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1 Introduction

Solid-solid structural phase transitions with increasing of pressure and/or temperature
are ubiquitous in condensed matter. Existing ab-initio theory of these transitions has
been mostly restricted to the study of relative energies of known structural phases at
different volumes and at zero temperature [1]. Despite a remarkable level of understanding
attained in this area, the main goal of simulating these transitions under real conditions
of temperature and pressure, while still retaining the first principles accuracy required for
the prediction of new structures, has not yet been achieved. In particular, heavily first
order structural phase transitions do not take place in ab—initio Car—Parrinello Molecular
Dynamics simulation [2], in spite of a correct description of both energetics and thermal
fluctuations. The problem lies in the (mandatory) use of periodic boundary conditions
within a rigid simulation cell, which does not allow for the necessary density and shape

fluctuations.
In the early 80’s Parrinello and Rahman proposed a lagrangian which, by allowing for
a variation of the periodic boun&ary conditions guided by the internal stress, made simu-

lations of solid-solid phase transitions possible [3]. However, existing implementations of




2 § 1. Introduction

the Parrinello-Rahamn scheme are based on empirical — rather than ab-initio — potentials:
this restriction reduces the predictive power, and thus the general usefulness of numerical
simulations in this relevant field, particularly where phase transitions are accompained by
a large reconstruction of electronic states and thus of the chemical bonding properties.

In this thesis we present a new computational scheme for constant—pressure ab-initio
Molecular Dynamics, which allows the simulation of these phenomena with the correct
quantum-mechanical description of inter-atomic forces and internal stress along with the
correct statistical mechanics of ionic degrees of freedom. This is obtained by efficiently
combining the Car—Parrinello with the Parrinello-Rahman method.

This new scheme, while describing the ionic dynamics with first principles accuracy.
still allows for the symmetry breaking fluctuations necessary for phase transitions to take
place spontaneously during the simulation, due to variations of external pressure and/or
temperature. At variance with standard total-energy calculations, within our new scheme
the prediction of new phases is obtained without any initial guess on the final stable
structure.

The metal-insulator transition in silicon from diamond to high density phases is well
known and the underneath physics established. For this reason silicon has been chosen as
test case for our scheme. In the section of the thesis devoted to describe this first applica-
tion we point out technical details and difficulties encountered in this type of simulation.

The absence of extensive theoretical studies and contradictory experimental results
make the Cgg pressure induced transformation from fullerite to amorphous carbon a very

challenging and appealing subject to be studied via our first—principle constant pressure



method. The simulation of Cgy — a~C points out that a-C obtained in this wayv differs
from those obtained via melt—quenching, showing in particular a high density of sp? sites.
These are not clustered as in ordinary a~C, but percolate in the whole space. Moreover the
simulation show an intermediate molecular phase, in which Cgp molecules are connected

by short (diamond-like) covalent bonds.

Finally we face two other applications of our method: graphite — diamond conversion
in carbon and acetylene polymerization. At the time writing the work on these subjects
is still in progress and we present few preliminary results.

Many interesting solid—solid phase transformations involve oxides. Since the standard
norm-conserving pseudopotential for oxygen is to hard for practical use, we have imple-
- mented in our computational scheme also the more recent ultra—soft pseudopotentials.
The technique opens the way to explore this new stimulating field.

The thesis is divided in the following parts: in Chapter 2 we describe the theory
underneath our scheme. Starting from a brief review of both original Parrinello-Rahman
method and Car—Parrinello Molecular Dynamics, we present our extension of the latter
to allow constant-pressure simulations. In Chapter 3 the guide-lines for the practical
implementation of the method are given. In particular we focous our attention to the
derivation of quantum-mechanical stress tensor, the new quantity needed for constant—
pressure Molecular Dynamics. We also describe the main differences in the implementation
using two different classes of atomic pseudopotentials: the “standard” norm-conserving
and the recent ultra-soft pseudopotentials. At the end of this chapter we discuss the

problems arising in the electronic wave—functions representation using a constant-number
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plane-wave expansion when the simulation box varies, and we propose a modification of
energy density functional in order to perform constant cut-off simulations. Chapter 4 is
devoted to the description of the above mentioned applications. Finally the last Chapter

is devoted to conclusions.



2 Theory

In this chapter we present the method for ab-initio Molecular Dynamics with variable cell
in three steps: at first we review the original Parrinello-Rahman [3] method for classical
MD. We briefly recall the well-known Car-Parrinello [2] scheme in its original formulation
for fixed cell, and finally present our extension of Car-Parrinello by including Parrinello—

Rahman.

2.1 Parrinello-Rahman Molecular Dynamics

The Parrinello-Rahman method (PR) is the natural extension of Andersen [4] Molecular
Dynamics. In the original Andersen method the simulation cell is allowed to change
its size isotropically, following the deviation of internal pressure from an assigned value.
This is done by introducing the volume of the cell as a new dynamical variable, without
renouncing to the periodic boundary conditions. In the PR method, the cell can change,
more generally, both shape and size, thus adding to the problem the degrees of freedom
of the cell, in the following way.

Let us consider a generic simulation cell for MD, which fill all the space by repeating
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it at infinity with periodic boundary conditions. The MD cell is described by the three

primitive Bravais vectors (a,b,c). Defining the matrix
h = (a,b,c) (2.1)

(where the vectors constitute the columns of the matrix) , the real space position of a

generic particle in the box, R, can be written as:
R = hS. (2.2)

S is the vector of the so called scaled coordinates of the particle, whose components assume
values between 0 and 1 inside the cell. (In other words, in the scaled variable space, the
cell is always a cube of side 1.) The relation between distances in real and in scaled

coordinates will be given by the metric tensor G = h'h, so that:
(R: - R;j)? = (Si — S;)'G(Si = Sj)- (23)

Since we want the cell to change in time, the basic idea of Parrinello-Rahman method.
in analogy with Andersen dynamics, is to consider an estended langrangian system, where
the nine components of the matrix h are classical degrees of freedom, whose tra jectories are
determined by appropriate generalized forces. This is obtained by writing the Lagrangian

L of the extended system as:

|

L=

N
S Mi(81980) = VIR, R + %WTr(ﬁth) - pQ, (2.4)
1=1

Do

where M; is the mass of i-th particle. V' the classical potential, W an inertia parameter
controlling the cell motion, p the external pressure, and {1 = det h the volume of the

simulation cell.
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The first two terms of Eq. 2.4 define the Lagrangian for the usual fixed cell Molecular
Dynamics. Note however that when the cell varies in time, the kinetic energy term in
Eq. 2.4 does not correspond to the actual kinetic energy of the particles in the real system.

The Euler-Lagrange equations of motion derived from Eq. 2.4 are:

4 1 0V _ 14 e 5 =
R Var=y LG P LR (2:5)
. 1 _ 5
Bup = o (T — ply) (0], (2:6)

where:
I, = % (Z MivevY — 8hV htﬁ,> ; (2.7)

RY4 : (a4
and

V'I-J = hMS?, (28)

(Greek indices indicate the components of vectors and matrices, and the convention of
Implicit sum over repeated indices is assumed.)

Interpreting M,v; as the momentum of i-th particle, IT is nothing but the internal stress
tensor. This can be seen by comparing the second term of II with the usual definition of

internal stress tensor coming from the theory of elasticity [5]:

1 0V A
Tal = —— 2.
a8 Q 660,5, ( 9)

where ¢ is the strain tensor with respect to the present configuration. Let € be a small

strain, which deforms the cell from h to h/ = h + dh and the positions from R to R/; we
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have (up to first order in dh):

R = (1+¢oR=hS=hh"R. (2.10)
Therefore:
e=hh™* -1, (2.11)
from which we obtain:
%‘{l.ht _ %%. (2.12)

From Eq. 2.6 we see that the “forces” on the cell are proportional to the difference
(Tl — p), which implies that the time variation of matrix h is driven by the imbalance
between external pressure and total stress.

The Lagrangian (Eq. 2.4) is conservative with the constant of motion given by:
lem . 5 1 - o
=3 Z Mv? + V(Ry, ., Ry)+ 002+ §WTr(h h). (2.13)

Physically (H) corresponds to the enthalpy of the system (6], apart for the last term, which
becomes negligible for large IV (its contribution to (M) at equilibrium is 2ksT).

It has been shown [7, 4] that trajectories generated with PR dynamics give averages
of thermodynamical quantities that are in fact equivalent in the thermodynamical limit
to the Gibbs averages in the (H,p,N) statistical ensemble, i.e. the ensemble with enthalpy,
pressure and number of particles kept constant.

Let us point out some considerations about the role played by the parameter W. In
the equations this quantity is the “mass” of the cell, in the sense that it is related to

the inertia of h. It is clear that W does not influence equilibrium properties, since in
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classical mechanics the equilibrium properties of a system do not depend on the mass of
the constituents. This is however no longer true for dynamical properties. Andersen has
suggested a physical criterion for the choice of W: W should be tuned so as to obtain a
relaxation time of the cell of the order of 7 = L/c, where L is the linear dimension of the
cell and ¢ the sound velocity inside the system. From a slightly different point of view.
one can estimate the characteristic frequency of the cell by linearizing Eq. 2.6. Assuming
this frequency to be roughly 1/7, one obtains [6]: W = 33, M;/4r2.

After the original work of Parrinello and Rahman [3] several improvements of variable—
cell MD has been proposed. In particular constant pressure MD lends itself naturally to
the introduction of non-isotropic external stress [8], which may be used for simulations of
uniaxial stress transformations.

It is also possible to combine PR-MD with Nosé thermostat [9], in order to sample
the statistical ensamble where free energy, pressure and number of particles are kept
constant. One possibility (which we followed in our MD scheme) is to simply add to
PR Lagrangian the Nose energy terms [9]. The discussion about the sampling of the
corresponing statistical ensamble by the trajectories of such combined Lagrangian is given
in Ref. [10].

More recently Wentzcovitch [11] has proposed a slightly different Lagrangian for variable—
cell MD under constant pressure. where the fictitious degrees of freedom for the extended
classical system are taken to be the strain tensor components with respect to a given
reference state. This differs from original PR where the degrees of freedom are the com-

ponents of matrix h. In the Wentzcovitch extension the Lagrangian has the symmetry




10 § 2. Theory

of the system and not of the chosen simulation cell, and the symmetry breaking needed
to induce a structural transformation is due only to thermal fluctuations (first term in
Eq. 2.7). This symmetry constraint on the equations of motion seems to be useful for
structural parameters optimization or dynamical properties studies inside a given phase
for the system, but may actually limit the freedom of the extended classical system to

explore its configuration space.

To conclude this introduction to the PR formulation we briefly point out some com-
ments about its applicability. PR works well when applied to solid-solid transformation.
On the contrary it it may show some pathologies when reproducing solid-liquid phase
transitions, due to the zero shear modulus in the liquid phase [12]: if the initial imbalance
between internal stress and external applied pressure leads to a distortion of the cell, the
liquid will not “drive” this distortion with “physical” elastic forces, and the motion of the
cell will be mostly determined by the choice of the initial conditions. This bad coupling
between atomic positions and fictitious cell dynamics may also occur for crystals with a
small bulk modulus (such as molecular crystals): for these systems the internal stress of
Eq. 2.7 mostly depends on the molecular configuration than on the week Van der Waals
interaction between molecules. In this case attention has to paied to the relaxation time
of the cell, which means to the choice of the “mass” W in Eq. 2.6, in particular during a
decompression of the system. Indeed, if the initial conditions drive an expansion of the
cell and the relaxation time of the molecules is fast enough with respect to cell expansion
leaving the molecule length almost constant, internal stress will not vary significantly and

the expansion may lead to an unphysical fragmentation of the system. Finally we under-
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line that the dynamics of the cell is fictitious, and dependent on the choice of W. For this

reason one must be cautious in comparing simulated transition paths with physical ones.

2.2 Car—Parrinello Molecular Dynamics

The Car—Parrinello method (CP) [2, 13, 14] is a very elegant and powerful scheme for
ab-initio MD simulations, successfully used in the last years for solving a wide variety of
problems for real materials which were inaccessible for standard simulation method (see,
for example, Ref. [15] and references therein). In CP the forces acting on classical ionic
degrees of freedom are calculated not from a parameter-dependent potential — usually
determined via an empirical ad hoc procedure — but from the quantum treatment of the
electronic system based on Density Functional Theory (DFT) [16, 17, 18] in a consistent
way as the simulation proceeds. This is done by introducing a fictitious dynamical system,
associated with the physical system, whose potential energy surface E is an appropriate
functional of both ionic and electronic degrees of freedom, with electronic wave—functions
treated as classical fields. The fictitious system is devised in such a way that the ionic tra-
jectories generated by its dynamics reproduce very closely those of the physical system with
Born-Oppenheimer (BO) energy surface V defined by V({R;}) = min gy E[{¥i}, {R[}] .

The generalized classical Lagrangian of the fictitious system is defined as:

occC

£o= wy [arlbl+ 3 Y MRS - Bf{w}, {Ro)

I

+ ;Aij (/ dr zb?(r)'z/)j(r)—éij) : C(2.14)
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L is a functional of ionic positions R and electronic wave—functions v, treated here as
classical scalar fields. The parameter y (of units mass x length?) is the generalized mass for
the electronic degrees of freedom. The sums over i and j are taken on the electronic states,
and the sum over I on the ions. The first and second term in Eq. 2.14 are the (classical)
kinetic energy of the electronic and ionic degrees of freedom; E given by the DFT total
energy functional is the potential energy of the coupled electron-ion fictitious system. Agj
are the Lagrangian multiplier associated with the orthonormalization constraints of the

wave-functions. ! The Euler-Lagrange equations of motion derived from Eq. 2.14 are:

oE

/-“;i(r) = —6¢f(r) + ;A,‘j’d)j(r) ('2.15)
. | OF .
R; = —E-CFTRI (2.16)

In general the ionic trajectories generated by Eq. 2.16 and those obtained by:

1 9V({Rr})

R;= -
I M; O0R;p

(2.17)

do not coincide, unless E[{¢;},{R}] is at the instantaneous minimum. However, the
mass pu and the initial conditions on the wave-functions can be chosen in such a way
that the time-scale for the electronic degrees of freedom is much shorter than that of the
ions, allowing the electrons, initially lying on the BO surface, to follow abiabatically the

ionic motion remaining close to the instantaneous ground state. If this condition for the

1The Lagrangian in Eq. 2.14 is correct for a system where the occupied electronic states are described
by a set of mutually orthogonal wave—functions. If the orthonormalization constraint is relaxed, the last
term of Eq. 2.14 has to be modified (see, for example, the case of ultra-soft pseudopotentials described in

Section 3.2).
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adiabatic motion is satisfied, the instantanyeous. value of the forces acting on the ions does
not coincide with the Hellmann-Feynman forces, but their average value does to a very
high degree of accuracy [19, 15].

Although entirely classical, the fictitious dynamics of electronic wave—functions ac-
counts for the properties of the quantum eigenvalue spectrum of the electrons. It has been
shown [20] that for small deviations from the ground state, the dynamics of the wave—
functions can be well described as a superposition of oscillations whose frequency is given
by:

1
wij = (—2553—15—))2 (2.18)
where ¢; and ¢; are the eigenvalues of an empty and an occupied state respectively. From
Eq. 2.18 one gets that the lowest characteristic frequency for the electronic degrees of

1
2

freedom is: wpyin = (2E,/p)?, where E, is the energy gap.

Since the condition for the adiabatic separation of electronic and ionic degrees of
freedom is that wpi is much higher than the highest ionic frequency, the CP method
works well, with a proper choice of parameter y, for systems with a clearly defined single—
particle gap, like semiconductors and insulators. The use of CP for metals is more subtle:
In this case Ej is vanishing in an infinite system and is very small in a finite one. Thus one
has in principle to use a very small value of u to obtain an adiabatic separation between
ionic and electronic degrees of freedom. The use of small electronic mass has however the
serious drawback that a small time step has to be used in the numerical integration of

Eqgs. 2.15, 2.16. In practice, for resonable values of the integration step, this adiabatic

separation is not obtained for metals and an irreversible transfer of energy between ions
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and electrons is observed [20, 15]. This leads to a quick drift of the electrons from the BO
surface and to a cooling of the ions. To overcome this problem the use of two different
Nosé [9] thermostats has been proposed [21]: one coupled to the ions, to keep them at the
desired temperature, and the other to the electronic wave-functions, to keep them “cold”,

which means close to the BO surface.

2.3 Constant Pressure Ab—initio Molecular Dynamics

We now extend the previous formulation of the original Parrinello-Rahman method to the
case of CP described above.

The problem of extending this method to the case of a deformable cell is in principle
the same as for classical systems. One would like to take into account shape and volume
changes of the simulation cell (CP with changing cell volume has already been developed
by Buda at al. [22] implementing the Andersen MD [4] in the original CP) by considering
the extended system obtained by rewriting the original Lagrangian (Eq. 2.14) in scaled
coordinates with the two additional terms pertaining to the cell (last two terms in Eq. 2.4).

The presence of the electronic wave—functions in the CP Lagrangian makes this proce-
dure slightly more subtle here than in the classical case. We want indeed to write a new
classical Lagrangian, which reduces to the original CP Lagrangian in the fixed cell case,
and in which the degrees of freedom are some scalar fields ¥ (not explicitly dependent on
h) associated to the electrons, the scaled ionic coordinates S and the cell matrix h. We
also want to preserve the physical meaning of PR equations of motion. It is clear that the

original wave-functions ¥ (r) (where the lower index h indicates a wave—function defined
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and normalized on the cell generated by h) are no longer a good candidate for being the
scalar field of our Lagrangian, because of the dependence on the cell. The natural way to
scale the 9, which we will demonstrate to have several advantages, is to define the wave—

functions ¢ onto the scaled variable space s = h™!r (normalized on the unitary cube),

such as:
1 1

Un(r) = \/ﬁw(h_lr) =75

where the prefactor 1/4/Q preserves the normalization. As required 1(s) is independent

W(s), (2.19)

on h. From Eq. 2.19 follows the transformation law for the electronic charge density, which

appear in the DFT energy functional (see Eq. 3.1 in the next section):
1 4 5 :
pr(x) = p(h7'r). (2.20)

This choice for the transformation of the wave—functions corresponds to consider that the
only direct effect of the deformation of the cell on the wave—functions and on the electronic
density in real space is a “stretching”of them, in order to satisfv the changed boundary

conditions.

Starting from Eq. 2.14 we write the new Lagrangian as:

£=auyf ds|i?,-<s>|2+%;M@zgsz)—E[{wi},{hsf}w

> Ay (/ ds ¥ (s)¥;(s) — 5ij) + él-VVTr(fltﬁ) -9, (2.21)

i
where the integrals are taken on the scaled cell (of volume Qg = 1). Notice that if the cell
is kept fixed, Eq. 2.21 reduces to the original CP Lagrangian (Eq. 2.14), written for the

scaled wave-functions, apart for the constant term pQ. From Eq. 2.19 the integrals in the
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first and fourth term of Eq. 2.21 are, in fact, invariant under scale transformation:

/Q WE(s)ds = 0 /Q i(hs)pu(hs)is = /Q Wt (r)n(r)dr. (2.22)

Notice also that using the scaled wave—functions. we neglect in the kinetic term (first
term of Eq. 2.21) the contribution due to the deformation of the cell (exactly in the same
way as in Eq. 2.4 this contribution to the kinetic energy of the ions is neglected). This
ensures that the equations of motion for the electronic wave-functions are formally the
same of original CP (Eq. 2.15).

The equations for ionic degrees of freedom have exactly the same form as in classical
PR case (see Eq. 2.5), with the replacement of the classical forces —9V/0R with —0E/0R,
which gives, like in Eq. 2.16, the actual quantum—mechanical forces acting on the ions [19].

The independence of the integrals in Eq. 2.21 on h ensures also that no extra terms
with respect to Eq. 2.6 appear in the equations for the cell parameters. Here in the tensor
II (Eq. 2.7) 0V/0h is replaced by 0E/0Oh. This is the partial derivative of a functional
of classical fields and coordinates, and we will show that it is nothing but the quantum-
mechanical internal stress tensor. For this reason the proposed extension of PR Dynamics
in the ab-initio scheme is physically meaningful.

If we consider the electronic quantum Hamiltonian of our system and the ground
state U, corresponding to a generic configuration of cell (h) and ions, then we have seen
in the previous section that F ~ (VU,|H|¥,) (apart from small deviations due to the
" oscillations of wave—functions around their instantaneous ground-state). In close analogy

to the Hellmann-Feynmann theorem, it can be shown [23, 24] that the calculation of
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OFE/0h at a generic h does not require the knowledge of the perturbed ground-state,
since, from the variational property of F, the perturbation of the ground-state due to
dh does not change E to first order. We can therefore calculate the derivative of E
as the expectation value on U, of the derivative of the electronic Hamiltonian, i.e. the
partial derivative inside F, keeping the wave-functions constant. However one has to pay
attention in the present case to the “stretching” of the unperturbed ground-state wave-
functions: since the wave-functions satisfy boundary conditions, which are changed by the
perturbation, it is necessary to rescale the “stretched” functions such as to preserve their
normalization on the perturbed cell. This is automatically taken into account by replacing
Yn(r) with 7(s) using Eq. 2.19. This indeed implies that the term (0E/0h)h? (see also

+ Eq. 2.12) appearing in IT (Eq. 2.7) is the actual quantum-mechanical stress tensor, as we

< want.

Summarizing, we have shown in this section how it is possible to extend in a general
and natural way the PR method into the CP Molecular Dynamics. All the equations of

motion derived from the Lagrangian in Eq. 2.21 can be formally written as:

- §F )
pibi(s) = ON > Aii(s) (2.23)
t J
‘o 1 OF _ 15 & 5
Si = —ﬁgii-ﬁ(ht)ﬁi et galglgﬁ»ls;-y, (224)
. 1 B 3
has = o (I — pha) Q(Y)31. (2.25)

Next chapter is devoted to the description of the explicit derivation in the framework
of CP method of the internal stress tensor, the only quantity which is still lacking for a

practical implementation of the ab-initio Molecular Dynamics with deformable cell.




3 Implementation: Stress Tensor

from DFT-LDA Total Energy

Consider a system of N atoms and M electronic states ({1(r)}) in a cell generated by h.
(For simplicity we consider in the following just one atomic species, the extension to more
than one species being trivial.) The interaction between electrons and ions is described
by using ab-initio pseudopotentials [25, 26]. For such a system, the DFT total energy £

in Local Density Approximation (LDA) [17, 27, 28] can be written as:

ocec

Bl (] = L[4 (-5 + VE ) )+ [ aPEeeel?

Z?

+ 3 /d"d*'pe - E, ) 4+ Bulp] 1+ = (3.1)
| I£J *RI - le
VIISIS and VII;SC are the non-local and local total ionic potential respectively, expressed as

a sum of ionic pseudopotentials; p.() is the electronic charge density, f; the occupation
numbers of electronic states, Z, is the valence charge density of the atoms, and E.. the

exchange—correlation energy functional expressed within LDA.

The simulation cell is periodically repeated to infinity and, as a consequence of the

18
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periodicity, the electronic wave-functions can be expanded in plane-waves. ! Considering
the T'—point representation of the Brillouin zone (which will be our practical choice), a

generic wave—function is written as:

vn(r) = ch(G)e'GT, (3.2)

1
A%
The basis set for the expansion in Eq. 3.2 is reduced to a finite set by truncating the sum
over G to include only those plane~waves with a kinetic energy K = %G:’ less than a given
energy FE.,:. (Atomic units are used in the following.) It is clear that the choice of E.u
determiﬁes the accuracy of the calculation of the DFT energy, and its value depends on
the specific system.

Since we use plane-waves, it is much more convenient to evaluate all terms of Eq. 3.1,
except the last two, in Fourier space [19]. In order to calculate OF/0h as described in
previous section, we must isolate the dependence of E on h also in Fourier space. It is
therefore useful to introduce the scaled reciprocal vectors, i.e. the reciprocal vectors of

the unitary cube:

q=27| Lk |, h,k,l integers, (3.3)

where h, k, [ are the Miller indices of the time-varying super—cell. Consider now the

reciprocal vector in real variables:

! About the convenience of the choice of plane-waves as basis set we refer the reader to literature, for

example Ref. [19] and references therein.
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From the definitions of primitive reciprocal vectors b; and of h (Eq. 2.1), G is related to
q by:

G =(b)"q, (3.5)

which is the transformation law of coordinates in reciprocal space. Note that from Eq. 2.2

and Eq. 3.5 we have:

G-r=q-s. (3.6)

Hereafter, each time scaled and real coordinates are mixed in equations, these are related
by the previous transformation laws. Using Egs. 2.2, 2.19 and 3.6 it is easy to get the

transformation for wave—functions in Fourier space:

eh(@) = 7= [arem S un(r) = [ asema=u(s) = el (3.7)

As expected ¢;(G) are invariant under scale transformation. They are in fact the electronic
degrees of freedom in Fourier space, whose equations of motion from Eq. 2.23 are therefore
the same in real or in scaled variables.

We have now all the basic ingredients to evaluate the explicit formulas for the stress
tensor Il = —&(9E/0h)h*. The calculations are quite straightforward but boring in some
cases and we address the reader to the Appendix 6.1 for the complete set of formulas, as
implemented in our FORTRAN code, and for the mathematical details. The implicit ex-

pression for Il obtained deriving Eq. 3.1 with respect to hin the reciprocal space formalism

(see Appendix 6.1) is:
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oF , QEPS
aha’yh’v’ﬁ = —Zflz’ci I“GO!G.B_}'ah:ih"r
- QY pHE)S(G) (@%@QGQGM%C(:GJMW) (3.8)
q#0
+(G) G, G
- ‘<4">“(§Olprl°l (,G,f— bu5) + [ @rleae(pulr) - el )i
- Z 3 B _Re
ZI?JZ# " - ryp(RE ~ ROR] - R).

5(G) is the atomic structure factor, v, the spherically symmetric local potential (VP (r) =
2 1 Voc(|r—=R1])). €z and vy, are the exchange and correlation energy and potential given
by LDA [18], and E?} the contribution of Vi’ to the energy of Eq. 3.1. Eq. 3.8 coincide
with the expression obtained by Nielsen and Martin [23] and gives, as discussed at the end
of the previous chapter, the quantum-mechanical stress tensor in LDA-DFT.

In Eq. 3.8 the expression for the contribution of the non-local pseudopotential is writ-
ten in implicit form. In the next section we discuss the main differences in the calcu-
lation of stress tensor between the two classes of pseudopotentials we implemented in
our method: the “standard” well-known norm-conserving pseudopotentials of Bachelet—

Hamann-Schliiter [26], and the more recent ultra—soft pseudopotentials of Vanderbilt [29].

3.1 Norm-Conserving Pseudopotentials

The norm-conserving pseudopotentials (NC-PP) are defined by a non-local and a local
part, which enter in VP1 and I/l of Eq. 3.1 respectively [26]. The norm-conservation

constraint on the atomic pseudo-wavefunctions allows one to write the electronic charge
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density as:
occ 9
pe(r) = D filil(x)I"- (3.9)
Its dependence on hyg is simply given by the scaling law Eq. 2.20, which states that the

product Qp(r) is invariant. Thus:

Ope(r) _ _ -1
PLE) — —p(e)B)3h (3.10)

Let us consider the second term in the first integral of Eq. 3.1. The operator VnplS is

written as:

VES =3 up(r - R), (3.11)
I

where
vy (r) = D o (I (3.12)
l
|l) is the eigenstate of momentum [, and the sum runs from zero to infinity. Let v, be the
non-local pseudopotential acting on the state with highest angular momentum treated in
the non-local form, which means that v, = vy, for [ > lm, and dv; = vi — Vi, Vpl becomes:
Im
vy = Vi + 2 S0l (3.13)
=0
v, may then be incorporated in the definition of the local part of the pseudopotential

and one can redefine the non-local part as:

Im
oy =y dulDl- (3.14)
1=0
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In order to calculate the scalar product (z«bilv;ﬂwi) in Eq. 3.1, it is more convenient to use

the Kleinman-Bylander fully non-local separable form [30] for vél E

Iévlélm}lm (Y-lmélméll] =
= E , 3.15
nl = (Bim|6v1|Bim) ' (3.13)

where ¢y, (7) is the atomic radial pseudo—wavefunction corresponding to v;, i, is the

spherical harmonic function with indices I, m. ? The corresponding energy in Eq. 3.1 is:

Eg =2 F > A Smlbvldim) ™ S (wileh Y (eh i), (3.16)
7 Im I

where ]511m> denotes the state |6v;@1mYim) centered on ion in Ry. Since (¢zm|5v1]¢)1m)‘1
is invariant under cell transformations, the only contribution of this energy to the stress
tensor is coming from the derivative of the scalar product (& [¢;). All the details are

given in the Appendix 6.1.

3.2 Ultra—soft Pseudopotentials

In this section we briefly describe the ultra-soft pseudopotentials (US-PP) and point out
the most relevant differences with the norm-conserving scheme. In his paper [29] Van-
derbilt has proposed a pseudopotential scheme where the norm—conservation condition
has been relaxed. This allows to obtain pseudo-wavefunctions to be as soft as possible
within the core region, yielding a significant reduction of the cut—off energy (E..;) re-

quired to describe them. Moreover, the scattering properties of such pseudopotentials

2Physical properties of Kleinman-Bylander pseudopotentials are similar to those of Hamann-Schliiter—
Chang form [25] (Eq. 3.14), a part the possible presence of “ghost states”, which can destroy important
physical properties of the atoms if the procedure is not applied cautiously [31].
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are, by construction, correct at several energies spanning the range of occupied states and
the transferability can be systematically improved by increasing the number of such en-
ergies. With the new recipe of Vanderbilt several elements of the Periodic Table become
accessible for practical total energy calculations with plane-wave expansion of electronic
wavefunctions. In particular compounds with first-row elements, transition metals and
oxygen became possible candidates for first—principle MD studies.

The relaxation of the norm—conservation condition adds some complications to the
derivation of the Fuler-Lagrange equations of motion (Egs. 2.23-2.25), with new terms |
appearing in the description of the forces acting on ions and of the internal stress ten-
sor. The US-PP has been efficiently implemented in the original Car—Parrinello scheme
for constant volume Molecular Dynamics by Laasonen et al [32, 33]. We refer to their
papers for the expression of the forces acting on wave-functions (in Eq. 2.23) and ions
(in Eq. 2.24), focusing here our attention on the derivation of stress tensor within this
pseudopotential scheme.

The softness of the new pseudopotentials is accompanied by the complication of the
pseudopotential definition, with the introduction of a generalized orthonormality condi-
tion. In order to recover the full electronic charge, the electron density in Eq. 3.9 has to

be augmented by appropriate functions in the core region:
pe(r) = 4 (x) + Pt "(x), (3.17)

where:

pli(r) = D FHi()N(r), (3.18)
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pb(x Zf, > QL () (Wil BL) (8L 1), (3.19)
nn',I
and:
Ba(x) = Palr—Ry), (3:20)
QTIm’(r) = an’(r"‘RI)- (321)

BL(r) and QI ,(r) are arbitrary functions centered on the atomic coordinates and strictly
localized in the core region. In particular §, is an angular momentum eigenfunction in
the angular variables, times a radial function which vanishes outside the core region (like
the functions &, introduced in the previous section for the Kleinman—-Bylander scheme).

The non-local and the local part of the pseudopotential are respectively defined as:

Var = ZIDnn'lﬂ)ﬁ i (3.22)
Vipelr) = ;vi°“(r—Rz)- (3.23)

The indices n and n’ in the previous equations run over the total number N of 3 functions.
In the US—PP two reference energies, and therefore two functions [, are usually required for
each included angular momentum channel. This leads to a number Ng which is generally

twice as large as the number N¢ of £ functions in Eq. 3.15. The functions 3,, @

T’L*‘L?

" and the parameters D? . are obtained from first—principles [29] and characterize the

atomic species (hereafter, for simplicity, we consider only one species). From Eq. 3.22 one
can see that the US-PP take the form of a few separable terms very similar to Kleinman-
Bylander-type (Eq. 3.15), with the states |¢/, ) substituted by the new states |31) and the

non-diagonal constant matrix D2, replacing the diagonal term (G1ml6vidm) ™" Using




26 § 3. Implementation: Stress Tensor from DFT-LDA Total Energy

Eq. 3.22 the non-local contribution to total energy (Eq. 3.1) is:

B =5 fi > DS S (il BIY(BL 1w, (3.24)
) nn' I

which has to be compared with Eq. 3.16.

The relaxation of the norm—conservation condition is achieved by introducing a gen-

eralized orthonormality condition [29]:

(Yil SURIDIY;) — 65 = 0, (3.25)

which substitutes the ordinary orthonormality constraints in Eq 2.21. § is a Hermitian
overlap operator given by:
§=14 3 quwlB)(Brl; (3.26)
nnl I
where ¢nns = [drQnn(r). The orthonormality condition Eq. 3.25 is consistent with the
conservation of the charge [29]. Note that the overlap operator § depends on the ionic
positions through the functions |31).

Due to the h dependence of functions @,/ (through (r—Rj) = h(s—S;)) and of scalar
products (v;|8L), the derivative of p?*™® (Eq. 3.19) with respect to hg is not as simple
as that given by Eq. 3.10. This fact introduces new terms in the expression for 0E/0h.
The only contribution which remains the same in US-PP as in norm-conserving scheme
is the kinetic energy contribution. Moreover the dependence of the new orthonormality
constraints (Eq. 3.25) on h,p adds to the stress tensor a term which takes into account

the change in the constraints with a change of h. The internal stress tensor has thus the
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form:

1 [ OE 0,
- = 5" Ay (| S| | B 3.27
fes =g | o, ~ % Nii g, (WilS193) | Bog (3.27)

The explicit expressions for all the quantities introduced in this section are given in Ap-
pendix 6.1, together with the formulas for the contribution of the various energy terms to
internal stress.

Due to the presence of p*™ and to the fact that Ng is generally twice as large as N,
the stress tensor calculation is more costly for US-PP than for NC-PP. In Appendix 6.2 we
discuss the computational effort needed to calculate total energy, forces and stress with the
two types of pseudoi)otentials. We anticipate here the convenience criterion for choosing
between them in the case of standard fixed—cell CP and in the case of our extension to

variable—cell. For fixed—cell CP the use of US-PP becomes advantageous [32] when it is

possible to use a kinetic energy cut—off EY? such that:

1 . . ;
Us NC q ¢

Ezi < —-—22/3Eéut . (3.28)
This inequalitiy is easily satisfied for first—row elements, transition metals and other ele-

ments like oxygen [32, 33, 34, 35]. However, as shown in Appendix 6.2, when the calculation

of stress tensor is needed, as in our variable—cell CP, this criterion becomes more strict:

1 .~ .
EYS < gEQf . (3.29)

3.3 Constant Cut—off or Constant Number of PW?

To conclude this chapter, we will point out some considerations about the well known

problems arising from using a finite basis set of plane-waves in the expansion of Eq. 3.2.
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Plane-waves are very appealing, because they are independent of the structure of the
system, and systematic improvements of the quality of the basis set can be simply done
by increasing the number of Fourier components. Furthermore, fast Fourier transform
techniques can be adopted in the practical calculation of E. The difficulty encountered
when using plane—waves is mainly related to the problem of convergence in Fourier space,
i.e. to the question: how small cut—off energy FE.,; will suffice in order to shrink the errors

due to a finite Fourier series to negligible values?

In the present case we are interested in performing calculations of DFT functional F,
while the simulation cell varies in shape and volume. This implies that the set of plane—
waves with kinetic energy less than E.,; varies according to the change of G-vectors. In the
CP method, however, the plane-wave coefficients in the representation of wave—functions
are the actual lagrangian electronic degrees of freedom, and their number N, is kept
constant during the simulation, because variable number of degrees of freedom is highly
undesirable in Molecular Dynamics. This implies that wave-functions, charge densities
and potentials appearing in the functional F are resolved with variable precision. Let us
imagine for simplicity an isotropic volume change of the cell. If the volume decreases and
N, Temaines constant, the effective energy cut—off will become higher and higher and
the corresponding curve E versus volume will be distorted with respect to an analogous
curve calculated with constant E..:. These discrepancy gives, for instance, different static
equilibrium properties. Although in principle both this curves are wrong, and only at
convergence in Fourier space they will coincide with the correct one, the most common

experience [36, 1] shows that when choosing a constant E,; procedure the incomplete
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convergence leads to much smaller errors in the static equilibrium parameters. Working
at constant cut—off would be then preferable.
In order to recover the accuracy of a constant E.,; calculation in a constant Ny, sim-
ulation we have modified the kinetic term of the DF'T functional (Eq. 3.1) as follows [37].
Considering only the I' point of the Brillouin zone of the simulation cell, the kinetic

energy is:

M
> fi) GPi(@)ela), (3.30)

=1 q

Eke =

BN |

where ¢;(q) are the Fourier coefficients of %;(s), q are scaled reciprocal vectors (Eq. 3.3),
and G = (h*)"1q. The set of {q} is fixed at the beginning of the simulation. We replace
the kinetic factor G? in (3.30) by an expression which forces zero occupancy for those
plane waves whose kinetic contribution %Cﬂ exceeds E.y. This is done by adding to G* a
smooth step function of height A and width o, so that:
G?—=G*+ A {1 + erf (}Z-Cﬂ—g_f—oﬂ : (3.31)
In the A — 0 limit, the constant N, results are recovered. In the opposite o — 0,
A — oo limit, all plane waves with %GQ > Ey drop out of the ground-state wave function,
therefore mimicking a constant E.;. The optimum practical choice lies somewhere in
between these two extrema, since one would like to work as close as possible to the constant
E.y;, while avoiding unphysical discontinuities. Making A > 0 introduces an additional
term in the stress tensor. In the large-A limit this extra term corresponds to the so called
Pulay stress [36], i.e. the difference between the stress tensor calculated using %%, which

corresponds in any case to locally constant number of plane waves derivative, and the
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“true” (constant cut-off) stress. In practice we obtain even for finite A a good estimate
for the Pulay stress, which allows to calculate the correct stress for a given configuration
of the system with a much modest effort than that required by standard Ecy: procedure,

where more calculations at different volumes are needed.

Since the set of plane waves is fixed at the beginning of the simulation, their number
should be large enough for this trick to be reasonably accurate. The modification of the
kinetic energy (Eq. 3.31) increases by a factor F?_u? 4+ 1 the energy Fqop of the highest
unoccupied state in the Hilbert space defined by the basis set. Since the time step for the
integration of the equation of motion (Eq. 2.23) scales as (Em,m)_% (see Eq. 2.18), the

value of A should be kept as low as possible.

We have tested this method on carbon which, due to the hardness of its pseudopoten-
tial, is known to be particular sensitive to the basis set choice. For our test, whose results
are reported in Fig. 3.1, we have used a conventional cubic cell for diamond with two
carbon atoms, I'—point sampling of the BZ, and Bachelet-Hamann—Scliiter [26] pseudopo-
tential in the Kleinman-Bylander form [30]. We find that the constan't-pr equilibrium
lattice constant and bulk modulus with Np, = 12789 (corresponding to E.: ~ 40 Ry for
a cell-volume of 75.5 a.u.) differ from the same quantities computed at constant cut-off by
3 % and 36 % respectively. With our method, using A = 200 Ry, ¢ = 2 Ry and Eo = 40
Ry in Eq. 3.31, the lattice constant and the bulk modulus differ only by 0.5% and 1%
from those computed at constant cut-off. Note in Fig. 3.1 that the Pulay stress affecting
the value of the stress calculated with the constant—V,,, procedure is of about 400 Kbar

at the “true” equilibrium volume and reduces drastically to about zero using the modified
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kinetic energy functional.
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Figure 3.1: Energy versus volume (upper panel) and pressure versus volume (lower panel) for

carbon-diamond in three different calculations: at constant E,,; = 40 Ry (solid line), with the

modified kinetic energy (Eq 3.31) (short—-dashed line), and with constant number of plane-waves

Npw (dashed line). For the parameters used see text.



4 Applications

4.1 Structural Phase Transformation in Silicon

We have tested our method by simulating ‘a pressure induced transition in Silicon [38].
Silicon has been chosen as the test case since the physics underneath the Si phase diagram
is well understood and established. For this reason in this section we devote a longer space
to technical details and difficulties posed by a simulation of this kind than to the discussion
os Si pressure dependent properties. Si has a quite complicated phase diagram with many
high pressure phases. Studies of this phase diagram have challenged both theorists and
experimentalists over the last ten years. Thanks to many different experiments based on
x-rays spectroscopy, the phase diagram of Si at room-temperature is well-known up to
pressures of about 250 GPa [39, 40]. The experimental sequence up to 30 GPais: diamond
(D) — B-Sn — sh, with transition pressures at 11 and 13-16 GPa respectively [40]. Simple
hexagonal structure is then found to be stable up to 35-40 Gpa. The domain of stability of
B-Sn is very narrow in contrast with those of D and sh. The existence of an intermediate

stable orthorhombic phase between (-tin and sh has also recently been claimed [41].

33
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Figure 4.1: Total structural energy vs. volume (normalized by the calculated equilibrium volume

in D structure). The data come from LDA total energy calculations (Ref. [430).

Other experimental findings [42] show however that, if the pressure increase is applied
at low temperatures, the G-tin phase is skipped, with the system moving directly to
sh phase. Other more compact phases appear at considerably higher pressures [39] but
they will not be investigated in the present work. The transition pressures calculated
with standard zero temperature LDA total energy calculations [43, 44] for the different
phases essentially reproduce the experimental values. In Fig. 4.1 are plotted the LDA
equations of state energy vs. volume for different phases, as calculated in Ref. [43]. The
calculated equilibrium energy difference between diamond and the other two phases (8-
tin and sh) is relevant, about 20 mRy/atom. The volume reduction during the first—order

transition D— G-tin is of about 20 %. while that during the transition S-tin—sh is much
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smaller. Silicon is an insulator in the diamond phase, while the high—pressure phases are
metallic. The transition we are interested in is thus a metal-insulator transition, with
a relevant rearrangement of the electronic structure (i.e. the charge distribution giving
rise to chemical bonds). For this reason we expect that only a method in which the
electronic structure is calculated self-consistently will be able to describe at the same

level of accuracy all the different phases.

To perform the simulation we used an ab-initio pseudopotential of the Kleinman-—
Bylander [30] form, constructed from the tables of Ref. [26] retaining only s—-nonlocality.
Wave—functions were expanded in plane waves up to a kinetic energy cut—off of 12 Ry,
using only the I' point of the super—cell Brillouin zone (BZ) in the K-point expansion of
wave-functions. For the MD simulation the inertia parameters p and W were fixed to the
values of 300 a.u. and 4.05 Si mass respectively. In particular W was tuned in order to
maximize energy exchange between the ionic degrees of freedom and the cell, which allows
the equilibration of the cell degrees of freedom. The integration step was 1.45 x 10716 s
(6 a.u.). The temperature of the ions during the main part of the simulation was controlled
by a Nosé thermostat [9], and when necessary (see below) the electrons were maintained
close to their ground state using a second Nosé thermostat coupled to the electronic degrees

of freedom, as described in section 2.2.

We started the simulation from an fcc periodically repeated cell containing 54 atoms,
initially arranged in a diamond lattice. Since the choice of the starting cell is a particularly
delicate problem in these kind of simulations, we devote to that a quite long digression.

Due to the heavy computational cost of our quantum mechanical approach we are forced
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to use simulation cells much smaller (typically containing at most one hundred atoms)
than those used in classical PR. Large cells have several advantages when performing PR
simulations on phase transformations. First a large number of degrees of freedom allows
to move in a larger phase space, and thus to explore lower symmetry paths connecting
the various phases. Moreover it reduces the presence of spurious “ghost” structures in-
duced by boundary conditions: when correlation lengths become as large as the cell size,
as they do close to phase transitions, periodic boundary conditions may induce on the
system additional false constraints, leading to wrong transformations. Finally, for a phase
transformation to occur it is necessary that both the starting and the final structure fit in
the starting and in the final cell respectively. Due to our procedure with constant number
of atoms, this is more easily achieved by using larger cells. We are thus forced in using
largest possible cells. Due to computational cost, this implies the use of the I'-point only
representation of K-point summation in the calculation of the energy functional E (see
Eq. 3.1). ! T-point sampling is in principle exact when the cell size becomes infinite.
However it gives quite poor accuracy even for cells of about 100 atoms, where several
K-points of the first Brillouin zone (FBZ) of the crystal are folded onto the I'-point of the
super—cell. This poor accuracy in the energy of the various phases may produce a wrong
energetic hierarchy in the energy versus volume equations of state. However transitions in
PR do not proceed via phase coexistence, with the double tangent (Maxwellian) construc-

tion in the E-V plane, and thus wrong energy differences between the different phases at

1n terms of computational effort, the use of only ['-point has the great advantage that wave—functions

are real in direct space. This implies reduced cost in FFT with respect to complex wave—functions.
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different volumes will only affect the value of the transition pressure, and not the stability
of the different phases at different densities, which is indeed our main task. The value of
the transition pressure is also affected by hysteresis phenomena related to our small cell
size. Increasing the cell size will eventually reduce these problems, but it is too costly with

present computer facilities.

It should be mentioned that K—point convergence will be different for the starting and
final cells and structures. This is related not only to the possible variation of electronic
band structure between initial and final phases (it is well known, for example, that K-
point convergence is more severe in presence of a Fermi surface). It is also due to the
possibility for the system to choose in our scheme the K-point sampling that produces
the lowest energy for a given structure (K—point self-consistency). Due to the absence
of variationality of £ as a function of K-point representation, > K-point self-consistency
may produce a final structure and cell having an energy even lower than the converged
value. In principle simulations started with a cell having a high energy value may evolve
reducing the energy by simply changing the cell shape, the final structure being the same
as the starting one. When choosing the initial cell, all these considerations must be taken

into account and we have exploited different strategies for different cases.

In silicon we decided to use the 54 atoms fcc repeated cell, because the K-point folding

of this cell, although giving an energy per particle ~20 mRy higher than the fully converged

>The Hohenberg-Kohn theorem [16] holds only if the Hilbert space over which the charge density is
defined is fixed. When the K—point representation is changed, which means, in our case, when the matrix
h appearing in E (see Eq. 2.21) is changed, the density p(r) will be represented on a different basis set,

and therefore variationality is not ensured.
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Figure 4.2: Equation of state for Siin D, 3-tin and sh structure from LDA total energy calculations.
D54 is calculated using the T—point representation of the fcc cell with 54 atoms. The other curves
are obtained with a converged sampling of BZ. All calculations are done with constant number
of plane—waves, corresponding to E.,:= 12 Ry for our initial cell (lattice constant for diamond:
0= 5.36 A), except Dp., which is obtained with a constant cut—off calculation (Ecu¢ = 12 Ry). The
Pulay stress of the curve D, at the equilibrium volume of D, is of —57 Kbar and the equilibrium

lattice constant calculated by D,, is less than that of D.. by 1.8 %.
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value (as visible in Fig. 4.2). it gives the correct energy hierarchy between D and S-tin
structure. The energy of the centered tetragonal f-tin structure is calculated with the
guess that the final cell is obtained by rescaling the starting one along the [001] direction.

If the K—point folding may in fact be constructed for the starting cell, this may only be

guessed for the final one.

Another more satisfactory strategy, that we adopted in the application of graphite — di-
amond conversion in carbon (see section 4.2.2), is to start with a cell having the K-point
folding which gives the lowest possible energy. It turns out that, for fixed volume of the
supercell, the number of cells giving a different folding of the FBZ of the crystal structure
over the supercell I'-point is finite. Thus one can in principle calculate the energy for
all the cells belonging to this class (or of a resonable sub-set of it), and then choose the
starting simulation cell giving the lowest value. This choice reduce the problems in energy

hierarchy induced by the above mentioned K-point self-consistency.

The modified energy functional in Eq. 3.31 has not been used for silicon since in this
case the error introduced by working at constant number of plane waves is much smaller
than the error due to the poor accuracy in BZ integration, as visible by comparing the
curves labelled D., and D, in Fig. 4.2. The plane-waves number was kept fixed during
the simulation, and assigned by the 12 Ry cutoff with our initial cell and a lattice constant
of 5.36 A. This error, as well as that introduced by the constant plane-waves number are
expected to affect only the numerical values of the transition pressures. Since a large
uncertainty on the phase boundaries is anyway likely, due to the hysteresis phenomena

related to our small cell and short simulation time, we have not tried to improve these
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aspects of the calculation.

We started the simulation by heating our D-Si system (with fixed—cell MD) up to
300 °K. We then switched the Nosé thermostat and the constant pressure MD on. equili-
brating both ions and cell degrees of freedom for ~ 1 ps at zero external pressure. Skipping
a possible search of the 8-Sn phase, of unlikely value in view of our relatively limited ac-
curacy and of the narrow range of stability of this phase, we directly raised the pressure
from zero to a value larger than the experimental transition pressure to sh structure. This
was done in steps, but without waiting for equilibration at each step, with two different
pressure rates. In a first simulation we increased the pressure up to 30 GPa in an overall
time of 0.4 ps (a pressure increment of about 6 GPa every 600 MD steps). In the second
simulation we wanted to reproduce the results of the first one, but with a slower pressure
rate: we raised the pressure to 30 GPa in about 4 ps. Although the two simulations were
performed in a very different way, the crystal structures found after the transition we
are going to describe are exactly the same. A comparison of the paths followed by the
system during the two simulations is given in Fig. 4.3, where the energy versus volume
of the system is reported, together with the Murnaghan equation of state for diamond
and simple-hexagonal of Fig. 4.2. In the second simulation, after the phase transition we
furthermore increased the pressure up to 60 GPa, in order to check the stability of the
new phase. Since we obtained the same physical results in both cases, hereafter we refer
to the first simulation, although some figures correspond to the second one. In Fig. 4.4
we plotted some quantities we monitored during MD simulations. Figure refers to second

simulation. Note the behavior of kinetic energy of the cell degrees of freedom: when the
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Figure 4.3: Energy vs. volume of the 54 Si system during the simulations at T= 300°K, starting
from the fcc cell. Dotted line refer to first simulation, solid line to the second one. The Murnaghan
equations of state for diamond (calculated using the T—point representation of the 54 atoms starting
cell) and simple hexagonal (at K-point convergence) of Fig. 4.2 are plotted. The transition from

D — sh structure is clearly visible.
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Figure 4.4: Behavior of some observables during the constant—pressure MD simulation as func-
tions of time. The data refer to the second simulation (see text). From the bottom to the top:
temperature using Nos¢ thermostat and (T)= 300 °K, kinetic energy of the cell, mean squared
displacement of the ions, fictitious kinetic energy of electronic degrees of freedom, and internal

pressure, calculated as 1/3 of the trace of internal stress tensor.
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transition occurs, this energy suddenly increases, due to the quick change in cell geometry.
After the transition the strong coupling of the cell with the ionic degrees of freedom, in-
duces a quenching of the cell kinetic energy, with an energy flow from the cell to the Nose
thermosthat applied to the ions. The rearrangement of atoms in a new structure is also
revealed by the mean squared displacement, which raises to large values at the transition.
The fictitious kinetic energy of electrons feels the change of electronic and atomic structure
during the compression: the first increase visible in Fig. 4.4 corresponds to a reduction
of the energy gap between lowest unoccupied and highest occupied states (see below and
Fig. 4.8). At the transition the kinetic energy furthermore increases, since wave-functions
follow almost adiabatically the rapid change of atomic positions and boundary conditions.
The Nosé thermostat for the electrons was switched on only after the transition, with a

mean kinetic energy of 0.2 a.u.

Initially the system follows the equation of state of the D structure (see Fig. 4.3) up to
a pressure of about 30 Gpa. The cell edges and their relative angles oscillate isotropically
for a while as a function of time (Fig. 4.5), with large volume fluctuations due to the
compressive shock, following the sudden pressure increase. At that pressure a dramatic
transformation spontaneously takes place. The cell undergoes a change of shape, with a
drastic volume decrease from 115 to 88 a.u./atom in the overall very short time of 0.2
ps. The present behavior indicates a first order phase transition with a volume jump at
constant pressure, which is very well shown by Fig. 4.6, where we report the pressure
versus volume diagram. The change in shape of the cell is accompanied by radical changes

in the electronic and ionic structure, transforming the initial D structure into sh. In
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Figure 4.5: Time history of the compression and decompression MD run on Si (first simulation).
Cell edges (a), their relative angles (b), and the largest peaks in the ionic structure factor (c)
are shown as a function of time. The k vectors of S(k) are labelled by the Miller indices of the
time-varying supercell. The arrows denote the points where the external pressure was raised to

the specified value. T is 300 °K up to 11 ps where it was raised to 500 °K.
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Figure 4.6: Pressure (3TrIl) vs. volume (deth) diagram of Si during the compression procedure

at 300 °K(second simulation run).

Fig. 4.5¢c we show as a function of time two peaks in the structure factors which are
characteristic of the D and sh structures. It is clearly seen that the initial D structure
has changed into a new one, which we will show to be sh. The transformation occurs
via large, concerted, atomic motions. A simple transformation path has not so far been
further rationalized. The crystal structure of the new phase is reflected in the average pair
correlation function g(r) and angle distribution function f(6) reported in Fig. 4.7, both of
which are only compatible with a sh structure, with f(8) peaks at 60°, 90°, 120° and 180°.
However the peaks of both g(r) and f(6) are too broad for a perfect crystal structure.

Visual inspection (see Figs. 4.9~ 4.12 at the end of this section) reveals defected hexagonal
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Figure 4.7: Pair correlation function g(r) (left panels) and angle distribution function f(f) (right
panels) at three selected times during the MD run described in the text (first simulation). In a) and
b) the arrows indicate the peaks position expected for perfect D and sh crystals respectively. f )
is computed including atoms with coordination four in D and a-Si structures, and coordination
eight in sh structure. g(r) are plotted to r larger than the half width of the simulation cell to show

the effect of the cell shape on crystal structures.
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planes. Interference between these planes gives rise to the strong Bragg reflection in
Fig. 4.5c. These planes are however somewhat misaligned which explains the large width
of the peak in f(4) at 90°. The defect can be seen as a missing 3-atoms segment in
one of the hexagonal rows. Thus addition of three atoms should remove the defect. To
prove this we have constructed an “ideal” structure compatible with the shape of the MD
cell. The primitive cell in reciprocal space of this ideal crystal is constructed using three
linearly independent k vectors corresponding to zero order Bragg reflections. One of the
k vectors used is perpendicular to the hexagonal planes, the other two almost lye on the
hexagonal planes. The “ideal” structures compatible with the form of the MD cell are all
and only those generated by using allowed (linearly independent) k vectors to determine
the primitive reciprocal cell. This, together with the fact that we have used k vectors
giving zero order reflections guarantees that the obtained “ideal” structure is the closest
to the real one. This construction gives rise to a triclinically distorted sh (9 % in plane
distortion and a misalignment of about 2° between adjacent hexagonal planes) made of 57
atoms in the original MD cell. With a further relaxation of the cell the 57 atoms crystal
transforms in a perfect sh with a = 2.524 and ¢ = 2.26A. 3 We have separately calculated
the properties of this perfect sh and its energy is 5 mRy/atom lower than the exact value
at full k-points convergence, and only 3 mRy/atom lower than the energy of the defected
54 atoms cell. It is remarkable how little is the defect energy cost. Moreover in the first

run, where the pressure shock was faster, the defect appears to translate along the [010]

3The relaxation of the triclinically distorted sh ends up in a quasi-perfect sh (1.5 % residual distortion),
if the non-spherical cutoff imposed by our constant plane waves technique is used. This residual distortion

is eliminated by imposing a spherical cutoff. The a and c values given in the test refer to this latter case.
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direction in the hexagonal plane with a velocity comparable to the velocity of sound. In
Fig. 4.12 we report two snapshots of the same hexagonal plane at different times during
the long equilibration of the cell at p= 42 GPa. The defected part of the structure is

clearly visible there.

Electronic states also undergo a transition together with the D—sh structural trans-
formation. Strikingly (Fig. 4.8) both the starting D configuration and the final defected sh
show a gap at the Fermi level (Er). This is at first surprising, since the perfect sh crystal is
a metal with only a pseudogap just below Ep [43]. This is clearly visible in Fig. 4.8 where
we report the electronic density of states for the sh perfect crystal, along with the I-point
electronic states of the cells containing 57 atoms arranged in the triclinically distorted
and perfect sh structures. As seen there, the defect in the 54 atoms cell deforms the cell
enhancing the pseudogap and causing Er to drop to the bottom of the pseudogap, in a
region of very low density of states. Therefore the excellent stability of the 3-atoms defect
(plus deformation) results from a kind of charge compensation — the defect is an acceptor
and getters away the excess of electrons populating the high energy states. Note that to
move Er from its original value to the bottom of the pseudogap, it is necessary a defect

density (3/57) that is probably unrealistic for a physical crystal at room temperature.

At this point, having obtained the D-sh conversion, it was natural to ask whether the
reverse sh—D transformation could also be observed upon a decompression procedure.
We therefore proceeded in reverse in the first simulation by decreasing the pressure back
to zero. Wary of difficulties and metastable phases encountered by experimentalist along

this path, we tried a very careful and slow decompression process, allowing the system to
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TR

Figure 4.8: Evolution of the electronic states in the compression process. Panel a) shows the
electronic states ¢; at the I’ point of the 54-atoms simulation cell as a function of time. The two
central panels show ¢; at I' of b) triclinically distorted and c) perfect sh 57-atoms cell (see text).
Panel d) shows the electronic density of states relative to thc; potential of c). Filled states are

represented with continuous lines, empty states with dash-dotted lines.
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equilibrate at every intermediate step. This took ~4 ps with p decreasing from 42 GPa to
—12 GPa. In this pressure range (still with T= 300 °K) very little happened to the defected
sh structure, with only a gradual expansion. In a first trial we then further decreased p
down to -20 GPa, which led to an explosive fragmentation of our system. In a second run,
still starting from p = —12 GPa and T=300 °K, we instead increased T up to 500 °K and
decreased the pressure slower. Here another fast transition occurred as is clearly shown
by the behaviour of cell shape, as visible in the right part of Fig. 4.5. The g(r) and f(8) of
this novel structure are reported in Fig. 4.7c. The g(r) shows four-fold coordination and
is quite similar to the original diamond g(r). The width of the peak in f(6) is however
quite large (~ 14°), indicating that the final structure is closer to amorphous silicon than
to a proper crystal. Also, other features characteristic of the D-structure became sizable
(Fig 4.5¢), but never quite as large as in the perfect crystal. This amorphous phase is
similar to those previously obtained by first principles simulation via melt quenching [45].
It is remarkable that S-tin — a-Si transition upon decompression and heating has recently
been observed by experimentalist [41]. Since a continous path from sh to S-tin exists, the
similarity between the simulated sh — a-Si and the experimentally observed -tin — a~Si
transition is astonishing.

In view of the well known metastability and slow relaxation rates of covalent amorphous
states, we were very satisfied with this result and did not attempt to anneal further to an

ordered D phase.
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Figure 4.9: The 54 Si atoms in the starting diamond structure, arranged in the fcc simulation
cell. The white balls indicate the atoms which after the transition will form a hexagon of the sh

structure (see next two figures).
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Figure 4.10: The 54 Si atoms during the fast D—sh transition.
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Figure 4.11: The 54 Si atoms arranged in the final defected sh structure. One can regard an the

defect as a misalignment of some corresponding atoms in adjacent hexagonal planes. The point of

view is the same of the two preceding figures.
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Figure 4.12: Snapshots of an hexagonal plane of the defected sh structure obtained in the simulation
at two different times during the equilibration at P = 42 GPa. Darker regions in upper panel

indicate defective sh. Several periodically repeated simulation cells are shown.
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4.2 Carbon

We propose two different applications of our method to the study of Carbon under high
pressure conditions: the behavior of Cgp crystal (fullerite) under extreme conditions of
pressure and temperature, in particular its transition to diamond-like structures, and the
interesting structure transformation from graphite to diamond. Due to the enormous
technological interest in the properties and in the synthesis procedures of diamond or very
hard amorphous carbon, it is of interest to investigate via first—principle simulations the
conversion of carbon from its low-pressure sp’~bonded phases, like Cgg or graphite, to the

sp3~bonded diamond-like phases.

We discuss the physical properties and our results on Cgp and graphite separately
in the next sections of this chapter, while here we briefly describe only those details of
simulation which are shared by both applications. In our simulations a Car-Von Barth
atomic pseudopotential for carbon in the Kleinman-Bylander form was used [46]. The
sampling of the BZ is restricted, as usual, to the I'-point only. Due to the hardness of
carbon pseudopotential and to the large volume reduction expected in the compression
of both fullerite and graphite, the kinetic energy correction of Eq. 3.31 is essential. e
use in Eq. 3.31 A = 70 Ry, ¢ = 8 Ry and Ey = 35 Ry. Although full convergence
can not be claimed with 35 Ry energy cut—off, with this choice bond lengths in solid
carbon are overestimated by only a few per cent [46]. Additionally, the equations of
motion have been “preconditioned” by introducing different masses for different plane-wave

components [47, 48], allowing us to use for the integration step At = 6 a.u. (1.45x107* ps)
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instead of At = 2 a.u., as required by the standard integration algorithm in presence of the

kinetic energy correction of Eq. 3.31. The parameter p (in Eq. 2.23) was fixed to 200 a.u.

4.2.1 Cqg

In the last few years there have been a number of fascinating experimental results on the
properties of fullerite, solid Cgo, at ambient conditions and at high pressures. These include
observations of high-T, superconductivity [49] in doped fullerite, speculations about a
possible super—hardness of compressed fullerite [50], and the possibility to induce with
both hydrostatic and non—hydrostatic compressions structural transformations of fullerite
into graphite [51], diamond [52] or unknown amorphous structures [53] at high pressures, or
to new molecular structures at relatively small pressures [54, 55] and high temperatures (56,
57].

The experimental situation is far from being complete and understood. This is be-
cause the results seem to strongly depend on experimental conditions, and particularly on
compression procedures and compression rates.

The single molecule in fullerite has the well known truncated—icosahedral structure
with alternating pentagons (twelve) and hexagons (twenty) (see Fig. 4.13), only slightly
relaxed in the solid by the weak interactions with the neighbours. The molecule is char-
acterized by strong sp? bonding, with two different types of C-C bonds: one, referred as
single bond, of length 1.46 A, on the regular pentagons, and the other, referred as double
bond, of length 1.40 A [58], shared by two hexagons. Unlike the layered graphite structure,

in which the sp® bonds lie in two dimensions, the solid Cgo structure has sp? bonds that
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Figure 4.13: Geometry of the Cgo molecule.There are two different type of C~C bonds: one is on
the regular pentagons and the other is shared by two hexagons. Crystal axis of the fcc assumed in
our calculations are also shown.

curve into three dimensions. * The inter-molecular interaction is a rather weak van der
Waals interaction. At ambient conditions of pressure and for temperature below 249 °K,
Ceo molecules in fullerite are rotationally ordered and form a simple—cubic lattice with Pa3
space group, with four molecules per primitive cell [60]. Above 249 °K fullerite has the fcc
structure with orientational disorder of the molecules. The lattice parameter is found to

be ap= 14.198 & at room temperature [55]. At atmospheric pressure fullerite has low bulk

*The curvature introduces a rehybridization of the s and p-states of carbon, so that neither the o nor
the m orbitals are any longer “pure” as in the planar structures. In particular, the w—orbitals acquire a
certain percentage (about 12%) of s character from the mixing of the 2p atomic states with the low-lying

2s ones [59].
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modulus (Ko= 18.1 + 1.8 GPa), characteristic of the isotropic van der Waals intermolec-
ular bonding. As the intermolecular distances are reduced under increasing pressure, the
bulk compressibility is expected to approach that of the Cgo molecule (giving eventually

to fullerite a super-hard property [50]).

The fcc structure of fullerite is found to be stable at ambient temperature up to
hydrostatic pressures of about 20 GPa [55, 53]. For pressures below this limit, electronic
bands are relatively narrow due to weak intermolecular bonding. Fullerite can be classified
as a semicbnductor with a direct energy gap at X—point of BZ of about 2.3 eV at zero
pressure [61]. Electrical resistivity [54] and optical absorption [53] measurements show
that this gap reduces by increasing pressure and should possibly close for pressures in the
range of 30~40 GPa [53]. However the predicted metallic phase, together with the super—
hard property of fullerite, has never been observed: an irreversible transformation occurs
for pressures around 20 GPa. with Cgo molecules collapsing into a new structure. Based
on visual observations and Raman measurements, Ninez Regueiro and co-workers [52]
have reported the appearance of polycrystalline diamond. This result apparently relies on
the highly non-hydrostatic pressure conditions used. Under more hydrostatic conditions,
Moshary et al. [53] have found a new phase which they suggested to be a new form of
amorphous carbon (a—C) due to an anomalous high transparency, i.e. a large optical gap,
possibly attributed to the formation of a high number of sp°® bonds. More recently optical
absorption experiments [62] on Cg in the same pressure range did not however find this
anomalous transparency of the new phase thus suggesting that this phase is probably

similar to a normal a—C.
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At higher temperatures fullerite behaves quite differently, in particular in the relatively
low pressure range. Iwasa et al. [57] find thombohedral structure with hexagonal lattice
parameters of ag = 9.22 A and ¢q = 24.6 A in samples of fullerite prepared at temperatures
between 500 and 800 °C. This hexagonal structure can be interpreted as the distortion
of fcc structure resulting from an elongation along the [111] direction. Ninez Regueiro et
al. [56] find that fullerite collapses to a graphitic amorphous at 8 GPa and 1500 °K. At lower
pressure (2—4 GPa) and for temperatures below 1000 °K they find the hexagonal structure,

-with a sort of polymerization of the molecules in the hexagonal plane. Finally, Yoo et
-al. with quasi-isoentropically shock—compression and subsequent quenching, observe a
fast reconstructive transformation to graphite near 17 GPa; the graphite recovered from

27 GPa and about 600 °C is found to be relatively well ordered.

The absence of extensive theoretical studies on fullerite under pressure and the open
questions posed by different contradictory experimental findings make this system a very

appealing subject to be studied by means of our constant—pressure ab-initio MD.

Although in the real life there is orientational disorder for the molecules in the fcc
structure (above 249 °K), guided by the recent experience of first principles constant—
volume calculations on Cgg [63]. we choose to simulate an fcc cell containing a single Cgo
molecule. This implies that all the molecules in the infinite crystal have the same orien-
tation, which we fix at the beginning of the simulation to be that of the tetrahedral space
group T7. This choice maintains the highest possible symmetry between the icosahedral
symmetry of the Cgo molecule and that of the fcc lattice. The use of a single molecule in

the simulation box introduces immediately some limitations, in particular in the study of
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molecular structures, since all molecules of the infinite crystal are identical and have the
same behavior, inhibiting even in principle the possible formation of any molecular crystal
arrangement not corresponding to a Bravais lattice. However we are mainly interested in
the study of fullerite under extreme pressure conditions, where experiments reveal atomic
structure derived from the collapse of Cgg. The limitation introduced by the use of a single

molecule is therefore expected not to be fundamental.

The lattice constant for the initial cell was fixed to ag = 14.33 A, which is the equilib-
rium lattice constant obtained from static LDA calculations with I'-point only. the same
pseudopotential for carbon, and an energy cut—off of 80 Ry (this value for ap has to be
compared with the experimental value at ambient pressure: 14.198 A [55]). With our
choice of parameters in Eq. 3.31 the Pulay stress [36] at ag is reduced from —29 GPa for

a constant number of plane-waves calculation, corresponding to E.,; = 35 Ry at ag, to

—4 GPa.

In a first simulation we heated the system up to 300 °K with fixed—cell MD. We then
started with the variable-cell MD, using W = 4.9 C-mass in Eq. 2.25. We increase the
applied external pressure by steps, controlling ionic temperature with Nosé thermostat.
Due to the small fullerite bulk modulus, in the first part of the compression procedure
we observe large volume reduction, without any relevant distortion of Cgg molecule. Up
to a volume of 8.5 A3/atom (~ 70 % of the starting volume V) the cell almost de-
forms isotropically, reducing the center-to—center distance between nearest-neighbours
molecules reducing from 10.13 A to ~ 9.1 A. Cg molecule just “breathes” with mean

radius oscillating around 3.5 A, and the internal siress is determined almost only by this
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Figure 4.14: Compression of fullerite with variable—cell MD. From upper panel: number of 3—co-
ordinated (C3) and 4-coordinated (C4) atoms inside a distance R.,; = 1.7 A, volume per atom,
and calculated internal pressure. The atomic temperature oscillates around T=300 °K, controlled

by Nosé thermostat.
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breathing. In Fig 4.14 the number of 3—coordinated (C3) and 4-coordinated (Cy4) atoms,
the volume per atom, and the internal pressure are shown as functions of time during
the simulation. Coordination is defined considering neighbour atoms to lie at distances
less than the first minimum (7,,) of the particle-particle correlation function g(7). In the
present case this minimum is around 1.7 A during the compression of the system, except
for the first part of the simulation, when g(r) has a very sharp first peak with r, = 1.5 A
(see Fig. 4.15). In that case the second peak is however at 7 > 2.1 A, due to the second
nearest neighbours in Cgo. Thus, choosing a cut—off radius Reyr = 1.7 A for the calcu-
lation of atomic coordination in the whole simulation, only nearest neighbours are taken
into account. Charge density plots show that for carbon—carbon distances up to this value
the charge density overlap gives rise to chemical bonds. We can therefore consider nearest

neighbour atoms as bonded.

As shown in Fig. 4.14 during the first part of the compression atoms are all 3-
coordinated and no extra bonds appear. The angular distribution relative to this part
shows two sharp peaks centered on the ideal Ceo angles of 108° and 120° (see Fig. 4.15).
The plateau at times between 0.1 and 0.4 ps reflects instead the presence of inter-molecular
bonds. The last part of Fig. 4.14 show that C4 atoms instead prevails at high pressure. For
volumes immediately below 8 A3 /atom charge density overlap between nearest-neighbour
molecules becomes non longer negligible. We observe the formation of new inter—molecular
bonds of the type showed in Fig 4.16, which we can label “65/567, since they link two
atoms shared by a hexagon and a pentagon with two atoms shared by a pentagon and a

hexagon of another molecule. The average length of the new bonds connecting the Ceo’s is
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Figure 4.15: Radial distribution function g(r) and angular distribution f(#) of 4-coordinated (solid
line) and 3-coordinated atoms (dotted line) at two different times during the simulation. Data
are obtained averaging over 100 atomic configurations about the indicated time. Ry = 1.7 A has

been used for the calculation of the coordination.

1.55 A, which is indeed very close to the bond length in diamond. The formation of these
bonds corresponds to a non-isotropic distortion of the cell and of Cgo. Simulation cell
presents an initial thombohedral contraction along the [111] direction. The distance be-
tween the centers of Cgg and the six nearest—neighbour images on the (111) plane increases

t0 9.25 A, while the distance of the other six molecules outside this plane reduces to 8.5 A.
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Figure 4.16: “65/56” bonds between atoms of two Csp molecules. The bond-length are:
dlg = d34 - 162A, d13 = d34 = 155}&

Ceo distorts correspondingly. This distortion is driven by the formation of 12 bonds of the
type 65/56 all lying onto the (111) plane. 65/56 bonds are not the most energetically con-
venient way to link Cgp molecules. Hartree-Fock total energy calculations [64] on different
Cso dimers show that the greatest energy gain is given by 66/66 bonds. The geometry
of the initial orientation of Cgg in our simulation favours 66/66 bonds. However a slight
rotation of Cgg during the first stages of the compression path makes a “56” bond facing a

“65” bond. When this happens, cell fluctuations deform and bring Cgg close enough to the
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Figure 4.17: Hexagonal structure of fullerite. A hexagon into (111) plane is shown. The stacking

of the planes is ABCABC.
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nearest neighbours in (111) plane to form intermolecular bonds. In Fig. 4.17 we show a
shell of nearest—neighbour molecules on this plane. The resulting hexagonal structure has
a ABCABC stacking of hexagonal planes. This stacking may however be an artefact of
our initial choice of periodic boundary conditions. By further increase external pressure,
this hexagonal structure appear to be stable until the volume of the system reduces to
~7 A3/atom: no other bonds form and the rhombohedral distortion of the original fcc
lattice is stabilized to an elongation along the [111] direction, with a ratio ¢/a = 2.56
(¢/a = 2.18 being that of ideal fcc). This crystalline structure is similar to that produced
experimentally by Iwasa et al. [57], although molecule structure and inter-molecular bonds
in the hexagonal phase are not experimentally known. By synthesizing samples at high
temperature (between 500 and 800 °C) and quasi-hydrostatic pressure of 5 GPa, and then
quenching temperature and relaxing pressure to ambient conditions, they have found an
hexagonal structure with c¢/a = 2.65. However by relaxing the hexagonal structure, stable
at the volume of 8.0 A3/atom and pressure of 15 GPa, down to zero applied pressure,
we found that our system is unstable at ambient conditions and revert to pristine Ceo.
Metastability of hexagonal Cgo at ambient pressure is also studied in a different set of
experiments [57], showing that fullerite may be reobtained by simply heating the samples

at ~ 300°C.

As visible in Fig. 4.14, for pressures between 50 and 60 GPa and volumes less than
7 A3/atom, the number of 4-coordinated atoms increases: new inter-molecular bonds
form. The simulation cell furthermore lowers its symmetry becoming triclinic. Cgg be-

comes very distorted: some bonds between atoms of the same molecule involved in cross-
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links of the type shown in Fig. 4.16 break and few atoms “collapse” inside the original Cgo
cage (see Fig 4.18a). These collapsed atoms are still 3—coordinated, but their angular dis-
tribution reveals a broad peak centered on 109°, suggesting incomplete sp® hybridization
with a dangling bond pointing inside the molecule. This bond may eventually be satu-
rated forming new intra—molecular bonds. The collapse of Cgg ends up in an amorphous
structure with a high amount of 4—coordinated atoms (more than 40 atoms of the original
molecule, see Fig. 4.18b), which form a network that percolate through the space, and
an angular distribution of bonds centered on 109° (see Fig. 4.15). The final volume is of
5.8 AS/atom for a calculated pressure of 70 GPa. The atomic structure we observe is quite
different from that of normal a~C (suggested by Snoke et al. [62] also for the high pres-
sure phase), and is in agreement with Ref. [53] where a high degree of sp3 hybridization
is suggested. The predominance of sp bonds distinguishes indeed the obtained struc-
ture from ambient pressure a—C observed experimentally [65], or simulated with standard
fixed—volume Car-Parrinello MD via melt—quenching [66]. Normal a~C is in fact found
to be mostly “graphite-like” [65, 66], with a fraction of sp? sites ranging from 50 % and

90 % and sp® sites forming separated clusters.

Studying the symmetry of the cell, no evidences of intermediate phases between the

hexagonal structure and the amorphous are found.

The structural transformation is also revealed by the change in the electronic structure.
In Fig. 4.19 we report the eigenvalues of the two highest occupied and of the two lowest
unoccupied Kohn-Sham electronic states, together with the energy gap between them

as functions of time during the simulation. We recall that the Kohn—-Sham eigenvalues
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Figure 4.18: Cgo molecule during the compression. Upper panel: snapshot at t = 0.65 ps. Collapsed
part of Cgg are clearly visible. Lower panel: final configuration at t = 2.66 ps. Cso collapses in an
amorphous structure. Dark atoms are 4—coordinated (bonds outside the original molecule are not

shown).
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Figure 4.19: Upper panel: eigenvalues of the two highest occupied (solid spots) and of the two
lowest unoccupied electronic states of Cgp, as obtained using I'—point sampling of the BZ in the

MD simulation. Lower panel: corresponding HOMO-LUMO energy gap.

are not the quasi-particles energies, which in many body theory describe the electronic
excitations. The similarity is largely an assumption and a result of experience on many
systems, and in general comparison with LDA band structures and experiments must be
made with caution [59]. Counsistent with the known general trend [67], the LDA energy
gap significantly underestimates by almost 1 eV the experimental one in fullerite [68, 69].
Therefore comparison with our results and experimental data is only qualitative. By

increasing pressure the initial band gap (at I'—point) of 1.7 eV reduces to 0.15 eV just
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before the transition to amorphous takes place. This is in agreement with experimental
findings, that also show a gap reduction under pressure [54, 62]. Correspondingly to the
formation of sp® bonds, at the Ceo — a—C transition the gap increases and is 0.7 eV in

the final structure.

We also performed a second high temperature MD simulation starting from the same
fce fullerite. In this simulation our interest was mainly to obtain more informations about
the hexagonal phase observed in the simulation at room temperature (unlike in experi-
ments [56, 57], where the phase is observed after heating the system at high temperature),
and in reproducing the transition to amorphous structure at a different temperature.
Therefore we initially heated Cgp at 600 °K. We then started increasing the applied pres-
sure with a rate roughly one half of that used in the first simulation, raising simultaneously
the temperature from 600 to 900 °K in a overall time of 0.3 ps. After that time the mean

temperature was kept fixed by using a Nose thermostat.

For pressures below 60 GPa, the behaviour of atomic coordination, compared to vol-
ume reduction and calculated pressure, is similar to that shown in Fig 4.14 for the room—
temperature simulation. In particular a plateau of 12 4-coordinated atoms appear for
volumes ranging between 8 and 7 A3/atom. In the present case however bonds configura-
tion do not lead to an hexagonal structure. The deformation of the simulation cell remains
roughly isotropic up to 60 GPa. No nearest-neighbour plane is chosen by the system to
form the inter—molecular bonds, which instead fluctuate between all the nearest—neighbour
molecules. A quenching of temperature down to 300 °K in ~ 0.6 ps does not change this

picture. More calculations are needed to clarify this point.
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The collapse of Cgp cage occurs again for volumes around 6.5 AB/atom and leads to
amorphous structure with 75 % of sp® sites. By further increasing the pressure up to
120 GPa the fraction of sp® sites increase to 85 %. The final structure at that pressure
has a volume of 5.1 A%/atom (to be compared to 4.7 A3/atom for diamond at the same
pressure), and an energy band gap of 1 eV, greater than that of the first sample, according
to the higher fraction of sp®.

We have then relaxed the pressure to zero in 1 ps. The final structure is still an
amorphous. We observe a monotonic decrease of sp° sites fraction, which stabilizes around
60 % at ambient pressure. These sites still percolate through the space forming a network.
The corresponding angular distribution is still centered to 109°, but more broaden than
at high pressure. Due to the strong sp® network which gives a high bulk modulus. the
volume difference during the decompression is small, 6.4 A®/atom being the final volume
at zero pressure (to be compared with 5.69 A3/atom of diamond and 12 A3 /atom of fcc
fullerite). The final structure at zero pressure has a I'-point energy gap of 2.1 eV. More
work is in progress to study this higly 4-coordinated a—C obtained upon compression at

high pressure.
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4.2.2 Graphite

The conversion of pure graphite into diamond is known to occur at extreme pressure and
temperature conditions [70]. Despite a large amount of investigations of this important
process, there are many open questions. First of all the main transformation path is
uncertain [71]. Secondly, the mechanism leading alternatively to cubic and hexagonal
diamond is unclear [72, 73]. Also, the presence of an intermediate phase between graphite
and diamond has often been invoked [74, 75]. Ab-initio calculations aiming at resolving
these questions were mainly based on the comparison of the structural properties of these
known phases, or on the study of high-symmetry transformation paths [76, 77, 78, 79].
We have therefore applied our ab-initio MD scheme to study this transformation without

artificial symmetry constraints.

Our starting simulation cell is a triclinic cell containing 48 atoms arranged in the
graphite structure. According to the discussion given in section 4.1, the intial cell has
been chosen as the one which minimizes the total energy at the experimental values of
the graphite unit cell parameters (ag = 2.461 &, cp = 6.709 A) and sampling only the
I'-point of the super—cell BZ. The total energy of the selected cell is 8 mRy/atom lower
than the value obtained at convergence in K-point sampling. The starting ¢/a obtained
by relaxing both ions and cell degrees of freedom at zero external pressure is smaller than
the experimental value by about 12 %. The difference in energy between our relaxed
graphite super—cell and cubic diamond evaluated with ten special points in the irreducible

BZ [80] is as small as 1 mRy/atom, but favours diamond, instead of graphite, as known
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Figure 4.20: Graphite — cubic diamond transformation in the energy vs. volume diagram, as

obtained by the MD simulation with the 48 atoms cell. Energy and volume per atom are reported.

experimentally and checked theoretically through carefully converged calculations [76].
Considering the large activation barrier for the graphite — diamond conversion, this error
is however completely negligible. Figure 4.20 sketches the history of the simulation on
the energy versus volume diagram. Graphite was first compressed at T= 200 °K up

to a pressure of 60 GPa. At the first stages of the compression, the ABAB stacking
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Figure 4.21: Hexagonal, orthorhombic and rhombohedral phases of graphite. The different stack-

ings of hexagonal planes are viewed along the c-axis (above) and sideways (below).

of hexagonal graphite slowly changes to the AB’AB’ stacking of orthorhombic graphite
(OG), shown in Fig. 4.21. Although OG is not found in nature, its relevance has been often
pointed out in the literature since most high-pressure phases of carbon are connected by
high-symmetry paths to OG [79, 75, 82]. Since we expect the cohesive energies of graphite
in its different stackings to be very close one each other, we checked whether the transition
hexagonal graphite — OG of our simulated crystal could be an artifact of the I'-point
sampling. We therefore performed a set of converged total-energy calculations of ideal

graphite in its stackings, at different volumes, and we found that they are degenerate within
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the computational error (~ 1 mRy/atom). In the absence of conclusive answer from static
calculations, we attribute the relative stability of OG with respect to hexagonal graphite
of our MD simulation to the [—point sampling, but we do not rule out the possibility that

OG may indeed be the most stable stacking of graphite at high pressure, as suggested in

Ref. [75].

Since both hexagonal and cubic diamond have been experimentally quenched to am-
bient conditions only after heating up to 1000-2000 °K during the compression, we have
heated our crystal up to 1000 °K. Upon further compression, the graphite phase even-
tually converted into diamond. We then slowly released the pressure in order to follow
a portion of the Murnaghan equation of state and to compare it with the equation of
state of perfect cubic diamond computed with ten special points in the BZ (dotted line
in Fig. 4.20). The ~ 5 mRy/atom energy difference in the two equations of state has
to be traced both to the I'-point sampling of our supercell and to thermal motion. The
simulated graphite — diamond conversion occurs, as usual, at a high value of the applied
pressure (~ 100 GPa, to be compared with the experimental value of 15 GPa [70]). Un-
like the previous example of Si. in this case the transition carries through without the
formation of defects, and we get perfect cubic diamond. The transition is consistent with
a solid-solid martensitic transformation. For increasing pressure, the interplanar distance
in graphite first collapses, leading to a buckling of the graphitic basal planes. Next. the
buckled planes suddenly give up their 7 electrons and bond to one another, becoming the
(111) planes of the diamond phase, with the [001] direction of the original graphite phase

becoming the [121] of diamond, as shown in Fig. 4.22. The geometric path followed by our
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Figure 4.22: Geometric paths for graphite — diamond transformation. Depending on the stacking
of graphite, the graphite [001] direction coincides with the diamond [111] in the case of rhombohe-
dral graphite or with diamond [121] in the case of orthorhombic graphite. Atomic displacements

from the graphite basal planes are shown on the left by the arrows.

system does not coincide with that proposed by Fahy et al. [78]. They have studied the
transformation in two steps: 1) from hexagonal graphite (stacking ABAB of the hexag-
onal planes) to thombohedral graphite (stacking ABC, see Fig. 4.21) by slipping every

third plane, 2) from rhombohedral graphite to cubic diamond by collapsing the interpla-
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nar distance and subsequent buckling of the graphitic planes in such a way that the [001]
direction of the graphite becomes the [111] of diamond, as shown in Fig. 4.22. Instead, the
mutual orientation of our initial and final phases is consistent with that of shock waves
experiments [81]. No evidence for a thermodynamically stable or metastable intermediate
phase with buckled hexagonal planes is found at intermediate pressures.

The formation of hexagonal diamond was not observed in this first simulation. How-
ever, there are three geometrically equivalent directions, through which the graphite —
hexagonal diamond may occur, while the periodic boundary conditions imposed by our
48 atom simulation cell allow for only one of them. Therefore we decided to repeat the
simulation with a different box, which let all the three buckling paths open. This was done
with a 32 atoms cell simply obtained with 2 x 2 x 2 graphite unit cells. Preliminary results
show that at room temperature and pressure of about 60 GPa the transition to hexagonal
diamond takes place, and the mutual orientation of the two phases is in agreement with

that proposed by the experimentalists [73, 74].
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4.3 Acetylene

We present here the preliminary results of the simulation of acetylene under pressure. We
are interested in the polymerization process in solid phase of the molecules of acetylene
CyH,. The behavior of unsaturated organic compounds (like acetylene) under pressure is
important for the study of the chemical bond. Molecules which interact only through week
Van der Waals forces can get very close when an hydrostatic pressure is applied, and thus
chemical reactions can take place when the intermolecular distance becomes smaller than
a certain threshold value. These chemical reactions usually lead to the formation of linear
polymers or networks. In the past many pressure induced chemical reactions were studied
for a wide variety of organic molecules with double bonds C=C (alkenes) and triple bonds
C=C (alkynes), but in general the polymerization reactions were studied starting from
the monomers in liquid phase [83, 84]. Only recently polymerization processes starting
from molecular crystals have been studied, mainly in polydiacetylenes [85]. Solid phase
polymerization is particularly interesting because it may allow the synthesis of polymer

chains longer than those produced in the liquid phase.

C,H, is liquid at room temperature and normal pressure. It crystalizes in the Pa3
structure at 0.7 GPa, and then in the Cmca structure at 0.9 GPa [86]. Recently Aoki
et al. [86] have provided Raman and optical evidences of a polymerization reaction at
3.5 GPa converting the insulating molecular Cmeca crystal into semiconducting polyacety-
lene. Polyacetylene is the prototype of semiconducting polymers widely studied in the

last 20 years. The polymerization reaction takes few tens of hours to complete, indicat-
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ing a delicate, possibly catalyzed, nucleation mechanism. Furthermore by increasing the
pressure, and thus by reducing the distance between polymeric chains, the formation of
crosslinks and the replacement of sp? with sp® hybrids are expected. This should increase
the electronic energy gap with the subsequent change in the optical properties of poly-
acetylene. In fact colored polyacetylene crystals have been observed to become transparent

for pressures above 5 GPa [86].

In our simulations we used a Von Barth-Car [46] pseudopotential for Carbon and
naked coulomb potential for Hydrogen, an energy cut-off E.,; = 40 Ry, and the gradient
corrections for exchaﬁge and correlation functional (Becke [87] corrections for exchange
and Perdew [88] corrections for correlation). Before starting with the MD, we performed
static total energy calculations on the structures Pa3 (cubic) and Cmca (orthorhombic).
The Cmca structure lattice constant is greater than the experimental one by ~ 7 %.
By adding the attractive Van der Waals forces between third neighbouring molecules. as
described by LeSar [89], the lattice constant changes only by ~ 1 %. Due to this small
improvement, Van der Waals corrections are not included in our MD simulation. Angles
between molecules and bond-lengths are well reproduced (errors less than 2 % at the
experimental equilibrium volume). Cmca phase has lower energy than Pa3, in agreement
with experimental findings at low temperatures. We started a MD simulation with 16
CyH, molecules in the Cmca structure disposed in an orthorhombic supercell with edges
a, 2b, 2¢ with a, b, c lattice parameters of Cmca unit cell (see Fig 4.23). We initially
increased pressure up to 8 GPa at 400 °K, observing only a gradual rotation of the C;H;

molecules. By a further pressure shock of 17 GPa, acetylene molecules react, forming
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Figure 4.23: Initial Cmca structure for acetylene.

polyacetylene chains in a mixture of trans and cis forms. In Figs. 4.24-4.26 are reported
the snapshots of a single a-b plane of our supercell (we have 4 planes) at three selected
times during the polymerization process. In Fig 4.24 at 8 GPa, before the pressure shock,
the molecules are in the Cmca structure at 400 °K. In Fig. 4.25 the pressure shock has
deformed the molecules in the cis and trans configurations. In these configurations the
molecules react forming the larger complex shown, and finally producing the polyacetylene
chains in Fig 4.26. On the other planes a similar reaction occur. Due to the decrease of

tilting angle of molecule in the Cmca structure at high pressure the molecules are nearly
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parallel and thus two nearly equivalent planes for the polymerization exist: the a-b and
the c-b. Incipient polymerization in the c¢—b plane produces the plane interlinks shown in
Fig. 4.27.

By further increasing the pressure a gradual conversion of sp? into sp bonds takes place
ending up at 65 GPa with what appears to be hydrogenated amorphous carbon, where
85 % of carbon atoms are fourfold coordinated in the sp® configuration. The sp — sp?,
and the sp? — sp> conversions are irreversible and do not reverse by returning to zero
pressure. These results confirm the long standing idea that unsaturated C-C bonds can

not survive at high pressure [90].
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Figure 4.24: Acetylene molecules on a single a-b plane of the supercell. Molecules are in the Cmeca

structure. P = 8 GPa, T = 400 °K.
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Figure 4.25: Cis and trans configuration of deformed acetylene molecules on the same plane of

previous figure after the pressure shock (see text).
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Figure 4.26: Polyacetylene chains on the a-b plane of the super—cell.
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Figure 4.27: Cross-links between a-b planes, due to incipient polymerisation in the a-c plane.




5 Conclusions

In this thesis we have presented a new scheme for first—principle constant pressure MD sim-
ulation. This was obtained by efficiently combining Car—Parrinello method with Parrinello—-
Rahman scheme for variable cell shape dynamics. With this extension first—principle dy-
namical simulation of solid—solid phase transitions is now possible.

The presented applications show the power of the method: in all cases the simulated
system spontaneously transform into the right phase, involving strong electronic structure
rearrangement as hybridization change or metal-insulator transition. These kind of trans-
formations require a good (self-consistent) description of electronic properties. For this
reason our method seems at the moment to be the only reliable computational tool for the
prediction of new unknown phases without any initial guess on the final stable structure.

Along the thesis we pointed out possible drawbacks of the method and suggested
possible solutions. The bias due to constant plane wave number assumption (implicit in
our formalism) has been corrected by introducing a modified kinetic energy functional.
The price paid in this case is a shortening of the MD integration step, that can however

be compensated by preconditioning electronic masses. The main limitation at the moment

86



seems to be related to the poor K—point representation, which up to now could be improved
only by increasing the system size. In many cases few hundreds atoms are probably
sufficient to achieve K-point convergence with the super—cell I'-point sampling used in
the present work. It is plausible that in the near future the simulation of systems of

similar size will become practicable using parallel codes.

Although in principle the path followed by the simulated system during the structural
transformation is not significant, the presented applications suggest that with our method
is anyway possible to get informations about the “true” physical path. In Ceg, graphite
and acetylene the mechanism leading the simulated transformation is meaningful. We
believe that in general the path obtained with the simulation may be realistic when the
transformation is guided by a rearrangement of the local chemistry as in the case of
hybridization change. Moreover, our method seems to be very promising for the study of

chemistry under pressure.

Studying silicon, we reproduce the well-known and expected transition from diamond
to sh, and, upon decompression and heating, we find the reverse transition sh — a-Si,
also observed in very recent experiments. The simulation of Cgp — a—~C shows that a-C
obtained in this way differs from that obtained via melt—quenching, showing in particular
a high density of sp® sites. These are not clustered as in ordinary a-C, but percolate in the
whole space. Moreover the observed intermediate molecular phase, in which Cgp molecules
are connected by short covalent bonds, helps in understanding the mechanism of formation
of sp® sites before molecules collapse. We show that upon fast compression acetylene

polymerizes at relatively low pressures, and finally converts to hydrogenated amorphous
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carbon. The observed sp — sp? and sp? — sp® conversions under pressure confirm the
long standing idea that unsaturated C-C bonds can not survive at high pressure. Finally,
in studying the graphite — diamond transformation we find a path which does not coincide
with that proposed by previous theoretical calculations, but which is in agreement with
the final orientation observed in crystals undergoing shock waves.

The implementation of ultra—soft pseudopotentials in our method opens the possibility
to study systems containing oxygen. The simulation of high pressure phases of solid oxygen
(not reported in this thesis) is now in progress. Many interesting problems involving
structural transformations of oxides and of other very hard materials in pressure and
temperature ranges outside the present experimental capabilities are now practicable with
our method, possibly allowing for a deeper understanding of the physical phenomena

related to the very fascinating field of high pressure physics.
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6 Appendix

6.1 Explicit derivation of stress tensor in LDA-DFT

We will here describe the specific form of DFT-LDA total energy functional used in our
version of the CP FORTRAN code. We will also present the explicit formulas for the
various contribution of this functional to the stress tensor. For the symbols used in this
Appendix and not explicitly introduced, we refer to Chapter 3.

Let us start from Eq. 3.1. To efficiently treat the slowly decaying Coulomb forces
present in the second, third and last term of this equation, it is convenient to regard the
ionic core charges as smeared Gaussian distributions of width R, centered at the ionic

sites, instead of treating them as point charges:

Z, |r—RI|2}
Pion = — exp |——=—| > (6.1)
? ; m3/2R3 [ R2

where Z, is the number of valence electrons of the ion. With this choice we can rewrite

Eq 3.1 as [19, 91]:

E=EFE+E,+EP +EY + Eg + Esr — Eseifs (6.2)

loc
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where all terms, except E., are written in Fourier space. Ej. is the electronic kinetic en-
ergy, Ey. the exchange-correlation energy. The electron—ion interaction energy is written
as the sum of two parts, the local (EF?) and the non-local (EE}) contribution. Eg is the
electrostatic energy of the total charge distribution p: = pe + pion; Egeis is the constant
self-interaction of the ionic charges, and E;, a corrective term depending only on the ionic
positions, which cancels the error introduced in considering Gaussian ionic charges instead
of point charges [19, 91].

The LDA form is used for E,., i.e. the exchange—correlation energy density is locally

approximated by the one of the homogeneous electron gas at the same density pe(r). such

Eudlp) = [ drp(x)esepe@), (6.3)

where €z.(pe) is the exchange—correlation energy density of the homogeneous electron gas

at density pe.

The terms of the total energy E (Eq. 6.2) are implemented in the CP FORTRAN code

by the following formulas:

M

B = 32 GR(@u(a) (6.4
1=1 q

Foe = [ drea(pe(r)pclx) (6.5)

B = 03 p:(@)S(Guac(Gl) (6.6)
q

B = i fi Sonnr DO Sr(wil BEY(BL 1) for US-PP 6.7)

i i St (Stm 601l dim) ™ T (Wil€l )€l i) for NC-PP
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Eg,

Eself

= T Z p7(G) = Go pr(G) (6.8)

q#0
N N

_ IR; — Ry| ~
- ZElRI—RJ! ( R\V2 ) (6.9)

21z 1J#1
1 NZ?

In the Eq. 6.6 S(G) = Y ;exp(—:G-Ry) is the structure factor for the ions, which, thanks

to Eq. 3.6, is invariant under a change of h. Notice that in the previous formulas appear

both quantities defined on the real and on scaled cell, by using the scale transformation

laws for coordinates and wave—functions in direct and Fourier space (Egs. 2.2, 2.19, 2.20,

3.5, 3.7).

We write now the explicit expression for the derivative of the previous terms of £ with

respect to the matrix h, in a unified formulation valid both for US-PP and NC-PP. In

the latter case, to get the right expressions ph‘”d =0.

aEke
g
OF;.
Ohos

JE?’

Yloc

Ohog

OEFS
Ohugs

M

~ 2 fi 2 Ge G (b ei(@)ea) (6.11)
{ / dr eaepu(1)) - vm<r)1pe<r>} ()3

hard
/ drog,(r) <p§”d(r)(ht);g + m’gh—éﬂ (6.12)

d oc G e
03 p@)5(6) (26,6, + vallGi, ) (073
q

hard *
Qy, (p’;”d(G)’(ht);é -@—8}1——(—@-) S(G)ue(|GI) (6.13)
q of

25 fi Lo D T Re [ (wilB1) (BL1w3)|  for US-PP

(6.14)
2 Zi fi Zlm Alm ZI Re {a}?ﬂﬁ(lbilglmlﬂflmlhbi)] for NC-PP
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gf; = —EH(SaAf—%-LiFQ(;)B% (Pltg;) ~ pion(G)R )G,QG7 (h%)22
+ 4rQRe > Pl?éﬁ) <pgard(G)*(ht);§+ aph;:cfﬂ )*) -
" R\c/\iﬂRI fZRJIQ =P (_%\;{%ﬁ) }(Ra (R} — R7)(h')
61:875}:” =0 | (6.17)

In Eq. 6.12 vg(r) = g;“f,i; in Eq. 6.14 ajm = (¢1m|6v1é1m) " Note that in Eq. 6.14 for
US-PP, the symmetry of D° (D2, = D2, ) has been used.

To conclude this Appendix we give in detail the derivative of the scalar product (3%|;)

((§ [1:)) and of ph‘”d.

8

Let us consider ( ¥;|B31): |8L) is an atomic state (with momentum [) centered on

I-th ion. Using the plane—wave basis set we can write the previous scalar product as:

(i) = S (=i)ler(@)e VS (G) 47

q

/ dz326,(2)j(|Ge). (6.18)

where Y}, is the spherical harmonic function with indices [, m, G the versor of vector G,
j; the bessel function and Bn(r) the radial component of 8,(r). Using this expression one
immediately recognize the dependence of Eq. 6.18 on A, through ¥;,,(G), Q and ji(|G|z).

We can thus write:

: PYin o
i = (i@ m{(—%;@ 1lﬁm(G)<h)aé>

3]1([G|$)}

/ dzz? B z)g,uG;m)Hf,m(G)/ dz2?f,() (6.19)
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Eq. 6.18 is also valid for the derivative of (6L 14;)) and of pied, with the replacement of
Bn(z) with dvi(z)dim(z) (see Eq. 3.16).

Let us consider pf™ (Eq. 3.19). We need dpher?/9h both in direct (Eq. 6.12) and
in reciprocal space (Eqs. 6.13 and 6.15). From the definition of ph‘”d (see Eq. 3.19) in

Fourier space, one has:

hard
i s "q'Sfoiwilﬂbwiflwi)
af :
+ Zan’e qSIQREZfz <¢z|f3[ ﬂn’hﬂ) (620)
nn'l

Like 3L, the functions QL ,(r) are centered on I-th ion, and localized in atomic core
region. They are given by a linear combination of products of atomic functions (with
given momentum) [29]. It is therefore possible to expand them in spherical harmonic
functions. In reciprocal space we have:

QL(G) = SRS (i AL ms W) Yin(B) - [ 4ot Qe (2)5(Gl2), (621

Im
where A(l,m;n,n') are the coefficients defined in Ref. [92], Qnni(2) the radial components
of Qe (r), and the sum over [ runs from 0 to (Im + 1), Where I, is the maximum angular
quantum number of states |3,). Like in Eq. 6.18, the dependence of Eq. 6.21 on h is
through Yim (&), Q and 5i(|Glz). To calculate 3—”5-%9 we choose to transform directly
Eq. 6.20 using FFT.
The constraints contribution to internal stress (second term of Eq. 3.27), from Eq. 3.25

and Eq. 3.26, is given by:
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9 9 5 |
;Aijm(?ﬁilﬂ%) = iZinj %:nlqm' [m(wilﬂﬁ)(ﬁfuhﬁj) + (’ﬁilﬁi)m(ﬁiﬂ%)]

(6.22)

and can be calculated very simply using Eq. 6.19 for 51;3—;5(¢i|ﬂ£)(ﬂ£,|¢j>.

6.2 Computational effort for stress calculation

We now investigate the computational effort needed to calculate internal stress with the
two different types of pseudopotential implemented in our method, and fix the convenience
criterion for choosing between them.

In the Car-Parrinello method many parts of the molecular-dynamics algorithm are
performed in O(M N In N) operations, where M is the number of electronic wave—functions
and N the number of plane—waves used to expand each of them. This performance is due
to FFT techniques, used to switch from direct to reciprocal space and vice-versa, since
terms of Eq. 3.1 arising from the local potential and kinetic energy are diagonal in direct
and reciprocal space respectively. The wave—functions orthogonalization algorithm used to
solve the Lagrange multiplier A;; in Eq. 2.21 requires O(M?N ) operations, since one has
to deal with M x M overlap matrices and each term of them is a scalar product between
wave—functions, which costs O(N') of operations in reciprocal space. Finally, the part of
the method concerned with evaluating non-local contributions to total energy, forces and
stresses, calculated in reciprocal space, scales like O(mM N), where m is the number of

atoms in the simulation cell.
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Since both M and N scales like m, orthogonalization step and non-local operations
scale like m3, but in general the prefactor associated with the second is larger than that

for the first.

The FFT and orthogonalization algorithms do not depend on the pseudopotential used.
Thus the time spent in these parts of the method is anyway reduced by using the US-PP
thanks to the smaller energy cut—off needed in the expansion Eq. 3.2. Nevertheless, for
large systems the calculation of non-local contributions becomes the most time consuming
part. The order mMN of operations for this part comes from the scalar products in
Eq. 3.16 and Eq. 3.24 for the two classes of pseudopotentials respectively. These scalar
products are performed in reciprocal space and are given by a sum over G-vectors of terms
containing the Fourier coefficients of the wave—functions, the spherical harmonic functions
and one-dimensional integrals depending on |G| (see Eq. 6.18). The number of operations
needed to calculate one scalar product of this type scales thus like the number of plane-
waves (V) (like for the terms of the matrices used for the orthogonalization algorithm).
The number of these scalar products is given by mM times the number of atomic functions
used for the pseudopotential (N¢ or Ng). When forces and stress tensor are needed, one
has to calculate also the derivatives of these scalar products. Note also that for US-PP
the presence of S operator in Eq. 3.25 and of phard (Eq. 3.19) requires the calculation of
the same scalar products of Eq. 3.24, and thus these quantities and their derivatives do
not require any additional relevant computation. Summarizing. if we take Ng = 2.V¢, the
total number of scalar products is twice larger for US-PP than for NC-PP and, at least

for fixed—cell Molecular Dynamics, the ultra-soft scheme becomes advantageous compared
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with the norm-conserving one when the number of plane-waves for the first is less than
one half the number of plane-waves for the second. In terms of energy cut—off for the
expansion Eq. 3.2, this gives:
R M (6.23)
When the cell is moving the situation is quite different: the set of G—vectors in recip-
rocal space varies, together with the simulation cell. This implies that the one—dimension
integrals which appears in the scalar products (1]BL) or (1;]éf.) should in principle be
calculated at each step of the simulation, because of their dependence on |G|. This would
add a relevant computational overhead, expecially for low-symmetry cells, where one has
a large number of G-shells. To avoid this problem we have tabulated these integrals as
functions of G' on a uniform one-dimensional mesh from 0 to a given G4, depending on
the pseudopotential and interpolating at each step the integrals for the actual [G|. This
is done both for NC-PP and US-PP and thus it does not change the criterion of Eq. 3.28.
Another problem related with the change of G-vectors is the cost for the computa-
tion of the augmentation functions @, in reciprocal space (Eq. 6.21), and their partial
derivatives with respect to h, 3. which are peculiar of the US-PP scheme and have to be
calculated at each time step of the simulation. It is not straightforward to get the new
convenience criterion by modifying Eq. 3.28. In particular the one-dimensional integrals
which enter in the calculation of Q.. (see Eq. 6.21) are of the same type of those dis-
cussed above: we can again tabulate these integrals and reduce the operations required
by using the symnﬁetries of Q.. In Table 6.1 we compare the computer time for a single

free—cell MD step using Vanderbilt ultra-soft and norm-conserving pseudopotential for
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Ecut (Ry) | Mesh Time (s/step)
NC-PP Ultra-soft PP
3 20 26
12 24 58
24 36 30 110
36 40 61 205
48 48 82
60 56 107
72 60 134

Table 6.1: Computational cost of free dynamics with variable cell. Comparison between
Norm-conserving (NC-PP) and Ultra—soft (Ultra—soft PP) pseudopotentials. For different en-
ergy cut—off is reported the CPU time of a step of dynamics with variable cell for a system of 32
Oxygen atoms. In the second column there is the linear size of the corresponding cubic mesh used

for FFT. The computer used is a workstation IBM-Risc/6000 580.

different energy cut-off. The data refer to a system of 32 Oxygen molecules arranged in a
orthorhombic simulation box. One can see that for such a system and variable simulation
cell it is convenient to use Ultra-soft pseudopotentials instead of Norm-conserving ones

when:

EYZ < %—ENC (6.24)

cut *
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