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INTRODUCTION

The study of functions of bounded variation (BV-functions), that is the class of inte-
grable functions defined on an open subset  of IJR™ whose partial derivatives in the sense
of distributions are signed measures with finite total variation, has undergone considerable
development during the past 30 years.

An interesting and important aspect of the theory of BV-functions is the analysis of
sets whose characteristic functions are BV, called sets of finite perimeter or Caccioppol
sets.

They include the class of Lipschitz domains, but in general only weak smoothness
conditions on the boundary are required, so that all the sets whose boundary has finite
(n — 1)-dimensional Hausdorff measure are sets of finite perimeter.

However, despite these weak smoothness conditions on the boundary, boundary value
problems for mathematical physics can be formulated and the fact that the Gauss-Green
Theorem is valid for them underscores their usefulness.

These sets have applications in a variety of settings: in particular, the theory of sets
of finite perimeter permitted to show the existence of a solution for Plateau’s problem in
some weak sense.

Besides Plateau’s problem, the study of more general minimizing problems for integral
functionals with linear growth is strictly related with the theory of BV -functions.

In the classical framework of the Calculus of Variations, we consider functional
(1 Flu) = [ fla,u(e), Vu(e)) do
Q

where u is a real-valued or vector-valued function defined on an open set 2 C IR™ and the
integrand f satisfies appropriate hypotheses; the problem to be studied is

(2) min {F(u) : u € X and u = uy on 90}

where X is a Banach space.

A variety of techniques can be used in order to study problem (2); from the beginning
of the 20th century, the most used ones, introduced by Hilbert and Lebesgue in connection
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with the study of the Dirichlet integral and then generalized by Tonelli, are known as the
Direct Methods. These methods consist in dealing directly with the functional F, in
order to obtain existence of a minimizer, ::p)nd in proving for the functional F' the lower
semicontinuity and the coerciveness with respect to a suitable topology. In fact, one way
of proving existence of minima is to find minimizing sequences belonging to a compact
set (which is related to the coerciveness) and then to extract a convergent subsequence,
which by lower semicontinuity converges necessarily to a minimum.

In the case of problem (2), if X is the Sobolev space W1P(Q; R) with p > 1, the
coerciveness property is very easy to prove and follows from an estimate from below of
the type

(3) f(z,8,6) 2 a(lls[IP +1ElI7)  (a>0)

since it is well known that, as a consequence of the reflexivity of W1?({; IR), every
bounded subset is relatively compact in W1?(Q; IR) with respect to the weak topology.

On the contrary, the lower semicontinuity condition involves properties (such as con-
vexity with respect to £) of the integrand f, which may fail in some situations. Neverthless,
it may be interesting to study the behaviour of minimizing sequences by characterizing
their limit points as minimizers of a new functional F, called the relaxed functional.

The main difficulty of this approach is the fact that F is just defined in an abstract
topological way (as the lower semicontinuous envelope of F'), whereas we would like to

deal with a functional represented in some integral form.

Even if this is not always the case, many results in this direction were obtained in
recent years, see for instance [72,16,10,28,29,32,33,3,6].

The situation becomes harder, when the minimization problem is stated in W11 (Q; IR),
since this space is not reflexive and hence bounded subsets are not relatively compact with
respect to the weak topology. In this case, it is well known that the appropriate space in
which the minimization problem must be considered is the space BV(§2; R) of the real-
valued functions of bounded variation, endowed with the weak topology; therefore, the
first step is to extend the original functional from the Sobolev space W1(; R) to the
whole space BV (); IR). The usual way to do so is to define the new functional

F(u) ifueWh(Q,R),

(4) Flu) = { +oo if u € BV(2; R)\ W(Q, R).

Since W1(Q, IR) is dense in BV (Q; IR) with respect to the weak topology of BV (Q; IR),
it follows that, independently of the regularity of F', the functional F is not lower semi-
continuous and hence we have to consider the relaxed functional F.

We observe that it is not restrictive to assume, as a starting point, that the integrand
function fin (1) is convex with respect to ¢. In fact, before extending the functional F' to
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the space BV (£; IR) and then relaxing it, we can first relax F on W' (Q, IR) with respect
to the weak topology of W1(Q, IR) and then extend F to the whole space BV (; R) in

the following standard way .
F(u) ifue WH(Q, R),

G(u) = {
) +oo if u € BV(Q; R) \ WhH(Q, R).
It is not difficult to prove that F coincide in BV(Q;R) with G and, as in the case
p > 1, it was proved that, when f satisfies natural growth conditions, F has an integral
representation by means of an integrand C'f, which is the convex envelope of f (i.e. the
greatest £-convex function less or equal than f, see [73]).

The problem of having an integral representation for F is much harder than the one
for F, and it was studied by several authors, see for instance [94,67,91,98,65,40,23].

We are now led to generalize what was stated in the scalar case and to consider similar
problems in W1 P(; R™) with m > 1, i.e. in the case of functionals defined on spaces of
vector-valued functions.

As previously, we begin with the simplest case p > 1. When the functional F' is defined
as in (1) and the integrand function f satisfies (3), then the coerciveness is fulfilled. As
usual, the main problem is the lower semicontinuity. While the convexity of f with respect
to the last variable ¢ plays a central role in the scalar case (m = 1 or n = 1) and is still
sufficient in the vectorial case to ensure the lower semicontinuity of F', it is far from beeing
a necessary condition when n,m > 1.

In this case, the right necessary and sufficient condition is the so called quasiconvezity
introduced by Morrey. However, it is hard to verify, in practice, if a given function f is
quasiconvex, since it is not a pointwise condition. Therefore, one is led to introduce a
slightly weaker condition known as rank one convezity and a stronger condition, introduced
by Ball, called polyconvezity. One can relate all these definitions as follows

f convex => f polyconvex = f quasiconvex = f rank one convex.

We enphasize that in the scalar case (i.e. n = 1 or m = 1) all these notions are
equivalent to the usual convexity condition, whereas it is well known that in the vector
case (i.e. n,m > 1) the relations stated above cannot be reversed.

As in the scalar case, when f fails to be quasiconvex, we are led to study the relaxed
functional F. In [37,38] and [1] it was proved that if f : Q@ x R™ x IR™*™ — IR satisfies
natural growth conditions, then the relaxed functional ' admits an integral representation
by means of an integrand @ f, which is the quasiconvex envelope of f with respect to ¢,
i.e. the greatest £-quasiconvex function less or equal than f.

Again the situation is harder when p = 1, since in Wh!(Q;R™) there is no hope
to obtain compactness properties, a cause to the lack of reflexivity. Hence, the ap-
propriate space in which we must consider the minimization problem (2) is the space
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BV(£; R™) and therefore, as in the scalar case, we first have to extend the functional
F from W11(Q; R™) the whole space BV (§; R™). So, we obtain a functional F (analo-
gous to the one defined in (4)) which, independently of the regularity of F, is not lower
semicontinuous; hence we have to consider the relaxed functional F.

The problem of having an integral representation for F is quite difficult.

A first result in this direction is due to Goffmann and Serrin (see [67]), who assume
that the integrand function f does not depend on z, satisfies linear growth conditions
from below and above, and it is convex with respect to £.

This result was generalized to the case f(z,s,£) in [12,61]. But as we have already
pointed out, convexity is not the right condition in the vector case: there are several
meaningful physical situations in which f is not convex with respect to {. Actually, as in
the case p > 1, when we deal with vector-valued functions spaces, the correct hypothesis
that f must satisfy is the quasiconvexity with respect to £.

This condition is less restrictive than convexity; some recent examples (see [96,102,85])
show that there exists quasiconvex functions with linear growth which are not convex.

As in the scalar case, there is no loss of generality in assuming that f(z,s,-) is quasi-
convex, since the relaxed functional F can be equivalently obtained, passing firstly through
F, which admits an integral representation by means of Qf, i.e. the quasiconvex envelope
of f with respect to £ (see [37, 38,1]). Hence, from now on we assume that f(z,s,) is
quasiconvex.

A first step in order to obtain an integral representation result for F was done by
Fonseca and Miiller (see [58,59]), who proved that the functional F', which is, by definition,
sequentially lower semicontinuous with respect to the weak topology of W1(§2; R™), is
lower semicontinuous with respect to the strong topology of L'(Q; IR™), and hence with
respect to the weak convergence of BV(§; IR).

But only in 1992 Ambrosio and Dal Maso proved an integral representation result
on BV (€; R) for F, where the relaxed functional is considered with respect to the L!-
topology (see [11]).

About 30 years passed, before the result of Goffmann and Serrin was extended from
the convex case to the quasiconvex one. This is due to the fact that methods used in
the case of convex functions cannot be adapted to quasiconvex functions. Hence, the
quasiconvex case could not be attacked, before a crucial result due to Alberti (see [3])
concerning the rank-one property for the singular part of the gradient of a BV -function.

The representation theorem proved by Ambrosio and Dal Maso for integral functions
f depending only on ¢, was then extended by Fonseca and Miiller to the case of functions
f(z,s,¢), when f(-,-, &) satisfies suitable continuity hypotheses (see [60]).

Another possible extension of this result is obtained by considering functionals F,
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which depend on higher order derivatives.

For functionals of this type there exists a notion of quasiconvexity given by Meyers and
in [76,63] it is proved that, in the case of p-growth (p > 1) this notion of quasiconvexity
is the necessary and sufficient condition in order to obtain the sequential weak lower
semicontinuity of the integral functional on W*?(Q; R™).

But, as usual, when p = 1, W51(Q; R™) is not the appropriate space for solving a
minimization problem; hence we have to extend the functional to the space BV¥(Q; R™),
defined as the space of those functions u belonging to L'(Q;R™), whose k-th partial
derivatives in the sense of distributions is a measure with total bounded variation. Then
we consider the relaxed version of this extension.

Some results concerning the integral representation of this relaxed functional, when
the integrand function depends only on the derivatives of maximal order are treated in
chapter 1 of this thesis, whose content is published in [9].

Until now, we have considered relaxation and integral representation problems, in
particular when these involve spaces of functions, whose derivatives have bounded total
variation. Now, we would like to point our attention to the notion of total variation.

We recall that, given a Radon scalar or vector-valued measure o defined on the family
of all the Borelian sets B compactly contained in an open subset 2 of IR", its total
variation || is the smallest positive Radon measure, which is not less than the norm of
w(B), for every Borel set B.

In particular, if u € BV (Q; IR), we can consider the vector-valued Radon measure Du,
and we can write its total variation

1Dul(Q) = /Q |Dul.

Therefore, the usual total variation can be seen as the total variation associated to the
function ¢(z,¢) = ||€]|, i-e. to the Euclidean norm.

But, it could be also interesting to study what happens if we consider a total variation
(provided that such a notion can be given) associated to a generic Finsler metric ¢(z,¢),
which could be discontinuous with respect to the position z.

It is known that Finsler metrics arise in the context of Lipschitz manifolds (see, for
instance, [26,27,90,92,97]) and in this setting many authors have studied problems involv-
ing geodesics and derivatives of distance functions depending on such metrics (see, among
others, [43,44,45,46,99]).

Furthermore, an important area, where metrics depending on the position play an
important role, is the theory of phase transitions for anisotropic and non-homogeneus

media (see [21,23,87,89]).



A notion of generalized total variation depending on a generic Finsler metric is pro-
posed in chapter 2, where there are studied also the relations between this notion and
the theories of integral representation and relaxation, which consitute, as we have seen, a
proper variational setting for problems involving total variation.

In particular, it is studied the case of Riemannian metrics, which can be considered
as Finsler metrics arising from the square root of quadratic forms.

One could expect that the associated generalized total variation can be represented
as the integral of the Riemannian metric, and this actually happens when the metric is
continuous with respect to the position z. However, in general this is not the case: the
discontinuities of the metric give rise to an unexpected behaviour of the total variation,
which cannot be written by means of the square root of a suitable quadratic form.

The content of chapter 2 can be found in [7].

In the case in which u is the characteristic function of a Borel set B, the generalized
total variation of Du provides a notion of generalized perimeter of B, hence it naturally
arises the question whether this perimeter can be approximated, in some sense, by regular
elliptic functionals, as it happens in the classical setting.

At this point, it is worthwhile to spend some words about variational approximation
of functions or functional convergence.

During the years between 1964-1984 new concepts of convergence for sequence of
operators appeared in mathematical analysis. These concepts are specially designed to
approach the limit of sequences of variational problems and are called wvariational con-
vergences. Each type of variational problem is associated to a particular concept of con-
vergence; the case of interest in this thesis is the one of minimization problems to which
the I-convergence theory, introduced by De Giorgi, is associated (for a general survey, see
[15,41)).

The I'-convergence may be regarded as the “weakest” notion of convergence which
allows to approach the limit in the corresponding minimization problem and it is equivalent
to the set convergence of epigraphs (from which also the name epiconvergence).

This concept of convergence thus has natural applications in optimal control, numerical
analysis, perturbation problems in physics etc...

Coming back to our original problem of approximating the perimeter by means of
regular elliptic functionals, we recall that the first theorem on the approximation of mini-
mal surfaces by I'-convergence and concerning the case of the usual Euclidean metric was
conjectured by De Giorgi in [52].

This problem is related also to some conjectures of Gurtin (see [68,69]) concerning the
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Van der Waals-Cahn-Hilliard theory of phase transition (see, for instance, [16,79,80]) and
it was first solved by Modica and Mortola (see [81,82]).

This result was extended in [87,88,89], where the Neumann condition is replaced by the
Dirichlet condition at the boundary and a quite general anisotropic continuous perturba-
tion is considered. Moreover, in [22], it is also studied the case in which the approximating
perturbation has the two minimum points depending on the position z, against the*hy-
pothesis of fixed minima considered in the previous papers.

The vector-valued case was studied by Kohn-Sternberg, Sternberg and Fonseca-Tartar
(see [70,95,62]), in the isotropic case, and then extended to the continuous anisotropic case
by Barroso-Fonseca in [21].

The techniques used in all these papers cannot be generalized to the case of perturba-
tions with discontinuous coefficients, and hence they cannot be useful in order to obtain
approximations of generalized perimeters depending on Finsler metrics.

Neverthless, in the case of upper semicontinuous metrics, an approximation result is
obtained in chapter 3.

In order to show that the hypothesis of upper semicontinuity is essentially different
from the continuity, in this chapter we give an example (suggested by De Giorgi in a differ-
ent context) of a functional constructed by means of a pathological upper semicontinuous
integrand which, in the limit, gives rise to a quite surprising perimeter.

- More precisely, we consider a Riemannian metric ¢(z, &) = a(z)||é]], where the coefli-
cient a is upper semicontinuous, but highly discontinuous, and we set, for any € > 0 and

for u € WH2(Q; R),
T = [ 68,70+ e 0 - ufed] de

When we take the I-limit as ¢ — 0 of the previous sequence of functionals, we obtain,
up to a constant, a generalized perimeter given by
Py(E,Q) = / (z,vP) dH () Y Borel set E C {2,
QNé*E
where the integrand function 1 is not lower semicontinuous, even if the perimeter 1s a
lower semicontinuous functional and, moreover, it is not the square root of a quadratic
form.

This example clarifies that, in the upper semicontinuous case, the behaviour of the
approximating sequence is, in general, completely different from the one in the continuous
case. Hence, upper semicontinuous metrics cannot be assimiled to continuous metrics and
the approximation of perimeters associated with upper semicontinuous metrics cannot be
considered a trivial extension of the approximation result in the continuous case.

Content of chapter 3 of this thesis is published in [8].
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NOTATIONS

In what follows,  will be a bounded open subset of IR" with Lipschitz continuous
boundary.

For any z,y € IR", we denote by (z,y) the canonical scalar product between z and
y, and by ||z|| = (z,z)? the euclidean norm of z. The absolute value of a real number r
is denoted by |r|. If p > 0 and z € IR", we set B,(z) = {y € R™ : ||y —z| < p}, and
srt={ye R" : |y| =1}

For any set F' C IR"™, we indicate by 0F the topological boundary of F', and by co(F")
the convex hull of F, by int(F") the interior of F', by F the closure of F, and by x p the
characteristic function of F, ie., xp(z) =1if 2 € F, and xp(z) =0if z € R*"\ F. If
F C IR" is a measurable set, we denote by meas(F') its Lebesgue measure.

Given two functions f, g, we denote by f Ag (respectively fVg) the function min{f, ¢}
(respectively max{f,g}).

fceR, weset {f=c}={ze:f(z)=ch {f>ct={z€Q: f(z)>c}.

Let u be any scalar or vector valued Radon measure; its total variation will be denoted
by |p|- Let B C Q be a Borel set, if ¢ : B — IR is a Borel function, then the integral
over B of the function g with respect to the measure p will be denoted by |, g 9dp or
/ g gi- For every scalar non-negative Radon measure A on (2, we indicate by #) and by
12 respectively the absolutely continuous and the singular part of p with respect to the

measure A; when A is the Lebesgue measure we prefer writing p, and p.
The density of u) with respect to A\ will be denoted by % or by & (which stand for

LIT)Y

the Radon-Nikodym derivative of u with respect to A); then we have p}(B) = B

for every Borel set B contained in {2.

The support of a scalar non-negative Radon measure u on 2 is the set
supp(p) = {z € Q: u(QNBy(z)) >0 Vp>0}.

We indicate by dz and by H* the Lebesgue measure and the k-dimensional Hausdorff
measure in IR™ for 1 < k < n, respectively.

Finally, we denote by N () the family of all subsets N of 2 having zero Lebesgue

measure.
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CHAPTER 1: RELAXATION OF QUASI-CONVEX INTEGRALS
OF ARBITRARY ORDER!

1.1 INTRODUCTION

Let ) be an open bounded subset of R™ with Lipschitz continuous boundary, let f be
a function with p-growth (with p > 1) and let us consider the functional

Fw) = [ F(u) do

defined on the space C'(Q; R™).

In [37,38] and [1], there was considered the relaxed functional F defined on the space
wir(Q; IR™) and there was proved that it admits an integral representation of the form

Flu) = /Qg(Vu) dz

where ¢ is the quasi-convex envelope of f.

The quasi-convexity, introduced by Morrey in [83] and [84], is the appropriate condi-
tion in order to deal with functionals defined on vector valued functions.

We note that a convex function is also quasi-convex. On the contrary, it 1s well known
that, for p > 1, a quasi-convex function 1s not necessarily convex. Some recent examples
(see [96,102,85]) show that also in the case p = 1 there exist quasi-convex functions which
are not convex.

Tf p > 1 the minimum problem associated to F on WHP(Q; IR™) admits at least one
solution, thanks to the reflexivity of this functions space. When p = 1, the existence of
a minimum in W11(Q; R™) is not guaranted, since the direct methods of the Calculus
of Variations fail. In this case, it is well known that the appropriate space in which the
minimization problem must be considered is BV (£2; R™).

1The content of this chapter is published in [ADC]
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Recently, Ambrosio and Dal Maso in [11] proved an integral representation result on
BV (§; R™) for integral functionals with quasi-convex integrands having linear growth,
where the relaxed functional is considered with respect to the L'-topology. Previous
results concerning the integral representation on W*(§); IR™) of the same functional can
be found in [58] and [59].

In this chapter, we consider the same problem for the functional
(1.1) F(u) = / F(V*u) dz
Q

where f is a function with linear growth, ¥ € IV, u € W5(Q; R™) and VF*u is the
derivative of order k.

We recall that there exists a notion of quasi-convexity for functions depending on
higher order derivatives (given by Meyers in [76]): a function f is said to be quasi-convex

if
(1:2) | 7+ 952) do 2 7(6) meas()

for every open bounded subset  of IR™, for every constant ¢ and for every z € C§(Q; R™).
Since £ can be considered as the k-th derivative of a polynomial w of degree equal to k,
the previous definition means that each polynomial w realizes the minimum of the integral
functional in the class of functions C*(§2; IR™) assuming the same datum on 9§2. When
k =1, this notion coincides with the usual quasi-convexity.

In [76] and, for a more general case, in [63], it is proved that, in the case of p-growth,
the condition (1.2) is necessary and sufficient in order to obtain the lower semicontinuity
of (1.1) on W*P(Q; R™) for p > 1. Further results for functionals depending on higher
order derivatives are contained in [18,19,20] et al.

In the case p = 1, the direct methods of the Calculus of Variations work if we relax the
functional (1.1) on the space BV*(Q; IR™), of those functions u belonging to L!(Q; R™),
whose k-th derivative in the sense of distributions is a measure with total bounded varia-
tion.

In what follows, we also assume that f has linear growth and satisfies a coercivity
hypothesis. A

We state an integral representation result in BV*(Q; IR™) for the relaxed functional
F of F, with respect to the L!-topology; we prove the following formula:

(13) Py = [ oy do+ [ 5= (D22 ) 1Dk

where ¢ is the quasi-convex envelope of f, ¢ is the so called recession function of g,
defined by
t
9% (€) = limsup 9(it)
00 t
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and DFu = VFu dz + DFu is the Lebesgue decomposition of the measure Dy in its
absolutely continuous part VFu dz and its singular part DFu.

We want to point out that this result cannot be obtained by applying the result in
[11] to those functions v of the type v = VE=1y, since the notion of quasi-convexity for
functions depending on the k-th derivative (k > 1) does not imply the usual notion of
quasi-convexity.

The proof is obtained following the outline of [11] and introducing a blow up technique
for the functions belonging to BV¥(Q; IR™), similar to the one in [59]. A crucial tool is the
rank-one property for the higher order derivatives of a function in BV¥(Q; IR™), proved
by Alberti in [5]. Finally, using a perturbation technique, we obtain the same representa-
tion formula (without assuming the coercivity hypothesis) for the relaxed functional with
respect to the weak convergence on BV¥(Q; R™).

1.2 NOTATIONS AND DEFINITIONS

1.2.1 Tensor spaces

Let n,m and k be positive integers; let us denote by T*(IR™) the space of the k-
covariant tensors on JR". Now let us define the space T%* by

quk ::_ﬂznzééirk(ﬂ%n);

it is (canonically) isomorphic to the space L¥(IR™;IR™) of the k-linear functions defined
on IR™ with values in JR™. Let eq,...,en, be a basis of IR"; let el,...,e™ be the dual
basis and let €1,...,&, be a basis of IR™; then a basis of T;‘;k is given by the tensors
€j®6i1 ® - @e*, withj=1,...,mand i1,...,7r = 1,...,n. Hence a tensor ¢ € T;‘;k
can be written as

110y

(2.1) {= }: ] ik6j®ei1®--~®eik.

We endow the space T™* with the Euclidean norm

= > (€0

ji=1,....m
1,0 ip=1,...,n
In the sequel, we will deal only with k-covariant symmetric tensors, which are characterized

in (2.1), under permutations of the indices

by the invariance of the coefficients £} .

21y.0,2k.
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The subspace of the k-covariant symmetric tensors is isomorphic to the space £, (IR™;IR™)
of the k-linear and symmetric functions defined on IR"™ with values in JR™. This space is
also canonically isomorphic to the space Loym (IR"™; L5-L(IR™; R™ )

We will say that a k-covariant symmetric tensor has rank one, if the range of the
corresponding linear and symmetric function belonging to £gym (R"; ﬁfy",}t(ﬂ:in; IR™)) has
dimension one. In this case, it is easy to see that the k-covariant symmetric tensor has

the following representation
(=lenere-- -8y

k—times

with n € R™, v € R"™ and |0 = [jv|| = 1.

1.2.2 Quasi-convex functions

Let f : T™* — [0, 4o0[ be a Borel measurable function. We say that f is quasi-convex

if

~
Do
)

S

/Qf(ﬁ + D*z) dz > f(£) meas()

for every bounded open set {2 contained in IR", every £ € T™* and every z € CE(; R™).
Since every ¢ € T™F is the k-th derivative of a polynomial w of degree equal to k, the
previous definition means that each polynomial w realizes the minimum of the integral
functional in the class of functions C*(; JR™) assuming the same datum on Q. This
notion of quasi-convexity, introduced by Meyers in [76], generalizes to the higher order
the notion of quasi-convexity due to Morrey (see [83] and [84]). It is easy to see that any
convex function is quasi-convex and in the case m = 1 and k = 1 the two notions coincide.
Moreover every quasi-convex function is rank-one convex ; i.e., the map ¢t — f(£+1() is
convex, for every £, ¢ € T with rank(¢) = 1.

1.2.3 Tensor-valued Radon measure

A T™*_.valued Radon measure will be a set function, defined on the o-algebra of the
Borel sets, with values in the space TZ;k, whose components are scalar Radon measures
on . Given a T™*-valued Radon measure y on 2, we use the notation |u| for its total
variation, which is the scalar non-negative measure on 2 defined for every Borel set B C {2

by
|ul(B) = sup Y _ [|u(Ba)ll,

1€IN
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where the supremum is taken over all the countable families (B;);en of mutually disjoint
Borel subsets contained in B and relatively compact in §2; the number |p|(2) is said the
total variation of u (it is denoted also by fﬂ L))

1.2.4 The space BVF(Q; R™)

We recall that a function u : @ — IR™ is a function of bounded variation (or a BV
function) and we write u € BV(Q; IR™), if u belongs to L*(Q; IR™) and its distributional
derivative (which is a m X n matrix) is a Radon measure with bounded total variation. For
every function u € BV (§2; IR™) we consider the Lebesgue decomposition Du = Dyu+ Dsu
of the measure Du in its absolutely continuous part D,u and singular part D,u with
respect to the Lebesgue measure and we represent D,u as Vu dz, where Vu is the density

of the measure D,u with respect to the Lebesgue measure. For the general properties of
the BV functions we refer to [100,57,75,66,101,103].

Fixed a positive integer k, we say that a function u € L*(Q; IR™) belongs to BV *(Q; R™)
if its k-th derivative in the sense of distributions is a T?,;k-valued Radon measure with
bounded total variation; more precisely, the k-th derivative DFu takes its values in the
space of symmetric T?n’k—tensors. The k-th derivative DFu of u will be decomposed as
V*u dz + DFu. In the case & = 1 these functions are the BV functions. Using [77,
Theorem 1.8] and [75, Section 6.1.7], given u € BV*({;IR™) we have that V*u is a
summable function for every o = 1,...,k — 1; then u € BV¥(Q;R™) if and only if
u belongs to WF=L1(Q; R™) and D*u is a T™F_valued measure. Moreover for every
w € BV¥(; R™) the (k — 1)-th derivative V*~1u belongs to BV(Q; T%F~1). It is easy
to see that BVF(Q; IR™) is a Banach space endowed with the norm

lullgve = 3 /ﬂ IVeull dz + | D*u|(9).

0<a<k

We consider in BV¥(Q; R™) the weak convergence BV*-w defined in the following way: a
sequence (up)ren belonging to B VE(Q; R™) weakly converges to a function u belonging to
BV¥(§; IR™) (and we use the notation up — u) if uj, strongly converges in W*~11(Q; R™)
and the sequence of the Tz;k—measures (D*up)pemv weakly converges to D¥u in the sense

/¢Dk14h—+/¢Dku
Q Q

for every continuous function ¢ with compact support.

of measures; 7.e.,

In the following proposition we state a compactness result in the space B VEQ; R™)
with respect to the BV¥-w convergence.

PROPOSITION 2.1. Let (up)new be a sequence contained in W*(Q; R™).
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i) If ||up)|gyx < C, then there exists a subsequence (up, )iew BV*-w converging to
some function u of BV¥(Q; R™).

i) If for every j = 0,...,k — 1 we have [, D'uy dz =0 and if [, ||[V*us|| < C, then
there exists a subsequence (up, )iy B VF-w converging to some function u of BV¥(Q; R™).

Proof. i) It is enough to apply the Compactness Theorem of BV (see, for instance, [66])
to (V/up)hew € BV forevery j =0,...,k—1.

i1) It is enough to note that, since for every j = 1,...,k -1 Viuy has mean value
zero, then there exists a positive constant ¢; such that

/ HVjuhH de < Cj/ ||Vj+1uh[| dz.
Q Q

Then the assertion follows by ). [

In the following proposition we prove a Taylor’s formula for the B V* functions.

PROPOSITION 2.2. Let u € BVF(Q;IR™). Then for a.e. zy € {

p—0t B,(z0) |z — 2ol

1
where P(zg,z) = Z -——'Vo‘u(a:o)(a: — z¢)® is the Taylor polynomial of degree k of u
o<lal<k &
with initial point in xg.

Proof. When k = 1 the assertion is proved in [57, Th. 4.5.9 (26)]. The general case can
be proved using the analogous arguments as in Chapter 6 of [56] and using the Taylor’s
formula for the C* or W*1 functions on IR™ (see [103, Th. 3.4.1, page 126]). [

1.2.5 The relazed functional

Let f : T™* — [0, +oo[ be a Borel function; we will assume that there exists a constant
M > 0 such that

(2.4) 0 < f(6) < M1+ €I

Associated to f, we consider the so-called recession function f* : T™* — [0, +oo] defined
by

(2.5) f°(€) = imsup —f—%tg—)

t—r4o00
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We remark that, if f is quasi-convex, then it is also rank-one convex; hence, it is possible to
prove that f is a Lipschitz continuous function (with Lipschitz constant L, which depends
only on M, n and m) and, when ¢ is a tensor with rank({) = 1, f* is actually a limit.

Let F: BV*(Q; R™) — [0,+o0[ be the functional defined by

fQ f(Vku) dz ifué€ T/Vk’l(Q;]Rm)’

4o otherwise.

(2.6) F(u,Q) = {

We consider the lower semicontinuous envelope (or relazed functional) F of F with respect
to the Ll-topology, which is defined by

(2.7) F(u,Q) = inf %minf/ F(VFuy) d,

where the infimum is taken on the sequences (up)nev belonging to C*(2; R™) converging
to v in the L'-topology. Moreover, we consider the functional F, which is the greatest
sequentially lower semicontinuous (with respect to the B V*-w convergence) functional not
greater than F'

For the main properties and a general survey of the relaxation theory we refer to the
books [30,38] and [39].

Now, we list some invariance properties of the functional F, which will be useful in the
following and which can be directly proved using the definition of the relaxed functional:

1) for every z € R"
F(ru,7.Q) = F(u,Q),

where (T,u)(z) = u(z — z) and 7.(Q) = z + §;

i1) for every polynomial P51 of degree k — 1 with values in R™

F(u + Pk”l,Q) = F(u, Q);

111) for every p >0
F(0,u,0,9) = p~"F(u,Q),

where (,u)(z) = p~*u(pz) and 6,(Q) = p~ Q.

[N}
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1.3 PRELIMINARY RESULTS

The first result of this section is a continuity theorem for integral functional on

BVk(Q; R™).

LEMMA 3.1. Let Q be an open bounded set with Lipschitz continuous boundary. Let
(un)ren be a sequence contained in W*1(Q; IR™) and let u € BV¥(Q; R™) such that uy
converges to u in the L'-topology. Let us assume that

3.1) , IVEunll(92) = [D*ul(%).

Then for every continuous function ¢ : Tg;k — IR we have

VkUh k / Dku k
3.2 li v = DFul.
42 i [0 (e 194l = [ () 19

Proof. Repeating k-times an integration by parts, it is easy to see that the measure
V¥*uy, dz converges weakly in the sense of measures to D*u. Then the thesis follows from
the Reshetnyak Continuity Theorem (see [71, Appendix] and {91, Theorem 3]).

-Now we introduce the appropriate notation in order to apply the blow up technique to
BV* functions. Let u € BV¥(Q; IR™) and let C be a convex open subset of IR"; for every
zo € C and every p sufficiently small, we consider the function u, : C — IR™ defined by

(3.3) up(y) = p~ u(zo + py)-
For every s > 0 set

Cs(zo)={sy+zo:y€C} and C,=C,(0).
Then for each 0 < 0 <1

(84)  Dtu,(C,) = p~"D*u(Cupl20)) and  [D*u,l(Cy) = p™"|DFul(Copl(o)).

THEOREM 3.2. Let u € BVk( JRm) and let £ : Q@ — T™* be the density of D*u with
]D‘~ B Then, for |D¥ul-a.e. zo € Q we have ||é(zo)|| = 1,
rank(£(zo)) = 1, and for every C convex bounded open subset of IR™ containing the
origin we obtain

respect to |D*u| ; i.e., £ 1=

(3.5) lim D*u(Cy(z0)) =§(zg) and lim leul(Cﬂ(m)):—!—oo

p—o+ [DFu|(C(0)) ot o
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Let 2o € supp(|D*u|) such that {(z¢) can be written as

é(wo)=n<§s’>1/®---®v,

k—times

withn € R™, v € R™ and ||n|| = ||v|| = 1. Let u, be as in (3.3) and let

n

P
UP(y) = leul(CP(xO))(uP(y) - 'm’P(y))’

where m, is a polynomial of degree k — 1 with values in IR™ such that

(3.6) [ 70wy dy =0

forevery j =0,...,k—1.
Then for every 0 < p < 1 and every 0 < o < 1 we obtain

[D*ul(Coplz0)) _

(3.7) D%0,l(Co) = Tpra (G wa)) =

Moreover for every 0 < o < 1 there exist a sequence (pn)renw and a non-decreasing

function v :]a, b[— IR, where a = inf (y,v) and b = sup(y,v), such that
yeC yel

a) py, converges to zero, when h goes to +oo,
b) v,, converges in L' to a function v belonging to BV*(C; R™),
¢) |D*v|(Co) = o™,
d) D lu(y) =4((y,»))n®@rve- - Qv
(k—1)—times
Proof. The Rank One Property of higher order derivatives has been proved by G. Alberti
(see [5, Corollary 4.14]). The equalities in (3.5) are a consequence of a strong version of

the Besicovitch Covering Theorem contained in [11, Proposition 2.2}. In order to prove
the second part of the theorem, we state that

- |DMu(Cop(z0)) |
3.8 limsup > o,
(38) ot [DEul(Cp(wo))

By contradiction, we suppose that there exists pg > 0 such that (setting w(p) = |D*u|(C,))

w(ap) <o" for every 0<p < po.
w(p)
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Then for every h € N
w(otpo) . w(po).
(ahpo)™ ™ PO ’

this is a contradiction, since, when h — 109 otpo— 0 and by (3.9)

h
1m ‘i)_g_%'_.-p—o)— o +Oo.
h—too (0" po)"

Then (3.8) is proved. Now by the definition of v, and since 0 < o < 1, we have that

by =’L_ Ky, =W
T e e L R T C O

Then (3.7) holds and so by (3.8) there exists a sequence (pr)renN converging to 0 such
that

(3.9) im_[DFopl(Co) >

Setting vh = Upn> W€ note that by (3.7) and (3.6) the sequence (va)helN satisfies the
conditions of the Proposition 2.1 ii). Then (passing, if necessary, to a subsequence) Uk
strongly converges in WE-L1(Q; IR™) to some function v € BVF(C; R™) and D*vn weakly
converges in the sense of measures to DFy. By the Compactness Theorem on the space of
measures (passing to some new subsequence) We assume that the total variations |D*vg|
converge weakly in the sense of measures to a Radon measure { Ot C'. We will prove that
u = |D¥v] on C. The lower sernicontinuity of the total variation implies that |DFv| < p.
For every 0 < s <1 such that p(8Cs) =0 we have that

Dboy(Cy) = Du(Cy) and ID*wil(Ce) = ()
Then, for every 0 <§ < 1 such that p(8Cs) =0, we have by (3.9)
(3.10) w(Cs)>0o™
We remark that by (3.4), for every 0<s<l

DFvn(Cs) _ DFu,, (Cs) _ Dku<cphs(‘”0)) YIED)
le”hKCS) \Dkuph\(CS) \Dku\(C'PhS(:EO)) o

This implies that D*u(Cs) = ¢(wo)p(Cs) for any o < s < 1 with p(9Cs) = 0. When
s — 1, recalling that ()]l = 1, we have

\D*|(C) < (€)= |D*o(C))| < ID"I(C),
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ie. p(C) = |DFv|(C). Since the other inequality holds, we get |D¥v| = pon C. In

particular, by (3.10), we have |DFv|(Cs) > o™. Setting v = l—g—:—z—l, we obtain

N

L|- e ool =2 a0y - I <o
As D¥o(C) = &(z0)p(C), this implies that
(3.11) 'y(:c):]g—%%jzn@z/?n-@V
—times
for |D*v|-a.e. z € C. We claim that
(3.12) VEty(y) = (v, ) @8- B,

(k—1)—times

with 9 :]a,b[— IR a non-decresing function, a = irelfc(y, v) and b = sup(y,v). In fact, if
Y yeCl
we denote by ¢(y) = VF 1u(y), by (3.11) we get
Dé _ QU - Qr=0re - QU)QV
g 1P T
k—times (k—1)—times

for |D¢|-a.e. z € C. This implies that ¢ satisfies the relation (2.9) of [11] with 7 replaced
byn®v®---®v, hence D$ . dmits a representation as in (3.12). O
N’ |Dg|

(k—1)—times

In the following lemma, we state the so called “fundamental estimate” (see, for in-
stance, [41, Chapter 18] and [35,42]).

LEMMA 3.3. Let f : T%F — [0, +oo| satisfying the condition

(3.14) My €] < F(€) < Ma(1+ JiEID

for every € € Tﬁk, for some positive constants M and M,. Let Ay, Ay, Cy, Cy be open
bounded subsets of IR™ such that C1 CC Ay and Cy C As. Let (up)new and (vi)rhemw be
two sequences of C k functions such that

Up — U vy — U strongly 1in ! (£2)
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and

limsup/ F(VFup) dz < C, hmsup/ f(VFu) dz < C
h—-+4co JQ h-—s400

for a suitable positive constant C. Then there exists a sequence of functions (¢n)remw C

C*(IR™;[0,1]), which are 0 in a neighbourhood of IR™ \ A; and such that the functions
wy = dpup + (1 — @p)vy satisfy

limsup/ f(VFwy) dz < limsup f(VFup) dz +hmsup/ F(V¥uy) dz.
h—+4c0 CinCy h—-+o0 Aq

Proof. First of all, we note that it is enough to prove that, for every € > 0, there exists a
sequence of functions (¢%)remw belonging to CF(IR™;[0, 1]) such that, setting w§ = ¢5up +
(1 — ¢%)vn, we have

(3.15)
limsup/ F(VFw$) dz < limsup F(VFuy) do ~|—hrnsup/ f(V*0) dz + €.
h—+4o0 JC1NC, h—+400 J A,

In fact, using a standard diagonal procedure, it is possible to construct a sequence of
functions (w;*)penv such that

limsup/ f(VFw$*) dz < limsup F(VEuy) de +hmsup f(V*vy) dz.
h—+o00 JC1NC, h—+oco J A, h—too JA,

For the sake of simplicity, in what follows we omit to write explicitly the dependence on
€.

In order to prove (3.15), let § < dist(Cy,0A41) and let
6 _ 2
S=C,N<z €A : 3 < dist(z,C4) < 55 .

Let us assume that S CC S’ CC A; U A, with S’ Lipschitz continuous.

Fix ¢ > 0, since 1imsup/ f(V¥*uy) dv and limsup/ f(V*uy) dz are bounded, by
h—+c0 JQ h—+4oo JQ

the coercivity follows that there exists a positive constant M (which depends only upon

C) such that
[0+ 175l + 950l do < 1.
Q

Now, let [ € IN be a constant sufficiently large such that
M, /(1 I a4 [VEon]) de < el
S
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(for instance [ = [-Mst] +1). Now for every ¢ = 1,...,1, we set

I+:-1 . I+
<
——-———3l 0< dlst(x,C'l) 3]

Siz{xeﬂz“: 5}06‘2

and we consider ¢; : IR — [0, 1] belonging to C¥(IR™) such that ¢;(z) = 1 if dist(z,C1) <
H”;l"lS, $i(z) = 0 if dist(z,C4) > %—tlic? and for every m =0,...,k

19 silecen < (5)

Then, if we set w}l = diup + (1 — ¢;)vp, we obtain

/ f(VFw}) da < F(V¥uy) dz + f(VEoy) da +M2/ (14 |[|[VFwi]) dz <
CLuCy Aq Al S;

ok
F(T*u) daz-{-/ F(V*up) d;v-l—]\/fo/ (T4 Z ( >[vm¢ivk—muh
A]_ i m=0 m
+ V™1 = ¢)VEmu]|]) da <
g/ F(VFup) dac+/ F(VFup) da;+Mg/S(1+nvkuh||+]|v’°vhn) dz+
Ao :

FY [T = T e

F(VRup) de+ [ f(VEuy) do+ My | (14 [[VFual[ +[[VE0s]) dot
A]_ Ay S

-+ Z ]Vf( ) / ”Vk muh —V'L mvhH dz.

For every h € IN, there exists an index 1, € {1,...,1} such that, setting wp = ¢, up +
(1 — i, v, we have

!
/ f(VFwy) dz < lz/ F(VEwh) dz <
C1NC, l i=1 CcinNCy

k
f(vkuh) d:c—i—/ f(VI”Uh) dz +¢+ Z ( ) /“V’» ™ _vk—mvh” dz <

Ay

k
l -
f(V’”uh) dz + ( ’Uh) dz +e+ C Z <3) HV" ™ Up — V’” mvhll d:l,
SI

A]_ m=1

Since S’ is regular, since uj — vy — 0 strongly in L'(2), which contains §, and since
fq |VF¥(up — vi)|| de < 2C, by the interpolation inequality (see, for instance [2]) and
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by Proposition 2.1 we obtain that Viu, — Viv, — 0 strongly in L(S') for every j =
1,...,k — 1. Taking the upper limit in the previous chain of inequalities, we get -

limsup/ F(VFwy) de <
h—+co JC1NC,

limsup f(Vkuh) dz + lim sup f(VF*oy) dz +e¢,
h——+oco JA; h—+oco J A,

hence the thesis follows. []

Using the previous lemma, we can state that F(u,-) is a measure.

THEOREM 3.4. Let f : T™* — [0, 40o[ be a function which satisfies the condition (3.14)
of Lemma 3.3. Let us consider the relaxed functional F defined in (2.7). Then, for every
u € BVF(Q; IR™) and for every open subset A of 2, we have

(3.16) M, |D¥u|(A) < F(u, A) < My(meas(A) + |DFu|(4)).
Moreover, for every u € BV*(Q;IR™), the set function F(u,-) is the restriction to the

family of the open sets contained in {2 of a o-additive measure on the o-algebra of the
Borel subsets of Q.

Proof. First we note that, for every u € BV¥(Q; R™), there exists a sequence (up)nemw
of C* functions converging to u strongly in L' and such that

lim / VFup|| de = |D*u|(A).
h—+oco J 4

In fact, it is sufficient to repeat the proof of the Theorem 1.17 of [66], with minor modifi-
cations. Then F(u, 4) < l}%m_li_nf/ F(VFuy) dz < My(meas(A) + |D*u|(A4)).

On the other hand, by the definition of F', there exists a sequence (vj)pew in C¥(4; R™)
converging to u in the L!-topology such that

F(u,A)= lim / F(V*p) de > My lim / V50, | da.
h—+o0 J 4 h—+too J 4
Hence, by the semicontinuity of the total variation

F(u,A) > M;|DFu|(A).
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Now, let u € BV¥(€; R™) and set u(A) = F(u, A). In order to prove the second part of
the theorem, it is enough to show (see [54]) that for all bounded open subsets A and A’
of {2 we have

(4.2) if A C A’ then pu(A) < p(A");
(4b)if ANA" =0, then u(AUA") > u(A) + u(A");
(4.c) p(A) = sup{u(4') : A’ CC A};

(4.d) p(AUA") < p(A) + p(4").

(4.2) and (4.b) follow easily by the definition of 4; (4.c) and (4.d) can be obtained (in
a similar way as in Theorem 3.1 of [11]) as a consequence of the fundamental estimate
proven in Lemma 3.3. []

1.4 MAIN RESULTS

In this section, we will give the integral representation of the relaxed functional F
defined in (2.7) and of the relaxed functional F defined in section 2.6. We begin by
proving the inequality from above for F'; in Lemma 4.3, we will prove the inequality
from below for F. Lemma 4.2 is a technical lemma, which is used in order to prove the
inequality from below. Finally, in Theorem 4.4 we state the integral representation for
F, as a consequence of Lemma 4.1 and 4.2, and in Theorem 4.5 we state the integral
representation for F', applying a perturbation technique to F.

LEMMA 4.1. Let f : T%F — [0, 4o0[ be a quasi-convex function and let My, M, be two
positive constants such that

(41) M|€]l < £(€) < Ma(1+[I€]l) V€ € TRE.
Then

F(u Fu) de o __Dfu > fu
(42) P < [ 570 dor [ 52 (3 ) 1Dkl

for every open and bounded subset € of IR™ with Lipschitz continuous boundary and for
every u € BV¥(Q; R™), where F is the relaxed functional with respect to the strong
L1-topology, defined in (2.7).

Proof. The thesis follows by Lemma 3.1 and by [11, Proposition 4.2], where V and D,
are replaced by V* and DF. [
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LEMMA 4.2. Let f: T™F - [0, 400 be a quasi-convex function satisfying (4.1), let €1 be
an open bounded subset of IR™ and let u € BV*(Q; R™).

(i) Let u be a homogeneus polynomial of degree k on IR"™ with values in IR™; i.e., there
exists £ € T™F such that

wi(z) = Z 611 i Tipee T j=1,...,m.

’ll, 1lk“1

Then
F(u,Q) > /Qf(V]‘u) dz = f(£)meas(Q).

(i) Let Q = Q be a unit n-cube contained in IR", whose sides are orthogonal or parallel
to the unit vector v € R™. Let v € BV*(Q; IR™) be a function such that

VElu(y) = (1, )@V - Qv

(k—1)—times

as in Theorem 3.2. Then, if supp(v —u) CC @, we have

F(u,Q) > f(D*(Q)).

Proof. (i) Let §1, Q2 and Q3 be three open sets such that Q; CC Qy CC Q3 CC Q. Let
(up)remw € CF(Q2,IR™) be a sequence such that up — u strongly in L' and

lim / F(V*up) dz = F(u, Q).

h—+c0 Q

By Lemma 3.3 with C7 = ,, A1 = O3, (2 = Ay = Q\—Q-l and v; = u, we obtain a
sequence (wy)henw S C*(Q, R™) converging to u in L' such that supp(ws — u) CC Q and

F(u,Q) +/ f(VFu) dz > hmsup/ F(VFwy) dz > f(€)meas(S),

Q\Q,

where the last inequality is due to the quasi-convexity of f. By letting 21 / Q the thesis
follows.

(i1) Without loss of generality, we may assume that v = e; and @ = [0,1]™. Hence

VElo(y) =¢(1in®e1 ® - ® ey .
~—~——— ———

(k—=1)—times
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Since 1 is a non decreasing function, we may write
= Tim y(t) — im ¥(t) = [$1(0,1) = 1D*4[(@) < +oo.
Let us consider the function w € BV*(]0, -i—)OO["; IR™) defined by
w(y) = u(y - [y]) + 5 i

where [y;] denotes the integer part of y; and [y] = ([v1],...,[yn]). We observe that, when
up(y) = Flgw(hy), we have

UR||BVE(Q;R™) S
[[uall <C

1 u(hy — [h a [hFyFIRF a :
ur(y) = ng(hy) = _(‘%‘[L—yD + Z;,-[—-—%]-” - Eyfn =:ug(y1) strongly in L'
in fact
u(hy — [hy]) 1 /
——— | dy = - u(y — [yDIl dy =
LR Ry = s [ ety D

e [ -l ar =3 [l ag—o

Let us decompose Q in A" congruent cubes Q;, in a standard way. Clearly, |[D*u,|(Q N
9Q;) = |D*w|(Q) = 0, since D*w does not charge any hyperplane of the form y; = [ with
leIN and j =1,...,n. By the properties 1), i) and #27) listed in 2.6, we obtain

F(up,QNoQ;) =0 :
F (o3| ) = F (ewtn 71010 = #F(w,0) = 5 F,0)
F <uh7} 07 %: [ ) = _F(uha Ql)

and hence

Flun, Q) = i{é‘p‘(uh,cgi) _"F <uh,}0, % D ~F(y,Q).

By (i) and by the lower semicontinuity of F(-,Q), we have
—F-<u7 Q) = hhl_}:l —F—(uh7 Q) 2 —F(U()’ Q) =

P (S40,Q) 2 fan®es - 8 e) = F(D°u(Q)
k—times

since DFu(Q) = D*v(Q) = an®e1 @ --- ® e1, and the proof is complete. []
e e

k—times



LEMMA 4.3. Let f : T™* — [0,400[ be a quasi-convex function satisfying (4.1). Then

(a)  Fo(u,Q)> / f(VFu) de

B Tz [ () pk

for every open and bounded subset Q of IR"™ with Lipschitz continuous boundary and

every u € BVF(Q; R™).

Proof. We begin by proving (a). By Proposition 2.2, it follows that

o Ie) = Pea(ee,9) ~ Quleo,2)]
3 Xy o — 2ol de=0

for a.e. zg € §2, where

Pr_1(zo,2) = Z —O—;V“u(mo)(z — z9)%, Qr(zo,z) = Z .Vo’u(:co)(x —z9)%

0<|a|<k—1 la|=F

are, respectively, the polynomial of degree k£ —1 and the homogeneus polynomial of degree
k with iniatial point z¢ associated to u by the Taylor formula.

Let us fix such an z¢ and set ug(y) = Qr(zo,py). Let y € By := B1(0), 0 < p <
dist(zg,0f) and

u(zo + py) — Pr—1(zo, py)
- :
p

up(y) =

Since

_ J— [uw(z) = Pr_s(zo,7) — Qr(zo, )|l
‘/B1 lup(y) — uo(y)ll dy = p /B,,(zo) |z — zol[* dz,

when p goes to zero, it follows by (4.3) that u, converges to ugy strongly in L'(By, R™).

By i) of 2.6, by Lemma 4.2 (3) and by the lower semicontinuity of F, we have

hm(l)nfp "F(u,B,()) = 11m1nf F(u,, B1) > F(ug, By) > f(V*u(zo))meas(By).
p—

Finally

lim inf ————————F(u By(0))

&
p—0+ meas(B,(zg)) 2 f(Viu())

and hence F,(u,Q) > [, f(V*u) dz. This proves (a).
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In order to prove (b), we will previously show the following claim.

CLATM: Let (vn)sen C BVHQ, ™) defined by

= pz: u Yy)—m 1
Uh(y) - IDI“U\(Gph(wo))( Ph(J) Ph(J))

with
vy — v € BVH(Q,R™)  weakly in BV*(Q,R™),
VE () = (g, v)n @ v - QY (¢ non decreasing),
(k—1)—times
o < |DF0|(Q,) < IDF(Q) <1 (@ ={oy:VE Qb

fn sup [ D4us|(Q,) 2 0"
h 400

dvp + (1 — d)v with ¢ € CE(Q),0< ¢ <1 and ¢ =111 a

as in Theorem 3.2. Let wy =
neighborhood of Q,. Then
(1) lim sup |Dk(wh —op)|(Q) £ 2we
h—-o00
(12) lim sup | DFwnr|(Ss) < 2we
h—+o0

where Sy =Q\ Q, and wo =1—0",

Proof of the claim. Since wp —vr = (1-¢)(v— vp), we have

ID¥(wy —v)|(Q) = [DF(1 = ¢)(v —va)l(@) <
k-1
<c@)y /Q (V90 = iy + IDH —w) @\ Q,) <

J=0

k—1
<O Y [ IV = Fuul +1D5I@\T) D" (@) Qo)

Recalling that vy — v weakly in BVF(Q,R™) and hence Vivp, — Vv strongly in

INQ,R™)fory=1,..., k — 1, we have

fimsup D (i = w)l(Q) < limsup IDFu,l(Q\ Q) + 1DF(Q\ Qo) <
< timsup (|D*wl(Q) - ID*os|(@,)) + 1D*I(Q) — ID*01(Q)
< 2(1 - O’n) = 2w
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This proves (i). The proof of (i) is carried on in a similar way, hence the claim is done.

Now the proof of (b) can be obtained as in [11, Proposition 4.5], where D is replaced
by DF. [

We are now in a position to give the main result of our paper. In order to state the
following theorem, we need the notion of quasi-convex envelope of a given function f,
which is the greatest quasi-convex function less than or equal to f.

4.4. Let f : T™F — [0, 4o0[ be a Borel function and let My, M3 be two positive constants
such that
Myléll < £(€) < Ma(1+€) VE € TR

Let us consider the integral functional F' defined in (2.6); then the corresponding relaxed
functional in the strong L'-topology is given by

(4.4) Fu,Q) = /Q g(VFu) dz + /ﬂ g% (%%) | D¥ul

for every 6pen and bounded subset Q0 of IR™ with Lipschitz continuous boundary and for
every u € BV*(Q; IR™), where g is the quasi-convex envelope of the function f.

Proof. If we consider the integral functional F' : C¥(Q; R™) — [0,+oco[ of the form
F(u,Q) = [, f(V*u) dz where f has linear growth, the result in [1] assures that its
relaxed functional in W*1(Q; IR™) is given by the functional

Jo 9(V¥u) dz if w € WHH(Q; R™),

+o0 otherwise

G(u, Q) = {

where ¢ is the quasi-convex envelope of f. Moreover, if we relax G and F' in the space
BV*(Q; IR™) with respect to the L'-topology, it is easy to see that the two relaxed func-
tionals do coincide. Hence there is no loss of generality, assuming that the function f is
itself quasi-convex. Then the proof of the theorem follows by Lemmas 4.1, 4.2 and 4.3. []

It is possible to obtain an integral representation of the relaxed functional even if
the function f is not coercive, and in this case the relaxation takes place in the weak
convergence of BV¥(Q; R™).
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THEOREM 4.5. Let f : T™* — [0,4c0[ be a Borel function and let M be a positive
constant such that

(4.5) 0< f(€) < MOA+E]) Ve Tk

Let us consider the integral functional F' defined in (2.6); then, for every open and bounded
subset Q of IR™ with Lipschitz continuous boundary and for every u € BV¥(Q; IR™), the
corresponding relaxed functional ' with respect to the weak convergence of B VE(Q; R™)
is given by

(4.6) ﬁ’(u,ﬂ):/ﬂg(vku) d:c+/gg°° (lg’: !) | D%

where ¢ is the quasi-convex envelope of the function f.

Proof. Without loss of generality, we can assume, as in the proof of the previous theorem,
that f itself is quasi-convex. Hence (4.6) will be proved with ¢ and ¢g* replaced by f and

fe.

Let us consider the functional

k
G(u, Q) ::/Qf(vku) d:c—l-/(;foo (lgk“|> | DFu|

defined on BV*(Q; R™). It is our purpose to show that G(u, Q) = F(u, Q).

Let f:(£) = f(&) + ¢l and
fQ fo(VEW) dz if w € WH(Q; R™),

+oo otherwise.

Fu(u,Q) = {

Clearly, for every € > 0, f. is coercive; i.e., it satisfies (4.1) for a proper choice of M;(e)
and M, (e); hence, by Theorem 4.4, it follows that

F.(u,Q) = /f(vku) d:p-|-/f€ (lgi |>1D§u|.

f2°(¢) = limsup ——= fa( &) = lim sup f( 3

t—+oo t—++oo

We observe that

+elléll = f7(E) +ell€ll,

hence F,(u,§) converges to G(u, ) when ¢ goes to zero. Since F, is coercive, we have
that F. = F. and hence, from F < F., it follows that F < F. for every ¢ > 0. Passing to
the limit when € goes to zero, we obtain F(u, Q) < G(u, Q).
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Let (up)remn be a sequence in BV*(Q; IR™) such that uj, — u weakly in BV*(Q; R™);

then, since / |V un| dz < C, it follows
Q

G(u, ) < fe(u, Q) < liiminffs(uh,ﬂ) < lgm_li_nf G(up, Q) + eC.

Passing to the limit when ¢ goes to zero, we obtain the lower semicontinuity of G. More-

over, it is clear that, by definition, G(u,§) < F(u,{), hence G(u,Q) < F(u,Q). This

implies
- ku
P @) = [ 5k do+ [ 5 (D) Ik

and the theorem is proved. [J
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CHAPTER 2: A NOTION OF TOTAL VARIATION DEPENDING ON A
METRIC WITH DISCONTINUOUS COEFFICIENTS?

2.1 INTRODUCTION

In this chapter, given a function u :  C IR" — IR, we introduce a notion of total
variation of u depending on a Finsler metric g(z,§), convex in the tangent vector { and
possibly discontinuous with respect to the position z € (2.

It is known that Finsler metrics arise in the context of geometry of Lipschitz mani-
folds (see, for instance, [26,27,90,92,97]). More recently, a notion of quasi-Finsler metric
space has been proposed in [48,49,50]. In this context, problems involving geodesics and
derivatives of distance functions depending on such metrics have been studied, among
others, in [43,44,45,46,99]. Furthermore, an important area where metrics which depend
on the position play an important role is the theory of phase transitions, in particular in
the case of anisotropic and non-homogeneous media. This kind of problems is related also
to the asymptotic behaviour of some singular perturbations of minimum problems in the
Calculus of Variations (see, for instance, [21,22,87,89]).

We concentrate mainly on the study of the relations between our definition and the
theories of integral representation and relaxation, which constitute a proper variational
setting for problems involving total variation. In order to do that, we search for a definition
satisfying the following basic properties: (i) two Finsler metrics which coincide almost
everywhere with respect to the Lebesgue measure give rise to the same total variation; (ii)
the total variation with respect to the Finsler metric ¢ must be L*(2)-lower semicontinuous
on the space BV(Q) of the functions of bounded variation in 2. We shall start from a
distributional definition, since this seems to be convenient to obtain properties (1)-(ii).

More precisely, let  be a bounded open subset of IR™ with Lipschitz continuous
boundary, and let g : Q x IR"™ — [0,+oo[ be a Finsler metric. Let ¢ = ¢°, where ¢°
denotes the dual function of g (see (2.13)). In the sequel, for simplicity of notation we
shall refer our definitions and results to the function ¢ instead of the function ¢g. If ¢ is

2The content of this chapter is published in [AB1]
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continuous, the functional J[¢] : BV(Q) — [0, +co] defined by
(1) Tl = [ ole.v(@) DUl Vue BV(@),

where v*(z) = T%%l(a:), satisfies all previous requirements, as we shall see in the sequel,
and it provides a natural definition of total variation of u in © with respect to ¢ (see
Theorem 5.1). However, if ¢ is not continuous, (1.1) is not the appropriate notion, since
properties (i)-(ii) above are not satisfled. For instance, it is easy to realize that J[¢]
depends on the choice of the representative of ¢ in its equivalence class with respect to
the Lebesgue measure. The lack of properties (i)-(ii) for J[¢] is basically due to the fact
that the function ¢ has linear growth (see (2.19)) and is discontinuous. Indeed, because of
the linear growth of ¢, any lower semicontinuous functional related to ¢ must be defined
in the space BV (£2). We are led then to integrate ¢ with respect to the measure |Dul, for
u € BV (). But, as ¢ is discontinuous, its values on sets with zero Lebesgue measure (such
as the boundaries of smooth sets) are not uniquely determined. These difficulties do not
occur if, instead of the total variation, one considers the Dirichlet energy. Indeed, if {a;;}:,;
is a discontinuous elliptic matrix, then the integrand a;;(z)V;uV ju for u € W2(Q) gives
rise to a lower semicontinuous functional (see [64]) which remains unchanged whenever
{ai;}:,; is replaced by any other matrix which coincides with {a;;}; ; almost everywhere.
The lack of continuity of ¢ in the variable 2z €  is the crucial point and the main
originality of the present chapter.

Our starting point is the following distributional definition. For any u € BV(Q2) we
define the generalized total variation of u € BV(§) (with respect to ¢) in 2 as

(1.2) / |Duly = sup/ udive dz,
Q Q

where the supremum is taken over all vector fields o € L°°(£2; IR™) with compact support
in Q such that dive € L™(Q2) and ¢°(z,0(z)) < 1 for almost every z € 2.

Note that, as a straightforward consequence of the definition, [, |Duls satisfies the
basic property (i) and is L7-1(Q)-lower semicontinuous (actually property (ii) holds by
Theorem 5.1). The choice of the class of test vector fields o (which is obviously larger
than the space C}(; IR™) of the functions o belonging to C'(£2; IR™) which have compact
support in Q) relies on some results about the pairing between measures and functions of
bounded variation (see [13,14]). In Remark 8.5 we show that smooth ¢ can be insensible to
the discontinuities of ¢, and so the space C3(Q; IR™) is an inadequate class of test functions
for our purposes. The choice of the constraint ¢° < 1 is motivated by arguments of convex
analysis.

It is not difficult to prove that (1.2) coincides with the classical notion of total variation

Jo |Du| when ¢(z, &) = [|€]] (see (3.4)).
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Our first result is an integral representation of [ [Dulg in terms of the measure |Du
(Theorem 4.3), which provides a more manageable characterization of the generalized
total variation. As an immediate consequence of this representation theorem, a coarea
formula for [ |Dulg is given (Remark 4.4).

In the classical setting of relaxation theory, it is customary to present fQ |Du| as a

lower semicontinuous envelope, i.e.,
HQ
/ |Du| = inf {liminf/ Vur|| dz : {untr € WHH(Q), un L u} '
Q T JO

The problem of regarding . q |Dulg as a lower semicontinuous envelope of some functional
defined on BV () is quite delicate. To this purpose a crucial role is played by some recent
results about the integral representation of local convex functionals on BV(Q2) proven in
[23]. Let us consider the functional F[¢] : BV (£2) — [0, +-c0] defined by

/ o(z, Vu(z)) dz if u € WH(Q),
(1.3) Flgl(uw) =< ¢
400 otherwise,

and denote by F[4] : BV(Q) — [0, +oco] the L!(§2)-lower semicontinuous envelope of F[¢].
In Theorem 5.1 we prove that

/Q Dul, = Fl(w)  Vue BV(Q).

Consider now the functional J[¢] defined in (1.1). Since ¢ is only a Borel function,
the modifications of the values of ¢ on zero Lebesgue sets must be taken into account.
Precisely, let N C Q be a set of zero Lebesgue measure and let ¢ be a representative
of ¢ obtained by modifying ¢ on N as in (6.4). In Theorem 6.4 we prove that [, |Dulg

equals the supremum, over all such sets N, of the functionals J[¢n].

This operation of modifying ¢ on sets of zero Lebesgue measure can be dropped
if ¢ is upper semicontinuous. In fact, in Theorem 6.5 we prove that the L'(Q)-lower
semicontinuous envelope JJ (8] of 7 [¢] on the space BV(Q) coincides with F|4] (and hence
with fQ |Du|y), provided that ¢ is upper semicontinuous.

It is clear that (1.2) introduces a notion of generalized perimeter Pg(E, ) of a set E in
Q (with respect to ¢), simply by taking [, |Dx gle, provided x p € BV({2), where x  is the
characteristic function of E. The results of §6 can be regarded then as a one codimensional
counterpart of the one dimensional results about curves proven in [43,44,45,46].

If E C IR" is a measurable set of finite perimeter in §, one can consider also the
quantity

PO L'(Q)
Ts(E,Q) = 111f{1}31_f}f£ TN xg,) : {xg, }r € BV(Q), xg, — Xgh
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which stands for a lower semicontinuous envelope of J[¢] by means only of sequences

of characteristic functions. In Theorem 6.9 we show that J4(E,Q) = J[¢](xg) for any
measurable set E C IR™ of finite perimeter in Q and, if ¢ is upper semicontinuous, then

Py(E,$2) = J4(E, Q).
In the special case in which ¢(z,&)? = Z?,j:l a;j(2)é:€; and {a;j};; is a continuous

coercive symmetric matrix, we prove in Proposition 7.1 that
1/2
n .
/ |Du|y = / Z a,-j(a:)y;‘u;‘ - | Dul.
Q € \ij=1
However we show that, if the matrix {a;;}; ; is not continuous, in general [, |Dulg cannot
be represented as the integral of the square root of a quadratic form, and to do that we
exhibit a counterexample. The construction of the counterexample was suggested by E.
De Giorgi (see [48, p.117]) in the context of geometry of Lipschitz manifolds, and in that
setting it has been studied in [43,44]. The same metric provides a counterexample also
for our problem in codimension one, but it requires a completely different proof.

Finally, we stress that our results are still valid if we drop the hypothesis that ¢ is
the dual function of the metric g. More precisely, we only suppose that ¢ is positively
homogeneous of degree one in the tangent vector ¢ (condition (2.12)) with linear growth
(condition 2.19)), and no convexity assumption is considered.

The outline of the chapter is as follows.

In §2.2 we give some definitions and we recall some results on BV functions and sets
of finite perimeter.

In §2.3 we introduce the definition of the generalized total variation fQ |Duly for
u € BV(§2) with respect to @, pointing out the connections with the classical theory.

In §2.4 we prove an abstract integral representation theorem for [, |Duls.

In §2.5 we prove that fﬂ |Du|4 coincides with the lower semicontinuous envelope on
BV(Q) of the functional F[¢] defined in (1.3), and also with the lower semicontinuous
envelope of a functional involving the slope of the function u with respect to ¢.

In §2.6 we prove that fQ |Dulgs can be written as the supremum of a suitable family of
functionals which are lower semicontinuous envelopes of functionals of the form (1.1). In
this context the sets of zero Lebesgue measure play a central role. The final part of this
section is devoted to proving that the functional m, when restricted to sets of finite
perimeter, can be found using only sequences of characteristic functions.

In §2.7 we evaluate the generalized total variation when ¢ is the square root of a
coercive quadratic form with continuous coefficients.

Finally, in §2.8 we prove in detail the counterexample.
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2.2 PRELIMINARIES

2.2.1 The space BV ()

The space BV(Q) is defined as the space of the functions u € L'(Q) whose distri-
butional gradient Du is an IR"-valued Radon measure with bounded total variation in
2. We mdlcate by v* the Radon-Nikodym derivative of Du with respect to |Dul, i.e.,

v¥(z) = ID w(z) for | Dul-almost every z € .

We recall that, as 2 has a Lipschitz continuous boundary, the space BV(Q) is con-
tained in L7-1(Q) (see [75, §6.1.7]).

If w € BV(Q), the total variation of Du in § is given by

(2.1) /Q |Du| = sup {/Q udive dz : 0 € Cy(; R™), |lo(z)]| <1 Vz e Q} :

or, equivalently, by

(2.2) / | Du| = sup {Z |1Du(B;)|| : {Bi}ier is a finite Borel partition of Q}
i€l

If n =k +m, for any (y,2) € @ C R* x R™, we define

/ |Dyu| = sup {/ u(y, z ZD oi(y,z) dy dz :
Q

=1

(23) )
;€ CHOR ™), S oy, DF €1 Viy2) € Q}

=1

Then, if B C {2 is a Borel set, the following Fubini’s type theorem holds (see [78, Appen-
dix]): the function z — [g. |Du?| is measurable for H™-almost every z € R™, and

(2.4) /BIDyu[:/m /B ;Duzq dz

where B* = {y € R* : (y,2) € B}, and u*(y) = u(y, 2).

Let E be a subset of IR"; we denote by xp the characteristic function of E, i.e.,
xg(z) =1if z € E, and xg(z) = 0if 2 € R" \ E. Let E C IR" be measurable; if
fQ |IDx gl < 400, then we say that E has finite perimeter in Q, and we denote by P(E, )
its perimeter. It is well known (see [47]) that

P(E,Q)=H""HQnNd*E),
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where 8*E denotes the reduced boundary of E. We recall that 0*F is defined as the set
of the points z such that there exists the Radon-Nikodym derivative Tgﬁ—l(z) =vE(z) =

(vE(z),...,vE(z)) of the measure Dy with respect to the measure |[Dxp| at the point
, and such that ||v®(z)|| = 1. We recall also that

/ dive dz = / (o,vF) dH™ 1 (z) Vo € Cy(Q; R™).
QNE Qno*E

For the definitions and the main properties of the functions of bounded variation and of
sets of finite perimeter we refer to [51,57,66,74,100].

Following [13,14] we set
(2.5) X ={o e L®(Q;R"): dive € L"(Q)}.

As proven in [14, Theorem 1.2], if v denotes the outer unit normal vector to 9%, then
for every o € X there exists a unique function [o - v*!] belonging to L35,_,(0€) such that

(2.6) / [0 v™u dH™ ! = / udive dz + / (0,Vu) dz  Yu € CHQ).
o0 Q Q

Equality (2.6) can be extended to the space BV(Q) as follows. For every u € BV(Q) and
every o € X, define the following linear functional (o - Du) on Cj(£2) by

/pr(o—-Du): —/qu,bdiva d:c——/ﬂu(a, Vi) dz VY € CH{R).

The following results are proven in [13,14].

THEOREM 2.1. For every u € BV () and every ¢ € X, the linear functional (¢ - Du)
gives rise to a Radon measure on {1, and

(2.7) / (o - Du)| < |lo]l ooy / |Du|  for every Borel set B C Q.
B B

Moreover

(2.8) / [0 - v dH™ ! = / udive dz + / (o - Du).
aQ Q Q

Finally, there exists a Borel function ¢, : § x IR" — IR such that
(o - Du)

(2.9) Bul

(z) = qo(z,v") for |[Du| — a.e. x € Q.

To conclude, we recall the coarea formula, which holds for any u € BV(Q) (see, for
instance, [66, Theorem 1.23]):

(2.10) /QIDul:/JRP({u>s},Q) ds,

where {u > s} = {z € Q:u(z) > s} for any s € IR.
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2.2.2 The functions ¢, ¢*, &°

Let ¢ : Q x IR® — [0,+00] be a Borel function not identically +oco. The function ¢
will be called convex if for any = € 2 the function ¢(z,-) is convex on R". If ¢(=z,-) is

lower semicontinuous for any z € €2, the conjugate function ¢* :  x R™ — [0, +o0] of ¢

is defined by

(2.11) ¢*(z, &%) = sup{(€*,¢) — ¢(z,€) : £ € R"}.

As a consequence of (2.11), ¢* is convex and ¢*(z, -) is lower semicontinuous for any = € 2,
and, if ¢; < @9, then ¢7 > ¢5. One can prove that the biconjugate function ¢** of ¢
coincides with the convex envelope of ¢ with respect to the variable £, denoted by co(¢)
(see, for instance, [55, Proposition 4.1]).

For any Borel function ¢ : Q x IR™ — [0, +o0] satisfying the property
(2.12) d(z,té) = |t|o(z, €) Ve € Q, V¢ e R", Vt € R,
the dual function ¢° : Q x IR™ — [0, +0o0] of ¢ is defined by

(2.13) #°(z,6") = sup {(¢*,€) : £ € R", ¢(x,€) < 1}.

It is immediate to verify that ¢° is convex, ¢°(z,-) is lower semicontinuous, it satisfies
(212) and, if ql)l S (;52, then ¢g 2 qbg
For any z € Qlet Z, = {£ € R™ : ¢(z,£) = 0}. By (2.13) and (2.12), it follows

0 if ¢* =0
(2.14) ¢°(z,6) = { +oo if ¢+ g ZL,
sup {(£*,€) : £ € R", ¢(x,€) <1} if &% e 2\ {0},

where Z+ = {¢* € R™ : (£%,6)=0 V¢ e Z,;}.

For any =z € Q, set {¢, <1} ={£ € R" : ¢(z,&) < 1}, {co(¢)s <1} ={£ € R" :
(co(@))(z,€) < 1}. Using the positive 1-homogeneity of ¢ and the linearity of the scalar
product we claim

¢°(z,8") = sup{(£",€) : € € {¢x <1}} =sup{(£",¢) : { € co{z <1})}

for any (z,£*) € Q x IR™. Indeed, the first equality is immediate. Moreover, we have

that £ € co({¢, < 1}) if and only if { = Za’iﬁi, where «; > 0, ¢(z,&) < 1 for any

=0
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1=0,...,n,and Za; =1. Let j € {1,...,n} be such that |({*,¢;)| = _max [(€%, &)

i=0
In particular, ¢; € {¢. < 1}, and

(€5,6) = ail€",&) < |(€7,&5) < sup{(£%,€) : € € {d < 1}}.
1=0
Therefore

sup{(€*,€) : € € {¢= < 1}} 2 sup{(£",€) : € € co({4= < 1})}.

As the opposite inequality is trivial, the claim is proven.

Moreover using [93, Corollary 17.1.5], it is not difficult to prove that co({¢, < 1}) =
{co(¢), < 1}. We deduce

(2.15) ¢°(z, &) = sup{(£",€) : € € {co(4): < 1}} = (co(4))’(2,€7)
for any (z,¢*) € Q x R". In addition, by [93, Theorem 15.1], it follows that (co(4))®* =

co(¢), which implies, by (2.15), ¢°° = co(¢). We conclude that, if é(z,-) is lower semi-
continuous for any z € {2, then

(2.16) $°° = co(p) = ¢™*.
We shall adopt the following conventions: for any a € [0, +oo[ we set %5 = 0; =+
if a # 0 and & = 0if a = 0. With these conventions we have
(€9 }
2.17 °(z,£*) =sup{ ———=% : £ € R"” Vz e Q, V" € R".
ein ey =sw |t e:

For later use, let us verify

0 if¢°(z,€") <1,
(2.18) ¢*(z,&*) = { ] Vz € Q, V& e R"

+oo if ¢°(z,€%) > 1
Let z € ; if £* = 0 then (2.18) is immediate. If {* ¢ Z; there exists { € R" such that
é(z,€) =0 and (€*,€) # 0. By (2.11) and (2.12) we deduce that ¢*(z,{*) = +oo. Hence
(2.18) is fulfilled, since ¢°(z,£*) = +oo0 by (2.14). The last case, i.e., £* € zZ1\ {0}, can
be proven reasoning as in [55, Proposition 4.2].

Unless otherwise specified, from now on ¢ :  x IR™ — [0, 4-o0o[ will be a nonnegative

finite-valued Borel function satisfying (2.12) and the following further property: there
exists a positive constant 0 < A < +oo such that

(2.19) 0<¢(z,6) SVAJE|  Vee®, Ve R™

Hence if ¢ is convex, then ¢(z,-) is continuous for any = € . By (2.19) and (2.17), one
can verify that

(2.20) VATT|E| < ¢°(z,6%) Ve €Q, VE* € R™
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2.3 THE GENERALIZED TOTAL VARIATION

/ |Dulg of a function v € BV (Q)
Q

We set

X.={o € X : spt(o) is compact in Q},
(3.1) Ks={oe€X::¢°(z,0(z)) <1 forae z€Q},
Cyp ={0 €Ci(Q;R™): ¢°(z,0(z)) <1 Vz e},

where the space X has been introduced in (2.5), and C}(£; R") = {0 € C'({; R™) -
spt(o) is compact in Q}. Observe that K0y (respectively Cy) is a convex symmetric subset
of X, (respectively of C3(Q; IR™)); in addition Ky, = Ky, if ¢1 = ¢3 almost everywhere.

Our definition of generalized total variation reads as follows.

DEFINITION 3.1. Let ¢ : Q x IR" — [0, +oo[ be a Borel function satisfying conditions
(2.12) and (2.19). Let u € BV(); we define the generalized total variation of u with

respect to ¢ in §) as

(3.2) / |Du|g = sup {/ udive dz : o € /C¢,} .
Q Q

If E C IR"™ has finite perimeter in ), we set
/ |IDxgle = Pp(E,Q) = sup {/ dive dz : 0 € K¢} i
Q E

From the definition and the Holder inequality, fQ |Du|y is the supremum of a fam-
ily of functions which are continuous on BV(§) with respect to the L=~1({)-topology.
Consequently the map u — [ [Duls is L#=1(Q)-lower semicontinuous on BV ().

Note that if condition (2.19) is replaced by the stronger condition
(3:3) VAE < éz,©) < VAJEL Ve e, Vee R

for some positive constants 0 < A < A < 400, then, as K4 2 Cy, from the fact ¢°(z,{*) <

VATH|EX], (2.1) and (3.2), we get
/lDu|¢ > \/X/ |Du|  Yu e BV(Q).
Q Q

We point out that Definition (3.1) and all results of Sections 3, 4 and 5 do not depend

on the behaviour of ¢ on sets of zero Lebesgue measure, i.e., they are invariant when ¢
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is replaced by any other function belonging to the same equivalence class with respect to
the Lebesgue measure.

Note that, as ¢°°°(z,&*) = ¢°(z,£*) for any ¢ € Q and {* € R"™ (see (2.15) and
(2.16)), we have

/Q|Du;¢oa=/g|pu|¢ Yu € BV(Q).

Observe also that Definition 3.1 generalizes the classical definition of total variation given
in (2.1). Precisely, if ¢(z, &) = ||€]|, then

(3.4) /Q |Dulg = sup {/Q udivoe dz : 0 € C¢} = /Q | Du).

Indeed (2.8) and (2.7) yield

(3.5) / udive dz = ~/(a -Du) < / |(o - Du)| < IIUIILOO(Q)/ | Dul Vo € Ky.
Q Q Q Q

As ¢°(z,&*) = ||€*], taking the supremum as o € Ky in (3.5), we get

[ 1y < [ 10w

The opposite inequality follows from the inclusion K¢ 2 Cg.
Observe that, in general, from (3.5) and (2.20), we get

/ |Duly < \/K/ |Du|  Yu € BV(Q).
Q Q

The first equality in (3.4) is still true when ¢ is continuous and ¢(z,{) > 0 for any
(z,€) € Q x (IR™\ {0}), according to the following result.

PROPOSITION 3.2. Let u € BV(R) and ¢ : Q x R® — [0,+oco[ be a Borel function
satisfying conditions (2.12) and (3.3). Assume that the function ¢ is continuous. Then

/IDul¢:sup{/ udive dz : O'EC¢}.
Q Q

Proof. For any n > 0 we introduce the following notations:

s1(n) = sup {/ udive dz @ o € X, ¢°(z,0(z)) <1+n forae z¢€ Q}
Q

s2(n) = sup {/ udive dz : o € Cy(Q; R™), ¢°(z,0(z)) <1+n Vze Q} :
Q
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Let us prove

(3.6) s1(n) 2 s2(n) 2 s1(0)—n  ¥n >0,
Inequality s;(n) > s2(n) is obvious, and it holds for any n > 0.

Letn > 0,0 = (01,...,0n) € Kg; let Q' be an open set such that spt(c) CC Q' CC Q,
and let {t.}e>0 be a sequence of mollifiers. Define o, = 0 * ¢ = (01 * e, ..., 00 * ) €
C§°(; IR™) for any 0 < e < $dist(spt(c), Q). Since Jgn %e dz =1 and ¢° is convex,
using Jensen’s Inequality (see, for instance, [84, Lemma 1.8.2]) and the uniform continuity
of ¢°(-,£*) on €' (which is a consequence of (3.3) and the continuity of ¢), it follows that,
for any z € spt(o.),

#(e,0.(e) = (o[ s)ota=ndr) < [ 4oty =
= [ e —wole— )ty + [ olll)welo)as

Rﬂ
where o(||ly||) — 0 as ||ly|| — 0, independently of = € spt(o.). Since o € Ky, we have
¢°(z —y,0(z —y)) < 1. Using the previous inequality, if € > 0 is sufficiently small, we get

(3.7) d°(z,0:(z)) <14+n  Vz el

By [14, Lemma 2.2] we have

(3.8) /, udive dz < /, udive, dz +n = / udive, dz +n < s2(n) + 1.
Then (3.7) and (3.8) yield )

(3.9) /, udive dz < s5(n) +n;

taking the supremum first with respect to ' and then with respect to o € K4 in (3.9),
we have s1(0) < s2(n) + 71, and this concludes the proof of (3.6).

Observe now that, using the positive 1-homogeneity of ¢°(z,-), for any n > 0

s9(n) =sup {/ udive dz : o € Cj(S4; R™), ¢°(z,
Q

o(z) _
1_{_77)51 Va:EQ}—

:sup{/ﬂudiv[(l-kn)a} dz aEC¢} = (1 +7)52(0).

Hence, s2(n) — s2(0) as n — 0, and, in a similar way, s1(17) — s1(0) as n — 0. Taking
into account Definition 3.1 and passing to the limit in (3.6) as n — 0, we obtain

/ |Dulg = 51(0) = s2(0) = sup {/ udive dz : o € C¢} ,
Q Q
and this proves the assertion. [J

We remark that, as proved in Remark 8.5, Proposition 3.2 is false if ¢ is not continuous.
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2.4 AN INTEGRAL REPRESENTATION THEOREM FOR / | Dulg
Q

In this section we prove an integral representation result (Theorem 4.3) for the gener-
alized total variation defined in (3.2). To this end, we recall the notion of C'-inf-stability
(see [24, §2] and [23, Definition 4.2]).

DEFINITION 4.1. Let p be a positive Radon measure on §), and let H be a set of p-
measurable functions from  into IR. We say that H is C'-inf-stable if for every finite
family {v;}ies of elements of H and for every family {ai}ier of non-negative functions
of C*(Q) such that Zai(w) = 1 for any = € S, there exists v € H such that v(z) <
1=y4
Z ai(z)vi(z) for p-almost every z € §2.
eJ
The following theorem holds (see [24, Theorem 1] and [23, Lemma 4.3]).

THEOREM 4.2. Let p be a positive Radon measure on §, and let H be a C'-inf-stable

S ~/§2U /Q ’

where h = u — essinfuv.
veH

Our representation result reads as follows.

THEOREM 4.3. Let ¢ : @ x R™ — [0, +oo[ be a Borel function satisfying conditions (2.12)
and (2.19). Then

(4.1) / |Duly = / h(z,v") |Du|  Vu € BV(Q),
Q Q
where
(4.2) h(z,v") = (|Du| — esssup ¢, )(z) for |Du|—a.e. z € (2.
ocEKy

Proof. It is enough to show (4.1), since it has been proven in [23, Proposition 1.8] that,

if ¢y is as in (2.9), then the function |Du| — esssup ¢, depends on u only by means of the
ceXy
vector v*, i.e., the function h in formula (4.2) is well defined.

Let u € BV(Q); using Definition 3.1, (2.8) and (2.9) we have

(4.3) /Q|Du1¢= sup /Q(U-Du):: sup /qu(:c,vu) |Dul.

O'E/C¢ O’E}C¢

49



Let T, : Ky — L|1Du|(Q> be the operator defined by T, (0 )(z) = —g¢,(z, v*) for | Du|-almost

every z € {2, and let
H={T,(0c):0 €Ky}

We observe that the set H is C!-inf-stable. Indeed, let {o;};cs be a finite family of elements

of K4 and let {a;}ier be a family of non-negative functions of C*(2) such that Z a; =1
i€l
in §2. By the convexity of ¢°, it follows that o = Z a;o; belongs to Ky; moreover, by
1174
[23, Remark 1.5] we get

Z a;iTy(oi) = Tu(o) |Du| — a.e. in .
el

Hence Z a;Ty(0;) € H, and this proves that H is C'-inf-stable.
i€l

As —h(z,v") = <|Du| — eses}(i;nfTu(a')> (z), Theorem 4.2 and formula (4.2) give
TER

(4.4) Uienla/QTu(cr) |Du| = aienla, /;2 —go(z,v") |Dul = -—/Q h(a:,.yu) |Du|.

Then (4.1) is a consequence of (4.3) and (4.4). [

REMARK 4.4. From (4.1) and the coarea formula for BV functions (see (2.10)) we deduce

the following coarea formula for the generalized total variation:
/ |Duj = / f h(z,v*) dH"(z) ds = / Py({u>s),Q)ds Ve BV(Q),
2 R Janos {u>s) R

where v® denotes the outer unit normal vector to the set N 9*{u > s}.

The following lemma shows that we can replace X, by X in the set Ky appearing in
the expression of h given in (4.2), and it will be useful in the proof of Theorem 5.1.

LEMMA 4.5. For every u € BV(Q) we have

h(z,v") = (]Du] — esssup g,)(z) for |Du| — a.e. z € Q,

Q€M¢
where
(4.5) My={o€ X : ¢°(z,0(z)) <1 for a.e. z € Q}.

50



Proof. Let A CC Q be an open set which is relatively compact in €2, and let ¢ € M.
Choose o € K4 in such a way that o = ¢ almost everywhere in A. Then (see [23, formula
(1.7)]) for every u € BV (Q) we have g,(z,v*) = g,(z,v*) for [Dul-almost every = € A,
so that

(4.6) /Aqg(x,VU) |D1L|=ng(w,vu) |Du|§/Ah(:c,y“) |Dul

for any u € BV(Q).

Since (4.6) holds for every A CC § and for any ¢ € My, it follows

(|Du| — esssup go)(z) < h(z,v") for |Du| —a.e. z € Q.
eEMy

As the opposite inequality is a trivial consequence of the inclusion My 2 Ky, the lemma
is proven. []

2.5 RELATIONS BETWEEN RELAXATION THEORY AND THE GENERALIZED
TOTAL VARIATION

In this section we prove that the generalized total variation coincides with the lower
semicontinuous envelope of certain integral functionals which are finite on W L1(Q)) (see
Theorem 5.1 and Proposition 5.5).

Let £ : BV(Q) — [0, +c0] be a functional. We denote by L : BV(Q) — [0,40c] the
lower semicontinuous envelope (or relaxed functional) of £ with respect to the LMQ)-
topology, which is defined as the greatest L(Q)-lower semicontinuous functional less or
equal to L. The functional L can be characterized as follows:

(5.1) Z(u) = inf {lém_li_nfﬁ(uh) :{uptn € BV(), up L—ES.E) u} .

For the main properties of the relaxed functionals, we refer to [30,39].
For any Borel function ¢ which satisfies conditions (2.12) and (2.19) we define the func-

tional F[4] : BV(2) — [0, +c0] by

/ ¢(z,Vu(z)) dv  if u e WH(Q),
(5:2) Flelw) =4 "

400 otherwise.
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Clearly F[¢°°] < F[4], and, if ¢ is convex, then F[¢°°] = F[4]. It has been proven in
[23, Theorem 4.1] that F[¢°°] has an integral representation, and precisely there exists a
Borel function R(4) : 2 x IR™ — [0, +oo[ which satisfies conditions (2.12) and (2.19), it is
convex in the second variable ¢ € IR™ for almost every z € {2, and

(5.3) Fléo°)(u) = /Q [R($))(z,v*) |Du|  Yu € BV(R).

Here

(5.4) [(R(S))(z,v™) = (1Du] = ess sup ¢,)(z)  for |Du|—ae. z €,
where

(5.5) ko= {G €X: /Q(éoo)*(a:,a(a:)) dz < +oo} —
- {U €4 /Q ¢*(z,0(z)) dz < —l—oo}

(recall (2.16)), and X is defined in (2.5).
It is well known (see [66, Theorem 1.17]) that, if ¢(z,¢) = ||£|], then

(5.6) mLWM:ﬂme:?Wm) Vu € BV(Q).

This formula can be generalized, according to the following result.

THEOREM 5.1. Let ¢ : Qx IR™ — [0, +oo[ be a Borel function satisfying conditions (2.12)
and (2.19). Then

(57) /Q Duls = Flgo)(u) = F[d(w)  Vu € BV(Q).

In particular, [, |Dulg is L*(2)-lower semicontinuous on BV (Q).

If in addition ¢ is continuous and satisfies (3.3), then
(5.8) / |Dulg :/ #°°(z,v") |Dul Yu € BV(Q).
Q Q
Proof. Let us prove that
(5.9) fuhbszﬂm) Vu € BV(9)
Q ,
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‘We observe that
(5.10) )C;; = My,

where K} and M, are defined in (5.5) and (4.5), respectively. Indeed, for any o € X,
using (2.18) we have

/ ¢*(z,0(2)) doz < +o0 & ¢°(z,0(x)) <1 forae. z €
Q

By (5.4), (5.10) and Lemma 4.5 we deduce that for any v € BV (Q2)
(5.11) [R())(z,v*) = h(z,v*)  for |Du| —a.e. z €.
Hence (5.9) follows from (4.1), (5.11) and (5.3).

We point out that, in view of Lemma 4.5 and (5.10), the previous result could be
obtained as a consequence of [23, formula (4.19)].

Let us show that

(5.12) Flgo°)(u) = Flo|(u) Yu € BV(Q).

Denote by W : BV(Q) — [0, +o0] the greatest sequentially W' (Q)-weakly lower semicon-

tinuous functional which is less or equal to F[¢]. By (5.1) it follows that F[¢](u) < W(u)
for any u € BV(Q). By [32, Theorem 2.1] the functional W has an integral representation,
i.e., there exists a non-negative Borel function g(z,£), convex in £ (see (32, Remark 2.1}),
such that

W(u, A) = / g(z,Vu(z)) dz  Yu € WHH(Q), for any open set A C Q.
A

Here, for convenience, the functional W is also considered as a set function in the second

variable. We set W(u) = W(u, ) for any u € BV().

By definition of W, we then have

(5.13) /Bg(x,Vu(:r)) dz < /Bé(’c,Vu(a)) dz  Yue Wh(Q),

for any Borel set B C {.

We claim that there exists N € N () such that g(z,§) < ¢(z,§) for any (z,§) €
(2\ N) x R". Assume by contradiction that there exists a measurable set B C ) of
positive Lebesgue measure such that we can find a function £ : B — IR" with

(5.14) o(2,6(2)) > (s, () Vo € B.
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Without loss of generality, we can suppose that B is a Borel set. By the Aumann-Von
Neumann Selection Theorem (see [36, Theorem II1.22]) we can assume that the function

z — {(z) is Borel. Moreover, as B = U {z € B :||{(z)| < k}, we can also suppose that

keIN
the function z — €(z) is bounded on B. Let us define {(z) = 0 for every z € Q \ B. By

[4, Theorem 1], for any € > 0 there exist a function T € W1 1() and a Borel set M with
H™(M) < € such that Vu(z) = £(z) for almost every € 2\ M. Taking € in such a way
that B\ M has positive Lebesgue measure, by (5.14) we obtain

/ g(z,Vu(z)) dz > / é(z, Vu(z)) de,
B\M B\M

which contradicts (5.13), and proves the claim.

Therefore, recalling that ¢°° coincides with the convex envelope of ¢ and that ¢ is
convex, we have that g(z,£) < ¢°°(x,€) for any (z,£) € (2 \ N) x IR". The opposite
inequality follows by recalling that the convexity of #°° yields the W 1(Q)-weak lower
semicontinuity of F[¢°°] (see, for instance, [30, Theorem 4.1.1]). Hence

(515)  Flol(w) < W(u) = / (2, Vu(z)) de = F[9*J(u)  Vu € WH(Q).

Q
Then, by (5.15) and the definition of F[¢°°], we get F[¢] < F[¢°°] on BV(Q), which
implies F[¢] < F[¢°°] on BV (§2). As the opposite inequality is trivial, the proof of (5.12)
(and hence of (5.7)) is complete. ‘

Assume now that ¢ is continuous and satisfies (3.3); then ¢°° is also continuous. By
(5.15) and [41, Theorem 3.1] we have

(5.16) FI57] () = W(u) = /Q 6°(z,") |Du|  Vu € BV(Q).

Hence (5.8) follows from (5.7) and (5.16). [J

REMARK 5.2. Note that Theorem 5.1 provides an integral representation on BV () of
the L'(Q)-lower semicontinuous envelope of the functional F[¢] when ¢ is not convex.

REMARK 5.3. We recall that, if ¢ satisfies (2.12), it is continuous, convex, and verifies
(2.19) instead of (3.3), then the functional F[4] is not necessarily L!(Q)-lower semicon-
tinuous on W!(Q), and hence formula (5.8) does not hold. This fact was observed by
Atonszajn (see [90, p. 54]) and exploited afterwards in [41, Example 4.1].

Observe that (5.7) gives

Py(E,Q) = Fl¢°°)(xp) = Flo)(xr)
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for any measurable set E C IR"™ of finite perimeter in Q. Moreover, if ¢ is convex, conti-
nuous, and satisfies (3.3), by (5.8) we get

Py(E,Q) = / " p(z,vF) dH" (2),
QNoé*E
where v/F(z) denotes the generalized outer unit normal vector to §*E at the point z.

Assume now that ¢ satisfies condition (3.3); for any u € C'(§2) define the slope of u
with respect to ¢ by

— i 12140
(5.17) Volu€) =limoup “E— =t VE€ Q.

LEMMA 5.4. For any u € C'(§2) we have
(5.18) olu() = 676, Vule))  VEEQ.

Proof. Let u € C'(Q) and ¢ € Q; let B be a ball centered at { and contained in Q.
For any 1 € B, there exists a point 7¢, € B between ¢ and 7 such that u(n) — u(¢) =
(Vu(7e,n),7—&). Then, by the definition of upper limit, the positive 1-homogeneity of ¢°
and the continuity of ¢°°(¢,-) (which is a consequence of the convexity), we have

e (Vulmen) = _
el = imeun et

m su |(Vu(re,q), e (n =) _ 00
o In- eﬁ)« ¢°(&,e71(n =€) =

that is (5.18). 0

(& Vu(re,n)) = ¢7°(€, Vu(€)),

PROPOSITION 5.5. Let ¢ : Q x IR™ — [0,+oo| be a Borel function satisfying conditions
(2.12) and (3.3). Let G : BV(Q) — [0, 400] be the functional defined by

/ |Vglu dé  if u € CH(Q),
Q

G(u) =
400 otherwise,
where |V y|u is defined in (5.17). Then
(5.19) G(u) = Fl4°°)(u)  Yu€eCYR),
which yields
(5.20) G(u) = /Q |Dulg  Vu € BV(Q).

Proof. Formula (5.19) follows from (5.18) and the definition of F[¢°°]. Formula (5.20)
follows from (5.19) and (5.7). [
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REMARK 5.6. Assume that the function ¢ of the statement of Theorem 5.1 is convex
and independent of z. Then for any u € BV (Q) we have

(5.21) / |Du|g = sup {Z #(Du(B;)) : {B;}ier is a finite Borel partition of Q}
& i€l

(compare with (2.2)). Indeed the right hand side of (5.21) equals / ¢(v*)|Dul (see [67]),
Q

which coincides also with / |Duly by formula (5.8).
o |

2.6 THE ROLE PLAYED BY SETS OF ZERO LEBESGUE MEASURE

Let u € BV()). We recall that the value of [, |Dulg is independent of the choice
of the representative of ¢ in its equivalence class, while, as |Du| can be concentrated on
sets of M (§2), any integral with respect to |Du| takes into account the behaviour of the
integrand on sets of zero Lebesgue measure. This difficulty is overcomed by considering
special representatives ¢y of ¢ for N € N () (see (6.4)), by relaxing the functional J[¢n]

and finally considering the sup J[én] (Theorem 6.4).
NEN(Q)

We recall the following definition (see [24, §1.3]).

Let hy, hs : @ x IR™ — [0, +o0] be two functions. We define the relations h; =% ko and
hi >~ hy by
hy
hy

PN

< Yu € BV(Q2) hi(z,v"*) < ho(z,v*) for |Du|—a.e. z €,

< Yu € BV(Q) hi(z,v*) = hy(a,v") for |[Du|—ae. z €.

ha
(6.1)
hg

1

Let ¢ :  x IR™ — [0, +-co[ be an arbitrary Borel function satisfying conditions (2.12) and
(2.19). We recall (see (1.1) and (1.3)) that the functional J[¢] : BV (Q) — [0,4c0] is
defined by

(6.2) T16)w) = [ oo, Dl Vu € BV()
and that F[¢] : BV(Q) — [0, +0o0] is defined by

/ ¢(z, Vu(z)) dz if w € WH(Q),
(6.3) Flgl(u) = /Q

+o0 otherwise.
IfN e N(Q) we set

d(z,) ifzeQ\N and e R",

(6.4) on(z,§) = { \/Kugll ifz € N and £ € R",
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and by ¢% we denote the bidual function of ¢n (see §2). Then

vo B ¢°°(z,¢) ifz€Q\ N and £ € R,
IS { VA|¢]l ifz €N and € R",
and ¢y and ¢3¢ satisfy conditions (2.12) and (2.19); moreover, ¢%7 is convex. Obviously
TeN] < Tlenl,
Tlon](w) < Tén,](v)
T3 (u) < T[o%,1(w).

Furthermore, since ¢n(z,€) = ¢(z,&) and ¢¥(z,€) = ¢°°(z,&) for almost every = € Q
and every ¢ € IR", we have

(6.5) Ni,N, € N(Q), NyCN, = VYu€BV(Q) {

(6.6) Jlénl(w) = Flgl(u), JTg%l(w) = Flg*°l(w) YN € N(Q), Vue W (Q).

We point out that, in general, since we do not require the continuity of $°?, the functional
J[$%2] is not lower semicontinuous on BV(Q), even if ¢°° is convex.

We recall that the functionals J[4°°] and J[¢%?] have an integral representation. Indeed,
consider for example the functional J[#°°]. As ¢°° is convex and satisfies conditions
(2.12) and (2.19), one can prove that J[¢°°] satisfies all hypotheses of Theorem 6.4 of
[42], which implies that J[¢°°] satisfies the J-property (see [42, Definition 2.2]). Hence,
by [42, Theorem 2.5] and [40, Proposition 18.6] one infers that J[#°°] is a measure. The
same arguments hold for J[¢%¢]. It follows that, in view of the general results concerning

the integral representation of convex functionals on BV(§2) proven in (23], we can define
the functions S(4),S(¢n), R(¢) : @ x R™ — [0, +oo[ by

(6.7) T () = /Q S(#)](z, ") |Dul  Vu € BV(Q),
(6.8) TH(w) = / (S(o)l(e, ") |Dul  Vu € BV(S),
(6.9) 16 (u) = /Q R(D)](w, ") |Du|  Vu € BV(R)

(see also (5.3)). Moreover, given u € BV({), we denote by £(¢,u) : & — [0, 4o0[ the
function

(6.10) [E(¢,u)](z) = (|Du|—§s€s/\s}t1£)[5(¢]\f)])(w) for |Du| —a.e. z € .

As already observed, the function R(¢) satisfies conditions (2.12), (2.19), and it is convex
in the second variable ¢ € JR™ for almost every z € ; moreover, the same holds for & (¢)
and S[¢n] (see [23, Theorem 5.1]).
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For later use, let us verify that
(6.11) R($) = S(R(4)).

By (6.2) and (6.9) it follows
TIR($)(w) = /Q R(#)(z,v*) |Du| = Fp@I(w)  Vu € BV(R).

Then, from the previous equality and the lower semicontinuity of F[#°°], we have

T [R(P)(u) = Flg>°l(u) = Fl¢*°)(u) = /QR(@(%V“) | Du|

for any u € BV (). As previously, J[R(¢)] satisfies all hypotheses of [23, Theorem 5.1],
hence it has an integral representation of the type

TR (w) = /Q S(R($)))(z, v*) | Dul.

This, together with the previous chain of equality, gives (6.11).

Similarly, using the lower semicontinuity of 7[¢$°°] and the convexity of S (¢), one has
S(¢) = 5(5(4))-
Finally, -
R(R(¢)) = R($)-

Indeed, F[R(¢)] < Fl¢], and passing to the lower semicontinuous envelopes, it follows

R(R(¢$)) = R(¢). Moreover, by definition, F[¢°°] < F[R(¢)]; hence, taking again the
lower semicontinuous envelopes, and recalling (6.11), we get R(¢) ~ S(R(4)) = R(R(4)).

LEMMA 6.1. We have

(6.12) Spn) 2= R($) YN € N(Q).

Proof. Let N € N(Q); by (6.6) and (6.3) it follows that J[#%?](v) < F[$°°](u) for every
u € BV (Q). Consequently

(6.13) T9%](u) < Fl¢°°)(u) VYN € N(2), Yu € BV(Q).

By (6.8), (6.9), and (6.13), we deduce S(¢n) <X R(¢) for every N € M (), that is (6.12).
O
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Note that, in general, the relation “<” in (6.12) cannot be replaced by “~7, as the
following example shows.

EXAMPLE 6.2. Let n =1, Q =] —1,1[, ¢(z,&) = a(z)|é] = ¢°°(z,§), where
" {1 ifze]—1,0[U]0,1],
a(z) =

% ifz=0.

Then (see (5.6)) we have F[¢°°)(u) = /Q | Du| for any u € BV(Q), so that F[¢°°)(x}o 1 )=
1. Take N € AV(Q) with 0 ¢ N. Then ¢%¢(z,¢) = ¢°°(,€) for any = €] — 1,1[ and any
€ € IR, so that
0 1
W) < TR0 = 7671w = [ Dul+ [ Dl + 51Dul((0),

and in particular J[gﬁ‘]’\‘,’](X]O’l[) < %

LEMMA 6.3. Let ¢ : Q x IR™ — [0, +o0[ be a Borel function satisfying conditions (2.12)
and (2.19). Then
(6.14) sup Jl¢ (u) /[5(¢, w)|(z) |Du| Yu € BV(Q),
NEN(9)
where the function £(¢,u) is defined in (6.10).

Proof. Let u € BV(Q); in view of [86, Proposition I1.4.1] we can select a countable family
{N:}iew CN(Q) (which depends on u) such that

(6.15) sup  TEFI) = sup TN,
NeN(R)
(6.16) [E(,u)|(z) = ?;I%[S(gﬁ]vi)](a:,v ) for |Du| —a.e. z € Q.

Given Ni, N, € N() with N; C Na, according to (6.5) we have J[¢% J(u) < T (632, 1(u)
for every u € BV (), and hence

(6.17) S(én,) 2 S(¢n,)-
Consequently, it is not restrictive to assume that the family {N;}iemw is increasing, i.e.,

N; C Njy for any i € IN. Using (6.15), (6.17), the Monotone Convergence Theorem and
(6.16), it follows

sup / S(en)le,v*) [Dul = sup / (S(éw (2, v*) |Dul =

NeN(Q) /Q
Jim [ 18, *) 1Dul = [ Tim (Stoml(e,v*) 1Dul =

/ sup[S(qSN )(z,v*) |Du| = /[E(qS,u)](:c) | Dul,
Q1€ Q
and this proves (6.14). 0

We are now in a position to prove the main result of this section.
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THEOREM 6.4. Let ¢ : @ x IR™ — [0, +00[ be a Borel function satisfying conditions (2.12)
and (2.19). Then

(6.18) / |Dulp = sup j[qﬁN](u) Yu € BV(Q).
Q NeN(Q)

Proof. We first claim that for any u € BV(Q)
(6.19) [£(6,0))(z) = [R($)|(z,v*)  for |Du| — ae. z € Q.
To this aim we shall prove
[€(8,u)l(z) < [R(H)(z,v*) S [E(R(¢), w)l(z) < [E($,w))(z)  for [Du| —ae. z € Q.
Let u € BV(Q); according to (6.12), we have S(¢n) = R(¢) for any N € M (Q), and this

implies

£(6,0))(=) < Rz, %) for |Dul — ae. 7 € 9.
Moreover, (6.11) and R(¢) 2 R(¢)n give

R($) = S(R(9)) < S(R(#)w).
Consequently
[R(O)](z, ") < [E(R($),w)](z)  for |Du| — ae. z € Q.
To conclude the proof of the claim, we must show
(6.20) ER(#),w(z) < [E4,w)(z)  for [Du| —ae. z €9

By definition (6.9) and using the continuity of ¢°°(z,-) and of [R(4)](z,-) (which is con-
sequence of the convexity and condition (2.19)), it follows that there exists Ny € N ()
such that

(6.21) [R(®))(z,€) < 6°°(2,§) V2 € Q\ Ny, V€ € R™.

Take N € N(Q) such that N D Ny. Then (6.21) yields [R(¢)n](z, €) < ¢%0(z, £) for every
z € Q and every £ € IR". Therefore S(R(¢)n) =2 S(¢n) for any N € N () such that
N 2 Ny. Recalling that the functionals J[R(¢)n] and J[¢%?] are increasing, if considered
as functions of N (see for example (6.5)), we deduce that [E(R(¢),u)](z) < [E(¢,u)](z)
for every u € BV(Q) and for |Dul-almost every z € §, i.e., (6.20).

60



Note that, in view of Lemma 6.3, relation (6.19) can be equivalently rewritten as

(6.22) sup  J[o%)(u) = Fl¢°l(u)  Vu € BV(Q).
NEN(Q)

Observe now that, by (6.22) and (5.12),

(6.23) sup Jlonl(w) > sup J[6¥|(u) = Flé°°)(u) = Flgl(v)  Vu e BV ().
NeN(Q) NeN(Q)

On the other hand
Flol(uw) = Tlonl(u) VN € N(Q), Yu € BV (L),

so that, passing to the lower semicontinuous envelopes and taking the supremum with
respect to N € N(Q2), we get

m(zz) > sup Jlén](w) Yu € BV ().
NEN(Q)

This inequality, together with (6.23) gives

(6.24) Flo)(u) = N;R}:()Q) JTlon](u) Yu € BV ().

Then (6.18) is a consequence of (5.7) and (6.24). [

Observe that, as a particular case of (6.18), we deduce

(6.25) Py(E,Q)= sup J[énl(xE)
NeN(Q)

for any measurable set E C IR" of finite perimeter in 2.

2.6.1 Relazation of F|p] and J[¢] when ¢ is upper semicontinuous

In this subsection we specialize our results in the case in which ¢ is upper semicon-
tinuous. For a counterpart of the following results in the case of curves we refer to [43,

Theorem 3.3].
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THEOREM 6.5. Let ¢ : @ x JR™ — [0,+o0[ be a Borel function satisfying conditions (2.12)
and (2.19). Assume that ¢ is upper semicontinuous on  x IR™. Let F[¢], J[¢] be the
functionals defined in (5.2) and (6.2), respectively. Then

(6.26) Flél(u) = T[4](u) Yu € BV(Q).

Proof. The inequality F[¢] > J[¢] follows immediately from the definitions of F[¢] and
J[#]. Let us prove the opposite inequality. As ¢ is upper semicontinuous, there exists a
decreasing sequence {¢}x of continuous functions defined on © x S™~! such that

0= ¢r(2,6) VA, ¢(z,6) = inf di(z,§) VzeQ, VEeS™h

Let u € BV(Q), and let {up}r € WH1(Q) be a sequence of functions converging to u in
L'(Q) and such that [, [|[Vus|| dz — |Du|(Q2) as b — 4oc0 (see 66, Theorem 1.17]). For
any k we have

(6.27) Flol(u) < llliminf Flo(up) < 1ihm inf Flor)(uy) = lign inf J[dr](un).
By using a result due to Reshetnyak (see [91] and [71, Appendix]) we have
Jim_ Tlgil(m) = [ éue ") iDul = Tlhil(w),
— o0 Q

for any k € IN; hence, from (6.27), we get

(6.28) Flol(u) < T¢x)(u) Vk € IN, Yu € BV(Q).

Let us fix u € BV(); by (6.28) and F[¢°°] = F[¢], there exists a set F' C 2 such that
|Du|(F) = 0 and

(6.29) R(&)|(z,v") < ¢r(z,v*) Vo€ Q\F, Vke .
Take ¢ > 0 and z € Q\ F. By definition, there exists k € IV such that
$i(z,v"(2)) < ¢(z,v"(2)) +e,
which, together with (6.29), implies that
[R(e))(z,v"(2)) < ¢(z,v*()) +e.

Since this inequality holds for any ¢ > 0, for any u € BV (), and for |Dul|-almost every
z € , we deduce that R(¢) = ¢. This implies

Flglu) < T[#l(w)  Vue BV(Q).

Passing to the lower semicontinuous envelopes, we get the assertion. []
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REMARK 6.6. We observe that Theorem 6.5 provides an integral representation on
BV(Q) of the L*(Q2)-lower semicontinuous envelope of J[¢] when ¢ is not convex.

COROLLARY 6.7. Let ¢ : Q x R™ — [0,+oo[ be a Borel function satisfying conditions
(2.12) and (2.19). Assume that ¢ is upper semicontinuous on  x IR™. Then

F(u) = / Duls = T@l(w) = T@nl(w) YN € N(Q), Yu € BV(R).

Proof. By Theorems 5.1, 6.4, and 6.5, for any N € M (Q) we have

Fol(u) = /Q Duly = sup Fonlw) >

NeN(Q)

> Tonl(w) > T@l(w) = F@lw)  Yue BV(Q).

The following example shows that the previous result fails when ¢ is not upper semi-

continuous. Precisely, we prove that the inequality J[¢] < J[¢n] can hold for some
function ¢ and some N € M ().

EXAMPLE 6.8. Let = B5(0), 0 < A <1, and set

I ifz € Q\aB.(0),

$(z,€) = { V€| if @ € 8By (0).

Clearly ¢ is convex and (-, &) is lower semicontinuous. Take N = 9B;(0) € N(Q). Then

TR < Tlw),  Thnlw) = / Du|  Vu€ BV(Q).
It follows

T8(x5,(0)) € VIH*(9B1(0)) < H*7H(8B1(0)) = T[¢n(x 5, (0))-

63



2.6.2 Relazation of J[¢] by means of sequences of characteristic functions

We conclude this section with a theorem showing that, if £ C IR" is a measurable set
of finite perimeter in €2, then, to calculate J[¢](xz) we can restrict ourselves to the class
of all approximating sequences which consist of characteristic functions. This result will
be useful in Lemma 8.3.

Precisely, define

(630)  Jo(E,Q) =it {lmint T(¢l(xp,) : {(xz,}r S BV, xm, = X

Then the following result holds (compare with (6.25)).

THEOREM 6.9. Let ¢ : Q x IR"™ —]0, +co[ be a Borel function satisfying conditions (2.12)
and (2.19), and let E be a measurable set of finite perimeter in §). Then

(6.31) Ts(E:Q) = T[¢l(xp)-

In particular, if ¢ is upper semicontinuous on §2 X IR"™, then

(6'32) \7¢(E79> = P¢(E7Q)'

Proof. Let E C IR™ be a measurable set of finite perimeter in 2. To prove (6.31) it is
enough to show that J,(E,§) < T8)(x 1), since the opposite inequality follows immedi-
ately from the definitions. To do that, it will be sufficient to find a sequence {Ey}, C IR™
of measurable sets of finite perimeter in €2 such that

(6.33) Xg, — Xg in L'() as h — +oco, and hlig—looj[ I(xg,) = Tl(xE)-
Indeed, using (6.33) and formula (6.30) one realizes

TBlxe) = Jim_T18l(xs,) 2 Jal(E,),

which is the assertion.

Let {up}sr € BV(Q) be a sequence of functions converging to xp in L'(£2) and such
that J[¢](xg) = I li'lf J[#](up). Let us show that we can assume

(6.34) 0<up,<1 VYhelN

Since uj, € BV(R) for any h, from the coarea formula (2.10) the set {up > s} has finite
perimeter in § for almost every s € IR. Hence there exists a sequence of positive real
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numbers {¢;}5 converging to zero as h — 400 such that —ej Vuy A(1—¢ep) € BV(Q) for
any h. Define vy = up+6n. Then, for any h, we have vy, € BV(Q), 0VuiAl € BV(Q), and
Duvy, = Duy, (as measures), which implies J [¢](ur) = J[#](vs). Define wy = 0OVupAl. It is

easy to verify that ||ws —xgllz1 @) < llur—XgllL1 () for any h, which gives hErfw WL = Xg

in L'(Q), and to verify that J[¢](ws) < J[¢](ur). This proves that we can assume
condition (6.34).

Using Cavalieri’s formula and (6.34) we have

1
/Qluh~XE|dm=/0 /Qx{luh~xgl>t} dz dt Vh € IN.

Hence there exists a subsequence (still denoted by {uj}) such that

H"({Jun = xpl > t}) = H(EN {up <1-th+

(6.35) +HY((Q\E)N{up >t}) —» 0 forae te[0,1] as h — +co.

Let s €]0,1[, and choose t with 0 <t < s <1 —1t < 1 and in such a way that (6.35) is
fulfilled. Then {up < s} C {up <1—t} and {up > s} C {up >t} for any k. Hence, from
(6.35), we have

HYEA{up > s}) <H'(EN{up <1—-1t})+ HY(Q\ E)N {up >t}) =0
as h — +co (here A denotes the symmetric difference of sets). Consequently

(6.36) LM X = xg i LYQ) Vs€o,1].

Let now £ > 0 be a small number. We shall show that there exists a sequence {sp}n C
[e,1 — €] such that

{up > sn} has finite perimeter in  Vh € IV,
(6.37) Bm Xu,>e) =xs 0 LY9D),

h—-+oco

j[é](x{uh>sh}) <

T Olur)  Vhe IV,

Using the coarea formula and (6.34) we have

Tl = [ s pipmi= [ st o) do=

1—¢

1
=/O T (X (up>sy) ds 2 T8 (X (up>sy) ds VR € IN.
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Therefore for any h € IN there exists a measurable set S(h) C [e,1 — €] such that
HY(S(h)) > 0 and

T8)(un) = (1 —26)T[Bl(X(ur>s)) Vs € S(R).

For any h € IN choose sp € S(h) such that {u; > sy} has finite perimeter in Q. For a
subsequence (still denoted by {sp}s) we have s — sg as b — +oo, and sy € [g,1 —¢€].
Let us prove

(6.38) B Xfusa) = Xp B L'(Q).

As \ lim sj, = sy, we can assume that there exists § > 0 such that s;, € [s9—8, so+6] C]0, 1]
-0

for any h. Then {uj > sg+ 6} C {up > sp} C {up > sp — 6} for any h. But (6.36) yields
hEI—{l}ooX{uh>3°—6} = h-l—igloox{“h>s°+5} = xg in L}(Q). Consequently hEl—}—loo X{un>sn} =
xg in L*(Q), that is (6.38). Hence all properties required in (6.37) are fulfilled. Take now

e =1 ,forn € N, and let n — +oo. Using a diagonal argument and (6.37) we have that
. - .l . . - 1
{Un(n) > Sh(n)} has finite perimeter in Q for any n, nll,:r_loox{uh(n)>5h(n)} = xp in L'(),

and

Hm  T[8)(X upny>snny}) = Hm T[Sl(un(n)) = h_lilfooj[éf’](“h) = J[¢](xE)-

n-—-+00 n—-+oco

This concludes the proof of (6.31).

If ¢ is upper semicontinuous, then (6.32) follows from (6.31) and (6.26). []

2.7 SQUARE ROOTS OF QUADRATIC FORMS

In this section we evaluate / |Du|s when ¢? is a uniformly elliptic quadratic form
Q

with regular coefficients. Let 4 = {a;;}:; € C°(£; IR™™™) be a symmetric matrix such
that

(7.1) MENIT < D ai(2)&é <A VzeQ, Ve R,
i,j=1
for some 0 < A < A < +c0.

Setting
. 1/2

(7.2) $(z,6) = | > aij(2)éiE; Vz € Q, V¢ € R™,

iljzl
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we have that ¢ is convex and satisfies conditions (2.12) and (3.3). Then (5.8) yields

1/2
(7.3) /Q |Duly = /Q (Z a,-j(x)y,?‘y;> |Du|  Vu € BV(Q).

,j=1

In particular, for any measurable set E C IR™ of finite perimeter in {2, we have

1/2
(Z aij(a:)uiEVJE) dH"(z).

i,j=1

- |

QNno*E

For the sake of completeness, we shall prove formula (7.3) in a more direct way.

PROPOSITION 7.1. Let A = {a;;}i; € C°(Q; IR"*") be a symmetric matrix which satisfies
condition (7.1), and let ¢ be defined as in (7.2). Then relation (7.3) holds.

Proof. Let u € BV (f); using Proposition 3.2, formula (2.8), and [23, Proposition 1.3 (v)],

it follows
/ |Duly = sup{/ udive dz : o € C¢} = sup{f(cr,Du) o€ C¢} ,
Q Q Q

where Cy is defined in (3.1), and /(a, Du) = Z/ o;D;u. Using (4.1), (4.2), and (2.9)
Q — Ja

we get

(7.4) / |Dulg = / h(z,v") |Dul,
Q Q
where h = |Du| — esssup(o, v").
g€Cy
In view of (7.4), to prove (7.3) it will be enough to show

9

. 1/2
(7.5) h(z,v") = (Z a,-j(a:)z/l?‘u;‘> for |Du| —a.e. z € Q.

1,j=1

For any z € Q, let A™1(2) = {a"(z)};; be the inverse matrix of A(z). It is not difficult
to prove that ¢°(z,&*) = /(A~1(2)€*,€*) for any (z,£*) € Q x IR™. Moreover, one can
prove that VA1 € C°(Q; IR™*™). We then have

Co ={0 €Cy(QGR™): ||[VAHz)o(z)| £1 Ve e} C
C{VAc : 0 €CYQ;R™), |o(z)| <1 VzeQ}.
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Hence, for any u € BV(Q), it follows
h < |Du| — esssup{(o, \/.ZVU) co €CYOQ;RY), |lo(y)]| €1 VyeQ} <
|Du| — esssup{(c, VAV") : 0 € LfBuI(QE R™), |lo(y)|] £1 for |Du| — a.e. y € Q},

which implies that, for |Dul-almost every z € Q,

1/2
T

Bav") S IVAEW = | D ai(e)vivy
' i,j=1
The opposite inequality is a consequence of (5.7) and the fact that the functional

1/2
n

L2 es@mi@pie) 1oy

t,7=1

is L'(Q)-lower semicontinuous on BV (§) (see [40, Theorem 3.1]). This proves (7.5), and
concludes the proof of (7.3). [J

2.8 A COUNTEREXAMPLE

Let {aij}i; be a symmetric matrix satisfying (7.1) and let ¢ be defined as in (7.2).
In this section we show that, if {a,;}; ; is highly discontinuous, then [ |Dulg4 has not, in

Q
general, an integral representation with an integrand of the same type of ¢, i.e., which is
the square root of a quadratic form.

Let I =]0,2[, Q@ =1Ix1I,and let {gs 2’3 be a countable dense subset of I. Define

C={tel:jt—q|>2"" Vh>1}, A=I\C.

Then A is an open dense subset of I with 0 < H'(4) < Z 27 =1<HI)=2,and C
h>1
is a closed set without interior. We recall that, by the Lebesgue Differentiation Theorem,

almost every t € C' has density one for C, i.e.,
1t —
iy Pt —et+0NC)
o—+0+ 20
Define E = (AxI)U(IxA); then E is an open dense subset of @ and Q\ E = C'x('is closed

and without interior. Let A > 2 be a positive real number, and let ¢, : Q@ x IR? — [0, +c0]
be defined by

1 for a.e. t € C.

€]l if 2 € E, 1l if 2z € E,

(81) ¢($7§) = 1/)(7:)6) =
VA[¢] ifzeCxC, é1] + 6] ifzeCxC,
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where £ = (€1,&;). Obviously ¢ and 1 are convex, and ¢ is not the square root of a
quadratic form. Observe also that ¥ (-, ¢) is not lower semicontinuos, that ¢(-,¢) is upper
semicontinuous and that ¢ < ¢. Consider the functionals F[¢] and J[¢] defined as in
(6.2), (6.3) respectively, and let R(¢), S(¢) be the integrands which correspond to F[4]

and J|[¢] as in (6.9) and (6.7). Our aim is to prove that

[R($)](z,€) = [S($))(=,€) = b(x,€)  forae z€Q, Y€ R

Let u € BV(Q); since ¢ is symmetric (i.e., ¢(z,¢) = ¢(z,—¢)), we have J[¢)(u) =

J[#](—u), which yields J[¢](u) = T[$](—u). Then also S(¢) is symmetric, in the sense
that for any u € BV () we have

(8.2) [S(d))(z,v") = [S(#))(z,—v") for |Du| — a.e. z € (.

Let {e1, ez} be the canonical basis of IR*. For any pair {n,v} of unit vectors mutually
orthogonal, let R{n, v} be the family of all bounded open rectangles having sides parallel
to n and v and which are contained in Q.

LEMMA 8.1. We have

(8.3) TJé)(xr) =P(R,Q) VRE R{es,ea}.

Proof. Since ¢(z,£) > ||€]| for any z € Q and any £ € IR", we deduce

To)(u) > /9 | Du| Yu € BV ().

In particular, J[d](xg) = P(R,Q) for any R € R{ej,ea}. Let us prove the opposite
inequality. Let R € R{ej,e2}; using the density of the set A in I, it is easy to find a
sequence {Rp}n C R{e1, ez} with the properties R, C E for any &, hlix}rl P(Ry,Q2) =
P(R,Q), and hlirf Xg, = Xg in L'(R). As OR, C E, we have J[$](xp,) = P(R, )

for any h. We deduce that P(R,{2) = hlil-}-l J(8l(xr,) = Tl¢l(xr), and this concludes
the proof. [J

LEMMA 8.2. Let 1, S(¢) be defined as in (8.1) and (6.7), respectively. Then
(8.4) [S($))(z,€) = |éll = ¢(z,€)  forae z€E, V€€ R,

and

€l < [S(@)(z,€) <(z,€6)  forae ze€CxC, Ve R
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Proof. As §(z,€) > [|€] for any (z,€) € @ x T2, we have [S(8))(#,€) > [|¢] for almost
every z € Q and every ¢ € IR%. But J[¢] < J[4], which gives S(¢) < ¢ (see (6.1)). In
particular [S(¢)](z,¢) < é(z, &) = ||| for.almost every z € E and every £ € R?, and
(8.4) is proven. In order to conclude the proof, it remains to verify

(8.5) [S($)](z, ) < |e1] + |62l for ae. 7 € C x C, V€ € RZ.

For any z = (z1,22) € §, let §,e > 0 be sufficiently small in such a way that Rs.(z) =
lz1 — 6,21 + 8[X]z2 — €, z2 + €] is contained in Q. From (8.3) we have

146
TSN b, —er)ds

z1+6
Tl xwai) = SO 2=)ea)ds + |

(8'6) Tote To+e
+ / (S8 (21—5,8), e1)dt + / (S(8)] (w146, ), —ex)dt = 4 + 4.

2—E& 2—¢&

We want now to pass to the limit in (8.6) as ¢,e — 0. Since the translation operator is a
continuous map from L!'(2) to L*(Q) (see, for instance, [25, Lemma 4.4]), for any open
interval I' which is relatively compact in I, we have

(8.7) lim _/Q, [[S(é)]((s,t — ), 62) — [$(¢)]((3,t),eg)[ ds dt =0,

e—0

where Q' = I' x I'. Hence there exist a sequence {e}, }, of positive real numbers converging
to zero as h — +oco and a set M; € N(I') such that

hl{f_{l / ![5(¢)]((37$2 - 'Sh),ez) - [5(¢)]((57$2),€2)| ds =0 Yz, € I'\ My
> I’

In particular, for any z; € I' and any § > 0 sufficiently small we have

z1+6
(88) h}—l»I—I}:loo /xl—é [[S((]S)]((S,:Eg—eh),62)—[8(¢)] ((3)3:2))62)1 ds=0 V.’Ez € I,\A/I{

Similarly we can find M; € NV(I') and a sequence of positive real numbers (still denoted
by {en}n) converging to zero such that formula (8.8) holds with e; replaced by —es
and zo — ¢, replaced by zo + €y, for any z, € I' \.7\/[2"'. In the same way we can find
M, M;t € N(I') and a sequence {6} of positive real numbers converging to zero such
that, for any z4 € I',

(8.9)
zo+€
JJm ) S(8)]((z1 % 6a,1), Fer) — [S(B)]((z1,), Fer)| dt =0 Vay € I'\ M,
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provided that ¢ is sufficiently small. Replacing € by €, letting €, — 0 and keeping ¢ fixed
(respectively replacing 6 by 6, letting 8 — 0 and keeping ¢ fixed) in (8.6), using (8.8)
(respectively (8.9)), the symmetry (see property (8.2)) and the boundedness of S(¢), we
deduce, for § and e sufficiently small,

z1+6
/ [S()]((s,72),e2) ds =26
. Vo = (z1,22) €V \ M,

Tote€
/ [S(A))((z1,1), €1) dt = 2¢

2—E&

(8.10)

where M = (M UM;F) x I'V U (I x (My U M;+)) belongs to A'(2') by Fubini-Tonelli’s
Theorem.

Let us prove

(8.11) [S(D)(z, &) = |lesl| = P(z,e:) for a.e. x € Q, fori=1,2.

The second equality in (8.10) can be rewritten as

Tote
/ {[S()]((z1,t),e1) = llexll} dt =0 Ve, € I'\ (M7 UM;), Yz, € I'.

2—E&

Since the previous equality holds for any € > 0 sufficiently small and for every z2 € I', we
infer that, for any z; € I' \ (M; U M| ) we have

[S()]((z1,22),e1) = ||ex]] for a.e. zo € I'.

Hence, by Fubini-Tonelli’s Theorem, we have [S(¢)](z, e1) = ||le1]| for almost every = € Q.
Since this is true for any open set Q' which is relatively compact in 2, (8.11) is proven for
i = 1. The proof of (8.11) for 7 = 2 is similar.

By the convexity and the positive 1-homogeneity of S(¢) and since S(¢) is symmetric,
using (8.11) it follows that [S(¢)](z,€) < |€1] + |€2] for almost every z €  and every
¢ € IR?, that is (8.5). [J

LEMMA 8.3. Let ¢ be defined as in (8.1). Then for any measurable set T' C {1 of finite
perimeter in ) we have

T (xr) > /C HOO*T™) day + /C HO@*T™) day,
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where T*t = {24 € I : (z1,33) € T}, T*? = {z7 € I : (z1,z2) € T}, and 0*T* denotes
the reduced boundary of the one-dimensional section T% of T fori1 =1,2.

Proof. For any u € BV(1) and any Borel set B C (), using an approximation argument,
it is easy to show

(8.12) [ 1Daul+ [ Dl < v2 /B Dul < VA [ 1Dul,
(8.13) /BIDiuIS/B}Dm fori=1,2,

where [5|Djul is defined in (2.3).

Let T C Q be a measurable set of finite perimeter in . Since E = (AxI)U(Ix A4) D
(AXC)U(Cx A),and (A x C)N(C x A) =D, recalling (8.12) and (8.13), we deduce

T2 [ Dl [ Dl +VE [ Dxelz
AxXC CxA

CxC

> / Daxer] + / Daxpl + / Dyxr] + / Dl =
AxC CxA CxC

Z/IXC|D1XTI+/CXI[D2XT|=/ [/lDXT } dm2+/c [/I]DX?IJ}‘

where x7' are the one-dimensional sections of xp, for ¢« = 1,2 (see formula (2.4)). Let
{x7,}» € BV(Q) be a sequence of characteristic functions of sets of finite perimeter in §
converging to X, in L(Q). By Fubini-Tonelli’s Theorem, there exists a subsequence (still
denoted by {xp, },) such that for H'-almost every z; € C' the sequence {x7 }, converges
to x7¢ in L'(I), for 1 = 1, 2. Hence the previous inequality, Fatou’s Lemma, and the lower
semicontinuity of the total variation applied to the one dimensional sections, imply

/IDX“IJ Ty >

/]DXTEjl dzo =/ HO(O*T") dzy +/ HY(O*T*2) dzs.
c c

(l.’l?l,

imint 716l0cs) 2 [ gt | [0 | doa+ | gt

> [ [ gos [

Consequently, applying (6.31) of Theorem 6.9, we obtain

614 T = T(T0 2 [ WO T) day + [ H0@T) da,

and this concludes the proof. []



THEOREM 8.4. Let ¥, R($) and S(¢) be defined as in (8.1), (6.9) and (6.7), respectively.
Then

[R($))(=,E) = 1S(e)](z,8) = $(@:) for a.e. © € &, Y& € R”.

In particular, for every u c Wi(Q), we have

(8.15) Folw) = THIw) = TWIw) = [ \Duls,

and hence J @] is not Jower semicontinuous ool BV(Q).

R

Proof. The equality Flolw) =T [4)(u) for any U € BV(Q) is a consequence of Theorem
6.2, being ¢ upper semicontinuous, and it implies that [R()(z,€) = (S())(z, &) for
almost every € Q and every & € JR". In this particular case, We can give a simple
proof of this fact without using any previous result. Indeed, the inequality 'm > ’T‘ﬂ
is an immediate consequence of the definition F [¢) and T [¢]. Let us prove the opposite
inequality. Given U e BV(Q), by (66, Theorem 1.17], there exists a sequence {up}n of
functions of class C= () converging to u 1n LX), and such that

(8.16) fﬂ |Du| = Lim fﬂ | Vurll dz-

As ] |Du| £ 1ém-;1—nf / | Vunl de for every open set O € € using (8.16) we deduce that,
o -+ JO
for any closed set FCQ,

(8.17) fF |Du| > liminf /F \Vurl dz-

h——+c0

Hence, by (8.16), (8.17), and the definition of ¢, it follows

h—4c0

FR(u) < lmiaf Flol(n) = limind { [ el ds+ (V=D | e dm} <

< [ 1pul+E-) [ loei =710

PR

Passing to the lower semicontinuous envelopes, we obtain Flé)(u) < [¢)(u) for every

u € BV().

The equality Ja |Dulg = [¢](w) is proven :n Theorem 5.1, and actually it holds for
any u € BV()-

Let us prove that [S(¢)]($,§) = 1(z,§) for almost every T € § and every £ € R In
view of (8.4) and (8.5) it will be sufficient to show

(8.18) [S(H)(z, ) = &1 + 16| forae. @ cCxC,VEeR.
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By the Lebesgue Differentiation Theorem there exists N € N (Q) such that any point
z = (z1,22) € (Cx C)\ N has the property that z; has density one for C, for 7 = 1,2. Fix
n,v two unit vectors mutually orthogonal. For any z € Q\ NV and any 6, > 0 sufficiently
small, let Rsc(z) € R{n,v} be the rectangle centered at z and contained in { given by
Rse(z) ={z+sn+tv : |s| <§, [t| <e}. Let Ls(z) be the median line of Rs.(z) in the
direction of n, i.e., Lg(z) = {z + sn : |s| < §}. Using the continuity of the translation
operator in L'(2) and property (8.2), reasoning exactly as in Lemma 8.2 (see formula
(8.7) and below), there exists Z € V() (depending on v) such that

(819) i T, ) =2 | @l ds e\ Z

Using inequality (8.14) applied with T' = Rs.(z), passing to the limit as € — 0, from
(8.19) we get

(820) 2 /L [S(9(o,0) do 2 2 PO A m(La(e) + (O N maBa()]

for any z € Q\ Z, where m; and 7y are the canonical projection onto the coordinate axes.

For any h € IR, let L"(z) be the part of the line parallel to Ls(z) shifted of the factor
h in the direction of v which is contained in £, i.e., L*(z) = {z +tn+ hv : t € R} NQ,
and let L:2) = {a +tn+ hv : |t| < 6} C L"z). By the Lebesgue Differentiation
Theorem, for any h € IR such that L"(z) # 0§, there exists M}, € N(IR) such that
1

620 i e [, SO &= 1S@Is) Yo e M)\ M

Define M = U M. Obviously, M depends on v. By Fubini-Tonelli’s Theorem, M €

heR
N(§) and (8.21) holds for any =z € Q \ M.

Using (8.21) and (8.20) we deduce that

HY(C Nry(Ls(2))) +HH(C Nwa(Ls(z)))
H(Ls(z))

(822) [S(8)](z,¥) > lim Yo €\ K,

where K, = NU Z U M is a set of zero Lebesgue measure and depends on v. If 2 ¢ N
(i.e., z; has density one for C, for ¢+ = 1,2), using elementary trigonometric arguments,

we have

H; Hl(c N Wl(Lﬁ(m))) -+ HI(C n ﬂ'z(L&(:B))) _

1i

6—0 HI(L[S(CB))

. H(m(Ls(2) + Hi(ma(Ls(2))) _ v
%g‘% Hl(Lg(l‘)) “I 1]+1 2‘7
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which, together with (8.22), gives
[S(H))(z,v) > [v1] + o], Vv eS!, VeeQ\K,.

Choose a countable dense subset {vi},- C S! of unit vectors, and define K = U K, €
ielN
N(Q). Then

(8.23) [S(®))(z,v") > |vi|+ vi] Vi€V, Vz e Q\K.

Recalling that [S(¢)](z,-) is convex and bounded from above (hence continuous) for almost
every z € €0, from (8.23) and the density of {v'}; we infer

(8.24) [S(O(z,v) > ||+ |va] = ¥(z,v) Vv € S, for a.e. z € Q.

The theorem then follows, since (8.18) is a consequence of (8.24) and the positive 1-
homogeneity of S(¢). [

The following remark justifies the choice of the class K4 in the definition of [ |Dulg.
REMARK 8.5. Observe that
lI€]] fzekl
VATT|E|| ifzeCxC.

Take a vector field o on 2. If o belongs to CA(€; IR?), and if ¢°(z,0(z)) < 1for any z € Q,
by the density of F and (8.25) it follows that ||o(z)|| < 1 for any z € 2. We deduce

sup{/ udive dz O'EC¢} S/ | Dul,
Q Q

where Cy is defined in (3.1).
The opposite inequality follows from (2.1), (8.25), and the inequality 0 < VA™! < 1.

However, as ¢ is upper semicontinuous, by Corollary 6.7 we have

(8.25) #°(, ) = {

Tol(u) = /Q Duly,  Vue BV(Q).
Using (8.15), if u € W'(Q) is a linear function and u # 0, we have
sup {/Qudiva dz : o€ m,} = /Q |Duly = T[] (w)
= T)(u) > /Q |Du =sup{/ﬂudiva dz : o ec¢}.

This shows that it is necessary to consider discontinuous test vector fields in Definition
3.1 of the generalized total variation.
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CHAPTER 3: APPROXIMATION BY I'-CONVERGENCE OF A
TOTAL VARIATION WITH DISCONTINUOUS COEFFICIENTS?

3.1 INTRODUCTION

Let @ C IR™ be a bounded open set with Lipschitz continuous boundary, and let
¢ :Q x R™ — [0,+0co] be a Borel function with linear growth (condition (2.2)), convex
and positively homogeneous of degree one in the second variable (condition (2.1)), and
upper semicontinuous in the first variable. Let W : IR — [0, +-o00[ be a double well potential
with two minima (at equal depth) at s = 0 and s = 1, for instance W(s) = s*(1—s)? and,
for any € > 0, consider the functional 7.[¢] : L'(Q) — [0, +oo] defined by

/ [e4?(z, Vu) + e W (u)] de if u e HY(Q),
Q

+00 elsewhere.

Te[¢)(u) = {

In this chapter we find the I-limit with respect to the L!({2)-topology of the sequence
{TJ:[#]}c. Precisely (see Theorem 4.1) we prove that

2c0/ |Dulg if u € BV(Q;{0,1}),
Q

(T — lim T.[8])(u) =
=0 +00 elsewhere,
where BV(;{0,1}) is the space of the functions of bounded variation in  with values in
{0,1}, co = fol /W(s) ds, and [, |Duls denotes the generalized total variation of u with
respect to ¢ in ) as introduced in chapter 2.

Functionals of this type play a crucial role in the approximation of minimal sur-
faces, in problems involving material instabilities and in the theory of phase transitions
[34,17,21,22,71,79,80,81,87,89]. The first theorem on the approximation of minimal sur-
faces by I'-convergence and concerning the case ¢(z,&) = ||€|| was conjectured by De

3The content of this chapter is published in [AB2]
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Giorgi [52, Section 4] and next studied in [81]. This result was generalized by several
authors (see, among others, [21,22,87,89]).

We stress that here the continuity of #(+,¢) is not required. To prove our result under
the assumption that ¢(-,¢) is upper semicontinuous we heavily rely on some variational
properties of [, |Dulg. For instance, let

T16)(w) = /Q #(z,s")Dul  Yu e BV(Q);

then the generalized total variation coincides, on BV(£;{0,1}), with the lower semicon-
tinuous envelope Jy of J[¢] constructed only by means of sequences of characteristic
functions (see (2.10) and (2.13)). Note that the functional J[4] depends, a priori, on
the choice of the representative of ¢ in its equivalence class with respect to the Lebesgue
measure. However, by the upper semicontinuity of ¢, the functional fQ |Du|g, which
is independent of the choice of the representative of ¢, equals the lower semicontinuous

envelope J[¢] of T[] (see (2.9) and (2.12)).

To prove the contructive part of the theorem (the so called I' — lim sup inequality) we
show (see Lemma 3.2 and Corollary 3.4) that ¢ can be approximated from above by a
sequence of continuous functions which are convex and positively homogeneous of degree
one.

As shown in §3.5, under some further assumptions on ¢ (as for instance in the case of
chess structures) the integrand representing the I'-limit can be evaluated up to sets of zero
H"!_measure (Theorem 5.2). Moreover, we prove (see Theorem 5.3) that there exists an
upper semicontinuous function ¢ of the type ¢(z,£) = a(z)||¢|| such that the I-limit of
the sequence {J.[¢]}. takes the form 2¢q [ h(x,v*)|Du|, where h is not the square root
of a quadratic form.

3.2 NOTATIONS AND PRELIMINARY RESULTS

3.2.1 The space BV ()

The space BV () is defined as the space of the functions u € L*(Q2) whose distribu-
tional gradient Du is an R"-valued Radon measure with bounded total variation in 2.

We set v*(z) = IID)ZI(:C) for |Dul-almost every z € {).

We recall that, as Q has a Lipschitz continuous boundary, the space BV(Q) is con-
tained in L7-1(9) (see [75, §6.1.7]). If u € BV (), the total variation of Du in { is given
by

/ |Du| = sup {/ udive do o € C3(S; R™), |lo(2)]| <1 Vz € Q} )
Q Q

where C}(Q; R™) is the class of all vector fields of class C! with compact support in .
Let E C IR™ be measurable; if [, |[Dx | < 400, then we say that £ has finite perimeter
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in 2, and we denote by P(E,?) its perimeter. We indicate by 8*E the reduced boundary
of E.

For the definitions and the main properties of the functions of bounded variation and
of sets of finite perimeter we refer to [51,56,57,66,74,101].

3.2.2 Relazation and I'-convergence
Let £ : BV(Q) — [0,4+0c0] be a functional. We denote by L : BV(Q) — [0, +0]

the lower semicontinuous envelope (or relaxed functional) of £ with respect to the L*()-
topology, which is defined as the greatest L!(Q)-lower semicontinuous functional on BV(2)
less or equal to £. The functional £ can be characterized as follows:

Z(u) = inf {lénlinf;ﬁ(uh) A{uptr € BV(Q),up Rt in LY (Q)} Yu € BV (Q).

We recall also the definition of I'-convergence of a sequence {L;}1 of functionals defined
on BV(Q) with respect to the L'(Q)-topology. We say that the sequence {Lp}; is T-
convergent to L if the following two conditions hold: for any u € BV (Q)

L(u) < inf {l}iminf Ln(up) : {uptn SBV(Q),up " in LI(Q)} = (I‘——I}irr_li_infﬁh)(u),

and

L(u)> inf {limsup Lu(up): {untn € BV(Q),up A2t in LI(Q)} =(T—limsup L4)(u).
h—+oo h—+o0

For the definitions and the main properties of relaxation and I'-convergence we refer to
[30,41,52,53].

3.2.8 The functions ¢, ¢*, ¢°

From now on ¢ : Q@ x IR™ — [0, +co will be a Borel function satisfying the properties

(2.1) $(z,t€) = [t|$(e,€)  Vr€Q, VE€ R", Vte R,
and
(2.2) VAE < é(z,6) < VAJE] Ve eQ, Ve RY,

for two suitable positive constants 0 < A < A < +o0.
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The conjugate function ¢* : Q x IR™ — [0, +o0] and the dual function ¢°: @ x R" —
[0, 4+00[ of ¢ are defined by '

§(2, £%) = sup{(€%, ) — d(, £) : € € ™),

and

(2.3)  6°(s,6") = sup{(6",€): £ € R", ¢(z,€) <1} = sup {é—%% e R\ {0}}

for any (z,¢*) €  x IR™ (see [55,93]). One can prove that
(24) ¢OO — ¢**'

The function ¢ will be called convex if for any = € Q the function { — ¢(z,§) is convex
on IR™. Note that if ¢ is convex and if ¢(-,¢) is lower (respectively upper) semicontinuous
for any ¢ € IR", then ¢ is lower (respectively upper) semicontinuous on £ x R".

8.2.4 Some useful results on the generalized total variation

For every open set A C (2, we set

X(A) ={oc € L®(A; R") : dive € L"(A)},
X:(A)={o € X(A): spt(o) is compact in A},
Kg(A) ={o € X (A): ¢°(z,0(z)) <1 for ae. z € A}.

As proven in [14, Theorem 1.2], if v denotes the outer unit normal vector to 9, then
for every o € X(Q) there exists a unique function [0 - v] belonging to L$.-1(99) such
that

[0 - vu dH™ ! = /

udive dz + / (o,Vu) dz Yu € C1(Q).
Q

aQ Q

The above formula can be extended to the space BV () as follows. For every u € BV(§2)
and every ¢ € X (1), define the following linear functional (o - Du) on Cg(£2) by

/ (o - Du) = —/ wpdive dz —~/ u(o, Vip) dz vip € C5 ().
Q Q Q

The following results are proven in [13,14]: for every u € BV () and for every o € X(2),
the linear functional (¢ - Du) gives rise to a Radon measure on {2, and

/ [0 vu dH" ™ = /(0 - Du) + / udive dz.
o0 Q Q
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Moreover there exists a Borel function ¢, : 2 x IR" — IR such that

(0 - Du)

Dl (z) = g¢o(z,v")  for |Du|—a.e z€Q.

We list here some definitions and results proven in chapter 2. Let ¢ : Qx IR™ — [0, +-00[ be

a Borel function satisfying (2.1) and (2.2). For any u € BV(§2) we define the generalized
total variation of u (with respect to ¢) in  as

/Q |Dulg = sup{/Q udive dz : 0 € Kg(Q)}.
If E C IR" has finite perimeter in 2, we set
| IDxsls = PuB,2).

The generalized total variation with 1espect to ¢ admits an integral representation on

BV(Q), and precisely

(2.5) / Dul, :/ Bz, v Dyl Yu e BV(Q),
0 0
where
(2.6) h(z,v") = (|Du| — esssup ¢, )(z) for |Du| — a.e. z € Q.
TEK ()

Define the functionals F[¢], J[¢] : BV(Q) — [0, +o0] by

¢(z,Vu) dz if ue WH(Q),
(27) Flelw) = °*
+00 elsewhere
To)(u) :/ é(z,v*) |Dul Yu € BV ().
Q
For every set N € N () we denote by ¢y : Q x IR — [0, +o0] the function

#z, &) ifzeQ\N and (e R",

(2.8) on(2,) = { VA|¢] ifez €N and € € R™

Then

(29) / Duls =F@lw) = swp TBnlw)  Vue BV(Q).
Q NeN(Q)
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For any set E C IR" of finite perimeter in {2}, define

(210)  T(E,Q) = int{limin T(8)(xp,)  {xm,} S BV, xp, — X5}

Then
(2.11) Je(E,Q) = T[8](xx).

If in addition ¢(-,¢) is upper semicontinuous for any { € IR", we have that, for every
N € N(Q) and every u € BV(Q)

(212) [ 1Dul = Fiw) = i) = Toal(w
and, for any measurable set E C JR" of finite perimeter in Q,
(2.13) To(E,Q) = Ps(E, Q).

Finally, if ¢ is continuous, then

(2.14) /Q Duly = /é 59(z,v")|Du|  Vu € BV(Q).

9.2.5 The approzimating sequence and the I'-limit functional

Let W : R — [0, +oo[ be the double well potential W(s) = s*(1 — s)2. The approx-
imating sequence {J:[#]}c of functionals is defined as follows. If € > 0, the functional
Je[8] : BV(2) — [0, 400] reads as

T16\(w) = { /Q [e4%(z, Vu) + e W(uw)] de if ue H'Y(Q),

400 elsewhere.

(2.15)

Define Jy[4] : BV(Q) — [0, +o0] as
2co Flpl(u) if ue BV(Q,;
Toldl() = { 2¢0 F(@](u) € BV(2;{0,1}),

(2.16)
+00 elsewhere,

where ¢ = fol VW (s) ds, and F|[4] is defined in (2.7).

Actually, the potential W can be replaced by any smooth nonnegative function having
the following properties W(s) is symmetric with respect to s = ,1), W(l)=0,W >0on
[2,1[U]1, +oof, W' < 0on i, 1[, W' > 0on 1,400, W'(1) > 0.

If ¢(-,€) is upper semicontinuous for any ¢ € IR", recalling (2.11), (2.12) and (2.13),
for all u € BV(Q;{0,1}) we have that

(2.17) 5}5570[ J(w) = TT1w) = Pol{u = 13,2) = To({u = 1},92).
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3.3 TECHNICAL LEMMAS

LEMMA 3.1. Let ¢ : @ x R" — [O,—{—ob[ be a function which satisfles (2.1) and (2.2).
Assume that ¢ is continuous on §2 X IR™. Then ¢° is continuous on {2 X IR". In particular,
¢** is continuous on Q x R".

Proof. We claim that the family of functions (z,£*) — ?’(;%—’5—6—)5 from  x IR"™ into IR is
equicontinuous with respect to £ € IR". Fix (z¢,£}) € Q x R™. If (z,£*) € Q x R,

(€ R", and v¢ = ﬂgﬂ’ using (2.1) and (2.2), it follows

(6:6) (66, _ 1oz, )4, &) — dlxo, v)(5, 67| _
¢(z0,6)  ¢(z,€) $(o, v8)¢(z, V%) =
< VA8, €8) = (U5, €%) |+ AT (05, 69| |g(a, v8) — (20, v8)] <

<V = €+ ATHIE 16z, v — p(wo,v0)].

As ¢ is continuous, v¢ € S®7! and S™~! is compact, it follows that the last term in the
above inequality tends to zero uniformly with respect to £ as (z,&*) — (z0,£F), and this
proves the claim.

Hence, recalling (2.3) and using the continuity of ¢,

. ~ . (€,£7)
lim (z,€%) = lim su
(z,s*)-»(xo,es)qé (2¢7) (2,6")—(z0,63) sg%} ¢(z, )
(&, (¢, 6)

= sup lim = sup = = ¢°(20,3),
EERT (-’E,E*)"‘*(-’E(),ES) é(a}7§) EER™ ¢($07£) ( 0)
£+0 £#0
ie., ¢° is continuous at (zg,£y). Since ¢° satisfies (2.1) and (2.2), the same argument

applied to ¢° shows that ¢°° is continuous on 2 x IR™. The last assertion then follows
from (2.4). [

LEMMA 3.2. Let ¢ : Q x IR™ — [0,+00[ be a convex function which satisfies (2.1) and
(2.2). Assume that ¢(-,€) is upper semicontinuous for any £ € IR". Then there exists a
non increasing sequence {¢y } of functions from Q) x IR™ into [0, +oco[ having the following
properties: for any k > +/A the function ¢y, satisfies (2.1), (2.2), it is convex, is continuous
on §) x IR"™, and

(3.1) §(2,6) = inf Gu(0,6) V(3,8 €U x R,

Moreover, for any k > /A, any e > 0 and any zo € Q there exists § = §(¢, k,zo) > 0 such
that

(32) [6r(2,€) — dr(zo, )l <elléll Vaz: fle—wol <6 Ve R"
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Proof. We have already observed that ¢ is upper semicontinuous on {2 X R".

For any k € IV and s € [0, +-co[ we define the map T Qx R" — [0, +oo] as

(3.3) (Tffﬁ)(w,&)"—'( sup (6(y,m) — klllz = ylls + 1€ = lll} Y(z,€) €  x R

y,n) EQXR"
It is immediate to verify that T *¢ is non increasing with respect to k. As the pointwise
supremum of a family of Lipschitz continuous functions 1s Lipschitz continuous, it follows

that TF¢ is Lipschitz continuous for any k € IV and any s € [0, +0oo|. Reasoning as in
(53] (see also [31, Lemma 2.8]) one gets

(3.4) #(z,8) = kig]gv(trfqb)(m, 6 V(z,8) e xR, Vs € [0, +ool.
For any k € IN set

(T*¢)(=,6) = (T ®)(z,€) V(z,€) € @ x R".

Then (3.4) gives
(3.5) ¢(z,8) = ,}ggv(T"qﬁ)(w,&) V(z,€) € 2 x R
Moreover T} satisfies (2.1), i.e.,

(T ¢)(=,1€) = t(Tk¢)(z,6)  V(@:8) € Qx R", Vte R

Observe now that, for any k € IV, the function defined in (3.3), if considered as a function
of the triple (s,%,£), 1s Lipschitz continuous on [0,1] x @ x R". Hence the map (z,§) —

(T*¢)(x,€) is Lipschitz continuous on Q x B1(0); even more, 1t is Lipschitz continuous on
Q x IR", since T;f satisfies (2.1). Obviously

(3.6) (T*¢)(z,8) = ¢(z,) 2 JEl W6 e x BT, VREN,

and by (2.2), we obtain that, for k > VA,
T < s [VAlnl k(e - vl DE
(y,m)EQXR"

< VAl + o [ﬁ\un-éu—k(\\m—ynna\uns—nu)}s

y,m) EQ X IR™

< VAJiel + ns;%;ﬁx — B)lle - nll = VAN,
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so that the function T¥¢ satisfies (2.2).

For every k > /A define
(3.7) $r(z,6) = (T*¢)**(z,6)  ¥(z,6) € @ x R",

where (T*$)** denotes the biconjugate of T*¢ with respect to £ € IR™. Then ¢, is convex
and, as T*¢ satisfies (2.1) and (2.2), it is immediate to verify that ¢y itself satisfies (2.1)
and (2.2). Moreover, as T*¢ is Lipschitz continuous, by Lemma 3.1 it follows that ¢; is
continuous on  x IR".

Let us show (3.1). We observe that, by (3.5) and (3.7), for every (z,¢{) €  x R"™ we

have

$(z,6) = inf (T"¢)(2,€) > inf (T*4)""(2,6) = inf du(z,8).

Let us prove the opposite inequality. Since ¢ is convex and (3.6) holds, we have
Pz, ) = ¢**(2,8) < (T*¢)*(2,€)  ¥(z,6) € Qx R", Vk € IV.
This implies
< k o\ #x — e n
6(2,6) < jnf (T*6)"™"(2,6) = inf 6u(w,€)  V(z,6) € Qx R,

and this concludes the proof of (3.1).

Finally, assertion (3.2) is a consequence of the continuity of ¢ on £ x S"1  the
compactness of S®71| and the fact that ¢, satisfies (2.1). []

LEMMA 3.3. Let ¢ : Q x IR™ — [0, +oo[ be a convex function which satisfies (2.1) and
(2.2). Assume that ¢(-,€) is upper semicontinuous for any € € IR". Then

¢*(z,8) =t¢*(x,§)  W(z,§) €Qx R* Vte R,

AIEN? < @22, &) < AEJP Wz, €) € Q x R™
Moreover ¢? is convex in ¢ € IR"™ and it is upper semicontinuous on 2 X IR".

Proof. The first two assertions are trivial consequences of (2.1) and (2.2). Let = € Q; the
convexity of ¢%(z, ) follows from the facts that ¢ is convex, non negative, and the function
s — s% is convex and increasing on [0, +co[. The upper semicontinuity of ¢* on Q x IR"
follows from the facts that ¢ is non negative, upper semicontinuous on {2 x IR", and the

function s — s? is increasing on [0, +oo[. []

We summarize Lemma 3.2 and Lemma 3.3 as follows.
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COROLLARY 3.4. Let ¢ : @x IR™ — [0, +0oo| be a convex function which satisfies (2.1) and
(2.2). Assume that ¢(-,&) is upper semicontinuous for any § € IR"™. Then there exists a
non increasing sequence { @ }x of functions from 0 x IR" into [0, +oco[ having the following
properties: for any k > VA

$3(z,t6) = |t]*¢3(z,€) V(z,6) e Qx R" Vi€ R,
AIEN? < di(z, &) < AJE)? V(z,6) € @ x R",

? is convex in € € IR™ and it is continuous on {1 X IR"™. Moreover
#(@,6)= inf $(@,0  V@,0eQx R
and, for any k > VA, any € > 0 and any zo € §, there exists § = 6(e, k, z9) > 0 such that
[¢%(2,€) — ¢i(z0, Ol <ellé]® Va: lz—aoll <6 Ve R

We recall the following result, which will be useful in the sequel (see [91] and [40,
Lemma 2.5]).

LEMMA 3.5. Let ¢ : Q x IR™ — [0, +oo[ be a Borel convex function satisfying properties
(2.1) and (2.2). Assume that for any £ € IR™ the function ¢(., £) is lower semicontinuous
on ). Then

(3.8) T#)(u) = T[él(w)  Vu € BV().

3.4 MAIN RESULTS
THEOREM 4.1. Let ¢ : Q x IR™ — [0, +co[ be a convex function which satisfies (2.1) and
(2.2). Assume that ¢(-,¢) is upper semicontinuous for any § € IR™. Let € > 0, and let

J.[4], Jo[4] be the functionals defined in (2.15) and (2.16), respectively. Then

(T = lim Je[g])(u) = Dol¢)(w)  Vu € BV(Q).

Proof. Let us prove that

(4.1) Jolé)(u) < (T = lielganf Te[éD(u) Yu € BV(Q).
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Let w € BV(Q). We can assume that the right hand side of (4.1) is finite, otherwise
the result is trivial. This implies that W{(u(z)) = 0 for almost every =z € Q, i.e,, u €
BV(9;{0,1}). Set E = {u = 1}, so that u = xp.

Let {u.}. € H'(Q) be a minimizing sequence, i.e., u. — xp in L*(2) as e — 0 and
(4.2) lim 7[6](u.) = (T — liminf Z2[¢]) (vs) < +oo.

For any ¢ > 0, set v, = 0V u. A 1; we have v, € H*(Q), J.[#](ve) < T:[¢)(u.), and
lve — xgllzr@) < lue — xgllzr(). Therefore {v.}. is still minimizing, and thus we can

assume
(4.3) u(z) €[0,1] for a.e. z € Q, Ve > 0.

Using Cavalieri’s formula and (4.3) we have

1
U — X d:v://xu__ dz dt Ve > 0.
[ree=xalde= [ [ tu sy

Consequently there exists a subsequence (still denoted by {u.}.) such that

H*({Jue — xp| >t}) = HMEN {u. <1 —1})+

(4.4) +H"((Q\ E)Nn{u, >t})— 0 forae. te[0,1] ase— 0.

Let s €]0,1[, and choose t with 0 < t < s < 1—1t < 1 and in such a way that (4.4) is
fulfilled. Then {u. < s} C {u. <1 —1t} and {u. > s} C {u. > t} for any €. Hence, from
(4.4), we have

HY(EA{ue > s}) <HY EN{u. <1 -t} +H'(QL\ E)N {uc >t}) =0
as € — 0 (here A denotes the symmetric difference of sets). Therefore
(45) lim X{us>s} = XE in LI(Q) Vs 6]0, 1[

&0

Using Young’s Inequality, the Coarea Formula [57], and (4.3), for any € > 0 we have

IVul|VW(u.) dz =
¢(m,y{uc>3}) dH™ Y(z) ds = 2/0 \/VV(S)J[qb](X{uQS}) ds.

@MW&E;LM%Wﬂ
=2/01¢W<?>/{

U, =s}
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" By (4.2) and Fatou’s Lemma we infer
(T — limjnf Z.[¢])(w) = lim Z.[¢](we) >
>2 / G [lmin T (810 >0y)] ds-
As u is a characteristic function? using (4.5), (2.10) and (2.13) we have
liminf J[](X(u, >51) 2 To(E, ) = Py(E, ).

Therefore, using (4.5) and (2.17) we get

(0~ mjnt Z6)0) 2 2 [ (W(6)} Tlw) ds = 20T () = Folé]v)

and (4.1) is proven.
Let us prove that

Tolo)(u) 2 (T - lim sup Je[¢D)(u)  Vu € BV(Q).

Define the map G : BV(§) — [0, +oo] by

o) = { T BV(%{0,1),

400 elsewhere
Let {41} 1 be the sequence of functions given by Corollary 3.4. For any u € BV(£;{0,1})
and any k£ € IN we have

(T — limsup J.[4])(u) < (T —hm%upjswk () 960/ ¢r(z,v*)|Dul,

e—0

where the last equality, in view of the properties of ¢ listed in Corollary 3.4, follows from
[21] (see also [89]). Using the Monotone Convergence Theorem and (3.1) we have

(T — limsup J:[¢])(u) < 2c0/ lim ¢r(z,v")|Du| =
i Q k——r+oo
= .‘Zco/ ¢(z,v")| Du| = 2¢oG(u).
Q

Then, as the T-upper limit is L!(Q)-lower semicontinuous (see, for instance, [41, Proposi-
tion 6.8]), we deduce

(4.6) (T — limsup J.[¢])(u) < 2¢0G(u)  Vu € BV(2;{0,1}).

e—0
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However, if u € BV(£;{0,1}), by the definition of G and using (2.11), we have

G(u) = inf{liminf G(uy) : {ur}tr € BV (£;{0,1}), us P in INQ)) =

(4.7) ___
inf{liminf J(g](un) : {un}p € BV ({0, 1}),up "=5° uin LY(Q)} = T[g](u).

By (4.6), (4.7) and (2.17), it follows that

(T = limsup L8)(w) < Dlgllw)  Vu € BV 0,1))

and the proof is concluded. [J

We point out that inequality (4.1) holds without any upper semicontinuity assumptions
on ¢(-,£). Indeed, as J.[4] does not depend on the choice of ¢ in its Lebesgue equivalence
class, if N € M(9) and ¢y is defined as in (2.8), we have, for any v € BV(Q),

(T~ liminf 7.[4])(w) = (T ~ minf 7. [¢n])(w).

Hence, reasoning as in the proof of (4.1) with ¢ replaced by ¢, for any N € M(Q) and
any u € BV(§) we find

20 7[3n](u) < (T — liminf 7.[4])(w).

Therefore, using (2.9), we have that, for any v € BV(£),

2 sup Jlon](u) = 200 F[)(u) = To[](u) < (T — lim inf T.[¢])(u)-
NEN(Q) e—+

3.5 SOME SPECIAL CASES

In this section we want to evaluate the integrand h of formula (2.5) (see also (2.6)) up
to sets of zero H™ !-measure, under some further regularity assumptions on the convex
function ¢ (Theorem 5.2). Precisely, we shall assume, besides properties (2.1) and (2.2),
that there exists a finite family By, ..., B of pairwise disjoint Lipschitz subsets of {2 such

m
that Q = U B; and such that the following property holds: for any { € IR™ and any
J=1
j =1,...,m the function ¢piny(p;)(-,{) is continuous and can be extended in a continuous
way up to QN Bj. We denote by ¢; : (Q N B;) x IR™ — [0, +oo[ such extension. For any
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£ € R™, let ¢(-, &) be the lower semicontinuous envelope of ¢(-,£) on 2. One can show
that

_ #(z, ) T oifze U int(B;) and £ € R",
(5.1) $(z, &) = j=1
min(¢;(z,£), ¢;(2,€)) ifz € QN (0B;NIB;) and £ € R".

LEMMA 5.1. For any u € BV(§2) we have

(5.2) h(z,v*) = ¢(z,v"*)  for |Du|—ae. z € U int(B;),

=1

where h is as in (2.6).

Proof. Let u € BV(Q) and fix j € {1,...,m}. It will be enough to show that h(z,v*) =
¢(z,v*) for |Dul-almost every z € int(B;). Since ujnyp;) € BV (int(B;)) and ¢; is
continuous on int(Bj;), repeating the proof of Theorem 5.1 in chapter 2, with { replaced
by int(B;) and using (2.14) we obtain

(5.3) ¢(z,v*) = (|Du| — esssup g )(z) for |[Du| — a.e. z € int(B;).
0€K4 (int(B;))

Let o € K4(int(B;)); if we extend ¢ with the value 0 on 2 \ int(B;), we have that such
extension belongs to K4(Q2). Hence, by (5.3) and recalling (2.6)

¢(z,v") < (|Du| — esssup g,)(z) = h(z,v*)  for |Du| —ae. z € int(B;).
eEK4(Q) :

Let us prove the opposite inequality. For any open set A C Q define
My(A) = {o€ X(4):¢°(z,€) < 1for ae. z € A}
By (5.3) and Lemma 4.5 of chapter 2, we have

d(z,v*) = (|Du|— esssup ¢,)(2) for |Du| — a.e. z € int(B;).
eEM (int(B;))

Let 0 € K4(§); then, setting o = ojiny(p,), we have o € My(int(B;)), and by [23, formula
(1.7)] we have ¢, (z,v") = go(z,v*) for |Dul-almost every z € int(B;). Therefore

/ ¢o(z,v")|Dul =/ gz, v*)| Dyl _<_/ ¢(z,v™)| Dul.
int(Bj) int(Bj;) int(Bj;)

Since this inequality holds for every o € K4(Q2), we get

/ h(z,v*)[Du| S/ é(z,v*)|Dul,
int(B;) int(Bj)
ie., h(z,v*) < ¢(z,v*) for |Dul-almost every = € int(B;). This concludes the proof. [J
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THEOREM 5.2. Let ¢ be the function introduced in (5.1). If ¢ is convex then
(5.4) » / |Duly =T [ 6] (u) Yu € BV (Q).
Q b

Proof. Let u € BV ({Q2). Let
s=an(l]oBy),
j=1
and let M be the (possibly empty) set of all those points z such that z € QN (9B;NOB; N
8By) for at least three distinct indices 4,5,k € {1,...,m}. We have H*1(M) = 0.

Since the generalized total variation is independent of the choice of ¢ in its Lebesgue
equivalence class, we shall suppose that ¢(-,£) is upper semicontinuous for any ¢ € IR".

Using (2.9), the fact that S € MV (), and (3.8) with ¢ replaced by $, we have

(5.5) /Q Duls = sup Tonl(w) = TBsl(w) > 7 [ 8] w) =T [ 8] (w).

NeN(R2)

Let us prove the opposite inequality. By (2.5) we have

(5.6) [ 1puls = [ hie,)iul = T1AlG0.
We claim
(5.7) ‘ h(z,v5(2)) < ¢(z,v°(2)) for H* ! —ae. z € S,

where v°(z) denotes a unit normal vector of S at the point z € S. Such a vector exists
‘H"!-almost everywhere in S, as H* (M) = 0. Let z € S\ M; by our assumptions, there
exist two distinct indices 7,5 € {1,...,m} and a small open cylinder C(z) centered at z,
whose axis is parallel to v°(z), such that C(z) C Q, C(z)NS = F(z) C (8B;NIB;)\ M.
Without loss of generality, we can suppose that z is a Lebesgue point of hjs, ¢ijs and
gbj[S. Furthermore there exist o > 0 and a Lipschitz function f : B,(0) € R™™ — R
such that F(z) = graph(f), and int(B;) N C(z) (respectively int(B;) N C(z)) is contained
in the subgraph (respectively in the epigraph) of f. Let E(z) = C(z) N int(B;). For any
§ > 0 sufficiently small let Fs(z) = C(z) N {y € int(B;) : dist(y,0B;) > 6}. Let Fs(z) =
C(z)N{y € int(B;) : dist(y, dB;) = §}. By (5.2), the L'(Q)-lower semicontinuity of J[h]
(which is a consequence of (5.6) and the L'(§2)-lower semicontinuity of the generalized
total variation), and (5.2) again, we have

/ 8y, v)AH () + / by, V) (y) =
BE(z)\F(z) F(z)

by, v ) =

Es(z)

= / Wy, v)dH"*(y) < liminf /
SE(z) =0 Jo

= limin Y, v n-1 v n=1y).
=1 f/mz) #(y, v)dH (y)—{—/ ¢y, v)dH" " (y)

§—0 dE(z)\F(z)
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Therefore
/ h(y,z/)dH""l(y) < liminf/ qS(y,u)dH"_l(y) =/ cﬁj(y,u)d’}-{"_l(y).
F(z) §=0 JFs(z) F(z)

As z is a Lebesgue point of h|s and ¢; g, shrinking the set F(z) around z and using the

Lebesgue Differentiation Theorem we get that h(z,v%(z)) < ¢;(z,v°(z)). Repeating the
same argument with Bj; replaced by B; and recalling (5.1), we deduce (5.7).

Let v € BV(Q); denote by Du = Vudz + D°u the decomposition of Du into the
absolutely continuous and singular part with respect to the Lebesgue measure. Let also
u~ (respectively u™) the approximate lower (respectively upper) limit of u, and denote
by Sy the jump set of u.

As § € N(Q), using (5.2) and (5.1) we have

/Qh(x,Vu)da: = »/Q\S h(z,Vu)dz = /9\5 ¢(z, Vu)de = /Q\S #(z, Vu)dz.

Hence
/[Duh,:/ h(:z:,z/")|Du|=/ h(:v,Vu)d:z:—}—/h(a: D"u )IDsu[
. _ sy
= o(z,Vu cla;—l—/h:r:, D?ul.
[ A vt [ 16 grip

We recall now that D®u = pu+ A, where u, A are two Radon measures mutually orthogonal,
 is concentrated on S,, A is the Cantor part and is concentrated on a set with infinite
H™! measure and zero Lebesgue measure, hence it does not charge S. Moreover, since
Sy is (n — 1)-rectifiable [57], for K™ !-almost every z € S, NS we have dl |(x) +v5(z).
Hence, using (5.7) and the fact that h(z,v*) = h(z,—v") for |Dul-almost every z € §
(see chapter 2), we get

X - .DSU = T 8 T I/S U —u d“fn ! T
/sh( ’IDSU‘)l | /sh( " |dp l)ld = .[sunsh( )l | (=)
(ﬁ T VS U —u (){n 1 T) = ¢ Ty dL

Consequently

Dsu . ) |
/h(:c I ])ID u| = /Q\Sh( ld)\l)ld/\l+/5h( ld l)ld”—
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Using (5.8), we finally infer

[ 1puls < [ B rtipul = 7 3] @)

and this, together with (5.5), gives the assertion. [

As a particular case of the previous theorem we can consider the following chess
structure. Take n = 2, Q =]0,1[x]0,1[, let {q1,...,qn} C€J]0,1[ with 0 =¢qy < q; < -+ <
gn < qh+1 = 1, and define :

B=UJ¢ U Ugnalx0in U 001x]gi a0

i=1,...,h+1 i=1,...,h+1
i=j (mod 2) i=j (mod 2)

W =Q\B.

If o, 08>0, set
allél] ifz e B,

#d) = { Bléll e e W,

and, if z € QN JB, we assign arbitrarily to ¢(z,&) the value «f|€|| or £||€]|. By using
Theorem 4.1 and (5.4) we then get

[ 1puls = (¢ = lig 2 = 7 [3] (0

for any u € BV (Q;{0,1}), where

allé| if 2 € B,

#(z,€) = { Bléll if z € W,
(aApP)E]] fzeQnIB.

We conclude by proving the following result.

THEOREM 5.3. There exists an upper semicontinuous function ¢ : Q x R" — [0, +oo[
satisfying (2.1), (2.2), which is the square root of a quadratic form, and such that I' —
linol J:|#] has an integral representation by means of an integrand which is not the square
& —

root of a quadratic form.

Proof. Let I =]0,2[, Q =I x I, and let {g»}}2 be a countable dense subset of I. Define
C={tel:|t—q|>2"" VYh>1}, A=I\C.
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Then A is an open dense subset of I with 0 < H!(4) < Z 27h =1 < HY(I)=2,and C
h>1
is a closed set without interior. Define E = (A x I) U (I x A); then E is an open dense

subset of @ and Q@ \ E = C x C is closed and without interior. Let A > 2 be a positive
real number, and let ¢, : Q x IR?> — [0, +oo[ be defined by

€] if € B, €1 if z € E,
¢($)§) = ¢($)§) =
VA|lE|| fzeCxC, lE1]+ 62| ifzE€CxC,

where ¢ = (£,£). Obviously ¢ and i are convex, and % is not the square root of a
quadratic form. Observe also that ¢(-, &) is upper semicontinuous, that (-, £) is not lower

semicontinuous, and that 1 < ¢. In chapter 2, it is proven that the integrand h appearing
in (2.5) verifies

(5.9) h(z,€) =¥(z,6)  for ae. z €Q, VE€ R".
By Theorem 4.1

(T —al_i_% T8 (u) = 2¢ /Q | Dulg = 2¢o /Q h(z,v")|Dul Yu € BV(9;{0,1}).

Therefore, by (5.9), the integrand k representing the I'-limit of the sequence {J:[¢]}c can
not be the square root of a quadratic form. []
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