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1 Introduction

The study of weak interactions of quarks can provide an important check of the Standard
Model. Among the others, it is possible to determine the angles of the quark mixing matrix,
the CP-violating phase, the mass of the top quark and the structure of the weak currents.
In many cases, the experimental data are quite good and the problem is a lack of accurate
theoretical predictions. Any weak process involving quarks is indeed affected by strong in-
teractions, and it is not easy to control their dynamics. We assume ‘that the correct theory
of strong interactions is a Quantum Field Theory, Quantum-Chromodynamics (QCD). The
best strategy up to now elaborated to deal with QCD involves the construction of effective
theories. The main idea of the effective theories is to separate the degrees of freedom with
greater energy than the scale of the processes of interest, from the others. The integration
over the high energy modes of the original hamiltonian H leads to the effective hamiltonian
H.ss, which depends only on low momentum modes. Hgyss therefore describes low-energy
phenomena, but takes into account the virtual effects of the high-energy states.

This idea matches very well with the dynamical properties of QCD. As it is well known,
QCD is asymptotically free in the ultraviolet region, implying that the coupling constant is
small at sufficiently high energies. On the other hand, the coupling constant is very large at
low energies and quarks and gluons are confined into colour singlet hadrons. The integration
of the high momentum modes in the original hamiltonian H can be done in perturbation
theory in the case of QCD. The effective hamiltonian H.ss therefore contains the effects of

hard quarks and gluons, but it is a function only of the low momentum modes. The latter
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are strongly coupled, but are fewer than in the original hamiltonian and can be computed by
using a non perturbative method, like for example, lattice QCD [34].

The most remarkable result of the effective theory approach has been the possibility
of computing heavy quark physics with present computers. It is presently not possible to
simulate QCD with a cut-off greater than 2 + 4 GeV. This implies a heavy quark cannot be
simulated directly. It can be simulated by means of an effective theory with a cut-off A of a
few GeV, which takes into account correctly the effects of the modes with momenta between
A and a cut-off much larger than the heavy quark mass.

This thesis is devoted to an analysis of effective theories and their phenomenological
applications.

In chapter one we describe various kinds of effective theories with a formalism encod-
ing the fundamental ideas. We also examine the connection between this formalism, the
renormalization group, the improved hamiltonians and the 1/M expansion, and we present
a perturbative evaluation of an effective hamiltonian.

In chapter two we describe the static theory for heavy quarks and the functional integral
formalism which is the basis for QCD simulations. We also discuss the matching of the
effective hamiltonian with the original theory and two important phenomenological applica-
tions are considered: prediction for beauty hadron masses and the computation of the decay
constants of heavy mesons.

In chapter three we review the effective theory describing infinite mass quarks at fixed
velocity, which is called in literature the "Heavy Quark Effective Theory’ (HQET). Some of
the most important phenomenological applications are considered. The second part of the
chapter deals with lattice applications. Euclidean continuation, lattice regularization and
lattice renormalization of the HQET are discussed in great detail.

My contributions to the problems discussed in this thesis are:

1) The Renormalization Group transformation leading to the effective theory for heavy par-

ticles, developed in sec.2.5.



ii) Prediction for beauty hadron masses, discussed in sec.3.2 [1].

ii1) The derivation of the Isgur-Wise relations with the functional-integral formalism, given
in sec.4.3.

iv) The euclidean continuation of the HQET, the analysis of the stability of the theory,
the euclidean Feynman rules and the lattice renormalization of the HQET, considered in
secs.4.5-4.7 [2, 5].

v) The expaﬁsion in small velocities of the HQET, reviewed in sec.4.8 [4].

I also discovered an inconsistency in the effective theory for energetic massless particles,
which has been introduced by Dugan and Grinstein in ref.[11]. The analysis is carried out in
ref.[3]. Together with Prof. G. Altarelli and Prof. S. Petrarca, I analysed some non-spectator
mechanisms in charm and beauty decays. These studies are not reported in the thesis on the

ground of being a little far from the main line of reasoning.



2 Effective Hamiltonians and Quan-
tum Theory

2.1 Introduction

In this chapter we describe the ideas of the effective theories and a very simple formalism
that allows their construction. This formalism is based on the first principles and encodes
the ’philosophy’ of the effective theory approach.

The aim of this chapter is to provide an unified framework to describe quite different
physical systems. We identify various kinds of effective theories describing different classes
of physical processes. We analys'e also the connection between effective theories, the renor-
malization group, the improved hamiltonjans and the 1/M expansion. To avoid unnecessary
complications due to spin or gauge invariance, we consider mainly scalar field theories. The
formalism described is not the most suitable for practical computations; in perturbation the-
ory it involves the evaluation of very complicated Feynman diagrams. In the next chapters we

will describe a more simple formalism and we will apply it to physically interesting theories.

2.2 Qualitative considerations

An effective theory is a tool for computing low energy processes, with a prescribed accuracy.
It may be generated from a complete theory, describing processes at every mass scale, by
integrating away the states with high energy or with high mass [46, 47, 29]. The main
advantage is that effective theories are simpler than the original theory.

The reasons leading to the construction of effective theories are related to the following
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characteristics of quantum phenomena. The amplitude of a process occurring at an energy
scale E receives contributions from virtual states of every energy E’. In many cases the
relevant contributions come from high energy states. This implies that, when studying an
elementary process at the scale E, we cannot simply forget the different scales E’ present in
nature.

A clear example of this aspect of the quantum theory is neutron beta decay,
n—p+e+r (2.1)

It is generated by the exchange of the W boson having a mass My ~ 80 GeV, while the
scale of the process is E ~ M,, ~ 1 GeV. The decay occurs due to the existence of the W
boson, that enters an intermediate state with a high virtuality. The contribution of particles
with mass M > E is exactly the origin of the decay. The decay amplitude is a function of

the W mass and is given by:

1
A = ig%7 1 —75)up (1 — 75)00 55— 2.2
ig” Tyyp(1 = ¥5)un Wy (1 = 75)00 7 ME i (2.2)
By expanding the W propagator as:
1 1 1 42
= — — v 2.3
g% — M¥ + ie M3 M3 M, + (2:3)
the amplitude expansion derived is:
A A
A= r ot (2.4)

M (M)
where A, Ay, ... are polynomials of the external momenta.
One loop e.m. corrections modify the behaviour of the decay rate only by logarithmic factors
of the form In(M%,/M?), where M, is the nucleon mass. There is therefore a complete
decoupling only in the limit My — oo. Since the process is suppressed by the high virtuality
of the intermediate state, we are interested only in the lowest order (or at most in the first
few terms) in the 1/M}. expansion. The systematic method to isolate the leading terms in

the inverse of heavy particle masses involves the construction of an effective theory.
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The main idea is to neglect the W field for the description of the neutron decay and
replace its effects by new local interactions between the particles appearing as asymptotic
states: nn, p, e, v.

On the right hand side of eq.(2.4) the degrees of freedom of the W field do not appear any
more and new interactions take their place. In general, with effective theories we truncate
the expansion (2.4) at a given order, determined by the required precision. Since g% ~
(M, — M,)* < M2, the series is rapidly convergent. At the lowest order in 1 / M}, we recover
the old Fermi theory of beta decay.

We notice that series in eq.(2.3) can also be thought as an expansion of the W momentum

g, around the null vector

Prull = (0’ 6) (25)

Effect of remote scales on low-energy processes is even more spectacular in the case of
proton decay. In the picture of Grand Unified Theories, decay is produced by the annihilation
of two quarks inside the proton in a vector particle of a mass My ~ 10> GeV. The lifetime

of the proton can be estimated as

T~ gt (2.6)

and it is expected to be of order of 10%0+33 years.

We may try to generalize from the above examples. There are processes with low energy
E whose dynamics is generated, or largely modified, by heavy particle effects. By "heavy’ we
mean particles with a mass M > E, that cannot appear as asymptotic states.

In the real world many different scales show up: the masses of the observed particles, the
QCD scale, the Planck mass etc... Every elementary process receives dynamical contribu-
tions, related to the existence of those scales. It is possible to build up an effective theory
for low energy processes eliminating explicitly the particles with mass M greater than the

energy scale E:

M>E (2.7)
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The fundamental property of these effective theories is that they are simpler than the original
theory, containing at the same time effects of the heavy particles.

Let us consider now a physical system that can be described by a new kind of effective
theories, a meson composed of a heavy and a light quark. We assume that the typical
momentum exchanges g, among quarks in a hadron are of the order of the inverse of the

hadron size,

| g |~ Agep (2.8)

The assumption (2.8) has both theoretical and phenomenological Jjustifications.

i) The success of the parton model in describing hard interactions shows that quarks and
gluons behave as free particles af large momentum transfer. This is explained assuming that
the binding mechanism is soft.

ii) QCD is asymptotically free. The effective coupling constant as goes to zero with in-
creasing momenta. Consequently, large momentum transfers among quarks and gluons in a
hadron are suppressed.

Eq.(2.8) implies that quarks with a mass m ~ Agcp have a relativistic motion. Since
the energy transfer gy is of order m, the creation of light pairs has a relevant effect in the
dynamics of the bound state. On the contrary, the motion of quarks with mass M > Agcp
is slow and the creation of heavy pairs is suppressed because the typical energy transfer go
is much less than M. Let us introduce now the basic idea of the effective theory for heavy
quarks. According to our physical intuition, we believe that, in the limit of a very large mass,
the heavy quark behaves as a static source of colour which is screened by the field of the light
quark.

We can build up an effective theory for heavy quarks that is basically an expansion for

small momenta around the on-shell momentum [9, 12]:

Pon shell = (M, 6) (29)

We cannot eliminate the heavy quark Q in the effective theory, as we can do with the W in
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the effective theory for neutron decays, because @ appears in the external states; we remove
only the degrees of freedom of @ that decouple in the limit M — oo. The resulting effective
theory can be generated as an expansion in the inverse of the heavy quark mass.

The effective theory can only describe processes where the ’heavy’ particle is scattered
in the collisions with light particles. It cannot describe, for instance, the decay of the heavy
particle, because this process involves very hard momenta of the decay products, which are
absent in the effective theory. The large mass M of @ cannot be created by or annihilated
in momenta of light degrees of freedom and it appears always in the initial and final states
of the reactions. In the language of diagrams there is a high energy flow along the heavy
particle line.

The difference between two kinds of effective theories considered above is the following:
In the first case, the energy and the spatial momentum of the heavy particle £ and p are

much less than its mass M:

E, |Fl< M (2.10)

while in the second case the heavy particle is almost real and its spatial momenta | p'| are

much less than M:

|Pl« M, E~M (2.11)

2.3 Effective theories for light particles

The scattering amplitudes in particle physics may be expressed in terms of the n-point cor-

relation functions of the theory. In the euclidean space:

G(n)(pl’pz ««-DPnt go, Mo, A) = (212)
/ II d&(k) &(p1)&(p2). .. B(pn) exp{—H[®(q);0 < ¢* < A% go,mol}
0<k2<A2

where A is an ultraviolet cut-off, ® is a generic quantum field and my and gy denote respec-

tively the bare mass and the bare coupling.
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Since we consider low-energy phenomena, we are interested to the Green function G(") in

the long wave-length region:
| pi | <€ AR, i=1,2...n (2.13)
where Ap is a given energy scale well below the cut-off:
Ap <A (2.14)

We can separate the modes with momenta above Ag from the ones below Ap. High energy
modes are integrated in a ’universal way’ since they do not enter explicitly in the process.

One may write:

G™(p1,p2- - -Pnj go,mo, A) = (2.15)
[ T () 3()8() . 8(p) exp{-Hops[®(a)i0< o < A} }
0<k2<AL

where, by definition:

exp{—H.;7[®(q); 0 < ¢* < A%; my, g0, Al} = (2.16)

H d®(k) exp{—H[®(q);0 < ¢* < A*: gg,mo, Al}
AL <k?<A?

For low-energy processes it is possible to build-up an effective hamiltonian H.;; depend-
ing only on the low-momentum degrees of freedom, and contains the effects of the high-
momentum modes. Ag has the role of a sharp cut-off for the effective theory that separates
integrated from non-integrated modes.

The effective hamiltonian H,ss defined in eq.(2.16) generates the same correlation func-
tions of the original hamiltonian H, because the transformation from eq.(2.12) to eq.(2.15) is
merely an identity. The point is that the computation of H.s; from H is as complicated as to
solve the original theory. As we shall see explicitly in section (3.2), He;; contains the loops
of virtual particles with momenta between Ag and A, which induce couplings between the

particles with momenta less than Ag. The effective hamiltonian therefore contains non-local
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interactions as well as interactions between an arbitrary number of particles, even though the
original hamiltonian is local and renormalizable.

Usually one is interested in making the transformation (2.16) in an approximate way.
Assuming a basis of local operators, this involves generally two steps:
i) a truncation of the series of the operators appearing in H.ss and
i1) an approximate evaluation of the coefficients of the operators left.

The first kind of approximation in the derivation of Hcsy is easily understood by means

of a simple model, a free scalar field with hamiltonian

dk

B =] Gy

3T (k) (k% + ck*) (k) (2.17)

where ¢ is a positive constant with a negative mass dimension: [c] = M 2.

In this case the transformation (2.16) induces an effective hamiltonian H.ss of the same form
as the original hamiltonian with cut-off Ag, instead of A. This occurs because H is diagonal
in momentum space and therefore there is no coupling between low momentum and high

momentum modes. One has:

Hepp = /OAE (5:34 BT (k)(k* + ck*)®(k) (2.18)

If Ag is so small that cA% < 1, one can neglect the term containing k* in H.y; it is associated

to the operator

0 =%'0%s , (2.19)

of higher dimension than the operator associated to k2:
3’09 (2.20)

If a greater accuracy is needed in the computations with H.fy, the bperator O can be

introduced in the dynamics as an insertion, by means of an expansion of the kind:

Ap 4k
(2m)*

3'(k) k' (k) exp[—HYf] + - - (2.21)

€

exp[—Hesf] = exp[—Hgff] - c/O
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where

HY, = /OAE (%% 3 (k) k2B (k) (2.22)

The second kind of approximation (¢z) in the evaluation of H.;; depends on the technique
used to compute the functional integral. In section (3.2) we consider a perturbative expansion.
To make an account, the effective hamiltonians defined by eq.(2.16) are appropriate to
describe the dynamics of light particles with soft interactions and correctly include the effects
of the virtual states with high energy. They are constructed lowering the ultra-violet cut-off

to eliminate the appearance of the high-energy particles, that do not enter the external states.
2.3.1 Connection with the Renormalization Group

There is a very simple way to understand why operators of higher dimension, like O in
eq.(2.19), can be neglected in the effective hamiltonian when studying soft interactions. This
involves the construction of the R.G. transformation [46, 47].

We want to define, in a way, a scale transformation for a quantum field theory. As it is
well known, the symmetry under scale transformations of a quantum field is less than that of
the related classical field. The fluctuations at short distances of the field produce ultraviolet
divergencies in the quantum theory forcing the introduction of a cut-off A. Every amplitude
will depend on A, that breaks the homogeneity of the scales. If the lagrangian has not mass
terms, an analogous phenomenon occurs also for the fluctuations at large distances: the
amplitudes will contain also soft singularities forcing the introduction of an infrared cut-off
A. As a consequence, even if the classical theory is scale invariant, the quantum theory is
not.

Just consider a scale transformation of a factor two. In the passive view, one doubles the
unit of length or, equivalently, reduces 1;0 a half the standard of momenta. There are two
observers with standards differing by a factor two that study the same physical system, i.e.
the same quantum field with the same cut-off A. A looks twice greater for the observer with

the smaller standard of momenta. We can define a symmetry transformation by reducing
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the ultraviolet cut-off going from the observer with the greater standard to the other. This
way our two observers describe the phenomena with the same set of variables. One defines
therefore a scale transformation in quantum field theory by integrating the modes with mo-
menta between A and A/2. Under such an operation the hamiltonian, generally, will change
its form in a very complicated way. As in classical field theories, the scale transformation
must include also a rescaling of the fields.

Let us formalize these ideas considering the model of eq.(2.17). A scale transformation is
realized according to the following steps:
i) Lowering of the ultraviolet cut-off A by a factor 2. For the model considered, this step

takes the hamiltonian H in eq.(2.17) to:

AJ2 gD
H = /0X ’ (;lw)ko 3T (k)(k? + ck')B (k) (2.23)

it) The unit of length of the final observer is increased by a factor 2, and therefore:
¢ = =z, E =2k (2.24)
Under such a scaling the hamiltonian becomes:

H = 27(P+2) gt (k' /2)(K" + 27 2ck™)B(k'/2) (2.25)
0 2 )D

As required, the range of the rescaled momenta is equal to the old one. The two observers
describe the phenomena with the same state variables: modes with momenta between zero
and, say, one thousand times their respective standard of momenta.

i41) The field & is rescaled in such a way that the lowest dimension operator has a unit

coefficient. The hamiltonian looks finally:

/ A gDy 1t 2 -2 g xrit
H _/0 Gy &R 2k e (k) (2.26)
where:
(k') = 27 (D+A125 (k' /2) (2.27)

The rescaled field is naturally expressed in terms of the rescaled momentum.
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Now imagine to iterate the RG transformation many times. At each iteration the coeffi-

cient of the operator O is reduced by a factor 4:
c (2.28)

and therefore it has a very small value after a sufficient number of steps. This means that the
operator O has a negligible effect if the system is observed at very large scales or, equivalently,
if it is subjected to very soft interactions. In the standard RG terminology O is said to be
an irrelevant operator.

The connection between effective theories and renormalization group is very close. In
both cases one studies soft interactions in the framework of a field theory and integrates the
high energy degrees of freedom. The only difference is a rescaling of the momenta and of the

fields which is not done in an effective theory.

2.3.2 Perturbative expansion

In the case of interacting theories with a small coupling g, the transformation (2.16) can
be done in perturbation theory. The coefficients of the operators entering H.;; are then
computed as a power series in g.

We consider a specific model, a real scalar field & with an interaction of the form &3 in

dimension D = 6. The hamiltonian is given by:

1 2
H = 50,8088+ T—"i— ? +% 3 (2.29)

This theory is not stable because the potential is unbound from below but can be analyzed
in perturbation theory and has a very simple diagrammatic expansion [10]. The effective

hamiltonian is given by:

exp{—H.;;[®(1); 0 < > < AZ]} = (2.30)
el - [ S5 a(- p)[p2+m1¢><p)} x

/ [T ae(k) expl — [ S5 a(-nls? + ml3(e)+

<kZ<A?
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g " % d%; d% 6(6
51y ()6 @n)e () ()0 B+ P+ pa) 2(p1)E(p2)2 (o) }

Taking the logarithm and expanding the interaction in powers of g one obtains:

_ Ap dGP 2 2
Har = [ o SRV BF £ ) 2(0) + (2.31)
d6P 2 2
- gl [ TT aa(s) enl- [ 2 a(-p)p + mlae) +
A2 <k2<A2
21 =g\ el aspl) aspl) e L ),
* §H<3z> o (@) (@r) (ar)p TV e b py) X
dpi”) dop asp? o e CINCINNG
§ (2m)8 (2m)6 (27)8 () (p FRs)x
dp{™ asp( aop{™) ) (n) L (m) ()
h (2m)8 (2m)6 (2m)® (27r) e +p3 ) %
X I a2k 2eM)2E)eE!) 36®)sE)eE?) - - x

A.LI,S <k2<A?

x -2 2 expl- [ A (jfj; &(~p)[p? + m*2(p) ] }

Expanding the logarithm one arrives at the final expression of H.f; as a power series in

Hys = [ S5 a8 7+ ] 2) + (232)

1 [=g\" [As degl) dsp (1) d8p ( ) 6(6) (1) (1) (1)

n=1

dbp (2) dbp (2) dbp ( )
(2 ) (27r)6 (27r)6 (2m)°6@ (p{") + p{) + p) - -

a8p{™) asp{) gsp)
" (2r)8 (21)8 (2m)8
(222 (8)) 223 () - - 3() 3 (2{)3(p{V) )e

X

(27[‘)66(6 (_p]_n +p§n) +p(n)) X

X

where ( ... )¢ denotes the connected part of the following expectation value:

( 3(p)2(2)3(05") 2(p{)3(pP)3(pP) - B(p™)B (IR ) (2.33)

I a8k 2@")2EM)eE) s)a@)a@E?) - - x
AL <k2<A?

e wp{EENRE) el - [ T 8- b ] 2(0) )
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It is natural to divide the field ¢ in low momentum and high momentum components:
P(z) = ®1(z) + ®p(z) (2.34)

where @ has components between 0 and Ag while 5 has components between A and A:

Ag 6 .

bi(e) = [ s B (2.35)
A 6 .

Bia) = [k 2

In momentum space &1,(p) = &(p) (Ag—|p|) while @5 (p) = &(p) 6(|p|-AE). The functional
integration is only over ®p, which is associated therefore to the internal lines of the graphs.

The non-integrated components stay in ®; and each & is is associated to an external line.

The Feynman rules are:

oy B propagator (2.36)

—g = vVertex
The external lines of a graph have momenta between 0 and Ar while the internal lines have
momenta between Ar and A. Loops are integrated in a region where all propagators have
momenta between Ap and A.
To compute H.ss therefore you have to sum all the connected diagrams with an arbitrary
number of external lines and with generic momenta below Ag. That is clearly an impossible
task. Some approximations are needed; we describe them in the following passages.

At tree level, the simplest diagrams are those describing the scattering of 2 scalar particles:
S+5—-85+8 (2.37)

Since the internal line carries a momentum greater than Ag while the external lines have
momenta much less than Ag (cf.eq.(2.13)), these graphs do not contribute to the effective
hamiltonian in the low-momentum region. The same conclusion holds for tree level diagrams

with an arbitrary number of external lines.
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We can consider 1-P.I. graphs. At one-loop level these graphs (apart from crossing) are
classified by the number N of external lines.
For N = 1 there is a tadpole graph, describing a scalar with 0 momentum coming from or
going into the vacuum:

A % 1
Ap (27)8 k% 4+ m?
At — AL
2

T = —g (2.38)

, A? + m?
— m2(A? — A2 4

g

12873 }
The effect of this diagram is a shift in the field . As a consequence, a term linear in ® is

introduced in the effective hamiltonian.

For N = 2 there is the self-energy graph of the scalar:

3 2 _ (—g)2/ d%k 1 1

where D2 is a region in the k space where
AL < K%, (p— k) < A? (2.40)

The diagram (2.39) is quite difficult to compute, because of the dependence both of the
integrand and of the domain of integration on the external momenta. This is a general
property of the diagrams of the transformation (2.16). Because of the condition stated in
eq.(2.13), it is natural to make an expansion around small p? and m?, which we think of as

quantities of the same order. At p? = m? = 0 the self-energy graph gives:

—A)2 A 6 2
5(0,0) = 29) /A ) (22;2 = 25%7T3(A2—A2E) (2.41)

The first derivatives with respect to p? and m? are given by:

0% _ 9 A 48k 1 B 92
<W) (0,0) = -g /1.\5 (27r)5(lc2)3—~647r310g(A/AE) (2.42)
0% gtk 1 g2 |

(5}@7) (0,0) = % Ap (gr)G(kz)s__3847r31°g(A/AE) (2.43)

%(0,0) and (8% /8m?)(0,0) induce in the effective hamiltonian a term of the form

&(z)?, (2.44)
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that is already present in the original hamiltonian. (0%/8p?)(0,0) induces in Hsf a term
®(z)0%(z) (2.45)
already in H. The second derivative with respect to p? is given by:

%% 9 1 1

where C is a numerical constant vanishing in this case: C = 0. It induces in H.¢s a term of

the form

3(2)0%®(z), (2.47)

not present in H. The vertex correction is given by:

d%k 1 1
:m?) = (—g)° 24
V(plpraPi’nm ) ( g) -/DS (27!')6 k2 +m2 (pl +k)2 +m2 X ( 8)
1
(p1+p2+k)?+m?
Neglecting the external momenta and the mass, one has:
A a8k 1 -g3
3
= (- = log(A/A 2.49
Vo ( 9) /f;E (27[‘)6 (k2)3 643 Og( / E) ( )
Vo induces in H.s an interaction of the form:
&(z)? (2.50)

already present in H. V is a function of all the possible invariants that can be constructed
with the external momenta. Taking into account the conservation of momentum, V' can be

expressed in terms of p; and p, only:
V. = V(p},p3 p1-p2; m?) (2.51)
The derivative with respect to p; - po, for instance, is related to an interaction of the form:

6,8 0,3 (2.52)
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The n-point Green function is given by:

dSk 1 1 y
pn (2m)6 K2 +m? (k+p1) + m?
1 1
(k+p1+p2)?2+m? (k+pr+p2+-+pn1)?+ m?

+ (crossed diagrams)

V) (pi,pr...pp) = (—g)" (2.53)

At zero external momenta:

(n) A gt 1 ]
v = (—g) R + (crossed diagrams) (2.54)
E
(—g)" 1 1 1 .
= (255 — 5.—=5] + (crossed diagrams)
643 2n— 6 'AZP6  AZn-6
(=g)" 1 1

12

—= + (crossed diagrams)
6473 2n— 6 A2

where the last line follows because of the condition (2.14). In other words, we consider the
continuum limit for the original theory, A — oo. V(")(O) gives rises to an interaction of the

form

&(z)" (2.55)

not present in H. The effective hamiltonian therefore is red:

Hg= [ 5280 1 + m - 3(0)] 30 + (2.50)

/ Ae d%p; dSp, d°ps
o (2m)8(2m)8 (2m)8

x[g = V(p1,p2,p3)] (p1)2(p2)%(ps) +

/ As d%p; d®p, d®ps d°py
o (27)8(2mr)8 (2m)8 (2m)6

x V) (p1, pa, p3, p1) (p1)®(p2) & (p3)&(ps) + - -

(271')65(6)(1)1 + p2+p3) X

(2m)86©) (py + py + p3 + p4) X

The Green functions (2.12) do not depend on the choice of Af, because Ag is only a scale
introduced for convenience. The dependence on Ag in the upper limits of the integrals in
eq.(2.56) cancels against that of T, 3, V and V(). This is the condition of R.G. invariance

for the effective hamiltonian.
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The effective hamiltonian contains interactions with an arbitrary number of fields and
with an arbitrary number of derivatives acting on the ®’s. As we have already stressed, we
are not interested in the exact form of H,s; but rather in its relevant part under the condition
(2.13). The operators entering H.s; can be classified according to the number of fields ng

and to the number of derivatives ng:

®, 0%, 0O%@, 0°3... (2.57)
3?2, 308, o038, 30°®...

3, 8’08, ¥°0°%, ¥0%0%, $0,9,30,0,9, ...

......

We notice that the operators linear in & other than & itself do not appear in H.s; because
of the conservation of momentum.
The canonical dimension of ®(z) is 2 in unit of mass and that of a derivative is 1. The

canonical dimension d of a composite operator O is therefore
d = 2ng + nps (2.58)

From the expressions (2.38), (2.41) and (2.42) one sees that the operators with dimension
less than 6, i.e.

%, and 3* (2.59)

have coefficients ¢ proportional to a positive power of Ag,

2

¢ o« AS? + (corrections of order —1%;) (2.60)

Because of the condition (2.13) these operators must be included in Hjy.

The operators of dimension 6,

$0% and 3° (2.61)
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are already present in H and it is clear that they must be left in Hcys. They have coeflicients
which are logarithmic functions of Ag. Since this is a singular dependence, you have also to
include the loop contributions (2.43) and (2.49) in the coefficients.

The operators O; with a dimension greater than 6 have coefficients ¢; which are suppressed

by positive powers of Ag:
1

¢ X ~d=6 (262)
AES

This phenomenon occurs for dimensional reasons, because Ag is the only relevant scale. The
diagrams giving rise to O; are ultraviolet convergent and therefore it is allowed to take the
limit A — co. One can neglect p? and m? because of the condition (2.13) and because there
are no soft divergencies in the limit m?, p?> — 0. Ag acts indeed as a regulator of the infrared
and the collinear singularities.

We expect, on physical grounds, that the effect of these operators is small, of the order of

(fé) et (2.63)

because of the condition (2.13), where p is the scale of the process. These operators therefore
have a small effect in the low-energy processes and often can be neglected in Hyy.

We come therefore to the conclusion that the main effect of lowering the cut-off is the

modification of coefficients of the operators with dimension less than, or equal to D.
2.3.3 Improved Hamiltonians

In some applications of the effective theories terms of order

p n
B 2.64
(AE), n>0 (2.64)

must be retained. One can reach this level of accuracy by including all the operators with
a dimension up to d = D + 7 in the effective hamiltonian. For finite d there is only a finite
number of such operators. In this section we sketch the construction of such a kind of effective

hamiltonians, which are usually called improved hamiltonians [23, 44].
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The estimate (2.63) of the matrix elements of an operator of dimension d is true in the

computations with Hss at tree level, or in the free model considered in eq.(2.17). We
consider now what happens when we compute loops with an effective hamiltonian containing
irrelevant operators O;’s.
The insertion of the operators O;’s inside loops gives rise to very strong ultraviolet diver-
gencies; that irhplies the main contribution to the loop coming from momenta of order Ag.
The condition (2.13) that has been assumed for the expansion of H.ss in local operators
therefore breaks down. The amplitude containing an insertion of O; is no longer of order
(p/AE)*8, because the loop integration supplies powers of Ag at the numerator that cancel
those or parts of those in ¢;. Let us consider the model of the preceeding section. We want
to construct an effective hamiltonian giving the same results of the original hamiltonian up
to terms of the order

(]§5>2 (2.65)

We include in Hys the following 3 operators of dimension 8:

1 2 €2 52 €3 &4
= = $0%P = —= $°0¢, 03 = & 2.66
01 AL » O AZ 3 AZ ( )

We need to consider single insertions only, for double insertions give contributions of order

(p/AEg)*. The insertion of O; in the self-energy diagram gives:

2 2y _ _(‘9)26_1//‘3 d®k 1 1
B, m) = 2 AL Jo (2m)8 k24 m? [(p— k) + m?] (2.67)
B (p— k)*
X {k2+m2 (p—k)2+m2}

The ultraviolet divergencies are polynomials in the external momenta and therefore can be
computed with a Taylor expansion around p? = 0.

At p? = m? = 0 one has:

_ 9201 2
25673 &

21(0,0) = (2.68)

This divergence can be absorbed with a shift of the coefficient of the operator &2 in the

effective hamiltonian.
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The derivative with respect to p? gives:

0%, _ !]201

This constant can be absorbed with a finite shift of the coefficient of the operator $0®. We
notice that the anomalous dimension of ¢ is not modified by O;.

The second derivative with respect to p? is still divergent but it cannot be evaluated at
p? = m? = 0 because there is an infrared divergence. One has to keep an infrared regulator,

for example m? # 0. We have:

(55) 00 = S G2) wa () )

where k is a numerical constant.

This term is not ultraviolet divergent but gives contributions of the order

(&) m ()

which may be greater than terms (2.65) that we want to take into account properly. One can
remove the term (2.71) with a redefinition of the coefficient of the operator O itself.

Derivatives with respect to p® of greater order than two lead to loop integrals which are
convergent by power counting and in which one can take the limit Ag — oo. The loop
therefore is dominated by momenta of the order of the external ones | p; |< Ap, where the
expansion of H.r¢ around small momenta is right. The contribution of the loop is of order
(p/Ag)?: these are the finite radiative corrections of O;.

The insertion of the operator O; in the one-loop correction to the vertex gives:

or 1 1
(27)8 k2 + m? (p1 + k)? + m?

S N () N (RS R )
(ktp+p)?+m?t B2 4m? " (ktp)?+m? " (ktpy+pa)® + m?

C1

"X%("g)s

Vi(p1,p2, p3; m?) = (2.72)

}

At zero external momenta:
_ 3ag’

Vi= 12873

(2.73)
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This term can be absorbed with a constant shift of the coefficient of the operator 3. The
[-function is not modified by the dynamical effects of O;.

The derivative with respect to p3, for example, gives:

(9V1> ci1g®
hali —— m 2.74
(3p§ o 96m3 log(Ag/m) (2.74)

This term can be absorbed with a shift of the operator Os.

The insertion of Oy into V) gives:

W _ _eafte &k 1 L 2.75
Vi = A%«:g o (2m)F B2+ m2 (k+p1)2+mzx (2.75)
1 1 { k* N
(k+p1+p2)? +m? (k+p1+p2+p3)? +m? © k24 m?
(k +p1)* (k+p1+p2)* (k+p1 +p2 + pa)’ }
(k+p1)2+m?  (k+pi+p2)2+m?  (k+p1+p2+ps3)? +m?
+ (crossed diagrams)
At zero external momenta, keeping m? # 0, we have:
(4) gt
V= log(Ag/m) (2.76)

16734
This term is cancelled by a counterterm proportional to Oj.
The insertion of O; in the one-loop diagrams of V(™ for n > 4 gives rise to integrals which
are convergent in the limit A — co. These integrals therefore contribute to the amplitudes
by genuine terms of order (p/Ag)?.

To make an account: there is a mixing of O; with the operators of dimension d < 6 as
well as with the operators of dimension 8. Analogous computations may be repeated for O,
and Oj.

The scalar field theory considered above illustrates very clearly the fundamental ideas of
the improvement. In the case of QC D, the improvement program is much more complicated
due to the presence of gauge invariance and fermions.

We conclude that the ultraviolet divergencies, produced by the insertion of the irrelevant

operators in the loops, can be removed with a shift of the lower dimension operators. We can
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tune the parameters of the improved hamiltonian Hcss in such a way that gives the same

amplitudes of the original hamiltonian H up to terms of order (p/Ag)?.
2.4 Effective Hamiltonians with some particle removed

A different kind of effective hamiltonians can be constructed when a particle does not appear
in the external states of the processes of interest. This is the case of the W boson for low-
energy weak decays. Let us discuss this example: we can construct an effective hamiltonian

H.;; by integrating away the field components of every momentum of the W:
exp[—Hes (%, A, Z,8)] = exp[~H (v, 4, Z, 3)] / [dW,.] exp|— Ho(W) — Hy(W,J)]  (2.77)

where we consider the S.M. hamiltonian and we neglect for simplicity the interaction of the
W field with itself and with the other vector and scalar particles. In eq.(2.77) 1 denotes the
set of spinor fields, A and Z indicate the e.m. and the Z field, ¢ is the Higgs field and J, is
the sum of the charged currents.

Performing the functional integration over the W field gives:

eXP[ “Heff(¢7A7Z7§) } = (2'78)

expl ~H($,4,2,8)~ [ d'pIu(p) A (p)T(p) + huc.]
where A, (p) is the propagator of the W:

8y — Pupu/M?

Auu(P) = pg T M2

(2.79)

As the effective theories for light particles, the effective hamiltonian (2.78) is non local
because of the p? at the denominator. To have a local action, one expands the W propagator
(2.79) in powers of p?/M? and truncate the expansion according to the precision required.

This kind of effective thgories does not apply only to heavy particles. The Coulomb
potential in the Schroedinger equation, for example, is an interaction resulting from the

integration of the e.m. field.
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2.5 Effective Theories for heavy particles

Another class of effective hamiltonians refers to the processes where heavy particles are
subjected to soft interactions [9, 28]. By ’soft’ we mean that the energy transfer ¢ and the

momentum transfer ¢ to the heavy particle are much less than its mass M:
lel, |7l < M (2.80)

Since the heavy particle H is initially on-shell and, for example, at rest, it will remain
essentially on-shell and will acquire a very small velocity ¥ < 1 after the interactions. The

relevant states for the dynamics of H will be those with 4-momentum around
p = (M,0). (2.81)

One can construct an effective hamiltonian for the heavy particle by integrating away:

i) the states which are highly virtual, i.e. the states with an invariant mass k? < M? or
k? > M? and

i1) the states with a laige velocity, for which the spatial momentum | |~ M or greater than
that.

We leave in the effective hamiltonian the states with momenta k in a region around the
mass-shell:

|ko— M|, |k] < Ag (2.82)

Let us consider the construction of this kind of effective hamiltonians in a very simple
case, a free scalar of mass M in Minkowski space. The continuation to euclidean space will

be discussed later. The action is given by:

D
1S = z'/OA (;lﬂ-)qD 3'(q) [¢* — M? + i) 8(q) (2.83)

where A is an ultraviolet cut-off, much greater than the particle mass:

A>M (2.84)
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Since what is small is not the energy of the heavy particle, but the energy minus the mass,

it is convenient to express the action in terms of a subtracted momentum k:
k =q-p (2.85)
where p is given by eq.(2.81). One has:

A kz
S = i | d'k ¢T(k) [ko + — + i :
is = z/o d'% G(k) (ko + 5= + ie] 4(F) (2.86)

where we have defined an ’effective field’ ¢ such that:
#(k) = vV2M ®(p+ k) (2.87)

The difference between the domains of integration of ¢ and & can be neglected because of the
condition (2.84).

The effective action iS5 is defined as:

exp{ iSers[p(k); 0 < k* < AR] } = (2.88)

II  do(k) exp{iS[p(1);0 < I < A%} }

AL <E2<A?
This definition is quite similar to that given in eq.(2.16) for the effective theories for light
particles, but one has to remember that in this case k is not the true momentum of the
particle, but a subtracted momentum.
In the free case, the functional integration is trivial and gives an effective hamiltonian of the

same form as the original one, with a smaller cut-off Ag:
. . [AE dPk § ) .
iSer; = z/o (o ' (4) (ko + K/2M0 + ] 6(k) (2.89)

If A € M, i.e. if one is interested in a narrow band of states around the mass-shell, then
k?/2M < ko; one can neglect the term with &2 reducing the effective action to the following

form:

s = i [ R )+ iehp(H (2.90)
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This action describes particles at rest with an infinite mass and is called ’static’ [13]. It will
be derived with an expansion in 1/M in the next chapter.

The approximation leading to the action (2.90) is analogous to the one considered in
eq.(2.22) for the effective theories for light particles.

The term with k? is an irrelevant operator with respect to a R.G. transformation that
consists of the following steps (S. Capitani and the author):
1) We lower the cut-off of the effective theory Ap of a factor s, i.e. to Ag/s. The modes with

momenta between Ar and Ag/s are integrated:

exp{ 255 ;,[0(1);0 < < (Ag/s)} (2.91)
= [T ae() exp{iSpslp()i0< P < A3}
(Ag/s)?<k?<A%

With this operation the effective action (2.89) becomes:

Ag/s gD
s, = % (g%-)’% &t (k) [ko + k2/2M + ie] B(k) (2.92)

1) We rescale the momenta according to:
E = sk (2.93)

Notice that one does not rescale the energy of the heavy quark, but the energy minus the

mass. One has:

Ap qDp’ 1 k2
15! pd _(D'I'l) 7 T(g / —— 3 /
iSess s z/D (2m)D o'(K'/s) [k)+ Y + i€] ¢(k'/s) (2.94)

137) We rescale the field in such a way that the lowest dimension operator takes a unit

coefficient:
¢ (k) = s PH2g(k 1 5) (2.95)
The effective action looks finally:
Ae 4Pk 1 k'
/ _ 1t roosr 10t
s = ) ey ) W+ gy i 68 (2.96)
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Now imagine to iterate the transformation many times, say n times; every iteration the term
with k% is multiplied by a factor 1/s, and therefore its weight reduces exponentially with n.
For high level computations the term with k% can also be considered as an insertion in the

correlation functions constructed with the effective hamiltonian (2.90).

2.5.1 A simple model

Let us discuss the construction of the effective action in perturbation theory for a simple

model (S. Capitani and the author), whose dynamics is determined by the lagrangian:
L = 8,304 — M*3'® + 1/28,a0"a — 1/2m?a* + ¢3'&a (2.97)

where & is a heavy scalar with mass M and a is a light scalar with mass m.
This theory is superenormalizable in 4 dimensions because the coupling ¢ has the dimension
of a mass, but this does not matter for the following considerations. The work is still in
progress and we present the general setting.

We are interested in the soft interactions between these particles; we introduce therefore
an effective theory where we integrate away the states with high-energy for the light particle

and the states far from the mass-shell for the heavy particle. We select a cut-off Ag so that:
2 2 2

After making a shift like in eq.(2.86), we have:

exp{iSecss[ ¢(k),a(1);0 < k%, 1> < AF] } = (2.99)
Ao
/ [T de(k) da(l) exp{ / (o © (k) Tho +42/20 + ic] (k)
A2 <k?, 2<A? 0 em

d'l L

+i / (2n) a(=1) [ = m® + iq] a(l) +
Ny diky dks i

Z/\./ (2m)4 (27)* (2 )4(27") 6(ky + k2 + k3) ¢'(k1) @(ka) a(ks) }

where A = ¢g/2M is a dimensionless coupling constant.
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The derivation of the Feynman rules is analogous to the one given in sec.(2.3.2), so we skip
details. These are:
i
ko+ k2/2M + ie

?

heavy scalar propagator (2.100)

¥ —mZtie light scalar propagator
—m? + te

—tA : vertex
Notice the asymmetry between the heavy and the light propagator related to the shift in the
energy for the massive one; the poles for the heavy particle and the heavy antiparticle are

respectively at:
ko = £\VE2 + M2 - M (2.101)

The external lines of the graphs have momenta between zero and Ag while the internal
lines have momenta in the range A — Ag. Loops are integrated in a region where all the
internal lines have momenta between Ag and A.

At one-loop level the one-particle irreducible diagrams are classified by the number of
external heavy and light lines, (ny, nr).

The self-energy of the heavy scalar (ng = 2, nz = 0) is given by:

d'k 1 1
p2 (2m) ko + k2/2M + ie (p— k)% — m? + ie

Th(p) = A? (2.102)

where D2 is the region of the k space, where both propagators have momenta between Ag
and A:

AL < K%, (p—k)? < A? (2.103)

The self-energy of the light particle is given by:

d*k 1 1
Ir(p) = A’ / 2.104
£(p) D2 (2m) ko + k2 /2M 4 i€ po— ko + (p — k)?/2M + ie ( )
The vertex correction is given by:
dil 1
Vik, kK — k) = —,\3/ 2.105
(k. ¥, ) p3 (2m)* 12 — m? + de X ( )
1 1
X

ko + lo + (k + 1)2/2M + ie ki + lo + (K + 1)2/2M + ie
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where k& and k' indicate respectively the momenta of the incoming and outcoming heavy
particle.

The computation of these diagrams is very difficult and we failed up to now. Let us make
some qualitative remarks about their physical meaning. Near the upper limit of integration,
the loop momentum is very large, k£ ~ A, the shift (2.85) is irrelevant and the integrand is
similar to the corresponding one in the full theory. On the contrary, near the lower limit of
integration, the loop momentum is very small, ¥ ~ Ag. k?/2M < kg, and the integrand
resembles that of the static theory. The integrand in eqgs.(2.102)—(2.105) interpolate between
the region in momentum space in which the heavy particle H is essentially static and the
region in which H is dynamical. The loops therefore contain the effects of the fluctuations
with momenta both greater and smaller than M. The transformation (2.99) indeed lowers
the cut-off in such a way that we cross a physical threshold, the heavy particle mass.

The effective theory takes into account the effect of virtual heavy particles, but cannot
describe processes like the creation of a heavy particle-antiparticle pair by the collision of
light particles. That happens because large energies and iarge momenta are removed, i.e.
that there is a cut-off A « M below the threshold for pair creation.

The effective action contains interactions with an arbitrary number of light and heavy
scalars, that are not present in the original action. Limiting our analysis to the diagrams

above, it is given by:

iSerp = ‘/AE d'k ¢' (k) (ko + k*/2M + Ty (k) + i€] ¢(k) (2.106)
Weff =1 . (277)4 0 H 7€ .

Ag 4
-|—i/ (‘%4 a(=1) [ = m? + £.(1) + iq] a(l)

0
Ag pAE pAgp d4k1 d4k2 d4k3 '
—iA ki,koy k
+/0 /0 /u (2m)* (27)4 (27‘-)4[ i\ + V(ky, ko, k3)] ¥

X (27 )48 (ky + kg + k3) d(k1) (k) a(ks)

In classical physics or in quantum mechanics, the static approximation is derived expand-
ing the lagrangian in powers of k/M < 1, where k is the residual momentum of the heavy

particle, keeping only the lowest order term. Any observable quantity is an analytic function
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of 1/M, and has a finite limit for M — oco. The binding energy ¢ of the hydrogen atom, for

instance, is proportional to the reduced mass p of the electron-proton system:

mMM
m+ M

€ X p = (2.107)

where m is the electron mass and M is the proton mass.
€ may be expanded in a power series of m/M < 1, and has a finite limit for M — oco: the
static binding energy.

In quantum field theory, the formulation of the static approximation is more delicate: we
cannot simply evaluate the functional integral with the static lagrangian, instead of with the
original lagrangian. In many cases, low-energy dynamics is controlled by fluctuations with

momenta between k and M, contributing to amplitudes by terms of the kind

M2
].Og ?. (2.108)

Naive physical intuition fails: the typical loop momentum [ is not soft in an amplitude

containing a soft heavy particle in the external states. We have:
I ~ k, (2.109)
and the relevant loop momenta are in the range
o< < M? (2.110)

Quantum fluctuations give rise to a non-analytic dependence of the amplitudes on M.
The mass M of the heavy particle acts as an ultraviolet cut-off for the fluctuations, and
taking the limit M — oo is not allowed: the static approximation is a singular limit in field
theory.

The static lagrangian does not contain the scale M any more, because we have taken the
limit M — co. Evaluating amplitudes with the static lagrangian, we find that terms of the
kind (2.108) correspond, in the effective theory, to a specific ultraviolet divergence [39], of
the kind

2
log %2— (2.111)
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where A is the cut-off.

Amplitudes computed with the static lagrangian are more singular than those ones computed
with the original lagrangian, because we removed an essential parameter from the theory,
which we have to reinsert in the form of an ultraviolet cut-off. Generally, the variations of
the dynamical properties of a system with the mass, are much more complicated in quantum
field theory than in quantum or classical mechanics.

We may formulate the static approximation in quantum field theory by means of an
effective theory: we integrate away the heavy particle degrees of freedom, with momenta
which are very far from the momentum p = (M, 0), of the particle at rest. The resulting
effective hamiltonian H.;; has a very complicate dependence on M, both via logarithmic
terms of the kind (2.108), and via terms of the form (k/M)". We may expand H.s; in

powers of k/M, but we have to keep the logarithms of the mass the way they are:

_ g0 1w 1
Heff P Heff'*“ﬁ‘Heff"*‘WHeff—i‘--- (2.112)

The static hamiltonian H S;)f in quantum field theory still depends on M , contrary to the case
of quantum mechanics.
We conclude that the static theory for heavy particles can be formulated by means of a

transformation on the functional integral, which is very similar to the R.G. transformation

introduced by K. Wilson.



3 Static theory for heavy quarks

3.1 Basic elements

In this section we discuss the static theory for a heavy quark, i.e. the effective Hamiltonian
at lowest order in the 1/M expansion [12, 13].
The dynamics of a quark @ inside a given colour field 4,(z) = A%(z)t® is determined by

the Dirac lagrangian:
L(z) = Q(z)(iy*D, — M)Q(z) (3.1)

where: D#(z‘) =0, +1igdu(z).

It is natui‘al to assume that a heavy quark @ in a hadron is nearly on shell and nearly at
rest, because its momentum differs by (M, 6) by terms of order Agcp. It follows also that the
heavy quark is subjected mainly to chromoelectric interactions, and chromomagnetic effects
can be neglected. One can drop the terms related to the spatial motion of the heavy quark

in eq.(3.1) obtaining the following ”effective” static lagrangian:
Ls = Q(z)(#10Do — M)Q(=) (3.2)

The static theory (3.2), unlike the high energy one (3.1), is no more Lorentz or even Galileo
invariant, since we have set equal to zero the spatial components of the 4-vectors p,, 4,.
Abandoning the complete theory in favour of the static one, we have done an operation
analogous to the gauge fixing in quantizing gauge field theories, which notoriously breaks

gauge symmetry.

33
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Dividing the static lagrangian in a free part

Lo = Q(z)(¥1000 — M)Q(z) (3.3)

and an interacting one
Ly = —gQ(2)104o(z)Q() (3.4)

one derives the following Feynman rules:

Yopo — M +ie pi— M2 +ie 2 py— M +ie 2 po+ M —ic
= propagator (3.5)
—1gY00,0ta = vertex

Taking the Fourier transform of the propagator one gets:

SO (g) = —i6® (2)| =220 (1) exp(—iMt) + L%@@(-t)exp(im) ] (3.6)

The presence of the §-function §(Z) shows that an infinite-mass quark is a classical par-
ticle: once created in a point, it remains there forever. There is no contradiction with the

uncertainty principle since

§zév = bzép/m ~ h/m (3.7)

which goes to 0 as m — oco. The interacting propagator S(z) is computed by noting that
for an infinite-mass quark finite momentum transfers cannot neither change its motion nor
rotate its spin. For a very heavy particle the sum over histories collapses into the classical
one (Z(t) = 0 for each t). The interaction then generates only a phase factor in colour space

[26]. By gauge covariance the propagator may depend only on:
t hed
P(4) = Pexplig / Ao(T, )de') (3.8)
0
where P denotes path ordering, and therefore:

5(z) = P(A)-5°(z) (3.9)
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Notice the factorization of the color and spin degrees of freedom.
In the static theory the parameter M can be removed, because it does not represent any
more a true, dynamical mass. In the free case, the static approximation is equivalent to

expand the energy-momentum relation in powers of 1/M

E=1/p>+M?=M+p*/2M +... (3.10)

keeping only the leading, momentum independent term
E = M. (3.11)

The parameter M therefore does not control anymore changes in energy related to a given

change in momentum. In the lagrangian of eq.(3.2) M can be removed with a redefinition of
the phase of the field:

Q'(2) = Q(z)expl—iMryof] (3.12)

The physical meaning of the static approximation can also be understood with the fol-
lowing considerations.

In classical field theories the propagation of waves in the space is described by terms in the

lagrangian which are bilinear in the field and linear or bilinear in its spatial derivatives, such

as

0;40:¢, V7:0: (3.13)
where ¢ and 9 denote generically a bosonic and a fermionic field (in the euclidean theory terms
of the form (3.13) are instead associated to the field diffusion). Dropping these terms, waves
do not propagate any more and the field reduces to a continuum of independent oscillators,
one for every point of the space. As a simple example, consider the Klein-Gordon lagrangian

with spatial derivatives omitted:
2
1
L(Z,t) = % (@) ~ —m?¢? (3.14)

The equations of motion are:

—é—t—5¢(m,t) = —m*¢(&,1) (3.15)
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having as solutions:
B(&,1) = ¢(&,0)e " ™H0E) L (7, 0)etimt—i8() (3.16)

for every Z. The oscillation amplitudes ¢(&) and phases §(&) are completely arbitrary func-
tions of £. Quantizing the theory we get a spectrum of excitations consisting of particles

—

created in various points (instead of with a given momentum) Z, Z’... by different operators

.'.

AL, Q-
In most applications of the static theory, only heavy quarks or heavy antiquarks are
involved. We can decouple the corresponding fields by separating upper and lower components
in Q(z):
H(z)
= 3.17
a- (1) o

The static lagrangian is written in terms of quark and antiquark fields as:
Ls(z) = HY(2)iDoH(z) + K'(z)iDo K () (3.18)

The number of degrees of freedom for a given orbital state is preserved since we have converted
a 4 component theory in 2 independent 2-component theories. Such a reduction is impossible
in the original theory, due to the presence of the Dirac matrices with spatial indices 74 that
couple lower and upper components. In physical terms, a coupling between particle and
antiparticle fields is necessary in the relativistic theory, because the latter must account for
the conversion of energy into particle-antiparticle pairs. All this is known from the first days
of quantum field theory. The static theory is a low energy effective theory and particles
states with momenta comparable to the mass are absent from the spectrum: there is no way
to excite the ”Dirac sea”.
Assuming a convention according to which H(z) ~ exp(—ip-z), K(z) ~ exp(ip- ), the
Feynman rules in the 2—component theory are:
i
Po + i€

quark propagator (3.19)

—ig t;6,0 @ quark vertex
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—1

— : antiquark propagator
Po — €

—ig ¢;;0,0 : antiquark vertex
3.1.1 Spin-Flavor symmetry

The static lagrangian has additional symmetries with respect to the Dirac lagrangian. L does
not contain terms proportional to the Dirac matrices with spatial indices 7z, and therefore it

is invariant under spin rotations of the form

Q =UQ (3.20)

where

U = exp(id - £/2) (3.21)

Lk = 1/2 €;17i7j and wi are the parameters of the space rotation.
The symmetry of the static lagrangian is even greater, since one can decouple the quark
from the antiquark field. Consider the static lagrangian in the form of eq.(3.18). It is possible

to make independent rotations of the fields H and K:

H' = exp(id-&/2) H (3.22)

K' = exp(id'-d/2) K

where o are the Pauli matrices.
The spin symmetry is broken by the chromomagnetic moment operator that enters as a 1/M
correction to the static theory.

Another kind of symmetry occurs when there are many heavy quarks, let us say f. The
lagrangian is now

f
Ls =Y H}(z)iDy Hy(z) (3.23)
k=1
and it is invariant under transformations of the form:

-1
H' = exp(i¢g+i Y agte) H (3.24)
a=1
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where ¢ is a phase, t, are the generators of the fundamental representation of the group
SU(f) and «, are the parameters of the transformation. H is a vector containing the heavy
quark fields: H = (Hy, H,,...Hy).
This flavor symmetry is broken by every correction to the static theory of order 1/M.

It is possible to combine in a non-trivial way the spin and the flavor symmetry. The

lagrangian (3.23) is invariant indeed under unitary transformations of the following multiplet:
g = (&Y, B2, BY, 5, .BY), B) (3.25)

where the superscript denotes the upper and the lower component of a single 2 component field

H}.. This symmetry consists of SU(2f) transformations and is called ’spin-flavor’ symmetry.
3.2 Beauty spectrum

Making use of the spin-flavor symmetry it is possible to predict the masses of the particles
Ag, Ev, By, B:, By, B}, Bs1, Bi,Zs [1] (see further for the definition of the quantum numbers
of the states By, B;, By, BY,).

In the static theory a pseudoscalar P or vector meson V composed of a heavy quark @
and a light antiquark § = %, d, 5 is described as a cloud of light degrees of freedom screening

a static colour source. We may set:
Mp(y) = M+ €pP(V") (326)

where €p(y-) is the static binding energy of the pseudoscalar (vector) meson, independent of
M and of order Agcp. Spin symmetry implies that pseudoscalar and vector mesons belong

to a degenerate doublet, and therefore:
Ep — €y = € (3.27)

The proof is the following. The chromomagnetic moment figy associated with the heavy quark
spin S is a term of order 1/M. At tree level:

-

- g
fio = =50 (3.28)
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fig determines the spin interactions of the l}eavy quark with the meson cloud and has the
effect of removing the degeneracy (3.163). In the static theory g = 0. The pseudoscalar
meson spin results from antiparallel orientation of the heavy quark and meson-cloud spin,
both conserved in time. Rotating by 180° .S_"Q we transform the pseudoscalar meson into the
vector one without any energy supply (a more formal proof is given in section (3.5.2)).

It is relevant to notice that, while Mp(y-) is a physical quantity, ¢ and M are not: they
contain ultraviolet power divergencies in perturbation theory [30, 45]. The physical predic-
tions we are interested in are free of any divergence because they can be expressed as relations
involving only observable masses. In final equations, only differences of binding energies are
present.

An analogous of eq.(3.26) holds for a A hyperion containing the heavy quark Q:
My = M+nq (3.29)

where 7 is the static binding energy associated to the dynamics of light valence u and d
quarks.

Assuming the ¢ and b quarks as heavy we have therefore:

My, — Mp = My, — Mp (3.30)

[+

Eq.(83.30) holds in the static theory and is corrected by terms of order Agcp /M., Agcp/Ms,
generated by subleading operators appearing in the effective hamiltonian.
An improvement can be realized by eliminating 1/M,, 1/M, spin dependent corrections,

of the form:
2

Me(v)

gc(b) : §light (331)

where A is an (unknown) constant of order Agep, and gjight is the angular momentum of
the meson or hyperion light degrees of freedom. Since for A baryons Sjigp: = 0, the mass of
the Ay(;) has no spin dependent corrections of order 1 /Mb(c). For the pseudoscalar and vector

mesons, Sygne = 1/2, and the combinations of masses that do not contain corrections of the
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form (3.31) are given by:
Mp + 3Mp-« Mp + 3Mp-
4 ’ 4

(3.32)

Eq.(3.30) is then replaced by:
1 1
My, - ;(Mp +3Mp-) = My, — 1 (Mp + 3Mp-) (3.33)

Inserting the experimental values for the masses of B, B*, D, D*, A. particles, we predict

the Ay mass:

My, = 5630 MeV (3.34)

(I have taken an average of the masses of the mesons B* and B, Dt and DY, etc. to
minimize isospin breaking effects).

I point out that eq.(3.33) is not a consequence of a model, but of QCD in the limit of
very massive ¢ and b quarks.

It is surprising that eq.(3.33) still holds with a very good approximation for light hadrons

(where it is no longer a consequence of the heavy quark effective theory):

My — E(M— + 3Mp) = 328 MeV (3.35)
1
My — Z(MK +3Mg+) = 321 MeV
while
1
My, — Z(MD + 3MD*) = 312 MeV (3.36)

Different combinations of masses, for instance (Mya — Mz i) , ot Mya — 1/2(Mrx +
M, k+), produce quite different values among themselves. Making a linear fit of the mass
differences (3.35), and (3.36) as functions of the inverse of an average mass My + 1/4(Mp +

3My-), we may also compute the Ay mass with an extrapolation:
My, = 5624 MeV (3.37)

Eq.(3.37) has to be considered as a semiempirical prediction.
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The mass of the A, has been measured by the OPAL collaboration at LEP to be [37):

My, = 5620 £ 30MeV (3.38)

b

in good agreement with the prediction of the effective theory (3.34) or with the linear fit

(3.37). Proceeding in a similar way as above, we derive:
Mz, — My, = M=, — My,. (3.39)

Inserting the experimental values of the masses for the A, and =, particles and the value

(3.34) for the Ay mass, we predict:

Mz, = 5814 MeV (3.40)

b

(M=, = 5808 MeV with the value (3.37) for the A, mass).

The main correction to the value of the =, mass in Eq.(3.40) is related to non relativistic
motion of ¢ and b quarks in A and = hadrons. The relevant operators are given respectively
by D?/2M,, D?/2M,, where D is the spatial covariant derivative. It is natural to assume
that momentum transfers between the heavy quark and the light degrees of freedom increase

with increasing light quark masses. As a consequence,
(D)= > (D?)a (3.41)

where (...)z, (...)s denote averages with light degrees of freedom in a Z or A state. The
right hand-side of eq.(3.40) therefore has a negative correction (that vanish in the limit

My — My 4 — 0), of the form:

- ( - M}Ab) (D)=~ (%)) (3.2

The mass M’ of a pseudoscalar or vector meson composed of a heavy quark @ and a

strange antiquark 3 verifies in the static theory a relation analogous to that in eq.(3.26):

Mpyy = M+¢ (3.43)
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where ¢ # € because of SU(3) flavor symmetry breaking. We have therefore:
(MD + 3MD*) — (MD, + 3MD;) = (MB + 3M3m) - (MB, + 3MB;) (3.44)

Mpg, and Mp: are both unknown; a second independent equation may be found considering

the mass splitting between vector and pseudoscalar meson. At leading order in 1/M:

u?

(Mp + 3My-)/4

My — Mp = (3.45)

where p is an (unknown) dimensionful constant of order Agcp, independent of M, but
dependent on light quark masses. Eq.(3.45) is very well satisfied for the D* — D and B* — B

mass splitting:

(Mp+ — Mp)(Mp + 3Mp-) = 1.123 GeV? (3.46)

(Mp+ — Mp)(Mp + 3Mpg:) = 1.117 GeV*?
Applying eq.(3.45) to the B — B, and D — D, mass splitting we derive:
(Mpy — Mp,)(Mp, + 3Mp:) = (Mp: — Mp,)(Mp, + 3Mp:) (3.47)
Inserting the experimental values for Mp, Mg+, Mp, Mp-, Mp,, Mp;, we predict:

Mp

R

5379 MeV (3.48)

3

54 MeV

1

Mp; — Mp,

The same qualitative considerations related to the corrections to eq.(3.40) apply to eq.(3.48)
as well.

The experimental value of the mass of the B, meson has been recently determined to be
[43]

Mp, = 5374.9+ 4.4 MeV, (3.49)

3

in very good agreement with the prediction of the effective theory given in eq.(3.48).
Above the D — D* doublet, the charmed meson spectrum contains two resonances, called

~Y

D, and D3, with the same parity P = +1, a very small mass difference AM = Mp; — Mp, =
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35 MeV and spins §(D;) = 1 and S(D3) = 2. It is natural to assume that these states reduce
in the static limit for the charm quark to a doublet composed of the same meson cloud with
spin Spgne = 3/2. We can predict the masses of the corresponding beauty mesons, which we

call By, B3, with the following equations:

3Mp, + 5Mp;  Mp + 3Mp-

3 " (3.50)
~ 3MBl + SMB; Mp + 3Mp-
- 8 4
(3Mp, + 5Mp;)(Mp; — Mp,) (3.51)

= (3]\431 + 5MB;)(MB; — Mp,)

Inserting the experimental values for the masses of the particles B, B*, D, D*, Dy, D3, we

obtain:

12

Mg 5782 MeV (3.52)

1

Mpy — Mp, = 15 MeV

Since momentum transfers among quarks and gluons are larger in excited states, the heavy
quark effective theory is certainly best applied to low lying levels. In other words, the
estimates in eqs.(3.52) are more uncertain than those in egs.(3.34), (3.40) and (3.48). The
main correction to eq.(3.52) is related to non relativistic motion of the heavy quarks ¢ and
b; it amounts to positive contributions of order (Mp, — Mp)?/2Mp, (Mp, — Mg)?/2Mp
respectively to the lefthanded and right-handed members in eq.(3.51). We expect therefore
eq.(3.52) to have a negative correction ~ 50 MeV.

The spectrum of the charmed strange mesons has a similar structure to that of the
charmed mesons, and the corresponding levels are denoted by D;, D}, Dy, D;,. The mass
of the D3, state is not yet known and can be predicted assuming SU(3) flavour symmetry in

the spin-splitting equation:

(]\{[D:2 — .ZVIDJL)(3]VID51 + 5MD:2) = (MD; - MDL)(?’]‘/IDl + 5M02~) (3.53)
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We derive:

.Z\JD;2 = 2570 MeV (3.54)

Once the masses of the mesons Dy, D3, By, B;, Dg, D}, are determined, we can predict

the masses of the mesons B,; and B}, through the usual equations:

(3MB“ + 5MB;2) — (3MD51 + 5MD:2) (3.55)
™ (3]\{[3L -+ 5MB;) — (3]1{[1)1 + 5MD;)

(Mp:, — Mp,,)(3Mp,, +5Mp:,)

IR

(Mp:, — Mp,,)(3Mp,, +5Mp:,)

Notice that in eqs.(3.55) we do not assume SU(3) flavor symmetry. Inserting experimental

and predicted values for the masses we get:

Mp, = 5893 MeV C (3.56)

MB;2,—- Mg, = 15 MeV

Eq.(3.56) has similar corrections as those discussed in the case of eq.(3.52).

We assume that the lowest lying ¥. baryon approaches in the static limit for the charm
quark an unperturbed level with light degrees of freedom in a spin state of Sj;zn; = 1. The
spin of the X, §(X.) = 1/2, results from antiparallel orientation of the charm spin with that
of the light degrees of freedom. We predict therefore the existence of a £, baryon with spin
S = 3/2, positive parity, and a mass splitting in the doublet given roughly by:

My (5=1/2)

Msio_ — My (g ~ 90 MeV 3.57
Mzc(s=1/2)( $(5=3/2) — My (s5=1/2)) (3.57)

My, (s=3/2) = Mz (s=1/2) ~

where, to have an estimate, we assumed the strange quark as heavy!. Once the mass of the
lowest lying ¥.(S = 3/2) baryon is experimentally determined, we can predict the mass of

the %p(S = 1/2) and Z(S = 3/2) particles by the usual equations for the spin splitting and

'We do not believe that the heavy quark effective theory can be consistently applied to the strange quark.
Eq.(3.57) has to be considered as an extrapolation in the light mass region.
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the center of gravity of the doublets:

My, (s5=1/2) + 2M;c(5=3/2) My = My, (s=1/2) + 2Mz,(s=3/2) My (3.58)
= \ .

3 ¢ 3

and

(My,(s=3/2) — Mz (5=1/2) ) ( Mx,(5=1/2) + 2Mx(5=3/2)) (3.59)
= (Mg,(s=3/2) = Ms,(5=1/2) ) ( Mz,(s=1/2) + 2Mz,(5=3/2) )

For the same reasons discussed in relation to eq.(3.52), we expect eq.(3.58) to give an over-
estimate of the ¥, masses.

Up to now, the best estimate of the £4(S = 1/2) mass is that one of the true static theory:
My, (s=1/2) — Ma, = My, (s5=1/2) — Ma, (3.60)

that gives:

MZb(S=1/2) ~ 5800 MeV (361)

In general, the spectrum of hadrons containing a heavy quark @ and given light flavors
approaches in the infinite mass limit a sequence composed of doublets for Sj;gn; # 0, with spin
differing by one unit and the same parity, and of singlets for Sj;gn; = 0. The mass splitting
in the doublets are of order Agcp - (Agep/M). Mass differences between center of gravities
of different doublets and singlets have a finite limit, of order Agcp, for M — co.

Once the mass of a particle containing the top quark is measured, the whole spectrum is
fixed in the effective theory, as a function of the spectrum of charmed or beauty particles.
Since the charm and the top quarks have the same electric charge, e. = ¢; = 2/3, isospin
splitting are predicted to be the same for corresponding levels.

The experimental observation of the beauty particles predicted (egs. (3.34), (3.40), (3.48),
(3.52), (3.56), (3.61)) can provide an important test of the static theory for heavy quarks,
and of the correctness of the basic assumptions on hadron dynamics.

The procedure described above can also be inverted. Assuming both the charmed and the

beauty spectrum it is possible to evaluate 1/M corrections to the static theory, that contain
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essential informations on hadron dynamics, like typical momentum transfers, chromomagnetic
field strengths, etc... In particular, one can study the spectrum of highly excited resonances
composed of heavy quarks; in the framework of the effective theory, the characteristics of more
and more excited states can be revealed by looking at the increasing size of 1/M corrections.

In a sense, the heavy quark inside a hadron acts like a probe for light quark dynamics; it
allows a simple extraction of the motion properties of the light quark, because it is ’almost
frozen’, just like a probe. We can also vary the heavy quark mass, the *probe size’, though

discontinuously (M, — M, — M;), just the way we can vary Q2 in a deep inelastic process.

3.3 Euclidean continuation and lattice regularization

The static lagrangian (3.18) is continued to the euclidean space by means of the following

substitutions [14]:
tay = —itg, AS, = A% (3.62)
Note a difference of sign in the continuation of the time and of the scalar potential, for the

invariance of the covariant derivative.

Considering the heavy quark field, one has:
i§ = _/d4zE H'DE H (3.63)

where Df = 0F +igA~L.
Assuming a convention for the Fourier transform according to which H(z) ~ exp(—ip - z),

one derives the following euclidean Feynman rules:

7
Po + 1€

propagator (3.64)

—igtab,0 : vertex

To impose the propagation forward in time, it is necessary an ie prescription also in euclidean

space.
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Let us discuss now the lattice regularization. Assuming a discretization that is forward
in time, one has:

iS = =S H'(z) H(z) - Ul(z)H(z — ) ] (3.65)

where

Uo(z) = expligdo(z — £/2)] (3.66)

Expanding the exponential in powers of g one derives the following lattice Feynman rules:

1
t 3.67
1 — exp(tko) + ¢ propagator (3.67)
—igts expli(ko + k()/2]6,0 : vertex for 1 gluon emission

2 -
—g—z-tatb expli(ko + ky)/2)6,00,0 : vertex for 2 gluon emission

3.4 Renormalization

In this section we discuss the renormalization of the static theory [8, 14, 19, 20]. We choose
the dimensional regularization and we renormalize the amplitudes with the M S scheme, by

subtracting the poles in the following combination:
2
~—7E + log 4w (3.68)

where ¢ =4 — D.
Infrared divergencies are regulated with a fictious gluon mass A, and the Feynman gauge is
assumed for simplicity’s sake.

The one-loop self-energy diagram is given by:

%(po) = —g*C / a0k ! ! (3.69)
PO)= "G M PR | omYD o + ko + i€ B2 — AZ 1 e '
where Cr = ) tqt, = (N? — 1)/2N for an SU(N) gauge theory.
The evaluation of this diagram is standard and gives:
) 20 2 2
E(po) = ~ipo 91675 2 [ ~ = 7E +logdm + log % |+ poZe(po) (3.70)

where Y.(po) vanishes in the on-shell limit py — 0 and is finite for € — 0.
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The renormalized propagator is given by:

- 1 7
S—= = ; . - 3.71
ALS Z375 Po— iX(po) — 1§ Mg + i€ ( )

Il

6 M7z and § Z375 are defined in such a way to cancel the 1/¢ poles in the combination (3.68).

The renormalization constants are given by:

2
9CF 512 L, flogar | (3.72)
€

5]V1m: 0, 5Zm: 167[‘2

There is not any mass renormalization in D.R. for dimensional reasons. The only scales

entering the self-energy diagram (3.69) are p and A, and therefore:
Myps o« poor A (3.73)

The first case is impossible because the self-energy graph contains p only in the factor u¢
with € < 1. In the second case 6 M5z — 0 in the limit A — 0.

The effective quark does not contribute to the renormalization of the color charge g; the
B function of QCD with n, light quarks and ng effective quarks therefore is equal to that
of QCD with ng, light quarks only.? The proof is the following: since gauge invariance is
preserved by D.R., one can consider the renormalization of the 3-gluon vertex instead of the
vertex involving the heavy quark. In the 3-gluon vertex the effect of the effective quark field
on the coupling is only through loops. Considering the expression (3.6) for the propagator of
the effective quark, one sees that loops are proportional to

I+71-7

=0 3.74

The effective quark therefore does not give any renormalization of the colour charge.
3.4.1 Full-effective matching

The static lagrangian is the lowest order in the expansion of the Dirac lagrangian in powers

of k/m < 1, where k is the residual momentum of the heavy quark. Tree level amplitudes in

21 thank M. Masetti for a discussion on this point.
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the full and in the effective theory therefore differ only by terms of order k/m, i.e. the two
theories agree in the soft region up to the precision required. Let us consider what happens
when we compute loop corrections in both theories. If the loop is ultraviolet finite in the
full and in the effective theory, the typical loop momentum is of the order of the external
momenta k’s, which are soft by hypothesis. This implies that the two amplitudes will agree

to each other up to terms of order

ﬁlog(kz/mz), —Tk;log(ko/m) (3.75)

On the contrary, when in divergent loop integrals, the main contribution comes from momenta
of the order of the cut-off. In the full theory the cut-off Ap is much greater than the heavy

quark mass

Ap>m (3.76)

and the ultraviolet divergencies are produced by virtual states with momenta
p? > mi (3.77)

In the effective theory the heavy quark mass is sent to infinity before introducing any cut-off

A g, and therefore:

Ap €< m (3.78)

The ultraviolet divergencies are produced by momenta p in the region
k? < p? <« m? (3.79)

The ultraviolet behaviour of the effective theory therefore is not the same as in the full theory.
This produces differences in amplitudes being no longer of order k/m, but, for example, of
order log(Ag/m). To go on we have to assume that the static theory is renormalizable. That
is a quite reasonable assumption. In this case the differences between the two theories can

be removed by the introduction of renormalization constants.
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Let us consider a specific example. We consider the matching of an heavy-light current

in the effective theory

J = QTyq (3.80)

onto the corresponding one in the full theory
J = QTq (3.81)

where T' is a generic matrix in Dirac indices [14, 8]. The most interesting case is the time
component of the axial current: T' = yy7s;.

We equate on-shell amplitudes of the full and the static theory expressed in terms of their
respective M S renormalized parameters.

The renormalization constant Z; of the current J in the full theory is defined by:
Jos = — Jirs (3.82)

where Jog is the current renormalized on the mass-shell, i.e. at the condition that its on-shell

matrix elements coincide with free ones:

(Q k= OlJOS’q, p= O) = (Q k= OIJ|Q1 p= 0>free =T (3-83)

Generally, the renormalization constants considered in this section relate M S renormal-
ized quantities to on-shell ones; they do not relate bare quantities to the MS renormalized
ones, as in the previous section.

At one-loop level one has:
1 1
Z; = 1+ —2-6ZQ + —2—6Zq + 6Zr (3.84)

where 6 Z is the M S renormalized vertex correction and ZQ(q) is the renormalization constant

of the heavy(light) quark field:

1
Qos = —%Qm, s = “7=0rs (3.85)
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The renormalization constant Z; of the current J in the effective theory is instead given
by:
- 1 = 1 5
Zy = 1+~2~5ZQ+-2-5ZQ+(5ZF (3.86)
The matrix elements of the effective current J coincide with the corresponding ones of
the full current J if J is multiplied by the following ratio:

Z - .
C=3t =1+ -;-(5ZQ —§Z0)+ 62 — 65¢ (3.87)
J

The light quark is treated the same way in the two theories and then its wave-function
renormalization constant cancels in the ratio.

We can write:

J=CJ (3.88)

The renormalization constant of the heavy quark field in the full theory is standard and

is given by:

9*Cr

1672

§2q = [ —log(p?/m?) + 2log(m?/A\?) — 4] A (3.89)

The self-energy diagram of the full theory depends on three scales: m, ) and the renormal-
ization point u because of the ultraviolet divergence. These scales give rise to two different
kind of logarithms in Zg: an ultraviolet logarithm, log(u?/m?), and an infrared logarithm,
log(m?/A?).

The renormalization constant of the heavy quark field in the effective theory is computed

from the self-energy diagram (3.70), and is given by:

2

. g%C
§Zq = 167; [ 21og(1*/X*) + B ] (3.90)

where E = 0.
In the effective theory the mass m of the heavy quark does not enter, and only an ultraviolet-
infrared logarithm can arise.

The infrared singularity is the same in both theories, as it should be. Have a look at the

different dependence on y in the full and in the effective theory, implying different ultraviolet
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behaviour. One has:

2
§2g — 829 = 2 ip [3log(T:—2)~4] (3.91)

The vertex correction in the full theory is standard and is given by:

2
g°Cr. 1
§70 = z
L= Tl

H?log(p?/m?) + log(m?/A%) + ZH:’ ~-HH - %HG -1] (3.92)

where we have defined:

- - 0H
H= ’)/HI“)’MI‘ 1, G = ‘)/0]._")’011 1, H = -5-5- (393)

and D is the dimension.

The ultraviolet singularity depends on the T structm‘é, contrary to the case of the infrared
singularity. This last one indeed must cancel for any T' with the real emission diagrams.

In the case of the time component of the axial current, assuming that 5 commutes with
vu for 4 < p < D, we have:

2

2
§Zr = 91-6;1;[ log(u?/A?) + 5 ] (3.94)

Assuming a regularization in which 75 anticommutes with all the Yu, the constant above

changes from 5 to 1.

The vertex correction in the effective theory is given by:

dPk k 1 1
Yo ~T - ;
2m)0 U k2 £ i€ ko +ick? — A2 4 de

§V = -ig2cp,f/( (3.95)

where we have set to zero the external momenta to go on the mass-shell. The computation

yields:

2

_ c
§7r = g16ﬂ_§[log(p2/)\2)+D] (3.96)

where D = 1.
There isn’t any dependence on the I' matrix, as a consequence of the spin symmetry. The

infrared singularity is the same in the full and in the effective vertex.
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For being complete, let us report also the renormalization constant of the light quark:

9°Cr

62, = 1672

[ —log(u®/A%) + F'] (3.97)

where F = 1/2.
Inserting the values of the renormalization constants, we get the following expression for
the matching constant of the axial current:

g*Cr

=1
¢ + 1672

(2~ 3 log(u/m?) ] (3.98)

The renormalization constant of the axial current in the full theory is p independent, because
the current is partially conserved. That is easily seen when computing Z; by means of the
formulas (3.84), (3.89), (3.92) and (3.97). Formula (3.98) has a 1 dependence, because the
axial current is no more conserved in the effective theory and acquires anomalous dimensions
[38, 39].

The matching constant, or coefficient function C, factorizes the effect of the fluctuations
with momenta between p and a cut-off A much larger than the heavy quark mass m. We see
a clear example of the effective theory *philosophy’ described in the introduction.

The cut-off A of the original theory does not appear in C, because the axial current is
partially conserved; the effect of all the modes with greater momenta than m is a constant,

and not a logarithmic term of the form log(A/m).

3.4.2 Renormalization Group improved matching

In the previous section, we considered matching at order ag, i.e. at a fixed order of the
coupling constant in perturbation theory. According to eq.(3.98), the matching constant C

contains a logarithmic term of the form
m
x log *‘l‘;, (399)

where we omit, for simplicity, the subscript S on the coupling.
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Higher orders in « contribute to C by terms of the form:
o™ log" . (3.100)
# '
If log(m/p) is parametrically large, so that
a log = ~ 1, | (3.101)
7

or greater, « is no longer a good expansion parameter: terms of any order in a have com-
parable weight in C. The presence of large logarithms tends to spoil the convergence of the
expansion in powers of a. This problem is not solved by asymptotic freedom; a goes to zero

with increasing energy or heavy quark mass as

1 .
am) ~ —m——— for m— 3.102
(m) log(m/Aqcp) ( )
and therefore
m log(m/p)

a(m) log— ~

—_— - 1 for m - o 3.103
p log(m/Aqcp) ( )

Fixed order perturbation theory presents also another problem in the computation of the
coeflicient function C: no one actually knows at which scale the coupling « in eq.(3.98)
must be evaluated. Perturbative corrections to the matrix elements of the axial current are
naturally expressed as a power series in a(m) in the full theory, while as a power series in
a(p) in the effective theory. ‘The coeflicient function is the ratio of the matrix elements in
the full and in the effective theory, and it is not clear if C must be computed as a function
of a(m) or a(u), or as a function of a(u’) with g < g/ < m. This ambiguity is related to the
fact that the variation of the coupling constant with the scale arises only at order a2, and
contributions O(a?) are not included in eq.(3.98).

The above problems are solved with a resummation of whole series of logarithrnic terms.
A consistent way of implementing the resummation program is an asymptotic expansion in

the heavy quark mass. We rearrange the perturbative series according to powers of

1

—_— K1 for m — oo 3.104
log(m/Aqcp) ( )



3.4. Renormalization 55

Note that in an asymptotic expansion of QCD we still have

a < 1. (3.105)

because of the asymptotic condition (3.104).

The dominant terms which must be summed are the so called 'leading-logs’, of the form
m
a”log" — for n=0,1,2,...00 (3.106)
"
The next-order terms are the so called ’sub-leading logs’, of the form
a1 1ogn I for n=0,1,2,..00 (3.107)
7

They are smaller of a factor o with respect to the leading logs. In an asymptotic expansion
the finite term of order « is subleading and of the same order of terms proportional, for
example, to a? log(m/u). It is not consistent to keep finite terms in one-loop diagrams, while
neglecting subleading logs coming from multi-loop diagrams.

The next-next-order terms are the sub-sub-leading logs, of the form
n+2 1 n 1 f —
as™ log " or n=0,1,2,...c0, (3.108)

and so on.

The resummation of leading and subleading logs is easily done by means of R.G. tech-
niques. Let us introduce a qualitative discussion about the physical origin of large logarithms
before going into the formal stuff. The reasons leading to the appearance of large logs also
indicate how to resum them.

Large logs arise in the perturbative expansion of a matrix element, whenever the dynamics
is controlled by fluctuations with momenta between two mass scales which are very far from
each other. In the case of C, these scales are the renormalization point g in the effective
theory, which acts as an infrared cut-off, and the heavy quark mass m, which acts as an
ultraviolet cut-off. Every energy interval of fluctuations between i and m gives a constant

contribution to C. Consider, for example, the coeflicient function in the case of the top
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quark, m =~ 200 GeV, with p ~ 2 GeV. The fluctuations between 2 and 4 GeV give the same
contribution of the fluctuations between 4 and 8 GeV, or between 100 and 200 GeV, which
is of order

alog2 ~ a (3.109)

The whole contribution of the fluctuations to C is much greater, and is of order
alogl00 > « (3.110)

The effect of fluctuations inside a small momentum interval is small and large coefficients of
are produced by the coherent effect of many modes. As one increases the separation between
p and m, there is an increasing effect of the fluctuations, which can spoil the expansion. This
phenomenon occurs because classical field theories without mass terms are scale invariant.
The dynamics of the fluctuations is governed by the action, which does not select any preferred
interval of energies. The fluctuations with energy in a given order of magnitude range produce
a constant contribution in the correlation functions. Since there is an infinite number of order
of magnitude ranges in the energy scale, the whole effect of fluctuations is divergent. It is
necessary to introduce an infrared cut-off and an ultraviolet one, which produce the well
known scaling violations in the quantum theory.

Generally, the appearance of large logs does not imply that we are entering a region of
strong coupling, where perturbation theory is useless. Let us assume that the coupling is
small, @ < 1, and consider a very small interval of fluctuations between u and u + §u. The

contributions to C are given in this case by

p+p Sp
alog—— ~ a—
H H

fp\? )
a210g2“+5“:a§ (—E> < alogu+ ”, (3.112)
p 1 p

< 1, (3.111)

and so on, because §u/pu < 1. The term of order n + 1 in a given series of logarithms is
much less than that one of order n, for every n. The lowest order term in a given series of

logarithms is p independent, and it is therefore necessary to compute the next-order term
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to evaluate the effects of p changes. Fixed order perturbation theory works well and can be
applied to compute the effects of very small p changes. A variation of x4 can be considered
as a scale transformation, as we have shown in sec.(2.3.1). We consider therefore very small
scale transformations. The required finite scale transformation between p and m is obtained
composing many small scale transformations. The technique for resumming large logs is a
combination of the following elements:

1) Perturbation theory for infinitesimal scale transformations.

2) Group structure of scale transformations.

The singularity of the finite scale transformation originates only by iterating many regular

steps. The coefficient function C, for example, is computed by means of an infinite product

of the form:
_ a(p), p+bu a(p+ép)  p+ 26
C = [1-71 pp log J[1-m yp log P ].-.. (3.113)
a(m — §u) m
° [1 g4! 4 1Og m — 6M]
o mdpa(p), (a(#) )Wl
= et [0 = (3

where 7, = —4 is the coefficient of log(p/m) in unit of a/(47) of C, and can be extracted

from eq.(3.98). a = a(p) evolves with u according to the QCD S-function:
— = af(a) (3.114)
The S-function has an expansion in powers of a, for the above discussed reasons:

Bla) = B (ﬁ) + B2 (%)2+... (3.115)

where 8; = —22/3N +4/3n; and B, = —68/3N? +(26/3N —2/N)n;, N = 3 is the number
of colors, and n; is the number of light flavors.

Since we consider infinitesimal scale transformations around u, we have inserted at each
step the true coupling a(u), computed in the one-loop approximation:

( ) _ 4
= T8, Tog(1/ Agop)

(3.116)
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If we expand the infinite product in powers of a, and we neglect the variation of a with pu,

we recover the old result given in eq.(3.98)
a i’
_ * 117
C 14+7 4ﬂ_logm (3.117)

These physical considerations are formalized writing down a differential equation, which
expresses the invariance of the bare axial current matrix elements under an infinitesimal
change of u. The coefficients of this equation can be computed with fixed order perturbation
theory, since they refer to an infinitesimal scale transformation. The solution of the equation
refers to a finite scale transformation, and will contain the whole series of required logs.

Taking a matrix element on both sides of eq.(3.88), one has:
() = Clra) (P (3.118)

Since the axial current is partially conserved in the full theory, it receives only a finite
renormalization and it is therefore p independent. A variation of u is compensated by a

proper variation of a only:

hge ) = Lug +Bla)aze] () = 0 (3.119)
Since
g+ Bleacgs +7a(a)] () = 0 (3.120)

one has the following R.G. equation for the coefficient function C:
[ ho 4 Bla)ar — F4(@)] Clpe) = 0 (3.121)
p’a” aa YA K - *
where 7.4(a) is the anomalous dimension of the axial current in the effective theory:
(a) = -—(2-10 A (3.122)
YA = H M g4y .

and Z,, is the renormalization constant of the axial current defined by Agp =1 / Z4 Ag. F4(a)

admits a perturbative expansion in powers of a, for the above discussed reasons:

- a [0 2
7A(a) = 715‘_— +‘)/2 (Z;F) + ... (3.123)
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Let us make a remark. The f-function in the full theory can depend also on the dimensionless
ratio p/m: B = B(a,p/m). We consider renormalization schemes where this case does not
occur, like, for example M5 (these schemes are usually called ’mass-independent schemes’
[22]). We assume also that the B-function is the same in the full and in the effective theory,
i.e. that heavy quark loops are not included in the full theory amplitudes.

The solution of this equation is well known, and is given by:

Clp,a) = (,u,a( ,, )) exp{— / de 7 (3.124)
@ a)\ /A 281 — @ ' a a

where p' is an arbitrary scale. @(u/p’, @) is the running coupling constant defined by:

bl e) = —8() (3.125)

with the initial condition
a(l,a) = « (3.126)
Up to now, we imposed only the invariaxice of the axial current matrix elements in the
effective theory under a change of . We have also to impose that the effective theory matrix
elements coincide with the full theory ones. This is an initial condition for the flow, which
can be given at an arbitrary p. The way it stems from eq.(3.98), there are no large logarithms

at g = m, where one has:
C(m,a) = C(m,a(m)) = 1+c¢ &:’:—l +0 ((%) ) (3.127)

where ¢ = 8/3.

Imposing the above condition, and renaming ' as p, eq.(3.124) becomes:

Clma) = Ol atm/pa(m))) (3.128)
~ C(m,a(m) (W} (14 M Enlinetm) _ o(m

Leading logs coming from axial vertex correction and coupling constant renormalization,

have been factorized in the second term of the last member in eq.(3.128). Expression (3.128)
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coincides up to one-loop level with result derived with physical considerations (3.113), if one

observes that

0_,m —
Mé’ﬁa(;,a(m)) = +p4(a), (3.129)

i.e. a(m/p,a(m)) = a(u) in the old notation.

In the M S scheme, the anomalous dimension is given up to two loops by:

2
2 (83
A O VL e 130
4 o V-5 —ymtem(3 N”(zm) (3.130)

va(a) = —4 (.9_) B [% 40 20 8 . 16

Eq.(3.128) is the final result and gives the correct asymptotic expansion of the matching

constant C up to subleading logs.

3.4.3 Lattice-continuum matching

The matrix elements of the axial current are computed in numerical simulations with the
lattice regularization of the static theory considered in section (3.3). It is necessary to report
these matrix elements to the original theory, renormalized in the M S scheme. This operation
is generally divided in two steps:
1) Matching of the bare effective current in lattice regularization with the effective current
in the MS scheme.
2) Matching of the effective current in the MJS scheme with the full current in the same
scheme.

Step (2) has been considered in the previous section. In this section we will consider step
(1) [8, 15].

The renormalization constant of the current J” in the lattice effective theory is defined by
(the apex denotes operators in lattice regularization):

1

Jhs = Z Jh (3.131)
J

where J 7 is the bare effective current in lattice regularization, and jb 5 is the effective current

renormalized on the mass-shell. We have:

. 1 - 1 .
Zh =14 55% + §6Z{1 + 8Z¢ (3.132)
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The renormalization of the effective current J in the continuum has already been considered
in section (3.4.1).

The matching constant is given by:

1, - " 1, 5 . . -
' = = 14582 - 82g) + 5624 —62) + 82 - 67¢ (3.133)

N

The renormalization constant of the effective quark on the lattice is given by:

2

g CF[ —2log(A%a®) + ] (3.134)

§Z =
@7 16x2

where e = 24.48,

The field renormalization constant of a Wilson fermion is standard and is given by:

9*Cp
1672

62, = [ log(A%a®) + F ] (3.135)

where f is a function of the Wilson parameter r. f = 13.35 for r = 1.

The vertex correction on the lattice is given by:

2
51 9 Cr
§2r = 1672

[ —log(A%a®) +d] (3.136)

where d = dy + d2G, d; and d, are functions of the Wilson parameter r and G = yyI'y, 'L,
dy =546, dy = —7.22 for r = 1.
Inserting the above values for the renormalization constants, one gets for the matching

constant:
9°Cr

I —
¢ =1+ 1672

[ log(u%a?) + S(E-o)+ SF-p+D-d] (3137

Infrared divergencies cancel, implying that soft partons do not contribute to the matching
constant. C’ depends only on the ratio of the lattice cut-off 1 /a and the renormalization
point 4 of the M S scheme.

Combining step 1) with step 2), we obtain that the bare effective current in lattice regu-

larization is related to the full current renormalized in the 37 S scheme by:

Jig = C C' Jy (3.138)
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3.5 Decay constants of heavy mesons

In this section we describe the computation of the decay constants of heavy mesons in the
static theory with lattice QCD. We will also derive some consequences of the spin-flavor

symimetry.
3.5.1 2-Point correlation functions

We consider the correlation function F,p(z) in euclidean space of any two operators A and

B with given quantum numbers:
Fas(z) = (0| T[A(%,1), B(0)] | 0) (3.139)

The operator B(0), because of symmetry, can excite from the vacuum |0) only those eigen-
states of the hamiltonian | n) with the same quantum numbers of B. In the euclidean
space these states evolve as e Pn!. At large time separations between the operators 4 and B
therefore, only the lightest states coupled to the sources generate the correlation. These are

one-particle states and F4p simplifies to:

P ) = ¥ [ g 01 40) | RAa) x (3.140)

(P,p,a| B(0) | 0) exp{sp- & — Ep(p)t}

X

+ exponentially small terms

where we have taken a set of momentum eigenstates, and we have used translational in-
variance. P is the lightest particle with the same quantum numbers of A and B, a denotes
collectively all the particle quantum numbers (spin, isospin, etc.) and d3p/2E,, is the Lorentz-
invariant measure.

Integrating over the space one gets:
— 1 - - _
/dBm Fup(,t) = ; m(o | A(0) | P,0,@)(P,0,c | B(0)]0) e Mt (3.141)

Computing the correlation function Fyp and, for instance, Fy,; for large ¢ values we can
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determine the particle mass M and the matrix elements of A and B between vacuum and
1-particle states.

According to the path-integral formalism, Green functions like

Fyp..z(z,y...,2) (3.142)

can be computed as expectation values of the c-number operator
A(z)B(y)...Z(z) (3.143)
weighted over the distribution e~ where H is the hamiltonian of the theory:
(0] T[A(:c),B(y),...Z(z)] [0) = (A(z)B(y)...Z(2)) (3.144)
where we have introduced the notation:
(A(2)B(y)..2(z)) = — / dg|A(2)B(y)... 2(z) e~HII (3.145)
where ¢ is the set of the dynamical fields of the theory and Z is the partition function:
Z = / [dg)e=H1#) (3.146)

Comparing eq.(3.141) with €q.(3.144) we conclude that masses and operator matrix ele-

ments can be computed with the following functional-integral expression:

szl<orA<0)|a><a13(o>lo M= [ (A(2)B(0)) (3.147)

In the case of QCD the average is over fermionic and gauge fields, and 4 and B are composite

operators made out of quark and gauge fields.

3.5.2 2-Point correlations in the static theory

Consider the lowest-lying pseudoscalar meson P composed of an heavy quark Q and a light

antiquark . The decay constant of P is defined by:

(P A4(0)]0) = ifpMp (3.148)
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where 44(0) is the time component of the axial current:

Ay(z) = Q(z)ysvsa() (3.149)

The matrix element in eq.(3.148) can be computed by means of formula (3.147). Setting

A(z) = B(z) = A4(z) one has:

—2—]‘;—]3 (0] A4(0) | P) |2 e~Mrt = /d% (A4(z)A4(0)) (3.150)

Performing the (symbolical) integration over the quark fields % and % and using Wick theo-

rem, the right hand side of eq.(3.150) becomes:

- [ &2 (Tl varsSale | 0)154(0 | 2) ] ). (3.151)

where we have introduced the notation (.....) 4 to denote 1/Z times the functional integration
over the gauge fields A, with the hamiltonian H[4,]. H[A,] = Hyas[4,] + In[detA(4,)]"7,
is an effective hamiltonian including all fermion loops. It generates gluon field correlations
by integrating only over the gauge fields. A(A4,) is the Dirac operator and Ny is the number
of light quark flavors (according to the idea that heavy quark loops are unimportant). The
trace is taken over spin and colour indices, and the minus sign comes from the fermionic loop.

The static theory enters at this point, substituting the static propagator for the heavy

quark. Expression (3.151) reduces to:

1 - . —
(Tl =5 P(A)S,(0] 0,8) ] ) e (3.152)
where:
t
P(A) = Pexp| ig / Ao(B,t') dt' | (3.153)
0
and we used this relation:
147. 1-7.
Yivs 2747475 e 274 (3.154)

Equating the first member of these relations to the last we have the result:

1 2 _—(Mp=ADt _ (1‘“74) =
MI<OIA4(O)|P)| ¢~ (Mp=Al) = ( Te[*——"P(4)5,(0 | 5,)] ).4 (3.155)
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This formula is the basis for computing decay constants of heavy mesons with lattice QCD.

A recent determination of fg with lattice QCD is [6]:
fH = 370+ 40 MeV (3.156)

Eq.(3.155) contains also some consequences of the spin-flavor symmetry. Since the right-
hand side of eq.(3.155) does not contain M, the left hand side also is independent of M,
implying that:

i) The quantity e = Mp — M is independent on the heavy quark mass. This property can
simply be derived, noting that strong interactions in QCD are flavor independent and that,
in the static theory, heavy quark masses M, M' ... disappear from the lagrangian.

Quite generally, all heavy-light mesons have identical properties in the static theory, since
they simplify to a cloud of light ¢g pairs and gluons screening a static colour source.

i) The coeflicient of the exponential on the left hand side of eq.(3.155) is independent on M:

Y [<0] A4(0) | P >|*= constant (independent of M) (3.157)

Expressing the matrix element in terms of the decay constant, we get the well known scaling

law [42]:
const

fP:\/M—;

Consider now the lowest-lying vector meson V composed of a heavy quark Q and a light

(3.158)

antiquark g. We take as interpolating field one of the spatial components of the axial current:
Ar(e) = Q(z)yrq(z).  where k=1,2,3 (3.159)

Repeating the previous computation with the vector meson source Ay instead of A4, we arrive

at the same right hand side as in eq.(3.155), since
(L +70)/276 = —(1 - 72)/2 (3.160)

like in eq.(3.154). We have then:

3
sz 20 | 01 4:0) [V et g B pgys 016,00y, (5.160)

r=1
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Comparing eq.(3.155) with the vector case, we derive:

1 i| (0] Ax(0) | V,7) |? e~ (Mv =Mt (3.162)

_ 1 2 ~(Mp=M)t
= (0] 44(0) | P) |

The consequences of the spin-flavor symmetry expressed by eq.(3.162) are the following:
112) Since the equality (3.162) holds for any t, the vector and the pseudoscalar mesons have
the same mass:

My = Mp (3.163)

iii1) Equating the coefficients of the exponentials on both sides of eq.(3.162), one derives:

3
D140 Ax(0) | Vo r) I°=] (0 | A4(0) | P) |*= fAMP} = const Mp (3.164)
r=1

Let us introduce the vector meson annihilation constant fi-:

2
(0] A(0) | V,7) = %—'e; (3.165)

where € is the polarization 3-vector of the state | V,r). Substituting eq.(3.165) into

eq.(3.164), and using the completeness relation of polarization vectors,

3
> el = by (3.166)

one gets a relation between the vector and the pseudoscalar decay constants:

fi-fp

=1 3.167

We see that the static theory has two kind of applications. On one side, it relates masses,
annihilation constants, decay rates, etc. of different particles because of the spin-flavor sym-
metry. On the other hand, it allows to make lattice QCD simulations of heavy quark systems

with a cut-off 1/a which may be smaller than M.



4 Relativistic infinite mass theory

4.1 Basic elements

The static theory for heavy quarks is not relativistic because if we move from the laboratory
system to an inertial frame with velocity ¥, a static quark is viewed as a particle with constant
velocity —%, and this case is not described in the lagrangian (3.2). Relativistic invariance can
be recovered by performing all the possible Lorentz transformations of the static lagrangian
Ls(z) and then summing the resulting expressions £(z,v) with an invariant measure (Georgi
[18]).

In the rest frame 5’ of the infinite mass quark @, the static equation of motion holds:
(#70Dh — M)Y/(2) = 0 (4.1)

We have to express ec_iuation (4.1) in the variables of a reference frame § moving with velocity

—¥ with respect to §’. The standard Lorentz coordinate transformation A from § to S’ gives:
D}, = ASD* = yDo — 4%-D = v*D, (4.2)

where v = 1/+/1 — v? is the time dilation factor. The Dirac spinor v transforms according

to:
¥'(2') = S(A) (=) (4.3)
where §(A) is the spinorial representation of A. Substituting eq.(4.2) and (4.3) into (4.1),

left-multiplying the result by $~1(A) = S(A~'), and using the relation:

ST A)7uS(A) = ALy, (4.4)

67
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we arrive to the result:
(ivv - D — M)y(z) =0 (4.5)
where 7 = 7, v¥.

The equation of motion (4.5) can be derived from the lagrangian:

L.(z) = Plivv- D - M)y(=) (4.6)

which is therefore the lagrangian of an infinite mass quark moving with constant velocity .

Summing £,(z) over all the velocities v# with the measure

d3v
4 2 _
we get the relativistic lagrangian £(z):
d3v

The propagator S (0)(p, v) can be computed from the static one

i 1yopo + M

—— 4,
p2— M? + ie (4.9)

with symmetry arguments. Under a Lorentz transformation one has, due to covariance:

Yopo — pordvv-p (4.10)
py — plor(v-p)’

The first choice has to be discarded since it gives back the Dirac propagator. Following the

second route:

(0) _ v-p+ M 411
S (p,'l]) z(v~p)2-—M2+ie ( * )

By a similar argument, one derives the rule for the vertex:
— 1gtv,t, 1 vertex (4.12)

The interacting propagator in configuration space §(z,v) can be derived making the

Lorentz transformation A on the static propagator S, (z) in eq.(3.6).
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The relevant formulas for transformation are:

t' = vz, (4.13)
Aj(z") = v, AP (2) (4.14)
like eq.(4.2)
STHAYS(A) = b (4.15)
dt’ = s—é (4.16)

where we have differentiated eq.(4.13), and we have used the equation of motion in the §
system z; = (v;/vo)t.

O(t') = 0(¢) (4.17)

since proper Lorentz transformations do not change the sign of the.time.

The transformation of the §(3)(z’) is derived considering that the condition &’ = 0 in K’
becomes in K z; = (v;/vg)t. Therefore, it must hold the proportionality relation: §()(z’ )=
a(v)§CNE = (T/vo)t).

Integrating both sides on d®z = d®z’/v, because of Lorentz contraction, we get a(v) = 1/,
and then:

53)(z') = %5@(5_ ). (4.18)

Using eqs.(4.13)-(4.18) and (3.6), we obtain:

Oz — @ ; _ _ |
S(e,0) = -ip(4) I (L0 gy emintvs | 1B _pyorinivsy (4 19)
where:
e dt’
P(A) = Pexplig / A@t, ) =) (4.20)
0 0

is a tilted P-line.
As in the case of the static theory, we can remove the parameter M in the lagrangian
(4.6), by writing:

P'(z) = e Ty(2) (4.21)
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In terms of the new field, one has (dropping for simplicity the prime):
L,(z) = it Di(z) (4.22)

The quark field H and the antiquark field K are defined by:

H = 1’;% (4.23)
124

2

K

]

¥
The lagrangian (4.22) is written in terms of the fields H and K as:
L, = Hiv-DH + K iv-DK (4.24)

As in the case of the static theory, there is no coupling between particles and antiparticles.
The Feynman rules for H can be computed as follows. In the propagator of the Dirac

theory:
p+M

O)p) = 4L T2
55(p) zpz—Mz-i—iez

(4.25)

set p = Mv+k and keep only the leading term in the residual momentum & (small virtuality).
The result is:
149 i

2 vk i€

SOk, v) = (4.26)

Since the vertex (4.12) is always sandwiched between (1 + 9)/2, it can be written as:
— igvut‘l?j (4.27)

Since a static quark Q does not change spatial position by means of finite momentum
transfer and an infinite mass quark with velocity ¥ is simply a static quark observed from a
moving frame, we derive a velocity superselection rule for the relativistic infinite mass theory
(Georgi [18]), namely:

AT =0 (4.28)

where A# is the velocity change in a collision.
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The velocity superselection rule (4.28) can also be derived with the following observation:
after a collision with momentum transfer k, the momentum of the meson containing the
heavy quark is given by:

My = Mv+Ek (4.29)

where v and v’ are the initial and final velocities, and M is the meson mass, that coincides

with the heavy quark mass up to order Agcp terms. For finite k we have:

v = v—l——JéI- — v (4.30)
for
M — oo. (4.31)

The velocity superselection rule (4.28) implies that there is a separate field v¥,(z) for each

velocity v, since no dynamical process can couple any two fields ¥,(z) and ¥,(z) with v/ # v.
4.1.1 spin-flavor symmetry

The lagrangian (4.6) is invariant under spin rotations of the form
U = exp| —1/2 €uapvpXoaw, | (4.32)

where ¥, = i/2 [y,,7,] and w is a 4-vector parametrizing the rotation orthogonal to v.
As in the case of the static theory, it is possible to make independent rotations on the particle
and the antiparticle fields:

1+9

H' = exp] —1/2 €urpvuZiiw, | H (4.33)

) 1—-19
K' = exp| —i/2 euu,\pvuzll/\w; ] 9 K

If there are f heavy quarks H; moving with velocity v, the lagrangian of the system is given

by:
f ——
L = > Hyiv-DH; (4.34)
k=1

There is an SU(f) flavor symmetry. Notice that the symmetry relates fields with the same

velocity and not, for example, with the same momenta.
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As for the static theory, it is possible to combine the spin and the flavor symmetry into

an SU(2f) spin-flavor symmetry.
4.2 Physical applications

In this section we review the main physical applications of the relativistic infinite mass theory.

Consider the semileptonic decays of a B meson into a D or a D* meson:

B — D+l+uy (4.35)

B — D +l+y (4.36)

where [ = e,p or T and v is the corresponding neutrino. Momentum transfers between the

beauty quark and the .meson cloud are of order Agcp. Since
My > Agcp, (4.37)
the beauty quark is essentially at rest and on-shell in the rest frame of the B meson:
Ep = Mp+ O(Agcebp), P = O(Agep). (4.38)

At a given time it decays into a charm quark and a lepton pair. The ¢ quark emerges from
the weak interaction vertex with a given velocity #, which ranges from 0 up to 0.77¢c. Let us

assume that also the charm quark is heavy, i.e.
M. > Agcp (4.39)

In this case, the ¢ quark changes very slightly its velocity in the interaction with the meson
cloud; as a first approximation, it behaves as a colour source moving with constant velocity
v, which is followed by the light meson-cloud. The velocity of the charm quark is determined
by the weak vertex, and is not modified by the subsequent interactions.

In the static theory the particles B, D and D* are composed of the same meson cloud.
Since both the cloud spin and the heavy quark spin are conserved in time by hadron dynamics,

spin flips are produced only at the weak vertex. The processes (4.35) and (4.36) therefore
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are described as a b quark decaying into a ¢ quark, with respectively the same or opposite
spin orientation.

From the above considerations, it is clear that the form factors of the processes (4.35) and
(4.36) are related in the effective theory to the probability amplitude that the meson cloud
does not excite when the colour source starts moving [41]. In section (4.3) we will prove that
the hadronic matrix elements of decays (4.35) and (4.36) can be expressed in terms of a single

function, the Isgur-Wise function ¢ [25, 32J:

(D,v|Vu(0)| B,v') = vMpMp (vu+ vy) §(v- V')
(D*,v,¢| V,(0) | B,v") = —ivVMpMB €uap v P £(v-v')

(D™, v,€ A,(0) ] B,v')

VMpMp(ey(1+v-v") —vuv' - €)é(v- v’) (4.40)

where v/ and v denote respectively the b and ¢ quark 4-velocities. The matrix element of the

axial current vanishes in the pseudoscalar channel because of parity.

If

pp = 0 (4.41)

in decay (4.35), or

Ppx = 0 (4.42)
in decay (4.36), a beauty quark at rest is transformed into a charm quark at rest, and nothing
happens with respect to strong dynamics. The meson cloud does not feel any change. These
intuitive considerations indicate that there is an absolute normalization of the hadronic matrix

elements of the processes (4.35) and (4.36) in the effective theory [41]. In section (4.3) we

will prove that ¢(v - v') is normalized at zero recoil [24],
t(v-v'=1) = 1. : (4.43)

At the kinematical points (4.41) and (4.42), the decays (4.35) and (4.36) look like purely

leptonic ones, because a lepton and a neutrino emerge from the decay vertex with opposite
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spatial momenta
Py = — P (4.44)

and fixed energies determined by

¢ = (m+p) = drax = (Mp—Mpyy ) (4.45)

In the framework of the 1/M expansion it is easy fo understand why various quark model
predictions agree fairly well to each other in the values of the hadronic form factors of the
processes (4.35) and (4.36) [48]: at lowest order in 1/M, the wave functions of the mesons
B, D and D* coincide, the overlap integral equals unity, and is therefore independent of the
parameters of a specific model.

The systematic errors introduced by taking the infinite mass limit for the b and the ¢

quark
M., M, — oo (4.46)
are of order
Agcp
Qe 4.47
o (4.47)

A more accurate computation therefore must include 1/M, corrections. The latter are related
to the nonrelativistic motion of the ¢ quark, and to chromomagnetic interactions of charm
spin with the meson cloud.

Similar considerations to the ones given above also hold for the decay:
Ay — Ao+ 1+ ' (4.48)
Other processes which can be studied with the effective theory are the production of heavy
mesons in eTe” annihilations [17]:
ete” — D+ D, D*+D, (4.49)
D+D", D"+D,
B+ B, B*+B,

B+B, B +F
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For center of mass energies far away ‘from the masses of the cZ or bb resonances, the heavy
quarks are produced by the electromagnetic current with velocities not remarkably changed
by the hadronization. One can neglect recoil effects for the heavy quark dynamics, i.e. to
take the infinite mass limit. Spin-flavor symmetry relates the amplitudes of the chanmnels in
eq.(4.49), which can be expressed in terms of a single form factor.

Finally, let us consider the following processes [33]:
B — D+D, D*+D, (4.50)
D+D,, D+D,

In the infinite mass limit for the b and ¢ quarks, the processes (4.50) reduce to a colour source
decaying into two colour sources with given velocities and a light quark. Spin-symmetry

relates all the above channels.

4.3 The Isgur;Wise function

The relations among the heavy meson form factors in egs.(4.40) and the normalization con-
dition in eq.(4.43) are consequences of the spin-flavor symmetry of the effective theory. They
can be derived computing 3-point correlation functions with the lagrangian of the relativistic
infinite mass theory. The original derivation has been given by Isgur and Wise using the

canonical formalism [24, 25].
4.3.1 3-Point Correlation Functions

The matrix elements of an operator O(z) between one-particle states | Py) and | Py)

can be computed from the asymptotic values in the euclidean space of the following 3-point

correlation function

F(z1,22) = (0| T[ Ai(21),0(0), Ax(22) ]| 0) (4.52)
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where A; and A, are operators with the same quantum numbers of the particles P, and P,
respectively. According to the same reasoning as in section (3.5.1) for t; large A;(z1) | 0)

will be mainly a superposition of P; states:

d3 o o
Ai(z1)]0) = Z/ (2r fé(p F' | Py,p1, ) exp[—ipy - &1 — E(p1)t1]

+ (exponentially small terms) (4.53)
where we defined:
F = (Pi,p1,on | A:1(0) | 0) (4.54)
and for —i, large:
d3 o e o
Az(z2) | 0) = Z/ 2(%);)5(17 ) F$? | Py, p2, atz) exp|—ify + &2 + E(p2)t2]
+ (exponentially small terms) (4.55)
where we defined:
Fg"’ = (Pz,pz,ag I Az(O) l O) (456)

oy and a, denote collectively all the strong interaction quantum numbers of the particles P,
and P, such as spin, parity, G-parity, strangeness, etc....

Substituting eq.(4.53) and eq.(4.55) in eq.(4.52), we get for both #; and —t, large:

d? P d? P2

, Fal* F$2 4.57
Flono) = 2, / 20nPE() 220 B | P (4:57)

(P1,p1,01 | 0(0) \ Py, p2, ap) exp{ify - &1 — 1P T2 — E(p1)ts + E(p2)ta}

+ (exp. small terms)
for t;y — o0, tp — —o00.
Making the Fourier-transform of the correlation according to which F(z1,22)—

F(d:,d2,t1,t2), one can isolate in F' the correlation between modes with given momenta

q1 and ¢ only:

F(G, @t ts) = / Py Pay exp(—idi - 71+ ids - 82)F(1,32) =
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Fou roa ) )
i Sl A Po. G-t
a;a? 1B () E(a) (P, Gy a1 | O(0) | Py, Gy 02) X

x exp[ —E(q1)t + E(g2)t2 ] (4.58)

Computing the 2-point correlation functions F 4! and F 4, One can determine F{*! and
Ay Al Al

F$? and extract from eq.(4.58) the required matrix element:
(P1, @1, 01 | 0(0) | P2y @2, ) (4.59)

We have thus proved the initial assertion.

The path-integral expression for F is:
F(ml,l’g) = < Al(:cl) 0(0) Ag(mg) ) (460)

Comparing eq.(4.58) with eq.(4.60) we get finally the path-integral expression for matrix

element (4.59):

Forpoe
(P1,q1,01 | 0(0) | P2, @2, @ t) + E(g2)t
a§z 4E(q1) B ) 131 0(0) | Poy @ ca) exp(=E(ar)ts + Blaz)ta]
/dgmld 2y exp{—id - &1 + if2 - F2}( A1 (21) O(0) Aaf22) ) (4.61)

4.3.2 3-Point functions in the effective theory

The matrix element of quark weak current

75(z) = dz)ru(l—15)b(z) = Vale) = Au(2) (4.62)

between an initial B meson state with velocity vp and a final D meson state with velocity

vp
(D,vp | Ju(0) | B,vs) = (D,vp | Vu(0) | B,vp) = (D,vp | Ax(0) ] B, vB) (4.63)

can be computed with the aid of functional expression (4.61) (G. Martinelli and the author,

unpublished), which yields:



78 § 4. Relativistic infinite mass theory

FpFp : . _
m<D,vD | J.(0) | B,vB) exp{T—zE(pD)tD +iE(pB)te} =
- / Popdiep expi{—ipp - Ep +iPs - 5} (Ap(zp)Tu(0)4s(zs)) (4.64)
where:
Fp = (D,up | Ap(0)]|0),  Fs=(B,vg|45(0)]0) (4.65)

Ap(z) and Ap(y) are any two interpolating fields for the B and D mesons respectively. The

simplest choice is:

Ag(z) = b(z)ivsq(z), Ap(y) = 7(=)ivsc(=) (4.66)

where g(z) is a light quark field: ¢ = u,d, s. Of course, the result we obtain is independent
from the particular interpolating field employed, since the propagation of a particle is inde-
pendent from the generation mechanism. The matrix element of the interpolating field cancels
in taking the ratio of the 3-point correlation function to the 2-point correlation functions.
We work in Minkowski space because the continuation of the effective theory in euclidean
space is a very delicate matter, which will be discussed fully in section (4.5); the symmetry
properties we are interested in hold in Minkowski as in euclidean space.
The axial part of the matrix element in eq.(4.63) vanishes due to parity conservation of strong

interactions:

(D,vp | Au(0)] B,vp) =0 (4.67)

We proceed therefore considering only the vector current matrix element.
Performing the functional integration over the quark fields % and 1, and employing the Wick

theorem, we get for the right hand side of eq.(4.64):

- /dS:ch3a:D exp(—iPp - Tp + iPB - TB)

( Tr[ 175 Se(zp | 2p) #75 Sc(zp | 0) vu Sp(0 | 2B) ] ) (4.68)
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Inserting in expression (4.68) the effective propagator for the b and ¢ quarks given in eq.(4.19),
and taking into account that tg < 0 and tp > 0, one gets:

F3Fp
4E(pg)E(pD)
~1

TB 1D
X <T'I‘[Pb

(D,vp | 7u(0) | B,vs) exp{—iE(pp)tn +iE(ps)is} =

exp{—idp - @ptp + idp - iipts — iMcip /YD + iMsta/vB} X

1+ g, . L .. l+9p
- Bz’ys Sq(tB,uBtB ItD,th)z")’5 ————2—-——

Poyul)a (4.69)

where #g and #p are the 3-velocities and 7p and yp are the relativistic time dilation factors
of the B and D mesons respectively. P, and P, are the P-line factors of the propagators of

the b and ¢ quarks:

| 0 dt
P, = ,Pexp[ig/ A(t, @pt) - va— | (4.70)
tp 1B

tp dt
P. = Pexp| z'g/ A(t, @pt) - vp— |
0 TD

We have identified the velocity of the b/c quark with that of the B/D meson; otherwise the
bound state would decompose as time goes on into the cloud and the heavy quark.

Solving with respect to the weak current matrix element we arrive at:

14+9p. o149
(D,vp | Ju(0) | B,vp) = K - Tr [——iys Livs 5 D (4.71)
where we have defined:
4Mp Mp
K= —— 4.72
FiFp ( )
and: .
tp tm -, -
L=- exp{e(;E — :)f—f;) } ( Py, Sq(tB,uBtB ltD;"-"DtD) P, )A (4.73)

€ = Mg — My = Mp — M, can be interpreted after renormalization as the heavy-light meson
(universal) binding energy.

Since L is integrated over all gauge field configurations, and is independent from the times
tp and tp (as it stems from eq.(4.71) as well, it may depend only on the 4-velocities vp and

vp. According to Lorentz symmetry, it can be expanded into:

L = M+ Myig + Mztp + Myipip + Mstpip (4.74)
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where M;, i = 1,2...5 are matrices in colour indices only, depending on the scalar vg - vp.
Higher powers of ig and 9p are not linearly independent with respect to the terms in eq.(4.74)
and 7s-terms cannot appear due to parity conservation of the QCD action.

It is more convenient to express L in terms of projection operators:

1+9p 14+ 9p 1+9 1-1p
= 4.
L Ci1+C, 3 5 + C3 2 ) (4.75)
1—-98 1+ 9p 1—-9g 1—19p
+ C4 2 2 +Cs 5 2
where the C;’s are linear combinations of the matrices M;.
Substituting eq.(4.75) into eq.(4.71) we arrive at:
(D,vp | JM(O) | B,ug) = (vB+ vp)u VMpMp &(vp - vp) (4.76)
where ¢ is defined by:
4/ Mg M
¢ = (K/V/Mp Mp) Tr( Cs ] = =52 Tr( G5 ] (4.77)
D

The factor /Mp Mp is introduced for convenience (see later).

An analogous computation of the hadronic matrix element of the decay into the vector channel

gives:

[1+“ 1+ 9p

« g, .
(D% vp, €| Ju(0) | Byvp) = K Tr[ — Zivys Lé 5 Tu(l=75) ] (4.78)

where we used the relation between the vector and pseudoscalar annihilation constants
(3.167), the mass degeneracy relation (3.163), and the completeness relation of the polar-

ization 4-vectors:

3
. kuk,
Do, = gu— z\“ﬂ' (4.79)

r=1

Computing the y-matrix algebra, we get for the vector part:

Yu] = Tr[ Cs ] €uapre™vhup (4.80)

and for the axial part:

1495,

49 .
Tr| 5 iysLé 5 D7u75] =1 Tr[Cs][ex(1 + vp -vB) —vp - € vp,] (4.81)
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‘We have therefore:

(D*,vp, €| Vu(0) | Byug) = euapre®vivy /Mp Mg &(vs -vp) (4.82)

(D*,vp,e| Au(0) | B,ug) = i[ex(1+vpvp)—vpe(vp)u)vVMp Mp é(vpup)

Eqs.(4.76) and (4.82) imply that the six form factors characterizing the semileptonic
decays B — D(*) can all be expressed in terms of a single function ¢ = £(vp - wp) (Isgur
and Wise [25]).

To determine the absolute normalization of hadronic matrix elements, i.e. the value of {(vp -

vp = 1), let us limit ourselves to the temporal component of the vector current Vj and take

in eq.(4.71):
vg = vp = (1,0) (4.83)
We have:
(D, rest | Vo(0) | Byrest) = —K( Tr| - 20 ¢ 8y, 0 11, 0)] a =
- "Z%i}; F; Fg = 2¢/Mp Mp (4.84)
where we used eq.(3.155) in the form:
(Tr| L=% ¢ 5,(0,0¢,0)] )4 = B F}, Fp (4.85)
2 4Mp Mp
On the other hand:
(D,rest | Vo(0) | B,rest) = 2v/Mp Mp &(vgvp = 1) (4.86)

Comparing eq.(4.84) with eq.(4.86) we get the required normalization condition (Isgur and
Wise [24]):

&vp-yp=1) =1 (4.87)
This relation can also be immediately derived by using the conservation of the vector current,

which holds in the infinite mass limit.
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4.4 Renormalization

The renormalization of the relativistic infinite mass theory is very similar to that one of the
static theory, because a quark with infinite mass and velocity v is related to a quark with
infinite mass at rest by a Lorentz transformation. The renormalization constants are the
same in the static theory and in the relativistic infinite mass theory in a regularization that

preserves Lorentz symmetry like DR:
M, = §Mgy, Z, = Zgu and bgy = g (4.88)

The renormalization constant of the heavy-light current considered in section (3.4.1) is
also equal in the two theories.

As it is well known, lattice regularization breaks Lorentz symmetry. In this case the
renormalization constants depend on the velocity of the heavy quark and, generally, the
renormalization properties are much more complicate. The renormalization on the lattice

will be discussed later in section (4.7).

4.4.1 Full-effective matching

we consider in this section the matching of effective theory with full theory in the continuum
(17, 35].

For a comparison of theoretical rate of the decays (4.40) with the experimental one, it is
necessary to convert values of the form factors computed with the effective theory, to values
in the original, ’true’, theory.

It is easy to see that‘thjs matching operation can be done in perturbation theory. One has
an effective theory which is an expansion of the full theory for momenta much less than the
heavy quark mass M. At zero external momenta, i.e. in the matching point, loop amplitudes
in the two theories differ only for virtual momenta of the order, or greater, than M. Since

M > Agcp, the difference can be computed with perturbation theory.
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We consider the matching of the current
J = Q,I'Q; (4.89)

where ()1 and @2 are two heavy quarks treated as infinite mass particles with velocity vy and

vy respectively, onto the corresponding current J in full theory

J = Q.10 (4.90)

To this aim we compare on-shell amplitudes in the full and in the effective theory expressed
in terms of their respective M S renormalized parameters.

The renormalization constant Z; of the heavy-heavy current J in the full theory is defined

by:
1
Jos = 7 Jirs (4.91)
It is given by:
Z; = 2y} 7y Zr (4.92)

where Zg is the renormalization constant relating M .S renormalized field to the on-shell one:

Qos = 71_55 Qs with Q= Q1, @ (4.93)

and Zr is the renormalization constant relating the one-particle irreducible vertex I' renor-

malized in the M S scheme to the on-shell one:

1
Tos = EFFFI_S (4.94)

Analogous formulae hold on the effective theory for J:

- 1
Jos = —:——JM—S (4.95)
Z7 ,

with

Z; = 2Y% 29} 7 (4.96)



84 8 4. Relativistic infinite mass theory

where ZQ is the renormalization constant relating the M S renormalized effective field to the

on-shell one:

~ 1 ~
Qos = —=— Qi (4.97)
VZa
and Zr is the MS renormalized correction of the effective vertex:
-~ 1 -
Tos = = I'spz (4.98)
Zr
Setting
Jos = Jos (4.99)
one derives the matching relation between the full and the effective current
Jirs = C Ji1s (4.100)

where the matching constant C is given by:

1/2 1/2
zZ Z Z Zr
c 2= (-91) (—Q—"’-> L (4.101)
ZJ ZQ1 ZQ2 ZF

1 " 1 . o
1+ 518Zg1 - 8Zqn] + 518202 - §Zga) + [6Zr — 6 Zr)

I

where the last equality holds at one-loop level.

C is an infrared safe quantity, i.e. the dependence on the infrared regulator introduced in
the loops must cancel. The choice of the IR is arbitrary and one has only to use the same IR
in the full and in the effective theory. Since both theories are treated in DR, computation of C
can be simplified regularizing also the infrared divergencies with DR (this simplification is of
course impossible in lattice-continuum matching). Both infral;ed and ultraviolet divergencies
are represented in this case by 1/e poles.

The renormalization constant of a heavy quark field @ is given in the full theory by:

2

2
9°Cr 2 3, ,™
2[—;+7E~10847r+510g;5—2] (4.102)

1672

ZQ:1+

The pole in Zg is due to an infrared divergence because this renormalization constant relates
an off-shell renormalized field to an on-shell renormalized one. There are no ultraviolet

divergencies because Zg relates renormalized (i.e. ultraviolet finite) fields.
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The renormalization constant of the effective quark ZQ can be computed in terms of the
renormalization constant introduced in eq.(3.72), which we call now ZQJT]'S' It relates the

bare quark field to the M S renormalized field according to:

Qs = L QB (4.103)

ZQH?

Zo3Ts contains ultraviolet divergencies only.
The relation between ZQ and ZQKTé is provided by a third renormalization constant ¢,

that relates the bare field to the on-shell renormalized one:

1
Qos = —=Ws (4.104)
Ve
¢ contains both ultraviolet and infrared divergencies, and is given by:
- 1
— __ 4.105
1-i (&) (4:105)
dpo p=0
We have that:
8% ) dPk 1
—_ = —2¢* 5/ = 4.106
(5’Po)p=o ek | G i (4-106)

because the dimensionally regularized integral does not contain any mass scale; infrared and

ultraviolet divergencies cancel each other. As a consequence:

(=1 (4.107)
and therefore
- 1 c 2
Zg = = =142 Z2[——+7E—log47r] (4.108)
ZQ 1E 167 €

We note that 1/¢ poles are the same in Zg and ZQ implying that infrared divergencies

cancel in the ratio:

Zq g*Cp m?
— =1 3log— —4 4,109

It is good to remark that this result coincides with that obtained with the regularization with

the gluon mass given in eq.(3.91).
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The on-shell vertex correction in the full theory is given by:

dPk  moby + k +mo myd; + k +my pl
(2m)P Tu 2movg - k+ k2 2myvy -k + B2 g2

T - igZC'F[.LG/ (4.110)

The computation of this diagram is standard with Feynman parameters and has been done
in ref.[35]. We do not report the full result, but only the relevant terms for the discussion.

The ultraviolet singularity of the diagram to be subtracted in the M S scheme, is given by:

2 2
g2Cr H? 2
67 4 [ - —7E + logdnm ] (4.111)

where H = 7#F7“I“1. It coincides with the ultraviolet singularity of an heavy-light current
of the form J = gI'Q, given in eq.(3.92), where ¢ is a massless quark.
The infrared singularity is given by:

2CF
16w

5 2¢ cothg [ - —9g + logdr | (4.112)

where cosh¢g = vy - vg.

If we had regularized the infrared divergence with a gluon mass A, the loop would depend
on 4 scales: p, m;, my and A. Three different kind of logarithms would appear in the vertex
correction: an ultraviolet logarithm log(u?/mimy), a hybrid logarithm log(m,/m;), and an
infrared logarithm log(mima/A?).

The on-shell vertex correction in the effective theory is given by:

dPk 1 1 1
— 1 2 € = .
zgpdCF/(27r)Dvl-k—}-ie'vz-Ic—}—iekz—}—ie 0 (4.113)

It vanishes because the integral does not contain any mass scale. As in the case of (, infrared
and ultraviolet divergencies cancel each other. The loop is computed by going off-shell to

regulate infrared divergencies and using the following variant of Feynman trick:

d) dp
ABC’ T2 / / (A+ AB + uC)3 (4:114)

One can now separate the infrared from the ultraviolet singularity in eq.(4.113). Subtracting

the ultraviolet pole according to the M S scheme, one gets:

QZCF

Zr = 1
r + Tonz 2

coth¢ [ = —qg +log4dr ] (4.115)
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The full and the effective vertex have the same infrared singularity.

Gathering all these results, matching is determined by the following formula:
Q.IQ; = CQ,TQ: + 0152171F6§1 + C2Q,T5,Q1 + 012521711‘1726?1 (4.116)

where

9*CF H? H? , ¢sinhg — sinhep
1672 [ _(T + 2¢cothd —3) L - 4 ( cosh¢ — coshyy = 3) ; (4.117)
H, ¢ cosh¢coshyp—1 1 sinh ¢ 1

I —
HE'+ —(

cC = 1+

sinh ¢ (cosh ¢ — cosh))? B (cosh ¢ — cosh)?  cosh¢ — cosh
- : )
¢ _ g% sinh f—'zt-)

+ coth¢((F(e )+(¢")_¢))_(¢H~¢)+2¢1ogsinhu
2

et — e®

¢ cosh¢coshy —2 cosh? ¢ + 1 1) sinh ¢
sinh ¢ cosh ¢ — cosh 9 ~ “cosh ¢ — cosh ) -4
Q_ZEE_} v @ coshgcoshy — 1 ¢sinh1) — 1 sinh ¢ "
16m? [4 ¢ (sin_h¢((cosh¢ — cosh )? cosh ¢ — cosh v +1)
Psinh ¢ 1 ¢ ¢sinh 1 — ¢ sinh ¢

B (cosh ¢ — cosh#)? " cosh¢ — coshw,b) + 2sinhqb cosh ¢ — cosh ¢ )
+1)

Ci =

(1-

o coshgcoshyp —1  ¢sinhtp —¢psinh
T 16w2 4 sinh (;5( (cosh ¢ — cosh ¢)? "~ cosh¢ — cosh v
1 sinh ¥ 1 ¢ ¢sinh i — ¢sinh ¢
B (cosh ¢ — cosh)? "~ cosh ¢ — cpsh1/)) + 2sinhq5( cosh ¢ — cosh ¢ Ik
g’CrH, ¢ coshpcoshyp—1 1 sinh ¥ 1
1672 4 ‘sinh ¢ (cosh ¢ — cosh))? ~ (cosh¢ — cosh)? "~ cosh ¢ — coshqp)

2
Cy = g CF[EHC"’""(

where

P = log(my/ma) (4.118)
L = log(mims/u’)
and F(z) is the Spence function:
F(z) = /0 ’ Eg—(lfi)dy (4.119)

4.5 FEuclidean Continuation

In this section we discuss the continuation of the relativistic infinite mass theory in euclidean
space [2, 31]. The euclidean continuation is indeed the first step in order to perform numerical

simulations of the effective theory.
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The effective propagator in Minkowski space, according to eq.(4.26), is given by:

~

5(z]0) = e‘i“'["'ml—g—gﬂ(:c 10) (4.120)

where we have reinserted the mass M of the heavy quark.

d4k e—ik-m

H(z|0) = /(z—ﬂqm (4.121)

is an effective “scalar” propagator and satisfies the differential equation

iv-0 H(z|0) = 54(:0) (4.122)

We are interested in the construction of the corresponding euclidean effective propagator.
Let us consider the quark propagator in the full euclidean theory as a function of time ¢ and

momentum p. This is defined as:

dpy —iyaps — Y -P+ M
S5(t, E/-——— e'Pt 4.123
D= ] o “a T AT (4:123)
Performing the integration over py, eq.(4.123) becomes
Evi— i3 -F+ M By —i7-F+ M
S(t,) = LT PE R pye-pt BT BE My op e (4.124)

2F 2F

where E = /|p]? + M?2. The forward (backward) propagation corresponds to particles (an-
tiparticles). The corresponding propagator in the effective theory can be obtained, in analogy

to the Minkowski case, by expanding the propagator in eq.(4.123) for small virtual momenta

ky around Muv,, where v, = (ivy, ¥) = (i\/1 + |9]2, 7):

5(t, k) =

1 -4 pto dp. ipyt
“’/ P € (4.125)

2 -~ 27 ’I:’Uo(p4 - ino) + 7. E
The effective theory is an approximation of the full theory only for small residual momenta,
i.e. for [1:| < M. This means that we are implicitly assuming an ultraviolet cut-off A < M.

The condition | - l_c‘| > Mup > A (where 4 is the ordinary 3-velocity @ = #/vy) therefore
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corresponds to the unphysical momenta and can be discarded. Under the condition @ - k>

— Mwyg, one obtains:

a1 —1D -
5(t, k) = 21;;” 6(t) e~ (Muo+H) ¢ (4.126)

We notice that, performing the change of variable from py to ky = ps — iMuvp in eq.(4.125),
we obtain an integral on the complex line ky, = —iMuvg — o0, —iMuvg + 00. The shift of the
integration contour to the k4 real axis is not correct because, for i+ k < 0, it requires crossing
the pole at py = z(M vy + U+ E) Therefore it is not possible to define Feynman rules in the
residual momentum k,,, i.e. to eliminate the mass. Tn ref.[31] the propagator has been defined

by integrating k4 on the real axis:

e'Mvatl — v /+°° dky gkt
2 —oo 2T fugky+ U-k
1-—1d

[e(t) o(z- ) — 6(-1) o(—i- k)| g~ (Mua+EF) ¢ (4.127)

We stress that this expression is not the expansion of the full propagator: in the effective
theory one removes the antiparticles and the resulting propagator must be forward in time.
In eq.(4.127) only particles with @k > 0 propagate forwards whereas those with @-k < 0
propagate backwards.

The correct effective propagator (4.126) can be obtained inserting in eq.(4.124) the ex-

pansion of the energy-momentum relation around the 3-momentum M7

E = M2 +1p? = Mv0+ﬂ-ié+0(%i> (4.128)

Tn the effective theory, if we try to remove the constant energy Mug, the residual energy
e=1-k (4.129)

is not positive definite and is unbounded from below. In the static theory, ie. for u = 0,
the energy is expanded around its minimum, and the linear term in residual momentum is

absent.
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The effective propagator obtained by removing the mass term in eq. (4.126) shows an
exponential increase for « - k < 0. As a consequence, the euclidean version of the propagator
in configuration space H(t,Z) can be defined only with an ultraviolet cut-off. For illustrative
purposes, let us choose a simple regularization with an ultraviolet cut-off A on the residual

spatial momenta. The propagator is given by

H(t) A Br ko tpifed a(t) 1 eMliz—ut) _ e—A(iz—ut)
— &N —ukgitiked _ ZAT el 4.
Ha(t,2) v J-A (27r)3e Vo 5(2)8(y) 27 iz — ut (4.130)

where we have taken the velocity along the z axis.

It satisfies the differential equation

— v 8HA(tz) = 86 () (4.131)

with the correct initial condition for particle propagation: forward in time only. 451(\3)(:2?) is a

regularized delta function:

3) /o A BEops sin Az;
(55\)@1:).:_/_A (%)Be’“ = [[— (4.132)

The troubles with the euclidean continuation originate from the fact that the energy
spectrum of the effective theory is unbounded from below. The presence of states with
negative energy is an intrinsic property of the effective theory, and is related to the fact that
one removes the energy Muy associated to a non zero 3-momentum M4v. If the heavy quark
picks up a residual momentum k with a component antiparallel to M7, the energy decreases
with respect to Mvg, and one is left with negative energies in eq.(4.129). Nevertheless, theory
with 7 # 0 is stable because it is generated with a Lorentz transformation of the static theory.
The latter does not have negative energies (@ = 0 in eq.(4.129)), and the static quark transfers
3-momentum but not emergy in collisions. The states with negative energies are simply an
effect of the change of reference frame and do not give rise to any instability. This argument

can be made more explicit. In the effective theory, a transition with finite momentum transfer
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cannot change the heavy quark velocity, but only the residual momentum. The momentum
transfer ¢ for a transition between two states with the same velocity and different residual

three-momenta k and %’ is given by

-

g=(&-k-a-k,k-F) (4.133)

and is space-like because u < 1. Therefore a heavy quark cannot emit on-shell light particles

which must have ¢ > 0.
4.5.1 Consistency of the theory

In this section we discuss the consequences for bound states of thé negative energies of the
heavy quark. It is possible to construct sensible correlation functions for heavy-light systems
[2]. We consider a correlator G(t, E) of a sys‘;em composed of an effective and a light particle.
Since what matters in this context is the singularity structure of the amplitudes, let us
consider for simplicity scalar particles. In the free case, the correlator G(O)(t,f) is given by

(see fig.1):

GO, T = / Bre TEH (1,5 | 0)5iAr(0 | 7,1)

. A B . .
- @(t)e—-u-lt d k3 L _ e—[u»k-l—E(mv—k)] i (4134)
(27)3 vo2 E(m# — k)

where Ap is the propagator of the light particle of mass m, P is the total momentum of the
composite system, § = P — M# is the momentum of the meson in the effective theory, and
= g — m7 is the residual momentum.

At large | k |, the argument of the exponential becomes
- k+ |k (4.135)

and it is positive for v < 1. The negative energies of the effective particle are compensated
by the positive energies of the light particle in the states with high virtuality. It is possible
to take the continuum limit A — oco. The argument of the exponential and the prefactor in

eq.(4.134) are the expansion of the full theory expressions, and the Green function G(O)(t,f)
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correctly describes the internal dynamics of the composite system in lowest order in 1/M. At
large times ¢ the correlator is dominated by the states with the lowest invariant mass (which

eventually become the lowest bound state in the interacting theory), and it behaves like:
GOt 1) ~ e~ (mvotitd) ¢ (4.136)

The 2-point function G(O)(t,ﬁ therefore, describes a system with an infinite mass, velocity 4,
and residual momentum I’ (the energy Muy is removed), as the result of the correct coupling
of a light particle with an infinite mass particle.

We extend now these results to the case of interacting theory, considering the exchange

of a single scalar massless particle [5]. The correlator G (1) is given at this order by:
GO T) = Ga(t,T) + Go(t,T) + Gu(t,T) (4.137)

where the indices a — ¢ refer to the fig.2 at the end.
By explicit computation we derive:

- — -

/A Crd’p { A(k, 7)exp( ~[@- & + E(mo + - B)Jt ) +

Ga(t,l)
+ Bk p)exp( ~[@-(K+5) + B(mi+T— k- p)Jt ) +
+ C(k,p)exp( ~[@-(F+5) + B(mi+ [~ B)+ | 5[}t ) +

+ D(k,p)exp( —[@-k+ | 7| +E(mi + I—k-p)t)} (4.138)

where 7' is the momentum of the scalar particle exchanged, and £ is the momentum of the
heavy particle after the interaction. The functions 4 — D are very complicate functions of
the loop momenta & and P and we do not report their expression. These ones are the correct
expansion of the corresponding functions of the full theory.

For large loop momenta | k | and | §' |, the arguments of the exponentials in the square

brackets of €q.(4.138) are positive, and behave like:

- -

Tkt k|, @-(B+p)+ |45,

TR+ R+ 15, @-F+ |5+ k-7 (4.139)
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The mechanism of compensation of the energies works also in the interacting theory: negative
energies of the heavy 'quark’ are compensated by positive energies of the light ’quark’ and/or
the ’gluon’. It is then possible to take the continuum limit: there are no other divergencies
than those of a usual field theory. The functions A and B are multiplied by the exponentials
with 2 energies, which depend respectively only on kand k+ p. The divergéncies for A — =
originate from the integration of A over f, and of B over k — .

At large times ¢ the correlator (4.138) behaves like the free one (4.136), apart from ul-
traviolet divergencies in the vertex, which can be factorized in the usual renormalization
constants.

For the amplitudes (b) and (c) the same considerations hold as for the amplitude (a).

The explicit expression of G} is:

-

G(t,1) = / d*kd’p{ E(k,p)exp( —[i-k+ | F— k| +E(m7+ 1~ )t ) +

— -

+ [F(k,§)+ tG(k,p)]exp( —[i-p+ E(mv+1-)t)} (4.140)

where 7' is the momentum of the heavy quark before the emission of the scalar, and k the
momentum of the heavy quark after the emission. The terms with F and G are associated
respectively to the mass and wave function renormalization of the heavy quark, and will be

computed more easily in sec.4. G, is given by:

G.(t, 1) = /d3kd3p { M(k,p)exp( —[@-kE+ E(mi+1—k—-p)+|F|t)

+[N(k,7) + tP(E,p)]exp( ~[i-k+ E(mi+1-k)t)} (4.141)

where £ is the momentum of the heavy quark and p'is the momentum of the 'gluon’.

In lattice regularization formulas (4.134-4.141) have obvious modifications; the energies
of particles are replaced by the energies in lattice regularization. One can easily check that
the mechanism of compensation of the energies is not spoiled by lattice effects.

Even though the computation we presented takes into account the interaction only at the

lowest order, we argue the results shown to have a general validity. Field fluctuations do
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not couple to negative energies, which have a kinematical origin, and do not point to any

inconsistency.

4.5.2 Contour representation of amplitudes

We derive in this section rules for computing amplitudes of the euclidean effective theory in
perturbation theory [5]. A continuum regularization with a cut-off A on the spatial momenta
is assumed for illustrative purposes; the variations for the lattice case are straightforward and
will be discussed in sec.(4.6).

As a first step, let us derive a contour representation of the euclidean effective propagator.
The correct propagator of the heavy quark H(t, 75), as a function of time ¢ and spatial mo-

mentum & is given by:

iH(t, k) = Gv(t) e~ Tkt (4.142)
0

It is forward in time, since it has to describe particle propagation only, and contains the
correct energy-momentum relation (4.129). Because of the exponential increase with time
associated with negative energy stc;l,tes Tk < 0, the propagator (4.142) cannot be represented
as the Fourier transform of a 4-momentum propagator. By allowing the euclidean energy of
the heavy quark k, to be complex, one can write:

dk4 exp(ik4t)

= 4.143
2m i'l]gk4 + vk ( )

iH@E::L

where the contour ¢ approaches the real line for &y — +oo0, it is oriented in the same way,
and passes below the singularity of the integrand, at ky = 7% - l;, for every sign of the energy.
For positive energies C' can be chosen as the real axis, and in this case formula (4.143) reduces
to the Fourier transform, while, for negative energies, C' has to be moved in the lower half
plane. The representation (4.143) can also be derived by means of a Wick rotation in the
complex plane of kg, the energy in Minkowski space. The propagator of the heavy quark in
Minkowski space is given by:

)

iH(ko, k) = -
Cok) = h o a

(4.144)



4.5. FEuclidean Continuation 95

There is a pole in the lower half plane, at kg = i - k- ie. To preserve the causal structure of
the theory the Wick rotation has to be made without crossing the pole; for positive energies,
the pole stays in the right quadrant, and one can rotate the axes as in ordinary field theories.
For negative energies, the pole stays in the left quadrant; the rotation of the real axis ha§ to
be accompanied by a deformation, and this produces the contour in eq.(4.143).
In the static case @ = 0, the pole of the integrand in eq.(4.143) stays in the real axis and
one can impose the correct analytic structure by an e prescription [14]. The ie of the static
euclidean theory therefore has the meaning of a small mass, or positive kinetic energy, to
ensure the decay of the correlations.

Let us consider now an amplitude conta‘i'ning a heavy quark propagator, for example, the

self-energy graph of fig.4. In Minkowski space the amplitude is proportional to

d4k 1 1
./ (2m)t ve(p+k)+ie k2 — A%+ e (4.145)

where p is the external momentum.

In the lower half-plane of kg there are heavy quark and the gluon pole, at ky = —pgy + @ - (F+
l?) — i€, E, — i¢, while in the upper half plane there is the ’antigluon’ pole, at ky = —E), + i,
where E) = 1/ k2 + A2 (see fig.3). The real line separates the poles of particles from the poles
of antiparticles. Doing the Wick rotation one has to deform the real axis in order to keep the
same topology. The euclidean amplitude is then proportional to

d*k 1 1
/ - — (4.146)
¢ (2m)* Gug(ky + p)+T-(F+ k) B +A

where the contour C' divides the ky-plane in two regions, one containing the gluon pole and
the heavy quark pole, the other containing the ’antigluon’ pole. The integration over k, of

(4.146) gives:

3
1/ k3 , j - (4.147)
v/ (27)° [ips + By + @ - (k + 5)]2E)

where the integration extends now to the ordinary 3-momentum space.
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By performing the integration over ko in (4.145) one gets:

: 3
—’-/ Ik LI (4.148)
vo ) (27)* [—po+ Ex+ @~ (k + 5)]2E,

The two amplitudes are the correct continuation one of the other, i.e. they give the same
function of the external momentum p" if one sets p; = ip,.

From the above example, it is easy to derive the general rule for the contour of integration
C of the euclidean energy ky: C must divide the k4 plane into two connected regions, one
containing only the poles of the full and the effective particles, the other containing the
antiparticles poles. To satisfy this requirement, the contour C has to be deformed during the
integration over the spatial momenta.
For positive energies of the heavy quark, the contour of integration of k4 can be chosen as the
real axis, and for negative energies topology must remain the same. The rule above can also
be formulated in the following way: one has to integrate ky over the real axis, by assuming
that the poles of the effective particles stay always in the region they occupy for positive

energies.
4.6 Lattice regularization

We assume the regularization of the euclidean effective theory proposed in ref.[31], that is
forward in time and symmetric in space. Considering for simplicity a motion of the heavy

quark along the z axis, the action S is given by:

S = =37 (=) [b(z) - Ul (2)y(z - D] +

~i591(2) [Ua(e + 2(e + 2) - Ul (e)p(z - )] (4.149)

where /i is a versor in the direction #, and U,(z) are the links related to the gauge field by:
Uu(z) = exp[-igd,(z — /2)].
Let us discuss the problem of the doubling of the heavy quark species [2, 5].

The energy-momentum relation of heavy quark on the lattice is derived by computing the
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propagator as a function of time ¢ and the residual momentum k:

- dky etk 6(t) .
y k — ™ ) — ~(t+1) ln(l-l—uz sin kz) 4.1
iH (2, k) c 2m vo(l — e 1) + v, sink, Vo ¢ (4.150)

One has therefore:
e=1+4u,sink, (4.151)

The energy is zero not only at k, = 0, but also at k. = m, implying that the lattice regular-
ization has produced a duplication of the low energy excitations. A regularization forward

in time and in space is also affected by the doubling problem. In this case the propagator is

given by:
iH () 1 . (4.152)
vp(l — ehi) — qu, (1 — e~7k=)
and the energy-momentum relation is:
¢ = In1 — gu,(1 — e =) ‘ (4.153)

The energy is a complex function of E, and the doubling occurs when ¢ is purely imaginary,

at:
cot(k,/2) = ~u, (4.154)

We show now, by a physical argument, that the doubling has not any significant effect on
the phenomenological applications of the effective theory. Let us consider a meson composed
of a effective quark @ and a light antiquark g, with total momentum B. We assume the
doubling to be removed for the light quark. The effective theory deals with the residual

momentum E of the meson:
k=P-Mi (4.155)

where M is the heavy quark mass.
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It holds:

k=kg+k | (4.156)

where kg and k; denote respectively the momentum of Q and of the light degrees of freedom.
Since the large mass scale M is removed, one expects, after renormalization, | k | to be of
the order of the hadronic scale Aqcp, that is much less than the lattice cut-off 1/a.

This implies that when (kQ): = £7/a and the energy of the effective quark is zero, the light
quark momentum k; is very near to the ultraviolet cut-off, and its kinetic energy is very large,
of the order of 1/a. The configurations in which the heavy quark has a momentum at the
edge of the Brillouin zone therefore, are suppreésed, because of the large energy of the heavy-
light system, as it should be. The situation is similar to that of a light meson composed of a
Wilson fermion (r # 0) and a naive fermion (r = 0). For small meson momenta |Pl< 1 /a,
the internal dynamics is described correctly, even though there is & duplication of the meson
species.

The doubling has a negligible effect also in the dynamics of the transition of a heavy
meson into an heavy meson (the dynamics of thé Isgur-Wise form factor). Due to change of
velocity of the heavy quark after W emission, the typical momentum transfer g# between the
heavy quark and the light degrees of freedom may be greater than Agcp. By dimensional
arguments, one expects gt ~ Agcpv - v'. If also this scale is assumed to be much less than
1/a, the typical momentum exchanges lie in a region where lattice effects are negligible.

Assuming a convention for the Fourier transform according to which ¥(z) ~ exp(ik - z),

one derives from the action (4.149) the following Feynman rules:

1
(B = ' 4.1
ZH( ) Uo(l_e~lk4) + v,sink, v ( 57)
Vo = igugt, eilkathi)/2 (4.158)

V. = gu, t, cos(kz/2+k;/2)

2

Vet = - g ek (4.159)
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2
v
Vzt“d = 9% 5 ! totp sink,

where k and %' denote respectively the momenta of the incoming and outcoming heavy
quark, Vy and V, are the interaction vertices of the heavy quark with a gluon provided with
a polarization along the time or the z axis. Ve are the vertices of emission of two gluons,
for the case of the tadpole graph (k=F).

We notice that the conventions for the sign of the Fourier transform and of the velocity, are
not independent, if one wishes to intend & as the residual momentum of the heavy quark. If
one assumes a convention by which ¥(z) ~ exp(—ik - z), only the sign of k, changes in the
above Feynman rules (i.e. the sign in front of Uz in eq.(4.149) is changed).

In usual lattice field theories, every component of the loop momentum &, is integrated
in the interval [—x, 4], i.e. exp(ik,) is integrated along a unitary circle. For the effective
theory, the integration contour of exp(zky) has to be distorted in order to keep the poles of
the effective quarks always in the right region of the exp(iky)-plane, the region of the full
particle poles. The rule for the contour in lattice regularization is analogous to the case of
the continuum discussed in sec.(4.5.2).

We apply now these rules to the calculation of the amplitudes needed to renormalize the
effective theory. Infrared divergencies are regulated by a fictious gluon mass A.

Self-energy graph of fig.4 is given by:

dik  vie~i(2ps+ks) _ v? cos?(p, + k :/2) 1
21 ) wg(1 — e=ilkatpa)) 1 o, sin(k. + p.) A(k)

A(p) = —g2Cp /( (4.160)

where the integration region is the domain [~m,+7]3 % C. Cp = Y tot, = (N%? - 1)/2N for
an SU(N) gauge theory, and A(k) = 2 2(1—cosky) + (ad).
Since this integral has to be computed numerically, it is convenient to reduce the integration

region to a real domain. Making the contour integration analytically, one gets:

2
Alp) = i —
(p) 1672 7 d k\/(l—x—A)i—l X
vg 2(k) e~ P — 2 cos?(p, + k,/2)
vo(1 — z(k)e=Ps) + v, sin(k, + p.)

(4.161)
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where 4 = °2_ (1 - cos ki) +22/2 and 2(k) =1+ 4 — V1+4)2 -1
The tadpole graph of fig.5 is given by:

2 -4
_ "'g CF‘ —ip4 _ . / d k 1
) = g (we vasing:) 5o (27)* A(k) (4.162)

In this case, there is no need to integrate over k., because the integrand does not contain any
effective propagator, and the integration region reduces to the ordinary one, [—m, 4]

The vertex correction of the local heavy-heavy current J (z) = Ev(:c)l“h,,:(z), omitting the
trivial spin structure (1 +9')/2 T (1 + ©)/2, is given by (see fig.6):

'y 1
— 2 =
V=g Cr f (2n) AR *
vouhe ke v, v, cos®(k,/2)
X [vo(1 — e~*¢) + v, sin &,][v)(1 — e~k ) + vl sink,]

(4.163)

where we have taken the motion of the two heavy quarks along the z axis, and we have set
to zero the external momenta.

Integrating over k, one gets:

oV =

9’Cr -1 a3k
1672 Tvgu)) ./ VI+A?2I=1 X
vovpz(k) — v.v] cos?(k,/2)
(1 — 2(k) + u sink,)(1 — 2(k) + . sin k 2)

(4.164)

4.7 Renormalization on the lattice

In this section we describe the one-loop renormalization of the effective theory on the lattice
(5].
The self-energy ¥ (k, v) of the heavy quark is given by the sum of the graphs considered

in section 4.6:
D (kv) = A(k,v) + T(k,v) (4.165)

The bare propagator is given by:

1

iH(k) = vo(l — e~ ) + v, sink, + My — 3 (k,v)

(4.166)
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where we have inserted a bare mass term My to compute the mass renormalization condition.
We impose on-shell renormalization conditions. Near the mass-shell the propagator looks
like:

1
(iv0 — X)ks + (v ~ Y )k, + My — 3(0) + O(k?)

iH(k) = (4.167)

where

X = (Z,f) (0), Y= (‘Z;f:) (0) (4.168)

Because of lattice effects (see later), the vector (X,Y) turns out to be not proportional to
the euclidean velocity (ivo,v.). This implies that mass and wave function renormalizations
are not suflicient for a complete renormalization of the effective theory. This effect can be
interpreted as a renofmalization of the velocity. The velocity v appearing in eq.(4.167) has to
be identified with a ’bare’ velocity vp, modified by the field fluctuations into a 'renormalized’
velocity vp = vg + §v. By comparing the bare propagator (4.167) to the expression in terms

of the renormalized parameters

Z

(oR)oks ¥ (vR)-E. + Mn T O(R)’ (4.169)
and imposing the normalization of the velocity
(vr)® = (vp)* = 1, C (4.170)
one gets, up to first order in a,:
M = - (0) (4.171)
02 = —iwX -v,Y (4.172)
bv; = —ivv, X — vlY (4.173)

where §7 = 7 — 1.

The explicit expression for the mass renormalization § M is:

oM =

1672 TV \/(1-{—44)2 1(1-z4u,sink 2) +

Vo 4 1
‘LZJr_?/d Fa | (4.174)

gZCF[ 1 v3 2 — v2 cos?(k,/2)
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The first term comes from the amplitude (4.161) and has a relativistic invariant form for
small k; it is a function of velocity because of hard gluons. The second term originates from
the tadpole graph, and therefore is a lattice effect. It is also a function of the velocity because
of the explicit factor wvy,.

The mass renormalization §M is a function of the velocity u,. It is linearly divergent

with the ultraviolet cut-off 1 /a and can be written as:

2
M = %6% f%‘_) (4.175)

The numerical values of z(u) are reported in table at the end. The numerical error is at
most one unit in the second decimal place. For u = 0 one recovers the static value already
computed in ref.[8, 15]. At 8 = 6 the mass renormalization is about 17% of 1/a for u = 0
and decreases up to 9% at u = 0.7.

We notice that the mass renormalization 0M in the effective theory with @ # 0 is, effec-
tively, a renormalization of the residual momentum k* of the heavy quark. Indeed the heavy
quark propagator can be written in the limit a— 0 as:

1 1
vek+ M v (k- 6Muv)

(4.176)

where v is the euclidean 4-velocity, v = (ivg, %) and vg = 1+ 7 2.
We can restore the original form of the propagator, that has a pole at k& = 0, by defining a

renormalized residual momentum kr by means of the relation:
kr = k- 6Mv (4.177)

This effect has a very physical explanation. The mass renormalization of the static quark
is given by the energy of the Coulomb-like field surrounding the colour charge. For 7 # 0,
Coulomb field moves rigidly with the source, and carries the 3-momentum § M ¥ together with
the energy §Mwvy. If one wants to intend k as the fraction of the heavy quark momentum
changed in the collisions, and that is zero in the absence of interactions with other particles,

it is necessary to subtract the constant contribution from mass renormalization. In practise,
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it is not necessary to make the subtraction (4.177), because in the effective theory energy-
momentum relation is linearized, and it does not matter if the expansion point is shifted by
renormalization. The only effect of § Mv is an additional constant decay of the propagator

with time, according to
iH(t,k) ~ e~ (M/u+ak) (4.178)
instead of
iH(t, k) ~ e~TF¢ (4.179)

According to eq.(4.1 72), the expression for the renormalization constant of the field §2

is:

67

_g%Cr 1 [ /‘ d3k 203 z(k) + v2u, sin k,
C16m2 ) T+ AP -1 1-2(k) + u, sink,
/ d3k [v5 2(k) — v2 cos®(k, /2)][z(k) — uZ cos k]

VOFA?T-1 [1— 2(k) + u,sink,]? ) (4.180)

The first term in eq.(4.180) is infrared finite, and comes from the differentiation of the

momentum-dependent vertices. The second term is infrared divergent, and singularity is
isolated with the technique introduced in ref.[7]; the remaining integral is evaluated numeri-
cally. Details are given in appendix A.

We can write:

Ie“i% [—2In(a))? + e(u)] (4.181)

Zw) =1+ L
The coefficient of the logarithmic term, i.e. the anomalous dimension of the heavy quark
field, is independent on the velocity. It is indeed the same in every regularization, and it does
not depend on the velocity in a covariant regularization. The finite term e(u;) has a non
trivial dependence on the velocity u,, and the numerical values are reported in the table. For
u; = 0 one recovers the static value already computed in ref.[8, 15].

The renormalization of the velocity év, is given, according to eq.(4.173), by:

dv, _ g’Cr 1 &3k 2vpz 4 v, sink,

v, 1672 7 [vo VOtA?-11-2+u,sink, T
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[v5 2(k) — vZ cos®(k,/2)][z(k) — cos k.

+/ 43k
VO + AT [1—z+ u,sink,]?

The tadpole graph does not contribute to the renormalization of the velocity, because the

] (4.182)

heavy quark propagator does not enter inside the loop and then it is not evaluated at large

momenta. The first term in eq.(4.182) is alattice effect, while the second one has an analogous

term in the continuum and the integrand vanishes for small & (2(k),cosk, — 1 for k — 0).
The velocity renormalization is a finite effect, because the infrared divergencies cancel

between X and Y, and it can be written as:

2
v. _ 9°Cr o(u;) (4.183)

v, 1672

The numerical values of ¢(u,) are reported in the table. At B = 6, formula (4.183) gives a
positive renormalization of the velocity §v,, that increases from 10% at w = 0.1 up to 18%
for u = 0.7.

Let us discuss now a method that allows a non-perturbative computation of the velocity
renormalization. We consider a specific example.

The correlator G, 1(t,u) of a meson M composed of a light quark and an effective quark

with kinematical velocity u, behaves for ¢ — oo like:
Gar(t,u) ~ exp(—e(u)t) (4.184)

where €(u) is the binding energy of a meson with velocity u in the infinite mass limit. « is not
a physical quantity, since it contains the mass renormalization of the heavy quark §M (u),
that is linearly divergent and has a complicate dependence on the velocity.

The correlator Gy (t, u) of an hyperion composed of light quarks and an effective quark
with velocity u, has a time dependence analogous to that one in eq.(4.184), with €(u) replaced
by €'(u), the hyperion binding energy. By taking 'the ratio of the 2-point functions, the mass

renormalization contribution §M (u) to the binding energies cancels [30]:

Gr(t,u)
m ~ exp| —Ae(u)t ] (4.185)
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where Ae(u) = ¢(u) — ¢(u) is the difference of the binding energies. Ae(u) is a physical

quantity and, as such, satisfies the relativistic relation:
Ae(u) = v(u)Ae(0) (4.186)

where y(u) = 1/4/1 — u? is the Lorentz factor.
By measuring Ae¢(u) and Ae(0) with numerical simulations, one can derive, by means of
eq.(4.186), the renormalized velocity vy of the heavy quark.

Let us consider now the vertex correction to the local heavy-heavy current J = h,T'h,.
The amplitude has already been reported in sec.4.6. A general parametrization is the follow-
ing:

9°Cr
1672

where r(z) = 1/v/22 — 1 In[z + V2% — 1].

The logarithmic term in eq.(4.187) has already been computed in ref.[17]; it is a function of

8V =

[2(v- 'v’)r(v . v’) ]n(a/\)2 + d(v, v') ] | (4.187)

v - v/, the only non trivial invariant that can be constructed with the velocities v and v’ of
the heavy quarks. The finite term d is not universal and in lattice regularization depends
separately on the components of v and v’. The constant d has been evaluated numerically
for the case of one static quark, v’ = 0, and one quark moving along an axis @ = u,7. The
numerical values of d(u) are reported in the table.

The one-loop matrix element of the current J between heavy quark states is then given

by:

(ho [ [ h) = 1+ L62(0)+ %52(1/) 8V (v, v")

9*Cr

o [2(v-v" r(v-v') = 1) In(a))? + F(v, v')] (4.188)

1+

where we have used eqs.(4.181, 4.187) and we have defined:

F(0,9) = 5e(o) + 2e(v') + d(o, ) (4.189)
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In the normalization point v - v/ = 1 the anomalous dimension of J vanishes due to the
conservation of the effective current related to the flavor symmetry [18].
For the case of an initial static quark @’ = 0 and a final quark moving along the z axis

U = uZ, the above matrix element reduces to

i;if[ (1 Y 2)In(aX)? + f(u) ] (4.190)

Z 1—u

1+

The values of f(u) are reported in the table at the end of the paper.

Let us discuss now the on-shell renormalization of the lattice effective theory in the real
space, instead of that one in momentum space, as we have done up to now. The two schemes
differ on the lattice and the relation between them has been clarified in [30].

Near the mass-shell (i.e. at large times) the self-energy (k) can be written as:
> (k)= —6M + 8Z(wo(l—e ™) L v, sink, ) + O(k?) (4.191)

where, for simplicity, we have neglected the velocity renormalization dv,, which, is not im-
portant in this context.
The bare propagator of the heavy quark on the lattice at order ay, as function of time ¢ and

momentum £ is then given, at large times, by:

iH(t k) = / %];rieik“t{ iH (kg k) +

+ iH(kyy B)| ~6M + 6Z(vp(1 — e~is )+ vesink.) JiH (kg £) }
Zﬂ@e“(t+1)ln[1+”z sinkz]{l + —5M(t + 1) }

vy v (14 u,sink,)
= Z%}LQ exp{—(t+ 1)In[1 + u, sink, + M [vo)} (4.192)
0

where in the last line an exponentiation that is appropriate for large ¢ has been done.

In the continuum limit ¢ — 0, the propagator (4.192) reduces to:

iH(t, k) = z%;—)ex;,[ —(t+1)(6M/vo + @ F) ] (4.193)

The renormalization conditions in momentum space therefore (4.171)-(4.173) imply that the
field renormalization constant Z is multiplied, for an evolution of time t, by the exponential

with ¢ + 1 instead of ¢.
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The evaluation of the Isgur-Wise function on the lattice requires the computation of a
3-point function G containing two heavy quark propagators. According to eq.(4.193), the
correlator G contains the factors exp —(t + 1) and exp —(# + 1) for times ¢ and # of the
evolution of the two heavy quarks.

The bare propagator of the heavy quark with renormalization conditions in the real space

is given, in the limit ¢ — 0, by:
/e(t) / = 7
Z . exp[~(6M' [vg + @ - k)i] (4.194)
0

Equating the expressions (4.193) and (4.194), one gets the relation between the renormaliza-

tion constants in the two schemes:

Z' = 7 - %ﬂi, M’ = 6M (4.195)
0

There is a finite difference in the wave function renormalization constants Z and 2’ because
the mass renormalization § M/ is linearly divergent, i.e. §Ma does not vanish as a — 0.

The renormalization constant of the operator J in the real space renormalization scheme
is given by:

(ho | T hy) = 14 -;-52'(1,) + :21-57;'(1/) L5V (v, )

14 £08 204 10+ ) ~ 1) @) 4 (o,

Il

1672
2
_ 9°CFr 1 l-l-u_ . .
= I ez (G — 2)In(ad)’ + f(u) ] (4.196)

where in the last line the case @/ = 0 and # = u7 has been considered. The values of F(u)
are reported in the table. Note that in the static limijt (v =0), f = 0: the current J is
exactly conserved, as in the continuum. The real space renormalization scheme therefore is

better than the one in momentum space because it does not introduce lattice effects.

4.7.1 Lattice-continuum matching

In this section we consider the matching of the lattice effective theory with the effective theory

in the continuum [5, 40].
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It is easy to see that lattice-continuum matching can be done in perturbation theory.
We assume that infrared divergencies are regulated the same way. The two regularizations
therefore differ only in the specific way in which they cut-off the high-momentum modes. The
difference of the amplitudes in the two regularizations is related to hard parton effects, i.e.
to partons with momenta of order 1 /a>> Agep. Due to asymptotic freedom, this difference
can be safely computed in perturbation theory.

The matrix element in eq.(4.196) is given in the M S scheme by:

c 1. 14u
(By | T | By) = 1+.gi€7r—§(z-;1n1_u)1n(ym2 (4.197)

The ratio of the M§ matrix element divided by the lattice matrix element, gives the factor

Zm by which one has to multiply the values of the lattice simulation, to get the 3§ values:

2 1.1 )
Zo = 14 Tl 2= s ) n(ua)? — f(u) (4.198)

We have considered the real épace renormalization scheme (4.194), which appears more nat-
ural for the lattice matrix element of the Isgur-Wise current.

One sees explicitly that the dependence on the gluon mass \ cancels, implying that soft
contributions cancel in the matching.

For a numerical evaluation of Zm one has to select a value for ags; at p = 2 GeV the
lattice value is smaller than the continuum one by a factor 2.7. It is necessary to use a unique
value of ag, otherwise the matching constant is no longer an infrared safe quantity. One has
to make a guess for the higher orders of g% in Z,,. Using the lattice value for 8 = 6 and
taking u = 1/a, the matching constant Z,, is 1 at u = 0 and decreases with the velocity up
to 0.95 at u = 0.7. With the continuum value of ay, Z,, = 0.86 at u = 0.7.

We discuss now a related effect to the breaking of the Lorentz symmetry in lattice regu-
larization. In the general case # #0and ¥’ # 0. The lattice matrix elements of J do not
depend only on the Lorentz invariant v- v’ , but also on the individuél components of v and v’.
The phenomenon is produced by hard quarks and hard gluons (with wavelength of the order

of the lattice spacing a), which propagate with different amplitudes in different directions,
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due to the anisotropy of the lattice. This effect is cancelled multiplying the matrix element

of J by the matching constant

Zm’, which also depend separately on v and v'.

table

Numerical values of the renormalization constants

v z(u) e(u) €(u) d(u)  c(u) flu)  f(u)
0.0 19.95 2448 4.53 -4.53 - 19.95 0.00
0.1 19.89 24.67 4.88 -4.58 11.93 20.00 0.13
0.2 19.71 25.29 5.97 -4.74 12.30 20.14 0.51
0.3 19.37 26.40 7.93 -5.05 13.00 20.39 1.18
0.4 18.78 28.19 10.98 -5.56 14.07 20.77 2.19
0.5 17.75 30.98 15.61 -6.46 15.71 21.27 3.62
0.6 15.81 35.51 22.86 -8.22 18.09 21.77 5.48
0.7 11.17 44.35 36.37 -14.4  20.91 19.88 6.02

4.8  Small velocity expansion

Since ¢(v - v') is normalized at zero recoil, £(1) = 1, the determination of |

data of decays (4.40)

Veo | from the

in this kinematical point is free from theoretical uncertainties [36]. In

practise, an extrapolation of the experimental curve up to the endpoint v-v' = 1 is required.

As a consequence, substantial systematic errors are introduced. We present a technique for

computing the derivatives of the Isgur-Wise function in the normalization point, ¢ (”)(1), thus

eliminating this source of uncertainty.

The idea is to expand in small velocities | ¥

|« 1 the Georgi Lagrangian for heavy quarks
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in Minkowski space [18]

L(z) = 9¢¥(z)iv-D (=) (4.199)

where D, = 8, —igA,. The expansion of the projector on the particle states (1 +7v-v)/2in
n = Op "

the propagator

14+~

H(z,yi0) =~

S(z,y;v) (4.200)

is trivial and we omit it. The Lagrangian given by eq.(4.199) is decomposed in the static

Lagrangian plus a correction:
L = 9'iDyyp + ¢Hi[Dy(vy — 1) - 5. D)y (4.201)

From the above splitting one derives the following integral equation for the propagator

S(z,y;v) of the heavy quark:
S(2,3;0) = 5(z,y) + / d'z §(z, 2)[~i(vo - 1)Dy + i7- D1 (=, y; v) (4.202)

where §(z,y) is the static propagator. The iterative solution of eq.(4.202) gives the pertur-

bative expansion of the propagator for small velocities:

S(,350) = S(e,0)+ [ d'z S(z,2)iv- D.5(z) + (4.203)

!

i/d4z S(z,z)72)2 (Do):S(z,y) +

+ /-d4z/d4w S(z,z)iv- ﬁzS(z,w) 17 - ﬁwS(w, y)+ ...
Inserting the following expression for the static propagator
S(z,y) = —i0(t, — ty) Ptz,t,) 6(Z - 7) (4.204)
in eq.(4.203), one gets, up to second order in v:

ta .
S(,yiv) = —i Oty —¢)) (P(tr,ty)+/ dt. P(ts,0,)5 - D(3,1,)P(t,, t,)
i

y

[ 23 tz - —
+ [Ta / Qb Ptz )5+ D(, 8.)P(t,, )5 - D(F, t,)P(tu,t,)
ty ty

J’;P(tx,ty) +...)6(F-9) (4.205)
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where P(ty,1,) is a P-line in the time direction joining the point (&,1,) with the point (Z,,):
iy

P(ty,t,) = Pexp(ig / Ao(%, 5)ds) (4.206)
; .

The analytic continuation in the euclidean space of the small velocity expansion of the
Georgi theory does not cause any problem, because it reduces to the standard analytic contin-
uation of the static theory. The theoretical problems related to the formulation of the effectjve
theory for heavy quarks at non zero velocity in euclidean space, are indeed circumvented by
our approach.

The difficulties of the analytic continuation of the original (non expanded) Georgi theory

(eq.(4.199)) originate from the fact that the energy spectrum,
e=1u-k, (4.207)

is unbounded from below. In eq.(4.207) 1 is the kinematical velocity, @ = d&/dt = #/vy. On
the contrary, with the expansion around small velocities (eq.(4.205)) the energy spectrum
remains the same as that of the static theory, which is bounded from below (Z = 0 in

eq.(4.207)). The expansion (4.205) has indeed the following form in momentum space for the

free case:
1 1 1 - 1
= vk 4.208
vk e k0+ie+k0+iev ko—]—’i6+ ( )
1 —7 2 1 1 - 1 _ - 1
4 k

k -k .
botie 2 Chotie  hotic Thoti Fmyat
With a non-perturbative technique (such as lattice gauge theory), the Isgur-Wise function

£ can be computed by the asymptotic values in euclidean space of the following 3-point and

2-point Green functions:

Cs(t,t') = /d3:cd3z'(0 | TOI)(z')E(m)vu(l —75)b(2)0p(0) | 0) (4.209)
Cp(t) = /d3z:<0 | T 0l(=2) 05(0) | 0) (4.210)
Cp(t' —1) = / &2'(0 | T 0% (2") Op(z) | 0) (4.211)
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where Op(z) and Op(z') are two interpolating fields for the B and D meson:

Op(z) = b(z) i 75 q(), Op(z) =¢(z) i 75 ¢(z) (4.212)

In the correlations given by eqs.(4.209-4.211) the effective propagators with velocity v/ and
v have to be inserted for the 4 and ¢ quarks respectively. For ¢ — 00, ¥ =t — co one derives

by spectral decomposition:

vVZp Zp

’ — I o€ tfvj—e (t'—t) /vy
Cs(t,t") M2M3v6v2MDvo<D’v‘J”'B’v) e 0
+ (exponentially small terms) (4.213)
Z /
Cp(t) = mf—;g e /v + (exp. small terms) (4.214)
Cp(t'—-t) = 5—]\/—’?[)—0_”5 e=e =t)/v + (exp. small terms) (4.215)

where € is the static binding energy, ¢ = Mg — My, = Mp — M, and Zp and Zp are the

renormalization constants of the operators O B(z) and Op(z), given by

(B,v'| 0p(0) | 0)

Il

7]
VZp

Il

(D,v|Op(0) | 0) (4.216)

Since both the wave functions and the interpolating fields in eqs.(4.216) are pseudoscalars,
the matrix elements do not depend on the velocity v(v’).

It is necessary to note that the exponential time decay of the correlations (4.209)-(4.211)
is not controlled by the residual energies of the B and D mesons ¢ v} and € vy, but by €/v} and
€/vo. That occurs because we have projected the correlations on zero residual 3-momentum
k= 0, instead of pro jecting on the residual 3-momentum & = ¢ o/ (€ ¥) of a heavy-light meson
Iﬁoving with velocity v’(v). This choice has no effect on the matrix elements (4.40), (4.216)
and simplifies the effective computation of the correlations.

Taking the ratio of the 3-point to the 2-point Green functions, all the dependence on the

velocities v and v’ cancels in the temporal evolution and in the relativistic normalization of
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the states. It remains only in the relevant matrix elernent (4.40):

Cs(t,t") _ (D,v | J,(0) | B,v")
Cp(t) Cp(t' —t). V4B Zp

With the technique proposed, one inserts into the correlations of eqs.(4.209)-(4.211) the

(4.217)

expansion (4.205) for the propagators of the b and ¢ quarks. Taking for example the b quark
at rest, v’ = (1,6), and the ¢ quark in motion along the z axis, v = (/I + v%;0,0,v,), one

has the following perturbative expansions for the correlations:

Ca(t,t'50:) = CO(t,1) + C(t, ¢)o, + OO, )02 + ... (4.218)
Co(t' —tiv:) = CHE — 1)+ Y — t)u, + D — 4.  (4.219)

The correlation functions in eq.(4.218, 4.219) reduce with the expansion in the velocity to a
sum of 2-point static correlations, with an increasing number of local insertions which give
rise to the ’perturbative motion’ of the ¢ quark. Comparing the expansion in eq.(4.219) with
the spectral decomposition in eq.(4.21.5), one sees that the first order term vanishes.

The right-hand sides of eqs.(4.218, 4.219) are inserted in the ratio in eq.(4.217), and
the latter is expanded in powers of v,. The weak current matrix elements (4.40) are then
expressed as a sum of ratios of 2-point static correlations.

Considering the time component of the vector current in eq.(4.40), the derivative of the
Isgur-Wise function in the normalization point {'(v - v = 1), for example, is given by the

second order terms in the expansions (4.218, 4.219):

CB(tytl) B 2Mp 2Mp ; 2,
Ce(t) Cott — 1) — \ 2525 [LH1/2EM)+1/2)07 +--] (4.220)

and .
- 0) (O) v, ( N )
%0 " Gl oy

where the time of the correlations have been omitted.
In conclusion, the expansion in small velocities of the effective theory for heavy quarks at
low energy provides a systematic and simple method to compute the Isgur-Wise function in

the region of phenomenological interest.
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Conclusions

Heavy flavor physics is still a wide and open research field and involves crucial tests of the
Standard Model. As we have pointed out, a detailed understanding of strong dynamics is
essential. In our opinion the most promising technique for this task is lattice QCD. With
present computer facilities, it is not possible to study heavy quark physics on the lattice and
it is necessary to use an effective theory. The assumptions of the effective theories are quite
reasonable and they have been checked by us in the case of the beauty spectrum.

The static theory allows the computation of the decay constant of the B mesons fB, which
determines the B~ B mixing amplitude. The knowledge of fg is essential for a measurement
of the C P-violating phase in the CK M matrix. Another interesting application of the static

theory is the computation of the semileptonic decays of B mesons into light mesons, such as:
B—mp+l+y (4.222)

The analysis of these processes may lead to a precise determination of the CKM matrix

element V.

The semileptonic decays of beauty hadrons into charmed hadrons, such as

B - DU 411y, (4.223)

Ay — Ac-f-l-}—lll

allow for a clean determination of Vep. These processes involve heavy quarks moving with a
fixed velocity. We have formulated the theory of infinite mass quarks with a fixed velocity on
an euclidean lattice, and we have computed the lattice-continuum renormalization constants.

This theory hopefully will be used for the lattice QCD simulations of the above decays.
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Appendix: subtraction of the jn-
frared singularities

In this appendix we give the formulas used for the subtraction of the infrared singularities of
the loop integrals for a) — 0, and for the numerical evaluation of the integrals.

The singularity is isolated by subtracting and adding back to the original integrand its
expansion for small momenta. The difference is infrared finite, and can be computed numer-
ically in the limit ¢A — 0. The term added back is simpler than the original integrand and
can be integrated analytically.

In the limit of small momenta | ak; |< 1 the singular term in the wave function renor-

malization constant, eq(4.180), reduces to:

h(k) = —1-2- . L - 1 (4.224)
U \/E2 4 (aA) [k 2+ (aA)? 1 uk, 2
where the usual phase-space factor 9°Cr /167 has been omitted.
The function h(g) can be easily integrated on a 3-sphere of radius R:
- 2 1
/d3k W(E) = 2In(R/aX) +1016~ 2 1n ] +Z (4.225)

Notice that the linearized integral in eq.(4.225) depends on the velocity u, since the domain
of integration is a 3-sphere, which is not § O(4) invariant,

For the numerical computation, the formula (4.180) is thus replaced by:

1 A’k 208 z(k) + v2u, sin k,

7_"/\/(14‘:4)2——1 1~ 2(k) + u, sink,

l/dsk ( 1 [v§ 2(k) — v2 cos?(k./2)][z(k) — u? cos k] s
T VI+ 471 (1 — 2(k) + u, sin k,]2
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1B |k]) }+ 210 R% +1n1 Ltu

U B | (k] +uk,)?

(4.226)

where the phase-space factor has been removed.
In the infrared limit ak; — 0, the integral of the vertex correction (4.164) reduces to:

v-

I =
7’”0”0/\/]32.{_((1,\)2 \/k 2+(a/\ 24 4. ]:,' (\/k2+(a/\)2 o - Ic)

il

- / P (4.227)
k24 (a)) k2+(a/\)2+ﬂ'~k

with the usual factor removed. In the last line we have taken % / = 0.
The integral above is not easy to compute analytically, and one has to make a further sub-

traction. I has the same infrared singularity of the simpler integral

___/ 1 1. 1+u
lkl2+(aA)2Ikl+ w1l

(4.228)

The vertex correction is then computed numerically by means of the following formula:

34 z(k)
~—/‘d 1+A)2——1[1—~z(k)][1——z(k)—}-uzsmk]+

__B(R- k)
EF(F k) b
—6(u) — ;ln ! +“1n122 + +" )2 (4.229)

where §(u) is a constant evaluated numerically:

f(u) = L-TI=

_ g/w dkk{ VvV14+Ek?2+ uk ln1+u}
Coudo 1HRY T TR - uk 1-—u

(4.230)
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FIGURE CAPTIONS

Fig.1: correlator of a system composed of an effective 'quark’ € (see text)
and a light antiquark g in the free case.

Fig.2: the same correlator as in fig.1 with one gluon exchange.

Fig.3: Wick rotation for the self-energy graph of the effective quark @ of
fig.4. The crosses indicate the positions of the poles of the effective quark Q,
of the gluon g and of the antigluon 3.

a) Case of positive energy of Q: € > 0

b) Case of € < 0 and | € |< E, where Ey\ = y/k 2 4+ A2 is the gluon energy.
c) Case of e < 0 and | € |> E,.

Fig.4: self-energy graph of order ag of the heavy quark.
Fig.5: tadpole graph of order ag of the heavy quark.

Fig.6: vertex correction of order as of the current J describing the transition
of a heavy quark with velovity v’ into a heavy quark with velocity v.
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