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Introduction 1

Introduction

It is well known that the classical approach to existence problems in dif-
ferential inclusions, control theory and calculus of variations relies on suitable
convexity assumptions.

A standard way to investigate non—convex problems is the so called re-
laxation, which consists of associating to the original problem a convex one,
which we know to be solvable. The main difficulty of this technique is to
construct a solution of the non-convex problem starting from solutions of the
relaxed one.

In this thesis we use the Iikelihood functional, introduced in [10], in order
to prove a selection theorem for non-convex differential inclusions, while we
develop the technique of bang—bang variations for problems in control theory.
Finally, we use the Lyapunov’s theorem on the range of non-atomic vector

measures in order to deal with non—convex problems in calculus of variations.

In Chapter 1 we consider a continuous multifunction F: [0, T]x IR" — o "
with compact, not necessarily convex values. If F'is Lipschitz continuous, it
was shown in [11] that there exists a measurable selection f of F' such that,

for every (ty,®y), the Cauchy problem
z(t) = f(t,2(t)), z(ty) = zg

has a unique Caratheodory solution z(-,ty,z), depending confinuously on
(to, o).

We shall prove that the above selection f can be chosen so that f(t,z)
belongs to the extreme points ext F(¢,z) of F(t,z), for all (¢,z). Moreover, if
gy > 0 and a Lipschitz continuous selection fy of €6 F' are given, then one can

construct f with the followiﬁg additional property. Denoting by y(-,t,zv)
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the unique solution of
y(t) = folt,u(t)), y(to) = @0,
for every (ty,z0) € [0,T] x IR" one has
ly(t, to, o) — z(t,t0,z0)| < €0 vt € [0,T).

More generally, the result remains valid if F satisfies the following Lips-
chitz Selection Property:

(LSP) For every (t,z), every y € €6 F(t,z) and € > 0, there exists a Lipschitz se-
lection ¢ of €6 F, defined on a neighborhood of (t,z), with |(t,z)—y| < €.

We remark that, by [39, 44], every Lipschitz multifunction with compact
values satisfies (LSP). Another interesting class, for which (LSP) holds, con-
sists of those continuous multifunctions F' whose values are compact and have
convex closure with nonempty interior. Indeed, for any given t,z,y,€, choos-
ing y' € intco F(t,z) with |y’ — y| < ¢, the constant function ¢ =y’ is a local
selection from ©o F' satisfying the requirements.

The proof of the above theorem starts with the construction of a se-
quence f, of directionally continuous selections from to F, which are piece-
wise Lipschitz continuous in the (¢,z)-space. For every u:[0,T] — IR" in
a class of Lipschitz continuous functions, we then show that the composed
maps ¢ — fn(t,u(t)) form a Cauchy sequence in L* ([0, T7; IR™), converging
pointwise almost everywhere to a map of the form f(:,u(-)), taking values
within the extreme points of F. This convergence is obtained through an ar-
gument which is considerably different from previous works. Indeed, it relies
on a careful use of the likelihood functional introduced in [10], interpreted
here as a measure of “oscillatory non-convergence” of a set of derivatives. We
recall that topological properties of the set of solutions of nonconvex differen-
tial inclusions have been studied in [9, 12] with the technique of directionally

continuous selections and in [32, 33, 53] using the method of Baire category.
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Among various corollaries, this result yields an extension, valid for the
wider class of multifunctions with the property (LSP), of the following results,
proved in [15], [11] and [32], respectively. '

(i) Existence of selections from the solution set of a differential inclusion,
depending continuously on the initial data.

(i) Existence of selections from a multifunction, which generate a continuous

flow.
(iii) Contractibility of the solution sets of £ € F(t,z) and & € ext F(¢,z).
The proofs of (i) and (ii) are straightforward, and the proof of (iii) is
obtained by explicitly constructing a null homotopy of the solution sets.

Another application concerns bang-bang feedback controls. More pre-

cisely, we consider a control system

(1) ¢ = g(t,z,u), u e U,
with U C IR™ compact, and the corresponding “relaxed system”
(2) & = g7 (t,z,u’), u® e U? = U™ x Epuy,
where E, 11 is the standard simplex in R™? and

. n
g* (t,z,u™) = g7 (t,:c, (woy--erUn, (Boy... ,Gn))> = Z 0:9(t,z,u;).
=0
We prove that, given a chattering feedback control uw#(t,z) € U# for (2) and
€p > 0, then there exists a feedback control u(¢,z) for (1), such that the
solutions of the Cauchy problems with the same initial data associated to (1)
and (2) with v = u(¢,z) and u# = u7(¢,z) respectively have a distance less
than e, in the norm of uniform convergence. Moreover the control u(t,z) is

bang-bang, that is it satisfies

g(t,z,u(t,z)) € ext {g(t,z,w) ! we U}, foreveryt,z.

In Chapters 2 and 3 we consider control systems of the form

(3) z' = F(z) + vG(z),
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with z € IR?, F and G smooth vector fields defined in a open subset Q of IR?,
and where u is a scalar control with values in [—1,1].

We recall here some definitions. A control is a measurable function
u:[a,b] — [—1,1], and a trajectory for u is an absolutely continuous curve
v:[a,b] — IR? satisfying v'(t) = F(5(t)) +u(t)G(7(t)) for almost all ¢ € [a, b].
We denote by T(y) = b — a the time along v. A bang-bang trajectory is a
trajectory corresponding to a control u such that |u(t)| = 1 for almost all £.

The minimum time problem for control systems of the form (3) on a two
dimensional manifold was studied by Sussmannin [49]-[51]. In particular, [49]
contains a detailed analysis of the structure of time—optimal trajectories, and
conditions which ensure that every time—optimal trajectory is bang—bang. We
shall use the basic ideas of this “geometric” approach in order to study more
general minimization problems.

The main technical tool used in our proofs is the concept of bang—bang
variations. In order to illustrate this idea, consider a trajectory 7 of the
system (3). If v is not bang-bang in a neighborhood of a time 7, we construct
a new trajectory 4 such that T(y) = T(%), ¥ coincides with v outside a
neighborhood of 7 and it is bang-bang in this neighborhood. Repeating this
construction for various time 7, we obtain an equal time bang-bang trajectory,
arbitrarily close to 4 in the uniform norm. Moreover, as we shall see, this new
trajectory can be constructed with additional properties which depend on the
particular problem we are interested in.

The technique of bang-bang variations replaces the classical approach
based on the Lyapunov’s Convexity Theorem, used in previous works (see for
example [16] and [47] for problems in calculus of variations and control theory
respectively).

In Chapter 2 we prove a bang—bang theorem for the problem

min{ [ ha(t),u0)dt] 7 = F@)+26(1), 2(0) = (1) = Q]

that is, we give conditions in order to guarantee that every optimal trajectory
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is bang-bang. In this case, given an optimal trajectory, we construct a bang—
bang variation which achieves a lower cost. A
As an application, we give conditions, depending only on the vector fields

F, G, for the existence of an optimal solution to the non—convex problem

min { [ Ha®)at |7 = Fo) +6(a), 2(0) = Pra(1) = Q}

0
where u takes only the values +1.

In Chapter 3 we consider control problems of the form
(4) z" +a(z,z') = ug(e,z'),

with z € IR, a and g smooth functions defined on a open subset € of IR?, and
where u is a scalar control taking values in [—1,1].

Given a solution z:[a,b] — IR of (4), we prove, under mild assumptions
on g, the existence of two bang-bang solutions y, z, with a finite number of

switchings, satisfying

z(a) = y(e) = z(a), =(b) =y(b) = 2(b),

(5) / ] ! ! / ot
z'(a) =y'(a) = 2(a), <'(b)=1y(b)=2(d),

and, for every t € [a, b],

(6) y(t) < =(t) < =(1).

We remark that every forced semilinear second order differential equation,
corresponding to (4) with g constant, satisfles the required assumptions. For
example, the forced nonlinear pendulum, the forced nonlinear Duffing oscilla-
tor, and the forced Van der Pol equation belong to this class of problems.
The problem of finding a bang—bang solution satisfying (5) and (6) in the
case of linear control systems L(z) € [¢1(t), ¢2(t)], where L is a linear operator
of order n, was studied in the case of piecewise analytic data by Andreini and

Bacciotti in [4]. The techniques used in this paper are based on Lyapunov
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type theorems (see [23] for examples and applications). Recently Cérf and
Mariconda in [19] studied the case ¢1,¢2 € L'. Their approach is based on
a new Lyapunov type theorem applied to the integral representation of the
solutions.

As we remarked before, in order to study problem (4), a completely dif-
ferent approach has to be used due to the nonlinearity of the operator. Since
no integral representation formula is available, we rely instead on certain geo-
metric properties of the trajectories. Defining ; = z and z; = z', the control

problem (4) is equivalent to a first order control system of the form (3), with

Flos,2) = (—a(if,m))  Glenm)= <g<w10,mz)> '

Given a trajectory v of the planar system, using the method of bang-bang
variations, we can construct a bang-bang trajectory 4 such that the corre-
sponding solution of (4) satisfies (5) and (6).

As an application we obtain a closure result for the reachable set of control
systems with obstacle. More precisely, if ¢: [a,b] — IR is a continuous function

and (z¢,vy) is a given initial condition, we can consider the families of solutions
of (4) in [a, b]:
S = {o:[a,b] — IR solution of (4) : (2(a), <’ (a)) = (z0,%0)},
T = {z : [a,b] — IR bang-bang solution of (4) : (z(a),z'(a)) = (zo,v0)}-
We can now define the constrained reachable sets
X = {(z(b),z' (b)) : z(t) < c(t)Vt € [a,b], z € S},
Y = {(z(b),z' (b)) : z(t) < c(t)Vt € [a,b], z €T}

By our previous result, it follows that X and Y coincide. In particular, the
reachable set ) associated to bang-bang constrained solutions is closed.
Another application is an existence result for Bolza problems with non-

linear dynamics. More precisely, we consider a functional of the form

b
1) = [ lett,2) +8(42) o +(e") <" b,
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with a, 8 € C}([a,b] x R, IR) and v € C(IR, R), satisfying

Oa g
"6-;(75,11) - —a—t(t,ﬂ:) 7é 0,

for every (t,z) € [a,b] x IR. We prove that, if z:[a,b] — IR is an optimal

solution to the problem
min {J(z) |z solution of (4), z(a) = z¢, z'(a) = vy, z(b) =21, 2'(b) = v},
then z is bang-bang with a finite number of switchings.

In Chapters 4 and 5 we consider minimization problems of the form
T
(7)  min / L(t,u,u')dt|uw € WH'(I,R™), w(0) = a,u(T)=b¢,
0

with I = [0, 7], for Lagrangeans possibly non—coercive and non—convex in the
u'—argument. It is well known that, if L is a continuous function, such that
¢ — L(t,z,¢) is convex and superlinear, then the variational problem (7) has
a solution (see for instance [23]).

In recent years, the possibility of relaxing the convexity or the superlin-
earity assumption was investigated by many authors.’

Some existence results for non—convex coercive problems were obtained
in the case L(t,z,&) = g(t,z) + f(t,&) (see for instance [16], [41], [47] and
the references therein). In particular, in [16] it was proved that the convexity
assumption on f(¢,-) can be replaced by the condition of concavity of g(¢,).

More recently, some techniques were developed in order to treat convex
but non—coercive problems. In this case, even if the functionals considered
are lower semicontinuous in the weak topology of Wh:!(I,IR™), the direct
method of the Calculus of Variations can not be applied; due to the lack of
compactness of the minimizing sequences.

In [26], it was studied the problem (7) with L continuous, bounded from
below and convex with respect to £, the superlinearity being replaced by a

weaker condition which permits to construct a relatively compact minimizing
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sequence, obtained by considering the minima of suitable coercive approxi-
mating problems. The main step in the proof of the existence result in [26]
was to show that every minimum point of the approximating problems solves
a generalized DuBois—Reymond condition, which implies that the minimizing
sequence is bounded in the space W °°(I,IR™).

A similar approach was used in [18] for the autonomous problem with
Lagrangean L(t,z,£) = g(z) + f(£), where g is a nonnegative continuous
function, and f € C'(JR™,IR) is a strictly convex function bounded from
below, such that

(8) i [£(¢) = (VF(E), &)] = —oo.

|§l—=+oc

In that paper, it was proved that, for every rectifiable curve C in IR™ joining
a to b there exists a unique solution to the problem (7) restricted to the
class of all absolutely continuous parameterizations u: I — IR™ of C. Thus,
every element u, of a minimizing sequence can be replaced by the minimum
corresponding to the curve parameterized by u,. It can be shown, still using
a DuBois—-Reymond condition satisfied by those minima, and by (8), that this
new sequence is bounded in W°°(I,IR™), so that there exists a minimum
point for (7) in this space. ;

In Chapter 4 both the superlinearity and the convexity assumptions are
dropped for Lagrangeans of the form L(¢,z,¢) = (a(t), z) + f(£). We as-
sume here that f is a lower semicontinuous function whose convexification
F** satisfies (8) restricted to the set where V f** is defined. The existence of a
minimum is proved by a technique relying only on a Lyapunov type theorem
due to Olech (see [43]). More precisely, using a fixed point theorem for upper

semicontinuous multifunctions, we prove that
Dom f* = {p€ IR™ If*(p) < +oo}

is an open subset of IR™. Here f* is the polar function of f. This fact,
together with an existence theorem of Olech (see [43]) gives the desired result.
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In Chapter 5 we consider non—autonomous problems of the form
T
(9) min {f [g(t,w) + F(¢t,u')] dt I ve WhHI,IR™), w(0) = a, u(T) = b}
0

with neither coercivity nor convexity assumptions. More precisely, we intro-
duce the class £ of all functions ¢ : I x IR™ — IR, bounded from below, such
that +(+,£) is Lipschitz continuous for every fixed £ € IR™, ¥(,-) is lower
semicontinuous and satisfies

Hm [ (", &™) — (Vo™ (¢",¢"), §7)] = —o

n—-+o0o

for every sequence {t"} € I and for every choice of points {” of differentiability
of **(t",-) such that lim,, |¢"| = +o0. We show that, if f € £ and there exist
two constants A and B, B > 0 such that f(¢,§) > —A + BJ¢| for every
(t,€) € I x R™, and g(¢,z) is a continuous function, Lipschitz continuous
with respect to t, concave with respect to z, satisfying g(t,z) > —a — B|z| for
every (t,z) € I x IR™, and for suitable constants a and 0 < § < B/T, then
the problem (9) has a solution in the space W°°(I,IR™). This result is the
analogue for a class of non—coercive functionals of the one in [16], but it is
not a generalization of that result, due to the additional requirement of the
Lipschitz continuity of the Lagrangean with respect to the variable ¢. On the
other hand, this extra regularity assumption allows us to obtain the necessary
conditions that, used at an intermediate step, also yield a regularity result for
the optimal solution, interesting by itself.

As a first step we prove an existence result for (9), requiring that f
be convex with respect to ¢ and dropping the concavity assumption on g.
This can be done following [26] and méking suitable changes, due to the
the fact that the Lagrangean is not bounded from below. The second step,
linking the convex to the non—convex case, is based on a result concerning the
closure of the convex hull of the epigraph of functions whose convexification
is strictly convex at infinity (i.e., the graph of the convexification contains no

rays). This result is an extension of the classical theorem valid for superlinear
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functions (see [35]). We remark that the notion of strict convexity at infinity
was also used in [27] in order to study non—coercive problems of the type (7)
with the additional state constraint ||ul|r~ < R. We shall prove that every
function in the class £ is strictly convex at infinity for every fixed ¢. Hence,
by using the previous results and the Lyapunov theorem on the range of non~—
atomic measures, the existence result for the non—convex problems follows.
The regularity of the solution of (9) is a consequence of the regularity of the

solution to the relaxed problem.

The results stated in Chapter 1 are obtained in collaboration with Prof. A.
Bressan and they are published in [13]. The results stated in Chapter 2 and
3 are achieved in collaboration with Dr. B. Piccoli of SISSA and they are
published in [30] and [31] respectively, while the results stated in Chapter 5
are obtained in collaboration with Dr. A. Malusa of the University of Napoli
and they are published in [29]. Finally, Chapter 4 contains results published
in [28].
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Notation

We shall denote by B(z, R) or Br(z) (resp. B(z,R) or Br(z)) the open
(resp. closed) ball of IR" centered at z and with radius R. B(D; R) is the
closed neighborhood of radius R around the set D.

The Lebesgue measure of a set A C IR" is m(A). We say that a point ¢
is a Lebesgue point for the set A C IR if im._,o+ m(AN[t—e,t+e])/2e =1
Tt is well known (see for instance [48]) that if A is Lebesgue—measurable, then
almost every point of 4 is a Lebesgue point.

As customary, 4, int 4, @ A and ext A denote here the closure, the in-
terior, the closed convex hull and the extreme points of A respectively, while
A\ B indicates a set—theoretic difference. The characteristic function of a set
A is written as X -

We shall denote by (z,y) the standard scalar product of two vectors
¢z, y € IR™. For every 1 < p < +o00, we shall denote by LP(I,IR™) and
W1iP(I,IR™), respectively, the usual Lebesgue and Sobolev spaces of functions
trom a interval I C IR into IR™. We shall use the symbol || - || z» to denote the
norm in L*(I,IR™).

We shall denote by 2B" the family of all subset of JR™, and o™\ @ will
mean 287 \{0}.

Given a nonempty set {2, a map F:{l — 2BR™ will be called a multifunc-
tion. We let F(Q) = U,eq Fz) A function f:Q — IR™ with f(z) € F(z)
for every z € 0 will be called a selection of F. For a detailed treatment of

this subject, see for example [5] or [34].



12 Non-convex problems

Chapter 1
Extremal selections of multifunctions generating a contin-
uous flow

1.1. Introduction-

Let F:[0,T] x R*® — 2F" be a continuous multifunction with compact,
not necessarily convex values. If F is Lipschitz continuous, it was shown in
[11] that there exists a measurable selection f of F' such that, for every zy,

the Cauchy problem

:B(t) = f(t,:l:(t)), (C(O) = Ty

has a unique Caratheodory solution, depending continuously on z;.

In this chapter, we prove that the above selection f can be chosen so that
f(t,z) € ext F(¢,z) for all ¢,z. More generally, the result remains valid if F’
satisfies the following Lipschitz Selection Property:

(LSP) For every t,z, every y € <o F(t,z) and € > 0, there exists a Lipschitz se-
lection ¢ of o F', defined on a neighborhood of (t,z), with |¢(t,z)—y| < €.

We remark that, by [39, 44], every Lipschitz multifunction with compact
values satisfies (LSP). Another interesting class, for which (LSP) holds, con-
sists of those continuous multifunctions F' whose values are compact and have
convex closure with nonempty interior. Indeed, for any given t,z,y,e, choos-
ing y' € int<co F(t,z) with |y’ —y| < ¢, the constant function ¢ =y’ is a local
selection from ©o F' satisfying the requirements.

In the following,  C IR" is an open set, while AC the Sobolev space

of all absolutely continuous functions u:[0,7] — IR", with norm |jul|.4c =

S (@) + la)) dt.
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Theorem 1.1.1  Let F:[0,T] x Q — 2F" \ @ be a bounded continuous
multifunction with compact values, satisfying (LSP). Assume that F(t,z) C
B(0,M) for all t,z and let D be a compact set such that B(D; MT) C Q.

Then there exists a measurable function | f, with
(1.1.1) f(t,z) € ext F(t,z), Vi, z,
such that, for every (to,z0) € [0,T] x D, the Cauchy problem

(1.1.2) 2(t) = f(t, (1)), z(to) = o,

has a unique Caratheodory solution z(-) = z(-,to,20) on [0,T], depending
continuously on ty,zy in the norm of AC. |

Moreover, if ey > 0 and a Lipschitz continuous selection fy of co F' are
given, then one can construct f with the following additional property. De-

noting by y(-,tv,zy) the unique solution of

(1.1.3) y(t) = fo(t,y(2)); y(to) = 2o,
for every (ty,zo) € [0,T] x D one has

(114) ly(t,tg,mg)—ﬂl(t,to,wo)I SEIU \7’t€ [O,T]

The proof of the above theorem, given in section 1.3, starts with the
construction of a sequence f,, of directionally continuous selections from <o F,
which are piecewise Lipschitz continuous in the (t,z)-space. We then show
that, for every u:[0,T] — IR"™ in a class of Lipschitz continuous functions, the
composed maps t — fr(t,u(t)) form a Cauchy sequence in L' ([0, T7; R™),
converging pointwise almost everywhere to a map of the form f(-,u(+)), taking
values within the extreme points of F. This convergence is obtained through
an argument which is considerably different from previous works. Indeed, it re-
lies on a careful use of the likelihood functional introduced in [10], interpreted

here as a measure of “oscillatory non-convergence” of a set of derivatives.
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Among various corollaries, Theorem 1.1.1 yields an extension, valid for
the wider class of multifunctions with the property (LSP), of the following
results, proved in [15], [11] and [32], respectively.

(i) Existence of selections from the solution set of a differential inclusion,

depending continuously on the initial data.

(ii) Existence of selections from a multifunction, which generate a continuous

flow.
(iii) Contractibility of the solution sets of ¢ € F(¢,z) and ¢ € ext F(t,z).

These consequences, together with an application to bang-bang feedback
controls, are described in section 1.4. Topological properties of the set of
solutions of nonconvex differential inclusions have been studied in [9, 12] with
the technique of directionally continuous selections and in [32, 33, 53] using

the method of Baire category.

1.2. Preliminaries

In the following, K, denotes the family of all nonempty compact convex
subsets of IR", endowed with Hausdorf metric. A key technical tool used in

our proofs will be the function h: R™ x K, — IR U {—oc}, defined by

Ay, K) isup{(/ol [w(€) -yl d&)%; w:[0,1] — K, folw(g)dg :y}

with the understanding that h(y, K) = —ocif y ¢ K. Observe that h?(y, K)
can be interpreted as the maximum variance among all random variables sup-
ported inside K, whose mean value is y. The following results were proved in

[10]:

Lemma 1.2.1 The map (y, K) — h(y, K) is upper semicontinuous in both
variables; for each fixed K € K, the function y — h(y, K) is strictly concave

down on K. Moreover, one has

(1.2.1) h(y,K)=10 if and only if y € ext K,
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(1.2.2) h2(y, K) < 12 (K) — |y — (K|,

where ¢(K) and r(K) denote the Chebyschev center and the Chebyschev ra-

dius of K, respectively.

Remark 1.2.2 By the above lemma, the function h has all the qualita-
tive properties of the Choquet function dr considered, for example, in [33,
Proposition 2.6]. It could thus be used within any argument based on Baire

category. Moreover, the likelihood functional

T | 1/2
L(u) = (/{; 2 (a(t), F(t,u(t))) dt)

provides an upper bound to the distance

[0 — 2z

between derivatives, for solutions of ¥ € F(¢,v) which remain close to u uni-
formly on [0,7]. This additional quantitative property of the function h will

be a crucial ingredient in our proof.

For the basic theory of multifunctions and differential inclusions we refer
to [5]. Asin [9], given a map g:[0,T] x ¥ — IR", we say that g is directionally
continuous along the directions of the cone Iy = {(s,y); ly| < Ns} if

g(t,z) = kléggcg(tk,wk)

for every (t,z) and every sequence (¢, zx) in the domain of g such that £y — 1
and |z — | < N(tx —t) for every k. Equivalently, g is I'N-continuous iff
it is continuous with respect to the topology generated by the family of all

half-open cones of the form
(1.2.3) {(s,9); t<s<i+e, ly—2 < N(s—1)}

with ({,2) € R x R", ¢ > 0. A set of the form (1.2.3) will be called an

N-—cone.
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Under the assumptions on {2, D made in Theorem 1.1.1, consider the set

of Lipschitzean functions
(1.2.4) Y = {u:[0,T] — B(D,MT) : |u(t) —u(s)] < Mt - s| Vt,s}.

The Picard operator of a map g:[0,T] x  — IR" is defined as

Pau)(t) = / o(s,u(s)) ds, —

The distance between two Picard operators will be measured by

o) = s {| [ et — stou ds| s e 0T werl,

The next Lemma will be useful in order to prove the uniquenéss of solutions

of the Cauchy problems (1.1.2).

Lemma 1.2.3 Let f be a measurable map from [0,T] x § into B(0,M),
with Pf continuous on Y. Let D be compact, with B(D, MT) C §, and
assume that the Cauchy problem

(1.2.5) 3(t) = f(te(t),  e(te) = 2o, te[0,T],

has a unique solution, for each (to,zo) € [0,T] x D.

Then, for every € > 0, there exists 6 > 0 with the following property. If
g:[0,T] x @ — B(0, M) satisfies |Pe — 'PfH < §, then for every (tu,zo) €
[0,T] x D, any solution of the Cauchy problem

(1'2‘6) y(t) = g(t,y(t)), y(tU) =Ty, te [07T]a

has distance < ¢ from the corresponding solution of (1.2.5). In particular, the
solution set of (1.2.6) has diameter < 2¢ in c*([0,T]; IR™).

Proof. If the conclusion fails, then there exist sequences of times t,, t,,
maps g, with H’Pg” - PfH — 0, and couples of solutions z,,y,:10,T] —
B(D; MT) of

(1.27)  ,(t) = f(t 2 (1)), (1) = g0 (30 (1)) t € (0,71,
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with
(1.2.8) z,(t,) =y (t,) €D, l:n,,(t'l,) -—y,,(t;,)\ > € Y.

By taking subsequences, we can assume that t, — tg, t', — 7, z,(t0) — Zo,

while z, — ¢ and y, — v uniformly on [0,T]. From (1.2.7) it follows

< Jo(®) — w0)] + [0 —wo(t0)]+

)20 [ Fl(s) ds

(1.2.9) + +

«/‘t [f(S,y(S)) - f('57 yu(S))] ds

_l._

/ [f(s,u(s)) — gy(é,yv(s))] ds

io

As v — oo, the right hand side of (1.2.9) tends to zero, showing that y(-) is a
solution of (1.2.5). By the continuity of Pf, z(-) is also a solution of (1.2.5),

distinct from y(-) because

lo(r) — 3(7)| = lim [a(r) —w(r)] = Jim_[ou(t)) ~ w8} > &

This contradicts the uniqueness assumption, proving the lemma. OJ

1.3. Proof of the main theorem

Observing that ext F(t,z) = ext ©6 F(t,z) for every compact set F(t,z),
it is clearly not restrictive to prove Theorem 1.1.1 under the additional as-
sumption that all values of F' are convex. Moreover, the bounds on F and D

imply that no solution of the Cauchy problem
&(t) € F(t,2(t)), z(ty) = o, t e [0,T],

with z, € D, can escape from the set B(D, ]WT).' Therefore, it suffices
to construct the selection f on the compact set Qf = [0,T) x B(D, MT).
Finally, since every convex valued multifunction satisfying (LSP) admits a
globally defined Lipschitz selection, it suffices to prove the second part of the

theorem, with fo and €0 > 0 assigned.
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We shall define a sequence of directionally continuous selections of F,
converging a.e. to a selection from ext F. The basic step of our constructive

procedure will be provided by the next lemma.

Lemma 1.3.1 Fix any ¢ > 0. Let S be a compact subset of [0,T] x © and
let ¢ : S — IR™ be a continuous selection of F' such that

(1.3.1) h(¢(t,w),F(t,m)) <7 V(t,z) € 5.

Then there exists a piecewise Lipschitz selection g : S — IR™ of F' with the

following properties:

(i) There exists a finite covering {T';}i=1...,v, consisting of I'M+1_cones, such
that, if we define the pairwise disjoint sets AP =T\ Upe; Te, then on
each A* the following holds:

a) there exist Lipschitzean selections i.Ai > R", j=0,...,n, such
P j

that
(132) g|A,- = Zd’; XA‘: 9
j=0 !

where each A}, is a finite union of strips of the form ([t ") x R™)NAL

(b) For every j =0,...,n theref‘:dsts an affine map gag() = (a,;'., S+ bj.
such that, for every (t,z) € Ai and z € F(t,z),

(133)  ¢(@i(he) <o i) > h(z F(t,2)).

(ii) For every u € Y and every interval [r,7'] such that (s,u(s)) € § for
r < s < 7/, the following estimates hold:

(1.3.4) /T [(s,u(s)) — g(s,u(s))] ds| <e,
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(1.3.5) /T \qS(s,u(s)) — g(s,u(s))\ ds < e+n(r' —1).

Remark 1.3.2  Thinking of A(y, K) as a measure for the distance of y from
the extreme points of K, the above lemma can be interpreted as follows. Given
any selection ¢ of F', one can find a M+ _continuous selection g whose values
lie close to the extreme points of F' and whose Picard operator P4, by (1.3.4),
is close to P?. Moreover, if the values of ¢ are near the extreme points of F,
i.e.if nin (1.3.1) is small, then g can be chosen close to ¢. The estimate (1.3.5)

will be a direct consequence of the definition of h and of Holder’s inequality.

Remark 1.3.3  Since h is only upper semicontinuous, the two assumptions
y, — vy and h(y,,K) — 0 do mnot necessarily imply h(y,K) = 0. As a
consequence, the a.e. limit of a convergent sequence of approximately extremal
selections f, of F' need not take values inside ext F. To overcome this difficulty,
the estimates in (1.3.3) provide upper bounds for k in terms of the affine maps
<p; Since each goj- is continuous, limits of the form goj-(y,,) - go’;(y) will be

straightforward.

Proof of Lemma 1.3.1. For every (t,z) € S there exist values y;(t,z) €
F(t,z) and coefficients 0;(t,z) 2 0, with

B(t,=) = 2 0i(t: @)y (t:2), B5(t2) = 1,

j=0

h(y;(t,z), F(t, z)) < e/2.

By the concavity and the upper semicontinuity of h, for every j = 0,...,7n

there exists an affine function gojt’x)(-) = (agt’r), )+ bg.t’r) such that

P\ (y;(t,2)) < h(yi(t2), F(t,2)) + 5 <&

ro| ™

‘P.(jt’z)(z) > h(z,F(t,m)) ) Vz € F(t,z).
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By (LSP) and the continuity of each c,ogt’x), there exists a neighborhood U
of (t,z) together with Lipschitzean selections 'gbﬁ-t’z):lf{ — IR™, such that, for
every j and every (s,y) € U,

(1.3.6)

(t,z) . £
'lwbj (S’y)_yj(tam)\ <—4—T_’

(1.3.7) gog-t’z) (zﬁgt’z)(s,y)) < e.

Using again the upper semicontinuity of h, we can find a neighborhood U " of

(t,z) such that
(1.38) ¢7(2) 2 h(z,F(s,y))  Vz€ F(s,), (s,9) €U, 5 =0,0000m

Choose a neighborhood Ty, of (¢,z), contained in ¢/ NU', such that, for every
point (s,y) in the closure T, one has

€
(139) 8(5,3) = 9(6,2)] < -
It is not restrictive to assume that I'; ; is a (M + 1)-cone, i.e. it has the form
(1.2.3) with N = M + 1. By the compactness of § we can extract a finite
subcovering {I‘i; 1 <1< v}, with T'; = T'¢; z,. Define Al =T \Uj<iI‘j
and set 9; = 9j(ti,:l:i), y;: = yj(ti,a;i), ¢; = ¢§t,—,z,~)
an integer N such that

, cpj- = goj-(tf’:‘). Choose

8SMuV2T

(1.3.10) N >

and divide [0,7] into N equal subintervals Ji,..., Jn, with

kT
(1.3.11) Jp = [tk—l, tk), i, = —]\7

For each 1,k such that (Jk X B”) N A! £ @, we then split Jx into n + 1
subintervals J,‘;,!U, ey J};,n with lengths proportional to 96, ..., 0%, by setting

Yo

1 T d i Tk
Ji = [teso1, thi)s i = o7 (k+ Z9e>, te—1 = 37

£=0
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For any point (¢,z) € A% we now set

g'(t,z) = $j(t,2) N
{ ( ! if tel iy

(1.3.12) i ;
.‘.7 (ta :23) = yj ' k=1

The piecewise Lipschitz selection g and a piecewise constant approximation g

of g can now be defined as

(1.3.13) 9= 9% §=> 7%,
i=1 i=1

By construction, recalling (1.3.7) and (1.3.8), the conditions (a), (b) in (i)
clearly hold.

It remains to show that the estimates in (ii) hold as well. Let 7, 7' € [0, 7]
and u € Y be such that (t,u(t)) € § for every t € [7,7'], and define

Ei={tel; (tu(t)ecA}, i=1,...,0.

From our previous definition A* =T;\J;;T'j, where each T'; is a (M +1)-
cone, it follows that every FE' is the union of at most i disjoint intervals. We

can thus write

J CE?

with Ji given by (1.3.11) and

iy 2T 20T
1.3.1 N — < ——.
(1314 m(i) < 20 < 2
Since
(1.3.15) $(ti zi) = »_ Oy},

j=0

the definition of g at (1.3.12), (1.3.13) implies

L[¢(ti=rf)—§(s,u(s))] ds = m(J}) - ¢(ii,$i)—z9;yj- = 0.
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Therefore, from (1.3.9) and (1.3.6) it follows

4
v

<| [ [bto,uto) ~ dline)] &
[ Tate,ute)) ~ sls,uta))]) ds

J

[ T6terute) ~ ate,ute] ds
/:] [¢(ti,$i)—§(s,u(s))] ds

€ 13 g

<

+ +

The choice of N at (1.3.10) and the bound (1.3.14) thus imply

<

/:I [¢(s,u(s)) — g(s,u(s))] ds| <2M -m( ' E”) + (' = T)EET <
2v

il

~

<2Mv - + - <g,

=
N ™

proving (1.3.4).

We next consider (1.3.5). For a fixed i € {1,... ,v}, let E be as before
and define

]‘ n
5_1 = 0, 6]':20!67 wz(g)zzygx[fj—hfj].
£=0 3=0

Recalling (1.3.15), the definition of h and Holder’s inequality together imply

h($(ti zi), Fltizi)) = (/Ul |p(ti, i) —wi(e)|’ dg)é >

> [ lottew) —wi(©)] dt = S 6l z1) — vl

=0
Using this inequality we obtain

J i¢(ti,zi)—§(s,u(s))‘ ds = m(Jy) - Z 61| (ti, i) — yil <

< m(Jk) : h(¢(ti,mi),F(ti,$i)) < n- m(‘]k)7
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and therefore, by (1.3.9) and (1.3.6),

J |#(s,u(s)) —g(s,u(s)| ds <
< /;k ‘qb(s,u(s)) — gb(ti,:z:z-)l ds + /.;k ‘g(s,u(s)) ——g(s,u(s))] ds
& [ 16ttae) — aleule))] <
< m(J)- [% + 4—61: +n] =m(Jk) - (EET +n) :
Using again (1.3.14) and (1.3.10), we conclude
/;T ‘qﬁ(s,u(s))—g(s,u(s))‘ ds < (r'—7) (ﬁiﬁf +17> +2]\/Iy-g;-jv—1:'§ e+ (1 —1)m.
O

Using Lemma 1.3.1, given any continuous selection f of F on 0, and
any sequence (£x)k>1 of strictly positive numbers, we can generate a sequence
(fe)k>1 of selections from F' as follows.

To construct fi, we apply the lemma with S =Qf, ¢ = fy, e = €1
This yields a partition {A’i; 1=1,... ,1/1} of O and a piecewise Lipschitz
selection fi of F' of the form

vy
fl = Z f]z.x‘_ll °
i=1 !

In general, at the beginning of the k-th step we are given a partition of

Q7F, say {Ai,; 1= l,...,uk}, and a selection

Vi
fk = Z f]::XA; ;
i=1 k
where each f;c is Lipschitz continuous and satisfies

h(felt,z), F(t,2)) < e V(t,z) € AL.



24 Non-convex problems

We then apply Lemma 1.3.1 separately to each A, choosing § = :LE, € = €k,
¢ = fi. This yields a partition {A§c+13 1=1,... ,vk+1} of 0 and functions

of the form

Vi1
B : . o ;
fr+1 = E fi:-{-lx P ‘1024—1(') - (a';c—(-l:') + bk+1a
. k41
i=1
where each f,‘c +1:A}.c b IR" is a Lipschitz continuous selection from F,

satisfying the following estimates:

(1.3.16) eia(z) > h(z, F(t,z)) V(t,z) € Apyr,

(13.17) Soi:+1(f]i+1(t;$)) S €k+1 V(t,m) € Ai‘-}-l’

(1.3.18) \/; [fk+1(5au(3)) - fk(S,u(S))] ds| < €k+1,

(1.3.19) | /T | Frra(s,u(s)) — fe(s,u(s))] ds < eper +ex(v’ = 7)s

for every u € Y and every 7,7, as long as the values (s,u(s)) remain inside a
single set A%, for s € [1,7').

Observe that, according to Lemma 1.3.1, each Ai is closed-open in the
finer topology generated by all (M + 1)-cones. Therefore, each fx is TM*1-
continuous. By Theorem 2 in [8], the substitution operator Sferu(l) —
Fe(-,u(-)) is continuous from the set Y defined at (1.2.4) into L* ([0, T7J; IR™).
The Picard map P7* is thus continuous as well.

Furthermore, there exists an integer N with the following property.
Qiven any u € Y, there exists a finite partition of [0,7] with nodes 0 =
<7 < < Toy = T with n(u) < Nj, such that, as ¢ ranges in any
[te—1, Te), the point (¢,u(t)) remains inside one single set Ai. Otherwise
stated, the number of times in which the curve t — (t,u(t)) crosses a bound-

ary between two distinct sets Al Ai is smaller that Ny, for every u € Y.
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The construction of the Al in terms of (M 4 1)-cones implies that all these
crossings are transversal. Since the restriction of fx to each At is Lipschitz

continuous, it is clear that every Cauchy problem

z(t) = fi(t,z(t)), z(ty) = o,

has a unique solution, depending continuously on the initial data (ty,zo) €
[0,T] x D.
From (1.3.18), (1.3.19) and the property of Ny it follows

<

\/0”‘ [frs1(s,u(s)) — Fr(s,u(s))] ds

where 0 = 7y < 71 < --- < 71 =t are the times at which the map s — (s,u(s))

(1.3.20)
< Np€g+1,

/ Y era(su(s)) — fils,uls))] ds

crosses a boundary between two distinct sets Aj, Ai. Since (1.3.20) holds for

every t € [0,T], we conclude
(1.3.21) |Pfe+t — PH|| < Niegpa

Similarly, for every v € ¥ one has

[ Fiss(ou() = Fulyu())
n(u) .r
(1322) <3 [ lesatorule) = Al o)) do <

n(u)
< Z leks1 +er(me — 1) < Niepsr + el
£=1

<
LY ([0,T]; B")

Now consider the functions o : R" x Q7 — IR, with
(1.3.23) iy, t,z) = (ak,y) + b, if (t,2) € Aj.
From (1.3.16), (1.3.17) it follows

(1.3.24) @iy, t,2) > h(y, F(t,2)), V(t,z) € QF, y € F(t,2),
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(1.3.25) (pk(fk(t,:v),t,:n) < e, V(t,z) € 0t

For every u € Y, (1.3.18) and the linearity of @) w.r.t. y imply

T
/0 [k (feri(s,u(s))ys,uls)) — er(fu(s,u(s)),s,u(s))] ds| <
n(u) -
(1.3.26) <> M| [ [ea(o,u(s) = uls,u(s))] ds| <
f=1 Tt-1
< Ni - My - €k+1,
where M) = max{|al|,...,|a}*|}. Moreover, for every £ > k, from (1.3.19)
it follows
T
[ for(ennto,utoD),onus)) = elfits,uls),s,u(s) | ds <
(1.3.27)

T
< [ | fra(ou(s) - Fuloruls))] do <
S ﬁ'fk . (Ng€g+1 + EgT).

Observe that all of the above estimates hold regardless of the choice of the
€x. We now introduce an inductive procedure for choosing the constants e,
which will yield the convergence of the sequence f; to a function f with the
desired properties.

Given f, and €y, by Lemma 1.2.3 there exists §, > 0 such that, if g: QT —
B(0, M) and H’Pg - Pf"” < 6y, then, for each (ty,z0) € [0,T] x D, every
solution of (1.2.6) remains eo-close to the unique solution of (1.1.3). We then
choose e; = §,/2.

By induction on k, assume that the functions fi,..., fi have been con-
structed, together with the linear functions i(-) = (al,-)+b! and the integers
Ny, £=1,...,k. Let the values §y,6;1,...,8r > 0 be inductively chosen, sat-
isfying

(1.3.28) 5 <
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and such that |[P? — P%|| < & implies that for every (to,20) € [0,T] x D the
solution set of (1.2.6) has diameter < 2% for £ =1,...,k. This is possible
again because of Lemma 1.2.3. For k > 1 we then choose

(1.3.29)  mind Se 2 27F
3. £rr1 = min , , . - .
f 2N, Ny Nk-max{]azl; 1§£§k,1§z§yg}

Using (1.3.28), (1.3.29) in (1.3.21), with Ny = 1, we now obtain

. & 6 >, 2p~kg
1.3.30 plevt _ple|| < SN —— < P

for every p > 0. From (1.3.22) and (1.3.29) we further obtain

2=k 2l=FT
(Nk =+ ) <

M

S e (u()) = Felru()] 2o

— — N Ny
(1.3.31) == k=
<> o (27F42i7MT) <142t
k=1
Define
(1.3.32) flt,z) = k]LH;o fe(t,z),

for all (t,z) € Q7 at which the sequence fi converges. By (1.3.31), for every
u € Y the sequence fi(-,u(-)) convergesin L* ([0, T7; IR™) and a.e. on [0,7]. In
particular, considering the constant functionsu =z € -E(D, MT), by Fubini’s
theorem we conclude that f is defined a.e. on QF. Moreover, the substitution
operators ST :u(-) = fi(-,u(-)) converge to the operator Stiu(-) = f(-u(4))
uniformly on Y. Since each S7* is continuous, S’ is also continuous. Clearly,

the Picard map P7 is continuous as well. By (1.3.30) we have

TS 31 P A
k=p
Recalling the property of é,, this implies that, for every p, the solution set of
(1.2.6) has diameter < 277. Since p is arbitrary, for every (to,zy) € [0,T)x D
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the Cauchy problem can have at most one solution. On the other hand,
the existence of such a solution is guaranteed by Schauder’s theorem. The
continuous dependence of this solution on the initial data ty,zy, in the norm
of AC,is now an immediate consequence of uniqueness and of the continuity of
the operators S¥, P/. Furthermore, forp =0, (1.3.30) yields H'Pf—'PfOH < 4.
The choice of §, thus implies (1.1.4).

It now remains to prove (1.1.1). Since every set F(t,z) is closed, it is
clear that f(t,z) € F(t,z). For every u € Y and k > 1, by (1.3.24)-(1.3.27)
the choices of ex at (1.3.29) yield

T T
/ h(f(s,u(s))s F(s,u(s))) ds S/; gok(f(s,u(s)),s,u(s)) ds <

0

T
< [ enliutnle), o) do+

T
+ /(; [Sak(fk—{-l(sau(s))vs’u(s)) _‘Pk(fk(sau(s))?'s,u(s))] ds| +

0o T
£ 30 [ el uten, s ue) - pnlfileu(a)) (o) de <

L=k+1

o0
<'RT 4274 N (2704207,
{=k+1

Observing that the right hand side of the inequality above approaches zero as

k — oo, we conclude that

T
[ ), Flu) @=o

By (1.2.1), given any u € Y, this imples F(t,u(t)) € ext F(t,u(t)) for almost
every t € [0,T]. By possibly redefining f on a set of measure zero, this yields
(1.1.1). O

1.4. Applications

Throughout this section we make the following assumptions.
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(H) F:[0,T] x Q — B(0,M) is a bounded continuous multifunction with
compact values satisfying (LSP), while D is a compact set such that
B(D, MT) C Q.

An immediate consequence of Theorem 1.1.11s

Corollary 1.4.1 Let the hypotheses (H) hold. Then there exists a contin-
uous map (ty,zy) — (-, t0,2y) from [0,T] x D into AC, such that

&(t,t0,z0) € ext F(t,z(t,to,20)) Yt €[0,T],
:D(tg,tg,iﬂo) = Ty Vto,mo.

Another consequence of Theorem 1.1.1 is the contractibility of the sets
of solutions of certain differential inclusions. We recall here that a metric

space X is contractible if there exist a point % € X and a continuous mapping
®: X x [0,1] — X such that

®(v,0) =1, &(v,1) = v, Yo € X.

The map @ is then called a null homotopy of X.
Corollary 1.4.2 Let the assumptions (H) hold. Then, for any Z € D, the
sets M, M®%t of solutions of

2(0) = 2, i) € F(t,2(t),  t€10,T],

z(0) = z, ¢ € ext F(t,z(t)), t e [0,T7],
are both contractible in AC.

Proof. Let f be a selection from ext F with the properties stated in Theo-
rem 1.1.1. As usual, we denote by z(+,ty,2o) the unique solution of the Cauchy

problem (1.1.2). Define the null homotopy ®: M x[0,1] - M by setting

. vl{t , lftE[O,}\T],
®(v, A)(t) = {m((t), AT, v(AT)), ifte (AT, T].
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By Theorem 1.1.1, & is continuous. Moreover, setting 4(-) = u(-,0,Z), we

obtain
®(v,0) = u, d(v,1)=v, - 2(v,A)eM Vv € M,

proving that M is contractible. We now observe that, if v € M®®?, then
®(v,A) € Me** for every A. Therefore, M®*? is contractible as well. U

Our last application is concerned with feedback controls. Let  C IR"
be open, U C IR™ compact, and let g: [0,T7] x @ x U — IR" be a continuous
function. By a well known theorem of Filippov [36], the solutions of the control

system

(1.4.1) = g(t,z,u), uvel,

correspond to the trajectories of the differential inclusion

(1.4.2) & € F(t,z) = {g(t,z,w) weU}.

In connection with (1.4.1), one can consider the “relaxed” system

(1.4.3) & = g% (t,z,u?), u# e U#,

whose trajectories are precisely those of the differential inclusion

¢ € F#(t,2) = F(t,x).

The control system (1.4.3) is obtained defining the compact set

U# 2U x - xU X Eng1 =U""" X Eny,

where

Enﬂi{e:(eo,...,en); Y 6i=1, 6;>0 \7’2}

=0

is the standard simplex in IR"*?, and setting

g7 (t,z,u) = g7 (t,z, (o, - - Uy (Buyeees0n))) = Z@ig(t,a:,ui).
i=0
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Generalized controls of the form u# = (ug,...,uns,0) taking values in the set

U™+l x E, . are called chattering controls.

Corollary 1.4.3 Consider the control system (1.4.1), with g: [0, T]xQxU —

B(0, M) Lipschitz continuous. Let D be a compact set with B(D; MT) C Q.

Let u#(t,z) € U™ be a chattering feedback control such that the mapping
(t,2) — g% (t,z,u™(¢,2)) = folt,z)

is Lipschitz continuous.
Then, for every ey > 0 there exists a measurable feedback control & =

u(t,z) with the following properties:
(a) For every (t,z), one has g(t,,u(t,z)) € ext F(t,z), with F as in (1.4.2).
(b) For every (ty,zy) € [0,T] x D, the Cauchy problem

£(t) = g(t,z(t),@(t, (1)), z(ty) = zy ,

has a unique solution z(-,ty, o).

(c¢) If y(-,ty,zo) denotes the (unique) solution of the Cauchy problem

¥ = fo(t,9(1)), y(to) = v,
then for every (ty,z¢) one has

|2(t, 0, z0) — y(t, 20, 20)| < €0, vt € [0,T].

Proof. The Lipschitz continuity of g implies that the multifunction F' in
(1.4.2) is Lipschitz continuous in the Hausdorff metric, hence it satisfies (LSP).
We can thus apply Theorem 1.1.1, and obtain a suitable selection f of ext F,

in connection with fy, €y. For every (¢,z), the set
Wtz)={welU; gt zuw)= f(t,zz:)} CR™

is a compact nonempty subset of U. Let u(¢,z) € W(t,z) be the lexicographic
selection. Then the feedback control % is measurable, and it is trivial to check

that u satisfies all required properties. O
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Chapter 2

Bang-bang property for Bolza problems in two dimen-
sions

2.1. Introduction

The minimum time problem for control systems on a two dimensional
manifold with control appearing linearly was studied by Sussmann in [49-51].
In particular, [49] contains a detailed analysis of the structure of time optimal
trajectories, and conditions which ensure that every time optimal trajectory
is bang-bang. In the same paper it is shown that the bang-bang property is
not generic even for the minimum time problem.

In this chapter we consider the more general minimization problem

(2.1.1) min{/ol h(z,u) dt |3 = F(z) +u G(z), 2(0) = 2o, (1) = ml} ,

with w € [-1,1], z € IR?, where F,G are C? vector ﬁélds, h(-,+1),h(-,—1) €
C?(IR?), and we give conditions to guarantee that every optimal trajectory is
bang-bang.

The proof of our result is based on the idea of “bang-bang” variations.
More precisely, we use these variations as substitutes for those based on Lya-
punov’s Convexity Theorem as is done in problems of the calculus of variations
([16]) or of linear control theory ([47]).

We consider an optimal trajectory v of our system. If 7 is not bang-bang
in a neighborhood of a point ¢ we construct a new trajectory which is near
the previous one, is bang-bang in a neighborhood of z and achieves a lower
cost. In order to ensure that this new trajectory satisfies the initial condition
we use the fact that, under suitable assumptions, all time optimal trajectory

are bang-bang.



Bang-bang property for Bolza problems in two dimensions 33

Problem (2.1.1) has a particular dynamic with respect to the usual prob-
lems of calculus of variations but on the other hand the assumptions on h are
not too strict.

The tools used in this chapter are geometric, so it is easy to show that
the statements hold also for a smooth two dimensional manifold.

As a corollary we prove an existence result for nonconvex optimization

problems.

2.2. Preliminaries

A curve in IR? is a continuous map v : [ — IR?. We denote by Dom(7y)
its domain and by Range(7) the set {y(t) : t € Dom(7)}. We use the symbol
| to denote the restriction, e.g. 7\[ao, bo]-

A vector field X on IR? is an JR?—valued function. Every vector field X

can be written in the form
X =ad + ﬂaz >

where 8,,0, are the constant vector fields with components (1,0), (0,1), re-
spectively, and «,8 : R? — IR. We denote by J(X) the Jacobian matrix of

X:
. ala Bga
J(X) = .
x)= (55 @ﬁ)
The Lie—bracket of two vector fields X,Y is the vector field defined by
X,Y]=J(Y) - X -J(X)-Y.

A control u is a measurable function v : [a,b] — [—1,1] and a trajectory

for u is an absolutely continuous curve 7 such that

7'(8) = F(v(1)) + w(t)G(7 (1)),

for almost all ¢ € [a,b]. We denote by Traj(X) the set of all trajectories of X.
A bang-bang trajectory is a trajectory corresponding to a control u such that
|u(t)| = 1 for almost all ¢ € [a,b].
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Given a trajectory 7 : [a,b] — IR?, of a control u, and a cost function A

we denote by T'(v) the time along v, i.e. b — a, and by I'4(y) the cost of 7:

Th(y) = / h(v(t),u(t)) dt.

a

Moreover we denote by In(v) the initial point of 7, i.e. 7(a), and by Term(y)
its terminal point. We say that v is time optimal if T(y) < T'(¥) for every
trajectory 4 that steers In(y) to Term(y). We say that (y,u) is optimal (or
simply that v is optimal) if I'y(v) < T'h(y') for every admissible pair (v',u’)
that steers In(v) to Term(y).

If v1:[a,b] — IR?, v2:1b,c] — IR? are trajectories such that v1(b) = v2(b)
then «, * 1 is the trajectory 4

. 1 t y
(72 * 11)(2) = {7,28, te b

In the following we shall use the notation X = F -G, Y =F +G. A
trajectory v € Traj(¥) is a Y-trajectory if it is an integral curve for the vector
field Y, and a X~trajectory is defined similarly. Moreover a Y * X—trajectory is
a concatenation of a X—trajectory and a Y—trajectory and similarly is defined
a X x Y-trajectory.

An admissible pair is a pair (v,u) such that u:[a,b] — [~1,1] is a control
and 7 is a trajectory for u. If (7, ) is an admissible pair and 7 is time optimal
then (,u) satisfies the Pontryagin Maximum Principle (briefly PMP). See [23]
and [37] for the general theory and [49] for the PMP stated for control system
of the same type of 2.

Given X we can define the functions
(2.2.1) A4 =det(F,G), Ap = det(G,[F,G]), Ac = det(F,[F, G]),

where “det” stands for the determinant. Writing F, G, [F,G] as column
vectors we can form a 2 X 2 matrix having two of them as columns. The

functions A 4 and Ap have been introduced in [49].
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If F, G are independent at each point of an open connected set QF C IR?,

then we can define the 1-differential form w in the following way:
(2.22) (), F(a)) =1, {w(2),C(a)) = 0.

Consider now two trajectories 71,72 € Traj(Z) such that 45t %41 is a simple
closed curve oriented counterclockwise, whose interior is contained in Q7 (here

45! is 7, run backwards). In [49] it was proved the following

Theorem 2.2.1 Consider 71,72 € Traj(X) as above. We have

T(m)—T(r2) = L;‘*mw N /rzdw’

where R is the region enclosed by v, L.

If F, G are independent, there exist f,h € C(IR?, IR) such that
[F,G)(z) = f(z)F () + h(z)G(z),

and from (2.2.1) we obtain Ap = det(G, fF+hG), which gives f=-Ap/As4.
One can check that dw = —(f/A.4) dzy A dza.
We say that z € IR? is an ordinary point if A 4(z) - Ap(z) # 0. For

ordinary points we have the following

Theorem 2.2.2 Let  C IR? be an open set such that each z € ) is an
ordinary point. Then all optimal trajectories v for the restriction of ¥ to {1
are bang-bang with at most one switching. Moreover if f > 0 throughout §}
then v is a X, Y or Y = X—trajectory, if f <0 throughout Q then v is a X,

Y or X = Y —trajectory.

For the proof see [49] Theorem 3.9 p. 443.
Let us define the linear interpolation l(z,u) = m(z)u + g(z) between

h(z,+1) and h(z,—1), where

h(z,+1) — h(z,—1) . h(z,+1) + h(z,—1) .

(2.2.3)  m(z) = 5 , g(z) = 5
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We make the following assumptions on (2.1.1):
(Hy) Ay(z) Ap(z) #0, forevery z € R?,

(Hz) h(z,u) > l(z,u), foreveryz¢€ R? and v € [-1,1].

In [49] it was proved that under the assumption (H;) all time optimal trajec-
tories are bang-bang.
From (H,) it follows that F and G are independent at each point, and

then we can define the 1-differential form w; in the following way:
(wi(z), F(z)) = a(z), (wi(z),G(z)) = m(z), forevery z € IR* .
Following [49] we have, by Stokes’ theorem:

Ti(y1) — Tilr2) = /_1 w = | dwi,

2 *Y1 R

where R, 71 and g are as in Theorem 2.2.1.
With straightforward calculations (see [49]) we obtain

(2.24) T(11)—T(r2) = / odzANdy, Ti(m)—Ti(y)= / w; dz A dy,
R R

where

g

B _Vm-F—Vq-G+qAB—mAC

2.2. = — =
29y R ¥ A 5

Given fi, fo: R? — IR we define the vector field
(2.2.6) [fulfel(z) = fi(z) Va(z) — f2(2) VA(2)-
Let us define the cone
(2.2.7) K(z) = {ve R*|Sapv-X(z) <0or Sipv-Y(z) >0},

where S4p = sign (A4 Ap) (we remark that, from (H1), SaB is independent

of z). The last assumption on (2.1.1) is

(Hs) D(z) = [pleil)(z) € K(z), foreveryz € R*.
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2.3. The main result

In this section we will prove the main result; the key role is played by the

following lemma.

Lemma 2.3.1 Let (y,u) be an admissible pair of
(2.3.1) ¢ = F(z) +u G(z),

and let E = {t €[0,1] : |u(t)] <1}. Suppose that there exists a Lebesgue
point T for E of differentiability for v. If (H1), (Hz) hold and D(Z) € K(z),
Z = ~(7), then there exist ¢ > 0, ¢ > 0 and an admissible pair (¥,%) such
that:

5(t) = ~(t), foreverytdg[r—e,7+ al,
la(t)] =1, foreveryt€ [r—¢e,7+0],

[ rauo)d > [ aG,a) .

0

Proof. As a first step we will construct a pair of admissible trajectories 7%,
which are bang-bang in a neighborhood of 7, and correspond to controls u®
which change sign two times in this neighborhood. This is possible thanks to
(H:); using (H>) and (Hj) we will show that one of these trajectories achieves
a better performance with respect toy. We start constructing two parametric
families of bang—bang trajectories 'yf which start from v(r — ¢) and reach z
at times 7 respectively, having two switchings at times crli s K-

Fix 0 < € < min(r,1 — 7). If ¢ is sufficiently small, there exist df: >
r—¢and 7T > O’Ii, depending on &, two one—parameter families of pairs
(yE,ut), p e [ 1] (u — v small), of = o3 (e,) € [, 1], oF = o3 (e m) €
[7,1] such that

yE(r—e)=(r—e), vi(rH) =~(r), i(eF)=7(07),

— ila ifSE[T-—-&,O‘f)U(/,L,U’?},
up(s) = {:Fl, if s € [oF, .
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Let A*, BF be the regions enclosed respectively by (v |[r—¢,T Nl xy|lr —
e, 7] and (vF|[7F, 03 =) % v|[r,05). From (2.2.4) it follows that

$H(u) = *sign (A Ap)[T(y) —T()] =

/ cpd.’z:—/ godm} .
A BF

n

(2.3.2) = sign (AB) -

In fact if Ay > 0 we have det(X,Y) > 0, and the regions At and B~ are
enclosed by curves oriented counterclockwise, while A~ and BT are enclosed
by curves oriented clockwise; the opposite happens if A4 <0.

Moreover %=(7%) > 0, 97 is decreasing, and for ¢ sufficiently small there

exists pt € [r%,1] such that p*(p*) = 0. Therefore of = of, and then we

can define the admissible pairs (y%,u*) as follows:

+ - 72:i7 tEIi‘.“[T—Egs(ﬂ )]
= {'r(t), te [0, 1\I*,

-+ +
=+ : U+ tel”,
1) = ©
v (t) {u(t), t € [0, 1\~

Let us define BT = Bfi. Using the expansion ¢(z) = ¢(T) + Ve (Z) - (¢ —
Z) + o(|z — Z|) we obtain

(2.3.3) O:/Ai"odm”/m@dmz
= [m(A%) — m(B¥)] - ¢(E) + Vo(2) - d* + o(e”),

where d* = d¥(e) = m(A%)b(4%) —m(B*)b(B*) and b(R) denotes the bari-

center of R relative to Z. Expanding (; we obtain in the same way

6% = Tu(v) —Tu(v*) =
(2.3.4) _ N N
= +sign Ay - {[m(A ) —m(B )] oi(z) + V(T . d* } + o(e

By (2.3.3) and multiplying (2.3.4) by ¢(Z) one has

p(z)6% = tsign (B.4) [plei](@) - dF + o(e?),
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where [-|-] is defined in (2.2.6). Let us define the cone
Clw,w) = o+ pw | A0, > 0}

For ¢ small enough we have that d* € C(—X(z), —Y (Z)). Moreover it is easy
to verify that sign [det(d",d™)] = sign (A.4), and then, by (2.2.7),

{veR? | Sipv-d*<0}NK(E@)=0.

Since sign Ap = sign ¢, it follows that either §* > 0 or §~ > 0. Suppose, for
instance, that §7 > 0. From (H,) it follows that

/ h(z,u) 2/ (z,u) >/ l(z,u) =/ 'h(m,u).
~ynI+ ~NI+ ~y+nIt vtnI+

Since the same inequality holds if 6~ > 0, with v+ and I replaced respec-
tively by v~ and I, the lemma is proved. ]

The following theorem is a direct consequence of the previous lemma.

Theorem 2.3.2 If (Hy), (H2), (H3) hold, then all optimal trajectories of
(2.1.1) are bang-bang.

Proof. Let (7,u) be an optimal pair for (2.1.1), and suppose that m(E) > 0,
where F is as in Lemma 2.3.1. Almost every 7 € F is a Lebesgue point for E
and a point of differentiability for . If 7 is such a point, all the assumptions
of Lemma 2.3.1 are satisfied, and then 7 is not optimal. L

2.4. Examples and Applications

In this section we give two examples of minimization problems without

the bang-bang property and one application of the main result.

Example 2.4.1 Consider the following problemin Q = {(z1,z2) | z2 < 0}:

1
(2.4.1) min{/ u dt]a’cl =@y, &y = —z35 — 2o +u, z(0) = zy, (1) = 331} ,
0
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with zo = (0,-1/2), z1 = (—1/2,-1/2), i.e. problem (2.1.1) with

F(@:(_m;?_mz), G(m)=(‘1)>, h(z,u) = u.

The unique optimal pair (y,u) is

t 1 1
=|(-=,—% t) = —- te[0,1],
v = (-5-3), w0=-p ¢l
with a cost I(y) = —1/4. By a straightforward calculation we have that

Ai=zs, Ap=1,Ac =22, Syp=-1,m(z) =1, g(z) = 0.
Conditions (H;) and (Ha) are satisfied in 2. We now check that (Hs)
does not hold. Recalling (2.2.5) it is easy to verify that

1 0
Y= "35> w1 = -1, D={_2 ],
:Ez 3

- T2 _ T2
X—<——(B§——m2—1), Y—(—llg—mz—i-l)’

2 1 2 -1
5_43D.X:_232_f_m§2_i_’ 5.4BD-Y=—2£2—T—:§32——-
T P

Since Sip D(7(t)) - X(v(t)) > 0 and Sup D(x(t)) - Y(7(t)) < O for every
t € [0,1], we have that D(y(t)) € K(v(t)) for every t € [0,1].
Let us rewrite problem (2.4.1) in Mayer form, introducing the new vari-

able z3 such that 3 = u, and consider the two—dimensional system:
(2.4.2) Ty = —z2 —zp+u, L3=1u.

Since this system is independent of z1, we have that every optimal trajectory of
(2.4.1) gives a time-optimal trajectory of (2.4.2). The time—optimal trajectory
associated to v in the (z2,z3)-plane is 3(¢) = (—1/2,—t/4). Using the same
terminology of [49], 7 is a turnpike; in the same paper it was shown that, under
generic conditions, these are the only cases of not bang-bang time—optimal

trajectories.
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Example 2.4.2 Consider now the problem in { = {(z1,22) | 2 < 0}:

1
mm{/ a:%—!—a:g\a':l =gy, By = 22/2 +u T2, (0) = 0, z(1) :a:l} ,
0 .

with zy = (0,—1/2), 21 = (=1/2,—1/2), i.e. problem (2.1.1) with

F(e) = (f’z ) G(:c)z(O), h(z,u) = 22 + 22

D: D X: T2 Y::. L2 :
_;2? ’ —%552 ’ %332 3

5_4BD-X=1/:G§, S‘.;BD*Y'-———S/:EE.
As in Example 2.4.1 we have that D(y(t)) € K(7(t)) for every t € [0, 1].
Passing to Mayer form as in the previous example, we obtain the system:

. . 2
$2=’2’$2+u$2, T3 = T5 + T2

We have Ap = —z3(2z2 + 1) = 0 on the time—optimal trajectory ¥(t) =
(—1/2,—t/4),i.e. 7 is a turnpike.

Application. We show an example of nonconvex minimization problem, and
give conditions depending only on the dynamic for the existence of an optimal

solution. Let us consider the problem

(2.4.3) min{/: h(u) de | & = F(z) + v G(a), =(0) = =0, 2(1) = ml} :

with h:{-1,1} — R, z € Q, and v € [-1,1]. Let us define m = [h(1) —
h(—1)]/2, ¢ = [A(1) + h(—1)]/2, and let us consider the convexified problem
(that is v € [—1,1]) with cost h(u) = mu + g. It is not restrictive to suppose

g = 0, otherwise we can add a constant to h; in this case we obtain ¢; =

—m Ac/A 4.
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If m = 0, that is if h(1) = h(—1), then every admissible trajectory is
optimal. It is easy to show, following the proof of Lemma 2.3.1, that if there
exists an admissible trajectory, then there exists an admissible bang-bang

trajectory.

If m # 0 we have that D = mD /A%, with
D= — (VA4)ABAc+ A4(VAB)Ac — AsAB(VAC).

The following proposition is now a direct application of Theorem 2.3.2.

Proposition 2.4.3 Let us consider the problem (2.4.3). Suppose that A 4 #
0, Ap # 0, £D(z) € K(z) for every z € 0. If there exists an admissible pair
for the convexified problem, then (2.4.3) has a solution.
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Chapter 3
Special bang—bang solutions for nonlinear control systems

3.1. Introduction

In this chapter we are concerned with the control systems
(3.1.1) 2" +a(e,z') =u g(z,2'),

where a,g are continuously differentiable functions on IR? and u is scalar
control with |u| < 1. For a given solution z of (3.1.1) defined on an interval
[a, b], we prove, under mild assumptions on g, the existence of two bang-bang

solutions y, z, with a finite number of switchings, satisfying

z(a) = y(a) = z(a), =(b) =y(b) = 2(b),
2'(a) =y'(a) = #(a), 2'(b) =v'(}) = #(b),

and, for every t € [a,b],

(3.1.2)

(3.1.3) y(t) < z(t) < z(1).

We remark that every forced semilinear second order differential equation,
corresponding to (3.1.1) with g constant, satisfies the required assumptions.
For example, the forced nonlinear pendulum, the forced nonlinear Duffing os-
cillator, and the forced Van der Pol equation belong to this class of equations.

The problem of finding a bang-bang solution satisfying (3.1.2) and (3.1.3)
‘0 the case of linear control systems L(z) € [¢1(t), ¢2(t)], where L is a linear
operator of order m, was studied in the caée of piecewise analytic data by
Andreini and Bacciotti in [4]. The techniques used in this paper are based on
Lyapunov type theorems (see [23] for examples and applications). Recently
Cérf and Mariconda in [19] studied the case ¢1,¢2 € L'. Their approach is
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based on a new Lyapunov type theorem applied to the integral representation
of the solutions.

In order to study problem (3.1.1), a completely different approach has
to be used due to the nonlinearity of the operator. In particular we have
no integral representation formula and we have to argue about the geometric
properties of the trajectories. The control problem (3.1.1) can be restated
as a first order control system in IR? with control appearing linearly. The
properties of time optimal trajectories for such kind of systems were deeply
studied in [49], [50], and the synthesis problem in [46], [51], with geometric
methods.

Given a trajectory v of the planar system, we construct a bang-bang
trajectory 4 such that the corresponding solution of (3.1.1) satisfies (3.1.2)
and (3.1.3). We begin constructing a local bang-bang variation of v, with
the requested properties, on intervals of uniformly positive length, and then
we concatenate these variations in order to obtain 4. Closure results for
the reachable sets of control systems with obstacle follow directly from our
theorems.

The idea of bang-bang variations was used in Chapter 2 to prove exis-
tence results for nonconvex optimization problems. Our result can be used to
avoid the classical convexity assumptions for the problem of minimizing some
integral functionals with nonlinear dynamics. Existence results without con-
vexity assumptions were recently obtained in [16], [41] and in [47] for optimal

control problems.

3.2. Preliminaries

We consider the control problem
(3.2.1) " +a(z,z') =ug(z,z'), u € [—1,1],

where a, g are continuously differentiable real function on IR?, and the prime

denotes differentiation with respect to the time variable. Defining z; = z and
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z, = «' the control problem (3.2.1) is equivalent to the first order control

system in IR?

z, =z, ‘
3.2.2 1 ’
( ) {mQZ—a(ml,mz)—%—ug(ml,mg).

In this system the control appears linearly and we can also write it as
(3.2.3) ¢ = F(z)+u G(z), v e [-1,1],

where

I O A )L

In the following we shall denote by ¥ the system (3.2.3). We shall use the
notations given in Section 2.2.

Given two points P,Q € IR?, let us define
I(P,Q) = {y € Traj(%) : In(y) = P, Term(y) = Q},

I'o(P,Q) = {y € T(P,Q) : Range(y) C }.
If P=(z1,z2) € IR?, let us define 7;(P) = zj, j = 1,2. For P € IR?, let us
define 43 (resp. 75 ) as the maximal Y-trajectory (resp. X-trajectory ) such
that 0 € Dom(y) and v3(0) = P (resp. v5(0) = P).
3.3. The main result

In this section we shall prove the following

Theorem 3.3.1  Consider the control problem
(P) " +a(z,z') = u g(z,z'),

with v € [~1,1], a,g € C*(IR?,IR). Assume that the following hypotheses

hold:

| (i) M= {z € R* : g(z) = 0} is a regular manifold, and Vg(z) # 0 for
every ¢ € M;
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(i) for every R > 0, the set Zr = {x e M : F(z) Vg(z) =0}nN B(0,R),
where F(z1,22) = (22, —a(21,22)), has a finite number of connected com-
ponents.

If = is a solution of (P) defined on [a,'b], then there exist two bang—bang

solutions y, z, defined on [a,b] such that

z(a) = y(a) = z(a), =(b) = y(b) = 2(b),
z'(a) =y'(a) = 2'(a), 2'(b) =¥'(b) =2'(b),

and, for every t € [a,b],
y(t) < =(t) < 2(2).

Moreover, y and z have a finite number of switchings.

Example 3.3.2 Consider the nonlinear control system
¢ +a(z,z') =u,

that is system (P) with g(z,z') = 1. Since M = O, the assumptions of the
theorem are trivially satisfied. Notice that most of the second-order differen-
tial equations coming from mathematical physics and applied sciences, such
as the forced nonlinear pendulum, the forced nonlinear Duffing oscillator, the

forced Van der Pol equation, and so on, belong to this class.

We can associate to problem (P) a first order two-dimensional control
system, as in Section 3.2. For this system, that we shall call ¥ in the following,

by a simple computation we have that

1
A.—l(ml,iﬂz) = T2 '9(9317132)7 AB(mhmZ) = 92(501,332); dw = ;5 dzq N dzs.
2

Let us define the two regions of the plane

Q_}-”;‘ {(m1532)632‘$2>0}, = {(ml,mg)ERz‘:Eg(O},
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Lemma 3.3.3 Suppose that (] is an open connected subset of 0T, and that
P and Q are two points of 8 with 71 (P) < m1(Q). Moreover, suppose that
the following hypothesis hold:

(H) A4 and Ap are both different from zero in ). Let t* > 0 be the first
time of intersection of 71% with ¢, or +oo if there is no intersection.
Define s* < 0 (possibly —oo) in the same way for 73 with reversed time.
Assume that +v3|[0,t] intersects v5[s7,0] in a point R € Q, and that
v5|[0,t7] intersects 75|[s+,0} in a point § € 1.

If y € Tq(P,Q), then there exists a bang-bang trajectory ¥ € I'q(P,Q) such

that

Dom(y) = Dom(%), m ((t)) < m(4(t)) for everyt € Dom(y).

Proof. Since =, = z» > 0, all the trajectories lying in € go from left to
right in the (z1,z2)-plane. Since g? = Ap # 0 in (), we can assume, for
instance, ¢ > 0 in € (the case g < 0 can be treated in a similar way). If

R=~p(t1) =75(s1) and § = vp(t2) = 73(32), let us define the trajectories

71(t) = FY;L_(t)’ lft € [07t1]7
’yé(t + 81 — tl), lft € [tl,tl et 311;

v (t) - 71;(t)7 ifte [Dsti’]a
2 7$(t+32'—t2), iftE[tz,tz—-—Sz];

i.e. 71 and 7, are respectively the X *Y-trajectory and the Y x X—trajectory
steering P to Q. For every 7 € T'q(P,Q), we can apply Theorem 2.2.1 to the
pairs (71,7) and (72,7) obtaining |

(33.1) T(11) < T(n) <T(v), 7€ Ta(P,Q):

Indeed the coefficient of the differential form dw is positive in 2. For each
p € [0,t1], we construct the trajectory vu € I'q(P,Q) in the following way.
Starting from P, we follow 71“; up to time p. Then we follow the X—trajectory

through v5(p), until it intersects 'yg at time o,, and finally we follow '/5
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up to the point Q. By Theorem 2.2.1 the map p — T(v,) is continuous
and strictly decreasing. Hence, from (3.3.1) there exists 4 € [0,%;] such that
T(v) = T(¥), where 4 = 7,. Without loss of generality we can assume that
Dom(v) = Dom(%) = [0,T]. Define £(2) = m1(7(t)), €(t) = m1(4(t)), for every
t € [0,7]. It remains to prove that é(t) > &(t), for every t € [0,T]. Being
¢'(t) and €'(t) strictly positive for a.e. ¢, we can construct the two inverse
functions t(z1), i(z1), for z; € [m1(P),71(Q)]. Define ¢(z1) = m2(7(t(z1))),
b(z1) = m2(3(i(21))); € and £ are solutions of the Cauchy problems

=90, &0)=m(P),

£ =96, &0)=m(P)

with the same initial data. Notice that Range(v) intersects Range(%) in at
least one point A = 4(t4) with # < t4 < o,: indeed the range of every
n € Ta(P, Q) is contained in the region enclosed by 41 and 2. Hence ¢(z1) <
$(z1) for every z; € [m1(P), m(A)], and then £(t) > &(t) for every t € [0,%.4].
In the same way, from ¢(T) = (T), it follows that the same inequality holds
fort € [t4,T]. [

Lemma 3.3.4 Suppose that Q is an open connected subset of @, and that
P and Q are two points of §) with m(P) < m(Q). Moreover, suppose that
the hypothesis (H) hold. Then the conclusions of Lemma 3.3.3 hold.

Proof. The case P,Q € § has been considered in Lemma 3.3.3. Suppose
now that P € Q, Q € Q. It is not restrictive to assume Dom(y) = [0, T].
By the assumptions made on R and S, it is clear that y(¢) € Q, for every
t € [0,T). Indeed X and Y do not vanish and point outward Q. Consider
a sequence (Th)n, 0 < T, < T, converging to T for n — +oo, and define
Yn = v[0,Ts], @n = Term(v,). Applying Lemma 3.3.3 to 7,, we construct a
bang-bang trajectory 4, such that

(3.3.2) m1(7n(t)) < T (=(2)), for every t € [0,T5].
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Extend 4 to [0,7] defining 4x(t) = 7(t) for ¢ € [T,,T]. It is clear from
the proof of Lemma 3.3.3 that we can extract a subsequence (' )ns of (¥n)n
converging uniformly to a bang-bang trajectory 5 € T(P,Q), with T(¥) =
T(v). Passing to the limit in (3.3.2), we are done. Similarly we can treat the

other cases. O

Remark 8.3.5 Lemma 3.3.3 and 3.3.4 hold if in (H) we replace Q7 by 7.

Lemma 3.3.6 Suppose m(P) = 0 and |g(P)| > |a(P)|. Then there exists
+ > 0 with the following property. For every trajectory v starting from P,
with T(y) = 7 and lying in QF for positive times, there exists a bang—bang
trajectory 4 satisfying:

In(y) = In(%), Term(y) = Term(%),

(3.3.3)
Dom(v) = Dom(%), w1 (y(t)) < i (4(t)) for every t € Dom(7).

Proof. Let R(t) bethe reachable set in time ¢ from P, that is the set of points
Q for which there exists a trajectory steering P to Q in time less than or equal
to ¢. Since |g(P)| > |a(P)|, there exists a neighborhood of P such that X and
Y are non vanishing vectors which point to opposite sides of the z;—axis, and
Ap # 0. Therefore there exists 7 > 0 small enough such that R(7)NAZ (0) =
D, 713;:((0,7]) N A_Il(O) — @ and X, Y do not vanish in R(7). The system
is locally controllable at P (see [52]), and we can cover a neighborhood of P
with bang-bang trajectories 7 having at most one switching, satisfying the
PMP and with T(n) < 7. It is well known that these trajectories form an
optimal synthesis covering R(7) (see for instance [37]). These are the only
time optimal trajectories starting from P. Consider a trajectory v as in the
statement and let Q = (7). Assume that Y'(P) points into 1T, the other case
being similar. Consider the one parameter family v, of bang-bang trajectories
defined as follows. Let 7' be the first time of intersection of ’yg with 8R(7) for
negative times, and define ¢’ = min{r, —7'}. Let Q. = 'yg(—,u), p € 10,p'],
and define 7, as the time optimal trajectory steering P to Q,. We define
v, as the trajectory obtained following 7, up to the point @, and then 75;:
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up to the point Q. By the local controllability at the point P, the map
p +— T(v,) is continuous; moreover T(v0) < T(y) < T(yu). Hence there
exists i € [0,7] such that T(y) = T(¥), with ¥ = 7,. Notice that 4 has
at most two switchings. If 4 has no switchings or only one switching, then
it is time optimal and v = 4, so we have done. Suppose now that 4 has
two switchings at times oy and o2, 01 < 02. It is not restrictive to assume
that Dom(y) = [0,7]. Let us define the time o3 either as the last positive
intersection time (if any) of 4 with the z;—axis, or set o3 = 02 if there are no
such intersections. By a comparison argument as in the proof of Lemma 3.3.3,
we have that the inequality in (3.3.3) holds for ¢ € [0,0¢] U [03,7]. Let o4 be
the first time at which m;(5(t)) = m1(9(e3)). By construction the inequality
in (3.3.3) holds for t € [0y, 03]: indeed

w1 (3(2)) > m1(F(o4)), for every t € o4, 03],

t  m;((t)) is increasing, and m (7(03)) < ™ (4(o3))- Notice that 4((0,04))
lies in Q7F. If oy < o7 we are done. If oy > o1, suppose by contradiction that -
there exist s € (o1,04) and € > 0 such that the inequality in (3.3.3) holds
for t € [0,s] and does not hold for ¢ € (s,s + ¢]. But in this case we obtain
72 (v(5)) > m2(F(s)), hence by a comparison argument (7(os)) > m1(F(o4)),

reaching a contradiction. O

Lemma 3.3.7 The conclusions of Lemma 3.3.6 hold if we replace QF by
Q.

Proof. We choose 7 > 0 and, given 7 as in the statement, we construct ~
as in the proof of Lemma 3.3.6. We assume again that Y (FP) points into o,
and that 4 has two switchings at times oy and o,. Let o3 be the last time
for which m; (3(t)) > m1(P). With a comparison argument as in the proof of
Lemma 3.3.3, we obtain that the inequality in (3.3.3) holds for ¢t € (o2, T].
Since the map t — 1 (7(t)) is monotone decreasing, we have that m (v(2)) <
m1(P) for every t € [0,7]. Hence the inequality in (3.3.3) holds for t € [0, 03]

If 03 > o, we are done. Otherwise, if o3 < o2, suppose by contradiction
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that there exist s € (o3,02) and € > 0 such that the inequality in (3.3.3)
holds for ¢ € [s,7] and does not hold for t € [s —¢,5). But in this case

m2(v(s)) < m2(4(s)), hence my(v(o3)) > m1(§(o3)), reaching a contradiction.
' U

Lemma 3.3.8 Suppose mo(P) = 0 and |g(P)| > |a(P)|. Then there exists
T > 0 with the following property: for every trajectory v starting from P,
with T(vy) = T, there exists a bang-bang trajectory ¥ satisfying (3.3.3).

Proof. Choose 7 > 0 as in the proof of Lemma 3.3.6, and let v be a trajec-
tory as in the statement. It is not restrictive to assume Dom(y) = [0,7]. If v
does not intersect the z;—axis for positive times, we can apply Lemma 3.3.6
or Lemma 3.3.7. Otherwise let ¢; < 7 be the last intersecfion time of ¥
with the z;—axis for positive times. Clearly we can apply Lemma 3.3.6 or
3.3.7 to v|[t1,7]. Hence from now on we shall consider v|[0,%;]. Assume that
Y (P) points into 7, define @ = 7(¢;) and construct ¥ as in the proof of
Lemma 3.3.6. We can assume again that 4 is a bang-bang trajectory with
two switchings at times o; and o,. Let o3 be the first positive time of inter-
section of 4 with the z;—axis. Notice that ¥([0,c3]) C ﬁ+, F([os,11]) C .
Suppose, by contradiction, that there exist s € [0,04], € > 0 such that

m(y(t)) <m(§(2),  forevery t € [0,9],

1 ((2)) > m(3(1)), for every t € (s,s +¢).

By these conditions and by comparing the two trajectories we have that
m2(7(s)) > m2(4(s)). Consider the trajectory n which follows v up to time
s and then the X—trajectory up to the intersection point R with 7;. By a
comparison argument we have that, to steer P to R, 7 takes a time strictly
smaller than 7?’;, contradicting the optimality of 7;.

Suppose now that there exist s, € as above, but now with s € [o1,03]. We
have again m2(7(s)) > m2(4(s)). Let Py = ¥(o1), and consider the trajectory
vp,- There exists a time s1 < s in which 7 intersects vp, and v(s;) € QF.

Let 7 be the trajectory obtained following vy up to time s; and then the
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time optimal trajectory that steers 7(s1) to Q. If v(s1) € Range(7), then
T(n) > T(¥), and the equality holds if and only if n = 4. Indeed, in this case,
% is time optimal to steer P to v(s1) and to steer v(s1) to Q. Otherwise,
n(t) = P, for some t > o1, and again T(n) > T(%), the equality holding if
and only if 7 = 4. On the other hand T(n) < T(v) = T(¥) by construction.
Hence T(n) = T(¥), and then n =7 = %, which contradicts the definition of

s. In the same way, but with reversed time, we can argue for t € [o3,t1]. U

In Lemmas 3.3.6, 3.3.7 and 3.3.8 we have considered trajectories starting
from points of the z;-axis, while in Lemmas 3.3.9, 3.3.10 and 3.3.11 we shall

consider trajectories arriving to points of this kind.

Lemma 3.3.9 Suppose mo(P) = 0 and lg(P)| > |a(P)l- Then there exists
+> 0 with the following property. If v is a trajectory steering a point QeQt
to P in time T and lying in QF for t < 7, then there exists a bang—bang

trajectory 4 satisfying (3.3.3).

Proof. Let R'(t) be the reachable set for reversed time from P, that is the
set of points S for which there exists a trajectory steering S to P in time less
than or equal to t. As in the proof of Lemma 3.3.6, we can choose 7 > 0 such
that R'(r) N AZY(0) = @, and ~E([~7,0)) N A7(0) = @. Moreover we can
construct an optimal synthesis for the problem of reaching P in minimum time
that covers R'(7), which is formed of bang-bang trajectories with at most one
switching. Consider a trajectory 7 satisfying the required assumptions and
assume that Y (P) points into O+t. We construct a one—parameter family
4, of bang-bang trajectories defined as follows. Let 7' be the first time of
intersection of 75 with OR/(7) for positive times, and define g’ = min{7,7'}.
Given p € [0,p/],let Q, = 7$(y), and define 7, as the time optimal trajectory
which steers @, to P. Define 7, as the trajectory obtained following 7('5 up
to the point @, and then 7, up to the point P. By the local controllability at
the point P, the map p — T(v,) is continuous and T(v) < T(v) < T(vw)s
hence there exists f such that T(y) = T(%), with 4 = v,. We can assume
Dom(y) = Dom(¥) = [0,7]. We have that m (y(t)) < mi(P) foreveryt € [0,7],
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so that we are in a case similar to the one of Lemma 3.3.7. Reasoning in the

same way we obtain the conclusion. L]
With the same arguments we obtain the following lemmas.

Lemma 3.3.10 Suppose m2(P) = 0 and |[g(P)| > |a(P)|. Then there exists
7 > 0 with the following property. If v is a trajectory steering a point @ € 1~
to P in time 7 and lying in Q= for t < T, then there exists a bang—bang

trajectory 4 satisfying (3.3.3).

Lemma 3.3.11 Suppose m2(P) = 0 and |g(P)| > |a(P)|. Then there exists
T > 0 with the following property. For every trajectory v steering a point Q
to P in time T, there exists a bang—bang trajectory 4 satisfying (3.3.3).

In Lemmas 3.3.12 and 3.3.14 we shall deal with the singular case in which
one of the vector fields X, Y vanishes at the initial or terminal point of the

trajectory.

Lemma 3.3.12 Suppose m(P) = 0, |g(P)| = |a(P)|. Then there exists
7 > 0 with the following property. For every trajectory - starting from P,
with T(y) = 7, there exists a bang—bang trajectory 4 satisfying (3.3.3).

Proof. If g(P) = a(P) =0, then F(P)= G(P) =0, and 7(t) = P for every
t € [0,7]. The trajectory is independent of the control, and we can define
4 as the Y-trajectory through P. Suppose now |g(P)| = |a(P)| # 0. By
continuity, there exists a neighborhood N; of P such that g does not vanish
on N;.

Let us rewrite the control system in polar coordinates (p, ) centered at

P. We obtain:

p' =sinf-(pcosf—a(p,8) +u-g(p,0)),
6 = p~tcosf-(—a(p,0)+u-g(p,0)) — sin? 4,

where &(p,8) = a(pcos 8 +m1(P),psinb), §(p,0) = g(pcosf +m1(P),psinb).
Along the X—trajectories we have that

9 = —ptcosh-(a(p,6) + d(p,0)) — sin® 6.
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Since a(P) + g(P) =0, and a,g € C'(IR?,IR), we have that
la(p,0) + §(p,0) < C-p+p-7(p,0),

with r(p,0) — 0 as p — 0+, uniformly with respect to §. Hence there exist
a neighborhood A, of P and a positive constant M such that |6'| < M along
every X—-trajectory contained in No. Let us now define r(a) as the half line
through P with positive slope «, that is r(a) = {(z1,2z2) € R* : =z =
a-(z; — m(P)), z1 > m(P)}. Since the first component of Y(P) vanishes,
for every o > 0 small enough there exists (o) > 0 such that for every
t € (0,0) the Y—trajectory 43 through P lies in the cone with sides r(B(c))
and {z; = m(P), z» > 0}. Clearly f(c) can be chosen in such a way that
B(c) — +oo as o — 0.

Let 7 = 7(1), and let o be small enough such that 8 = B(o) > V3 =
tan(r/3). If S is a reachable point from P lying on 7, then by Theorem 2.2.2
the time optimal trajectory ns steering P to Sis a X * Y -trajectory. Choose
7! € (0,0) such that the reachable set R(7') from P in time 7' is contained in
N, N N,. Since |6'| < M in R(7') along the X—trajectories, we have that, for
every S € r N R(7')

T(ns) > (arctan f — arctana)/M > 7" = T;T/I—
Let us define = as the minimum between 7' and 7". It is clear that R(7) does
not intersect r: indeed every trajectory takes a time strictly greater than 7 to
steer P to a point of r.

Consider now a trajectory 7 as in the statement. Define @ = v(7) and
notice that Q lies in the region above r. Moreover the time optimal trajectory
which steers P to Q is a X Y —trajectory. Consider the one parameter family
of bang-bang trajectories 7, constructed in the following way. Given p > 0,
let Q, = 75(—;1,), and let p' be the first positive p such that Q.- € 7. Let
I be the set of all p € [0,p'] such that the trajectory 7, intersects v} for
negative times in a point R,. We have that either I = [0,u'], or I = [0,u"),
with p” < p'.



Special bang-bang solutions for nonlinear control systems 55

For p € I, let us define 7, as the trajectory starting from P that follows
7; up to the point R,, then YR, Uup to the point @,, and finally 75# up
to the point Q. By construction the map p — T(v,) is continuous on I.
Since 7y is time optimal, we have that ‘T(’yu) < T(y). If I = [0,4], then
T(yw) > ™ = T(v): indeed 7, intersects r in Q. If I = [0,p"), then
necessarily 75”,,(t) — P ast — —oo, hence T(y,) — +oc as g — p”. In both
cases there exists 2 € I such that T'(y) = T(¥), with 4 = «,. By construction
4 is bang-bang with at most two switchings, and (3.3.3) can be proved with

the same comparison argument of Lemma 3.3.3. UJ

Remark 3.3.13 If we fix a compact set K C IR?, then the time o in the
proof of Lemma 3.3.12 can be chosen uniformly positive in P € K.

In the same way we can prove the following

Lemma 3.3.14 Suppose m(P) = 0, |g(P)| = |a(P)|. Then there exists
7 > 0 with the following property: for every trajectory v with terminal point
P, and with T(v) = T, there exists a bang—bang trajectory ¥ satisfying (3.3.3).

We can now prove the main result of the chapter.

Proof of Theorem 3.3.1. We rewrite the problem (P) as a control system
in IR?

) =z
3.3.4 P
( ) {:c'zz——a(a:l,mg)—{—ug(:cl,mg).
Let ~(t) = (z(t),z'(t)) be the trajectory of this system corresponding to z.
We shall construct a bang-bang trajectory 4 by making a concatenation of

local bang-bang variations of ~.
Let R > 0 be such that Range(y) C B(0,R). Consider a connected

component A of Zg, and assume that y(f) € A for some? € [a,b]. If F(y(%)) =
' 0, then every trajectory through () is a constant trajectory, hence there is
nothing to prove. Otherwise let A’ be the connected component of A\{z €

IR? : F(z) = 0} which contains v(%). Since the vector field F is tangent to
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Ain every point of A, there exists a trajectory 7 : I — IR® of (3.3.4), with I
unbounded if A’ # A, such that Range(n) = A', and 5(t) = (). Moreover,
the control has no effect in A, hence v = 7 on I N [a,b].

Consider the set S; = {t € [a,b] : ‘g('y(t)) = 0}. From (i) and (ii) we

have that S; is a finite union of isolated points and closed intervals, say
Sy ={t1,...,tntU[r1,81] U U [rm, Sm].

For every t;, 1 = 1,...,n, there exists 7; > 0 such that Lemma 3.3.4 can be
applied to 7|[t; — 7, %], and to v|[ti, t; + 7i]. In this way we construct a bang-
bang trajectory 4; defined on I; = [t;—7i,t;+7;]. Define 4(t) = 4:(t) for t € I;.
For every rj, sj, j = 1,...,m, there exists p; > 0 such that we can apply
Lemma 3.3.4 to v|[r; —pj,r;] and to v|[sj, s;+p;]. Notice that every trajectory
n with Range(n) C S; is bang-bang because it corresponds, for example, to
the constant control v = +1. Indeed, on S, the control has no effect. Then we
can construct a bang-bang trajectory 4; on J; = [rj—pj,s;+pjl,7 =1,...,m,
by applying Lemma 3.3.4 and choosing control v = 1 for t € [rj,s;]. Define
F(t) = 4;(t) for t € J;.

Consider now the compact set

§; = Jtele, i\ (Uit LuJint J;) : ma(v(8)) = 0, lg(v(0)] = la(v()] ¢

t J

and let & = min{dist(y(t),M) : t € S»}. Since 51 NS, = @, we have that
£ > 0.

Let us define the compact sets
D™ = {z1 € R : (21,0) € 7(52), X(7((1,0))) = 0},

DT ={z; € R : (z1,0) € v(S2), Y(v((z1,0))) =0},

D* = D* x B(0,x/2) C IR®.
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Let us consider the set of singular points D™, the case D being similar. Let
us define the function A(z1,z2) = a(z1,2z2) + g(z1,z2). Since h is of class C?,

there exists a continuous function r: D~ — IR such that
h(zy + 61,682) = h'(21,0) - 6 + |6]r(21;6), for every (z1,8) € D~

with § = (81,62). Since r and k' are continuous on the compact set D™, there

exists C > 0 such that

|h(z1 + 61,82)] < C |8, for every (z1,6) € D™.

Passingin polar coordinates centered at a point P = (z1,0),z; € D™, asin the
proof of Lemma 3.3.12, we have that there exists M independent of z; € D~
such that |§'| < M along every X-trajectory in B(P,x/2). This estimate,
and Remark 3.3.13, imply that we can choose the time 7 of Lemma 3.3.12
independent of the point P € D~ x {0}.

Hence, given ¢1,t; € S, belonging to different connected components of
S2, we have that |t; — {5| > 7. This implies that 655 is a finite set.

If [c,d] is a nontrivial connected component of S5, and u is the control
corresponding to 7, then necessarily either v = +1 or v = —1 on [c,d]. Rea-
soning as for S;, applying Lemmas 3.3.12 and 3.3.14, we can define 4 on a
finite union of closed intervals K, k = 1,...,p, of positive length o, covering
a neighborhood of 95.

Consider now the compact set

S3 = (t€[a,b]\ UintIiUUintJjUUinth :ma(y(t) =0
i J k

Since |g(v(t))| # |a(v(¢))], and g(v(¢)) # 0 for every ¢t € S3, we have that
dist(v(S3), M) >0, dist(v(S3),{z € R? : |g(z)| = |a(z)|}) > 0.

Hence there exists € > 0 such that for every ¢ € S; we can apply, to |[t —
e,t + ¢}, Lemma 3.3.4 if |g(7(%))] < |a(y(%))|, and Lemmas 3.3.8 and 3.3.11 if
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the opposite inequality holds. Indeed, if |g(P)| < |a(P)|, P = v(t), the vector
fields X (P) and Y(P) point to the same side with respect to the z;-axis. We
can define 4 on a finite union of intervals L;, [ =1,...,¢, of positive length,
covering a neighborhood of Ss. |

Finally let us define

l\,’

Sy = [a,b]\ UintI,-UUintJjUUinthUUintLI = (Jlav,b]-
j 4

1 j k

v=1

There exists § > 0 such that for every ¢ € [a,,b,], v =1,..., N, the hypotheses
of Lemma 3.3.3 hold for v|([t — é,t + 6] N [ay,b,]). We can cover S, with a
finite number of such intervals, and we can construct 4 on Sy by applying
Lemma 3.3.3 on each interval. It is clear that 4 is well defined on [a, b] because,
on the boundary of every subinterval on which it was defined, it coincides
with 7. Now z(t) = m(%(t)), t € [a,b], is a bang-bang solution of (P) and
by construction it verifies all the requirements. If we consider the system (P)
with reversed time, we obtain in the same manner the bang-bang trajectory

y with the stated properties. ]

3.4. Applications

Consider the control problem (P), with u € [~1,1]. Let ¢ : [a,b] — IR
be an arbitrary function. For every initial condition (zy,vy) we define the

families of solutions of (P) in [a, bj:
S = {z : [a,b] — IR solution of (P) : (z(a),2'(a)) = (zo,v0)}

T = {z : [a,b] — IR bang-bang solution of (P) : (z(a),z'(a)) = (zy,v0)}-

We can now define the constrained reachable sets
X = {(z(b),2' (b)) : @(t) < ¢(t)Vt € [a,b], z € S},

Y = {(z(b),2' (b)) : 2(t) < c(t)Vt € [a,b], 2z €T}
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If the assumptions of Theorem 3.3.1 are satisfied, we immediately obtain the

following

Theorem 3.4.1 The sets X, YV coincide; in particular, the reachable set

associated to bang—bang constrained solutions Y is closed.

As another application, we prove now an existence result for Bolza prob-

lems with nonlinear dynamics.

Theorem 3.4.2 Let
b
I@) = [ laltie) +6(t,2) o' +9(e') o] b,

with o, B € C*([a,b] x R,IR) and v € C(IR,IR). Let us consider the following

minimization problem
min {J(z) |z € F, z(a) = zy, 2'(a) = vy, 2(b) =21, 2'(b) = v1 },

where F is the family of solutions of (3.2.1). Assume that the hypotheses of
Theorem 3.3.1 are satisfied, and that

Oa 0
(3.4.1) a—m(t,w) - T?g(t’m) >0 (resp. < 0),

for every (t,z) € [a,b] X R. If ¢ : [a,b] — IR is an optimal solution, then z

is bang-bang with a finite number of switchings.

Proof. Let
B(t,z) = /:ﬁ(t,z) iz,  C(s)) = [ (€) de.
We have that
f;[a(t,w) +B(t,z) -z +v(z') - 2"]dt =
-/ alt,2) — S 1,2)+ 5 (Blta) + 0| di =

= C(v1) — Cl(vy) + B(b,21) — B(a,z0) + fb [a(t,m) _ —g(t,m)} it.

a
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Clearly
OB * 0B
sl - (¢
57 (62) i 5 (hy) dy
and then —g—g; = %—f. Hence, by (3.4.1),
0 0B Oa )]
52 a(t,z) — —5{(75,93)] = -8—;(75,:13) - ~a—t—(t,a:) > 0, (resp. < 0),

that is the map z — 6(t,2) = a(t,z)— 22 (t,z) is strictly increasing (resp. de-
creasing) for every fixed ¢ € [a,b]. By Theorem 3.3.1, there exists a bang-
bang solution y : [a,b] —» IR satisfying the boundary conditions and such that
y(t) < z(t) (resp. z(t) < y(t)) for every ¢ € [a,b]. By the strictly monotonicity
of z — 6(t,z), we have that ‘

b b
/ 6(t,y(¢)) dt S/ 8(t,z(t)) dt,
the equality holding if and only if z(t) = y(t) for a.e. t € [a,b], and then

J(y) = C(v1) — C(vy) + B(b,z1) — B(a,zy) —I—[: §(t,y(y)) dt < J(z),

with J(y) = J(z) if and only if z(t) = y(t) for a.e. t € [a,b]. By the optimality

of z, it follows that z = y a.e., reaching the conclusion. l
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Chapter 4
An existence result for non-coercive non-convex problems

4.1. Introduction

In this chapter we consider the minimization problem

T
(4.1.1) min [ (a(0), u(t) + f( )] 1,

in the class AC of the absolutely continuous functions from [0,T] into R™

satisfying the boundary conditions
(4.1.2) u(0) = uy, w(T) = u;.

Here a:[0,T] — IR™ is a continuous function.
It is well known (see, for example, [23]) that this problem has a solution
if f satisfies the so called growth condition of Tonelli:

(4.1.3) F(&) 2 ¥([¢]), for every ¢ € R™,
with ¥:[0, +00) — IR superlinear, that is

(4.1.4) 0

§—4+oc g

= 400

Recently, in [18], it was introduced a new class G of convex functions,
satisfying a growth condition strictly weaker than superlinearity, and for which

the problem

T
min {/U [9(u(2)) + F(u'(2))] dt:u €. AC, u(0) = uy, u(T) = ul} ,
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has a solution for every non-negative, continuous function g. This class G
consists of all strictly convex functions f € C*(IR™, IR) satisfying the “energy
condition”

(4.1.5) im [f(z)—(z, Vf(z))] = —0.

|z[—+o0

The technique used in this chapter is completely different from the one
used in [18], and it is based on an existence result due to Olech ([43]), which
turns to be a corollary of a Lyapunov—-type theorem on the range of nonatomic,
finite, vector-valued measures. We consider the class F of all lower semicon-
tinuous functions f:IR™ — IR, such that the convexification f** satisfies the
growth condition:

lim [f*(2n) = (2a, V£ (2a))] = —co,

n—-+o0o

for every sequence (z,) C IR™ of points of differentiability of f** such that
im, |z,| = +0c0. We prove that, for every f € F, the minimization problem
(4.1.1)-(4.1.2) has a solution.

For related results on non-coercive problems, we mention the papers [3],
[6], [7], [26]. In connection with problems without convexity assumptions, we
cite [16] and [41] in the case of calculus of variations, and the paper [47] for

control theory.

4.2. Preliminaries

We recall that, by Carathéodory’s theorem, we have the following char-

acterization of the convex hull of a set A ¢ IR™:

i=1

m+1
(4.2.1) coA:{mERmIm: Z)\;:z:i, A€ Epat, a:iEA‘v'i},

where A = (A1,...Am+1), and E,,+1 denotes the standard simplex:

i=1

m-1
B {(Al""’Am+1)€ﬂ‘2’"+1lAizow, inzl}.
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A multifunction F:Q — 2E"\@ is upper semicontinuous (u.s.c.) if, for

every zy € §) and every € > 0, there exists § > 0 such that
F(z) C F(zy) + B., forevery z € Bs(zy)N Q.
We shall say that F' is monotone if, for every z,vy € (1,

(pz —py,z—y) >0, forevery p, € F(z), py € F(y)-

Given a function 7 : IR™ — IR, we will denote by ¥** its convexification,
that is the largest convex function satisfying ¥** < .

Let 1: JR™ — IR be a convex function. For every z € IR™ we define the
subdifferential of ¢ at = as the set

8p(z) = {pe R™|¢(y) > ¥(z) + (p,y — =), Yy R™}.

We collect here some properties of the subdifferential; for a proof see, for

example, [24] or [35]. We denote by D(7)) the set of points of differentiability
of 1.

Proposition 4.2.1 Let :IR™ — IR be a convex function. Then:
(i) Ov(z) is a nonempty, convex, compact subset of IR™ for every ¢ € IR™;
(ii) 0O is a monotone u.s.c. multifunction;
(iii) 1+ is Lipschitz continuous, it is differentiable at almost every point = €
R™, and 8¢(z) = {Vy(z)} for every z € D(¥);
(iv) for every z € IR™, we have that

O¢(z) = co {khlf Vip(zr) 1 zi € D(¢) Yk € IN, khrf T = a:} .
Remark 4.2.2 By property (iv) and the characterization (4.2.1) of the
convex hull, we have that, if p € 0¢(z), there exist m + 1 sequences (:nfc)k C
D), j=1,...,m+1, and X € Epy1, such that:

m-+1

p= z AiDjs pj = kErme'gb(mi), k_]irfoo:ci_ =z, j=1,...,m+1.
s '
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This implies that, for every € > 0 and every 6 > 0, there exist y1,...,ym+1 €
D(¢) N Bs(z), such that

\V(y;) — pj|l <e, foreveryj=1,...,m+1.

Now we will prove some technical lemmas that will be used in the subse-

quent section.

Lemma 4.2.3 Let D = Bgr(0) c R™, F: D — 28"\@ u.s.c., with compact

convex values. Assume that, for every ¢ € 0D,
(p,z) >0, forevery p€ F(z).

Then there exists y € D such that 0 € F(y).

Proof. Let us define the multifunction G = I — F. Clearly, G is u.s.c. with
compact convex values.

Moreover, Az ¢ G(z) for every # € 0D and every A > 1. Indeed, suppose
by contradiction that there exist z € 8D, p € F(z) and A > 1 such that
Az = ¢z — p. We have that

0<(p,z) =—-(A-1)R* <0,

reaching a contradiction.

Hence G has a fixed point (see [34], Theorem 11.6), that is there exists
y € D such that y € G(y). But this condition is equivalent to 0 € F(y). [

Lemma 4.2.4 Let D and F be as in the previous lemma. If 0 ¢ F(D), then
there exist y € 0D and q € F(y) such that (¢, y) <0.

Proof. Suppose that, for every z € 8D, (p, z) > 0, for every p € F(z).
Then Lemma 4.2.3 implies that 0 € F(D), giving a contradiction. U
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4.3. The main result

We start this section by stating an existence result due to Olech ([43]).
Theorem 4.3.1 Assume that f:IR™ - IR is a lower semicontinuous func-
tion. If the set

(43.1) # = {pe "] su lip, o)~ f(a)] < +oo

is open, then the minimization problem (4.1.1)-(4.1.2) has a solution.

This result is a consequence of a generalization of the Lyapunov theorem
(see, for example, [23] for a treatment of this subject).

It is easy to verify that, if f satisfies the superlinearity condition (4.1.3)-
(4.1.4), then H = IR™. Indeed, for every p € IR™ there exists R > 0 such
that
£() _ (e

lz| T e

(4.3.2) > |p|, for every |z| > R.

If we set M = max{|p|-|z| — f(z):|z] < R}, by (4.3.2) we have that:

{p, z) — f(z) <Ip| - |z] = f(z) < max{0, M},

for every ¢ € IR™, and then p € H.

We will show that the family of functions for which the set H is open
includes the class F of all lower semicontinuous functions f : R™ — IR
satisfying

(4.3.3) lim FE¢(z) = —o0,

|z[—+oc

for every selection E¢: IR™ — IR of the multifunction

(4.3.4) Er(z) = {f"(z) — (p, =) [p € OF** ()}

Clearly, f € F if and only if f** € F. Moreover, by property (iii) in Propo-
sition 4.2.1, every selection Ef coincides for almost every z € IR™ with
™ (z) — (Vf**(z), z), and then it is measurable.
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Before proving the main theorem, we give a characterization of the class F
that involves only the points of differentiability of the functions. In particular,
this implies that the property (4.3.3) is independent of the selection.

Proposition 4.3.2 Let f:IR™ — IR be a convex function. Then f € F if
and only if the following property holds:
(P) impyo0[f(zn) — (Vf(zn), Tn)] = —o0, for every sequence (z,) C D(f)

such that |z,| — +oo.

Proof. Clearly, if f € F then f satisfies (P). Suppose now that (P) holds,
and prove that f € F.

Let E be a selection of £f. Let (z") be a sequence of points of IR™
such that |z"| — +4oo for n — +co, and let p® € 8f(z™) be such that
E(z™) = f(z™) — (p", z™), for every n € IN.

Fix n € IN. By Remark 4.2.2, there exist p} € 9f(z"), y}7 € D(f) N
Bi(z™),je€J ={1,...,m+ 1}, and A" € Epnqq such that

m-+1

(4.35) p"= > X'p}, |V} -p} <

j=1

1

I_a:—n—l———{:—i’ fOI' every j € J.

The last inequality implies that

2 onoon lvj| :
(4.3.6) (VT —pF, v < o 11 <1, foreveryj€J.
By the convexity of f we have that
(437)  f(&") - F(y") < (p7, @ —y}), for every j € J.

Using (4.3.6) and (4.3.7), for every 7 € J we obtain

f(@™) —(p}, ") =[f(=") = Fy])] + fly]) — (P}, 2" =y )+
(4.3.8) +(VI(w]) =07, 97) —(VFf(y]), v]) <
<E(W})+(Vf}) —p},v}) < E(@y})+1.
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Recalling (4.3.5), and using the estimate (4.3.8), one obtains

m+1
BE(2") = f(=") = (p", 2") = Z AT (™) — (P}, 2")] <
(4.3.9) . =
<D NE@N+1< a1,

where p™ = max{E(y}):j € J}.

For every fixed j € J, we have that y? € B;(z") for every n € IV, hence
ly?| — 400, as n — 4o00. Moreover, y? € D(f) for every n and 7, hence
property (P) implies that u® — —oo for n — +o00. By the estimate (4.3.9) we
have that
(4.3.10) im E(z")=-o0.

n—-+oo

Since (4.3.10) is true for every diverging sequence (z”) C IR™, one has

(4.3.11) lim E(z)=—o00.

|z]—+o0

But now we have that (4.3.11) holds for every selection E of £, hence f € F.
U

Now we will prove two lemmas concerning the structure of the set H.
These results, together with Theorem 4.3.1, will imply an existence result for
the problem (4.1.1)-(4.1.2) with f € F.

Lemma 4.3.3 If f € F is convex, then the set H coincides with the set
S = 0f(IR™). Moreover, these two sets are open.

Proof. Letp€ §,andlet y € IR™ be such that p € §f(y). By the convexity
of f we have that, for every z € IR™,

(p,z)— f(z) <(p, y) — fv),

and then p € H.
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Now let p € S. For every R > 0 we can apply Lemma 4.2.4 to the
multifunction F = 8f — p, obtaining y € R™, |y| = R, and g € 9f(y) such
that (¢ —p, y) <0.

Hence, we can construct a sequence (.;en,pn), n € IN, such that im, |z,| =

400 and
Pn € 0f(2n), (Pn—p> @) <0, for every n € IN.

Let E be a selection of the multifunction £y, defined in (4.3.4), such that
E(zy) = f(zn) — (pn, Tn), for every n € IN. We have that

(pa :I:n> - f(mn) - (P—Pn 3 mn) - E(wn) > —E(:Bn) — +00, T — +00,

and then p ¢ H.

It remains to prove that S is open. We consider a sequence p, € S,
n € IN, p, — p, and we will prove that p ¢ S. Clearly, we can assume that
Prn # p for every n € IN, otherwise we are done. By Lemma 4.2.4 applied to
the multifunction F' = 8f — p,, we have that, for every n € IV, there exist
z, € IR™ and g, € 0f(z,) such that

<Qn — Pn :I:n> <0.

Now, let E be a selection of & such that E(z,) = f(en) — (qn, za), for
every n € IN. Since lim, |z,| = +0c0, we have that the r.h.s. of the following
inequality

(p, wn) - f(xn) = (P—Pn ) wn) + <Pn —4n, mn) - E(mn) > -1~ E(QZ,,,)
tends to 400 as n — 400, and then p € S. UJ

Lemma 4.3.4 Assume f:IR™ — IR is lower semicontinuous, and let H and
H™* be respectively the sets defined in (4.3.1) for f and f**. Then H = H**;
in particular, if f € F, then H is open.
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Proof. The inclusion H** C H is trivial: indeed for every z € IR™ we have

(p,z) — f(z) 2 (p, =) — f(=).

Now suppose that p & H**. By the very definition of H**, there exists a
sequence (z") C JR™ such that

(4.3.12) im [(p, z") — f™(z")] = +o0.

n—-+o0o
Fix € > 0. Since, for every £ € IR™,

m—+1 m-+1

FrE =inf S Y NF(E)] DA€ =6 A€ Emya ¢,
j=1 j=1

then for every n € IV there exist m? €ceR™, 7=1,...,m+1, and An e E
such that

m-+1 m-+1
SNl =2", (") > D ATf(a}) e
j=1 j=1

This implies that

m-+1

(4:3.13) (p, 2" = F7(a") < D Ajllp, o) — f=7)] +e.

By (4.3.12) and (4.3.13), there exists at least one index j € {1,...,m + 1}

such that, up to a subsequence,

lim [(p, o7) — f(a7)] = +oo.

n—-+oo
Hence p ¢ H, and then we have the other inclusion H C H**. U

The following theorem is a direct consequence of Theorem 4.3.1 and

Lemma 4.3.4.

Theorem 4.3.5 If f € F, then the minimization problem (4.1.1)-(4.1.2)

has a solution.
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Chapter 5
Existence and regularity results for non—coercive varia-
tional problems

5.1. Introduction

It is well known that, if L is a continuous function, such that ¢ — L(t,z,¢)

is convex and superlinear, then the variational problem

T
(5.1.1) min {/ L(t,u,u')dt I u € WH([0,T], R™), uw(0) = a, u(T) = b} ,

has a solution (see for instance [23]).

In recent years, the possibility of relaxing the convexity or the superlin-
earity assumption was investigated by many authors.

Some existence results for non—convex coercive problems were obtained
in the case L(t,z,¢) = g(t,z) + f(¢,£) (see for instance [16], [41], [47] and
the references therein). In particular, in [16] it was prbved that the convexity
assumption on f(¢,-) can be replaced by the condition of concavity of g(t,-).

More recently, some techniques were developed in order to treat convex
but non-coercive problems. In this case, even if the functionals considered
are lower semicontinuous in the weak topology of W**([0,T],R™), the direct
method of the Calculus of Variations can not be applied, due to the lack of
compactness of the minimizing sequences.

In [26], it was studied the problem (5.1.1) with L continuous, bounded
from below and convex with respect to £, the superlinearity being replaced by a
weaker condition which permits to construct a relatively compact minimizing
sequence, obtained by considering the minima of suitable coercive approxi-b
mating problems. The main step in the proof of the existence result in [26]

was to show that every minimum point of the approximating problems solves
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a generalized DuBois—-Reymond condition, which implies that the minimizing
sequence is bounded in the space W°°([0,T],R™).

A similar approach was used in [18] for the autonomous problem with
Lagrangean L(t,z,¢) = g(z) + f(£), where g is a nonnegative continuous
function, and f € C'(JR™,IR) is a strictly convex function bounded from

below, such that

(5.1.2) hm [f(&) — (Vf(£), &) = —oo.

|§l—+o0

In that paper, it was proved that, for every rectifiable curve C in JR™ joining
a to b there exists a unique solution to the problem (5.1.1) restricted to the
class of all absolutely continuous parameterizations u: I — IR™ of C. Thus,
every element u, of a minimizing‘ sequence can be replaced by the minimum
corresponding to the curve parameterized by u,. It can be shown, still using
a DuBois—Reymond condition satisfied by those minima, and by (5.1.2), that
this new sequence is bounded in W*°([0,T],IR™), so that there exists a
minimum point for (5.1.1) in this space.

In Chapter 4 (see [28]) both the superlinearity and the convexity assump-
tions were dropped for Lagrangeans of the form L(t,z,¢) = (a(t), z) + f(£)
where f is a lower semicontinuous function whose convexification f** satisfies
(5.1.2) for every diverging sequence of points of differentiability of the Lip-
schitz continuous function f**. The existence of a minimum is proved by a
technique relying only on a Lyapunov type theorem due to Olech (see [43]).

For other results concerning non—coercive problems we mention (3], [6]
and [7].

In this chapter we consider non—autonomous problems of the form

el Li(]

T
(5.1.3) min { / lg(t,w) + £(t,u)] dt | u(0) = a, w(T) = b}

with neither coercivity nor convexity assumptions. More precisely, we intro-

duce the class £ of all functions ¢ : [0,7] x R™ — IR, bounded from below,
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such that (-, ¢) is Lipschitz continuous for every fixed £ € IR™, (%, -) is lower
semicontinuous and satisfies

hm [ (t", ") — (V™ (t",£"), £*)] = —o0

n—-+oo

for every sequence {t"} € [0,7'] and for every choice of points £" of differentia-
bility of ¥**(¢", ) such that lim, |¢"]| = +o0o. We show that, if f € £ and there
exist two constants A and B, B > 0 such that f(¢,€) > —A + B|¢| for every
(t,€) € [0,T] x R™, and g(,z) is a continuous function, Lipschitz continuous
with respect to t, concave with respect to z, satisfying g(¢,z) > —a — B|z| for
every (t,z) € [0,T] x IR™, and for suitable constants « and 0 < 8 < B/T,
then the problem (5.1.3) has a solution in the space W1>°([0,T],JR™). This
result is the analogue for a class of non—coercive functionals of the one in [16],
but it is not a generalization of that result, due to the additional requirement
of the Lipschitz continuity of the Lagrangean with respect to the variable 1.
On the other hand, this extra regularity assumption allows us to obtain the
necessary conditions that, used at an intermediate step, also yield a regularity
result for the optimal solution, interesting by itself.

As a first step we prove an existence result for (5.1.3), requiring that
f be convex with respect to ¢ and dropping the cc;ncavity assumption on
g. This can be done following [26] and making suitable changes, due to the
the fact that the Lagrangean is not bounded from below. The second step,
linking the convex to the non—convex case, is based on a result concerning the
closure of the convex hull of the epigraph of functions whose convexification
is strictly convex at infinity (i.e., the graph of the convexification contains no
rays). This result is an extension of the classical theorem valid for superlinear
functions (see [35]). We remark that the notion of strict convexity at infinity
was also used in [27] in order to study non—coercive problems of the type (5.1.1)
with the additional state constraint ||u||ze~ < R. We shall prove that every
function in the class £ is strictly convex at infinity for every fixed {. Hence,
by using the previous results and the Lyapunov theorem on the range of non-

atomic measures, the existence result for the non-convex problems follows.
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The regularity of the solution of (5.1.3) is a consequence of the regularity of

the solution to the relaxed problem.

5.2. Preliminaries

Given a function ¢:JR™ — IR, we shall denote by dom(%) its effective
domain, defined as the subset of IR™ {{ ] P(€) < +oo}, and by epi? its
epigraph, that is the set:

epivp = {(z,a) € R™ x R | ¢(z) < a}.

If : IR™ — IR is Lipschitz continuous in a neighborhood of a point &, we
shall denote by Gv(£) the generalized gradient of ¥ at ¢, defined by

i—+tcc

(5.2.1) 0Y(€) = co { Hm V(&) | &—¢, e D(¢)} )

where D(¢) denotes the set of points of differentiability of . We recall
that a Lipschitz continuous function 1 is almost everywhere differentiable
in int(dom(¥)).

A function 7: IR™ — (—o0,+0o0] is convex if, for every £,7 € JR™ and for
every A € [0,1], we have (A + (1 — A)n) < Ap(€) + (1 — A)p(n). We say that
1) is concave if —1) is convex.

Given a function v:R™ — (—oo,+00], we shall denote by %* its dual
function, defined for every p € IR™ by

P*(p) = sup {{p, &) —¥(&)}-
eRm

4

It is well known that the bidual function %** coincides with the convexification
of 7, which is the largest convex function ¢ satisfying ¢ < 7.

If ¥:IR™ — (—o00,+00] is convex, then the generalized gradient of

coincides in int(dom(t)) with the subgradient of ¢ in the sense of convex

analysis, defined at every point ¢ € dom(%) by

(5.22) O%(¢) = {pe R™ | $(n) > (&) + (p, n — &), for every n € R™}
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(see [24], Proposition 2.2.7). By definition, we set 9y(¢) = @ for every & ¢
dom(%). We recall that, if ¢ is differentiable at ¢, then 9(¢) = {V¥(£)}.
In the following proposition we collect some well known properties of the

subgradient (see [24] and [35]).

Proposition 5.2.1 Let 9: R™ — (—o0,+o0] be a convex function. Then
the following properties hold:
(i) if 4 is bounded from above in a non-empty open set A, then v is locally
Lipschitz continuous in A;
(i) for every & € IR™, the set 9¢({) (possibly empty) is convex and closed in
R™;
(i) if ¢ € int(dom(v)), then 8v(€) is a non—empty compact set.

5.3. The closure result

In this section we shall prove a result concerning the closure of the convex
hull of the epigraph of functions possibly without superlinear growth.
We recall the notion of strict convexity at infinity, introduced by Clarke

and Loewen in [27].

Definition 5.3.1 A convex function 1: IR™ — IR is said to be strictly convex
at infinity if its graph contains no rays, that is for every v € R™, v # 0,
and for every £ € IR™, the function ¥, ¢(s) = ¥ (sv + ¢) has the following
property: for every sy € D(1,,¢) there exists s1 € D(v,¢), s1 > sy, such that

by e(s1) > ¥, ¢(s0)-

Remark 5.3.2 It is easy to see that, if : IR™ — IR is convex, then 1 is
strictly convex at infinity if and only if 9¢*(p) is either empty or bounded for
every p € IR™.

Definition 5.3.3 We shall denote by G the family of all lower semicontin-
uous functions v : IR™ — IR such that ¥** # —oo and ¥** is strictly convex
at infinity.
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Remark 5.3.4  Clearly, every strictly convex function is strictly convex at
infinity. Moreover, every lower semicontinuous superlinear function 1: R™ —
IR belongs to G. Indeed, denoting by ¢ the convexification ¥ **, for every fixed
v, § € R™, v #0, by (5.2.2) it follows that the inequality (Ve(sv+¢), sv) >
o(sv + &) — ©(&) holds for every s € D(p, ¢). This implies that

0, ¢(s) = (Vo(sv+€),v) > plsv + i) — (P(é), for every s € D(py¢), s > 0.

Since 9 is superlinear, the last term tends to +co as s goes to +ooc.

Lemma 5.3.5 For every function ¥ € G, satisfying ¥ > 0 and ¥(0) = 0,
there exist two positive constants C, p such that )(¢) > C|€| for every |¢]| > p.

Proof. We can certainly assume that 9 is convex, for if not, we replace % by
¥**. We start by proving that 9 is coercive, that is 1(¢) — oo as €| — +oo.
Since 1) is convex, the sets 1* = {£ € R™ ’ ¥(£) < a} are convex subsets of
IR™ for every a > 0. By contradiction, suppose that there exists a > 0 such
that ¥® is unbounded. Since %° is convex, it contains at least one half line
{sv l s > 0} for some v € IR™, v # 0. This means that 1, (s) < a for every
s > 0. Since 7, ¢ is an absolutely continuous function, then for every 7 > 0

we have

0 < Buo(r) — ua(0) = / %! (o) do.

Hence, there exists sy € D(,,0) N [0,7] such that 1] ,(sy) > 0. Since ¢
is strictly convex at infinity, there exists s; € D(¥, ), 81 > sy, such that
¥, 0(51) > 0. By the convexity of ¢, ¢ it follows that

Pu.o(s) 2 Puo(s1) + (s —s1)¥,, ¢(s1), for every s > 0,

and this implies that lim, 1 o %,,0(s) = +o0, in contradiction with %, < a.

Since 9 is coercive, there exist two positive constants p, § such that

P(n) 2 6, forall [y = p.
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If |£] > p, let us define A = p/|¢| and 7 = A{. By the convexity of ¥, and
recalling that (0) = 0, we get

1 _ %(n) 6
¥(€) = X%b(ﬂ) = Tlfl > ;lfla

so that we have done by choosing C = §/p. O

We are now in a position to prove the closure result. The proofis based on
the fact that, if f belongs to the class G, then for every support hyperplane r
of £**, the function f —r belongs to G. Applying the estimate of Lemma 5.3.5
to this function, we can follow the lines of the proof of Lemma IX.3.3 in [35].

Theorem 5.3.6 For every f € G the set coepif is closed.

Proof. Let (£,a) € 8(coepif), where 35S denotes the boundary of the set
S, and let 7(n) = (¢, n) + d be an affine function such that the hyperplane
H = {(n,7(n))} weakly separates coepif and the point (£,a). Let us define

the function

¢(n) = fn+€) —r(n+&).

We have ¢**(n) = f**(n+ &) — r(n + £), ¢** > 0, ¢**(0) = 0. Moreover, for
every v € JR™, v # 0, for every n € IR™ and for every s € D( E+n
(¢5%) (s) = (fi%1y) (8) = {c, v). Since f** is strictly convex at infinity, then

so is ¢**. By Lemma 5.3.5, there exist two positive constants C, p such that

} we have

(53.1) (1) > Clul, for every |n| > p.

Notice that (£,a) € coepif if and only if (0,0) € coepi¢. Moreover,
(¢,a) € O(coepif) if and only if (0,0) € O(coepi¢). Hence, to prove the
proposition, it suffices to show that (0,0) € coepi@.

Let (€™,a") € coepi¢ be such that lim,(¢{",a") = (0,0). By the charac-
terization (4.2.1) of the convex hull, for every n there exist A" € Emyo and
(£7,a}) € epig, j=1,...,m + 2, such that

m+2

D AR(ERa}) = (€7,a").
j=1
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By the very definition of epigraph it follows that

m-2 m-+2
(5.3.2) a" =Y Aa}> E AT(ET).

j=1 ‘
Moreover, (5.3.2) and the fact that ¢ > ¢** imply that a™ > zm+2 AL (E7)-
Since ¢** > 0, the inequality

(5.3.3) & > X1g(E])

J

holds for every 7 =1,...,m+ 2. Let J C {1,...,m + 2} be the set of all j
such that {|¢7|}, is unbounded, and let I = {1,...,m +2}\J. By passing to
a subsequence, we can assume that there exist EJ-, 7 € I, and = Eomya, such

that
lim [€}] = +oo, j €,

n-—-4oc
Jdim & =F, jel,
hr_xg Ab=12;, je{l,...,m+2}

For every j € J, we have |[£}]| > p for n large enough, and then from

(5.3.1) and (5.3.3) it follows that a™ > CAT|€7|. Since lim, a” = 0, we get
(5.3.4) ngrfoo ATIEF =0, jeJ.

From (5.3.4), and recalling that lim, £ = 0, we deduce that

m-2

D NE = lm > Aje = lim ZA" - | =
(5 3 5) JjETI jeI jeJ
- n-—>+oo ZAn j -
JjEJ

Moreover, since im, A} = 0 for every j € J, we obtain

(5.3.6) > A= lim AT =1.

- n—-4o0
jel jeI
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Since ¢ is a non-negative lower semicontinuous function, we get

(5.3.7) 0< D> X¢(E;) <liminf 3 ARG(¢F) < liminfa™ = 0.

JETI jel
There is no loss of generality in assuming that A; > 0 for every j € I, hence
(5.3.7) implies that qS(ZJ) = 0 for every j € I, that is (Ej,O) € epi¢ for every
7 € I. Thus, by (5.3.5) and (5.3.6), we can conclude that (0,0) belongs to
coepi . L]

Now we state two direct consequences of Theorem 5.3.6.
Corollary 5.3.7 If f € G, then

m-+1 m-1

FE =min ¢ D X&) | DN =€ X € Ema
j=1 j=1

for every £ € IR™.
Proof. See [35], Lemma IX.3.3. » ]

We recall that a function f: I x JR™ — IR is said to be a normal integrand
(see [35]) if f(¢,-) is lower semicontinuous for a.e. t € I, and there exists a

Borel function f:I x JR™ — IR such that f(t,-) = f(t,-) for a.e. t € I.

Corollary 5.3.8 Let f:I x IR™ — IR be a normal integrand, and suppose
that f(t,-) € G for every t € I. Then for any measurable mapping p: [0, T] —
IR™, there exist a measurable mapping : [0, T] — E,,+1 and m-+1 measurable

mappings g;:[0,T] — IR™, such that

m+1 m-+1
2 e =pt), >0 A6 a(9) = £ (2 p(0),

for almost all ¢t € [0,T].

Proof. See [35], Proposition 1X.3.1. U
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5.4. Existence results for variational problems

In this section we shall show that the existence result proved by Cellina
and Colombo in [16] holds even for functions of the class £ defined below. In
the following, the convexification and the gradient of a function ¥(t,£) are

understood with respect to £.

Definition 5.4.1 We shall denote by £ the family of all functions ¥:1 x
IR™ — IR, bounded from below, such that v(-,¢) is Lipschitz continuous for

every fixed £ € IR™, v(t,-) is lower semicontinuous for every fixed t € I, and

(5.4.1) plm sup sup {v**(t,€) = (p, &) | p€ O™ (1,€)} = —o0.
—Toe tel
|€1>R

The following proposition gives a characterization of the family £. The

proof is similar to the one of Proposition 4.3.2.
Proposition 5.4.2 The condition (5.4.1) in Definition 5.4.1 is equivalent
to:

(5.4.2) im [ (8%, €7) — (Vo™ (t",€"), €7)] = —oo

for every sequence (t",£") € I x IR™ such that €™ € D(¢**(¢",)), im, |{"] =
+00.

Proof. We have to prove that (5.4.2) implies (5.4.1), the other implication
being trivial. Let us denote by x(R) the argument of the limit in (5.4.1), and
let {R,} be a diverging sequence. For every fixed n € IV, by definition of
supremum, there exists (¢",£™,p") € I x IR™ x IR™, with p™ € Ogp™*(",£")
and |£"| > Ry, such that

(5.4.3) x(Ra) < 9™ (%,6%) = (p", €") + 1.

From (5.2.1) and (4.2.1), there exist p} € 9¢¢**(¢",£"), £} € D(¥™(t",-)),
with [§J" — ¢ <1,5eJ={1,...,m+1}, and A" € Epua1, such that

m-+1

pt = Z )\;-Lp;-b, va**(tn’é}z) _p;zl < for‘ every j € J.
j=1

_
&+ 17
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For every j € J, the last inequality and the fact that I€F —£€"| < 1 imply that

€7
€rf+1

(5.44) (Ve (1, €7) ~ 8}, €3)] < <1.

By the convexity of 1**(¢",-) we have

(545) (€M) — (", €F) < (), € — €F), for every j € J.
Using (5.4.4) and (5.4.5) we obtain

(54.6)  $™(1",€7) — (B, €") (N, E]) — (VU (7, €7), €7) + 1.

Multiplying (5.4.6) by A} and summing over j it follows that **(t",£") —
(p™, €") < p"; where p™ = 1+ max;{y™ (", €7) — (V™ (t",€7), €7)}.

Since im, [£}| = 400 for every j € J, (5.4.2) implies that lim, p” = —oo.
Hence, by (5.4.3), it follows that

lim x(R,) < lm (p"+1)= —o0.

n—-oo +oo

Since  is a monotone non-increasing function, (5.4.1) holds. U

Remark 5.4.3  The Definition 5.4.1 agrees with the one given in [18] and
in Chapter 4 (see [28]), respectively in the case of convex time—independent

smooth functions and non-convex time-independent functions.
Lemma 5.4.4 Ifv € &, then v(t,-) € G for every t € I.

Proof. Let us fixt € I, and denote by ¢ the convexification with respect to
£ of ¥(t,€). By Lemma 4.3.3, the effective domain dom(p™*) of ¢* is an open
subset of JR™. Hence, by Proposition 5.2.1(iii), d¢*(p) is either bounded, if
p € dom(y¢*), or empty, if p ¢ dom(p*). By Remark 5.3.2, the result is thus
proved. O]
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Lemma 5.4.5 Let o:IxIR™xIR™ — IR be a lower semicontinuous function,
Lipschitz continuous with respect to the first variable. Assume that ¢(t,z,-)
is convex for a.e. t € I and for every * € IR™, and that there exist three

constants C;, 1 = 0,1,2, such that
(5.4.7) lv| < Cole(t,z,&)| + Cilz| + Ca,

for every (t,z,€) € I x R™ x IR™ and for every v € 8;p(t,z,¢), where 8;p
denotes the generalized gradient of ¢ with respect to t.

Let w € WH1(I,IR™), and assume that the function t — o(t,u(t),u'(t))
belongs to L*(I). Then there exists ky € L*(I) such that

(52, u(t), (8) = (o1, u(t), ()] < kolBsz — i,
for every t,s1,55 € I.
Proof. For every fixed t1, ¢, € I, let us define the function
g(s):—'_ 190(751+5daw75)_¢(tlam7€)|7 SE[O:l]a
where d = 3 — ;. By (5.4.7), it follows that for a.e. s € [0,1]
9'(s) < |dl|Gep(ts + sd,z,€)| < |d|(Cog(s) + Colp(t1,2,8)| + Cilz| + Ca).

We can apply Gronwall’s inequality to the non-negative absolutely continuous

function g, obtaining

lp(t2,2,8) — o(t1,2,8)| = g(1) <
< [tz — t:11e%T (Colp(t1,2,€)| + Cilz| + C2).
This inequality, with ¢; = ¢ and #, = sy, implies that
(5.4.9)  lo(s1,2,8) < lp(t,2,8)] + Te“T (Cylo(t,2,€)| + Cilz| + Ca).
Again by (5.4.8), with £, = sy, t; = s5, and by (5.4.9), it follows that
lo(s2,2,€) — ¢(s1,2,8) < |s2 — s1](Colep(t,2,€)] + Cila| + Ca),
where C; = C;e°T(1 + TCyeT), i = 0,1,2. Finally, by hypothesis, the

function

(5.4.8)

ko(t) = Cole(t,u(t),u' (1)) + Cilu(t)| + Cs

belongs to L'(I), completing the proof. [
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Definition 5.4.6 We shall say that § € C*((0, +o0),IR) is a Nagumo func-

tion if 8 is convex, increasing and it satisfies im, 40 0(7)/7 = +o0.

We begin the study of minimization problems, starting with an existence
result for convex functionals. We collect here the basic hypotheses on the
integrand.

(Hy) f € &, and f(¢,-) is a convex function for every ¢ € I.

(H;) There exist two constants 4 and B, with B > 0, such that f(t,€) >
—A + BJ¢]| for every (t,€) € I x IR™.

(H,) g:I x R™ — IR is Lipschitz continuous with respect to the first variable,
continuous with respect to the second, and there exist two constants a, 3,
with 0 < 8 < B/T, such that g(t,z) > —a—f|z| for every (t,z) € I x IR™.

(H3) There exist three constants Cj, 2 = 0,1,2, such that the condition (5.4.7)
holds with o(t,z,&) = g(t,z) + f(¢,§).

Remark 5.4.7 If f € £ is independent of ¢, then it is easily seen that
Lemma 5.3.5 and Lemma 5.4.4 imply that condition (H;) is always satisfied
for suitable constants 4, B, with B > 0.

Theorem 5.4.8  Let f and g satisfy the hypotheses (Hy), (H1), (Hz), (Hs).

Then there exists a solution @ to the problem
(5.4.10) min { F(u) | w € WH(I,R™), v(0) = a, u(T) = b}

where

Flu) = /I £t ! () + gt u(t))] de

Moreover i belongs to W°°(I,IR™) and satisfies for a.e. t € I

G411 fGFE) - (ple), W) + st al) = e+ [ w(r)ar,
where (v(t),p(t)) € (8:F(¢,4'(t)) + O:eg(t,4(t)), O f(t,4'(t))) for almost every
t € I and c is a constant.

Proof. The proof follows the lines of the one of Theorem 3 in [26], with some

changes due to the fact that in this case the lagrangian is not bounded from
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below. As in [26] one can prove, using the De Giorgi’s semicontinuity result
(see [14]) and the Dunford—Pettis criterion of weak compactnessin L!(I,IR™),
that for every Nagumo function § and for every I > 0 there exists a solution

u; to the problem
min { F(u) | u € ACH(I, R™), uw(0) = a, u(T) = b} ,

where AC}(I,IR™) denotes the class of all function w € W'(I,IR™) such
that ©(u) <, with O(u) = [, §( [}dt. Let us set Vy(l) = F(uy).
One can easily check that, if Vg(l) = Vy(ly) for every | > [y, then u,, is a

solution to the problem
(5.4.12) min{F(u) | u € WH'(I,R™), O(u) < +o0, u(0) = a, u(T) = b} .

Finally, as in [26], if we are able to prove that u;, belongs to W1'>°(I,R™),
then we can conclude that such a function is a solution to (5.4.10).

Thus it remains to prove that Vj is eventually constant and that, for
! large enough, u; belongs to W1°(I,IR™) and satisfies (5.4.11). Since Vj
is lower semicontinuous, for every [ > 0 there exists a proximal subgradient
(see [25]) of Vi at I and, since Vj is nonincreasing, it is nonpositive. If Vj is
not eventually constant, by Proposition 6.1 in [26], there exists a diverging
sequence {l/;} such that the proximal subgradient of Vj at I, takes the form
—7k, with 7 > 0. Moreover, it is easy to check that, if we set up = u;,, then

O(ug) = li, so that
(5.4.13) kh'rf lui]l poe > k]jxp 0~ (1,/T) =

By definition of r; and the fact that O(uy) = i, it follows that for every

k € IN there exists a positive constant ¢4 such that, if we define
G(u) = F(u) + m0(u) + ax|O(u) — O(u)|?,

then we get that G(ur) < G(u) for every u admissible for (5.4.12) and such
that ©(u) is sufficiently near to ©(uy) (see [26]). By (H;) and Lemma 5.4.5,
it follows that there exists ky € L'(I) such that for every s;,85,2 € I

|F(s1,ui(8) + g(s1,uk(t)) = fs2,ui(t) — g(s2, ur(t))] < ko(2)ls1 — 52,
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so that we can apply Theorem 5 of [26]. Thus we obtain that u satisfies
t

(:4.18) Byt u(0) + oltu(®) + reBa(ub(0)) = e+ [ wulr)dr,
: 0

where By(t,ul(t)) = F(ub(8)) — (pu(t), wl(2)), Bols) = 0(s) — s8/(s), cx is
a constant, and (vi(t),px(t)) € (8 f(t,ur(t)) + 0:g(t,ur(t)), O f(t,u}(1))) for
ae. t €l

Moreover there exists M; > 0 such that ||ugl|ze < My for every k € IV.
Actually, if there exists ¢ € I such that limsup, |uz(tx)| = +o0, then

Tk
/ ul(t) dtl = lim sup |uk(tx) — a| = +o0,
0 k—+oo

Lim sup/ |u)(2)] dt > lim sup
k—+4o0 JI k—-+o0

while, if we define uo(t) = a + £t, with £ = (b — a)/T, then u, is admissible
for (5.4.12), F(ug) < +o0, and
(5.4.15) F(uo) > F(ug) > (-4 — )T + Bllugzr = Blluellz: 2

> A+ (B = BT)|uillz

so that, by (H3), {«}} must be bounded in L*(I,IR™).
The boundedness of {uz} in L°°(I,IR™) and the continuity of g guarantee
that there exists M, such that

(5.4.16) lg(t,ur(t)] < M2,

for a.e. t € I and for every k. Moreover, by (H3) we obtain
(5.4.17)

/Ot vi(s) ds

< [ [Gula+ Bluats)] + £lo,ui(e)) + glos (o)) + Cakus()] + G ds.

< / [Co | £(s,ua(s)) + gls, ur(s))] + Calui(s)| + Ca] ds <

where C; = Cy8 + C; and Co = Cyla| + Cy. Without loss of generality we
can assume that f is positive, so that, thanks to (Hz), it follows that for every

ke IN

(5.4.18) f(s,u%(8)) + g(s,ur(s)) + o+ Blur(s)] >0, ae sel.
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By (5.4.15), (5.4.17) and (5.4.18) there exist M3 > 0 and two constants (,,
C> such that

/Ot ve(s) ds

By (5.4.14), (5.4.16), and (5.4.19) we obtain

(5.4.19) < CoF(ug) + C'1|fuk[|L1 +Cy < M, , foreverytel.

E(t,u(t)) + i Bo(lui(t)]) < ex + Mo + M,

for every ¢ € I and for every k € IN.

We claim that it is not possible that there exists a subsequence of {ek},
still denoted by {ci}, such that limy ¢ = —oo. Indeed, if this is the case, then
for every ¢t € I we should have

(5.4.20) Jm Byt (1)) + e By (i (1)]) = —oco.

Since f € £ and 6 is superlinear, (5.4.20) implies that lim; [ui(2)| = +oo for
every t € I, which, by Fatou’s Lemma, contradicts the boundedness of u) in
LY(I,IR™).

Thus there exists ¢* such that ¢; > ¢* for every k. From (5.4.14) we
obtain, for every ¢ € I,

(5.4.21) E(t,ul () + riBo(|uk(t)]) > ¢ — My — M; .

Now let us suppose that for every k there exists ¢; € I such that im supy, [€x] =

+00, where {¢ = u}(tx). Since f and 6 belong to &, we have
Hminf [Ep(ty, &) + i Eo(|8k])] < fminfsup {Ey(t, &) + i Ea([€4])} = —o0,

in contradiction with (5.4.21). This implies that ||u} 1> is bounded, which
contradicts (5.4.13).

So we can conclude that Vjy is eventually constant. Hence for k sufficiently
large up € W1°°(I,IR™) is a solution of (5.4.12). Moreover rp = 0, so that
uy satisfies (5.4.11). Then the proof is complete. U



86 Non-convex problems

The last part of this section is devoted to the study of the non—convex
case. The hypotheses (Hy) and (Hj) will be replaced respectively by:
(Hy) fek.
(Hj) There exist three constants C;, 1 = 0, 1,2, such that the condition (5.4.7)
holds with o(t,z,€) = g(t,z) + (1, €).
Notice that (H4) requires the Lipschitz continuity of f** with respect to
¢. The following two lemmas show that this conclusion follows from (H ,) and

(H;) For every R > 0 there exists a constant L such that

|F(t,€) — f(5,6)| < L|t —s|, for every t,s € I, and ¢ € Br.

Lemma 5.4.9 Let ¢ € £, and let us define, for every (t,p) € I x R™, the

set

W(t,p) = {£ € R™ | p € 8™ (2, €)}-

Then for every r > 0 there exists R > 0 such that for every (t,p) € I x IR™
the condition W (t,p) N B, # @ implies W (t,p) C Br.

Proof. Suppose, by contradiction, that there exist sequences (tn,pn) C I x
R™, (n.) C By, (¢2) C IR™, with lim, |é,] = +oo, such that, for every
n € IN,

(5.4.22) Pn € 8c™ (tnyMn), Pn € O™ (tn,€n)-
From (5.4.22) it follows that, for every n € IV,

(5.4.23) 'Qb**(tnaﬂn) - (pn y 77n> = ¢**(tn’£n) - (Pn ’ 5”) :

Since (7,,) is a bounded sequence, there exists a constant C such that the left

hand side of (5.4.23) is bounded from below by C. Thus

(5.424) € <4 (tnrén) = (P, €n) < x([€n]), for every n e IV,

where x(R) is the argument of the limit in (5.4.1). Since lim, |€n| = +o0,
from (5.4.1) we have that lim, x(|¢z|) = —oo, which contradicts (5.4.24). U
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Remark 5.4.10 Let us fix £ € R™. Let t € I, XA € Epmtr, ¢& € IR™,
j=1,...,m+ 1 satisfy

m-+1 m-+1

Fr(t,8) = thug s—ZM@

Since for every j there exists p; € 8:f**(¢,€) such that &; € W(t,p;), by
Lemma 5.4.9 we obtain that there exists R > 0, depending only on |€|, such
that ¢; € Bg for every j = 1,...,m + 1.

Lemma 5.4.11 If f € £ satisfies (Hy), then f**(+,€) is Lipschitz continuous
for every € € IR™.

Proof. Let us fix ¢ € IR™, and consider ¢, s € I. By Corollary 5.3.7, there
exist A, g€ Emta, &,m; € R™, j =1,...,m+1, such that

m+1 m+1

£, €) = z Nf(6&) £ (s8) = D pif(s,ms),
j=1

and ¢ = Z]. A€ = Zj pjn;. Moreover, one has

m+1 m+1
f**(tag) S Z“]f(tan])a f**(37§)§ Z)‘Jf(‘s’é-_?)

Then, by Remark 5.4.10 and (Hy), there exists L > 0, depending only on |¢],
such that

m-+1

m-+1
F(s,6) = F7(,6) < >0 Alf(s,65) — f(1,65)] Xthw Lit—s|.
j=1

In the same way one obtains

m—+1

(€ — Z pilf(t,m;) — f(s,m;)] < Lit — s},

completing the proof. U
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We are now in a position to prove the existence result for the non—convex

case.

Theorem 5.4.12 Let g and f satisfy the basic hypotheses (Hy), (Hi),
(Ha), (Hj), (Hy), and assume that g(t,-) is concave for every t € I. Then the
problem (5.4.10) has a solution u € wte([0,T],IR™).

Proof. The proof follows the same lines of the one of Theorem 1 in [16]. It
is enough to use Theorem 5.4.8 to obtain a solution @ € W1*°([0,T],IR™) of
the relaxed problem, and to replace Lemma IX.3.3 and Proposition IX.3.1 of
[35] with Corollaries 5.3.7 and 5.3.8. Since @' € L*=([0,T],IR™), it is easily
seen, using Lemma 5.4.9, that we obtain a solution v € W1=([0,T], R™). U

Example 5.4.13 Consider an elastic, incompressible, isotropic, and homo-
geneous circular tube of inner and outer radius r; and 7, respectively. In [38]
it was shown that, if the tube undergo a helical shear deformation, expressed
in cilindrical coordinates as (r,¥,2) — (7,8 +w(r),z + #(r)), then the vector

function u = (¢,w) is a solution of the problem

min AL s | aten) = 0,0, w(r2) = o)}

weWLL([ry,re], JR?)

where f(r,&) =r-W (1/5% + 7'2{%) . The function W, possibly non—convex, is
related to the stored energy density per unit volume of the material. The only
physical assumption about its behaviour at infinity is limy— 400 W(k) = +o0.
It is easy to see that, if W satisfies the growth condition

aw*
Lm (W**(K:) — K- __._(l32> = —00,

K—>-+00 dr

then f € £. Moreover, if W is a Lipschitz function with at most polynomial
growth, then all the other assumptions of Theorem 5.4.12 are satisfied (with

g=0).
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