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Preface

This thesis contains part of the outgrowth of the research that I carried out at the In-
ternational School for Advanced Studies (SISSA-ISAS) in Trieste (Italy), during my Phd
program. Actually, in this period, my scientific activity covered different fields of theoretical
astrophysics and not all of them have been presented in here. The main topics in which I

am involved are:

o study of general relativistic radiative transfer in fast moving media, with particular
interest on typical radiative processes of high energy accreting flows (e —e, e™ —et, e—p

bremsstrahlung, pair production-annihilation, Compton scattering...):

e observability of accreting old neutron stars (ONSs) with EUVE and ROSAT as single

sources and analysis of their diffuse emission; phase-space distribution of galactic ONSs;

e Galactic Center environment;

e General Relativity; equilibrium and stability properties of rotating configurations in 3D.

iii
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The main part of my research activity was aimed to study the transfer of radiation
in relativistic stationary flows accreting onto compact objects (black holes and neutron
stars), in connection with the study of spectral properties for particular classes of X-rays,
EUV sources. This is the topic of this thesis, too. I used, in different applications, two
different theoretical approaches to the general relativistic treatment of radiative transfer.
The first one, originally developed by Thorne (1981), exploits an expansion of the specific
intensity of the radiation field into moments (projected symmetric trace-free tensors) so
that it has the main advantage of reducing the dimensionality of the problem. Despite it
has been probed to be a fast, powerful tool for tackling problems of relativistic radiation
hydrodynamics for 1-dimensional flows, at the same time, it presents a number of limitations
that are described in detail later on in this thesis. As an example, it does not allow a correct
treatment when dealing with high-energy regimes. In fact, it is just the lack of informations
about the angular dependence of the radiation field that makes impossible to describe
processes like photon—photon pair production and non isotropic scattering, that start to be
important in high temperature plasmas (72 10%). This is one of the reasons that initially
motivated our interest in investigating other kind of approaches. In this thesis I present
a second, alternative formalism, in which the transfer equation is directly solved along its
characteristic directions, i.e. along the photon propagation directions in the phase space.
Using this approach, an exact (numerical) solution for the photon distribution function is
naturally provided, allowing a complete treatment of non-isotropic radiative processes. A

numerical code has been developed and is presented here. Solutions for both the radiation



field in a fixed background or for the full radiation-hydrodynamical problem have been
obtained in spherical and plane-parallel geometry. Particular care has been devoted to a
detailed evaluation of the source term, taking into account for the main radiative processes
that take place in astrophysical flows. In its present version, the code can deal with e™ —e7,
et —et, e —eT, e~ —p, et —p bremsstrahlung, pair production-annihilation, Thomson and
Compton scattering. In particular, Compton terms are directly caiculated from integrals

of the Compton scattering kernel, without resorting to the Kompaneets approximation.

Radiative effects due to magnetic fields are neglected.

e This work is in the framework of a collaboration with prof. L. Nobili, dr. R. Turolla
(Dep. of Physics, University of Padova) and prof. A. Treves (University of Como); the
numerical code. written in Fortran, has been tested and is working now. Routines are

available under request.

The second part of this thesis contains the study of different models for accretion flows;
spectral results have been obtained using the numerical techniques previously described. In
particular, I present the analysis of spherical accretion onto black holes and a study of the
spectrum in static atmospheres around neutron stars. Since, in the first case, dynamics play
an important role, this process has been studied in detail; I present here also an analytical
investigation of bulk motion Comptonization in the relativistic case. It is particularly in-
teresting that in both the BH and the NS case, the equilibrium solutions show a bimodal
behaviour, with a high temperature, strongly comptonized state that coexists with a “cold”

one, for the same values of the model parameters. We considered this circumstance, in con-
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nection with the possibility to drive on—off transitions between the two branches. Moréover,
the onset of the “hot” state may represent a possible physical mechanism for producing effi-
ciently high energy radiation from weakly magnetized, accreting neutron stars and may be
of interest in connection with hard X-ray transients, at present observed with SIGMA and
BATSE. At low values of the accretion rates only the “cold” state exists; we have exten-
sively investigated also these models, in which the emission is typically peaked in X-rays,
in connection with the determination of the spectral properties of old neutron stars (ONSs)
accreting the interstellar medium. The emergent spectrum shows a significant hardening
with respect to the blackbody at the neutron star effective temperature, and this circum-
stance stimulated a lot of work aimed to reconsider the observational impact of ONSs with

ROSAT and EUVE.

o These analyses are carried out in collaboration with prof. A. Treves (University of Como),
dr. R. Turolla (University of Padova), dr. M. Colpi (University of Milano), dr. L.

Zampieri (University of lllinois at Urbana Champaign); future works are in preparation.

I spent the last year of my Phd at the University of Illinois at Urbana—Champaign
(UIUC), collaborating to a research plan in General Relativity, with the group of Relativis-
tic and high—energy Astrophysics (Prof. S.Shapiro). These studies, however, are outside the
topic of this thesis and are not reported here. At present, we are considering the problem
of the determination of equilibrium sequences and stability properties of rotating, relativis-
tic configurations in 3D. The problem is manyfold, either from the purely formal and the

observational point of view. As an example, rapidly spinning NSs. subject to triaxial in-
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stabilities could become important sources of gravitational waves emission and represent
possible targets for the forthcoming GEO600 (Germany), LIGO (US) and VIRGO (Italy)
interferometric detectors. Also, numerical simulations based on SPH calculations suggest
that the coalescence and merging in a single, triaxial object is the most inevitable end point
of close NS-NS binary evolution. Working in the framework of a PN approximation, we de-
veloped a completely analytical treatment of homogeneous, rigidly rotating bodies. We used
a 3+1 splitting of the metric, that seems to be particularly well suited to numerical studies
of the fully nonlinear equations for strong field sources. In this respect, our solution should
provide an important test-bed calculation for future numerical results for tridimensional,
relativistic systems. It has been found that, under these assumptions, the ADM equations
can be solved analytically, and it is possible to derive approximated expressions for the
main structural parameters of the rotating configuration (total mass—energy, rest mass and
angular momentum); equilibrium sequences and stability points can then be obtained using
a variational principle. As first application, we derived the first PN correction to the secular

Jacobi-like instability point with respect to the formation of a barlike structure.

e This study is in the framework of a collaboration with Prof. S.L. Shapiro (University
of Illinois at Urbana Champaign). It is supported by SISSA (Trieste, Italy) and by

“Fondazione A. Gini” (University of Padova, Italy); the work is still in progress.
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1 Introduction

Radiative transfer in high energy, fast and differentially moving plasmas is todayv at the
basis of a large number of currently interesting astrophysical situations, as for example
accretion onto compact objects, expanding envelopes in supernova explosions and in X-
ray bursting neutron stars, early phases of the cosmic expansion and jets in galactic and
extragalactic sources. In many cases the production of a large amount of energy in a
comparatively small volume and a spectrum which extends into the X-ray and gamma-ray
domain suggest that the physical conditions under which radiation is produced are rather
extreme, and involve the presence of a black hole or a neutron star, making a general
relativistic treatment necessary. Both the strong gravitational field and the dynamics can
substantially modify the emitted spectrum: the former via gravitational red—shift, the latter
by introducing aberration, advection and Doppler shift. Moreover, contrary to a widespread
belief, the effects of dynamics on the transfer of radiation are still important in presence of
non-relativistic velocities, if photons are produced in optically thick regions (Mihalas, 1980;
Mihalas & Mihalas, 1984; Nobili, Turolla & Zampieri, 1993, NTZ93 in the following).

Since the pioneering works by Thomas (1930), Simon (1963) and Lindquist (1966), rel-
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ativistic transfer received wide attention (see e.g. Mihalas & Mihalas 1984 for references
to earlier papers). Most applications presented until the early 70’s focused on the diffusion
approximation. However, when the medium is marginally thick, like in photospheric layers
or in hot coronae, this approximation breaks down and a more general analysis is necessary.
It was also realized long ago (see Castor 1972, Mihalas 1980 and references therein) that,
for relativistic flows, the interaction between matter and radiation is most easily described
if the material properties and the radiation field are evaluated in the frame in which the
medium is at rest. This fact led to the investigation of the comoving frame transfer equation
(CTE), considered by Mihalas (1980), Hauschildt & Wehrse (1991) in the framework of spe-
cial relativity, and by Schmidt-Burgk (1978), Thorne (1981), Schinder & Bludman (1989)
in the general-relativistic case. Broadly speaking, two levels of difficulty are encountered
in the solution of the radiative transfer problem. The first one is connected to the fact that
the transfer equation itself is a Boltzmann equation for the photon distribution function
in phase-space (see e.g. Lindquist 1966). The mathematical structure of the differential
operator is intrinsically complicated, mainly in situations without any presupposed sym-
metry. The second one is related to the description of the microphysics, appearing in the
expression of the source term. Even in the simple case of isotropic, coherent scattering,
the non-local character of the process translates into an expression of the source term that
involves the zeroth moment of the photon distribution function. This makes the Boltzamnn
equation an integro-differential equation. From the numerical point of view, the problem

is even more challenging when dealing with high energy plasmas. In these regimes the



cross sections correspondent to astrophysically important radiative processes (like Comp-
ton scattering and pair production) can present a high degree of anisotropy and a strong
dependence on the photon frequency. As a consequence, a detailed description involves the
numerical evaluation of multiple integrals of the photon distribution function weighted by
a suitable kernel.

Due to these complexities, usually one has to introduce some simplifying assumptions
to make the analysis tractable and the present status of the art shows that any attempt to
solve the relativistic problem requires a compromise between accuracy and computational
cost.

The first approximation that can be introduced involves the geometry of the flow and
the symmetry properties of the background metric: the simplest situation that has been
investigated is the stationary, 1-dimensional problem. Different approaches for the solution
of the relativistic transfer problem in the case of planar or spherical geometry have been
suggested. They can be grouped, schematically, into three wide classes: direct solution of
the CTE using discretization techniques, moment expansion and integration of the CTE
along its characteristic directions.

The solution of the CTE by finite differencing, like in the DOME method (Hauschildt
& Wehrse 1991), works well in geometrically thin layers, but the treatment of extended
atmospheres requires a prohibitive number of discrete elements to obtain a fair angular
resolution. In the relatively simple case examined by Hauschildt & Wehrse, the numerical

calculations must be performed on supercomputers even for low resolution grids. Since in
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this thesis we are mainly interested to the properties of the continuum emission in accretion
flows, we will not enter in detail in the description of this method.

Approaches based on the expansion of the specific intensity in spherical harmonics (mo-
ments) are in fact a more powerful tool for solving this kind of problems. In this case
the solution of the transfer problem is reconduced to the solution of a recursive system of
partial differential equations that must be truncated at a given order, introducing a certain
number of closure conditions. These methods have the main advantage of reducing the
dimensionality of the problem since the angular dependence is suppressed. The technique is
standard in the non-relativistic case (see e.g. Chandrasekhar 1960) and the first step toward
a relativistic extension is due to Lindquist (1966). This pioneering work was particularized
to spherical flows and only the zeroth and the first moments equations were considered.
Later on, Anderson & Spiegel (1972) noted that this simple treatment was inadequate to
include the effects of the shear and calculated the second moment equation, successfully
reproducing Thomas’ radiative viscosity. The resulting formalism, however, is so complex
that it has never been applied to a marginally thick situation. Moreover, another limitation
is related to the fact that in these papers a minimal closure was assumed, i.e. all moments of
order higher than the order of truncation were put to zero. The issue of providing an exact
closure function is at the basis of the flux limited diffusion theory (FDT) developed by Lev-
ermore & Pomraining (1981) and generalized by Pomraining (1983), Anile & Sammartino
(1989) and Anile & Romano (1992). In the gray case the FDT provides a self-consistent

answer by solving the differential equation for the flux limiter, but the extension to the



frequency-dependent problem seems far from being obvious.

A very sophisticated, general-relativistic variant of the moment formalism was pre-
sented by Thorne (1981). His analysis, based on an expansion in projected, symmetric,
trace—free (PSTF) moments, presents some particularly interesting characteristics. First
of all, the complexity of the formalism can be highly reduced in presence of symmetries.
Second, the set of moment equations can be in principle truncated at an arbitrary order,
allowing to achieve, in every particular problem, a good compromise between accuracy and
computational cost. Even in the frequency-dependent problem, the reduced dimensionality
permits a fast, direct solution for dynamical, thermodynamical and radiation variables, at
least when the expansion is truncated at the second order. This method has been fruitfully
applied to the solution of astrophysical problems with planar or spherical symmetry, both
in the gray and in the frequency-dependent case (see e.g. Turolla & Nobili 1988, Nobili,
Turolla & Zampieri 1993, Zampieri, Turolla & Treves 1993, Rezzolla & Miller 1994, 1996,
Miller & Rezzolla 1995. Zampieri, Turolla, Zane & Treves, 1995, Zampieri, Miller & Tur-
olla 1996, Rezzolla 1996). In these applications the required number of closure functions
was specified “a priori” and they should reproduce the correct asymptotic limits for the
radiation moments when free streaming and diffusion are approached.

The last kind of approach to the solution of the transfer problem is based on the use
of the characteristics formalism. These methods start directly from the integration of the

Boltzmann equation, so they give an exact (numerical) solution for the photon distribution

function. The main point is that the hyperbolic character of the Boltzmann equation implies
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that the CTE can be always reduced to a single ordinary differential equation along the
characteristic rays. The tangent ray method (TRM) developed in a series of papers by
Mihalas and coworkers (Mihalas, Kunasz & Hummer 1975, 1976a, b, Mihalas 1980) uses a
semi—characteristic approach in which the integration is performed along the characteristics
of the “spatial” part of the differential operator (the tangent rays), while the frequency
derivative is treated by means of a standard finite—-differences scheme. A fully characteristic
method for the solution of the general-relativistic transfer problem has been discussed
by Schmidt-Burgk (1978), Schinder (1988) and Schinder & Bludman (1989). All these
investigations dealt with stationary, spherically symmetric space-times, which admit three
Killing vectors: the existence of the associated constants of the motion can be used to
obtain simple expressions for the characteristic rays. The analysis by Schinder & Bludman
(1989) was actually restricted to a spacetime characterized by a stationary Lagrangian line—
element, which corresponds to a vanishing Eulerian velocity field for the fluid. The work
by Schmidt-Burgk (1978), although finalized to accretion onto a Schwarzschild hole, is,
to our knowledge, the only example of an exact solution of the CTE taking into account
both the effects of dynamics and strong gravity. For their simple mathematical structure,
characteristic methods seem to be promising in coping with realistic astrophysical problems.
Moreover, as it will be discussed later on, they naturally overcome some of the limitations
that arise in the framework of moments expansion.

As anticipated, the second kind of difficulties encountered when the transfer problem

is tackled, are related to the description of radiative processes. Previous investigations



were mainly concerned with the development of efficient methods for the solution of the
CTE, assuming rather simple, often “ad hoc”, expressions for the emission and absorption
coefficients. This approach is completely justified if one is interested in investigating the
formation of particular spectral features, like lines or absorption edges. On the other hand,
in all situations in which attention is focussed on the continuum, an accurate treatment of
all relevant radiative processes becomes important. Solutions presented by Schmidt-Burgk
(1978) refers to a hot, magnetized plasma and take into account scattering absorption and
synchrotron absorption/emission; the collisional term in the Boltzmann equation is written
using suitable approximations. However, the expression of the source term can be very
complex even restricting to the simple case of unmagnetized plasmas, if high temperature
regimes are investigated. In this case the dominant radiative processes are non-conservative
scattering, pair production and bremsstrahlung.

A rigorous treatments of the Compton scattering can be found in Kershaw, Prasad &
Beason (1986), Kershaw (1987). Shestakov, Kershaw & Prasad (1988), but prior of this
analysis their results have never been included in transfer codes devoted to astrophysical
applications. Very recently, the time-dependent photon kinetic equation for Compton scat-
tering, the corresponding radiative transfer equation and their zeroth and first moments
have been reconsidered by Psaltis & Lamb (1997), who pointed out important corrections
to almost all the above derivations and investigate the role of second order velocity terms
in the problem.

The purpose of this thesis is to reconsider the issue of determining the solution of the
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radiative transfer problem, in the framework of computing the spectral properties of par-
ticular classes of X-ray and y—ray sources powered by accretion onto compact objects. The
work presented here is organized in different levels. First, the comoving transfer equa-
tion and the PSTF moments formalism (Thorne 1981) for its solution are introduced. As
already mentioned, this approach has the enormous advantage to allow a simplified, fast
investigation of the full hydrodynamical problem and in many situations this level of ap-
proximation can be fully satisfactory. However, the method presents some drawbacks that
makes it not completely suitable for the solution of more complicated problems. A number
of reasons have motivated our interest in other kinds of formalism, and in particular in the
reconsideration of the characteristic approaches.

First of all, in solving the moments equations, the lack of any information about the
angular dependence of the radiation field makes impossible the treatment of processes like
photon—photon pair production and non isotropic scattering, that start to be important
above T> 10® K. Approaches based on moment expansion (see e.g. Pomraining 1973 and
references therein, Thorne 1981, Prasad et al. 1988) usually treat the Compton scattering
in the Fokker—Planck approximation.

Second, in view of a future extension of the method, we are interested to investigate a
formalism that could be easily applied to the study of radiation transfer in multidimensional
systems. In fact, in many astrophysical scenarios rotation or other deviations from spherical
symmetry can be important, as for example when dealing with accretion disks, hot coronae,

cooling of neutron stars or radiatively driven jets. The necessity of an axially symmetric or



even 3D treatment of relativistic radiation hydrodynamics is not restricted to applications
in which the metric itself is multidimensional; several axisymmetric situations also occur
in non self-gravitating flows around slowly rotating compact objects, when the radiation
field is non-spherical, but the background metric can still be approximated as spherical.
Also, magnetic fields may introduce asphericity in the radiation field and accretion onto
magnetic stars can be funnelled onto polar caps, eventually producing localized hot spots.
Both these magnetized situations can be described assuming axisymmetry in the radiation
field. On the other hand, the application of the moment formalism to the bidimensional
case is numerically troublesome, and involves the solution of complicated systems of partial
differential equations. In this respect, characteristic methods seems to be more promising
since they can be quite naturally extended to more than one spatial dimension, the major
complication coming from the higher number of ordinary differential equations (ODEs) that
must be solved to compute the characteristic trajectories.

Last but not least, the fact that characteristic approaches provide an exact solution
for the photon distribution function is particularly appealing from the point of view of
theoreticians. When using a moment expansion, a number of degrees of freedom is always
introduced in the problem, due to the arbitrary choice of the closure functions. In the
frequency-integrated problem this is probably not a too serious problem and the advantages
of the method greatly outweight the disadvantages. In fact, in a wide number of apph'ca,tions,
the influence of these degrees of freedom becomes quite unimportant when the system is

truncated at higher order and, in the gray case, a large number of moments can be used
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without a prohibitive computational cost (Turolla & Nobili, 1988). However, a recent
investigation by Dullemond (1997b) shows that in particular dynamical situations, which
are related to the presence of shocks, the solution to the finite (truncated) set of moment
equations may become unconditionally singular when the velocity gradient of the medium
exceeds a critical value. In particular, in regions of strong differential motion with a negative
velocity gradient, the method of moments will also fail, no matter how large the order of
truncation is. The situation is even more delicate when frequency-dependent transfer is
tackled. In fact, to make the numerical solution affordable, only the first two moments can
be taken into account, so that the choice of the closures has a non negligible impact on
the results. Moreover, the extension of the moment formalism to the bidimensional case
requires the specification of an increasing number of closure relations, making the method
unacceptably dependent on the choice of a large number of free functions. The amount of
degrees of freedom put into the investigation can be as big as the amount of dependent
variables one likes to solve for, making the full approach questionable.

In this thesis we present a new, fully characteristic approach for the solution of the
transfer problem. The formalism will be described in its more general form; results are then
specialized to stationary, spherically-symmetric or plane—parallel configurations. A numeri-
cal code has been developed, and solutions for both the radiation field in a fixed background
or for the full radiation~hydrodynamical problem have been obtained in spherical and plane-
parallel geometry. In order to obtain a detailed description of the microphysics, particular

care is devoted to the evaluation of the source term taking into account for the main radia-
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tive processes that take place in astrophysical flows. As first step we present a method for
the numerical evaluation of e™ — p, e™ — e~ bremsstrahlung, Thomson and Compton scat-
tering. In particular, Compton terms are directly calculated from integrals of the Compton
scattering kernel, without resorting to the Kompaneets approximation. Radiative effects
due to magnetic fields are neglected. Chapters 2, 3, 4 of this thesis contain the description
of both the theoretical formalism and the numerical code, and conclude the first part of the
work here presented.

Using the numerical techniques previously described, different models for accretion onto
black holes and neutron stars are investigated. This is the topic of the second part of this
thesis, in which we report the astrophysical results. As first application we present a spec-
tral analysis of spherical, stationary accretion onto non-rotating black holes. This problem
has been throughly investigated in the past (see e.g. Nobili, Turolla and Zampieri 1991,
hereafter NTZ91 and reference therein) and represents a classical application of relativistic
radiation transfer in differentially-moving media. The accreting matter reaches, in fact,
not only 7/r, ~ 1 (here Ty is the gravitational radius) with v/c ~ 1, but, often, tempera-
tures high enough (7% 10° K) to make a full treatment of Comptonization necessary. As
pointed out by NTZ, a distinctive feature of black hole accretion is the presence of a bimodal
behaviour. In fact, for the same value of the accretion rate 7 which is the only free parame-
ter, two solutions may coexist: a “cold”, low-luminosity and a “hot”, high-luminosity one.
NTZ investigation was restricted to the frequency-integrated case. However, making use

of an approximated treatment of Comptonization, they concluded that the two branches
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of solution are expected to be characterized by very different rspectral properties. Roughly
speaking, the ‘cold’ one is characterized by low temperature and negligible Comptoniza-
tion, the second by high luminosity and strong Comptonization. We reconsidered these two
regimes, deriving the spectral properties in both cases (Chapter 5). Solutions are obtained
numerically, and the radiation field is computed by using the characteristic code previously
described.

For near-Eddington accretion, low-luminosity solutions start to develop an inner region
optically thick to both free—free and scattering. Under these conditions, bulk motion Comp-
tonization in the converging flow (Blandford & Payne 1981a, b; Payne & Blandford 1981,
PB in the following; Nobili, Turolla & Zampieri 1993) acts efficiently at high frequencies
where true absorption is very low. The synthetic spectrum derived via a numerical analysis
shows some distinctive, intrinsically relativistic features and motived a reconsideration of
the effects of dynamical comptonization, even from an analytical point of view. The result of
our analysis, that is an extension of the Payne & Blandford investigation to the relativistic
regime and includes the analysis of the wind problem, is reported in Chapter 6.

We have recently reconsidered the reprocessing of thermal radiation in geometrically
thin, static atmospheres around accreting neutron stars. As in the case of black hole
accretion, at high luminosities (L2 10°¢ erg/s) the equilibrium solutions show a bimodal
behaviour and a hot, strongly comptonized state coexist with a cold one for the same values
of the model parameters (see Turolla et al. 1994). We present an analysis of the spectral

properties of the cold solution, extending previous results by Zel’dovich, & Shakura (1969,
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Z5) and Alme, & Wilson (1973, AW) to cover the low luminosities (LS 10%* erg/s) typical
of old, isolated neutron stars (ONSs) accreting the interstellar medium (LS 10%* erg/s).
We found that, as the luminosity decreases, the emergent spectrum shows a significant
hardening with respect to the blackbody at the neutron star effective temperature. This
result has been first derived using a moment formalism for the solution of the radiation
field, and then confirmed with the characteristic code (Chapter 7).

In order to obtain a solutions in the high-energy regime, we extended our first version
of the code, including radiative processes as et —et, e™ —et, et — p bremsstrahlung,
and pair production-annihilation, typical of relativistic plasmas. Using this algorithm, we
analized the spectral properties of the ‘hot’ solution, and we investigated the possibility to
drive on—off transitions between the two branches. This possibility is particularly appealing
from the observational point of view: the onset of the “hot” state represents a possible
physical mechanism for producing efficiently high—energy radiation from weakly magnetized,
accreting neutron stars and may be of interest in connection with hard X-ray transients,
at present observed with SIGMA and BATSE. This is the topic of Chapter 8.

Finally, in Chapter 9 we briefly review some observational consequences related to the
spectral properties of the cold solution around neutron stars. As first anticipated, our
analysis shows that the hardening factor of the emitted spectrum becomes more pronounced
at low luminosities. This circumstance has important consequences and stimulated a lot
of work aimed to the observability of single ONSs accreting the ISM with X-ray and UV

detectors on board ROSAT and EUVE.
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In order to estimate their collective emission, a numerical code for the integration of
stellar orbits in the Galactic potential well has been constructed: following the evolution of
the distribution function over the Galaxy lifetime, we obtained the phase—space distribution
of galactic ONSs. Results are then used together with the synthetic spectra to estimate
the ONSs contribution to the unresolved soft X-rays background in the 0.5 — 2 keV band.
Performing a similar analysis, we have also shown that ONSs accretion luminosity can
account for a sizable fraction, possibly most, of the diffuse soft X-~ray emission observed in
the direction of the Galactic Center.

To conclude, a critical analysis of the main hypothesis under which these results have

been derived and a review of the present status of observations follow.



2 Radiative Transfer

In this chapter we introduce some general concepts in relativistic radiative transfer theory,
the fundamental variables, the basic equation together with the approaches to its solution
and our notation. In section 2.1 we discuss the structure of the radiative transfer equation in
the comoving frame. Section 2.2 contains a review of the PSTF moment formalism (Thorne
1981, hereafter Th81), while in section 2.3 we present our treatment of the characteristic
method (CRM). In order to shed light on their capabilities and limitations, both methods
will be first described in the more general case, when no symmetries are present, and then
specialized to symmetric configurations.

Unless otherwise stated, geometrized units (¢ = G = h = 1) are used throughout and
lengths are in units of the gravitational radius Tg = 2M. Our choice of units for the PSTF
moments will be ergem™3Hz~!. All bold—face symbols denote four-vectors, four-vectors
that are orthogonal to some fiducial four-velocity are regarded as three-vectors. We use a

signature -+++, latin indices range from 0 to 3, while greek indices go from 1 to 3.

15
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2.1 The Radiative Transfer Equation

As it is well known, in the standard classical theory of radiative transfer the radiation field
is well described by taking as macroscopic independent variable the specific intensity I,.
However, when relativistic transfer is tackled and a covariant formulation is needed, a more
natural dependent variable is the occupation number of the photons’ quantum mechanical
states, N or, equivalently, the photon distribution function in the phase-space, f. This
is because, at variance with I,, N and f are relativistic invariants. If the radiation is
unpolarized, i.e. if N is independent of polarization, the number density of states in phase
space is 2/h% and f = 2N/h® = ¢2I,/h*v® = I,/v®, where v is the photon frequency.

The relativistic transfer equation, written in covariant form, is an evolution equation
for the photon distribution function f(x,p) that reproduces the standard non-relativistic

equation if is expressed in a flat space-time or in a global Lorentz frame:

% = g(x,p, f) (2.1)

Here p = dx/d€ is the photon 4-momentum, ¢ is an affine parameter along the null geodesic
| and the collisional term g accounts for the interactions between matter and radiation (see
e.g. Lindquist 1966, Th81). We stress that the differential operator in equation (2.1) acts
not merely in spacetime but in the full photon phase-space, made up by the spacetime
plus the null tangent space at each point along the photon trajectory. Since f(x,p) is
a relativistic invariant, equation (2.1) holds in any frame and, in absence of interactions,
the photon occupation number is conserved along each photon trajectory. However, the

material properties (e.g. opacity and emission coefficients, scattering cross~sectioﬁ), which
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enter the expression of the source term g, are naturally defined with respect to observers who
are locally and instantaneously at rest with the matter (LRF). In the following we adopt
a fiducial observer comoving with the fluid, which carries a tetrad e; and has 4-velocity
u = e

If spacetime, matter and radiation share some common symmetries, the orientation of
some of the spatial vectors of the tetrad follows in a natural way. For example, in spherical
symmetry, as it will be discussed in detail later on, it is convenient to chose e; orthogonal
to the 6 and ¢ coordinate directions. With respect to the tetrad, the components of the

photon 4-momentum can be written as

p* = (E,Ep, E(1— p*)"? cos ®, E(1 — pi*)'/? sin ) (2.2)

where E is the photon energy, u is the cosine of the angle between the photon direction
and ej, and ® is the corresponding azimuthal angle, all measured in the LRF. The three
quantities £, y and ® have an immediate physical meaning and they will be used as in-
dependent variables (momentum variables) together with the spacetime coordinates z* to
tick events on the light—cone of the phase-space. Because p is a null vector, it has only
three independent components. It follows that, in the most general case, the distribution

function in the phase space depends on 7 variables

f:f(z:i,E,p,(I)), (23)

and 7 partial derivatives appear in the original differential operator. The total derivative
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in equation (2.1) can be explicitated as

of ; of dp*

- : = = 2.4
5;1:’p + Op? d¢ (24)
af,i 0f & b ¢ _

0‘1‘ip - Bpa rgép D=9,

where p¢ = p‘iefi, I’g‘é = e?egeé;j are the Ricci rotation coefficients and the equations of
the null geodesic have been used. We note that all the information about the spacetime
curvature and the flow dynamics are contained in the tetrad field and enter the Boltzmann
equation via the tetrad vectors themselves and their local rates of change which appear in
the Ricci coefficients.

On the other hand, all information about the input physics are contained in the source
term. From the mathematical point of view, the main complication arises because g may
contain terms involving integrals of f. Just to give an example, even restricting to the

simple case in which only isotropic. coherent scattering is accounted for, the expression of

g depends on the monochromatic mean intensity

J, = -—l—/L,dQ - —l—-/fz/BdQ. (2.5)
47 4T

As a consequence, the evaluation of the radiation field in a scattering medium relies on the
numerical solution of a multi-dimensional integro—differential equation.

Moreover, in a realistic model, the influence of radiation on the hydrodynamical and
thermal behaviour of the system, together with the backreaction of the gas on the radiation
field must be self-consistently accounted for. The full solution of the radiation hydrody-

namical problem requires the simultaneous integration of the transfer equation together
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with the Euler, continuity and energy equations that, in turn, depend on the gray mean

intensity J and on the mean gray radiative flux H:

1 oo 1 oo ,
-1 -1 ] 2.
J 4FA dujjgﬁz 4WA du/fch (2.6)

H:i/ w/hmﬂzi w/nmm. (2.7)
47 Jo 47 Jo

The coupled solution of the transfer and gasdynamical equation poses, therefore, the same
difficulty encountered in the integration of the transfer equation alone in presence of scat-

tering.

2.2 The PSTF Moments Expansion

As previously discussed, we use two different approaches to the solution of the relativistic
transfer problem. In this section we describe the PSTF moments formalism, first introduced
by Th81, with the purpose to outline some basic concepts together with the main advantages
and disadvantages of the method.

The formalism is particularly elegant and represents a covariant generalization of the
standard approach used in classical radiative transfer theory (see e.g. Chandrasekhar 1960).
The basic idea is to introduce some kind of expansion for the dependence of the photon
distribution function on the photon propagation direction. The coefficients of this expansion
are just the moments of f, i.e. the angular averages of f weighted over the basis functions.
The second step consists in performing the same kind of averages in the Boltzmann equation.

In such a way, the original integro—differential Boltzmann equation can be reduced to a
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recursive, infinite system of partial differential equations where the new unknowns variables
are the moments of f.

Obviously, in order to make a numerical solution possible, the expansion must be trun-
cated at a given, finite order. Nevertheless, the counterpart is that the dimensionality of
the problem is highly reduced: now, in fact, the unknown variables (i.e. the moments) only
depend on spacetime location and on the photon frequency. In many situations this approx-
imate treatment is fully satisfactory and the application of this method allow a fast, direct
solution of the full radiation hydrodynamical problem with a relatively low computational
cost.

In this section we will focus on the mathematical structure of the moments equations,
while the discussion of the explicit expression of the source term will be postponed to
Chapter 3. Although the original treatment by Th81 is fully covariant, we restrict our
attention on the derivation of the set of comoving moments equations, so that the four—
velocity u of our fiducial observer coincides with the flow velocity. Let us also introduce

the tensor

P = g 4 utd (2.8)

where g/ are the metric coefficients; P is the operator which projects orthogonal to u.
As it is well known, as a photon travels along its trajectory, the frequency measured in the
comoving frame varies due to the observer 4-acceleration a, expansion © and shear o;;.

These quantities appear explicitily in the covariant derivative of the 4-velocity, that can be
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written as (see e.g. Misner, Thorne & Wheeler 1973, MTW)

1
Us; = —a;uj + §@P,‘j + o4 +wiy, (2.9)

where w;; is the vorticity.
Following Th81, let us now to consider an event P in spacetime and define the kth

moment of the photon distribution function by an integral over the photon 4-momentum

lying on the future light cone at P:

2Né(p-u+ z/)pﬂ1

wn = e =
’ (=p-w)*”

PV, (2.10)

Here 6(2) is the Dirac delta~function, 4; denotes the string of indices a...ax, the pedix “v”
indicates the dependence on the photon frequency, and dVp is the invariant volume element

on the light cone. In particular, in the comoving frame it is
dVp = (-p-u)dQd(-p-u), (2.11)

where [..dQ denotes integration over the solid angle on the unit sphere in the projected
tangent space. If we indicate by n an arbitrary unit vector on this sphere, the null vector

p can be written as
p=(-p-w)(utn). (2.12)
Substituting expressions (2.11), (2.12) together with the definition of I, into (2.10) yields

Mgl...ak — /Iy (nal + ,ual) .. (nak + uak) dQ . (2-13)

This is the covariant generalization of the standard moments of the specific intensity intro-

duce by Th81. The integration is over the photon propagation directions, and I, must be
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regarded as a function of spacetime location P, n and v. In a similar way, it is possible to

introduce the moments S21-%* of the source function

5 .
Spttk = m—————g(_(g . Z)-:_I;)Pal ...}Padep (2-14)

= 7 [g(nt 4 ut) (o + o) Q.
The explicit derivation of the correspondent recursive system of moments equations is pos-
sible and has been done (see again Th81). The calculation can be performed via direct
substitution of the definitions (2.13), (2.14) in the successive moments of the transfer equa-
tion, or, alternatively, evaluating the divergence of M*® in a local Lorentz frame. The

resulting equations have the structure

EAr = MAb (i
ov

) (vt = (k= 1) M{*upe — S0 = 0. (2.15)

However, this system is highly redundant, because the unprojected moment of order £,
M, contains within itself full information about the values of all moments of lower order.
The complication can be overcome by making use of the ‘projected, symmetric, trace—{ree’
(PSTF) tensors, since the only new information contained in the kth moment is its PSTF
part. To be more precise, for a given tensor C“*, the PSTF part (here indicated with

capital script letters)

Cal..ak = (Cal.-ak)PSTF (216)

can be evaluated by successive applications of three tensorial operations. The first one is

the projection onto the local fluid—frame spatial hypersurface

(Cal..ak)P = P;;_ﬂp;gkcbp-bk (2.17)
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the second is the symmetrization
(Cal..ak)S = C(al..ak) , (218)

and the last one is the construction of the ‘tracefree’ part

(¥/2]
(Cor-ax )TF = Z dkiP(‘IlUQ .. PP2i-102i (7 a2i4105)by..b by (2.19)
=0
In the last expression [k/2] denotes the largest integer less or equal to £/2 and
: 12k — 24 — 1)
dis = (1) kL (2k — 20— 1)!! (2.20)

(k=20 (2k — D)1 2N
By making use of these definitions, it is possible to evaluate the PSTF moments of both the
photon distribution function, M3 = (M7)PSTF and the source term, Site = (§k)PSTF,
In particular, M;** will play the role of dependent variables in the resulting, non-redundant,

system of differential equations.

The final result is

| k Y -
g4 = {/\/lf“b;b + M b 4 [J‘/!f}k"l' — ( Pl ) (.Mf"“?b b — /\/lf"‘zbab)

2k +1 2k —1 :
X PorE] (= DMy, — (k= 1) MArbg, 1 g-/vxfk@ (2.21)
s [t - (G ] vt
R e () it
R o Gt
F R}

3}

1
5;1/ {./Wf"bco'bc + J\/tf"bab -+ ng}k@
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2k [/ f"“lbafk - ( fol ) f"’gbcabcP“"’la"}

2% +3 2% — 1
k :
TS {MfH “r (f)kk ..11> fkazbabpak_lak}
(k - 1)k [ Ak—2 Qp 12k 2 (k - 2) Ak—sb k-2 DAf_1Qk
TRV TCT SN e o M

(k=2)(k—=3) | Ax_sbe
k-—1)(2k-3)""

PS
a-bCPak—aak—Q Pok-1 ak] }

- S} =0

This is the most general set of moments equations, holding without any presupposed
symmetry in the background metric, or in the velocity and radiation field. It must be noted
that, when truncated, this system is not closed. The moments equation of order k depends
on M1 and M2*+2 5o that a set of suitable closure conditions must be introduced for all
components of these tensorial quantities. Since M#* has 2k + 1 independent components,
even in the simple case in which only the first two moments equations are retained, 12
arbitrary functions must be introduced in the model. Moreover, in this general form the
resulting system (2.21) still shows a very complicated mathematical structure that makes
the numerical solution troublesome.

In the original paper by Th81 two additional variants of the formalism, specialized to
particular situations, were presented: a frequency-integrated version and one holding in
presence of a ‘universal redshift function’. In both cases the main simplification is that
the behaviour of the radiation field is regulated by a set of equations similar to (2.21),
with all /0y terms absent. In the latter case the reason is that the frequency mixing can
be removed by using a suitable “redshifted frequency” in lieu of the standard independent

variable v. This is possible in every situation in which the change of the photon energy from
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event P to event Q, as measured by the comoving observer, only depends on the spacetime
coordinates. However, even in this simple case, the general formalism remains so messy
that, up to now, it has never been applied to astrophysical situations.

A more important simplification in the mathematical structure arises when the formal-
ism is specialized to problems sharing spherical, plane—parallel or pseudo—spherical sym-
metry. In these cases it is convenient to orient the first tetrad four—vector along the
four-acceleration, e; = a/a. With this choice, in fact, the fiducial congruence becomes
irrotational, w;; = 0. and the only non-vanishing components of the shear tensor can be
expressed in term of one scalar quantity o. As far as the velocity and gravitational field
quantities are concerned. the simplified moment equations will depend on a. ©, o and on the
extrinsic curvature b = I'y15 = I'313 of the bidimensional spatial hypersurfaces S5 orthogonal
to u and a.

In addition, the isotropy of the radiation field on S, translates in a local axisymmetry
of f and g which are now independent on the azimuthal angle ®. This allows to compute

all components of the tensors of order k in terms of one single scalar moment

: 1.3 El(2k+1
13 El(2k+1
35 = Sil = 27‘—(2(](;——{—1_—).“)— v3ng(u)du , (223)

where Py(z) is the Legendre polynomial of order k. The appearance of the Legendre poly-
nomials in the formalism is not surprising: actually, the expansion of f in PSTF moments is
equivalent to the more familiar expansion in spherical harmonics. As the local axisymmetry

of the radiation field collapses the number of independent component of M2 from 2k + 1
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down to a single one, the 2k + 1 spherical harmonics Yim (6, ®), with k fixed, all vanish for
axial symmetry except Y. This circumstance makes the full formalism completely scalar
(i-e. only dependent on scalar variables). We note that the first three PSTF scalar moments

are related to the more familiar, standard monochromatic moments Jy,, H, and K, by

The final expressions of the moments equations are

Sk(k+1
wi + (2-Kat@+E)bw "“+w"“o+[ 0+ Lo ] y

2(2k — 1)(2k + 3)

+ k? wh-1 ,+k (k+3)a+(1—-Fk)b] 4
k-1 (2k+1) "~ 1 k-1 (2k+1) ¥
N2 2
- g(k — Dow 2 4+ 3 (& 1)_ b (k2+ 2) owk=? (2.24)
2 2(2k — 3) (2k — 1) (2k + 1)
0 k+1 [} k(k+1) ] ok k? k-1
i {‘”” * 3@+(2k—1)<2k+3)" et EES Dk
8 wh+? 1)* k? k-2 k
+ v =Sy
27 +2(2A—3(2k—1)2(2k+1) 7 °

Explicit expressions of the 6 quantities

have been reported by Th81 for spherical flows in both Schwarzschild and flat spacetime
and for planar flows in flat spacetime.

In its scalar variant, the method has been fruitfully used to investigate a variety of
astrophysical situations. It has been probed to be a fast, powerful tool for tackling problems
éf relativistic radiation hydrodynamics for 1-dimensional flows, at least when the expansion

is truncated at k = 1 and only the first two moments equations are solved. Stationary, gray
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and frequency dependent applications has been presented by many authors (see e.g. Thorne,
Flammang & Zytkow 1981, Nobili, Turolla & Zampieri 1991, 1993, Zampieri et al. 1995,
Dullemond 1996a, Shemi 1994), while the time-dependent, frequency-integrated case was
recently considered by Rezzolla & Miller (1994, 1996), Miller & Rezzolla (1995), Zampieri,
Miller & Turolla (1996), Rezzolla (1996). The role of the closure functions and the behaviour
of the critical points in the frequency integrated, stationary system were analized by Turolla
& Nobili 1988, Dullemond 1996b.

However, even in presence of symmetries, the construction of numerical models involves
the solution of a complicated system of partial differential equations. The choice of bound-
ary conditions is very delicate and, in some regimes, the problem can be computationally
challenging. Moreover, the structure of the differential operator depends on both the ex-
pression of the source term and the choice of the closure conditions. A general analysis of its
mathematical character is not possible “a priori”, depending on the input physics included
in the problem, but some particular cases has been studied by Turolla, Zampieri, Nobili
(1995). As they showed, in Comptonized converging flows or when gravity is taken into
account, the behaviour of the operator could be very complex and the system of equations

may become of the mixed type, switching from hyperbolic to elliptic.

2.3 The Characteristics Approach

In this section we present our approach for solving the transfer equation using a fully

characteristics method. This chapter contains the description of the formalism, while in
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chapters 3 and 4 we will present the treatment of the radiative processes and a detailed
description of our numerical code. All these results, together with applications reported in
Chapter 5 of this thesis, have been published in Zane et al. 1996a.

As it was already outlined, when using characteristic approaches the main idea is to

reconsider the Boltzmann equation in its original form

d .
'(é = g(X, |22 f) ) (225)

and to integrate it directly, as ordinary differential equation, using the parameter £ as the
independent variable. Clearly the differential operator in the transfer equation is Pfaffian,
so it is always possible to solve the Boltzmann equation along its characteristic directions,
i.e. along the photon trajectories in the 7-dimensional phase-space.

In the non-relativistic, static limit trajectories are simply parallel straight lines, while for
moving media characteristic rays depart from these lines and must be in general evaluated
numerically. For a given background metric and a given velocity field, their structure can
be obtained by solving a system of 7 ordinary differential equations, which must be coupled
with equation (2.25). To be more precise, the run of the spacetime coordinates along the

photon trajectory is derived by solving the four equations

dz! . -
— = p' = p%et 2.26
73 phes, | (2.26)

while the variation of E, u and ® can be obtained from the equation of the null geodesic,

written in terms of p?

. (2.27)
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Recalling the expression of p? given in equation (2.2), the last three equations can be

explicitly written as

dE 6 & Z < Q
du Lo/ri 0\ 5 ¢ oy
i = 7 D w13 '’ (2.29)
dd 1 5 . 5\ § &

—dz = ——m (COS Q)I\gé — 81N @Pga) pbpc . (230)

At variance with what happens using other methods, liké for example expansion in
PSTF moments, this kind of approach makes a great simplification in the mathematical
structure of the problem: in fact, the non—grey problem can be solved without integration
of complicated systems of partial differential equations. Moreover, no closure is needed and
this formalism gives as result the full coordinate, frequency and angle dependent intensity.
As we will discuss in detail in the next section, it is just the knowledge of the angular
dependence of the distribution function, lost when the moments of f are used as dependent
variables, that makes possible to use the characteristic rays method to describe anisotropic
radiative processes, as Compton scattering, in their more general form. Moreover, this
approach naturally preserves the hyperbolic character of the Boltzmann equation.

The main drawback of the method is related to the fact that, to ensure a sufficient
resolution in f, a very large number of characteristic rays must be used. In some sense,
characteristic codes solve the microscopic behaviour of photons, so that they require a large
amount of sample rays. From the computational point of view, this approach is surely more
time-consuming with respect to other techniques based on suitable expansions of f and

the situation may be particularly delicate in radiation-hydrodynamical calculations (see
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Dullemond 1996a for a discussion about this point).

Nevertheless, we stress the fact that the formalism is completely general, holding in
any differentially moving media in a curved spacetime. The only complication is in the
total number of ordinary differential equations that must be integrated numerically and in
the storage and handling of large matrices for f. Computer modeling of multidimensional
systems is a rapidly advancing science, and we believe that the method is particularly
promising to explore stationary radiation hydrodynamical problems.

Clearly, its capabilities are exploited at best in presence of symmetries, when the di-
mensionality is reduced. In addition, the existence of conserved quantities allows to derive
analytical expressions for the photon trajectories in phase space, lowering the computational
cost. Since the numerical code and all applications presented in this thesis will deal with

symmetric configurations, in the following we will focus on these cases only.

2.3.1 Transfer in Spherically-symmetric Spacetimes

Let us consider the more general spherically-symmetric spacetime, described, in spherical

coordinates, by the line—element

ds? = goo(r, t)dt? + g11(r, t)dr? + 72(d6? + sin? 9des?). (2.31)

Spherical symmetry implies that there exist two constants of the motion, L, and L, which
are related to the components of the photon 4-momentum by L, = p3 = r’sin? 6p>, L? =
r4(p*)?sin? @ + (p*)?]. These two expressions take a very simple form, and lead to a major

simplification in the transfer equation, if the fluid configuration and the radiation field are
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themselves spherically-symmetric. In this case the spatial 3-velocity ¥ of the comoving

observer, measured by the stationary observer 56 /+/=900, is in the radial direction and the

most convenient choice for the tetrad is

] v Tv
el = —, —, 0,0 2.32
0 (\/—goo V911 > ( )
d o= (27 o
vV —g900 /911

62 = (0,0,771,0)

e; = (0,0,0,r Lsin~? )

where 7 = (1 — v?)"Y2. The constants L. and L may be then expressed in terms of the

tetrad components p‘-Z as

L. = Lsin®sing (2.33)
L? = r2E%(1-42). | (2.34)

In spherical symmetry, the photon distribution function must be independent on both the
polar angles ¢ and 6. Since, from equation (2.33), we have & = ®(0), it follows that isotropy
in coordinate space implies also that 0f/0® = 0 and the Boltzmann equation reduces to

0 0 Of dE  0fd
_fp0+l1 _:/i___ f_'u

s/ 2.35

ot T or? ToEdE T oude =9 (2.35)
In the further hypothesis that the spacetime is stationary, the existence of a time-like
Killing vector provides a third conserved quantity, po = — o, which can be used to obtain

a simple expression for the photon energy along each ray in the LRF

Eoo

R0k 1230



32 §2. Radiative Transfer

in the previous expression y = 7+/—goo is the specific energy of the fluid, as measured by a
static observer at infinity.
In the case at hand, the photon trajectories lie in a 4-dimensional hypersurface and can

be obtained solving equations (2.28) and (2.29) together with

dt I

= = " 2.37
d¢ P goo (237)
dr 1 _ Ey,

T - P, (1 +v). (2.38)

Actually, the existence of the two constants of motion L and E., yields analytical expressions

for both p and E, as functions of 7, along each photon trajectory:

2002 o (2 L B2 1/2
L= yiub? £ r (r 9 b2g00) (2.39)
7.2 + b‘Zy_UZ
2.2.2 .2
[r2 + v (72 + b2goo0) / ] y

where the impact parameter b = L/E has been introduced. Due to spherical symmetry,
only positive b’s need to be considered, negative values of the angular momentum give
exactly the specular picture, so in the following b? will be used as a parameter. It can
be easily shown that the plus/minus sign in equations (2.39), (2.40) refers to photons for
which g + v is always positive/negative. This implies, see equation (2.38), that the radial
coordinate is always increasing/decreasing along the path and that the condition p+v =10
defines the locus of turning points for the trajectories. This is just a manifestation of
aberration: the turning points, in fact, are located where the cosine of the angle between
the photon and radial directions, measured by the stationary observer, vanishes.

In the following we will specialize on the vacuum Schwarzschild solution, and in this case
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Figure 2.1: The run of the cosine of the angle between the photon momentum and the radial direction,

as measured by a free-falling observer, along the characteristic rays. Different curves correspond to

different values of the impact parameter b.

the structure of the photon trajectories in physical space is well known (see e.g. MTW).
Without to enter in details, we just review here a few basic concepts that will be useful later
on, when the numerical code will be described, for a better understanding of some technical
points. Following MTW, the photon trajectories may be divided into three classes: a) those
connecting radial infinity with the event horizon, characterized by impact parameters in
the range 0 < b% < 27/4; b) those that are trapped in the region 1 < r < 3/2 and ¢) those
for which it is always r > 3/2. Trajectories of the latter two types have b? > 27/4. The
limiting value b? = 27/4 corresponds to the circular photon orbit. The plot of u = p(r;b)
and of £/ Ee, = €(r;b) is shown in figures 2.1 and 2.2 for a free—fall velocity law, u! = r—1/2,

As can be seen from the the figures, photons starting at the horizon can reach infinity
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Figure 2.2: Same as in figure 1a for the photon energy normalized with respect to Eu.

with non-zero energy only if they are emitted exactly in the radial direction (p = 1) with
an infinite energy, while ingoing photons that leave infinity with zero angular momentum
reach the horizon halving their initial energy. At large values of r all rays concentrate at
i = *1, as radial streaming is approached. Trajectories with an impact parameter equal
to the critical value b? = 27/4 exhibit a saddle point at 7 = 3/2.

In the following we will concentrate on the case in which both matter and the radiation
field are stationary. Under this assumption the distribution function depends only on three
variables, r, F and g, and since it is E = FE(r), p = p(r) (see equations [2.39], [2.40]),
the radial coordinate itself can serve as a (non-affine) parameter along the null geodesics.
The Boltzmann equation can be then integrated in the domain of existence of each photon
trajectory. This particular choice appears to be convenient for a number of reasons, although

it poses some numerical problems, as it will be discussed later on. First of all, the treatment
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of boundary conditions is much simpler when the radial coordinate is the independent
variable and this avoids also the integration of equation (2.38) along with the transfer
equation. Moreover, when scattering is taken into account, the source term depends on
the integrals of f over angles, which must be evaluated at both constant r and F. The
knowledge of f(r) avoids the use of spline or other interpolation algorithms, which is time-
consuming and would be needed in the case of a different parametrization of the photon
trajectories. In conclusion, in differentially moving media in a curved spacetime, at least for
what concerns the radiation field, the transfer problem can be solved integrating numerically

the single differential equation

o 9 g
dr  ylp+v)E

(2.41)
for different values of the two parameters b and E.

We outline that the existence of the three constants of the motion L., L, E. only
depends on the symmetry properties of the metric. Similar simplifications can therefore be
introduced in all problems in which non self-gravitating matter in a Schwarzschild spacetime

are considered. For example, in a stationary axisymmetric situation (e.g. accretion disks

around non-rotating black holes) the distribution function depends on 5 variables

f=7(r0,E,pn,2) (2.42)

but it is possible to avoid the numerical integration of 3 characteristics equations exploiting
the expressions of the conserved quantities.
In our first application we focus our attention on the calculation of the radiation field

and, thus, we restrict our discussion to the case in which velocity, density and temperature
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profiles are fixed a priori, similarly to what was done by Mihalas (1980) in the special
relativistic case and Schinder & Bludman (1989) in the general relativistic, static case.
A numerical technique for the solution of the integro-differential scattering equation is
discussed in Chapter 3. The same method can be applied to the solution of the full radiation

hydrodynamical problem and examples are presented in Chapter 7,8.

2.3.2 Boundary Conditions

Because there is not a one-to—one map between 7 and £, equation (2.41) must be integrated
twice for each value of 4, in correspondence with the two solutions for @ and E given
by equations (2.39), (2.40). At the same time, two different boundary conditions for the
distribution function f must be imposed, taking into account that the plus (minus) sign
in equations (2.39), (2.40) corresponds to outgoing (ingoing) trajectories. The boundary
condition for ingoing characteristics of type a) is prescribed in the standard way: for a non-
illuminated atmosphere, for example, it is just f = 0 at the outer edge of the integration
domain. This is also the only condition required to integrate the transfer equation along all
characteristics of type c), since integration can be started at large r with, say, f = 0 and
carried out until the turning point‘is reached storing the computed value of f, which is then
used as the initial condition along the outgoing branch of the trajectory. The remaining
rays, including characteristics of type b), can be treated much in the same way if there
exists a region in the flow where the effective depth . 7f becomes larger than unity at any
frequency and LTE is attained. In this case, in fact, the required boundary condition is

simply f = B,(T)/E®, B,(T) is the Planck function at temperature 7, at a radius 7 such
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that 7.5 ¢(7) > 1.

Although this is the standard case for stellar atmospheres, including accretion flows
onto compact stars, a different situation may arise when dealing with accretion onto black
holes: for low values of the accretion rate, for example, the flow is optically thin all the
way down to the horizon (see e.g. Nobili, Turolla & Zampieri 1991). Now a boundary
condition for f must be imposed at r = 1 for rays starting at the event horizon. Since
E goes to infinity there, both the distribution function and g must vanish. The product
E(p + v), however, does not vanish for all outgoing rays at the horizon, so g = 0 implies
also df /dr = 0. In order to avoid numerical overflows, integration is started at a radius
rin fractionally larger than unity, with the regularity condition df/dr = 0. The two rays
with b2 = 27/4 are peculiar since they intersect at 7 = 3/2 (the saddle point) which is
also a critical point for equation (2.41). We still integrate the transfer equation along these
particular rays taking as a regularity condition g = 0 at r = 3/2. Strictly speaking, this
condition is exact only in the case in which the effective optical depth is larger than unity
at the last photon orbit; in other cases there is no physical reason to ask for thermalization
and the value of f may be undetermined. However, since the radial derivative of f diverges
at the critical point, we found that, in a finite differences numerical scheme, the solution of
the differential equation relaxes fast and the final result is probably not strongly affected

by the value of the distribution function at r = 3/2.



3 The Source Function

In this chapter we focus our attention on the source term corresponding to radiative pro-
cesses of astrophysical relevance. We present the explicit expression of g together with the
expressions of S/A* that are needed when solving the moments equations. In the following
we deal with an unmagnetized, fully ionized, non—degenerate hydrogen gas in which emit-
ters and absorbers are in local thermal equilibrium at a temperature T, i.e. in which the
Kirchoff law holds. We consider also the case in which electrons are relativistic (T2 5 x 10°
K), and present a fully general treatment of Compton scattering. For the sake of simplicity,
as a first step we focus our attention only on thermal emission and absorption together
with scattering from free electrons and we do not include a discussion of other processes,
as pair production and double Compton scattering, that may be relevant at such high tem-
peratures. The numerical treatment of the Compton source term is described in detail,
and in Chapter 5 we report some astrophysical applications. However we stress that the
characteristics method we have presented is completely general and additional radiative
processes may be easily included. Source terms not involving integrals of the photon distri-

bution function can be simply accounted for once the corresponding emissivity and opacity

38
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coeflicients are provided. On the other hand, as it will be discussed later on, our iterative
scheme allows for the solution of integro—differential equations aﬁd can be used to include
also different integral source terms as, for instance, those related to pair production or
bound-bound emission. Actually, a self-consistent treatment of pair production entails the
solution of the full radiation hydrodynamical problem, with the addition of the pair balance
equation and Waé left out on purpose in our first applications which are obtained keeping
the hydrodynamics fixed.

In a second phase we implemented our code to account for photon—photon pair production—
annihilation _and, consistently, for eT — e*, e~ — eT, et — p bremsstrahlung. The method
will be presented in Chapter 8.

In this section physical units are used; v and 7 denote the dimensionless photon energy
and electron temperature, both in units of m.c?; K,(z) is the modified Bessel function of

the second kind.

3.1 Thermal Bremsstrahlung

The source term for spontaneous emission and absorption, including stimulated emission,

can be written as

n

9= drhcE?

where 77 and y are the emission and absorption coefficients, measured in the comoving frame.

Because of the assumed equilibrium, Kirchoff law yields:

n__
Ty = B (D) (3.2)
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with v = E/h. In the medium we are considering, the dominant true emission and absorp-
tion processes are electron-proton and electron—electron bremsstrahlung; in the following
we will denote with ksf = (K7f)e=_p + (Kff)e-_.~ the correspondent total opacity. The

free—free contribution to the source term is then

Y15 = gy (D
o= OKgg (thg f)- (3:3)

The photon spectrum from bremsstrahlung is usually described in terms of the velocity—
averaged Gaunt factor G. Since the expression of G is not analytical, we used some suitable
fitting formulae, derived from exact results in different regimes. In the non-relativistic
regime, our fits were based on the tables for G presented by Karzas & Latter (1961).
However, as discussed by Gould (1980), contributions to the total energy loss rate due
both to relativistic corrections in the electron velocity distribution and to electron—electron
bremsstrahlung are already of order 10 % at 7" ~ 10® K and become as large as 30 % at
T ~ 10° K. Free—free emissivity from a relativistic thermal plasma has been investigated
by several authors (see e.g. Alexanian 1968; Quigg 1968; Haug 1975; Gould 1980; Stepney
& Guilbert 1983; Dermer 1984, 1986). The photon spectrum from e~ — p emission involves
a single quadrature over the relative Lorentz factor of the interacting particles 7, (see e.g.

Dermer 1986)

nenpc [ 9 dop_g(7,7r) ( ’h)
- S L A dy, (72 -1) === 0 M ep (=) | 3.4
Ne=—p(7,7) (/7 e & (v2-1) sl G (3.4)

where dop_p(7,7r)/d7y is the Bethe—Heitler cross section corrected for the Elwert factor

(see e.g. Heitler 1936) and n., n, are the number density of electrons and protons. The
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previous expression holds for 7 < m,/m,, so that protons can assumed to be at rest in the
lab—frame.

Electron—electron emissivity is more complicated since now both particles have the same
mass and a quadrupole contribution appears. The standard expression involves a five—fold
integral of the totally differential cross—section (Haug 1975), but, as shown by Dermer (1984,
1986), it can be reduced to a triple integral exploiting the covariance of Haug’s formula to

evaluate the cross—section in the CM—{rame. The final result is

) (3.5)

nie oo 72 -1 ¢w) dy*dol__ (v, vr
Me-—e—(7,7) = —-—(———)“‘"/O ——

———— dvyr
47]1%(1/1’) 1 7 2 (yr + 1)]1/2 v+ dy*

) 20y + D2 (12 4972
‘ exp{_ v ( 277" )}

(see Dermer 1986 for notation).

The numerical evaluation of both 7.-_, and 7.~ _.~ poses no particular problems and
has been carried out following Dermer (1986) in the ranges 2 x 1072 <7< 10, 2x 1072 <
hv/KT < 25.12. Numerical results for the total Gaunt factor were then fitted with the

analytical function (see Stepney & Guilbert 1983)

(A+ Bz)In(1/z)+C + Dz, z =hv/KT <2.51

az? + Bz + v+ 6/x, z > 2.51,

deriving, for each 7, the set of coefficients A, ..., 6. The Gaunt factor can be then obtained
at any value of 7 and hv/KT by means of a suitable interpolation/extrapolation. At
temperatures below ~ 10 keV (75 0.01), the asymptotic limits of Gould (1980) are used

for both e™ — p and e™ — e~ emissivity.
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Once 1 = Ne-_, + 7e-_.~ is known, the correspondent total opacity is simply derived
from the relation 55 = n/(470B,).

Whenever, as in this case, the emission coefficient and the opacity are isotropic, the
evaluation of the moments of the source term is straightforward. The quantities SA% turn out

to be equal to an emissivity term plus a suitable opacity—weighted sums over the moments

M25 In LTE it is

S, = pkss(47B, - M,) k=0; (3.6)

St = _pks MOk E>1. 3.7
v ff v

3.2 Electron Scattering

The second important radiative process we consider is scattering from free electrons: we
recall that one of the major complications encountered in solving the transfer equation
comes from its non-local character. In fact, even limiting to the coherent and isotropic

case, the source term is

2= ores (G- ). (38)

where k.5 is the Thomson opacity and

1
o= [ 1o B (3:9)

is the zero—th moment of the distribution function. Allowing for the more realistic case

of Thomson scattering, the correspondent cross section has a monopole plus a quadrupole
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angular dependence (see e.g. Chandrasekhar 1960) yielding

B2 — g |5 (30 = B =2 G - 38 - 1] (3.10)

where
1 /1 9
k, = 5/_1f(7',,u,E)u du . (3.11)

The Thomson limit can be assumed to correctly describe electron scattering when the
energy exchange in a single collision can be safely ignored. On the other hand, in high
temperature regions non-conservative effects and quantum corrections play a fundamental
role in shaping the emergent spectrum. The derivation of the general expression for the
Compton source term can be found e.g. in Pomraning (1973) and is briefly outlined below,
mainly to introduce some basic ideas which will be used later on when the numerical scheme
is discussed. With reference to a single scattering, 7 denotes the incident photon direction
and £ = -7, where primed quantities refer to the scattered photon. For an incident photon
energy v and an electron velocity 7., the Klein-Nishina formula gives the probability of

scattering into the energy 7’ and the direction 7’

2 2 !
oy —=+\i—i,5) = i{u[l—(l_f)} Gt 3 77} (3.12)

29V A A2DD! N2DD!
D D’
X 6[5—1+A——7——/\—} ,
7 v
where
V2 -1/2
D=1-7-%/c, D':l—ﬁ'-z’fe/c, A= (1—;;—) , (3.13)

To is the classical electron radius and ¢ is the Dirac delta function. Integration over the
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relativistic maxwellian distribution

Mexp(=A/T)

V) = 3.14
fe(ve) drTe3 K, (1/7) (3.14)
gives the Compton Scattering Kernel (CSK)
’ 3 _ Je (ve) [ 1-¢ ]2
Y _ _ 3.1
U(/ /76’7') 167‘_71//‘17)6 b\ {1+ 1 \2D D' ( 5)
(1- )27"@ < D D'>
Sk Vs - Z_ =),
T Txpp [P\ IEAL A

Here the CSK is normalized with respect to s.;0, which is reciprocal of the Thomson mean
free path; the inverse probability, related to the scattering emissivity, can be obtained from

the detailed balance condition

oy —7".&7) 7 exp(—y/T) =0 (v = 7,6, 7) 7 exp (—'/7). (3.16)

Further integrations over all outgoing photon directions and energies provide the source

term appearing in the Boltzmann equation

oo v [y [mda'(?y—')?aw—w,é,r)f(r,ﬁ',v') 1+ 2220 )

o0 ) =/ ’V,
st [ 07 [ a0 (3= m) S () L4 L))

Inserting equation (3.16) into equation (3.17), the latter can be written in the more compact

form

S A o G F R B A A e R CRT)
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where f' = f(r,7’,v’) and

J00 = / dﬁ/, dQ'o (7 - A/la S’T) (319)
0 4m

is the zero-th moment of the CSK (Shestakov, Kershaw & Prasad 1988). In the previous
expressions, non—linear terms account for stimulated scattering.

The general task of computing the moments of the CSK was undertaken by Shestakov,
Kershaw & Prasad (1988). They have shown that by performing the integration over 4’ first
and exploiting the é—function, the expression of the zero—th moment, which is originally a

fivefold integral, can be reduced, after a lot of non-trivial algebra, to a single quadrature

oo = in%_—)-/ dzyzog(vz)exp {—«—217: (z + %)} (3.20)
where:
yoo(y) = — [—————————y2 — oy 1)+ 29+ 18y" + 16y + 4} (3.21)
8y ( (2y+ 1)
= y(l—Zy—{—%gyz— 11303y3+ %%éy4—-~-) for |y| < —;—

The full evaluation of the Compton source term involves a number of very complicated
six dimensional integrals of the distribution function weighted by the CSK for each value of
v, T, p. Because only discrete values of the distribution function will be available, all the six
quadratures should be, in principle, evaluated numerically at each grid—point and this would
make the integration of the transfer equation prohibitively time—consuming. However, as
discuss by Kershaw, Prasad & Beason (1986), two of the three integrals in the CSK become
analytical if a particular polar axis for projecting the electron velocity is chosen. Moreover,

Kershaw (1987) presented an efficient method for calculating the single integral of the CSK
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over 7' or £ and the double integral over both these variables. A detailed discussion of our
algorithm for the evaluation of the first addendum in the Compton source term, that is
essentially a re—adaptation of Kershaw’s method, is presented later on.

The treatment we have just described is the most general to handle Comptonization and
proved to be reasonably fast. However, it still remains time—consuming when compared
with other approximated treatments of Comptonization, that can provide a satisfactory
description of the process in the non-relativistic or midly-relativistic regime. For this reason
it is useful to have approximated expressions of g¢ that can be used at lower temperatures.

As it is well known, the complicated nature of the CSK led many authors to model the
Boltzmann equation by a diffusion equation in the frequency space. This approach, the
Fokker-Planck approximation, was firstly used by Kompaneets (1956) in the limit of small
7 and 7. Relativistic corrections to the Kompaneets equation can be included modifying
the diffusion coefficient, and a number of efforts were devoted to extend its original form
(Fraser 1966, as quoted in Pomraning 1973, Cooper 1971). More recently, Prasad et al.
(1988) derived an exact analytical expression for the diffusion coefficient that holds for
arbitrary values of 4 and 7, in the assumption of a nearly isotropic radiation field. The
main simplification introduced by the Fokker-Planck approximation is that the integral
operator in the transfer equation is replaced by an infinite—order differential operator that,
for small values of v and 7, truncates at a finite order. The method, originally developed

for the non-relativistic transfer equation, is based on an expansion of the specific intensity
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in a Taylor series about v/ = v. At first order in v and 7, Fraser’s result is

dsY i (2" T 1) P.(6)S.I  (3.22)

n=0

3Kes0 c? a) / 2 3] 5
B 167 ?1—1;57[(1_1/311 Aﬁdg [l ¢+¢ 6]1’

gCEz = —EESQ(1—27)I+5689/

47

where P, is the Legendre polynomial of order n and S, (n =0,...,3) are second order

differential operators (see Pomraning 1973). Using the standard relation

E=pu' + \/1 - ,u’Q\/l — p?cos (& — @), (3.23)
the previous expression can be cast into the form

= = k.0 [Al + pAg + (1 - ,uz) As +u (3 - 5,u2) A4] —resof{1—27 (3.24)

+ T {-13 — P Ag + p (3;52 - 5) A7+ p (3 - 5;1.2> Ag]} .

The quantities A;. containing the first four moments of f' and their first and second fre-
quency derivatives. are reported in Appendix A. This is the expression of gc needed in the
general relativistic transfer equation in Fraser’s approximation. We stress that up to now no
assumptions have been made about the angular dependence in the energy exchange terms.
A further simplification can be introduced if all terms, but f, in equation (26) are assumed
to be isotropic and are replaced with their zero-th moments. The Compton source term

becomes then

2 2
gc dlnJ, T[a InJ, (aany) (3.95)

E - Resg]”{l T dlnv u dln v? Olnv
InJ,
" 3aanV}}"‘K’esQf [1“27‘*" L 2']1/ (1 an ):’ E]

dlnv Mel "~ dlnv
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where
1 1
J, == / Idy, (3.26)
2/

is the mean intensity. The approximated expressions (3.24) and (3.25) are to be preferred
whenever a non-relativistic plasma is considered, since their evaluation is much faster than
that of the general source term given by equation (3.18). Moreover, equation (3.25) contains
far fewer terms than (3.24), and has the great advantage that all the angular dependence
is contained in f.

The evaluation of the moments ka is straightforward and follows in a natural way by
averaging the previous expressions over angles. In particular, because Thomson scattéring
is elastic, the rate of change of the energy density must vanish, i.e. S, = 0. In this limit, it

is

(Sv)., = 0 (3.27)
(s29),, = —qpemee
(S;4k>es = — ke Mk for k#0,2.

These expressions can be easily understood on a physical ground: all moments except
k = 0,2 are destroyed by scattering interactions at the full Thomson rate pkesc. On
the other hand, the presence of a quadrupole contribution in the Thomson cross section
translates in a different, reduced rate of disruption for the second moment of the radiation

field, while the zeroth moment is not destroyed at all.
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As previously stated, using the moments formalism, the only possible kind of description
of Compton scattering is based on the Kompaneets approximation. The correspondent

expression of S, can be cast in a compact form as (see again Th81):

o JkTa m, M & (M
(Su)c - Qhes’)’é;/‘l/ [_f;—a_l/ ( 3 ) + ( 3 ) + Sth ( 6 )J . (3.28)

To conclude, we note that all forms of the Compton source term based on the Fokker—

Planck approximation contain both first and second frequency—derivatives of the moments
of the distribution function. As noted by Nobili, Turolla & Zampieri (1993), in connection
with the system of the first two PSTF moment equations, Compton terms act as singular
perturbations, changing the mathematical character of the differential operator that be-
comes elliptic. As we discuss in detail later on, our numerical code is based on qgitera,tive
scheme in which integral terms, together with their derivatives, are treated as forcing terms,
the only full-fledged differential operator being the one contained in the Boltzmann equa-
tion. On the other hand, the characteristic ray method provides the angular and frequency
dependence for f that allows to write the Compton source term in its original form without
resorting to the Fokker—Planck approximation. In this case the problem of radiative transfer
with comptonization can be solved exactly in any range of energies and optical depths, and

the hyperbolic character of the Boltzmann equation is naturally preserved.



4 The Numerical Method

In this chapter we describe in some detail the numerical scheme we have developed for solv-
ing the transfer problem using the characteristics method. The more general case, which
corresponds to spherical flows in a Schwarzschild spacetime, is discussed in subsection (4.1);
in subsection (4.2) a simplified version of the code, for the solution of the full radiation hy-
drodynamical problem in static. plane—parallel atmospheres is presented; finally subsection

(4.3) is devoted to the numerical evaluation of the Compton source term.

4.1 The Spherical Case

As it is well known, in a scattering medium, the transfer equation is an integro—differential
equation, while it has a simple structure when only true emission—absorption is included;
in particular, it reduces to an ODE when written in its characteristic form. This suggests
that its solution can be found using an iterative method in which the starting point is
just the solution of the transfer problem with only free—free préééﬁsés taken into account.

Following this idea, equation (2.41) has been integrated numerically, with the boundary

50
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conditions previously discussed, for a given set of values of the parameters b2 and E., and
with the source term g = gss. This provides the zero-th order approximation, f(O)(T,/.L, E)
of the distribution function, that can be used to evaluate the scattering integrals appearing
in ges or go. In the second step, we use the full expression for ¢ to obtain the first order

approximation f (1)(7, i, E'). This is the solution of the transfer equation written in the form

y(p+v)df  gsp (0) (0)7 £(1)
TT—“E“'FQUO}_ﬂ[fO]fI- (4.1)

All the expressions of the scattering source term discussed in the previous section can be
cast, and have been presented, in this form. In equations (3.8), (3.10), (3.24) and (3.25) 3
can be immediately identified with the coefficient of f; in equation (3.18) « is the integral
term. The scheme is iterated until convergence is reached, improving at each iteration the
functionals o and 8 making use of the distribution function computed in the previous step.
As a convergence test, we compared each element of the matrix j, with its value relative
to the previous iteration and stored the maximum relative correction. Cauchy criterion has
been applied to verify the convergence of the succession of such corrections.

Equation (2.41) has been integrated using a a finite differences method originally devel-
oped by Nobili & Turolla (1988), in which the algebraic system is iteratively solved using the
Henyey technique for matrix manipulation. The entire radial domain [r, Teng] is divided
by M points; rays of type a) are integrated using this grid. For trajectories which exhibit
a turning point,, the transfer equation is solved on the same mesh, picking up the subset of
grid points which cover their region of existence. Although, as we already mentioned, the

choice of 7 as the parameter along the geodesics has a number of advantages, it results in a



52 §4. The Numerical Method

divergent derivative of f at p = —v. While, for those branches which approach the turning
point, this introduces some errors at most in the last few points, trajectories moving away
from the turning points may be systematically affected by an inaccurate determination of
their boundary condition. However, it should be taken into account that when the optical
depth at the turning point is either large or very small, f tends to B,/hcE® or remains
vanishingly small, independently on the boundary condition for equation (2.41). Numerical
errors, if any, are, then, restricted to rays inverting in regions of moderate optical depth.
The choice of the b-grid strongly constraints the final angular resolution of f, and
requires special care. Let us first assume that a black hole is the central source; in this case
the interval 0 < % < 27/4 corresponds to ingoing and outgoing trajectories of class a). For
these two subclasses, we fix V; and N, values of the impact parameter in such a way to
produce an equally-spaced p—grid, in the range [—1,1]. at the critical point r = 3/2. To
discretize the range b2 > 27/4, we exploit the one-to—one correspondence between 5% and

the position of the turning points, 7 = r,,

b2 = (4.2)

Tpn—1
We fix N3 and Ny values of 7., the first at 7 < 3/2 and the latter at 7 > 3/2; the r,’s are just
the radii of the spherical shells tangent to the orbits of types b) and c). In such a way, the
total number NV of p—points in the interval —1 < g < 1is r~dependent, and it is bounded by
N1+ Na+1< N <Ny+Ny+2N3—1forr <3/2and N+ No+1< N <Ny +No+2N4—1
for 7 > 3/2. A better angular resolution in all the radial domain can be obtained increasing

the number of photon trajectories. In the case the central source is a star of radius r,, the
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p—gridding works in a very similar way, but the values of b in the range

e (4.3)

< b2
0< <r*—1

now produce an equally-spaced p-mesh at the star radius, the Ny points refers to r > r,
while no trajectory of type b) is present. We have found more convenient to derive the
values of the impact parameter starting from the radial coordinate of the turning points,
and not vice versa. since in this way the radial extent of the photon trajectories, and hence
the integration range of equation (2.41), is specified without solving the cubic equation
(4.2).

Once the rays are fixed, equation (2.41) must be integrated for different values of the

N

parameter F.. along each trajectory. The range of E, should be chosen in sugh a way that
at each value of 7. we can compute the distribution function in an interval of the local energy,
[Emins Emaz), large enough to cover the interesting portion of the spectrum. The parameter
range [(Eoo)mins ( Ex )maz] must be larger than [Eppn, Emas] at any given radius, since both
gravity and dynamics act in changing the photon energy along the geodesics. For 7 < 7,4,
in fact, the energy interval [Enin, Emeg] Is actually influenced by some characteristic rays

starting at 7e,q¢ with E. in the range

(Eoo)min = [y (1 + v)]rmin Emz'n < Eoo < [y(l - ’U)] Ema:r = (Eoc)mar . (44)

Tmin

In the numerical calculations we have used the dimensionless energy = = E/KT., where T,
is a suitable normalization temperature. For later applications, we found more convenient

to divide the storage window [Zmin. Zmaz] by means of L points equally-spaced in In x; the
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same grid is maintained at all radii and f is stored at these points as a function of the local
dimensionless energy using an interpolation. In the two remaining ranges [(Z oo )mins Tmin)
and [Tmaz, (Too)maz], 2P values of 2, has been specified. For these values of the energy
at infinity, the transfer equation has been integrated only along the trajectories of those
photons that, at some r, have a local energy within our storage window. Loading the
matrix f(r;,p;, E) is particularly convenient since it allows a more direct calculation of
the scattering integrals, that are evaluated at both constant r and E. All angular integrals
can be obtained simply performing a weighted sum of f over the p—index without any
additional scanning of the array or extra interpolations. This has, also, the advantage that
the we are free to choose the most suitable numerical scheme to integrate over energies since
the rearrangement of the energy points at each radius follows automatically. The numerical
evaluation of the frequency—dependent moments of f has, however, to be carried out with
some care. In particular, when the optical depth drops below unity and radial streaming
is approached, the integration over i becomes troublesome and we found more convenient
to perform the quadrature over 4%, using equation (11a). Since the same change of variable
works well near the horizon, where outgoing rays concentrate towards u = 1, it has been
used in all the radial range. However, because of the divergence of du/db? where y = —w,
in a small region around this point the original u—integration was performed at each value

of r.
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4.2 The Static, Plane—parallel Case

The numerical scheme we have just presented allows the solution of the transfer equation
along the geodesic rays in the more general case, when gravity, dynamics and sphericity are
all accounted for. In many astrophysical applications, however, transfer of radiation through
a static, geometrically-thin atmosphere is of interest, like, for example, when studying
reprocessing of thermal radiation in the atmosphere of X-ray bursting neutron stars. In éll
these cases, a plane—parallel approach to the solution of the transfer problem is fully justified
since the atmospheric scale height is much less than the star radius, although the effects
of the strong gravitational field must still be considered. The assumption of hydrostatic
equilibrium introduces a major simplification in the treatment of radiativg}transfer because
advection and aberration are no more present. For a vanishing velocity field, equation (2.36)
reduces to E' = E./v/~goo, implying that the value of the local energy at a given radius is
the same along all rays. This is just another way of stating the existence of Thorne’s (1981)
Universal Red-shift Function. The rays are now symmetrical with respect to the & = 0 line.
A further, drastic, simplification follows if it can be assumed that the radial coordinate is
constant in the atmosphere and equal to the star radius. This is commonly done in non-
relativistic transfer theory, replacing the height above the base of the atmosphere with the
optical depth. The rays are just straight lines, 1 = const, while the photon energy seen at
infinity is simply the energy at any depth red—shifted by the constant factor (1-1/ r*)l/ 2 In
the light of these considerations, we have developed and tested a reduced version of our code

which uses the scattering depth as the independent variable. The angular mesh is obtained
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specifying directly the values of u; the energy points at which f is computed coincide with
the energy grid, which is the same at all depths. The calculation proceeds exactly in the
same way as in a non-relativistic problem and the spectrum at infinity is simply obtained
by applying the gravitational red—shift factor to the spectrum emerging at the top of the
atmosphere.

Applications to isolated neutron stars accreting at low rates are presented in Chapters
7 and 8. In this problem electrons are far from being relativistic so Comptonization can
be safely treated in the diffusion approximation using expression (3.25) for the scattering
source term. The much shorter computational time allowed us to solve also the thermal and
pressure structure of the atmosphere, coupling the hydrostatic balance and the radiative
energy equilibrium to the transfer equation. The hydro equations are solved iteratively,
exploiting the scheme for the computation of the scattering integral we have already dis-
cussed. Pressure and temperature profiles are computed at each iteration step, once the

frequency—integrated moments have been obtained.

4.3 Numerical Evaluation of the Compton Source Term

As discussed in Chapter 3, the Compton source term, in the form (3.18), is the sum of
two contributions. The second addendum, which requires the calculation of the zero—th
moment of the CSK, ogg, poses no problem since it involves a single quadrature of an

analytical function. As proposed by Shestakov, Kershaw & Prasad (1988), upon the change
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of variable

1

== (7)) )

ogo can be efficiently evaluated using a Gauss—Hermite quadrature. We have tested that
six points give an accuracy better than 3 parts in 1000, sufficient for our purposes.
We are left, then, with the problem of finding a fast algorithm for the numerical calcu-

lation of the multiple integral

/ooc . [QXP <_L:r—7,> (g * 1) - ﬁ [M Ao (v —v',6,7) f'. (4.6)

First of all, we note that the scattering probability may become strongly peaked; in the
Thomson limit, for example, the CSK tends toward a é—function at 7= In all regimes
in which the integrand is fast—varying particular care must be used to account for delicate
cancellations between opposite terms. We start considering the CSK itself. As discussed
by Kershaw, Prasad and Beason (1986), the complicated three—dimensional integral in the
electron velocity space can be reduced to a single integral when the solid angle element is

defined with respect to a particular polar axis. In fact, taking the polar axis in the direction

of the photon momentum transfer § = (77 — Y7)/q, ¢ = /7% + 72 — 2977¢, and using the
Dirac —function to integrate over the polar angle, the integration over the azimuthal angle

becomes analytical. The final form of the CSK is then

3
32y i, (17) P (A7) {

+ ;o exp (—/\ _7_/\+) {(1 —15)2

29v'T

o(y — 7”677—) = (4“7)
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AU+ 1) - (148 . G =)+ 1) + (46
[+ 77 + 7] i (A=) + 7] o

+ -—77’+ 2 }
i =& 4y/(1-¢)

| R CR O I T

X

where the Lorentz factor A is now the integration variable, w? = (1 + &) /(1 —£) and

77 =g, = N
Ay = 5 +{[1+7/T] [1+m}} . (4.8)

As stressed by Kershaw et al. , the main features of the scattering probability are
contained in the exp(—A4/7)/q term: everything is smoothly varying with respect to this
quantity, in particular with respect to the exponential. Kershaw et al. proposed two
methods for the numerical evaluation of the A-integral in equation (4.7); in both cases
the CSK is reduced to an approximate analytical expression. Here we adopt their fastest,
although less accurate, algorithm which is based on a suitable division of the integration
domain into subintervals where the exponential is replaced by a linear interpolation. To
avoid delicate cancellations when 7 — 0, a Taylor expansion of the inner expression in curly
brackets is used to obtain an asymptotic series in terms of Legendre polynomials for the
integral; only terms up to second order are retained. Using this method the evaluation of the
CSK becomes analytical with an accuracy of about 3 parts in a thousand in all parameter
ranges. The CPU time for a single evaluation is typically few microseconds on an alpha
DEC-3000.

The algorithm we adopt for computing integrals involving the CSK follows the original

method presented by Kershaw (1987) for evaluating the total scattering cross—section and
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it is based on the fact that A, has a minimum in both 7" and €. The most important
contribution to the CSK comes, in fact, from regions near this minimum; everywhere else
the scattering probability goes to zero exponentially fast with an e—folding length that
is simply 7 in Ay. Having these considerations in mind, the double angular integral in

expression (4.6) can be written, taking ¢ and ¢ as the polar and azimuthal angles, as

1 2T .
dQIU (7 - Aflv 57 T) f, = / dfO’ ('/ - 7,7 67 T) / déf (Tv /'[',? ’7/) . (49)
47 -1 0

For each value of 7, i, 7/, £ the azimuthal integral is evaluated using a Lobatto quadrature.

The values of the distribution function at

= p€+ /1 — p2/1 - €2cos G, (4.10)

where @, are the Lobatto abscissae, are obtained from a linear illterpolatjon. Once this is
done, for each value of v, v/, 7, the integration over all polar directions is cf'irried out picking
up the £ range, within the interval |¢| < 1, that provides a non-negligible contribution to
the scattering probability: as we anticipated, this is the region around the minimum of A,.
For fixed v, 7" and 7, the e—folding lengths in Ay, nT, immediately provide the e—folding
lengths in &, &,. Denoting, in fact, with &, =1 — |y — v'l/(¥7') the value of € where A, is

minimum, &, is the root of the equation
Apmi+ 01 = A4 (1,7, &) (4.11)
where Ay 1 = Ay (7,7, &) and

¢y = max (min (&,,-1),1) . (4.12)
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Within each e—folding interval we use a 4—points Lobatto quadrature and the number of
intervals is fixed by the request that either the fractional contribution of the last e~folding
is less than the desired accuracy (5 x 1072 in the present case) or the boundary £ = +1 is
reached. At v = 7’ and £ = 1 the CSK has an integrable (~ /1 — &) singularity, that can
be easily eliminated with the change of variable n = /1 — €.

The integration in energy is carried out in a similar way. Since the most important
contribution to the inner integral (over £ in our scheme) comes from regions where Ay is
near A1, the larger contribution to the outer integral (over 7') is provided by regions
where Ay,,1 itself is minimum. Clearly, the lowest values of Ay,q correspond to {y = &,
ie. to £, > —1; the inequality £, < 1 is always satisfled. We distinguish two cases: for

7" < v the previous condition is verified in the interval

"<y (4.13)

et
+
N

)

that we call region A, while for 4’ > 7 it holds in two different domains, that we call in

general region B, depending on the value of 7:

it oy <1/2 (4.14)

Since in region A A;,1 = 1, the search for the e—folding lengths is not required and
integration is straightforward. This is not the case in region B, where A1 = 1+7'—7. Now,

although its minimum value is still Ayn2 = 1, Ay is not a constant. The corresponding



4.3. Numerical Evaluation of the Compton Source Term 61

e—folding lengths v/ are to be derived solving the equation

>‘+m2 +nr = A-i— (757;7&\4) ) (415)

which reduces to

l+nr=1+9, -« (4.16)

and gives simply v, = v + n7. In region B integration over 4’ is carried out using the
same procedure introduced for the é~quadrature. To complete our discussion, we need to

consider the two intervals

7
0<y , 4.17
ST <114 (4.17)
region C, and, if y < 1/2,
T < <o, : (4.18)
1-2y 7~
region D. In both cases Ayn1 = Ay (7,7, —1) and its minimum is reached at
A+m2 = /\+m1[,),/___,y/(1+2,7) (419)
or
A.*.mg = A.'_ml I’Y'='Y/(1_2'Y) (4.20)

in regions C and D respectively. The corresponding e-folding lengths are obtained from
equation (4.15). Lobatto rule is used everywhere and stepping is terminated when its
fractional contribution becomes less than 5x 10~3. The most convenjent number of Lobatto
points depends on the typical relative values of the photon energy and gas temperature.

In fact, for different values of 7 and 7, A1(7') can be either strongly peaked or very broad
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near its minimum. Optimization requires some numerical experimenting, looking for the
best agreement between the direct evaluation of the CSK double integral and ogo computed
using equations (3.20). For the test model presented in Chapter 5, we used either a six
or a ten points quadrature. Accordance between the values of gy obtained using the
two methods is better than 3-4%, with the larger errors in the external region where the
radiation temperature (mean photon energy) is very far away from the gas temperature.
On the other hand, where the Compton parameter Y¢ (see e.g. Rybicki & Lightman 1979)
is greater than unity, accuracy is better than 7 partsin a thousand. We finally note that
the choice of a gaussian-type quadrature is motivated, basically, by the fact that we need
to perform integrals of the CSK times f. The distribution function must be interpolated to
obtain its values at the integration points. Clearly, gaussian-type quadratures with a fixed
number of abscissae are much faster, although less accurate, than step—adaptive schemes, as
the Simpson rule originally used by Kershaw. Computational feasibility is also the reason
for which we decided to evaluate the integral (4.6) using the values of f relative to the

previous iteration. Clearly, it is possible to rewrite expression (4.6) as

o ~ Al
f / dy’ [eXP (~ / 27 ) - 1] Ao (v =7, &,7) f' (4.21)
0 47

% 7-7
v [Taren (-157) [ a0otr—v.6m) f
0 4T

since f does not depend on 4'. Now f is just the dependent variable of the transfer equation
at any iterative step. The drawback is that the computing times is about doubled, because
of the two multiple integrals. The CPU time for a single evaluation of expression (4.6) is

“typically ~ 0.1 s and, in an production run, a ~ 2 X 10° evaluation are required, implying
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a total time of about 6 hr.
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5 Spherical /.ccretion onto Black

Holes

In this chapter we shall deal wit e problem of computing the spectral properties of
radiation produced in stationary. erical accretion ‘onto black holes. Although, under
these assumptions, this is an high  lealized problem, at the same time it represents an
ideal proving ground to allow for = n:ore and more complex description of the radiative

processes, just because of the sin ‘iifications introduced by the presence of symmetries.
Despite the fact that applications iave a limited validity, in some astrophysical situations
the assumption of spherical symm ~try seems to be not unreasonable. As an example, the
inner part of advective dominated disks seems to be well described by a spherical model
(-...). Observations of BH candidates in the high state also provide several clues about the
validity of this approximation to model the inner region of the flow. In fact, the spectrum of
these sources shows the clear presence of a power-law, high energy tail that is well explained
in terms of dynamical comptonization in a free—falling gas (..).

The emission properties of the accreting material have been investigated by several

authors, in the attempt to provide a self-consistent description of the phenomenon and
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to obtain an evaluation of the net energy output emitted as electromagnetic radiation.
At variance with what happens for stationary accretion onto neutron stars, where the
requirement that all the kinetic energy is converted into radiation at the surface of the
stars fixes the efficiency, in the case of a black hole matter can cross the horizon carrying a
considerable fraction of its gravitational binding energy. The efficiency of the process is not
fixed a priori, and depends on the relative effectiveness of the radiative processes against
the strong velocity field.

After the first qualitative analysis by Shvartsman (1971), optically thin models were
presented by Shapiro (1973a, b) and Mészaros (1975).. These solutions are characterized by
low accretion rates (72 < 1) and high temperatures. Due to the typical low densities, cooling
processes are inefficient in converting gravitational energy into radiation and the emitted
luminosity turns out to be very low. However, when the accretion rate increases, the inner
region starts to develop an optically thick core. The transition between optically thin and
optically thick models has been considered in some details by Soffel (1982), while solutions
in diffusion regime were provided by a number of authors (see e.g. Tamazawa et al. 1974,
Maraschi, Reina & Treves 1974, Kafka & Mesziros 1976, Vitello 1978, Begelman 1979,
Gillman & Stellingwerf 1980, Freihoffer 1981, Flammang 1982, 1984) and the hypercritical
regime at high 7 has been investigated by Blondin (1986). Actually, thin (2 la Shapiro)
and thick (& la Blondin) solutions represent the tails of the same, continuous branch in the
plane (log¢,log ) (here £ is the luminosity in Eddington units, Lggy = 47GM ¢/kes for a

black hole of mass M). Although the luminosity output in optically thick models is higher
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with respect to the optically thin ones, the total flux always remains quite low and the
efficiency of the process is not considerably increased by increasing . From a qualitative
point of view, the physical reason can be easily understood: as the accretion rate increases,
the formation of an inner, thick core where LTE is reached initially causes an increase in
both temperature and luminosity. However, this behaviour is partially countered by the
fact that at the same time the inner region becomes also optically thick with respect to
electron scattering. The consequent appearance of a trapping radius (Rees 1978, Begelman
1978), below which a substantial fraction of radiative energy is advected into the hole, slows
the rate of increase of the efficiency with m.

On the other hand, all these investigations neglected the role of Comptonization in
the accreting flow. As first pointed out by Wandel, Yahil & Milgrom (1984) and then
confirmed with a more detailed analysis by Park (1990a.b), allowing for this process reveals
a distinctive feature of black hole accretion, i.e. the appearance of a bimodal behaviour at
high accretion rates (3< S 100). At high enough values of 7 two disconnected branches of
solutions coexist for the same n; the new branch, dominated by effects of Comptonization,
is characterized by higher temperatures and luminosities.

The issue of a simultaneous determination of the two branches as solutions of a unique,
self-consistent model was addressed by Nobili, Turolla and Zampieri (1991, here NTZ91 as
already indicated). Detailed models were computed in a range of 7 spanning more than
four decades, confirming the previous analysis and performing a systematic investigation of

the role of preheating in bounding the region of existence of the “high” states. The resulting
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Figure 5.1: The (log #,logmm) diagram for the NTZ91 solutions (crosses); some of Park’s (1990a)

models (open triangles are also shown for comparison. Taken from NTZ91. -

(log £,log m) diagram is reported in figure 5.1.
NTZ91 solutions were obtained by solving the first two frequency-integrated PSTF mo-

ments equations (see chapter 2) coupled with the Euler, energy conservation and continuity

equations (see again NTZ91):

! 1
(P+o)l+P 4+ oy, (5.1)
y y
/ 0
o~ (P+o) 2 T2 (5:2)
oo
/ 7
(G P (5.3)
vy 20

Here P, go, p are the gas pressure, rest mass and energy densities respectively, s° and s! are

the frequency-integrated, PSTF scalar moments of the source term, while a prime denotes
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differentiation with respect to Inr and, as usual, 7 is the radial coordinate in units of 7.
A pure hydrogen plasma was considered; the equation of state and the expression of o in-
corporate effects of ionization and contributions from relativistic electrons, while the source
term includes e — p, e—e bremsstrahlung, free-bound and bound-bound transitions together
with Compton scattering in Kompaneets approximation. The correspondent expressions of

the two source moments s° and s! are

o 2 0
o_ [ o, _ oA w o 4k ,
s = /(; sydv = —Tr—lgg (1 - m) + KesOoW o (T-T1,), (5.4)
[o.¢]
st = / stdv = —pokyw', (5.5)
0

where k; includes both the Rosseland mean opacity and the scattering contribution, A is
the cooling function, w® and w! denote the first two frequency integrated PSTF moments

and T, is the radiation temperature

/H hvwldy
S (5.6)

=0
/ w,dv
0

An important approximation must be introduced in the problem just because of the de-

1
T'Y:A_L_]g—

pendence of s° on T, in presence of Compton scattering. In fact, this quantity can not
be self-consistently calculated in a frequency—integrated analysis, and it was estimated by
NTZ91 as solution of an additional phenomenological equation, originally proposed by Park

& Ostriker (1989) and Park (1990a)

T _,

T-T,
T, mec? )

T

max (Tes, 7'3 ) (5.7)

As a first application of our characteristic code, we present in this chapter the numerical

solutions of the transfer problem for the two different accretion regimes. In these calculations
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we only focus on the solution of the transfer problem, while the flow hydrodynamics is kept
fixed, using the numerical results derived by NTZ91. Since our present goal is to test the
capabilities of our method, no attempt has been made to explore the model parameter
space: we just present results for a single model which we judge useful in illustrating the
main features of our integration scheme.

No previous solutions for black hole accretion spectra are available, at least for models
which contain an optically thick core. Our attempt to cross-check results presented in
section 5.1 integrating the moment equations were hindered by severe numerical problems
which arise ';?\rhen the flow is not effectively thick at the horizon at all frequencies. The
moment method can not, also, be used to compute radiative transfer in “hot” models,
where Compton scattering must be treated outside the Fokker—Planck approximation.

In both examples radiative effects due to magnetic fields and pair production—annihilation
are not accounted for. This is not a too crucial approximation as far as low-luminosity solu-
tions are concerned. In fact, referring to the model in section 5.1, it can be easily shown that,
for typical temperatures and densities in the photospheric region, the cyclotron emission is
‘lower than the free-free emission if BS 107 G (see e.g. Schmid-Burgk, 1978). This limiting
value exceeds the maximum strength of the tangled B—field derived assuming equipartition
between magnetic and thermal energy densities. However, in the inner regions of high-—
luminosity models electrons become relativistic and both pair processes and synchrotron

emission could play a role.
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5.1 Accretion onto Black Holes: Low—luminosity Solutions

In this section we focus on the “low” luminosity case, and we consider a model with high
accretion rate, m2> 1 in Eddington units. As previously discussed, in this regime low-
luminosity solutions start to develop an inner region optically thick to both free-free and
scattering and show negligible Comptonization; consequently, electron scattering can be
treated in the Thomson limit, using the simple expression (3.10). On the other hand, the
accreting matter reaches r ~ 1 with v ~ 1, so that a detailed apalysis of these models provide
a powerful tool to shed ljght on the effects of dynamical comptonization, that turns out to
be the more important process in shaping the high energy tail of the spectral distribution.
This particulgr model corresponds to the NTZ91 solution characterized by m = 0.71,
and by a value of the density at the horizon oy = 10“6gcm"3.- As in NTZ91, here and in.
the following section we consider a black hole mass of M = 3Mg, Mg is the solar mass. The
run of some hydrodynamicals variables, as derived by NTZ91, is reported in figure 5.2 (note
the difference of notation between this thesis and NTZ91; in figure 5.2 and 5.6: 7 = T5).
As can be seen from figure 5.2, the location of the sonic point is very far away with respect
to the photosphere (where the effective optical depth 7.ss is close unity), so that we can
safely assume that matter is free—falling with ! = r~/2 in our region of interest. This fact
is quite general, and turns out to be true also for the model presented in next section. The
gas temperature is in the range 2 x 10* K< TS 5x10% K, so we have chosen a normalization
temperature In 7. = 11. The dimensionless energy window is Tpyin = 0.1 < z < Ty = 40,

corresponding to the range 0.5-206 eV; here L = 30 points have been used (see section 4.1).
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Outside this range, P = 10 energies has been fixed in each of the two additional intervals
of 2, we need, as discussed in section 4.1. Since the effective optical depth at our larger
energies is everywhere < 1, we solved the transfer problem for 10~2 <logr < 5, imposing
the boundary condition df /dr = 0 along trajectories starting at r;,. The radial domain has
been divided by M = 250 points; the grid is not uniformly spaced and points are tighter
around r = 3/2. To obtain a good angular resolution, 90 trajectories have been followed
at each energy, N; = Ny = 20, N3 = 10, V4 = 40. In such a way, the number of /b points,
which is minimum at r = 3/2, is always greater than 21. At each value of z within the
storage window the scattering source term was calculated using a linear interpolation for
both the matrices j, and k,: outside this window an extrapolation has been used.

Figures 5.3 and 5.4 show the mean intensity J, and radiation pressure K, at different
energies, together with the Planck function at T'(r;,); each curve corresponds to a differ-
ent value of the radial coordinate. The effective frequency—dependent optical depth goes
from 3 x 102 to 10~* for the lowest frequency, while high energy photons stream freely at
all radii. The low energy portion of the spectral distribution is a superposition of ther-
mal bremsstrahlung emission at different temperatures while bulk motion Compionizalion
produces a power law high—energy tail. In this model the inner region is only marginally
thick with respect to electron scattering, being the scattering optical depth ~ 0.7 at the
horizon. As a consequence, dynamical comptonization is not very efficient in boosting soft
photons toward high energies; its effects is not saturated (but is yet visible in the power-law

distribution) and the calculated spectral index turns out to be o = —2.9.
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On the other hand, although results are not reported here, we also computed the emitted
spectrum of “cold” solutions correspondent to different values of 1, increasing the value of
the optical depth in the inner region. This systematic analysis revealed some unexpected
effects of bulk motion comptonization. In fact, we always found that this process tends
to create a power—law, high energy tail, but the value of the spectral index depends on
the optical depth at the horizon. This is in contrast with the analytical results derived
by Payne & Blandford (1981), who found that, in the limit 7.5 > 1, the spectral index
only depends on the velocity gradient and is & = —2 for a free—fall velocity profile. These
results led to reconsider the problem even from an analytical point of view, extending the
classical analysis by Payne & Blandford to the relativistic case. We found that, when these
cortections are taken into account, the numerical results are in perfect agreement with the
theoretical one (see chapter 6).

At large radii, where radial streaming is approached, all moments fall off as r=2: the
asymptotic radial gradient we have found is —1.99. While the evaluation of even moments
does not pose particular problems, in the inner regions, where the radiation field is nearly
isotropic, a direct numerical quadrature for computing odd moments becomes troublesome
because of the delicate cancellations between contributions of opposite sign. To avoid this
problem, the monochromatic flux, presented in figure 5.5, has been replaced with its an-
alytical expression in the diffusion approximation every time it is 755 > 10. A tvpical
production run required 10-11 iterations to converge with a fractional accuracy better than

10~*, with a total CPU time of about 20 minutes on an alpha DEC-3000.
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Figure 5.3: Monochromatic mean intensity at different radii (full lines), together with the blackbody

function at T(r,) (dashed line), for “cold” accretion onto a black hole with n = 0.71.
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Figure 5.4: Same as in figure 5.3 for the monochromatic radiation pressure.
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Figure 5.5: Same as in figure 5.3 for the monochromatic fluz.

5.9 Accretion onto Black Holes: High—luminosity Solutions

In “hot” solutions temperature is much higher, typically ~ 10'® K near to the horizon. As
a consequence, free—free absorption is much lower than in “cold” models, even for larger
accretion rates. Along the high-luminosity branch, thermal Comptonization is the dominant
radiative process and it must be treated in its more general form, using expression (3.18).
Here we consider the “hot” solution of NTZ91 with m = T1, og = 107%g cm~3: results from
their frequency—-integrated analysis are summarized in figure 5.6.

The flow is now effectively thin at all frequencies, although an inner core optically thick
to scattering is present. The gas temperature in this model is in the range 10° K < T <
1019 K, so we have chosen InT. = 21 and Tmin = 0.008. Now the energy window is 0.9-4500

keV and L = 35 points have been used. Since the evaluation of the CSK integrals is very
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Figure 5.6: Same as figure 5.2, but for (00)g =1 x 10~ gem™3, m = 071, high-luminosity model.

Taken from NTZ91.
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Figure 5.7: Monochromatic mean intensity at different radii (full lines), together with the correspond-

ing blackbody function at T(ri,) (dashed line), for “hot” accretion onto a black hole with m = T1.

time—consuming, both angular and radial resolution has been reduced with respect to the
previous model: Ny = Ny = N3 = 10, Ny = 30 and M = 110 in the same radial domain. In
this model convergence has been reached with a fractional accuracy better than 0.02, and
the calculated radial gradient at infinity is —2.04.

The resulting mean intensity is presented in figure 5.7. In high temperature models, the
mean intensity is always less than B,, but despite the accreting gas radiates less efficiently
than in low—luminosity optically thick solutions, the efficiency of accretion process is higher,
due to the fact that the matter temperature is now higher in the whole photospheric region.
Since the emergent spectrum is peaked at about 40 keV, these solutions, if stable (see
NTZ91 and Zampieri, Miller & Turolla 1996), seem to provide a natural way to produce

hard X-ray radiation with reasonable efficiency out of spherical accretion onto black holes.



6 Dynamical Comptonization in

Spherical Flows

It was realized long ago (Cowsik & Lee 1982 and references therein) that the divergence
of the velocity field in astrophysical flows can provide a very efficient mechanism to trans-
fer energy from the fluid to particles (photons, neutrinos, cosmic rays) diffusing through
the medium, even in the absence of shocks. In the case of photons undergoing multiple
scatterings off cold electrons, this effect is germane to thermal Comptonization, with the
flow velocity v playing the role of the thermal velocity, and is sometimes referred to as
dynamical Comptonization. In a series of papers Blandford & Payne (1981a,b; Payne &
Blandford 1981, here PB as already defined) were the first to emphasize the importance of
repeated scatterings in a éteady, spherical flow of depth 7., > 1. They have shown that
monochromatic photons injected in a region where 7.,v/c ~ 1 always gain energy, because
of adiabatic compression, and emerge with a broad distribution which exhibits a distinctive
power—law, high—energy tail. Under the assumption that v o« 72, the spectral index depends
only on f.

Cowsik & Lee (1982), and later Schneider & Bogdan (1989), stressed that Blandford &



Payne diffusion equation for the photon occupation number could be regarded as a partic-
ular case of the standard cosmic—ray transport equation in which the diffusion coefficient,
% o« ru”, does not depend on the photon energy (y=0)anda—f5=2. Starting from this
result, Schneider & Bogdan were able to generalize PB analysis to include the transition
between Thomson (7 = 0) and Klein-Nishina (7 = 1) scattering cross—sections. The com-
petitive role of dynamical and thermal Comptonization in accretion flows with a non-zero
electron temperature was studied by Colpi (1988). More recently, Mastichiadis & Kylafis
(1992) investigated the effects of dynamical Comptonization in near—critical accretion onto
a neutron star. Their approach is very similar to PB, but the presence of a perfectly reflect-
ing inner boundary (either the NS surface or the magnetosphere) was taken into account.
They have shown that, in this case, the emergent spectrum is much harder than in PB and
that the spectral index depends both on and on the depth at the inner boundary.

Even when dealing with black hole accretion, all previous analyses neglected both special
and general relativity. The presence of an event horizon was not considered and only terms
up to first order in v /c were retained. In this Chapter we first review the PB calculations
and then we present an extension of their analysis, accounting for relativistic effects on
radiative transfer which arise when the flow velocity approaches the speed of light in the
vicinity of the hole horizon. The motivation for this work is twofold. First: to investigate
the properties of the emergent spectrum i1 a more realistic accretion scenario, in which the
optical depth near the horizon is not so large to prevent photons from escaping. Second:

to check by means of an analytical calculation the numerical results obtained with the
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characteristics code, solving the complete transfer problem. Computed spectra show, in
fact, a power-law, high—energy tail but the spectral index depends on the optical depth at
the horizon, even for fixed B = —1/2, and it is always smaller than 2 (PB result). Here
we show that advection/aberration effects in the high-speed flow near the horizon, due
to the finiteness of the depth there, produce a power-law tail flatter with respect to PB
and enable photons to drift also towards energies lower than the injection energy. The
possible consequences of these results have been discussed by Nobili (1997) in connection
with radiatively driven jets.

The calculation presented here is a part of a more general work about effects of dy-
namical comptonization, that has been recently published by Turolla et al. (1996). In this
paper we also presented an analysis of expanding atmospheres, carried out under the same
assumptions of PB. We found that the solution for the emergent flux shows specular fea-
tures with respect to PB. Adiabatic expansion produces a drift of injected monochromatic
photons to lower energies and the formation of low—energy, power-law tail. However, the
spectral index is now independent on the velocity gradient and turns out to be always equal
to —3. The details of the calculation will not be reported here, since they outside the hope
of this thesis; however, for the sake of completeness, in section 6.3 we report a short review

of the main results.



6.1. Radiative Transfer in a Converging Flow 81

6.1 Radiative Transfer in a Converging Flow

In this and in the following sections we deal with the transfer of radiation through a scat-
tering, steady, spherical flow. characterized by a power—law velocity profile v r?. Under
these assumptions the rest—mass conservation yields immediately a density profile o p2-p
from which it follows that the electron-scattering optical depth is Tes = KesoT /(14 3) x
p~1=B. The parameter § is positive for outflows and it has to be 8 > —1 for the optical
depth to decrease with increasing 7.

Blandford & Payne (1981a.b) and PB restricted their analysis to converging flows with
a non—relativistic bulk velocity and to conservative and isotropic scattering in the electron

rest frame. Combining the first two moment equations, written in an inertial frame, they

found that, in diffusion approximation, the (angle—averaged) photon occupation number

1 |
-n:§/ Ndp (6.1)

-1

obeys a Fokker—Planck equation. Defining 7* = 3r.,v and looking for separable solutions
of the form

n(v,7) = f(r7) e3Py (6.2)

the resulting second order ordinary differential equation for f reduces to a confluent hyper-
geometric equation (here the sign of § 1s the opposite with respect to PB,eg. B =—-1/21or
free—fall, according to the assumptions at the beginning of this section). As discussed by PB,
the solution corresponding to a constant radiative flux at infinity and to adiabatic compres-

. : . . 3), _=
sion of photons for Tes — 00 18 expressed in terms of the Laguerre polynomial A )(T ).
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The above two conditions give rise to a discrete set of eigenvalues for the photon index \

which are given by

3(n+3+23)

/\TL = W (7?/ = 0, 1,2,. . .) (6.3)

The general solution is written as the superposition of different modes. Assuming that

monochromatic photons with v = Vg are injected at 7* = 75, it is

14

o o o 3D Z (n+1) 3+/3)( )L 3+ﬁ)( ) <_~) i . (6.4)
n+4+3) ~\¥o

In this case, bulk motion comptonization tends to create a power law, high energy tail.

Defining the spectral index as

din L (v,0) -
a-—w (63)

where L is the luminosity, PB found

3
I = — 6.6
Jma= o (6.6)

showing that the spectral slope at high frequencies is dominated by the fundamental mode
n = 0. In particular, it is & = 2 for a free-falling gas.

The same results can be recovered using the (scalar) PSTF moment formalism intro-
duced by Th81, as shown by Nobili, Turolla & Zampieri (1993). Here we outline the general
method, mainly to introduce some basic concepts that will be used in the following sections.
In particular, we consider the first two PSTF moment equations, specializing the system

(2.24) to a Schwarzschild metric, with only Thomson scattering included in the source term.
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In the frame comoving with the fluid they read

dw} Loy owl ) dw dw? 1 duwd
9 g 1. _ v — v /1 _ v (¢ = |2 0 —
Blnr+ Ot Y v dlnv, ‘ alnv'—h‘ '8)81111/ (2+0) n Yo 0

T RNY A (R AN 1
_ v v el 28 g1, - v _ 24 ; 6]
39lnr  QOlnr 3w y dlnv - y (wl, 30lnv v (448w, (6.8)
1 owl dwl w3 (1+ 8)r,
— —(2 Vo v 1 — 3 et 8 4 es 1 _
L2436 s + £ (1-5) (wu—f- amuﬂ # L2t g

where a prime denotes the total derivative wrt Inr, v is taken positive for inward motion
and the quantity y = /1 — 1/r/v/1—v% was already introduced in chapter 2. As dis-
cussed by Turolla & Nobili (1988, see also Thorne, Flammang & Zytkow 1981). in diffusion

approximation the hierarchy of the frequency—integrated PSTE moments w' is such that

0
w
'wl ~ —
Tes
0
5 w 1 s
wh o~ —(—~—-—v> (6.9)
Tes Tes

3 w® /1
w ~ 2 _— V] .
Tes \Tes

The same hierarchy can be assumed to hold also for frequency—dependent moments in a
scattering medium.
PB result can be reproduced in the limit of large 7es and small v, i.e. retaining in
0

equations (6.7), (6.8) only terms of order w,, vw? and wd/7.s, and suppressing gravity,

which is equivalent to set y = 1 and y' = 0. In particular, under such hypothesis, all terms
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containing both w? and w? can be neglected and the moment equations become

dw! A’ [ 1 0wl ,
v v -9 1 ol 0o_ - v - 1
dint v@lnt w, +v(2+5) kw” 30In V) 0 (6.10)

Ow? 4
v Yo ] 11
T tw, =0, (6.11)

where ¢ = (14 3)7*. Equations (6.10) and (6.11) can be combined together to yield a

second order, partial differential equation for the radiative flux

Yy 3 9dlav

YR ; )1 P ) 9 / el .
9*w Ou, (1_%> 1248 0w, _ o (6.12)

v T
tp —(t+1-6)— 1

Following PB, the solution of equation (6.12) can be found by separation of variables.
Writing wl = tPhy(t)v~=2, it is easy to show that for p =2 and for p = -, equation (6.11)

becomes a confluent hypergeometric equation for 4;. Actually the requirement of constant

radiative flux at infinity is met only for p = 2, and in this case we get

t

d*h dh 2
gt G-y (1- 27

= a) hi =0. (6.13)

As previously discussed, the physical solution for wl can be obtained as a superposition

of the Kummer functions M(—n,3 + 8.t) x L%”'B)(t), for n = 0,1,..., with corresponding

eigenvalues
_3(n+1)
In this case
wy =12 A, LA (1) (6.15)

n=0

where the A,’s are constants to be fixed by the boundary conditions. At sufficiently large
frequencies the spectrum is dominated by the fundamental mode; in particular, for 8 =

—=1/2, it is again ag = 2.
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6.2 Importance of Relativistic Effects

Here we consider the effects of dynamical Comptonization in spherical accretion onto a
non-rotating black hole, taking into full account both gravity and velocity terms in the
moment equations. With reference to this particular problem, we can assume that matter
is free—falling, v = r° with 3 = —1/2. In this case dynamics cancels, locally, gravity. so
that y = 1, ¥/ = 0. The moment equations look then “non-relativistic” in form, although
v can be arbitrarily close to unity. Corrections due to large values of the flow velocity
were not considered in previous works despite the fact that they are bounded to become
important near the event horizon where » ~ 1. We note that the bulk of the emission
in realistic accretion models is expected to come precisely from the region close to r,.
As in the non-relativistic analysis presented in the last section, we consider the diffusion

limit, truncating self-consistently both equations (6.7), (6.8) to terms of order w/7.,. The

3

moments hierarchy, expressions (6.9), shows that all terms containing wy

can be always

neglected in equation (6.8), since they are of order w3/72. In the present case, however, all

i
v

other terms must be retained. In fact, vwl ~ wl ~ w%/7.; when v ~ 1 and w2 ~ w/7., at
least for v ~ 1> 1/7¢ (see again expressions [6.9]). This implies that w} and w2 contribute
to the same extent to the anisotropy of the radiation field. Note that under such conditions
it is w? = 4r(K — J/3) < 0, as already pointed out by Turolla & Nobili (1988), so that in
high—speed, diffusive flows K may become less than J/3. Contrary to the case discussed

in section 6.1 where w? is negligible, now the system of the first two moment equations is

not closed. However, up to terms of order w2/7.s, the second moment equation does not
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contain moments of order higher than w? and provides then the required closure equation

ang 4 dwl 15 oA + +3 dw? 2wl +3t 0. (6.16)
—_—— ——.v—’l} — — —7 — —_
Dt 159mi  14"Wr T gl t e 14 9y 15 0my 100

The complete system (6.7), (6.8) and (6.16) is awkward and a solution can be obtained
only numerically. It is possible, nevertheless, to find an analytical solution if we consider
the closure condition for w2 which follows from equation (6.16) with only terms of order w?

retained

2 _ dv [ Juwy 0 _
w, = (8111 3wy) . (6.17)

With this closure, w7 is always negative provided that Owld/dlmv < 0. This implies that
equation (6.17) is strictly valid only for 7.,v2 1 (see expression [6.9]), that is to say below
the trapping radius. Introducing the new dependent variables fo = vw®, f; = wl and

f2 = vw?, the moment equations become

(‘3f0 1 0fo 0f1 3 an ~

“0r T 3010gy 0T T 2h - 5510g, =0 (6.18)

t0f 1. 0fi | 1 0fy (th ) } df T, _

3 Ot 6f0 [ ot T 10 §log v ™ 3 h B 2fz =0 (6.19)
4 [ 0f - |

fa= 5 (abw 3f0> =0, (6.20)

where ¢, is the value of ¢ at the radius where v = 1, i.e. at r = 1 in the case under
examination. We note that for ¢, — co equations (6.18), (6.19) give exactly the low—velocity
limit of PB (equations [6.10], [6.11]), irrespective of the value of ». This is because when
th — co the scattering depth itself near the horizon must be very large, so the radiation
field there is very nearly isotropic. Departures from isotropy, due both to the radiative

1

flux w) ~ w®/7., and to the radiative shear w2 ~ (1/7.5 — v)wd /., become vanishingly
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small, no matter how large velocity is. Under such conditions PB approach is still valid just
because both wl and w? become negligible in the moment equations, although they may be
of the same order.

The system (6.18), (6.19), (6.20) can be solved looking again for separable solutions
of the type f; = gi(t)r™%. After some manipulation, it can be transformed into a pair of

decoupled, second order, ordinary differential equation for go(t) and gi( t), having the same

structure. In particular for gi(2) it is

L d
25t S 415t e) St — (Mg =0 (6.21)
d? dt
where
ﬂ = 60ty,
v = —(20/3)th[3th —4(3+ )],

§ = 20t} —18(2a +3)t, —40a(3+ ),
e = 30tp[th—4(3+a)],
n = 10(a+2)+ (310%/3+7a - 54) th — da(a +3) (@ +9)
N o= (20/3)ty[3th —28(3 + )] .
Equation (6.21) can be reduced to a hypergeometric equation upon the change of variables

g1(t) = tPhy(z) and z = —(B/7)t. where p is the solution of the quadratic equation vp? +

(e —7)p— A=0. A direct, but tedious, calculation shows that

9t

7
P = 5T 3, C4(B+ )’
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in the limit ¢, — oo, p_ = 1/2 as in the case considered in the previous section, and p = p,
will be used in the following to meet the requirement of constant radiative flux at infinity.

Equation (6.21) can be now written in the form

dh §
_d_zl_ {p(p_ 1)+pﬁ—%:l hi=0  (6.23)

3

d*h € é
2(1-z) y 91 + {—-l—?p— (—-}-‘2])) 3}
Z~ /“/ ’
which is a hypergeometric equation. The general solution is expressed in terms of the

hypergeometric function 2£1(a,b,¢; z) and the three parameters a, b, ¢ (see Abramowitz &

Stegun 1972, AS in the following, for notation) are given by the relations

]
a+b+1:5+2p

ab=p<p—1)+p§

™3

Solving for @, b we obtain, after a considerable amount of algebra,

2 —-ao B 2a(a + 3)
2 3ty

(6.24)

a =

th ' 1l -«
T .

b= 2
37710

(6.25)

It can be seen from equations (6.24), (6.25) that, in the limit ¢, — oo, b diverges
while a stays finite; in the same limit the hypergeometric equation reduces to the confluent
hypergeometric equation (see e.g. Sneddon 1956). As discussed in section 6.1, the relevant
solution in the non-relativistic case is given by Laguerre polynomials and is recovered
Imposing @ = —n, with n = 0,1,.... The solution of equation (6.23) which reduces to PB

for ¢, — co is found imposing again that a is either zero or a negative integer (although
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other classes of solutions that do not match PB may exist). In this case h; is still polynomial

and takes the form

. TL! —1.,b—c— )
hi(z) = oy (—n.b,c2) = (—C>—P,(LC LTeT (1 - 22) (6.26)
where PP (z) is the Jacobi polynomial and (¢), = T'(¢ + n)/T'(c) is the Pochhammer’s

symbol (see again AS). For t;, — cc.itis ¢~ 5/2,b~1,/3, 2~ 3i/th = t/b and
pletib=e=n) (1 - 2%) — LB (1), (6.27)

so that, as expected, the solution of section 6.1 is recovered.
The discrete set of eigenvalues for the spectral index o, follows immediately from (6.24)
solving the quadratic equation a = —n. For each n both a positive, at, and a negative,

[

o, , mode is present

. —(12436) £/(12 + 36)> + 96(n + 1)t
= 2 : (6.28)

(84

We checked that the eigenvalues of the equation for go are again given by equation (6.28),
in agreement with the starting hypothesis that o is the same for all moments.
The general solution for the spectral flux is obtained as a linear superposition of all

modes

wl = ZM( nH” g n(b—mn,c,z2) (1\)—% (6.29)

14

+ ; A;<—1>n(6§:Gn<b-n,c,z> (—0)} ,

where we have expressed h; in terms of the shifted Jacobi polynomials G,. We remind

that b, ¢ and z are all functions of o, although we dropped all indices to simplify the
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notation. The two sets of constants AE are fixed imposing a boundary condition at the
injection frequency v = vy. The only boundary condition compatible with the assumption
of a pure scattering flow for t < ¢, is that all photons are created in an infinitely thin shell
at t.. This is equivalent to ask that wl(t,vg) x 6(t/t, — 1), as in PB.

At variance with the results discussed in section 6.1, now the series in equation (6.29)
can not be summed using the polynomial generating function because b, ¢ and z depend on
n. The coefficients AT are solution of an upper triangular, infinite system of linear algebraic
equations (see Appendix B). It can be easily shown that the two series in equation (6.29)
do not converge for any value of v/vy. In fact, the general term of the first series, which
is of the type f(n)(rp/ 1/)"ng ; can not be infinitesimal for arbitrarily small frequencies unless
the series truncates, which is not the case if it must reproduce the é—function at v = vy.
On the other hand, the series is absolutely convergent for v > vp, provided that |f(n)| is
bounded. For N > 1, the series has a majorant o % v (vo/v)V™ which is convergent
because [ (vo/v)VZ dz is finite for v > vo. The same argument applies to the second series

for v < vp, so that the solution satisfying our boundary condition is

) oo — n(b)n - i (.1/_) —ap i )
t T;An( 1) (c)nGn(b n,c,z) ” ifv<u;
’wi(f,l/) — (630)
t2iA+(—l)”(b)"G (b—m,c, 2) (—li)—ai ifv>u.
— n (C)n n IR Yo jl

Equation (6.30) exhibits two striking features, not shared by its non-relativistic counter-

part, which arise from the presence of advection /aberration terms in the moment equations.



6.2. Importance of Relativistic Effects 91

First of all, we note that according to equation (6.30) photons injected at v = 1o can be
shifted both to higher and lower energies by dynamical Comptonization. This is in apparent
contrast with PB result that photons can only gain energy in scatterings with electrons in a
converging flow (the adiabatic compression). PB statement is, however, correct up to O(v)
terms and their equation (8) is the low—velocity limit of the more general expression for the

photon energy change along a geodesic (see e.g. Novikov & Thorne 1973)

N,

d 1 w
_11;2% _ (nzai b0+ nznjaij) 7 (6.31)

where n' is the unit vector along the photon trajectory and a’, # and o;; are the flow 4-
acceleration, expansion and shear, respectively. In free—fall a* vanishes while it can be safely

neglected in PB approximation being O(v?). The remaining two terms are both of order v

3v
f = -5 (6.32)
ninloy; = lg(3,u,2 -1)
+ 27

where p is the cosine of the angle between the photon and the radial directions. The mean
photon energy change can be obtained angle-averaging equation (6.31) over the specific
intensity

15
I(p) = wo + 3pwy + Z—(3/L2 - Dwg+.... (6.33)

Recalling the behaviour of the radiation moments in the diffusion limit, we get

(lan_eft 3 (L) -
vdl/] 7|2 Tes \Tes I (6.34)

The second term in square brackets arises because of shear and is negligible in PB ap-

proximation, being either O(1/72) or O(v/7es). This implies that the mean photon energy
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change is always positive. However, when advection and aberration are taken into account
(see equations [6.31], [6.32]) photons moving in a cone around the radial direction suffer an
energy loss and the collective effect is stronger when the flow velocity approaches unity in
regions of moderate optical depth.

The second important feature concerns the slope of the power-law, high—energy tail of

the spectrum. From equation (6.28) the fundamental mode is

—(12 4+ 3t4) + /(12 + 3, + 96t
ot = ( ! V(S 2 i (6.35)

and, for large values of t;, equation (6.35) gives

40 1120
+ =2 - — — It3 . 6
ag =2 3, + 97 +0 (1/ h) (6.36)

At large enough frequencies the spectral index is dominated by the fundamental mode which.
for ¢,> 1, sensibly deviates from the value predicted by the non-relativistic calculation.
Despite the fact that this effect is present below the trapping radius, we stress that, contrary
to a widespread belief, the trapping radius does not act as a one—way membrane. Photons
produced near or below the surface 7,0 = 1 can still escape to infinity even if both the
large optical depth and the strong advection caused by the inward flow dramatically reduce
the emergent radiative flux. Moreover, these photons, although comparatively few, are the
more strongly comptonized and will anyway dominate the high~energy tail of the spectral
distribution. Equation (6.36) shows that the emergent spectrum turns out to be flatter with
respect to PB case. The two main features of our solution, harder spectrum and drift of
photons below v, can be clearly seen in figure 6.1, where the emergent spectrum is shown

for ¢, = 20.



6.2. Importance of Relativistic Effects 93

N L B e e e U A B R B B B e
(\j._.
a2 = -
W
5) — _
0
o -
O
o NI S U SRV SN NN WAPRS BEUNN U SR NI B
]
0.0 0.5 1.0 1.5
10g vV
0

Figure 6.1: Emergent fluz F, (in arbitrary units) for spherical accretion onto a Schwarzschild black
hole; here t = 20, t. = 0.9ty and af = 1.54. At high energies the spectral indez is flatter than 2,

as can be seen by comparison with the dashed line.

Tt is interesting to compare the present, analytical solution with the numerical result
obtained using the fully GR characteristic-ray code previously described.

In figure 6.2 we show the emergent spectrum relative to the “cold” solution for black
hole accretion by NTZ with g, = 1.42 x 107° gem™>. In this case both electron scattering
and free—free emission/absorption are considered. At large enough frequencies scattering
is the only source of opacity, so, in this limit, we expect our idealized analytical model
to be representative of the realistic situation. The numerical model has ¢; =~ 15 which
corresponds to af = 1.43. This value is in excellent agreement with the derived spectral
index a = 1.36.

On the other hand, due to the crudness of the assumptions under which the present
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Figure 6.2: Emergent fluz F, computed using our CRM code; the derived spectral index is 1.36. In

this model ty =~ 15 and the corresponding value of af is 1.43 (dashed line).

analytical investigation has been derived, its results can not be assumed to hold in all
the parameter range along the “low” luminosity sequence of solutions. As an example, the
model presented in section 5.1 corresponds to t; ~ 1 (i.e. to a value of the scattering optical
depth at the horizon 7., ~ 0.3). In that case the flow is optically thin all the way down
the horizon and the diffusion approximation breaks down. Dynamical comptonization is
still efficient in shaping a power-law, high energy tail, but its effects is not saturated. The
emergent spectrum turns out to be softer (o = 2.9), more reminding of the initial, thermal

emission.
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6.3 Radiative Transfer in an Expanding Atmosphere

In this section we briefly present results derived by Turolla et al. (1996) in the case of a
pure scattering, expanding atmosphere. The basic assumptions are the same as in PB. and
here we only review the main lines of the analytical calculation, to outline similarities and

differences with respect to the case presented in section 6.1.

[8)

In the wind case, the power-law velocity profile can be written as v = v.(7/r<)".
where the subscript “.” refers to the base of the envelope, while the second order partial
differential equation for the radiation flux is still given by equation (6.12). Clearly. the
resulting equation could in principle be integrated using the same technique discussed in
section 6.1 and looking for separable solutions wl = t2hy (1)~ In fact, it can be easily
checked that it can be still reduced to Kummer equation for hq(t), as in the converging flow
case. A problem arises, however, as far as boundary conditions are concerned: in section
6.1 the only physically meaningful solution was selected asking that the flux become a
constant for ¢ — 0 and that adiabatic compression of photons hold for ¢ — co. In that case
the existence of these physical constraints was sufficient to fix univocally the mathematical
solution. However, this particular issue turns out to be much more delicate in the wind
problem.

There is, an alternative method of solution that looks more convenient when tackling
with expanding flows, since it allows for an easier handling of boundary conditions. The
starting point is the fact that, upon a suitable changement of both dependent and indepen-

dent variables, the equation for w! can be brought into a standard Fokker—Planck form,
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describing diffusion of photons through the moving medium. The solution can be then
found by performing a Fourier transform in the Fokker—Planck equation with respect to
t, solving for the Fourier transform variable and then transforming back (see e.g. Risken
1989). Using this approach, the main advantage is that the Fourier transform automatically
selects the regular solution. In fact, since it can be computed only for functions that are
Ly in | — 0o, cof, it is the method of solution itself which is suited for finding only regular
solutions and in doing so no extra constraint is required.

Assuming as boundary condition that monochromatic photons of frequency vy are in-

jected at ¢ = ¢, the final result can be written as

3/2 (2+8)/2 \ 3/(2+6)] 1
= 06" - @) o
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where (w},)o is the flux at v = vy and I, are the modified Bessel function (see AS). The main
result is that the spectrum is shifted now towards lower frequencies and it broadens at the
same time, developing a power law, low-energy tail. The overall behaviour is similar to that
of the converging flow but somehow reversed. since now photons can drift only to frequencies
lower than vg. There is, however, a major difference in the power-law index a between the
two cases since a does not depend on /3 for the wind solutions, as can be seen examining
the spectral behaviour of equation (6.37) at low frequencies. Since I(2) ~ (2/2)1/T(g + 1)

when the argument is small, for v < vy the emergent luminosity is

3 (2+8)/3 (248)/31 30 3
L, x (—V-) exp |— (v/vo) E- 1- <—U—> ~ (—l—/—> . (6.38)
Vo 1— (v)1y)2+0)/3 Vo Vo
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This shows that a = —3, irrespective of the value of 3.

6.4 Summary and Concluding Remarks

In the previous chapter we presented the numerical computation of the emergent spectrum
correspondent to “cold” solutions for black hole accretion. Due to the low temperatures
expected in the atmosphere the thermal comptonization plays a negligible role: as a conse-
quence, these regimes represent an ideal arena to perform a systematic investigation of ef-
fects of dynamics in the transfer of radiation in a scattering, spherically-symmetric medium.
The presence in the spectrum of some unexpected features initially motivated our efforts in
reconsidering the problem from an analytical point of view. Simple and physically intuitive
analytic results, even those based on crude approximations, are, in fact, inavaluable aids in
interpreting the output of more realistic numerical models.

Here we have presented the extension of the PB analysis of bulk motion comptonization
in converging flows to the relativistic case. In the low—-velocity limit and assuming diffusion
approximation, PB found that monochromatic photons injected at the base of the atmo-
sphere always gain energy as they propagate outwards. The emergent spectrum exhibits an
overall shift to higher frequencies and a power-law, high—energy tail with a spectral index
that only depends on the velocity gradient. Under the same assumptions, the wind solution
shows similar, although reversed, features. Adiabatic expansion now produces an overall
drift toward lower energies and the formation of a power—law tail at low frequencies. In this

case, however, the spectral index is independent on the velocity gradient and turns out to
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be always equal to —3.

Both these analyses are correct to first order in v/c and can be thought to adequately
describe situations in which bulk motion is non-relativistic in regions of moderate scattering
depth. Relativistic corrections are, in fact, related to the anisotropy of the radiation field
and are washed out if 7.5 > 1. Obviously. if the flow is optically thin, repeated scatterings
are ineffective no matter how large the velocity is. In outflowing atmospheres high velocities
are expected at large radii, where the optical depth has dropped below unity, so that the
assumption under which results presented in section 6.3 are obtained can be reasonable. On
the other hand, in accretion flows onto compact objects the condition 7.5 > 1 where v ~ 1
is likely to be met only when the accretion rate becomes hypercritical. This shows that a
relativistic treatment of dynamical comptonization is indeed required in investigating the
emission properties of accretion flows. For v ~ 1 the diffusion limit is not recovered simply
asking that the radiative flux is proportional to the gradient of the energy density, since
the radiative shear is as important as the flux. Relativistic corrections produces two main
effects: first, photons are shifted toward both higher and lower frequencies by dynamical
comptonization and, second, the spectrum at large frequencies is sensibly flatter than in the
non-relativistic case. The spectral index now depends not only on the velocity gradient,
but also on the value of the scattering depth at the horizon and goes to its non-relativistic
limit when (7.,), tends to infinity. Despite the fact that relativistic effects are important
only where 7.;v > 1, that is to say below the trapping radius, their signature is still present

in the emergent spectrum. In particular, the high energy tail is populated by photons
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coming from the region below the trapping radius. In the presence of a strong advection,
these photons are comparatively few (yet, the emergent flux is rather sensitive to the value
of the optical depth), but just these photons are also the most strongly comptonized by
the repeated scattering. A similar effect was found by Mastichiadis & Kylafis (1992, see
also Zampieri, Turolla, & Treves 1993) in an accretion flow onto a neutron star. In their
case the formation of an essentially flat {a ~ 0) spectrum is due to the fact that photons
experience a very large number of energetic scatterings before emerging to infinity. since
no advection is present being the star surface a perfect reflector. Our spectrum is softer
with respect to Mastichiadis & Kylafis just because a sizable fraction of the more boosted
photons are dragged into the hole, but, at the same time, it is harder than PB since in the
relativistic regime the mean energy gain per scattering is higher. From the mathematical
point of view it is noteworthy that the assumption of a finite optical depth at the inner
boundary (i.e. at the horizon in our model or at the reflecting surface in Mastichiadis &
Kylafis) produces a fundamental mode which is flatter with respect to PB; in both cases
PB result is recovered in the limit (7.,), — 0. The possibility that scattering of photons
in an accretion flow onto a black hole produces a power-law tail with spectral index larger
than 2 was also suggested in a very recent paper by Ebisawa, Titarchuk, & Chakrabarti
(1996). Using a semi—qualitative analysis they found that the spectral index is close to 3/2
for large values of the optical depth at the horizon and discussed the possible relevance of
this result in connection with the observed hard X-ray emission from black hole candidates

in the high state.
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We note that for 1 < (7.;), < 32/9 the predicted spectral index (see equation [6.35]) is
smaller than 1, implying a divergent frequency-integrated luminosity. It should be taken
into account, however, that for such low values of the optical depth the diffusion approxi-
mation itself becomes questionable. Moreover, when Av =~ m.c? the electron recoil in the
particle rest frame can not be neglected anymore, so for large enough energies our treat-
ment is not valid (see Zampieri 1995 for a more detailed discussion). The decrease of the
cross—section in the quantum limit makes the scattering process less efficient, producing a
sharp cut-off in the spectral distribution. Effects of the Klein—Nishina, corrections in the
scattering cross section were recently investigated by Psaltis & Lamb (1997). Finally, as
already stressed by Blandford & Payne (1981a) and Colpi (1988), thermal comptonization
dominates over dynamical comptonization when 2 12ET/me. The spectral distribution
depends then on the relative strength of competitive processes such as heating/cooling by
thermal comptonization and compressional heating and must be derived solving the radia-

tive transfer equation in its complete form.



7 Static, Plane—Parallel Atmo-

spheres around Neutron Stars

In the following of this thesis we shall deal with a different kind of astrophysical systems,
and we will consider situations in which the accreting compact object is a neutron star (NS).
Since the late 60’s large theoretical efforts have been devoted to investigate the properties of
radiation produced by accretion onto neutron stars, in the attempt to model the observed
spectra of galactic X—ray sources. The complete analysis of a steady—state. spherically
symmetric gas flow onto a compact star is a complex task since the appearance of shocks
and/or of a boundary layer at the neutron star surface should be expected. However, some
reasonable simplifying assumptions can be introduced. First of all we note that, for a
neutron star of mass M. ~ 1.5M; and radius R. ~ 10 km, the efficiency of the accretion
process is € ~ 0.1. By comparing this value for with the typical efficiency attainable in black
hole accretion (see NTZ91), it follows that only a very tiny fraction (< 0.01) of the total
energy output can be radiate by the infalling gas, before the impact with the surface of the
star. Emission processes in the accreting gas can be therefore safely neglected, and in the

standard picture all the emerging radiation is produced in a geometrically thin atmosphere
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where protons are decelerated by Coulomb collisions and/or plasma, interactions.

Equilibrium solutions for spherical, hydrostatic atmospheres around unmagnetized NSs
were first provided by Zel’dovich & Shakura (1969, ZS in the following) in the frequency~
integrated case. These results were then corroborated with a more detailed. numerical work
by Alme & Wilson (1973, AW). who also presented the first spectral analysis, revealing the
fundamental role played by Comptonization of primary bremsstrahlung photons in estab-
lishing the thermal balance in the emitting gas and the properties of the emerging radiation.
In these investigations the interest mainly focussed on emergent spectra for luminosities in
the range ~ 10% — 103 ergss™!. The main radiative process in the atmosphere is free—free
emission/absorption, and the spectral shape can be essentially described as a superposition
of planckians plus an high-energy Compton tail. ZS’s solutions and AW’s spectral models
are characterized by two parameters: the accretion luminosity L, (or, equivalently, the ac-
cretion rate) and the column density yo corresponding to the penetration range of incoming
protons in the NS atmosphere.

However, as it was recently shown by Turolla et al. (1994, paper I), this picture is not
necessarily complete. These authors re-examined the issue of the thermal and radiative
properties of static atmospheres around accreting NSs, and pointed out that, beyond a
critical value of the accretion luminosity L. = 1038 erg/s, a new class of much hotter
equilibrium solutions exist, together with the “cold” & la Zel’dovich & Shakura ones (see
figure 7.1). The existence of two states has a sirict analogy with what has been already

found in black hole accretion (see Chapter 5 and references therein), and, also in the NS case,
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Figure 7.1: Mean energy of the outgoing photons vs. total emitied luminosity for yo = 20 gem™7;
crosses refer to “cold” models. Dashed line represents the lower limit for the existence of “hot”

solutions. Taken from Turolla et al. (1994).

is related to the different role thermal and non—thermal processes may play in exchanging
energy between photons and electrons in the atmosphere. In the “cold” state (as in ZS)
the energy released by accretion is radiated away essentially via bremsstrahlung and the
emission is typically peaked in the X-rays. In the “hot” state, where Compton scattering
dominates (see also Burger & Katz 1980), owing to the balance between Compton heating
and cooling the gas temperature is very close to the radiation temperature and both can
be as high as 10° — 10%° K.

From the observational point of view, the coexistence of two branches of solutions for
the same values of the parameters is particularly appealing: in fact, the possibility to drive

on—off transitions between the two states could give rise to rapid transient phaenomena in
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hard X-rays of potential great astrophysical interest.

However, in the simplified analysis presented in paper I, “hot solutions” were found
solving the frequency integrated transfer problem. The lack of any information about the
angular and frequency dependence of the radiation field made impossible to evaluate the
photon-photon pair production, which was nevertheless recognized to be potentially im-
portant, and led to introduce rather drastic assumptions in the calculation of the Compton
energy exchange rate. In the attempt to overcome some of these limitations and to shed
light on the physical relevance of “hot” solutions, we have recently reconsidered this is-
sue (see Zane, Turolla & Treves 1997a.b), using the characteristic code to investigate the
spectral properties.

Moreover, as previously stated, the ploneering investigations by 7ZS and AW are re-
stricted to the high luminosity tail (L> 10%* ergss~1) of the “cold” branch. This is because
these authors were mainly interested to model the spectral properties of X-ray binaries, and
in this case most of the observed sources have L> 1034 ergs s~. Much fainter sources may,
nevertheless, exist. Most of the ~ 600 known pulsars are single, located in the Galactic
disk, and are probably born in the core collapse of massive (M > 8Mg) stars following a
supernova explosion (see e.g. Phinney & Kulkarni 1994 for a review). The estimated rate
of SN events leading to the formation of a NS is &~ 1072 yr~! at present (see e.g. Narayan
& Ostriker 1990), therefore a constant birthrate implies that =~ 108 NSs should be present
in the Galaxy, assuming the Galaxy to be ~ 10 Gyr old. This value is, however, very

uncertain, and represents a lower limit on the Galactic population of NSs since in the early



phases of the galactic evolution both the star formation rate and the fraction of massive
stars may have been higher. Nucleosynthesis constraints on Galactic chemical evolution
require a total number as high as 10° (Arnett, Schramm & Truran 1989, see also Blaes &
Madau 1993 for a discussion). Newly born NSs are expected to have large magnetic fields
(B ~ 10'% G), short periods (P< 0.1 s) and show up as radio pulsars. The duration of
the pulsar phase can be roughly estimated to be of order of gy, ~ P/P =~ 107 yr, so the
present total number of active pulsars is ~ 10° which is only a very tiny fraction of the
estimated number of Galactic NSs. During the NS evolution, neutrino cooling and emission
of thermal radiation bring the star temperature from 10*! to 10° K in about 10® yr. In this
scenario, old, isolated NSs which have evolved beyond the pulsar phase are expected to be
cold objects, dead stars pretty close to be perfectly invisible.

There is however the possibility that a faint light may shine in the graveyard (Wang
1996). In fact, as it was suggested long ago in a pioneering paper by Ostriker, Rees, & Silk
(1970), old, isolated NSs (ONSs) no longer active as pulsars may accrete the interstellar
medium and show up as weak, extreme UV /soft X-ray sources. If our present understanding
of the NSs birth rate is not grossly wrong, the expected spatial density of ONSs. assuming
that they are a disk population, is &~ 107*Ng pc™, which implies that, on average, ONSs
are ~ 15 pc apart. This figure makes ONSs rather domestic objects, much closer to the Sun
than other classes of NSs: the closest pulsar, PSR 0950408, is about 10 times further away,
and the nearest LMXB is at about ~ 100 times that distance. Given the large number

of Galactic ONSs and their relative proximity, the observation of isolated accreting NSs
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may be already within reach and the capabilities of present instrumentation on board UV
and X-ray satellites like ROSAT and EUVE, make now possible the observation of such
low luminosity sources (e.g. Treves & Colpi 1991, Blaes & Madau 1993, Zane et al. 1995,
1996b, Zane, Turolla & Treves, 1996). This fact motived our interest in reconsider ZS’s and
AW’s solutions, addressing the problem of the emitted spectrum for LS 103 ergss~!.

In this thesis we report our results relative to both “cold” and “hot” states. The
former regime is discussed in this Chapter, while results relative to the “hot” branch will
be presented in Chapter 8. As far as the “cold” regime is concerned, results have been
cross—checked using two different approaches for the solution of the transfer problem. First,
by using a method based on the solution of the first two PSTF moments equations, we
computed a series of models extending ZS’s results and performing a systematic investigation
of the low luminosities regime (4 X 1078 < £ < 10=3). These solutions have been published
in Zampieri et al. (1995), and have been derived using the Eddington approximation.
The same results are then reproduced by using a simplified, plane parallel version of the
characteristic code (see Chapter 4, Zane et al. 1996a), an approach that allows to avoid all
assumptions about the closure condition.

Physical units are used throughout, R = rr, is the radial Schwarzschild coordinate in

cgs, and M., is the NS’s mass.
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7.1 X-ray Spectra from Neutron Stars Accreting at Low

rates

We consider a non-rotating, unmagnetized neutron star which undergoes spherical accretion
and is surrounded by a spherical, static atmosphere; the envelope material is assumed
to be pure hydrogen. As the accretion flow penetrates into the atmosphere. protons are
decelerated by Coulomb collisions and/or plasma interactions, their bulk kinetic energy is
transferred to electrons, and is finally converted into electromagnetic radiation via free—free
emission. The input physics of our model essentially coincides with that used in previous
studies on this subject (see ZS, AW). A detailed modelling of the interactions between
the impinging flow and the static envelope is exceedingly comph’cated (see e.g. Bildsten,
Salpeter & Wasserman 1992), also because a collisionless, standing shock can form, as
originally suggested by Shapiro & Salpeter (1973). Following both ZS and AW (see also
Paper 1), we circumvent this problem assuming that the proton stopping length is a free
parameter of our model, together with the total luminosity L., measured by an observer
at infinity. Denoting by o the gas density, the column density of the atmospheric material
is y = J5° 0 dR; the value yg corresponding to the proton stopping length was estimated by
7S to be in the range 5< 1< 30gem~? when Coulomb collisions are dominant. As it was
shown in Paper I, no significant expansion occurs in both “cold” and “hot” envelopes, so in
all formulas the radial coordinate R can be assumed to be a constant, equal to the neutron
star radius R.. The heat injected per unit time and mass in the envelope is calculated using

the expression for the energy loss rate due to Coulomb collisions of super-thermal protons
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(see Bildsten et al. ),

Lo 1+ v /vf
8T RZyoyc [1 — (1 - v, /vi)(y/y0)]1/?
I’Vh = (7.1)

if y <wo;

0 lfy>y0

where vf = ¢*(1 ~ Lo,/Lgaq)/3 is the “modified” free—fall velocity, v3, = 3kT/m, is the
proton thermal velocity, yo = (1 — 2GM./c?R.)Y/? is the gravitational redshift factor in
the Schwarzschild spacetime. We note that, owing to the gravitational redshift, the total
luminosity seen by a distant observer, L., is related to the local luminosity at the top of
the atmosphere by L., = yZL(0).

The run of pressure P, temperature 7', monochromatic radiation energy density w® and
flux cw} (both measured by the local observer) are obtained solving the hydrostatic and the
energy balance for a completely ionized, perfect hydrogen gas (ZS, Paper I) coupled to the
first two frequency-dependent transfer moment equations in the Eddington approximation

(AW; Nobili, Turolla & Zampieri 1993, here NTZ93). By treating Compton scattering in

the Kompaneets approximation, these equations can be written as
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Here w® = fwSdv, I = 4nR% [wldv, kp, ko and Ky are the Planck, absorption and
v v
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flux mean opacities, and the T, is the radiation temperature, introduced in Chapter 3.
W = W, — W, represents that part of the injected heat, W}, which is effectively converted
into electromagnetic radiation within the atmosphere. W, mimics the possible presence of
other forms of energy transport (like convection and electron conduction) which are not
treated in detail here (see AW for comparison); the actual form of W, is discussed later
on. The first two moments of the source function, s and s}, account for the exchange
of energy and momentum between electrons and photons and, for the radiative processes

we are considering, bremsstrahlung and electron scattering, they can be cast in the form

(NTZ93)
0 _ . 0 (kT [9%Inw? 81nw8+_l}£_ dln w? (76
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3.0 { Fin w0
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where B, (T) is the Planck function. The free—free opacity for a completely ionized hydrogen

gas is
1 — /KT
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In these solutions electrons are not relativistic, so that we used a functional fit to Karzas &
Latter’s (1961) tables for the velocity—averaged Gaunt factor, neglecting high-temperature
corrections (see section 3.1). Since equations (7.4) and (7.5) define a second order elliptic

operator, conditions must be prescribed on the entire boundary of the integration domain
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and their form is discussed in NTZ93. In particular, we assume that diffusion holds in the
deeper layers where LTE is certainly attained and this automatically fixes the luminosity at
the inner boundary, L;,. If all the energy is supplied by accretion, the total radiative flux
that crosses the inner boundary must equal the heat transported inward by non-radiative

processes, that is to say

Ly 1403 [l _
= ) ' I' : \ OSZJSym ('9
St R2y0yc [1 — (1— 13, /v3) 5/ 30)[ /2 )

W,

Although the total radiation energy density and luminosity are just the integrals of w?
and 4w R2cuw) over frequency, we found numerically more convenient to derive them from

the first two gray moment equations. In the Eddington approximation they are

2
L _AnREW (7.10)
dy e}
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Equation (7.10) gives trivially
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Lin if Y > Y-

with the condition L(y;) = L, while equation ( 7.11) is integrated numerically along
with the system (7.2)~(7.5), imposing w°(0) = 2w!(0); pressure vanishes at the top of the

atmosphere, P(0) = 0.
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7.2 Results

Equations (7.2)~(7.5) and (7.11) were solved numerically by means of a finite differences
relaxation scheme (NTZ93) on a logarithmic grid of 50 frequency bins x 100 depth zones.
The adimensional frequency z = hv/kT. was used, T» = T(¥n), and the integration range
was typically —0.7 < logz < 1.1, —7.6 < logy < log yin, with y;, marginally smaller than yo.
A typical run required ~ 15 minutes of CPU time on an IBM RISK/6000. Two sets of models
were computed, both with R. = 12.4 km, M, = 1.4Mg: yo = 20 gcm™? and luminosities
in the range 4 x 1078 < Loo/Lgad < 0.2, 90 = 5 gem™ and 1077 < Loo/Lpag < 107°.
Our numerical method should guarantee a fractional accuracy better than 1% on all the
variables. As a further check, the total luminosity, given by equation (7.12), was compared
with the numerical integral of wl over the frequency mesh at each depth: agreement was
always better than 10%. We have also verified that our solutions with Loz 10?2 LEqq
reproduce almost exactly those computed by AW. In the low-luminosity range, which we
are mainly interested in, particular care must be used to handle properly the absorption and
flux mean opacities, since the envelope thermal balance depends entirely on the free—free
integrated source term and the radiation spectrum becomes very nearly Planckian in the
deeper layers.

Results are summarized in figures 7.2, 7.3 and 7.4, where the emergent spectra and
the temperature profiles are plotted for different values of L.,. In all these models it is
yo = 20 g cm™?; solutions with yo = 5 g cm™? show the same qualitative behaviour. A quite

unexpected feature emerging from figures 7.2 and 7.3 is that the spectral shape deviates more
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Figure 7.4: Temperature vs. column densily for different values of Leo/LEdd-

and more from a blackbody as L., decreases. The model with Lo = 2.25 % 1072 L 44 is. in
fact, quite Planckian in shape (see also AW), showing only a moderate hard excess. On the
contrary, solutions with Lo, < 107*Lgq4q are characterized by a very broad maximum and
by a slow decay at high energies. Comptonization is relatively important for L> 107%LEpq4.
similarly to what happens in X-ray burster atmospheres (see e.g. London, Taam, & Howard
1986). For less luminous models, however, non—conservative scatterings play essentially no
role in the formation of the spectrum, as it should be expected since the temperature,
and hence the Compton parameter, becomes lower. As can be seen from figure 7.4, the
temperature profile is nearly adiabatic in the inner layers where the gas is optically thick to
true emission—absorption at all frequencies; for LS 107°%LEg4q an intermediate, isothermal

region is present. The sudden increase of T' in the external layers is due to the heating
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produced by the incoming protons, balanced mainly by Compton cooling at low densities.
The temperature “shock” moves at very low values of the column density and is nearly out
of our depth mesh for Lo, = 1077 L guy.

As it will be discussed in Chapter 9, the hard excess present in our low-luminosity
spectra has some important consequences as far as predictions on the observability of
ONSs are concerned. In this respect, it is very important to compare the actual emerg-
ing spectrum with the blackbody at the neutron star effective temperature, B, (Teyy).
Tefs = [Loo/(47 R2o)]/4, which is usually assumed to be the emitted spectrum (see e.g.
Treves & Colpi 1991, Blaes & Madau 1993). It is apparent from figure 7.3 that model
spectra with LS 10~%L gy are substantially harder than the blackbody at the star effective

temperature. The spectral hardening can be quantified introducing a hardening ratio

7,
TE e e
T'Y[BU(Teff)]

(7.13)
where, from the definition of T, (see equation 5.6), it is T,[B.,(Te55)] = 0.96T5¢. This differs
from the usual definition, v = T,y /Tess, where Tcol- is the color temperature, because our
spectra are not always well fitted by a blackbody. For Yo = 20 gcm ™2, v steadily increases

from ~ 1.5 (value typical of X-ray bursters in the static phase), for L ~ 1072 — 1073 Lgyq.

up to ~ 2.5 for L ~ 107% — 107" L g44 (see table 7.1).



7.2. Results

Table 7.1: Characteristic Parameters for Selected Models

L[;’:d Ty (keV) ?iﬁl ) ¥b +©
>0.1

2.25 x 1072 1.03 1.01 1.40 -
10— 0.53 1.03 1.56 -
10— 0.35 1.01 1.88 -
10—° 0.24 1.02 2.21 2.06
106 0.15 1.07 2.44 231
10-7 0.09 1.34 2.64 2.55

& Ratio of integrated fluzx to blackbody one above 0.1 keV,
for models with yo = 20 gcm™2.
> Hardening ratio, defined in equation (7.13), for models with yo = 20gcm™2.

¢ Hardening ratio for models with yo = 5gcm™2,
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7.3 A Different Approach

Results presented in the previous section have been confirmed using the characteristic code:
the hydro equations (7.2) and (7.3) have been coupled with the Boltzmann equation and
the system solved iteratively, using the same scheme that we introduced to compute the
scattering integral. As already discussed, in the “cold” regime the most important radiative
process is free-free; Compton cooling plays a role only in increasing the temperature in
the outer atmospheric layers. Since typical temperatures are very low, Comptonization is
treated by means of the approximated expression (3.25), which is much faster. However,
we have already pointed out that in this problem the thermal balance is very delicate and
the zone where photons of different energies thermalize strongly depends on integrated
quantities, mainly on w® and on the absorption mean Ko. In particular, even using the
characteristic code, numerical integration proved more stable if w® and L are derived as
solution of the first two gray moment equations (7.10) and (7.11). The same approach was
used to compute solutions using the PSTF moments equations (section 7.1, Zampieri et al.
1995), with the difference that in the present scheme the gray moment equations can be
solved exactly, relaxing the Eddington approximation. The original form of equation (7.11)
is in fact

dK L

aK , 7.14
dy ~ 1672 R2eyq (7.14)

and this equation can be integrated by fixing the luminosity L., of the model, evaluating
numerically the ratio K'/H, and deriving the correct boundary condition for the radiation
pressure at 7., = 0. Strictly speaking, in fact, the free streaming condition w?(0) = 2w*(0)

that we previously used, only holds for a pure scattering atmosphere (see Chandrasekhar
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1960); limb darkening effects were not taken into account by using the PSTF expansion.
Once K is known, the quantity w® = J/(4r), needed in the energy balance equation, can be
immediately evaluated by computing the Eddington factor K/J, at each scattering depth,
from the specific intensity

Here we present the model with £ = 107*. The solution has been computed using
a spectral window Zmin = 0.1, Zrmar = 10 centered around a normalization temperature
log T = 6.6; L = 30 frequency points have been used. As we already pointed out, in these
solutions the static atmosphere is geometrically thin; the problem is approached in plane-
parallel symmetry by using as independent variable the scattering optical depth 7., = 0.4y
and imposing the standard Sommerfeld radiative boundary condition for a non-illuminated
atmosphere, f = 0, at 7., = 0. Outgoing trajectories are integrated fixing the boundary
condition f = B,(T)/E® at the inner boundary, where LTE is reached. The angular
resolution is provided by Ny = N, = 15 trajectories and the transfer equa,tvion is solved in
the range —8 < log(7es) < 0.9 using M = 100 grid points. The resulting mean intensity is
plotted in figure 7.5. Figures 7.6 and 7.7 show the emergent spectrum and the temperature
profile together with the results obtained solving the moments equations (dashed lines). As
it can be seen, the agreement both in the spectral shape and the temperature profile is very
good, showing that the approximated solution of the transfer equation with two moments is
rather accurate. To obtain this model, with a fractional accuracy better than 2 x 1072, 14
iterations were required, with a total CPU time of about 3 minutes on an alpha DEC-3000.
Agreement between the gray mean intensity, derived as the double integral of f, and the

solution of the second gray moment equation is always better than few parts in thousand.
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Figure 7.5: Monochromatic mean intensity at different scattering depths (full lines) for a “cold”,

static, plane-parallel atmosphere around a neutron star with £ = 10~%. The blackbody function at

T(ri?), 7™ is the inner boundary in this model, is also drawn for comparison (dashed line).

JrrT T T T T T

21.

TR T T T 7T

20.

19.
Fr T T T T T T

log H (erg/cmz/s/ke\/)

18.

7
Lt b e e v b e b i

TEPEE UV EEPU WU S R SV U RVOE SR S VU RPN AT RPN R O

-1.0 -0.5 0.0 0.5
log(hv) (keV)

Figure 7.6: The emergent spectrum for the model in figure 7.5 (full line) compared with the blackbody

N
—

at the neutron star effective temperature (dash—dotted line) and with the solution obtained by solving

the PSTF moments equations (section 7.2; Zampieri et al. 1995, dashed line).
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Figure 7.7: The gas temperature profile for the model in figure 7.5 (full line), compared with that

one found by solving the PSTF moments equations (section 7.2; Zampier: et al. 1995, dashed line).

7.4 Discussion

The significant deviation of low—luminosity spectra from a Planckian equilibrium distribu-
tion could appear unexpected, since radiation is in LTE in a medium where the scattering
depth is always much less than the absorption one. The source function should be Planck-
ian and the emergent spectrum, formed at the thermal photosphere, should coincide with
B,(T.s5). However, if the atmosphere develops smooth temperature and density gradients
in layers where the medium becomes optically thin to free—free, the differential nature of
the absorption opacity plays an important role. High—frequency photons decouple in the
deeper, hotter layers and then propagate freely to infinity, contributing to the high—energy
part of the emergent spectral flux. At large enough frequencies, the observed shape of the

spectrum turns out to be a superposition of planckians at different temperatures. This re-
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sult resembles closely that of standard accretion disks, where the emergent spectrum shows
a broad plateau due to the combined, thermal emission of rings at different temperatures.

Our present result that low—luminosity spectra are harder than a blackbody is consistent
with the previous finding by Romani (1987), who computed model atmospheres for cooling
neutron stars. Although he considered a quite different physical scenario, an atmosphere in
radiative energy equilibrium illuminated from below, the free-free opacity in his cool, He
models (Tess ~ 3 x 10° K) acts much in the same way as in our low luminosity solutions,
producing a hardening of the spectrum.

Both in Romani’s and in our analysis the effects of the neutron star magnetic field were
ignored. It can be easily shown that, for temperatures and densities in the photospheric
region typical of the model presented in section 7.3, the cyclotron emission is lower than
the free-free emission if BS 10° G (see e.g. Schmid-Burgk, 1978). However, because of the
many uncertainties in the physics governing the magnetic field evolution, the determination
of a reasonable order of magnitude for the ONSs B—field still remain an open issue. The
discovery of a number of weak—field millisecond pulsars, recycled during a phase of intense
accretion in a low mass binary system (Alpar et al. 1982), provides some probes for field
decay in binaries. Despite that, at present no clear observational evidence exists for a decay
over the pulsar phase in the case of solitary objects (see Srinivasan 1997, and references
therein, for a recent review). This important topic will be discussed in details in Chapter
9. For the moment, we only outline that if the field decay occurs leaving a relic B-field
as low as &~ 10° G, all radiative effects of the magnetic field can be neglected. The only
role played by a non-vanishing B-field is to channel the accretion flow along the magnetic

lines, concentrating the emission onto two polar caps. If this is the correct scenario, models
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presented here can be assumed to describe correctly the emitted spectrum from old neutron
stars accreting the interstellar medium (apart a rescaling in the total luminosity due to the
different size of the emitting area. see Chapter 9).

Finally we note that the assumption of a pure hydrogen chemical composition used
here, is not entirely ad hoc. In fact, contrary to what happens in equilibrium atmospheres,
such as those considered by Romani (1987) and Miller (1992) who allowed for different
compositions, it is likely that metals are destroyed in the accretion flow (Bildsten, Salpeter
& Wasserman 1992), leaving just a hydrogen envelope.

As we already stressed, a motivation for studying the spectral properties of X-ray radi-
ation coming from neutron stars accreting at low rates, stems from the possible detection
of isolated objects fed by the interstellar gas. Their expected luminosities, ~ 103! ergss™1,
could be within reach of satellites like Einstein and ROSAT (see Treves & Colpi 1991: Blaes
& Madau 1993; Colpi, Campana & Treves 1993; Madau & Blaes 1994) and the knowledge
of the emitted spectrum is fundamental in estimating their observability as X-ray sources.
This issue will be discussed in detail in Chapter 9. Here we point out that the fact that
synthetic spectra are significantly harder than the blackbody at T.fy, may indeed increase
the chances of detection with respect to previous estimates. In table 7.1 we have listed the
ratios of the computed flux above 0.1 keV to the blackbody one for various luminosities;
the threshold of 0.1 keV was suggested by the sensitivity of ROSAT. The solutions with
L = 10~7 and 1075 L gaq can be taken as representative of the typical luminosities expected
from ONSs embedded in the average ISM or in Giant Molecular Clouds (see Colpi. Cam-
pana & Treves 1993). As can be seen from the table, the ratio becomes larger than unity

and the flux above 0.1 keV is from ~ 10% to ~ 40% larger than the blackbody one for
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10%2> L> 10% ergss~1.

The present models could be relevant also to soft X-ray transients in quiescence, such as
Aql X1 (Verbunt et al. 1994), or in connection with low—luminosity globular cluster X-ray
sources which emit a luminosity ~ 107 L gy, (see e.g. Hertz, Grindlay, & Bailyn 1993 and
references therein). These still mysterious objects could be either accreting white dwarfs
(e.g. cataclysmic variables) or neutron stars in binary systems. Their spectrum, which is
still poorly known, could be compared with the results of these models, and deviations from

a blackbody may be an important clue in discriminating their physical nature.



8 Hot Atmospheres Around Ac-
creting NS: A Possible Source For

Hard X—ray Emission

8.1 Introduction

In this Chapter we focus on the “hot” configurations presented in paper I by Turolla et al.
(1994). These equilibrium states coexist with the “cold” ones at large enough values of the
accretion rate, and the presence of two possible regimes has a simple interpretation in terms
of the relative efficiency of Compton scattering and free-free emission—absorption. If “hot”
states are indeed accessible, the coexistence of the two branches is not important only “per
se”, but also for applications to rapid transient phaenomena in hard X-rays. The transition
between “cold” and “hot” regimes, even at luminosities where the two solutions are rather
different, may be expected in a time—dependent scenario and the onset of the “hot™ state
could provide an efficient mechanism to produce emission from NSs in the MeV range.

However, steaming from the original analysis presented in paper I, a number of issues still

123
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demands to be clarified. First of all. as previously stated, the existence of the second branch
of solutions, in addition to the 7S, “cold” one, was found in the framework of a frequency-
integrated, stationary analysis and the spectral and stability properties of these states
have never been investigated. In particular, the radiation temperature, a key ingredient
in evaluating the Compton energy exchange rate, was derived in the gray model from a
phaenomenological equation and not from a self-consistent calculation of the radiation
field. Second, “hot” solutions were computed within the same physical scenario of “cold”
ones, which is basically that one of ZS, and in a more realistic description the input physics
needs to be upgraded if relativistic temperatures are reached. In paper I, pair processes
were not taken into account. However, since T, is typically of order few hundreds keV,
we expect a large pair production, mainly via interactions between high and low energy
photons. These reasons motivated our interest in readdressing this issue, in the attempt
to overcome some of the previous limitations and to shed light on the properties of “hot™
solutions.

A complete answer demands the solution of the full time, angle and frequency—dependent
radiation hydrodynamical problem in a high-temperature plasma, including pair processes
and a correct treatment of Compton scattering in the relativistic regime. From the numerical
point of view, this is a challenging and formidable task, at present beyond the scope of
our investigation. In order to get some physical insight without resorting to a full time—
dependent calculation, we consider the stationary case and approach the problem is a simpler
way, analyzing the effects of different processes separately. As first step, we compute the
radiation field neglecting pairs, but solving the angle and frequency—dependent transfer

equation coupled to the hydrostatic and energy balance and using a detailed treatment of
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true emission—absorption and Comptonization in the hot plasma (section 8.1). This is domne
by using the characteristic code introduced in Chapter 4 (Zane et al. 1996a). The resulting
specific intensity is then used to solve the detailed balance equation and to estimate the
number density of pairs, ny, produced by photon—-photon interactions. The numerical code
described in Chapter 4 was generalized to include in the source term pair production-
annihilation and, self-consistently, et —e*, e” — eT, et — p bremsstrahlung.

Although not fully self-consistent, this approach is sufficient to derive some insight on
the physical properties of “hot” atmospheres. Although, as we checked a posteriori, pair
production does not play an important role as far as the transfer problem is concerned. it
can have some important consequences on the stability of these states. In fact, we found
that a large e* — e~ pair production is expected in the external atmospheric layers. where
positron and proton number densities become of the same order. As a.consequence, the
scattering opacity increases lowering the Eddington limit. This, in turn, suggests that, for
large enough values of the accretion luminosity, “hot” solutions can undergo a dynamical
instability with respect to the onset of a radiatively—driven wind, ultimately producing a
rapid expulsion of the envelope. In the last section of this Chapter we discuss this possibility

together with astrophysical applications in the context of hard X-ray transient phenomena.

8.2 The Model

In this section we briefly outline some general properties of “hot” models, referring to
previous works (ZS; AW; paper I; Zampieri et al. 1995) for all details about the input

physics, and introduce our radiative transfer calculations. In particular, the mathematical
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structure of the problem is the same as in “cold” models, and it has been reported in
Chapter 7. Here we only discuss the differences in the basic equations that arise to properly
account for radiative processes in high energy regimes. As discussed in paper I, even in
the “hot” case solutions show no significant envelope expansion, so the radial coordinate
can be safely assumed equal to the star radius and the atmospheric structure is solved
in plane-parallel geometry. The pressure and luminosity profiles are still obtained from
equations (7.2), (7.12), and the temperature by the solution of the energy balance equation.

Neglecting pair production, this equation can be schematically written as (see 7.3)

w_ Kp <aT4 —~ fﬂwo) +(T'=Ae, (8.1)

c Kp
where (I' — A)c is the Compton energy exchange rate. As discussed in Chapter 7, the
effective heating W represents the fraction of W) (expression 7.1) which is converted into
electromagnetic radiation within the atmosphere; W coincides with Wy, if no energy is
injected at the inner boundary, that is if L,, = 0. Since at large depths the radiation field
becomes more and more isotropic, L;, is indeed small, although in a realistic situation it is
not exactly zero. On the other hand, the thermal structure of both the “cold” and “hot”
solutions presented in paper I proved not sensitive to the assumed value of the luminosity
at the bottom of the atmosphere, provided it is not too large compared with L.. In
particular, “hot” atmospheres exhibit a rather sharp drop in the gas temperature which
separates two distinct regions characterized by different thermal properties (see figure 8.1).
In the external layers, where the bulk of the luminosity is produced, the energy released by
accretion is radiated away via Compton cooling, while in the deeper, denser layers LTE is
attained and the temperature profile is mainly determined by bremsstrahlung equilibrium.

For these solutions L;, also coincides with the value of the radiative flux at the top of the
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Figure 8.1: Temperature vs. column density of “hot” solutions for ls = 1073 (solid line),

leo = 2 x 1072 (dashed line), and £ = T x 1072 (dashed-dotted line); here yo = 20 g cm™2,

Taken from Turolla et al. (1994).
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cold region.

There are two important points concerning the “hot” models that were not thoroughly
discussed in paper I and deserves further analysis. Both of them concern the possibility of
establishing and maintaining a rather steep temperature gradient between the hot to the
cold part of the atmosphere, so that a “hot” solution can indeed set in. First of all we note
that the position of the temperature drop is practically unrelated the value of the proton
stopping length. Although for yp = 20 g cmn—2 (the value we will use here) they practically
coincide, we stress that, in general, the value of the scattering depth at which the transition
occurs depends only on the relative efficiency of Compton and bremsstrahlung heating-
cooling and, as numerical tests show, it is always close to i3 = 10 (y*" = 25). The presence
of a sudden decrease in T can be understood comparing the free~free and Compton thermal

times

tc e (1—wP/aT?)
tip 4K|T — T\ kesw®/mee?’

(8.2)

where €55 is the free-free emission. As the scattering depth increases 7' and T, become
closer, because non—conservative scatterings tend to establish thermal equilibrium, and w°
either increases or stays constant. In the hot, effectively thin layers w® < «7 and at large
enough 7.,, where T ~ T, the time scale for free—free cooling becomes shorter than the
Compton time. The plasma temperature drops until 7% ~ w® in order for the energy
balance to be satisfied and the radiation temperature follows.

The second important point concerns the efficiency of electron conduction at the inter-
face between the hot and cold regions. This effect was not considered in paper L. In order

to get a quantitative estimate of the relevance of thermoconduction we compare the energy

flux due to conduction, F. = veodT'[dy, with the radiative flux, F, = L/4rR2. Using the
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expression for v, given in Zel’dovich, & Raizer (1967) it is

F T 5/2 L -1 ytr
£ ~25x%x107° (-—) (———) 8.3
F, 5x 10 10° LEqq Ay (8:3)

where Ay is the width of the transition layer and 7' is the temperature in the hot region.
As the previous equation shows, electron conduction is indeed efficient in transferring heat
from the hot to the cold region. However, if a fraction of the luminosity is produced below
Y, Lin/Leo ~ 0.2—0.3 for L., ~ 0.1Lg44, conduction will limit the temperature of the hot
region to ~ 10° K, smear the jump over Ay ~ 2 — 3 and then cease to be important. The
stationary temperature profile will then look quite similar to that discussed by Zel'dovich,
& Raizer (1967) in the context of shock waves in a plasma. Although the real profile will
deviate from that of paper I (mainly in the absence of the peak at T ~ 100 K, see curve
b in figure 8.3, which will be leveled if conduction is taken into account), the emerging
picture seems to be substantially unaltered by the inclusion of thermal conduction. This
conclusion is reinforced by the result of the frequency—dependent calculation presented here
which shows that the temperature profile is nearly isothermal at T ~ 10% K (see curve a
in figure 8.3). It is interesting to point out that the existence of a “hot” equilibrium state
can be recovered analytically by solving the energy balance equation in the limit in which
Compton cooling dominates and using an approximated expression for the Comptonized
radiation spectrum (see Titarchuk 1997, Titarchuk, Lapidus & Muslimov 1997). In the case
in which Comptonization is effective and produces a rather flat spectrum with a < 1 and
the scattering depth at the stopping radius exceéds unity it is T ~ 10° K quite independently
on the value of yo (Titarchuk, private communication).

Let us now to focus in more detail on “hot” atmospheres. As we discussed. in this

picture only a small fraction of the total luminosity (Lin/Leos 0.2 —0.3) is produced below
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", where the scattering depth is already larger than ~ 10. Bearing this in mind, we

Y
can compute the radiation field only for y < ¥ with a suitable boundary condition at
y*". The consistency of the computed flux at the boundary with the assumed value of Lin
will be checked a posteriori. By solving the radiation field by means of the characteristics
approach, we are able to derive the full spatial, angular and frequency dependence of the
photon occupation number f. We used as boundary conditions f = 0 at the top of the
atmosphere for incoming rays and a regularity condition (df/dr., = 0) at the inner boundary
for outgoing rays. We refer again to Chapters 3, 4 of this thesis for all computational details
about the source term which includes, at this level of description, relativistic e~ —p, e~ — e~
bremsstrahlung and Compton scattering. In particular, Compton scattering is treated in
its more general form by direct evaluation of the integrals of the Compton scattering kernel.
To avoid numerical instabilities which arise when more accurate formulae are used (see e.g.
Shestakov, Kershaw, & Prasad 1988), the Kompaneets approximation was retained in the
calculation of the Compton energy exchange rate. The resulting monochromatic energy
density is shown in figure 8.2 for Loo/LEgq = 7 x 1072, L;p, = 0.2L4 and yo = 20 gem™? at
different optical depths. The dashed line represents the spectrum observed at infinity, i.e.
corrected for the gravitational redshift. This model has been computed solving the transfer
equation for 20 values of u, 25 energies in the range 0.017 MeV < E < 5 MeV and 1073 <
Tes < 8. The considered luminosity is close to the lower limit for the existence of “hot”
solutions with 3o = 20 g cm™2, and it can be thought to be well representative of situations
where photon energies are large enough to produce pairs, since 7, is anticorrelated with Lo
(see paper I). The emergent flux, in fact, is peaked at ~ 500 keV and is characterized by

a high—energy tail. The gas and radiation temperatures, together with the correspondent
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Figure 8.2: Monochromatic mean intensity for the model Loy = 7 x 1072Lgaq, yo = 20 g em™%;

different lines correspond to equally spaced values of logTes in the interval [—3,0.9]. The emerging

redshifted spectrum is also shown (dashed line).
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Figure 8.3: a) The gas temperature (full line) and the radiation temperature (dashed line) for the

model of figure 8.2. b) Same results from the frequency-integrated analysis of paper L.
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profiles derived in paper I, are shown in figure 8.3. The lower values of T (about a factor 3)
are mainly due to the different calculation of T, which enters in the energy equation. Now
the radiation temperature is directly evaluated from the mean intensity and not obtained
from a phenomenological equation, as in paper L. In the present calculation, the atmosphere
appears to be nearly isothermal. In both cases the energy balance is practically obtained
equating Compton heating and cooling, which gives T ~ T.,. Now T is always close to 10°
K and the computed luminosity at the inner boundary is ~ 0.02Lgg4g ~ 30% L, (quite close

to the input value), so conduction is not expected to be much effective.

8.3 Pairs Production—Annihilation in Radiative Transfer

In “hot” regimes the emitting gas may achieve semirelativistic or relativistic temperatures.
Results presented in section 8.2 has been computed by tacking into account only for free—
free and Compton scattering, but at semirelativistic temperatures a number of threshold
processes appear, associated with creation of electron—positron pairs. Pairs are produced
through photon-photon, photon—particle and particle-particle interactions, and the created
pairs either annihilate into photons or participate in other photon and pair creation pro-
cesses. The possible interactions are summarized in table 8.1 (Svensson 1982). In a steady
state model the radiation field and the pair density must be computed simultaneously by
solving the radiative transfer equation coupled with the pair equilibrium equation for the
positron number density n,. The latter one is derived balancing the total pair production
and annihilation rates, and using the charge neutrality condition. In order to include these

processes in our treatment, we extended the previous version of the characteristic code,
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Table 8.1: Physical Processes in Relativistic Plasmas®

Basic Two Body
Interaction

Radiative
Variant

Pair Producing
Variant

Moller & Bhaba
scattering
ce — ec

Bremssirahlung

ce = cev ce = eecte™

Compton scattering
~e — ~e

Doublc Compton scattering

~e = yevy ~ye = cete™

Pair annihilation

ete™ — v

Thres Quantum annihilation

cte™ = yyy

Photon~Photon
pair production
A — ete”

Racliative pair production
v = etemy

Processes Involving Protons

Coulomb scattering
cp — ep

Bremsstrahlung

ep == epy cp = cpc“' e

~p = pete—

2 Tuken from Svensson (1982)

includigg the solution of the detailed balance equation for ny and constructing numerical
routines for the evaluation of the pair source term. In addition, the expressions of the
free—free and Compton source terms previously presented were generalized to account for
the presence of positrons.

In a plasma consisting of electrons, positrons and protons there are, in fact, four different
types of free—free interactions: e~ —p, et —p, e¥—e* and eT —e~. In the Bohr approximation
the e — p and e — p cases are identical (see Jauch & Rohrlich 1976, Svensson 1982) and
the former has been already discussed in Chapter 3. The photon spectrum for et —p
bremsstrahlung is given by expression (3.4), provided that in the electron number density
n, is substituted by ny. Referring again to Chapter 3, we recall that the electron—electron
emissivity was reduced to a triple integral exploiting results by Dermer (1984, 1986). The

final expression is

2 o
n.c

¢ [ g
ar K21y

(42 - 1) o) dy*doi-_ (7" 7r)
Ne=—e=(7,7) 0

LY Rk 8.4
2 (7, + 1Y 7 dv* (54
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12 /.2, x2
« expd 20 +1)] (7 +7
T 2y*

where 7 = KT/m.c?, v = hv/m.c?, and do’__ (7", 7r)/dv*is the differential cross section,

given as a single quadrature by Dermer (1986, see also Haug 1975). The same expression
holds for et — e* emission, apart the substitution of ni in lieu of n?. In a similar way
it is straightforward to account for et — e~ interactions: the only differences are that
expression (8.4) must be multiplied by 2 (since in this form it contains a factor 2 that
corrects for double counting if particles are identical), n? must be substitute with neng and
the appropriate differential cross section is given by Haug (1985, see again Dermer 1986).
The numerical evaluation of these additional contributions has been done exactly in the
same way discussed in Chapter 3: n.+_.+ and 7,+_.- have been computed in the ranges
2x1072 <7< 10, 2x1072 < hv/KT < 25.12. The total Gaunt factor was then fitted with
the analytical function suggested by Stepney & Guilbert (1983), and these results were used
in the radiative transfer code. In the non-relativistic (r< 1072) and extreme-relativistic
(7 > 10) regimes the asymptotic limits by Gould (1980), Quigg (1968) and Alexanian (1968)
have been used.

Finally, the positron contribution to photon scattering can be simply accounted for by
multiplying, in the expression of the source term (see Chapter 3), the scattering opacity
Kes by a factor (1 + 2z), where z = ny/n, n is the proton number density and the charge
neutrality condition n. = n, + n has been used.

As far as pairs producing mechanisms, we restrict our discussion to photon-photon pairs
production, that dominates over photon-particle and particle-particle collisions for 7 < 10

(Svensson 1982). Moreover, for the sake of simplicity, we assume that pairs thermalize with
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electrons and protons in the atmosphere. Clearly this is just an ad hoc assumption that
needs to be checked a posteriori (see the discussion later in this section).

Let us therefore to consider the process
Ty =€t +eT; (8.5)

quantities relative to the two photons will be denoted with indices 1, 2. In order tc avoid
confusion, in the rest of this section we use a more standard notation for expressions related
to pairs processes: the symbol v indicates photons, while z = hv/mec? is the dimensionless
energy. We also specify the discussion to the plane—parallel case, using as spatial indepen-
dent variable the scattering optical depth. However, all expressions can be re-written in
other 1-D geometries with obvious substitutions.

The absorption coefficient for a photon of energy z; propagating in direction p; through

a radiation field of intensity I = I(7es, T2, 42) is given by

- 11)_h / 2) (1 — p) deodpndds, (8.6)

where z2 =

= 729 (1 — p) /2 is the square of the photon energy in the center—of-momentum
frame, 1 is the cosine of the angle between the two photon directions, @3 is the azimuthal an-
gle and o(z) is the photon—photon pair production cross-section (see e.g. Jauch, & Rohrlich

1976). Replacing ¢, with ¢ = ¢ — &1 and introducing 2 = z1z4[1 — cos (1 £ ;)] /2 (see

Stepney, & Guilbert 1983), expression (8.5) becomes

4 I : : :
Aoy = ?1,; /d%gdﬂz = ZQF(.’E.}.,JJ._) . (87)
2

The function
(z)z z3dz

F(zy,z2) = / \[ —$2) )
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does not depend on the specific intensity so it was calculated once for all on a fixed grid of
values of 24 and stored in a matrix. The outer double integral was then computed using a
spline interpolation.

A simple expression for the spectral emissivity of annihilating Maxwellian electrons and
positrons was derived by Svensson (1983, see also Stepney & Guilbert 1983) by using a
detailed balance approach. The resulting expression is

dN N CQexp(—w/r)
avididz ~ TR ()

I(zT) (8.9)
where the quantity I (z7) involves a single integral over the pair production cross-section.
Polynomial fits for I were also provided by Svensson (1983), with a maximum error of 0.3
per cent; in our numerical evaluation these analytical expressions were used.

Using these results, we finally obtain the expression of source term for photon—photon

pair production—annihilation appearing in the transfer equation

ap 1 (LN
= - . 1
E  drm.c3E? dVdidz o f (8.10)

The last ingredient we need is the additional equation for N4, i.e. the detailed balance
equation. This is obtained by equating the two total rates of production and annihilation.
Once the absorption coefficient is known from expression (8.6), the pair production rate

R.., is obtained performing two further Integrations over angles and energies
T I
R’)”‘/ = _‘-/dtldﬂl —lawv ’ (811)
h ry

while the pair annihilation rate can be expressed in terms of a dimensionless function of the

gas temperature, A(7), as (Svensson 1982)

Ny = nyneerA(T) (8.12)
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where

T
1+272/In (297 + 1.3)°

A(r) = (8.13)

n ~ 0.56146 and 7. is the classical electron radius. Combining the previous expressions
and using again the charge neutrality condition, the pair balance equation becomes. in the
stationary case

R —z(1+ 2)ncrfA(r)=0. (8.14)

Finally, the positive root of equation (8.14) is

1 16R , ;
HTes) = — 1+ — _ 1], 8.15
(Tes) 4 (\[+ n? A(T)rc? ) (8.15)

With the inclusion of photon—photon pairs production—annihilation, our numerical scheme

is now general enough to deal with the transfer problem for unmagnetized plasmas in the
semirelativistic and relativistic regime. At this level it can be used to investigate the ra-
diation hydrodynamical problem in the 1-D case, provided that the gas temperature does
not exceed T = 10. Under this condition, all the main radiative processes (free~free. Comp-
ton scattering and photon—photon pairs production) are accounted for in their most general
form. At 7> 10 other pairs production mechanisms as photon—particle and particle-particle
interactions start to be important, but we stress again the fact that the inclusion of addi-
tional radiative processes is straightforward, provided that the corresponding cross—sections

are available.

8.4 FEvaluation of the Pairs Density in “Hot” Atmospheres

As far as the model presented in section 8.2 is concerned, pairs processes do not play an

important role in the transfer problem, and the extended version of the numerical code has
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2
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Figure 8.4: Proton (full line), positron (dashed line) number densities (in units of 10**> ¢m™3) and

z =mny4/n (dash-dotled line) versus the scatiering optical depth for the model of figure 8.2.

been used to check “a posteriori” the validity of the numerical results already reported.
First, using the specific intensity and the run of thermodynamical variables derived in
section 8.2 and solving the detailed balance equation (8.14), we calculated the positron
number density. The resulting profile is shown in figure 8.4, together with n and z. As it
can be seen, while in the inner atmospheric regions no relevant pair production is expected,
the value of z becomes ~ 10 for 7., &~ 10~3 and tends to increase in the external regions.
Then, we solved again the radiative transfer equation and the energy balance equation, the
latter modified to account for pairs production, by means of a relaxation scheme and using
the numerical profiles computed in absence of pairs as trial solutions. We found that, since
in this model 2 reaches its larger values in optically thin regions, pair production does not
play an important role in shaping the emergent spectrum and the previous results are not

significantly affected when this additional radiative process is accounted for. On the other
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hand, as it will be discussed in the next section, a significant pair production in the external
atmospheric layers could be important as far as the stability of these regimes is concerned.

We stress that the treatment of pair processes presented here is based on the assump-
tion that pairs thermalize with protons and electrons in the atmosphere. However, since
the Eddington limit in a pair plasma is lowered by a factor me/my, there is in principle
the possibility that large values of z are never reached, because pairs are accelerated out-
wards by the radiative force as soon as they are created. The characteristic timescale for
radiative acceleration t,.. ~ (2h/a)1/2 ~ 5 x 10_9(h/10)1/2(’L00/Lgdd\)_1/2 s, h ~ 10 cm
is the scale height of the envelope and a ~ (GM/R.)(L/LEgq4q4) is the radiative accelera-
tion, should be compared with the timescales for particle collisions and for the develop-
ment of plasma instabilities. Coulomb collisions establish thermal equilibrium in a time
teot ~ 6 x 1077(T/10°)3/2(n/10'8)! s, while the growth time for the counter-streaming
instability is tims ~ 2 X 1071 (n/1018)71/2 5 (see e.g. Melrose 1986).t Plasma instabilities
have therefore enough time to produce microturbulence which, in turgl, will efficiently cou-
ple e to the ambient plasma. Enhanced particle scattering prevents pairs from escaping

and also allows them to thermalize with atmospheric electrons. Our initial assumption that

pair production/annihilation is in equilibrium seems indeed justified.

8.5 Discussion and Conclusions

The existence of “hot” solutions, first proposed in paper I, has been confirmed by means
of a more detailed calculation of the radiation field. Our frequency— and angle-dependent

approach allowed us to compute the specific intensity and hence to evaluate the photon-—
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photon pair production. The temperature and density profiles are close to those presented
in paper I and the spectrum peaks at about 500 keV.

First of all, we wish to comment about the possibility of getting a “hot” solution started.
Of course, the thermal energy stored in a “hot” atmosphere is much larger than in a “cold”

one, and it is roughly

U ~ 47 RZy'" £ , (8.16)
’ \ M )

where T is the average temperature. Assuming KT ~ 100 keV, U, ~ 103! erg, a factor
~ 100 above the “cold” case. The transfer of energy from protons to electrons in our model
is described by equation (7.1). Obviously, this is a rather crude estimate which does not
enter into the details of the physical processes responsible for the energy exchange. Heating
associated with the proton stopping might produce temperatures only in the keV range, so
the transition between “cold” and “hot” states could require some more efficient heating
process, like dissipation of shock waves or magnetic field reconnection. We note, however,
that the proton bulk kinetic energy at the neutron star surface is ~ 100 MeV, which is
much higher than the temperature of “hot” solutions. In any case, the smallness of the
energy content of the atmosphere compared to the value of the luminosity, L, ~ 10%7
erg/s, strongly indicates that there should be no severe physical hindrance to drive the
transition on time scales of microseconds.

On the other hand, one can argue that the “hot” state should be short-lived. In fact, as
shown is section 8.4, pair production is expected to become important, at least in the outer
layers where the pair density reaches its equilibrium value at z ~ 1 — 10. Due to the extra
opacity produced by e*, the critical luminosity in the atmosphere becomes a factor 1 + 2z

lower than the Eddington limit. In “hot” models with Lo, ~ 0.1LEq44, where pairs appear
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to be coupled with the plasma, part of the envelope will become necessary dynamically
unstable when z ~ 5. One should expect the outer layers to be expelled very quickly at
the onset of the “hot” state: as a consequence accretion may be inhibited with the possible
production of a relativistic shock wave. This suggestion is corroborated by the consideration
that the momentum fluxes of the two flows are within an order of magnitude, as can be seen
comparing M yecVace and Mot Vour = Moysai, where Moy ~ 47 R%y is the mass in the unstable
part of the atmosphere and a ~ GMI(1 + 2z)L/Lgad — 1]/ R? is the acceleration. Using
the numerical results of section 8.4 and assuming Mace ~ L(Ru/GM), Vace = c(ry/ RV,
which gives an upper limit for the momentum flux of the ingoing material, it turns out
that MyccVaceS 10M,y:Vous- The decrease of the accretion rate and of the luminosity may
push the system in a regime where only the “cold” solution exists, giving rise to an on—off
behaviour.

The “hot” state should be characterized by a spectrum close to that shown in figure
8.2, with typical emission at ~ 100 keV. Moreover, pair bursts are expécted, each consisting
of ~ 471 R2yz/m, ~ 6 x 10% particles; an upper limit for the integrated luminosity in the
annihilation line will be of order of 102° erg. These hot, optically thin and Comptonized
envelopes bear some resemblance with hot coronae above accretion disks, although the ge-
ometry, the heating process, and the triggering of the pair instability may be different.
The onset of the “hot” state represents a possible physical mechanism for producing ef-
ficiently high energy radiation from weakly magnetized, accreting neutron stars and may
be of interest in connection with hard X-ray transients, although we are aware that some
simplifying assumptions, like spherical symmetry and absence of magnetic fields, may limit

the applicability of our results.
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At present hard emission (E> 30 keV) has been observed from a number of sources,
believed to contain NSs, with SIGMA and BATSE (see e.g. Tavani, & Liang 1996; Vargas
et al. 1996). At least seven X-ray bursters, including Aql X-1, and other LMXBs show
transient emission in the range 30-200 keV, with intensity anticorrelated with that in the
soft band. These observations are of the utmost importance, since hard X-rays emission
were previously associated only with X-ray pulsators and black hole candidates. Tavani,
& Liang have proposed a possible explanation for the transient, hard state of these sources
in terms of magnetic reconnection in the inner regions of an accretion disc around the NS,
but the nature of the primary emission mechanism is still an open issue. The total X-ray
luminosity of these sources is ~ 1036 — 1037 erg/s, close to that considered in our model,
although the duration of the hard state is several days. In our picture, this would imply
that the appearance of et pairs, even if it affects the accretion process, does not induce the
transition to the “cold” state. Hard states of shorter duration would be impossible to detect
with BATSE and SIGMA, but they may be observed by the instrumentation on board of
XTE or SAX.

Results reported in this Chapter have been recently published in Zane, Turolla & Treves

(1997a,b)L.

'As far as the paper Zane, Turolla & Treves 1997a is concerned, we are indebted both to an anonymous
referee for drawing our attention on the importance of thermal conduction in “hot” models and to the second
referee, Lev Titarchuk, for his clarifying comments. The revised version of this paper greatly benefited from
discussions with Fred Lamb, Luciano Nobili and Luca Zampieri. We are also grateful to Marco Tavani for

useful discussions about hard X-ray transients.



9 X-Ray Emission from Old, Iso-

lated, Accreting Neutron Stars

The last chapter of this thesis contains a short review about the issue of observing old,
isolated neutron stars accreting the Interstellar Medium (ISM). This possibility is particu-
larly interesting since Galactic ONSs represent a well populated class of stars, with a total
number as high as 108 — 10°. The idea that such objects, when fed by the interstellar gas,
may show up as very weak, soft X-ray sources, was originally suggested more than twenty
years ago by Ostriker, Rees & Silk (1970). Using the Bondi-Hoyle accretion theory, they
have shown that ONSs bolometric luminosities should be ~ 10%! ergs™! for typical ISM
densities and star velocities; assuming spherical symmetry and a black body spectrum, the
characteristic temperature is 10~100 eV. These two typical values summarize the two basic
reasons that make the detection of these sources extremely difficult: their intrinsic weak-
ness, and the fact that the emitted radiation falls in an energy band which is not easily
accessible even to spaceborne instrumentation. Moreover, due to the combined differential
effects introduced by the response of the detector and the absorption of the ISM, any the-
oretical estimate of observability crucially relies on both assumptions of the spectral shape

and evaluation of the mean photon energy.

143
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The detection of ONSs was included as a possible target for the Einstein mission
(Helfand et al. 1980), but it was only a decade later, with the launch of the satellites
EUVE and ROSAT especially committed to the study of the extreme ultraviolet and soft
X-ray bands, that this issue came to life again. During the 90’s, the subject became of
rather broad interest and a number of investigations were presented (see e.g. Treves &
Colpi 1991, hereafter TC; Blaes & Madau 1993, hereafter BM; Colpi, Campana, & Treves
1993; Madau & Blaes 1994; Treves et al. 1995; Zane et al. 1995, 1996b and reference
therein). It has become increasingly clear that a realistic estimate of the observability of
ONS:s relies on a thorough understanding of a number of issues. Just to give some examples,

it requires informations about

a) the density and velocity distribution of ONSs: a subject of interest in itself, strongly
related to the investigations of the pulsars birth rate and of their velocity distribution

and evolution;

b) the magnetic field and spin evolution of isolated pulsars: one of the major unresolved
issues in compact object astrophysics. The knowledge of these parameters for old neutron
stars is crucial, since the accretion process itself may be severely hindered by the rotating

magnetosphere;
c) the interstellar medium and Giant Molecular Clouds distributions;

d) the spectral properties of radiation emitted by neutron stars accreting at modest rates,

and their dependence on the magnetic field.

In all these fields there has been substantial progress. The detectability of ONSs in favorable

spatial regions, like giant molecular clouds and the Solar proximity, has been investigated



(BM, Colpi, Campana, & Treves 1993; Zane, Zampieri, Turolla & Treves 1996b) together
with the expected overall emission, its contribution to the soft X-ray background (Zane et
al. 1995) and to the diffuse X-ray source in the Galactic Center (Zane, Turolla, & Treves
1996). Simultaneously, a considerable effort aimed at discovering ONSs was started (Danner
1996; Motch et al. 1997; Belloni, Zampieri, & Campana 1997; Maoz, Ofek & Shemi 1997).
Despite at least three promising candidates have been proposed (Stocke et al. 1995; Walter,
Wolk, & Neuhauser 1996, Haberl et al. 1996, 1997), at present it is becoming clear that the
number of detectable ONSs is less than that expected by the standard theoretical models.
The observational campaigns are in an advanced stage, but the preliminary observational
results suggest that the paucity of detected ONSs may already be used in placing very
important constraints on some properties of the population.

A detailed discussion about all topics related to the problem is beyond the scope of thls
thesis, and references themselves will be necessarily uncomplete, due to the large amount
of work presented in literature. The main purposes of this Chapter are both to present our
contribution and to briefly review the problem of the observability, describing the current
theoretical and observational scenarios and summarizing the open issues. The structure
of the Chapter is as follow. In section 9.1 we review the basic conditions under which
accretion is possible. Section 9.2 contains a short discussion about the spectral properties
(see also Chapter 7), while theoretical investigations about the observability of single sources
are summarized in section 9.3. A report of the present status of observations is given in
section 9.4. In section 9.5 we present our results for the X-ray diffuse source in the Galactic
Center. Finally, we conclude with a critical discussion and some preliminary results of works

in progress (section 9.6).
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9.1 Accretion onto Isolated Neutron Stars

Let us to consider a star moving with velocity v relative to an ambient medium of number
density n. If the star is moving supersonically through the ISM, the main contribution to
the accretion rate comes from the material swept by its motion. In this case, the accretion
rate is given by

M = TT2oeMpn ~ 10" o M2 gs™?, (9.1)

where r,.. = 2G' M. /v? is the accretion radius, M, is the star mass in solar masses, and
v10 = v/(10kms~1). On the other hand, when dealing with the problem of the observability,
we are mainly interested in the low—velocity tail of the ONSs distribution, because these
are the stars which radiate the higher luminosities. Their velocity may become lower than
the ISM sound speed, and the accretion rate is then fixed by the thermal velocity; in this
case in the previous formula v is replaced by the local sound speed of the interstellar gas,
¢s (see e.g. Novikov & Thorne 1973). Since the accretion radius turns out to be always
smaller than the Strémgren radius by a factor 102, ¢; is the sound speed in a fully ionized

medium at the equilibrium ionization temperature (T ~ 10* K)

¢s ~ 10\/(T/10*K)kms™! ~ 10 kms~!. (9.2)

In the case of NSs, however, strong magnetic fields and fast rotation may inhibit ac-
cretion because of the momentum outflow, produced by the spinning dipole, and of the
propeller effect, induced by the corotating magnetosphere (Ostriker, Rees & Silk 1970; I
larionov & Sunyaev 1975; Davies & Pringle 1981; Blaes et al. 1992). Following BM and
Treves, Colpi & Lipunov (1993), two basic conditions must be verified in order to make ac-

cretion possible. Consider a NS with dipolar field B at the surface and a rotational period
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P; the rotating B—field produces, in vacuo, a relativistic outflow with an energy density

B2 6 2
Ug = (—) (R—6> (%) ~ 7.5x 1079B2, P~* Rerilergcm ™2 (9.3)
7 T

where Rg = R./ (108cm), Biy = B/ (1012 G), r14 = v/ (10 cm), R, and 7. = cP/27 are
the star and light radius, respectively. Accretion can proceed if the gravitational energy

density of the incoming gas

M. - .
Ug = GM.myn ~ 6.5 x 10‘13]%17'145/2 ergcm ™2, (9.4)
N

My, = M/ (10 gs™1), exceeds Up at the accretion radius. This condition is met only

when the NS has spun down to a period

P3 Py~ 10BN (recna RSP MM s (9.5)

(Tace)1a = Tace/(10™cm). Since the star is slowing down at the magnetic dipole rate, this
barrier is overcome in a time t; ~ 431'211\/;/1—11/2 Gyr. As discussed by BM, as order of
magnitude, this value is uncomfortably close to the age of the Galaxy. However, if the value
is taken literally, it implies that a large fraction of ONSs can have spun down sufficiently,
at least if the majority of them are born early in the Galactic history. Actually, depending
on the ONSs velocity distribution, this fraction can be as high as half of the total number
(see BM).

After P has increased above Pj, the infalling material proceeds undisturbed until the

NS magnetic energy density balances the matter bulk kinetic energy density at the Alfven

radius

2/7
= _ BRI\, 1008 i TR T M T em, (9.6)
V2GM.M o
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which lies inside the light cylinder for typical parameter values. The corotating magneto-
sphere will then prevent the accreting material to go any further, unless the gravitational

acceleration at the Alfven radius is larger than the centrifugal acceleration

G.’\’[, 27r 2 X
> | —= 4. 9.
ri Pe (P) T4 (9 7)

This condition translates in another, stronger constraint in the value of the period, since it
must be

Pz Py~ 10885 s 2 m M2 s, (9.8)

If even the second barrier is overcome. matter can slide along the open field lines and finally
reach the NS surface on the polar caps of radius

3/2 a ~
roap ~ TR~ T x 102 B "M TR MMM e (9.9)

e
The centrifugal barrier at the Alfven radius poses a severe problem, since Py is so large
that it can not be reached by magnetic dipole braking. However, other effects are indeed
important. First, we must take into account the so—called propeller mechanism: the accreted
‘matter will be spun up by the magnetosphere, and it will exert a torque on the NS (see
e.g. BM). The interaction between magnetosphere and plasma is poorly understood and
requires a full three dimensional simulation, but approximated expressions for the torque
were presented by BM. Basing on that treatment, the corresponding spin—down time to
P, turns out to be ~ O.O4B1_211/14n"17/28'Uf§/14 Gyr, a value adeguate to allow interstellar
accretion. Numerical simulations indicate that more rapid spin down occurs if the material

builds up, compressing the magnetosphere and becoming unstable to large scale mixing

with the B-field (Wang & Robertson 1985).
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Moreover, there is another effect that may play an important role in making accretion
possible, i.e. the decay of the B—field. As already stated in Chapter 7, the time evolution
of NSs magnetic field is still a very controversial issue. While for NSs in binaries there are
some observational evidences that the magnetic field may decay on a timescale = 107 yr.
leaving possibly a relic component of & 10% — 10° G, no firm conclusions have been reached
in the case of isolated objects (see e.g. Srinivasan 1997; Wang 1997). Theoretical studies
lead, on the one hand, to exponential or power law forms of field decay (Ostriker & Gunn
1969; Sang & Chanmugam 1987; Goldreich & Reisenegger 1992; Urpin, Chanmugam &
Sang 1994), on the other to little or no decay at all within the age of the Galaxy (Romani
1990; Srinivasan et al. 1990; Goldreich & Reisenegger 1992). Statistical analysis based
on observations of isolated radio pulsars give equally equivocal results (Narayan & Ostriker
1990; Sang & Chanmugam 1990; Bhattacharya et al. 1992), owing in part to the difficulty in
treating selection effects (Lamb 1992). From observations, the present status of art merely
states that there is no evidence of field decay during the pulsar phaée, but this fact does
not preclude the possibility of field decay over much longer timescales. On the other hand.
different approaches to pulsar statistics led, independently, to the conclusion that, if the
magnetic field decays, then it probably does over a timescale ~ 100 Myr, that is well above
the characteristic pulsar lifetime (Srinivasan 1997, Hartman et al. 1997).

Keeping in mind these uncertainties, it follows that values of B between 10° and 102 G
should be considered as equally probable. However, as far as the observability of accreting
ONSs is concerned, at the present the most investigated scenario is that one in which the
magnetic field decays, leaving a relic component B ~ 10% — 10% G. In this case, a large

fraction of the entire NS population may have spun down to a period larger than both
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Py and P, in a time lower than the age of the Galaxy. Actually, standard models rely on
the stronger assumption that all old local NSs do in fact accrete steadily (see again BM).
For this reason, in the following discussion we will maintain this assumption, and we shall
present the standard scenario. We will come back to the important issue of the magnetic
field evolution in section 9.6.

The luminosity produced by the accretion process is

2GM. - . -
L~ \/1 - C—zin—ﬁ/fcz ~ 2 X 10311\/[11 ergs 1 (910)

which is orders of magnitude below the Eddington limit. This implies that matter is very
nearly in free—fall until it reaches the NS surface. The dynamical time is then much shorter
than the radiative cooling times and no energy is released before the flow hits the out-
ermost stellar layers. Here accreting protons are decelerated by Coulomb collisions with
atmospheric electrons and/or by plasma interactions and the flow stops after penetrating
a few (5 10) Thomson depths in the NS atmosphere. The bulk kinetic energy of the in-
falling protons is transformed into thermal energy and finally converted into electromagnetic

radiation (see Chapter 7).

9.2 The Emitted Spectrum

The choice of the most favorable energy bands for detecting accreting ONSs is crucially
related to the spectral properties of the emitted radiation and in particular on the mean
photon energy. In order to estimate this parameter, the first question that should be ad-
dressed is the relative efficiency of thermal and non-thermal radiative processes. Let us

start assuming that thermal bremsstrahlung is the dominant emission/absorption mecha-
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nism (see Chapter 7 of this thesis and references therein). In this case, the gas temperature

in the inner, thermalized atmospheric layers should be close to the effective temperature

L\ - ,
Tess = (4/71%20) ~34x10° LM RSP K, (9.11)

where Ly; = L/(10%! ergs™1). Since the atmosphere is geometrically thin (see again Chapter

7), the hydrostatic balance equation

A
dTes R?

(9.12)

can be immediately integrated to get the pressure as a function of the scattering depth. If

T =~ Te.s, this yields an estimate for the gas density

GM.mpTes

R2kTey¢ ~ 167es M R5*(Tes )5 gem ™ (9.13)

o~

where (Tej;)s = Tess/(10°K). For typical values of density and temperature, the free—free
optical depth 7;; ~ (Kyf/Fes)Tes is much larger than unity up to h? > kT.5y, so that
thermal equilibrium is established in the dense inner layers. On the other hand, Compton
scattering is not expected to modify the spectrum because of the relatively low Thomson
depth and electron temperature. Cold atmospheric electrons emit cyclotron radiation. How-
ever, for B ~ 10% G the cyclotron line contribution to the total luminosity is vanishingly
small and it never exceeds a few percent even for B ~ 10'* G (Nelson et al. 1995). These
considerations lead to the conclusion that, at least in the first approximation, some infor-
mations about the typical energies can be obtained assuming that the spectrum emitted
by accreting ONSs is a blackbody at T.zs. In these assumptions, emission turns out to be
peaked at an energy

E ~ 3kT.ss ~ 10013 Rg"/* eV (9.14)
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which falls in the extreme UV/soft X-ray range.

Although a low magnetic field (B < 10%° G) is not going to produce any major effect on
emission/absorption processes, its presence has an important consequence on the emitted
spectrum. Let us consider two ONSs, with the same mass and radius, accreting matter at
the same rate, one with a relic field B = 109 G, the other unmagnetized. The only effect of
a low B-field is to channel the accretion flow onto two polar caps, and the total emitting

area is now 2A4., where 4. = 7r2 The limited size of the radiating region produces a

cap-

hardening of the spectrum with respect to the unmagnetized case with the same luminosity.

In terms of effective temperature, it is

T ma : 2\ T -
ef flunmag 7‘—7‘&11)

where By = B/(10° G).

Moreover, detailed radiative transfer calculations (see Chapter 7 of this thesis; Zampieri
et al. 1995) which we have already mentioned, have shown that the actual spectrum sensibly
deviates from a Planckian: it is harder than a blackbody at 7. 7f and the hardening becomes
more pronounced as the luminosity decreases. Although model spectra were computed for
a NS accreting on the entire surface, this result is independent of the emitting area. It
is due to the fact that higher frequencies decouple at larger scattering depths in the NS
atmosphere, where temperature is higher: the emerging spectrum is a superposition of
blackbody spectra at different temperatures, which is broader than a Planckian at Teps.
At energies larger than 0.5 keV, where the blackbody emission becomes vanishingly small,
the computed spectrum shows a persistent tail and a fraction of 10%-20% of the total flux
is emitted above this threshold; the typical hardening factor is ~ 2 at L ~ 10*' ergcm™2.

Taking into account both the hardening of the spectrum due to the differential character
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Table 9.1: Bandpasses and thresholds for

the EUVE and ROSAT instruments

detector filter bandpass threshold®
(keV) (ct/s)
EUVE ASS Lex 0.071-0.214 0.01
EUVE DE Lex 0.069-0.183 0.015
ROSAT WFC S1 0.09-0.206 0.02
ROSAT WFC S2 0.062-0.11 0.025
ROSAT PSPC T 0.2-2.4 0.015

& All-Sky Survey

of the free—free opacity and that one induced by the presence of B, it turns out the ONSs
are, mainly, soft X-ray emitters with a spectrum peaked at ~ 1 keV for typical parameter
values. This makes these sources possible targets for detectors on board ROSAT and EUVE
(see table 9.1 for details).

It is worth noting that spectra presented by Zampieri et al. (1995) are quite similar
to those emitted by cooling NSs for BS 10° G (Romani 1987; Rajagopal & Romani 1996;
Zavlin, Pavlov & Shibanov 1996). This is not surprising, since, roughly speaking. when
dealing with accreting or cooling NSs, the only difference in the model is that the additional

input of energy comes from the top or from the bottom of the atmosphere. In both situations
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the atmosphere is in near radiative energy equilibrium, and opacity is dominated by free-
free. Numerical results show that the resulting temperature profiles are quite similar in the
two cases, so that the emergent spectrum also presents the same characteristics, with an
overall hardening with respect to a Planckian at 7}, Ff

No detailed spectral models of accreting NSs with high magnetic fields (B ~ 1012 G)
have been presented up to now. Nelson et al. (1995) evaluated the contribution of the
cyclotron line, in the assumption that the thermal part of the emission is blackbody. For
very high fields, however, the atmosphere is no more in LTE and a detailed analysis of
radiative transfer including magnetic effects is required. Spectra from cooling NSs with
B ~ 10! — 10'2 G have been presented by Miller (1992), Shibanov et al. (1992). As they
found, the main effect of a high magnetic field is to increase the opacity; as a consequence the
hard X~réy tails are partially suppressed and the spectrum is much closer to a blackbody.
On the other hand, under these circumstances ONSs might appear as unsteady intermittent
X-ray sources. In fact, as pointed out by Treves, Colpi & Lipunov (1994), for B ~ 1012 G
magnetic pressure could temporarily stop the incoming flow, and the accretion’process may

be cyclic with recurrence time ~ 10° s.

9.3 Observability of ONSs

The first estimates about the observability of accreting ONSs with ROSAT were presented
by TC, and their results have been later corroborated by a more complete analysis by BM,
Zane et al. (1995). Both TC and BM restricted their discussion to the case in which the

spectrum is a blackbody at Teyy, emitted either from the entire star surface or from the
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polar caps, while in Zane et al. (1995) we relaxed this hypothesis using calculated spectra
by Zampieri et al. (1995). As it was shown in section 9.1, the ONSs accretion luminosity
strongly depends on the star velocity with respect to the ISM and on the local density of
the surrounding material. As a consequence, once the emitted spectrum is known, this kind
of analysis relies on the knowledge of two key ingredients: the present ONSs distribution
function in phase space and the morphology and physical state of the ISM.

Recent observations with the ROSAT Wide Field Camera during survey phases (Pounds
et al. 1993) and with EUVE have provided evidence for the presence of a relatively small
number (~ 23) of unidentified bright sources: this led Madau & Blaes (1994) to rule out
there being as many as 10° isolated ONS in the Galaxy, if accretion is spherical. Uncertain-
ties on the statistical properties of the old neutron star population and on the physics of
the accretion process make nonetheless the issue of the total number of Galactic ONSs still
controversial (see e.g. Treves et al. 1995). The search for favorable sites where accretion
can make a lone neutron star shining is therefore of importance. Here we first review the
basic picture, and then we focus on the discussion of these particular, most favorable sites,

which are correlated with the denser phases of the ISM.

9.3.1 The Basic Picture

The spatial distribution of the ISM in the Galaxy is highly inhomogeneous. This introduces
two main difficulties, since, for a given source, the interstellar density determines both the
intrinsic luminosity and the amount of absorption along the line of sight. The situation
is more complicated when dealing with the solar proximity, since here the ISM is highly

anisotropic and its geography is complex (see the later discussion), while the gas structure
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is smoother on larger scales and numerical fits for the distribution have been published in
literature (see e.g. Dickey & Lockman 1990 for a review). In particular, observational data
from Lyo and 21 cm absorption measures show that the ISM distribution of both cold and

warm HI is nearly constant in radius while its z—dependence can be fitted by

22 2 Z
TET = Ny exp (— 202) + noexp (—;2%2—> + nazexp (—ﬁ) (9.16)

1 2

with n; = 0.395, ny = 0.107, n3 = 0.064; oy = 212, 03 = 530 and h = 403 p¢; n; and oy
are in cm™ and pe, respectively. The applicability of the previous expression is restricted
to the range 0.4 < R/Rg < 1, where R is the galactocentric radius and Rp = 8.5 kpc is the
distance of the Sun from the Galactic center. The gas layer has a scale height of about 230
pc in the vicinity of the Sun, while for R < 0.4Ry it shrinks to ~ 100 pc and in the outer
Galaxy it expands linearly up to ~ 2 kpc. The other important contribution to the total
ISM density comes from molecular hydrogen. The best tracer of Hy is the CO molecule, and
observational data suggest a local gaussian distribution with a scale height of ~ 60 — 75 pc.
Observations, however, are much less conclusive as far as the midplane density is concerned
(Bloemen 1987), also because it may significantly depend on R (De Boer 1991). As a first
approximation, the Hy distribution can be described with a gaussian with central density
0.6 cm™ and FWHM 70 pc (De Boer 1991). The ionized component gives only a very small
contribution to the total density, and it can be neglected.

As it can be seen from equation (9.16), typical values for ng are about 0.2 — 0.5 cm™3;
higher values seem to occur in the Sco~Cen and Per directions, where ng ~ 1 — 10 cm™,
Although a detailed map of the gas was used in Zane et al. (1995) to evaluate the ONSs
collective emission, as far as the observability of individual sources is concerned, in all

analysis previously quoted some simplifying assumptions have been introduced. Typically,
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the ISM density 7 is treated as a free parameter, either assuming an homogeneous medium
or, as in BM, mimicing different directions toward the Galactic plane and the poles.

The second ingredient is the present distribution function f of Galactic ONSs. Estimates
by TC were derived using analytical expressions of the speed distribution obtained by
Paczyfiski (1990) fitting results of a Monte Carlo calculation. In principle, the present
shape of f can be obtained evolving spatial and velocity distributions at birth in the Galactic
potential, and a detailed calculation was presented by BM (see also Hartmann, Epstein &
Woosley 1990; Blaes & Rajagopal 1991; Frei, Huang & Paczyiiski 1992). Unfortunately. the
velocity distribution of pulsars at birth is still poorly known, and any evolutionary scenario
remains affected by this indetermination (and by assumptions about the overall Galactic
gravitational potential as well, but, as discussed by BM, this is a much less important point).
In a detailed study, Narayan & Ostriker (1990) found that observational data,:of periods and
magnetic fields for a sample of about 300 pulsars are well fitted by invoking the presence
of two populations of neutron stars at birth, slow (S) and fast (F) rotatofs. These two
populations differ in their kinematical properties, and the F rotators are characterized by a
mean velocity and by a scale height lower than the S ones. Basing on this picture, the evolved
distribution function has been obtained by Blaes & Rajagopal 1991, BM, Zane et al. 1995;
in the latter two papers estimates of the observability were based on these numerical results.
Only the F population of Narayan and Ostriker (1990), which represents ~ 55 % of the total
number N,; of NSs, was taken into account; although the S population has a comparable
birth-tate, it accretes much less matter on average than the F one and its contribution to the
number of detected sources is negligible (BM). Results from our numerical calculation show

that, after the evolution, in the local region 7.5 kpc < R < 9.5 kpc ONSs are characterized
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Table 9.2: Predicted Number of Sources and Sampling Distances (B =0)

All-Sky Survey Deep-Exposure

nH (.Cm_s) T (km 5_‘1) dmaz (PC) Nons (S dmaz, S U) dmaz (PC) Nons (S dmaz: S U)

L/Lpga =107

0.2 9.9 525 (375) 260(132) 1170(725) 1293 (497)
0.5 13. 360 (240) 333(148) 845 (425) 1837(465)
1. 17. 275(165) 253(55) 675 (275) 2495 (414)

L/Lggq =4 x 108

0.2 14. 380 (220) 402 (135) 840 (445) 1965 (552)
0.5 19. 265 (145) 312(51) 555 (275) 2324 (570)
1. 23. 195(105) 262 (41) 415 (185) 2737 (544)

zism = 300 pc; Taken from Zane et al. (1995).

by a mean height scale (z) ~ 250 pc and by a mean velocity, averaged over |z] < 200 pc,
(v) ~ 78kms~™'. The number density of stars, within 2 kpc from the Sun, turns out to
be ng = 3 x 10‘4(Ntot/109)pc‘3. All these values are in close agreement with the results
of BM. Once n and the spectrum are fixed, the observability of a source depends on its
distance d, velocity and on the response of the detector. The count rate measured at earth,

corrected for the absorption of the interstellar gas, is:

1 L .
= “exp (- v vd 17
CR e /AE ) exp(—o,Ng) A, dv (9.17)

where A, and AF are the detector effective area and bandpass, L, is the monochromatic
luminosity at the source, Ny is the column density and o, is the absorption cross section
(Morrison & McCammon 1983). The effective areas can be found in Malina et al. (1994,

Lex ASS), Edelstein, Foster & Bowyer (1995, Lex DE), Pounds et al. (1993, WFC) and in



9.3. Observability of ONSs 159

the ROSAT guide for observers (PSPC). A star of luminosity L (i.e. moving at v = T) can
be observed up to a maximum distance d,; at which the count rate becomes lower than
the sensitivity limit of the detector (in the case of the ROSAT PSPC: 1.5 x 1072 counts/s
for the all sky survey, ASS, and 1073 counts/s for Deep Exposure, DE). As a consequence,

the expected number of observable objects can be calculated by integrating within dpmaz:

dma:t U
Nons (< drmazs < ) = / / / frédrdQdv (9.18)
QJo 0

where 7 is the radial distance from the Sun. Results by Zane et al. (1995) are summarized
in Tables 9.2, 9.3; for comparison the corresponding quantities, as derived for a blackbody
spectrum are listed in parenthesis. Here N = 10° was assumed, so numbers in the tables
are normalized to Nr = 5.5x 108 (F population). As it can be seen from Table 9.2, ONSs are
detectable up to typical distances =~ 200 — 300 pc for ASS, even if they emit from the entire
surface. This scenario is in agreement with previous estimates by TC and BM; in particular,
a comparison with TC results shows that these values are of the order of their estimates for
polar cap accretion. The only difference is that, in our case, the spectral hardening is only
due to radiative processes; when a non zero magnetic field is taken into account, objects
with the same luminosity become visible at larger distances. As it is apparent from Table
9.3, if the magnetic field is 10° G about 10 sources deg™ are expected to be above the DE
ROSAT threshold; this figure is a factor ~ 10 greater than the estimates of TC. Apart of
these differences related to the different hypothesis on the spectrum, the main conclusion
from this kind of analysis is that a large number (thousands) of ONSs should appear in the
ROSAT all sky survey, and in deep fields.

We have already mentioned that the issue of the present shape of f is still controversial.

In particular, a different scenario was proposed by Lyne & Lorimer (1994), who suggested
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Table 9.3: Predicted Number of Sources and Sampling Distances

(for Polar Cap Accretion)

All-Sky Survey Deep-Exposure

N (cm_3) v (km 3_1) dma:: (pc) .’Vons (S dma::, S 6) dma::: (PC) Nuns (S dma:q S U)

L/Lpaq = 1077
0.2 9.5 760 (705) 480 (413) 2480(2110) 5112 (3700)
0.5 13. 685 (595) 1069 (802) 2055 (1675) 9563 (6353)
1. 16. 615 (515) 1823 (1279) 1690 (1330) 13769 (8528)

L/Lgqq =3 x 108

0.2 15. 410(385) 611 (539) 1350 (1060) 6630 (4088)
0.5 20. 370(305) 1345 (914) 1160 (845) 13224 (7017)
1. 25, 340 (260) 2382 (1393) 990 (695) 20128 (9954)

B =10° G; z1sm = 300 pc; Taken from Zane et al. (1995).
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the possibility that neutron stars are born with typical velocities significantly higher than
both the F and S populations of Narayan & Ostriker. The resulting distribution peaks at
about 250 km/s, and extends to velocities above 1000 km/s. Their analysis, however, is
based on proper motion measures of a sample of 29 young radio pulsars and, consequently,
may be not complete in the low—velocity tail (see also Hartman 1997; Hartman et al. 1997).
Moreover, this result would prima facie imply that most pulsars evaporate from globular
clusters and the Galactic plane. On the other hand, it must be stressed that the predicted
number of detected sources does not strongly depend on the overall shape of the velocity
distribution of ONSs, but only on the number of low velocity neutron stars, which are those
accreting at the highest rate. A number of effects can affect the evolution of the low—velocity
tail of f: for instance, dynamical heating was considered by Madau & Blaes (1994). This
process, observed in the local disk star population, causes the velocity dispersion to increase
with age as a consequence of scattering by molecular clouds and spiral arms (Wielen 1977).
If ONSs participate the same process, dynamical heating over the lifetime of the Galaxy
may scatter a fraction of low velocity stars to higher speeds and this, in turn, could decrease
the source number counts up to a factor 10.

On the other hand, if we consider the f distributions at birth, it must be noted that, for
a high velocity distribution such as that one by Lyne & Lorimer (1994), the extrapolation
to low velocities seems to indicate that the number of stars with velocity less than ~ 30
km/s, turns out to be of the same order as the correspondent fraction in the Narayan &
Ostriker model. In addition, more recent results by Hansen & Phinney (1996), Hartman
(1997) support a content of slow ONSs even larger than that of Narayan & Ostriker. As

pointed out by Hansen & Phinney, the 3D velocity distribution of radio pulsars is not
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strongly constrained at low velocities, and could peak at small v. Distributions with a larger
component at low velocities (with respect to the Lyne & Lorimer one) are also supported by
the results of a detailed model of population synthesis, recently presented by Hartman et al.
(1997). This analysis is based on a sample of 129 pulsars, taken from the last version of the
Princeton pulsar catalogue (Taylor, Manchester & Lyne 1993); all objects whose distance
projected on the Galactic plane is less than 4 kpc have been included. As they found, models
based on both the Hansen & Phinney and the Lyne & Lorimer distributions successfully
reproduce the observed pulse period, magnetic field and luminosity distributions, with the
former also giving a somewhat better description of the correlation between characteristic
age and distance to the Galactic plane.

Modulo these caveats and keeping in mind of all the underlying uncertainties, we can
therefore conclude that, at the present status of knowledge, as far as the observability of
ONSs is regarded results are quite independent on the actual, overall shape of f and only the
number of low velocity objects may strongly affect the picture. The proposed v distributions
at birth, however, do not suggest that such fraction may be significantly lower with respect

that one derived by Narayan & Ostriker.

9.3.2 The Most Favorable Sites

Assuming that accreting ONSs should indeed be detectable with ROSAT, and possibly

EUVE, the obvious question is:

“how to pick them up in the sea of still unidentified, weak sources present in the surveys?”
Possible criteria for sorting out good ONS candidates are: the lack of any optical coun-

terpart down to m, ~ 24, soft X-ray spectra, extreme X to optical flux ratio and correlation
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with the denser phases of the ISM. A promising strategy consists in identifying the condi-
tions under which ONSs would produce the higher count rates. The number of non optically
identified sources (NOIDs) is reduced as the cut off count rate is increased, leaving a man-
ageable number of possible candidates, worthy of pointed observations.

Relatively high count rates are expected from ONSs accreting in the denser regions closer
to the Sun. Of course, these regions must be large enough to contain a statistically significant
number of slow NSs, Whi’Ch are the most luminous. In this respect, dense molecular clouds,
where the ambient density is ~ 100 times higher than the average, seem to provide a very
favorable environment for observing ONSs. This issue was investigated by BM: Colpi,
Campana & Treves (1993) and Zane et al. (1995), using different assumptions about the
emitted spectrum. Table 9.4 summarizes our results for a sample of 18 nearby clouds,
studied by Dame et al. (1987). For a typical velocity v, which corresponds to a luminosity
[ = 107 in Eddington units, the expected count rate is reported in column 6; the blackbody
count rate is also listed for comparison (CRpg). The last column contains the number of
detectable sources, with luminosities higher than 10~7; the interested reader is referred to
Colpi, Campana & Treves (1993) and Zane et al. (1995) for all details. As it can be seen
from the Table, in the case of polar cap accretion, the count rate turns out to be above the
threshold of Rosat (in DE) for all clouds. Clouds 15-16 and 18 appear promising because of
their high expected count rates; we note, however, that, since the number of neutron stars in
the clouds is small, large statistical fluctuations are possible. Clouds 5-7, 9-13 represent the
most favorable sites for observability and this agrees with the previous estimate presented
by Coipi, Campana & Treves (1993).

In a recent paper, we suggested that the closest overdense regions of the solar neigh-
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Table 9.4: Estimated Observational Parameters of ONSs

in Molecular Clouds (for Polar Cap Accretion)

Cloud de Re Tie CR CRY g vP NP (<)
pc pc  ecm™3 s—1 51 kms™?!
1 Clond A 500 20 50 2.05 x 1072 1.24 x 1072 54 3
2 Cloud B 300 20 51 5.64 x 102  3.39 x 102 54 3
3 Cloud C 500 16 67 1.97Tx 1072 117 x 1072 59 2
4 Vul Rft 400 23 61 2.82 x 1072 1.44 x 1072 58 5
5 Cyg Rft 700 67 29 6.70 x 10—% 3.32x 107° 45 78
6 Cyg OB7 800 64 29 5.32 x 10~% 2,68 x 10~3 45 68
7 Cephens 450 45 20 2.67 x 1072 1.66 x 10~2 40 18
8 Taurus 140 13 134 0.18 9.41 x 10™2 75 1
9 Mon OB1 800 34 40 6.68 x 10™%  3.72 x 103 50 12
10 Orion A 500 27 84 1.15x 10~2  5.35 x 10™3 64 10
11 Orion B 500 31 56 1.44 x 1072 7.41x 1073 56 13
12 MonR2 830 32 36 6.88 x 10™%  4.02 x 1073 48 10
13 Vela Sheet 425 26 46 2.57x 1072 1.48 x 10~2 52 7
14 Cham 215 13 44 0.14 9.6 x 102 52 1
15  Coalsack 175 8.5 65 0.22 0.15 59 0
16 G317-4 170 5 203 0.18 0.11 86 0
17 Lupus 170 18 53 0.18 0.11 55 2
18 Rer A 150 7.6 68 0.3 0.21 60 0

*Terr=16x 1072 keV;
bp=10°G; lpolarcap = 1077; Taken from Zane et al. (1995).
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bourhood may represent another favorable direction for the detection of ONSs (Zane et al.
1996b). If we assume an ONSs spatial density of ~ 3 x 107* pc™3 (BM, Zane et al. 1995),
about 140 ONSs are in fact present in a sphere of radius 50 pc centered on the Sun: their
proximity makes these objects particularly promising, since a relatively high count rate is
expected. Unfortunately, the local interstellar medium (LISM) is, on average, underdense
and relatively hot so the advantage expected {from the vicinity of the source may be de-
ceptive because the bolometric luminosity is a factor npism/nism ~ 0.07 smaller (see next
subsection). For a typical value of the ISM density in the Local Bubble, n = 0.07 cm™2,
and assuming v = 40 Kms™!, the total luminosity is ~ 7 x 10?® ergs™! and these sources
would be within the EUVE and ROSAT WFC bandpasses, regardless of the details about
the emitted spectrum. However, even if they are located at a distance of 20 pc, in the case of
emission from the entire star surface, they are too faint to be above the sensitivity threshold
of both detectors. In the case of polar cap accretion, a non—negligible fraction of the total
luminosity is emitted in the 0.2-0.4 keV energy interval (S bandpass of ROSAT PSPC),
producing a count rate (~ 0.1-0.6 counts/s) well above the sensitivity limit. However. the
expected number of these relatively bright nearby sources (with d < 20 pc) is so small to
be subject to large statistical fluctuations and, in addition, it could be strongly affected by
the physical state of the gas in the Local Bubble which is poorly known: if the temperature
is as large as 10® K, the accretion luminosity drops below ~ 5 x 10?7 ergs™! (corresponding
to v ~ ¢; >~ 100 km/s) and these sources would become too faint.

On the other hand, since the LISM is highly inhomogeneous and the contour of the Local
Bubble is highly anisotropic, some particular directions may still be promising. As it will

be discussed later on, there is at least one region in the second galactic quadrant, the Wall,
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where the gas density approaches the average ISM density, n ~ 1 cm™3 (see Paresce 1984;
Diamond, Jewell & Ponman 1995). Focussing on this region, we suggested the intriguing
possibility that the nearest neutron stars may account for a non-negligible fraction of the

relatively bright (> 0.1 counts/s) unidentified R-ASS sources in the Wall direction.

9.3.2.1 The Solar Proximity

As discussed, although a relatively high number of ONSs, > 100, are expected within ~ 50
pc from the Sun, their observability as accretion powered sources is severely hindered by
the shortage of fuel. In fact, in the presently accepted picture, the Sun is surrounded by a
region, the Local Bubble, where the plasma has both very low density (n ~ 0.05—0.07 cm™2)
and high temperature (7> 10° K). In the scenario proposed by McKee & Ostriker (1977),
see also Cox & Anderson (1982), Cox (1983), the hot gas would fill ~ 70 — 80% of the
interstellar space and a large number (~ 2 x 10%) of cool (T ~ 80 K), roughly spherical
clouds are expected to be present. Observational data support this model for the region
beyond ~ 50 — 100 pc from the Sun (Knude 1979), but, as discussed by Paresce (1984), soft
X-ray, radio and color excess surveys seem to indicate that no clouds are present at smaller
distances and that the denser material is more probably organized into large, elongated,
moving fronts within ~ 50 pc. The Sun itself is embedded in a medium, the Local Fluff,
which is warm (7' =~ 10° — 10* K) and slightly overdense (n ~ 0.1 cm™3) with respect to
the Local Bubble on scales < 20 pc (Diamond, Jewell & Ponman 1995).

Because both the underdensity and the high temperature in the Local Bubble work
against the accretion process, we focus our attention on the location of the overdense, warm

fronts in the local neighbourhood. The present picture indicates that the contour of the
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Local Bubble in the Galactic plane is highly asymmetric, with four major discontinuities
in four different Galactic sectors (Paresce 1984). In particular, a wall of neutral hydrogen
is located very close to the Sun in the second quadrant, 15° < [ < 120°. According to
Paresce (1984), the wall is roughly parallel to the [ = 330° — 150° axis and is located at
d < 16 pc, with an estimated depth of about 35 pc. The Ny contours presented by Frisch
& York (1983) are generally farther away, with the denser material (n ~ 1 cm™2) at ~ 90
pc from the Sun. Welsh et al. (1994) have derived a highly asymmetric contour of the
Local Bubble that in the second quadrant is roughly intermediate between those presented
by Paresce and Frisch & York. The minimum radius of the local cavity has been estimated
to be ~ 25 — 30 pc, but, as stressed by the same authors, their indirect method could
produce an underestimate of Ny at distances smaller than 50 pc. A very recent analysis
of ROSAT EUV data (Diamond, Jewell & Ponman 1995) has shown that n reaches ~ 1
em™3 at ~ 25— 30 pc and this result seems to be in agreement with the asymmetric contour
found by Welsh et al. more than with those of Paresce, Frisch & York (sée also Pounds et
al. 1993). Despite this, the shrink of the local cavity to less than 25 — 30 pc from the Sun
cannot be ruled out on the basis of present observations.

Being very close, the overdense region in the second Galactic quadrant (the Wall) pro-
vides one of the most favorable environments for the detection of accreting ONSs. In order
to shed light on its importance as far as the detectability of ONSs is concerned, we used
two limiting models for the LISM in the Wall: in model I the overdense region is located
between 16 and 50 pc, in model II between 30 and 50 pc; in both cases the angular range is
15° < 1 < 120°, |b| < 30°. If the total number of ONSs in the Galaxy and their local density

are taken to be N = 10° and ng = 3 x 10~* pc~ respectively, we expect 22 (model I) and
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18 (model II) objects to be present in the Wall. In order to account for the interstellar
absorption, we assume in model T a typical HI density of n = 0.1 cm~3 in the Local Fluff
and n = 1cm™ between 16 and 50 pc (the Wall). In model II we use n = 0.1 cm=2 within
20 pe, n =0.07cm™> for 20 < d < 30 pcand n = Lem™2 for 30 < d < 50 pc. However, due
to the high gas temperature in the Local Bubble, interstellar absorption between 20 and 30
pc can be safely neglected.

Although X-ray surveys toward the Galactic plane detect a very large number of sources,
the extreme vicinity of the ONSs in the Wall could make them relatively bright and, as a
consequence, detectable at larger flux limits. For n ~ 1cm™2 and v = 40 Km s7L, the
luminosity is ~ 10%° ergs™! and the mean photon energy ranges from 40 eV in the case of
accretion on the entire NS surface to 400 eV for polar cap accretion with a magnetic field
of 10% G. As a consequence, a number of sources accreting in this locally overdense region
turns out to be detectable at least by some of detectors on board ROSAT and EUVE.

Using our numerical results for the present ONSs distribution f (mentioned in subsection

9.3.1), we derived the fitting formula

Glv) = % (9.19)

to the computed cumulative velocity distribution. The use of this fit is to be preferred
whenever an estimate of the number of ONSs in a limited volume of phase space is needed;
in the previous expression vg = 69kms™ and n ~ m = 3.3. We assume that the star
distribution is spatially homogeneous and use our derived value for the local density, ng =
3x 107 pc~3.

Three different spectral shapes have been considered: a) blackbody emission from the

entire surface, b) blackbody emission from the polar caps and c) polar caps emission using
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in this case the spectra calculated by Zampieri et al. (1995). Once the shape of the emitted
spectrum has been fixed, we have calculated the maximum value of v, vmax, at which a star
at the inner boundary of the Wall, d;, produces a count rate above each chosen threshold.
For each value of v, the star distance was varied between dy and 50 pc (the assumed outer
boundary of the Wall for both models) in order to calculate the maximum distance, ds{v),
at which such an object can be detected in the Wall. The star will be observable within a

volume V (v):

l?_ 71'/2 dg 0%
_ . 2, _C (3 3 o
V(v) = 2]{1 azz/ﬂ3 sin 0 [ r%dr = 3 (&5 - &) (9.20)

where d; = 16 pc (model I) and d; = 30 pc (model II), [} = 15°, Iz = 120° and « =
1.83 ster ~ 6000 deg? is the angular size of the Wall. If vy, is larger then the sound speed,
the predicted number of sources is found integrating d/N/dv in the range 0 < v < Urax

N = noV (¢5) G (¢s) + no /’Uma.x V (v) (-id—f— dv; (9.21)

Ca

the integral was evaluated numerically, and ¢; = 10 km/s was used.

Two distinct surveys, the All-Sky Survey (E-ASS) and the Deep Survey (E-DE) were
conducted with the EUVE telescopes. Moreover observations with longer exposure times,
the Right Angle Program (RAP, McDonald et al. 1994), allow the detection of sources with
count rates down to 0.001 counts/s, so we repeated our calculations using also this limiting
threshold. We have considered the two filters centered at higher frequencies, covering the
wavelength range 58-364 A. However, in the following we will report only results for the
Lex filter since our calculations in the AIC bandpass indicate that no sources are expected
to be observable in this band. As for thek observability with ROSAT, we focussed on the

total band T of PSPC and WFC (see Table 9.1).
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Table 9.5: Expected number of detectable sources

detector bandpass threshold N® NP N¢
(ct/s)

EUVE ASS Lex 0.01 2 7 1
EUVE DE Lex 0.015 3 7 1
EUVE RAP Lex 0.001 8 19 11
ROSAT WFC S1 0.02 1 3 0
ROSAT WFC S2 0.025 1 0 0
ROSAT PSPC T 0.015 2 21 18
ROSAT PSPC T 0.1 1 16 10
ROSAT PSPC T 1 0 5 2

@ Blackbody emission from the entire star surface.
> Blackbody emission from the polar caps, B = 10°.
¢ Zampieri et al. (1995) spectra, B = 10° G.
Taken from Zane et al. (1996b); Model I.
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Above a sensitivity limit of 1.5 x 1072 counts/s the R-ASS detected a very large number
of sources toward the Galactic plane. However, if some ONSs are really present in the solar
proximity, we expect that their emission persists at larger flux limits where the number
of unidentified sources in the ROSAT survey is lower. For this reason we have repeated
our calculations considering three different values for the threshold count rate: 1.5 x 1072,
0.1 and 1 counts/s. Results of model I are summarized in Table 9.5; model II gives a
substantially similar picture. The optical counterparts of ONSs are very faint (TC, BM),
so the relatively high count rate and the lack of optical identification of the X-ray sources
will be a distinguishing criterion.

The numbers in the Table suggest that, in the assumption of blackbody emission, accret-
ing ONSs could produce a non—negligible count rate in the UV band. Because the hardening
of the spectra computed by Zampieri et al. is comparable to that induced by the presence
of a magnetic field, we expect that, accounting for more realistic spectral properties. UV
radiation could be detected even in the assumption of emission from the entire NS surface.
In this case the number of detectable sources should be similar to the values of N® in the
Table. The highest number of detectable objects corresponds to the intermediate model in
which only one source of hardening acts, either the reduced emitting area or the differential
free-free absorption effect. Since in this case the spectrum is peaked in the EUV-soft X-ray
bands and the LISM does not produce significant absorption at these energies, the count
rates turn out to be larger than those produced by the Zampieri et al. spectra emitted from
the polar caps, which are too hard to give a comparable contribution in the S band (0.2-0.4
keV) of ROSAT PSPC. However, we think that in a more plausible physical scenario both a

non zero magnetic field and the effects of bremsstrahlung opacity should be accounted for.
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Then, it follows that ONSs are, mainly, soft X-ray emitters (see the last columns in Table
9.5), although the EUV counterpart of very bright sources could be detected by EUVE in
the Lex band at the limiting sensitivity thresholds, 0.01 counts/s; at the slightly higher
sensitivity limit of 2 X 1072 counts/s, the predicted number of sources is already zero. In
this respect the RAP, improving the EUV sensitivity in pointed mode, seems to be the
most profitable way to search for the EUV counterparts of ONSs. A detailed analysis of
ROSAT PSPC ASS appears nevertheless the best approach for detecting ONSs in the Wall.
In particular, being such sources very close, about 10 objects are expected to be observable

with ROSAT PSPC above a sensitivity limit of 0.1 counts/s.

9.3.2.2 Comparison with Observational Data and Conclusions

In order to compare our predicted number of sources with the actual number of NOIDs
observed so far in the direction of the Wall, we have performed a systematic analysis of the
ROSAT WIC ASS Bright Source Catalogue (Pounds et al. 1993), the First EUVE Source
Catalog (Bowyer et al. 1994), the EUVE Bright Source List (Malina et al. 1994), the
EUVE RAP source list (McDonald et al. 1994) and the on-line catalogue of the ROSAT
PSPC ASS public pointings (White, Giommi & Angelini 1994, WGA).

The WFC Bright Source Catalogue collects the observations of the ROSAT WFC tele-
scope, which carried out the first almost complete survey of the UV sky (96%) in the
60~200 A wavelength band. In addition, the EUVE Bright Source List, the First EUVE
Source Catalogue and the EUVE RAP source list contain the positive detections of sources
in the E-ASS and E-DE. About 97 % of the sky has been covered in E-ASS, while the

deep survey spanned only a small strip along the ecliptic plane. As discussed, relatively
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soft spectra could produce a non-negligible EUV emission and it is therefore interesting to
analyze the present available data in this band. Searching in the direction of the Wall, we
found 5 sources without any counterpart within a circle of 3 above 0.02 counts/s in the
EUVE Lex filter and 5 unidentified sources in both the S1 and S2 WFC filters; the EUVE
RAP source list contain 4 new unidentified sources. WFC sources are not seen by EUVE.
They are probably too soft to be ONSs, because their 52 count rate always exceeds the
S1 one, at variance with what is expected for the majority of ONSs. We stress, however,
that it cannot be ruled out that some of the faintest unidentified sources in E~ASS could
be ONSs, if their emitted spectrum is soft enough (see Maoz, Ofek & Shemi 1997). In the
case of blackbody emission from the polar caps, we have calculated that 4 sources can be
detected in the Lex band above 0.02 counts/s which corresponds to 80 % of EUVE NOIDs.
However, the E-ASS is far from being complete at a threshold of 0.02 counts/s (~ 3.5 % of
the sky in the Lex band, Bowyer et al. 1994) and the five detected sources are an absolute
lower limit for the total number of unidentified objects in the Wall. As a éonsequence, the
number of NOIDs in the Wall is consistent with the expected number of ONSs in the EUV
band.

The comparison with soft X-ray ROSAT observations has been performed on the basis
of the WGA catalogue. We found that pointings in the WGA catalogue cover about 7%
(414 deg=?) of the Wall, with a total number of ~ 7000 detected sources. The number of
objects observed within an offset angle < 20" from the image center (where the sensitivity
of the detector is maximum) is given in table 9.6 as a function of threshold. We note
that, quite independently of the assumptions on the emitted spectrum, the total number of

NOIDs is substantially larger than our estimated number of observable ONSs in the Wall.



174 §9. X-Ray Emission from Old, Isolated, Accreting Neutron Stars

Table 9.6: WGA sources in the Wall direction

as a function of threshold

threshold sources source expected expected

density sources? NOIDs*

(ct/s) (deg™)

0.015 469 3.25 19500 1500
0.1 132 0.91 5500 170
1.0 48 0.33 2000 30

& density x total area of the Wall.

Taken from Zane et al. (1996b).
It is particularly promising that, at a threshold of 0.1 counts /s, about 5% of NOIDs could
be ONSs, when the emitted spectrum falls mainly within the ROSAT band. The search
for relatively bright R-ASS sources in the Wall direction could be, therefore, a promising
strategy for selecting ONSs candidates. Clearly, the number of NOIDs decreases with
increasing flux limit. Although a slightly larger ONSs/NOIDs ratio is expected at higher
flux limits (~ 1 count/s), the search for accreting NSs among such bright sources could
be fruitless because the estimated number is so close to unity to be seriously biased by
the uncertainties of the model. On the other hand, the choice of a lower sensitivity limit,
~ 0.01 counts/s, does not provide a larger ONSs/NOIDs ratio, suggesting that 0.1 counts/s

is indeed the most favorable threshold for identifying nearby accreting ONSs.
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In the case of polar cap accretion with the spectrum calculated by Zampieri et al.
which seems the more realistic assumption, the emitted radiation is hard enough to give
no detectable flux in the visual band, my> 29. The absence of an optical counterpart
would be, therefore, a primary identification criterion. The R-ASS candidates could be
then searched for by E-DE in individual pointings. Finally, if these objects have some radio
emission, as suggested by Treves, Colpi & Lipunov (1993), another distinguishing feature
would be the high proper motion, ~ 0.2 arcsec/yr assuming a velocity of 35 km/s and a

distance of 30 pc. 1.

9.4 The Present Status of Observations

As we have seen in section 9.3, theoretical predictions about the detectability of single ONSs
are rather optimistic. However, despite the intense observational efforts, the search for ONSs
produced, up to now, just a handful of candidates. These cases concern serendipitous dis-
coveries of ONS candidates in ROSAT PSPC observations and Einstein Extended Medium
Sensitivity Survey (the first one): MS 0317.7-6647 (Stocke et al. 1995), RXJ 185635-3754
(Walter, Wolk & Neuhduser 1996) and RX J0720.4-3125 (Haberl et al. 1996, 1997). Actu-
ally, out of them only the latter two seem indeed promising while the first identification is
slightly ambiguous.

MS 0317.7-6647 is a very soft, weak (~ 0.03 counts/s) source in the field of the nearby
galaxy NGC 1313, and it has been first discovered by Stocke et al. (1995). The only possible

optical counterpart has m, = 20.8, which brings the X to optical ratio to f;/f,2 60. The

1We thank Stuart Bowyer for helpful discussions and the referee of the paper Zane et al. (1996b), Roger

Malina, for bringing to our attention some recent EUVE data.
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simultaneous lack of radio emission seems to rule out the possibility of an extreme BL Lac
object leaving only a compact object as a reasonable option. The identification of the source
with a HMXB in NGC 1313 leads to a luminosity L ~ 10%° ergs=! with an estimated mass
of the compact object ~ 50M. Although not impossible, the existence of such a massive
stellar BH seems unplausible. The high Galactic latitude makes also the source unlikely
to be an X-ray binary in our own Galaxy, so the accreting ONS hypothesis is the only
left standing. This option is corroborated by the PSPC spectrum, which is well fitted by
a blackbody at T' ~ 0.2 keV, by the derived luminosity, which L ~ 1.7 x 1030 ergcm™>
placing the object at 100 pc and by the presence of a cirrus cloud at same position and at
about the same distance.

RXJ 185635-3754 is a much brighter (3.62 + 0.03 counts/s) source already detected
by the EINSTEIN survey; it was first proposed as ONSs candidate by Walter, Wolk &
Neuh&user (1996). The observed spectrum is well fitted by a blackbody with k7 = 57 & 1
eV and column density Ny = 1.4 4 0.1 x 10%° cm~2; no emission was detected in other
spectral bands. In the former analysis of the ROSAT data by Walter, Wolk & Neuhiuser,
no obvious optical counterpart down to m, ~ 23 was found, yielding a very large value of
fz/ fuZ 7000. Moreover, the source appears projected on the molecular cloud RCrA, that
is estimated to be ~ 130 pc away (Dame et al. 1987), and the extinction derived from the
X-ray data is less than the column density in the cloud itself. Basing only on absorption
considerations, Walter, Wolk, & Neuhiuser concluded that the source is likely to be closer
than RCrA and derived a luminosity L ~ 5 x 10%1(d/100 pc)? erg cm=3. Later on, a more
critical interpretation of the ROSAT data by Campana, Mereghetti & Sidoli (1996) pointed

out that RXJ 185635-3754 does not coincide with the dense core of the cloud, but it lies
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on a boundary, in a direction of much lower extinction. The optical absorption is Ay ~ 0.7
mag in the X-ray source direction, while Ay ~ 3 mag at the cloud core (Rossano 1978).
As a consequence, it is not obvious that the source lies in front of RCrA; the new estimated
distance was 170 pc, which places the source beyond the cloud. Rederiving the error box
of RXJ 185635-3754, Campana et al. found that, even if several optical counterparts are
positionally compatible with the X-ray source, they are limited to objects fainter than
g ~ 18 (g is the g Gunn filter of the Danish 1.54 m telecope of the ESO, La Silla). This
gives f./f,> 20, a value still high enough to rule out most classes of known X-ray emitters.
The emerging picture is consistent with a slow ONS accreting in a region where n ~ 1 cm ™3,

RX J0720.4-3125, discovered by Haberl et al. (1996, 1997), is probably the best ONS
candidate proposed up to now. It was first discovered in the ROSAT all-sky survey, during
the Galactic Plane Survey, and then re-observed in a dedicated PSPC pointing. The count
rate is 1.64 + 0.04 counts/s, the best fit spectral model is a blackbody at k7" = 79 £ 1 eV,
Ny = 1.3 x 102°cm~2 and the limit for f;/f, is more than 500. The similarities in the
X-tay properties of RX J0720.4-3125, compared to RXJ 185635-3754 and the high value of
fs/fo suggest it as a very likely candidate for ONS accreting the ISM. The low absorption
rules out an extragalactic origin; the distance was estimated to be around 100 pc, with
an upper limit ~ 300 pc. This, in turn, limits the X-ray luminosity to about 103 erg/s.
In principle, the value of the f;/f, ratio may be consistent with a LMXB interpretation,
since these systems are characterized by typical ratios of 100 — 1000 (White, Nagase &
Parmar 1993). However, this is discarted by both the absence of large changes in the X-ray
luminosity on time scales of years, and the fact that the inferred X-ray luminosity is order

of magnitudes too low. Moreover, the NS interpretation is strengthened by the fact that
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RX J0720.4-3125 is pulsating, with a periodic modulation at 8.3914 s. If interpreted as spin
period, this pulsation is unlikely to come from a white dwarf (WD). In principle, in fact,
a massive WD with this period could be stable (Chanmugam, Rao & Tohline 1987), but
it should be in a binary system, spun up by accretion and, more important, visible in the
optical as a cataclismic variable. An isolated WD accreting the ISM needs to be ~ 30 times
closer than a NS to account for the X-ray flux, and also in this case it should be detected as
an optical source. Moreover, there is another issue that makes RX J0720.4-3125 particularly
interesting: it may represent the first detection that makes possible to improve the present
understanding of the magnetic field and spin evolution of isolated NS (Wang 1997). In
fact, the estimated X-ray luminosity and the pulse period allow to derive the value of the
NS magnetic field, if the X-ray emission comes from accretion. Haberl et al. obtained
BX 10'° G. According to the idea that the field decay is strongly related with accretion,
Haberl et al. proposed a scenario in which RX J0720.4-3125 comes from the evolution of a
Thorne-Zytkow object, similar to that one proposed by Lorimer, Lyne & Anderson (1995)
for low—velocity radio pulsars with low magnetic field. However, an old isolated NS evolved
from a single star can not be ruled out from the magnetic field arguments (Haberl et al.
1997; Wang 1997). As pointed out by Wang (1997), an initial field of 10'2 G and a decay
timescale > 107 yrs (power law decay) or > 108 yrs (exponential decay) are consistent with
the observed parameters and these times may be sufficient to spin down a fast rotating
object to the period of RX J0720.4-3125.

Despite these sources, the low number of isolated neutron stars candidates from the
ROSAT all-sky surveys remains to be explained. The discrepancy between the estimates

for the number of ONSs potentially detectable and the observations is further strengthened
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by upper limits derived from nearly complete identifications of area—selected survey sources.
Recent analyses of ROSAT fields in the Galactic plane (Danner 1996) and in the direction
of GMCs (Belloni, Zampieri, & Campana 1997; Motch et al. 1997; Danner 1996), placed
rather stringent constraints on the number of ONSs in ROSAT images. Belloni, Zampieri
& Campana (1997) have performed a systematic search for ONSs in two molecular clouds
in Cygnus, Rift and OB7, analyzing archive ROSAT PSPC pointings. Observations cover
only a small fraction of the clouds, ~ 5%, and the expected number of ONSs detectable
above threshold is ~ 10 in both Rift and OB7, the actual number depending on threshold.
ROSAT pointings contain 109 sources. For 105 of them an optical counterpart was identified
either on the GSC or DSS, leaving 4 NOIDs, with no counterpart above m, ~ 20. Although
presently inferred values of f./f, ~ 1 are not large enough to quality these sources as
strong ONSs candidates, their positional coincidence with dense clouds together with their
hardness ratio > 0.3 make them worth of future investigations.

A larger sample region in Cygnus, ~ 64.5deg?, comprising a large part of the cloud
OB7, has been investigated in detail by Motch et al. (1997). using R-ASS data. The
survey is complete at about 0.02 counts/s and, at this flux level, 68 sources are detected.
Catalogue searches and optical follow—up observations have shown that the vast majority
of these sources are associated with active coronae (F-K and M stars). There are 8 NOIDs
and they do not seem to be correlated with the denser phases of the ISM.

It should be stressed that, in both cases, the observed number of NOIDs is £ the
predicted number of ONSs (> 10 above 0.02 counts/s in the Motch field, according to Zane
et al. 1995). However, these fields represent sites where accretion should be most effective

and the resulting numbers seem to suggest an excess in the current theoretical predictions
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of a factor ~ 5 — 10. On the other hand, it was already pointed out by Zane et al. (1995)
that the most favorable models produce a source density of ~ 10 deg™? which is too close

to the average density of NOIDs in ROSAT PSPC pointings, ~ 30 deg~2.

9.5 The Diffuse X—Ray Emission

The observational impact of the X-ray emission from isolated ONSs is not restricted to
the detection of individual sources. Despite their intrinsic weakness, in fact, they could
provide a contribution to the diffuse X-ray background (XRB), being their total number
very large. This point, originally suggested by Ostriker, Rees & Silk (1970), was addressed
by BM who concluded that the integrated flux form ONSs above 0.5 keV is negligible in
the hypothesis of blackbody emission. Further interest in the collective ONSs emission
was aroused by the paper of Hasinger et al. (1993). By carrying out a detailed analysis
- of 27 fields at high galactic latitude, [b| > 30°, these authors found that, at the faintest
flux limit of ROSAT, about 60 % of the background is resolved into extragalactic discrete
sources (see also Comastri et al. 1995). Their flux is 1.48 x 10 %ergem =25 1sr™! in the
0.5-2 keV band over a total flux Fxpp = 2.47 x 10 %ergcm ™25 s~ in the same energy
band. The projected number density of resolved sources turns out to be 413 deg™2, which
exceeds by about 60 % the density of QSOs predicted by standard evolutionary models.
Even assuming that at the same flux limit the contribution of stars is ~ 10 %, about
120 sources deg™? remain to be explained, together with ~ 40% of the XRB (soft excess).

As noted by Hasinger et al. , these results can be interpreted either by a more complicated

model for the evolution of the QSOs X-ray luminosity function or invoking the presence
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of a new population of sources. An important point emerging from ROSAT observations
that sets constraints on the nature of the new population is that the average spectrum of
resolved sources becomes harder at lower flux limits.

Although such a population may be extragalactic in origin, Maoz & Grindlay (1995)
showed that its properties are compatible with those of Galactic objects and tentatively
identified them with Cataclysmic Variables (CVs). As they pointed out, objects with a
typical X-ray luminosity ~ 10% erg/s, and with a local density of ~ 107* — 1075 pc™2 could
explain a substantial fraction, 20-40 %, of the XRB, giving, at the same time, the required
source density and soothing the problem of the observed number sources excess. Assuming
a blackbody spectrum at the star effective temperature, and assuming that the population
is composed of standard candles of fixed luminosity, accreting ONSs were ruled out as
possible candidates by Maoz & Grindlay on the basis of their too soft emission. The role of
the magnetic field which drastically diminishes the emitting area, and the harder spectra
obtained from our calculations, together with their hardening with decreasiﬁg luminosity,
lead us to recompute the ONSs contribution. A thorough model has been presented in Zane
et al. (1995), using the numerical results for the star distribution f, a detailed map of the
ISM and synthetic spectra. We showed that the ONSs contribution to the XRB, averaged
over all latitudes, can be as high as 10%, and 5-6 % at the high latitudes considered by
Hasinger et al. and Maoz & Grindlay. This corresponds to 12-25% of the observed soft
excess. At the sensitivity limit of the deep survey of Hésinger et al. (2 x 107* countss™!)
the number density of resolved sources, averaged over all latitudes, is ~ 20 deg™?, which
amounts to ~ 17 % of the unexplained non—-QSOs, non—stellar component. Actually. the

strongest constraint on this scenario follows from the expected number of sources above the
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higher threshold of 1073 countss™!. From a direct analysis of the on line catalogue of the
ROSAT PSPC pointings (ROSATSRC), we found that the mean number of sources detected
with flux larger than 1073 countss™! (~ 107 ergem™2s71), is ~ 30deg™2 (b < 30°) and
~ 40deg™? (b > 30°). Despite this result is formally in agreement with the mean number
of unidentified sources predicted by our model at the same flux limit, ~ 10deg™2, it is
apparent that the two numbers turns out to be too close.?

Clearly, the diffuse emissivity of accreting ONSs depends on their spatial concentration
and on the density of the interstellar medium. For this reason it is of particular interest
to consider accretion onto NS remnants in the Galactic Center, that is a site where both
the stellar and gas densities exceed by orders of magnitude those of other regions of the
Galaxy. At the same time the Galactic Center is a well known source of diffuse X-ray
emission, first detected by Uhuru (Kellogg et al. 1971) and then studied by virtually all
X-~ray missions. In the light of this, we have recently analized the possible association of
the Galactic Center diffuse X-ray source with accreting ONSs (Zane, Turolla, & Treves
1996; see also Maraschi, Treves, & Tarenghi 1973). The next subsections are devoted to
the presentation of these results. Because of the peculiarity of the Galactic Center region
(see e.g. Morris & Serabyn 1996; Genzel, Hollenbach & Townes 1994 for extended reviews),
the discussion will be slightly more detailed with respect to that one presented in the rest
of this Chapter. First, we review the X-ray observations of the Galactic Center. We then

discuss the interstellar medium, the stellar and the expected neutron star distributions.

2We thank the referee of the paper Zane et al. (1995), Piero Madau, for some useful and constructive
comments on the manuscript, Michiel van der Klis for stimulating discussions and Tomaso Belloni for his

help in extracting data from ROSATSRC.
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The calculation of the emission due to accreting ONSs is finally presented and our results

are compared with observational data. Discussion follows.

9.5.1 The Diffuse X~Ray Source at The Galactic Center

The Galactic Center is one of the most widely explored regions of the sky in the X-rays and
observational efforts appear indeed motivated in the light of the complexity of the source.
The inner 100 pc of the Galaxy exhibit, in fact, a region of diffuse emission together with
a number of point-like sources. The strong absorption in the direction of the Galactic
Center makes its appearance substantially dependent on the energy band (soft or medium
X-rays) in which the source is observed. Here we briefly outline the current status of X-ray
observations of the Galactic Center, focussing our attention on the diffuse component.
The presence of a weak, diffuse emission from about ~ 1 deg? was already suspected
in the Uhuru 2-10 keV data (Kellogg et al. 1971) and first confirmed by FEinstein in the
0.5-4 keV band (Watson et al. 1981). Observations with 10" resolution in the 2-15 keV
range, performed with Spartan ! (Kawai et al. 1988) and Spacelab 2 (Skinner et al. 1987;
Skinner 1989), confirmed the diffuse emission at higher energies. Spectral measurements by
Ginga, with an angular tesolution of ~ 1°, have shown the presence of a strong emission
line at 6.7 keV, which was identified with the Ka line of He-like iron (Koyama et al. 1989;
Yamauchi et al. 1990). The continuum appears rather flat and is well fitted by a thermal
bremsstrahlung. A temperature of 12.7 + 0.4 keV was calculated on the basis of TTM
observations by Nottingham et al. (1993). Such temperature, however, is more than one
order of magnitude too high for a plasma to be confined in the Galactic Centre potential

well.
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The ART-P telescope on board Granat observed the Galactic Center region with 5
resolution in the 2.5-30 keV band with rather long exposure times (Sunyaev, Markevitch,
& Pavlinsky 1993; Markevitch, Sunyaev, & Pavlinsky 1993). The intensity profiles obtained
in 4 energy bands, after subtracting point-like sources, show the presence of an elliptical,
extended source, as first suggested by Kawai et al. Spectra from the total 1° x 1.5° ellipse
and from a central region 30’ wide were produced, confirming a flat bremsstrahlung-like
continuum; a strong absorption feature at 8-11 keV was also detected. Sunyaev, Markevitch,
& Pavlinsky (1993) noted that the structure of the diffuse emission differs substantially
below and above ~ 8 keV. While the lower energy component is thermal and roughly
elliptical, the hard emission comes from an elongated region, parallel to the Galactic plane,
that resembles the distribution of Giant Molecular Clouds. This led Sunyaev, Markevitch,
& Pavlinsky to the conclusion that the diffuse emission consists of two components and that
the high energy portion of the spectrum may be due to Thomson scattering of hard photons
on the dense material of the clouds. In this picture the bremsstrahlung temperature could
be lower than the previous estimate (Markevitch, Sunyaev, & Pavlinsky give Threms ~ 3
keV), easing the problem of confining the hot gas in the Galactic Center.

The best resolution X-ray map of the Galactic Center was obtained with ROSAT in the
0.8-2 keV range (Predehl & Triimper 1994). In order to explain the lack of X-ray sources
at the position of Sgr A*, an interstellar absorption higher than 2 x 102® ¢cm~2 was invoked
by Predehl & Triimper. Preliminary reports of ASCA observations (Koyama et al. 1996)
indicate the presence of several metal lines besides iron. In particular, a 6.4 keV fluorescent

Ka component appears superposed to the 6.7 keV emission feature.
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9.5.2 The Gas Distribution

The structure of the interstellar medium (ISM) in the central 10® parsecs of the Galaxy has
been extensively investigated and a detailed review can be found in Genzel, Hollenbach &
Townes (1994). Informations about the dust distribution are obtained from the re-radiation
of UV and visible photons into the infrared continuum, atomic and ionized components are
observed directly in the 21-cm line while the more abundant molecular gas is sampled by
the millimetre, submillimetre and infrared lines of trace molecules (CO, OH, HCX, ...).
The resulting picture shows that the Galactic Center is a region characterized by a strong
concentration of dense interstellar material, with an average density of gas and dust 102 —10°
times higher than in the rest of the Galaxy. The central 5 parsecs contain a circum-nuclear
disk (CND) of orbiting filaments and streamers with its inner edge at ~ 1.5 pc from the
center. This disk is probably fed by the infalling gas from denser molecular clouds at rz 10
pc and drops streamers in the central region. The inner region (r< 1.5 parsecs: the central
cavity and the mini-spiral) are comparatively devoid of material and the average gas density
is, at least, one order of magnitude lower than in the CND. On larger scales, surveys of 2.6
mm CO and far—infrared dust emission with IRAS (Dame et al. 1987, Deul & Burton 1988)
show that ~ 108 Mg, of gas (~ 10% of the total Galactic ISM) are contained in the inner
few hundred parsecs. Using a new CO-to-H, conversion factor, Sofue (1995a) estimated
a value for the gas mass of ~ 4.6 x 107 Mg within @ ~ 150 pc, where w is the distance
from the center in the plane of the sky. The corresponding average gas density turns out
to be ~ 100 cm™3, in agreement with the value reported by Genzel, Hollenbach & Townes
(1994) for the inner 100 pc. The total mass of gas and dust is only 1-10% of the stellar

mass and does not contribute significantly to the Galactic gravitational potential. The dust
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comprises only about 1% of the ISM mass which is mainly in the form of molecular, atomic
and ionized gas. A fraction of the interstellar material is organized in dense molecular
clouds and macro-structures: within ~ 500 pc the filling factor is ~ 10% for clouds with
n ~ 10% cm™2 and ~ 0.05% for clouds with n ~ 10° cm—3 (see, e.g., Campana & Mereghetti
1993 for a discussion). As recently discussed by Sofue (1995a), the gas distribution in the
central ~ 1 kpc region is dominated by a rotating ring with n & 103 cm™3 located at ~ 120
pc while the gas density drops by one order of magnitude outside. An expanding, roughly
spheroidal, molecular shell is also observed at r ~ 180 pC, |2|S 50 pe, with the gas mainly
concentrated at intermediate latitudes (Sofue 1995b).

Using IRAS observations of the 3° x 2° region around Sgr A, Cox & Laureijs (1989)
proposed that the dependence of the gas mass on the projected distance from the Galactic

Center is

Mgas(< =) ~ 2 x 10318 . (9.22)

Such distribution holds approximately up to 300 pc from the center and implies, on such
scales, a nearly constant surface density. As discussed by Cox & Laureijs, this result is very
sensitive to the assumed dust temperature and the value of the total gas mass is correct to
about 30 % within 300 pc (50 % at larger distances). Clearly, the averaged volume density
profile can be derived only by de-projection and any distribution matching the constraint
of constant surface density is a priori acceptable. In particular, if the extension of the gas
along the line of sight is roughly constant when w varies, it is not unreasonable to assume
an homogeneous gas distribution with an averaged, constant value for n. Within 225 pec,
the averaged value of n derived from IRAS data is ~ 60 cm™3, assuming an elliptical gas

distribution with an axial ratio 0.7 and using a value of 3.6 x 107 Mg for the total mass (Cox
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& Laureijs). However, in the inner ~ 100 pc this value is probably an underestimate (see

3 seems to be closer to observations. For these

the previous discussion) and n = 10% cm™
reasons, in our calculation of the contribution of accreting ONSs to the diffuse emission

from the Galactic Center, the accretion rate will be estimated assuming an homogeneous

distribution of the ISM with

3

n=100cm™ w < 100 pc. (9.23)

Outside this region, in order to correct the X-ray emission for interstellar absorption,
we need an estimate of the gas density in the Galaxy. This is known to be of order unit
and is a parameter in our model, adjusted in such a way to give a total column density,
integrated over 8.5 kpc at z = 0, always greater that Ny = 2 x 10%® cm~2. As discussed
by Predehl & Triimper (1994), such a large value of Ny appears compelling if the deficit of

X-rays sources observed by ROSAT toward Sgr A* has to be accounted for.

9.5.3 The Star Distribution

Both observations and theory (see e.g. Bailey 1980; Allen, Hyland, & Hillier 1983; Sanders
1989; Morris 1993) provide convincing evidence that in a very large range of Galactocentric
distances, from few arcseconds to few degrees from the center, the star volume density
scales approximately as ™2 (r is the galactocentric spherical radius) in agreement with the
prediction of the isothermal cluster model for the region outside the core radius a. The
value of the core radius derived from observations ranges between ~ 0.04 and ~ 0.8 pc (see
e.g. Morris 1993; Genzel, Hollenbach & Townes 1994 and references therein). Within the
core radius, data derived from the dynamics of both the stellar and gas components agree

quite well in suggesting that an additional dark mass of ~ 3 x 10° Mg is present in the
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central region. This mass could be in the form of either a single, massive black hole or, if
the central density is not in excess of 103Mg pe~3, a cluster of many compact remnants
(Morris 1993; Genzel, Hollenbach & Townes 1994). According to this picture, the mass

volume density of the stellar component is given by
o(r) = 0.r 18 Mgpe™3, (9.24)

where p. is the central density which can be inferred from the estimated mass inside the
core radius; typical values for g, are a few 105Mg pc—3 (Sanders 1989; Morris 1993). In
the following we assume that this profile adequately describes the stellar distribution in the
region beyond 1 pc from the Galactic Center and we take g = 4 x 10°Mg pe=3.

The fraction fys of the total mass comprised in neutron star is a free parameter of
our model and we assume that all neutron stars have the same mass, M, = 1.4Mg. For a

Salpeter initial mass function (IMF)
N(M) o« M~ (9.25)

with o = 2.35 and assuming that all stars with initial masses between ~ 10Ma and ~ 500y
have left neutron stars, fis turns out to be ~ 1 %. With a fixed o, the previous formula
can be assumed to describe the IMF of an already formed galaxy for masses in a given
range, so possible differences due to the evolution of the bulge in the early Galactic history
are ignored. However, as suggested by Morris (1993), the initial mass function for stars
formed in the Galactic Center may be quite different from that averaged over the disk of
the Galaxy, due to the different physical conditions in the star—forming clouds. In particular,
throughout most of the central region, strong tidal forces increase the value of the limiting

density for a cloud to become self-gravitating and this, in turn, acts toward inhibiting star
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formation. This implies also that close to the center self-gravitating clouds are more and
more unlikely to be present and that those in which the density is above the tidal limit are
presumably supported by the strong magnetic pressure. Large internal velocity dispersions
and higher temperatures within the clouds tend to increase the Jeans mass up to an order
of magnitude with respect to the typical value in the rest of the Galaxy. In the inner few
parsecs the most effective way of forming stars seems to be external cloud compression due
to collisions with other clouds and/or with shock fronts produced by supernova explosions
and other forms of nuclear activity. During the compression the gas temperature and the
value of the Jeans mass are increased. Basing on these arguments Loose, Kriigel, & Tutukov
(1982) argued that the mass spectrum in the Galactic Center is probably skewed toward
higher masses, with a lower cutoff at My, ~ 1 —3Mg (M pmin = 0.08Mg is often assumed
in the disk). In addition, the value of a itself turns out to be smaller than in the disk. so
fns = 0.01 should be regarded as a lower limit. Corrections due to the effects of dynamical
friction over the lifetime of the Galaxy have been considered by Morris (1993), but thev
have not been included here since they are more relevant for black holes due to their larger
masses. Black hole remnants are expected to dominate the central cluster and their total
mass is a large fraction of the dynamically inferred one. On the other hand, since mass
segregation is not expected to modify strongly the distribution of neutron stars remnants.

in the following we will use a number density of neutron stars given, outside the core radius.

by

n(r) = fns QIC r‘l'Spc_S. (9.26}

M

The last ingredient we need in order to estimate the cumulative emission associated with

the NS population is their velocity distribution f(v). The approach previously discussed. in
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which f(v) is obtained assuming a suitable distribution of NSs at birth in phase-space and
following the evolution of a large number of orbits in the Galactic gravitational potential,
proved very useful in calculating f(v) on large scales. However, due to the particular con-
ditions of the Galactic Center, results obtained from a detailed analysis are not necessarily
more correct than a simpler estimate. As discussed by Sellgren et al. (1990, see also Genzel,
Hollenbach & Townes 1994), the velocity dispersion o, for low—mass stars in the central
region is nearly constant between 0.6 pc and 100 pc, with o, ~ 75 km/s. At very small
7 observational data indicate that o, increases up to ~ 125 km/s. Here we assume that
NS remnants were able to reach energy equipartition with the field stars, establishing a

Maxwellian distribution

2

n i

flv) = l— exp (—3:52/2) , (9.27)

vo
where 2z = v/vg, vg = o, and typical values for o, are in the range 75 — 125 km/s. For
a typical mass of ~ 1Mg), it can be easily shown that the relaxation time ¢,e/qp (see e.g.
Binney & Tremaine 1987)is £ 100 yr in the inner ~ 10 pC. Since t,q.q 15 @ measure of the
time required for deviations from a Maxwellian distribution to be significantly decreased, in
the innermost region our hypothesis is justified. Energy equipartition between populations
of different mass is reached in about the same time. In addition, the evaporation time
turns out to be > 10%° yr for 7< 10 pe, so the irreversible leakage of stars from the system
due to stellar encounters is negligible over the Galaxy lifetime. A similar approach was
used by Morris (1993) for the velocity distribution of the central cluster of black hole
remnants. Extendihg the Maxwellian assumption up to ~ 100 pc is motivated on the basis

of observational data. The total mass scales approximately as r here and, as previously

discussed, this is just what is expected in an isothermal cluster model. Actually, a lowered
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Maxwellian distribution is probably more reasonable, but the correction in the high energy
tail (above ~ ves. ~ 20,) is not very important as far as the fraction of accreting ONSs is

concerned, and will be not included in our calculations.

9.5.4 Results

Using the NS and gas distributions considered in the previous subsections, we can estimate
the contribution of the neutron star population to the diffuse emission near the Galactic
Center. We assume that the emitted spectrum is that calculated by Zampieri et al. (1995)
and that ONSs have a relic magnetic field B = 10° — 10! G. Under these assumptions. the
emission of medium X-rays (~ 4 — 5 keV) is possible in the dense region of the Galactic
Center.

The monochromatic flux emitted by ONSs in a region of volume V centered at r = 0

can be calculated from the expression

45}’{2 dv ergem™?s7t, (9.28)

F, = /Vn(r)wdwdqusfooof(v)

where L, is the monochromatic luminosity at the source corrected for the interstellar absorp-
tion. In the previous expression the volume element is expressed in terms of the cylindrical
coordinates (@, z,¢): z is along the line of sight and @ has been defined in subsection 9.5.2.
Ro=8.5kpcand R = (R2+w? —2Roz + z2)1/2 are the distance of the Galactic Center and
of the star from the Sun. The integral in equation (9.28) has been evaluated for |z| < 24z
and for different values of wy,.z. IRAS data discussed in section 9.5.2 show that the dense
material extends for a few hundred parsecs around the center, so we assume z,,, = 300 pc.
The unabsorbed monochromatic flux at the source depends on the accretion rate which,

in turn, is a function of v and n. To avoid the direct calculation of the spectrum for each
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value of the parameters within the multiple integral, we have computed a set of models for
different values of M. The spectral distribution corresponding to any given pair of values
of v and n is then obtained by spline interpolation. The total emitted flux and the total
flux for square degree in a fixed energy band are calculated integrating equation (9.28) over
frequencies. All multiple integrals have been evaluated numerically and the cross sections
for the interstellar absorption has been taken from Morrison & McCammon (1983).

The region within ~ 1 pc from the center (central cavity), where our assumed star
and gas distributions cease to be valid, has been excluded from the integration domain in
all models. The X-ray emission from accretion onto collapsed objects in the cavity under
hypotheses similar to our has been recently estimated by Haller et al. (1996) and turns out
to be completely negligible.

Results of model calculations are compared with Granat ART-P observations. As dis-
cussed in subsection 9.5.1, the diffuse emission detected by Granat in the 2.5-8.5 keV band
comes from a roughly elliptical region of ~ 1.18 deg? around Sgr A*. The values of the
observed total flux reported by Sunyaev, Markevitch, & Pavlinsky (1993) are 4.8+1x 1010
ergs em™? s7! and 4.6 £ 1.3 x 1071° ergs cm~2 s~! in the two energy bands 2.5-8.5 keV
and 8.5-22 keV. For the sake of simplicity, we approximate the total ellipse with a circle
of the same area, centered at » = 0. We then calculate the expected X-ray flux in the two
spectral bands, varying B, vp and Ng. The fraction fys of neutron stars is always taken
equal to 0.01; obviously fluxes scale linearly with fns. Results are reported in table 9.7.

As can be seen, the flux emitted above 8.5 keV never exceeds a few percent of the
observed one, so accreting ONSs can not be directly responsible for the detected hard X-

ray emission. On the contrary, the contribution of ONSs in the lower energy band can be
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Table 9.7: Computed fluxes for different parameter values

Vo Ny B Fl2.5-8.5] Flg.5—22)
kms™!  10%® cm™? G 1070 erg cm™2 571 10710 erg cm™2? 5!
75 2 10° 7.11 0.071
75 3 10° 3.90 0.064
75 4 10° 2.44 0.057
100 2 10° 3.18 0.031
100 2.5 10° 2.30 0.030
100 3 10° 1.74 0.028
100 3.5 10° 1.36 0.027
100 4 10° 1.09 0.025
125 2 10° 1.68 0.017
125 3 10° 0.92 0.015
125 4 10° 0.57 0.013
150 2 10° 0.99 0.010
100 2 1010 7.80 0.151
100 3 1010 4.61 0.135
100 4 1010 3.03 0.121
200 2 1010 1.05 0.020
300 2 1010 0.32 0.006

Ins = 10_29 a =1 pc, Zmae = 300 pe.

Taken from Zane, Turolla, & Treves (1996).
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substantial. For the two values of B we have considered, the expected emission ranges from
a minimum of 0.07 up to ~ 1.6 the Granat flux in the 2.5-8.5 keV band. Clearly, this kind
of calculation is necessarily influenced by the uncertainties in the assumed ISM and ONSs
distributions. However, allowing for different values of the ONSs mean velocity and of the
total column density, computed values are always comparable with observational data. In
addition, while it could be not unreasonable to assume higher mean velocities for the NSs
population (see e.g. Lyne & Lorimer 1994: Haller ef al. 1996), the range of column densities
we have explored corresponds to the higher values for the interstellar absorption toward the
Galactic Center reported in the literature (see e.g. Thomas et al. 1996). Moreover the
fraction fys of neutron star has been fixed to a rather conservative (low) value. All these
considerations suggest that the ONSs contribution to the diffuse X-ray emission from the
Galactic Center can be substantial in the low energy component.

We note that the ONSs integrated luminosity is typically > 1038 erg s~! and that most
of the radiation is in soft X-rays. This may prove of importance in the discussion of the
heating and dynamics of the ISM in the central region of the Galaxy.

The spectrum of the diffuse emission from both the total 1° x 1.5° ellipse and a smaller
circle 30" in diameter has been obtained by Markevitch, Sunyaev, & Pavlinsky (1993). For
the sake of comparison, we have calculated the monochromatic flux from these two regions
using equation (9.28). Results are presented in figures 9.1 and 9.2 for three sets of parameter
values. Crosses in figures 9.1 and 9.2 are the Granat data with their error bars. As can be
seen, the observed spectral distribution is flatter than the predicted one, but the spectral
shape is reasonably reproduced up to 6-7 keV. Other physical processes should be invoked

to explain the harder emission.
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Figure 9.1: Granat ART-P data (Markevitch, Sunyaev, & Pavlinski 1995, crosses) and calculated
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X-ray spectra from a region of 1.18 deg® for: a) fns = 0.01, vo =75 km/s and Ng = 3 % 103 cm™?
(solid line); b) fns = 0.02, vo = 100 km/s and Ng = 3 x 1023 ¢m~? (dashed line); ¢) fys = 0.015,
vo = 100 km/s and Ny = 2.5 x 10%® cm™? (dash-dotted line). For all models B = 10° G. Taken

from Zane, Turolla, & Treves (1996).
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Figure 9.3: Contour levels of the X-ray flur/deg® in the 2.5-5 keV band. Parameters values are
B =10° G, fys = 0.01, vo =75 km/s and Ny = 3 x 1028 em~2. Taken from Zane, Turolla, &

Treves (1996).

We have compared the radial distribution of the emitted flux with available observational
data. From the central 30’ region we expect approximately 34% of the total flux. This
fraction should be compared with the ~ 25% deduced from Granat data. The two values
are in rough agreement although the radial distribution of the diffuse emission predicted by
our simplified model appears more concentrated toward the center than the observed one.
Figure 9.3 shows the contour levels of the X-ray flux per square degree, normalized to the
total, in the 2.5-5 keV band. As a final point, we note that accretion onto ONSs produces
an extremely smooth X-ray source in our model. In fact, the neutron star with the highest

accretion rate contributes only to 3 x 10~* of the total X-ray luminosity.
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9.5.5 Discussion

As we shown, the 2.5-7 keV component of the diffuse X-ray source observed in the direc-
tion of the Galactic Center may be due to the unresolved emission from old neutron stars
accreting the interstellar medium near the Galactic Center. Due to the large gas and stellar
densities, the central region of the Galaxy appears, in fact, a very promising site to detect
the overall emission from accreting ONSs. We have shown that a sizable fraction, possibly
most, of the 2.5-7 keV emission may be explained in terms of an old neutron star population
accreting the dense ISM. Because of the intrinsic uncertainties in our assumptions, mainly
in the value of the neutron star relic magnetic field and in the star velocity distribution, it
is not possible to assess firmly that ONSs are responsible for the extended X-ray emission
in this band. Moreover, as we discussed in detail in this Chapter, accretion itself onto mag-
netized neutron stars could be questionable. Modulo these caveats, our calculations show
that the observed intensity, spectral shape and flux radial dependence are substantially well
reproduced for different values of the free parameters of the model. Above ~ 6 — 7 keV the
integrated ONSs spectrum gives only a marginal contribution to the observed flux.

The calculated continuum is rather flat and then drops sharply above ~ 6 keV, so we
do not expect that ONSs emission could provide an important photoionization source to
produce ultimately iron lines. However, our synthetic spectra were computed considering
only pure hydrogen atmospheres around accreting neutron stars. A definite assessment
about the presence of Ka lines in the emerging spectrum would require the extension of our
model to include line processes and a more realistic chemical composition for the accreting
gas. If accretion onto neutron stars with a magnetic field as high as ~ 10'? G is possible

(which is dubious, see, e.g., Treves, Colpi, & Lipunov 1993), at high luminosities about 10
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% of the flux is emitted in the cyclotron line at Eg = 11.6B15 keV (Nelson et al. 1995) and
the excitation of the Fe lines could be substantial.

Sunyaev, Markevitch, & Pavlinsky (1993) noticed some correlation between the distri-
bution of giant molecular clouds and the X-ray brightness and interpreted it as a signature
of the reprocessing of medium energy photons by the clouds themselves. Such a correlation
is naturally explained in our scenario, since GMCs provide regions of very high density in
which the accretion rate can be substantially higher than our present estimate, based on
n =100 cm~>. This implies also harder spectra, so that the emission of hard photons, ~ 10
keV, is possible for ONSs accreting in clouds with n ~ 10* ¢cm™3. On this regard, see the
discussion of Campana & Mereghetti (1993) on the source 1740.7-2942.

Finally, we outline that the correlation between X-ray emission and the ISM distribution
may become the basic probe to test the real relevance of ONSs accretion in explaining the
diffuse X-ray source in the Galactic Center; AXAF and JET-X will have the required
sensitivity and space resolution in medium energy X-rays to shed light on this important

issue.

9.6 Concluding Remarks

In the standard models, the estimated number of detectable ONSs turns out to be large
enough to expect that these sources have already appeared as unidentified sources in the
current EUV, X-ray surveys and pointed observations, and a series of selection criteria
should be enable to guide their identification. Their discovery would be of unprecedented

importance, since it would provide some insights on the magnetic field and spin evolution,
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and set constraints on the statistical and collective properties of ONSs. However, although
intense observational champaigns are still in progress, at present the low number of isolated
neutron star candidates in the ROSAT All-sky survey remains to be explained. If the
preliminary upper limits derived from optical identifications of ROSAT survey sources (e.g.
Motch et al. 1997) will be confirmed, some hypothesis underlying the standard estimates
of the observability of accreting ONSs should be critically reviewed.

As discussed at the beginning of this Chapter, all published estimates on the observabil-
ity of ONSs relies on several physical hypotheses and a series of uncertainties may alter the
theoretical predictions: we shall conclude this discussion pointing out some of them, that

seem to be more crucial.

a) The total number of ONSs is one of the most obvious parameters that affects the picture.
All results scale linearly with Ny, and models that predict rather lower birth rates may

explain the discrepancy (see e.g. Hartman et al. 1997).

b) We stress again that standard models rely on the strong assumption that all old local
NSs do in fact accrete at the Bondi rate (BM). At the low rates which are typical for
ONSs accreting the ISM, the conditions under which accretion is possible are rather
critical, and the answer strongly depends on the star velocity, spin period and magnetic
field. Allowing for a distribution of these parameters may influence the results, since the
two barriers at the accretion radius and at the Alfven radius (see 9.1) may be overcome

only for a fraction of the total number of ONSs.

c¢) The equilibrium velocity distribution of ONSs has been calculated on the basis of rather

conservative assumptions about the distributions at birth (see Paczynski 1990, TC, BM,
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Zane et al. 1995). On the other hand, as a consequence of higher velocities at birth
(e.g. Lyne & Lorimer 1994), old neutron stars may spread out over a larger volume in
the Galaxy. At present, fewer slowly moving ONSs (that contribute mostly to the local
counts) would therefore populate the local region around the Sun (see Hartman et al.

1997).

The controversy on the magnetic field and spin evolution is even more fierce. The problem
is whether the field decay is necessary related to accretion, or it can occur also in isolated
NSs. Since the decay times are supposedly comparable or larger than the pulsar lifetime,
little evidence derives from pulsar statistics, and one should rely on highly speculative
models for the neutron star interior. Very recently, however, Wang (1997) found some
evidence for a substantial decay of the magnetic field, B ~ 10° G, precisely in the ONS
candidate RX J0720.4-3125, but there is the possibility that this object is the outcome
of the common envelope evolution of a binary system. On the other hand, the neutron
star in the X-ray binary 4U1626-67 may be a counter-example: it may have accreted a
considerable amount of mass and yet its magnetic field is ~ 10'* G (Srinivasan 1997).
If the magnetic field does not decay, a totally different picture must be expected. Large
fields, B ~ 10'2 G, can either affect the spin evolution of a ONS (i.e. affect the possibility
that accretion actually occurs) and modify the emitted radiation, shifting the spectrum
and possibly excluding the ROSAT band. Moreover, accretion may be unsteady and
ONSs might appear as transient X-ray sources (Treves, Colpi & Lipunov 1993, see also

section 9.2)

Recently, points b) and d) were reconsidered by Treves, Colpi, Turolla (1997), who
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presented some preliminary results about the consequences of relaxing the assumption of
a constant, low value of the magnetic field in ONSs. Since the time evolution of the B-
field is related to the rotational period of the NS, it is possible to construct a simple
model, considering the spin evolution due to both dipole losses and the propeller mechanism
(Ilarionov, & Sunyaev 1975). The latter starts to be active when the incoming material
penetrates below the accretion radius. In order to bracket uncertainties on the still poorly
understood physics of the field decay, they assumed an exponential decay law for the crustal
field and treated the decay timescale, 7. as a free parameter (see also Ding, Chen & Chau
1993); the no decay case can be recovered for 7. > 10 yr. Fixing the ISM number density,
n = 1gcm™3, and varying the values of 7, it is now possible to derive the maximum velocity
ver (i.e. minimum accretion rate) for which steady accretion sets in. The main results are
summarized in Table 9.8; B; and P; are the value of the surface magnetic field at the end
of the propeller phase and the final period, both corresponding to a star with velocity ver.
The initial values are B = 2 x 102 G and P = 0.01 s. It is interesting to note that the
limiting velocity for accretion is higher if no field decay occurs and progressively decreases
for smaller 7.. This can be understood taking into account that, for 7. = oo, spin-down by
magnetic braking is more effective (dP/dt B'/%) and the ONS enters the propeller phase
earlier in the evolution. In addition, the value of the critical period at the end of the dipole
radiation phase increases with both increasing B and v, thus promoting effective spin-down
in the propeller phase.

We can see that the scenario previously discussed can be, broadly speaking, recovered
for 7. = 10° yr. In this case, in fact, stars with v ~ 70 km/s can accrete, and they are

characterized by a low magnetic field (B ~ 6 X 10° G). All stars with v < v, are at present
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Table 9.8:
Te Bf Pf Ver Nlcr
10% yr 10°G s km/s 101l g/s

1 1.1 8.67 26 0.1
3.2 0.8 11.7 38 0.03
10 0.6 18.9 89 5x 103
32 85 1.7 x 108 85 3x 103
100 734 1.2 x 104 91 2.4 x 103

316 1.4x10% 2.1 x10% 90 2.5 x 103
1000 1.8x10° 2.5 x 10% 90 2.5 x 1073

oo 2 x10°% 2.7 x 10% 90 2.5 x 1073

Taken from Treves, Colpi & Turolla 1997.

in the accretion phase, and, using equation (9.19), for 7, = 10° yr this corresponds to
~ 0.5Ny0¢. However, it must be noted that B 7 Tepresents the present value of the magnetic
field for stars with v = v,.; NSs with lower velocity will enter the accretion phase earlier,
with an higher magnetic field. Since in this case the spectral properties will be different, a
more detailed estimate of the number of expected sources in the Rosat surveys should be
performed. On the other hand, a scenario with 7., = 108 yT gives a stronger reduction in the
number of resolved sources, since in this case only a small fraction of ONSs (with v < 26
km/s) are expected to be in the accretion phase.

While it is certainly true that other factors may play an important role, affecting the

theoretical picture, these results seem to be particularly promising, since a range of models
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parameter soothing the discrepancy between observed, unidentified X-ray sources and ex-
pected ONSs may be naturally provided. A detailed investigation of this issue is in progress,

and it will be presented in the near future (Treves et al. 1997).
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Appendix A

The coefficients 4,’s

Here we present the expressions of the 4;,7 = 1,...,8, terms appearing into equation (3.24).

Their derivation starts from Fraser’s result, equation (3.22), and makes use of relation

f:M/ai-\/l—u’z\/l—,tﬂcos(@-@’) . (A.1)
At first order in v and 7, only the first four moments m] of the distribution function
n 1 ! n A v
m, = 5/ Fudp (A.2)
-1

appear in the Compton source term; they will be termed j,, h,, k, and [,, using the
standard notation. The relation between m} and the more familiar correspondent moments

of the specific intensity [, is simply:
M? = E°m™. (A.3)

To make the larger number of terms dimensionless, we introduce double logarithmic fre-
quency derivatives for all even moments; terms containing odd moments are written as

semi-logarithmic derivatives since odd moments may become vanishingly small in regions
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where the effective optical depth is very large. The final result is:
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Appendix B

The coefficients 4+

Since the polynomials Gn(b — n.c.z) appearing in equation (6.30) are not an orthogonal
system, is not possible to derive an explicit expression for the coefficients AF. Here we show
that these constants can be, in principle, obtained as the solution of an infinite system of
linear algebraic equations. We note that the two sets AF are not independent, because the

two expressions in (6.30) must match at v = vg, where
wl(t,vp) = A6(t/t. — 1) (B.1)

(A is a constant related to the monochromatic flux injected at the inner boundary). Since
z o t/tp and = = t/t., the polynomials G,(b — n,c,z) can be expressed in terms of
Gn(3,3, ), which form an orthogonal system, as
n
Gn(b—mn,c,z) = Z CrmGm(3,3,2). (B.2)
m=0

The coeflicients Ch,,, are solution of the upper triangular system of linear algebraic equations

" men (MY (M +2)Y(m + 2+ k)! _ (n\T(c+n)I(b+ k) / 8 k
pOE ( ) Com = (> ( 71,;) . (B3)

k] (2m+2)ik+2)! k) T(b+ n)l(c+ k)
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for £ = 0,...,n. Recalling the standard expansion of the §—function over an orthogonal set

of eigenfunctions and using again G,(3,3,2) as a basis, it is

~1)=2? Z Tg";ig; Gm(3,3,2). (B.4)

Inserting (B2) and (B4) into (B1) and equating the coefficients of the polynomials of the

same degree, we obtain

m>0. (B.5)

BRI JME R S Uk 1
= (¢)n Crmdr = 2 m!(m + 2)!

The numerical evaluation of AZ has been carried out truncating the series appearing in

(B5) to a maximum order N ~ 60 and solving the system by backsubstitution.
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