢+ 1.

If the character is connected and ¢ > 4, then the integer n,_; can assume
only the values o or o + 1, since the assumption d < 2t implies ¢ < t — 1 (Chapter
2, Corollary 2.8). From this one can deduce that ng <t + 1 (Chapter 3, Theorem
1.1). Fort < 3, the inequality ny < ¢+1 can be checked by looking at all admissible

characters.
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If C is a curve having a non connected character (ng,...ng—1), we set
7= min{i|lnj_y > n; + 1}

One can show that in this case C is the schematic union of two curves O and
C», where Cy has the character (ng,...,n,—-1) and it lies on a surface of degree T.
The hypothesis that C is not contained in a surface of degree ¢ — 1 implies that
the degree of C; must be sufficiently high, namely it must be deg(Cy) > t — 7.
As a consequence the degree of C; is bounded by deg(Cy) = deg(C) — deg(Cs) <
% —t+ 7 =t-+7,and the degree formula (#x) yields ng < ¢+ 1 again (Chapter
3, Theorem 1.1).

We observe that if t < 7, the range ¢ < d < 2t intersects the Range A, defined
for integral curves. -

In the second range d > 2t + 1, the proof of the bound on P,(d,t) consists
in the analysis of the numerical characters that may occur, and of the numerical
relations between the parameters o, ¢, d and, in the case of a non connected
character, 7 (Chapter 3, Theorem 1.2).

When o > t, we bound the genus of a curve applying the technique of Ca-
stelnuovo. The inequality p,(C) < B(d,t) can be easily checked. When t < 2,
this assumption is always verified (Chapter 2, Lemma 3.1), hence the theorem is
already proved in this case.

When o < ¢t — 1, we treat separately the case when x(T') is connected and non

connected. In the latter case, using the notations introduced above, and setting
dy := deg(C;) and d; := deg(C2), we have (Chapter 2, Proposition 2.11)

pa,(C) S Pa(cl) +Pa(02) -1 + sz-

Hence it suffices to bound the genera p,(C:) and pa(C2). We observe that the
curve C; has a connected numerical character by the definition of 7. Moreover, we
may make induction on ¢, since the statement holds for ¢ < 2 and for any d. As
t—7 < t,and s(Cy) > t— 7, we assume pa(C2) < B(dy,t— ) for dp > 2(t—71)+1,
while the bound p,(C;) < A(dz,t — 7) for holds by the first part of the theorem.

The following is a sketch of the main cases we distinguish, and of the criteria

which we use to bound p.(C):



[ o <o

2RI = pi0) < Gena)
di <7(t—743)= e(C) <t—1= p,(C) < A(d,1)

(t—7<d <2(t—7)=>

pa(C) < Gear(dy, ) + A(dy,t — 7)
non conn. + sz - 1
di > 7(t—7+3)<
dy 22(t—1)+1=
pa(C) < Genr(di,7) + B(da,t — 1)
\ \ +Td2—-1

We point out that there are two different formulas for Gcai(d,t), depending
on the size of d with respect to ¢. Moreover, in the case when x(I') is non connected,
and d; > 7(¢t — 7 + 3), we also take into account another condition on d; in order
to prove that p,(C) < B(d,t). Namely, we consider the bound d; > (7 + 7)/2,
which follows from the inequalities ng > ... > n,_; >n, +2>0c+2 > 7 + 3.
Since the maximum between 7(¢ — 7+ 3) and 7(7 + 7)/2 depends on the size of 7,
other subcases have to be added to those listed above.

In all cases the proof is reduced to checking some inequalities between poly-
nomials in two, three or four variables. To do this we made use of the program
Maple.

We remark that A(d,t) = B(d,t) for d = 2t—1, 2¢. We would like to emphasize
that B(d,t) is the genus of the union of a plane curve C; of degree d — ¢ + 1 with
a curve Cy of degree t — 1 and genus A(¢ — 1,t — 1), which intersect with maximal
multiplicity. Moreover, if we assume d > 2¢ — 1, we may suppose that C; is not
contained in a surface S of degree ¢ — 1 such that § O C, (see Chapter 3, Remark
1.3). Hence the sharpness of the bound on P,(¢,t) for any ¢ would be a sufficient
condition fot the sharpness of the bound P,(d,t) < B(d,t) for d > 2t — 1.

When ¢ < 4 and t < d < 2t — 2, we are able to construct examples of
curves of genus A(d,t) which are not contained in a surface of degree ¢t — 1. These

curves contain a double line, i.e. a locally Cohen-Macaulay scheme of degree two
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supported on a line, of suitable genus. They are completely known by the Ferrand
construction [F], and the results of Migliore [M] (see Chapter 3, §2). Therefore,
by the considerations above, this implies the sharpness of the bound on P,(d, ) in
the range d > 2t — 1 when t < 4 (see Chapter 3, Proposition 2.1).

The curves of maximal genus which we have just described suggest examples
of curves of high genus for the general case. By considering multiple lines on
smooth surfaces, and unions of plane curves with such multiple lines, we obtain
the following lower bound for P,(d,t) when ¢ > 5:

Proposition

(2 —t)d® + (¢t —4)d + 2)/2, if t <d<2t—2;
Po(d,1) >
(d—t)(d—t—1)/2 - (t—1)(t - 2)?/2, ifd>2t—1.

The outline of the thesis is the following. The first chapter is devoted to
a review of the results on G(d,t) in the integral case, which are known at the
moment.

In Chapter 2, §1, we investigate the relationship between the invariants d =
deg(C), s(C) and o(C). We show that any curve of degree d is contained in a
surface of the same degree, and that given an integer ¢, for every d > ¢ there exists
a curve of degree d such that s(C') > ¢ (Lemmas 1.1 and 1.2). Moreover, we prove
that the curves of degree d verifying s(C) = d are supported on disjoint lines.
In §2 we recall the definiton of numerical character (Definitions 2.1 and 2.2), we
give some technical lemmas and we show that a curve having a non connected
character is the schematic union of two suitable curves (Proposition 2.11). §3 is
devoted to the study of curves having low o(C). We show that a curve of degree
d > 3 having the general plane section aligned is planar (Lemma 3.1), and we
characterize curves of degree d > 6 with o(C) = 2 and s(C) > 3 (Lemma 3.2),
and curves of degree d > 11 with ¢(C) = 3 and s(C) > 4 (Lemma 3.4). In §4
we give some criteria to bound the genus of a curve (Remark 4.2, Proposition 4.3,
Proposition 4.6).

The last chapter contains the main results concerning the bounds for P,(d, 1),

and the construction of maximal genus curves for ¢ < 4 (§2). Lastly, we describe



10

some examples of curves of high genus, which give a lower bound for P,(d,t) when
t > 5 (Proposition 3.1).

The results proved in this thesis are contained in the papers [vB1] and [vB2].

Ringranziamenti.

Desidero ringraziare il mio relatore, Philippe Ellia, per avermi introdotto allo
studio di questo problema, e per avermi sostenuto con suggerimenti e consigli
in questi anni. Desidero ringraziare anche Emilia Mezzetti, per la sua grande
disponibilitd e per le discussioni avute. Vorrei infine ringraziare la Sissa, per

avermi fornito delle ottime condizioni di lavoro, e tutti gli amici.
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Notations.

Let K be an algebraically closed field of characteristic zero, and let R denote
the polynomial ring K[zg,z1,z2]. By a curve C C P? we mean a locally Cohen-
Macaulay (loc.CM for short) equidimensional subscheme of dimension one of the

projective 3-space P? over K. We indicate by

po(C) the arithmetic genus of a curve C
e(C) = max{n € Z : h*(Oc¢(n)) # 0}
= max{n € Z : h*(Zc(n)) # 0} the speciality of C}

M(C) = @ H!(Zc(n)) the Hartshorne — Rao module;
n€Z
I' the general plane section of C}

I(T) = @ H°(Zc(n)) the saturated homogeneous ideal;
nez

5(C) = min{k € Z : R*(Zc(k)) # 0}
the minimum of the degrees of surfaces containing C;
o(C) = min{k € Z : h°(ZIp(k)) # 0}

the minimum of the degrees of plane curves containing I'.

Sometimes we shall write s and o instead of s(C) and o(C'), respectively.



12



Chapter 1 13

Chapter 1.

Genus of integral space curves: a review.

1.1 Definition We set

G(d,t) := max{p,(C) : C is an integral curve, deg(C) = d, H(Ic(t—1)) = 0}.

We shall illustrate what are the results, to our knowledge, on the value of
G(d,t) at the moment.
For t = 1,2, 3, the formula for G(d,t) is known:

1.2 Proposition
1 .
G(d,1) = §(d —1)(d —-2)

is the maximal genus of a curve of degree d, which is attained by plane smooth

curves;
[ (d—2)%/4, if d is even;
G(d,2) = { (d—1)(d—3)/4, if dis odd;

for every d > 3, the maximum is attained by a curve on a smooth quadric surface

(Castelnuovo [C]);
Gd3————1dd—3 +1——1 3 —
( ? ) 6 ( ) 3T( T)

where d + 7 = 0 (mod 3), 0 < r < 3. The maximum is attained by curves on a

smooth cubic surface (Gruson - Peskine [GP1]).

For ¢t > 4, the situation is more complicated. We have the following result,
due to Hartshorne [rH2] (1987), which follows from the Riemann-Roch theorem
and Clifford’s theorem:
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1.3 Proposition Let C be an integral curve of degree d with s(C) > t.
(a) Then d > (t* + 4t +6)/6.

(b) If e(C) <t—1, then p(C) < (t —1)d+ 1 — (t_;z).

(c) If e(C) >t —1, then d > (t* + 4t + 6)/3.

This motivated the definition of the following ranges for d and ¢ [rH2][:

Range A : (t2 +4t4+6)/6 <d < (t* +4t+6)/3
Range B: (t*4+4t+6)/3<d<t(t—1)
Range C: d>t(t —1).

By Proposition 1.3, we have the following bound in Range A:

1.4 Theorem Let (d,t) be two integers belonging to Range A. Then

G(d,t) < (t—1)d+1— (t’g2>.

The Range B part turned out to be the most difficult, and the formula for
the expected G(d,t) is rather complicated. We first give some definitions.

1.5 Definition Given integers ¢, f, define the integers A(¢, f), B(t, f) as follows:

Aty f) =[(¢* —tf + f* — 2t + 7 +12)/3],

resp. ditto+1if f =2t —Tor 2t -9,
B(s, f) =[(t* —tf + f* +6f +11)/3],

resp. ditto + 1 if f = 2t — 8 or 2¢ — 10,

where, for a real number z, we set [z] = min{n € Z : n > z}.

In [HH2] Hartshorne and Hirschowitz constructed curves of high genus in
Range B, by using the correspondance between locally complete intersection curves

and reflexive sheaves. These examples yield the following lower bound for G(d, ).
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1.6 Theorem Let t, d and f be integers such thatt > 5,1 —1< f <2t —6 and
A(t, f) < d < A(t,f+1). Then

G(d,t) >Gp(d,t) |
= (t-1)d+1- (t—;2> - (f_;+4> +h,

h_{O if A(t,f) <d < B(t f),
1 (d—B)d—-B+1)/2 if B=B(t,f) <d< AL, f+1)

where

In [HH2] the authors conjectured that the equality holds in the last theorem.

This is true in the cases listed below.

Theorem 1.7 Let C be a smooth connected curve of degree d, such that s(C) > 1,
with (d,t) in Range B. Then G(d,t) is equal to the conjectured genus Gp(d,t)
(a) for t <10 and all d [rH3];

(b) i e(C) = f, £ —1 [rH3];

(c) if f=1t—1, ¢t [cH3];

() if f = 2t — 6 [GP3];

() i £ =2t — 7 [B2];

(f) if f =2t -8, 2t — 9 [ES];

(&) if f =20~ 10 [S3);

(h)

if C is a mazimal rank curve, i.e. for every l > 0, the restriction map
o1 - H(Ops (1)) = H(Oc(D)
is either injective or surjective. [S4]

In Range C we have a complete answer to the problem, which is due to Gruson

and Peskine [GP1].

1.8 Theorem Assume that d > t(t —1). Then
G(d,t) =d?/2t + (t —4)d/2+1—r(t —7)(t —1)/2¢

where d+7 =0 (mod 1), 0 <r <t —1.
Furthermore, for each d, t the mazimal genus is attained by a curve lying on
a surface of degree t and linked in a complete intersection of type (t,(d+7)/t) to

a plane curve of degree r.
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Chapter 2.

First results.
§1. Relations between d, s(C) and o(C).

We begin this chapter by investigating the relationship betweew the degree
d of a curve C and s(C). We shall give an answer to the question of finding the
largest admissible s for a curve of fixed degree d, and, viceversa, given an integer
¢t > 1, we shall determine all possible degrees of curves having s(C) =t.

Tt is well known that an integral curve C of degree d is contained in a surface
of the same degree, namely in any cone over U with vertex not on C, so that s < d.
It is clear that the equality holds if and only if C' is a line. A similar construction
can be done for loc.CM curves, and the inequality s < d still holds. It turns out
that in this general context there exist curves satisfying s = d in any degree d > 1.
However, as we shall show in Lemma 1.3, such curves are supported on disjoint

lines.

1.1 Lemma Let C C P? be a curve of degree d. Then C is contained in a surface
of degree d.

Proof. See, for instance, [CV, Lemma 2.6]. []

1.2 Lemma Lett > 1 be an integer. For every d > t there ezists a degree d
curve C with s(C) = t.

Proof. For t = 1 the assertion of the Lemma is obvious. Hence we shall assume

t > 2. Let L be a line and S be a general surface of degree ¢ containing L.
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Consider the divisor C = dL on S and let H be a general plane. Let us prove that
R®(Ic,s(t—1)) = 0, which is equivalent to showing that the divisor —dL+(t—1)H
is not effective. Assume by contradiction it is effective. We note that the linear
system |H — L| contains a smooth irreducible curve and that (H — L)? = 0. So we
can apply [aB, Rem. II1.5], and say that (—dL + (¢t —1)H)-(H — L) > 0. But the
direct computation gives (—dL + (¢ —1)H)-(H — L) = (¢t —1)(t — d — 1) which is
strictly negative, since ¢t > 2 and d > ¢, and this is a contradiction. The exactness

of the sequence

0——>1_5—>Ic——->1-c,5—>0

and A°(Zc,s(t — 1)) = 0 imply that A%(Z¢(t — 1)) = 0 and therefore s(C) = t. To
conclude we note that deg(C) =dL-H =d. [

1.3 Lemma Let C be a degree d curve with s = d. Then Cr.q consists of disjoint

lines.

Proof. Assume first that C is irreducible. If deg(Creq) = n > 2, the cone over
Creq with vertex at a closed point of Creq is a degree m < n — 1 surface containing
Creq- If o > 1 is the multiplicity of C at a general closed point, then un = d and
the surface p.S contains C [CV]. We have deg(uS) =pm < p(n—1)=d—-p <d
which contradicts the assumption s = d. It follows that deg(Creq) = 1.

If C is reducible, it is sufficient to repeat the above arguments for the irreducible
components of C and to observe that their supports are disjoint because of the

assumption s = d. []

Now we also consider o(C), and study its behaviour with respect to d and
s(C). Note that by definition of o and s it is 0 < s. In the setting of integral
curves, it is in fact ¢ = s when d is sufficiently large. More precisely, we have the

following

1.4 Theorem (Generalized Trisecant Lemma) Let C C P? be an integral curve

of degree d > s* +1. Then o = s.

Proof. See [L], [GP2], and [1].



Chapter 2 19

In the non-integral case the situation is rather different. Indeed, for any d, o

may be lower than s.

1.5 Lemma For any pair of integers (d,t) such that d > t > 3, there emists a
curve of degree d with s(C) =1 and 0(C) <t —1.

Proof. Let t < d < 2t — 2, and let C be a curve of degree d not on a surface
of degree ¢ — 1, which exists by Lemma 2.2. Since d < 2t — 2 < t(t+1)/2 =
hO(Op2(t — 1)) for any t, it is o(C) <t — 1.

If d > 2t—1, we consider the union C of a plane curve C; of deg(C1) = d—i+1
with a curve C; of deg(Ca) = s(C») = t —1, which intersect in ¢ —1 points counted
with multiplicities. Since d > 2¢ — 1, we may assume that C; is not contained in
any surface S of degree t — 1 such that § 2 C2. Indeed, if we set P:=S5NH,
where H is the plane of C1, and we fix a degree d — 2¢ + 2 curve RC H such that
P and R have no common components, the union C; = P U R has the claimed
property. Hence s(C) = t, and as we have o(Cs) <t — 2 by the first part of the
proof, it is o(C) <t —1. U

§2. The numerical character.

2.1 Definition [BE] A numerical character x of length o and degree dis a sequence
of o integers x = (ng,---,ne—1), With ng,...,ns—1 € N, such that
N)ny>n1>...2"0,-12>0,
2) d= Z?:—Ol (ni —12).
If, moreover, x verifies
3) n; <mjp1+ 1foreveryi=0,...,0—2,

x is said connected. x is called non connected if it is not connected.

Given a group of points I' in the plane, it is possible to associateé to I' a

numerical character. More precisely, we have the following definition.

2.2 Definition Let I' C P2 be a zero-dimensional subscheme. The numerical
character of T' is the unique numerical character x(I') = (no, weeyNg—1) verifying

one of the following equivalent properties:
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(i) the Hilbert function hr of T' satisfies
o—-1
hr(n) = Z[(n —i+1)y —(n—n;+1)4], for neN,
=0

where, for k € Z, we set ki = maz{0,k};
(ii) the following equality holds:

oc—1

R (Zr(n)) =D [(ni—n—1)y —(i-n—1)4], for neZ

=0

2.3 Remarks

1. The Definition 2.2 is equivalent to the original one given in [GP1].

2. One can show that if T is a plane curve of degree o containing I', then the
minimum of the degrees of all curves passing through I' and not containing 7' is

equal to ny_3.
2.4 Definition The genus g(x(T')) of x(T') is defined as

g(x(T)) = Y h}(Zr(n))

n>1
=> (i[(ni —n—1)y —(i—-n- 1)+])

S ()5

The following easy lemmas will be used in the next chapter, the bound the

speciality of a curve of sufficiently low degree.

2.5 Lemma Let x be a connected numerical character of length o and degree

d<o(t—o+3) for somet>1. Then ng <t+ 1.

Proof. Since x is connected, it is n; > ng — 4 for any 0 < ¢ < ¢ — 1. As
d= Z;':Ol n; — o(o — 1)/2, we have d > ong — o(o — 1). Finally, the assumption
d < o(t — o+ 3) implies ng < t+ 2. [1
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2.6 Corollary Let x be a connected numerical character of length o and degree
d such that n,—1 < o+ 1 and d < (I +1)(1 + 5)/4 for an integer I > o. Then

Proof. The connectedness of x, and the assumption ny—; < ¢ + 1 imply that
no < 20. Therefore for any ¢ < (I +1)/2 we have ng < [+ 1. If ¢ > (I +1)/2,
then o(l — o +3) > (I +1)(I + 5)/4 > d, and the statement holds by Lemma 2.5.
]

One of the basic tools in Strano’s proof of the Generalized Trisecant Lemma

[S1] is the following algebraic result.
2.7 Theorem Let C C P® be a curve and let m € N. If

Tor (I(I),K), =0 for every 0<h<m+2,
then the restriction map pm, : H*(Zc(m)) — H(Ir(m)) is surjective.

Proof. [S1, Teorema 4]. [

We apply this Theorem to curves verifying o < s.

2.8 Corollary Let C C P? be a curve with s > 0. Then ny_1 € {o,0 + 1}.

Proof. The assumption s > o implies that the restriction map p, is not surjective.
By Theorem 2.7 there exists a syzygy in degree h < o + 2 between the generators
of I(T"). Since the syzygies always occur in degree m > o + 1, if F' is a degree o
generator, there exists at least one generator G of degree o or o + 1 which is not
a multiple of F, and, by Remark 2.3.2, we have n,—; < o+ 1. [

It has been proved [GP1] that an integral curve in P? has a connected nu-
merical character. In the context of loc.CM curves this is not necessarily the case.
However, when x is non connected, it is possible to deduce that it is the character
of a reducible curve (Proposition 2.11). More precisely, using a result by Ellia

and Peskine (see Proposition 2.10) one can prove that such a x is the character
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associated with two groups of points in the plane, and we will show using a result

by Strano [S2] that they come from two curves. We first recall a definition.

2.9 Definition [HH1] Let X be a subscheme of P™ and let /' C P™ be a hy-
persurface, which is defined by the equation F of degree f. The residual scheme
Z = RespX to X with respect to F' is the subscheme defined by the ideal sheaf

(2.1) Iz = F'ker[Zx pr — IxnFF),
and we have the exact sequence

0— O0z(—f) = Ox = Oxnr — 0.

2.10 Proposition Let I' C P? be a group of points with x(I') = (ng,...;o—1)-

(1) Assume thatn._; > n, for somel <7 < o—1 and that all the curves of degree
Nnr_1 — 1 containing I' have as greatest common divisor a curve T of degree 7.
Then Ty = TNT is a subgroup of points of I' such that x(T'1) = (no,...,nr—1)-
Moreover, if Ty = RestT, one has x(I'2) = (nr — 7, ey ig—1 — 7).

(2) If nr—1 >n, +1 for some 1 <7 < o —1, then T’ verifies the assumptions in

(1).

Proof. [D] and [EP]. [

2.11 Proposition Let C C P® be a curve of degree d such that I' verifies the

assumptions of (1) in Proposition 2.10. Then C is the schematic union of two

curves C1 and Cy such that:

(2) x1:=x(T'1) = (no,...,nr—1), where 'y is the general plane section of Ci;

(b) s(C1) =7;if S 2 C1 is a surface of degree T, then SNC = C1 modulo a finite
number of zero-dimensional components;

(c) C2 = RessC, deg(C) =: dy = d — deg(C1) =: d — dy and x2 = x(T2) =
(Ny —TyeeyNig—1 — T); '

(d) pa(C) £ pa(C1) + pa(C2) — 1 + 7d>.

Proof. By Proposition 2.10, I' contains two subgroups I'y and T's such that
x(T1) = (noy.ynr—1) and x(T'2) = (nr — 7,.eyng—1 — 7). By [S2, Lemma 2],
I'; is the general plane section of a loc.CM curve C; C C and ¢(C;) = 7. We
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observe that a curve T of degree 7 containing I'; can be lifted to a surface S of
the same degree containing C;. Indeed, ny,—y > n,+1>0c+1 > 742 and, by
Remark 2.3.2, T is the only curve of degree less or equal to 7 4+ 1 containing I';.
As a consequence there is no syzygy in degree h < 7 + 2 between the generators
of I(I'y) and the claim follows applying Theorem 1.2. These arguments prove (a)
and (b).

To prove (c) it is enough to observe that the general plane section of U5 is I's.

Finally, the exact sequence (2.1) yields
Pa(C) = pa(CNS) — x(Oc,(—T))-

We observe that p,(C N S) < pa(Ci), since zero-dimensional components, which
may be embedded, do not effect h'(Oc¢,). We conclude noting that the Euler
characteristic of O¢,(—7) is given by the Hilbert polynomial. []

Next we show that in particular the hypothesis of the last Proposition are
verified by curves having a numerical character of the type (no,...,no—3,0 +
2,0 +1) and such that o < s.

2.12 Lemma Let C C P? be a curve of degree d with o > 2 and s > 0. Assume
that ny—1 = o+ 1 and ny—o > o + 2. Then C is the schematic union of a curve
C, of degree d— 2, lying on a surface of degree o — 1, with a non-planar degree two
curve Cy, i.e. with a couple of skew lines or a double line of genus p,(C) < —1.

In particular, s = o + 1.

Proof. Let us prove that x(I') verifies the assumptions (1) of Proposition 2.10
with 7 = ¢ — 1. The hypothesis n,_; = o + 1 implies h%(Zr(c)) = 1 by Remark
2.3.2. Moreover, if we compute hr(c + 1) both using (i) of Definition 2.2 and
writing hr(o 4+ 1) = h%(Opz(o + 1)) — h%(Ir(o + 1)), we get h%(Ir(o + 1)) = 4.
Since s > o, by Theorem 2.7 there exists a syzygy of the form GyF,+ LFE,11 =0
where F, € H°(Ir (o)), Fpt1 € H°(Ir(o + 1)) and Fyy; is not a multiple of
F,, G5 is a homogeneous quadratic polynomial and L is a homogeneous linear
polynomial. This implies that the two generators have a common component P
of degree o — 1, and we can apply Proposition 2.11. We note that the subgroup
I'y = PNT consists of d — 2 points of ' by the uniqueness of F,. Therefore, using
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the notations of Proposition 2.11, we have deg(C;) = d — 2 and deg(Cs) = 2. We
claim that s(Cz) = 2. Indeed, suppose C; is planar and let S 2 C; be a degree
o —1 surface. Then C is generically contained in the union S of S with the plane of
C,. Since C is loc.CM, we have C C § and this is a contradiction as deg(5) = 0.
It follows s(C;) = 2 since a degree two curve is always contained in a quadric

surface by Lemma 1.1. [J

In treating curves with o < s we will be allowed not to consider characters of

the type (no,...,ne—3,> 0 + 2,0), since we have:

2.13 Lemma Let C C P3? be a curve with ¢ > 2. Assume that ny,—1 = o and
Mgy >0+ 2. Thens =o0.

Proof. Since x(T) is non connected, we can apply Proposition 2.11 with 7 = o —1.
We obtain that C contains a curve C' on a surface S with deg(S) = o — 1 and
RessC =L is a line. Hence C is generically contained in the union of S with
a plane H containing L. Since C is loc.CM, it is globally contained in the same

union, and we have s = o. [

§3. Curves with low o.

In this section we will describe some examples of curves with ¢ < 3. More
precisely, we shall show that curves of degree d > 3 and having the general plane
section aligned are planar. We have already seen that for o > 2 there exist curves
of any degree which are not contained in a surface of degree o. Here we will

characterize such curves with o = 2, 3.
3.1 Lemma Let C be a curve of degree d > 3 such that o =1. Then s = 1.

Proof. This result is well known (see for instance [E3] and [rH4]).
A group T of d aligned points in the plane is a complete intersection of type
(1,d), and thus the minimal free resolution of ZIr is given by the Koszul complex
0 — Op2(—d—1) — Opz(—1) ® Op2(—d) — Ir — 0.

Hence the unique syzygy occurs in degree d+1 > 4 > o+2. The statement follows
from Theorem 2.7. [
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3.2 Lemma Let C C P3 be a curve of degree d > 6 with 0 = 2. Then s > 3 if
and only if C is the schematic union of a plane curve Cy of degree d — 2 with a

non planar curve Cy of degree two. In particular, s = 3.

Proof. Assume first h°(Zr(2)) = 1. Since s > o, we have n; = 3 by Remark 2.3.2
and Corollary 2.8. Moreover, since d = ng +n; — 1 > 6 we have ny > 4. Hence
we can apply Lemma 2.12 and we get the assertion.

We conclude the proof noting that the case h°(Zr(2)) > 2 can not occur, since
it implies s = 2 by Lemma 3.3 below. []

3.8 Lemma Let C C P?® be a curve of degree d > 5 with ¢ = 2. Assume that
h°(Ir(2)) > 2. Then C is contained in a reducible quadric surface or a double

plane, and hence s = 2.

Proof. The assumption h°(Zr(2)) > 2 implies n; = 2 by Remark 2.3.2. Since it is

d=mny+mn;—12>5, we have ng > 4. Applying Lemma 2.13 we get the assertion.
L]

3.4 Lemma Let C C P? be a curve of degree d > 11 with 0 = 3. Then s > 4 if

and only if C is of one of the following types:

(1) C is the schematic union of Cy with deg(C1) =d — 2, s(Cy1) = 2, with a non
planar degree two curve Co;

(2) C 1s the schematic union of a plane curve Cy with deg(C1) =d—¢,3<¢<5
with a degree q curve Cy such that s(Cz) > 3.

Proof. Taking into account Corollary 2.8 and Lemma 2.13, we have the following

possibilities for x(T') = (ng,n1,n2):

a) (d—3,3,3),
b) (d —4,4,3),
c) (d—5,4,4),

d) (d — ny — 1,n4,4) with n; > 5.

Since d > 11 by assumption, the characters a), b), c) are all non connected
and we can apply Proposition 2.11 to get assertion (2). Assertion (1) can be
obtained appling Lemma 2.12 to the character d).

For the converse, note that the curves described in (1) and (2) have s > 4 by

construction. [J
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84. Bounds on the genus.

In this section we give three criteria for bounding the arithmetic genus of a
curve. The first one consists in computing the genus of x(I'), since we always
have p,(C) < g(x(T')) (Remark 4.2). The second method is a direct application of
the classical technique of Castelnuovo (Proposition 4.3) of estimating the Hilbert
function of I' in order to bound A°(Oc¢(n)) for n sufficiently large. The third

criterion (Proposition 4.6) applies to curves with low speciality.

4.1 Lemma Let C C P3? be a curve. Then
h'(Zc(n)) < g(x(T)) — pa(C), for any n € Z.

Proof. The proof is similar to [GP1, Lemma 3.5] (see also [E3]).

Let H be a general plane. We consider the exact sequence
H(Ir(n) = H' (ZTe(n —1)) 5 H (To(n)) > H (Tr(n) = H*(Ze(n 1)
Let A, = coker(r,), @, = coker(-H), and let d,, and g, be their dimensions. It is
immediate to verify that A1(O¢c) = > -, dn. Hence we have
> gn =D kK (Tr(n) = D dn = g(x(T)) — h'(Oc).
n>1 n>1 n>1
On the other hand, for any n < 0, the following sequence is exact
0 — H(Ic(n — 1)) B HY(Ic(n)) = Qn — 0.
This sequence, together with the fact that the module M(C) = ®nezH" (Zc(n))
is of finite length, yields
R (Ze) = gn-
n<0
Therefore
D gn = g(x(T)) — A (Oc) + A (Zc) = g(x(T)) — pa(C).
nez
We conclude observing that

R (Zc(n)) — k' (Zc(n —1)) < gn, foranyn e Z

which implies
R (Zc(n) <Y gn < g(x(T)) — pa(0).
k<n

O
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4.2 Remark From the last Lemma it follows that any curve C has p,(C) <
g(x(T")), and the equality holds if and only if C is arithmetically Cohen-Macaulay.

4.3 Proposition Let C be a curve and assume that o > o for some integer o > 1.

Then

1 a(a+1) ala+1) a+1
o <-{d- ——— d— —=*— 2 . 4.1
pu(0) < 3 (4= 20 1) (4= 2D o) o] (1)
Moreover, if equality holds in (4.1), then 0 = s = a+ 1 and
x(T) =(d—o(c —1)/2,0,...,0). (4.2)
Proof. For any k € Z we have the commutative diagram
0
ol
H°(Ir (k)
l
0 — H°Ops(k—1)) — H°Ops(k)) — H°(Op2(k)) — 0
| L ak

0 — HYOc(k-1) — H°Oc(k)) 5 H°(Or(k))

from which we obtain A°(Oc(k))—h’(Oc(k—1)) = dim(Impyg), and Imag C Impg.

By the definition of Hilbert function we have dim(Imay) = hr(k), hence
h'(Oc(k)) — h*(Oc(k — 1)) > hr(k). (4.3)

Let us estimate hr(k). Recall that hr is strictly increasing till it reaches the value
d = deg(C), and then it is constant and equal to d. Since o > o by assumption,

letting a = (a? + o +2)/2, we have

hr(k) = (k’z*‘z), H0<k<a;

hr(k) > min{k + a,d}, ifk>a+1,
since it is k+a = h%(Op2(a))+(k—a). Summing (3.4) over k we get hR%(Oc(n)) >
> o hr(k) for any n > 0. On the other hand

n

Zhr(k)zZ(k;2> + Y min{l+a,d}

[=a+1
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for any n > a + 1. Therefore, for n > d — a, we get

o d—a-1 n
ROcm) 2 33 (k+ 1)k +2)+ 3 (+a)+ Y d
k=0 l=a+1 j=d—a
= %(a3/3+a2/2+a/6)+3a(a+1)/4+(a+1)—{—d(d——l)/2
—(a+a+)(at+a+2)/2+(n—d+a+1)d
(4.4) =14nd—(d—a)(d—a—1)/2—(a® - a)/3.

Finally, for n sufficiently large, h°(Oc(n)) is given by the Hilbert polynomial of

C and thus we have
hO(Oc(n)) =nd+1 - p.(C). (4.5)

From (4.4) and (4.5) we immediately deduce (4.1).

To prove (4.2), assume that the equality holds in (4.1). In this case all the
inequalities above become equalities, and we have hr(a + 1) = min{(a® + 3a +
4)/2,d} < (0?4 3a + 4)/2. We also have

= (k+2
R (Oc(a+1)) = Z ( 5 ) + hr(a+1),
k=0
which gives R°(Oc(a+1)) < (@® +9a®+20a+18)/6. The defining exact sequence
yields
K (Zc(a +1)) > h*(Ops(a+1)) = h°(Oc(a +1)) 2 a +1,

and by the restriction exact sequence it is also A°(Zr(a + 1)) > a + 1. Hence
c=a+1.

It remains to compute x(I'). Note that since o > a, we have d > (@ + 3a +
2)/2. Assume d > (o +3a+4)/2. Then hr(a+1) = (o® +3a+4)/2 and, taking
into account (%) of Definition 2.2, we get S o+1-n;)y =o—1. Sincen; > o
for every 1 =0, ...,0 — 1, we have n; = ... = n,_1 = o and ny can be expressed in
terms of d and o using 2) of Definition 2.1. In the case d = (a? + 3a + 2)/2 we
get z;:ol(o +1—n;i)4 = o which implies n; = o for every i = 0,...,0 — 1. [

4.4 Remarks:
1. The numerical character ©4, = (d — o(c —1)/2,0,...,0) is the maximal
character for the lexicographic order over all characters of degree d and length

ag.
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2. Substituting o with ¢ — 1 in the formula (4.1) we get
9(04,) = % (d_ Efj'_é:}l _1> (d_ g(j.‘z;ll __2> N o(a —1)(o —2)

3

and one can show that this is the maximal genus over all genera of characters
of degree d and length o.

3. The character @4, is attained by a curve C with h’(Zg(t — 1)) = 0. For
instance, it suffices to take the cone over a set of points with numerical char-
acter ©4;. As a consequence we get a lower bound for the maximal arithmetic
genus P,(d,t) of curves of degree d and not contained in a surface of degree
t—1

P,(d,t) > g(Oa,). (4.6)

4.5 Lemma Let C C P® be a curve and let x(I') = (no, ...,no—1). The speciality
of C verifies e(C) < mny — 3.

Proof. Using ii) of Definition 2.2 one can easily verify that
R*(Ir(n)) = 0 for any n > ng — 1.
From the restriction exact sequence one obtains
R*(Ic(n)) =0 for any n > ny — 2

which is equivalent to the statement. [l

4.6 Proposition Let C be a curve such that s >b>1 and e(C) <b—2. Then

p(0) < o-va+1-("F?).

Proof. The assumptions s > b > 1 and e(C) < b— 2 imply that x(Zc(b—1)) < 0.

From the exact sequence
0 — Ic(b — 1) — Ops(b— 1) — Oc(b— 1) — 0,

it follows that x(Ops(b—1)) < x(Oc(b—1)). We conclude recalling that x(Oc(b—
1)) is equal to the Hilbert polynomial of C. [J
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Chapter 3.

The main Theorems.

§1. Bounds on P,(d,t).

The announced Theorems follow. The first one states that any curve of degree
t < d < 2t not lying on a surface of degree less than ¢ has speciality e(C') <t —1.
This directly yields a bound for the genus. The second Theorem gives a bound
from above for P,(d,T) for the values d > 2t + 1. The proof is based on all the
criteria for bounding the genus from the previous chapter and, in the case of a non

connected numerical character, on induction on ¢.

1.1 Theorem Let C be a curve of degree d with s(C)y>tandt <d< 2t Then

e(C)<t—1, and pa(C)< A(d,1) ::(t—l)d—l—l—(t:Q).

Proof. We assume first ¢ > 4. We claim that the hypothesis t < d < 2¢ implies
ng < t+ 1. Indeed, since d < 2t < t(t +1)/2 = h%(Op2(t — 1)) for any t > 4, we
have that ¢ <t — 1, and hence n,—; < o + 1 by Corollary 2.8 of Chapter 2.

1) Case x connected. :

As 2t < (t41)(¢t +5)/4 for any t € N, the claim is a consequence of Corollary 2.6
of Chapter 2.

2) Case x non connected.

Using the notations of Proposition 2.11, we note that the assumption s(C) > ¢
implies s(Cz) > ¢t — 7, and hence dy >t — 7 by Lemma 1.2, Chapter 2. Therefore
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di=d—dy <2%—t+7=1t+7wheretr<o—-1<t—2. Sincet+7 < 7(t —7+3)
for any t > 7+ 2 and any 7 > 1, it is ng <t + 1 by Lemma 2.5 of Chapter 2.

The bound on p,(C) then follows from Proposition 4.6.

It remains to consider the case t < 3. We observe that if t < d < 2t — 2,
then we still have d < h°(Op2(t — 1)). Hence ¢ <t — 1, and we can repeat the
arguments above. For d = 2¢ — 1, 2t it may happen that o > ¢. In this case we
apply Proposition 4.3 with & = ¢t — 1. One can verify that the bound on the genus

obtained coincides with the one of the statement exactly for these two values of d.

0

1.2 Theorem Let C be a curve of degree d with s(C) >t and d > 2t + 1. Then

p(C) < B(d,t) :=(d —t)(d —t —1)/2 — (t;1>-

Proof. The proof consists in the analysis of the numerical characters that may
occur, and of the numerical relations between the parameters o, ¢, d and, in the
case of a non connected character, 7, which we introduced in Proposition 2.11 of
Chapter 2. Hence we shall have to distinguish many different cases. Most of the

computations which follow have been done using the program Maple.

1) Case o > t.
This assumption implies that d > #(¢ + 1)/2. Applying Proposition 4.3 with

a=1—1 one gets

pa(C) < —;-(d—t%i—l—)_1)(d—-t—(%}—)—z)+z(;>.

The latter expression is less or equal to B(d,t) for any d and ¢ in the considered

range.

2) Case o <t—1.
We observe that this case does not occur for ¢ < 2. Indeed, we know from Lemma

3.1, Chapter 2, that curves verifying o = 1 and d > 3 are necessarily planar.
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Moreover, the hypothesis ¢ < ¢ — 1 implies ny,—; < o + 1 by Corollary 2.8,
Chapter 2. At this point we consider the cases ¥ connected and ¥ non connected

separately.

2.a) Case x connected.
Here we shall use the results on connected characters of low degree and length

from the previous section.

2.a.1) Case d < (t+1)(¢t+5)/4, or ¢ < (t+1)/2.
Corollary 1.3 and the fact that ng < 20 imply no < ¢+ 1, and we have p,(C) <
A(d,t) by Propositions 4.5 and 4.6. One verifies that

A(d,t) < B(d,t) ifd#2t—1,2t,

| (1.1)
A(d,t) = B(d,t) ifd=2t—1,2t

2.a.2) Case d>(t+1)(t+5)/4and (t+1)/2<o<t-—1.
Note that the condition imposed on ¢ implies ¢t > 4.

In this case we are going to bound the genus of a curve by the genus of its
character; since the last one is connected by assumption, it is, in turn, bounded
by the expressions Gear(d, o) given in [GP1]. For our purposes it will be enough

to consider the following simplified functions G; and Go
Gi(o) :==0(c+1)(20 —5)/6 + (¢ —2)(c — 3)(40 — T7)/6
Gen(d,o) < +3(c —2)(c—3)/2+1 if d<o(c—1),

Ga(d, o) == d?/20 + (c —4)d/2+1 i d>o(c—1).
(1.2)

Again, two subcases have to be considered.

2.a.2.1) Case d < g(0 — 1).
We recall that we are assuming also d > (¢+1)(¢+5)/4, and (t+1)(¢+5)/4 < o(o—
1) implies ¢ < 2(¢> — o +1)? —3. We have to prove the inequality B(d,t) > G1(o).

We observe that the function B is decreasing in ¢, since it is

0B/0t = —d+3t—1t*/2—-4/3 <0
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ford > (t +1)(¢t + 5)/4. Hence
B(d,t) > B(d,(2(c? — o +1)% — 3) =: B(d,0).
Now we recall that,by the definition of o, d is bounded also by
d>o(o+1) / 2.
We look at the behaviour of the function B( ,o):

0B

—a——&--d—2(02—a+1)%+5/220

for d > (0 +1)/2, and hence we can write
B(d,o) > B(o(o +1)/2,0) =: B(c).
Finally, one can check that B(c) > G1(c) for any o > 1.

2.a.2.2) Case d > max{c(c — 1)+ 1,(t +1)(t + 5)/4}.
By the hypothesis (t +1)/2 < o <t — 1, we may write

Gy(d,0) < Go(d,t) :=d*/(t + 1) + (t — 5)d/2 + 1.

One can check that

(B — Gy)

¥ =(2(t—1)d -3t +t+4)/2(t+1) >0

for d > (¢t + 1)(t + 5)/4, and that the inequality
B((t +1)(t +5)/4,t) — G2((t + 1)(t + 5)/4,1) > 0
is verified for any t € N.

2.b) Case x non connected.

We shall use the notations of Proposition 2.11 of Chapter 2. Since n,—; > n.+2 >
o+ 2> 7+ 3, we have that d; > deg(t +3,...,7+3) = 7(7 + 7)/2, and since we
are assuming o < t — 1, it is 7 < ¢ — 2. Moreover, the hypothesis s(C) > t implies
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5(C2) >t — 1 and dy > t — 7. We remark that x; is connected by the definition of

T.

2.b.1) Case d; < 7(t — 7 +3).
We have ng < t+1 by Lemma 2.5, Chapter 2. In this case p,(C) < 4(d,t) < B(d,1)
by Propositions 4.5 and 4.6, and by (1.1).

2.b.2) Case d; > max{r(r + 7)/2,7(t — 7 + 3)}.
In this case it will be sufficient to bound the genera of the two subcurves C; and
C5, as we have by Proposition 2.11, (d)

Pa(C) £ pa(C1) + pa(C2) + 7d2 — 1. (1.3)
Since x; is connected, it is p,(C1) < Gear(dy,T), which is, in turn, bounded by

Gl(T), if Ht,r S d1 S T(T - 1)
pa(Cl) S { Gz(dl,T), if d1 2 Vi r

where the functions G; and G5 are defined in (1.2), and where we set
pi - =max{r(r+7)/2,7(t—7+3)}
vy r i=max{r(t+7)/2,7(t—1) + 1,7(t—7+3)}.

We have

_[r(r1)/2, M2 <t < (3r41)/2,
For = r(t—7+3), iff ¢ > max{r+2,(37+1)/2};

7(t+7)/2, i r+2<¢<(37+1)/2, and 7 <8,
vir =+« T(r—1)+1, iff 74+2<¢t<27—4,and 7 > 9,
7(t—7+3), iff t > max{r+2,(37+1)/2,27—-3}.

We will prove the statement by induction on ¢. The theorem holds for ¢ < 2, since

the case o <t — 1 does not occur. We suppose
pa(Cg) SB(dz,t—T), if dz 22(t——7)+1,
and we recall that we have already proved that

pa(OQ)SA(dz,t*T), ift'—TSdg §2(t—7*)
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in the previous Theorem.

For simplicity in notations, let us define the following intervals:

I‘tl,T = [Vty7—7 +OO[

Ji, =lpt,r,7(r—1)] when 7+2<t<2r—4 and 729
I =[2(t—7)+1, +o0,
Ji . =[t—7,2(t—7)]

The relation (1.3) yields
p.(C) < Fi(d1,d2,t,7), for some 1<:1<4

where the functions F; are defined as

Fl(dl,dg,t,T

) di,7) + B(dy,t—7)+7dy—1, for (di,ds) € I} . X IZ.
Fz(dl,dz,t,?') .

):

):

Ga (
Go(dy,7) + A(ds,t—7)+7dy—1, for (d1,dz) € Itl’T X Jﬁr
Gi( (
Gy ( (

F3(d1,d2,t,7’
F4(d1,d2,t,T

)—}—B(dz,t——’T’)—'—‘sz—l, for dl,dz)EJtl,T XItQ’T
Y+ A(dy,t—7)+7dy—1, for (di,d2) € Jtlyr X It2,7"

T
T

I

To prove the statement of the Theorem we need to check the inequalities
B(d,t) — Fi(d1,ds,t,7) >0, for 1<i<4.

To this aim we shall analyze the behaviour of the functions B — F; in each variable
separately, to reduce the problem to verifying the positivity of some polynomials
in one variable.

First we note that the functions B — F; are increasing in d»; indeed, we have

8B —F) (dy—2r, ifi=1,3,
adz d1+d2—2t+%, 1f’L=2,4,

and they are all nonnegative in the allowed ranges for (d;,d;). Hence the values
of B — F; are bounded by
(B — F;)(dy,da,t,7) > Fy(d1,t,7), 1<i<A4,

where we set

- _[(B=F)d,2t =)+ L,t,7), Hi=13,
Fz(dl;taT) -—{(B_Fi)(dl,t_,r,t’,r)’ 1f1,:2,4



Next we observe that

} (1= 1)dy/T+t—5(r—1)/2,
OF; ) (r—1)(2d, —37)/2T,
8d, ~ ) di+t—27+1/2,
dl —T/2,
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ii=1,
ifi=2,
ifi=3,
if ¢ = 4.

One can check that these derivatives are non-negative also. Therefore, if we define

Ey(r(T+7)/2,t,7),
Ifi('r('r-1)+1,t,7),
li'i(T(t—T—I—fi),t,T),
EFy(r(r+7)/2,t,7),
Fy(r(t—7+3),t,7),

Fi(t,7) :=

we have that

for1=1,2,74+2<t < (3r+1)/2, 7 <8
fori=1,2,7+2<t<27—4,72>9

for 1 = 1,2, t > max{r+2,(37+1)/2,27-3},
for1=23,4,7+2<t<(374+1)/2, 7> 9
fori=3,4,t> (37+1)/2,7>9

Fi(dl,t,T) > Fi(t,T).

Finally, we derive the functions F; with respect to ¢, and we find

( a)7(27+5——2t)/2,
b)1—27—tr+37%/2,
c)T(tT——Tz—I—T+3/2),

OF; d)(r—1)(t+1-2t)/2,
ot

g)t(r?—7+1)—(27°

e)(T—-1)(tr—t—724+27+1/2),
fr(tr+t—72+7/2+5/2),

—572+7+1)/2,

if1=1,3,

42 <t < (3r+1)/2,

ifi=1,
T4+2<t<21—4,72>9,
ifi=1,

t > max{r+2,27-3,(37+1)/2},
Wi =24,

r42<t< (3r+1)/2,

ifi=2,

t > max{r+ 227-3,(37+1)/2},
ife=3,

t> (3r+1)/2,

ifi=4

t>(3r+1)/2.

The analysis of these derivatives allows to determine the minimal values of the

functions F;( ,7), and we obtain

I Fi(T —+ 2) T))

Fi(t,r) >

Fy(21 —
Fi(ZT —
\ Fi(2’7' —

3,7),
4)T)7
37T)7

Fy((37 +1)/2,7), fora), f), g)
Fy(r +2,71),

for b)
forc)and 7 <5
for ¢)and 7 > 5
for d)
for e).

In this way we have obtained some polynomials in 7 only, and since they are all

positive for any admissible 7, the proof of the Theorem is complete. ]
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Remark 1.3 Observe that
B(d,t) = Fp(d—t+1,t—1,t,1),

hence (for ¢ > 3) B(d,t) is the genus of the schematic union of a plane curve C;
of degree deg(Cy) = d —t+ 1 with a curve C; of degree deg(C;) = ¢t —1 and genus
Pa(C2) = A(t—1,t—1), which intersect in ¢t — 1 points counted with multiplicities.
Assume that d > 2t + 1. By repeating the arguments given in the proof of Lemma
1.5 of Chapter 2, we may suppose that C; in not contained in any surface S of
degree t — 1 such that § D C,. Therefore, if s(C2) =t — 1, we have that s(C) = t.
In other words, the sharpness of the bound P,(¢,t) for any ¢t would be a sufficient
condition for the sharpness of the bound P,(d,t) < B(d,t) for any d > 2t — 1,
since we have A(d,t) = B(d,t) for d — 2t — 1, 2t.

§2. The sharpness of the bounds for ¢t < 4.

In this section we will prove that the bounds on P,(d, ) given in Theorems 1.1
and 1.2 are sharp for ¢ < 4 in both ranges for d by constructing explicit examples
of curves attaining the bound. To do this we will consider double structures on
lines, which are completely caracterized by the Ferrand’s construction (see [F],
[BF]). Precisely, given a multiplicity two structure Z C P2 on a line L C P3,
one can show that the sheaf 7 z is a line bundle on L and it is a quotient of the
conormal bundle Nz ps = Or(—1) ® Or(—1), and hence of the form Or(k) with
k> 1.

Viceversa, any line bundle on L which is quotient of A7 ps determines a
double structure on L.

Moreover, we have the exact sequence
0— Or(k) -0z -0 —0

from which we obtain that p,(Z) = —1 — k.
Finally, it is also possible to compute the homogeneous ideal of Z in P3.

Assume that L is given by the equations z = y = 0; then we have [M]

I(T) = (2%, zy,y%, fz + gy),
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where f, g € H°(Or(k + 1)) and they have no common components.

2.1 Proposition The bounds for the mazimal genus P,(d,t) given in Theorems |
1.1 and 1.2 are sharp for t < 4. Moreover, for any p < P,(d,t), d > t and
2 <t < 4, there ezists a curve of genus p and degree d, which is not contained in

a surface of degree t — 1.

Proof. We note that P,(d,1) is the arithmetic genus of a plane curve of degree
d, so the statement holds.

Assume t = 2. For d = 2, the Ferrand construction described above assures
that there exist double lines of any genus p < —1 = A(2,2) and that they are not
planar.

Suppose now d > 3. Let C; € H be a plane curve of degree d; = d — 2,
and let Uy be a double line of genus p,(C2) < 0 such that supp(C2) C H but
Cy € H. Assume also that Cy intersects C7 in d — 2 points transeversally. The

schematic union of C; with C3 is a non planar curve which attains any genus

p<(d—2)(d-3)/2 = B(d,2).
Let ¢t = 3,4, and t < d < 2¢t—2. We shall consider every pair (d,t) separately.

(d,t) = (8,3): let Z be a double line of genus p,(Z) < —2. Then from (star) we see
that the only quadric surfaces containing Z are couples of planes passing through
the support of Z, which form a two dimensional linear system. Hence it is possible
to choose a line L which is transversal to each of these planes. In particular, L
does not intesect the support of Z. Consider the schematic union of Z with L.

The genus of such a union can be computed using Mayer-Vietoris sequence
0— 0OzuL = 0z00L — Oznr — 0.
It is easy to check that Z U L has the required invariants.

(d,t) = (3,4): in this case we consider a double line Z of genus p,(Z) < —2 as
in the preceding example, and a degree two planar curve P C H, where H is a
plane transversal to the support of Z, and where P intersects Z in a point with

multiplicity two. The union of Z with P has the asked properties.
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(d,t) = (4,4): let now Z; and Z; be two disjoint double lines of genera p,(Z1) = —3
and p,(Z2) < —3. It is easy to check that the union of Z; with Z; is not contained
in a cubic surface. Indeed, suppose that Z;, respectively Z, is given by equations
z =y = 0, respectively z = ¢ = 0. Then every cubic surface passing through Zi,

respectively Zj, is of the form

2

> Ri(z,y,2,t)e'y’ ", and
i=0

2

> Qilz,y,z,t)2

=0
where R; and @; are linear forms. It is clear that the two families of polynomi-

als form two complementary ten-dimensional linear subspaces of the vector space

H°(Ops(3)). One can check that the union Z; U Z; has the right genus.

(d,t) = (5,4): let T be the curve of degree three of the case (d,t) = (3,3). Let
H be a plane transversal to T', and F C H a curve of degree two which does not
meet T. By similar arguments to the previous ones, one can show that the union

T U F' is the required curve.

(d,t) = (6,4): let L be a line and let Z be a double line of genus p,(Z) < -3,
which has support disjoint from L. Let H be a plane transversal to L U Z, and
let Y C H be a smooth elliptic cubic intersecting both L and Z with maximal
multiplicity. Again, by counting dimensions, one can prove that ¥ can be chosen

in such a way that LU Z UY does not lie on any cubic surface.

By Remark 1.3, the equality P,(d,t) = B(d,t) for d > 2t — 1 follows from the
existence of the examples just constructed. Moreover, since the genus of the curve
C, can assume any value p < A(t — 1,¢ — 1), this implies the existence of a curve
C of any genus less or equal to B(d,t), and such that s(C) =¢. [J

2.2 Remarks

1) The maximal genus P,(d,2) and the examples of maximal genus curves have

been computed by Hartshorne, for curves over a field K of any characteristic [rH4].



Chapter 3 41

2) Let C be a curve of degree d > 6 with s(C') > 3. Then the genus p,(C) lies in
the interval

H(d—4)(d~5)+3 < p(C) < 5(d- (A —4)

if and only if o = 2 (see Lemma 3.2 of Chapter 2 for a characterization of such
curves). Indeed, if o = 1, then C would be planar by Lemma 3.1 of Chapter 2. If
o > 3, then p,(C) < (d —4)(d — 5)/2 + 2 by Proposition 4.3, Chapter 2.

3) Let C be a curve of degree d > 11 with s > 4. Then p,(C) lies in the interval

S(d—5)(d—6)+3 < pa(C) < 5(d—O(d—5) — 1

N

if and only if 0 = 3, s = 4 and x(I') = (d — 3,3,3). Indeed, if ¢ < 2, then
s < 3 by Lemmas 3.2 and 3.3, Chapter 2. Moreover, if ¢ > 4, then p,(C) <
(d—T)(d—8)/2+8 by Proposition 4.3. Hence it is ¢ = 3. By Lemma 3.4, Chapter '
2, x(T) is of one of the following types: (d — 3,3,3), (d —4,4,3), (d — 5,4,4) or
(d — ny — 1,n1,4) with ny > 5. Then one can easily bound the genus of C in
each case, taking into account the corresponding geometric situation, to prove the

claim.

4) The genera P,(5,3), P,(7,4) and P,(8,4) are attained by smooth connected

curves.

§3. A lower bound for P,(d,t).

The examples of maximal genus curves seen in Proposition 2.1 suggest a

method for constructing curves of high genus, which give a lower bound for P,(d, t).

3.1 Proposition P,(d,t) is bounded from below by

(2 —1t)d* +(t —4)d+2)/2, ift<d<2t—2,
P,(d,t) >
(d—t)(d—t—1)/2 - (t - 1)(t —2)*/2, ifd>2t—1.

Proof. Consider the divisor dL on a smooth surface S of degree ¢t where L is a line

and t < d < 2t — 2. The curve C = dL is not contained in a surface of degree less
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than ¢ by Prop.. Its genus can be computed using the adjunction formula which
gives the bound stated.

Let now C be the union of a plane curve P of degree d —¢+ 1 where d>2t-1
with the divisor (¢ — 1)L on a smooth surface of degree ¢t — 1 where L is a line, so
that C does not lie on a surface of degree ¢t — 1 (see Chpater 2, Lemma 1.1). Then

the genus of C is equal to the expression in the statement. [
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