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Introduction and summary 3

1. Introduction and summary

The discovery of the high T; superconductivity in 1986 [1] has opened new perspec-
tives, not only from the obvious experimental and applicative point of view but also from
the theoretical point of view. This new kind of superconductivity is in fact supposed to be
based on a mechanism which appears to be completely new. To be more specific it seems
that the interacting fermions model on which is based the BCS theory of the standard
superconductors, is not adequate for the new phenomenon 2] 3].

The main peculiarity of this new kind of superconductors is the anisotropy. Their
atomic structure is in fact layered, the planes being made by Cu-O atoms. Above the crit-
ical temperature the resistivity for currents flowing in direction orthogonal to the planes
is from a hundred to ten thousand times 1arger than the resistivity parallel to the planes.
Below the critical temperature there is superconductivity in all directions. The anisotropy
is anyway manifest in the penetration of an external magnetic field (Meissner effect) which
is rather different in the different directions. What happens is that the penetration depth
is much bigger in the perpendicular direction than on the plane (for an elementary intro-
duction to the properties of the cuprate superconductors we refer, for instance, to [4]).

A rather intriguing theory has been proposed to explain this new kind of supercon-
ductivity. This theory is anyon superconductivity. As is known from 1982, see references
[5] [6], in two space dimensions bosons and fermions are not the only possible quantum
statistics as it is in the higher dimensions case. That is interchanging two of these two-
dimensional particles the total wavefunction can acquire any phase, and not only 0 or
7. These two-dimensional particles with this richer statistical property have been called
anyons by Wilczek. In a very naive way one can say that anyons, having statistical proper-
ties that stay between bosons and fermions, can be thought as fermions with an attractive
force between them, and can therefore undergo Bose condensation.

Tn 1988 Laughlin [7] [3] developed concretely this naive idea and argued that a system
of two-dimensional particles with a statistics intermediate between fermions and bosons
(semions), because of the statistical attractive force, could couple to form bosons and then
condensate. This idea has been further supported by mean-field computations [8] [9]. The
fractional statistics can be implemented by means of the coupling of the matter field to a
Chern-Simons gauge field where the field strength (the “Chern-Simons magnetic field”) is
proportional to the matter density. The mean-field view is that every particle carries on
top a small fraction of this “magnetic field” and this, by Aharonov-Bohm effect, leads to
the fractional statistics.

From this construction it is clear that, because of the Chern-Simons field, in an anyon

system parity is not conserved. Therefore if anyon superconductivity has to be the right
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explanation of high T. superconductivity, one should be able to test experimentally on
the cuprate materials the mentioned parity violation. Many experimental tests have been
proposed, see for example reference [10]. Indeed there are many experimental difficulties,
the main of which seems to be the impossibility of isolating one single layer from all the
others. This leads to measure chiral properties on the average of many different layers,
and of course there is no reason to expect that such average should be different from zero.
The only experiment which measures locally the chirality of a layer is that of reference
[11]. A muon is placed very close to one layer and the variation of its magnetic moment is
measured. This experiment gave so far no sign of chirality. This perspective remains thus

at a rather speculative level.

In this thesis we analyse a model which takes its inspiration on the above anyon
superconductivity arguments, without attempting a definite comparison the real high T,
materials. Rather our aim is to explore theoretically possible scenarios alternative to the
standard theory of superconductors. We consider an effective Landau-Ginzburg lagrangian
living on a two-dimensional surface which describes a quantum fluid and analyse its prop-
erties. In our model a non-relativistic scalar field, playing the role of the Landau-Ginzburg
parameter, is coupled to a Chern-Simons gauge field [12]. This system is of course chiral

but its more peculiar feature is a gap in the energy spectrum of its excitations.

On the contrary, usual superfluids have a dispersion law which is linear in momentum
for small momenta and the spectrum is therefore gapless. This is due to the presence of
compressional excitations, the phonons. In our case the existence of the gap is precisely due
to the presence, in the intrinsic fluid’s dynamics, of a gauge potential, the Chern-Simons
field. This is a sort of Higgs phenomenon in which a massless excitation (the phonon)
disappears giving mass (the gap) to a gauge field. Because of the gap our fluid does not

admit compressional modes as phonons and is therefore incompressible.

Indeed we studied [13] the gap structure of a more general system. We have considered
the gauge field to be as general as possible, consistently with the general request of a
maximum number of two derivatives. In this way the gauge field has both a Chern-Simons
and a Maxwell term. Studying the gap structure we have found that in the general case
there are two propagating degrees of freedom, the scalar field and the gauge field, each one
having its energy gap. If the theory is of pure Maxwell type the two gaps are degenerate.
The degeneracy is resolved adding also the Chern-Simons term. If there is only the Chern-
Simons term one of the two gaps becomes infinity and therefore the corresponding degree
of freedom (that of the gauge field) is frozen and therefore, in this case, there is only one

physical degree of freedom, with a gap.
We have also studied the possibility of flowing of persistent currents in this general

system with both Chern-Simons and Maxwell terms. We have found that such currents
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are zero if the gauge field is purely Maxwell, and they are maximal in the case of pure
Chern-Simons. We take this as a possible motivation for considering the chiral case, and,

in fact, all the further analyses have ben performed on the purely Chern-Simons system.
We have studied the spectrum of the pure Chern-Simons theory in great detail. First

we have analyzed the elementary excitations of the fluid with a small deformation approach
[12] and then we studied the vortex excitations [12] [14]. We have found that both these
different kinds of excitations (elementary excitations and vortices) have the same gap.
Notice that the presence of the gap is a property which ensures the persistent supercurrents.
In fact, from a very heuristically point of view, since there is the gap the flow of the
persistent currents, is protected against external disturbances which try to reduce it, in
the sense that as far as the energy carried by the external sources is less than the gap, no

interaction, and therefore no dissipation, is possible.

The presence of the gap gives also rise to another consideration about the behaviour
of the quantum fluid in presence of an external constant magnetic field. For standard
superconductors the mechanism of the screening of external magnetic field is essentially
based on the Higgs mechanism. In fact the standard superconductors admit, as we said
before, the compressional mode which, being gapless, can be interpreted as the Goldstone
boson which gives mass to the external electromagnetic field. Having acquired a mass the

magnetic field decays with an exponential law, and so there is screening.

In our case things are different because, as discussed above, the gapless mode has
already been “eaten up” by the gauge field responsible of the internal dynamics of the
fuid. Thus there is no massless Goldstone boson which can provide the “mass term” for
the electromagnetic field. Nevertheless we were able to find [12] that the most energetically
favourable configuration for the system is that in which there is screening of the external
magnetic field. We also found that this screening is highly anisotropic. In fact we have
analysed this magnetic property of the system by considering a multilayered bulk built by
piling many two-dimensional layers in which lives our fluid. Then we have considered two
different cases. Firstly the one in which the magnetic field is pointing in a direction which
is orthogonal to the layers’ planes (and penetrates in the direction parallel to the planes).
Secondly the one in which the magnetic field points parallel to the layers (and penetrates
orthogonally). We have found that In the first case the penetration depth has the same
analytic expression of the penetration depth of the standard (isotropic) superconductors
of type II. Whereas in the other configuration we found a penetration depth proportional
to some fractional power of the dimension of the sample. That is we found a behaviour
which is in some respect qualitatively similar to what is the actual behaviour of the cuprate

superconductor we have briefly sketched above.

Actually we made this analysis in two different cases. It is of course assumed that the
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layer where the fluid lies, provides a background charge that neutralizes moving charges
so that the fluid is globally neutral. One can imagine two different situations. In the first
[12] we assumed that the background charge cannot move so that there appears local elec-
trostatic effects because the fluctuations in the density of the fluid give rise to fluctuation
in the charge that cannot be neutralized locally. In the second [15] we assumed that the
background charge is not rigidly fixed in space but can somehow move and compensate the
local excess of electric charge so that the system remains locally neutral. In the first case
we added to the hamiltonian of the system an electrostatic term which accounts for the
local electrostatic effects. In the second case we dropped such term. In the two different
cases the analysis leads essentially to the same result described above, with a quantitative
difference in the case of the penetration depth orthogonal to the layers: with the electro-
static term it goes with the cubic root of the dimensions of the sample, without it goes

with the square root of the dimensions of the sample.

We have further considered the problem of testing chirality. We considered the prob-
lem [10] of an electromagnetic wave incident perpendicularly on a plane in which lives our
chiral fluid. We have found that the transmitted wave is circularly polarized if the energy
of the incident wave is of the order of the energy of the gap. This would correspond to a
microwave. No polarizing effect is present for energy different from this resonance. As far
as we know, similar experiments have always been done with visible light. It should be in-

teresting if it could be experimentally possible to repeat the experiment using microwaves.

The thesis is organized as follows. In chapter two we introduce the general model in
which the gauge field has both a Chern-Simons and a Maxwell term. We compute the
gap structure and show that the persistent currents are different from zero only if the
dynamics of the system is dominated by the Chern-Simons gauge field. This is done by
taking many piled annuli and consider the possible current induced by a quantized phase
for the matter field, as if it were a vortex. We also compute the magnetic field generated

by such persistent currents.

In chapter three we turn to the pure Chern-Simons chiral model and study the spec-
trum of the small deformations and the localized currents due to such deformations. As
discussed before, the spectrum has a gap. The associated currents are circularly polarized
if the energy of the excitation is that of the gap. We study the vortex excitations and
find that they require at least the energy of the gap. We study the particular case, called
self-dual case, in which the vortex has exactly the energy of the gap. We also make a
variational analysis of the vortex excitations. A summary of the spectrum of the system
closes the chapter.

Chapter four is somewhat away from the main subject of the thesis. We considered a

relation between the self-dual vortex excitations of pure Chern-Simons and pure Maxwell
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theories. More precisely we study the vortéx excitations of two different Chern-Simons
theories connected by a parity or time reversal transformation. We show that these vortices
are both solutions of the parity invariant Maxwell theory provided a convenient choice
of the parameters is made. Everything works as if when the parity and time reversal
invariance break up, the Maxwell theory breaks in the two chiral Chern-Simons theories
with all solutions connected by a parity transformation.

Chapter five is devoted to the study of the magnetic properties of the quantum fluid.
We consider a bulk made up of many two-dimensional layers and study the penetration
of an external uniform magnetic field. In this chapter the analysis is made taking into
account the electrostatic interactions between the charged inhomogeneities of the fluid. To
take into account the essential anisotropy of the system the study is made in two different
configurations: the one in which the magnetic field is orthogonal to the layers’ plane and
penetrates in the parallel direction, and the one in which the magnetic field is parallel to
the layers and penetrates orthogonally. The analysis is done by finding the penetration
depth the minimizes the energy of the system. In the first case we study the penetration
depth of the magnetic field both from the side of the sample and from the magnetic vortices
finding, in both cases, a finite penetration depth. In the second case we find a penetration
depth which goes with the cubic root of the sample’s dimensions.

In chapter six we repeat the analysis of chapter five dropping the electrostatic term
from the hamiltonian. In this case a configuration in which the mass term of the magnetic
field, proportional to the square of the electromagnetic gauge field, is cancelled by the
Chern-Simons gauge field (thus possibly ruining the Meissner effect) is studied in detail.
We show that in the first case (with the orthogonal magnetic field) such configuration is
energetically not favoured and the penetration depth is the same as in the case studied
in chapter six. In the second case (with the parallel magnetic field) such configuration
is energetically favoured but we have nevertheless a penetration length that goes with a
fractional power of the sample’s dimensions. So the electrostatic term does not play an
essential role in the screening of the magnetic field.

In chapter seven we study the incidence of an unpolarized electromagnétic wave prop-
agating orthogonally to a plane in which our chiral quantum fluid lives. We study the
polarization of the transmitted wave and find that it is circularly polarized if the energy
of the incident wave is that of the energy gap of the fluid.

The thesis is closed by an appendix that shows the connection between our presenta-

tion of the chiral fluid and a version of the mean-field Chern-Simons description of anyons.
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2. The model

In this chapter we introduce our model of a non-relativistic fluid living in a two-
dimensional surface. The intrinsic dynamic of the fluid is described by means of an effective
lagrangian ala Landau-Ginzburg representing an universality class which should summa-
rize the relevant degrees of freedom of some underlying microscopic theory not explicitly
specified.

Our fluid is therefore described by a non-relativistic complex field, ¢, which plays the role
of the Landau-Ginzburg order parameter, coupled to a gauge field. This gauge field has
both a Maxwell term and a Chern-Simons term breaking parity and time reversal. This is
the most general gauge invariant lagrangian with minimal coupling to a vector field once
the maximum number of two derivatives is required. We stress here that this gauge field is
not a real electromagnetic field, but it is only there to give an effective description of the

microscopic dynamic of the fluid. Later we will also couple the fluid to real electromagnetic

field.
1 1
L= 59= (BoA; — 8;4,)% — 59z (€0:4;)° — aer i Ar8,4,+

N $¢Tﬁ2¢+ .2_ (14~ q;w) + Ao (181> — po) — V(191) -

¢(&,t) is the complex field which plays the role of order parameter and is related to the

(2.1)

density by the relation:
o(31) = 6@ DI . (2.2)

The covariant derivative is D; = §; — 14;. Notice that Ay is coupled to the density fluc-
tuation from the mean value ép = p — po, p, being the average density representing the
neutralizing background necessary for the consistency of the theory. Since for conservation
of the total number of particles the integral over all the surface of §p is zero, we can write

it as the divergence of some vector field %(&) which we choose to be irrotational Y A#=0:

Notice that the coupling constants for the electric (gz) and the magnetic part (gs) of the
Maxwell term are different. They need to be equal only if the theory is Lorentz invariant,
that is considering a relativistic theory. We draw the reader’s attention to the fact that
in 241 dimensions these coupling constants have the dimension of a length and a is
dimensionless.

V(|¢|) is some potential which in the following, for definiteness, will be taken to be V(|¢|) =

A 2 A
D) (|¢|2 - Po) 25(5/9)2-
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Performing the variations of (2.1) with respect to qST, A;, Ag one gets (in the gauge VA= 0)
the field equations:

.3 _ 1 "’2 A
19 = — <2mD — Ay + 25p> ¢ (2.4)
gs EijajB = J; — ggao(aoAi - a,jAo) — 20&6“‘(8_{14.0 — BOAJ') (25)
gs DN Ap = b6p —2aB . (2.6)
Here we have defined:
e BiAs =Y (tes—aiate—2id.el
B = ;0:4; Ji= g (4706 - Bi6T0 — 2idig 9) - (2.7)

Notice that the first one is a non-linear Schrédinger equation coupled to a gauge field. The
other two equations are Maxwell-Chern-Simons equations (note that GpA; — 0; Ao = E).
For a = 0 we recover the two-dimensional Maxwell equations (though with two different
couplings). For gy =0, on the other hand, from equation (2.6) we get 6p=2aB which is
the usual Chern-Simons constraint relating the field strength to the matter density.

The hamiltonian density of this model is written:

_1 gt e LotBtes M.
H= 2.913 (60141 azAD) +293 (EzJBzAJ) 2m¢ D d’+ 2(5:0) . (28)

2.1. The spectrum

We begin noting that

#(Z) = /po A=0 (2.9)
is the configuration of minimal energy. The matter density is everywhere constant, the
hamiltonian density is zero.

If we add a phase to this solution:

—

H(Z) = \/poet D) A=0 (2.10)

we find a configuration in which the matter density is still a constant but the energy is not

zero anymore. It represents a collective motion of the system as a whole, its energy is:

_ oy (2.11)

g
[
2m

which is precisely the kinetic energy for a single particle of momentum p multiplied by the

total number of particles N.
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We stress that this is not a local excitation. |

In the next section we will study in some details this collective mode with particular
interest on the possibility that they could represent persistent supercurrents of our fluid.
In this section we will study the energy spectrum of the small field perturbations of our
Maxwell-Chern-Simons theory. '

We take the following parameterization:

¢ = /pe*? (2.12)

and rewrite lagrangian (2.1) keeping only quadratic terms in the fields. With this choice,
and in the gauge V-A= 0, equation (2.1) becomes (notice that in this gauge one can put
A;=¢;;0;9 and therefore one obtains [ d’z €ij A;0p A; =0):

1 1
£ =505 |(904:)° + (8:do)’ | — 595 (8:4;)" = 2aei; AoBid;+

L] 1 . Ay (@13)
o | ) — Po\Ui — Podig bp— —(& .
o |~ oo (050)" = 5o (B0)° = pusk?] + 000 (59) + Aafp — (59
From this lagrangian we get the following field equations:
6L
m = —gs N Ay — 2ae;;0;4; +6p =0
;j = —gEagAi +gs DN A; — ZaeijajAo — &Ai =0
y ﬁi m (2.14)
_ Po —
57 _mA9+(90(5p) 0
oL 1
= — 30 —Xop=0.
5(5,0) 4mp0 A5p 60 +Ao 5/) 0
Multiplying the second of (2.14) by €r:0r we get:
—g36§B+gBAB+2aAA0—% =0. (2.15)
Now multiplying the third by 8, and the fourth by A we get
N - -.;-”-ag(ap) , (2.16)
and )
A?8p—NO+ NAg— AN bp=0. (2.17)

4mp,
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We can now eliminate 6 and A, from equations (2.15) and (2.17) by using the first of (2.14)
and (2.16) obtaining:

4
aOB_-—AB+—3‘—B+ ° B 225p=0
gz 9 men G (2.18)
1 A 2
826p + —— A sp+ L2 bp— ”°A5 Wep=9.
4m? mgg mgs

By taking B = BoeX¢*"7%) and §p = §poe’(é*=P'F) these equations become:

. 402 o 2c
2By — <—*~2——+ P >B0+—2“5Po_g‘€(Pi+P§)BO =0
9= 9= (2.19)

A
£26p, — L2 6 By — 2Fe T (p? +p2)%pe =0 .
Po = o po%ng 0~ (pm+Py)5po 4m2(p,,-+py) Po

Here we are interested in the value of the energy for small p. In this limit we can write

equations (2.19) in the following matricial form:

c2 4_a_2_ _ _Pe _Zﬁ

T g2 mgs g2 (B°> =0 (2.20)
2ap, £2 _ _Po 6po
mge mgs

Therefore the values of the energy for =0 are obtained putting to zero the determinant of

the above matrix. In this way we obtain a second order algebraic equation whose solutions

20 P 20 gup
£2, = 4 W1+ 2 2.21
1,2 g%‘ + mgs g?g + maz ( )

Now a few comments are in order. First notice that £7, are both positive, and that they

are:

do not depend on gz. Then if a — 0, that is if there is no Chern-Simons term, the two

solutions are equal:

9 = po - : (2'22)
mge

If, on the other hand, we take the opposite limit gz — 0 then only one of the eigenvalues

& =

X

remains finite whereas the other one diverges:

2
81 = *"La—l — OQ
ge 2.23
% (223)
27 2mal

That is, in general there are two propagating degrees of freedom each with its energy

gap. In pure Maxwell theory the energy gaps are degenerate. This degeneracy is resolved
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by adding the Chern-Simons term. If there is only the Chern-Simons term the theory
possesses only one degree of freedom with an energy gap, the other one being frozen.

We note that all the gap structure is independent on the value of g5. We further notice
that the presence of the gaps in the energy spectrum depends essentially on the presence
of the gauge field in the dynamics of the fluid. We will discuss more accurately this point

later in chapter 5.

2.2. Stationary currents

In this section we study the collective motion of the system discussed above and we
consider the problem whether it can represent a persistent supercurrent of our fluid. We
therefore consider a configuration with the geometry of an annulus which although idealized
can be very similar to an actual superconducting device. We take therefore an annulus of
radii 7y >y such that r,—r; =L, and we consider a pile of many of these annuli separated
by a spacing d, see figure la. We assume that L/r; <1, but still L is macroscopic, that is
L/d>>1 where d is any length of the order of few atomic distances such as the inter-annuli
spacing. Furthermore, the total length L. of the cylinder is supposed to be very large as

compared to the radii r; 3.
Iz
B 4 y=0R,

J
LZ
v A
] e L
L2 L2
@
a b c
Figure 1

We are interested in studying the possible fluid’s current flowing around each annulus,
see figure 1b. We furthermore make the simplificatory assumption that this current is

uniform with respect to the z coordinate, that it is the same in each annulus. This seems
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reasonable if one thinks that the different annuli are not completely decoupled from each
other (in which case there appears to be no reason to require the same current), but have
some Josephson coupling which can be considered responsible for the correlation between
the different annuli.

Thus our cylindrical configuration will act as a solenoid. Later we will compute the three-
dimensional true magnetic field inside the solenoid, due to the current.

From the two-dimensional point of view the annulus is equivalent to a strip (see figure
1c) which is finite in the z direction, —L/2 <z < L/2, and periodic in the y direction,

0<y<27 R, <With R, = Zl——g—q—?— ,remember that in this approximation L/R, < 1> .

We consider a possible current induced by a quantized phase for the matter field, as for a

vortex:
¢ = |gle™ (2.24)
where pz—g— is fixed, n € Z.
Notice that we consider a configuration with cylindrical symmetry. This fact, in the
two-dimensional strip notation, means that there is not explicit dependence from the y
coordinate, therefore we can take (in the gauge V- /I:O):
A=(4,,4,) = (0,A(z)) B=284
= (u(e),0)  Sple) = Oaule) ¢l = +/Ep(@) T po -

As we said we assume uniformity in the z direction, so we can write the hamiltonian of

(2.25)

the model as:

H 1 1 -
- S PR SR S
owR,L, /d {2“32 2m? D2¢+V(|¢|)} " (2.26)

+ 2 (6p—2aB)+ «(6p — 2aB) .

1
295 (:A_)
Here the last term comes from integrating out the auxiliary field A, and the symbol *
means convolution. :
It is convenient to express this hamiltonian as the integral of a local hamiltonian density. To
this aim we consider equation (2.6) written in terms of the “electric field” E; =0, 4;—8; Ao.
Thus, in our gauge:

— — 1
V.-E=——(6p—2aB). (2.27)
[J:]

Furthermore we impose boundary conditions such as to eliminate possible zero modes
which do not contribute to the hamiltonian (2.26). This amounts to requiring (because of

the uniformity in the y coordinate we can write £ =(E(z), 0)):
E(ze < —L/2)=FE(z>1L/2)=0. (2.28)
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The hamiltonian can then be rewritten as

_ 1 1 _ L 2.2
SmR.L. /dm {2gEE + 2gEB 2m¢ D¢+ V(|9]) (2.29)

We have to fix completely the boundary conditions. We assume that:
Alz < —=L/2)= A(z > L/2) =0 (2.30)

that is, we are making the very reasonable assumption that A, which represents in general
a propagating excitation of our fluid, is zero outside the sample that is where there is no
fluid. 4

One can also say that, by definition, §p =0 outside the sample. Since the fluctuation of
the particles’ total number in a given domain is the flux of @ through its boundary, and
the particles’ total number is fixed, the boundary conditions for u are

uwlz < —L/2)=u(z>L/2)=0. (2.31)

: . . A : '
Notice that, by subtracting the irrelevant constant ¢ = —EpON where N is the fixed

particles’ total number N = /dzm |$|?, we can rewrite /dsz = —;‘—/dzm|q5]4 which

vanishes outside the sample.

Thus, keeping into account (2.28), we see that the hamiltonian density vanishes outside
the sample, consistently with the fact that it describes the dynamics of the fluid which is
confined in the strip.

We can check that the boundary condition (2.28) is the one which correctly ensures that the
hamiltonian (2.29) implements the Chern-Simons dynamics in the limit gz — 0. In fact,
the solution of equation (2.27), with the boundary conditions (2.28), (2.30) and (2.31)
gives:

]

B(e) = —— [ de'tp(e’) + 2% f(@) = — [u(e) — 204(=)] - (2.32)

E B 9

Thus we see that, since finite energy requires gz E? to be bounded, one recovers in the
limit gz — 0:
A(z) = —u(z) (2.33)

sy e 1
which is indeed the solution of the Chern-Simons constraint B = 5—5 p with the boundary
a
conditions of (2.30) and (2.31).
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To this hamiltonian we now add one extra term which plays an essential role in what
follows. This term represents the true, three-dimensional electrostatic interaction between
the fluctuations of the charged matter. In other words, if there is a fluctuation ép of the
matter, the system will not be in electrostatic equilibrium anymore, for there will be some
zones where there is lack of charged matter and others where there is abundance with
respect to the neutralizing background. The electrostatic field we are considering here
accounts precisely for this effect.

One can of course always suppose that the neutralizing background deforms itself in such
a way to compensate all the charge fluctuations and to ensure electrostatic equilibrium. If
this is the case one simply has to drop the electrostatic term we are introducing here. But
in our non trivial dynamics, which involves the gauge field, it is not at all obvious that
the most energetically favourable configuration for the system is that of zero electrostatic
field.

All in all here we assume that this electrostatic interaction is present. We devote chapter
6 to the discussion of the magnetic properties of the system in absence of the electrostatic
term.

This yields a real electric field which obeys to the three-dimensional Maxwell equation:
V. B = efp(® | (2.34)

) .
where §p(®) = 2P is the three dimensional density and e is the electric charge. We can then

compute this e(fectrostatic contribution. The three-dimensional Maxwell equation can be

written as:
0. E™(z) = 25,0 = g@zu . (2.35)
This equation can be integrated yielding:
E*™ = gu . (2.36)
Therefore the electrostatic contribution to the hamiltonian is
d/=..\2 € ,
— M) = —u . 2.
2 (E ) 2d" | (2:37)
Thus, after taking everything into account, the hamiltonian of the system can be written
- H 1 1 1
—— = [de { —(u—2aA)? + = L A)2 + —(p — A4)?
27 R,L, / ’ {2gE(u aA) + 595(0eA) + 50 (P — AVt

(2.38)
+ —L(&WI)Z + é(Bg;u)2 + iuz} :

2m 2 2d
Before going on, it is maybe worth to stress again the difference between E(z) and E*™(z).
The first one is the two-dimensional “electric field” coming from the internal dynamics
of the fluid. The second one is the actual, real, three-dimensional electric field due to

electrostatic interaction of the charged matter.
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2.3. A heuristic analysis

We perform a heuristic analysis by considering a simplified situation where the matter

is uniformly distributed and there is no “magnetic field”, that is:
bp=0 B=0,A=0. (2.39)

This, in particular, implies p = p, and 8;|¢| = 0. With this assumption from equation
(2.38) the second, the fourth and the fifth terms drop out and therefore the variation of
(2.38) yields the equations:

6 H 20 Po _
EZ (m) = —g‘;‘(ZQ_A-U)‘*‘ _’;TL—(A —p) = 0

) H 1 e?
E(m) —-g—E(u-—2aA)+Ti—u-—O

(2.40)

The solution of these equations is (in this heuristic analysis we forget the boundary con-
ditions):

Po
A= m
Po 128 T
m At etgn (2.41)
2ap,d
Uy = .
po(d +e?gs) + dmaZer?
This corresponds to the current density:
4o?e?
Po po  d+e?gg
J=C(p-A)=22 . 2.42
m(p ) m po 4a?e? P ( )
m d+egy

Notice that if €2 =0, that is if there is no electrostatic effect, the density current is zero.
Notice also that in the Maxwell limit (@ —0 or gz — 00) the current density is still zero.
Therefore the current density is different from zero omly if there is some Chern-Simons
amount in the fluid’s dynamics. In particular for the case of pure Chern-Simons , with

o — 00, we recover the maximum value for the current:

J — Py (2.43)
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2.4. A more detailed analyéis

The aésumptions of the previous section are physically too restrictive because we
have no reason to expect that the actual physical situation have ép and B equal to zero.
Nevertheless in this section we show that a more accurate computation leads substantially
to the same results, apart from a correction which is different from zero only in regions
very close to the sample’s borders.

In order to keep the discussion reasonably transparent, we make the simplificatory assump-
tions that p,>> |ép| and that 1/m < A. With these assumptions we can write:

o~ AY = pofp — A S Geldl)f = o (Bubpf 0. (240

We stress that our results would hold also in general. In fact, the equilibrium configuration
of the fluid, far from the borders, will be the one of the previous section. What happens
in details near to the borders will depend on the details of the hamiltonian, and we have
chosen to present the simplified discussion based on (2.44).

In this way the field equations now read:

2rR,L, geds mggs (2.45)
b (_H P+ ——( 2A)+ezu 0
o = — U — (U — 4 U = o
bu \ 27 R,L, “ Agp Ad
These equations can be rewritten in matricial form as follows:
(=182 + M)T =9 (2.46)
where 1 is the unit two by two matrix, and
4072 2
a b go; N ﬂfgo g : A ~p
— — EYB B EYB — .
M_<c d>_ 2a 1 +ez \I}~<u> ®= gBan '
geA gsA  Ad
(2.47)

2 4 2.2
Po__ g P2 22° o
mgsgeA mMgsAd  gpgsAd

The general solution of equation (2.46) can be written as

Note that det M = 0.

U(z) = T + T, (2.48)
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where

T, =MT'2= <A* ) (2.49)

Uy

is one particular solution, A. and u, being given by equation (2.41). ¥, is the general
solution of the homogeneous equation

(182 + M)T =0. (2.50)

The boundary conditions discussed in section 2.2 are ¥(—L/2)=¥(L/2)=0. Therefore

we get to:
(1) - ot (1) - bl (4)+(£) o

ul, = -;- (a+d+a—d7+ Zhe) (2.52)

where

are the eigenvalues of the matrix M, which can be proved to be positive. Substituting
back in (2.50) we can find the following relation between u; 2 and A; »:
ﬂ%,z —a

b

A . (2.53)

Ur2=

Let us mention the values of p:lz,z in some limiting cases. For the case of pure Maxwell,

that is =0, the fields A(z) and u(z) decouple and the two eigenvalues are

Pa €
e (relevant for A) pi= E—I—)—‘—& (relevant for u) . (2.54)

p=

In the opposite limit g — 0 the relevant field configuration is u =2aA4, and this is reflected

in the eigenvalues which turn out to be

po  4e?a’
d

Imposing the boundary conditions, we determine 4; » by:

(ui—a ugl—a) (ji) = (‘j) , (2.56)
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They turn out to be:

Az) = A, + (43 —a)A, —bu, cosh(piz) _ (u? —a)A, — bu. cosh(psz)

pi—p3  cosh(uiL/2) pi—p3  cosh(upL/2)
(#3 —a)(pi — a)A. — b(pf —a)u. cosh(uiz)
u(z) = U, + - 2.57
(=) b2 - 13) cosh(u1 1/2) (2.57)
_ (p? —a)(p3 —a)A. — b(pj —a)u. cosh(usz)
b(u? — p3) cosh(pa L/2)
This yield a current:
4e?a?
J_pPo| _dtergs  (p3—a)A. —bu, cosh{pz)
m | po 12a? T p?— pl cosh(p1 L/2)
m - d+e'gs (2.58)

(u? —a)A. — bu, cosh(psz)

+
pi—py  cosh(uyL/2)

1 2

po 1 F
9r mgs gsA Ad

which case the matrix M is proportional to the identity. In this case in (2.51) we can write

Notice that the two eigenvalues can be equal only for 2 —0 and

A=A, and u; =us with no relation between 4; and u;. The boundary conditions give
in this case 4; =—A, and u; = —u,.

Notice that since L is macroscopic, the current density is different from the value found
in the previous heuristic analysis only in the small regions (of the order of ! < L) close
to the edges of the strip, and the corrections drop exponentially to zero in the bulk of the
sample.

We can compute also the total current:

L/2 4e?a?
0 2 2 —a)d. —bu, 2
I= / dog=Po| Gt g (o) —bu 2y peyr
m | Po de’a H1— K2 H1
—-L/Z m d+eng

(2.59)

(b o)A —bue 2 4 (e /2)
K1 — Ha H2
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We see that, apart from the edges corrections, we have:

4e? o’
d+e?gy
I =1 2.60
° Po 4e? o ( )
m d-+ e?gg

with I =220
m
So again in the Maxwell limit we find I — 0 while in the pure Chern-Simons we find I=1I

which is the nominal current.

2.5. Magnetic field

In this section we compute the actual magnetic field present inside the cylinder (see
figure 1a) due to the supercurrent computed above.
It is clear that we have to take now a three-dimensional point of view. Our three-
dimensional system is now the cylinder embedded in the three-dimensional space. There-
fore we will use the cylindrical coordinates (r,p,z) as in figure la. We remind that we
consider L < 71 2 so that the cylinder can be thought of zero thickness and we take its

. T+ T

radius to be Ry= .

With these assumptions we have to find what is the correct expression for the three-

dimensional density. Let us therefore compute what is the total number N of particles

inside the small cylindrical interspace:

2 _ .2
N = / dv p® = / rdrdpdz 22 = P2orp, 2 "1 _ Poorr LR, . (2.61)
d d 2 d
Therefore it is easy to convince oneself that
p3) = —p(—;Lc?(r — R,) (2.62)

is the correct expression for the three-dimensional density in this thin cylinder approxima-
tiom.

Furthermore we suppose L, > R, so that it is possible to keep far from the cylinder’s edges
and therefore to disregard the edge effects.

With these definitions the three-dimensional current density flowing all round the cylinder

is:
epolL

o = md

[p— eA"(r) — 4] 6(r ~ Ro) . (2.63)
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Here AZ™(r) is the electromagnetic vector poltential describing the magnetic field produced
inside the cylinder. Since we limit ourselves to the region far from the edges of the cylinder,
we can assume AZ™ independent of z.

A is the (two-dimensional) vector potential describing the fluid’s dynamics on the strip
considered in the previous section. ’

We can reproduce all the computation of the previous section taking into account for AZ™

simply with the substitution p—p — eAZ™. Therefore we now have, instead of (2.41),

Po
A= o TZazez (p—edl™) . (2.64)
m  d+e?gy

We have neglected the deformation of A very near to the annuli’s edges, as discussed in the
previous section. Now we use this expression for A to solve Maxwell’s equation VABem=J
inside the cylinder (see reference [16]). In cylindrical coordinates this equation reads:
d |1d
dr |[rdr

(rAfpm)] =Jy . (2.65)

The solution of this equation can be written in the form

em em T R§
Atp = A‘P (RO) [—Z—G(Ro - ’I‘) + a@(’f‘ — Ro)] . (266)
Here © is the step function. The constant AS™(R,) is computed substituting (2.66) in

(2.65), and we find

eps™ 1 T R?
em _ SPo z _ 0 — 2.67
s = — To(R-n 4 er-R) . (260
2m
where:
4e? o
d+ e?gg L
= - . 2.68
pD E—g_ 4:620(2 pUd ( )
m d+e’gy

Substituting equations (2.64) and (2.67) in (2.63) yields the current density:

J, = te P §(r — Ro) . (2.69)

™m e“pt™ R,
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We can also compute the magnetic field inside the cylinder using the cylindrical coordinate

3 em 1 d em
relation B{™ = ;E(TAP ):

e em
pem = S __O(R,-7). (2.70)
m e‘ps™ R,
1+ —
2m

This result is the same as the one of a solenoid in which the current density (2.69) flows.

We can also compute the flux of the magnetic field in the cylinder:

1

(Be™) = mR2Be™ = nR2PS : 2.71
( zZ ) ﬂ-RD z T a m e2pngo p ( )
14—
2m
Remembering that p= —;—, we see that for ep™R2 — co we get
0
em 2nm
®(B*™) — — . (2.72)
e

That is, the total flux is quantized in the above limit. This is of course not surprising
since the current that generates this magnetic field is vortex-like, that is have a quantized
phase.

We stress that the result for the magnetic field and flux is exactly the same as it would
have been obtained for an ordinary superconductor flowing on a cylindrical surface when
pe™ is its surface density. (It is a general fact for any superconducting current flowing on
a cylindrical surface, that the flux quantization is strictly speaking obtained just in the
above limit).

Note that pf™ vanishes if there is no electrostatic term, that is for e = 0. Furthermore

it vanishes in the Maxwell limit gz — oo (or e =0) and it is maximal, pt™ = p,—, for
a — 0o. Therefore we see again that, in order that our idealized device could work as
a superconducting solenoid, there cannot be only a Maxwell dynamics, but the chiral

Chern-Simons term must play an essential role.
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3. Chiral quantum fluid

We want to draw here the reader’s attention to the main results of the previous chapter.
First of all notice that without the electrostatic interaction introduced above, no persistent
current is possible. Secondly notice that if the intrinsic dynamics of the gauge field is of
pure Maxwell then no persistent current is possible: there is need of some Chern-Simons’
amount. Furthermore the current is maximal when the dynamics is of pure Chern-Simons.
These facts lead us to consider our quantum fluid with pure Chern-Simons gauge dynamics
(for this reason called chiral) as a possible theoretical model of some superconducting
layered material. _

In what follows we will analyze in some detail various features of such a system, and in

particular the spectrum, the magnetic properties, and the evidence of chirality.

3.1. The chiral lagrangian

The lagrangian density that we take as a starting point is obtained from (2.1) without
the Maxwell terms, that is with gz =g5=0:

2(60)° . (3:0)

£=3 (619 -96) + o= D% - aernu 458,455 + 4767 — pe)

with D=V —§4°5.

From this chapter on we will call the gauge potential responsible of the internal dynamics of
the fluid ACS to make clear its chiral nature and to distinguish it from the gauge potential
of the real electromagnetic field A®™ that will be introduced in the next chapters.
Integrating out the auxiliary field AY® we find the equation

1
oS _ ~ 2
which can be obtained from (2.6) with g5 =0. In this way the lagrangian density becomes:
1/ 4 st 1 = A 1 .l
 Th— e — 1D — 2502 = L (T —dTa) —H . ,
L= (410-416) — s IDgl - S8 = 5 (476 -d1¢) -1 (33)

Equation (3.2) is the usual Chern-Simons constraint relation between the Chern-Simons
“magnetic field ” and the matter density. This constraint is the basis on which lies the
mean-field description of anyons, see references [17] [8] [9] [18] [10]. Notice that here thereis

an important difference. The Chern-Simons “magnetic field” is proportional to the density
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fluctuation rather than to the actual matter k‘density. With our choice, as a consequence of

the conservation of the total number of particles, we have consistently:
/dzmﬁx\ﬁ’cs =0. (3.4)

The electrostatic term will be neglected in this chapter. It will be considered again when
we will discuss the magnetic properties where it will play an essential role.
We write here the resulting hamiltonian :

H= /dzm {%uﬁw . g(apy} . (3.5)

Formally the same effective lagrangian density as (3.1) has been introduced in references
[19] [20] [21] [22] [23] to provide a possible description of the Fractional Quantum Hall
Effect. Here, however, the physical situation is totally different since here we do not have
a strong, uniform, external magnetic field orthogonal to the surface to deal with, but are

interested essentially to the properties of the quantum fluid per se.

3.2. Small deformation approach

We start analyzing the lagrangian (3.3) within a small deformation approach. We are
going to compute the spectrum of the small fluctuations and the local currents originated
by them. We will see that in these currents appear the chiral property of the system.

We take the following parameterization
¢ = \/ﬁew B (3.6)

— — — 1 R
From equations V- @& =6p and V A A°S = —é—~5p, see (2.3) and (3.2), we obtain a duality
a :

relation between % and ffcs, that is:

APS = —%eijuj . (3.7)

Notice that the irrotational condition for 1, VA= 0, corresponds to the gauge condition
V- A95 =0. With these notations the three terms contributing to (3.3) become (keeping
only quadratic terms).

First:
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where we have used integration by parts.
Second:
1 2,5, 1 = 2 =\ 2 1 1
—2-;n—[D¢| =5 (V\/,B) + (VH) p+—up+ Ee,-jaiBu.jp o

4a? (3.9)

1 1 -\ 2 2, 2 PO —2
~ A . vo) L
om [4;;0( i+ ( +4a2“}

where we used the following approximations:

Vp= Ail ~ 2\/536\/5 (60)2,0 ~ p0(60)2 @lp o~ pott®  €;0:0ujp ~ pobeijOiu; =0 .

(3.10)
Third: ) \ ,
As 2:_(\:;.") , 3.11
2o =5 (V@ (311)
Putting it all together we find:
= 1 1 -2 = 2 po -2 A = 2
— OV - — (Vo) -2 (va) . 3.12
L=6V-u 5 [4,00 (AE)” + po + ek } 5 U (3.12)
Performing the variation with respect to § we find
.o+ Al=0 + (3.13)
m
which can be regarded as a continuity equation
Bop+V - (pV) =0 (3.14)
. - .z V8 :
provided we identify the velocity V =——. From (3.13) we obtain
m
ve="43 (3.15)
Po
which, substituted back in (3.12), yields:
m 1 2 Po o A(“ -’>2
— - - T . 3.16
2pou 8mp, (&) 8ma? 2 “ (3:16)
Parameterizing = #,eX¢*~7%) we find the spectrum of the small deformations:
2
o Pa APU 2 1 4
£2 = ——|p]* . 3.17
yp o i el i e d (3.17)

Notice that the minimum of the energy, for |p]=0, is not zero. We therefore have a gap:

£(0) = =2 = Egur . (3.18)

T 2am

This is, of course, the same gap we found in the previous chapter discussing the pure
Chern-Simons limit, see equation (2.23).
In these considerations we have disregarded the contribution to the spectrum of the elec-

trostatic term. We will compute it at the end of this chapter.
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3.2.1. Currents

In this subsection we compute the currents due to the small deformations studied above.
They are localized currents, and should not be confused with the stationary currents

studied in the previous chapter. A straightforward calculation yields:

. 1 _ Po 1 - c
I = o [61026 — (D8] = £2 (0004 sy ) = =i + s

) (3.19)

1 [, L1 po .
= — ! — | = — _—— = e —
Ty =5 [¢ Dyé — (Dy) qs] (aya 2au,,.> iy — Egartis

where we have used (3.15). Parameterizing u, = ugs cos(Et + @g), Uy = ugy cos(E + py)
we find that

Jz = —tigz + LC:c;,«ip'l-/'z,( £ ? _gGAPJy
' —Egap
L (3.20)
Jy = Uy — Eoapliy  — SGAPJ'y .
E—Egar

Notice that if the energy of the small excitation is equal to the gap the above equations

are solved by
Jz - JO COS(gGAPt + (‘00)

Jy = Josin(Eaart + ©0) -

This means that an excitation with the energy of the gap carries a current which is cir-

(3.21)

cularly polarized with a definite direction of rotation. This direction depends on the sign
of the Chern-Simons coupling constant «, that is is reversed by a parity or time reversal
transformation. In other words we have found a current that exhibits the chiral property
of our system as long as the energies involved are of the order of the gap.

Later we will see another manifestation of the chiral property which is present only if the
energy involved is that of the gap. This is an optical activity of our fluid, which can act
as a circular polarizer for an electromagnetic wave having the energy of the gap. It will be
discussed in detail in chapter 7.

3.3. Vortices

Now we turn to the study of the vortex excitations of our fluid, that is the vortex
configuration that minimize the hamiltonian (3.5). Vortices have been much studied in
the literature (see for example the pioneering work of Nielsen and Olesen [24]). We will
follow the method of references [25] [26] [27] [28] [29] [30] based on the classical work of
Bogomol’nyi [31]. For other works on vortices in relativistic and non-abelian Chern-Simons

theory see references [32] [33] [34] [35].
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Vortices are the classical static solutions of the form (since a vortex has a circular symmetry
here we use the polar circular coordinates r,6):

é(r,8) = f(r)e™? lim £2(r) = po (3.22)

T—rCO

where n € Z is a topological invariant corresponding to the vorticity, that is how many
times the vortex winds round; the elementary vortex has |n| = 1. Now since in polar

coordinates we have:

BOS = 15, (r495) — 5,495 (3.23)
™

we can choose for the gauge field the form (see equation (3.2)):

AZ% =0
11 f (3.24)
cs _ - = 1! !
Ag” = zaT/drrép(r),
0
With this choice the hamiltonian becomes:
1 d \° 1 A

M i I el A — r A95)2 £2 Z(80)? 3.25
= [ r{zm[<de> Fln - ra§S) s +2(p)} (3.25)

from this equation requiring the energy to be finite, we get the following constraint on the

asymptotic behaviour of A§

lim A§°(r) = L (3.26)

r— 0O r

For our particular case this yields:
1 cO
—-—/dr'r5p=n, : (3.27)
2ce
0

which is nothing but the quantization of the magnetic flux in integer factors of 2.
The problem now is to minimize the total energy; for this purpose it is useful the following
identity [27] [28]:

D¢ = (D £iD,)¢)? £ mV A J + Blg|? (3.28)

here J is the usual current

= [¢Ds-a(Be] - (3.29)
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Then we have:
H= /cl2 { (D, £iD )q5|2i \7/\Ji ! BCS|¢12 (5p)2} : (3.30)

Using (3.2) we can rewrite the third term as:

- BOS|gp =

— = (6p)2 + LT A ACOS (3.31)

dma 2m

So we are left with:

= /d% {%I(Dz +4iD,)g[? + %6 A(TxBd0%) 4 <5 + -—-1-—> (5,0)2} . (3.32)

2 dma

Let us compute the contribution of the second term:

1/dzrﬁ/\ (f+ ﬂff‘”) = lr/dé’ Polt TPy, (3.33)
2 m 2 mT

m

where we used the fact that f d?r ¥V A J=0. Therefore the hamiltonian becomes:

H=xPny /dzr {-2-3(133 +4D,)g|? + (5 + L) (5p)2} . (3:34)

2 dma

From this expression we can learn several things. Firstly we note tha.t the hamﬂtoman is

positive definite, see equation (3.5). Here we will always study the case Where — > ——, the
other range of parameter being related to the studies on the FQHE cited above herefore
the integral on the r.h.s. of equation (3.34) is positive or zero. So we derive the inequality:

Po
~ 2m|al

- ’SGAP (3-35)

as long as we assume |a|> ——*. So we have found that not only the small deformations

2m|n
but also the “big” excitations, like the vortices, have energies over the gap Eg.r.

and n < 0. In this case the

Let us now study in more detail the special case A =
. T mo
equations simplify because the total energy becomes:

£ ="Pe L2 |n] + —L/dzr (D, —iDy)o? . (3.36)

* If one wants to relate (3.3) to the anyon mean-field theory, one finds that the filling is given by
47r|a[. So we see that this assumption is always satisfied for integer filling greater than 1. We discuss in

some detail the relation between (3.3) and the anyon mean-field theory in appendix A.
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This energy is minimal for:

(Dz —iDy)p =10, (3.37)

and its minimal value is

Enw = —2In] . (3.38)
m

Following Jackiw and Weinberg [27] we call equation (3.37) self-dual condition.

Let us now solve the equation (3.37). In polar coordinates it is written:

8F [ ™y 49550, (3.39)
or r
If we introduce the auxiliary variable
a=-n+r45°, (3.40)
having the propérties:
a(0)=-n>0 lim a(r) =0, (3.41)

equation (3.39) is equivalent to the system:
d 1
wl =7
:1';(1 = —%7‘ (f _Po) .

This non-linear couple of differential equations has no analytic solution; so we have solved

it numerically with DO2GAF-NAG Fortran Library Routine and verified the agreement of

the solution with the previous discussion.

(3.42)

In the case of n>0, the equations cannot be reduced to first order and the bound cannot
be satisfied as an equality. We will study this case by a variational method which confirms
that the vortex energy for n = +|n| is in fact higher than that for n = —|n|. This fact
should be expected since the opposite signs of n are connected by a parity transformation,
but our lagrangian density (3.1) is not parity invariant, so vortices that differ only for the

sign of n cannot have the same energy.

3.3.1. Variational analysis

Above we have found an exact vortex solution obeying the self-dual condition (3.37) and
having the energy (3.38). In order to further investigate the general case we go through a

variational analysis based on the following ansatz

rASS(r) = n {1 - <1 + 4227,2> e—wr’} . (3.43)
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Minimizihg the energy (3.25) with respect to the parameters ( and w. Correspondently we
get for f(r), see equation (3.22), imposing the condition f(0)=0 which yields the relation
= 2w+§~—°- between the parameters,

na

F2(r) = po — (po — 2na(’wr?) e (3.44)

1
In the minimization program we have taken |n| =1, A= ——, a= o to compare the
™

result with the minimum find above, see equation (3.35).

For n <0 we have found F,,;, =6.44 -2%3; which is very close (6.44~27) to the exact result,
i.e. the gap Egap-

For n >0 we have found F,,;, =20.64

Notice that the variation in the number of the particles due to these vortices is:

Po

which is quite above the gap.

ON = /dzr bp = /dzr (F(r) — po) = /dz:z: [(Znaczwrz —po)e_“"'?] = 4rno . (3.45)

So, in order that the total number of particles is preserved it is necessary that the total
vorticity of the system is zero, this means that for a lack of matter due to the presence of

an antivortex in some place there must be a corresponding vortex somewhere else.

3.3.2. Currents

In this subsection we compute the electric current density and the total current due to the
vortex for n <0.

From (3.29) using equation (3.39) we get:

Jr=10
e d (3.46)
Jo=——Ff—F.
m° dr
The total current I passing in the plane is equal to
. (o) oo o d
I:/d;-J:/erg(r)z-i/drfdif.—,—é%/ dr —p =
r r
J mJ 0 (3.47)

€

= 5~ lp(0) = p(0)] = —5—po -

This current can be interpreted as the Hall current of a QHE!

To see this fact let us consider the following hamiltonian:

B =2 :2% /d% (15eP + eBloP] (3.48)
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1 K a
where B = T‘SP' It is straightforward to prove that this hamiltonian is equivalent to
ae .

our original hamiltonian with A= ———. In this form we can interpret the second term in
: mo
1
curly brackets in (3.48) as an interaction term between the electric potential V = 2—B
m

and the electric charge density e|#|2. To such a potential will correspond the electric field

E=-VV which in polar coordinates reads:

g _V__198_ 1 .d, 1 ,
or 2m Or 2maoe ” dr 2ae? (3.49)
Bo=-12V g,

r 06

J
From the first of the (3.49) we read the value of the Hall conductivity o= Ee—:

T

o =2ae’ . (3.50)

With reference to the footnote in the previous section, if we call kK =4ma the integer filling
2

of the anyon mean-field theory we recover the Hall conductivity in the usual form o= e

3.4. Summary of the spectrum

In this section we summarize the spectrum of our chiral fluid computing in particular
the correction to the energy spectrum due the presence of the disregarded electrostatic
term.

Notice first of all, using the three-dimensional equations: —25,0(5) =V - E*™(%) and that

1
A~l—_-,—| :4w5(3)(5), we can rewrite the electrostatic term in the form:
T

HEP @) = Soo@) [ o snle) = -5 A [ E @) (@5
5 z) =g bn(z T p(T') = U m[f——a’:"l . .

|z — |

Writing (&) =oeX¢*~7"%), the integral can be rewritten as:

1 . oy - P 1
g / d*z’ e‘(st"z"”):ige(gt"?"’)‘/ Lo eP(F=F) — o —_4i(7) . (3.52)

72 @~ 7
Therefore:
62 — 2 1 1 — 621—»—» —f - 62 —D ¢ = 2 2 _‘CSZ"'
gfmw/ﬁmif_ﬁpme=—zgww»Aww=~zmu@)—ea@MA ) @) -

(3.53)



32 Pietro Donatis

Thus we have found that the dispersion law of the electrostatic term is linear in |p]. There-

fore we can now write the correct dispersion law taking into account also the electrostatic

term:
e’ po PoX | g 1 4
&= \/SC2¥AP om |ﬁl + _’m,_|ﬂ + mlﬂ 7 (3'54)
which for small |p] becomes:
- ea
& '_ZEGAP‘}‘?Z—‘I—)T . (355)

That is the dispersion relation of the energy spectrum is not the one of the standard
superfluids which is linear in|p], for small |p], like happens in the standard superfluids.
Here we have something new: the gap.

For larger values of |p] it is possible to have a roton excitation (see references [19] [20] [21]
[22]) which can be explained as a Coulomb interaction between vortices.

In fact, the Coulomb interaction gives an additional positive contribution to the energy,
namely the electrostatic energy due to the density fluctuation of a charged fluid. This elec-
trostatic energy is obviously positive for any density fluctuation and in particular for the
vortex-antivortex configurations. Therefore, in conclusion, the roton part of the spectrum
will correspond to an energy higher than the lower bound of a vortex-antivortex configu-
ration, that is twice the gap g.p. In figure 2 we report the qualitative plot of the energy
spectrum versus the momentum. In the case considered in reference [22] the vortices are
assumed to appear in the lowest Landau level of a Hall system, whereas the gap of the

small deformations is due to excitations to the higher Landau levels. Thus, in this case

the vortices can have an energy less that the gap. The case studied in reference [22] would

. . 1
correspond in our formalism to the range of values 5 <—.
ma

E(p)

Figure 2
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4. Comment on Chern-Simons and Maxwell
vortices

In this chapter, before studying the magnetic properties of our chiral fluid, we want
to make a side remark on some properties of the vortex-like solutions of the pure Chern-
Simons theory and the pure Maxwell theory. Let us parameterize, like in the previous

chapter, the vortex configuration in the following way:

$(r,0) = f(r)e™®  lim fi(r) =p, . (4.1)
We will consider in particular the parity P and the time reversal T transformations. In
two spacial dimensions the parity P transformation is simply the reflection of one of the

axes (a reflection of both axes would in fact lead to a simple rotation of frame). Here we

will, for instance, consider the z-axis. This, in polar coordinates, reads:

{ rT—7T (42)

6 —m—80.

On the other hand the T transformation changes the sign of the time coordinate and takes
the complex conjugation of the scalar fields. Actually in our considerations we refer only to
static configurations therefore the time coordinate plays no role. We nevertheless observe
that both for P and T transformations the vortex (4.1) transforms as

$(r,0) = f(r)e™® — (=1)"f(r)e™™" (4.3)
that is P and T connect the topological classes that differ by the sign of the vorticity.
We expect therefore that in a chiral theory vortex solutions that differ by the sign of the
vorticity will be inequivalent. Indeed we have found in the previous chapter that they have
different energy.
In the Maxwell theory instead, being P and T invariant, we expect a perfect symmetry of
the vortex solutions that differ only for the sign of n. This is exactly what we will show in
this chapter. Furthermore we will show that the vortex solutions of two different Chern-
Simons theories connected by a parity or time-reversal transformation are both solutions

of the same Maxwell theory with a convenient choice of some parameters.

4.1. Chiral theory

The first hamiltonian we will study is the same we have studied in the previous chapter,

see equation (3.5):
i = [en {Dsr+ 5007 (4.4
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where

D=Y% —i4°s BOS =G N A= 5p. (4.5)
Here we will briefly recall the previous result for ease of reading.
We have found an exact vortex solution for this hamiltonian for the case of n <0 and with
the special value A= —.
In this way we found tﬂgctx the vortex is the solution of the self-dual equation, see equation
(3.37):
(Dz —iDy)¢p =10 (4.6)

which corresponds to the energy, (3.38):

Eprn = TPe |n( . (47)
m

We also recall that in polar coordinates equation (4.6) reads, (3.39):
d n cs
E‘f‘i‘_f—Ae f=0 (4'8)
r T
and that introducing the auxiliary variable, (3.40):
a(r) = —n 4+ rAS5(r) (4.9)

with the properties: a(0)=-—n>0, a(c0)=0, we can rewrite (4.8) as, (3.42):

4 lyg

dr® 7 (4.10)
La= o a(f o)

"= 2 Pe

In this form has been solved as already discussed in the previous chapter.
In the previous chapter we also explained how the same hamiltonian (4.4) admits also
vortices with n > 0. However their energy is not minimal like (4.7) and they will not be

solutions of a first order equation like (4.6).

4.1.1. Case with n>0
Consider now a different theory obtained from the one studied so far by a P(T) transfor-

mation.

In this new theory B®S, being a pseudovector, changes sign so we have:

BPS =V A ACS = —215,0 : (4.11)

(o7
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Therefore in the place of (3.32),using the same identity (3.28), now we have:

H=[d* {%m (D, +iD,)d|° £ %ﬁ A (fi %A’CS) + (% T ﬁ) (5p)2} =
- :I:7rp°n+/d2r {—1-— (D, +4iD,))* + (5 T i—) (5p)2} n
m 2m i v 2 4dmo
(4.12)
With the same value of ), taking » > 0 and choosing the upper sign, equation (4.12)
becomes: '
7= o /dzr (Ds +iD,)* . (4.13)

This is minimal if the following equation is satisfied:
(D +1Dy)¢p =0 (4.14)
which can be obtained from (4.6) by a P(T) transformation, and corresponds to an energy

equal to (4.7).
In polar coordinates (4.14) reads:

4 M ia%SFo. (4.15)
dr T
Introducing the auxiliary variable:
b(r) = n — rAZ(r) (4.16)

with the properties: 4(0)=n>0, b(cc)=0 we get exactly the same equations as (4.10):

d 1

— f = Zbf

‘Z‘ " (4.17)
_—h = — 2 — .

drb 2a7‘(f po)

So we have checked that two chiral theories connected by a P(T) transformation admit
the same vortex solutions with n— —n.

We will show in the next section that the P(T) invariant Maxwell theory possesses both
kinds of solutions with n <0 and with n >0, where in both cases the field ¢ satisfies a first
order equation like (4.6) or (4.14).
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4.2. Maxwell case

Here our starting point is the following Maxwell hamiltonian:

- A
i = [ & {anFsFy 51Dl + 50607 | (4.18)

Notice that since now the theory is true Maxwell electrodynamics in two dimensions, we
redefine B9S=V A A9S — B*m =V A Ae™,
Using the identity (3.28) this hamiltonian can be rewritten as:

. le = 1 A
H = /d2 { gstJFz] + 2 |(Dz :i:'LDy)QSlz + "Z‘V/\ J + om Beml¢l2 (5p) } .
(4.19)

4.2.1. Case with n<0

We start discussing the case with the lower sign. Integrating the second term of (4.19) b
parts we get:

™~

2 L 1 — -t 1 A
2 | = . em 2 - 2 4.20
H = /d { geFij Fij — md) DD¢ 2\'/\J —-——sz lo]* + 2(5,0) } , ( )

where we have introduced the complex notation for the covariant derivatives:

D= %(DI _ip,) D= % (Do +iD,) . (4.21)

The equations of motion from this hamiltonian are:
0H 1
Pyl 0 = -——DD¢ + Bequ Aopdp =10
b¢ (4.22)

6H
=0 an — __J’i .
§A4; = 7 9s

Notice that the second of (4.22) is exactly the same as equation (2.5) with gz =a=0.

Taking
A= ZL a =mgs (4.23)
mo

we find that equation (4.22) admits the solution:

D¢ =20
4.24
B = g (4:24)
2c



Comment on Chern-Simons and Maxwell vortices 37

Indeed the second of (4.22) in polar coordinates reads:

1
O-B*™ = ——Jp

. glf’ (4.25)
—0gB*™ = —J,
T gB
and computing Jp and J,. for the vortex ¢(r,8) = F(r)e™® we get:
1 n em
Jo=—f(r) [Z - 45" ()| £(r) (426)
Jr=0,
the first of (4.26), in its polar form (4.8), becomes:
d

S 4.27
LA ) (1.27)
On the other hand from the second of (4.24) we get:

em 2 1 d
8B = o () — po] = F(r) o S(0) (4.28)

proving the validity of the first of (4.25), if (4.23) holds. The second is obviously true.
Formally (4.24) are exactly the equations for ¢ and B®® found in the chiral theory de-
scribed above (see equations (4.6) and the second of (4.5)).

Notice that, because of the presence of the kinetic term for the gauge field, in the Maxwell

case A has no more the value it had in the chiral case. Furthermore, now the value

of the constants a and gz are no ﬁ)nger free but are related.

The hamiltonian (4.18) can be written as:
1 = A
2 em 2 hid 2 . 4.2
H = /d { —gs(B ) 5 |Dg| +2(6p)} (4.29)

Using the second of (4.24) and (3.28) with the lower sign, equation (4.29) can be rewritten

H:/dzr{ |Dg|* — T/\(J+p°Aem)+<;‘+§&5-£&->(5p)2}., (4.30)

The second term can be computed again using the asymptotic behaviour of A. The third

term vanishes using the values of equation (4.23) we get:

He_TPo, 2 /dzr D)2 (4.31)
m m

Notice that, since for our solution the first of (4.24) holds, the positivity of H requires n
to be negative.

Formally, equation (4.31) is equal to the corresponding hamiltonian of the chiral theory
(3.36).



38 Pietro Donatis

4.2.2. Casé with n>0

Now let us discuss the case in which the identity (3.28) is used with the other (upper) sign.
The hamiltonian (4.18) can be rewritten in the following way:

1 2 th# 1 = = 1 A
— 2 - 0 . o 2 - 2
H= /d T {4_@]151F,_.,F1_7 ¢'DD¢ + 2 VAT + 5 B|é|* + 2(6,0) } . (4.32)

We stress that, though in different clothes, this is the same hamiltonian as equation (4.20).

Again we can compute the equations of motion:

0H 2 - 1 '
= =0 = —DD¢— —B™¢— Aépp =0
6T ™ am (4.33)
6H 1
5 A =0 = aiji = —E;J,; .
These equations are solved by: _
D=0
4.34
Be™ = ———}—5,0 . ( )

2ce

with the values of A and « as in (4.23).

As noted in the chiral case these are the equations that are obtained from (4.24) using the
parity transformation (4.2).

Equations (4.34) are again formally equal to the corresponding equations for ¢ and B in
the chiral theory (see equations (4.14) and (4.11)), so they have the same vortex solutions.

The hamiltonian (4.32) can be rewritten as

H="Pni2 /dzr D2 . (4.35)
m m

Now the positivity of H requires n>0.

Again equation (4.35) is formally equal to the corresponding hamiltonian of the chiral
theory (4.13).

Concluding we have shown that the vortex solutions of two chiral theories connected by
a P(T) transformation can be obtained as different vortex solutions of a single Maxwell

theory.
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5. Meissner effect

In this chapter we study what happens to the our chiral fluid when it is coupled to an
external magnetic field. More exactly we are interested in the possibility that there could
be screening of the magnetic field, like happens in standard superconductors (Meissner
effect).

First let us shortly review what happens in the standard superconducting fluids.

The standard superfluids, as it is well known (see for example the classic book by Nozieres
and Pines [36]), have an energy spectrum without gap. Their dispersion relation is linear
in |p] for small |p]. This is a signal that they possess a zero mode which is the phonon exci-
tation, indeed this simply means that these fluids (differently from ours) are compressible
and can therefore support compressional waves (the phonon excitations). When coupled
to an external magnetic field this zero mode behaves like a Goldstone boson and, through
the Higgs mechanism, provide a mass term for the electromagnetic field. A massive gauge
field is of course exponentially decreasing and therefore there is Meissner effect.
Mean-field computations of fractional statistics systems lead to similar mechanisms (8]
[9] [37] [38]. The authors found the linearly dispersing compressional modes necessary to
the Higgs mechanism and take this fact as a sign of Meissner effect. This result gave a
considerable consistence to the hope that anyon superconductivity could be a convincing
model of high T, layered superconductors.

In our case, because of the presence of the gap, there cannot be linearly dispersing exci-
tations like the phonons that is, stated in other words, the fluid is incompressible. This
is a consequence of the fact that the intrinsic dynamics of our field is described by means
of the coupling with a gauge field which, as we have discussed in the previous chapters is
responsible of the gap. It is exactly because of the presence of this gauge field that the
Goldstone theorem is evaded.

Nevertheless in this chapter we will show that, at least in the case where the external
magnetic field is orthogonal to the layers’ plane, in our non-standard system the configu-
ration in which there is screening is energetically favoured with respect to the one in which
the magnetic field penetrates freely throughout the sample. Furthermore we find that the
penetration depth is exactly the one characteristic of the type II superconductors.

To study this kind of problem*, which is essentially a three-dimensional effect, we consider
a multilayered bulk of many two-dimensional films separated by a spacing d, in a similar
way as we did in the chapter 2 studying the persistent currents round the piled annuli.

We suppose that at the edge of the bulk there is a uniform, constant real magnetic field

* For a general review on the properties of the layered superconductors see for example reference [39].
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pointing in two different directions with resp‘ect to the layers’ plane, as in figure 3.

We will study, in both cases, which is the penetration depth that minimizes the energy of

the system.
Z Z
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Figure 3

5.1. Screeni’ng of the magnetic field orthogonal to the
layers

We start studying the case in figure 3a where the magnetic field is orthogonal to the
layers’ plane. We consider the chiral hamiltonian studied in the previous chapter with the
electrostatic term:

H= /d% {i'ﬁ"”z + g [(6 A A’em)z + (E‘em)Z} + -3-(5,3)2} : (5.1)

Here A°™ is the gauge potential of the constant external magnetic field, and E*™ is the
electrostatic field discussed in the previous chapters.

We assume uniformity in the z direction. This fact in particular implies that the matter
density is uniform in z that is it is the same in every layer. As a consequence we have no
electric field orthogonal to the layers’ plane. Therefore the two equations

(5.2)
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tell us that Ee™ and ACS are dual two-dimensional vectors, that is

2
Ef™ = —?—eijAfs : (5.3)

Therefore the hamiltonian is written as

}?‘ - /d:cdy { Do + 2 (T/\Aem)z +

where we have performed integration over the z coordinate and L is the length of the

RO I D

sample in the direction orthogonal to the layers.

The external magnetic field is supposed to be constant. In particular it does not depend
on the y coordinate, which is the direction parallel to the edge of the bulk. Therefore, in
the gauge ¥ - A°™ =0 we can take A°™ pointing in the y direction:

A= = (0,4°™(2),0) (5.5)

furthermore, since §p=§p(z), we have the freedom to take, always in the gauge V. Aem =0,
also A5 in the y direction:
A5 = (0,49 (2),0) . (5.6)

With these assumptions all quantities in (5.4) depend only on z, so we can perform the

integration in y and get:

T 1 d

/dil: {T Ia ¢|2+1€Aem+Acslzp]+~2~(6erm)2+

o (5.7)
2e%a? A

+ 2240y + 20600

L, being the length of the edge of the bulk.

5.1.1. A variational argument

Now, before going into computational details, we want to spend some time analyzing
qualitatively the reason why we expect a screening. To this end we use a variational
principle and we will make some further simplificatory assumptions. The first is to suppose
that some external device is keeping constant the magnetic flux ®; = Lyl B*™, where [,

is the penetration depth of the magnetic field, so that

)

Bemlz _ 9
L, "

(5.8)
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is given to the system from outside.

The second assumption we make is to suppose B constant for 0 <z <1, and zero for z >
whereas actually it is exponentially decreasing.

The third assumption we make is to take a constant value for the density p= p,.

So we have for 0 <z <I,:

Be™ — Po Aem(m) = ‘l:‘D”SDO . (59)

For z>1;, A*™ is constant and it is possible to cancel it in the covariant y-derivative with
the phase of ¢. Thus, the integration runs from 0 to [,.

To test the meaningfulness of what we are doing let us see what happens for the well known
case of the standard superconductor, that is with A5 =0; the hamiltonian (5.7) becomes:

H le d 2 Po o 2 dtpg Po 2 o
= — (B*™ emyd| =12 I . 5.10
I,I, /0 da [2(3 VA o AT =5 T gm0 (5.10)
e : dmd ...
Minimizing H with respect to I, we find I, = >— which is indeed of the same order as
e?p,

the standard value of the penetration depth for type II superconductors:

m
I = /;_2;./.;(.5j : (5.11)

Notice that in what we have done a fundamental role is played by the term quadratic in
A®™ the “mass term” for the electromagnetic field.

In our case, with ACS # 0, this screening effect could be ruined by the possible cancellation
ACS = _¢ fom but, notice, we have also the electrostatic interaction term quadratic in ACS
which now plays the role of the “mass term”. In fact we will see in chapter 6 that this
is not exactly the case. There we will show in details that, in the case of the geometry
of figure 3a, the configuration with ACS — _efem is energetically not favoured also in

absence of the electrostatic term. Indeed we have in this case:
H _ /lfﬂ dm d (Bem)z + zezaz (ZCS)Z + £E— (eAEm + ACS)2 _
L,L.  J, 2 d 2m B

doi  2e*a? ,
= —— Iz .
27, T T3q o

(5.12)

V3d

2e?a
penetration depth, so we expect to have screening.

Minimizing with respect to I, we get I, = We see that we get anyhow a finite



Meissner effect 43

§
5.1.2. A detailed analysis

Now we turn back to hamiltonian (5.7) and analyze it more quantitatively in the framework
of the small deformation approach introduced in section 3.2.
We recall here the basic definitions:

b=V Bdle) = g =

Notice that in this one-dimensional case ¢ is real, so there is no phase.

ulc)  6p=oulz) A°S = é—%u . (5.13)

The hamiltonian becomes:
2

g 11, L1
fiyllz*/dm {%Lpo () +(8A +55u> Pe

0

-+

(5.14)

d em\2 € 2 A 2 |

Varying this hamiltonian with respect to u(z) and A°™(z) we find the equations:

§ ( H 1 ) Po 1 e?
— = e — —u—AAu=0
du (LyLz> dmp, Alut 2am (eA + 2au> * d" “

§ H €po emn 1 em
W(Lyl}z>_m <6A +2a'u>—dAA -—0

(5.15)

If we write u and A°™ in the following form:
u(z) = uge X" A () = Age” X* (5.16)

where ug and Ay are the values at the edge of the bulk, it is possible to rewrite the equations
above in the matricial form:

4 2

— A2 Po € €Po
4mp, X+ 4o2m + d 2am ( U ) —0. (5.17)
€Po d? + e2p0 Aem
2am X ™m

Putting to zero the determinant of this matrix we get the following algebraic equation of
the third order in x?2:

2 2 d 4
d Xﬁ _ <f__ + Ad) X‘l + <62 + € pO)‘ + Po ) XZ . € Po _ 0 . (5.18)
m

4mp, 4m? 4a2m md

Solving this equation for x we will find the decay length of u(z) and of A*™(z), which are

krown respectively as the coherence length which is the characteristic scale of the spatial
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variations of the order parameter ¢ and the benetmtion depth of the magnetic field inside
the sample. The ratio of these two lengths is a dimensionless constant which is typical of a
given superconductor. For superconductors of type I this ratio is much lesser than one, that
is the coherence length is much bigger than the penetration depth. For superconductors
of type II the situation is reversed.

If we take the following typical values for the parameters (as an order of magnitude we

take e to be the electron charge and m the electron ma.ss)

47 T 1
d_—;A 2:—— =4 . —3 K2 = -1 A= — = —
1 ¢ =15 pe=410 A m = 2504 ~  a=,
(5.19)
we get the solutions:
X, =121-107% . x,, =0.56+1i0.54 = a +if . (5.20)

We can approximately compute analytically the smallest eigenvalue x, by rewriting equa-
tion (5.18) in an approximate form taking only the leading terms:

d ep
2 ( % 4 2 2) _ o 9
X <4mx Ady +e> — (5.21)

For small x? we get the solution:

2 _pl _ p (5.22)

md €2 md

X

which, compare with equation (5.11), is exactly the expression for the inverse of the square
of the standard penetration depth and corresponds numerically to x, in equation (5.20).
Let us note that by solving (5.18) in the limit of very small e? we would find:

x = Wjez [1+0(e?)] (5.23)

which, apart from inessential numerical factors, is equal to the inverse of the I, found
minimizing (5.12). Indeed the qualitative analysis leading to (5.12) was meant in the limit
of a very small electrostatic interaction. Actually this is not the case.

The general solution for u(z) is the linear combination:
u(z) = ure” X% fuge Xa® 4 yzeXs® (5.24)
Imposing the reality condition u*(z)=wu(z) and u(0)=0 we obtain:

ul = ug Uy = Ug u; = —2Reuy . (5.25)
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hl

We can parameterize us in the following way:

up = %(~u1 tiw) . (5.26)

So u(z) can be written in the form:
u(z) = u1e %1% — e7**(uy cos fz — w sin fz) (5.27)
giving for ép:
bp(z) = Osu(z) = —leule_xl"“ + 7% [(au; + fw) cos Bz + (Buy — aw)sin fz] . (5.28)
Requiring p to vanish at the edge, that is §p(0)=—p, we can determine the value of w:

w=_Pe 27X, 5.29
5 5 (5.29)

Between A°™(z) and u(z) the following relation holds:

e p, 1 '
A (z) = . 5.30
(0) = ooy —z—u(e) (5:30)

We then compute B*™ =0, A4°™.
Imposing B*™(0) = B§™ we get a value for u;, the only parameter still undetermined. If

we substitute the values of the parameters we see that the exponential behaviour of B*™

1
is controlled by the first eigenvalue, that is the penetration depth is — = 826.454. We

can compare this value to the numerical value of the standard penetr;tion depth (5.11)
which is 825.57A.

It is seen numerically that the behaviour of §p is controlled by the other eigenvalues, that
is the coherence length is —1~ = 1.78A.

Notice that the penetratlon depth is about 400 times the coherence length so our system
behaves like a type II superconductor.

5.1.3. Magnetic vortices

In this subsection we study, with a variational method, the vortices in presence of an
external electromagnetic field orthogonal to the layers’ plane.

These vortices have an origin different from the vortices studied in section 3.3. Those were
originated by fluctuations of the CS magnetic field, that is of the matter density from the

mean value. The present ones are instead the standard well known vortex configurations
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like in a superconductor of type II between the two critical temperatures. They consist
of small regions of the specimen where the external magnetic field penetrates. There are
currents flowing around the vortices. Furthermore there is a penetration of the magnetic
field from the vortex region to the surrounding region.

As we saw in the previous section the hamiltonian is:

H 2 1 = 2 d 2 2€2a2 TCS\2 A 2
— = — —(B*™ —_— —(6 . 5.31
£ = [ {omiDor + 5 B 4 22 @0y 4 Jis) (5.31)
We make the following ansatz:
¢ — f(T)einB
erAg™ =n (1 — e""":) A" =0 (5.32)
1 " 1 —wr?
TASS = E/o dr'v’ [f2(r') — po] = —Z&porze AS® =0.
From here we easily get:
F(r) = po— pof1 — wr?)e="” (5:33)

Notice that our ansatz is such that we have quantization of the flux of the external magnetic
field, differently from the vortices studied previously when it was the flux of the CS mag-
netic field to be quantized. Notice also that since the vorticity is no longer connected with
the CS field, and therefore with the fluctuation of the matter density now, differently from
the vortices studied before, it is possible to have an isolated vortex or antivortex since the
conservation of the total number of particles is anyway satisfied, fooo drr [f2(r) — po] =0,
as can be checked from the last of equations (5.32).

If one substitutes in (5.31) and minimizes numerically with respect to u and w, with the
usual values of the parameters (5.19) one gets:

w=0.1014A72 p="7.336-10"TA2 | (5.34)
for the case of the antivortex (n=—1) and
w=0.1174"2 p="7.337-10"7A? (5.35)

for the case of the vortex (n=1).
From these results we get the values of the dimensions of the vortex and of the penetration
of the magnetic field:

— 3.1474 L 1167544 (5.36)

1
Ve VE
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for the antivortex, and

1 1
— =2.9244 —
Vw # Vi

for the vortex. Notice that for the vortex and for the antivortex we have different results,

= 1167.46A (5.37)

although very close to each other, as it 'should have been expected since our system 1s
chiral. Notice that the value obtained by equation

1 2md
VI e2po '

with the usual values of the parameters (5.19), is 1167.54A. Therefore we can say that we

(5.38)

find again essentially the value found in the previous section for the edge penetration.

We see that again the behaviour is that typical for a type II superconductor.

5.1.4. Layered structure of the vortices

We can also study the properties of these vortices due to the fact that the sample is
composed of a stack of many not-strongly-coupled layers. We follow reference [40] where
a three dimensional vortex is built up superposing a stack of two dimensional vortices in
the case of a standard high T, superconductor In that paper it is explicitly computed, as
a first step, the magnetic field, b, produced by a single layer and then, using this result
the whole stack contribution is computed. Here we will only show that in our case we
can reach, under reasonable assumptions, the same first step, and then just state the final
results.

The problem has a cylindrical symmetry therefore we will use cylindrical polar coordinates

(r,8,2). The current flowing in a single layer is:
J = (0,Js,0) Jo = Jo(r,z) = Ko(r)8(2) . (5.39)
From Ampeére’s law we get:
B,by — B,b, = Ko(r)6(2)

AE=F = { Gbo=0 (5.40)
~0,(rbo) = 0.

S0

From the last two we get bg=0.

For z# 0 the current density is zero and therefore Ampére’s law reduce to equation V AB=0

which is solved by:

Aafr2) = [ dasola)(ra)e" Ay =4, =0. (5.41)
0
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notice that V- A=0. Here J; (2) is the Bessel function of the first kind and A4,(g) is an
unknown function to be determined.
From the first of (5.40), solved for z=0, and (5.41) we can get:

Ky(r) = b,.(r,0+) —bp(r,07) = 2/ dgqAo(q)Ji(rq) . (5.42)
0
For our vortex we know:
Ko=2 (ﬁ —eAsm Ags) £2(r) (5.43)
m \rp
therefore, using (5.41):
3 2
€ 2 _ € 2 n 4cs
[ dadot@nra) 20+ S 1] = 25700 (2 - 45°) (5.44)

0
If the dimensions of the vortex are much smaller than the penetration depth of I;, then it is
sensible to take f2(r) equal to its mean value p, and ASS =0. Within this approximation
(5.44) becomes:

7 e pq epo (M
— == . 5.45
[ dato(anra) (204 <22) = 22 (%) (5.45)
0
Using the orthogonality property of the Bessel functions ,
b 1
| @ neonee) = 2sa- ) (5.46)
0
we get:
Ao(q) = enp, 0 e po ~1_ n/e A= 2m (5.47)
o(e) = ——=(2¢+— =TT hq = :
A is related to the nominal penetration depth of equation (5.11) by the relation:
2
_ ?g (5.48)

and can be considered as the two dimensional penetration depth.

One can then compute (5.41) and verify that the magnetic field decays with the penetration
depth A. The other layers have no vortices, but have an important effect in screening the
magnetic field generated by the currents in the layer where the vortex is present.

These results are exactly the same obtained in [40]. We will not reproduce here all the
computations that can be found in [40], but just state the main results.

Having studied what happens with a single layer we possess the building block to all the
multilayered system superposing the entire stack of two dimensional vortices.

Then one can study the binding energy between vortices in different layers and find that
thermal excitation breaks up the stack above a transition temperature corresponding to
the Kosterlitz-Thouless temperature for a bidimensional system, see references [41] [42].
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5.2. Magnetic field parallel\y to the layers

In this section we consider the case in which the magnetic field lies in the plane of the
layers, as in figure 3b. We consider two different effects. The penetration of the magnetic
field in the direction orthogonal to the layers and the penetration in the interlayer spacing.
The first effect is quite peculiar of our fluid. We find that with this orientation the magnetic
field is not screened anymore, but rather its penetration depth grows with the power 1/3
of the sample size, apart from logarithmic corrections.

The other effect is typical of multilayered superconductors and is essentially based on the

Josephson coupling between the layers.

5.2.1. Meissner effect

In this section we consider the case in which B*™ is parallel to the plane of the layers.
This problem, for the case of standard high 7. superconductors, has been studied in many
papers by J.R. Clem and collaborators [43] [44] [45] [46] [40]. In our analysis we choose
Be™ pointing in the z-direction (see figure 3b) and study the penetration depth in z, [,

supposing uniformity along y. Let us start from the following hamiltonian:

H — 1 = . Zdem . °CS 2 d em\2 A 2
Z -—/da:dz {%‘(T—zeA —14 )d)‘ +-2—(B ) +2(5p)
de? . , [ op(e,2") (z —a")? + (2 —2')?] bp(z, 2)
5 dedz' dzdz { 7 log [ 1z ] ¥ .

Here we have introduced the electrostatic interaction between the fluctuations of the

(5.49)

charged matter which, due to uniformity in the y-direction, is in fact the electrostatic
interaction of a two-dimensional distribution of charge, which is known to be logarith-
mic; A is a convenient dimensional constant which, since [ép = 0, can take an ar-
bitrary value. If we choose Ae™ and ACS pointing both in the y-direction, that is
Ae™=(0, A°™(z, z),0), A5 =(0, A%5(z, 2),0), we can rewrite the hamiltonian as:

H 1 ,
L—y = dzdz {Z—H—i]azqﬂ + ez

115,41+
Po

g (5,,)2} - (5.50)

N P ' (z —2')? + (2 = 2)"
¥ dedz'dzdz {5p(m ,2 )log [ iz bp(z,2) ¢ .

Here jq is a constant, with the dimension of a current density, depending on the intrinsic

N >

1 em 2 em2
b o fedem 4 495 1 L (a5 4

features of the material which measures the Josephson coupling between neighbouring

layers.
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Similarly to what we have done for the field orthogonal to the layers, we consider the
configuration which is less favourable for the screening, that is the possible cancellation
A% (z,2) = —A°™(2)[0(2)O(L; — z)], L, being the length of the z-edge of our sample,
and © is the step function. Thus:

6p(z,z) = 200, A% (z,2) = —2ead*™(2) [§(z) — §(L, — )] . (5.51)

This makes equal to zero the second term in the first integral of (5.50). The first and the
last term in the first integral of (5.50) are edge effects giving a contribution which is very
small compared with the rest since, going through the computation, one can see that they
are suppressed respectively by factors (L.)~! and (L;)"'/®. So in the following we will
skip them. Thus:

H sz em\2 4‘640:2 em Li emy¢ 1

—1—;——; = 2 /dZ (62Ay ) + d /dZdZ’ {A (Z)lOg [1+ (—z‘—:—z"‘jg A (Z) o ,
(5.52)
Like we have done in subsection 5.1.1 (compare with equation (5.8)), we fix the total flux

®g=DBL,l, and define ¢y = %9 such that for 0 <z <1,:

B=20 Ao = 20, (5.53)

and the integration is from 0 to /..

Therefore we get:

H  L,d 4e*a?1 [- L?
— T il d dl Il 1 T —
oL, 2, 4 z/ e { °g{ +(z—~z')2”

L.d 4 e*a? 2 L2 4+
= 0 — DR B
o,  d |8

We assumed L. /I, large to expand the logarithm.

(5.54)

Minimizing H with respect to I, we get:

3 1/3 L—_r; 1/3 Lz -1/3

Therefore we have a “quasi Meissner effect” in the sense that even if I, — oc for L, — oo

[ . .
we have —1—35— — 0. The result of equation (5.55) appears to be quite peculiar of the chiral
quantum ciarged fluid studied in this paper.

This result is, at least qualitatively, in accord with the experiments made with cuprate
superconductors in which the penetration depth in the direction orthogonal to the layers

has been measured to be much greater than the parallel one*.

* See for example [4;7], where, with a sample of Ty Bay CaCuy0Oy, the anisotropy of the penetration
depth has been found to be of the order of 102.
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5.2.2. Penetration in the interlayer spacing

In this subsection for completeness of treatment we review a general argument for multilay-
ered superconductors indicating that the magnetic field parallel to the layers can penetrate
easily in the interlayer spacing, therefore in the direction parallel to the layers (say in the
y-direction, for a field along z), even in the case in which [, is finite. How much the
corresponding [, is large, depends on how small is the interlayer Josephson coupling. This
effect would be basically the same for our chiral quantum fluid. In order to study this
penetration in the direction parallel to the layers we follow the study of reference [43]con-
sidering a possible vortex configuration inside the material. From this configuration we
will infer the penetration properties. A crucial fact for this study is taking into account
the Josephson coupling between neighbouring layers, see [43] [48]. This study has already
been worked out in reference [43] for the case of a standard high T, superconductor, here
we merely rephrase that paper for our case. The main fact is that one has to add to the

current density:

J= P (\37 — eA’) (5.56)

m

(here 7 is the phase of ¢), the Josephson current flowing between to neighbouring layers,
say the n-th and the (n+1)-th, proportional to the sine of the gauge invariant difference
of phase of ¢ between the layers:

n+1

Jz = jo sin(Avn) AvYn = Ynt1 — Yn + e/ dr- 4 (5.57)
jo is a constant depending on the material.
Solring the Ampére equation one finds [43]:
_ 1 _ _ yz 22
— =, L 1+ 5.58
b(T) elz/\JKD(T) T /\_27 + lg ( )

with A% = ;—il}_;—; here d is the stack periqdicity of the layers.
This result tells essentially that B penetrates differently along vy, that is parallel to the
layers, and along z, that is orthogonally, in other words the vortex has an “elliptic sym-
meiry”.

In conclusion, in both cases of ordinary superconductors and the chiral quantum fluid the
magnetic field would easily penetrate along the interlayer spacing. Instead, the penetration
across the layers of a magnetic field parallel to them will be finite for an ordinary super-
conductor (for not too small Josephson coupling), whereas it will grow with a fractional

power of the sample’s dimension for the chiral quantum fluid.
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6. Meissner effect without electrostatic term

In this chapter we consider a somewhat different system. We imagine that the layer
where the fluid lies provides a uniform background that neutralizes the charge, so that
the fluid is globally neutral. Until know we have assumed the background charges to be
fixed and therefore that there appear electrostatic effects where §p#0. In this section we
will assume that the background charge can move and in some way compensate the local
excess of electrostatic charge. In this way, of course, the system remains locally neutral.
In subsection 5.1.1 we showed how the electrostatic term, that we are going to drop in this
section, prevents the possible cancellation of the mass term in the hamiltonian (see equation
(5.12) and the preceding discussion). We show here that nevertheless the configuration in
- which the magnetic field is screened is still energetically favoured.

We consider therefore as a starting point the hamiltonian (5.1) without the electrostatic

term, that is:

. 3 o em _ + 4C8 - em\2 - 2
H-—/dm {—-2 (V= iedem —id )¢‘ +5(V A A 4 2(5p) } . (6.1)

6.1. Qualitative description

Before going into computational details, we discuss in this section the essential points
of the magnetic field penetration problem. We consider exactly the configurations of the
previous chapter, with particular reference to figure 3. As we did in the previous chapter
we suppose independence on the y coordinate so that A°S = A??S((B) and A°™ = A;™(z)
are the only non-vanishing components of the gauge fields. The phase of ¢ can be taken
to be a constant, conventionally zero, otherwise it would contribute an additional positive
energy (of course it will play a role in the vortex configuration).

Let us compute the field equation from the hamiltonian above performing the variation
with respect to A°™ and A®%, we get:
— 024 + L2405 o™ = 0

— 82495 ¢ ﬁ;/\-mcs +ed™)=0.

(6.2)

One sees immediately that there is in principle a zero mode, corresponding to the config-

uration

-

ACS = _ed°m (6.3)
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Thus if (6.3) could be competitive with th; standard configuration, it would spoil the
screening of the external magnetic field. However to understand its relevance, one has to
take properly into account the boundary conditions and to see how the allowed modes
of A°% can actually implement (6.3). In the following sections, we will perform both a
qualitative analysis and a more quantitative one of configuration (6.3) in the two geometries
of figure 3a-b. Of course after discussing whether or not the configuration of equation (6.3)
is energetically favourite throughout the whole sample, we still have to find the optimum
configuration and describe its space dependence. We will discuss it in detail in subsection

6.2.2 using variational methods.

6.1.1. Magnetic. field orthogonal to the layers’ plane

We start discussing the case with B®™ orthogonal to the layers’ plane (here we refer again
to figure 3a). We suppose that the external magnetic field points in the direction of positive
z-axis, and penetrates in the bulk in the z direction. We further assume as we did in the
previous sections that the matter distribution is uniform in the y and in the z directions
and we can choose the electromagnetic and Chern-Simons gauge field depending only on
z and pointing in the y direction as in equations (5.5) and (5.6). With these choices the

hamiltonian (6.1) becomes:

H _ 1 2 em cs|? d em\2 A 2
I.I. —/da: {%(Wﬂﬂ + |ed™ 4+ AC7] p)+5(B Y300, (64)
In this way we have
A®™ = g B*™ 6p = 2a0,A4°° . (6.5)
From (6.5), using (6.3), we get
bp = —2eaB*™ (6.6)

on every point inside each layer.

Of course, the system is overall electrically neutral, therefore the support over which the
quantum fluid lies in each layer acts as the neutralizing background. Here we are interested
in the case when the background charge structure is not so rigid, and we allow the system
to neutralize, in some way, the fluctuation ép.

In order to take into account the energy spent by the system for neutralizing the charge
fluctuations, without changing the form of the effective hamiltonian, we consider the con-
stant X to be larger. This seems reasonable since the greater is the fluctuation ép the
greater is the energy necessary to neutralize it and the greater is the relevance of the term
proportional to . Therefore in the future considerations we will be particularly interested
in the limit of A large.
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We begin by observing that from equation (6.6) we see that the cancellation (6.3) cannot

hold everywhere on the two dimensional space. In fact if this were the case we would have
/dm bp = 2a/dm\;; A ACS = —Zea/dm B*™ = —2eal,B*™ (6.7)

which, being different from zero, violates the conservation of the number of particles.
Thus, there must be somewhere an additional missing density §p™). Actually it is easy to
convince oneself that this missing density must be concentrated on the edge of the sample.
Indeed let us suppose that it is placed at =z = zy, then we can write the total density
fluctuation as:
6p + 6p*0) = 2eaB°™ + 2eaB*™ L 6(z — z9) . (6.8)
Ly
Note that in this way the total number of particles is conserved: [ dz(6p + 6p™))=0.
0

From this expression we get:
OS = —2-1-/ z' 6p(z') = —ezB*™ + eB*™L,O(z — zp) . ' (6.9)
0

Therefore, since A*™ =z B*™, we get:
A% 4 ed*™ = eB*™ L, 0(z — zo) (6.10)

that is, the compensation (6.3) holds for z < zy. If we want it to hold all over the plane
we have to choose zo = L., so the missing matter must be concentrated at the edge of the
sample.

Notice that §p¢*) is very large since it is proportional to L, which is macroscopic. There-
fore a very large energy comes, for instance, from the term in the hamiltonian which is
proportional to [(§p‘*?)?. Thus, we foresee that the configuration of equation (6.3) will
be severely energetically not favoured, and that the quantum fluid will essentially behave
as a standard superconductor. (One can also imagine that §p*), so to speak, disappears
because the fluid undergoes locally a kind of phase transition. But if the fluid is stable

this too would cost energy, and the conclusion would be the same).

6.1.2. Magnetic field parallel to the layers’ plane

We now turn to the case in which the external magnetic field is parallel to the layers,
that is points in the z direction and penetrates the bulk in the z direction (see figure 3b).

Here, as usual, we suppose uniformity of the matter distribution along y. Therefore we
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can choose the gauge fields pointing in the y direction. With these assumptions the gauge

electromagnetic field is

A°™ = —;B°™ (6.11)

and, if (6.3) holds,
6p =220,4°° =0. (6.12)

Equation (6.12) holds everywhere but at the border of the sample. In fact, requiring that
(6.3) holds everywhere inside each layer, we get

A®S = —eA*™(2)O(z) O(Ly — ) . (6.13)
©(z) being the usual step function. Therefore we have:
6p = —2eaA*™(z) [6(z) — 6(L. — )] . (6.14)

Notice that now not only §p=0 inside each layer, but also [ dz §p=0, as the conservation
of the total number of particles requires.

Notice also that the total amount of fluid accumulated at each border of every layer is
J dz 6p=~+2eazB*™ which remains finite for L, — co.

We see thus that §p is not macroscopically large and therefore we expect that its contri-

bution to the energy will not be large.

6.2. Quantitative computation of the orthogonal con-
figuration

In this section we make a more quantitative analysis of the results found above with
a somewhat heuristic arguments, in the case where the magnetic field is orthogonal to the
layers’ plane.

We take as a starting point the hamiltonian (6.4):

H 1 2 cS 2 d 2 Ao g
— em et em - . .15
T.L. /d:c {-—2 (16297 + [eA*™ + A®%|?p) + 5 (Ba) "+ 5 (6p) (6.15)

We imagine that the region where the magnetic field is different from zero is, in absence of
the sample, the interval —s <z < L, see figure 4. We suppose furthermore the total flux
of the magnetic field to be fixed. Thus:

L, L,
%— = /dm B = /da: Bf™ =fixed . (6.16)
y

—38
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Here B{" is the average magnetic field defined by

2 =By(L—z+s). (6.17)
Ly

1
Redefining the zero of the energy by subtracting the constant quantity 5 / dz (B™)?, we

can rewrite the second term in (6.4) as:

d
§/dm [(Bm)2 — (B;;n)2] = g/dm (Bs™ — Bs™)? . (6.18)
Therefore the new hamiltonian is;

H _ 1 2 em cS|2 d em em\2 A 2
pr = [ 4o {5 (80P +led™™ 4 4%5F) + 5 (B — B + 360 | - (619)

Now we suppose that the sample is placed with an edge at the origin of the z coordinate

and that its length in the z-direction is L., as in figure 4. We imagine that the sample
is much smaller than the region where the magnetic field is different from zero, that is
s> L,.

L Bz0 : TY

Figure 4

Here for simplicity we treat the penetration of the magnetic field as if it were uniform,
rather than exponentially decaying, and we call I, the penetration depth. Since we have
fixed the total value of the magnetic flux we have:

P
= = (s +1)B"™ = (s + L) By . (6.20)
Yy
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b

This leads to:
s+ Lg

Be™ — ST L Bfwm";’ B, (6.21)
and to: I ' I I
8 + z z Tt
em _ pem _ em _ pem | _ Bem | 6.22
pen - pyr = (S - per) = B (6.22)
That is: .
Lo
d em 2 d em 2
5 dz (B*™ — By")" ~ 5 (B:") (Ls — lz) . (6.23)

To check the meaningfulness of what we are doing, let us consider the case of the standard
superconductor (that is the case ACS =0, p=p,) and see what happens to the screening.

The hamiltonian becomes:

L. e
H d 2 €2po 2
— _ em __ em d Aem . 624
=5 [ BBy 4 S [ ) (6:24)
0

—38

Notice that since A*™ =z B*™, we have for the second term in (6.24):

l:x:
e’ po 2 2 e? po 2 I3
emy?g? v ZP0 (gemy2 2 6.25
2o [ 4o (5o e = G0 (B (6.25)
0
that is, using (6.23):
H d 2 Ezpo 13
~—(BM) | L; -1, =1 . 6.26
L,L, 2( ) ( * md 3 (6:26)
Minimizing (6.26) with respect to the penetration depth I, we get:
I, = -”Z“l (6.27)
e2po

which is very close to the standard value (5.11). So our assumptions make sense.
Substituting back in equation (6.26) we get the value of the energy of the standard con-

figuration:

H d,_emn2 2
L= 3 (BE™) (L,,. - é-z,,.> : (6.28)
We will compare this standard result to the energy of the case where the configuration
(6.3) is realized. Indeed from what we have learned from the previous section we expect
that the actual result will not be very different from the standard result found here. We

will check this fact by a variational analysis in subsection 6.2.2.
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6.2.1. Detailed discussion of the configuration ACS = _efem

We consider here the possibility that the screening of the magnetic field could be ruined by
means of the cancellation (6.3). Therefore we suppose that the magnetic field penetrates
throughout the sample, that is L, =1,. o

As we said in subsection 6.1.1 if (6.3) holds there must be a §p*) at the border of the
sample, in order to ensure the conservation of the total number of particles.

Thus we suppose that §p*? is concentrated in a small, microscopic, region of thickness &

around z = L, that is:

em 1 T — zp)?
(SP(M) = 2eaBM Lzm exp {""'(“““‘gi“—:l (629)
in such a way that
/d:c §p") = 2eaBM L, . (6.30)

Let us estimate the various contribution to the energy in this configuration.
First: \
' 1 9 1 (8z6p7) 1 em Lz

1 8,60 1 0,8p™)
2 Voot 0 2 /Bp00

where ¢ =+/p, + 6p and thus d,¢=

Second:

Lo

/dm (—2eaBpr + 6p™0)? = 2Xe?a? (BS™)? L, (—1—53 - 1) : (6.32)

A
5 Vor 6

0

Since L, =I,, the contribution from the magnetic field, equation (6.23) is zero. Therefore

the total energy is:

H 1 L 1 L
= — eaB*™ 2% 1 92)e?a? (B™) L, ——”-—1> ) 6.33
L,L, 2m CxTa g2 23t (By) <\/27r (6.83)

L2
We see that the energy gets a contribution proportional to (BM)? T"' . Therefore compared

to the energy of the standard configuration, equation (6.28), we see that the configuration
implementing the cancellation as in equation (6.3) has an energy which is larger by a
macroscopic factor.

Thus, we can disregard the possibility that the configuration (6.3) holds true throughout
the whole sample.
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6.2.2. A variational analysis
We study now in some detail the penetration of the magnetic field with a variational
approach of the full hamiltonian (6.19). This will allow us to go beyond the approximations
of the previous description, and to take into account possible important non-linear effects.

Let us make the following ansatz:

Bem
Be™ — Bgme—x:: = AT — 0 e~ XE
X
B;.lm — Bgm
1] 1
ACS - '§ N — g —uT (634)

0

6p =200, A%% = —£p,o(1 — pz)e™#®

p=28p+po=po [l —E(1—pa)e] .
Note that [dz §p=0. The role of the parameter ¢ is to leave free the value of §p at the
edge. The goodness of this ansatz can be checked directly on the standard case (6.24) from
which we get back the correct value (6.27).
The numerical analysis indicates that p>>y. Let us assume it for displaying a somewhat

simplified expression, verifying a posterior: that u>>x is indeed realized. One gets to the

following expression:

m _ eBg™pg 1 Py Am 2
LyL.”  2op® x 3202° | 8" upeS)] £ (6.35)
L Epe(BEm 1 3md(Bgm)’ 1 '
4 x3 4 X
Here
1 (2 —z)2e 2"
=~ | d 6.36
<(¢) 8 / . E(1l—=z)e™™ (6.36)
0

is a slowly varying function of £, which for £ small tends to a number of order of unit. We
will consider it as a constant. Minimizing this expression with respect to { we find

f“l

= -—-QB™, (6.37)
X

Beapp,

p2 + dmAa?u?p, + 3202 ptec
with respect to x we find:

d 3
== ”27’—\/1+ Ay . (6.38)
X (a4

where Q) =

. Substituting back in (6.35) and minimizing now
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We see from equation (6.38) that the penetgation depth approaches the standard one for
large A, for which @ — 0. We recall again that a large value of A is expected because it
effectively represents the fact that the system must spend energy to remain electrically
neutral when é§p #0.

Indeed this results have been confirmed through a numerical minimization with respect
to x and ¢ of the hamiltonian which is obtained from (6.19) using the ansatz (6.34), with
p=/po (corresponding to a coherence length of ~ 104), for various values of B§™.

We have also verified numerically that taking p smaller increases the energy of the config-

1le
uration, confirming that u > x as stated above. In fact, for 4 — oo we see that Q@ ~— , p°3
cdap

2
thus ¢ =0, and [, — € Po.
md

formally corresponds to the minimal energy. We have taken u at its physically reasonable

We see thus from equation (6.35) that the value p — oo

maximum value, that is p~/po.

One can check that ¢ is indeed small for that value, for A ~ 10 and B{™<10% gauss one
gets £51072 (in all these numerical computations we have taken m to be the mass of the
electron, ~ 250A_1, and p,=4 - 10_3A_2).

We see that the penetration depth is independent of the value of B§™ and that ¢ is
proportional to —B§™ (that is, AC5 has the sign opposite to Eem, as if the system would
like the configuration (6.3) as far as it is possible).

6.3. Magnetic vortices

In this section we study the penetration of the magnetic field from magnetic vortices.

The starting point will be the following hamiltonian:

H _ 2 1 = - Yem . 2CS 2 d em\2 A 2
Lz~—/dr{2m‘(V——wA Y )gﬁ) + 5 (B + 2(60)? p - (6.39)

We look for solutions of the form:
¢(r,0) = f(r)e™ , (6.40)

n is integer and represent the vorticity.

Substituting (6.40) in (6.39) we get:

H 1 d \* 1 d A
D / d?r {——Zm [(50 + o (n=erdg™ = rdGS) £+ S (BT + 5(6/))2}
(6.41)



Meissner effect without electrostatic term 61

Finiteness of (6.41) requires:

f(0)=0 = 6p(0) = —po

lim ép=0 = im f=./po

T CO r— 00 6.42
hm AS™ = (6.42)
r—00 er

lim Ags =0.

We solve this hamiltonian in a variational way with the following ansatz, which satisfies

(6.42):

1d C 2 2
erAg™ =n (1 - e_xgrz) = B=>—(rdp) = ——foze_xz’"
r dr e
1 2.3
cs _ 2 —pir
rAg AP e (6.43)
1d 22
bp = 20;5(“‘1?5) = —po(1 — p*r?)e™"

72 = po— po(1 - .U'Z"'z)e’#’rz .

Notice that fooo d?r 6p =0, therefore there is no missing §p*’. Later on, we will compare
this configuration with a configuration where ACS = _eA°™ and we will need 6p™) #£0
like in the discussion of subsection 6.1.1.

Notice also that in this case, differently from the case treated in the previous section the
value of §p at the origin is fixed to zero by the requirement of finite energy, see equation
(6.41), so there is no ¢ parameter.

With this ansatz we get, supposing > x, to be later verified:

H  porm [ 3np, 9 p? 2mdn?x?  pemA
o~ . 6.44
<Sa#2 +n’log 2x? " e?po - 4p? (6.44)

L, 2m

Minimizing (6.44) with respect to x? one finds easily:

2
2 EPo 6.45

Therefore we recover the penetration depth we had found in subsection 5.1.3 studying the

case with the electrostatic interaction:

L = _1_': 2md

. (6.46)
X e?po

Notice that this penetration depth is independent of A.
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Minimizing (6.44) with respect to p we find:

2 _ 3po | mAp,
8na 4n2? ’

(6.47)

which corresponds to a coherence length:

2
ry = & = San . (6.48)
72 3np, + 2ap,mA

We carried over also a minimization of the exact hamiltonian (6.41) with respect to the
parameters x and g, for various values of A. This have been done numerically taking for
the parameters the values of equation (5.19).

We find a result that essentially confirms the previous approximate analysis. In particular
we find I, ~ 1167A for all the different values of A, which is precisely the value of the
standard penetration depth (6.46). For the correlation length r, we find values which
confirm equation (6.48) with a good approximation, and are of the order of few Angstroms,
confirming our previous assumption that g > x.

Substituting (6.46) and (6.48) in (6.44) we find the energy of the configuration of one

vortex:

L, 2m

H  pem (3np, 4 m s MApGTE
~ —r . 6.49
( 8a " e2p,r Tt 4 (6:49)

6.3.1. The ACS=_eA*™ configuration with rotational symmetry

We now discuss, like in subsection 6.2.1, the possible cancellation (6.3) in the case of a
configuration which has a rotational symmetry, and the flux of B®™ is given, like for the
vortices case discussed above. We will compare it with the standard vortex configuration
of the previous section. As stated in previous discussion, the configuration (6.3) requires
an unavoidable missing §p(*).
We suppose to have a fixed value of the magnetic flux:

®(B) = /d%« B*™ = 2—”% : (6.50)

€

ny here is the total vorticity, that is the sum of the vorticity of each single vortex. Therefore
/dzr bp = Za/dzrﬁ A ACS = ——2ea/d2r B*™ = —2aemRiB*™ = —4wany , (6.51)

where Ry is the radius of the sample, supposed to be a disk.
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So to have conservation of the number of particles we need a §p* of the form:

2an, 1 r — Rgy)?
e N b ["( 52 ” ] ’ (6:52)

where the thickness § is supposed to be microscopic. Note that
/dzr 6p™M) = dmang. (6.53)

We have put the missing density §p*? at the edge of the disk for reasons very similar to
those discussed in subsection 6.1.1.

Let us estimate the most relevant contributions to the energy - coming from the presence

z
of §p™) . -We write:

= (z@) n (Efi) + (Lﬁ) . (6.54)

We find first
H 1 9 2 1 9 1 d (1) 2 1 mang
2y ~ it _ ) 6.55
<Lz>1 2m _/d r D¢l 8m /d ! bpM) (drap 2m 6% ( )
Second: \ JF .
H T 47\ 2a°n
=) =2 | &2 2 ~ o = T, 6.56
(Lz)z 2 / T(‘SP) A ( ) Ro> Rg ( )
Third: 2 g 2
H d 9 2 27 dng
=) == = ] 6.57
<L2>3 2/dr(bem) 7 TR (6.57)

We can distinguish two cases.
a) ngy =1 (or few units). Then the most relevant energy contribution due to §p™’ comes

H 1 .
from 7/ since the other two pieces are suppressed, at least, by the factor —, with Ry

z/1 RQ
. . 1..
macroscopic. This energy (for §2 ~ —) is less or equal to the free energy of the standard

0
configuration (6.49). Therefore for a small flux, that is for a very small magnetic field, the
configuration where ACS cancels ede™ is possibly favourite.

b) Now we suppose B¢™ macroscopic, in other words B*™ is fixed in the macroscopic limit
Ry — co. Therefore from equation (6.51) ny ~ B*™R2 — co. In this case the configuration

where ACS cancels ed*™ gets the most relevant energy from <Z-> , namely from the
z/ 2

2

piece proportional to % Therefore, for this configuration
0
H 2 3
.= —8~\/;462a2 (B=™)? % + lessimportant . (6.58)
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§
We have to compare it with the energy of the standard vortex configuration, equation
(6.49) multiplied by n,, that is:

~ ¢ °-B*"R2 (6.59)
m

: : . . R
where ¢ is of the order of p,rZ, i.e. a finite number. Since = 00, clearly the standard

configuration, or also a configuration of many standard vortices, is energetically favourite.

6.4. Magnetic field parallel to the layers

In this section we put our attention to the configuration in which the magnetic field
Bem is parallel to the layers’ plane and study the screening effects in absence of the
electrostatic interaction.

With considerations very similar to those made at the beginning of section 6.2 we get, in

this configuration, to the hamiltonian:

H 1 1
= /dzdz {-——- [lazqslz + ¢, lazqslz] +— |eA*™ + 45| pt
¥ 2m 2m ~
(6.60)
d em em\2 A 2
+ (B =By ) +5(60) 1
2 2
here ¢; is a constant accounting for the Josephson coupling between the layers and it is
2md?;
related to the constant 7o used in subsection 5.2.1 by ¢, = m2 Jo .
e2p,

We first discuss the standard case with A5 =0 and bp=0. We have:

H e2po 2 d 9
- em — em _ em . , 1
- / dedz {—2m 4] + 5 (B — Bg) } | (6.61)
Since A®™(z)=—2zB¢™ this integral yields:
H (Bifm)z d e?po 3
— = — 2 — . .62
I 5 L, 3mcll” +L,—-1, (6.62)
Minimizing (6.62) with respect to [, we find:
6 (H (Bem)? e2po md
— =) = o -1} = I, = , .
51 (Ly) 5 L — I; -1 0 Zps (6.63)
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bl

which is the standard result.
Substituting back in (6.62) we find the energy of the standard configuration:

H d

9 2
—— = (B"™)L-z|L,— =1, . 6.64

To this value of the energy we will compare that of the (6.3) configuration, that is:
A9 (z,2) = —eA*™(2) [O(2)O(L, — )] - (6.65)

This yields:
6p(z,2) = 200, A%° = —2ead®™ [§(z) — (L, — z)] . (6.66)

Here, as we did in the previous section, we suppose that the fluid density is confined in a

microscopic region of thickness § so we approximate the §-functions with

1
NS

6(z) ~

o] -] o)

Therefore we have:

1 2 L, —z)?
bp(z,z) = —2ea N7 {exp {——%} — exp [_L—?—E—Q—Q_:l } Af™(z) . (6.68)
Keeping this configuration, let us assume that the magnetic field penetrates in the z
direction within a length I, and let us estimate it. We begin by estimating the various

contributions to the energy in this configuration disregarding the terms proportional to

L2
exp< 252) 0. First:
I

L 1 / dz A (2)]? | (6.69)

\/—-53

——/d:cdz 18,67 =

1 8:(4p)
where we used the fact that 0,¢== i~ 3 6
2/op+po 2P (9)-
Second:
2 2
s cyefa® 1 1 2
_ em ; 6.70
dadz 10,9 = G / dz [8,4°™(2) (6.70)
Third:

I

/ (4™ ()] (6.71)

DY >~

/da:clz 6p = 2xe*at——

oslr——x
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Fourth:
our p

5 /dccdz (B*™ — B:}n)2 d

= (B (L.~ L) (6.72)

(here to get (6.72) we have used arguments similar to those that led to (6.23)).
Now putting it all together, and using the fact that A°™(z)=—2zBt™, we arrive at:

H  4e’a® 1 (Bs™)? 1 +m}\ B ¢
L, m 2r § 4p,62 2 /3 8p

Minimizing equation (6.73) with respect to [, we find:

L:l: C_T(Sz L:E »
=)= [ == 6.74
L \/ Q + 2 +4p,mAb? Q’ (6.74)

zz} + g (BE™? Lo(L, —1.) . (6.73)

2 1 1 1 mA
here Q= —~_4e2a%= mAa
e md Vam <4p052 5

This means that when the magnetic field is parallel we do not have screening in the usual

sense because [, — co for L, — co. But we find a “quasi screening” in the sense that

—= —0, just as we found in the previous chapter.

L,
Substituting this result back in (6.73), we find the energy of the configuration (6.3):

B o BMY 1L, - S (BM)? (D)2 ()2 (6.75)
L, 2 6

Comparing this equation with equation (6.64) we see that (6.64) is always greater than
(6.75) for L, macroscopic. So the configuration (6.3), in the case where Bis parallel to
the layers’ plane is always favourite. Nevertheless the behaviour of the penetration of the
magnetic field is qualitatively the same as in the standard configuration studied in section

5.2.
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7. Chiral property

We have seen in chapter 3 that the low-lying excitations correspond to currents which
are circularly polarized if the energy of the excitation is that of the gap, see equation
(3.21). In this chapter we show another feature of our fluid in which emerges its chiral
property. We consider a non-polarized electromagnetic wave perpendicular incident on a
thin film of our fluid. We expect that if the energy of the incoming wave is close to the
gap it interacts with the charged currents mentioned above getting a polarization. Indeed
this is exactly what happens and will be described in what follows.

Similar studies have appeared in the literature for other kinds of T- and P-breaking the-
ories, see in particular references [10] [49].

We consider a free, unpolarized electromagnetic wave propagating in the positive z direc-
tion incoming perpendicularly on a thin layer of the chiral fluid in the z-y plane. We take
the layer to be at z=0. The total system will be described by the lagrangian density

L= %F@'Fﬁ + L£,6(2) . (7.1)
Here the first term is the usual Maxwell lagrangian for the electromagnetic field and the
second term represents the interaction of the electromagnetic wave with the chiral fluid.
As usual we analyze this lagrangian in the small deformation approximation. Since the
electromagnetic wave is orthogonal to the plane, the components of the electromagnetic
vector potential different from zero will be A, and A,. Let us introduce the notation
A= (Ag, Ay), thus A is a two-dimensional vector lying on the layer’s plane. To find £;
we simply rewrite the lagrangian for the free chiral fluid, equation (3.3), adding in the

covariant derivative also the two components of the eleciromagnetic potential Aem,
D(ACS) — D(A°S + ed) . (7.2)

In the small deformation approximation this leads to

2
L; =80V -1 — o (VQ — 5—0-;11, + eA) (AT)” — 5 (V u) . (7.3)

m B 8mp,

Remember that, for a generic two-dimensional vector V we define V to be:

Vi =¢€;V; . (7.4)

We stress that this is a lagrangian density on the plane: all the vector and the derivative

operators are two-dimensional.



68 ' Pietro Donatis

Performing the variation with respect to 8 we find

0L,
00

— - e d —t 1 - -— 2
=V-1I-|—&V-<V0——~——ﬂ’+ef1> =0. (7.5)
m 2a

Since the vector 7 is irrotational we have V - #=0. We consider ff(:z:,y) to be a function of
the (z,y) coordinates, therefore it carries some momentum p'in the plane. It can be figured
as a spot of light. We assume that the size of the spot is smaller than the layer’s size. Later
we will take the limit p— 0 in which the sizes of both the layer and the spot go to infinity.
We decompose the vector Ain its longitudinal and its transverse part Ezﬁ},-{—lm that is
VAA,=V-A, =0. Since by definition V - 4, =0, we have from (7.5):

V=i —ed, . (7.6)

Then the lagrangian (7.3) can be rewritten as:

L= —iVi-22 (Vo + ezi;)szi’— (uL - ii)z— L aapo2 (:“7-@)2 . (7.7)

2m m 2ce 8mp, 2

Introducing the new parameterization 4, =V and A, = V), equation (7.7), due to (7.6),

becomes
m s = €p,f= \2 m - L= 1 w2 A= N2
Ly= 2p0u2—l—eu-V(,o— Zmo (V'gb) —2—%5§Apu2+esmpu-\7¢—~8mpo (AT) —3 (Vu) .

(7.8)
Taking %= #ye’(“**+7'%) we find
2

. m 2 2 APo | vz 1 2\ o2 L/ = . ?po (s 2
= o, <w ~Eear = PV = gl >” tei- (Ve + Eoar V) - S22 (V).

™m m
(7.9)
By functionally integrating out the « field, and using the fact that
= pid; = €5 Aip;
Vo =~""p Vi = 225 (7.10)
|p1? pl> "

we get the interaction lagrangian expressed as a quadratic term in A and representing the
effective electromagnetic interaction between the fluid and the incoming wave. We express

it in a convenient matricial form:

Ly = —%ATL“A , (7.11)
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where
2
L=t /\1 ——— M+ M; | - (7.12)
R 13
Gar m 4m?2

The matrices M; and M, are given by:

M1 = liPzw + pyEGAPlz (ipzw + pySGAP)*(iwa T ngGAP))

(ipyw _ pmgcAp)*(ipzw + pngAP) ]ipyw — pz€car [2 (7 13)
Mz = ( P; ——P;P;;) -

—PzPy yo=

Here we have introduced the following notation:

A= (i,) . (%.14)

Let us now discuss the interaction of the electromagnetic wave with the layer in three
dimensions. The electromagnetic wave is described by 4 = A(z,& )e't, where we use the
notation of equation (7.14). As we said, we will eventually take the limit in which A does

not depend on Z. Thus we will consider a Fourier component:
A(z,Z) = A(z,p)eP® (7.15)

and later on we will take the limit p— 0.

Strictly speaking, when the electromagnetic wave carries a momentum 7 along the layer’s
plane there will be also a non-vanishing z—component of the vector potential. We neglect
it in view of the limit p'— 0.

In three dimensions, the lagrangian for 4, including the interaction with the layer becomes:

L(4) = %szz - —;— [p? A% + (8:4)%] — %A? LAS(z). (7.16)
From equation (7.16) we derive thelequa.tion for A(z,p):
A+ (W —p)A—-LAS(=)=0. (7.17)

A(z) can be written in terms of onward and backward planar waves:

a_e®® L f_e7hz if 2 <0
= . 7.18
Alz) {a+e”“ ifz>0. ( )
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From (7.17) we get that w=+/k* + p’ =k (si;lce k%> p*) and we impose at z =0 continuity

for A(z) and a discontinuity for its derivative such as to match the coefficient of §(z). We

thus get:
2ik L
oy = ~Q_ —=Qp e = ~0 7.19
T 2k -1 O = 2k — L (7:19)
From equation (7.19) we can read the matrices of reflection and transmission:
L
- DYA 1
rR=P-__ 2k p_%t_ . (7.20)
a— 1 L o L
2k 2ik
Notice that R=T—1 and |T|? + |R|*=1 as it should.
Let us take now the limit p'— 0. We get
[j _ 62p0 1 w2 'I:LULC:GAP (7 21)
m w?— EgAP —wEsar w? . ‘
We can then compute T obtaining:
elp ep
T = = i w' = g%“’ ~ 2im” o EG“’z
25 ¢z _ EPo _ €po _EPo 2_g2 _EPe
w* =€ %im " (2 2imw) 2m Eour “ AP " Yim
(7.22)
We see that for w— Eg4p
1 1 —
T:—ezp-—<i 1) . (7.23)
 2imw
Let us consider the following parameterization:
A, =Re (cos GE_M) = cos @ coswt
- (7.24)
A, = Re (sin §e**e™***) = sin f cos(p — wt) .
We can see that the circular polarization is for 0:%;— and go:%, so that:
2 2
A, = -\é—-— coswt Ay = % sinwt . (7.25)

In our complex formalism this corresponds to:

A= ( cos § ) et = -? <1> et (7.26)

sin fe*¥ )
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Thus we see that 7' projects a state in a cir(;ularly polarized one, that is we can write:
1
T =———le)c| (7.27)
e po
21mw

le) = (1) (7.28)

Therefore we have found that for w — £ 4 our chiral planar system behaves like a perfect

where

is the circularly polarized vector.

polarizer.

Note that if instead we take w— co we get:

10
7.29
T ( ! 1) (7.29)
so we have lost any polarizing effect.
<1 (and still —}Z<<1) we get
w

Conversely, for

EGAP
1 1 —r
= (7.30
T=1"7 <T ) ) : (7.30)
where, remembering that a= f— (see footnote at section 3.3 and also appendix A)
T

e2p 9 e? 1
=12 = =R~ ——FK. 7.31
e S T T (7:31)

Therefore, for k of the order of few units, T is very near to the identity and the polarization
effect is very weak.

Thus, like in chapter 3 where we have studied the chiral behaviour of the currents associated
to the small deformations of the fluid, we see that the chirality property of the system
manifest itself only when the energies involved are of the order of the gap.

An electromagnetic wave having the energy of the gap (taking for the parameters the
values of equation (5.19) we find for £5,4» an energy corresponding to ~2-10'* Hz) would
have a wavelength of the order of about 10? times the wavelength of the visible light, this
would correspond to an infrared wave.

To our knowledge, experiments aiming of measuring such polarizing effects have been
made only with visible light. They have not revealed any polarization. This failure can be

essentially motivated with the experimental difficulty in isolate one single layer*. So one can

* We thank Pier Alberto Marchetti for bringing our attention to this fact.
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expect that the two layers could be coupled in such a way to polarize the electromagnetic
wave in two different directions, in such a way that the total polarizing effect results to
be zero. Of course there is also the possibility that, as suggested by the computation we
have presented above, the range of energy in which the system is sensible to chirality may
be different from that of visible light.

To overcome the problem of isolating one single layer other experiments have been realized.
In particular let us quote the experiment of reference [11] in which the authors made a
local test of chirality, and therefore in principle not perturbed by possible opposite chiral
behaviour of the layers nearby, by mean of a muon placed very close to one layer and
measuring the possible variation of its magnetic moment. Also this attempt has not given
out any sign of chirality. _

A possible way out to this negative experimental result could be that, possibly, these
kind of experiments are not sensitive to the range of energy near to the above mentioned

resonance, where chirality becomes manifest.
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Appendix A "

This appendix is devoted to describe the connection between our presentation of the
chiral fluid and the standard mean-field Chern-Simons description of anyons. One can in
principle forget about anyons in all the consideration we made above (and, in fact, this is
precisely what we did), but nevertheless it can be useful to keep the contact of the two
different languages and approaches.

In the Chern-Simons description of Anyons, which we are not going to review here, one
introduces a Chern-Simons gauge field ACS (from now on, in this appendix, will omit the
notation with CS and simply write ACS f—f), whose field strength is proportional to the

density (for a review see [17]):

VAd=p. (A.1)
2a

For coherence with the convention mostly used in the literature we redefine the Chern-
Simons parameter introducing k =4wa.
In order to make precise the formulation it is very convenient to consider periodic boundary
conditions, that is to take a torus [16] [50] [51] [52]. .
In this way one gets vhat the eigenstates of the full quantum solution of the mean-field
theory (even neglecting the fluctuations) are also eigenstates of the total momentum.
Due to the non-trivial topological properties of the torus one has to take into account the

topological components of the gauge potential defined by:

a; = j{dmAz ay = j{dyAy (A.2)

here the two integrals are performed along the two non-trivial loops of the torus. They are

position independent and therefore their field strength is zero.
VAE=0. (A.3)

For this reason they are also called “flat connections”

Let us thus study the effective hamiltonian inspired by this version of the anyon mean-field,

2} (A.4)

.44 .7 . ™ aq z
D; =0; + -;poeij:nj -—z—E —14; D; =0;—14; 4; = ——I—;poeija}j + T + A;. (A.5)

1 being an effective bosonic field,

1 —
AH:/Q%/Q%{——W¢F+C
2m

where the covariant derivative is

K , 0
<Z7;ai +1 fij'a“c”;;> ¥
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Here L is the length of the side of the torus (;ve are supposing, for simplicity that our torus
is a square with identified edges), p,, as usual is the mean density. Therefore Jd*zp,=N
is the fixed total particles’ number. The gauge field is determined by the constraint (A.1)

and is expressed as the sum of three parts

A=A, +A+a. (A.6)
Ayi= ——zr—poeija:j is the “mean-field” part. Its curl yields the mean magnetic field
K
V/\AM:BM:";;“PQ. (A..7)

GAAd="Ts,. (A.8)

d is the above mentioned flat connection.

K is a constant which represents the Chern-Simons coupling constant and can be related
to the anyon statistics [17]. ¢ is a positive constant whose value cau be arbitrary in what
follows. In the anyon problem the value of ¢ is large, ¢ — co, and thus the a; degrees of
freedom remain in the ground state [51].

In the case of the infinite plane we have to take the limit L — oo at constant density
(we will call it thermodynamical limit), so since %, 0 the term depending on @ in the
covariant derivative drops off as long as a; is bounded (we will see below that indeed a; is
bounded) but in the other term of the hamiltonian still a term in a; survives.

Note that now the wavefunction 7 is a function of @ besides Z; that is ¥ =v(Z,d). So we
define the density p(Z) to be

@) = [ dalp(@a)P | (A.9)
It is convenient to introduce a complex notation
1 :

A= 5(44.1 - 'I,Az) . (A].O)

Thus the “mean”, the “fluctuating” and the “flat” part of the connection become respec-
tively
1

. _ - 1 - = .
Ay = —z—zzpoz AZE(AI —14,) a= %(ml + az) . (A.11)
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We start considering the mean-field case and therefore we suppose that A=0. The

(2+5)o}

hamiltonian is:

H= /dzz/dza {;2; {(5+ -z%poz) ¢\2 + ;%Mblz

(A.12)
The state of minimal energy corresponds to:
P =y = exp (—TZ: 2Z — %a&) g(z,a) (A.13)

here g is an arbitrary function, holomorphic in z and antiholomorphic in a.
From (A.13) we can see that a is bounded, as we expected.

Let uslook for the constant density solutions, which are known to correspond to the ground

state of the full quantum mechanical mean-field problem. Choosing g(z,a) =¢” Poza Po
we get par = po, in fact
2
P = /dzali/:Mlz = /dza exp < \/ﬁ;z > Po = Po (A.14)
K
provided we normalize the measure d*a such that [ dlge”TRAO =1
For the hamiltonian (A.12) we get
T
'HM = —pDN . (A.15)
me

This is the energy of N particles in the lowest Landau level. We know that, if & is integer,
in the mean-field solution actually the N particles fill exactly « levels corresponding to the
energy [17]:

1 0
Eu = =—|Bu| Nk = 2N | (A.16)
2m ™m

So, in order to reproduce the correct mean-field energy, we must add

g = -2-%|BM|N(& —1) = -3—:- (1 _ %) /dza/dzzw'* . (A.17)

So our correct starting hamiltonian is
0 4
2 mm) o2 (1o el L aas)
Oa

H= /dzm/dza LBy 4+ =
2m 2

Notice that more in general a constant density is also obtained taking

TP T

Yu = exp [ 2p 2Z — —2-aa + my/pozi + i(pz —i—pz)] VPo - (A.19)
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bl

then the hamiltonian (A.18) becomes

Hy = /dzz {-:;liplzpo - fn;BMpo} = 5’% (2 +25) N + %IBMIN ,  (A.20)
so we have found, besides the standard mean-field energy (A.16), a kinetic energy equal
to that of one particle times N. So our system moves like a condensate where all particles
have the same momentum. In other words it represents a collective motion at constant

density. If we compute the current

1
J=—— /d2a [¢TD¢ - ¢(D¢)JV] (A.21)
2ma

we get

J=Py. (A.22)
m

So we have found for the current exactly the charge density times the velocity. This is
an exact solution of our effective lagrangian (3.3), as we saw in section 2.1, and in a ~
sense it is gapless, since the difference with the ground state energy vanishes for vanishing
momentum. It represents however the overall uniform motion of the system and cannot

be considered as a local excitation.
Now let us introduce the fluctuations taking A0

H= /d2 /d2 { B+—2-—poz—zA)¢] +-—PI¢!2
S (1———) e+ ((,f +——a>¢’ }

% = exp (— T;P"zz - %’ia& + ’/Tpozc_L) #(z,2) (A.24)
K
for the density we get

p= [ Palpl [ #a exp (~mela - 22f7) lo(z, D =19z, 2)F (A.25)

and for the hamiltonian
1 (/= .= (2 A .
- 2., 0 _© _q Zlpl* A.
i /dm{mev zA)q51 +21¢|}7 (A.26)

27 1
where to reproduce the correct “mean-field” energy we have to take A=— (1 — —;>, and
m

(A.23)

Then if we take

s
poNN.

So we have found an hamiltonian which in the “mean- ﬁelﬁ” case gives the correct answer

we have dropped the irrelevant additive constant term

and in the more general “fluctuating” case recovers the covariant derivatives taking into
account the density fluctuations.
We take equation (A.26) as the effective hamiltonian, describing our quantum fluid, cor-

responding to the effective lagrangian density (2.1).
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