ISAS - INTERNATIONAL SCHOOL
FOR ADVANCED STUDIES

Analysis of Singularity Structures

for Quasi - integrable Hamiltonian Systems

Thesis submitted for the degree of

“PhilosophiaeDoctor”

CANDIDATE SUPERVISOR

Simonetta Abenda Prof. Giorgio Turchetti

June 1994

TRIESTE







Index

Introduction 1

1. A very peculiar case: cubic and quartic polynomial
potentials 12
1.1 The structure of the complex leaves and the properties of the action

variable . . . L L L, 14

Appendix to Chapter 1: Construction of global

action - angle variables for g =1 18
1.1  Construction of the action variables . . . . . . . . . . . . 18
1.2 Construction of the phase variable . . . . . . . . . . . . . 29

2. The intrinsic complexity of higher
order polynomial Hamiltonians 32

2.1 Phase and action variables for higher degree polynomial .

potentials . . . . . . . . .. 0oL Lo oL 34
2.2 An application of a theorem by E. Picard . . . . . . . . . . 40
2.3 Construction and interpretation of ¢ phase variables . . . . . 47
2.4 Painlevé conjectures and integrability . . . . . . . . . . . . 50

Appendix to Chapter 2: The effect of QMT and

NTT transformations 53



II

3. Local singularity structures for time periodic
perturbations 62

3.1 Painlevé a method and the local singularity structure around

the movable critical points . . . . . . . . . . ... G4
3.2 Hamilton - Jacobi perturbative expansion . 5
3.3 A discretized model with delta - time periodic perturbation . . 82
Appendix 1 to Chapter 3: Local singularity structure
around the movable critical points ST
Appendix 2 to Chapter 3: The homological equation
and the Siegel disk 100
Captions 103

References 107



Introduction

The problem of iﬁtegrability and non - integrability in Hamiltonian systems ([Fo],
[Ko], [DKN], [AKN], [SM], [W1]) is central in the study of dynamical systens.
The word integrability itself may be given various meanings ([Conl], [AdM1],
[Ko], [Arn2], [Fo], [DKN], [AKN], [Ves], [Ves1]) depending on the aspects
" of the theory of dynamical systems in which the researchers are mainly interested
in.

In the following, if not specified differently, we will use the word integrability
in the sense of Arnold - Liouville ([Arn2], [Ko], [Fo], [AKN]). This theorem
allows a nice description of the Hamiltonian system in terms of a very peculiar
set of variables - the action angle coordinates, but unfortunately it is not possible
to characterize whether a system is integrablé or not, a priori without knowing
whether it admits or not a complete set of first integrals.

This has led researchers to investigate the problem of integrability and nor
integrability in various directions, like considering topological obstructions to the
existence of complete set of first integrals ([Ko1]), or studying the stability of
integrability under small perturbations ([Arn1], [K], [Mos], [Mosl1], [Mos2]).
or describing phenomena of bifurcations of asymptotic surfaces ([Poil], [Zig],
[BoPB], [Ko]), like separatrix splittings ([Laz], [Laz1], [LST], [GLS], [HM])
and appearance of homoclinic orbits ([Mel], [Ko], [Rab], [CES], [CR], [Se],
[CM], [Mon], [BeBo], [ACM]), as evidences of loss of integrability, or studying
non - integrability in a neighbourhood of an equilibrium point ([Si1]), or consid-

ering criteria that guarantee the nonexistence of invariant tori through a given



point or region in phase space, the so called converse KAM theory ([Mat], [Au],
[MMS], [MP], [MacK], [Mei]), just to cite some fruitful research directions.

In the following we will study the local and global singularity structure in
the phase space for complexified Hamiltonian system in a two - dimensional space
with a periodic time - dependent perturbation, and try to connect it to the inte-
grability or non - integrability of the real Hamiltonian systems. For what concerns
the problem of existence of global real action - angle variables we refer to ([Dui],
[N]). We will consider the case where the unperturbed system has a polynomial
potential because in this case using the theory of complex variables it is possible
to study the problem of introducing complex global action - angle variables. This
problem is simple in the case where the system is not only Arnol’d - Liouville
integrable, but also integrable in Painlevé sense ([Pai], [Con], [Si], [Adm1],
(11], [AB]). We will then perturb such systems with time - periodic‘ perturbations;
then numerically the singularities in the time and phase variables show the appear-
ance of barriers, which have not an analytic interpretation yet, but which may be
analyzed locally with perturbative techniques (see also [AB], [BoDP], [BMT],
[BT1], [BT2], [CGTW], [FdLL], [FLT], [PG], [Per], [RGB]). Before giving
a brief summary of the arguments treated in this thesis let us start with some

preliminary definitions.

Hamiltonian equations are a particular sub - class of ordinary differential
equations; since, in the following, we will be concerned with analytic Hamiltonians,
we will introduce all of the definitions directly for this case. Of course most of the

definitions and theorems cited below will be true also for sufficiently differentiable

Hamiltonians (see [AKN], [Arn2], [DKN], [Fo], [Gal], [Ko]).

Let us consider a 2m dimensional real manifold 901 - the so called phase space -
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and the set of analytic functions with real values €% (M, R). Let © be a symplectic

canonical structure on 91, that is a bilinear map which satisfies

(@) {f9}=—{9,f}, (skew—symmetric);

(i) {fg,h} = f{f, 9} +g{f,h}, (Leibniz rule);
(@) {{f, g} h}+{{g,h}, f} +{{h, F},9} =0, (Jacobi identity),
(iv) Vfe(M,R)Yz€ Mz non critical for MAg € €2(IM, R),

s.t{f,9}(z) # 0. (non — degeneracy)

- Then the pair (9, ) is called a symplectic structure and {, } are called the Poisson
brackets; by Darboux theorem it is always possible to choose a neighbourhood of

any point of 97 so that

If H € €M, R), then a Hamiltonian system on (901, %) is the set of ditferential

equations
f={fM (0.1)

and a solution of it is an analytic map of the time interval T ,m I — 9 which

satisfies (0.1).

In particular in the symplectic coordinates, we get the canonical Hamiltonian

equations
. OH . oM

r=1,..,m.

Diffeomorphisms ¢ of 91 are called canonical if they preserve the Poisson
structure and a subgroup is formed by the phase flow. In studying canonical

diffeomorphism it is helpful to introduce generating functions. For example,if we



change the local canonical coordinates (g, p) into (@, P) and det II%H # 0, then we

can regard ), p as independent coordinates and introduce the generating function

Q.p
S = gdp — QdP
QOva
and
oS as
q= —a';;) Q = "E)_ﬁ'

By a completely integrable system in Arnold - Liouville sense we mean a
system on a 2m - dimensional manifold 9 with Hamiltonian H which admits
m - first integrals Fi,...Fn, such that, in the set My = {(¢,p,t) € M x R :
Fi(q,p,t) = fi,1 <1 < m}, the functions F; are independent and in involution.
Then each connected component of M is diffeomorphic to R* x T™~* where T is
the real torus. Moreover on R*¥xT™~*, there exist coordinates y1, .., Vg, 1, ...Om—k
modulus 27 such that, in these coordinates, the Hamilton equations z = JF! take

the following form

Ym = Cm; QI’I =wi

where the ¢ and w are constants.

Of particular interest is the case where s is compact; then My ~ T™ and

the uniform motion on T™

¢; = ¢o + wit

o

is called conditionally periodié. The numbers w; are frequencies. Small neigh-
bourhoods of the invariant tor[i My ~ T™ in I are diffeomorphic to the direct
product D x T™, where D is a small domain in R™. On such neighbourhoods it is
possible to introduce the so called action - angle coordinates Z € D, ¢ € T™ such

that in these variables the Hamiltonian function of a completely integrable system
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depends only on Z. Then

- oM . OH
In particular all two - dimensional Hamiltonian systems are integrable, but

usually, as we add a perturbation 27 periodic in time and in phase,
H = Ho(Z) + eH1(Z, $,1)

the system under some general hypotheses becomes non completely integrable
in the extended phase space. On the other side, using perturbative methods it is
possible to show that most of the invariant tori will survive, that is that the system
may be quite well described by considering it as integrable at first approximation.
KAM theorem ([K], [Arn1], [Mos]) is of fundamental importance since the set
of known problems exactly integrable is not very large. It affirms that if the
unperturbed system is no degenerate that is, if H%—?@{-H # 0, then for a small
conservative hamiltonian perturbation, the majority of the invariant non - resonant
tori does not disappear, but is deformed in such a way that in the phase space
of the perturbed system there are still invariant tori , with everywhere dense
phase curves, which envelope the tori in a quasi - periodic way, with a number of
frequencies equal to the number of degrees of freedom of the system. “Majority”
means that the measure of the complement of their union is small together with
the perturbation.

On the other side, phenomena like the splitting of the real separatrix associ-
ated to a hyperbolic point ([Mel]) and the branching of solutions in the analytic
continuation of the action variable Z will prevent the existence of a second analytic

integral of the motion in the extended phase space under very general conditions



(sce [Ko], [Zig]). Such perturbative results are obtained using Melnikov tech-
niques, which guarantee also the contemporary appearance in the real dynamics

of homoclinic solutions ([KS]).

Variational techniques ([Ko], [Rab], [CES], [CR], [Se], [CM], [Mon],
[BeBo], [ACM]) may also be used in studying the existence of homoclinic solu-
tions; in particular Melnikov type results may be generalized by considering second
order Hamiltonian systems in any finite dimension which are asymptotically pe-
riodic in both directions of time. Then, using variational methods we ([ACM])
have proved that if the stable and unstable manifolds associated to the hyperbolic
point of oné of the systems at infinity have countable intersections, then the origi-
nal problem has infinitely many geometrically distinct homoclinic solutions. Such
a requirement is a generalization of the one of transversal intersection of the stable
and unstable manifolds associated to the hyperbolic fixed point. As an application
we can consider a class of one-dimensional systems asymptotic to Duffing systems:
Ve(t,z) = f(2)(1 + ecosw(?)t]) %j— where f and w are smooth functions which sat-
isfy f <0, Vt € R, f(t) = f+ > 0ast — +oo and w(t) - wy # 0, as t = +oo
and show that, while for ¢ = 0 the system has no homoclinic solutions different
from the trivial one, there exists ¢g > 0 such that for any € € (0,¢) the system
associated to V; has infinitely many, geometrically distinct, homoclinic solutions,

which may be characterized as multibump solutions.

In practically all integrated problems the first integrals turn out to be either
rational functions or simply polynomials and the solutions, as functions of the
complex time, often turn out to be meromorphic, like in Kowalewskaja’ s top.
This has led to a different branch of studies on Hamiltonian systems based on the

concept of algebraic integrability ([AdM1], [AdM2], [AuS], [Con], [Conl],
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[Dub], [DKN], [Fr], [KN], [Kr], [vM]) and has to led to important results
especially in the field on partial differential equations and to deep applications to a
‘number of nonlinear equations in mathematical physics using the inverse scattering
method (see [DKN] and references there). The inverse scattering method allowed
people to discover and understand a certain number of phenomena. like solitons,

which could not have been pointed out using perturbative methods.

In particular complete algebraic integrability ([AdM1], [AdM2], [vM]) for
Hamiltonian systems is the natural complex analogue of Arnol’d Liouville real
integrability since algebraic completely integrable systems are integrable systems
thS@ trajectories are straight line motions on complex algebraic tori, which are
completions of the level manifolds of the systems. Space and time must be thought
of as complex and such systems can be solved by quadratures, that is their solutions
may be expreséed in terms of Abelian integrals. Such concept of integrability rep-
resents the rigorous geometric definition of Painlevé integrability for Hamiltonian
systems. Unfortunately it restricts a lot the number of possible integrable systems
already in two dimension, since these are reduced fundamentally to polynomial

potentials of degree three of four.

For Painlevé integrable system ([Con], [Pai], [Hi]) it is meant a system of
ordinary differential equations (not - necessarily Hamiltonian ) which admits a
single valued general solution. This problem splits into two problems: require
that movable critical points are absent and then prove the absence of fixed critical
points. The Painlevé property of an ordinary differential equation is the absence of
movable critical points into its general solution. Such problem is tractable and has
been completely solved for order one differential equations and in a large subset of

order two by Poincaré, L. Fuchs, Painlevé and Gambier (see [Con] for references






[0s]

to the original works). Moreover it has been recently shown ([Oka]) that the six

Painlevé trascendents may be put in Hamiltonian form.

A critical point of an application of the Riemann sphere into itself is any
point, isolated or not, around which at least two determinations are permuted. A
critical point is called movable or fixed whether its location in the complex plane

does or does not depend on the integration constants.

In this thesis we will consider first the definition of global complex action -
angle variables for two dimensional Hamiltonian systems with polynomial poten-
tials of any degree; this will allow us to understand the singularity structure both

in the angle and phase variable.

For Hamiltonians with polynomial potentials of any degree, the structure of
the global complex leaves H = &, as & varies in the complex plane, can be easily
described via the theory of complex ordinary differential equations ([Si]) outside

the finite set of critical points which correspond to the separatrices.

Once complexified and compactified, the generic leaf Sg¢, which is a complex
compactified Lagrangian submanifold, has a simple geometric interpretation: in
fact, apart from the singular values of energy corresponding to separatrices. the
compactified constant energy surfaces are one dimensional nondegenerate compact

Riemann surfaces of genus g > 1, that is elliptic or hyperelliptic curves.

In the first two chapters, we will see that, as long as the construction of
the complex action - angle variables is concerned, there is a substantial difference
between the case in which ¢ = 1 - which we will consider in the first chapter -
and the case g > 2 for which we refer to chapter 2. Such differences concern the
properties of the “natural” candidate for the complex phase variables and are due

to the loss of Painlevé integrability of the Hamiltonian system in the second case.
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In fact, in the case g = 1, the transformation between the original coordinate
z and the phase variable corresponds to the well - posed problem of inverting a

certain ellyptic integral of the first kind ([Si]).

In the case of genus g > 2 instead, it is possible to describe the Riemann
structure of the phase variable only in very peculiar symmetric cases where, due
to some special symmetry in the potential coefficients, we can map back the system
under consideration to a simpler one ([Pai], [Pic], [Gou], [Poi]). In all other
cases the Riemann structure of the phase variable natural candidate consists of an

infinite number of sheets on which uniformization is not possible.

The difficulty arising in the case of polynomial potentials of degree higher
than four, is due to the appearance of movable algebraic critical points in the
complex transformation connecting the original variables (z,p) to the action -
angle variables (¢, 7). To such movable singularities there locally correspond for-
mal Puiseux series expansions which are local solutions of the associated ordinary

differential system of equations.

On the other side, it is still possible to give a rather simple geometric descrip-
tion of the phase variable embedding it in a set of phase variables whose number
depends on the genus of the equi - energetic surfaces. Such a technique is naturally
linked to Jacobi inversion problem ([Si]). The nature of these additional phase
variables can be interpreted dynamically, but there still remains an insuperable
difficulty when we go to different types of potentials, no more polynomial, but.
say, periodic ones for instance, which we know to be integrable in Arnold - Li-
ouville sense, but whose global complex equi - energetic level surfaces cannot he

understood in this setting.

For what concerns the action variable, we will consider its analytical proper-
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ties as a function of the energy and, in particular, we will look at its monodromy
properties and show that they are strictly linked to subgroups of unimodular trans-

formations of the associated period matrix.

In the second part, we will consider quasi - integrable Hamiltonian systems
obtained from the systems considered in the previous chapter by adding a time -
periodic perturbation. We will be concerned with what happens in the complexi-

fied phase space to the perturbed system.

Numerically, upon integrating in complex time, it is possible to evidence the
appearance of barriers of singularities which prevent the integration of the equa-
tions of motion into all of the complex plane. Such a phenomenon has still no
theoretical explanation, but it has been observed numerically in a certain number
of systems ([FLT], [BoDP], [CGTW], [PG], [Per], [RGB]). There are also ev-
idence that such barriers should appear also in the associated phase variable: this
may be achieved by studying the behaviour of the corresponding map obtained
considering the limit in which the time periodic perturbation becomes a sum of
delta equally spaced time - kicks. In fact by following the real winding number
for the complexified orbits at increasing imaginary parts of the initial phase, we
see a break - down for a certain phase. This is in agreement with what evidence

numerically also in the case of the standard map ([Per], [PG]).

On the other side, it is possible to show that also the local behaviour of
the time and the phase variables drastically change after adding a time periodic
perturbation. In fact by considering an « - like method, we see that the poles of the
unperturbed system become logarithmic movable critical time - points. The local
structure of the Riemann sheets so computed perturbatively is in good agreement

with what can be evidenced numerically.
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This structure is also in relation with the local structure of the singularities
in the phase variable, as it can be shown by considering the canonical perturba-
tion theory which, already at first order, exhibits logarithmic singularities for the
generating function which brings the old action angle coordinates of the unper-
turbed system to the new ones. By integrating alohg the unperturbed orbits the
generating function at first order, we see that the singularities in time and phase

singularities are strictly connected.



Chapter 1

A very peculiar case: cubic and

quartic polynomial potentials

In this chapter we will consider the construction of complex global action - angle
coordinates for two - dimensional Hamiltonian systems with polynomial potentials
of degree three and four. In the following chapter we will study the case of higher

order polynomial potentials.

For Hamiltonians with polynomial potentials of any degree, the structure of
the global complex leaves H = £, as £ varies in the complex plane, can be easily
described via the theory of complex ordinary differential equations outside the

finite set of critical points which correspond to the separatrices.

Once compactified in CP(2), the generic leaf S¢, which is a complex compact-
ified Lagrangian submanifold, has a simple geometric interpretation: in fact, apart
from the singular values of the energy corresponding to separatrices, the compacti-
fied constant energy surfaces are one dimensional nondegenerate compact Riemann
surfaces of genus g > 1, that is elliptic or hyperelliptic curves ([GH], [Si]).

We will see in this and in the next chapter that, as long as the construction of
the complex action - angle variables is concerned, there is a substantial difference
between the case in which ¢ = 1 - which we will consider in this chapter - and the

case g > 2 for which we refer to chapter 2. Such differences concern the properties
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of the “natural” candidate for the complex phase variables, that is the complex
translation of the real phase variable, and are due to the topological complexity
of the Riemann surfaces Sg in the second case.

In fact, in the case g = 1, the transformation between the original coordinate
z and the phase variable corresponds to the well - posed problem of inverting a
certain ellyptic integral of the first kind.

If we consider g > 2, we have to face new difficulties due to the ill-definiteness
in the large of the corresponding phase variable obtained by trying to invert a
certain hyperelliptic integral. The problem of deﬁniﬁg the phaselvaria,ble forg >
2, as we will see in Chapter 2, is in fact strictly connected to the classical one
of inverting abelian integrals of the first kind related to curves of higher genus
([ApGou], [Si], [GH]). We will overcome such a difficulty by introducing a set
of g phase variables each linked to a certain Hamiltonian system.

For what concerns the action variable, we will consider its analytical properties
as a function of the energy and, in particular, we will look at its monodromy
properties and show that they are strictly linked to unimodular transformations
of the associated period matrix (see also [I1] and [AB]).

In the following section we will concentrate, in particular, on the following

family of Hamiltonians with real coefficients a;:

n

+ > aidt (1.1)

=2

[3)

H =

N'Ndl

for the special case [(n—1)/2] = g = 1 - where [-] denotes, as usual, the integer part
of the argument - and discuss the construction and interpretation of the associated
complex action-angle coordinates. For the details of the computations we refer to

the appendix.
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1.1 The structure of the complex leaves

and the properties of the action variables

Let us now consider the construction of the phase variables in the case ¢ = 1.

Then the phase and action variables are defined as follows in the real domain

wjl{pdm

b= aIW(I )
where
W(Z,z) = /q:pdql{e=h(z)}-
and
7% it AW = / pdg.
o M z)

qo is a fixed initial condition in the energy surface M n(z) corresponding to the

energy £ = h(Z). We can then write the phase also as

8 dE [T, dz N\ dE
°= 8 (If”) az /q (p(g,w))'?if

so that ¢ is expressed explicitl)g 1;1 function of €.

Such definitions can be translated immediately in the complex domain and

become
b= dH dz
e ‘? w PE:7) (12)
= — dz.
T o p dz

Here gp is any fixed initial condition on the Riemann surface Sg¢ associated to the
Hamiltonian H at fixed energy € and the integral is computed along any path

connecting the two ending points and depends on it in a very simple way, as we
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will briefly explain later. The derivative in front of the integral is well defined
locally in a sense we will explain later. For what concerns the action variable it is
computed along a closed circuit on Sg and its value will depend on such choice.

In order to understand what are the properties of the action - angle variables
Just defined it is convenient to look at the nature of the integrals entering the
definition.

Let us start by considering the phase variable. It is defined as an ellyptic
integral of the first kind apart from the constant term in front of it whicl we will
discuss separately. To any ellyptic integral we can natﬁrally associate a vector of
two periods, since the Riemann surface Sg¢ ‘in this case is just a one - dimensional
complex torus. Then by changing the path of integration we see that the value
of the corresponding complex phase variable changes accordingly only by a finite
integer multiple of such two periods. That is the complex phase variable lives on
a complex one - dimensional torus. It is then natural to expect that the transfor-
mafion connecting the original (x,p) coordinates and the (Z,$) variables is well
defined for what concerns the phase variable. In fact such a transformation corre-
sponds to the well - posed problem of inverting ellyptic integrals and in fact z(b)
is a meromorphic function of a complex variable with two independent periods.

Let us know pass to the conjugated action variable: it is a complete integral
of the second kind and it may be computed as a combination of complete inte-
gral of the first and the second kind apart from coefficients invariant under the

permutations of the roots of the following polynomial
p’ :25—22aj:cj (1.3)

=2

associated to the Hamiltonian. We will show in the appendix that for the particular
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choice
2 ) 3
_p 8¢ ¢
H"2+2 3

the action is
48 2 2 2 2 4
I= 5:(413\/@3{—(1 —k*)(2 - k*)R(k) +2(1 — k* + E*)€(k)},

where R and € are respectively complete ellyptic integrals of the first and second
kind and a;3 and k are functions of the roots of (1.3), that is functions of the level
energy & only. Moreover k depends on the choice of the basic cycles on S¢, that
is on the specific circuit on which we compute the integral, as it is shown in the
appendix.

Then, for some fixed circuit on Sg¢, in this way we have that Z is an explicit
function of the energy level £ only. If we now trace a closed path in the complex .
energy plane surrounding its singular points - that is the isolated points where
the roots of (1.3) are not all distinct and which form the so called separatrices
in the real @ — p plane, then this corresponds to some unimodular transformation
at the level of the basic cycles, that is also our action variable undergoes such an
unimodular transformation, as it will be explicitly shown in the appendix. That
is the action variable - as a function of the energy - may be analytically, but not
single - valuedly continued. Moreover the change of its value will depend simply
on the monodromy transformation. So, in order that the inversion transformation
from the action to the energy variable is well defined we have to specify the basic
cycles (even if the computation of the action will depend only on one of them). In
this sense the phase variable is well defined.

Of course, since we have two basic cycles, we have that there are in principle

two distinct action variables and correspondingly to conjugated phase variables. In
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order to describe dynamically the complexified system any one of the two couples
may be used indistinguishably, since they produce equivalent descriptions of the
dynamics. The “hidden” cycle only plays a role at the moment of inverting the

action function.



Appendix to Chapter 1

Construction of global

action-angle variables for ,-.

1.1 Construction of the action variables

Let us consider the following Hamiltonian

~3
x
- —. 1.4

v | 8y

Clearly, the singular energy values are £ = 0,03 /6 which correspond to two sepa-
ratrices for § # 0.

With a linear change of variables

T =6z+0/2;
(1.5)
p="6p
the Hamiltonian (1.4) becomes
H = 18p* — 72z% + 3/20%z 4+ Q®/12. (1.6)

Thus the Riemann surface S¢ associated to the constant energy level H = & is

expressed into Weierstrass normal form:

PP =42 — gyz —gs (1.7)
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where g = Q%/12 and g3 = 1/36(Q%/6 — 2€).

The complex compactified energy surface Sg is called non-singular if it does
not correspond to one of the singular energy values. This is equivalent to the
requirement that the roots z;,2, and z3 in (1.7) be distinct. Such a condition is

fulfilled if and only if the discriminant A is non-zero, where
A = (21— 22)*(22 — 23)* (23 — 21)* = 1/16(g5 — 27¢2) = £/364(Q%/3 — 2£). (1.8)

If © # 0, the singular energy values are exactly those corresponding to the two
separatrices £ = 0,Q%/6 for which the polynomial p? has two coincident roots.
The case = 0, where at the separatrix £ = 0 the three roots of (1.7) all coincide.

has to be treated separately.

Till not explicitly stated, we will consider the case Q # 0 and construct explic-
itly the complex action variables. We will be especially interested in the behaviour
of the action variables when we move around one of the singular energy values and
we will show that such behaviour is totally determined by the corresponding one
of the roots z;, z; and z3 of (1.7). In fact the action variables can be expressed as a
linear combination of complete elliptic integrals of the first and second kind, & and
R, with constant coefficients explicitly depending only on the roots of the poly-
nomial (1.7) 21,2, and z3 and the analytical but not single-valued continuability
follows from that.

For real energy 0 < £ < Q?/6, we order the three real roots of (1.7) in the
following way z3 < z; < z;. The behaviour of the action variables around & = 0
and £ = /6 is of the same nature, since making a close circuit around & = Q° /6
in the complex energy plane corresponds to the exchange of the roots zy — z1, while

going around &€ = 0 to a z3 — z, exchange.
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So, it is sufficient to investigate the action variables’ structure around £ =
Q2 /6.
We will also consider the behaviour of the action variable at £ fixed as

varies near ®/56 in such a way as to cross the energy separatrix £ = Q.

Let us now pass to the explicit construction of action - angle variables for £ <
0° /6 and then for £ > /6 separately in order to verify analytical continuation
and the considerations on their behaviour made above, after going around the
critical energy value £ = Q3/6 for a certain number of times; moreover we want to
verify the compatibility of variables constructed inside and outside the separ?xtrix.

At this aim, let us consider the explicit dependence of the three roots of (1.7)

on &€ and 2 and introduce the following auxiliary quantities

q=—1/12g, = —0?/144,

The condition that the roots of the polynomial p?(z) are real, becomes
A = —108(r? + ¢%).

If we define

se'= (rd/r? -I—q3)1/3,

the three roots of the polynomial p*(z) are:

z1 =84 + 5]

1 v 3
= —alr 4 o0) = L2(sy = s0)

F

1 V3
z3 = ———2~(3+ +s-)+ —\;——(54. —5-).

4
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In our case, they can be easily explicited in function of £ and Q, for 0 < £ < O3 /6.

s 1/3
s = {(__q)g/z exp (i arcotg(‘*;TZ':—q?:)) }
= 2 p (4 i/3arc0t (————))
— B exp l/oarcoig m .
Then 0 |
A r
21 = & cos (1/3arcotgm)
0 1/3arcof ! 2/3
22 = = cos ( / arcotgﬁ -2/ ﬂ')
Q r
zg = 5 cos (1/3arcotg-\~/~:——7_2——___g + 2/371‘)7

where we have chosen the order of the complex roots in such a way that inside the

real separatrix z1 < 25 < z3.

Let us construct now the action Zy relative to any circuit which goes once

around Z; and Z3 in the complex Z plane, but does not include the root 1.

1
Iy = — pdT
27 3339
1 [= 36 [
= —/ pdE = — pdz,
T Jzs z3

where, in the last integral, the circuit is the real segment of line joining z9 and z3.

Let us perform the following change of variables in the integrand
T = 23 + ag3 sin? @,

where a;; = z; — zj, which brings the elliptic integral of the first kind

t*/x_@f__. " dr
Za.\/?E 53\/52_
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into Legendre normal form

‘o 1 /¢ d¢ v
Vais Jo /1 —k2sin’¢  Vas
where k? = (29 — 23)/(21 — z3) satisfies the normalizing condition 0 < k% < 1.

Then
de  da (l¢

=2 .
- d(p X = dt ags~/arsen(v)sn(v)dn(v)

p:

Moreover, the complete integrals of first and second type are defined as follows:

/ S R = A

-2 Sln
&(k) = / 1o Rt ads, €)= €K
0

and are related to the fundamental semiperiods wy and wy associated to the cor-

responding Riemann surface S¢ = 7 of p* by

2 dz 1

= — = R(k);

“ /;:3 p V@13 (k)
1 dx 1

w-’: —_— =
’ /zz p v—a13

2 )
where k'* = 1 — k? = ay2/a13 and, as before, a;; = z; — z;. Finally,

R (k)

T =3 [ e 164%3\/‘?/{ — (14 EY)sn(v) + k2sn®(v)}
(1.9)

= E;almzz{—u — B2~ K)R(R) +2(1 - % + k) E(R)}.

Analogously, using the following change of variables

Zgai3 — Z3d12 sin® @

a3 — aiz sin® ¢

t—/ d_a:_/‘ de 1 /¢ d¢ o
n b Jup Veaslo J1—k7sin?¢ V-a
dz _ 2aizas; sn(v’)en(v’)

P=a vV—aiz  dn®(v!)
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we can compute the action relative to the second independent cycle:

~ 1 36 [*
21 Jz,z T

21 Z2

164 , k2 2 — k" 1
= —a}v/=ars / { T @) T dni(e) | dnl(e) (1.10)

48

- g;agg,\/“faw{ — 1=k -E )R (k) +2(1 — k" + k'*)e'(k)}.

With our choice of fundamental cycles, we have the following relation between the

two complex actions defined before:
To(k) = /=1 To(K").

As & approximates one of the critical energy values while O # 0 is held
fixed, the behaviour of Zy and 7 is completely determined by the corresponding
behaviour of the roots of p?(z). |

As £ — 0, the three roots of (1.7) become z; = /6, zy = z3 = —Q/12 and.
correspondingly, k* — 0 and £'* — 1. Since, (1) =1, €0) =r/2, R(0) = =/2

and

o 4,

we easily get

(€ —-0)—0
To(€ = 0) — 5'3:—92\/42.
7r
Analogously, for £ — Q%/6 the three roots of (1.7) become z; = z5 = /12 and

z3 = —(1/6 and, correspondingly k2 — 1 and &> — 0. Then

To(€ — Q3 /6) -5%92 Ve,
To(€ = Q°/6) — 0.
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Let us now consider the dependence of 7y on &, for §2 fixed, when we complete
a turn around the critical value £ = Q%/6. In order to explain the behaviour of
the action variable it is convenient to study first the behaviour of the three roots
of p?.

Let £ = 03/6 — eexp(:18) where 6 € [0,27] and € is a small positive constant.

Correspondingly, it can be easily checked that

and so the effect of turning around the critical energy value is to exchange z5 and

zg. Due to this exchange

2 2
k* — kQﬂ. —ZA—’—Q—
2 2 1
k‘, — k‘,?ﬂ. - 2;‘5

and the fundamental periods undergo the following unimodular transformation

w1(27) = wy(0)

wa(27) = w1 (0) 4+ w2(0).

Since, with our conventions

R = /ajzwr; 1R =/azws,

it follows that

Ron = ki Ro;
%ﬂ = k(l)(ﬁtl) - 7'ﬁO)w
Cyr = k7 Ep;

2
¢, = _.’Z_‘}ﬁg +ik' Ry + k)T (€ — i),
0]
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Finally the actions become

48 ,
To(27) = 5?/“““@13(%)@3(2@{ — (1= k2) (2 = B2,) fam (Fam) +

2(1 - k%ﬂ + kgﬂ‘) @27r(k2ﬂ-)}
= To(0)
(1.11)

To(2m) = s/ “ana@m)ads(2m){ - (1—K2,) (2 - B2.) 8. +
2(1 = (27) + K (27)) €}, (k) }
= To(0) + Zo(0),
where in all of the above formulas the subscribts and arguments 0 and 27 indicate
the corresponding value of 4.
In an analogous way, we may compute the actions after turning around the
critical energy value &€ = 0, where we can choose for simplicity the path & =

—eexp(i6). In this case there is an exchange between the roots z; and z» which

corresponds to the following unimodular transformation of the semiperiods

w1(27) = w1(0) + w4 (0)
w2 (27) = wy(0)

and, as before, to the same transformation for the actions

(1.12)

To(2m) = Zo(0).

-

Analogously we may directly compute the actions Ty and Zy for & > Q3 /6 or
€ < 0 choosing a convenient base for the semiperiods, or obtain them by analytical
continuation along the paths in the complex plane indicated above. Let us briefly

consider, for instance, what is the relation between the two choices when £ > Q3 /6.
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In this case the polynomial p? (see (1.7) ) has only one real root z3 and a
pair of complex conjugate ones, z; and z;. If we require 0 < k? < 1 the two
corresponding fundamental semiperiods wy and ws are complex conjugate, and, as
it is well known the fundamental parallelogram is rhombic .

In any case, it is more convenient to compute the actions using the same

definition of k£ and %’ as in the case £ < 1/6, that is

Z9 — Z3 k,2:21—22

zZ1 — 23 21— 23

k=

even if we miss the condition k,k’ € R. This choice is convenient in the sense
we preserve the explicit dependence of k on the roots of the polynomial p?. The
computation of Ty and Zo follows along the same lines as before, and formu-
las (1.9) (1.10) and (1.11) hold again.

The canonical semiperiods w,w’ (that is those which define the rhombic fun-
damental parallelogram ) can be obtained choosing as primitive loops z3 — z2 and
zg — z1. With such choice k£ € R and the corresponding semiperiods are related to

those previously defined as follows
w=wy(2r); w' =wi(2m).

The same relation, of course, holds for the corresponding actions.
Of course, if we make n turns around £ = 1/6, we have that z; remains fix

and z2 and zginterchange at each turn; and
To(2n7) = To(0) + nZo(0);  To(2nw) = Lo(0).

More generally, to any possible combination of turns around the two singular val-

ues of the energy there corresponds a well defined unimodular transformation of
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the semiperiods w;,w, and of the actions. Vice versa, to any unimodular transfor-
mation of wy,ws there corresponds at least one closed path around the two singular

values of the energy, since the transformations
11
1 0)°
1 0
1 1)’

and their inverse which correspond to follow the path around the singular energy

and

values in the opposite direction, generate the group of 2 x 2 unimodular transfor-

madtions.

We can also consider how the actions vary when we keep € # 0 fixed and vary
{2.Let us consider, as an example, the case when £ = Q3/6 and Q = Q + eexp(i6).
Then s1(6 = 27) = s3(8 = 0) and so we can immediately conclude that the
behaviour of the roots z1,zs, 23, of the elliptic integrals of first and second kind

and, finally, of the actions is the same as before.

Let us consider finally the case when = 0 and start, as before, by computing
explicitly the roots z;. In this case the auxiliary quantities introduced above are

r=—1/144E, ¢ =0 and

s+ =(r£ [r|)1/3

and the roots are
a=(r+ ) 4 (= )
1 )
== [ b)Y+ = )] [ ) - - )]

[(r + Irl)l/g - (r— Irl)l/s].

Sl

2= =54 ) b)) 4
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The actions are defined as before (see formulas (1.9) and (1.10). This time, however
the behaviour of the actions near the critical value of the energy & = 0 is different,
sitice both To,Zy ~ £Y/5 as € — 0, while for # 0 the singularity is of the form
k*log(k).

When we go around the critical point £ = 0 in the complex energy plane
along the path £ = eexpif, we get that s+(f = 2r) = exp(127/3)s+ (60 = 0).
There follows that the three roots z of (1.7) cyclically permute

21(271') = 22(0), 22(27'(') = 23(0), 23(271') = 21(0)

Correépondingly the semiperiods undergo the following unimodular transformation

w1(27) = —w1(0) + w2(0)
wa(27) = —w1(0),

while

1

k-—)k‘gw“-——“ P
k

k‘"ﬁklgﬂ-:—a‘c—;.

There follows that

R = b (A4 i0);

R,ZW = ~k6ﬁ0;
kg / N I_l !/ -
Cor = —7 7 8o + ik Ko +hy (€ — i);
0
b = —kb " &

Finally, proceeding along the lines of (1.11), it is easy to see that the actions

become

~

To(2m) = —To(0) + %o

] (1.13)
To(27) = ~To(0),
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where in all the above formula the subscripts and arguments 0 and 27 indicate the
corresponding value of 6.

If we let 6 run through 6, then the roots z;(67) = 2;(0) and, correspondingly,
the unimodular transformation of the semiperiods is the identity, that is wq(67) =

w1(0) and wy(67) = wa(0). Then the actions also take again the initial value

To(67) = Zo(0), Zo(6) = Zo(0)

1.2 Construction of the phase variable

Let us consider separately the behaviour of the two pieces which form the phase.

ow
o0&

is an ellyptic integral of the first kind whose behaviour is well known from reference
books (see [Si], [ApGou]), which is computed along a path from ¢ to , for a
fixed complex value of the energy (£ # 0,1/6 ).

If the contour is contained in a simply-connected domain D, not containing
the singularities of the integrand, by Cauchy theorem, the integral will be zero
and will not depend on the chosen path.

In general,

o8 = oe | o(2,2)

oW awc)_?{ dz
! Clp(‘T’.?g)’

where C; is a piecewise regular path on the Riemann surface 7 which starts from
a fixed point (y over gy and goes to (; over an arbitrary x. In order to know the
behaviour of the integral, it is sufficient to study its behaviour at infinity and at

the branching points 21, zy and z3.
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At T = zy, let us take t = \/x — 21, then

1
2y
Qf(zl +1 )_p(21+t2,g)

so that the ramification points are simple poles.

:Cot—l-i—...

For what concerns the infinity point, we get
Qe(t™?) = £2(1 = 2182)(1 — 2t2)(1 — z5t2)] =

The integral must then be computed in = along the path which is the projection
of C; on the complex number sphere. This integral makes sense for any curve Cy,
in fact we have just to consider the behaviour of the integrand in z, 29, 23 and
infinity: ;
dzx _1
Qg(m):i—t— =(cot7T F+..)2t22%0+... T2

Qg(:c)idd—;E =+t2 P 4 x4l 4... T~
That is, the integral, as function of the local parameter ¢ = 1/z — z; and ¢t = 2™ % is
regular for ¢ = 0; it follows that we can integrate along any path on the Riemann
surface T.

Moreover, the periods of the ellyptic integral w(C) form a lattice generated
by the base periods w; and wy. If a; and @y are two independent commuting
generators of the fundamental group associated to the Riemann surface, then
w(oy) = 2wy and w(az) = 2wy, where w = %—?.

It follows that %—Vg is a function which may be continued for any = not single
valued in the sense that it is defined except for integer multiples of the two periods
2w and 2w,.

Let us now consider what happens to %ng— after we have made a circuit around

the singular energy value £ = 1/6:

w(C):/ %:nf -C—Z—m—-}—m g—cv—+/'£i——:2nw1+2mw2+/ -ciaz’
q q

T
0 Z129 p ZozZ3 p 6 p gdo p
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where we have reduced the integral to the first fundamental parallelogram. After
we have made a turn around & = 1/6, we have that w; — w; + wy and wa — wo.

so that

ow
ag??r

*dz
= 2nw; + 2n + 2mwsy + —
qo p

Let us see now the structure and the behaviour of %. In order to see the behaviour
of such a quantity when we make a circuit in the complex energy plane, it is

sufficient to study what happens to %*— and it is easy to see that

dS:[: i dS:F
ae 2= g 0
8Ty

Finally, we have that the transformation of %2 after a circuit around the complex

energy value is the same as for 7.



Chapter 2

The intrinsic complexity of
of higher order polynomial

Hamiltonians

In this chapter we will consider two - dimensional Hamiltonian systems with poly-
nomial potentials of degree higher than four in order to generalize, whether possi-
ble, what considered so far in the previous chapter.

We will see that, unlike the cubic or quartic case, the structure of the phase
variable natural candidate becomes intractable due to the loss of Painlevé inte-
grability of the Hamiltonian system. On other other side, the monodromy of the
associated action variable may be in principle described.

It is in fact possible to describe satisfactorily the phase variable only in very
peculiar symmetric cases where, due to some special symmetry in the potential
coefficients, we can map back the system under consideration to a simpler one.
In all other cases the Riemann structure of the phase variable natural candidate
consists of an infinite number of sheets on which uniformization is not possible.

On the other side, it is still possible to give a rather simple geometric descrip-
tion of the phase variable embedding it in a set of phase variables whose number
depends on the genus of the equi - energetic surfaces. The nature of these addi-

tional phase variables can be interpreted dynamically, but there still remains an
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insuperable difficulty when we go to different types of potentials, no more poly-
nomial, but, say, periodic ones for instance, which we know to be integrable in
Arnold - Liouville sense, but whose global complex equi - energetic level surfaces

cannot be understood in this setting.

The difficulty arising in the case of polynomial potentials of degree higher
than two, can be understood in terms of the appearance of movable algebraic
critical points in the complex transformation connecting the original variables
(z,p) to the action - angle variables (4, 7). To such movable singularities there
locally correspond formal Puiseux series expansions which are local solutions of

the associated ordinary differential system of equations.

The description of the local behaviour is then more difficult than the one
relative to the cubic or quartic potentials, but the true complication of the higher

degree case is when we look at the behaviour of the global solutions.

In fact, due to the absence of fixed critical points, we are assured that we
can integrate our equations along any path in the complex time domain. On the
other side, if we connect the same ending points with different paths, we get, in
general, an infinite number of values because of the movable critical points (see

[Pai], [Con] for definitions and notations).

This will forbid a manageable description of the phase variable in general.
Such difficulty is connected to the impossibility of having meromorphic functions
with more than two periods if we look at the same problem in the setting of the
theory of many complex variables, and to the impossibility of inverting abelian

integrals of first kind, if we consider the problem from the point of view of geometry.

It is then of some interest to describe the properties of the Hamiltonian Sys-

tems with polynomial potentials of degree higher than four, for which the general
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situation described above does not apply. This amounts to discover and classify
the ODEs for which the general integral takes a finite number of values nearby
the movable critical points ([Pai]). Or, looking at the same problem from an-
other point of view, this amounts to study in which cases a certain theta function
is degenerate ([Poi]), that is when it may be rewritten as the product of theta
functions in lower dimensions.

In sections 1 and 2, we will try to define the “natural” generalization of the
action - angle variables in the case of Hamiltonians with potentials of degree higher
than four, show the difﬁculties ariéing and explain the peculiar properties of the
cases still manageable.’

In the following section, we will then modify the definition of the phase vari-
ables in order to overcome the difficulties encountered in the previous sections and
give the possible dynamical description of such a situation, keeping into account -
that this route is not usable when going to different classes of potentials.

Finally, in the last section, we will discuss some of the conjectures on inte-
grability among physicists and the possibility of conjugating cases with no natural

complex phase variable to Painlevé integrable ones.

2.1 Phase and action variables

for higher degree polynomial potentials

In this section we will proceed to the construction of the action - angle variables

for Hamiltonian systems of the form
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where n > 4 and «; are real coefficients. Then the natural definition of the phase

and action variables in the real domain is

2__j£pdx (

2.2)
¢ = W(I z)

where

W(Z,z) =/ pAg|(e=h(1)}-

%
and ,
7= %KV—, with AW(Z) =/ pdgq,
2T Mh(l')

where we use the same notations as in the previous Chapter.

Moreover the angle variable may be rewritten as

) e (" do de
?= g VLa) EEZ/% (p(f,',a:)) dT

Let us now complexify the Hamiltonian (2.1). Then the generic energy surfaces.

once complexified and compactified, become Riemann surfaces Sg of genus g =
[(n —1)/2], where [-] means the integer part of the argument. The term “generic”
here obviously means that we are excluding the energy values in the complex plane
corresponding to “separatrices”.

The corresponding natural candidates for the complexified action - angle vari-

ables are then

b= fiji /x dz
1= o PP dz.

Here g is fixed and belongs to the Riemann surface S¢ associated to the Hamil-

tonian H at fixed energy €. z is the end point along some path on Sg and the
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value will in general depend on such path. The derivative in front of the integral
is well defined as long as we show, in analogy to what we have seen in the cubic
or quartic cases, that the dependence of H on 7 is well defined. At this aim, we
have to study the monodromy of the action variable defined above. The circuit
on which such integral is computed may be any of the 2g independent ones that
we can choose as a base in the group of cycles associated to Sg and its value will
depend on such choice in an analogous way to what previously shown for the cubic
or quartic cases.

Let us first consider the phase variable. The integral is an hyperelliptic one
of the first kind and its value is well defined as long as we specify the path of
integration. Since the energy surface Sg has genus ¢ defined above, there will
be other ¢ independent hyperelliptic differentials of the first kind which may be
choosen among the independent linear combinations with complex coefficients of

the following canonical base
zd ,
dt; = —I;—dm, j=0,...,9g—1. (2.4)

In correspondence with any of such abelian differentials we can construct a couple
of conjugated action - angle variables. This means that any of the corresponding
hyperelliptic integrals of the first kind may be used in principle as a phase variable
candidate.

At this aim we have to give a dynamical interpretation to such possible phase
variables and to associate to each of them the corresponding action variable. This
may be done as follows; let us in fact consider dt; as the new time differential.

Since (2.1) can then be rewritten as

a2 da 2 _(my)? . B
H="0 () +Ve) = V@), i=0g-1 (29)

F



37 THE INTRINSIC COMPLEXITY OF HAMILTONIANS

where 7 is the new conjugate momentum, we have that the natural phase and

action variables associated to H will be

I, = '?{W]‘d(l? = f:vjpd:v;

_OW; OH [a* o)

Here we have used the following definition for the generating function

W; = /ﬂjdﬂ).

If we look to the action of the same change of variables from (p,z) to (7}, ), for

J=0,..,g— 1 on the corresponding differential equations we have that

dz dp  dV

a P T T

becomes
)
dz ;i dn _JT dy

El—i; 2% dt; T gt gy

So, from the brief discussion above we can conclude that that we have ¢ indepen-
dent possible candidates in order to define the action - angle variables.

Let us now fix any of these couples and consider their behaviour; the conclu-
sions we will obtain here are independent from the peculiar choice of this couple
of conjugated variables, so for simplicity, we will use j = 0.

The action variable
1= % p dz, (2.6)

computed along a fixed closed path chosen according to the previous discussion,
may be, in principle, computed explicitly in function of the canonical bases of

hyperelliptic integrals of the second kind. In order to do so, let us observe that
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the action is a combination of hyperelliptic integrals of the first and second kind.
To the first class there belong the integrals of the holomorphic differentials dt;
introduced above; on the other side the integrals of the second kind only possess
polar singularities. It is easy to show using its definition that (2.6) has just a
pole of order g + 1 at the ramification point at infinity (from now on, we will just
consider the case when n is odd, the corresponding cases for n even may be treated
in an analogous way).

A base of integrals of the second kind with just a single pole at infinity and
residue normalized to one is given by |

(z,p)

(2= 1(:c p;o0) = ,u/ Pl de
(zo,po)
2.7)
(z.p) .g+np
CQH(x D; o ) 2/"‘ i ! w—Q—udr7
2
(13011)0) p

where @, is the expansion at order u of the regular part v at infinity of p: p = z9v,

that is it has the form
Ay
=vA + — -I- + £

We can then express (2.6), in a unique way, as a linear combination of the base of
integrals of the first kind previously defined in (2.4) and of the second kind with
a pole at infinity (2.7)

g+1

z]“z7uc2 Z,,Z] +2729+1 IUJI(Z‘,,ZJ) (28)

I_l,._.
where 1 are degree k — 1 homogeneous polynomials invariant under the permu-

tations of the indices of the roots of

p? =2 -2 Z aiz’. (2.9)
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By choosing a base {cy, ..., ¢y, } for the group of cycles on S¢, we correspond-
ingly have 2g actions {Z,, ..., Z.,, } and we can express  in function of any of them
as for the case of Hamiltonians with cubic or quartic potentials. Then H = H(Z,,).
and after specifying such a basis of cycles, also 5612;(—[ will be well defined. In fact, if
we go along a closed circuit in the complex plane, to such a circuit there will cor-
respond a certain unimodular transformation of the basic cycles. Also the actions
will be transformed in an analogous way and 7 will be now a function of the new
corresponding action. This means that we can analytically, but not single-valuedly
continue the action variables in an analogous way to what observed for the action

variables of the cubic and quartic cases.

The fundamental difference between the definition of the complex action -
angle variables in the cubic or quartic case and what happens for Hamiltonians of
. higher degree polynomial potentials, depends on the ill - definiteness of the angle
variable in the second case. In fact it is possible to show that, for a generic choice
.of the potential V, after fixing gy and « in the definition of ¢ and for any value
$o, we can approximate, as well as we want, ¢o with the value of ¢, by choosing
a convenient path between ¢o and z.

In fact if we try to investigate the inverse function of a non trivial integral of

the first kind,

=0 [,
70
in distinction with what happens for the case g = 1, this inverse function cannot
be a meromorphic function of the variable ¢. In fact, since the homology group of
the Riemann surface S¢ has a basis with 2g generators we could expect that the

inverse function z(¢) has 2¢g fundamental periods which are linearly independent

over the field of rational numbers. But a non - constant meromorphic function



AN APPLICATION OF A THEOREM BY E. PicaArD 40

of one - variable can have at most two such independent periods. In this line of
reasoning we run into a difficulty in trying to establish the linear independence of
the 2g periods of x(¢). Since the differential dt; has 2g — 2 zeroes on the Riemann
surface Sg, there follows that the inverse function z(¢) must have a branch point
at each of the corresponding points in the ¢ - plane. In the general case such
branching points will produce a very complicate structure with an infinite number
of Riemann sheets for z(¢) which cannot be uniformized, that is “described”.
Such a description is possible only in very peculiar cases which we will consider
in the next section‘, while in section 3 we will use Jacobi inversion theorem in order

to define a good set of angle variables.

2.2 An application of a theorem by E. Picard

In this section we will briefly describe some classical results on the integration
of non - linear differential equations related to our problem of understanding the
structure of z(¢) in the peculiar cases in which the associated Riemann surface
has only a finite number of sheets produced by the branching points.

At this aim it is more convenient to use the language of ordinary differential

equations and to rewrite our Hamiltonian (2.1) as
F(g,z) =2* +2V(z) —2E =0 (2.10)

where V is a polynomial of degree n as in the previous section. For the more
general case of equation (2.5) F will be an algebraic function of z,z. F is a first
order degree two differential equation. Since there is no explicit time dependence,
there are no fixed critical points for ¢ € C. This means that, whatever complex

path time we choose, we can integrate our equation. The problem we will address
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now is to give necessary and sufficient conditions in order that, around the movable
critical points, the integral of the equation admits only a finite number, say [. of
values. This will imply that the integral will admit only [ different values at any
point ¢, that is our function z(¢) will have | determinations or, if you prefer, the
associated Riemann surface will have [ sheets.

The characterization of such a situation for equations of type (2.10) is con-

tained in the following theorem by Briot and Bouquet ([Pai]):

Theorem: Let

F(&,z)=0 (2.11)

be an algebraic equation of two variables of degree m in @. Suppose that, around the
movable critical points, the equation takes | values, then only one of the following
three possibilities is verified: x 1s an algebraic function of t, or z is an algebraic
Junction of exp(gt), or = is an algebraic function of sny2(gt), where ¢ and k are

constant.

Our case corresponds to the third possibility. Let us briefly give an idea of
the proof in such case.

In fact, let
"+ Ap1(B)a" T L+ Atz + Ao(t) =0 (2.12)

be a relation where the A;(t) are uniform and which is an integral of (2.11). Since
the only possible transcendental point is ¢t = oo, the A;(t) must be meromorphic
functions.

Let us define f(z) = 1/%, where & is the algebraic function of z defined
by (2.11), and let 7 be a period of the abelian integral ¢ = ff(l)d’l) =J. If

Eq. (2.12) is verified for some pair (t, x), then it is also satisfied if we change t to
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t + 7; the two equations in z are
"+ Ap1 ()™ L A () + A(t) =0
"+ A+ L+ A (B Tz 4 Aot +T) = 0.
They must have [ common roots, since otherwise 2 would be a function of ¢t with
I" <l branches. Then A;(¢t+7) = A;(t) and there follows that A;(¢) are meromor-
phic functions of time which admit all the periods 7 of J(z). Then, in order not
to have a contradiction, there must be at most two independent periods.

Three cases must be distinguished: all the periods are null (in this case it is
possible to show that  will be an algebraic function of ¢), all periods reduce to
one (and then the integral z(¢) will be an algebraic function of exp(gt)), or, finally,
all periods reduce to two distinct ones.

When all the periods of [J(z) reduce to two - say 7 and 7/ - then the quotient
of the two periods must be imaginary, since the functions A;(¢) are meromorphic
and the periods independent by hypothesis.

Moreover, since A;(t) are meromorphic functions, they are also rational func-

tions of u = snj2(gt) and of /(1 — u2)(1 — k2u?), where g and k? are suitable

constants.
I

The equality
' du

T /- @) - k)

shows that the abelian integral J(z), algebraic transform of

dt

= f(z)dx

/ du
g/ (1 —u?)(1 — k2u?)’
is of the first kind. On the other side, if 7 () is an abelian integral of the first kind

whose periods reduce to two, the integral z(¢) of equation (2.11) is an algebraic

function of sngz2(gt): in fact the two periods of J(z) have necessarily an imaginary
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quotient and, if sng2(gt) is the elliptic sine function which admits the two periods
7 and 7', then the expression snz2(g7(z)) is a function with m determinations in
z, which does not allow essential singularities for any finite value of z, since J (2)

does not become infinite for any value of z.

That means that the integral z(¢) is an algebraic function of sny= (9t) = v and
verifies an eﬁtire relation G(u,z) = 0 of degree m in u.

In our case, eq. (2.10), we can easily check that, for a generic choice of the
energy level £ - that is not corresponding to the “separatrices” values - J (z) is
an hyperelliptic integral of the first kind for n > 5. So, in order to check that
the integral of (2.10) admits a finite ungiven number [ of values. we have to show
whether the corresponding Riemann surface S¢ of genus g > 1 is the rational
transform of a Riemann surface of genus 1.

So the problem of classifying the cases in which the transformation. defined
in the previous section, between (z,p) and (Z,#), is well defined for n > 4 is
equivalent to the problem of classifying the hyperelliptic integrals of the first kind
which can be reduced to ellyptic integrals of the first kind.

The characterization of such Riemann surfaces is contained in the following

theorem due to Weierstrass - Poincaré - Picard ([Poi], [Pic]):

Theorem: If there exists a system of g abelian integrals of rank g, among
which there is one that may be reduced to an ellyptic integral, and if we consider

the corresponding theta function ©, then

1. Such theta function with g variables is equivalent through a rational trans-
formation of degree I to the product of a theta function of one variable and of

a theta function of (g — 1) variables

2. With a linear transformation the theta function © may be changed to a form
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in which the period matriz has the following form:

1 0 ... 0 Ti1  T12 cee Tig
0 1 0 T21  T22 - Tag

’
0 0 ... 1 Tgl1 Tg2 --. Tgg

where, as usual 7;; = Tj;, and period Ti3 15 commensurable to one, while the
periods Tis,...,Tig are all zero.
In particular, let g = 2. Then, if there ezists an integral of the first kind corre-

sponding to the algebraic relation
y? =z(1 — 2)(1 — k*z)(1 — z)(1 — m*z)

which has only two periods, it 1s possible to find a system of normal integrals whose

01 G L '
(216 4), o

period table s

where D 1s a positive integer.
Moreover, under such conditions, there ezists a second integral of the first kind

independent from the first and which enjoys the same properties.

Let us now consider a couple of examples in the case g = 2 where the com-
putations may be done explicitly.

In fact, in this last case, there are a certain number of hyperelliptic integrals
for which the rational transformation is explicitly known and moreover it is also
known the second independent reducible integral.

Let us first consider the case where [ = 2; then the hyperelliptic integrals of

the form
/ dq qdq
\/q6+Aq4+Bq2+C” \/q6+Aq4_{_Bq2+C

(2.14)
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are equivalent to

dx dx -
) (213)
2v/z(a® + Az? 4+ Bz + C) 2vz3 + Az? + Ba + C
under the degree two rational transformation
r =q°. (2.16)
If we consider the following Hamiltonian
2 2 6 ,
.7 _ T 7
H = 5 + 5 6 (2.1 l?
we get that, using transformation (2.16), it is transformed into
1 sdzN2 =z 2* 2222 ¢ 28
H:_( ) T - A 2.1
2z i 2 6 2 + 2 6 (2.18)

dt
It is possible to evidence also numerically the Riemann structure of the solutions
of the two equations above ‘and it is easy to see that for corresponding initial
conditions the movable critical points of the solutions g(¢) and z(t) are placed
in the same positions and are algebraic points of order 1/2 and poles of order 1.
respectively, for equation (2.17) and (2.18), as expected.

This means that going back to the phase variable construction we have that in
this case () is well defined since it is the square root of a meromorphic function
and so its Riemann structure can be easily described.

In an analogous way, we can also consider the Hamiltonians corresponding to

the second hyperelliptic integral in equations (2.14) and (2.15) respectively and

we have equivalence between
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and

1/dzN\2 =z a8 73
= (= T —9g2
H (>+2 g Tt

8\ dt 6

N8

Through transformation (2.16). Also in these cases it is possible to show nu-
merically that upon integration of the equations in time, ¢(¢) and z(¢) have cor-
responding movable critical points in time which are algebraic of order 1/2 and
siinple poles respectively.

In the case | = 3 we get that the following hyperelliptic integrals

dg
3 3 2 ’
V3(@® +ag +b)(¢* + c? + d) (2.19)
qdg
V3(¢* +ag +)(¢* + cq® + d)
are equivalent to
dz
V2[4(3z — a)® — 27(b + cz)?]’ (2.20)
dz
Vel[4(c + 3bz)® + 27(1 — ax)?]
under the following degree three rational transformations
£ Ptagtbd
S YR
a=p (2.21)

” w,_ q3 + qu + d
T agd —3bg?’

respectively, where the coeflicidnts a, b, ¢, d must satisfy the following compatibility

condition

d = 4/3[ac + 3b].

If we consider the following Hamiltonian

5vVEG
2

2
p 6
H=——-¢q —
2 q
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we get that, using transformation (2.21), (2.22) is transformed into

—1 7dz\2 —9x7?
H = -—(—-) 43 = 43, 2.93
9z \ dt +ae 4 +de ( )

It is possible to evidence also numerically the Riemann structure of the solutions
of the two equations above and it is easy to see that for corresponding initial
conditions the movable critical points of the solutions g(t) and 2(¢) are placed
in the same positions and are algebraic points of order 1 /2 and poles of order 1.
respectively, for equation (2.17) and (2.18), as expected.

Moreover going back to the phase variable construction we have that in this
case z(¢) is well defined since it is related to the cubic root of a meromorphic
function solution of equation (2.23) and so its Riemann structure can he casily
described.

In an analogous way, we can also consider the Hamiltonians corresponding to

the second hyperelliptic integral in equations (2.14) and (2.15) respectively and

we have
H:‘_Zi(fl_‘i_)z_qﬁug’_\!_gq?): p —-q6-5\/gq3
2 \dt 2 2 2
and
2 T\2 2 4 2
9\Ezt \ dt Exd 8 VEz?

Also in these cases it is possible to show numerically that upon integration of the
equations in time, ¢(t) and z(t) have corresponding movable critical points in time
which are algebraic of order 1/2 and simple poles respectively.

In the following chapter we will come back to these examples adding time -

periodic perturbations.

2.3 Construction and interpretation of ¢ phase variables
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From the discussion in the previous sections, there appears that in general the
global definition of the phase variable for Hamiltonians with polynomial potentials
is an ill - posed problem, since its definition is strictly connected to the inversion
of a single abelian integral of the first kind.

We have seen that there exist certain peculiar symmetric cases in which the
definition of the phase space in such a way is meaningful and globally defined, but
we cannot think of approximating the general cases with sequences of symmetric
potentials with an increasing number of sheets in the phase variable because the
period matrix associated to such symmetric cases must have the form of equa-
- tion (2.13). There then would follow that the limiting period matrix would cor-
respond to a degenerate one where one of the “holes” of the Riemann surface S¢
shrinks.

So in order to define a good phase variable also in the general case, the natural
thing is to apply Jacobi inversion theorem ([ApGou], [Si], [GH]). That is one
could try to generalize the construction of an inverse function z(¢) seen for the case
g = 1, by inverting g suitable functions in g variables each. Closer investigation
will show that the new formulation of the problem is reasonable and leads to
interesting functions of g complex variables.

Let us in fact define the following set of g phase variables

OH 9 gk
’gbj = 6_Ij(Ij(CI)) ; /qu dtj. (2.24)

They are exactly the required variables. In fact, apart from the constant factor in
front of the integral which has the same meaning and properties as the analogous
term for the ellyptic case, to the 1, of equation (2.24) there does apply Jacobi
inversion theorem. That means that for any point ¢ = (i1, ...,%,) in the space of g

complex variables, there exists an integral divisor (see [GH] or [Si] for definitions)
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Z = q1---qq of degree g which fulfills equation (2.24) for every (:hoi4ce of the path
of integration on S¢ and so there follows that the class of z is uniquely defined. So.
by Jacobi inversion theorem, there exists a one - to - one correspondence between
the points ¢ in the period parallelogram and the classes {x} of equivalent integral
‘divisors of degree g. Then it is natural to consider the collection of these classes as
a space and to introduce on it neighbourhoods by first defining the corresponding
neighbourhoods in the complex g - dimensional space of the points Y. The resulting
topological space of the classes of {z} is the so - called Jacobian variety, that is
a special case of an abelian g - dimensional complex torus. Of course in the case
g = 1 we do not obtain anything new, since S¢ is a Riemann surface of genus 1

that is a one - dimensional abelian torus.

Then it is natural to study what is the dynamical interpretation of such a
set of phase variables. Cléarly., if we fix o = T2, ..., Ty = Togg we get that
Y =¢;,7=1,...,g and so this means that as we move z; we describe a curve in
the corresponding abelian torus and, correspondingly, another curve in the period
parallelogram described by the coordinates (v, ..., 1hg). But we have already shown
in the first section of this chapter that to any such couple (Z;, ;) we can naturally
associate a Hamiltonian which is the transform of the original one through a
transformation of the time. For what concerns the set of the 3 they are a sort of
average between the evolution along g independent paths of ¢ independent initial
conditions. In some sense it should be considered as the natural way of taking
into account all of the rich structure and complexity of the g > 1 case with respect
to the trivial g = 1 case, since we are now working in a ¢ dimensional complex
space and we can expect that our inverse functions are meromorphic since they

naturally should have 2¢ periods.
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In this frame, it is also natural the treatment of the “degenerate” cases con-
sidered in the previous section; in that case, in fact, the Jacobi variety may be
conjugated to the direct product of tori of lower dimensions, as the theorem of
Weierstrass and Poincaré shows, and this justifies, in the case g = 2, the fact that
the phase variable originally defined there may be put easily in correspondence to

an ellyptic integral.

Then there is, in principle, a natural generalization to the problem of con-
structing action - angle variables for higher dimensional Hamiltonian systems with
algebraic or rational potential, since in case the system is also Painlevé integrable,
one should generalize directly what we have shown for the cubic and quartic poten-
tial cases. Otherwise, one has to embed the system in a higher dimensional space
in order that the set of phase variables form an abelian torus. There should ap-
pear also in this case degenerate situations in which the construction of the phase
variables simplify and may be reconduced to the corresponding higher dimensional

cases of the cubic and quartic potential.

2.4 Painlevé conjectures and integrability

There are many conjectures about the relation between Painlevé integrability and
Arnold - Liouville integrability ([RGB], [Con]), in the sense that the second one
appears very important to physicists due to the extremely low number of Hamil-
tonian systems which are also algebraic completely integrable and so physicists o
look for the possible generalizations of the concept of Painlevé integrability which
may include some interesting physical system. There is no evident link between

the two concepts of integrability. In any case it happens that also the so - called
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Painlevé transcendents may be transformed into Hamiltonian equations as was
shown by Okamoto ([Oka]). Of course, the admissible time - dependence may
only be rational. |

On the other side, we have seen that, using Briot and Bouquet theorem. it
is possible to enlarge the class of Hamiltonian systems which may be considered
integrable in both senses. Moreover in cases like those considered by Ziglin ([Zig])
there ‘is also a link between non - integrability in Painlevé and Arnol'd - Liou-
ville sense by considering the complex structure of the action variable. There is
a lot of interest among physicists (see [RGB] and references there) in determin-
ing whether there are classes of transformations which lead integrable Liouville
systems to Painlevé ones. Motivated by the fact that, for the class of second
order differential equations studied by Painlevé, there is a common feature of ab-
sence of movable singularities except for poles (at least if we exclude the Painlevé
trascendents), many physicists look for differential equations in which there are
no movable singularities other than poles (without requiring the non - criticality
condition, which, on the other side, gives the Painlevé condition). With the hope
to recover in such a way wider classes of Arnol’d - Liouville integrable systems.

That is physicists usually study whether there exist transformations of coor-
dinates and time which send the movable algebraic points into poles. This is the
substance of the so - called Painlevé conjecture ([RGB]) which states that if all
the solutions of a system of ordinary differential equations with rational vector
field

Cf;i = fi(z1,..,z1) i=1,...,h

can be expanded in Puiseux series:

o0
zi(t) = it —t0) 7 > aij(t —to)5 i=1,..,h, (2.25)
=0
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then the system is integrable, in the sense that there exists a transformation of
variables @1,...,z,t such that, in the new set of variables, the rational branch
points are mapped to poles.

In order to check this conjecture, Goriely ([Go]) proposed to consider two
sets of transformations (the so called quasimonomial (QMT) and new time trans-
formations (NTT), see below) which leave invariant the form of the following type

of equations:

h
dzx; i B; .
Clt1 =T z ]:AU kl Ilmkjk Z:].,...,h TnZh.
j= L —

To such type of equations there belongs the family of Hamiltonian systems con-

sidered in the previous chapter:

dfl?l . :E‘

dt -
d.’EQ n—1 (—“—‘6)
L

where x1 = p, T2 = z in the previous notations.

We will show in the appendix that, for such a family of ordinary differential
equations, the combination of QMT and NTT may produce formal local Laurent
expansions nearby the movable critical points and that the equations so obtained
are of the type seen above in the definition of the phase variables. Of course this

has in general nothing to do with Painlevé integrability.



Appendix to Chapter 2

The effect of QMT and NTT
transformations

Let us consider the following family of equations,

d‘l?l

dt (2.27)
— = —x Ty,

dt 1T

then the dominant behaviour of the solutions (z;(t),z2(t) nearby the movable

critical points may be obtained by inserting into (2.27) the formal Puiseux series

(o]
2i(t) = it —t0) 7 Y aij(t—to)s i=1,2, (2.28)
7=0

and equating coefficients relative to the leading terms in 7 = ¢ — #9 on both sides
of (2.27). Using the notations settled in the introduction, there results that the

leading terms are

e

n—2

and that a9 is given by the roots of

2n e
T \m2p

and that a; can be directly obtained from as.
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In order that the Puiseux series is a formal solution of (2.27), it must verify
certain compatibility conditions arising by the equation itself and which give rise
to the so called “resonance” exponents, which simply are the exponents in the
Puiseux series for which the corresponding coefficients are arbitrary. One such
resonance exponent is always —1, and it is related to the arbitrariness of the
choice of .

There is in our case another resonance exponent r which is obtained by im-
posing that substituting z; = ;7P/(1 —y7") into (2.27), the resulting equation for

the coeflicient v is undetermined. In our case, we obtain

{(p%—r) (p+r—1)—(n— l)c”_Q] =0,

whose solutions are

(2.30)

Finally the first non-zero term in the expansion, apart from the resonance, has
always exponent q; = g = 2 which can be obtained by inserting z; = a;77(1 +
v,77) into (2.27).

Such a system of conditions guarantee that we do not have logarithmic type
movable points. |

Since a system of equations is said to fulfil the Painlevé test if p;,r € Z, and
¢; € Nthere follows that, in our case (2.27), this is possible only when [ = 2, 3 which
correspond to the only algebraic complete integrable systems with one degree of
freedom (in general the fulfillment of the Painlevé test does not guarantee Painlevé
integrability).

The problem we will address now is if it is possible to transform, via a trans-

formation of time and coordinates, the movable algebraic critical time points into
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movable time poles, so that the local time expansions change from Puiseux to Lau-
rent series. This, of course, does not mean that we have transformed our system
into a Painlevé integrable one.

Let us now briefly resume the properties of QMT and NTT transformations.
As already mentioned above, our family of Hamiltonian systems (2‘.27) belong to

the following class of equations:

d;‘['z =T ZAﬁ H mLJk i=1,..,h m=>h. (231)
[«
=

where A;;, B;; € R. The advantage of the matrix form is its invariance under two
sets of transformations.
The first one, the quasimonomial transformations (QMT), acts on the depen-

dent variables:

h
=[] i=1,.n (2.32)
k=1
and transforms (2.31) into
m h .
H z%.nﬁﬁkézhﬂhmzm (2.33)
a
: k=1
where
Al=C'4
B' = BC

If in the old set of variables (z;,%) we have a balance with dominant behaviour
(@, p), non-dominant behaviour g and resonances r and we look for the transformed

balance in the set (z},%), we get

p=C"p
n
ai = H a;C.,
j=1 (2.34)
¢ =q
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So the p;’s are not invariant under a QMT and can be transformed at will into
any real numbers.

The second set of transformations, the new - time transformations (NTT),
act on the independent variable ¢ in the following way

dt = (ﬁxf‘)di (2.35)

=1

With this new time parametrization, (2.31) is transformed into

m h
dx; ~ 5. .
—=ay Ay [Ja* i=1,0h m2h, (2.36)
j=1 k=1
where .
A=A
Bij = Bij + 6.
The result of the change of variables from (z;,t) to (=;,%) is
~ p .
Pi = 1= 1, ceey h
1+e¢ ~
_a-e L (2.37)
i = t=1,...,
4 1+e¢
and
. [l idr=-1 0
r= 1rc elsewhere. (2.38)
where ¢ = — Z?:l Bipi;. The resonances and so the kind of singularities are trans-

formed by a NTT. It is thus possible to map some systems exhibiting solutions
with algebraic branch points to systems with no other singularities than poles. On
the other hand, a NTT may introduce new branches of solutions which will not
be of Painlevé type.

Let us now study the properties >of our family of equations (2.27) with n —
1 generic under a transformation of type NTT (see (2.35)) which, in our case,

becomes:

dt = P 22 df.
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Let us observe that the choice B2 = —1 produces new singularities in the trans-
formed system and so must be excluded since, in this case, the NTT balance is no
more valid. In fact, if n = 2g 4 1, with the choice 8, = —1,8; = 2, we obtain the

following system of equations
o =2

. :::1:2"1(~:c§+w?g+3),

n o~

which may be easily transformed into a system of a Riccati equation and a non-
homogeneous linear diﬁerential equation via the QMT y; = 21;y2 = :t%

Y1 = Y1

2 3
yy = —2y3 4 292913,

On the other side, if n = 2g + 2, with the choice f; = —1.6; = 1, we get
Ty =24
Ty =25 (—a? + 2397,

which, with the QMT y; = z1;y2 = 2%, becomes

I .
Y1 = Y1,

2 2 1
vy = 2y + 237,

Clearly in this way we do not satisfy any more equations (2.37) since the NTT
transformation is singular in this case and must be excluded.
In order that the new balance obtained in (2.38) and (2.37) satisfies 7 € Z

and ¢ € N, the following equations must be satisfied

r
1+¢
qg—-c
1+¢

=mEZ

=[eN.
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Substituting in the equations above the expressions of r and g (see (2.30) ) we get

the following conditions on the possible m and I:

3(n—2
= ——é;;—q_——ilm -1,
m=2nk keN.
The new balance is then given by
Br = —%
p2 = —nk
F = 2nk

The condition p1 31 + paff2 = —c becomes
1
261 +nfs = Zon + 2, (2.39)

and equation (2.27) is transformed into

2 2B2
72. - P2 2p,
d*zq _ &(E@}_) n (l+,32)<dx1> $11+ﬁ2(__w1 +x'n—1)’

dt? 1\ dt dt
where we have excluded the singular transformation 8, = —1.

In order to get a Painlevé canonical structure of integrable equations, we
have to impose conditions on the values of §; and B5. The only possibilities are
(B =0,82=1), (b1 = 1,0 =0), (61 = 1,6, =1),, (/1 = =1 8, = 0),
(B = m=L B, = 1). For none of these choice one gets a Painlevé integrable
equation if n > 4.

We now apply to the new - time transformed system of equations

dr1 5, 148,
— =Ty T
dt 1 2

Cl:l?z 1 -1
er2 _$1+ﬂ1$§2 + :CIL +ﬁ1mgz7

dt
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a QMT

Ty = anZClz

To = w2 5 C22

We will consider the case where det C' = 1, for simplicity. Below we give some
details of the computations, showing that the QMT respects the form of our equa-
tions, so that, while, as before, it is possible to get locally formal Laurent series

expansions, the system of equations is not integrable in Painlevé sense.

The equations in the new variables (w, z) are

Ei—l—u = Cppw®1 Ttz 4 Clg(wo‘”lzo“‘ - wo‘5+1z“6)
zt (2.41)
dj = —Cyw*z*t _ ¢ (wrszoett w"szaﬁﬂ),
where
a1 = Cr(f1 — 1)+ Cp (B2 + 1)
ag = C1a(B1 — 1)+ Caa (B2 + 1)
=Cn(f1+1)+ Cy (B2 — 1)
(2.42)

Cr2(B1 + 1) + Caa(02 — 1)
= C11(B1 +n) + C21(B2 — 1)
ag = C12(01 + n) + Caa(Bs — 1).

The new balance is

p=C"1pez?

and this condition on p is equivalent to the requirement that there exist two integer

numbers n, m such that

2C3 —nCiy = —

nCiy —2C5 = —

SIEERS
©
=
W
S

C11Ca — C91C1p =

s
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where the last equation settles the condition for the normalized determinant. So
only one of the coeflicients C;; is independent.
If we call d =[/k and f = m/k and express (2.43) in function of Cy; and use

as new variables u = wz~%f and z, the system of equations (2.41) becomes

1 du n

a7 2 a3 738 0’5 s
;‘J;‘——?U z -—z{'(u ¥4 — z ) (9 44)
1dz 2 f as Y3 as s B
~d —'—-Cglu —;1"(021—'2—)(71 2 —w Z‘Y),
where
: 2 n
M= _‘]‘E(ﬁl -1) - ”J‘;(ﬂz +1)
2 n ‘
Y3 = —?(,5’1 +1) + ?(ﬁz ~1) (2.45)

15 = —%(51 +n)+ ?(/32 —1).

In the case Cy; = 0 (and f # 0, it is convenient to introduce the following variables

¢ = uf/mz2/" and ¢ = z. The system of equations then becomes

LdE et p-3 (620

5 di 5

i J (2.46)
(€(ﬂ1+1) - §(ﬂ1+n))<""}i(52—1)

Cdt n )

It is easy to verify that, imposing condjtions on the coefficients 3; as before, we
never get a Painlevé type equation for [ > 4.
Analogously, in the case where C3; # 0 (and p # 0), introducing the new

variables € = u€21 27 */f and n = w2C2/f~1,-27/f* cquations (2.44) become
n q

1 dn n %(ﬁl—l)ﬁ(ﬂz-’rl)

i
dt
’I i _ i f (2.47)
( L(B1+1) _ n(ﬂl'i‘"))f(ﬁz 1)

which is equivalent to (2.46), so that again (2.47) is not of Painlevé type.
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Finally, if f = 0, (that is m = 0), then, introducing as new variables £ =

w24z~ and g = w2n/4* ;(1-nCia/d) equations (2.41) become
LAE _ pmt-n) 0t

¢ dt ,

1d 2, _ _ 2N LG
5_(_1_7% - __3(5 (BitD) _ = (Brtm)) p§ (=1

which is equivalent to (2.46), so that again (2.47) is not of Painlevé type.



Chapter 3

Local singularity structures

for time periodic perturbations

In this chapter we will consider quasi - integrable Hamiltonian systems obtained
from the systems considered in the previous chapter by adding an analytic time -
periodic perturbation. Such systems are no more integrable in Liouville sense, since
in the extended phase space there does not exist an analytical second integral of the
mofion, as it can be evidenced by using the separatrix splitting methods briefly
listed in the introduction ([Zig], [Ko]). For what concerns the real dynamics,
KAM theorem ([K], [Arn], [Mos]) is valid for small perturbations so that a
dense set of real tori will survive and there is a first integral of the motion. On the
other side, since, generically, the real separatrix splits and produces transversal

self intersection, we observe the creation of homoclinic orbits in the region around
the separatrix ([Mel], [Zig], [Ko], [ACM]).

In fhis chapter we will be concerned with what happens to the perturbed
system in the complexified phase space. We will show that both from the local
and the global point of view, the singularity structure in time and phase variables
are extremely complicated ([AB], [BoDP], [FLT], [Per], [PG]).

Numerically, upon integrating in complex time, it is possible to evidence the

appearance of barriers of singularities which forbids the integration of the equa-
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tions to the all of the complex plane. Such a phenomenon, while considered a tvp-
ical characteristic of the loss of Liouville integrability ([AB], [BMT], [BoDP],
[BT1], [FLT], [Per]), has still no theoretical explanation. There is also evidence
that such barriers should appear in the associated phase variable too, by study-
ing the behaviour of the corresponding map obtained by considering the limit in
which the time periodic perturbation becomes a sum of delta equally spaced time
- kicks. In fact by following the real winding number for the complexified orbits at
increasing imaginary parts of the initial phase, we see a break - down for a certain
phase. This is in agreement with what evidenced numerically also in the case of

the standard map ([BMT], [BT1], [Per], [PG]).

On the other side, it is possible to show that also the local behaviour of the
time and the phase variables drastically change after adding a time periodic per-
turbation. In fact by considering an a - like method, we see that the poles of
the unperturbed system become logarithmic movable critical time - points ([AB],
[BoDP], [FLT]). The local structure of the Riemann sheets so computed pertur-

batively is in good agreement with what can be evidenced numerically.

It is also in relation with the local structure of the phase variable as it can
be shown by considering the canonical perturbation theory which already at first
order, exhibits logarithmic singularities for the generating function which brings
the action angle coordinates of the unperturbed system to the new ones. By
integrating along the unperturbed orbits the generating function at first order we

see that the time and phase singularities are strictly connected ([AB]).

We end by pointing out that a thorough investigation of the properties of the
map considered in the last section should be needed in order to evidence analogies

and differences between the flow and the discrete map.
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3.1 Painlevé o« method and the local singularity structure

around the movable critical points

In this section we will consider local approximations of the perturbed differential
equation |

§=-V'"(q) +€R(q)' F(t) (3.1)
obtained by adding a time - periodic perturbation F(¢) to the Hamilton’s equations
considered so far in the previous chapters, where R and V are polynomial of degree
[ and n respectively and [ < n.

In particular, we will look for local approximations of (3.1) around the movable
critical points in order to describe locally the properties of the solutions. At this
aim we will introduce a generalization of the so called Painlevé o - method (for a
brief account on Painlevé a method see [Con]) which has to be interpreted
in terms of the asymptotic behaviour of the formal series expansions of the solution
near the movable critical points.

In fact, as soon as we add a time perturbation to a polynomial potential,
the singularity structure of the integral appears extremely complicated to describe
both from the local and the global point of view.

The movable time singularities are still poles or algebraic branching points - as
in the corresponding unperturbed case - and, if we start to go around one of these
singularities, we continuously change of Riemann sheet and moreover we see that
new singularities arise and disappear at each turn (see figures 4 - 5). On the other
side, if we study the behaviour of the integral along certain directions of time,
there appears a sort of chimney of time singularities which looks like a singularity
barrier and prevents the analytical continuation of the integral for sufficiently big

times (see figures 1 - 3).
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Such a global behaviour has not been explained theoretically yet, even if it is
commonly believed to be the characteristic feature of non-integrability in Arnold -
Liouville sense. This is well supported by the different behaviour of equation (3.1)
for € = 0 from the case ¢ # 0. In fact, in the first case, the singularities in
time or ‘in the action variable are isolated even when they produce an infinite
sheet structure which can be interpreted analytically. On the other side, as soon
as we add a time periodic perturbation, even in the cases where KAM theorem is
applicable, numerically it is possible to verify that the complex structure of the real
tori is extremely complicated due to the presence of such barriers of singula.ritieé
along certain directions of time. It may then be conjectured that the KAM torus
disappears when such a barrier reaches the real axis of the corresponding phase
variable.

On the other side, the local singularity structure observed numerically for (3.1)
may be well described via perturbative methods (see figures 6 - 7). At this aim we
can use a generalization of the so caﬂéd Painlevé o - method in order to associate

to the original equation (3.1), which we can schematically rewrite as
F(g,t) =0, (3.2)

an infinite sequence of equations obtained by using the following algorithm. Let
to € C (by hypothesis, as in the unperturbed case, there are no fixed critical
points) and define a small nonzero complex parameter (which Painlevé denoted
by «) and the perturbation
+oo Foo
a#0: t=tg+a, q:oszanq("): F:alZa"}_("), (3.3)
n=0 n=0
where p is a sequence of constant numbers to be chosen optimally and [ is another

sequence of constant numbers determined by p - notice that in Painlevé setting
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they had to be integers in order that the equations satisfy necessary conditions for
Painlevé integrability, in our setting this is usually not true since we are looking
for local approximations of non - Painlevé integrable equations!

Then at perturbation order zero all the explicit dependence of the coefficients
on T'is removed, i.e. all coefficients of the equation are constant and, for a suitable
choice of p, there only survive a few terms. We will call simplified equation the

equation of order zero associated to a given perturbation
FOG) =0 ‘ ‘ (3.4)

for ¢ (T). It has two remarkable properties: independence of the coefficients

from T and invariance under the transformation
(T, ¢, FO) = (KT, k¢, k1{®)

- that is it is a scaled or weighted equation.

The successive steps of the o method are to find all sequences p such that
the perturbation (3.3) verifies (3.4). Find the general solution of the simplified
equation and, for each n > 1 define u(® as a particular solution of equation
F'™) = 0, which will be linear with a second member depending on the previous
terms ¢(®,...,¢» 1) and on T.

Of course in the Painlevé integrable cases, we have that ¢{™ will be free from
movable critical points, in order to satisfy stability for all sequences of perturbed
equations.

In the following we will consider two examples in order to construct the se-
quence of equations (3.1) explicitly, even if for such class of equations analogous

considerations are true in general.
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We will then show that such a sequence (3.3) of equations can be interpresed
by requiring that the local solutions around the movable critical points has a
certain asymptotic behaviour-which can be satisfactorily evidenced numerically
(see figures 4 -6). For the details of the computations we refer to the first appendix.

The differential equations of the two examples are

§=—wq+q* + eqF (1), (3.5)
and
5 .
§= (ai+eFi(t))d, (3.6)
1=0

where w, a; are constant numbers and F(¢), F;(T) are analytic periodic perturba-
tions. In the second example, inAparticular, we will be interested in considering
the time - periodic perturbations of the examples considered in the previous chap-
ter (2.17) and (2.22), where the unperturbed singularity structure of the time and
phase variables can be easily interpreted.

Then, in the case of equation (3.5), if we denote the Taylor expansion of F( 1)
around tg by

“+oc0
F(t) =) faa"T",
n=0
the only possible choice of the optimal exponent is p = -2, = —4 and we get the

following sequence of differential equations
d? q(O)

2
2 (1
FO ddgfz) _ 244 = .
2 (2)
F = dd;]“z —2¢7¢® — (D) +wg® 4 efoq® =0; (3.7)
@~ P4 0 @) o) @)y W () (0)
F = g7z 2407 —20 ¢V twg Y F+efog +efig T = 0;
k) d*q® 0) (& - (0 E—1]
F® = —2¢ V¢ — 8¢, .., ¢* D T) =0, k>4

dT?
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The first equation has 6P as solution outside of the separatrix, where P(T —
co,0,93) is the Welerstrass function, while the homogeneous part of the F* &k > 1
is a Lamé type equation (see [In]) whose solutions may be written in terms of the
Weierstrass function and its derivative and its singularities are just poles (see the
first appendix). So the solutions of all the homogeneous equations show movable
points compatible with Painlevé integrability requirements. For what concerns,
instead, the particular solutions of the equations F*, k > 1 which may be obtained
with the method of variation of constants, we cannot exclude the presence of
movable critical points. In fact, there do necessarily appear movable logarithms
in equation F®). This can be easily checked by considering, for simplicity, the

particular solution of F(®) along the separatrix

¢O(T) = 6(T — o).
The general solution of the homogeneous linear equation associated to F* k > 1
is then

¢P(T) = e1(T = co)* + c2(T — o)~

and the particular solution of F(®) obtained with the method of variation of con-

stants is

— 4 €J2
)= T gy

That is there does appear a logarithmic singularity. In order to remove it, we

e
4 +6efy | log(T — co)) + ... (3.8)
should consider the trivial case of a constant perturbation. Such logarithmic singu-
larities appear also in the particular solutions outside of the separatrix, since (3.8)
represents the first order term of the perturbative expansion of qz(,e)(T) outside the
separatrix (notice that also in the case considered by Fournier et al. [FLT] loga-
rithmic singularities have to be expected to appear at the resonance perturbative

order).
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In an analogous way we may proceed with the computation of fhe associated
sequence of equations to (3.6) for instance in the particular case a; = —1l,a5 =1
and Fi(t) # 0 and all the other terms null, which for ¢ = 0 corresponds to a
treatable case in the sense of Chapter 2, $3. Nétice, in fact, that in the case
¢ = 0 we can transform such equation into a Painlevé integrable one via the
transformation z(¢) = ¢*(t). We have that the optimal choice of the exponents

for (3.6) are p = —1/2,1 = —5/2 and that to

G§=—q+¢ +eqF(t)

the associated sequence of equations is

FO = d;gfo . (¢™)” =0,

FO = d;;;f:) ~5(¢@) %™ =0,

Fo) d;;lfj) = 5(g@)44® — 10(gV)2(¢©)* = o

F6) _ d:l;lfj) ~5(¢@) 4™ — 10(¢D)° (¢D)?  20(¢©)*¢®® = o.
FO = TED5(q0)4® —5(4M) 40 - 30(¢0) % ()

- [10(11(2))2 + 20q(”q(3)] (@®)° = ¢O(1 + efy) =0;
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FO) = %%f_) - 5(q(0))4q(5) _ (q(l))S _ Qo(q(l))P’q(z)q(O)
{ )@ +3oq(1>(q<2))2] (¢©)? - [20q<1)q<4) +20q(2)q(3)] ()
— ¢V (1+efo) =0;
d*q

F(6) — - 5(q@)* ¢® — 5(q)*¢® — {20( MY?4) 4+ 30(q (1)q(2))2J ¢©
[ 0(gV)* g™ +30¢® (g% + 10(¢®)* + 604 ¢ (s)] (¢®)?
[ouq(nq( ) 4204 @ + 10( (3))?2 }(qw)y
=P (1 +efo) = ¢ VehuT

F = L0 ~5(q@) g™ —sk(q”%...,q(’“““,T) =0, k>4

dT”
(3.9)

The first equation has, as general solution, the square root of an elliptic function
v(t) , defined as the solution of the following equation
2
(%)

.o 3
V= T

while along the separatrix the solution becomes ~(t) = (3/4)1/4(¢t — ¢o)™1/2.
The homogeneous part of F*,k > 1 then has as solutions

(F) e BV N |
h—<9\/—+ >+2\/’7

and

(k) — cl(t )5/2 + Cg(t _ co)—3/2

respectively outside and on the separatrix. Then it is clear that logarithmic singu-
larities can just appear from the particular solutions of the differential equations

F*) . In fact, it is easy to prove that this is just the case for the “separatrix”
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where for equation k = 6 there does indeed first appear a logarithmic term

T \5/2
q},ﬁ)(T) = (-1—1——459———-\/26]”1 log(T — ¢g) + ... (3.10)

As before, in order to exclude the appearance of such logarithmic singularities
we should require that the perturbation F(t) is trivial. Moreover, also in this
case, such a solution (3.10) is the first order expansion term of the particular solu-
tion outside the separatrix and so there does follow that one expects logarithmic
singularities in the solutions of the associated system of equations (3.7).

We will now turn to give an interpretation to such a sequence of differential
equations, with € # 0, in terms of local asymptotic expansions of the solution of
the original equation (3.1) and we will show that the order at which it appears
necessary to introduce logarithmic singularities in these asymptotic expansioné
corresponds exactly to the order k of the sequence of equations (3.3) in which the
particular solution show logarithmic terms. Such order is related in fact to the
so - called resonance term, that is to the order at which a certain compatibility
condition has to be satisfied in order to have a self - consistent asymptotic series
expansion.

In fact, for € = 0, in the first appendix, we will show that the local solutions of
equation. (3.5) and (3.6) around the movable time critical points may be formally
expanded into a Laurent and a Puiseux series, respectively. On the other side
for € # 0 such expansions are no more compatible with the equations and we
have to introduce logarithmic terms into the series expansion in order to satisfy

compatibility conditions. Such expansions are ¥ - series of the form

at) = 3 aju(t =t [(t — to)* log (¢ — to)]*

k,j>0

= Y aj(t —to) T2 ¥ [log (¢ — to)]*
k,j>0

(3.11)
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for equation (3.5) and

at) =Y ault—t0) 7 [log(t—to)]" (3.12)

k,j>0

for equation (3.6).

It is easy to compute the coeflicients at any order by inserting such series
expansions into the differential equations and equating terms of the same order.
In the first appendix we will show that we can recursively satisfy the conditions
imposed on the coefficients aj; by inserting (3.11) and (3.12) into the differential
equations (3.5) and (3.6).

Then the resonance conditions are imposed by the defining equations for the
term ago in both cases. “Resonance” means that such coefficients are arbitrary
and this is of course related to the freedom' of the choice of the initial conditions.

Let us now consider what can be observed numerically just by turning around
one of the movable singularities which appear as we numerically integrate our
equatioﬁ in the complex time. Turning around one of the singularities means to
explore the local Riemann sheet structure associated to each of the singularities.
It may be observed that at a.ni/ surn new singularities appear and if we project
them on the same plane they hispose regularly along some branches and move
towards the center of the star.- like structure they form (see figures 4 and 5).
Indeed we numerically observeig logarithmic behaviour of the singularities which
is in agreement with the theore;cical predictions (figure 6).

This behaviour may be explained analytically by making the assumption that
the dominant terms in the formal expansions (3.11) and (3.12) are those which
contain logarithmic terms. This amounts to require that as (t —tg) — 0 the

argument of the logarithm is arbitrarily large in absolute value. That is that
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[(z — z0)] >> |(t — to)| where (z — 2p) = (t — to)* log (t — #0). Under such assump-
tion, in the limit we can neglect all of the terms of the form aj; with j > 0, so that
the recursive expansion simplifies. This is a natural assumption in aéreement with
the fact that we integrate numerically our equations by turning around the same
singularity many times; if indeed the singularity has an associated logarithmic -
type Riemann structure then such terms should be dominant.

Let us consider what happens into the two examples considered above. For
what concerns eq. (3.5), such simplified recursive relations correspond to making
the following substitutions

@0(2)

o) where (z — z0) = (t — to)* log (¢t — #o) (3.13)
— o

q(t) =

into (3.5) and to take only the dominant terms in the asymptotic limit (¢ — #¢) — 0

with |(t —t0)| << |z|. Such terms satisfy the following differential equation
162280(z) — 4200 (2) + 600(z) = (09(2))?, (3.14)

whose movable singularities are double poles and the coefficients of the formal

Laurent time series

Oo(z) = > bj(z —z)"

j>0
satisfy exactly the asymptotic equations as we will show in the first appendix in

detail.

Then, equation (3.14) may be transformed into
U(y) - T¥(y) =0 (3.13)
with the following transformation

O(z) = z*/*¥ (z1/4); y = z/*%, (3.16)
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Such equation (3.15) is just the first of equations (3.7).

The combination of the transformations (3.13) and (3.16) gives then a hint
for understanding the complicated structure of the singularity clustering which is
observed numerically (see figures 4 - 6). In fact there is good agreement between
the local singularity structure obtained by numerically integrating the perturbed
equations (3.5) and the theoretical predictions obtained by the above approxima-
tions.

In fact, the solutions of (3.15) are elliptic functions whose critical points are double

poles arranged along a doubly periodic lattice. Then, applying
y = z/* = (t —to) log((t — to))'/* (3.17)

the lattice is mapped back to a multisheeted complicated structure of singularities.
We will explain in the first appendix what is the action of such transformations
on the singularities.
Finally, we want to verify whether the substitution
B0(z)
(t — to)”

may be considered as the first term in a general expansion of the form

q(t) =

q(t) =) Ok(2)(t — )" (3.18)
k=0

where

z=(t —to)*log (t — to).

At this aim let us substitute (3.18) into (3.5), then using the same approximation

as before (t —t9) = 0 and |(t — to)| << |z| and thereafter making the substitution

@k:zz_;b‘\:[}k(zl/‘L)’ y:z%
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we obtain again equations (3.7).

In the same we can treat also the second example (3.6). This time we will

substitute

Z Yt —20)"2 2= (t—to) log (£ — to) (3.19)
into (3.6) keeping only the dominant terms at each step. Then by posing
@k — z%\llk(zl/4)’y = Z‘%

we will obtain again equations (3.9) as shown in the first appendix.

3.2 Hamilton - Jacobi perturbative expansion

In this section we will consider the first order canonical perturbation theory for

the complexified Hamiltonian system

wl"@m

H(g,p,t) = = + V(q) + eR(q)F(t), (g, p) € C (3.20)

in order to see how the non-integrability character of the dynamics reflects on the
singularities of the generating function which solves the Hamilton-Jacobi equation.
We will stop to the first order perturbative term, since already at this level, there
does appear the analogous of the local logarithmic structure of singularities already
pointed out for the solutions ¢(t), p(¢) in the previous section; moreover it appears
clear in this context what is the relation between the singularities in the phase and
in the time variable for the perturbed system along the orbits of the unperturbed
system.

The discussion in the following will be applicable in particular to the examples

considered so far in the previous Chapter and this will allow us to point out
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analogies in the two perturbative approaches. We will be concerned with those
potentials for which V and R are polynomials in ¢ of degree n and I respectively
and F(t) is a trigonometric polynomial corresponding to a periodic analytic time
perturbation. Moreover we will take n = 3,4 - that is the elliptic case - or n =
6 with reducible unperturbed Hamiltonian system - that is the case where the
hyperelliptic integral which defines the phase variable may be reduced to an elliptic
one.

In both cases, we can introduce complex action - angle variables, as explained
in chapters 1 and 2, for the complexified unperturbed system (3.20) so that the

Hamiltonian is reduced to the form
H(T, §,t) = Ho(T) + €R(T, §)F (1), (3.21)

In the case of example (3.5) the function R(Z, ¢) is an elliptic function of the angle
¢ whose periodicity depends on the action 7 (and we may choose without loss of
generality 7 = To and ¢ = ¢ in the notations of the appendix to Chapter 1). On
the other side, in the case of (3.6), Z is expressed in function of a complete elliptic
integral of the third kind, while ¢ is again an elliptic integral of the first kind.
As a consequence, in both cases, R(Z, ¢) has a lattice of polar singularities in the
¢-plane.

We want now to discuss the singularity structure of the first order perturbation
of the generating function which transforms the action - angle variables of the
unperturbed system (Z,¢) into the new variables (J,v), such that H(Z, #,t) =

H'(J). The generating function of such transformation is defined as follows

+o00
G(T,0,t) =Tp—Et+ > FGr(T, 1), (3.22)

k=0
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where we will be interested into the first order term which reduces the Hamiltonian

system to an integrable form up to term of order €. Then T = @ and ¥ = g‘—}

and it is well known that such a generating function must satisfy the Hamilton -

ag

which, at the first order in €, gives the following equation for the generating func-

tion (3.22)

Jacobi equation

961
d¢

where Q = dHg/dT and equation (3.23) is called the homological equation.

0./1

UT) 5o (T,68) + =T, 6,1) = =R(T, 6) F (1), (3.23)

Below we will consider only the first order perturbative term Gy, but there
is no substantial difference in principle in treating the successive orders, since the

differential equations which Gy satisfy have the same form as the one for Gy.

0Gk 0Gk
2 T 55

and the G can be again formally expanded into Fourier series.

=S(R,F,G1,...,Gr-1)

We will solve formally the homological equation (3.23) using Fourier series
expansions. At this aim, let us introduce the Fourier expansion of R(J7, ) which
is convergent into the strips of the ¢ - plane, defined by the singularities of R. In
particular, since R is always periodic of period 27 in ¢, we may expand it in a

Fourier series in a strip parallel to the real axis according to
R(J,$) = Zak J)et*?. (3.24)

Then, if we reduce, for simplicity, to a single Fourier component the time - periodic

perturbation, F(t) = exp(it), the formal solution is

—ax(J i(kp+t e
Gi1(T,0,t) = 2}; m%e (kg+1) (3.25)
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provided that Q(7) does not satisfy any resonant condition
EQUI)+1=0 kE € Z. (3.26)

Analogously if F(¢ ZI il<m fre¥t, then the formal solution of the homological

equation (3.23) expressed as a Fourier series will be

Gi(T,¢,t) =) Z "“’“(‘] f’° Tl Aazi (3.27)

E |71<m )

provided that the frequency Q(J) does not satisfy the resonance conditions
EQT)+m =0; keZ, |j|<m.

In particular, for the case where

[V

QF ¢

2
H(p,q,t) = L+ — = + esin(2nt)q? (3.28)
2 2 3
the Fourier coefficients are
2 2
1 4 . Q
av = | exp(ike) <6P(¢T1/(2w)) ¥ —)
2T 0 2

_ omiexp(ikgo) [ ik*96r | k2407
(1 —exp (——27rkT2/T1)) T T? -

12(—1)*n%k [4&%2 ~ Q}

T TZsinh (knly/Th) | T2

where ¢g is the double pole in ¢ coordinates of the Weierstrass function and lies
inm+inTy/Ty.

Such formal Fourier series (3.25) and (3.27) indeed converge to an analytic
function into the same strip in ¢ in which the Fourier series of R(J,¢) defines

an analytic function, if the frequency (J) satisfies a Brjuno condition. Such
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condition is obtained by considering the best rational approximations Pn/qn to
Q(J), which may be obtained truncating the continued fraction expansion of

Q(J) = 2n/Th

UT) = lao,a1,as,...,a,, ...]

to the first n + 1 terms

o=l

dp,az, ...an],
4n

and requiring that the denominators satisfy

}: log an < 400

4nit1

We will now try to analytically continue in the ¢ - plane the solutions (3.25)
and (3.27) defined in different strips. Notice that the solution of Gy is defined up
to an unknown function aepending only on ¢ — Q(J)t and this ambiguity will be
reflected also in the solution continued along the orbits.

We recall that 2(Z) is real for (3.5) if the action Z is real. that is if we are
considering the real dynamics inside the real separatrix; in the other cases it is
in general a complex number. The same is true also for (3.6) since we are in
cases in which the action - angle variables may be expressed in terms of elliptic
integrals. Consequently, if we consider the unperturbed dynamics for € = 0, that
is ¢(t) = ¢o + Q(I)t, where ¢ € C, then the analyticity strip is invariant only for
specific directions of time which are combinations through integer numbers of the
two independent basic periods of the complex torus. For instance, if we consider
an orbit inside the separatrix and complexify the real dynamics, that is we take
Q(J) real and t € C, then the solutions (3.25) and (3.27) are defined on strips

parallel to the real axis.
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On the other hand, we can define the analytic continuation of the solution
G(J,¢,t) along the unperturbed orbits, using the homological equation. Such

equation, in fact, may be rewritten as
d
79T 0+ ATt + T)lr=0 = =R(T, ¢ + QT)T)F(t +7)lr=0.  (3.29)

Notice that different solutions of (3.29) will differ only for a function depending on
(Q(J)T — ), which, in general will be non constant along the unperturbed orbits
for the perturbed system. So, in trying to continuate the solution obtained as a
Fourier series (3.27) into one strip to another parallel ohe, we have to take this
fact in account.

If we now impose equality also for 7 # 0, and integrate both sides of the

equations between 7 = 0 and 7 = ¢, then we obtain
G1(T, po+UT ), t+10) = G1(T , bo,to)— /0 tR(J » @0 +(T)7)F(to+7)dr. (3.30)
In particular, if we reduce to the case in which F(t) = exp(it), then
(0 + AT = Gu(T )~ [ RUT o 4 T p)emdr. (330

So, upon integration along orbits, we héve that the evolution in time and in phase
are not independent, so that, starting from the point (¢o,to) € C? we arrive to the
point (#1,%1) = (¢o + QT )t,t0 +t). In the unperturbed case we could identify
the points (¢o,t0) and (do + T )Tj,t0 + Tj), j = 1,2, since the singularities of
q(t) were double poles with null residue. After the perturbation, this is no more
possible, since the local singularity structure has a logarithmic behaviour and the
singularities do not form any more a regular lattice of poles. This can be evidenced
by considering the way in which the value of the integral in (3.30) changes when

we go around one of the polar singularities of the unperturbed solution.
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Consider for example the case of (3.28), then for any turn around the pole

Po = (T )to, we have to add to the integral the quantity
cos(2m(t — (¢ — ¢o/QUT))[967* — 1277],

which, as expected is only a function’ of (¢ — Q(IT)t).

So, upon changing of path, we notice that, if in the course of integration
we go around one of the poles of R, then the resulting integral changes of a fixed
amount for any turn which will depend on the pole of R under consideration. That
is, the prolonged solution § exhibits a local structure of logarithmic singularities
in correspondence to the original poles of the unperturbed system. This is in
agreement with what may be inferred from the Painlevé o - like analysis of the
singularities of ¢(t); in fact the singularities of the original coordinates are now in
the generating function of the transformation which sends the old action - angle
variables to the new ones.

Moreover, if we consider the case of real (J) and integrate equation (3.31)
along the imaginary time direction 4, then the limit as # — 4co exists since the
integral is convergent. This means that the solution of the homological equation
does not present any singularity barrier along the orbits of the unperturbed system.
and this is in agreement with what previously seen with the o -method. The barrier
cannot be evidenced at perturbative level, since such analysis is evidently local.

Notice that upon integrating equation (3.29) along an orbit from (po,t0) to
(#1,t1), we get that the corresponding G (T, ¢1,11) satisfies equation (3.23) and so.
if ¢y is chosen in such a way as to belong to another strip of analyticity parallel to
that of ¢o, then we have that the G1(J, ¢1,1) obtained directly from the Fourier
expansion (3.27) and from (3.30) will differ for a function ¥(¢ — Q(7)t), which

is determined only in (¢1,#;). This allows in principle to continuate the solution
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G1(J, ¢,t) defined in a certain strip of analyticity to any other strip, that is to the
all (¢,t) plane, apart from an unknown function (¢ — Q(J)t).
In the second appendix we will consider the homological equation for the map

T(z) = Az + 2% /(1 — €z), defined on the Riemann sphere.

3.3 A discretized model with delta - time

periodic perturbation

In this section we will consider a discretized version of (3.5) and show that nu-
merically an analogous of the barrier evidenced numerically for the flow is still

expected. We will consider in particular the following system
q
H(p,q,t) = T 5 1;)‘ + E,R‘(Q)(SP (t)v (332)
where we are considering the limit in which the analytic periodic perturbation in
tirne becomes an infinite sum of deltas

dp(t) = Z&(t = p),

QEN
that is the system receives a kick at regular time intervals.

The map associated to the system is then

G) =° (p - ééR(@) =5 (ﬁf) (3.33)
(2)-7C) = (- ¥ri0)

represents the effect of the kick while S = B! AB is the map which represents the

where

motion of the system along unperturbed orbits between two kicks. The action of

B,B~! and A may be explicited as follows.
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B is the transformation which sends the original coordinates (¢, p) into the

associated action - angle variables (Z, ¢), so it may be expressed as

1 2r tdQ
I= %}{P‘ZQ’ ¢= Q7)) J, P

where 1 is the initial time, v is the closed circuit between the roots z1 and z9 and

21 /QUT) = OH/OZ. For notations we refer to the appendix of Chapter 1. Then .
if we set the initial conditions so that the particle moves inside the real separatrix

initially (so that the roots zi, zo and z3 are all real), we have that

NG | %120 + 1
T=— /23— - "2 _ " /|-
TR \VR T AT e

z3 — 21)/2
o) - 1=

while, for what concerns ¢, care must be taken in choosing the transformation
which brings [ dq/p into an elliptic integral in Legendre form, since it will depend
on the real part of @ = q(t).

B~! is the inverse transformation which sends the action - angle variables
(Z,¢) into the conjugate coordinate - momentum variables (¢,p). For what con-
cerns the phase variable, it is computed by inverting the corresponding elliptic

integral of the first kind, according to [AS], while p is then directly computed

using the fact that it must satisfy p = 1/2e — ¢% + 2/3¢5.

Finally A is just given by

)=4()- (s L)

Numerically it may be checked that in the unperturbed case the dynamics is
exactly what expected both inside and outside the separatrix and both for what

concerns real and complex phases. As soon as one adds a small perturbation.
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the separatrix splits and there does appear the phase portrait typical of quasi -

integrable Hamiltonian systems with islands and invariant cycles.

More interesting is the analysis in the complex phase variable, in order to
evidence whether there does appear a barrier in the complex phase plane. At this
aim it is convenient to introduce the winding number o, which may be defined

operatively as

= lim 2%
0= nooo 1,
Clearly, if we consider the real dynamics for the unperturbed system, we get that

0 = Q(Z). In pictures 13 and 14 we show what happens to the real winding number

for the trigonometric map at v = .205.

For the perturbed system, instead, we have tried, with a Newton method, to
match the winding number p computed along the perturbed complex orbit with the
real winding number of the real orbit, as the imaginary part of the initial phase ¢
grows while its real part is kept fixed (see figures 8 - 11). What may be numerically
evidenced is that it is possible to follow the system up to a certain imaginary phase
for which there is a rapid decrease in precision of the computations; the failure
of the Newton method is then interpreted as the moment in which the boundary
of the analyticity domain in the complex phase has been reached. Of course the
numerical approximation of such boundary dramatically depends on the number
of iterations chosen in order to define the winding number. In figures 8 - 11
it is shown what happens for a particular frequency o = 0.9103897067... which
corresponds to the case where the energy of the unperturbed system is £ = 1/12 -

that is the middle energy - position between inside the separatrix and R¢o = 0.4.

The results obtained for the single frequency are in agreement with what can
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be seen numerically for the standard map M:

r'=r+ esin(6)
(3.34)
0 =0+,

for the parameter e = .1 In this case we have numerically computed the boundary
of the analyticity domain in the # variable with two different methods. In the
first case (see also [Per], [PG) we have analytically conjugated the map M to I
defined as

w' = w;
: (3.35)
"=t4w
with the conjugation M o ® = & o f where @ is given by
=t+ eu(t,w);
(3.36)

r=w+ev(t,u).

Then, from the functional equation
u(t +w) +u(t —w) — 2u(t) = sin(t + eu)

one obtains the perturbative solution

(o0}
u = Z €nlin(t)
n=1

where the u, are trigonometric polynomials which may be re- expressed as

+oo

u = Z e'Ft Ay (e).

— o0

w is fixed to be the golden mean number. Then computing the radius of
convergence

exp(8) = lim |Ay|~1/*
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one gets the strip of analyticity |St| < ¢ which will depend on the perturbative
order at which the computations were made. Mapping back such analyticity strip
to the 8 - plane one gets the dotted curve of figure 14. The second curve in figure 14
has been obtained computing the winding number at § = 6 +i7, with 7 variable

and solving the following equation
6 —t—eu(w,t) =0

in t with a Newton method, where w is the golden mean number. The boundary
of the analyticity domain is then given by the imaginary part of 8 for which there
is loss of convergence of the Newton method.

The two results are in agreement; notice that both curves change as we modify
the order of approximation of u; such algorithms are more stable than the direct
one of computing the winding number from the orbit. We are going to carry out

an analogous investigation also in the case of our map.



Appendix 1 to Chapter 3

Local singularity structure
around the movable critical

points

In this appendix we will consider some details of the computations presented in
the previous chapter. In particular we will be concerned with the following two
examples

&= —wz +a° + exF(t), (3.37)

and

& =—z+2°+exF(t),

where F' is an analytic periodic function of time in both cases. Since we are
interested in the behaviour of the solutions nearby the movable poles, we will
consider the Taylor series associated to F(t) around the movable critical point #,
k .
F(t)y=Y filt—to)". (3.38)
k>0

When € = 0, the integral of (3.37 may be locally represented as a Laurent expansion

around the movable time poles

p(t) = ar(t —to)* 2, (3.39)

k>0
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with ai € R satisfying the following recursive relations

k-1

[(2k —_ 2)(2k' —_ 3) —_ 2a0]agk = ~Qa2k_2 + Z agjazk_.zj
j=1

agk—1 = 0,
initialized by ao = 6, where it is easy to check that the compatibility conditions
are satisfied for the resonance term ag.
If we now try the same type of expansion when € # 0, then the dominant
behaviour is still (t— to)—z, but, due to the presence of the perturbative time

dependent term, the compatibility condition for the resonance term ag becomes
2 r2 Q €
%‘F‘ffz( +2f0 ) +6efy = 0.

Notice that this expression is exactly the one multiplying the logarithmic dominant

term in (3.10).

If we now substitute the following psi series

2(t) = 3 ajult —to) [(t — to)* log((t — t0))]*
k,5>0
7z o (3.40)
= Y ajr(t —to) ¥ [log((t — t))]*
k,j>0

into equation (3.37), we get, for the resonance term ago, the following compatibility

equation

Tagy = —Qaso + €(as0fo + aso f1 + azo f2 + a10 f3 + aco f1) + 2a10as0 + 2az0a40 + a2y,

which may be taken as the definition of as;, since its compatibility equation is

identically satisfied. The generic term of such formal series is then given by

(4k +37 —2)(4k + 7 — 3)ajr + (kK + 1)(8k + 2j — 5)aj—a k+1+
j—2

7 k
(k+2)(k+1)ajos b2 = —Qajak+e€ Y iy kficaciy + D D Gy ky Gmjy by

J1=0 J1=0 k=0
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with agg undetermined and

2 2 c
am:%[e4f1 +€f2(9—l;fo )+6€f4}.

L

Let us now consider the limit (t —to) — 0 under the condition that the argument
of the logarithm is arbitrarily large in absolute value. Under such assumption,
we can neglect all of the terms of the form aj; with j > 0, so that the recursive

expansion simplifies to
k
(4k — 2)(4k — B)aok = »  ao,k, a0k, (3.41)

k1=0

On the other side, if we make the substitution

) @0(2) ;
() = =ty (3.42)
into (3.37), where
z = (t —to)* log (t — to), (3.43)

then, in the asymptotic limit (t —#p) — 0 with |[(t —#)| << |z|, the dominant

terms satisfy the following differential equation
1632é0(z) — 42@0(z) +60¢(z) = (@o(z))z. (3.44)

.The movable singularities of this equation are double poles and the coefficients of

the formal Laurent time series

satisfy (3.41).
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It is then possible to show that this equation may be transformed into

) - vy =0 (3.45)
whose solutions are elliptic functions and so is one of Painlevé equations through

the following transformation

O(z) = 21/2\11(31/4); y = /4, (3.46)

and it may be written in function of as;.

The combination of the transformations (3.42), (3.43) and (3.46) gives a hint
for understanding the complicated structure of the singularity clustering which is
observed numerically. In fact there is good agreement between the local singularity
structure obtained by numerically integrating the perturbed equations (3.37) and
the theoretical predictions obtained by the above approximations.

In fact, the solutions of (3.45) are elliptic functions whose critical points are double

poles arranged along a doubly periodicvlattice. Then, applying
Yy = 21/4 = (t —-éto) log((t - to))l/4 (347)

the lattice is mapped back to a multisheeted complicated structure of singularities.
In order to understand what is the effect of this backward mapping on the

lattice of poles let us analyze in detail the effect of the transformation

z =ttlogt. (3.48)
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At this aim, it is convenient to use polar coordinates in both z and 7 plane
z = pexp(i1¢) t =rexp(i6). (3.49)

Then (3.48) may be riexpressed as

Rz =r*[cos(46) log r — (6 + 2mn) sin(40)]
(3.50)
Sz =t [sin(49) logr + (9 + 27rn) 005(49)] ,

where 7 is the Riemann sheet index in the t - plane. Dividing the two equations

in (3.50), we obtain

- logr + (6 + 27n) cot(46)
tan ¢ = tan(46) (log'r — (8 + 2mn) tan(46)

from which we get

r =exp ( — (6 + 27n) cot (46 — ). (3.51)

Finally, we obtain
p=—(042mn)exp ( — 4(8 + 2mn)cot (48 — ) (sin(48 — ¢>))~1. (3.52)

These two last equations (3.52) and (3.51) completely determine the mapping.
Given a pole in the y - plane in polar coordinates (p',@'). we can easily compute

the polar coordinates of the corresponding pole in the z - plane
(N4, A
p=(p); o=4¢.

From this last value, we are then able to compute the polar coordinates of the ¢ -
plane poles. In fact, from (3.52), it is possible to determine numerically the value
of 8, for any value of the sheet n, corresponding to a given pair (p,¢). Knowing
0, it is then possible to compute » using (3.51). In figure 7, we show the graph of

p in function of 8 at ¢ fixed for n = 1.
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The effect of the transformation (3.47) is then the following: to any pole in
the y-plane there correspond four poles in the ¢ - plane for any sheet. In order to
give analytical estimates about the geometry of the resulting star - like geometry,
consider p(f) as constant to zero or infinity, as a first order approximation. Then, it
is reasonable to study the behaviour of p(6) at those points for which cos(46 —¢) =
0, that is

¢

™ v
9__.—4——|——8"+mz7 m——l,3,5,7,...

Now for this angle we may deduce from (3.52) that

|p|*/4

r =

i+ et [

In order to take in account the changes in r along one arm of the star we set

o\ —1/4
rp:m(l )

To =

= ml.}f¢+ g_ﬂ_ll/l;.

Choosing the particular case ¢ = 0, Weéobtain the following estimate r, = ro|1 +

m = 8p so that

167p

+ 20+ 3w

where
|p|*/%

16p/3|~1/* which is in good agreementg?with the numerical results. This estimate
also suggests that r, — 0 as p — oo, tl;lat is that the arms will reach the central
singularity although very slowly, wherg we must pay attention to the fact that
each singularity of a given arm is on a ;diﬁ"erent sheet and that this accumulation
corresponds to infinite multivaluation near o (see figure 6).

It seems also reasonable to assume that the singularities nearest the y - plane
origin (which corresponds to the point ¢y in the ¢ - plane) will play the dominant

role in determine the ¢ - plane structure. Since the lattice of poles in the y plane
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is still square, the poles form sets of four which belong to the circle of radius p’.
Moreover, each such set gives rise to a single pole after the transformation z = y!
and so one only requires the radius p’ of each circle of poles and their orientation
9.

Finally, we want to verify whether the substitution

Oo(2)
(t —to)?

may be considered as the first term in a general expansion of the form

z(t) =

Z@k (t—to)*2 (3.53)

where
= (t —to)" log (¢ — to).
Let us substitute at this aim (3.53) into (3.37), then using the same #pproximation
as before (t —t9) — 0 and |(t — #0)| << |2|, we get
162°0p — 4200 + 609 — 0% =0
162%0; + 420, + (2 —200)0; =0

1620 + (8k — 4)20 + (k — 2)(k — 3)0 + 0Oy = (3.54)
k k
Z 0;0—; + 62 O fk-2-j, k=2
J=0 j:O

So, all such differential equations are linear for k > 1. Moreover via the substitu-
tion

Gk fred zg——‘;_k\llk(zl/4)’

equations (3.54) become
Uy — 02 =0

k—1 k—2 .
. R (3.55
Uy —2Wo¥; = —wWg_o + Z U0+ EZ yF I W fr_j2, )
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which are exactly the differential equations (3.7) obtained in the previous chapter
using Painlevé o - method. The homogeneous linear equations for £ > 1 are of
Lamé type

d*w

el (h +n(n+ l)P(z))w =0

where P is the elliptic Welerstrass function with poles at 2mw + 2m’w’, for the
choice n =1,h = 0.
From the Fuchsian theory we easily obtain the two independent solutions of

the homogeneous equation.
Swy(2) = (2 = 2mw — 2m'w’)?W(z),

where W(z) is analytic in the domain of the point 2mw + 2m/w’ and is different
from zero in that point.

The second solution is

dz'
’wz(Z) = C?.Ul(Z)/ m??

The two solutions have, respectively, zeroes of order 3 and poles of order 2. In our

case, the solutions may also be expressé;d in the following way

= exn(—zc(anZZ 19
wy = p( C( )) CT(Z)

Wo = explz(la 'O-"(—Z“"‘_“‘(E‘)‘
2 p( C( )) 0_(2)

where a is the solution of P(a) = h.

let us now consider what are the singularities of the complete solution of
the inhomogeneous equations. We recall that in order to satisfy the necessary
conditions for Painlevé integrability using the a - methods we have to require

that ¥q is free from movable critical points and that the particular solutions of
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the inhomogeneous equations (3.55) are also free from movable critical points. In
particular, in order to satisfy Painlevé conditions in our case we should impose
that the particular solutions of (3.55) do not contain other singularities than double

poles. But this cannot be true if F(t) is not a trivial constant perturbation.

In fact, using the method of variation of constants, the particular solution

may be written as

' t g, t 0,
L) =) [ B4 aPr [

/(,cl) and :1322)

where z are two independent solutions of the homogeneous equation

and

A(t) = 2 ()3 (1) - 2P ()3 () = ~305

is the Wronskian. Then, by considering the leading behaviour of the solutions
21(t) and z2(t) we can show that a logarithmic singularity appears necessary at
the level of the particular solution relative to the sixth equation which represents
the analogous of the resonance condition of the local series expansions. This can

be easily checked for the case of the separatrix solutions where we get
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Then the particular solutions of the inhomogeneous equations are

(1) =0

wf2(t) = %w s

;JS)(') _Gflt
(@) () — (w+€fo)2 2 3efay efroo,  efoch
@ () R e - S T
t—co)? 9 3
2D(t) = efi(w + efo) (—IZL) + 20(t —co)’| +efe |(t—co)® + 560(1‘ —co)? + §Cg(t —

— o)t (2 £2
§>6)()=-*—-—-—--(t > ) /dr({%(w-%ﬁfo) 4{1

+ ~—————————<t—;o)‘ / dr([—g-(w+efo) f

_ (t—=co)* | efo e’ f
4

= - 5

4

721 —co) 3 + Gefuri(r — co)"s)

721 — co)? + Befyi(r — co)2>

- (w+efo) +

:l log(t — co).
In an analogous way we can treat the second example
= —z +2° +exF(t), (3.56)

where, as before, F(t) is supposed to be time - periodic and analytic. In this case,
for € = 0 the movable critical points are algebralc branching points of order —1/2
and, around such points, we can formal%y expand the integral into a Puiseux series
2(t) =Y ax(t—to) 7, (3.57)
k>0

and moreover, due to the symmetries bf the coeflicients of the equation, we can
express z(t) as the square - root of an elliptic function, as it was remarked in the

previoué chapter.
The resonant term in this case is ag. As soon as € # 0 we cannot any more

expand the solution locally in Puiseux series, since in correspondence with the
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resonant term we get the condition 0 = eag f1, which can be satisfied only if the
perturbation is trivially constant. Let us notice that such coefficient is just the
one appearing in (3.10).

It is then possible to show that the correct local formal expansion is of the

following form
jt4k—1 _
2(t)= > amlt—to) 2 [log(t —to)]". (3.58)

k,520

In this case, the resonance condition for agg is automatically satisfied provided

that we define

6f1ao,o
a1 = ——

o 4
where ag; is undetermined by its defining equation. As for the previous example.
by considering the limit (¢ —#9) — 0 under the condition that the argument of the
logarithm is arbitrarily large in modulus, we keep only the terms of the form a ik
with j = 0 in the series expansion. The simplified recursive expansion is associated

to the following differential equation
- ) 3 s
162‘@0 + 890 -+ Z@o = @0
which can be considered as the zero order term of the following expansion
2(t) = Ok(2)(t — 1) %, 2= (t—to)* log (t —to).
j20

We get the following recursive differential equations

) : 2k — 1)(2k —
16z2@k+8(k+1)z®k+( L( 3)

Z Oj, -0 +e Z [i1©js.

Jit-tis=k Jitjo=k—4

Or = —0Ok_2+
(3.59)

If we now consider the following transformation

Or(z) = S Ur(y); vy= 21/4’
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then (3.59) become
\i]o — \Ilg = U,

! ,
W —5U50; = Ty + Z Wy - U +e Z iy ¥y,
Jitt3s Jitjo=k—4
which again are the equations obtained with the Painlevé o - method. The solu-

tions of these equations may be expressed as follows. Wo(t) = (/4 where 7 is the

elliptic function solution of the following differential equation
.2
- 7 3
A—1/2— —2v° =0.
o

Along the separatrix the solution reduces to v(¢) = \/?f:: ({_1—005 The linear homo-

geneous differential equations for £ > 1 admit of the following solutions

t A 1 )
wl)=5z+3v7 w=5

and have algebraic branching points of order 5/2 and —3/2 respectively. Along the

separatrix such homogeneous solutions reduce to v1(t) = (¢ — ¢9)*/? and vy (t) =
(t - CQ)_?’/Q.

The particular solutions associate.'j to the inhomogeneous part of the linear

the method of variation of constants

v;f(t) = —vy1(t) /tizA_&c + va(t) /t E%S‘ﬁ’

i
where vy and vy are as above and the c¥1scr1mmant

equations for k > 1 can be obtained wig]

A(t) = ’Uli)g - ?.)1’1)2 = —31,

where 7 is the first integral of ¥q, that is

=% =
2 6
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Along the separatrix A = —4. The particular solutions along the separatrix may

be easily computed and are

:rl(,l) = xgz) =2,(3) =0

s\ "1 e
— €
2 = (4—) 01— o)

xf) =0

1/4
() _ (E= o) /t dr 3 / f L
:Ep o 4 4 1 (T - 60)2

1
—_ 1 ar Z ENTIT Cp

B (t . 60)5/2
= _______A:__.._

] 1/4
Zl) efilog(t — co) + ...



Appendix 1 to Chapter 2

3The homological equation
and the Siegel disk

In this appendix we will consider the homological equation associated to certain
maps of the Riemann sphere into itself where it is possible to compute analytically
the boundary of the Siegel domain - which is given by the forward orbit of one of
the critical points - and so compare it to the results obtained at first perturbative
order. In this case, at first perturbative order, the singularity boundary is a circle
which surrounds the true boundary of the analyticity domain and one can think
that the infinite perturbative series will approximate the true boundary.

In the following we will consider the map

22

T(z) = §z+ —— (3.60)

defined on the Riemann sphere where % will be supposed to satisfy a diophantine

condition (see [Her]) and e will be chofen in a certain range defined below.

As it is well known, in the case € 40 the rational map (3.60) has an iterative
dynamics completely determined by the;fixed points z = 0, co and the finite critical
point z. = —\/2 (see [Bl], [Fal], [Fa2], [Her],[Ju]). z = 0 is an indifferent point
with T'(z) = A and the basin of attraction is conjugated to a rotation g(z) = Az

in the Siegel disk. The boundary of the Siegel disk belongs to the Julia set and is

formed by the forward - iterations of the critical point z. as it has been shown by
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Hermann [Her). z = oo is a superattracting fixed point and the boundary of the
basin of attraction, which is simply connected, is connected and is the .Julia set
itself (see [BI]).

As soon as € # 0 and small, z = 0 is still of Siegel type, while z = o
becomes an attracting fixed point with a single critical point into its basin of
attraction for || < [\e —1|. The forward -iteration orbit of the other critical point
ze = 1/€(1 — 1/\/1 — Xe) accumulates on the boundary of the Siegel disk and it is
unknown whether its image belongs to it (proving that this is indeed so, amounts
to show that the infinity domain is still simply connected (see [Her)).

Let us consider the conjugation map @ which satisfies ®(\() = T(®(¢) which
conjugates the dynamics into the Siegel disk to a rotation. ®(0) = 0 and &'(0) = 1.
Then if we expand ®(z) = z + 2321 v¥®1(z), where ~ is a dummy parameter.

then for & = 1 we get the so called homological equation

‘I)l(AZ) - )\@1(2) = 1— 67‘ (361)
The following terms ®; will satisfy analogous equations
Pr(Az) — A®i(2) = h(z, ®1(2), ..., Pr_1(2)) = g(2). (3.62)

Making the ansatz that ®i(z) = £ 3,5, A"g(A\™"2) we obtain a formal solution
for the equations (3.61) and (3.62). In particular for what concerns the homological

equation we obtain
)\-—- .,a
. 3.6:
DY Z 1—e\ "z (3.63)

Such formal expansion converges if we take |A\| > 1 and can be re-summated to

N

®y(z) = /\Z/\k _\ k) (3.64)

k>2
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which is convergent also in the limit o — 0% of A\ = exp (1w + ).
Notice that (3.63), for a > 0, has poles at z = \™ /e which in the limit o — 0
tend to dispose on a circle which is outside the boundary of the Siegel disk, while

expansion (3.64) converges for |z| < |\/¢| for a > 0.




Captions

We have used the algorithm of Chang and Corliss [ChCo] in order to obtain

pictures 1 - 5.

Fig. 1: We show the appearance of singularity barriers in the complex time

plane upon integration of the following equation
i = —z +2° + exsin(wt)

where € = 0.01 and w = 27. The initial conditions are #(0) = 0.5,2(0) = 0. The
singularities lie on the same Riemann sheet and are obtained by integrating the
equation along the real line up to the points ¢ = 0.,1.,2. respectively and then
moving along the imaginary time axis. The singularities are identified as algebraic

of order —2/3 by the program.

Fig. 2: We show the appearance of a singularity barrier in the complex time

plane upon integration of the following equation

1
i = 62" + —‘—?\/ng + dez® sin(wt) + 4eVEx sin(wt)

£=-290)" The initial conditions are ¢(0) = 0.5, 3(0) =

where € = 0.01,w = 27 and
0. the integration path is the one shown in the picture. The differential equation for
€ = 0 is associated to a Hamiltonian which can be reduced to a Painlevé integrable

one with a rational transformation of degree 3. The singularities are recognized

as algebraic of order —2/3 by the program and lie on the same Riemann sheet.
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Fig. 3: Enlargement of the barrier shown in the previous picture.

Fig. 4: We show the local singularity structure in the complex time plane
associated to the movable critical point £ = (2.79717,2.30579) obtained by inte-

grating the differential equation
§=—z+2°+ exsin(wt)

where € = 0.01 and w = 2. The initial conditions are z(0) = 0.5,%(0) = 0. The
singularities are projected to the same Riemann sheet and are obtained by moving
m‘ound‘t~ in the complex time plane along a closed path. The singularities are

identified as double poles by the program.

Fig. 5: The same as for figure 4 for the point ¢ = (2.2998,2.0941) and
the differential equation of figure 1 (same initial conditions) for the.path of ver-
tices (2.15,1.895), (2.45, 1.895), (2.45, 2.285), (2.15, 2.2.85). The singularities are
identified as algebraic of order —2/3 by the program.

Fig. 6: Local singularity structure in the complex ¢ - plane obtained from

r=exp(— (8

where t = rexp(:6) and z = pexp(ig) - t ¢ and p fixed corresponding to the first

pole in the z - plane. The relation betw en z and t is z = (t —t0)*log(t —to). The

singularities are projected on the samefplane.

Fig. 7: p(0,¢) at ¢ fixed.
p=—(8+27n)exp ( — 4(8 + 27n)cot(46 — ¢)) (sin(46 — gb))_l,

where p and 8 are the polar coordinates of z.



105 INTRODUCTION

Fig. 8: Real part of the winding number computed along the orbits with a

Newton method at increasing imaginary parts of ¢ and for R4 fixed for the map

q q Q
(p’> (p = 6VR(Q)> (P) ’
of (3.33) in Chapter 3, where € = 1.e — 6 and the number of iterations is 1000. The

region in which the Newton method fails is identified as the limit of the analyticity

domain in the ¢ variable.
Fig. 9: The same as figure 8 for the imaginary part of the winding number.
- Fig. 10: The same as figure 8 for the modulus of the winding number.

Fig. 11: The same as figure 8 for the error.

o

Fig. 12: Phase portrait of the trigonometric map
&' =z cos(2mv) + [p+ 2(1 — cosz)] sin(27v)

p' = —zsin(2rv) + [p+ 2(1 — cos z)] cos(27v)
where v = .205.
Fig. 13: The winding number computed along the orbits with n = 10000

iterations computed along the line shown in figure 12.

Fig. 14: Comparison between the boundary of analyticity domain in the 6

plane for the map
r' =7+ esin(f)

0 =0+r
for € = 0.1 computed numerically using the Fourier series method (dots) and the

computation of the winding number with Newton method (see Chapter 3).

Fig. 15: The boundary of analyticity of the Siegel disk computed analytically

and perturbatively at first order (circle) for the map

2

T(z) =Xz +

1 —ez
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where e = —.1
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