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Notations

°

B: The interior part of the subset B of RV .

A: The closure of the subset A of RV .

A CC B: Two subset A and B of RN such that A C B.

A°¢: The complement of the set A in RY ie., A°= A\ RN,

GA: The boundary of the set A.

A A B: The symmetric difference between the set A and the set B.
B,(z): Denote the ball of radius 7 and center z.

R: The extended real line, i.e., R = RU {c0}.

u Awv: The infimum between the function u and the function v.

u V v: The supremum between the function u and the function v.
ut, u~: The positive and the negative part of the function u, ie., vt =u V0 and v~ = u A Q.
signu: The sign of the function v, i.e., signu = u/|ul.

Ta(u): The truncation of the function u to level A, i.e.

u if Ju| < A,
Ta(u) = {/\ if u> A
-2 if u <=M
1g: The characteristic function of the set E, i.e.,, 1g(z) =1 if 2 € E and 1g(z) = 0 otherwise.

(-,-): The duality pairing between the spaces X’ and X, where X is a Banach space (which will be clear,
from time to time, from the context) and X'’ is its topological dual space.

On, Onm: Sequences of real numbers such that lim o, = 0 and lim Hm omn = 0.
n—+00 m—00 N—0o0

|B|: The Lebesgue measure of the set B.

supp pt: The support of the measure p, i.e., the smallest closed set whose complement has measure zero
under pu.

up: The measure given by the Borel function u and the measure p defined by fB udp for every Borel
set B.

pl_E: The restriction of the Borel measure g to the set E, ie., pl_E(B) = u(B N E) for every Borel
set B.

Du: The gradient of the function u;
div: The divergence operator;
—A: The Laplace operator, i.e., —Au = div(Du);

—4&,: The p-Laplace operator, i.e., —Au = div(|Du|P~2Du), with 1 < p < +o0;
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Introduction

In this thesis we study the asymptotic behaviour of the solutions of elliptic equations with Dirichlet
boundary conditions'in perforated domains. Among the physical motivations of the problem we mention
the applications to scattering theory (see [39], [60]), electrostatic screening (see [61]), and heat conduction
in domains with a complicated boundary (see [60], [14]). A further motivation for the study of this
problem in the most general case, without any geometric assumption on the domains, is given by the
recent applications to a relaxed formulation of some optimal design problems (see [1], [7], [18], [6], [37],
(8]).

Our problem can be formulated as follows. Let us consider an elliptic operator of the second order

N
(1) , Lu=— Z D;(a;; Dju),

1,j=1

with bounded measurable coefficients on a bounded open set Q of RY, and let (Q;) be an arbitrary
sequence of open subsets of Q. For every f € H~1(Q2) we consider the sequence (u;) of the solutions of

the Dirichlet problems

up € H (),
(2)
Luy=f in Q.

If we extend up to Q by setting up = 0 on Q\Qy, then (up) can be regarded as a sequence in H(£2).
The problem is to describe the asymptotic behaviour of (up) as h — oo.

The main result of Chapter 2 is the following compactness theorem (Theorem 2.2.6), which holds
without any further hypothesis on the geometry of the sets Qp. For every sequence (£2) of open subsets
of Q there exist a subsequence, still denoted by (£2;), and a positive Borel measure x4 on Q, not charging
polar sets, such that, for every f € H™(Q), the solutions us of (2) converge weakly in H}(Q) to the

unique solution u of the problem

ue HY(Q) N I3(9),

(3) .
(Lu,v)—{—/ wvdp = (f,v)  Yve Hg(QNLAQ),
Q

where (-,-) denotes the duality pairing between H~1(Q) and H}(Q).

To prove this compactness theorem we observe (Remark 1.4.2) that all problems of the form (2) can
be written as problems of the form (3) for a suitable choice of the measure p in a special class of positive
measures, denoted by M(Q2), which includes also measures which take the value +o0o on a large family
of sets. We prove (Theorem 2.2.5) that, for every sequence {u;) of measures of the class My(Q), there
exist a subsequence, still denoted by (up), and a measure p € Mp(Q) such that, for every f € H~1(Q),

the solutions u, of the problems

un € HY(Q)N L2, (Q),

4)
(Lup, v) +/Quhvdph = (fv)  Vee H(QNIZ (Q)
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converge weakly in H () to the unique solution u of (3). This more general formulation of the com-
pactness theorem includes in our framework the problem of the asymptotic behaviour of the solutions of
Schrédinger equations with positive oscillating potentials.

When L is symmetric, this compactness result is already known (see [2], [1], [31], [10], [52]), and the
original proof is based on T'-convergence techniques, for which we refer to [1] and [24].

Under some special hypotheses on the sequence (23), which imply, in particular, that the limit
measure 4 belongs to H (), the asymptotic behaviour of the solutions (us) of (2) was studied in [41],
(48], [60], [61], [42], [49], [43] by an orthogonal projection method, in [39], [60], [16], [17] by Brownian
motion estimates, in [53], [54], [55] by Green’s function estimates, in [21], [19], [20] by means of oscillating
test functions, in [57], [36] by the point interaction approximation, in [4] by capacitary methods. These
papers provide also a description of the limit measure p in terms of the relevant properties of the sets Q.
The case of random sets Q was studied in [39], [59], [56], [58], [35], [15], [3].

Our new proof of the compactness theorem holds also when the operator L is not symmetric. The
new method, which is more direct than the previous one, and is completely independent of I'-convergence,
is based on the original technique of the oscillating test functions, which was introduced by Tartar [67]
in the study of homogenization problems for elliptic operators, and was adapted to the case of perforated
domains by Cioranescu and Murat [20].

However, our choice of the test functions is new, and allows us to avoid any additional hypothesis on
the sequence (£2;). Our proof relies on the study of the behaviour of the solutions wj; of the Dirichlet
problems

w;, € Hg (),
(5)

L*wy =1 in Q4,
where L* is the adjoint operator. For a complete study of the asymptotic behaviour of the solutions of
(2) when L is symmetric and the sequence (w}) converges strongly in Hg(§2) we refer to [66]. The main
difficulty of our result lies in the fact that (w}) is compact only in the weak topology of H}(R).

In the general case (4) we consider the solutions w} of the problems
wy € H}(Q)N L2 (Q),

(6)
(L*w;,v)—}—/ whvdpn :/vd:z: Vv e HHQ)NLE (Q).
Q Q

By an elementary variational estimate the sequence (w}) is bounded in H{(Q), and so we may assume
that (w;) converges weakly in HZ(Q) to some function w*. We prove (Section 2.1) that v*=1— A*w"
is a positive Radon measure on ©Q, which belongs to H~!(2), and thus we can consider the measure
B E Mo(2) defined by

d *
) = /B—w”— if cap(B N {w* = 0},Q) =0,

+co, if cap(B N {w*=0},Q) > 0.
This is the measure which appears in the limit problem (3). Since, by an elementary variational estimate,
the sequence (up) of the solutions of (4) is bounded in H¢(2), we may assume also that (us) converges
weakly in H¢(Q) to a function u. Moreover, if f € L*°(£2), by the comparison principle (Proposition 1.4.4)
the sequence (uy) is bounded in L™(Q), and thus u € L*(Q).
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To prove that u is the solution of (3), we show that up, satisfies the equation

™ (Lun, whe) — (L}, ung) = /Q fulpde — /ﬂ une da

for every ¢ € Hj(Q) N L*(Q). As the difference of the first two terms is continuous with respect to the

weak convergence of (uz) and (wj), it is easy to take the limit in (7) and to show that

(8) (Lu,w™g) — (L*w™,up) = /fw*godm - /ugod;z:
Q Q

for every ¢ € Hj(Q) N L*=(Q). Then we prove (Lemma 2.1.5) that (8) has a unique solution u €
H(Q) N L*(R), which coincides with the solution u € H(Q) NLA(Q) of (3).

of our compactness result in the case f € L*®(Q2). The case f € H7}(Q) can be treated by an easy

This concludes the proof

approximation argument. If we repeat the proof with I replaced by L*, we obtain the same limit
measure 4 (Theorem 2.2.3).

So far we have considered only the problem of the weak convergence of (uy) in HZ(Q2). In Section 2.3
we consider also the problem of the strong convergence of the gradients (Duy) in LP(Q,RY). Using
Meyers’ estimate [50] and a general result due to Murat [51], we prove (Theorem 2.3.1) that, without any
additional hypothesis, the sequence (Duy) converges to Du strongly in LP(Q,RN) for every 1 <p < 2.

To obtain strong convergence of the gradients in L2(Q2, R") we construct a corrector term Py(z,s),
z € ©, s € R, which depends on the sequence (uj), but is independent of f, u
(Theorem 2.3.2) that for every f & L*°(Q) we have

, up. We prove

Dup(z) = Du(z) + Pup(z,u(z)) + Ru(z) a.e. in Q,

where the remainders R; tend to 0 strongly in LZ(Q,RN). This improves the corrector results of [20]
and [40], which assume that g € H=(Q), and those of [38], which assume that w* > 0 a.e. in Q. The
corrector Pp(z,s) is constructed explicitly in terms of the solutions of (5) or (6), with L* replaced by L.
If these functions converge strongly in H{ (), we recover (Corollary 2.3.8) the result of [66].

In Section 2.4 we study the problem of the dependence of x on the skew-symmetric part of the
operator L. Extending a result of [20], we prove (Theorem 2.4.1) that the limit measure p depends only
on the symmetric part of the operator L, if the coefficients of the skew-symmetric part are continuous. In
the last part of Section 2.4, we construct an explicit example, which shows that x may depend also on the

skew-symmetric part of L, when the coefficients are discontinuous.

In [9] and [23] is proved that, when the operator L is symmetric, the asymptotic behaviour as h — co,
1s uniquely determined by the asymptotic behaviour, for a suitable class of sets E CC Q, of the capacities
capt(E '\ Qh,Q) associated with the operator L; i.e., the measure p in problem (3) can be constructed
by using the limit of the capacities of the sets E \ Q4. In order to extend this analysis to the case of
non-symmetric operators, we need to know the properties of the set function cap(-, Q).

The notion of capacity associated with a possibly non-symmetric elliptic operator of the form (1) with
bounded measurable coefficients, was introduced by Stampacchia in [65] in order to study the behaviour
of the Green’s function of L. In the symmetric case the L-capacity capl(A,Q) of a set 4 in a bounded

open set Q can be defined as the infimum of

n
/ (Z aiijuDiu) dz
o

i,j=1
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over the set of all functions u in the Sobolev space Hg () such that u > 1 a.e. in a neighbourhood of
A. It follows easily from this definition that cap’(A,) is increasing with respect to A and decreasing
with respect to Q. Moreover, using standard techniques, it is not difficult to prove that the set function
cap®(-,Q) is countably subadditive and continuous along increasing sequences of subsets of (2.

When the operator L is not symmetric, the definition of L-capacity is given in terms of the solution
of a variational inequality. In this case very little seems to be known about the behaviour of capf(4,Q)
as a function of A and Q. To our knowledge, even the monotonicity properties have never been studied.
Indeed Stampacchia proved only that, if A C B CC 2, then

cap®(4,Q) < K cap™(B,9),

where K > 1 is a constant depending on L, and K > 1 when L is not symmetric (see [65], Theorem 3.10).
Since g
capii(4,Q) < Zcaplz(4,Q)
o

for two elliptic operators L; and L. with the same ellipticity constants « and § (see [65], Theorem 3.11),
the precise behaviour of the set function capf(-,Q) is not important in those applications where only
a rough estimate of capl(-,Q) is needed, like the estimates for the Green’s function and the Wiener
condition for the regularity of boundary points (see [47] and [65]). Indeed in all these cases one can replace
the non-symmetric operator L by a simpler symmetric operator with the same ellipticity constants, and
the previous estimate, together with the properties known in the symmetric case, are enough to obtain
the desired results.

However, in the study of the asymptotic behaviour of the solutions of (2) we can not replace cap®(-,Q) -
by an equivalent capacity, since the measure p in problem (3) actually depends on L and not only on the
sets Q.

In Chapter 3 we study in detail the properties of capt(A,Q) for an arbitrary elliptic operator L. In
particular we prove that cap®(A4,Q) is increasing with respect to A (Theorem 3.2.2) and decreasing with
respect to  (Theorem 3.2.3). Moreover, we show that the set function cap®(-,Q) is strongly subadditive
(Theorem 3.2.4) and continuous along increasing sequences of subsets of Q (Theorem 3.2.5). These results
together imply that cap’(-,Q) is countably subadditive (Theorem 3.2.6).

In view of the applications to the study of the asymptotic behaviour of the solutions of Dirichlet
problems in varying domains (see Section 4.5), we need a more symmetric treatment of the variables A
and Q in capf(A, Q). Therefore, for every pair of bounded sets A and B, with A C B, we define the
L-capacity cap®(4,B) of 4 in B by means of a variational inequality, which reduces to that used by
Stampacchia when A is closed and B is open.

A crucial role in the proofs is played by the inner and outer L-capacitary distributions A and v.
These are positive measures, supported by 94 and 9B, such that the L-capacitary potential u satisfies
Lu = A — v (Theorem 3.1.6). Moreover we have capl (A, B) = A(8A) = v(dB) (Proposition 3.1.9). With
the aid of these properties we prove that capl(A,B) = cap? (A, B), where L™ is the adjoint operator
(Theorem 3.2.1). This result is essential in our proof of the other properties of capf(-, Q) mentioned above.

We conclude Chapter 3 with an example which shows that, although A — v € H~'(R") when
capl(A, B) < +co, the single measures A and v may not belong to H~1(RY) when A is not relatively
compact in the interior of B.
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Once we know all relevant properties of the L-capacity we can extend to the general case all results
proved in {9] and [23] for symmetric elliptic operators. In particular in Chapter 4 we prove (Theorem 4.5.1)
that, if

(9) Jim cap”(E\ 0;,Q) = a(E)

for all sets F in a sufficiently large class £ of subsets of Q, then for every f € H~}(Q) the solutions
up, of (2), extended by 0 in Q\ Qj, converge weakly in H}(Q) to the solution u of problem (3), where
the measure p is uniquely determined by the set function « defined by (9). More precisely, let 8 be the
regularization of « defined by

BU)=sup{a(E): E€&, ECCU}, if U is openin Q,
B(B) =inf{B(U) : U open, BC U CQ}, if BCQ.

Then the measure p which appears in (3) is the smallest Borel measure on § which satisfies u(B) > 3(B)
for every Borel set B C 2: it is given by the formula
u(B) = sup S B(B;),
iel
where the supremum is taken over all finite Borel partitions (B;)ier of B.

If there exists a Radon measure v on Q such that §(B) < v(B) for every Borel set B C Q, then u

can be obtained also by a derivation argument: we prove (Theorem 4.4.13 and Remark 4.4.14) that the

BB _
(=) )

limit

exists for v-almost every = € © and that

w(B) = /Bgdv

for every Borel set B C Q.

As in Chapter 2, in Chapter 4 we consider these results in the general framework of relaxed Dirichlet
problems (4). In this case the behaviour of the solutions up is determined by the behaviour of the pp-ca-
pacities (introduced in [31] and [30]) on a “sufficiently large” class of Borel subsets of . We shall show
explicitly that, choosing the measures pj in such a way that problems (4) are equivalent to problems (2),

the corresponding pj-capacities coincide with the set functions E w capl(E \ Q,Q) considered above
(Remark 4.1.3).

The last part of the thesis (Chapters 5 and 6) is devoted to the study of the asymptotic behaviour of
the solutions of some nonlinear elliptic equations of monotone type with Dirichlet boundary conditions in

perforated domains. Let us consider a monotone operator from Wy () to W~1P (Q) of the form
—div(A(z, Du)),

where 2 < p < 400, 1/p+1/p' =1,and A: Q x RN — R" is a Carathéodory function which satisfies
the following monotonicity and growth conditions: there exist two constants 0 < o < £ and a function
h € LP(Q) such that

(10) Az,0) = 0
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(11) (A(z, &) — A(z,£2)) (€1 — &2) > alér — &7,

(12) |A(z,&1) — A(z,£)| < B(R(z) + [&1] + [€a])P 2|1 — &2

for every £1,62 € RV and for a.e. £ € Q. The case 1 < p < 2 is not considered explicitly, but can be
treated by the same method with standard changes in conditions (10), (11), and (12). Given a sequence

(Q1) of open subsets of Q, we consider for every f € W12 (Q) the sequence (us) of the solutions of the
problems

up € Wy (Qn),

(13 1

/ A(z,Dup)Dvdz = (f,v) Vv e Wyt (),
o

where, in this case, (-,-) denotes the duality pairing between W~17'(Q) and W, 7 (Q). If we extend uy
to © by setting up = 0 in 2\ Qp, it is easy to see by (11) that (us) is bounded in Wol’p(.Q) and hence,
up to a subsequence, converges weakly in Wol’p(Q) to some function u. The problem is to construct the
variational problem satisfied by u, that in general, as in the linear case, will be not of the form (13).
When the operator —div(A(z,-)) is the differential of a convex functional ¥(u) = [, ¥(z, Du)dz
defined in Wol’p(Q), with ¢(z,-) even and positively homogeneous of degree p, this problem was solved

in [25] by means of T'-convergence techniques. In this paper it is proved that the limit problem is of the
form

u € Wy (Q) N LE(Q),

(19 1
/ A(z, Du)Dv dz +/ [uPPuvdy = (fiv) Vv e WP (Q)NLA(Q),
Q (9]

where p is a measure in the class ME(Q), i.e., the class of all non-negative Borel measures not charging
sets of p-capacity zero. This result is given as a compactness result in the general framework of relaxed
Dirichlet problems of the form (14). Indeed, also in this case, with a suitable choice of the measures py

we can rewrite problems (13) as

un € Wo P(Q) N LE (9),

(15)
/ A(z, Dup)Dv dz +/ lun P~ upvdpn = (f,v) Yo € WyP(Q)N LR (Q).
o Q

This compactness result has been recently generalized by Dal Maso and Murat (see [33]) to the case of
operators of the form —div(A(z,-)) which satisfy (10), (11), (12) and the following homogeneity condition:

(16) Az, 1) = [tP~%tA(z,€)

for every t € R, for every £ € RV, and for a.e. = € Q. Under this assumption they are able to prove
that for every sequence () of measures in ME(Q) there exist a subsequence, still denoted by (p4), and
a measure p € M5(Q) such that for every f € W12 (Q) the sequence (up) of the solutions of problems

(15) converges weakly in W, P(Q) to the solution u of problem (14). In their proof, as in the linear case
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(Chapter 2, Section 2.1), an essential role is played by the solutions wj, of problems (15) corresponding
to f = 1. Moreover, assumption (16) together with a corrector result (see [33], Theorem 3.1) permits to
follow the idea used in Chapter 2 and to construct explicitly the measure p in problem (14) by means of
the limit of the sequence (wy).

Our aim is to study the asymptotic behaviour of the sequence (u;) of solutions of problems (13) when
assumption (16) is not satisfied.

The main result of Chapter 5 is the following compactness theorem (Theorem 5.4.11): for every
sequence (£25) of open subsets of 2 there exist a subsequence, still denoted by (Q4), a measure p € ME(Q),
and a function F : Q@ x R — R such that for every f € W=1#'(Q) the solutions us of (13) converge
weakly in WyF(Q) to the solution u of the problem

u € WyP(Q) N LE(Q),

(17) '
/ Az, Du)Dvdz + / F(z,w)vdp = (f,v) Yo € WP (Q)N LE(Q) .
Q Q

Moreover for every s1,s2 € R and for every z €  we have

. p(p—2) 1
|F(z,81) — F(z,s4)] < L(Isll -+ ISQI) P Y E I
(18) (F(z,51) — F(z,s2))(s1 — 82) > als1 — sa|f,

F(z,0) = 0,

where the positive constant L depends only on the costants o and 8 which appear in (11) and (12).

To prove this result, without any homogeneity assumption on the monotone operator, we can not apply
the direct method used in Chapter 2 and in [33]; so that the study of the limit problem will be carried over -
by comparison with the model problem corresponding to the p-Laplacian —Apu = —div(|Dulf=2Du).
Indeed, since the p-Laplacian clearly satisfies assumption (16), by [33] we know exactly the behaviour of
its solutions on varying domains. Our proof follows the lines of [12], where the same result is given under
special geometric assumptions on the sequence Q; which assure that the measure p in the limit problem
is bounded and belongs to W~1'(Q). Namely, we consider the sequence (wj) of the solutions of the

problems
wy, € Wyt (),

fion

By the compactness theorem proved in [25] and [33] we can suppose that there exists a measure g € ME(Q)

=2 Dwy, Dvde = / vdz Yo € I/Vol’p(Qh).
Q

such that the sequence (wp) converges weakly to the solution w of the problem
w e Wy (Q)NLE(Q),
/ |Dw|P~2DwDv dz + / lwP~2wvdy = / vdz Vv € WaP(Q) N LE(82).
Q Q Q

Comparing the sequence (uy) with the sequence (wp) we prove that the weak limit u of (u;) belongs to
WoP(Q) N LE(Q) (Theorem 5.2.4). Then by taking v = ws¢ as test function in (13), with ¢ € C§°(Q),

and taking the limit as h — oo, we get that the function u satisfies the following equation

(19) /{;A(x,Du)D(wcp) dz + (T, ¢) = (f,we)
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for all ¢ € C§°(Q2), where T' is the distribution defined by

(T, ) = lim [/ A(z, Dup)Dwppdz + / A(z, Du)Dwpdz| .
h—oljq 0

By a careful study of the behaviour of the sequences (wy) and (u) we prove that 7' is a finite measure

which is absolutely continuous with respect to the measure wy, i.e., there exists a function H such that

(T,¢) = [o Hwpdp for every ¢ € C§°(R2) (Proposition 5.4.4). Since the set {wyp : ¢ € C§°(Q)} is dense

in WoP(Q)n LP(Q) (see [33], Proposition 5.5), it follows by (19) that u is the unique solution of

(20) v/{;A(a:,Du)Dvdm + /QHvd;t = (f,v)

for every v € W'OI‘P(Q) N LE(2). Finally, by using some technical results (Lemma 5.4.5, Proposition 5.4.6
and Proposition 5.4.7), we prove that the function H in (20) depends on the function u only through its
pointwise values and that it is possible to construct a subsequence of Q) and a function F(z,s), which
satisfies conditions (18), such that for every f € W=1P(Q) the sequence (uy) of the solutions of problems
(13) converges weakly in W,"7(Q) to the unique solution w of problem (17) and F(z,u(z)) = H(z) for
p-ae. z € Q.

Let us notice that when the function A(z, ) satisfies the homogeneity condition (16), by [33] the
function F in (18) is of the form F(z,s) = g(z)|s|/’~2s. In Chapter 6 we shall show, with an explicite
example, that the homogeneity of the function F is strictly connected with the homogeneity of the operator
and that it is possible to construct a non-homogeneous function A(z,€) for which the function F(z,s)
turns out to be non-homogeneous.

In Chapter 5 we shall consider, more in general, the case where the nonlinear operator is a pseu-
domonotone operator of the form —div(A4(z, u, Du)). For this general type of operators, the asymptotic
behaviour of the solutions of problems (13) was treated in [62], [63] and [64], under some geometrical
assumptions on the closed sets Q\ Q4.

As in the rest of this thesis the results of Chapter 5 will be proved in the general setting of the relaxed

Dirichlet problems, i.e., we shall study the asymptotic behaviour of the solutions of the problems

up € WoP(Q) N LE, (9),

Hh

/A(J:,uh,Duh)Duclx+/ Fr(z,up)vdun = (f, ) Vv € Wol'p(Q)ﬁLP (Q),
a Q

where (pp) is a sequence in ME(Q) and (Fh) is an arbitrary sequence of functions which satisfy (18).

Also in this general case we shall prove that the limit problem is a variational problem of the form (17)
(Theorem 5.4.1).

The results stated in Chapters 2, 3, and 4 are obtained in collaboration with Prof. G. Dal Maso and
are published in [26], [27], and [28] respectively; while the results stated in Chapter 5 and 6 are achieved

in collaboration with Dr. J. Casado-Diaz of the University of Sevilla and will appear soon in [13].
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1. Preliminary results

This chapter contains the main preliminary results and notations that we shall need in the rest of the
thesis.

1.1. Capacity and Sobolev spaces

In the sequel U is always an open (possibly unbounded) subset of R, N > 2, while Q is always
a bounded open subset of RY . We denote by W, ?(U) and Wh?(U), 1 < p < 400, the usual Sobolev
spaces, and by W1 (U), 1/p' 4+ 1/p =1, the dual of W} ?(U). On Wg*(U) we consider the norm

ul)? .. = / |Dulfdz .

By Lf‘(U), 1 < p < +0co, we denote the usual Lebesgue space with respect to the measure p. If g is the
Lebesgue measure, we use the standard notation LP(U). When p = 2 we adopt the standard notation
HY(U), H§(U), and H~Y(U). By H}_(U) we denote the space of all functions that belong to H!(V) for
every open set V CC U .

In Chapters 2, 3, and 4 we shall consider always the case p = 2. In these cases we shall omit p in the
notations below.

If £ CQ, the (harmonic) p-capacity of E in Q, denoted by p-cap(E, ), is defined as the infimum

of
/ |Dul? de
Q

over the set of all functions u € VVDI”’(Q) such that u > 1 a.e. in a neighbourhood of E. In the sequel we
use the notation p-cap(FE) for p-cap(E,Q) when Q is clear from the context.

We say that a set E C RY has p-capacity zero if p-cap(ENQ,Q) = 0 for every bounded open set
Q C RY . It is easy to prove that, if E is contained in a bounded open set 2, then £ has p-capacity zero
if and only if p-cap(E) = 0. We say that a property P(z) holds p-quasi everywhere (abbreviated as p-q.e.)
in a set £ if it holds for all z € F except for a subset N of F of p-capacity zero. The expression almost
everywhere (abbreviated as a.e.) refers, as usual, to the analogous property for the Lebesgue measure. A
function u:Q? — R is said to be p-quasi continuous if for every ¢ > 0 there exists a set A C Q, with
p-cap(A) < €, such that the restriction of u to Q\A is continuous. A function u:U — R is said to be
p-quast continuous on U if its restriction to every bounded open set Q C U is quasi continuous on 2.

It is well known that every u € W1?(U) has a p-quasi continuous representative, which is uniquely
defined up to a set of p-capacity zero. In the sequel we shall always identify u with its p-quasi continuous
representative, so that the pointwise values of a function u € WP(U) are defined p-quasi everywhere

in U. With this convention we have
p-cap(E) = min{/ [Dufdz : we WP (Q), u>1 p-qe. in E}.
Q

If w and v are two functions in W'?(U) and u < v p-a.e. in U, then u < v q.e. in U. It can be
proved that a function u € W1?(RY) belongs to W, P(U) if and only if v = 0 p-q.e. in U. Finally
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we recall that, if a sequence (up) converges to u in Wy P(U), then a subsequence of (us) converges to u
p-q.e. in U. For all these properties of p-quasi continuous representatives of Sobolev functions we refer to
[68], Chapter 3.

A subset A of Q is said to be p-quasi open in § if for every ¢ > 0 there exists an open subset A,
of Q, with p-cap(4.,Q) < ¢, such that AU A, is open. It is easy to see that, if A is p-quasi open in Q,
then ANQ’ is p-quasi open in Q' for every open set Q' C Q. When U is unbounded, a subset 4 of U
is said to be p-quasi open in U if ANQ is p-quasi open in Q for every bounded open set 2 C U. It is
easy to see that if a function u: U — R is p-quasi continuous, then the set {u > ¢} = {z € U : u(z) > ¢}

is p-quasi open for every c € R..

Lemma 1.1.1. Let (up) be a bounded sequence of I/VOI’P(U) that converges pointwise p-q.e. lo a func-
tion u. Then u is (the p-quasi continuous representative of) a function of (/VOL'p(U) and (up) converge
to u weakly in Wy (U). ‘

Proof. Let ¢p = infi>pur and ¢ = SUPk>h Uk - It is easy to see that ¢, /" u p-qe.in U and ¢, \, u
p-q.e. in U. Moreover @y < up < v, for every h < k. Now, for every h, the set Ky = {v € Wat(U) :
on < v < iy p-qe.in U} is convex and closed, thus K, is weakly closed. Since (up) is bounded in
W, P (U), a subsequence of (up) converges weakly in Wy P(U) to a function v. Then v € Kj, so that
on < v < Py p-qe. in Qfor every h. This implies u = v p-qe.in U and concludes the proof of the
lemma. O

Lemma 1.1.2. For every p-quasi open subset A of U there exisls an increasing sequence (vn) of

non-negative functions of Wol’p(U), with 0 < vp < 1,4, converging to 1, pointwise p-g.e. in U.

Proof. This lemma is an easy consequence of a more general result proved in [22], Lemma 1.5. For the
reader’s convenience, we give here the easy proof in this particular case. For the sake of simplicity we give
the proof in the case where U = Q is a bounded open subset of RN and p=2. Let A be a quasi open
subset of 2. Then there exists a sequence (U/;) of open subsets of Q, with cap(U/;,Q) < 1/k, such that
the sets Ay = AU U, are open. Therefore, for every k € N there exists an increasing sequence (¢,L;)h of
non-negative functions of C§°(Q) converging to 1, pointwise q.e. in . Since cap(Ug, Q) < 1/k . for every
k € N there exists u; € H}(Q) such that ux > 1 qe.in Ug, ur > 0 q.e. in 2, and Jo |1DuglPdz < 1/k.
This implies that a subsequence of (uy) converges to 0 g.e. in Q. Moreover, as oF < 14, , we have
(pf —up)* <1, qe. in Q. Let us define

— oAk + _
Vp = Imax (@ Uk t//__su Up .
h lsksh( h k) ’ hp h

Then v, € HY(Q), vy > 0 in Q, the sequence (vp) is increasing, and ¢ < 1, q.e. in Q. For every h > k
we have vy > of —uj. As A C Ag, we get ¢ > 1— 1w qe. in A. Taking the limit as & — oo along a
suitable subsequence, we obtain % > 1 q.e. in A. This shows that ¢ = 1, and concludes the proof of the

lemma. O
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In Chapter 6 we shall use the following version of the Poincaré inequality for function u € H!(Q):

v o KL [
(L11) | /nm i) /ﬂ}D Pds,

where N(u) = {u =0} and K is a positive constant independent on u and .

1.2. Measures

By a non-negative Borel measure in {2 we mean a countably additive set function defined in the Borel
o-field of © and with values in [0,4+0cc]. By a non-negative Radon measure in 2 we mean a non-negative
Borel measure which is finite on every compact subset of 2. We shall always identify a non-negative Borel

measure with its completion.

Definition 1.2.1. We denote by M(£2) the set of all non-negative Borel measures g in Q such that
u(B) = 0 for every Borel set B C Q with cap(B) = 0.

For every subset E of  we denote by cop be the measure in My(Q2) defined by

0, if cap(BN E) = 0,
+0co, otherwise

(1.2.1) cop(B) = {

for every Borel set B C Q.
We shall see in the sequel that the measures cog will be useful in the study of the asymptotic behaviour
of sequences of Dirichlet problems in varying domains.

We introduce an equivalence relation on Mq(2).

Definition 1.2.2. We say that two measures py, ps € Mo(Q) are equivalent if [, v?du; = [, u?dus
for every u € HL(Q).

Remark 1.2.3. Since every quasi open set differs from a Borel set by a set of capacity zero, all quasi
open sets are p-measurable for every p € Mo(2). It is easy to see that py, us € Mo(Q) are equivalent if
and only if they agree on all quasi open subsets of 2 (see [23], Theorem 2.6). Moreover, if this condition is
satisfied, then Hg(Q)NL: (A) = Hj(Q)NL? (A4) for every quasiopenset A C Q and [, wvdpy; = [, wvdps

M1

for every uw, v € Hy(Q)NL: (A).

Definition 1.2.4. We denote by M(Q) the class of measures g € Mo(Q) such that
(1.2.2) u(B) = inf{u(A) : A quasiopen, BC ACQ}

for every Borel set B C Q. For every u € Mg(Q2) we define

(1.2.3) A i(B) = inf{u(A) : A quasiopen, BC ACQ}

for every Borel set B C Q2.

Our class My(Q) coincides with the class MZ(Q) introduced in [23] and used in [10].



12 A. GARRONI

Remark 1.2.5. For every measure p € Mo(S2) the set function ji defined by (1.2.3) is a measure and
belongs to Mo(). It is the unique measure in Mo(82) equivalent to g and > X for every A € Mo(Q)
in the equivalence class of p (see [23], Section 3). It is easy to see that, if py, p2 € Mo(R2) and py < pa,
then fi; < fi». Finally, if p € MO(Q) is a Radon measure, then g € Mo(Q) and no other measure is
equivalent to p.

Remark 1.2.6. It is easy to see that, if u belongs to ./\;lo(Q) and E is a closed subset of 2, then the
measures L E and cog belong to Mq(Q). This is not true, in general, when E is not closed.

In the case when p is not 2 we shall denote by ME(Q) the class of Borel measures which vanishes on

the sets of p-capacity zero and satisfies the following condition
p(B) = inf{u(A) : A p-quasi open, BC A C Q}

for every Borel set B C (2.
Finally, we say that a Radon measure v on U belongs to WL (U) if there exists f € W-Le'(U)
such that

(1:2.4) oh= [t voecT(@).
where (-,-) denotes the duality pairing between W-12(U) and W P(U). We shall always identify f
and . Note that, by the Riesz theorem, for every positive functional f € W"I'PI(U), there exists a

Radon measure v such that (1.2.4) holds. It is well known that every Radon measure which belongs to
W=1r"(Q) belongs also to M5(Q) (see [68], Section 4.7).

1.3. The linear operator

Let L: HY(RY) — H~}(R™) be an elliptic operator of the form
N
(1.3.1) Lu= - Y Di(a;Dju),
i,j=1

where (a;;) is an Nx N matrix of functions of L (RM) satisfying the ellipticity condition
N
(1.3.2) Z a;;(2)€& > l€1?
i,j=1
for a.e. z € RY and for every £ € RV . Let L*: HY(RY) — H~'(RY) be the adjoint operator, defined by

N
ij=1
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for every u € HY(RN). In the sequel we will denote by a(-,-) the bilinear form on H*(RM) x H}(RY)
associated with the operator L defined by

N
a(u,v) = / (Z aiijuDiv) dz
RN o1
for every u,v € HY(RY), and by a*(-,-) the bilinear form associated with the adjoint operator L*. Clearly
we have that (Lu,v) = a(u,v) = a™(v,u) = (L*v,u) for every u,v € H}(RN).
For every open set U C R, we shall identify each function u € H}(U) with the function of HY(RM)
obtained by extending u by zero on U¢. Moreover we will denote by a,(-,-) the bilinear form in H*(U) x

HY(U) defined by
N

a(u,0) = /(Z a;; DjuDyv) da

1,j=1
for every u,v € H*(U). In Chapter 2 we shall use, for the bilinear form in H{(Q2) x H}(Q) associate to
L, the notation (Lu,v) instead of aq(u,v), where (-,-) will denote the duality pairing between H{(Q)
and H~1(Q).

1.4. Relaxed Dirichlet problems

Let p € Mo(Q) and f € H~1(Q). We shall consider the following relazed Dirichlet problem (see [30]
and [31]): find u such that
u € Hy(QNLiQ),
(14.1) )
an(u,v)—l—/ wvdp = (f,v) VvEHé(Q)ﬂLi(Q),
Q

where (-,-) denote the duality pairing between H(2) and H~}(Q). The name is motivated by Theo-
rem 2.2.6 and by the density results proved in [31] and [29].

Theorem 1.4.1. For every f € H™Y(Q) there exists a unique solution of problem (1.4.1).

Proof. The proof is a straightforward application of the Lax-Milgram lemma, see, e.g., [30], Theorem 2 4.

O

By the ellipticity condition (1.3.2), if we take u as test function in (1.4.1), we obtain the following

estimate

1
(1.4.2) el o) < *a'HfHH—l(n)-

Let g € HY(Q). More in general we can consider the following relazed Dirichlet problem with boundary
data g (see [30] and [31]): find u such that

u€ H (QNLEQ), u—yg€ Hy(Q),

(1.4.3)
an(u,v)—i—/ wodp = (f,v) Vv e Hi(Q)NLA(Q).
Q
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If there exists z € H'(Q) N L2(Q) such that z — g € H(Q), then problem (1.4.3) has a unique solution
(see [30], Theorem 2.4). In this case we say that g is p-admissible. Note that, if supp x is compact in €2,
then every g € H!(Q) is p-admissible.

A connection between classical Dirichlet problems and relaxed Dirichlet problems (1.4.1) and (1.4.3)

is given by the following remark.

Remark 1.4.2. It is easy to see that, if E is closed in the relative topology of 2, cog is the measure
defined by (1.2.1), and there exists a function ¥ € H!(Q) such that ¢ —g € Hj(Q) and ¥ =0 qe. in E,
then g is cog-admissible and the solution u of problem (1.4.3) coincides in 2\ E with the solution v of

the classical boundary value problem
v— ¥ € Hy(Q\ E),
Lv=f mQ\F,

while v = 0 gee. in E. In particular, if E is a closed set and p = cog, then u € H}(Q) is the solution
of problem (1.4.1) if and only if u = 0 g.e. in E and u is the solution in Q\ E of the classical boundary
value problem

u € Hy(Q\E),

Lu=f in Q\E.

The solutions of relaxed Dirichlet problems satisfy a comparison principle.

Proposition 1.4.3. Let p € Mo(Q), let f € H7}(Q), and let g a non-negative p-admissible function '
of h. Let u be the solution of problem (1.4.3). If f >0 in Q, then u >0 ge. n Q.

Proof. See [30], Proposition 2.9. O

Proposition 1.4.4. (Comparison principle) Let fi, fo € H™HQ), let py, pa € Mo(Q), and let g1,
g2 € HY(). Suppose that uy and uo are the solutions of problem (1.4.3) corresponding to fi, pi, 51
and to fo, pa, go. If 0< fi < fo, poa <p1, and 0< g1 < g2 in Q, then 0 < uy <wuy ge in .

Proof. See [30], Proposition 2.10. O
The following result will be useful in the sequel.

Proposition 1.4.5. Lel pu € Mo(Q),let v be a positive Radon measure on Q@ which belongs to H=1(Q),
and let g be a non-negative p-admissible function of H*(Q)). Let u be the solution of the relazed Dirichlet
problem (1.4.8) corresponding to f =v. Then

an(u,v) < / vdy
Q

for every v e HY(Q) with v >0 ge. in Q.

Proof. See [30], Proposition 2.6. 0
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2. Asymptotic behaviour of Dirichlet problems with linear elliptic operators
on varying domains*

" We shall consider relaxed Dirichlet problems of the type (1.4.1) with the linear elliptic operator
L defined by (1.3.1). The main result will be a compacteness theorem for sequence of these problems
corresponding to sequences of measures (uy) in Mo(Q). (riscrivere dicendo che si studia il problem

scegliendo soluzioni particolari)
Let Q be a bounded open subset of RN, N > 2. In this chapter L will be the elliptic operator from
HY(Q) to H71(Q) defined by (1.3.1).

2.1. A convex set

In this section we shall study the properties of the set K(Q2) of all functions w € HE(Q) such that
w>0qge in Qand Lw<1in Q in the sense of H~1(Q). It is easy to see that () is a closed convex
subset of H(Q). Moreover, for every w € K(Q) we have

a/ |Dw|?dz < (Lw,w) < /wda:.
Q Q

This shows that () is bounded, and hence weakly compact, in H3(§2). Let wo be the solution of the
Dirichlet problem :

WQEHé(Q), Lwg=1.

By the maximum principle we have w < wgy g.e. in  for every w € K(Q). As wg € L®(2) (see [65]), -
the set K(Q) is bounded in L*(Q).

Given w € K(2), let v = 1 — Lw. By the definition of K(2) we have v > 0 in © in the sense of
distributions, hence v is a positive Radon measure. As Lw € H~(Q2), we have also v € H~1(Q).

We shall see that, if w € K(Q), then w can be characterized as the solution of a particular relaxed

Dirichlet problem. To this aim we need some preliminary results.

Proposition 2.1.1. Let u € Mo(Q) and let v € H{(Q)NLZL(Q). For every h € N let up €
H{(Q) N LE(Q) be the solution of the problem

(2.1.1) (Lup,v) + / upvdy + h/(u;,, —~uvdz = 0 Vv e Hy(Q)NL(Q).
Q Q
Then (up) converges to u sirongly in H}(Q) and in L%(Q). Moreover

(2.1.2) lim ((Luh,uh) + / ui dp + h/(uh—u)zdaz) = (Lu,u) + / u? dy .
h—co ! Q Q

Proof. Taking v = up — u as test function in (2.1.1) we obtain

(2.1.3) (Lup,up — u) + / up(up — u)dp + h/ (up — u)zdz' =0,
Q Y]

* The content of this chapter is published in [26]
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hence
(L(up — uw),up —u) + /(uh —u)?dp + h/ (up — u)?dz =
Q 9]
= —(Lu,up —u) — / u(up, —u)dp.
Q

From the ellipticity condition (1.3.2) we get
oflun - U”i{;(n) + ””h—un%g(n) + hllun = ullF2(qy <
(2.1.4)
~{Lu,up — u) — / u(up — u) du,
Q

hence
allup — “”}—I;(Q) + llun - u”%g(n) + hljun = ullfaq) <
< Ll g-rellun = Wl iy + llullez (oyllun = ullLz(q) -

By using the Cauchy inequality we obtain
& 2 1 2 2
§||U~h = ullgyay + §||Uh - 1‘1|L§(n) + hllup — vl 2y <

1 . 1
< golllullg-r(e) + Sllellzz o) -

This shows that (uj) converges to u weakly in H}(Q) and in L2(Q). By (2.1.4) this implies that (un)
converges to u strongly in H3(Q2) and in L2(2). Finally (2.1.3) gives

Lup,up) + uidp + h up —u)ide = (Lup,u) + upudp,
Q h Q Q

which proves (2.1.2). O
Lemma 2.1.2. Let pu € Mo(Q) and let w € H(Q) N LA(Q) be the solution of the problem

(Lw,v) + /ﬂwvdp = /s;vda: Yv € HJ(Q)NLA(Q).
Then u(B) = +co for every Borel subset B of Q with cap(B N {w =0}) >0

Proof. Let u€ HE()N L"';(Q), with 0 <u <1 qe.in Q, and, for every h € N, let up € H3(Q) N Lz(Q)
be the solution of the problem

(Lup,v) + / upvdp + h/ upv dz = h/ uvdzx Vv € Hé(Q)ﬂLi(Q).
Q Q Q

By the comparison principle (Proposition 1.4.4) we have 0 < up < hw qg.e. in Q, hence up = 0 q.e. in
{w = 0}. Since, by Proposition 2.1.1, (us) converges to u in Hj(£2), we have u = 0 g.e. in {w = 0}.

Let U be a quasi open subset of Q such that p(U) < +oo. By Lemma 1.1.2 there exists an increasing
sequence (z3) in HE(Q) converging to 1y pointwise q.e. in € and such that 0 < 2z, < 1y qe.in Q for
every h € N. As pu(U) < +00, each function z, belongs to LZ(Q), hence z; = 0 q.e. on {w = 0} by the
previous step. This implies that cap(U N{w = 0}) =0.

Let us consider a Borel set B with cap(B N {w = 0}) > 0. For every quasi open set U containing B
we have cap(U 0 {w = 0}) > 0, hence p(U) = +oco by the previous step of the proof. By the definition of
Mo(Q) we conclude that u(B) = +co. O
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Lemma 2.1.3. Let A and p be measures of Mo(Q). Assume that there exists a function w € H3(Q) N
L3(Q)NLL(Q) such that

( 2.1.5) (Lw,v) + / wvdA = / vdz Yo e HY Q)N L3(Q),
Q Q

(2.1.6) (Lw,v) + / wvdp = /vda: VvEH&(Q)ﬂLfL(Q).
Q Q

Then A = pu.

Proof. Let us consider the measures Ag and pg defined for every Borel set B C Q by

_/\O(B):/de/\, HO(B):/deu.

Let us prove that Ag = pg. For every € > 0 let A, and p. be the measures defined by

)\S(B):/ wdh, ,uE(B):/ wdp.
Bn{w>e} Bn{w>¢}

To prove that Ag = pp it is enough to show that A, = p. for every ¢ > 0. Let us fix ¢ > 0. As
we L3(QNLE(Q), A and p. are bounded measures. Therefore it is enough to show that A (U) = p(U)
for every open subset U of Q. Let us fix U and let U, = UN{w > ¢}. As U, is quasi open, by Lemma 1.1.2
there exists an increasing sequence (z3) in H{(2) converging to 1y, pointwise q.e. in € and such that .
0 < zp <1y, qe.in Q forevery h € N. As w € Li(Q)N Li(Q) and w > ¢ q.e. in U, we have
A(Ue) < +00 and p(U.) < +00, hence z;, € L3(Q) N LE(Q) for every h € N. From (2.1.5) and (2.1.6) we

get
/wzhd/\ = /wzhdp.
Q Q

Taking the limit as h — oo we obtain

Ae(U) :/ wdA :/ wdp = p(U).

€ €

This shows that A; = p. for every € > 0, hence Ay = po.

For every Borel set B contained in {w > 0} we have

1 1
A(B) = /};j&;d/\o = /B;;duo—/l(B)-
If B is Borel set contained in {w =0} and cap(B) > 0, then A(B) = u(B) = +0c0 by Lemma 2.1.2. If
cap(B) = 0, then A(B) = pu(B) = 0 by the definition of M(Q). Therefore A(B) = A(B N {w > 0}) +
ABN{w=0})=puBn{w>0})+puBn{w=_0}) = u(B) for every Borel set B C Q. O

We are now in a position to give the characterization of K() in terms of relaxed Dirichlet problems.
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Proposition 2.1.4. A function w € H}(Q) belongs to K(2) if and only if there exists p € Mo(Q) such
that w € HY(Q) N LE(Q) and

(2.1.7) (Lw,v) + / wudp = / vdz Vv e Hé(Q)ﬂLi(Q).
) )

The measure p € Mo(Q) is uniquely determined by w € K(Q). More precisely, for every w € K(2) and
for every Borel set B C Q we have
dv
—, ifcap(Bn{w=0}) =0,
(2.1.8) pu(B)=<( JB W (
400, if cap(BN{w = 0}) >0,

where v is the measure of H=1(Q) defined by v =1 — Lw. Moreover, we have

(2.1.9) v(BNn{w>0}) = /B'w du

for every Borel set B C Q.

Proof. We follow the lines of the proof of Theorem 1 of [18]. Let p € Mo(Q) and let w € H3(Q) N L(Q)
be a solution of (2.1.7). Then w > 0 q.e. in Q by Proposition 1.4.3 and Lw < 1 in © by Proposition 1.4.5,
hence w € K(Q).

Conversely, assume that w € K(2) and let p be the measure defined by (2.1.8). Let us prove that
p € Mo(Q). Since v € H-1(Q), we have u(B) = 0 for every Borel set B C Q with cap(B) = 0. It
remains to prove that

(2.1.10) p(B) = inf{u(A) : A quasi open, B C A}

for every Borel set B C Q with u(B) < +co. For every h € N let pp, be the measure on Q defined
by pn(B) = p(BNn {w > +}). Note that pn(Q) = p({w > £}) < hv({w > 3}) < A* f[wdv =
h*(1 — Lw,w) < +oco. Let us fix a Borel set B C Q with p(B) < +oco. By the definition of p we have
cap(BN{w =0}) = 0. For every h > 2 let By = BN{} < w < +15}, and let B; = {1 < w}, so that
w(B) = ¥, m(Br). Since pp(Q) < 40, for every € > 0 and for every h € N there exists an open set Uy,
with By C U, C Q, such that pp(Up) < pn(Bh) +e27h = u(Bh)+62‘h. Let Ap = UpN{w > %} As w
is quasi continuous, the set A is quasi open. Moreover By C Ap and p(Ap) = pn(Un) < pu(Bn) + g2,
Let A4g = BN{w = 0} and let A be the union of all sets A, for h > 0. Then A is quasi open, contains
B, and p(A4) < p(B) +¢. Since € > 0 is arbitrary, this proves (2.1.10).

Let us prove that w is a solution of (2.1.7). By (2.1.8) we have

/w")d,u = / widp = / wdv = (1 - Lw,w) < +0,
9] {w>0} {w>0}

hence w € L%(Q). Let v € Hj(Q2) N L3(Q). By (2.1.8) we have v =0 q.e. in {w = 0}. By the definitions
of 4 and v we have

(Lw,v) + /1011 dp = (Lw,v) + / wvdy =
Q {w>0}

:(Lw,v)+/ vdu:(Lw,v)+/vdu:/vdz,
{w>0} o Q

which proves (2.1.7). The uniqueness of p follows from Lemma 2.1.3.
Property (2.1.9) is an easy consequence of (2.1.8). O
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The following lemma will be crucial in the proof of Theorem 2.2.3.

Lemma 2.1.5. Let p € Mo(Q) and let f € L™(Q). Let u € H}(Q) N LA(Q) and w* € HF(Q) N L (Q)
be the soluiions of the problems

(2.1.11) (Lu,v) + / wdp = /fv de  Yve Hy(QnLi(Q),
Q Q
(2.1.12) (L*w*,v) + / wrvdp = / vdr Yv € Hy(Q) ﬁLi(Q),
Q Q
Then u is the unique solution in H(Q)N L®(Q) of the problem

(2.1.13) (Lu,w o) — (L7w™, up) = / fw pdz — /wpdz VYo € C5(Q).
Q Q

Proof. First of all, we note that (2.1.13) can be written as

X

N N
Z aiijuDiap)w*dw - /(Z aiijgoDi'w*)u dz =

ij=1 @ ij=1

:/fzu*godr—/ugadm Vo € C°(Q) .
Q Q

(2.1.14)

Let w € H}(Q) N L2(Q) be the solution of (2.1.7). By the comparison principle (Proposition 1.4.4) we
have |u| < cw qe. in Q, with ¢ = ||f||f=(q). Since w is bounded, this implies that u € L*(€).

Let v* = 1 — L*w*. By Proposition 1.4.5 v* is a non-negative Radon measure. By Lemma 2.1.4
(applied to L*) we have that

(2.1.15) V(BO{w> 0)) = / w*du
B

for every Borel set B C Q. As w™ € L3(Q), we have w*p € HE Q)N LEA(Q) for every ¢ € C§(Q). As
u € L2(Q), by Lemma 2.1.2 (applied to L*) we have u =0 q.e. in {w* = 0}. Therefore (2.1.15) implies

that
/u-w’gacl,u. :/ ue dv” :/ugocll/*.
0 {w=>0} 0

Taking v = w*¢ in (2.1.11) we obtain
(Lu,w™p) + / updy” = / fwpdz
(9] o

for every ¢ € C$°(Q). As v* = 1— L w*, we conclude that u is a solution in Hg(Q)N L®(Q) of (2.1.13).

Let us prove that the solution of (2.1.13) is unique. First of all we observe that, by an easy approx-
imation argument, (2.1.13) holds for every ¢ € H{(Q) N L*(Q). Since the equation is linear in u, it is
enough to consider the case f = 0. Let us fix a solution z € H}(Q) N L= (Q) of (2.1.13) with f =0. By
(2.1.14) we have that

X

N N
Z aijD-zDiv)w*da;—/(Z aiijvD,-w’“)zd:L‘+/ zvdz = 0
Q

=1 =1
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for every v € H}(2) N L*(Q). Taking v = z we obtain

N
(Z aiijzD,'w*)zdx+/ 22z = 0.

Q

(2.1.16) /ﬂ(i aiijzDiz)w*dz —/

ij=1 0 ij=1

As zDjz = 1D;(z%) and v* > 0 we have

= * 1 * ok 2 1 2
- (Z a;; DjzDiw Jzdz = —:2—(L w*,z%) > —5 /= dz,
Q i,j=1 Q

and so (2.1.16) gives

N

(2.1.17) /(Z aiijzDiz)w*daz—k;;—/ 2de < 0.
0 0

ij=1

Since w* > 0 g.e. in £ (Proposition 1.4.3), (2.1.17) and the ellipticity condition (1.3.2) imply that z =0
a.e. in . This concludes the proof of the uniqueness. Ol

2.2. The ~vF-convergence and the compactness theorem

In this section we introduce the notion of % -convergence in Mg(), related to the convergence of
the solutions of the corresponding relaxed Dirichlet problems. When L is the Laplace operator —A, this
notion is defined in [31] in terms of the I'-convergence of the functionals [, |Du[*dz + f,u?du associated
with the relaxed Dirichlet problems. For the extension of this definition to the case of symmetric operators
see [9] and [23]. The definition given here involves only the solutions of (1.4.1), and coincides with the

previous ones in the symmetric cases.

Definition 2.2.1. Let (x,) be a sequence of measures of /\;to(Q) and let p € MO(Q). We say that (pp)
7L -converges to p (in Q) if for every f € H1(Q) the solutions u, € H}(Q)N L3

1, (Q) of the problems

(2.2.1) (Lup,v) +/ upvdp, = (f,v) Yv € HY(Q) N L;Qu. (Q)
Q
converge weakly in H}(Q), as h — oo, to the solution u € H} ()N Li(Q) of the problem

(2.2.2) (Lu,v) + / wodp = (f,v) Vv e HY(Q)NL(Q).
Q

We underline the fact that the yZ-limit depends on the operator L. This fact will be discussed later
in Section 2.4.
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Remark 2.2.2. Since L is linear and the solutions of (2.2.1) depend continuously on the data, uniformly
with respect to h (see the estimate (1.4.2)), a sequence () ~L _converges to p if and only if the solutions
of (2.2.1) converge weakly in H}(Q2) to the solution of (2.2.2) for every f in a dense subset of H™}().

Let (i) be asequence of measures of the class Mo(Q) and let € Mo(Q). Let wy € HF(Q) N L% (Q)
and w € H}() N L2(Q) be the solutions of the problems

(2.2.3) (Lwp,v) + / wpvdpy = / vde  Yv € HYQ)NL2 (Q),
Q 2

(2.2.4) (Lw,v) +/wvdu = /vda: Vo € HY(Q)NLA(Q),
Q Q

and let w} € HF(Q)N L, (Q) and w™ € H(Q) N L2(Q) be the solutions of the corresponding problems
for the adjoint operator L~.

We are now in a position to characterize the ~E -convergence of a sequence of measures (ua) in terms

of the weak convergence in H}(Q) of the sequences (ws) and (wy)-

Theorem 2.2.3. Let (un) be a sequence of measures of Mo(Q) and let p € Mo(Q). Let wy €
HYQ)NLZ (Q) end w € HH(Q)NLAQ) be the solutions of problems (2.2.3) and (2.2.4), and let
w; € H() ﬂL;h(Q) w* € HO(O)OL (Q) be the solutions of the corresponding problems for L~

The following conditions are equivalent:

(a) (wh) converges to w weakly in H}(Q);

(b) (wh

(c) (pn) ~vE-converges to pi;
(

(d)

) converges to w* weakly in HY{Q);

un) +F “_converges to .

Proof. (b) = (c). Given f € L®(Q), let u, € Hy(2)N L7,(Q) and u€ H3(Q) N L2(Q) be the solutions
of the problems (2.2.1) and (2.2.2). By Lemma 2.1.5 and by (2.1.14) we have

N N
/(Z a,-ijuhDit,o)w}; dz — / (Z aiijnpDi'w;)uh dz =
(2.2.5) Q=1 Q=1

:/fw;;cpda:—-/uhgada: Vo € C5° ().
Q Q

By the estimate (1.4.2) the sequence (u;) is bounded in H}(Q), so we may assume that (up) converges
weakly in H(Q) to some function #. By the comparison principle (Proposition 1.4.4) we have |ux| < cws
qe. in Q, with ¢ = ||f|lp=(q). Taking the limit as h — oo we get |i] < cw ge. in Q, and hence
@ € L®(Q). Moreover, taking the limit in (2.2.5) we obtain that @ satisfies (2.1.14), and so & = u by
Lemma 2.1.5. Therefore (uy) 7% -convereges to p by Remark 2.2.2.

(c) = (a). It is enough to take f =1 in the definition of vF-convergence.

(a) = (d). It is enough to replace L by L~ in the proof of (b) = (c).

(d) = (b). It is enough to take f =1 in the definition of ¥* -convergence. O
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Remark 2.2.4. The uniqueness of the yL-limit is an easy consequence of Theorem 2.2.3, which implies
that, if (us) v -converges to A and g, then w satisfies (2.1.5) and (2.1.6), so that A = g by Lemma 2.1.3.

The following theorem proves the compactness of Mg(Q) with respect to vZ-convergence.
Theorem 2.2.5. FEvery sequence of measures of MQ(Q) contains a L -convergent subsequence.

Proof. Let (un) be a sequence of measures of Mo(Q) and, for every h € N, let wy, € HE(Q) N L3 (Q) be
the solution of problem (2.2.3). By Proposition 2.1.4 we have w;, € K(Q). Since K(2) is compact in the
weak topology of H{(Q), a subsequence of (wy) converges weakly in H}(Q) to some function w € K(Q).
By Proposition 2.1.4 there exists a measure p € Mo(2) such that w is a solution in H(Q) N L2(Q) of

problem (2.2.4). The conclusion follows now from Theorem 2.2.3. O
The case of Dirichlet problems in perforated domains is considered in the following theorem.

Theorem 2.2.6. Let (Q),) be an arbitrary sequence of open subsets of Q. Then there exist a subsequence,
still denoted by (Qn), and a measure p € ./\;lo(Q) such that, for every f € H~Y(Q), the solutions w), €
HE(Qn) of the equations Lup = f in Qp, extended to 0 on Q\Qy, converge weakly in H}(Q) to the
unique solution u € Hg(Q) N L1(Q) of problem (2.2.2).

Proof. The conclusion follows easily from the compactness theorem (Theorem 2.2.5) and from the fact that
each function u; can be regarded as the solution of problem (2.2.1) with uy = cog\q, (Remark 1.4.2).

0.

Using Theorem 2.2.3 we can prove the following density result in ./\;to(Q). We shall see in Corol-
lary 2.3.8 that the strong converegence in H () of the sequence (wy) implies the strong converegence in
HE(R2) of the sequence (uy) of the solutions of (2.2.1) for every f € H™HQ).

Proposition 2.2.7. Every measure p € Mo(Q) is the v~ -limit of a sequence (uy) of Radon measures
of J\;(g(Q) such that the solutions wy, of (2.2.3) converge strongly in H}(Q) to the solution w of (2.2.4).

Proof. By (2.1.8) a measure g € Mo(Q) is a Radon measure if the solution w of (2.2.4) satisfies

(2.2.6) iR’fw >0 for every compact set K C Q.

Now let wg € H}(2) be the solution of the equation Lwg = 1 in Q. By the strong maximum principle
(see [65]) we have that wy satisfies (2.2.6).

Let us fix g € Mo(Q) and let w € K(S2) be the solution of (2.2.4). For every h € N let us define
wp = (1 — %)w + %wo. It 1s easy to see that wy 1s a positive subsolution of the equation Lu = 1, hence
wy, € K(Q). Moreover the functions w, satisfy (2.2.6) and converge to w strongly in H}(€). Therefore

the measures pp € /\;(O(Q) associated with wj; by Proposition 2.1.4 are Radon measures and % -converge

to u by Theorem 2.2.3. O

The following proposition deals with the case where also f varies.
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Proposition 2.2.8. Let (pun) be a sequence of measures of Mo(2) v~ -converging o a measure p €
Mo(Q). Let (fn) be a sequence in H™ 1(Q) converging strongly to f € H~ Q). For every h € N let
vn € HY(Q)N L2 () be the solution of the problem

(Lvh,v)+/n“hv dun = (fr,v) Vo€ Hy(@)N L, (9)

and let w € HY(Q)NL3(Q) be the solution of problem (2.2.2). Then (vs) converges to u weakly in
H(Q).

Proof. For every h € N, let u, be the solution in HY(Q)N L2, (Q) of problem (2.2 1). By the estimate
(1.4.2) and by the linearity of the problem the sequence (vn — up) converges to 0 strongly in Hg(9Q).
Moreover, by the definition of « L _convergence, (up) converges to u weakly in H{(Q). Therefore (vs)

converges to u weakly in Hé(Q). ‘ U

The following results (Theorem 2.2.9, Theorem 2.2.10, Corollary 2. 2.11) show the local character of
the % -convergence. Let w be an open subset of Q. With a little abuse of notation we still denote by L
the operator defined by (1.3.1) on H'(w), and by (, ) the duality pairing between H~ Y(w) and Hj(w).

Theorem 2.2.9. Let (ps) be a sequence of measures of Mo(Q) 7F-converging in Q lo a measure
B € Mo(Q). Let w be an open subset of Q, let (fn) be a sequence in H™ Y(w) converging to f strongly
in H=1(w), and let (up) be a sequence in HY(w) converging to u weakly in HYw). Suppose that un €
L2, (w') for every w' CCw and that

(2.2.7) (Luh,v)-l—/ upvdpn, = (f, )

for every v € Hi(w) N LZ,‘ (w) with supp(v) CCw. Then u € LZ(w’) for every W’ CCw and

(2.2.8) (Lu,v) + / wudp = {f,v)
for every v € H}(w) N L3(w) with supp(v) CCw.

Proof. Let ¢ € C°(w) and let z; = puyp . Since for every v € H}(Q) we have

N

N
/(Z aiijthiv) de = /(2 aiijgoDiv)uh dx+
Q

ij=1 Q 4i=1
N N
-+ / (Z a,-iju;,Div)godx = /(Z aiijgoDw)uh dz +
Q 55=1 Q ;=1

N

N
+ / (Z aiijuhD,;(vgo)) dz — /(Z aiijuhDiga)v dz |
0 Q

ij=1 ij=1

from (2.2.7) we obtain

(Lzh,v)—{—/ znvdun = (gn,v) Yv EH&(Q)OLZh(Q),
Q
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where

N N
Z a;; DijpD;v)up dz — /(Z a;; DjupDip)v dx
ij=1 i,j=1

(g1} = (o) + [ (
for every v € H$(Q). Since (up) converges to u weakly in Hi(w), (fn) converges to f strongly in
H~}w), and ¢ has compact support in w, it follows that (gn) converges strongly in H=1(Q) to the

functional g € H=1(Q) defined by

N N
(g,v) = (fyvp) + /&;(Z a; DjpDyv)ude — /Q(Z a;; DjuD;p)v de
ij=1 ij=1
for every v € Hi(Q). As (un) +F-converges to p and (z) converges to z = wu weakly in HAQ), by
Proposition 2.2.8 the function = = gu is the solution in Hj(Q2) N L2(Q2) of the problem

(2.2.9) (Lz,v) +/ vdp = (g,v) Yo e Hy(Q)NLi(Q).
Q

Let us fix an open set «’ and a function v € Hj(w) N L% (w) with supp(v) CC «’ CC w. If we choose
© € C5°(w) such that ¢ = 1 in &', then u = z qe. in &, hence u € L3(w') and (2.2.9) implies (2.2.8).
O

Theorem 2.2.10. Let (up) a sequence of measures of /\;io(Q) ~L -converging in Q 1o a measure
JINS ./\;io(Q), and let w be an open subset of Q. Then (up) L —converges to Loin w.

Proof. Let us fix f € H™!(w). For every h € N let us be the solution in Hg(w) N L2, (w) of problem
(2.2.1), with Q replaced by w. By the estimate (1.4.2) we know that a subsequence, still denoted by (u3),
converges weakly in H{(w) to a function u € H}(w). Then, by Theorem 2.2.9, u € Li(w’) for every open
set W' CC w and u is a solution of problem (2.2.8).

It remains to prove that u € L3(w). Since u € H}(w) and u € L2(w’) for every open set w' CC w,
there exists a sequence (vp) in Hj(w) N L3(w), converging to u weakly in Hg(w), with supp(vs) CC w
and uvy > 0 g.e. in w, such that the sequence (uvy) is increasing and converges to u? pointwise q.e.in w.
Taking v = vj, in (2.2.8) we get

(Lu,vy) +/uvh dp = (f,vs).
w

Taking the limit as h — co we obtain f w?du = (f,u) — (Lu,u) < 400, and thus u € L}(w). By an easy

approximation argument we can prove that u is the unique solution in H(w) N L;“"(w) of the problem
(Lu,v) + /uvd,u = (f,v) Vv € Hy(w) N L (w).
w
Since the limit does not depend on the subsequence, the proof is complete. g

Corollary 2.2.11. Let pp, p € ./\:iD(Q). Let (Q;)ier be a family of open subsets of 0 which covers Q.
Then (pp) 7% -converges to pu in Q if and only if (up) 7~ -converges to p in Q for every i € I.

Proof. The conclusion follows easily from the compactness theorem (Theorem 2.2.5) and from Theo-
rem 2.2.10. U
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As consequence of Theorems 2.2.9 and 2.2.10 we have the following result for sequences of solutions

of relaxed Dirichlet problems with data g of the type (1.4.3).

Proposition 2.2.12. Let (pn) be a sequence of measures of ,/\;(D(Q) which % -converges to a measure
po € Mo(Q). Suppose that there exists a compact subset K of Q such that supppn, C K for every h.
Then supp po C K. Moreover for every funciion g € HY(Q) and for every f € H=Y(Q) the solution up
of problem (1.4.83) corresponding o p = pp converges weakly in HY(Q) to the solution uo of the same
problem with p = pg.

Proof. Since supp ptp C K, by Theorem 2.2.10 applied to w = Q\ K, we have that go =0 on Q\ K and
hence supp po C K . The second assertion of the theorem follows immediately from Theorem 2.2.9 applied
to w = Q. Ol

2.3. Strong convergence

Let (up) be a sequence of measures of /\;(O(Q) ~T -converging to a measure p € Mo(Q). Let
f € H-Y(Q) and let up and u be the solutions of problems (2.2.1) and (2.2.2). By the definition of
+L -convergence the sequence (uy) converges to u weakly in H3(Q). In this section we study the strong
convergence of the sequence of the gradients (Duy) in the space LP(Q,RN), 1 < p < 2. The following
theorem proves that (Duy) converges strongly to Du in LP(Q,RY) for every 1 <p < 2.

Theorem 2.3.1. Let (i) be a sequence of measures of Mo(Q) 7* -converging to a measure p € Mo(Q). .
Let f € H™Y(Q) and let up € HI(Q)N L2, (Q) andu € HE(Q) N L(Q) be the solutions of problems (2.2.1)
and (2.2.2). Then (uy) converges to u strongly in W'Ol’p(Q) for every 1 < p < 2.

Proof. Since L is linear and the solutions of (2.2.1) depend continuously on the data, uniformly with
respect to h (see the estimate (1.4.2)), it is not restrictive to suppose that f € L®(Q) and f > 0.

By the definition of 7¥-convergence the sequence (uj) converges to u weakly in H}(Q), and hence
(Lup) converges to Lu weakly in H~'(Q). By Proposition 1.4.5 we have Lujp < f,and so f — Lup €
H;l(Q), the positive cone of H~(Q). Since H;l(Q) is compactly imbedded in H=1P(Q) for every
1 < p< 2 (see [51]), the sequence (Luy) converges to Lu strongly in W=1?(Q) for every 1 <p<2.

If we apply Meyers’ estimate (see [50]) to the operator L, we find that there exists a real number
s > 2 such that the operator L™: I/Vol’q(Q) — W~14(Q) is an isomorphism for every 2< ¢ <'s. Denote by
» the exponent conjugate to s, i.e., 1/r+1/s=1. Then L: WP (Q) — W=LP(Q) is an isomorphism for
every r < p < 2. Since (Luy) converges to Lu strongly in W-1P(Q) for every » < p < 2, the sequence
(up) converges to u strongly in VV&”’(Q) for every r < p < 2, and hence for every 1 <p < 2. O

Let f € L°°(Q) and let uy and u be the solutions of problems (2.2.1) and (2.2.2). By Theorem 2.3.1
the sequence (Duy) converges to Du weakly in L*(Q,RY) and strongly in LP(, RY) forevery 1 <p< 2.
To obtain strong convergence in L*(<, R™M) we need a corrector term. This is a sequence of Borel functions

Pp: QxR — R, depending on the sequence (), but independent of f, u, un, such that

(2.3.1) Duy(2) = Du(z) + Py(z,u(z)) + Ra(2) a.e. in Q,
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where (Rj) tends to 0 strongly in L2(Q, RY). This condition means that the oscillations of the sequence
of the gradients (Dup) near a point z € Q are determined, up to a term which is small in L*(Q,RY),
only by the values of the limit function u near z and by the correctors P, which depend only on the
sequence (up).

Let wy € HY(Q) N L (Q) and w € Hi(2) N L2(Q) be the solutions of problems (2.2.3) and (2.2.4).
The functions Py: QxR — RN are defined by

— _(Dwn(z) — Duw(z , if w(z 0,
(2.3.2) Py(z,s) = w(”)( w(=) () (2) >

0, if w(z) =0.

We are now in a position to state the main theorem of this section.

Theorem 2.3.2. Let (un) be a sequence of measures of MO(Q) ~E _converging to a measure p € Mo(Q),
and let (Py) be the sequence defined by (2.3.2). Let f € L*®(Q) and let uy € H(}(Q)OL?"‘(Q) and
w € HE(Q)NLL(Q) be the solutions of problems (2.2.1) and (2.2.2). Then (2.3.1) holds, with (Rj)
converging to 0 strongly in L*(Q, RY).

Remark 2.3.3. Let wg be the unique function of H(Q) such that Lwg =1 in Q. By the comparison
principle (Proposition 1.4.4) we have |up| < cwp < cwp and Ju| < cw < cwp ge. in Q, with ¢ =
I fllLee(ny- As wo € L=(Q) (see [65]), the functions u and w belong to L(Q2), and the sequences (us)
and (wp) are bounded in L™(£).

To prove Theorem 2.3.2 we need the following lemmas. For every € > 0 we set Q. = {w > ¢}.

Lemma 2.3.4. Assume that all hypotheses of Theorem 2.8.2 are salisfied. Let € > 0 and, for every
he N, let

7 u kel
h — Uh wVe ’
where wy € HF(Q)N L2 (Q) and w € H(Q)NLE(Q) are the solutions of problems (2.2.3) and (2.2.4).

Then r5 € HY(Q) N L®(Q) and (Drs) converges to 0 strongly in L?(Qae, RV).

Proof. Since the functions u and —i- belong to H}(Q)NL*(Q), and, in addition, the sequences (u) and
(wy) are bounded in L*(Q) (Remark 2.3.3) and converge to u and w weakly in H} () (Definition 2.2.1),
we conclude that », € H{(Q)N L% (Q) and that (rf) converges to u— 4% weakly in Hj(Q). As

wVe

u— 2% =0 ae. in Q., we obtain that () converges to 0 strongly in L*(Q.) and (Drf) converges to 0

weakly in L*(Q.,R"). Let us fix a function ¢ € H}(Q) N L®(Q) such that 0 < ¢ <1 qe.in Q, p =1
ge.in Q4. ,and ¢ =0 ge. in Q\ Q.. For instance, we can take ¢(z) = ®.(w(z)), where ¢.:R — R is
the Lipschitz function defined by @.(¢) =0 for t < e, ®.(t) = f-—l for e <t <2, &(t) =1 for t > 2¢.

To conclude the proof it is enough to show that

h—oco

(2.3.3) lim Dri|*odz = 0.
o h
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By the ellipticity condition (1.3.2) we have

o [ 1DriPods + [ 0% dun < [ Sy Dy Dird) g da /(vf,.,)%oduh -
i} 0 N

1,j=1
N
/(Z a;; Dj uhDrh)g;dx - /(Z ;i Di whD7h) dl"
i,j=1 ij=1
uwy . _
/ Uzla . D; /QUhT}E;QDduh - /ﬂwvgrhsoduh =
N N ury
/ Z a”D upD; (rh(ro)) dz + / uhrigoduh - /(Z aiijwhDi( 'h L_))d:l,
=1 a 55 wVe
ury e = S i
- /ﬂwh C,d h — /ﬂ(i;I%DjUh.DW)Tidm + /ﬂ(igl“ijDﬂ”h-D’:(wvs))r;‘ dx =
N
SRR

1,j=1
By (2.2.1) and (2.2.3) we obtain

o [ 1DriPods + [oeam < / fripds - / UTRP gy
Qe Q. wVeE

/ (Za .DjupDi¢p) rhdav—i—/ (Za thD ))1';’1d:c—

:,31 ‘z]l

/ (Z D’h)whsﬂdt

‘1.]1

Since all terms in the right hand side of the previous inequality tend to 0 as h — o0, (2.3.3) holds and

the proof is complete. O

Lemma 2.3.5. Assume that all hypotheses of Theorem 2.3.2 are salisfied, and let w € HY(Q)N Lﬁ(Q)
be the solution of problem (2.2.4). Then
(2.3.4) lim limsup / [Dupl*dz = 0.

{w<e}

e~V h—co

Proof. For every ¢ > 0 let &:R — R be the Lipschitz function defined by ®*(t) = 1 for t < ¢,
d(t)=2—Ltfore<t<2, () =0fort > 2¢, and let w® € H(Q)N L*(Q) be the function defined
by wi(z) = @ (w(z)). As w® >0 qe.in Q and w* =1 qe. in {w < ¢}, by the ellipticity condition
(1.3.2) and by (2.2.1) we have

N

a/ |Dup|*dz +/ (up)?dpn < /(Z aiijuhDiuh)ws dz +
{w<e} {w<e}

i,7=1

+ /n(uh) widpy = /(Z a;; D; up Di(upw® )) dz + /ﬂ(uh) wdpy —

7,7=1
N
—/(Z aiijuhD,-wf)uhdx = / fupwidz — /(Z aiijuhDiw‘)uhdm.
Q=1 Q Q=1
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Since, by the definition of v~ -convergence, (us) com)erges to u weakly in H}(Q) and strongly in L*(Q),

we can take the limit in the last two terms as h — co. Therefore we obtain

h—+ 00

N
(2.3.5) « limsup / |Dup|?dz < / fuwdz — /(Z aiijuD,-wE)u dz .
{w<e} L @ ij=1
As (wf) is bounded in L°°(Q2) and converges pointwise to the characteristic function of {w = 0}, we have
that (uw*) converges to 0 strongly in L*(2) as € — 0 (recall that |u| < cw q.e. in Q by Remark 2.3.3).

Moreover,
2
/ lu|?| Dwf |Pdz < E; w?|Dw|*dz < 4c2/ |Dw|*dz
Q €7 Je<w<2e} {e<w<2e}
and thus (uDw*) converges to 0 strongly in L*(Q2). Taking the limit in (2.3.5) as ¢ — 0 we obtain (2.3.4).

g

Proof of Theorem 2.3.2. Let us fix ¢ >0, let 7§ = up — s asin Lemma 2.3.4, and let Qo = {w > 2¢}.
Then Ry = (3 — 1)Du — (52 — D)L Dw + Dr§, ae. in Qs . Since (Dri) converges to 0 strongly in
L*(Q2:,RY) (Lemma 2.3.4) and, in addition, (%+) is bounded in L*°(Qs.) and converges to 1 strongly
in L*(Qa.), we conclude that {Rn) converges to 0 strongly in LQ(QQS,RN). As fn Ridlﬁ = wi Ridz +
f{wsge} Ridz, it is enough to prove that

Cha h—oo

(2.3.6) . lim limsup/ Ridz = 0.
{w<ze)

Since |u] < cw q.e. in Q (Remark 2.3.3), we have |Ry| < |Dup — Du|+ ¢|Dwj, — Dw]| ae. in Q. Therefore

h—oo h—o0

limsup/ Ridz < 4 limsup/ | Dup|dz + 4/ |Duf*dz +
{w<2e} {w<2e} {wg2e}

+4c? limsup/ | Dwp |*dz + 4c? / |Dw|*dz
h—co J{w<2} {w<2e}

for every € > 0. As |u| < cw, we have Du= Dw =0 a.e. in {w = 0}. Since Lemma 2.3.5 can be applied

to the sequences (uz) and (wy), from the previous inequality we obtain (2.3.6), which concludes the proof
of the theorem. O

Lemmas 2.3.4 and 2.3.5 enable us to prove the following corrector result in H3 ().

Theorem 2.3.6. Let (up,) be a sequence of measures of MO(Q) ~L -converging to a measure p € .f\;(O(Q),
and let wy € Hy(Q)N L3, (Q) and w € HY(Q)NLE(Q) be the solutions of problems (2.2.3) and (2.2.4).
Let f € L®(Q) and let up € Hy(Q)NLE, (Q) and w € HF(Q)NLA(Q) be the solutions of problems (2.2.1)
and (2.2.2). Then for every € > 0 we have

e c .
with 51516 h}x}f;p”r“[;,am = 0.

Proof. Setting Qs = {w > 2c}, we have

(237 [pripas = [ prifast [ (prifas.
2 Qe {w<2e}
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Since, by Lemma 2.3.4, (Dr},) converges to 0 strongly.’in L*(Qae, RY) as h — oo, we have only to estimate
the last term of (2.3.7). As Drj = Du— Lwy Du— LuDws ae. in {w < e} and |u| < cw (Remark 2.3.3),

using the fact that (ws) is bounded in L*(Q) and converges to w weakly in H}(S2), we obtain

limsup/ |Drs P dz < 3/ |Dufdz +

h—oo J{w<2e} {w<2}

+-§; w?|Dul*dz + %limsup/ w?|Dwy|*dz <
€% J{w<2e €% h—oo J{w<2e}

< 15/ |Dul*dz + 12¢° limsup/ | Dwy|*dz .
{wg2e} h {wg2e}

—0Q
As |u| < cw, we have Du =0 ae. in {w =0}, and so the first term in the last line tends to 0 as ¢ — 0.

The conclusion follows now from Lemma 2.3.5. . O
The case f & L°°() requires a further approximation (see [11]).

Theorem 2.3.7. Let (1) be a sequence of measures of .A;(O(Q) ~L -converging to a measure p € Mo(Q),
and let (Py) be the sequence of correctors defined by (2.3.2). Let [ € H=Y(Q) andlet up € HYQ)N L2, (R)
and u € H(Q) N LL(Q) be the solutions of problems (2.2.1) and (2.2.2). Finally, let (f*) be a sequence in
L=(Q) converging to f strongly i H-YQ), and let uw € HY(Q) N LA(Q) be the solutions of the problems

(2.3.8) (Lu*,v) + /

Pody = /f’\vda: Vo € Hy(Q) N LL(Q).
o) Q

Then Dup(z) = Du(z) + Pu(z,u(z)) + Rp(z) ae in Q, with

A= hoo

(2.3.9) lim limsup/(Rf‘l)zdz =0.
Q

Proof. For every A and for every hlet uj € Hi ()N Lih () be the solution of the problem

(Luj,v) + /Qu,ﬁuduh = /Qf’\vd:c Yve HY(QNLE (Q).

By Theorem 2.3.2 we have Dup(z) = Du*(z) 4 Pu(z,ut(z)) + Sp(z) ae. in Q, where (Sp) converges
to 0 strongly in L*(Q,RY) for every A. As R} — Sp = (Dup — Du}) — (Du — Du?), from the estimate
(1.4.2) we obtain

2
IRz ryy < ISAllza@myy + -&Hf— la-1a)
which implies (2.3.9). u

Corvollary 2.3.8. Let (pn) be a sequence of measures of Mo(Q) vE -converging to a measure p € Mo(Q),
and let wy, € HY(Q)NLE (Q) and w € H(Q)N LL(Q) be the solutions of problems (2.2.3) and (2.2.4).
Let f € HYQ) and let up € HY Q)N L2, (Q) and u € HY(Q)NLE(Q) be the solutions of problems
(2.2.1) and (2.2.2). If (wn) converges strongly in H3(Q), then (un) converges strongly in H§().

Proof. Let (f*) be a sequence in L% (2) converging to f strongly in H~Y(Q), and, for every A, let
w* € H§(Q) N LE(Q) be the solution of problem (2.3.8). By Remark 2.3.3 each function u*/w is bounded
on {w > 0}. Therefore, if (ws) converges strongly in H{ (), then (Ph(m,u’\(a:))) converges to 0 strongly
in L2(Q,RN) for every X, and so the conclusion follows from Theorem 2.3.7. O
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2.4. The réle of the skew-symmetric part of the operator

Let (aj;) and (b;;) be the symmetric and the skew-symmetric part of the matrix (a;;), and let L*
be the operator associated with the matrix (aj;) according to (1.3.1). In this section we shall study the
dependence of the y%-limit of a sequence () on the skew-symmetric part (b;;) of the matrix (a;;).
We begin by proving that, if the functions b;; are continuous, then the ~L-limit depends only on the

symmetric part aj; .

Theorem 2.4.1. Let u, pp € ./\;(O(Q). If the functions b;;, 4,5 = 1,..., N, are continuous, then (ps)
L

vl -converges 1o p if and only if (ug) %" -converges to .

Proof. Since the vL-convergence and the 4% -convergence are compact (Theorem 2.2.5), we may assume

that (up) v*
Suppose that b;; € CY(Q) for every i,j = 1,...,N. Then, for every pair of functions u, v €

HI(Q)N H*Q), we have

s—converges to a measure u, and we have only to prove that (un) vL-converges to .

N N
(Lu,v) = /(Z af; DjuD;v) dz + /(Z b;; DjuD;v) dz =
Q=1 Q ij5=1

(24.1) N N
= (L°u,v) — /(Z Di(b;; Dju))vdz = (L°u,v) — /(Z D;b;; Dju)vda,
Q=1 Q=1
where, in the last equality, we have used the fact that (b;;) is skew-symmetric, while (D; Dju) is symmetric.

By continuity, the same equality holds for every u, v € H}(Q). Therefore the solution wy, € HM}Q)n .
L2, () of problem (2.2.3) satisfies

(L*wp,v) + / wpvdpp = {(fa,v) Yov EH&(Q)DL;‘;A(Q),
Q

with
N

fo=1+ Z Dib,-ijwh .
ij=1
By the estimate (1.4.2) the sequence (wp) is bounded in H}(f2). Passing, if necessary, to a subsequence,
we may assume that {w,) converges weakly in Hé(Q) to a function w. This implies that (f),) converges

to
N

f=1+ Z D,’bi]-Djw
i,j=1
weakly in L*(Q), and hence strongly in H~(Q). Since (us) 7% -converges to p, by Proposition 2.2.8
the function w is the solution in H§(2) N L%(Q) of the problem

N
(LSw,v) + / wudp = /(1+ Z Dib;; Djw)udz Vv € Hy(Q)N L2(Q).
Q Q =
1,7=1
By (2.4.1) w turns out to be the solution in H}(Q) N L2(Q) of (2.2.4), and this implies that (p;) 7L -con-
verges to g by Theorem 2.2.3. Since the limit does not depend on the subsequence, the whole sequence

(n) % -converges to .
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Let us consider now the more general hypothesis b;; € C°(£2). Let (b;) be a sequence of skew-
symmetric matrices of class C' converging uniformly to (b;;) as € — 0. Let af; = aj; + bj; and let L. be
the corresponding elliptic operators on H'(2). By the first step of the proof (pn) vEe-converges to .
Therefore, if w§ € H3(Q)N L2 (?) and v* € H3() N L2(Q) are the solutions of the problems

(Lewp,v) + /nwf,vd,uh = /ﬂvd:z: VvEHé(Q)ﬂLZh(Q),

(Lowt,v) + /ﬂwevd# = /ﬂvdz Vo € HAQ) N L2(Q),

then (wf) converges to w® weakly in H}(fQ) for every € > 0.
Let us prove that the solutions wy € H{(Q)N L3 (Q) of (2.2.3) converge weakly in HMQ) to the
solution w € H(Q) N L2(Q) of (2.2.4). For every € > 0 we have

(2.4.2) lJwr — wllr2qy < lkon — willozay + llws, — willp2qq) + llw® — wliL2a) -

We already proved that the second term of the right hand side tends to 0 as h — oo. Let us estimate the

first term. If we choose wj; — wy, as test functions in the problems solved by wj and wy, we obtain

<Lew;,w;:—-wh>+Lwi<u:;—wh>duh - /ﬂ(w;—wh)dm,

(Lwy, wy — wh) +/ wp(wh, — wa) dpp, = /(wi —wp)dz.
Q Q

By subtracting the second equation from the first one we get
(Le(wh, — wh), wh — wp) / Z ) Djwp Di(wh, — wy) dz +/(w2—wh)2duh =0.
Q
i,j=1

Then, using the ellipticity assumption (1.3.2) (that depends only on the symmetric part of the matrix)

and the Holder inequality, we obtain

. 9 1 .
= gy € (Bl = w), i = wn) <
/!Z ;) Djwi Di(w), — wh)ldr <
i,7=1
1 .
< - Z 1165 — bi;llLes (o) lonllmagay 1wk — wallmy(a) -

i,j=1

Since (b§;) converges uniformly to b;; as € — 0, and (wy) is bounded in Hg(f), it follows that |jw} —
wh|| () tends to 0, as € — 0, umformly with respect to h. To prove that |lw® — wl||y(q) tends to zero
we can use the same arguments. '
Therefore (2.4.2) shows that (ws) converges to w strongly In L%(Q). As (ws) is bounded in Hj(),
we obtain that (w,) converges to w weakly in H}(Q), and, by Theorem 2.2.3, we conclude that (1)

vl -converges to p. O



32 A. GARRONI

In the rest of this section we prepare the technical tools for a counterexample (Theorem 2.4.4) which
shows that, if the coefficients of the skew-symmetric part (b;;) of the matrix (a;;) are not continuous,
then the y%-limit of a sequence (1n) of measures of /\;IO(Q) may depend also on the skew-symmetric part
of the matrix, i.e., the yZ-limit may be different from the %" -limit.

Let us introduce some notion concerning the capacity relative to the (possibly non-symmetric) operator
L associated with the matrix (a;;). In particular we are interested in the definition and properties of the
capacity with respect the whole space RN .

In the rest of this section we assume N > 3. Let H(R™M) be the space of all functions belonging
to L>"(RN), 1/2* = 1/2 — 1/N, whose first order distribution derivatives belong to L2(RY). By the
Sobolev inequality, it is easy to see that H(R™N) is a Hilbert space with norm el gerny = [|Dullp2rvy -
With a little abuse of notation, L is now the elliptic operator defined by (1.3.1) for every u € H(RY).
Let a(u,v) be the bilinear form defined on H(R") x H(R") by

N
a(u,v) = a;; DjuD;v) dz.
) RN 1)

i,j=1
Let E be abounded closed subset of R™ andlet K = {v € H(R"):v > 1q.e.on E}. By (1.3.2) we have

that the form a(w,v) is coercive on H(RY) and hence there exists a unique solution z of the following

variational inequality

(2.4.3) €K, a(z,v—z)>0 YveEK.

The capacity of E with respect to RN (relative to the operator L) is defined by
(2.4.4) cap?(E,RY) = a(z,2).

The function z is called the capacitary potential of E with respect 10 R .

Let us denote by Bp the closed ball of center 0 and radius R. The corresponding open ball will be
denoted by Ug. Given Ry > 0 such that E C Bp,, for every R > Rg weset Kp = {v € HY{(Ug) : v >
1 q.e. on E} and we consider the bilinear form on H}(Ug) x Hi(Ug) defined by

N

ag(u,v) = / (Z a;; DjuDyv) dz .
U

R §j=1
Then, for every R > Ry, there exists a unique solution of the variational inequality
(2.4.5) zp € Kg, ag(zg,v—zg) >0 Vve Kpg.
The fuhction zp is called the capacitary potential of E with respect to Ugr and
cap®(E,Ur) = ar(zr, zr)

is the capacily of E with respect to Ug (relative to the operator L). In the next chapter we shall study
in details the main properties of capl. In the sequel we shall use the following estimate of the capacity

relative to the operator L in terms of the harmonic capacity defined in Chapter 1:
(2.4.6) kicap(E,UR) < capX(E,Ugr) < kacap(E,Ur),

where k; and kg are two positive constants depending only on the ellipticity constant o and on the L

norm of the coefficients a;; .

Our counterexarnple is based on the following lemma.
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Lemma 2.4.2. Let E be a bounded closed subset of RN . Then
(24.7) Rlirn cap(E,Ug) = cap®(E,RY),
—00

and the capacitary potential z on RY is the unique solution of the problem

N
(2.4.8) e HRY), 3 Di(a;Djz)=0 @aRV\E, z=1ge inFE,

ij=1

Proof. If zg is the capacitary potential of E' in Ugr, we extend it to RN by setting zg = 0 in RM\Ur.
By the Sobolev imbedding theorem we have that zg € H(RN). Using the coerciveness of L, the explicit

formula for the harmonic capacity of a ball, and the inequality (2.4.6) we obtain
“DZRH%E(RN) < o~ ta(zr,zR) = cx'lcapL(E, Ugr) < ks~ tcap(Bgr,,Ur) < C,

for every R > Rg+ 1. Thus we may assume, passing, if necessary, to a subsequence, that (zgr) converges
weakly to a function ¢ € H(RY). By the lower semicontinuity of a(v,v) and by (2.4.5), we have

a(¢,¢) < liminfa(zg,zr) = liminf ag(zg, zr) < limsupar(zgr,2zr) <

(24.9) oo R—veo R—vco

< lim agr(zg,v) = lim a(zg,v) = a((,v)
R—o0 R—o0 .

for every v € H(RY) with compact support in RY and with v > 1 q.e.on E. By a density argument we
obtain that ¢ is the solution of (2.4.3), and thus { coincides with the capacitary potential z of E in RN
Taking v = ¢ = z in (2.4.9), we obtain (2.4.7).

The characterization of z given by (2.4.8) follows easily from standard techniques of variational
inequalities (see [44], Chapter II). U

Let @t = {z € RV : zx > 0},let @~ = {x € RY : zn <0}, and let (f;;) be the matrix defined

0, ifi=j,
ﬁij:{l, ifi>j,

—-1, ifi<j.

by

To construct the counterexample we consider the matrix (al‘?j) given by

where §;; is the Kronecker symbol, and b%;(z) = Bij, if 2x >0, while b%;(z) = 0, if zy < 0. Note that
the skew-symmetric part (b;) of (a;) is discontinuous along the hyperplane T = {2z € RN : zy = 0}.
We denote by Lg the elliptic operator associated with (af;).

The following lemma plays a crucial réle in the counterexample. We recall that B; is the closed unit

ball of RV, N > 3.
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Lemma 2.4.3. Let (aj;) be the mairiz defined by (.”2.4.10). Then
(2.4.11) | cap’®(B1,RY) # cap(By,R"),
where cap(By,RY) is the capacity defined by (2.4.4) relative to the Laplace operator —A.

As Lj = —A, the previous inequality means that the capacity relative to the operator Ly is different

from the capacity relative to its symmetric part L.

Proof of Lemma 2.4.3. Let z be the capacitary potential of B; in R relative to the operator Lo,
defined as the unique solution of problem (2.4.3) with £ = B;. Let u be the harmonic capacitary potential
of By in R¥ ie., the solution of problem (2.4.3) corresponding to the Laplace operator —A. It is well

known that u is characterized as the unique minimum point of the problem
(2.4.12) min{HDvH%g(RN) cv € H(RY), v > 1ae. on Bi}.

Suppose, by contradiction, that capfe(B;, R™) = cap(B;, RY). Then aq(z,z) = ||Du[|ig(RN). Since
ao(z,z) = ||Dz||%2(RN), the function z is a minimum point for the problem (2.4.12) and hence = = u.
Therefore, to prove (2.4.11) it is sufficient to show that z # w. .

Let us define Q = RN\ B, QF = Qt\ B, Q- = Q" \B;,and I = I'\B;. By (2.4.8), for every
v € C§°(Q) we have

N N
(2.4.13) 0= / (> a3 DjzDip) dz + / (> a§DjzDip) dz =
Qt =1 LU ] }

n

= _/f(i(agvjpjz)+)¢da + /(Z(a?ijjz)-)¢da - / oAz dz,

r ]"—‘1 RN\Bl

J
Suppose now, by contradiction, that z = u. Since, by (2.4.8), Au = 0 on RV\B,, by (2.4.13) we

obtain that

where (ay;D;2)* and (a};D;z)” denote the limits on T of afy;Djz from QF and Q7 respectively.

n n

/f(Z(af}Viju)*')sgdo' = ‘[(Z(a?\,iju)")go do

j=1 A

for every ¢ € C§°(Q2). As Zj(aj‘ijju)"’ = Dyu+ Zj BnjDju and Zj(a?\,iju)‘ = Dyu, we have
(2.4.14) Duv =0 qe.onT,

with v = (8~n1, Bn2, .., Bnn) = (1,1,...,1,0). But, using (2.4.8) with L = —A, we find that u(z) =
|2]>~% for every z € Q. In particular Du(z) is different from 0 and is parallel to the vector z for every
z € T'. Therefore, (2.4.14) implies that z-v = 0 for every z € I, and so we have to conclude that v is
orthogonal to ', which is clearly false. This contradiction proves (2.4.11). O
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Let Q = ]-1, 1Y, N >3,andlet T = {z € Q zy = 0}. To give the counterexample for every
h € N we consider on I' the periodic lattice, with period 1/h, composed of the points i = i/h =
(i1/hy ... in-1/R,0), with 7 in the set

Ih':{'i:(il,...,i]\,r_l,()) : 'ijEZ, —h<ij<hf01'j=l,...,1V—-l}.

Let us fix a constant 8 > 0. For every i € I let Bih be the closed ball in RN with center z} and radius

r, such that
(2.4.15) pN-2pN-l =g

Finally let us define Ep as the union of all closed balls Bih foriel.
We are now in a position to prove the following theorem, which shows that the ~Llimit of a se-
quence of measures may depend also on the skew-symmetric part (b;;) of the matrix (a;;), when (b;;) 1s

discontinuous.

Theorem 2.4.4. Let Ej be the sets constructed above, let pp = oop, be the measures of ./\;(Q(o)
defined by (1.2.1), let Lo be the operator associated with the matriz (aj;) defined by (2.4.10), and let
po be the (N — 1)-dimensional measure on I' = {zn =0}. Then (,uh) yLo _converges 1o cpo, with
c= ,BcapLO(Bl,RN), while (pn) ~Lo converges o cypo, with ¢s = ,Bcap(Bl,RN'_) #+c.

To prove the theorem, we shall use a general result, based on the method introduced in [20]. We recall

that the Kato space KI'\F,(Q), N > 3, is the set of all Radon measures p on Q such that

lim sup/ ly — 2>~ Ndp(y) = 0.
r—0% zeQ JanB.(x)

In particular, the measure po considered in Theorem 2.4.4 belongs to KH(Q).
For every i € ZV let Qi be the cube with center i/h and side 1/h, i.e.,

= {zeRY : (2ix—1)/2h <z < (2 +1)/2hfor k=1,..., N}
and let Jj, be the set of all indices i such that QL CQ.

Theorem 2.4.5. Let p € KH(Q). Let (cn) be a sequence of positive real numbers converging to ¢ > 0.
For every i € Jy, let A% be the open ball with the same center as Q: and radius 1/2h, and let Ei be the

closed ball with the same cenler such thal
cap™(E}, A}) = eap(@h)-

Define Ej as the union of all closed balls Ei for i€ Jn. Then the sequence of measures (c0og, ) = -con-

verges to c .

Proof. This result can be deduced from [20] and is proved in [29] assuming that L is symmetric and that

¢y = c for every h. This proof can be easily adapted to the general case. ]
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Proof of Theorem 2.4.4. In order to apply Theorem ‘."2.4.5, we consider the periodic lattice J, on Q. Note
that I, = {1 € J, : i/h € '}. For every i € I, we set E’}, = Bih,if i€ Iy, and E;; =0, ifieJy\I1.
Now we apply Theorem 2.4.5 to the operator Ly and to the measure pq.

Since a;?j(/\a;) = af;(x) for every A >0, for every z € RYN  and for every i,j = 1,..., N, it is easy to
see that

(2.4.16) A =2caple(B,,Ur) = cap®(Bar,Usr),

for every 0 < r < R. Moreover, the capacity relative to Lg is invariant with respect to translations
parallel to the hyperplane {zy = 0}. In particular, with notation from Theorem 2.4.5, caple(E}, A}) =
capL"(B,i.h,A};) does not depend on ¢ € I, and capL"(E,’;,Aﬁ'l) = ca.pLO(B,.h,Ul/gh) for every 7 € I,
where B,, and Uj;., denote the closed ball with center 0 and radius r, and the open ball with center 0
and radius 1/2h.
As po is the (N — 1)-dimensional measure on T', from (2.4.15) and (2.4.16) we obtain
capbo(E}, 43)
1o(@})

for every i € I,. Since capL°(B1,U1/g;,rh) tends to cap“e(B;,RM) as h — co (Lemma 2.4.2), Theo-

rem 2.4.5 implies that (cog, ) y£°-converges to ¢ o, where the constant c is given by ¢ = B caple(B;, RM).

= h*tcapt (B, , Uyjzn) = BcaPLO(.Blle/i””r-)

Moreover, if we apply Theorem 2.4.5 to the case of the operator L) = —A, we obtain that (ccg, ) ¥%¢-con-
verges to c,po, with ¢, = Bcap(By, RY). The fact that ¢, # ¢ follows from Lemma 2.4.3. O

2.5. Some remarks

In this chapter we studied the asimptotic behaviour of relaxed Dirichlet problems when the measure
u belongs to ,/\;lo(Q). However the notion of the y%-convergence can be given for an arbiyrary sequence
of measures (u) of Mo(Q).

Remark 2.5.1. By Remark 1.2.3 the solutions of the relaxed Dirichlet problems (1.4.1) and (1.4.3)
do not change when the measure p varies in its equivalence class. Therefore the 5% -convergence of the

sequence (up) to p in Mo(Q2) does not depend on the choice of p; and g in their equivalence classes in
p p p q

Mo(Q).

The advantage of the choice of Mg(Q) is that in the class M(Q) there is a one to one correspondence
between the measure 1 and the solution w of problem (2.1.7), and it is possible to construct explicitly u
from w (Theorem 2.1.4). In Chapter 4 we shall be forced to consider also measures of My(Q) that are
not in MO(Q), since we need to use the restriction gl FE of a measure g to non-closed sets E (see
Remark 1.2.6).

Nevertheless most of the results proved in this chapter are still true when we change ./\:ig(Q) with
Mo(€2). In particular in Chapter 4 we shall use Theorems 2.2.5, 2.2.10, and 2.2.3, and Proposition 2.2.12.

Moreover we shall use Lemma 2.1.2 and Theorem 2.1.4 in the following versions.

Lemma 2.5.2. Let p € Mo(Q) and let w be the solution of problem (4.4.1). Then fi(B) = 4+co for
every Borel set B C Q with cap(BN{w = 0}) > 0.
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Theorem 2.5.3. Lel u € Mo(R), let w be the solution of problem (4.4.1), and let v =1~ Lw.

v is a non-negative Radon measure of H-Y(Q) and for every Borel set B C Q we have

p(B) 3 / — ifcap(BN{w=10}) =0,

400, if cap(B N {w = 0}) > 0.

Moreover v(BN{w > 0}) = / wdji for every Borel set BC Q. In particular
B

(2.5.1) /ﬂvwdp < (1 - Lw,v)

for every v € Hy(Q) with v>0.
Where i is the measure defined by (1.2.3).

37
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3. Capacity theory for non-symmetric operators*

In this chapter we shall study in details the properties (monotonicity, countable subadditivity, con-

tinuity along increasing sequences of sets, etc.) of the capacity associate to the operator L (possibly

non-symmetric).

3.1. The L-capacity and the L-capacitary distributions.

Let A and B be two bounded subsets of R, with A C B, and let U be an open set containing B.
Let us consider the convex sets K#(U) and HB(U) defined by

KBW) = {ve H{(U):v=1qe. in Aand v =0 qe. in U\B},
HE(U) = {ve H{(U):v>1qe. in A and v <0 qe. in U\B}.
Clearly K£(U) = K(RY) for every open set U containing B. We say that A is compatible with B

if the set KZ(R") is non-empty. In this case we shall consider the solution of the following variational
inequality

(3.1.1) u€ KB(RMN),
o a(u,v—u) >0 Vve KERVN),

and we shall prove that it coincides with the solution of the problem

= HE(RN)y .
(3.1.2) {a(u,v_u) >0 Vve HERNV).

Theorem 3.1.1. Let A and B be two bounded sets, A compatible with B. Then problem (3.1.1) has a

unique solution u. Moreover u coincides with the unique solution of (3.1.2) and 0 < u <1 g.e. in RN,

Proof. Let Q be a bounded open set containing B. We have already seen that I{E(RN) = K_{f (Q). Then
problem (3.1.1) is equivalent to the problem

u € Kf(ﬂ) ,
aq(u,v—1u) >0 Vv e K§(Q),

that has a unique solution by Stampacchia’s theorem (see [44], Theorem 2.1). In order to prove the second

assertion, for every (possibly unbounded) open set U containing B we consider the variational inequality

we Hf(U) ’
(313) {GU(UJ,'U — w) > 0 Yv € HE(U) .

Let us prove that, if w is a solution of (3.1.3), then w coincides with the solution u of problem (3.1.1).
To this aim it is sufficient to prove that 0 < w < 1 q.e. in U. Let us consider the function z = w A 1.
Since z € HE(U), by (1.3.2) and (3.1.3) we obtain

N
0< au(w)z—w) = ———/ Z aiijwDiwdz < —/ |le2d1‘
{w>1} ij=1 {w>1}

™ The content of this chapter is published in [27]
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Thus, either |[{w > 1}| = 0, and hence w <1 q.e. in U, or Dw=0 ae.in {w> 1}. This implies that
D(wV1) =0 ae.in U, so wV1 is constant in each connected component of U. Since w € Hg(U) we
have wV1=1 ge.in U and hence w<1 qe.in U. In particular w =1 qe.in A.

Similarly, using z = w V 0 as test function n (3.1.3), we can prove that w > 0 q.e. in U and in
particular w = 0 q.e. in U\B. Therefore w € KB(U) = KERN). As KBRN) C HJ(U), wis a
solution of problem (3.1.1), and thus, by uniqueness, w = u q.e. in RV,

It remains to prove the existence of a solution of problem (3.1.2). Let us fix a bounded open set
Q such that B CC Q. By Stampacchia’s theorem there exists a unique solution of the problem (3.1.3)
corresponding to U = Q and, by the previous step, this solution coincides with u. We are now in a
position to prove that u is a solution of (3.1.2). Let ¢ be a function in C5°(Q) such that ¢ =11in B and
w >0 in . Then for every v € HB(RY) we have vp € HB(Q) and, since w = 0 g.e. in B*, by (3.1.3)

we obtain

a(uv—-u)—-/ Za DjuDj;(v —u)dz = /ZazJD11D(<pv—u)d.L>O

i,j=1 i,j=1

Thus u is a solution of problem (3.1.2) and the proof is complete. ([

Definition 3.1.2. If A is compatible with B, the solution u of problem (3.1.1) is called the L -capacitary
potential of A in B and the L-capacity of A in B is defined by

capt (4, B) = a(u,u).

If A is not compatible with B, we put cap“(4,B) = +co.

When A is closed and B is open this definition coincides with the definition of capacity given by
Stampacchia (see [65]). If L is symmetric and B is open, then the L-capacitary potential is the solution
of the minimum problem

. min{as(v,v) : v € Hj(B), u>1qe. in A}.

In particular, when L is the Laplace operator —A, the L-capacity coincides with the harmonic capacity

introduced in Section 1.

Remark 3.1.3. It is clear that if u is the solution of problem (3.1.1), then it remains a solution if we
replace the set A with the set {u =1} and the set B with the set {u > 0}. So that

cap({u = 1}, {u > 0}) = cap”(A, B).

Since {u = 1} is quasi closed and {u > 0} is quasi open, in many applications it is not restrictive to
assume that B is quasi open and A is quasi closed.

For the capacitary potentials the following comparison principle holds.

Lemma 3.1.4. Lel Ay C Ay and By C By be four bounded subsels of RN such that Ay (resp. Aa)
is compatible with By (resp. Ba). Leil uy (resp. ua) be the L-capacilary poteniial of Ay (resp. As) in
By (resp. Bz ). Then u; < ua g.e.in rRM.

Proof. This result is a direct consequence of an elementary comparison principle for two-obstacle problems
([44], Theorem 6.4, for the case of one obstacle, and [32], Lemma 2.1, in the general case). O
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Remark 3.1.5. If A is compatible with B, and u'is the capacitary potential of A in B, then
(3.1.4) a(u,p) = 0  for every v € HY(RM) with ¢ =0 qe.in AUB®.

Indeed the set of all these functions ¢ is non-empty (for instance it contains the function u(l — u)) and
if we choose ¢ in this set we have that u + ¢ and u — ¢ belong to K¥(R"); so that using u + ¢ and
u — ¢ as test functions in (3.1.1) we obtain (3.1.4).

Theorem 3.1.6. Let A and B be two bounded subsets of RY , A compatible with B, and lel u be the

L-capacitary polential of A in B. Then there exist two positive bounded Radon measures v and X such
that v — X € H-Y(RY) and

(3.1.5) Lu=v—2)

in the sense of distributions. Moreover, suppr C 0A, suppA C 8B, v(E) = AM(E) =0 for every Borel
set I of capacity zero, and

(3.1.6) a(u,v) = / Udl/—-/ vdA Yo e HY(RN)n L=®(RN).
RN RN
Finally, u=1 v-a.e. in RY and u=0 A-ae. in RN .

Proof. By Theorem 3.1.1 the function u coincides with the solution of problem (3.1.2). Let ¢ € C*(RY),
with ¢ > 0. Clearly up +u € HE(RV); so that, by (3.1.2), we have

a(u,up) >0 Vo € CP(RY), ¢ > 0.
Thus, by the Riesz representation theorem, there exists a positive Radon measure v on R" such that
(3.1.7) a(u,up) = / pdv Yo € C(RY).
RN

Similarly, for every ¢ € C°(RY), with > 0, we have that a(y, (1 — w)p) < 0. So that there exists a
positive Radon measure A on RY such that

(3.L8) ou,(1- ) = - [

RNgocl/\ Yo € C5°(RY).

Then, by (3.1.7) and (3.1.8), we obtain
(3.1.9) a(u, ) = a(u,up) + aly, (1 — u)p) = / godu—/ pdA
RN N
for every ¢ € C°(RY). This implies that Lu = v — X in the sense of distributions and that v — A €
H-Y{RN).

For every ¢ € C&(RN) with ¢ = 0 in A, by (3.1.4) and (3.1.7), we have that Jrn @dr =0, thus
suppv C A. In the same way, taking ¢ € C5°(RY) with ¢ = 0 in B¢, by (3.1.4) and (3.1.8) we obtain
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that supp A C (int(B))c, where int(B) denotes the interior of B. Moreover, since suppr C A C B and
u=0 qe.in B¢, for every v € C(RY), with ¢ = 0 in B, by (3.1.9) we have

/RNgod/\ = —a(u,p) =0,

thus supp A C 8B. Similarly, since Du = 0 in int(A) and supp A C (int(A))C, for every ¢ € C5°(RN),
with ¢ = 0 in (int(4))°, by (3.1.9) we get

/ pdv = a(u,¢) = 0,
RN

hence suppr C 0A. In particular A and v are finite measures. Let us prove now that the measures v
and A vanish on all sets of capacity zero. To this aim it is sufficient to prove that v(C) = 0 and A(C) =0
for every compact set C of capacity zero. Let us fix such a set C' and let us consider a bounded open set
2 containing C'. It is possible to construct a sequence () of functions in C§°(Q) such that 0 < ¢, < 1
in Q, o =11in C, and (@s) converges to zero strongly in H}(Q). Then by (3.1.7), for every h € N, we

have

(O < [ onds = alu,up).
RN

Taking the limit as 2 — co we obtain v(C) = 0. In the same way we can prove that A(C) = 0. Since A
and v are finite, we have that every ¢ € HY(RY) N L®(RY) belongs to L}(RY) and to LL(RY), and

thus, by an easy approximation argument, we obtain
(3.1.10) a(u,up) = / wdv, a(u, {1 —u)yp) = —/ wdA Yo € HY(RN)N L®(RY),
RN Ry

which implies (3.1.6).

Finally let us consider the quasi open set {u < 1}. By Lemma 1.1.2 there exists an increasing sequence
(va) of functions of HY(RN), with 0 < v, < L{uc1y converging to Liucty Qe in RY. Since uv, = 0
g.e. in AU B¢, from (3.1.4) and (3.1.10) we obtain

0 = a(u,uvy) = / vy, dv .

RN

Taking the limit as h — oo we have v({u < 1}) = 0 and thus u > 1 v-ae.in R". Since u < 1 qe.
in RV (Theorem 3.1.1), we have also u < 1 v-ae. in R, and hence u =1 v-ae. in RV

Similarly, let (zp) be an increasing sequence of functions of HYRN), with 0 < z, < l{y>0y con-
verging to liysop 96 In RY. Then (1 - u)z, =0 in AU B® and from (3.1.4) and (3.1.10) we obtain

/ zpdA = 0.
RN

Taking the limit as A — co we conclude that u =0 X-a.e.in RV . (|

The measures v and A defined by (3.1.5) are called the inner and the outer L -capacitary distribution
of A in B.
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Remark 3.1.7. It is easy to see that if A is relatively compact in the interior of B, then v € H-YRN)
and A € H™Y(R"). We shall see in the Section 3.3, with an explicit counterexample, that, given a bounded
open set B, it is possible to construct an open set A contained in B and compatible with B, such that

the inner and the outer capacitary distributions of A in B are not in H-Y(RM).

Remark 3.1.8. Let V an open set such that VNA=¢@. Sappose that VN JIB is a C! manifold and
that V N B lies, locally, on one side of VN JB. Then

ME) = - Ou do for every Borel set E C V',
on
38BNE L

where n, is the (outer) conormal vector on JB associated with the operator L, and o is the (N —1)-

dimensional measure on JB.

Proposition 3.1.9. Let A and B be two bounded subsets of RY, A compatible with B, and let v

and X be the inner and the outer capacitary disiributions of A in B. Then

(3.1.11) capb (A4, B) = v(8A) = »(RY) = A(9B) = AMR").

Proof. Let u be the capacitary potential of A in B. Since, by Theorem 3.1.6, u =1 v-ae. in RN and
u=0 A-ae.in RV by (3.1.6) we obtain

capf(4, B) = a(u,u) = / udv = v(RY) = v(0A),
RN

where in the last equality we used the fact that supprv C JA. In order to prove the other equalities
in (3.1.11) let us consider a function ¢ € C§° (RM) such that ¢ = 1 in B. Since u = 0 g.e. in B, by
(3.1.8) we have

cap?(4, B) = a(u,u) = —a(y, (1 —u)p) = / od) = A(OB) = M(RY),
RN
where in the last two equalities we used the fact that supp A C 9B. O

Proposition 3.1.10. Let u; and us be two functions in H,IDC(RN). Ifuy <us ge in A, then up < ua
v-ag.e. in RY; if uy = us qe in A, then uy = uz v-ae. in RY . Likewise, if u; < us g.e. in B?, then
uy <ug A-a.e.in RN if uy =us g.e. in B, then uy = us A-a.e.n RV,

Proof. Since v and X have compact support, it is not restrictive to suppose uy, us € HYRY). It is clearly
enough to prove only the statements concerning inequalities. Let us prove the first assertion, assuming
that u; < us qee.in A. Let v = (ua —uy + 1)* Al. Then 0 <v <1 qge in RY and v = 1 qe. in A.
So that it is sufficient to prove that » > 1 v-ae. in RN . Suppose that v({v < 1}) > 0. Let u be the
capacitary potential of A in B. We can use the function uv as test function in problem (3.1.1), hence
a(u,u) < a(u, uv). By Proposition 3.1.9 and by (3.1.10), we obtain

v(RY) = cap®(4, B) = a(uy,u) < a(u,uv) = /

vdr < v(RY).
RN
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This contradiction implies that v({v < 1}) =0, hence v > 1 v-a.e.in RV.

In order to prove the assertion concerning B¢, we assume that u; < u2 g.e. in B® and we consider,
as above, the function v = (us — u; + 1)t A 1. In this case we have 0 <v <1 qee.in RY and v =1 qe.
in B¢. Then, taking (u— 1)v+1 as test function in (3.1.1), By Proposition 3.1.9 and by (3.1.10) we have

MRY) = a(u,v) < a(y, (u—1Dv+1) = a(y,(u—1)v) = / vdA.

RN

This implies that A({v < 1}) = 0 and concludes the proof. O
Remark 3.1.11. Proposition 3.1.10 and (3.1.6) imply that
a(u, @) = / wdv Vo € HE (RY)YNL=®(RY), ¢ =0 qe. in B®,
RV

and

alu, @) = ——/RN @ dA Vo e HL (RMYNL®RY), o =0 qe. in A.

3.2. The main properties of the L-capacity

In this section we study the properties of cap”(4, B), considered as a function of the sets A and B.
For the sake of simplicity, in the second part of the section, we keep B fixed and we consider only the

dependence on A. Dual statements could be proved by exchanging the roles of A and B.

Theorem 3.2.1. Let AC B be two subsets of RN . Then cap®(4, B) = capl (A, B).

Proof. We may assume that A is compatible with B, otherwise the conclusion is trivial. Let u (resp. "
u*) be the capacitary potential of A in B with respect to L (resp. L*), and let v (resp. v~ ) the inner
capacitary distribution of A in B relative to L (resp. L*). Since u and u™ are equal to 1 ge. in 4 and
equal to 0 g.e. in B°, by Proposition 3.1.10 and Remark 3.1.11 we obtain

V(RN = / vdr = a(y,uT) = o (vt u) = / wdv® = v (RY).
RN . RN

The conclusion follows from Proposition 3.1.9. O

We are now in a position to prove the main properties of the L-capacity. We begin with the mono-

tonicity with respect to A.

Theorem 3.2.2. Let A; C Ay C B be three subsets of RY . Then
cap®(Ay, B) < cap®(4s, B).

Proof. We may assume that As (hence A;) is compatible with B. Let u; (resp. u3) be the capacitary
potential of A; (resp. Aa) in B with respect to L (resp. L*) and let v, (resp. v3) be the corresponding
inner capacitary distribution. Since u3 = 1 q.e.in Ay D A; and u; <1 ge. in RYN, while u5 = u; =0
q.e. in B¢, by Proposition 3.1.10 and Remark 3.1.11 we have

v (RY) = /RN updv; = a(uy,uh) = a*(u3,u) = /RN uydvy < v3(RY).

The conclusion follows from Proposition 3.1.9 and Theorem 3.2.1. O
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Theorem 3.2.3. Lei AC By C By be three subsets of RY. Then

capt(A, By) < cap(4,B).

Proof. Clearly it is not restrictive to suppose that A is compatible with B; (hence with By). Let u,
(resp. u3) be the capacitary potential of A in B; (resp. By) with respect to L (resp. L*) and let A, (resp.
A3) be the corresponding outer capacitary distribution. Since, by Proposition 3.1.10, u; = 0 A3-q.e. in
RY, by Remark 3.1.11 we obtain

AHRY) = / (1 —uy)dX; = a™(uy,uy — 1) =
RN
= a(uy,u;—1) = / (1—u3)dr, < M (RY),
RN
and we conclude by Proposition 3.1.9 and Theorem 3.2.1. O
We prove now that cap’ is strongly subadditive with respect to A.
Theorem 3.2.4. Let A; and A, be two subsets of B. Then

capf (A N As, B) + cap?(A; U Ay, B) < cap® (A, B) + cap® (A2, B).

Proof. We may assume that A; and A, are compatible with B. In this case A; N A, and A; U A,
are compatible with B too. Let uj (resp. u3) be the capacitary potential of A; (resp. As) in B with
respect to L*, and let v (resp. v3) be the corresponding inner capacitary distribution. Moreover, let
Uy ua, (T€SP. Uy q4,) be the capacitary potential of A; U As (resp. A1 N Ay) in B with respect to L,
and let vy 4, (resp. vy na4,) be the corresponding inner capacitary distribution. Using the fact that
w} Auj+uVuy = uj + ui, by Proposition 3.1.10 and Remark 3.1.11 we obtain

N N _ x *
Va,na.(RY) +v404,(RY) = /A(U1 Auz)dvy na,+
RN
+/ (0] Vu3)dva oa, = @lua,nag, U Auz) oty ga, ¥ Vus) =
N
(3.2.1) a - \ o
= a(tq,na, — Ua,ua, ¥ AUD) + a(Ua,ua,0u1) + a(Ua 04, U2) =
—_— *® * *x * * .
= a’(u] Aud, Uy na, ~ %a,uas) +/ Ug,u4, W1 +/ Uaua, Vi =
RN RN
= a*{u] Auj, —u Y+ v (RY) + s (RY)
= a U 25U nA, A UA> 1 2 .
* * * .
In order to conclude, let us prove that a*(u] Auj,uy na, — Uy ua,) S0 Let us fix a bounded open

set © DD B and let us consider the set HE(Q) of all functions ¢ € Hg(Q) with ¢ =0 q.e. in B*. Since

u? and u} are solutions of variational inequalities of the type (3.1.3) with U = Q, it is easy to see that
ag(ui, ) >0 and aq(us, @) >0

for every ¢ € Hg(Q) with © > 0 qe. in Q. If B is open this means that L™uj > 0 and L*uj > 0 in

B in the sense of distributions, and this implies L*(u Au3) > 0 in B in the sense of distributions (see
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[44], Theorem 6.6). If B is not open, we can repeaf the proof of Theorem 6.6 of [44], replacing HE(B)
with HZ (), and we still obtain that aq(u} Auj, @) > 0 for every ¢ € HF(Q) with ¢ > 0 qe. in Q.

. .. .
Moreover, by the comparison principle (Lemma 3.1.4) we have uy 4. > uy 4, and hence af(uj A

U3, Up na, ~ Ua,ua,) < 0. The conclusion of the theorem follows now from (3.2.1), Proposition 3.1.9, and
Theorem 3.2.1. (]

The following theorem proves that cap’ is continuous along increasing sequences.

Theorem 3.2.5. Let (Ap) be an increasing sequence of subseils of B, and let A be their union. Then

capf(A, B) = sup cap’ (4, B).
h

Proof. By monotonicity (Theorem 3.2.2) we have capl (A, B) < cap®(4, B). Therefore it is enough to
prove that
cap©(4, B) < sup cap®(4s, B).
A

We may assume that the right hand side is finite, so that each set Aj is compatible with B. Let uy be
the L-capacitary potential of A, in B. By the comparison principle (Lemma 3.1.4) the sequence (uy) is
increasing. Therefore it converges pointwise q.e. in RY to some function u. Let Q be any bounded open
set such that B CC Q. Since aq(un,us) = cap*(A4p, B), and sup ca,pL(Ah,B) < +oo, the sequence (up)
is bounded in H}(Q). By Lemma 1.1.1 u is (the quasi continuous representative of) a function of H(Q)
and (up) converges to u weakly in H}(Q). It is easy to see that u =1 qe. in A and u =10 g.e.in Q\B.
Thus u € KZ(Q) = KB(RY) and A is compatible with B.

As wuy, satisfies
(3.2.2) a(up,v—up) > 0

for every v € th(RN), we have, in particular, that (3.2.2) holds for every h if v € Kf(RN). Hence
for any such v, taking the limit in (3.2.2) as h — 400, and using the weak lower semicontinuity of

w — a(w,w) we obtain
(3.2.3) a(u,u) < lihminfa(uh,uh) < lihminfa(uh,v) = a(u,v).

Thus u is the capacitary potential of A in B and by (3.2.3) we have

h—o0

capL(A,B) = a(u,u) < liminfa(up,up) = sx}xlvp capL(Ah,B).
This concludes the proof of the theorem. |
Finally we establish the countable subadditivity of the capacity cap’.
Theorem 3.2.6. Let (Ax) be a sequence of subset of B and A C |J, An. Then

cap?(4,B) < anpL(Ah,B).
h

Proof. The conclusion follows easily from Theorems 3.2.2, 3.2.4, 3.2.5. O
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3.3. An example of capacitary distributions which do not belong to H~Y(RNY)

In this section L is the Laplace operator —A, so that the L-capacity coincides with the harmonic
capacity considered in Section 1. We construct two bounded open sets A and B, with A C B, such that:
(i) A is compatible with B, L.e., cap(4, B) < 40c0;
(ii) the inner and outer capacitary distributions v and X of A in B do not belong to H-Y(RV).
The set B is just a ball with radius R > 0 and with center on the positive z;-axis at a distance R
from the origin, so that 0 € dB. The set A is the union of a sequence (4;) of disjoint open balls contained
in B. Each ball A; has center on the positive z,-axis, radius r;, and distance from the origin d;, so that

its center has distance d; + r; from the origin. We assume that (d;) and (r;) tend to zero and that
(331) d,'.;,_l + 27‘i+1 < d; Yie N,

so the ball A;1; lies on the left of the ball A;. We have to choose the parameters d; and r; in such way
that (i) and (ii) are satisfied. For every k let Uy be the union of the balls Ay,..., Ax. Let us denote
by u; and v the capacitary potentials of Ay and Uy in B. Finally, let us fix a non-negative function
w € C®(RM\{0}) N HY(RY) such that w(z) = w(|z]), with w decreasing and with ‘l)i_r}})w(p) = +oo0. We

will show that it is possible to choose the parameters d; and r; in such a way that:

k
‘ 1
(3.3.2) we <y w < (14 se)ve VEEN,
i=1 i=1
(3.3.3) -i/ Ui 1y < 40
. i=1 oB an ’
ad Ou;
( 334) —_ Z/@B -a—n—wd()' = 40,

where n is the exterior unit normal to 8B and o is the surface measure on §B. By this choice of d; and

r; we will obtain our result. Let us prove this fact. Since u; = vy = 0 on 9B, by (3.3.2) we have

(3.3.5) _2”-‘:<_§k:a“" <_(1+,§i)§—”ﬁ on OB
o on = 4 on T £ 287 On '
Then, using Remark 3.1.8, Proposition 3.1.9, and Theorem 3.2.4, from (3.3.3) we obtain

k o}
cap(Ug, B) < anp(A,-,B) < —Z/ %%a’a < 400
i=1 i=1 /98

for every k € N, and thus A is compatible with B by Theorem 3.2.5.
Let us denote by v the capacitary potential of A in B. Since, by the maximum principle, vy < v in
B and v = v =0 on 0B, we have that ~%—Un"— < =9 on 9B. Moreover, if we denote by A the outer

on
capacitary distribution of A in B, by Remark 3.1.8, we get

ME) = —/a ?—E}-da

BnE On
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for every Borel set E, with 0 ¢ E. As {0} has capééity zero, the previous formula holds for every Borel
set. Since by (3.3.4) and (3.3.5)

——/ %wda——wkoo
o8B 8n

as k — oo, we have

/ wd\ = +00.
3B

As w € HY(RY), this implies that A ¢ H~*(R"). Since v — A € H-'(R"Y) (Theorem 3.1.6), we have
also v ¢ H-1(RM).

It remains to construct (d;) and (r;) such that (3.3.1), (3.3.2), (3.3.3), (3.3.4) are satisfied.
From now on we will denote by B, the open ball of center zero and radius r. Let us fix a sequence of

positive numbers (p;) converging to zero. If we choose A; such that

(3.3.6) - Z/ %%l do < 400,

then the conditions

(3-;3.7) - i/ | %% do < +co
and
- Ou;
(3.3.8) _Zf .—g—lwda = 400
clearly imply (3.3.3) and (3.3.4). To get (3.3.6) we need the following lemma.

Lemma 3.3.1. There exist three functions a(e), 6(¢), n(c), defined for 0 <& <1 and converging to 0
as € — 0, such that, if E; 1s any subset of BN By(c) compatible with B, and z. is the capacitary potential
of E. in B, then

(a) z. <6(g) g.e. in B\B;

(b) / Oz do < n(g) for every 0 <e < 1.
8B\ B, dn

Proof. Let a(e) = exp(—1/¢) and let (.(|z|) be the capacitary potential of Ba(s) in Bar. We set

§(¢) = ¢ (¢) and n(e) = cap(Ba(e), Be). By direct computation we verify that §(¢) and 7(c) tend to 0 as

¢ tends to 0. Let C. = BU B, and let w, the capacitary potential of By in C.. By Theorem 3.2.3 we

have that

(339) Cap(Ba(s)yCE) < 77(‘5)‘

Let E. be a subset of B N By() compatible with B, and let z. be the capacitary potential of E. in B.
By the maximum principle we have -—aa"j; >0 on 9C. and z(z) < we(z) < ((Jz]) for 2 € B\Bg(e)- As

¢ (Jz|) is decreasing with respect to |z|, we obtain (a). Since z; = w. = 0 on 0B\ B., we obtain that
0< —%inﬂ < —%‘- on 8B\B,. Finally (3.3.9) together with Remark 3.1.8 and Proposition 3.1.9 implies

Oz Ow, ow. |
B =T £ - = ca : < n(e).
/BB\Bz In 4o s /aB\B, dn do < ./act on do = cap(Ba(e), Ce) < 1(¢)
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Let us fix a sequence (g;) such that 0 < &; < p; and n(e;) < 1/2°. If
(3.3.10) A; € Baey) s

then by Lemma 3.3.1 we have

(3.3.11) —/ % gy < i
3Bﬂﬂ 6n 2

This yields (3.3.6). It remains to find additional conditions on d; and r; which imply (3.3.7) and (3.3.8).

Let us fix the following notation: v; = w(p;), where w(z) = w(|z|) is the function which appears in

(3.3.4), and
Ou;

Yi(di,mi) = —/ do .
8BNB,, on

Since w is decfeasing, to obtain (3.3.8) it is enough to prove that

[ee]

(3.3.12) ' Zv,bi(d,-,r,-)*ﬁ = 400.

i=1

Since v; — +00 as i — 4o, there exists a subsequence (7;,) such that

1 1
— < = Vk e N.
Yi, — 2F
If we define the sequence 3; by
L if 1 =1,
Vi
B =

% A3, otherwise,

then Y . B;7; = +o0 and }_, B; < +oo. Therefore, if we choose d; and r; satisfying
(3.3.13) Yildi, i) = Bi Vie N,

we obtain (3.3.7) and (3.3.12) , and hence also (3.3.8).

We are now in a position to construct the sequences (d;) and (r;) by induction. Suppose that d; and
r; have already been fixed for every i = 1,...,k— 1, and that they satisfy (3.3.1), (3.3.2), (3.3.10), (3.3.13)
. Let us construct dj and ry. Since 4;(0) = 0 and u; is continuous at 0, there exists Si, 0 < Si < dg—1,
such that

k-1 k-1

1
3.3.14 0 < (z) < S = VzeBNBs,.
($919 S22y :

Moreover, by Lemma 3.3.1(a), if Sy is small enough, then

k-1
1
(3.3.15) 0 < ug(z) < ST Ve € Upor = U A;
i=1

for every pair dy, r such that Ay C Bs, , i.e., dp + 2r < Sk. As up =1 in Ay and, by induction,

k-1 =2y
1< u;(z) < 1+ — Vz € Up-1,
_; (z) < ;2, k=1
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by (3.3.14) and (3.3.15) , we get

k k—1
1
ISZui(x)gl—{—Zé? Ve e Ug.
i=1 i=1

Then, taking into account that vy = 1 in Ug, by the maximum principle we obtain (3.3.2) whenever
Ap C Bs, ,ie., dip+2r; < Si. We can choose Ry and Dj small enough such that D+ 2Ry < Sp < de—1
and Ag C Bg(e,) (see (3.3.10)), i.e., D + 2Ry < a(er). Then, for every vy < Ry and di < Dy, (3.3.1),
(3.3.2), (3.3.10) are satisfied. It remains to find 7, < Rp and dj < Dy such that (3.3.13) holds. Since
cap(A;, B) tends to +co as d; — 0, Remark 3.1.8 and Proposition 3.1.9, together with (3.3.11), imply
that 15 (6, Rx) tends to +co as § — 0. Therefore it is possible to fix dp < Dy, such that

1
Yi(dy, Bi) 2 —.

Tk
By the definition of B, we have that 0 < 8 < ¢(dk, Rk). As ¥i(dy, p) decreases continuously to zero as
p — 0, it is possible to find ry < Ry such that ¥(dy,rr) = Br. With this choice of di and rp conditions

(3.3.1), (3.3.2), (3.3.10), (3.3.13) are satisfied, and this concludes our construction.
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4. The capacity method for asymptotic Dirichlet problems*

In this chapter we prove that the asymptotic behaviour of the solutions of Dirichlet problems for linear
elliptic equations in perforated domains of the form Qp = Q\ E}, is uniquely determined by the asymptotic
behaviour, as h — oo, of suitable capacities of the sets BN E}, where B runs in a conveniently large class
of subsets of . More in general we decribe the asymptotic behaviour of sequences of solutions of relaxed
Dirichlet problems corresponding to sequences of measures (up) in Mo(§2) by asymptotic behavior of the
pn-capacities defined below.

4.1. The p-capacity with respect to the operator L

In this section we shall study the main properties of the p-capacity with respect to the operator L,
defined in [30]. These properties will be the basic tools to describe, in Section 4.4, the vE-limit of a
sequence of measures in Mo(Q2).

Let p € Mo(Q) and let E be a Borel subset of Q such that £ CC 2. Then there exists a unique
solution v of the problem

v € HY Q)N LL(E), vs— 1€ HY(®),
(4.1.1)
an(vE,v)+/ vgvdp =0 VUEH&(Q)ﬂLi(E).
E

Definition 4.1.1. The solution vy of problem (4.1.1) is called the p-capacitary potential of E in Q,
with respect to the operator L, and the p-capacity of E in 2, with respect to L, is defined by
capﬁ(E,Q) = aQ(vE,vE)—l—/ vhdp .
E
We shall write simply ca.p{;(E) when no ambiguity can arise.

Remark 4.1.2. By Remark 1.2.3 it is easy to see that, if p;, po € My(2) are two equivalent measures,
then capﬁl and capfi2 agree on all quasi open subsets of . In particular, by Remark 1.2.5, cap{;(A) =
capZ(A) for every p € Mo(Q) and for every quasi open set A C Q.

i

Remark 4.1.3. It is easy to see that, if F' is a subset of 2 and p is the measure cop defined by (1.2.1),
then capZ(E) = capt(EN F).

Remark 4.1.4. By the comparison principle (Proposition 1.4.4) we have 0 < vg <1 qe.in .

* The content of this chapter is published in 28]
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Lemma 4.1.5. Let p € Mg(Q), let ECCQ bea Borel set, and let vy be the p-capacitary potential of
E relative to L. Let us extend vy to RN by setting vgp =1 g.e. on RN\ Q. Then there exist two non-
negative Radon measures Ay and vg in H‘I(RN) such that Lvg = Ap —vg in the sense of disiributions
in RN, with supp Ay C 9Q and suppvg C E. In particular we have

(4.1.2) aq(vg,v) = Ag(0Q) — / vdvg
[¢]
for every v € HY(Q) with v—1€ H}(Q).

Proof. By Proposition 1.4.5 we have that ag(vg,v) < 0 for every v € HY(Q) with v > 0 qe. in Q. By

the Riesz representation theorem, there is a non-negative Radon measure vp € H~YQ) such that
ag(vg,v) = —/ vdvg
e}
for every v € H}(Q). Moreover, for every v € HM(Q) with v =0 g.e. in E, by (4.1.1) we have
0 = ag(vg,v) = ~/ vdrg,
Q

and this implies that supp vy C E. In order to prove the existence of the measure A we follow the lines
of the proof of Lemma 2.1 in [29]. Let €' be a bounded open set such that @ CC €’ and let z be the

solution of the obstacle problem
€ HY(Q), 2>0qe. in Q\Q,
(Lz+vg,v—12) >0 Vv € HHQ), v>0qe in Q\Q,

where, in this case, (-,-) denotes the duality pairing between H~'(Q’) and HY(Q). It is well known that
there exists a unique solution z of this problem, and that z is a supersolution of the equation L = —vg,
ie, Lz + vp = Ap in the sense of H~!(Q’) for some non-negative Radon measure Ay € H~1(Q').
Moreover z < ( for every supersolution ¢ € H'(Q') of the equation L = —vg with ¢ >0 q.e. in '\ Q
(see [44], Section I1.6). In particular z < 0 qe. in Q and this implies that z = 0 q.e. in Q' \ Q, hence
z € HY{(Q). Since Lz +vg = 0 and Lvg + vg = 0 in the sense of H~1(£)), by uniqueness we obtain
z = vg — 1. This implies that Lvg = Ag —vg In Q. As Lvg = —vg in Q, supprg C E,and vg =1
qe. in RV \ Q, we conclude that supp Az C 9. This implies that Ag is a bounded Radon measure on
RY and that Lvy = Ag — vg in RY. Finally, in order to prove (4.1.2), let ¢ € C52(Q) be a function
such that @ =1 in ©, and let v € HY(Q) with v — 1 € H}(Q). Let us extend v to RN by setting v =1
ge.in RY\ Q. Then pv € HY(RY). As Lvg = Ag —vg in RY | we obtain

(4.1.3) ag(vg,v) = ag(vE,pv) = / pvdip — /govduE.
8Q Q

Since p=11in Q and v =1 qe. in Q, we have that pv =v in @ and pv =1 g.e. in 9Q. Thus (4.1.2)
follows from (4.1.3). O

The measures v; and Ag, defined in Lemma 4.1.5, are called the inner and the outer u-capacilery
distribution of F in Q relative to L.
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Lemma 4.1.6. Let p € Mo(R), let E CC Q be '@ Borel set, let vg be the p-capacitary potential of

E in Q with respect to the operator L, and let vy be the corresponding inner p-capacitary distribuiion.
Then

(4.1.4) /vduE = / vug di
Q E

for every ve HY(Q) N LA(E).

Proof. It is enough to prove (4.1.4) for every v € H'(Q) N LZ(E) with v > 0 q.e. in Q. Since every
function v with these properties can be approximated pointwise q.e. in Q by an increasing sequence of
functions of H3(Q)NL3(E), it suffices to prove (4.1.4) for every v € H{(Q)NLL(E). From the definitions

of vy and vg it follows that
/vduE = —ag(vg,v) = / vog dp
Q E

for every v € H3(Q) N L%(E), and the lemma is proved. O

Lemma 4.1.7. Lel p € Mo(Q), let E CC 2 be a Borel set, let vg be the p-capacitary potential of E in
Q with respect to L, and let vg and Mg be the corresponding inner and ouler p-capacitary distributions.
Then capi(E,Q) = vg(Q) = A5(09).

Proof. By taking v = 1 in (4.1.2) we obtain vg(Q) = Ag(8Q). If we take v = vp in (4.1.2), by (4.14)
we obtain also

tavg, vg) = Ap(0Q) — /nuEduE = A5(09) — /ﬂv};d#,

which, by the definition of p-capacity, implies cap{;(E,Q) = Ag(0Q). O
The following result will be fundamental in the proof of the main properties of the p-capacity.
Theorem 4.1.8. Let u € My(Q)) and let E CC Q be a Borel set. Then capﬁ(E) = cap{;‘(E).

Proof. Let vg and vy be the p-capacitary potentials of E relative to L and L7, and let vgp and vg
(resp. Ag and A%) be the corresponding inner (resp. outer) p-capacitary distributions. By (4.1.4) we

/v}‘; dvg = / vpUgp du = /vEdu}‘g.
Q E Q

Therefore by Lemma 4.1.7 and (4.1.2)

have

Capf:(E) = /\E(OQ) = aQ(UEavE) ’+’ v/Q'U*E dl/E =

= ax (v}, vg) + /ﬂ vpdvy = \p(09) = capl’ (),

which concludes the proof of the theorem. ]

We are now in a position to study the monotonicity properties of cap{;(E,Q) with respect to p
(Theorem 4.1.10), E (Theorem 4.1.11), and Q (Theorem 4.1.12). We begin with an auxiliary lemma.
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Lemma 4.1.9. Let p1, pg € Mo(R2), with py < ;LQ, and let E CC Q be a Borel set. Let v, (resp. v3)
be the p1-capacitary (resp. po-capacitary) potential of E relative to L (resp. L*) and let v, (resp. v3)

be the corresponding inner pj-capacitary (resp. ps-capacitary) disiribution. Then

/v;dz/1 S/vldu;
Q Q

Proof. For every h € N let Uy = {v3 > 1/h}. Since Uy is quasi open, by Lemma 1.1.2 for every h there
exists an increasing sequence (zf) in H}(§2) converging to ly, pointwise q.e.in Q as k — co and such
that 0 < zf < 1y, qe. in Q for every h and k. As v} € L2 (E), we have ps(ENUy) < +co and hence
z¥v, € HY(Q)N L2 (E). Thus by (4.1.4) we have

2
k “d < k '*d . Uk d * < . C[ =
.:.hUIUQ H1 S ZhUIUE ILLQ = "‘hvl 1/2 < Ul ,I/Q
E E Q Q

for every h and k. Taking the limit as k- oo we obtain

/ vv5 dpy < /vldu§
ENU, o

for every h. Since vs € L7 (E) C L2 (E), taking the limit as h — oo, by (4.1.4) we get

/vg dv, :/ vivydpy < /vlduz*,
e} En{v;>0} Q

and this concludes the proof. O

Theorem 4.1.10. Let py, ps € Mo(Q), with gy < us, and let E CC Q be a Borel sel. Then
capk (E) < capl, (E).

Proof. Let v (resp. v3) be the p;-capacitary (resp. ps-capacitary) potential of E relative to L (resp. L)
and let v; and A; (resp. v and A3) be the corresponding inner and outer ui-capacitary (resp. po-

capacitary) distributions. By Lemmas 4.1.5, 4.1.7, and 4.1.9 we have

capf;)(E_) = A(092) = aq(vy,v3) + /ﬂvg dv, <

< a50) + [ v dis = X500) = capl(B).
Q
The conclusion follows now from Theorem 4.1.8. [

Theorem 4.1.11. Let p € Mo(Q) and let E and F be two Borel sets such that E C F CC Q. Then
capL(E) < capL(F).

Proof. 1t is enough to apply Theorem 4.1.10 to the measures p; = pl_E and ps = p, noticing that
ca,pf;(E) = capf;LE(F) < capﬁ(F). O
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Theorem 4.1.12. Let p € Mo(Q), let Q be an open subset of Q, and let E be a Borel set such thal
EccQCQ. Then capfj(E, Q) < capL(E, Q).

Proof. Let vy be the j-capacitary potential of E relative to L in © and let 93 be the p-capacitary
potential of E relative to L* in Q. We extend vg and o} to RY by setting vy = 1 qe. in RV \Q
and 93 = 1 qe. in RV\ Q. Let vy and Ag be the inner and the outer p-capacitary distributions of £
relative to L in §, and let 7% and ;\}‘3 be the inner and the outer p-capacitary distributions of £ in Q
relative to L*. Now from (4.1.4) we have that

/i)};dl/}g :/13}‘.;1)Edu= /vEdl‘/}g.
Q E Q

Since 0 < vgp <1 qe.in RY (Remark 4.1.4), by Lemmas 4.1.5 and 4.1.7 we get

i

capk(, ) = Ag(09) = aa(vp, i) + [ 9 dvp =

= (i up) + [ vpdip =
Q
= / vpdiy < Ap(09) = capk’ (E, ).
80
The conclusion follows now from Theorem 4.1.8. O
The following theorem shows the subadditivity of capﬁ(-).

Theorem 4.1.13. Let u € Mo(Q) and let Ey and E, be two Borel set such that £, CC Q and
E,cc Q. Then
capk(E1 U Ey) < capf(Ey) + capy(En).

Proof. Let vg g, and vg g, (resp. Ag yg,) be the ji-capacitary potential and the inner (resp. outer)
p-capacitary distribution of E; U E» relative to L and let vk , vp, and Ag , Ag, be the p-capacitary
potentials and the outer p-capacitary distributions of £y and Es relative to L*. We note that vp Avg, =
vp, +vp, —vp, Vvg, and that vp Avp € L2(EyU E»). Since vy Avp, — 1€ H(Q), from (4.1.4) and
(4.1.2) we obtain

A o5, (0Q) = aa(vs,um, Vb, AvE,) + /E (b, A, og,up, di =
1UE>

= a}(vg,,vp,uE,) T %(VE,VEuE,) — %(VE,uE. VE, V VE,) T+

* * * *
+ / Vg, Vg, uE, IH t / VE,VE,UE, Ib — / (vE, VVE,)VE,uE, At -
E\UE-> EiUE2

EluEz
We note that by (4.1.2) and (4.1.4)
G (0pvewe) + [ vE s dn = (00),  i= 12

Moreover, as Ap, ,g,(09Q) = vp g, (Q) (Lemma 4.1.7) and vg, Vg, — 1€ H(Q), by (4.1.2) we have

f‘n("Elungl’E, Vu}';z) = vg,uE, () — / vg, Vvg, dve,ue, 2 0.
Q
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Thus we obtain

Apom,(09) < AB, (09) + M, (6Q) + / v vgom, i+
E.\E,

+ / VE,VE,uE, At — / (vE, V Vg, )VE,uE, A1 -
EI\E’_‘! FEUFE,

Since

* *® * ,
/ VE,VE,uE, A1 + / VE,VE,uE, At < / (vE, VVE,VE,uE,
Ex\E; E\E2 E,UE,

we get Ap g, (00) < AL (09Q) + A5, (0Q), and the conclusion follows from Lemma 4.1.7 and Theo-
rem 4.1.8. O

Finally, we give a bound from above for the p-capacity in terms of the harmonic capacity and of the

measure f[.

Proposition 4.1.14. Let p € My(Q) and let E be a Borel set such that E CC Q. Then
(a) capy(E) < u(E),
(b) capZ(E) < cap®(E) < kcap(E),

where the constant k depends only on the ellipticily constant o and on the L™ bounds of the coefficients
a5 Of L.

Proof. Property (a) is trivial if p(E) = 4+co. If u(F) < +co, let vy be the p-capacitary potential of
E relative to the operator L and let vg be the inner p-capacitary distribution. Since 1 € LZ(E), by
Lemma 4.1.7 and by (4.1.4) we get

cepb(B) = vp(@) = [ dup = [ vpdu < u(E),

and (a) is proved.

Let us prove (b). Since for every p € Mo(Q) we have u < coq (Remark 1.4.2), by Theorem 4.1.10
and Remark 4.1.3 we obtain that capﬁ(E) < capf(F). The inequality capl(E) < kcap(E) is proved
in [65], Theorem 3.11. Ul

4.2. Continuity properties of the p-capacity

In this section we prove the continuity of the p-capacity along increasing sequences of sets and study

the approximation properties by means of compact and open sets.

Lemma 4.2.1. Let p € My(Q). If (Ep) is an increasing sequence of Borel subsets of Q and E = U, Ey,,
then the sequence (pl. Ey) 7% -converges to the measure ul_E.

Proof. Let wp be the solutions of the problems

wy, € HH{Q)N LZ(Eh),

(4.2.1) 9
ao{wn,v) + / wpvdpy = / vdz Yv € HH(Q)N Li(En)-
Ey Q
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By the ellipticity condition it is easy to see that (wp) is bounded in H}(Q). Therefore we may assume that
(wy) converges weakly in H{ () to a function w. By Proposition 1.4.4 the sequence (wn) is decreasing
and hence, by Lemma 1.1.1, it converges to w pointwise q.e. in Q. Therefore (1g, wy,) converges to 1gw

pointwise p-a.e. in 2. Since

/l%hwidyz./ w;“:du = /whdaz——an(wh,wh) < /whdz,
¢ E\ 9] Q

the sequence (1g,wy) is bounded in L7(€). This implies that w € L3 (E) and that (1g,ws) converges
to 1pw weakly in L3(). For every h we can take any function v € H{(Q) N LI(E) as test function in

(4.2.1) and, passing to the limit, we obtain that w is the solution of the problem
w € HYQ)NLAE),

ao(w,v) + / wvdy = / vdz Vv e HY(Q)NLL(E).
E Q
The conclusion follows from the characterization of the v%-convergence (Theorem 2.2.3). O

Theorem 4.2.2. Let p € Mo(Q). If (Ey) is an increasing sequence of Borel subsets of Q and
E = UpFE, CC 9, then

capy(E) = sup cap(En) .

Proof. Since capf;(-) is increasing (Theorem 4.1.11), we have only to prove that capf‘ (£) < supy capﬁ(Eh).
If vg, is the p-capacitary potential of Ej, by Lemma 4.2.1 and Proposition 2.2.12 the sequence (vg,)
converges weakly in H'(Q) to the p-capacitary potential vg of E. Now, since vg <vg, qee. in Q (Propo-
sition 1.4.4) and the quadratic form ag(v,v) is lower semicontinuous in the weak topology of H}(Q), for
every k£ € N we have

aa(vg, vg) + /

: vgdp < liiirliogf (“Q(”Ehquh) +/E v%-h du) <
k

k
< liminf (%(’UE,.,UB,.) + /E;. VE, dli) :
As k — co we conclude the proof. O

As a consequence of Theorem 4.2.2 we obtain the countable subadditivity of the p-capacity.

Theorem 4.2.3. Lel p € Mo(Q). If (E)) is a sequence of Borel sets, with Er CC 2, and E C UnEp
is a Borel set, with E CC 2, then

caph(E) < > caph(Ex).
h

Proof. The result follows easily from Theorems 4.1.11, 4.1.13, and 4.2.2. O
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Theorem 4.2.4. Let p € Mg(Q). Then

capL A) = sup capL K) : K compact, K C A},
u H
capf;(A) = inf{capﬁ(U) : Uopen, ACU CCQ}

for every quasi open set A CC Q.

Proof. Once we have proved Theorems 4.1.11, 4.1.13, 4.1.14(a), 4.2.2, we can follow the lines of the proof
given in [23], Theorem 2.9(i) and (j). O

Finally we prove the outer regularity of the p-capacity when the measure ;o belongs to MO(Q).
Theorem 4.2.5. Let pu & Mo(Q). Then
capfj(B) = inf{cap{;(U) : Uopen, BCUCCQ}
for every Borel set B CC Q.
Proof. By Theorem 4.2.4 it is enough to prove that
(4.2.2) capﬁ(B) = inf{capﬁ‘(A) : A quasi open, BC A CC Q)

for every Borel set B CC 2. Let us fix a Borel set B CC 2 and let us denote by I the right hand side
of (4.2.2). By monotonicity (Theorem 4.1.11) we have capﬁ(B) < I. It remains to prove the opposite
inequality.

Let vp be the p-capacitary potential of B in Q. Since vg € LZ(B) we have that p(B N {vg >
€}) < +oo for every £ > 0. Thus, by the definition of My(Q2), there exists a quasi open set U, such that
Bn{vg >e} CU. CCQ and p(U: \ (BN{ve > ¢})) <. Let us consider the quasi open set {vp < <}.
In order to prove that {vg < ¢} CC Q for ¢ small enough, let us choose two open sets By and Qg with
smooth boundary such that B C By CC Q C g, and let z be the solution of the problem

Since vg — 1 € H3(Q) and Lvp = 0 on Q\ B, by the maximum principle we have vg > z qe. in Q, so
that {vg < e} C {z <e}. As z is continuous in {y by De Giorgi’s Theorem and {z = 0} = By CC Q by
the strong maximum principle, for ¢ small enough we have {vp < ¢} C{z <e} CC Q.

Let us fix € > 0 such that {vp < €} CC Q and let us define v, = max{0,%2=2}. We have

l—-¢

ve —1€ HJ(Q), 0 <wv. < & qe.in Q, v, € L%(B), ve = 0 ge. in {vp < ¢}, and v. = Y8=% qee. in

{ve > ¢€}. By the definition of v, and vg for every v € H3(Q) N Li(B), with v =0 qe.in {vg <¢c}, we
obtain

1

-~
- C

1
ag(ve,v) = 7 ag(vp,v) = I——Z/ vpvdy =
—¢JB

3

(4.2.3)
= —-/ vevdy — / vdp .
Bn{vg>e} l—-e¢ Bn{vp><}
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Let us define the Borel measure p by

p(E):{N(E)—*‘lig E%, if cap(E\ (BN {vp >¢€})) =0,

+00, otherwise.
Note that p belongs to Mg(£2) and that

(4.2.4) / vevdp = / vevdy + £ / vdp
Bu{vp<s} Bn{vp>e} I-¢ Bn{vg>e}

for every Borel function v > 0. By taking v = v, we obtain v. € L3(B U {vp < €}), using the fact that
v, is bounded and (B N {vg > €}) < +oo. Since p < p, every function in Hg(Q) N L2(B U {vp < ¢})
belongs to H}(Q)N Li(B) and is zero q.e. in {vg < €}. Then, by (4.2.3) and (4.2.4), it is easy to check
that v, is the solution of the problem

ve € HY(Q)NLYBU{vp <¢}), v — 1€ H5(Q),

ag(vg,v)+-/ vevdp =10 VvEH&(Q)ﬂL%(BU{vB <e}),
Bu{vg<e}

and hence v, is the p-capacitary potential of the set BU {vg < €} in Q. Moreover by Theorem 4.1.10

we have
(4.2.5) cap=(B U {vp < €}) < caps(BU {vp <¢}).
Finally let us define A, = U. U{vp < €}; the set A, is quasi open, contains B, and A; CC Q. Then, by
(4.2.4), (4.2.5), and Theorems 4.1.13 and 4.1.14(a), we get
I< capf;(As) < capfj(B U{vg <¢e}) +capﬁ(U; \B) <

< capt(BU{vp <e}) +pu(U: \ (BN {vp 2¢})) <
£

< an(vs,vs)+/ vidp + / vedp +¢ <
Bn{vp>e} 1 —€ Jn{vg>e)

1
/ vpU.du+ € < .—————,;capﬁ(B)+€.
Bn{ve>e) (1-¢)

1
< P a—— T ) )
B (1—6)3a"(v5 ve)+ l—¢

Taking the limit as ¢ — 0 we conclude the proof. O

Remark 4.2.6. For every measure pu € Mo(§2), by Theorem 4.2.5 and Remark 4.1.2, we have
ca.pf-;’(B) = inf{cap{;(U) : Uopen, BCUCCQ}

for every Borel set B CC Q.

4.3. Getting p from its p-capacity

In this section we state a derivation theorem for the p-capacity and a theorem which allows us to
reconstruct the measure u from the knowledge of its p-capacity. The proofs are omitted, since they are
identical to those given in [9] and [23] when the operator L is symmetric. Indeed in the previous sections
we have proved that all relevant properties of the p-capacity in the symmetric case can be extended to
the case of non-symmetric operators.

We begin with the derivation theorem, which will be used in the proof of Theorem 4.4.13. The open
ball in R of center z and radius r is denoted by B,(z).
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Theorem 4.3.1. Lel u € Mo(Q), let v be a Radon measure of the class Mo(QQ), and for every © € Q
let

capﬁ(B,.(m))

V(B (z))
Assume that g € LL(Q) and g(z) < +co for g.e. z € 2. Then p is a Radon measure and p(E) = ngdz/
for every Borel set E C Q). Moreover the lower limit in ({.8.1) s a limil for v-a.e. 2 € ().

(4.3.1) g(z) = lim iélf

Proof. When L is symmetric this result was proved in [9], Theorem 2.3, by using some properties of the
p-capacity and of the Green’s function of the operator L. Since these properties are still true when L is

non-symmetric, the proof remains valid also in the general case. O
The following theorem characterizes p as the least measure which is greater than or equal to ca.pﬁ.
Theorem 4.3.2. Let p € Mo(Q). Then for every Borel set B CC Q we have
pu(B) = supy_capj(B;),
i€l

where the supremum is taken over all finile Borel partitions (B;);er of B.

Proof. As in [23], Theorem 4.3, this result can be obtained as consequence of the derivation theorem
(Theorem 4.3.1). O

4.4. p-capacity and vl -convergence

In this section we shall study the connection between the 4% -convergence of a sequence of measures
(pn) and the convergence of the corresponding puj-capacities relative to the operator L.

First of all we prove that inequalities between measures in MO(Q) are preserved by +%-convergence.
To this aim let us establish some preliminary lemmas.

Let pp € Mg(€2) and let w and w* be the solutions of the problems

we Hy(Q)NLA(Q),

(4.4.1)
a(w,v) + / wvdp = /vdx Vv € Hé(Q)ﬂLi(Q),
) Q

w™ € Hy(Q)NLi(Q),

(4.4.2) )

@ (w",v) + / wodp = / vdz Vv € Hé(Q)ﬂL;(Q).
9] 0

Lemma 4.4.1. Let u € My(Q) and let w be the solution of problem ({.4.1). Then the set {wey :
C§° ()} is dense in the space Hi(Q) N L2(Q).

G
m

Proof. When p € Mq(Q) the result is proved in [33], Proposition 5.5. The general case follows from
Remarks 1.2.3 and 2.5.1. O



60 A. GARRONI

Lemma 4.4.2. Let p € Mo(Q) and let w (resp. w*) be the solution of problem ({.4.1) (resp. (4.4.2)).
Then cap({w > 0} A {w* > 0}) =0, where A denotes the symmetric difference of sets.

Proof. Since w* € H3(Q) N LL(Q), by Lemma 4.4.1 there exists a sequence of functions wn € C()
such that (wey) converges to w* in H(Q2) N L2(Q) and q.e. in Q. This implies w™ =0 q.e. in {w=0}.
Similarly we obtain that w = 0 q.e. in {w* = 0}. [
Lemma 4.4.3. Let gy, pa € Mo(Q) be two measures such that py < po. Let wy (resp. w; ) be
the solution of problem (4.4.1) (resp. (4.4.2)) corresponding to p = py (resp. p = ua ). Then for every
v € C§2(Q), with ¢ > 0, we have

(1 - Lwy,pws) < (1= L w3, pw,;).

Proof. First note that, since w; and wj are non-negative, we have

(4.4.3) /cpwlwg dpy < /c,ow1w§ dus .
Q Q

Since L2 (Q) C L2 (), we have w3 € L2 (92) and hence
(44.4) /Q‘Pwﬂ“; dpy = (1 — Lwy,pw3) .
Moreover by (2.5.1) we have
(4.4.5) prl'wg dps < (1= L w3, pw,) .
The conclusion follows from (4.4.3), (4.4.4), and (4.4.5). O
Lemma 4.4.4. Fiz ¢ € C§°(Q). Then the bilinear form defined on HH(Q) x HY(Q) by
b(u,v) = (Lu, pv) — (L™ v, pu)

is sequentially weakly continwous on HE(Q) x H(R), i.e., if (up) and (vp) are two sequences in H(Q)

which converge weakly to some functions w and v, then b(un,vy) converges to b(u,v).

Proof. 1t is enough to note that

N N
(Z ai]-DjuDu,o)v dr — /(Z aiijgoDi'u)ud;v.

i,j=1 ij=1

(Lu, pv) — (L™v,pu) = /n
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Theorem 4.4.5. Let (u?) and (18) be two sequen‘ces of measures of Mo(Q) which vL -converge 1o
and ps respectively. If it < b for every h, then ji; < fis.

Proof. Let w? be the solution of problem (4.4.1) corresponding to u = ji? and let (w?)* be the solution
of problem (4.4.2) corresponding to g = fi. If i} < ji, then by Lemma 4.4.3 we have

(4.4.6) (1= Luf,p(ws)") < (1-L*(w3)", pwy)

for every ¢ € C§°(Q) with ¢ > 0. By Theorem 2.2.3 and by Remark 2.5.1 the functions w? (resp. (w#)")
converge weakly in H}(Q) to the solution w, (resp. wj) of problem (4.4.1) (resp. (4.4.2)) corresponding
to p = fi; (resp. g = fia). By Lemma 4.4.4 we can pass to the limit in (4.4.6) and we obtain

(4.4.7) (1= Luy,pus) < (1-L7uwi,pw,)

for every ¢ € C§°(R2) with ¢ > 0. By approximation (4.4.7) holds for every ¢ € H}(Q) N L*®(Q) with
© > 0. Let w} (resp. (w?)*) be the solution of problem (4.4.2) corresponding to u = fi; (resp. p = it).
By the comparison principle (Proposition 1.4.4) we have that (w?)* < (w)” qe. in Q. Taking the limit
as h — oo, we obtain w < wj qe.in Q. Hence w3 € L} (Q). By Lemma 2.5.2, jia(B) = +co for every
Borel set B such that cap(B N {w; = 0}) > 0. Then it is sufficient to prove that ), < f» in {w; > 0}.
Now let Wi = {w; > +} N {w; > t}, so that fa(Wi) < +oo. If B is a quasi open subset of Wy, then
by Lemma 1.1.2 there exists an increasing sequence (pp) in H3(Q) which converges to 15 q.e. in Q and
such that 0 < ¢, < 1p. As w; is bounded (see Chapter 2, Section 2.1) and [i2(B) < -+oo, we have

wy ey € LEZ(Q). Therefore (4.4.7) and the equations satisfied by w; and w} imply that
/ wywiep diy < / wywyph dils .
Q o)
Passing to the limit as h — oo we obtain

/wlwzdﬁl < / wyws dfia
B B

for every quasi open set B C W).. Since the measures w,w3ji; and w,w3f» are finite on Wy, this relation

holds for every Borel set of W . Finally, if B is a Borel set in {w3 > 0}, then

IA

"1
a1(B N W) :/ —w, w5 dfiy

Bnw, W)W,

1 .
/ - wle; dﬂg = [lg(B N I/Vk) .
B

nW, Wi W

Passing to the limit we obtain
(B N{w; >0}) < pa(BN{w, >0}).

Since B C {w3 > 0} C {w} > 0} and by Lemma 4.4.2 cap({w} > 0} A {w; > 0}) = 0, we have that
B1(B) = (BN {w; > 0}) < fa(BN{w; > 0}) = fin(B). g

Let us recall now some notions related to the general theory of increasing set functions, for which we
refer to [24], Chapters 14 and 15. As usual the family of all Borel subsets of Q is denoted by B((Q2).
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Definition 4.4.6. We say that a family & of Borel sets B CC Q is dense (in B(Q2)) if for every pair
(K,U), with K compact, U open, and K C U CC Q, there exist E € & such that K € ECU. We
say that & is rich (in B(Q)) if, for every chain (E;)ier in B(Q), the set {t € R : E; € £} is at most
countable. By a chain in B(Q) we mean a family (E;);er of Borel subsets of €2, such that E, C E, for
every s, t € R with s < t.

Remark 4.4.7. It is easy to check that any countable intersection of rich families is rich. Moreover it

is possible to prove that every rich family is dense (see [24], Chapter 14).
We say that a function a:B(Q) — R is increasing if «(E) < a(F) whenever E C F.

Proposition 4.4.8. Let o, 8 :B(Q) — R be two increasing functions. Then the following conditions

are equivalent:
(i) @ and B coincide in a dense subset of B(Q);

(ii) @ and B coincide in a rich subset of B(Q).

Proof. See [24], Proposition 14.15. O

Proposition 4.4.9. Lel o, 8: HY(Q)xB(Q) — R be two functionals such that a(u,-) and B(u,-) are

increasing for every u € H3(Q). Assume, in addition, that for every E € B(Q) the functionals e, E)

and B(-, E) are lower semicontinuous with respect to the strong topology of HYQ). If B(u, E) < ofu, F) <
B(u,G) for every E, F, G € B(Q) with ECFCFC G and for every u € HL(Q), then there ezists a

rich subsel R of B(Q) such that a(u, E) = B(u, E) for every uw € Hy(Q) and for every E € R.

Proof. See [24], Proposition 15.18. O

In order to study the convergence of the pup-capacities when the sequence (fz) ~L _converges to
1 € Mo(Q), we need to know the convergence properties of the restriction (un L E) of the sequence ()
to an arbitrary Borel set E. By the compactness theorem we can assume that (us L E) ~L _converges to
some A € Mgo(Q), but, in general, we cannot say that A is equivalent to pl_ E. Indeed by the localization
property (Theorem 2.2.10) we obtain that A is equivalent to gl £ in E andin Q \ E, but it is possible
to construct easy examples where A and gl E are so different in JF that A is not equivalent to plL E
(see [31], Example 5.5). Nevertheless the class of Borel subsets E of Q such that (psl- E) ~L -converges

to ul_ £ is large enough, as stated in the following theorem.

Theorem 4.4.10. Let (un) be a sequence of measures of Mo(S2) which +L -converges to a measure
i € Mo(Q). Then the family of Borel subsets E of Om such that (un L E) ~E -converges to plE s
rich.

Proof. For every Borel subset F of Q let us denote by ME the class of all measures A € My(Q2) for
which there exists a subsequence (un,) of (us) such that (sun, L E) 7= -converges to A. Let us define the
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following functionals on H}(Q) x B(Q):
a(u, E) = / u?dy,
E
B(u,E) = sup /uzd/\,
o)

AEME

6(u, E) = inf{lihminfg(uh’ B) w0y

where 5(u, E)= R infE / u?d). Since p vanishes on all sets of capacity zero, the functional af-, E) is lower
eM 0
semicontinuous in the strong topology of HZ (). Moreover a(u,-) is increasing. The same properties hold

for the functionals G(u, E) and é(u, E). The first one is lower semicontinuous since it is the supremum of
a family of lower semicontinuous functionals and the second one by construction. Let us prove that f(u, 9
~and 6(u,-) are increasing for every u € H3(Q). Let us fix two Borel sets £ and F, with E C F C Q,
and a function v € HJ(Q). Let t < fB(u, E) and let A € MF be a measure such that ¢ < Jq u?dA.
Since A € MPF there exists a subsequence (un,) of (us) such that (us, L E) y--converges to A. By
the compactness theorem (Theorem 2.2.5) a subsequence of (s, L F) ~f-converges to some measure

v € MF . By Theorem 4.4.5 and Remark 1.2.5 we have A < 7 and hence

i< /u2d/\ = /qu:X < /ugdf/ :/11.3(11/ < Bu, F).
Q Q 1Y) Q

By the arbitrariness of ¢ < 8(u, E) we obtain that S(u, E) < f(u, F). Similarly we can prove that S(U, 3
Is increasing, and the same property holds for é(u,-). '

We want to apply Proposition 4.4.9 to the functionals «, £, and §. To this aim let us fix a Borel
set £ C Q and let us consider a measure A € M . By the localization theorem (Theorem 2.2.10) applied -
tow=~FE and w=Q \E we obtain A = [ in E and A =0 in Q\ E. Moreover, by Theorem 4.4.5 and
Remark 1.2.5, we have A < X < fin . Thus, if E', F, and G are three Borel subsets of Q such that
EC F CFcC é, for every A € ME and v € MP we get A < /:LI_F < LG < v. By Remarks 1.2.3

and 1.2.5 this implies that
/u:'d/\ < / widji = / uwldp < / uldp <
Q F P F

/uzdu = / wldi < /u:’dz? = /1[”(]1/.
G G Y] Q

Therefore B(u,E) < o(u, F) < B(u,G) and 6(u, E) < a(y, F) < §(u,G) whenever u € H}(Q) and
EC F CFC G. Consequently, by Proposition 4.4.9, there exists a rich subset R of B(Q) such that
(4.4.8) B(u,E) = §(u,E) = a(u,E) = / wd(pl E)

Q

for every v € H}(Q) and E€R.
Let us prove that (us L E) 7L -converges to ul_ E for every £ € R. Let us fix £ € R and A € ME.
By the definition of # and § we have §(u, E) < fn u?d) < B(u, E) for every u € H}(Q); so that, by

(4.4.8), we get
/ugd(ul_E) = /uzd/\
Q Q

for every u € Hg(Q), hence pl_E and X are equivalent. By Remark 2.5.1 this implies that every conver-
gent subsequence of (up L. E) y%-converges to pl_ E. Since 7%-convergence is compact (Theorem 2.2.5),
we conclude that the whole sequence (uy L E) v -converges to ul_E. |
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We are now in a position to prove the main result of this section.

Theorem 4.4.11. Let (up) be a sequence in Mo(Q) and let p € Mo(R2). Then the following conditions
are equivalent:

(a) (pn) yL-converges to p;
(b) hli_l};3 cap’, (E) = capﬁ(E) for every E in a dense subset of B(Q2);

(c) hlln;o capﬁh(E) = capﬁ‘(E) for every E in a rich subset of B(Q).

Proof. (c) = (b). See Remark 4.4.7.

(b) = (c). For every Borel set E CC Q let o(E) = lihnlggfca.pf‘h (E), o'(E) = lillllls;p ca.pf;h(E),
and a(F) = ca.pﬁ(E). By Proposition 4.4.8 condition (b) implies that o' = o” in a rich subset R of
B(Q) and ¢ = a in a rich subset Ro of B(Q). By Remark 4.4.7 the class R = Ry N Ry is rich in B(Q)
and we have

liminfcapf‘h(E') = limsup capf;, (E) = capﬁ(E)
h—co h—oo '

for every E €R.

(a) = (c). If (un) v%-converges to p, then there exists a rich subset R of 5(2) such that (un L E)
vL-converges to ul_E for every E € R (Theorem 4.4.10). Let E € R and let vh and vg be the
pn-capacitary potential and the p-capacitary potential of E relative to L. Then (v,’}) converges to vg
weakly in H}(Q) (Proposition 2.2.12). Moreover, if u",_} and vg are the inner p,-capacitary distribution
and the inner p-capacitary distribution of E relative to L, then (V%) converges to vg weakly in H71(Q) .
(Lemma 4.1.5). Since E CC Q, it is possible to find ¢ € C§°(R2) such that ¢ = 1 in E and, since
supp V}'Z’ C F and suppvg C F, by Lemma 4.1.7 we have

h—o0

hlim capfjh(E) = lim [ pdvf = /SOdVE = ca.p;’;(E).

(¢) = (a). By the compactness of the +F-convergence there exists a subsequence of (u;) which
~L-converges to some measure A € Mo(Q). It is enough to prove that p and X are equivalent. By the
previous step we have that capﬁh(E’) converges to capk(E) for every E in a rich subset of B(Q). Since
the intersection of two rich sets is rich (Remark 4.4.7), (c) implies that cap(E) = cap%(E) for every E
in a rich subset R of B(Q). Let U CC Q be an arbitrary open set and let ¢ > 0. By Theorem 4.2.4 there
exists a compact set K contained in U such that ca.pf;(U) < capﬁ(K) +¢. Since R is dense, there exists
E € R suchthat K C E C U. By monotonicity (Theorem 4.1.11) we have that capk(U) < capL(E) +e =
capk(E) +¢ < capk(U) + €. Since € > 0 is arbitrary, we obtain capf,(U) < capk(U). By exchanging
the roles of A and u we prove the opposite inequality, hence capf{(U) = capZ(U). By Remark 4.2.6 this
implies that capﬁ(B) = capf(B) for every Borel set B CC 2. Therefore g = X by Theorem 4.3.2, so
that y and M are equivalent by Remark 1.2.5. D

Theorem 4.4.12. Let (uy) be a sequence in Mo(Q2). Suppose that there exists a dense subset D of
B(Q) such that

Jim capy, () = o(E)
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for every E € D. Let B be the increasing set functz’o;z defined by

BU)=sup{a(F) : E€D, ECCcU}, if U 1is open in §,

(4.4.9)
B(B) =inf{B(U) : U open, BCU C Q}, if BCQ.

Finally, let p be the measure defined for every Borel set B C Q by

(4.4.10) u(B) = supy_B(Bi),
ied
where the supremum is taken over all finite Borel partitions (B;)ier of B.
Then p € Mo(Q), the sequence (n) vE-converges to pu, and B(B) = ca'p‘L,(B) for every Borel sel
B CcCQ.

Proof. By compactness of the vl -convergence we can assume that the sequence (u) %

-converges to a
measure A in Mq(2) and, by Theorem 4.4.11, that capk (E) converges to capk(E) for every E in arich
subset R of B(Q). We have to prove that A = p.

Let us consider an openset /' C Q and aset £ € D with £ CC U. Since R is dense (Remark 4.4.7),

there exists ' € R such that £ C F C U. This implies that
— N L : L _ L L
alE) = hllm cap,, (E) < hhm cap,, (F) = capy(F) < capx(U).
—_—00 Eadeel

By the definition of 8 this implies S(U) < capk(U), and from Theorem 4.2.5 we obtain 3(B) < cap%(B)
for every Borel set B CC Q2.

To prove the opposite inequality, let us consider an open set U C  and a compact set K C U. Since -
D and R are dense, there exist £ € D and F € R such that K CF CE CC U. Then

caph(K) < capk(F) = hlirr;a capi’h(F) < hlin;g capf;h(E) = aE)Yy < p(U).

By Theorem 4.2.4 this implies capf(U) < B(U), and from Threorem 4.2.5 we obtain capk(B) < #(B) for
every Borel set B CC . Then the conclusion follows from (4.4.10) and Theorem 4.3.2. O

As consequence of Theorems 4.3.1 and 4.4.11 we obtain the following characterization of the limit

measure by means of a derivation argument.

Theorem 4.4.13. Lel (pp) be a sequence measures of the class Mo(Q) and let v be a Radon measure

of the class Mo(Q). Assume that
L L
ccapy, (Be(z) capy, (B-(2))
44.11 liminf liminf —£%— 22 = liminf limsup —H—"2 = g(z
( ) r—0 h—oo V(Br(x)) r—0 h_,oop I/(B,(l’)) g( )
for g.e. € Q, and that [, gdv < +co. Then (up) vl -converges 1o p = gv and the lim i(l)lf is aclually a

lim for v-a.e. z € Q.

r—

Proof. The result follows from Theorem 4.4.11 and 4.3.1, as in the proof of Theorem 5.2 in [9]. O

Remark 4.4.14. Under the hypotheses of Theorem 4.4.12, condition (4.4.11) is satisfied, for instance,
when B(B) < v(B) for every Borel set B C Q.
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4.5. Dirichlet problems in perforated domair;s

The asymptotic behaviour of Dirichlet problems in varying domains can be obtained as a particular
case of the previous results. We consider only the consequence of Theorem 4.4.12. Similar results can be
obtained also from Theorems 4.4.11 and 4.4.13.

Theorem 4.5.1. Let (Q) be a sequence of open subsels of Q. Suppose that there exists a dense subset
D of B(Q) such that

hlim capP(ENQy) = a(E)

for every E € D. Let 8 be the increasing set function defined by (4.4.9) and let p be the measure defined
by (4.4.10). Then for every f € H™'(Q) the solution up of the Dirichlet problem

up € HJ (),
(45.1)

Lu;, = f in Qh y
extended by 0 in Q\ Qp, converges weakly in HY(Q) to the solution u of the relazed Dirichlet problem

u € H{(Q)NLUQ),
aq(u,v) + / wvdp = (f,v) Vv € Hy(Q)NLL(Q).
iy
Moreover p € Mo(Q) and B(B) = capk(B) for every Borel set B CC Q.

Proof. Let Ej = Q\ Qp and let pp = cop, . By Remark 1.4.2 the solution of (4.5.1), extended by 0 in
Q\ Qp, coincides with the solution

ue HY Q)N L2, (),

mup

ag(up,v) + / upvdp = (f,v) Vv € Hy(Q)NLE,, (2).
Q

By Remark 4.1.3 we have ca‘pf;h (B) = cap’(BN E}) for every Borel set B CC Q. The conclusion follows

now from Theorem 4.4.12 and from the definition of yL-convergence. U

In the rest of this section we shall use the previous result to prove that, if po is a Radon measure in
Mo(Q), then there exists a sequence Q, of open subset of Q such that the conclusion of Theorem 4.5.1
holds with g = pg. This approximation result is obtained by an explicit construction of the sets Q;, which
are obtained from by removing a suitable disjoint family of “small” closed sets, whose size depends on

the local value of p.

For every h € N we consider the partition of R composed of the semi-open cubes of side 1/h
Q,={reR:iy/h<azp<(ix+1)/hfor k=1,...,n},  i=(i1,...,ia) € 2",

and we denote by Ny the set of all indices i such that Qi CC Q.
We fix a Radon measure o in Mo(Q) and for every h € N and i € N we consider a closed set
Ei C @ such that capP(E}, Q%) = po(Q4). Let E, be the union of the sets Ej for i € Ny and let
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Qp = Q\ Er. We shall prove that, in this case, the conclusion of Theorem 4.5.1 holds with i = po More
generally, for every i € N, we fix a constant ci > 0 and we choose the closed sets E}l C Q}l so that
capt(EL, Q%) = ¢! p1o(Q%) . Then the asymptotic behaviour of the solutions of problems (4.5.1) is uniquely
determined by the weak* limit in LS (Q2) of the sequence (¥n) defined by

— i ;
(4.5.2) dn(z)= Y cilgi ().
iEN,
The following theorem is a generalization, to the case of non-symmetric operators, of the approximation
result given in [29], Theorem 2.5, and in [5], Theorem 2.2.

Theorem 4.5.2. Lel pg be a Radon measure belonging to Mo(Q) and let (¢} )nen.ien, be a family
of non-negative real numbers. For every h € N let Ep = UieNh E’};, where Ei are closed sels conlained
in Qb with capl(EL, QL) = ¢t po(Q}). Suppose that the sequence () defined by (4.5.2) converges to
some function ¥ in the weak™ topology of L33(2). Then for every f € H-Y(Q) the solution up of

problem (4.5.1) converges weakly in H}(2) to the solulion u of the relazed Dirichlet problem

we Hi{Q)NIZ, (2,

ag(u,v)+/nuv¢ dpo = (f,v) Vv € Hy(Q) N L3, (Q).

Proof. We just give an outline of the proof, since it follows closely the one given in [5], Theorem 2.2. We
know that problem (4.5.1) can be rewritten as a relaxed Dirichlet problem in Q by choosing pp = ocg, ‘
(Remark 1.4.2). Then by the compactness of the v~ -convergence (Theorem 2.2.5) we can suppose that
(0op,) % -converges to a measure A € Mo(2). We have to prove that A = tuo.

Step 1. We prove that A < pg. Since capﬁh is subadditive and, by Theorem 4.4.11,

hlim cap®(Ey NE) = hlim capfjh (E) = capk(E).

— 0

for every E belonging to a rich subset of B(), we can repeat the proof of Proposition 2.3 of [5] and we
obtain cap%(E) < [ ¥duo for every Borel set £ CC Q. The conclusion follows now from Theorem 4.3.2.

Step 2. We prove that for every open set U CC Q and for every § > 0 the following estimate holds
—_— ” c ,
(45.3) AD) 2 (1=t [ wauo = 5 [ Gla—y)duo(e)duoty).
U 6 UxU

where G is the fundamental solution for the Laplace operator in RY and ¢ is a positive constant inde-
pendent of U and 6. This estimate can be obtained as in [5], Lemmas 2.6 and 2.7. The only difference is
in the proof of the “local almost-superadditivity” of the capacity of the sets E) (see Lemma 4.5.3 below),
that in [5] relies heavily on the symmetry of the operator L.

Step 8. If po € H™1(Q), estimate (4.5.3) implies that A > (1 — ¢6)?1ppo by Lemma 2.5 of [5]. Since § > 0
is arbitrary, we get A > 1pug. To extend this result to any Radon measure of Mg(Q2) we use the truncation

argument of Theorem 2.2 in [5], which in our case is based on Theorem 4.4.5. O
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We conclude by proving the “local almost—super;dditivity” used in Step 2 of Theorem 4.5.2.

Lemma 4.5.3. Let U be an open set, with U CC Q, and let 0 < 6§ < 1. Let u be the capacitary potential
of ExNU in Q with respect to the operator L. For every h € N we denote by In the set of all indices
i € Ny suchthat Q. NU # @ and u<§ ge. in 0Q: . Then

i A 1
ZC&DL(Ethh) < mcapL(EhﬂU,Q).
iely

Proof. Let us consider the function v = max{0, ‘1‘—:—;2} and for every h € N and 7 € I, let 'v;; be the
function such that vi = v qe.in {u > 6} N Q% and v}, =0 qe. in Q\ ({u> 68} N Q%). It is easy to see
that vi is the capacitary potential of Ei in {u>é}n Q% according to (3.1.1), hence

N
cap® (B}, {u > 6} N Qi) = / (Z aiijvDiv) dz .
{u>6}nQ} ;7o)
Then, by the monotonicity properties of capl (Theorem 3.2.3), we get

Z capt (EL, Q%) < Z cap?(EL, {u>8}NQ}) =

iel, i€l

N N
= Z/; (Z a,-ijvDiv) dz < (T'—}_E—)?/Q(Z a;; DjuD;u) dz,

iel, J{u>sInQy i ij=1

which, by the definition of u, concludes the proof. O
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5. Dirichlet problems in perforated domains with pseudomonotone operators*

In this chapter we shall study the asymptotic behaviour of the solutions of Dirichlet problems with
nonlinear pseudomonotone operators from W3P(Q) to W=17'(Q) on varying domains. This problem
was studied, in the general framework of relaxed Dirichlet problems (in particular without any geometrical
assumption on the sequence of domains), by Dal Maso and Defranceschi ([25]) and by Dal Maso and Murat
([33] and [34]). In [25] the problem is studied by means of the I'-convergence theory in the case of nonlinear
monotone operators which are subdifferential of functionals homogeneous of degree p, while in [33] and [34]
is considered the general case of nonlinear monotone operators homogeneous of degree p— 1. In these two
papers, as in the linear case, the limit problem is explicitly constructed by means of the limit of a special
sequence of solutions (the solutions of problems with data 1). In the case of pseudomonotone operators
without any homogeneity assumption it is not possible to apply this method. So that in order to construct
the limit problem we shall use as model problem one for which we know exactly the behaviour. To simplify
the notations the model problem will be that one with the p-Laplacian. This technique was used by [12]
in the case of Dirichlet problems with monotone operators under special geometrical assumptions on the
sequences of perforated domains. For the sake of simplicity we shall consider only the case p > 2. In the
case 1 < p < 2 analogous results to those ones given in this chapter can be obtained by minor technical

changes.

5.1. Preliminary results on relaxed Dirichlet problem with the p-Laplacian

Let Q be a bounded open subset of RV, N > 2. Let 2 < p < +oo and let g € ME(Q). In the -
following we shall consider the space Wg'*(Q) N LE(§2) of all functions u € WaP(Q) (that we always

identify with its p-quasi continuous rapresentative) such that fn lulPdp < +o00. With the norm

Il grnzgion = ([ 1PuPds + [ uran)”

the space W, 7(Q) N LE(Q) is a reflexive Banach space.
Let fe W=12'(Q), 1/p'+1/p=1, and let u be the solution of the problem

u € Wy (Q) N LE(Q),

(5.1.1)
/ |DufP~?DuDv dz + / lulP~?uvdp = (f,v) Yo € WyP(Q) NLE(Q).
o Q

Remark 5.1.1. Forevery f€ W“LP'(Q) and for every g € Lf‘l(Q) the functionals defined by (f,v) and
Jagvdp, for every v € Wy P (QNLA(Q), belong to (Wy P (Q)NLE(R))’ (the dual space of Wy? (Q)NLE(Q)).
Since the operator from WoP(Q) N LE(Q) to (We”(Q) N LE(Q))' mapping u € Wy (Q) N LE(Q) to the
functional defined by (—A,u,v) + [, [u[P~>uv dp for every v € Wyt (Q) N L (£2) is a maximal monotone
operator and the space I/Vol’p(Q) N LF () is reflexive for every 1 < p < +co, we get that there exists a

* The content of this chapter will appear in [13]
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unique solution v of problem (5.1.1) for every f € (WgP(Q) N LE(Q))" (see [46], Section 2), and hence for
every f € W12 (Q).

Moreover by (5.1.1) for every functional F € (Wa?(Q) N LF(Q))' there exist at least a functional
f e W-b'(Q) and a function g € Lf"(Q) such that F(v) can be represented by .

() +/ﬂgvdu~

In general this representation will be not unique. In the sequel, with a little abuse of notation, (f,v) will
denote the duality pairing between (WyF(Q) N L2 (Q)) an(,i War(Q) N LF(Q) in the general case of f €
(WP (Q) NL5(Q)) and the duality pairing between W=12'(Q) and W, (Q) in the case f € W17 (Q).

Many results similar to those ones given in the linear case (comparison principle, compactness, etc.)
have been proved by Dal Maso and Murat (see [34] and [33]) for nonlinear problems of the type (5.1.1) (in

general for nonlinear homogeneous operators).

Proposition 5.1.2. Let fi, fa € W"I'P'(Q) and let py, po € ME(Q). Let uy, us € I/VOI’P(Q) be the
solutions of problem (5.1.1) corresponding to fi, py and to fo, pa. If0 < fi < fa oand pa < pp tn Q,
then 0 < u; < ua p-g.e. in .

Proof. See [33], Proposition 2.7. O
In the space M5 (Q) it is possible to introduce a notion of convergence relative to the p-Laplacian.

Definition 5.1.3. Let (1) be a sequence of measures of M5(Q) and let p € ME(Q). We say that (pn)

=A% _converges to the measure p if, for every f € W“I’PI(Q), the sequence (un) of solutions of problems

un € Wy P(Q)NLE (9),

(5.1.2)

/ | Dy [P~ Dup Dv dr+/ [P~ 2unvdp, = (f,v) Vv e WoP(Q) N LE (Q).
Q Q

Hn
converges weakly in Wy'?(Q) to the solution u of problem (5.1.1).
Theorem 5.1.4. Every sequence of measures in ME(Q) contains a ~= 8% _convergent subsequence.
Proof. See [25], Theorem 2.1, or [33], Theorem 6.5. O

Many properties of the measure u € M5(Q) can be studied by means of the solution w of the problem

w € Wy'P(Q) N LE(Q),
(5.1.3)
/ |Dw|P~? DwDv dz +/ lwP~*wudp = / vdz Yo e WP (Q)N LR (Q).
Q Q Q

The function w are uniformly bounded in L®°(Q) when g changes in ME(Q) (See [33], Section 2).
Furthermore, by the comparison principle (Proposition 5.1.2), w > 0 p-q.e. in Q.



Asymptotic behaviour of Dirichlet problems in perforated domains 71

Proposition 5.1.5. Let p € M5(Q) and let w the solution of problem (5.1.3). Then the set {wi : ¢ €
Cs2(Q)} is dense in Wyt (Q)N LE(Q).

Proof. See [33], Proposition 5.5. O

Theorem 5.1.6. Let p € ML(Q), let w be the solution of problem (5.1.3) and let v =1+ Apw. Then

v is a non-negative Radon measure of VV“I'PI(Q) and

(5.1.4) v(BN{w>0}) = -/B wP™dp

for every Borel set B C Q.

Proof. See [33], Theorem 5.1. (I
Finally the solutions of problems (5.1.3) are useful, as in the linear case, to characterize the ~~®r-con-

vergence in M5(Q). Let (u,) be a sequence of measures in MJ(Q) and let w, be the solutions of the

problems

w, € WoP(Q) N LE,_(Q),
(5.1.5) :
/ | Dw, P~ Dw,, Dv da:+/ lwy P 2w v dpy = / vdz Vo e Wy P(Q)NLE (Q).
Q Q Q

Hn

The following result characterizes the v~2

r-convergence in terms of convergence of the functions w,, .
Theorem 5.1.7. The following conditions are equivalent:

(a) (wy) converges to w weakly in WP (Q);

(b) (pn) vy~ 2 -converges to pu.

Proof. See [33], Theorem 6.3. O

Remark 5.1.8. If (u,) v ®r-converges to p, then the sequence (w,) converges to w strongly in
Wol’r(Q) for every 1 < r < p and hence a subsequence of (Dw,) converges to Dw pointwise a.e. in £
(see [33], Theorem 6.8).

5.2. Sequences in the spaces W, (Q2)N L ()

Ar_converges to a measure u € ME(Q). We

In this section (u,) will be a sequence of ME(2) which v~
shall use the sequence (wy,) of the solutions of problems (5.1.5) to investigate the behaviour of an arbitrary
senquence (u,), with u, € Wy (Q)n L% (§2), which converges weakly in WP (Q). By Remark 5.1.8 we
may assume that (w,) and (Dw,) converge to w and Dw pointwise a.e. in Q.

Let us prove some technical lemmas that will be useful in the sequel of this chapter.
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Lemma 5.2.1. For every ¢ € WHP(Q) N Le(Q) we have

(5.2.1) lim / |Dwn|p<,oda:+/ lwnlPedpn = / llepgod:l:—I—/ lwlPedp.
n—ooJa Q Q Q

Proof. Let v € W1P(Q) N L*®(Q). Taking w,y as test function in (5.1.5) and wy as test function in

(5.1.3) and using the pointwise convergence of (wn) and (Dwy) we obtain

lim |Dwnlpgod1'+/ lwnlPodpn = lim /wncpdx—-/ |Dwn|p—2DwnD<pwnd1: =
2 Q n—oo Ja Q

n—oo
= / wgodm——/ |Dw|P~?*DwDypwdr = / |Dw|’%pdm+/ [w|F e dp.
Q Q Q Q

And this concludes the proof. » O

Lemma 5.2.2. For every ¢, € WHP(Q)N L®(Q) we have

(5.2.2) lim / |D(wn¢))l”59da:+/ lwp Y|P dpn = / ]D(wv,b)lpcpdx-l—/ lwpFodu .
nTeeJa Q Q Q

Proof. Let ¢, € WHP(Q) N L(Q). Since for every &1, € RN and for every p > 2 the following
inequality holds '

(5.2.3) e = lealP| < p(IEa] + lE2)™ 7 ler — &l

we have

||¥ Dw, + wa DYJP — [wDw,lP| < p(|$Dwn + wa DY + | Dwn|)” ™" fwn DY,

where the left hand side converges pointwise to || Dw + wDp[? — | DwlP| (Remark 5.1.8) and the right
hand side is equintegrable. Then |D(wn¥)|P — [$Dwn|P converges to |D(wy)|f — | Dw|F strongly in
L*(£2). Once we note that

lim / ID(w,P)|Ppda = / |D(w1//)(pz,odm—-/ |Dw|P|¥Pedx + lim / [Dwp PP de,
n—e Jjo 2 0 n—oo Jn
the conclusion follows from Lemma 5.2.1. O

In the sequel we shall always denote by omn (resp. 0n) a sequence of real numbers such that

lim lim oy pn =0 (resp. lim o, = 0).
m—00 N—+00 n—00

Lemma 5.2.3. Let u € WyP(Q)NLE(Q) and let (m) be a sequence of functions in WLP(Q)n Le(Q)
such that (Ymw) converges to u strongly in Wo P(Q)NLA(Q). Then

m— 00 N— 00

(5.2.4) lim lim lD(wn¢m—u)|p<pdw+/ lwptmPedpn = / |u|P e du
Q Q Q

for every ¢ € WHP(Q) N L=(0).
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Proof. As in the proof of Lemma 5.2.2 ||D(w¢m —u)P — |D(wntm)IP| converges to ||D(wi, — )P —
]D(wwm)[”! strongly in L!(Q) as n — co. Thus by Lemma 5.2.2 we get

l

/ ID(wn"xbm - u)[psp dz + / |wn¢m |p8061/1n / (lD(wnwm - u)lp - ID(wnd)m)lp)(P dz+

Q Q [t}

+ [ 1DGntn)Podz+ [ ontmPodin = [ (D@ — )P - D))o do+
Q Y] Q

+/ | D(wpm) P o dz + / lwmlPodp + on = / [ulPodp+ omn .
Q Q Q
The conclusion follows by taking the limit first as 7 — oo and then as m — co. g

With the following theorem we prove that if a sequence (uy,), with u, € Wy"*(Q) NLE (), converges

- weakly in Wy7(Q) to a function u € WyP(Q) and there exists a constant C > 0 such that
(525 [ unPain <

Q
for every n € N, then the function u belongs to L%(Q).

Theorem 5.2.4. Let (u,) be a sequence such that u, € Wo'*(Q) NLE (Q) and such that (5.2.5) holds.
Suppose that (uy) converges weakly in Wy P(Q) to some function w. Then u € Wy P(Q)n L2 (Q) and

Limdee]

(5.2.6) liminf/ IDun]pdz+/ lup Pdp, > / IDu[PdJ:-i—/ [ulPdp .
Q Q Q Q

The result of Theorem 5.2.4 can be obtained as a direct consequence of the I'-convergence of the
functionals [, |Du,[Pdz+ [ [un|Pdun, to the functional [, [DulPdz+ [, |u[Pdy proved in [25]. For the sake
of completeness we shall give an alternative proof of Theorem 5.2.4 which does not involve T'-convergence

theory. Before proving Theorem 5.2.4, let us prove two preliminary lemmas.

Lemma 5.2.5. Let (un) be a sequence such that u, € Wy (Q) NLE (Q) and such that (5.2.5) holds.
Suppose that (u,) converges weakly in I/Vol’p(Q) to some function u. Then {u =0} D {w=0}.

Proof. Let us suppose that there exists a constant X > 0 such that lun| < K p-qe. in Q and hence
ju| < K p-q.e.in Q.

For every m € N let us consider the solutions u?* of the problems
ul € Wy P(Q)N L2 (),
(5:2.7) L]D'U?IP“ZD-U?DU dz +/n[unm|”"2uzlv dp, = m/ﬂ(|un[”‘2un — [P v da
Vv e Wy P(Q) N LE (Q).
By the comparison principle (Proposition 5.1.2) we have that

(5.2.8) [ < mT Kw, p-q.e.in Q.



74 A. GARRONI

—

By taking in (5.2.7) u}} — up as test function we get

[P0y = 1D D) DO )it
Q

+/ (Iu:,"lp" — Jun P2 un ) (Ul — un) dpn+
(5.2.9) e
+m/ (JumP=2ul = |un P~ 2u,) (u) — un)dz =

/IDU |P=2Du, D(ul? —-un)d:::——/ [tn [P~ 22 (uF = un) dptn

Since for every &£;,£2 € RY and for every p > 2 we have

(5.?-10) (161726 = &P 72E) (€1 — €2) 2> 27761 — &7,

apﬁlying Young inequality in (5.2.9) we get
22_"/ |D(ult — un)|Pdz + 22”’/ W — un|Pdpn + '22_”771/ |ult — uplPde <
Q Q ol

1
- P P
< o </n | Dun |Pdz + /Q Jun! dpn)-}-

L ([ 10r - s+ [ = o),
Q Q

where £ > 0 is an arbitrary real number. Since (u,) is bounded in Wa'P(Q) and (5.2.5) holds, by choosing

¢ small enough we obtain that there exists a constant C' > 0 such that
(5.2.11) / |D(ul} — up)|Pdz + m/ [ult — up|Pde < C.
2 Q

By (5.2.11) we have that the sequence (u)') is bounded in Wo ?(Q), uniformly in m and n. Then for
every m € N there exists a subsequence of (u') (we can choose the subsequence independent of m)
which converges to a function u™ weakly in VVOI P(Q). By the weak lower semicontinuity of the norm, the

sequence (u™) is also bounded in WP (Q). Moreover by (5.2.11) we get
0

. C
/ ju™ —uffde = lim / [l —uplPde < —,
Q n—c Jq m

and hence (u™) converges weakly to u in W, ?(Q). By (5.2.8) we have that [u™| < m!/P~1Kw p-q.e. in
Q and hence u™ belongs to the set K = {v € Wy?(Q): v =0p—qe. in {w=0}}. Since K is convex
and closed in W7 (Q), it is weakly closed. Therefore u € K and hence {u = 0} D {w=0}.

If (un) is not bounded in L%(Q), then for every n € N we can consider the truncation Tiup. Since
(Tyun) converges weakly to Thu in WaP(Q) and satisfies (5.2.5), we conclude the proof by the previous
step. ]
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Lemma 5.2.6. Let (v,), with v, € WP(Q) N LE: (), be a sequence which converges 1o a function v
weakly in T/Vol’p(Q), and suppose that there exists a constant C > 0 such that

(5.2.12) [ onpdin < ©
193

for every n € N. Then we have

tim ([ oD(wnt)P D) Dvndz + [ pluntP wnbon dun) =
(5.2.13) e Va e

= [ elDwi)P D) Dvds + | elhup->wio dy

for every @, € WLP(Q) N Le(Q).

Proof. Let ¢,¢ € WHP(Q)N L*(Q). Since for every p > 2 the following inequality holds

(5.2.14) [l61P=26 = [P 7262| < (p—1)(I61] + [€2D)P 2161 — &l

for every £1,&, € RV, as in Lemma 5.2.2 we can conclude that (|D(w,%)P~*D(w,¥)— [ Dw, [F~*4% Dw,)

converges strongly in LP' (2, RN) to |D(w)|P~2D(wi) — | Dw|P~24% Dw. Thus

n-— o0

lim (/ | D(wa ) P2 D(wntp) Dy, d:c-/ptin1P—Q[¢|P-9¢Dw,,0vn d:c) =
(5.2.15) @ @

= /(]D(w¢)|P“3D(w¢) — [¢DwP~2yDw) Dvpdz .
9
We shall show that

lim (/ﬂ<p|DwnIP'2|'¢lp‘2¢:D‘wann da:—}—[}gol‘wn;blp_g'zun'gb'vn du,,) =

11— CO

(5.2.16)
= [ olDup=2lyP-y DwDvds + [ etorsvva,
9] a

where v € W=1#'(Q) is the Radon measure defined in Theorem 5.1.6. By Lemma 5.2.5 we have that
{v =0} 2 {w =0} and then by (5.1.4) we get

/ elpP g dy = / PP 2pvdy = / P Y2 dy
a {w>0} y)

so that the conclusion follows from (5.2.15) and (5.2.16).
It remains to prove (5.2.16). Let us consider ¢ € W1 >(Q). Taking ¢v,, as test function in problem
(5.1.5) and taking into account that v =1+ A, in W2P(€) (Theorem 5.1.6), we obtain

n =00

lim /qﬁ]Dwnlp_?Dwann d:c+/¢5|wn]p"2wnv,, dp, =
9] 2 .
n—oo

(5.2.17) = lim /dwn da:—/ [Dw,|P~2 Dw, Dov, dz =
Q Q

= / qﬁvdw—/ |Dw|P~DwvD¢ dx = / ¢>|Dw|”“2Dvadm+/ pvdy.
a Q Q Q
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We have to prove that (5.2.17) holds for every ¢ € WHP(Q) N L®(Q). Let ¢ € WbhP(Q) N L°(Q). Since
v is a Radon measure in W~1?'(Q), it is possible to construct a sequence (¢m) of functions in Whe(Q)

bounded in L®(f), which converges to ¢ a.e. and v-a.e.in 2. By (5.2.17) we have

limsup(/ d)lDwnI”_QD'wnD‘un dm—i—/ qﬁ[wn]”_?wnvn dpn) =
Q Q

11— 00

(5.2.18) = /¢m|le"‘2Dvada:+/¢mvdu+
a Q

n—oo

+ lim sup (/ (¢ — ¢m)|Dwy IP“EDw,,Dv,, dz + / (¢ — ¢m)|wn|”—2wnvn dun) .
Q Iy}

By the dominated convergence theorem we can take the limit as m — co in the first two integrals of
the right hand side of (5.2.18). We have to estimate the last part of (5.2.18). Since (¢,,) is bounded in
L*(Q), by Holder inequality, by (5.2.12), and by Lemma 5.2.1 we obtain

lim limsup
m—o0 po.co

/ (¢ - ¢m)!Dwn|p-2Dwann dz + / (<i'> - ¢m)lwn Ip—gwnvn dﬂ'nl <
9] 9
p—b

< C lim limsup(/ !Dwn]plq‘:—qulp/(p—l)dl'—}-/ {‘wnlplqb—qﬁmlp/(p‘l)dpn) —
Q Q

m—o n—oo

p—1

= C lim (/ tiI"]qS—quF’/(p‘l)da:-l»/ 1w]P|¢—¢m1P/<P-1>dV) * =0,
m— Q0 fe} Q

where C is a positive constant independent of n and where for the last limit we used the dominated
convergence theorem. Finally (5.2.16) follows immediately from (5.2.17) by choosing ¢ = plylp~2y. O

We are now in a position to prove Theorem 5.2.4.

Proof of Theorem 5.2.4. Let ¢, ¥ € WHLP(Q) N L°(Q), with ¢ > 0. Since for every £,&2 € RN | by the

convexity of the function |- [P, the following inequality holds
(5.2.19) 61 ~ €2 2 pléal *6a(6 - &),
we have
[ epunbdst [ i 2 [ lntuipas+ [ clonsbaunt
Q Q Q o)
+P/ lD(wnd’)Ip—-gD(wnd})D(un - wn¢)§9 dz + P/ lwnd)[p_zwnw(un — wp ) dpn .
Q Q

By Lemmas 5.2.2 and 5.2.6 we get

n—00

liminf/ 90]Du,l[pd.r+/ olug [Fdp, > / ga]D(w¢)|”d:c+/ wlwy|Fdp+
(5.2.20) @ @ @ e

+p / |D(w) =2 D(wip) D(u — wi)p dz + p ] P~ 2w (u — wip)p dps
Q Q

Assume that u € L%(9). Let us choose in (5.2.20) ¢ € WP(Q) N L®(Q) such that ¢ < 15y for some
£>0,and ¥ = %= Since Yw = u p-qe.in {w > ¢}, by (5.2.20) we have

wVe *

liminf/ go]Dunlpdx+/ wlup [Fdis, > /@!Dulpdm+/ wluffdp .
Q a Jn Q

n—aoo
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Taking the supremum over all functions ¢ such that ¢ < 1;y5.} and then taking the limit when ¢ tends

to zero, by Lemma 1.1.2 we obtain

Iiminf/ lDunIPd;z:—{-/ lupPdp, > / ]Du[pd:v+/ lulPdu ..
n—eJo Q {w>0} {w>0}
Since, by Lemma 5.2.5, {u = 0} 2 {w = 0} this implies that u € L5(Q). As Du=0 ae. in {u =0} we
obtain (5.2.6).

If w is not in L°(Q) it is enough to apply the previous step to the sequence of truncations (Tyuy),
with £ € N. Then we find

liminf IDun]Pd:I:-i—/ lun|Pdu, > / IDTku!pd:L'+/ | Tl du
Q Q (9] 0

n-—00

for every k& € N. Taking the limit as £ — oo, by the monotone convergence theorem we obtain (5.2.6).

O

5.3. Relaxed Dirichlet problems with pseudomonotone operators

Let Q be a bounded open subset of RN, with N > 2. We shall consider the pseudomonotone
operator defined from Wy?(Q) to W17 (Q), with p > 2, mapping u € WgP(Q) in —div(A(z.u, Du)) €
VV‘LPI(Q), where 4:Q x R x RY — R is a Carathéodory function, i.e., = — A(z,s,€) is measurable
for every (s,€) € R x RY and (s,z) — A(z,s,€) is continuous on R x RY for a.e. z € Q. We shall

assume that A satisfies the following conditions:
(i) there exists a constant « > 0 such that
(Az,5,61) — A(z,5,62))(61 — §2) 2 afé1 — &afF

for every £1,62 € RN for every s € R, and for ae. z € Q;

(ii) there exist a constant # > 0 and a function h € LP(Q2) such that

Az, 5,€1) = Az, 5,&)| < B(h(z) + s +]a] + &) %l6 ~ &

for every £1,6 € RN for every s € R, and for ae. z € Q;

(iil) there exist a constant 8 > 0, a function h € LP(), a positive number 0 < 7 < 1 and a Carathéodory

function w : Q@ x R — R such that

|A(w,51,6) = A2, 50,6)] < B(h(x) + Isi] + ls2| + [€)P T Tw(a,
w(z,0) = 0, w(z,s) < (h{z)+|s)7

51— $al),

for every £ € R, for every s,s;,50 € R, and for ae. z € Q;
(iv) A(z,s,0) =0 for every s € R and a.e. in Q.

By (ii) and (iv), using Young’s inequality we obtain
(v) there exist a constant n > 0 and a function k € LPI(Q) such that
| 4(z,5,)] < k(z) +n(|sPP~H + €71
for every s € R, for every £ € RV, and a.e. z € Q; .
while by (1) and (iv) we have

(vi) A(z,s,8) > afélP for every s € R, for every € € RY | and ae. z € Q.
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Remark 5.3.1. Assumptions (i) and (ii) for the function A(z,s,{) are natural in the theory of pseu-
domonotone operator and are satisfied by a large class of operators. While assumption (iii), which is
necessary in our theory, singles out a less general class of operators. For istance the operators of the form
—div(b(u)A(Du)) are not included in this class. An example of operators which satisfy assumptions (i)~
(vi) is given by —div(A(z, Du)+b(u)C(z, Du)), where A(z,€) (resp. C(z,§)) is a Carathéodory function,
monotone with respect to & and with growth p— 1 (resp. p—1—7, 0 <7 < 1), and b(s) is a bounded
Lipschtz function.

Let L > 0 and let us define the class F(L) of all functions F:Q x R — R such that the following
properties are satisfied:

(I) for every s;,52 € R and for every z €  we have
(F(z,51) — P(2,52)] < L(lst] + sa)P 251 = sal
(I1) for every si,s» € R and for every z € {2 we have
(F(z,s1) — F(z,52))(s1 — $2) > alsy — sa2f”;

(II1) F(z,0) =0 for every z € Q;

Note that the constant a which appears in (i) and (II) is the same. As consequence of (I) and (III)
we have that

(IV) |F(z,s)| < L|s|P~! for evéry s € R and for every z € Q.
Finally from (II) and (III) we get

(V) F(z,s) > als|P for every s € R and for every z € 2
and

(VI) s > 0 = F(z,s) > 0and s < 0 = F(z,5) < 0 for every s € R and for every 2 € Q.

Let f € W"I'P((Q), let (un) be a sequence of Mp(Q) and let F, € F(L). Let us consider the

following variational problems

u, € WoP(Q) N LE (Q),

5.3.1
(53.) / A(a:,u.n,Du.,l)Dvda;—i-/ Fo(z,un)vdp, = (f,v) Yov € I/VOl'p(Q)ﬂLpn(Q).
Q Q
Since by Remark 5.1.1 {f,-) is a functional in (L’Vol’p(ﬂ)ﬁ L7 (Q))', by assumptions (1)=(vi) and (I)=(VI)
the theory of pseudomonotone operators (see [46], Theorem 2.8) assures the existence of a solution of
problem (5.3.1), but, if the function A(z,s,&) depends on the variable s, in general the solution is not
unique.

Let (un) be a sequence of solutions of problems (5.3.1). By assumptions (vi) and (V), taking u, as
test function in (5.3.1), it is easy to see that the sequence (u,) is bounded in WaP(Q) for any choice

of (utn) and (F,). Thus up to a subsequence the sequence (u,) converges weakly in WOI’p(Q) to some
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function u € Wy'P(Q). Our goal is to find the variational problem satisfied by the function u. To this
aim we shall consider special sequences of test functions v, € WaP (Q) N L (2) which converge weakly to
some function v € Wy* (Q) N L2(Q) and we shall try to take the limit in problem (5.3.1). Then, without
any additional difficulty, we can study the behaviour of the prdblem

u, € WP (Q) N LE_(Q),

(5.3.2)
/ Az, un, Duy)Dv dz + / Fo(z,up)vdp, = (fn,v) Yv € IfVol'p(Q) nLE (),
Q Q

where {f,) is a sequence of distributions in W=12"(Q) which converges strongly to some f € w1 (Q).

Remark 5.3.2. Let us notice that in this context assumption (iv) for A is not restrictive. If (iv) does
not hold, it is enough to consider the function A(z,s, &) = A(z,s, &) — A(z,s,0). Indeed —div(A(z,u,0))
is a continuous operator from w-WHP(Q) to s—W'l'pl(Q); so that if (w,) converges weakly to u in
Wa*(Q), then the sequence —div(A(z,un,0)) converges strongly to —div(A(z,u,0)) in W=12(Q) and
we can study the problem obtained from (5.3.2) replacing A with A and f, with f, — div(A(z,un,0)).

Remark 5.3.3. In this chapter we always assume that the sequence (u,) of measures in ME(Q)
y~%r_converges to a measure p € MH(Q). This assumption is not restrictive thanks to the compactness

A

of the ¥y~ 27 -convergence (Theorem 5.1.4).

In the sequel will be useful to study the behaviour of problems (5.3.2) in a more general form. We
shall consider in (5.3.2) a sequence of functionals (fn), with f, € (WP ()N L7 (Q))', and we shall give

some assumption on the behaviour of the sequence (f,) which permits to obtain the limit problem.

Definition 5.3.4. Let (1) be a sequence of M5(Q2) and let p be its v~ %7 -limit. Let f € (WP (Q)N

L2 (Q)) and let f, € (WeP(Q)NLE (Q)) for every n. We shall say that (f,) converges to f in the sense

of (H) if the following condition is satisfied:

(H) If v € Wy P(Q) N LE(Q), vn € Wy P (Q) N LE (Q) for every n, and (v,) converges to v weakly in
Wy P (Q), then (fn,vn) — (f,v).

Remark 5.3.5. Let f € (W,P(Q) N LA(Q)) and let fn € (WoP(Q) N LE (Q)) for every n. If (fn)
converges to f the sense of (H), then a sequence (u,,) which satisfies (5.3.2), up to a subsequence, converges
weakly in W,P(Q) to a function u € Wy P (Q)NLE(Q). Actually taking uy, as test function in (5.3.2), using
Schwarz inequality, and taking into account the definition of the norm in the space Wy P ()N L, (Q), we
get

1 :
(5.3.3) /lDunlf‘der/ lunPdpn < —|Ifall
Q Q «

where the norm of f, is taken in the space (W7 (Q) N LP (Q))'. Let (Ca) be a sequence such that
G € WEP(@) NI, (D), fall = (o Ca) s and [IGallyarapnzg.my = 1- Then, up to a subsequence, (Gn)
converges weakly in Wol’p(Q) to some function ¢ and, by Theorem 5.2.4, ¢ € W(}"’(Q) N LE(2). Since
(fa) converges in the sense of (H) we have that ||f,|| is bounded. Thus

(5.3.4) /IDun|”dz+/ lunlPdpn, < C.
Q Q
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Therefore the sequence (uy), up to a subsequence, converges to some u in Wol’p(Q) and, by Theorem 5.2 .4,
u€ Wy (Q) NLE(Q).

The following proposition shows that, without any additional assumption, the sequence (un) converges
strongly in Wy (Q) for every 1 <r < p.

Proposition 5.3.6. Let (un), with u, € ?Vol’p(Q)ﬂLf‘"(Q), be a sequence which converges to u weakly
in Wy ?(Q). Suppose that there exists a sequence (fn), with fn € (WP (Q) N L? (Q))', which converges
to fe(WaP(Q)n LE(Q))" in the sense of (H) such that un satisfies problem (5.3.2).

Then (u,) converges to u strongly in W’OI'T(Q) for every r < p and a subsequence of (Dun) converges

to Du poiniwise a.e. in §2.

Proof. By Rellich’s Theorem the sequence (u,) converges to u strongly in LP(Q), and hence, up to a
subsequence, pointwise a.e. in Q. Thus, by Egorov’s Theorem, for every § > 0 there exists a subset S of
Q, with |S| < 8, such that (u,) converges to u uniformly on 2\ 5. Let A >0, for every v € WgP(Q)
let Ta(v) € W, P(Q) be the truncation of v at the level A. We can take <I>,’\1 = Th(un — u) + Ta(u) as
test function in problem (5.3.2). Indeed it is easy to check that ) € WyP(Q) and |@)] < |ual, so that
&) € Wy (Q)N L2 (). Thus we have

/ A(:c,un,Du,,)D@,); dz +/ Fo(z,us)®) dpy = (fa, ®2).
Q o)
Since ®) and u, have the same sign, by (VI) we obtain

(5.3.5) limsup/ Az, un, Dup)D®) dz < (f, Ta(w)),
Q

n
n—oQ

where we use that (f,) converges to f in the sense of (H), and that by Remark 5.3.5 v € Wol’P(Q)ﬂLf‘(Q)
and hence Ty(—u) € WyP(Q) N LE(Q). Now, since A(z, un, Du)D(Tx(un - u)) converges to zero weakly
in L'(Q) and A(z,u,, Du)D(Tx(u)) >0 a.e. in £ by assumption {vi), we have

/ Az, un,Dun)D@;\l der > /(A(:E,un, Du,) — Az, up, Du))D@i dz + o0, =
Q Q
= / (A(z,up, Dun) — Az, up, Du))D(Ta(up — u)) dz +
Q
+ / (A(z,un, Dun) — A(z, un, Du)) D(Tx(u)) dz + o0, =
(5.3.6) “
= / (A(z,un, Dun) — A(z, un, Du)) D(un — u) dz +
{lun—u|<A}
+/ (A(z, un, Du,) — A(z,upn, Du))Dudz +op >
{lul<A}

> a/ |D(up — u)Pdz + / (A(z, un, Dun) — A(z, tn, Du))Dudz + op .
{lun—ul<A} {lul<A}

By the uniform convergence of (u,) in the set Q\S, for n large enough we have that Q\S C {lun—u| < A}
and, by (5.3.5) and (5.3.6) we get

limsupa/ |D(un — w)Pdz < |(f, Tau))| + limsup/ |A(z, un, Dup) — A(z, un, Du)||Du|dz .
O\S {lu]<A}

n— 00 71~ 00



Asymptotic behaviour of Dirichlet problems in perforated domains 81

Since the sequence (u,) is bounded in W, *(2), by assumption (ii) the sequences (A(z,un, Du,)) and
(A(z, un, Du) are bounded in LP/(Q,RN). By using Hoélder inequality and taking the limit as A — 0 we
obtain

(5.3.7) limsup/ |D(up ~u)fPdz = 0.
a\s

n—00

Finally let us fix 1 < r < p. Since [S| < § by Hélder inequality we obtain

z
P

/ﬂ ID(un — w)['dz < |05 (/ﬂ\s D (s —w)Pdz)” + 675 (/ﬂ [D(utn — w)Pde)

By (5.3.7) and taking the limit as § — 0 we conclude that (u,) converges strongly in Wy'"(Q) and hence

a subsequence of (Duy) converges to Du pointwise a.e. in €. U

Remark 5.3.7. Under the same assumptions of Proposition 5.3.6, by (v) and Proposition 5.3.6 we have
that (A(z,u,, Du,)) converges to (A(z,u, Du)) weakly in LPI(Q,RN) and strongly in L*(Q,RY) for
every 1 < s < p'. Similarly we deduce that (A(z,u,, D(u, — u))) converges to zero weakly in LP’(Q,RN)
and strongly in L*(Q,RY) for every 1 <s < p'.

5.4. The limit problem

In this section we shall prove the main result of this chapter (Theorem 5.4.1). We shall show that the
limit of a sequence of solution of problems (5.3.2) satisfies a variational problem of the same kind. Namely
we shall prove that the limit problem will be of the form

u € Wy ?(Q) N LE(Q),

(5.4.1)

/ A(z,u,Du)Dvdz + / F(z,u)vdp = (f,v) Yo € WP (Q)N LE(Q),
Q Q

where 4 is a measure in ME(Q) and F(z,s) is a function which satisfies conditions (II)-(VI) and

;A

(5.4.2) |F(z,51) — F(z,55)] < C(s1]+ |s2])P 5T |s1 — 52|77 Vs, 50 €R, Ve € Q,
where C' is a constant depending only on «, §, L, N, and p.

Theorem 5.4.1. Let (p,) be an arbitrary sequence of measures in MY(Q), let L > 0, and let (F,(z,s))
be a sequence in F(L). Then there exist an increasing sequence of inlegers (nj), a measure p € MH(Q),
and a function F : Q x R — R, which satisfies conditions (I1I)-(VI), and (5.4.2) such that the following
property holds: if (f;) is a sequence of functionals, with f; € (Wy'*(Q) N le"‘j (Q)), which converges to
some f € (W(}’p(Q)ﬂLﬁ(Q))’ in the sense of (H) (according with Definition 5.3.4), and (uj) is a sequence
of solutions of problems (5.3.2), with n = nj, having a subsequence which converges weakly in WOI’I’(Q) 1o

some function u, then v is a solution of problem (5.4.1).
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Remark 5.4.2. If problems (5.3.2) and (5.4.1) admit a unique solution (for example if the function
A(z,s,€) does not depend on s), then in Theorem 5.4.1 we have that the whole sequence (u;) of the

solutions of problems (5.3.2), with n = n;, converges weakly in Wol’p(Q) to the solution u of problem
(5.4.1).

In the case where the function A(z,s,&) does not depend on s and satisfies the homogeneity condition
Az, 1€) = [t]P~%A(z,€) for every 2 € Q, t € R, and § € RY, Dal Maso and Murat (see [33]) have
proved that the function F is always of the form F'(z, 5) = g(z)|s|P~2s. We shall see in Chapter 6 that it
is possible to construct easy examples of non-homogeneous operators such that the function F' turns out
to be non-homogeneous.

Before proving Theorem 5.4.1 we need additional information on the behaviour of the sequence (uy) of
solutions of problems (5.3.2). To this aim we shall compare (u,) with the sequences (wn¥m) of correctors
for the p-Laplacian that we studied in Section 5.2.

In the rest of this chapter we suppose that there exists a constant L > 0 such that F, € F(L) for
every n and we denote by C a positive constant, depending only on «, B, L, and p, which can change
from line to line.

Lemma 5.4.3. Lel (un) be a sequence of measures in M{(Q) which =85 _converges to u € ME(Q).
Let (fn) be a sequence of functionals, with fn € (WS’F(Q)OLZR(Q))', which converges to some functional
feWrr)n LE(Q)) in the sense of (H) and lel (un) be a sequence of solutions of problems (5.3.2)
which converges weakly in Wy (Q) to some function u € WP (). Then we have

(54.3) limsup(/ ID(un-—u)ngpd:c-l—/ lunlPe dun) < C/ |ulf o dp
Q Q Q

n-—oo

for every o € Whe(Q), with ¢ > 0 in Q.

Proof. By Remark 5.3.5 we have that u € Wi ()N LE(Q). Let w, and w the solutions of problems
(5.1.5) and (5.1.3). Then by Proposition 5.1.5 there exists a sequence (¥m) in C§°(22) such that (wim)
converges to u strongly in Wg?(Q) N LE(Q). Let ¢ € Wh*(Q), with ¢ > 0 in Q. By (IV) and (V),
applying Young inequality, we have

1 1
/ iunlp99d/~‘n < ""/ Fn(xvun)(un —wnwm)so’:lﬂ'n + _/ Fn(xy“n)wnlr/-’mSgdl-Ln <
Q @ Ja a Ja
1
< 'a_-/ Fn(xvun)(“n _lun¢ni)9°d/ln+c/ ‘Unlp—lwnwmspdﬂn <
Q Q

1 . er'C c t
< —/ Fn(x,un)(un—wnwm)sadun+—,—/ Iunl”sodun,+—,——/ [wntm|P e dpn ,

o Ja P Ja ePp Ja

. . . I
where £ > 0 is an arbitrary real number. By choosing € such that ef = p'/2C we get

2
(5.4.4) / lun P dpn < ——/ Fn(a;,un)(un—wnt,/)m)c,ad,un—i—C/ |wn¥m|Fedp, .
Q @ Ja 0!

Thus we have

21-})/ |D(u, — U)Ipstl‘-i-/ un P dp, <

Q Q

(545) < / iD(u" - wn¢m)lp99dm + %/ Fn(zyun)(un — Wn¥m)p dpin+
2 Q

+0( [ 1D(u = wntbn)Poda + [ funpmPpdnn).
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Now we take (v, — w,9¥m )¢ as test function in (5.3.2) and using (i), (H), and Remark 5.3.7 we get

C"/ lD(un - wnwm)lp‘pd:ﬂ +/ Fn(mvun)(un - wrﬂ[)m)spd/‘n <
Q N
< / o[A(z, un, Duy) — A(z, tn, D(Wn %)) D(tn — wntm) dz +
9]
b [ Fale i) = wnbr )i =
Q
= <fny$9(u'n - wnwm)) - ‘/Q‘PA(TW Un,D(wrﬂpm))D(un - wn'lr/"m)dl'—

- / (tn — wp¥m)A(z, upn, Dus)Dp de = —/ VA(z, un, D(wn¥m)) D(tn — Wnthm ) d2 + 0m n -
Iy} Q

Using (v) and Young inequality and taking into account that. |D(wntm )P~" — [ D(u—wn®m)|F ™! converges
strongly in LP (Q) to |D(wbm)[P~! — |D(u — wip,)|P~! and that [D(up — wythm)| converges weakly in
LP(Q) to |D(u — wm)| (Proposition 5.3.6, we obtain

N [ P = o dn <
< [ k@D = )l e+ [ tun 1D = ) e+
40 [ D) P D s = wnthn)l s+ 0 <
< 1 [ AP = )P 1D (1 = )|+ 0 €

1 eP ,
<t / 1 D(w = wnthn)IP dz + 7 / | D(ttn ~ wn ) dz + 0+
p'e?’ Ja p Ja

where ¢ is an arbitrary positive constant. Choosing ¢ such that n% = § by (5.4.5) we have

[ 1D = 0P+ [ funPodun < O 1D(u= wntm)Pods + [ o dia],

9} o) Q Q

and we conclude by Lemma 5.2.3. O
The following proposition gives a first version of the limit problem satisfied by u.

Proposition 5.4.4. Under the same assumptiions of Lemma 5.4.3 there exisls a unique p-measurable

function H such that u satisfies the problem

u € WyP(Q) N LA(Q),
(5.4.6)
/A(a:,u,Du)Dvdz +/ Huvdp = (f,v) Vv € WyP(Q) N LE(Q)
Q - Q

and

(5.4.7) |H| < ClufP~? for p-a.e. in Q.
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Moreover, for every ¢ € C§°(2) we have

/ Hwopdp =
Q

= lim [/ Az, up — u, D(un — 1)) D(w, — w)p dz + / Fo(z, un)wn@ dpn]
Q Q

n—+00

(5.4.8)

where w, and w are the solutions of problems (5.1.3) and (5.1.5).

Proof. Given @ € C§°(Q2),we take w,¢ as test function in (5.3.2) and we get

/A(J;,un,Dun)Dwncpd:c + / Az, tun, Dup) Do wpde +
(5.4.9) @ o

+ [ Falayun)ung dun = (Faun).
Q
By Remark 5.3.7 we have
lim ((f,,,,wngo) —-/ Az, un, Dun)De wnd:c> = (f, wp) —/ A(z,u, Du) Dy wdzr .
e o) 0

Then the distribution 7" given by

(T,¢) = lim [/ A(z,un, Dug)Dwppdz — /A(a:,u,Du)Dwgadm + / Fn(z,un)wnpdpn]
Q Q o)

n-—oo

is well defined for every ¢ € C§°(Q). Moreover, by (5.2.1), (5.3.4), and (IV) we have
/ﬂlA(:c,un,Dun)HDwnM:c + /ﬂlFAz,u,JHdepn <C.

This implies that T is a bounded Radon measure on Q. Thus taking the limit in (5.4.9) we obtain

(5.4.10) /S;A(r,u,Du)D(w(,o)dz + (T, ) = (f,wep).

Since by (ii), (iv), and by Proposition 5.3.6 A(z, un, Dun)—A(z, un—u, D(un—u)) converges to A(z, u, Du)
strongly in LP' (Q) we have

(T,p) = lim [/ Az, un, D(un — u))D(wn — w)p dz + / Fo(z, un)wne dpun) -
Q Q

Let us prove (5.4.8). For every ¢ € C§°(Q), ¢ > 0, by Holder inequality and by assumptions (IV) and

(v) we have
HT, e} < lim (/ (k(z) + nlunl?™" + 1] D(un — w) P~ D(w, — w)|p dz +
1 — 00 O

+ / IFn(I:un)‘wn‘Pd#n> <
i3

IA

n— 0o

lim (7](/ [D(u, —u)Pe dx)z—;l(/ |D(w,, — w)|Pyp da:)% +
n-—cQ O 0
+ L(/ lunlp‘rOd/-‘n)—%—(/ ‘wn‘pSOd/-‘n);) <
Q Q
p=1 1
<o [ 1rpdn) T ([ lpodn?
Q 9]

(5.4.11) oy (n/nw(”" ~ w)PP~HD(wn — w)lpde + L/nlunlp‘lw,,pdpn) <

IN
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where we used Lemmas 5.2.3 and 5.4.3, and Proposition 5.3.6. Let us denote by |T'| the total variation of

the measure 7'. Taking into account that for every open subset A of £ we have
ITI(4) = sup{(T, %) : ¢ € C°(4), suplp| <1}

by (5.4.11) we get

(5.4.12) 1) < o[ 1pa) ([ o)

for every open subset A of Q. Since |ufPu, |w[Pu, and |T| are finite measures, (5.4.12) holds for every
Borel subset of Q. This implies that the measure T is absolutely continuous with respect to the measure
wp. Since wpy is a o-finite measure we can apply the Radon-Nikodym derivation theorem and we find a

p—measurable function H such that

T(A) = / Hwdp
A
for every Borel subset A of €, so that (5.4.8) holds. We can suppose that
(5.4.13) H(z)=0 p-ae. z in Q

Thus by (5.4.12) we get
p=1 1
[ < o[ 1upan) ¥ ([ opdn)?
A A A

for every Borel subset A of Q. Thus using Young’s inequality, we obtain

1 of
- P 7 2
/A]ledp < C(p’op' /Alul dy + ’ /Alwl d,u)

for every Borel subset 4 of Q and for every o > 0; so that, if A is contained in {w > ¢}, with ¢ > 0,
then we get

1 oP »
[ (@)w(x) < O u(@)P + = u(@)P)

for p-a.e. z € {w > ¢}, and hence g-ae. z € {w > 0}, and for every ¢ > 0. For p-ae. z € {w > 0} we

can choose o = |u(a,)|L;l/]w(a,)|P;»l and, taking into account (5.4.13), we get
|H(z)| < Clu(z)|P~! p-ae. z €Q,

and hence (5.4.7) is proved. Condition (5.4.6) follows from (5.4.10) and the density result given by
Proposition 5.1.5. Finally the function H is uniquely determined p-a.e. in Q by (5.4.6) and (5.4.7).
Indeed by (5.4.6) H is uniquely determined p-a.e. in {w > 0} and by (5.4.7) we have H =0 p-ae. in
{u = 0}. Then the conclusion follows by the fact that {u = 0} DO {w = 0} by (5.3.4) and Lemma 5.2.5.

U
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Now we need to study the properties of the function H defined by (5.4.8). Let g, € (W3 P(Q) N
LE, (Q)) for every n. Suppose that the sequence (gn) converges to g € (WaP ()N LE(Q))" in the sense
of (H) (Definition 5.3.4) and let z, be a sequence of solutions of the problems

2 € WP (Q) N LE (Q),
(5.4.14)
/ A(z,zn, Dzn)Dv da +/ Fo(z,zn)vdpn = (gn,v) Vv e Wy P(Q)NLE (Q).
Q Q

If the sequence (z,) converges weakly in Wol’p(Q) to some function z, then by Proposition 5.4.4 there

exists a p-measurable function H' such that z satisfies the problem

2 € WyP(Q) N LE(Q),

(5.4.15)
/ A(z,z,Dz)Dvdz +/ H'vdp = {(g,v) Yu € Wy P (Q) N LE(Q)
Q Q
and
(5.4.16) |H'| < ClzP~? p-a.e.in Q.

We want to compare the function H with the function H’.

Lemma 5.4.5. Let (un) be a sequence of measures in ME(Q) which v~ 8r _converges o p € ME(Q).
Let (f,) and (gn) be two sequences of functionals, with fn,gn € (Wy?(Q) N L? (), which converges
to f e (WiP(Q)n LE(Q)) and g € (WP (Q) N LE(RQ)), respectively, in the sense of (H). Let un be a
solution of problem (5.3.2) and let z, be a solution of problem (5.4.14). Assume that the sequences (un)
and (z,) converge weakly in WoP(Q) to u and z. Then

timsup /ﬂ ID((n — 20) = (u— 2)Ppdz + /ﬂ fin — zalP dn) <

n—00

< C(/ﬂlﬂl"sodu-%-/QIZI”M#)E(/Q Iu—Zl”sodﬂf—l—1

for every @ € WHe(Q), with ¢ > 0 in Q.

(5.4.17)

Proof. Let w, and w be the solutions of problems (5.1.3) and (5.1.5). By Remark 5.3.5 we have that u
and z belongs to W, " (2)NLAE(Q) and then by Proposition 5.1.5 there exists a sequence (¥m) of functions
in Cs°(Q) such that (wi,,) converges to u — z strongly in Wy (Q) N LR ().

Let o € WL(Q), with ¢ > 0 in Q. By (I) and (II), applying Holder inequality, we have

1
/ iun - 5nlp80 dpn < _/ ‘P[Fn(l’a“n) - Fn(x: zn)](un —Zp — Wu¥m) dpin +
Q @ Jjo

+ C(/{; ‘wnl/’mlp‘Pdl‘ﬂ) : <,/n |un ’p + |zn IpSodﬁ‘n> ng <L |tn — 3n|p‘r'7dl~"n>,; )

while (i) and (ii) give

(5.4.18)

[ 10 = 2) ~ (u =)o e <
(5.4.19) < /Q[A(:c, 2n, D(tn — 1)) — A(2, 20, D(2n — 2))]D(tn — 20 — Wt ) dz +

+C / a1 D((tn = 22) = (1= )| D (wnthms — (1 — 2 dz
Q
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where Cp = [|AP72 + |2 [P~2 + |D(un — w)|P~2 + |D(24 — 2)|P~?]. Since the sequence

(AP~ + [z P=)D((un = 2n) = (u = )} D (wnthm = (u — 2))])
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is equi-integrable, by Proposition 5.3.6 it converges to zero strongly in L(2). Therefore by using Holder

inequality we obtain from (5.4.19) we have
[ 1D(n = 2) = (w = )P de <
Q

< /[A(ib‘,sz(Un —u)) — A(z,2p, D(zn — 2))]D(un — 2 — Wt ) dz +
(5.4.20) @ K )
+C<L | D(wntpm — (v~ 3))lp97d1'> ’ (/n |D(un — zp — (u— 2))Fe da:) " x

p—2

X (/ |D(un — u)fF +|D(zn — 2)Fe d.L) T4 Omn -
Q
Taking (un — zp — Wpm )@ as test function in the difference between (5.3.2) and (5.4.14) we get

/ [A(z,upn, Duy) — Az, 20, Dz,) | D(u, — 2, — Wb o dz +
0

+ /[Fn(a:,un) — Fulz,2n)(un — zn — Wt ) dpn =
o

= -/[A(x,un,Dun) — A(z, zn, Dzp)| Dty — zn — wnthm) dz +
Q

+ <fn — gn, (un — Zn — wnd’m)‘P) = Omn -

By assumption (ii) we have that A(z, u,, Du,)—A(z, un, D(up—u)) and A(z, z,, Dz,)— Az, 20, D(zn—

converge strongly in LPI(Q) and then we have

/[A(:zr, Un, D(up — u)) — Az, 20, D(2n — 2))]D(tn — 2n — wn¥m)pdz +

Q
+ / [Fn(xvun) - Fn(xazn)(un —Zn — wn":[)m)sodﬂn = Om,n -
Q
Since by (i) A(z,u,, D(u, —u)) — A(z, z,,, D(u, —u)) converges strongly in L"‘I(Q), we obtain
/ [Alz, z2n, D(up — w)) — A2, 20, D(2n — 2))]D(un — 20 — WaPm ) dz +
(5.4.21) @
+ /[Fn(x,un) — Fo(z,20)(Un — 2n — Wn¥m )@ dptn = Omn .
Q

Then by (5.4.18), (5.4.20) and (5.4.21) we get

[ 1D((un = 20) = (5= DPdz + [ un = P din <
193 193

< ([ twnnPodu) ( [ (b + 1z ) = [t == Podun) +
+c(/ﬂ |D(wntom — (u — z))[wcza;)%(/n D (un — 2 — (4 — z))lpspdz)‘;x

p—2

x(/{; [D(un——u)lp—l-|D(zn—z){”god:z) " tomn-

-

~

)
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Applying Holder inequality, taking the limsup as n '— oo and the limsup as m — oo, and using Lem-
mas 5.2.3 and 5.4.3 we have

lim sup limsup(/ |D(un — 2n — (u— 2))|Pode + / |un — zn|Pe dpn) <
m—o0 n-—00 Q Q
p=2 1
< o[ mPodn+ [ 1:Podn) 7 ([ - sPodn)
Q v} Q
x limsup limsup (/ |D(up — 2n = (u— 2))[Ppdz + / lun — zn|Pe dpn) ’
Q Q

m—+r0o0 nN— 00

and hence (5.4.17) is proved. U

Proposition 5.4.6. Under the same assumptions of Lemma 5.4.5, let H and H' be the functions such
that u satisfies (5.4.6) and (5.4.7), and z satisfies (5.4.15) and (5.4.16). Then

(5.4.22) |H — H'| < C(Ju] +]2])"* 1|u—— z|7=T p-a.e. in Q.

Proof. Let ¢ € W1*°(Q), with ¢ > 0, and let wy, and w be the solutions of problems (5.1.5) and (5.1.3).
By (5.4.8) and by assumptions (ii), (iii), and (I) we have

| = mwodu] <
< | [ (4o, Dlttn = ) = (e, 2, Dlan = 2))) Dlwn = whp | +
+ l/ﬂ(Fn(x, Un) = Fu(2, 20) ) 0np dpin
< [ (Grstln = 22 + 001D (0 = ) = (= )] IDasm = )l d -+

+ on <

+/|Fn(1‘,un)—Fn(m,zn)l'wngodun + o, <
< 8 [ (1D = 0]+ 1D(zn = ) 1Dt = 20) = (w = 2DID(wn = w)lp e+

iy / (ttn] + 120}~ 2ltm — znlwato din + 0
Q

where Cp = B(h + |un] + zn] + |D(un — w))P~177 and O, = B(h + |2a| + |D(un — w)| + |D(zn — HhrPe.
As in the proof of Lemma 5.4.5 the terms containing k, |ua|, and |z,| can be neglected. Therefore using
Hoélder inequality and Lemmas 5.2.3, 5.4.3, and 5.4.5 we get

,/(H—H’)we@dul <

<o [ 1o+ [ 1:Podn)’ /lu—zwd ) ([ 1wrodu)”.

Then we conclude as in the proof of Proposition 5.4.4 and we obtain (5.4.22). O
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Proposition 5.4.7. Under the same assumptions Ibf Lemma 5.4.5 we have

(5.4.23) (H—H)Yu—-2)> alu—=zJf p-a.e. in .

Proof. Let ¢ € W (Q), with ¢ > 0. Using (u, — z,)¢ as test function in problems (5.3.2) and (5.4.14)

and taking the difference between these equations, we obtain
‘/n[A(x, Un, Dun) — Az, 2, Dz,)1D(up — 20)p dz +
+ /Q[A(az,un,Dun) — A(z, 20, Dzp)1Dp(un — 2,) dz +
+ /Q[Fn(r, Un) = Fa(z, 20)[(tn — 2n) 0 dpin = (fa = gn, (un = 2a)) -

We can rewrite this formula as
/ ([A(z,u,,,Dun) — A(z,un, Dz2)]D(un — 2n) — a|D(up — zp)F ) dz +
fy)

+ a/ [D(un — zp)Fodz + /[Fn(a:, Un) — Fn(2, 2:)(tn — zn)o dpn +
(5.4.24) @ §
+ /[A(a:,un,Dzn) — Az, zn, Dzp)]D(un — zp)p dz +

o)
T+ /[A(:r,u,,,Du,,) — A(z,2n, D2)|Dp(tn — za)dz = (fn = gn, (un — z2)¢) .

Q

By assumption (II) and Theorem 5.2.4, we have

@ [ 1D = 2)Ppds + [ [Pala,un) = Fala,2a)l(n = za)pdin >

o) Q
> a/ [D(u — z)Pedz —‘ra/ lu—z|Podp + o, .
o) o)

Moreover by (iii) A(z,u,, Dz,)— A(z, z,, Dz,) converges to A(z,u, Dz)— A(z, z, Dz) strongly in LPI(Q).
Then by (i) we can apply Fatou lemma to the first integrand of (5.4.24) and, taking the limit, we obtain

‘/ﬂ([A(x, u, Du) — A(z,u, Dz))D(u — z) — a|D(u — 2)P)p dz +
+a/ﬂ |D(u — z)|Podz + a/ﬂ|u— z[Podp+
+ / [A(z,u,Dz) — A(z,z, D2)]D(u — z)p dz +
Q

+ V/Q[A(z,u,Du) — A(z,z,D2)]Do(u— z)dz < (f — g,(u— 2)p)

that is
1A 0, 0) = Az, 5 DD = ) de + [ Ju=sPpdn < 4 =g, (w2,
Q Q
Thus by (5.4.6) and (5.4.15) we get
J == pdn 2 a [ - alpdn
Q Q

for every ¢ € We(Q), with ¢ > 0. This implies (5.4.23). O
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Proposition 5.4.6 will imply that the function H defined by (5.4.8) depends on u only through its
pointwise values, i.e., there exists a function F(z,s) such that H(z) = F(z,u(z)) p-ae. in Q. Till now,
we are able to define the function F(z,s) only on the pairs (z,s) such that s = u(z), where u is the limit
of a sequence of solutions of problems (5.3.2). We shall prove a penalization result (Theorem 5.4.9) which
shows that, in some sense, it is possible to obtain any real number s as “limit” of a sequence of solutions.
We shall need the following lemma.

Lemma 5.4.8. Let A >0 and let f € L®(Q). Let p € ME(Q), let G € F(L), and let u be a solution
of the problem

u € Wy (Q) N LE(Q),

(5.4.25) /A(a:,u,Du)Dvd:x + / Gz, w)vdu + /\/ ]11.[”—2u'u der = /fv dz
Q a Q Q
Vv € WoP(Q) N LA(Q) .
Then u € L®(Q) and satisfies

”U”Lm(g) S <Hf_l_l_];\i%&)_> p—1 .

Proof. Let k be a positive constant. Since
Jlw=typan= [ ju-kpdn < [ ran < e
Q {u>k} Q
we have that (u— k)* € Wy *(Q)n LE(Q). Taking (u— k)* as test function in (5.4.25) we obtain

/ A(z,u, Du)Dudz + / G(z,u)(u—k)dp + /(x\lcp"l — 1 fllze(ay)(u— k) dz < 0.
{u>k} (u>k) a ‘

Since, by assumption (VI), G(z,u)(u—k) > 0 p-a.e.in {u >k} and, by assumption (vi), A(z,u, Du)Du >
0 a.e. in Q, we get

/ﬂ (AP~ — |||z () (u — B)* dz < 0.

If we choose k such that AkP~! = ||f||Le=(q) + €, with € > 0, we have € [o(u—k)tdz <0;so that
u(z) < (M) a.e.in Q

for every € > 0 and hence

u(z) < (”—JC—UL/{L(@)FT a.e. in Q.

Similarly we can prove that

u(z) > — (M)m a.e. in £,

and this concludes the proof. O



Asymptotic behaviour of Dirichlet problems in perforated domains 91

Theorem 5.4.9. Let u € WHP(Q)N L®(Q). For évery k € N let ut be a solution of the problem
ub e WgP(Q)n L8 (9),

(5.4.26) /A(a;,uﬁ,Duﬁ)Dvdm + / Fo(z, v vdu, = k/(|u|"_2u— [uk P~ 2ub Yy da
Q Q Q

Vv € WP (Q)NLE (Q).
Then there exists an increasing sequence of indices (n;) such that for every k the sequence (Uﬁj)jEN

converges to some function u® weakly in I/Vol’p(Q). Moreover the sequence (u*) satisfies the following

conditions

lim (/ wP | D(u* —u)|Pdz + k/ wP [u — u]pda;) =0, Llin
Q Q

n / whuf —uPdp = 0,
k—oco c—o0 o
where w is the solution of problem (5.1.3). In particular (u*) converges to u pointwise a.e. and p-a.e. in

{w > 0} and (Du*) converges to (Du) pointwise a.e. in {w > 0}.

Proof. Taking in (5.4.26) u! as test function it is easy to see that for every k the sequence (uf),en
1s bounded in Wol’p(Q). Thus it is possible to construct an increasing sequence of indices (n;) such
that for every k the sequence (uﬁj)jeN converges to some function u* weakly in Wy#(Q) and a.e. in
Q. Let ||lullpe(ny = M. By Lemma 5.4.8 we have that ||u,k;||Loo(g) < M for every k,n € N; so that
”uk”Lco(ﬂ) < M for every ¥ € N. Then uk(x) < M p-qe.in © and, in particular, u* € Ly (9Q).

Moreover, by Proposition 5.4.4, there exists a py-measurable function Hy, such that |H(z)| < Clu*(z)|F~?

p-a.e. in Q and the function u* satisfies the problem
ut € WoP(Q) N LE(Q),
(5.4.27) /A(a;,uk,Duk)Dvda: + / Hivdp = k/(lulp_zu— [u* P2k )y d=
Q Q Q

Vv € Wy P(Q) N LE(Q).

Since u* € L%(Q) we can take wP(u® — u) as test function in (5.4.27) and we have
/ Az, u*, Dv*YD(u* — w)wPde + p/ Az, u*, Du¥)Dw(u* — w)w? " ldr +
Q Q
+ / Hi (v — w)w” dp + /c/(|u'“'|”*2uk — ufP 2w (v — w)wPde = 0.
Q Q

By assumption (i) and inequality (5.2.10) we get

cr/ wP|D(u* — w)Pdz + k/ whjuf —ulPde < —/ Az, uf, Du)D(v* — u)wP dz —

(5.4.28) e f o

- p/ Az, v, Dub)DwwP~(u* —u)dz + C’/ [k P wP |uf — u|dp,
Q Q

where we used that |Hy(z)] < Clu*(z)[P~! p-ae. in Q. By assumption (v) and the fact that u®(z) < M
p-g.e. in Q we obtain

a/ wP | D(u* — u)Pdz + k/ wP [uf — uPde <

JO Q

(5.4.29) < / ¢|D(uF = w)|wF dz + p/ Cw” Y Dw|juf — u|dz +
Q Q

+C/ ID(u* — w)]P~ P Dwl||u® — u|de + CMP™! / wF [uf — ) dp,
Q Q
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where ¢ is a function in L? () given by ¢ = (k+ C(MP=! + |DulP~1)). By Young inequality we have

a'/ WP |D(u* — u)Pde + k/ wP [ub — ufPdz <
Q :

/CP w”d:c+———/wp|D(u —u)Pdz +

er'p!
gi—/ |D(u* — w)|Pw? dz + —/ |Dw [u* — ulf dz +
P Ja ePp Ja
+p/ CwP Y Dwllub — u|dz + C]\f‘[p'l/ wP v — uldp.
Q Q

Finally, by choosing ¢ > 0 small enough, we get

92—/ wP | D(u* — u)Pdz + k/ wP [ub — ufPdz < p/ CwP™ | Dw||u* — uldz +

(5.4.30) e @ @

+C'/ PP dz—}-C/ |DwP|uf — ulf dz + C’]V.f”__l/ wP |u® — uldp.
Q Q Q

Since |uf —u| < 2M p-qe. in Q we have that the left hand side of (5.4.30) is bounded and this implies
that

(5.4.31) lim / wP|uf —ufPdz = 0,

k—co Jo
e., (wub) converges to wu strongly in LP(Q2) and, up to a subsequence, (u¥) converges to u a.e. in
{w > 0}. Since

/ |D(w(u* — u))Pdz < / wP|D(u* — )P dz +/ | Dw|P|uf — ulPdz,
Q Q Q

where the right hand side is bounded by (5.4.30), we have that, up to a subsequence, w(u* — u) converges
weakly in Wy?(Q). By (5.4.31) the weak limit of w(uf —u) in W, P(RQ) is zero. Moreover since wD(uF —
u) = D(w(u® — u)) — Dw(u® — u) we obtain that wD(uf — u) converges weakly to zero in L?(Q,RY).

Finally, as (w|u* — u]) converges to zero weakly in Wi (Q) we get

(54.32) lim /
k—oco

wP|uf —ufPdp < 2M)P71 lim /w”lu.k—uld,u = (2M)P~! lim / wlu® —uldv = 0,
0 k—oco o) k—co Q

where v € VV‘I’P'(Q) is the Radon measure defined by in Theorem 5.1.6. It is now easy to see, by (5.4.28),
that

lim [ w?P|D(u* —u)lPdz + k/ wPluf — ufPdz = 0,
and this, together with (5.4.32), concludes the proof. O

Remark 5.4.10. Let us remark that if u € Wy*(Q) N LF r(Q) is the weak limit of a sequence (un) of
solutions of problems (5.3.2) we can take in problem (5.4.27) (u¥ — u) as test function and, by similar

techniques of those used in Theorem 5.4.9, we can prove that (u*) converges to u strongly in W PN

LE(§2).
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We are now in a position to prove Theorem 5.4.1.

Proof of Theorem 5.4.1. By Theorem 5.1.4 there exists a subsequence of (p,), always denoted by (pn),
and a measure g € M5 (Q) such that (p,) y~27-converges to p and then the sequence (wy,) of solutions
of problems (5.1.5) converges weakly in Wol’p(Q) to the solution w of problem (5.1.3). For every rational
number r let 7¥ be a solution of problem (5.4.26) corresponding to u = r. By Theorem 5.4.9 there exists
an increasing sequence of integers (n;), independent on r and k, such that (1,‘11) converges weakly in
Wol’p () to a function r¥, for every r € Q and for every k € N. It is cleat that such a subsequence can
be easily obtained by a diagonal argument. By Proposition 5.4.4 there exists a function HF € Lfll(Q) such
that |H¥| < C|r¥P~! p-ae. in Q and

b € Wy P(Q) N LE(Q),
(5.4.33) /A(z,rk,Drk)Dvd:v + / Hrkv dp = k/([7'|p’2r-— ]rkjp_"‘)rk)v dz
Q Q o)
Yu € Wy P (Q) N LE(Q).
By Proposition 5.4.6, for every r,t € Q and for every k,h € N, we have
(5.4.34) |HE — B} < C(r*| + |th])p%|r}C - th]?"i'f p-ae. in Q.

Since Hf(z) = 0 p-ae. in {w = 0} for every r € Q and for every £ € N (Lemma 5.2.5), by (5.4.34)
and the fact that (r*) converges to r p-a.e. in {w > 0} (Theorem 5.4.9) we have that for every » the
sequence (Hrk) converges as k — oo pointwise g-a.e. in Q to some function H, which is zero in {w = 0}.
Let us define for every r € Q the function F(z,r) = H,(z) p-ae. in {w >0} and F(z,r) = a2P72|r|P~%r .
p-a.e. in {w = 0}. By (5.4.34) and by Theorem 5.4.9 we have

(5.4.35) IF(z,r) = F(z,0)] < C(rl+ )7t fr —t[7T  peae.in {w > 0}

for every r,t € Q. Thus we can define F(x,s) for every s € R by continuity and the function I satisfies
(5.4.35) for every r,t € R. Similarly by Proposition 5.4.7 we obtain that

(5.4.36) (F(z,r) = F(z,t))(r —t) > alr —t|F p-a.e. in {w > 0}

for every r,t € R. By the definition of ' on {w = 0}, inequality (5.4.35) and (5.4.36) hold also u-a.e.
in {w = 0}. Moreover for » = 0 we can choose the sequence of solutions (r%) such that ¥ = 0 for
every n,k € IN; so that »* = 0 for every £ € N and by problem (5.4.33) we have that Ho(z) = 0 p-a.e.
in {w > 0}. Then F(z,s) satisfies conditions (II), (III), (IV), and (5.4.2). It remains to prove that u
satisfies problem (5.4.1). Let H be the function defined by Proposition 5.4.4 such that u satisfies problem
(5.4.6). Let us prove that H(z) = F(z,u(z)) p-ae. in Q. Since, by Lemma 5.2.5, {u = 0} D {w = 0}
and F(z,0) = 0, it is enough to show that H(z) = F(z,u(z)) p-a.e. in {w > 0}. By Proposition 5.4.6
we have .
|H — HF| < C(lu]+|r* I)p%ﬁlu — k|5 p-a.e. in

for every r» € Q and for every k € N. Then by Theorem 5.4.9 we can take the limit as & — oo and by
the continuity of F(z,-) we obtain

2=2
Py

(5.4.37) [H(z) - F(z,s)| < C(lu(z)|+ |s]) () — s|7=7 p-a.e. in {w> 0}
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for every s € R. Since u belongs to Wol‘p(Q) it is pdésible to determine its pointwise values up to a set of
4 measure zero, thus taking in (5.4.37) s = u(z), for z p-ae.in {w > 0}, we obtain H(z) = F(z,u(z))
p-a.e. in {w > 0} and this concludes the proof. O

As a particular case of Theorem 5.4.1 we obtain the limit problem for a sequence of Dirichlet problem,
with a pseudomonotone operator which satisfies conditions (i)-(vi), on an arbitrary sequence (§2,) of open
subsets of Q. ’

Theorem 5.4.11. Let () be a sequence of arbitrary open subsets of Q. There exist a subsequence
of (), still denoted by (Q,), a measure p € ME(Q) and a function F: Q@ x R — R, such that if
fe WLP'(Q) and (up) is a sequence of solutions of the problems

un € Wo'P (),
(5.4.38)
—div (A(m,un,Dun)) =f in Q,

which, up 1o a subsequence, converges weakly in VVS"”(Q) 1o some function u, then u satisfies the following

problem
u € Wyt (Q) N LE(Q),
/ A(z,u, Du)Dvdz + / F(z,u)vdp = (f,v) Vo € Wy (Q) N LE(Q).
Q Q

Moreover the function F(z,s) satisfies conditions (II)-(V), and (5.4.2).

Proof. Let us consider the sequence (p,) of measures in MPB(Q) such that p, = cog\q, Is the measure
defined by

0, if p-cap((Q\ Q,) N B) =0,

con\q,(B) =

+o0, otherwise
for every Borel set B C Q. It is easy to see that, with this choice of p,, a solution of problem (5.4.38) is
a solution of problem (5.3.1) for any choice of F}, in F(L). Then the conclusion follows immediately from
Theorem 5.4.1. 1

In this chapter we have always considered sequences of solutions in VVol P(Q), i.e., with boundary value
zero. However our techniques can be easily adapted to the case of sequences of local solutions. This fact
is stated by the following theorem.

Theorem 5.4.12. Let (i), (Fa), i, F, and (n;) be as in Theorem 5.4.1. Let fe W‘llpl(Q) and
let (u;) be a sequence in WLP(Q) which converges weakly in WHP(Q) o some function u. Assume that
uj € LB (') for every open set Q' CC Q and that

J

(5.4.39) /A(a:,uj,DUj)Dvdz+/ Fo (2, u5)vdus; = (f,v)
Q Q



Asymptotic behaviour of Dirichlet problems in perforated domains 95

for every v € Wy P(Q) N L% () with compact support in Q. Then u belongs to LE() for every open
set Q' CC Q and

(5.4.40) /A(a:,u,Du)Dvdx—(—/ F(z,u)vdp = (f,v)
Q Q
for every v € WP ()N LP(Q) with compact support in Q.

Proof. This result can be proved following the lines of the proof of Theorem 5.4.1 once we note that all

the results used for the proof are localized by a function ¢ € C$°(R). O

Remark 5.4.13. By Theorem 5.4.12 it is possible to deduce the following result. Let €' be an open set

with € CC Q. For every j let u; € WP ()N LE (') be a function wich satisfies (5.4.39) for every
7

v € WP ()NLE (). Assume that (u;) converges weakly in Wy (Q) to some function u € Wi ().

Then u belongs to L2 (') and satisfies (5.4.40) for every v € W, 7 (Q') N LE(Q").
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6. An example of non homogeneous case

In this chapter we shall exhibit an example where the function F(z,s) of Theorem 5.4.1 is not
homogeneous of degree p — 1. For the sake of simplicity in this chapter we shall consider only the case

p = 2, the general case being analogous.

For every 0 < € < 1 let us consider a partition of RY, with N > 3, composed of semi-open cubes

i ieZN ofside 2 and center zi, with 20 = 0. Let r = ¢/~ =2 and for every i € ZN let Bl be the
closed ball in Q! of radius » and center zi. By Q. and B, we shall denote @° and B? respectively.

Let E. = U;B:. It is well known (see [20]) that, under this special geometrical assumption, for every

bounded open set Q2 C RY the sequence of measures (coqng,) 7~ -converges to the measure Civdz in

Q, where Cy = wy (N —2)/2V  ie., if w. is the solution of problem

we € HY(Q\ E.),

/Dwstdr = /vdm Yve Hy(Q\ Ee),
Q 2

then every subsequence (w; ) of (w.) converges weakly in H3(€2) to the solution w of the problem

w € Hp(Q),
(6.0.41)
/Dtvada:+CN/wvd:r = /vdz‘ Yv € HYQ).
Q Q Q

Let us consider a function 4 : RY — R such that A(0) = 0 and for every &;,&: € RY satisfies

(6.0.42) (A(&1) — A(E2))(&y — &) > aléy — &l
and
(6.0.43) [A(&) — A(&)] < Blér = &al,

with 0 < a < 3. Let (r,) be a sequence which converges to zero such that for every £ € RV we have
(6.0.44) lim —r, A(=7;18) = As(€).
n—od

It is easy to see that A, satisfies (6.0.42) and (6.0.43). In this chapter (g,) will be the sequence of positive

numbers converging to zero such that the sequence (r,) defined by
(6.0.45) o= eh/N-2

satisfies (6.0.44). Moreover by Theorem 5.4.11 and by Remark 5.4.13 we can suppose that there exists a
function F: RN x R — R, such that for every bounded open set Q@ C RV and for every f € H™}(Q) the
sequence (u,) of the solutions of the problems

_divA(Du) = f  in Q\ E.

n}

(6.0.46)
u, =0 ond(Q\E.,),
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converges weakly in H3() to the unique solution u of the problem

—divA(Du) + F(z,u) = f in Q,
(6.0.47) {

u=20 on 89Q.

By Theorem 5.4.11 we have that the function F satisfies the following conditions:

(a) there exists a constant L > 0 such that
IF(I, Sl) - F(.’E, Sg)[ S LlSl — 87

for every s1,s2 € R and for every z € RV ;

(b) for every s;,s1 € R we have
(F(z,s1) — F(x,52))(s1 — s2) > |81 — sa|°

for every z € RV,
(c) F(z,0) =0 for every z € RV;

Remark 6.0.14. In this case the fact the whole the sequence (u,) of solutions of problems (6.0.46)

converges is given by the uniqueness of the solution of problem (6.0.47).

We shall show that if the function A does not depend on x, then the function F does not depend
on z (Lemma 6.0.15). Moreover we prove that, in this case, it is possible to construct F by means of the
function A, defined in (6.0.44) (Theorem 6.0.16) and that the function F(s) is homogeneous of degree 1
if and only if A, () is homogeneous of degree 1 (Theorem 6.0.17). '

Lemma 6.0.15. The function F(z,s) in problem (6.0.47) does not depend on z, i.e., F(z,s) = F(s)
for every z € RV .

Proof. Let as fix an arbitrary bounded open set @ C RY and let us consider an open set Q' CC Q.
Let g9 = dist (092, 0Q'), then for every i € Z, with |i| = 1 and for every 0 < ¢ < gy we have that
Q=0 +cccq.

Let s € R, let s be the solution of problem
Sﬁ € HS(Q’ \ Ein) !
/ A(Ds¥)Dvdz = k/ (s—si)vde  Yve HYQ\E.,),
o o/

and let 5% be the solution of the analogous problem corresponding to Q. By Remarks 5.4.13 and 6.0.14
we have that the sequences (s¥) and (5%), extended by zero in RN \ @’ and in RV \ ), converge weakly
in H}(Q) to the solutions s* and §* of problems

st e HI(Q),
(6.0.48)

’

/ A(Ds*YDv dz + F(z,s*)vde = k/ (s —s*)vdz  Yve HYQ)
o Qf
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and

§t e HY(O),
(6.0.49) i
/_A(ng)Dvdm + / F(z,5%)vdz = k/_(s—gk)udx Yv e HY(Q).
Q Q Q

Moreover, by Theorem 5.4.9 and by the fact that for every Q the solution w of problem (6.0.41) is positive
in Q, we get

(6.0.50) lim / o D(s* — )P de +k/ ols* — sPds = 0
s — CO (el (o4
for every ¢ € C§°(Q'), with » > 0, and

(6.0.51) lim /i(,olD(sTk —s)Pdz + k/_ ¢|5* —sPdz = 0
Q

k—oc 0

for every o € C§°(Q), with ¢ > 0. By changing variables in (6.0.49) we obtain

(6.0.52) / A(D&*(x + ¢i))Dvdz + / F(z +¢i,5(z + ei))vde = L/ (s — 5%(z +£i))vdz
1% Iy ol

for every v € H(Q'). Thus for every o € C5°(€') by (6.0.48), (6.0.52), and (6.0.43) we have

|F(z + &6, (2 + €i)) — F(z, s* (2))llpl dz <
(6.0.53) ”
" ID(* (2 + i) — s*(2))|| Dl dx + & / 18 (z + €i) — * (@)l da
o Qf

By (6.0.50) and (6.0.51) the right hand side of (6.0.53) converges to zero as k — co; so that, as by condition
(a) the sequence (F(z +¢i,5%(z +¢i))) converges to F(z + ¢i,s) and (F(z,s*(x))) converges to F(z,s)
for a.e. x in a compact subset of Q' from (6.0.53) we get

F(z +¢ei,s) = F(z,s)

for every z € Q' and for every € < g9. Hence F(z,s) = F(s) for every z € Q' and the conclusion follows

from the arbitrariness of €, Q' and s. O

As in Chapter 2, Section 2.4, we shall denote by H(RYN) the space of all functions belonging to
L (RN), 1/2° = 1/2 = 1/N, whose first order distribution derivatives belong to L} RN).

We shall say that a function u: RY — R is Q. -periodic if u(z +eni) = u(z) for every z € RY and
for every i € ZV .

The following theorem gives an explicit representation of the function F(s) in terms of the capacity
of the unit closed ball By in RY relative to the operator —div Ao, . This result can be easily obtained
as a particular case of the results proved by Skrypnik in a more general context (see [62]). For the sake
of completeness we shall give here an alternative proof that holds in the particular case of a periodic
structure.

Also in this chapter we shall denote by C a positive constant which can change from line to line and

which depends only on N, a, and f.
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Theorem 6.0.16. Let s € R and let ¢ be the solution of the problem

(6.0.54) (=s an {|z] < 1}

{-—divAoo(DC) =0 in {|z] > 1}
¢e HRN).

Then the function F(-) in (6.0.47) is given by the following formula

(6.0.55) | F(s) = %V- /R A DO Dvdz,

where v 1s an arbitrary function in H(RM) such that v =1 on {|z| < 1}.

Proof. Let v, : RY — R be the solution of the problem

(6.0.56) vp =0 on B,

vn (., -periodic,

{ —div A(Dv,) = F(s) in AQE,, \ B,

where Q. is the cube of center 0 and side 2¢, and B, is the closed ball of center 0 and radius r,.
Let Q be an arbitrary bounded open subset of R™. Let us prove that the sequence (v,) converges to
s weakly in H(Q). Since cap(B,,,Q:.) > cap(B,., Ba,) = (r2™N — (26,)> V)~ by (6.0.45) we have

that cap(B;,,Qc,) > €} . Then, since {z € Q., : vn(z) = 0} = B,,, by the Poincaré inequality (1.1.1)

we get

(6.0.57) / lon2de < K / | Do, Pdz

€n fn

where K is positive constant independent on n. Taking v, as test function in (6.0.56), by Holder inequality
and (6.0.57), we have

/ IDvn[Zd:c = F(s)/ vpde <

£n €n

< P(s)(2en)™" / foalPde) T < 13 F(s)(26,)72 / D *d)

€n Q:n

(S8
=

and hence

1 N .
(6.0.58) -————f |Duv,|*dz < CF(s).
(Zgn)N Qtn )

Since (e,,) tends to zero and (vy,) is @, -periodic we have

9 IQl‘*‘On/ 9 / 2 lQ|+0n / )
6.0.59 / Duv,["dz = Duv,|°dz and vl tde = = v |*dz .
( ) Ql l eV Jo. [Dvy| Q| I Gen)™ Jo.. [vn]
Thus by (6.0.57) we get

2 Q]+0 2
Duv,|*dx 2y = !———————'1 1+ K / Dv, | dz
/ﬂl Vn| 1+/ﬂ[vn| z (an)N( + K) an] vn|"dz
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and hence, by (6.0.58), we have that (v,) is bounded in H(). Then, up to a subsequence, (v,) converges
weakly in H'(2) to some function v. Since vy is Q,-periodic it is easy to check that v is constant, i.e.,

v = c € R. Moreover for every ¢ € C§°(Q2) the function v, satisfies

(6.0.60) _/A(Dv”[)cp dr = F(s)/ pdz.
o} Q
Indeed if v € C§°(Q2), then the function ¥(z) = Z oz +eni) is Q.,-periodic and by (6.0.56) we have
iezZN
/ A(Dv,)Dgdz = / A(Dv,)Dpdz = / A(Dv,) Dy dz =
Q iEZN Q;" €n
= / F(s)pdz = Z/ F(s)pdz = / F(s)pdz.

Qen gz~ /O @

Thus by Theorem 5.4.12 we have that

V/ﬂF(c)apdax = /DF(s)sodx

and hence by the monotonicity of F (condition (b)) we get v =s.
Let us consider now the function z,(z) = v,(r,z) and let us denote by @, the cube of center 0 and

side 2¢,,/r,. By changing variables in (6.0.56) we obtain that z, satisfies

(6.0.61) / raA(r;'Dz)Dudz = riF(s) | vdz
n Qﬂ.

for every v @, -periodic and v =1 on B;. By (6.0.58) we have

\ 1
(6.0.62) / |Dza|Pdz = T/
Qn Tn Q

Let us denote by (zn)g, = ]51;[ an zndz the average of z, on @, . Since by (6.0.59) we have

r|Dv, | dz = —-1]7/ |Dv,|?de < 2V CF(s).
€n Ja.,

‘n

(zn) ROl / do = — 1 / do = / d
=z = zpdr = Updr = UndZ
M TN o, Wl Jo.. " (Q+on) Ja

and (w,) converges to s strongly in L?(Q), we obtain that (z,)q, converges to s. Moreover by the

Sobolev inequality we have

(6.0.63) (/; lzn — (Z”)ing-dm)l/z‘ < C(/Q ]D31L|3dm)1/27

where the constant C is independent on n. Then by (6.0.62) and (6.0.63), and by the fact that (zn)q,
converges to s we have that, up to a subsequence, the sequence (z,) converges to some function z €
HE (RN) weakly in H!(B) for every bounded open set B C RY. Let ¢ € C(RN) with compact

support. Since for n large enough we have supp ¢ C @, we can take (z, —z)y as test function in (6.0.61)
and by (6.0.42) we get

a/ |D(z, — ) pde < / rn(A(rngzn) — A(r;lDz))D(zﬂ - 2odz =
supp ¢ supp @

(6064) — 7.3 /Supp(p F(S)(Zn - 5)99 dz — / 7*nA(’I’n_1DZn)D<P(Zn - Z) de —

supp ¢

- / rp A(r7 D2))D(z, — )0 d .
supp
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Since, by (6.0.43) and (6.0.44), the right hand side of k:(6.0.64) tends to zero as n — oo we obtain that (z,)
converges to z strongly in HY_(RY). If we take as test function in (6.0.61) a function v € H*(RY) with

compact support and v = 0 in B;, then we can take the limit as n — co and by (6.0.44) we have that

(6.0.65) Ae(—=Dz)Dv = 0
RN

for every v € HY(R") with compact support and v = 0 in B;.
Let now { = s — z. By (6.0.62) and the fact that (z,) converges to z strongly in H}

loc

(RYN) we have
/ |D¢)?dz < 2V C
B

for every bounded open set B C R and hence D( € L* RN, RY). Similarly by (6.0.63) and the fact
that (z,)g, converges to s we get that ¢ € L? (RY) and hence ¢ € H(R"). Finally, since ( = s on By,
by (6.0.65) we have that ¢ is the unique solution of problem (6.0.54).

Let us prove the representation formula (6.0.55). Let v € H(R") with compact support and v = 1
on B;. Taking 1 — v as test function in problem (6.0.61) we have

(6.0.66) / rpA(ry Dz, )Dvde = QNF(S)—r,%F(s)/ vde.
Qn

n

Taking the limit as n — co we obtain (6.0.55). If v has not compact support, it is enough to consider a
function % € H(RY) with compact support and % =1 on B;. Using v — as test function in (6.0.54) we
get
/ Aco(D¢) Dy = / Aoo(DQ)DT = 2V F(s)
RN RN

and this concludes the proof. ]

The following proposition will permit us to exhibit simple examples where the function F is not

homogeneous.
Proposition 6.0.17. Let us suppose thal the function A defined by (6.0.44) is of the form

(6.0.67) Ac(€) = a(l€])E

where a : [0,40c0] — [, B]. Then the function F(s) given by (6.0.55) is homogeneous of degree 1 if and

only if Ae is homogeneous of degree 1, i.e., a(|€]) is constant.

Proof. If A is homogeneous of degree 1 the result is a direct consequence of formula (6.0.55) once we
note that if ¢ is the solution of problem (6.0.54) at the level s € R then the function ¢, with ¢t € R, is
the solution of the same problem at the level ts.

Vice versa let F'(s) homogeneous of degree 1. Let us denote by wy the N — 1-dimensional measure
of the unit sphere of R and let H = {u:[0,+00) — R : f:m PN =l dr + f1+°° N2 dr < 4o}
By assumption (6.0.67) it is easy to see that the solution ¢ of problem (6.0.54) is radial symmetric, i.e.,

((@) = =(Je), and

wy [T N-1 /
(6.0.68 F(s) = — r a2 DV dr
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for every v € H with v(1) = 1. Moreover for every v € H with v(1) =0 we have
+oo
] rN=la(]2' )2 v'dr = 0.
1

Then there exist a constant #(s) depending on s such that r¥~a(|z’])2’ = 1(s). By (6.0.68) we have that
2V F(s)/wn = —t(s) and hence

(6.0.69) wyrV T a(|Z)): = =2V F(s).

Let us denote by P(r) the function defined by P(r) = a(|r|)r for every r» € R. By (6.0.42) and (6.0.43)
we have that there exists the inverse function P~! of P and it has linear growth. Then by (6.0.69) we

have

-1 “QNF(S)

)

+co
and, since / Z'dr = —s and F(s) = sF(1l), we get
1

(60(1) ﬂ/I G(m)(h‘: -8,

where G(t) = P~Y(=2N F(1)t/wy). By changing variables in (6.0.71), with p = s/rN =1 we obtain

L v [ o(0)eidp =
N _1° /o (p)p™=Tdp = —s
and hence .
N - N N-—2
/ G(p)p¥-idp = —(N — 1)s¥-1.
0
If we derive with respect to s we get G(s)sT\’:-ﬁ,T = —(N - '2)57"::Ll and hence
oN
Np = — = F(1)r
allr = gy P
which concludes the proof. O

Example 6.0.18. Let us consider the operator —div (a(|Du|)Du) where a(|t|) = (2 + sin(log|t])), that
can be considered as a non linear perturbation of the Laplace operator. It is easy to see that the function
A(€) = a(|¢])€ satisfies condition (6.0.42) and (6.0.43). Moreover if we choose 7, = exp(—2wn), then
a(r;tE)) = a([€]) for every ¢ € RY and hence Ao (€) = A(€) for every £ € RY . Since the function A(£)
is clearly non-homogeneous, by Proposition 6.0.17 we obtain that the function F(s) which appears in the

limit problem (6.0.47) is non-homogeneous.
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