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Introduction

Given a function f of a domain D into itself, to describe the set of all functions g of
D into itself which commute under composition with f (i.e. such that f o g=gof)isan
interesting and rather difficult problem. In the particular case in which f is a holomorphic
function, some results can be achieved and actually the problem of finding conditions under
which two (or more) given holomorphic maps commute, has been investigated by many au-
thors ([Beh], [Cow], [Cow2], [G-V], [Pra], [Shie]) in the last decades. Most of the techniques
derive from the study of the behaviour of the iterates { " ben={fofo -0 fluen of

n—times
a holomorphic map f , which historically was at first primarily devoted to the case of ra-

tional maps in the Riemann sphere C. These results are deeply related, for other reasons,
to the local study of the involved functions at their fixed points. The study of fixed points
of functions becomes also extremely interesting when f is a holomorphic self-map of A,
where A is the unit disc A = {z € C: |z| < 1} of C. On the one hand, in fact, the fixed
points of a function f represent in general the one-point orbits of the iterates {f°"}nen
of f, and this is of great importance in Iteration Theory. On the other hand, when f is a
holomorphic map of A into itself, without fixed points in A, the Wolff point of f (whose
existence and uniqueness is stated by Wolff’s Lemma, a “boundary version” of the Schwarz’
and the Schwarz-Pick Lemmas) plays the role of a fixed point on the boundary of A, as .
it i1s shown by the Julia-Wolff-Carathéodory Theorem: in a broad sense, any holomorphic
self-map of A has a fixed point. For the case of holomorphic maps, having a fixed point in
the domain of definition, it was clear from the beginning that the behaviour of the iterates,
in a neighbourhood of a fixed point, depends on the value of the derivative of the map at
the fixed point itself (see, e.g., [Sch], [Kén]). In particular, by applying the Schwarz’ and
the Schwarz-Pick Lemmas, it was easily seen that each holomorphic self-map of A was
either a contraction towards the fixed point in A (if any), or an automorphism of A. In
a very similar way, the Wolff-Denjoy Theorem asserts that the iterates of f converge, uni-
formly on compact sets, to the Wolff point 7; moreover the value of the “non-tangential”
derivative of a holomorphic map f at its Wolff point in A is strictly connected to the
behaviour of the iterates of f. The above-mentioned Julia-Wolff-Carathéodory Theorem
and the Wolff’s Lemma state that the derivative of f at its Wolff point is a positive real
number, smaller or equal than 1. If this number is strictly less than 1, then, for any z € A,
the iterates {f°"(2)},cy converge to the Wolff point 7 of f “non-tangentially” and the
behaviour of f (and of its iterates) has been widely explored, also in connection with the
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problem of commutation of holomorphic maps under composition. The case in which the
value of the derivative of f at 7 is equal to 1 remains open to many questions, even if it has
been studied by several authors (see e.g. [Pom1], [Val] and [Aba]). This case is difficult to
approach, essentially because the Wolff point 7 has the feature of a “multiple” fixed point
on the boundary of A; moreover the behaviour of the iterates of f can be, in this hypothe-
sis, “tangential” or “non-tangential”. In this environment the non-tangential convergence
of the iterates of f seems to be the right (and in some sense minimal) hypothesis which
permits the investigation of the behaviour of f.

In two well-known papers, Behan and Shields [Beh] [Shie] proved that, in general
(except for the case of two hyperbolic automorphisms of A), two commuting holomorphic
self-maps of the disc A have the same fixed point in A or the same Wolff point on the
boundary of A; this result also reveals that some geometric concepts from Iteration Theory
in A can be used as tools in the study of families of commuting holomorphic mappings . The
Uniformization Theorem due to Riemann asserts that the unit disc A is the “prototype”
for every hyperbolic Riemann surface, so that we tried to give a general approach to the
subject, by setting most of the results to the case of hyperbolic domains.

In this dissertation we give a contribution to the investigation of the connection be-
tween Iteration Theory and the description of sets of commuting holomorphic maps in a
general setting. The efforts of this work also aimed at unifying different approaches of
similar problems. Quite recent points of view from Complex Dynamics are used to restate
more classical results and several open problems are placed in a more general and natural
environment with the hope that along new guidelines the approach to their solutions will
appear more easily. In particular, by applying a geometrical approach to the study of sets
related to the orbits of a map f € Hol(A,A), when the convergence of the iterates of
a point is non-tangential, we have shown that the problem of describing the set of holo-
morphic maps commuting with f is equivalent to determining the solutions of a functional
equation, which is associated to f (Theorem (2.2.10) and Theorem (2.2.16)). Furthermore,
while these relationships were investigated, some of the main results proved in the Liter-
ature for self-maps holomorphic in A have been generalized to the class of holomorphic
self-maps in hyperbolic domains of regular type; in particular, we extended the definition
of pseudo-iteration semigroup to these maps and then obtained interesting results for the
description of commuting holomorphic self-maps in hyperbolic domains of regular type.

After introducing the main properties of Riemann surfaces (Section 1.1), we start
from a very introductory review of the classical results for iteration of rational maps (Sec-
tion 1.2), with particular attention to the theorems and the techniques which can be later
applied or generalized for the case of holomorphic self-maps in hyperbolic domains. Ac-
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cording to this purpose, we will deliberately omit any use of one of the most powerful tools
recently (re)discovered, namely the application of the theory of quasi-conformal maps and
polynomial-like maps. For the same reasons, we will not investigate questions concerning
the bounds of the number of non-repelling orbits, even though these subjects are diffusely
treated in the reference books quoted in the Bibliography. Section 1.3 is entirely devoted
to the description of the behaviour of the iterates of holomorphic self-maps first in the unit
disc A and then in hyperbolic domains of regular type. In particular, we will give some
geometric interpretations of the way these iterates approach the boundary of the domains.

Then some results by Cowen [Cow],[Cow2] and Pommerenke [Pom1] are stated with
particular regard to those concerning the “pseudo-iteration semigroup of a map”, which
turns out to be a powerful tool in this environment (Section 2.1), and which connects many
geometrical aspects of Iteration Theory with the study of commuting holomorphic maps. In
fact, in his paper [Cow], Carl C. Cowen proves that, under very general conditions, for any
f € Hol(A, A), there exist a transformation ¢ (¢ € Aut(A) or ¢ € Aut(C)) and a function
o, analytic in A, such that oof = poo. Moreover, under a suitable normalization, ¢ and
o are unique. In a very natural way this theorem can be considered as a “classification
theorem”, since it associates (uniquely) to any function f € Hol (A, A) an automorphism
¢ so that the investigation of the behaviour of the iterates { "} hen is then somehow
reduced to the description of the (known) behaviour of {¢°"}, ey and this approach is,
obviously, particularly useful in Iteration Theory. On the other hand, the solutions g of
the functional equation oog = oo (with o, as above, such that oof = woo and ¥ a-
transformation such that poy = o) give rise to a class of analytic functions which can
be qualified as “generalized iterates” of f and this class of functions “generated” by f (or,
more precisely, by the functional equation of f) is closely related to the class of functions
which commute under composition with the given function f (see, e.g., [Cow2], [Vlal]).
This kind of studies involves sophisticated techniques from Iteration Theory and exploits
many geometric tools from the hyperbolic geometry of the disc A.

We then consider the case of holomorphic maps from the unit disc A into itself having
the same Wolff point at the boundary of A, and obtain new results concerning maps
which commute under composition in the (open) case in which the maps have derivative
I at the Wolff point. Among other results, we prove that, under the hypothesis of “non-
tangential” convergence of the iterates to the Wolff point, two maps f and g commute
under composition if, and only if, one belongs to the pseudo-iteration semigroup (in the
sense of Cowen) of the other. Several other results and remarks are stated to clarify the
geometrical aspects involved. It seemed plausible that the techniques used to study the

iterates of analytic functions on the disc could be applied more widely and Section 2.2 gives
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a contribution in this direction. Namely, the theory developed by Cowen ([Cow], [Cow?2])
and others ([G-V], [Pom], [Pra], [Vlal]) for functions holomorphic in A is extended to
functions holomorphic in finitely multiply connected hyperbolic domains. A nice geometric
characterization is provided for the semigroup of commuting locally injective holomorphic
maps of a hyperbolic domain D of regular type into itself, with a fixed point in D. by
means of suitable closed subset of A. This geometric characterization generalizes a result
for holomorphic self-maps in A due to Pranger [Pra] and, furthermore, proves the existence
of a locally univalent holomorphic function f of a hyperbolic domain D of regular type
into itself such that any function ¢ € Hol(D, D) which commutes with f is actually a
natural iterate of f. Finally, some results due to Baker and Szekeres are presented: they
primarily concern a geometrical description, by means of a lattice in € of the set of maps
holomorphic at a fixed point of multiplicity 1, which commute with a given one. Their
approach to these results is similar to the one given by Pranger. Then, going back to
rational maps, some intriguing properties of the Julia sets of commuting rational maps are
stated.

For giving me his support and confidence in all this work, it is my pleasant duty to
address my warmest gratitude to Prof. Graziano Gentili, who, besides being my advisor,
has been a precious guide for my research and whose genuine and encouraging enthusiasm
really made me appreciate the profound meanings of the new concepts [ was learning with
his help, during many fruitful conversations.

I wish to address many sincere thanks to Prof. M. Abate, for his valuable suggestions .
on many different subjects, and for the delicious course on Complex Dynamics given during
the Summer School 1996 organized at Cortona by the Scuola Matematica Interuniversi-
taria, which I want to thank for the grants and for allowing me to meet Prof. T. Gamelin
in Perugia; to him my warmest thanks for his encouraging comments on my research.

There are many other people which I am indebted to for the preparation of this work.
Among them I would like to mention Dott. Chiara de Fabritiis, for her care generously
given in her courses at the Scuola Internazionale Superiore di Studi Avanzati S.I.S.S.A .-
LS.A.S. of Trieste to help the last students remaining in the Activity of Geometry, to whom
I address my best wishes; and Dott. Roberto Tauraso whose comments and suggestions
always deserve great attention.

I would like also to thank the Universitd degli Study di Trieste for the generous
grant which recently allowed me to visit the Department of Mathematics and the Institute
for Mathematical Sciences of the State University of New York at Stony Brook, where.
I received a kind hospitality and help for this work during the wonderful lectures and -

seminars given, among the others, by Prof. J. Milnor, Prof. M. Yu. Lyubich, Prof. D.
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Sullivan and Prof. I. Kra; I'm particularly grateful to Prof. C. D. Hill and Prof. A.
Phillips, for introducing me to the life of the Department and making me feel at home,
and to Prof. B. Maskit, for the very helpful conversations.

Finally I want to thank my family and Nicoletta since they are fantastic: with great
attention and care, they have followed the evolution of the research on “the strange things”
I was studying, and always helped me a lot; when necessary, they also supported me,
without grumbling or pretending to interfere with my - sometimes - not easy decisions.

To all of them this work is dedicated.



1. Iteration of holomorphic maps on Riemann surfaces

1.1. Preliminaries on Riemann surfaces

We shall start from considering holomorphic maps on a Riemann surface, which is
defined to be a connected one-dimensional complex manifold. In particular, any Riemann
surface is an orientable two-dimensional real manifold and it can be proved (see e.g. [G-
P-V]) that on any orientable connected two-dimensional real manifold one can always add
a complex structure, which agrees with the real structure, and in such a way that the
resulting complex manifold is a Riemann surface. Two Riemann surfaces S and T are
conformally or biholomorphically equivalent if there exists an invertible holomorphic map
J + 8 = T with holomorphic inverse . Such a map is also said to be a biholomorphism or
a conformal transformation. Up to conformal equivalence, there exist only three Riemann
surfaces which are simply-connected, namely (see [A-S], [F-K] or [For] for the (difficult)
proof).

Riemann’s Uniformization Theorem (1.1.1) Any simply-connected Riemann surface
is conformally equivalent either to the unit disc A = {z € C:|z] < 1} of C, or to the
complez plane C or to the Riemann sphere CU{co} = CP! = C.

Since any Riemann surface admits a universal covering X , 1t is possible to lift the
structure of Riemann surface of X onto X, in such a way that the projection 7x : X — X
is holomorphic. A Riemann surface X is said elliptic (parabolic or hyperbolic) if its universal
covering XisC (or, respectively, C or A).

If X is a Riemann surface, the group of automorphisms (or transformations) of X
(ie. the set of all invertible holomorphic self-maps of X, which is a group with the usual
operation of composition of functions) will be denoted by Aut(X).

A subgroup I' of Aut(X) is said to act freely on X if no element of I' (except the
identity) has a fixed point in X. The action of the subgroup I' on X, that is the map
pr X xT'= X, u(z,0) =0(z), is said to be properly discontinuous at a point w € X if
there exists a neighbourhood U of w such that {o € I : o(U)NU # @} is finite. Shortly,
we will say that I' is properly discontinuous (or acts properly discontinuously) if p is
properly discontinuous at every point of X.

For the sake of completeness, we only mention here - and we refer the interested

reader to [Kra] or to [Mas] for an exhaustive presentation of the subject - that a group of
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transformations of an open subset U of the Riemann sphere C that acts discontinuously
on U is called - following Poincaré, see [Poi] and [Poil] - a Kleinian group; in particular if
U = A, then the group is said Fuchsian.

Finally, I' is said to act transitively on X if for any pair z,w € X there exists an
element v € I' such that v(z) = w. Equivalently, we will also say that the action of the
subgroup I' on X is transitive.

Let mx : X — X be the universal covering map of a Riemann surface X. An auto-
morphism of the covering or deck transformation is an automorphism v of X, such that
mx oy = mx. We recall (see [For]) that the group of automorphisms of the universal
covering X of X is isomorphic to the fundamental group m(X) of X.

Let X and Y be two Riemann surfaces, whose coverings are 7x : X — X and
my : Y — Y Given a function f € Hol(X,Y), any function f € Hol()z,f’) such that
fomx =my o f is a (holomorphic) Lifting of f.

The following proposition reduces the study of Riemann surfaces to the investigation
of the subgroups of Aut(@), Aut(C) and Aut(A) which act freely and properly discontin-
uously, respectively, on @, C, and A, namely

Proposition (1.1.2) Let nx : X — X be the universal covering map of a Riemann
surface X and let T’ denote the automorphism group of the covering X. ThenT is properly
discontinuous and acts freely on X. Conversely, if I' is a properly discontinuous subgroup
of Aut(j() acting freely on X, then X/F has a natural structure of Riemann surface and

the canonical map 7x : X — X /T is its universal covering.

Proof - Take z9 €X and an admissible neighbourhood V of 7(z0); let U C 7= 1(V) be
the component containing zo biholomorphic to V' through 7|y. If v is an automorphism
of X’, then mx oy = myx, so that if oc(U)NU # @, then v is the identity on U and hence
on X. Since zg was arbitrarily chosen, it is then proved that I' acts freely and properly
discontinuously on X.

Conversely, if T is properly discontinuous on X, for every zy €X there is a neighbour-
hood U such that {¢ € T': o(U)NU # @} = {Idg}, then 7 induces a natural structure
of Riemann surface on X /T, QED

In particular we will only deal with discrete subgroups of Aut(X), since the following

result holds (see, e.g., [Kra]).

Lemma (1.1.3) Let T be a group of automorphisms of a Riemann surface X, properly

discontinuous at some point of X. Then I' is discrete.
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Proof - Assume by contradiction that there exists {7n}nen CT, such that v, — v €.
Then v~ ! o+, — Idx and I cannot be properly discontinuous at any point of X. QED

We begin with the case of the complex plane C, which, endowed with the Euclidean
metric [dz|, provides an example of a Riemann surface whose Gaussian curvature is zero.
An elementary application of a result of Picard, (see, e.g., [Rud]), which asserts that the
image of a holomorphic function f of any neighbourhood of an essential singularity of f is
dense in C (actually, this image is C minus two points), shows that every automorphism
v of C is of the form

¥(z) =az+b, for some a,beC, a0.

Indeed, an injective entire function (i.e. holomorphic in C) has to be a linear polyno-
mial.

We say that two automorphisms, or, more in general, two functions f and g are
conjugated by an (invertible) function ¢ if and only if o=l o fo ¢ = g; this operation is
commonly said conjugation of functions.

As a general principle in Iteration Theory, it can be said that one of the most successful
technique is to reduce the study of the behaviour of the iterates of very difficult functions
to simpler and more suitable ones by means of appropriate conjugations; this is evident
once it is observed that ¢=! o f° 0 p = g°.

Coming back to Aut(C), one can easily show the following
Corollary (1.1.4) The properly discontinuous subgroups of Aut(C) acting freely on C
are, up to conjugations, '

{Idc}, {v(z)=z+n | neZ} and Ir={v(z)=z+n+mr | mneZl,

where 7 € C and Im(r) > 0. Hence the parabolic Riemann surfaces are the plane C,
C\{0} = C* (equivalent to the cylinder) or the tori C/T,.

Of the three possible types of parabolic Riemann surfaces, the tori are the ones on -

which only few holomorphic maps may exist, namely (see, e.g., [Mill])

Lemma (1.1.5) Suppose that f is a holomorphic map from the torus T = C/T'; into
wself. Then [ is an affine map (modulo T, ), that is f(z) = az + (modulo T'.).
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Furthermore, because of the Maximum Modulo Theorem, there are no holomorphic
maps from C into C, besides the constant maps, while the study of the iterates of holo-
morphic mappings from the Riemann sphere C into itself is one of the main subjects of
Complex Dynamics. We have in fact to recall that the Riemann sphere C is an exam-
ple of a compact Riemann surface, whose structure of complex manifold is carried by the
two coordinate charts {Uy = C, g = Idc} and {Ul = C\{O}, v1(z) = %} . Hence, by using
these charts, any rational function f, that is any quotient of two polynomials p(z) € C[z]
and ¢(z) € C[z], without common roots, may be regarded as a holomorphic map on the
Riemann sphere C. The degree d of f = p/q is defined to be the maximum of the degrees
of p and q.

Before getting into more interesting results on rational maps (which will be developed
in the next Section), let us determine the automorphisms of the Riemann sphere C. To do
this, first we recall this very elementary, but powerful

Lemma (1.1.6) Let H be a subgroup of G which acts transitively on a set X. If, for some
To€ X, Hy={9€ G | g(zo) =z} C H, then H=G.

As a matter of terminology, Hy is called the isotropy subgroup of z.

Lemma (1.1.7) Every automorphism v of C is of the form

b
v(z) = 6z + , with a,b,c,de€ C, such that ad —bc = 1.
cz+d

In fact any such a v is a holomorphic map on C (once it is agreed that y(—d/c) = co
and that v(co) = a/c); the map v is moreover invertible and the set of all such maps
acts transitively on C, because of the assumption ad — bc = 1. Therefore, according to the
previous Lemma, it suffices to show that each element of the isotropy subgroup of co is of
the same form of v. But the isotropy subgroup of co is precisely Aut(C).

Then, since every element of Aut(C) has a fixed point in C, no non-trivial subgroup
of C acts freely on C. In particular, there exists no other elliptic Riemann surfaces, except
the Riemann sphere C itself.

The standard metric |dz| of C corresponds, under the stereographic projection on the
unit sphere S? ~ C of R3, to the so called spherical metric

. 2|dz|
IR
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which has constant Gaussian curvature +1 and is defined in such a way that the point co
has finite distance from any other point of C. Observe that even though the map z — 1/2
is an isometry for this metric, it is not true in general that every conformal self map of C
is an isometry.

We are now going to recall how one can determine all the holomorphic automorphisms
of A. To do this we essentially need the following Lemma, whose importance, however,
goes far beyond this purpose.

Schwarz’ Lemma (1.1.8) Let f € Hol(A,A) be such that f(0) = 0; then

[f(2) <zl Vzen

and

IFO) <1

In particular, if there exists a zo € A\{0} such that f(z0) = 20, or if |[f/(0)] = 1, then
f(2) = €z for some real 0 and 7/(0) = e,

Proof - In a neighbourhood of 0 we can write f(z) = a1z + a222 + azz® + - - - and define
9(z) = f(2)/z. Take r € R such that r < 1. For |z] < r and because of the Maximum
Principle one gets
[f(w)] 1
l9(2)] < sup lg(w)| = =
which leads to the conclusion by letting r — 1. If equality holds for a non-zero z € A or if
f'(0) = 1, then again, by the Maximum Principle, g is a constant function of modulo 1.
QED

A generalization of the Schwarz’ Lemma, due to Ahlfors, can be found for instance in
[Kob].

Proposition (1.1.9) Every automorphism v of A into itself is of the form

g 2 — 20
2) =¥ 22

with zg € A and 6 € R.

Indeed, if y(2) = ew{—_%io%, since zg € A and
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veea 1- (= Lolel)l - =)

11— Zo2|?

it immediately follows that + is holomorphic in A and that y(A) C A. Moreover
_ip 2+ ze®?
1+ Zge ¥z

“He) =

so that if we set M(A) = {z — e"’z—i‘L | o€ A, fe R} we have M (A) C Aut(A).

In particular, since for any z; € A there exists an element v € M(A) such that
v(21) = 0, M(A) acts transitively on A. Consider Mo(A) = {y € M(A) | v(0) = 0}; by
the Schwarz’ Lemma then |y(z)| < |z|. But since also y~! € My(A), then we have

|2l = I W)l < Jwl = [v(2)] < 2],

that is, by the Schwarz’ Lemma, y(z) = €%z for some real . Hence + € Aut(A) and by
applying Lemma (1.1.6), we are done.

The automorphisms of A are also called Mdbius transformations; for their form the auto-
morphisms of C are sometimes called linear fractional transformations.

It is sometimes very useful to study the automorphisms of the upper half plane
HT ={weC:Imw > 0}, which is conformally equivalent to A by means of the Cay-
1ey transformation € : A — H*, C(z) = i(1+ 2)/(1 — 2) with inverse C~1 : H+ — A,

“Hw) = (w—19)/(w+79).

Proposition (1.1.10)

aw+ b
cw+d’

Aut(HT) = {w — with a,b,c,d € R, such that ad— bc = 1} )

Proof - It suffices to observe that if v € Aut(H™) then C~ o0 C € Aut(A). QED

Once the so-called hyperbolic or Poincaré metric

2|d
ds = ————l ?| )
1—z|2

Is introduced in A, then A becomes an example of a Riemann surface with negative
constant Gaussian curvature, which can be easily calculated to be —1. The (analogous)

hyperbolic metric in Ht is
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d
ds = 12wl
Imw
If this metric is integrated, (see, e.g., [Ves]), one gets the corresponding hyperbolic or

Poincaré distance

21—29
1-Z12z2

1+

wA(Zl,Zz) = log )

)
21—2)
1—Z122

which has the particular property to be contracted by holomorphic self-maps of A, namely

Schwarz-Pick Lemma (1.1.11) Let f € Hol(A, A); then, for any z1,22 € A

f(z1) = f(22) <| A2
1—f(z1)f(z2)| ~ |1 —Z122
and for any z € A
|f'(2)] 1

< .
1= F(2)]* = 122
Moreover, the above inequalities are actually equalities for some z1,2z2 € A or for some
z € A if and only if f € Aut(A).

Proof - The Schwarz-Pick Lemma is a generalized version of the Schwarz’ Lemma, once

1t has been noticed that, taken any zg € A and defining V2o = 1{—‘% and vy(z,) = 12—:}1:((;—0))2,

the function g(2) = v4(,9) © f © 72, belongs to Hol(A, A) and is such that g(0) =0. QED

Since the map ¢ + log %—“_—L% is monotone increasing for 0 < ¢ < 1, it is therefore clear that
the Schwarz-Pick Lemma implies that Vz,w € A  wa(f(2), f(w)) < wa(z,w). So far it
also follows that each automorphism of A is an isometry for the Poincaré distance. It
can be actually proved (see, e.g., [Aba]) that the group of all isometries for the Poincaré
distance consists of all holomorphic and antiholomorphic automorphisms of A.

We want to transfer the Poincaré distance w from A to any hyperbolic Riemann
surface. Let X be a hyperbolic Riemann surface and denote by mx : A — X the universal
covering map of X. Defining

Vz,w € X wx(z,w) = inf{w(z,w):z € mx 1(2),w € 7x " (w)},

we get a complete hyperbolic distance on X, which induces the standard topology (see,
e.g., [Aba]).
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The main property of this hyperbolic distance on an arbitrary hyperbolic Riemann surface
is the fact that the analogous of Schwarz-Pick Lemma for the Poincaré distance in A holds,

namely,

Proposition (1.1.12) Let X and Y be two hyperbolic Riemann surfaces and f : X =Y
be a holomorphic function. Let wx and wy be the (induced) hyperbolic distances on X and
onY. Then

Vz,w € X wy(f(2), f(w)) <wx(z,w).

Proof - Let f be a lifting of f; taken z,w € X and ¢ > 0, let z,w € A be so that
7x(Z2) = z, nx (W) = w and w(Z,W) < wx (2, w) +¢. Then the Schwarz-Pick Lemma yields

wy (£(2), f(w)) < w(F(2), f(w)) < w(z,18) < wx(z,w) +e,

and since ¢ is arbitrary, we get the assertion. QED

It has also to be remarked that, at the time being, our presentation of the subgroups
of automorphisms which act freely and properly discontinuously on the three (possible)
simply-connected Riemann surfaces has brought to the conclusion that

i) the unique elliptic Riemann surface is the Riemann sphere C;
ii) the only non simply-connected examples of parabolic Riemann surfaces are the punc-

tured plane C\{0} = C* or the tori C/T',.

All such Riemann surfaces have the property that their fundamental groups are
abelian; hence any Riemann surface with non-abelian fundamental group has to be hyper-
bolic. In particular one discovers that almost all plane domains are hyperbolic Riemann

surfaces, namely

Proposition (1.1.13) Every domain D cC such that C\D contains at least three points
is a hyperbolic Riemann surface.

Proof - Indeed, C minus three points, having non-abelian fundamental group, is hyper-
bolic; since D is contained in @ minus three points, it is possible to immerse holomorphi-
cally and univalently D into C minus three points. If then D were not hyperbolic, the
lifting to the universal coverings of this immersion (and hence the immersion itself) would
be constant, because of the Liouville’s theorem. QED
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The class of hyperbolic Riemann surfaces is then quite big, so that the study of the auto-
morphisms of A deserves more attention. It is clear from the form of such automorphisms
that they act transitively on A and on dA. It is also evident that the automorphisms of
A extend holomorphically on dA. This leads to consider their fixed points in A.

Proposition (1.1.14) Lety € Aut(A), v # Ida. Then either
i) v has a unique fized point in A, or

it) v has a unique fized point in 84, or

1) v has two distinct fized points in OA.

Proof - Taken any v € Aut(A),

g 2 — 20
~(z :e"e——————-
1(2) e

for some 6 € R and 2y € A. The equation satisfied by the fixed points leads to

Zoz? + (et — 1)z —2z9=0.

If zo = 0 then v(z) = €’z so that v has a unique fixed point in A. If z # 0, then the
moduli of the roots 21, 2, of the above equation satisfy the following identity

|z1] - |22] = |20/Z0] = 1,

which says that either one root is in A (and then the other is outside A) - so that « is like
in case i) - or both are in A and then « falls in case ii) or iii). QED

According to the previous Proposition, an automorphism v of A, different from the
identity, is called elliptic if it has a (unique) fixed point in A, parabolic if it has a unique
fixed point in OA, hyperbolic if it has two distinct fixed points on JA.

Remark (1.1.15) Unfortunately the terms elliptic, parabolic and hyperbolic have different
meanings in different fields. These terms apparently went in use for different historical
reasons. In order to avoid confusion we will always refer to a specific meaning of them by

adjoining a (hopefully) clarifying term when necessary.

The description of the fixed points of the automorphisms of A allows us to give a
first result that shows a natural relationship between commuting functions and their fixed
points, namely
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Proposition (1.1.16) Let v, and v, be automorphisms of A, both different from the
identity. Then 1 0 y2 = 2 01 if and only if v; and Y2 have the same fized points.

Proof - Once everything is transferred to H, because of the transitivity of Aut(H™), if

71 is parabolic, we can assume that y1(w) = w+a, o € R\{0}. If y5(w) = %l?, with

a,b,c,d € R, such that ad — bc = 1, then y; 0 5 = 75 0 v; yields to

aw + b _alw+o)+b

cwrd c(lw+a)+d’

which, after some trivial calculations, leads to Y2(w) = w + b. That is «y, is also parabolic
with the same fixed point (co) of ;.

If +; is hyperbolic, we can assume, without loss of generality, that v,(w) = Aw,
A € R*. In this case 7 o Y2 = 72 071 yields to y2(w) = a?w, which means that Yo is
hyperbolic and has the same fixed points (0, o0) of 7.

Finally, if «; is elliptic and has a fixed point wg, then Y1 02 = 72 o~y; implies that
71(7v2(wo)) = v2(y1(wo)) = 2 (wp). Since v, # Ida and since by the Schwarz-Pick Lemma
no other automorphism but the identity can have more than one fixed point in A, it follows
that v (wp) = wo. QED

Observe in particular that if v; is a hyperbolic automorphism of A, then if the hyper-
bolic automorphism of A v, commutes with Y1, 1t may happen that ~, interchanges the
(common) fixed points of v; and vice-versa.

Proposition (1.1.16) will be later generalized for the case when 72 is a generic holo-
morphic self-function of A; but now we are going to state the analogous results for the

~

case of Aut(C), that is to say

Proposition (1.1.17) Every non-identity automorphism of C either has two distinct fized
points or one double fired point in C. Two automorphisms of C commute if and only if
they have precisely the same fized points, with the possibility of interchanging the (two)
fized points in the case of pairs of commuting involutions (i.e. automorphisms v € Aut(C)
such that vy oy = Idg).

Proof - It is clear from the form of the automorphisms of C, that they have either two
distinct fixed points or one double fixed point: it has only to be solved the quadratic
equation v(z) = z. In particular any automorphism of C that fixes more than two points
is the identity.
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In general, if two automorphisms 7; and v, commute, it is clear that v; maps every
fixed point of 2 to a fixed point of v, but it may happen that 7; interchanges the two
fixed points of 2, when they do not coincide. If this happens then necessarily v; oy, (and
72 © v2) have at least four fixed points, that is y0y; =T d¢ and 7y2 0y = Idg, so that v;
and 2 are involutions.

Conversely, consider the subgroup of all automorphisms of C that fix two chosen
distinct points z; and 2z in C. Up to conjugation, we may assume that z; = 0 and
zz = 00; an argument analogous to the one in Proposition (1.1.16) yields to the conclusion
that such a subgroup consists of the automorphisms of the form v(z) = Az, A € C\{0}
and then this subgroup is isomorphic to (C\{0},-), which is commutative. In the case of
a double fixed point, consider, up to conjugation, the subgroup of Aut(@) whose elements
fix co. Then each such element is of the form v(z) = z +a, a € C, and therefore the
subgroup itself is isomorphic to (C, +), which is commutative. QED

So far we haven’t used any particular technique of Iteration Theory; to start with this

kind of extremely powerful tools, we need some definitions.

Definition (1.1.18) Let S and T be two Riemann surfaces. A sequence of holomorphic
maps f, : S — T is said to converge on compact sets to the limit map g : S — T if for every
compact subset K C S the sequence of restricted maps {fn|x }, oy converges uniformly to

9lx-

Definition (1.1.19) Let S and T be two Riemann surfaces. A sequence of holomorphic
maps fr : S — T is said to be compactly divergent if for every pair of compact sets K; C S
and Ko C T there is a ng € N such that f, (K1) N K, = & for every n > nq.

A well known Theorem of Weierstrass (see for instance [Rud]) asserts that if a sequence
of holomorphic functions converges uniformly on compact sets, then so do the sequence
of its derivatives. And, as a consequence of Morera’s Theorem (see, e.g., [Rud]), one gets
that the limit function is holomorphic.

Definition (1.1.20) Let S be a Riemann surface. A family A of holomorphic maps
fr : S =C is called normal if every infinite sequence of maps from A contains either a
subsequence which converges on compact sets or a compactly divergent subsequence.

The basic criterion for normality is due to Montel (see [Mon]) and is as follows
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Montel’s Theorem (1.1.21) Let S be a Riemann surface. A family A of holomorphic
maps fx: S —C is normal if the maps fy take their values in a hyperbolic domain of C.

Therefore it suffices that the maps in A omit three points in C for A to be normal. In
particular, we have this version (see, e.g., [Aba]) of the

Montel’s Theorem (1.1.22) Let S be a Riemann surface and let T be a hyperbolic
Riemann surface. Then Hol(S,T) is a normal family.

The importance of Montel’s Theorem will appear in all its strength very soon. In
fact it will imply that the behaviour of the iterates of holomorphic self-maps defined on a
hyperbolic Riemann surface is not “chaotic”. However, first we have to show - and define

- a “chaotic behaviour”, and this will be done in the next Section.
1.2. Iteration of rational maps

It was Pierre Fatou in 1906 (see [Fat]) who first noticed some interesting phenomena.
By iterating the rational map z — 22/(2? + 2), he discovered that a quite intriguing set
(what we nowadays call a perfect set, i.e. a closed set with no isolated points) comes
naturally out. In fact, almost every point of the Riemann sphere under iteration of such a
map converges to zero; the remaining set of points, whose topological aspect was considered
very exotic, has orbits bounded away from zero. The study of iterates of maps was quite
developed at the beginning of the 20-th century, but it was primarily devoted to the local
behaviour. In the study of the iteration of holomorphic maps, it was for instance already
clear that the behaviour of the iterates of a map depends, in a neighbourhood of a fixed
point, on the value of the derivative of the map at the fixed point itself (see, e.g., [Sch],
[Kén]). Fatou gave a global approach to his study and immediately attracted the interests
of many other mathematicians, such as Julia, Ritt and Lattés. They were merely concerned

of rational maps and for these maps we have the following fundamental

Definition (1.2.1) Let f be a rational map. A point zy €C is regular or normal if there
exists a neighbourhood U of zy such that the sequence of iterates {f°™}nen restricted to
U is normal. The set of all regular points of f is called the Fatou set of f and is indicated
by F(f). The complement of the Fatou set, namely @\F(f), is called the Julia set of f
and is indicated by J(f).

Note (1.2.2) Some authors call the Fatou set “normal set” or “stable set”.
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From the definitions, the Fatou set is an open set, whereas the Julia set is compact.
The main properties of these two sets are the following

Proposition (1.2.3) The Julia and Fatou sets (J(f) and F(f)) are fully invariant under

the rational map f, that is £(J(£)) = £~1(J(f)) = J(f) and F(F(f)) = f(F(F) = F(f)
respectively. Moreover, for anyn € N, n.> 0, J(f°") = J(f) and F(f°") = F(f).

Proof - Since f is holomorphic and non-constant, it is open and, from the definition, it
immediately follows that F(f), which is open, is fully invariant. In the same way it is
easily seen that J(f) is fully invariant. |
It is furthermore clear that J(f°") = J(f) and that F(f°") = F(f), since {f°}icn is
normal on an open set U if and only if {f°™!},cn is normal on U. QED

According to the statement of the previous Proposition, it is therefore very natural to
focus the attention on a class of points which is wider than the class of fixed points, namely
the class of periodic points. A point zq is periodic of period n for the map f if fo™(z0) = 20
and f°™(2g) # 2o for any natural m, 0 < m < n. Observe that in particular a fixed point
is a periodic point of period 1. For each periodic point zo, the set {f°™(zp) = z,, m € N,
0 <m < period of 2} is called orbit or cycle. If n is the period of zg, the derivative

A= (") (20) = £/(21) - () - - f'(20)

is called multiplier of the orbit (or, in same cases, multiplier of the periodic point). Fol-
lowing Ritt (see [Rit]), a periodic orbit (point) is called either superattracting, attracting,
repelling, or neutral according as its multiplier satisfies A =0, [\ <1, [A|>1 [A]=1.

Lemma (1.2.4) Let f be a rational map. If the degree of f is strictly greater than 1, the

Julia set J(f) is non-vacuous.

The proof relies upon the fact that, if J(f) were vacuous, then the sequence of iterates
{ f""}nEN would converge, uniformly over the entire Riemann sphere C, to a holomorphic
limit g : C-)C; but then, if the degree of f is strictly greater than 1, the degree of f°"
would diverge, so that g could not be a rational map.

Now, given z € J(f), let U be any neighborhood of z. Since {f°™ v} ey is not normal,
by Montel’s Theorem, the sequence { F°M U} ey Omits a set E, which contains at most 2
points. Clearly f~'(E,) C E,. If E, contains only one point a, we may assume that a = co
so that f is a polynomial, since it has no other poles. If E, contains two points a, b, we
may assume that a = 0 and b = co. Then either £(0) = 0 and f(co) = oo or f(0) = co and
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f(00) = 0. In the first case f is a polynomial with 0 as its only zero, so that f(z) = c2?, for
some constant ¢ € C. In the second case f(z) = cz¢. Clearly E, is independent of z, so
that we shall denote it by E. The set E is also called the set of exceptional or grand orbit
finite points. From the definition, it then follows that if w ¢ E, then for any z € J(f) and
for any open neighborhood U of z we have

un y{rir e

Therefore, the backward iterates of any z € J(f) are dense in J (f).

Corollary (1.2.5) If the degree of f is strictly greater than 1, the Julia set J(f) has no
1solated points.

Proof - Since J(f) is fully invariant and non-vacuous in C, it follows that J (f) must be
an infinite set: it then contains a limit point zy. The iterated pre-images of zy form a dense
set of non-isolated points in J(f). QED

From these first properties of the Julia set, one can better understand why such a
set attracted the interests of many mathematicians. In particular, the “self-similarity” of
the Julia set was very appealing. In general, except for the case of smooth Julia sets -
like, for instance, the Julia set of maps like f(z)=2z" neN, n> 1, which is S?! -.
any “shape” which is observed in a neighbourhood of one point of the Julia set, with rare
exceptions, will be observed infinitely often, throughout the Julia set. This is so, because,
whenever f(21) = 23 in J(f), with f’(21) # 0, there is an induced conformal isomorphism
from a neighbourhood N; of 27 to a neighbourhood Ny of z, which takes N1 J(f) onto
N2 N J(f); the full-invariance of the Julia set makes then this self-similarity infinite. Such
a property very naturally led to study of the Julia sets as examples of fractals (see, e.g.,
[P-R]). For the interested reader, we mention here that Lattés was the first who actually
proved the existence of a rational map which has the entire Riemann sphere C as Julia set
(see [Lat] and [Mill] for the construction).

Suppose now that zo is a periodic point of period n and assume that the (periodic)
orbit OF ¢(20) = {f°*(20) }ren of 2o is attractive; then the subset Q,, of points of C whose
iterates - under f - converge to a point of O #(20) is an open, fully invariant set which is
contained in F(f). Such a subset is generally called basin of attraction of zp and can be
imagined as the set of accumulation of orbits towards the periodic orbit of z. Vice-versa
if o is a repulsive periodic point, then O+ ;(2) C J(f).
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We can go a little further in the description of the connected components of the Fatou

set, namely

Proposition (1.2.6) Let Fy C F(f) be a connected component fully invariant. Then
i) 0Fy = J(f);
it) Fy is either simply-connected (that is its complement is connected) or
infinitely connected (that is its complement has infinitely many connected components );

i41) all other connected components of F(f) are simply-connected.

Proof - Indeed, 0F} is closed, fully invariant and infinite, hence 8F, D J (f). Moreover,
O0Fy N F(f) = @ that is 0Fy = J(f).
N k .
Assume that C\Fy = _U1 E;, with E; connected components. Since C\Fy is fully
J:

invariant for f, f is surjective on C\Fo thus it induces a permutation v of %k elements
in the following way: f(E;) = E, ;). But then, there exists a natural number p such
that v =1, that is f°P(E;) = E; for each j, which is equivalent to saying that, for any
J, 0<j<k Ejisfully invariant for f°P. Since J(f) CC\Fp, J(f°P) = J(f) and J(f) is
the minimal infinite fully invariant set for f, then, there is Ej, such that E;, D J(f) = 0F,.
Thus each Ej; for j # jo must intersect J(f) = 0Fp, which is a contradiction unless k = 1
so that Fj is simply-connected.

Finally, E =C\Fj =C\(FouJ (f)) is open and its complement is connected, that is
to say that the connected components of E are simply-connected. QED

A very powerful tool for the computation of topological invariants in the context we

are describing is the following

Riemann-Hurwitz Formula (1.2.7) Let 7 : T — S be a branched covering map from
the compact Riemann surface T onto the Riemann surface S. Then the number of branch
points (= critical points) of m, counted with multiplicity, is equal to x(S)d — x(T'), where
X s the Buler characteristic and d the degree of .

A sketch of the proof may be found in [Mil1].

Proposition (1.2.8) The Fatou set F(f) has 0,1,2 or co connected components, among

which at most two are fully invariant.

Proof - If F(f) has finitely many connected components, there exists an integer m such
that each connected component is fully invariant for JF°™. It then suffices to prove that
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there are at most two fully invariant connected components. Suppose that F(f) has k fully
invariant connected components, call them Fy, Fy, ..., Fi. From Proposition (1.2.6) they all
are simply-connected; if f IFJ- : Fj — fj has degree d and F} is simply-connected, the
number of critical points of fl"F',-’ counted with multiplicity, is, for the Riemann-Hurwitz
Formula, equal to x(F;)d — x(F;) = d — 1. Hence the number of critical points of f|z(s),
counted with multiplicity, is k(d — 1). Now, the number of critical points - counted with
multiplicity - of f in C is, on the one side, greater or equal to k(d — 1). But, for the

Riemann-Hurwitz Formula, it is precisely 2(d — 1), which implies that £ < 2. QED

All cases determined in the previous Proposition may actually occur; indeed, the map
f(z) =1- ;Zz- has a Fatou set with no connected components (see, e.g., [C-G]), whereas
the Fatou set of the map f(2) = 22+c¢, ¢ € C has infinitely many connected components.
In particular the (parameter) set M of ¢ € C for which f(z) = 2z? + ¢ has a smooth Julia
set (0, for instance belongs to M, as already observed) is a famous parameter set known
as the Mandelbrot set (see, for an introduction, [D-H], [Dou], [Man] or [Mil]). Finally the
map f(z) = 22 — 2 has a a Fatou set with only one connected component, while f(z) = 22
1s an example of a map with two fully invariant connected components of the Fatou set
and f(z) = 272 has the same connected components in the Fatou set but interchanged.

It 1s remarkable that the bound 2 of possible fully invariant connected components of
the Fatou set is deeply related with the Euler characteristic of @; in fact this property is
peculiar of the ellipticity of the Riemann sphere.

Before giving a complete classification of the connected components of the Fatou set, |
we will give a local approach to the study of fixed points: in particular, we will show that
any holomorphic map f can be reduced to a canonical form by means of a coniugation
in some neighbourhood of a fixed point, which is not neutral (that is to say such that
the modulus of its multiplier is different from 1). These considerations will be extremely
useful also in the second part; this is so because on one side the description is local, on
the other because no hypothesis of rationality will be assumed for the maps involved. The

next linearization Theorem is due to Konigs, [Kon].

Theorem (1.2.9) Let f be a map holomorphic in a neighbourhood of a fized point zy with
a multiplier X\. If A is such that |A| # 0,1, then there exists a local holomorphic change of
coordinate w = o(z), with 0(z9) = 0, so that 0o foo™(w) = Aw for w in a neighbourhood

of 0. Furthermore, o is unique up to multiplication by a non-zero constant.

Proof - We can reduce our considerations to the case zp = 0 so that, in a neighbourhood
of 0 f has the following expansion
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f(2) = Az +a92% +az2® + ...

Assume now that 0 < [A] < 1 and let ¢ < 1 be a real number such that ¢2 < [A] < c.
Let 7 > 0 be a real number such that |f(z)| < ¢|z| if |2| < r. From the expansion of f, if
|2l <,

|F(2) — Az| < k|z|? < kr?,

for k constant; then

£ (@) = AF(2)] < RrPe.

Put o, = i;ni; then

|ont1(2) = o (2)] = [ATCFD polr D () — A7 fon ()] =
kr?

= AT (2) = AF(2)] < AT ke = W(cz/l/\l)”-

Then, since ¢? < |A|, the above differences converge to zero and thus the holomorphic
functions ¢, converge, uniformly in a neighbourhood of the origin, to a limit holomorphic

function o; moreover, since for any n € Nopo f = \- On+1, the limit holomorphic function

o satisfies the relation

cofoo Hw)=Xw

for w in a neighbourhood of 0, which also implies that o (0) =1.

Finally, if |A\| > 1 we can apply the above argument to f~1,

If there were two such maps 4, o, then the composition poo™!(w) = byw + byw? + ...
would commute with z — X - z. Comparing the coefficients of the expansion, one has
Abp, = by A" for all n € N which implies that by = by = ... =0, since |A| # 0, 1. Hence
poo~Hw) = byw or u(z) = bo(z). QED

Remark (1.2.10) The Konigs’ Theorem gives a rough explanation why the Julia set J(f)
is generally not smooth. Suppose in fact that zo € J (f) is close to a repelling periodic point
z with multiplier A non-real. Choose a local coordinate system as in Ko6nigs’ Theorem and
put wo = 0(zp). Then J(f) must contain also the points z,, = o~ !(%2) which lie along a
logarithmic spiral and converge to zero. Such a set cannot lie in any smooth submanifold

of C, unless J(f) =C.
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Remark (1.2.11) The functional equation oo f = A- ¢ in ¢ is known as the Schrider’s
equation (see [Sch]) and will be extremely useful in the sequel. The Kénigs’ Theorem asserts
the existence of a local solution for such functional equation, under suitable hypothesis
for f. When a solution for the Schréder’s equation exists, the map f is conjugated to a
multiplication by a constant map, which is precisely - in the hypothesis of Konigs’ Theorem
- the multiplier at the fixed (non-neutral) point 2. For an introduction to the theory of
functional equations and their possible solutions see [K-C].

There is a global version of the Konigs’ Theorem, namely

Corollary (1.2.12) Suppose that f : S — S is a holomorphic map from a Riemann
surface to itself with an attractive fized point zy with multiplier A # 0. Let Q,, be the
basin of attraction consisting of all z € S such that lim f°™(z) = zo. Then there exists

n—-+00
a holomorphic map o from Q,, onto C so that the diagram

K
c X c
s commutative and so that o takes a neighbourhood of zg diffeomorphically onto a neigh-

bourhood of zero. Furthermore, o is unique up to multiplication by a constant.

Proof - Take any z in Q,, and define ¢(z) = A™™ - 0y (f°"(2)) where o1 is the Konigs’
change of coordinate in a neighbourhood of z and n is large enough so that f °"(z) is in
such a neighbourhood of zp. QED

In the repelling case, this is the related result.

Corollary (1.2.13) Suppose that f : S — S is a holomorphic map from a Riemann
surface to itself with a repelling fized point zy with multiplier A, |Al > 1. Then there ezists
a holomorphic map p from C to S so that the diagram

c 2 C
T
s L s

is commutative and so that p takes a neighbourhood of 0 diffeomorphically onto a neigh-
bourhood of zo. Furthermore, if the same properties hold for p1, then pr(w) = p(ew) for a
constant ¢ £ 0.
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Proof - Define u(w) = f°"(c~}(A™" - w)), where n is large enough so that A~"w is so
close to zg that o is defined. QED

For the superattracting case, we can apply the following result due to Béttcher [B6t).

Theorem (1.2.14) Let f be a holomorphic map in a neighbourhood of a superattracting
fized point zy, that is to say that the multiplier X of the fized point zy is zero. Then
there exists a local holomorphic change of coordinate w = o(z), with o(20) = 0, so that
oo fooYw)=wP for w in a neighbourhood of 0, and where p 1is the order of the fized

point zo. Furthermore, o is unique up to multiplication by a (p — 1)-th root of unity.

Proof - We can reduce our considerations to the case zp = 0 so that, in a neighbourhood

of 0, f has the following expansion
f(Z) = a,pr + ap+1zp+1 + ...
for p > 2, ap # 0. Up to replacing f by af(Z) with o?~! = a,, we can assume a, = 1.
Thus, with these assumptions, we can write
f(z) =21+ app1z2+...
which implies that there is a neighbourhood U of 0 and a real constant ¢ > 1 such that,
forany z € U
1F(2)] < clzP <.

Then, since, in a neighbourhood of 0, °™(z) = 27" (1 +0(|z])), put o, (2) = [fo"(z)P " =
= 2(1+0(|2]))?""; for any n we have 0,1 0 f = [f"]P"""" = 5,,P. Tt is then left to show

that 0, — o uniformly on compact sets. But,

n

) =asourmEny =

On+1 _ alofon
On - fon

1 - 1
= (1+pn+10(cp 2P )) =140 (pn+1)

o
for |z| < 1/c. Hence H In+l converges to o for |z| < 1/¢; furthermore o is well-defined
Cr'n

n=1
and it is precisely the desired map.
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If p verifies the same functional equation of ¢ in a neighbourhood of 0, then the
composition p o o (w) = byw + byw? + ... would commute with z — 2?. Comparing the
coefficients of the expansion, one has b; = b} which implies that b; is a (p — 1)st-root of
unity, since b,, # 0. QED

The Bottcher’s Theorem says that near a superattracting fixed point zy of f, or in
other words, near a critical fixed point zq of f, the map f is conjugated to the map w — w?,
where p is the order of 2. This result is very often applied to the case of polynomial maps.
Any polynomial of degree at least 2 has in fact co as a superattracting point.

For the case of neutral fixed points, no analogous local theorems can be proved around
the fixed point and the reason is easily found: no “homogeneous” behaviour of the iterates
of a point can be determined when the point is near a fixed point whose multiplier is
1. Furthermore, there is a big dichotomy between the case A = e>™*® with 6 rational or
irrational. The most descriptive theorem when )\ is a root of the unity is the so called
Petal Flower Theorem, which will be stated immediately after the following

Definition (1.2.15) Let f be a holomorphic map with a fixed point zy and let N be a
neighbourhood of 2y so small that f maps N diffeomorphically onto a neighbourhood N’
of zp. Then a connected open set U, with compact closure U C N N N, will be called an
attracting petal for f at the fixed point zp if

O cUW{z} and () F5U) = {z}.
k>0
Similarly, U € NN N', is a repelling petal for f at the fixed point 2z if U’ is an attracting
petal for f~1. '

The Petal Flower Theorem is due to Leau and Fatou [Lea]

Theorem (1.2.16) Assume that zo is a neutral fized point for the holomorphic map f
and that X is a root of the unity, i.e. A\ = ez’”f, with p/q a fraction in lowest terms. Then
there exist kq disjoint attracting petals U; and kq repelling petals U! - k € N - such that the
union of these 2kq petals together with zq itself forms a neighbourhood of zy. These petals
alternate with each other and each U; intersects only U, and U}_,, with the identification
of Uy with Urg- In particular, if X = 1, then the number of each kind of petals is precisely
the multiplicity of zo as a fized point minus 1.
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Proof - Without loss of generality, we can assume that zo = 0 and first consider the case
A =1, which implies that in a neighbourhood of 0 the map f can be written as

f(2) = z+az"*! + higher order terms

where a # 0 and n+1 is the multiplicity of the fixed point 0. We will say that a vectorv € C
is an attracting (repelling) direction at the origin, if a - v™ is real and negative (positive).
This is so because f(v) ~ v(1 + av™). Evidently there are n equally spaced attracting
directions which are separated by n repelling directions. In fact, if a = la| - e and
v = |v]-€e?, then a-v™ = |a|- [u|"- ei(@+78) 50 that v is attracting if § = (2k+1)w/n—a/n
and repelling if § = (2k + 1)n/n — a/n, k = 0,1,2,..n — 1. Putting b = —1/(na) and

considering the substitution z — w = b/2™ and its inverse w — z = (b/w) =, one gets

Flw) =b/f(w)" =w(l+w™" +o(lw™]) =w+1+0(1)

as |w| — co. Observe that co corresponds to 0. In other words, given any € > 0, - or
sin(e) > 0 - there exists a radius r such that

|F(w) —w — 1| < sin(e) for |w| >

which implies that the map F near co sends into itself any infinite (concave) regions con-

tained in a domain whose delimiters are two half lines, with the common real starting point,

and whose slope is 2e. Transferring these statements by means of the above substitutions
we actually get the requested attracting petal.

Finally, if the multiplier A = e?™*% with p/q a fraction in lowest terms, then we can
repeat the same argument for g = f°9, intuitively accepting that the multiplication by
A = f'(20) only permutes the attracting directions at zo, without adding new attracting
or repelling directions. QED

Suppose that U is either an attracting or a repelling petal and identify z with f(z)
whenever z and f(z) belong to U. The identification space will be indicated by U/f. The

following result is due again to Leau and Fatou.

Theorem (1.2.17) The quotient space U/f is conformally equivalent to C/Z and then,
up to composition with a translation, there ezists only one univalent embedding o from U
to C, such that

cof=14c
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for all z € UN f~H(U). With suitable choice of U, the image o(U) C C will contain some
right half-plane {w € C : Re(w) > ¢ € R} in the case of an attracting petal, or some left
half-plane in the case of a repelling petal.

Before giving the proof of the Theorem, we recall that, according to Douady, who was
inspired by the work of Ecalle [Eca] on holomorphic maps close to the identity, the quotient
space U/ f is called Ecalle cylinder.

The functional equation o o f =1+ o is known as the Abel’s functional equation and
will turn out to be extremely important in the second part of this dissertation; Theorem
(1.2.17) asserts the existence of a univalent solution of the Abel’s equation oo f = 1 + ¢.

Proof - Let us conjugate the map f as in Petal Flower Theorem, that is assume that

Fw)=b/f(w)" =wl+w ' +o(jlw™|) =w+1+o0(1)

in a neighbourhood of co and let G be the group of holomorphic maps, univalent in
some region P of the form {w = u+iv : u > ¢ — ca|v|}, for c1,cy constants and
which are asymptotic to the identity as w — oo. Evidently, F € G. Assume that geG
has the form g(w) = w + 1 + n(w), with n(w) — 0 as w — co. Observe that the map
fo = [p(1 +n(w)) 'dw is in G as well and that fJ(w) = o(1/|w]). In other words,
91 = foogo fo~' has the form g (w) = w+ 1+ o(1/lw|). We can now repeat the same
construction for g; and get gy = f1 0910 fi ", within G, where go(2) = w + 1 + o(1/|wl?)
in some smaller region so that in particular V

192(2) —w — 1| < 1/|w]?,

for |w| sufficiently large.
Take now any wy in this region and consider w,, = g,°" (wo); since for |wy| sufficiently

large we have |wyi1 — w, — 1| < 1/]w,|?, it follows from |wy,| > |wg + n|/2 that

|wn, — wo — n| < 4/|wy + n)?.

This implies that, for m > n > 0,

o0
(= m) = (wn =) < 30 4/fwo+iP [ difhwo+ 5P

n<j<oo
which is arbitrarily small for |wo+n| — co. Hence {w, —n}en is a Cauchy sequence which
then converges locally uniformly to a transformation ¢: wq o(wo) = lim (w, —n) of G
— 00
which is defined in such a way that pogs(w) = p(w) + 1. QED
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The above Theorem has an interesting Corollary in the case of the attracting petal,

namely

Corollary (1.2.18) IfU is an attracting petal, then the Fatou map o from U to C extends
uniquely to a map which is defined and holomorphic throughout the attractive basin Qy of
U, still satisfying the Abel’s equation oo f =1+ o.

Proof - Take any z in Qp and define ¢(z) = ¢1(f°"(2)) — n where 1 is the Abel’s map
in U as defined in the Theorem (1.2.17) and n is large enough so that f°*(z) is in U. QED

Observe that the extended map is well-defined but no longer necessarily univalent; in
fact, it has a critical point whenever some iterate fo---o f of f has a critical point. And
this always occurs in the attractive basin Qy of the attracting petal U, since otherwise,

inverting o, from the Abel’s equation, one could define a biholomorphism between the
bounded 2y and C.

We are now going to investigate the (difficult) remaining case, namely the case of a
holomorphic map f with a neutral fixed point zy whose multiplier |A| =1 is not a root of
unity. Since the proofs of many of the theorems in this environment would require long
digressions and a lot of background results - which go far beyond the intention of the
present introduction to the subject and whose techniques will not be applied in the second
part - we will restrict ourselves to the major results and outline only the ideas of the proofs
of the most relevant facts for our needs. The references, however, will always be quoted
and a overview of the entire subject can be found by the interested reader in [C-G], [Mil1]
or in [Ste].

Let us start from the following

Definition (1.2.19) A fixed point z; is a Siegel point if there exists a simply-connected
neighbourhood U of zy such that f maps diffeomorphically U onto U. If 2y is a Siegel point,
the related neighbourhood U is called Siegel disc.

It follows from the Schwarz’ Lemma that if |A| = 1 then f corresponds on U to the rotation
by Aon A. It is also clear that A cannot be a root of unity, otherwise, for the Petal Flower
Theorem, there would be attractive and repelling directions at the same time. Siegel discs
do not always exist, as it was first remarked by Pfeifer in [Pfe] but later emphasized by
Cremer [Cre], so that

Definition (1.2.20) A fixed point zo which does not admit a Siegel disc is a Cremer point.
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The possibility for a fixed point to be a Siegel or a Cremer point will be illustrated
by the next Theorems for the family of holomorphic maps

fr= Az + 22,
where A = ™. Then Siegel showed in [Sie] the following
Theorem (1.2.21) For Lebesgue almost all A € SY, 0 is a Siegel point for fy.
On the other side, Cremer in [Cre] showed this

Theorem (1.2.22) For any A € {\ € S'} which sits in a countably intersection of dense

open sets, 0 is a Cremer point for f.

The next Theorem, due to Bryuno [Bry] and Yoccoz [Yocl], extends the class of maps

considered and provides a precise criterion, known as the Bryuno condition.

Theorem (1.2.23) For X\ = e?™ with t irrational, the following three conditions are
equivalent:

i) 0 is a Stegel point for fi:

i) 0 is a Siegel point for any holomorphic map which, i a neighbourhood of 0, has
the form f(z) = Az + O(2?);

ii1) an_l 10g gn+1 < 00, where the g, are defined in the following way: if

n
t = L 18 the continued fraction expansion of t; put Dn/qn the n-

n 1
a
! 1
ag + —————
a3+...

rational approzimation of such expansion.

Related to the Siegel disc, we can now give the following

Definition (1.2.24) A component U of the Fatou set F(f) is called an Arnol’d-Herman
ring if U is conformally isomorphic to some annulus 4, = {z€ C: 1 < |z| <r} and if f
is an irrational rotation of the annulus.

We will not investigate these components any longer and we refer to [Arn], [Her]
and [Yoc] for further results. Nevertheless, these Arnol’d-Herman annuli are present in

following classification Theorem of the Fatou connected components, due to Sullivan (see

[Sul]).
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Theorem (1.2.25) If f maps the Fatou component Fy of F(f) onto itself, then one of
the following possibilities occurs:

i) Fo is a local basin of an attracting fized point;

i) Fo is the attracting basin of an attractive petal U of a (rationally)

neutral fized point;

1) Fy 1s a Siegel disc;

w) Fy is an Arnol’d-Herman ring.

Let us observe that case i) occurs if and only if the multiplier A of the fixed point
is, in modulus, strictly less than 1; case ii) is determined by a fixed point with multiplier
A = €™ with 0 rational, while the remaining iii) and iv) cases may occur only if A = 27
with @ irrational. Furthermore, recalling Proposition (1.2.6), in the first two cases Fj is
either simply or infinitely connected, whereas, from the definition, a Siegel disc is simply-
connected and an Arnol’d-Herman ring is doubly connected.

We say that a connected component Fy of the Fatou set F(f) of f is periodic if there
exists p € N such that f°P(Fp) C Fy (and p, of course, is the period). By applying the
previous Theorem to f°P, we can conclude that Fy falls in one of the four cases listed in
the above Theorem as well. A a connected component Fy of the Fatou set F(f) of f is
called pre-periodic if there exist p,g € N, p > ¢ > 0 such that fP(Fy) = f°9(Fp). The
incredible fact - proved by Sullivan in [Sull] - is that every Fatou component is eventually
periodic, namely

Sullivan’s Theorem (1.2.26) If f € Hol(C,C) and degf > 2, then for any connected
component Fy of the Fatou set F(f) of f there exist p,q € N, p > 0, ¢ > 1 such that
FoP(f°9(Fo)) = foU(Fp).

A domain U such that, for any p,q p # q, foP(U) # f°9(U) is called a wandering
domain. The above Theorem can be restated in the following way: any Fatou component of
a rational map of degree at least 2 is not wandering. In some sense, the Sullivan’s Theorems
completely describe the dynamics of the iteration of any rational map on its Fatou set. The
proof of the Sullivan’s Theorem relies upon the techniques of quasi-conformal maps, but is
deeply related to the geometry of C, and examples of maps with wandering domains have
to be found in the class of the entire maps or of the holomorphic maps in the punctured
plane, as in [Bak3].
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1.3. Iteration of holomorphic maps in hyperbolic domains.

Probably the main difference between the study of rational maps of C and the study
of holomorphic maps of hyperbolic Riemann surfaces into itself is that apparently there
is no chaotic behaviour of the iterates of holomorphic self-maps in hyperbolic Riemann
surfaces. This is so because the analogous of the Julia set is always empty, as it will be
clear after the Wolff-Denjoy Theorem.

The purpose of our approach is the following: to show the main results for the case
of holomorphic self-maps in hyperbolic domain with the background of rational dynamics,
in order to point out the main differences and some intriguing analogies.

Suppose that f € Hol(A, A) is a holomorphic function of the unit disc A into itself.
If f has a fixed point zg € A, then the Schwarz-Pick Lemma implies that f maps every
disc for the Poincaré metric, centered in zg, into itself. If, instead, f has no fixed points
in A, then - as we will see very soon - the Wolff’s Lemma states the existence of a unique
point on the boundary of A, the “Wolff point”, which plays the role of a “fixed point”on
the boundary of A. Since a map f € Hol(A, A) and its derivative need not be continuous
in A, we have to explain the meaning of “fixed point on the boundary” and “derivative of

J at a point on the boundary”.

Definition (1.3.1) Take o € A and M > 1. The set

K (o, M) = {z €A ’ llg:lj < M}

is called Stolz region of vertex o and amplitude M.

The Stolz region K (o, M) is an “angular region” with vertex at ¢ and “opening” less than

. Stolz regions are used to give the following

Definition (1.3.2) Let f : A — C be a (holomorphic) function. We say that ¢ is the
non-tangential limit (or angular limit) of f at o € A if f(z) — ¢ as z tends to o within
K (o, M), for all M > 1. We shall also write K- lim f(z) = c.

20

We say that 7 € A is a fized point of f on the boundary of A if K—_)lim f(2) = 1; analo-
gously we call derivative of f at a point T on the boundary of A the value of K-_}im f(2)
if it exists and is finite.

Before stating the Wolff’s Lemma, let us recall the following
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Definition (1.3.3) Let 7 € 9A be a point; then for any R > 0 the open (Euclidean) disc
of A tangent to A at 7 defined as

12
E(T,R)z{zeA:L-g‘_<R}
is called a horocycle of center 7 and radius R.

We can then state the following

Wolif’s Lemma (1.3.4) Let f € Hol(A,A) be without fized points. Then there is a
unique T € OA such that for all z € A

T = f1? _ -2

(1.3.5) T 1f@)E < 1= T2
that is
(1.3.6) f(E(r,R)) C E(1,R) VR >0,

where E(T, R) is the horocycle of center T and radius R > 0. Moreover, the equality (1.3.5)
holds at one point (and hence at all points) if and only if f is a (parabolic) automorphism
of A leaving T fized.

Proof - Take a sequence {ry,}nen of positive real numbers, strictly smaller than 1 such
that lim r, = 1 and define f, = r, - f. Since f,(A) is relatively compact in A for any
n— 00

n € N, it follows that |f,(A)| < rp; then for |z| = r,,, we have

[z = (z = fa(2))] = |fn(2)] <10 = I2],

and an easy application of Rouche’s Theorem (see [Rud]) implies that Ida and f, — Ida
have the same zeros in B(0,r,) = {z € A : |z| < r,} or, equivalently, that f has a
fixed point w, in B(0,r). Now let {w, }nen be the sequence of these points in A; up to a
subsequence, we may assume that nh—)néo wn, =T €EA. If T€A, then

Fr) = lim fu(wa) = lim w, =1,

which is a contradiction. Hence 7€9A. The Schwarz-Pick Lemma implies that, for any
neEN,

1 — fn(z_)_;fn(wn) _1_ fn(z_)_—-_wn 21— z-—_wn
1= fn(2)f(wn) 1 - fn(x)w, 1—zw,
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which, after some calculations, is equivalent to

1= fa(z)wal® _ |1 = z0n]
L=/l = 1=z

taking the limit for n — co we get (1.3.5). An argument analogous to the one given in the

Schwarz’ Lemma or Schwarz-Pick Lemma proves the statement in the case of the equality.

Finally, if two different points 71 €9A and 7 €0A satisfy (1.3.6), then if we take two
horocycles, one centered in 77 and the other centered in 75, tangent to each other at a
point 7 in A, then necessarily, the inequality (1.3.5) implies that the point 7 is fixed for
f, which is a contradiction. QED

If f € Hol(A,A) has a fixed point in A (and f # tda), then we denote this fixed point
by 7(f). Otherwise, 7(f) denotes the point constructed in Lemma (1.3.4). In both cases
7(f) is called the Wolff point of f. The Wolff point of a holomorphic map f € Hol(A, A)

is deeply related with the behaviour of the sequence of the iterates of f, namely

Wolff-Denjoy Theorem (1.3.7) If f € Hol(A,A) is neither an elliptic automorphism
nor the identity, then the sequence of iterates {f°¥}reN converges, uniformly on compact
sets, to the Wolff point 7 of f.

Proof - If f has a fixed point zg in A, then the Schwarz’ Lemma immediately implies that
the sequence of iterates { f°* } 1N converges, uniformly on compact sets, to zo. Assume then
that f has no fixed points ih A. If f is an automorphism of A, it cannot be elliptic. then
it is either parabolic or hyperbolic. Without loss of generality, we can transfer everything
to HT by means of a Cayley transformation.

If f is a parabolic automorphism in H*, then f(z) = z+a, a € R, a # 0. Therefore,
f°¥(2) = z + ka, so that f°F — co as k — oo, and oo is the Wolff point of flz)=z+4a.

If f is a hyperbolic automorphism in H™T, then f(z) = Az, A€ R, )\ # WK, since we
are assuming that f # Idgy+. Observe in particular that the Wolff point of f(z) = Az is 0
if A <1, or co if A > 1. In either cases, f°¥ = A\*2 tends to the Wolff point of f, uniformly
on compact set.

Assume now that f € Hol(A,A)\Aut(A). Let h be - up to a subsequence - the
limit function of {f°*}reN. Then h € Hol(A,A), and h is constant, since f is not an
automorphism of A (see, e.g., [Abal).

If h(z) =7 and 7 is in A, then f(7) = f(h(2)) = kl—ii{;lof(fonk (z)) = h(f(z)) = 7, so
that f would have a fixed point in A. Therefore 7 €0A. According to the Wolff’s Lemma,
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if 7(f) is the Wolff point of f, then
fE(r(f),R)) C E(r(f),R) VR>0;

hence

{7} =ME(7(f),R)) N 0A C E(r(f),R)n dA = {r(f)}.

QED

The Wolff-Denjoy Theorem can be restated - using the terminology of the previous
Section - in the following way: any holomorphic self-map f of A has Julia set empty, or
equivalently, its Fatou set is the entire disc A unless f has a neutral fixed point in A. We
recall in fact that f € Hol(A, A) has a neutral fixed point in A, if and only if - for the
Schwarz’ Lemma - f is an elliptic automorphism of A. In particular, if the neutral fixed
point is a rational neutral fixed point, then any point in A is periodic for f. Notice that
the statement of the Wolff-Denjoy Theorem is closely related to the Montel’s Theorem.

We have already appreciated the extremely fruitful application of the Schwarz’ and
Schwarz-Pick Lemmas; the next Lemma, is a first step towards a “boundary generalization”
of these Lemmas.

Julia’s Lemma (1.8.8) Given f € Hol(A,A), let o € A be such that

e @
h£1_1+1§1f T =0 < 0.

Then there exists a unique T € OA, such that
(1.3.9) f(E(o,R)) C E(,BR) VYR > 0.

Furthermore, there exists zg € OFE(o, R) such that f(z0) € OE(r, BR) if and only if f is an
automorphism of A.

Proof - The Schwarz-Pick Lemma asserts that, for any 21,25 € A,

f(21) = f(z2)

1= f(21)f(22)

21 — 29

< — |
1—2122

or, in other words, that
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1= Fla)f(z)P _ 1=1f(2)P _
1-|f(z)? ~ 1 [mz=l

T 1=F 2P

_ N -ZaPA - 1f()P) _ 1 -Zzl? 0 - |f(21)]?)
21 = z* = |1 = 7122 (1= l22f?)(1 = |zf?)

Now, let {2, }nen C A be such that z, — o, as n — oo, and

im 1- ‘f(zn)l

n-—soco 1 — |zn[

= < 0.
There exists at least one such sequence because of the hypothesis

lim inf :l—f@ﬂ

= p < oo.
it T A<

Up to a subsequence, we may assume that f(z,,) — 7 € 0A as ny — oo; if we substitute
z9 with z,, in the above calculations and take the limit for ny — oo, we get the inequality
(1.3.9).

For the remaining of the proof, we will write the inequality (1.3.9) in the following

way

lo+z 74 f(2) )
e (5ol - T <o

since the real part of a holomorphic map is harmonic, the maximum principle for harmonic '
maps implies that, if equality holds at one point it then holds at all points, and the map

e (2722 - THI)

is constant, so that

_lo+z 1+ f(2)

F(z) = _ =
(2) Bo—z 71— f(2) ‘e
for a real ¢, or, in other words, that
. zZ — 20
f(Z)—Jol—Eoz’
where
_1+pB—icf B —icB—1
=70——— € 0A and =0 € A,
e T I R A oy |
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that is f € Aut(A). QED

Given f : A — A holomorphic and o, 7 € §A, the behaviour of the images of the
horocycles at o under the action of f is described by means of

T = f2? /o~ le}
1=1f(2)?/ 1-12?

Bs(o,7) = sup{

zEA

and of the boundary dilatation coefficient of f at o, defined as follows
= inf .
Bilo) = inf bs(o,7)

It can be proved that for any f € Hol(A,A) and o € A there exists at most one point
T € OA such that Bf(o,7) is finite and that actually Bf(o) = [ as in the Julia’s Lemma
(these facts will be more evident after Theorem (1.3.10), but for precise proofs see, e.g.,
[Car], [Carl] or [Aba]). It is also very easy to verify that the relation between the boundary
dilatation coefficient ﬁfA of a self-map f, holomorphic in A, at a certain point 7 and the
corresponding coefficient S ” for the conjugated map F'in H* at the corresponding point
is given by ﬁpH+ = l:,BfA] _1. In particular, 6FH+ is a finite real number, but possibly
ZEero.

The definitions of non-tangential limit and of boundary dilatation coefficient are also
used in another classical result, which can be considered another “boundary version” of
the Schwarz’ Lemma. |

Julia-Wolff-Carathéodory Theorem (1.3.10) Given f € Hol(A,A), let 7,0 be any
two points in OA. Then one has

K- lim =/ = 15P¢(0, 7).

zZ—0 g — 2
If this K- lim is finite, then
Kl fle)=r
and
K-limf'(2) = K- lim:f—(-zl = 150f(0, 7).

zZ—o zZ—o o —2z

In particular, if T = o then the non-tangential limit of f' at o is a strictly positive real
number.

Proof - We have
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T J@| S =@ 112 1]
o—z |7 Jo—z T 1-|z| Jo—2Z|
and, if z € K (o, M)
lla_—’j > 1/M,
so that
22>
Since
1 f(2)]
hgl—)lélfw ~:3f(0)a

if B¢(0) = +co, then
K-im T FE
z=0 lo — z|

On the other side, if 8;(0) < +o0, then, according to Julia’s Lemma, there exists
only one 7 € A such that 8s(o,7) = B4(s) and f(E(o, R)) C E(r,BR) VYR > 0 or,
equivalently, such that for all z € A

o — 2

1—[z]*’

——“TF < Bf(o,7)
so that, if z € K(o, M),
1— 2
IT— f(2)]* < Bglo,7)- M -|o — 2| - _1——[i~f_[(§—l)l—’
which implies that K- lim f(2) = 7.
Z—r0
Let us define now a holomorphic map F : A — A such that
T+ F(2) (U).'r—l—f(z)__a—i-z
T—F(z) T—f(2) o-2z2
and, as in the proof of the Julia’s Lemma, by taking the real parts of both sides, we get

1 - |F(2)|?

L-f(P 112
[T = F(2)[?

= R T e

2
if we now divide each side by !10—“_“7"5 and take the supremum over z € A, we obtain
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1 1
= f1(0) s — 1,
Grlen) 1)
that is FF(%?F = 0 or equivalently Bz (o, T) = oo
Hence, for the first part of the proof, we conclude that
i lT = F@
2o la — zl

therefore, since

T+F(z) o—z T+ f(2) o—2
. = . . —1
T—F(z) o+=z Frlo) T—f(2) o+z 7
taking the K —limit for z — o, we have
0= K- i LT
= /Bf(O') 1m p— f( ) ; — 1,

so that

K- lim :_f_(zz_) = 1608f (0, T).

zZ—0 g —
For the statement of the derivative, we may assume that o = 7 = 1 since

T—f(z) Zl—?f(z) :Tﬁ_l—f(z)

o—z o 1—-7z 1-2

7

where f(z) = 7f(z) and % = 72.

Let {2, }nen be a sequence of points which converges to 1 within a triangle of vertices
A, B and 1, symmetric with respect of the real axis. If & is the height of this triangle
perpendicular to AB, we also assume that A < 1. Consider mn = Re(1l — 2z,)/h; clearly
O<rn<1.Callpn:1—_r—f?'l‘_—ﬁ).

Given n € N, we define 2(§) =1 —r,(1 — £), for £ € A, and then consider

Bo(e) =1 - ;};u — £(2(€)).

Clearly @, is holomorphic in A for any n € N and since

11— f(z

I®n(§)_1|: ln! ,,Bz(f) ),lf—llll*—’rn(l—ﬁ)l>0

for any £ € A and n € N, then @, € Hol(A, A).
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The above equalities without the norm yield to the conclusion that lim (®,, (&)—1) =

n—00
= ¢ —1, since lim r, = 0.
n—>00
Hence, by applying a theorem of Vitali (see, e.g., [Ves]), we have proved that {®n}nen
converges uniformly on compact sets to the identity of A. Then by a classical result due

to Weierstrass ®/, — 1 uniformly on compact sets as n — oo. But

d d 1 ~ Lo,
EE(I)”(E) - % <1 — 5(1 — f(z(f))) = pnf (2(8))

and, on the other side,

1- f(zn) :IB 1— (Dn(gn) _ :8 . 1-— ®n(§n)
1—2z, 1-&)A-r(1=08) 1-r,(1-58) 1-&, 7

Zp—1
where 1 — 2= =6,

Combining the two computations, one finally gets

=2 - K- lim f'(2).

J6] 20

QED

The Julia-Wolff-Carathéodory Theorem states that the derivative of a holomorphic
map f at a fixed point 7 on the boundary is a positive real number f/'(r). The Wolff’s
Lemma yields that, in particular, if 7 is the Wolff point of f, then 7 is a fixed point of f
on the boundary of A and f’(7) is bounded from above by 1. A

The fact that the derivative of a holomorphic map f at a fixed point 7 on the boundary
Is a positive real number implies that f is univalent near 7, within a Stolz region of vertex
the fixed point 7. In fact the following Lemma, due to Noshiro (see [Nos]), holds.

Lemma (1.3.11) If U is a convez open subset of the plane, f is analytic on U and
Ref'(z) > 0 for all z in U, then f is univalent on U.

Proof - Assume by contradiction that f(z;) = f(z3) for two distinct z1,22 € U. By

integrating along the segment s connecting z; to z, we have

0=f(z1) = fz2) = | f(E)dE = (21— 22) | F'(21+t(z2 — 21))dt;
s 0

since z; # zp we get

1 1
0= Re/ (21 + t(z0 — 21))dt = / Ref'(z1 + t(2o — z1))dt > 0,
0 0
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which is a contradiction. QED

The value of the derivative of a holomorphic map f at its Wolff point is important
to determine the behaviour of the iterates of f. Since the Wolff-Denjoy Theorem asserts
that the iterates of a holomorphic self-map f in A converge to the constant map whose
value is the Wolff point of f, unless f is an elliptic automorphism, it becomes interesting
to determine, given zy € A, “how” the sequence of points f°™(2z0) approaches the Wolff

point of f. The two following Lemmas give an important contribution to such a question.

Lemma (1.8.12) Suppose that a map f € Hol(A,A) has its Wolff point 7(f) on
the boundary of A. If K-lim f'(2) < 1, then for any z € A the sequence of iterates
Z—T

{f°"(2)}nen converges to T mon-tangentially (that is, converges within K (7, M), for some
M>1).

Proof - Without loss of generality we may assume that 7 = 1; then, by using the Cayley
transformation C' which maps 1 to oo, we can think of f as a self-map F, holomorphic in
H with co as Wolff point. Therefore we can write

1
F(w) = mw + p(w),

where p € Hol(H™*, HY) is such that K- limg(—w2 = 0.

wW—00 w

Since Vw € Ht Imp(w) = Im[F(w) — T mwl > 0, we get

Im[F(w)] 1
Im(w) > Bf(T) = 1.

Given wo € H™, let us write F°*(wg) = z,, + iy,. Clearly

Ynt1 = ImF°("+1)(w0) = ﬁ—fl(T)yn + Im[p(F°" (wo)]

Put (w1 —wo)(wy —Wo) ™| = r < 1; by applying the Schwarz-Pick Lemma, we obtain

> L
= B;(n) Yn-

F(w1) — F(wo)
F(w1) — F(wo)

C‘MC_I(F(%))
1 —C~HF(wo))C~1(F(wy))

f(z0) = f(z1)
1 — f(20)f(21)

observe in particular that the same argument can be repeated for any couple Wy, Wny1.

20 — 21 w1 — Wo

<

1— %521 w1 — Wo
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Now

—1
x -~ z |$1 - IUol
v ) DU ) o WA -
L k=0 {Z |Ykt1 — ykl}
k=0
n — 4n - T — Tn
(1_3_13) ot lx +1—Z ’ < lxl -’EO, + 4 | n+1 !

- >~ — P maX . b]
[E s — ykl} max(Yk+1 — Yx) Ax(Ye+1 = Yk)

since Yn+1 > Yn Vn.
Now assume that w = z + iy and & = u + 1v are such that |(w — €)(w — €)= < r and
y > kv, for k > 1; then, from

(z—u)? + (y — v)?
(z —u)?+ (y +v)?
and from the given hypothesis we get

<r?

< [r2(k+1)% — (k — 1)?]v?

_ 2
@ s ,

which, combined with the assumption |y — v| > v(k — 1) and the fact that (1 — r2)~1/2 <
< (1 —r)~1, allows us to conclude that

T —u
Yy—v
which is independent from w and £.

cPR+1)? - (k-1)72
- (k=11 -7) ’

If we then go back to inequality (1.3.13) and apply the above calculation for Wny1 and

Yn41—Y
wn+1 and wo and finite, since we have the assumption that k = ——(T—) is strictly greater

wo with k = NG ( y = 1, we get an upper bound for ’m—"ﬂ—”—”ﬁl which is independent from

than 1. Geometrically, this inequality precisely means that the points w, converge to oc
within an angular region, symmetric with respect to the i imaginary axis, and with opening
strictly less than . And this is equivalent to saying that {F " (wo) }pen cOnverges to oc
non-tangentially. QED

Lemma (1.3.14) Suppose that a map f € Hol(A,A) has its Wolff point 7(f) on the
boundary of A. If for some zp in A the sequence of iterates {f°"(z0)}nen converges to
non-tangentially, then for any compact set K in A, the sequence of iterates { f°(K)}nen

converges to T non-tangentially.
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Proof - As in the previous Lemma we transfer everything to H™, by means of the Cayley
transformation C' which maps 1 to co, and we refer to the notations of Lemma (1.3.12).
Notice that the assumption of non-tangential convergence of the iterates of a point can be
written as |z,/yn| < M < 4o00. Keeping in mind the Schwarz-Pick inequality in H*, we
have that given any compact set K in H* there exists a real number r < 1 such that for
any w € K the following inequality holds |(w — wo)(w — @Wp) 1| < r < 1; the set

Dp(wo) ={we HT |(w — wo)(w —wo) ™| <r < 1}

is a Euclidean disc centered in ¢ = zo + 2y, L’ with Euclidean radius R = Yo2s.

—2 2

Therefore D, (wq) is contained in the infinite strip

sr<wo>={weﬂ+ : Im(w) 2 yo(1—r)(1+7) 7Y, fRe<w>—$0*<yol—3%}'

Then if w = z + 4y € D, (wp), we have

0| + Yo 12 lZo|(1+7)  2r
Tl =)+ T Jel(t=7) T T2
Hence, the above calculations show that F°"(K) converge to oo as n — 0o, since any
F°m(K) is contained in D, (F°"(wy)), and since the right-hand-side of the above inequality
is finite with the assumption |z, /y,| < M < +oo. QED-

lz/y| <

As a consequence of these Lemmas, we obtain that whenever there exists a point zg
in A such that the sequence of iterates {f°"(zg)}nen converges to the Wolff point 7(f)
non-tangentially, then for any point z in A the sequence of iterates {f °"(z) }nen converges
to 7(f) non-tangentially.

Let us remark that, by Lemma (1.3.12), a point z; € A such that {F°™(z1) }nen
converges to the Wolff point 7(f) tangentially does not exists if the derivative of fat7(f)
is strictly less than 1. The converse of this statement does not hold in general: consider,

e.g., the map f(z2) = 13i3222 ; we have 7(f) = 1, f/(7) = 1 and {f°™(0)},,en C R converges
to 1 non-tangentially.

The Julia-Wolff-Carathéodory Theorem gives also a geometric characterization of con-
formality at the Wolff point of a holomorphic map, conformality which has to be defined

in the sense of the following (see [Pom2])

Definition (1.3.15) Let f € Hol(A,C). We say that f is conformal at ¢ € A if
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K- lim f'(2) # 0, co.
z—(

We say that f is isogonal at € A, if there exists K- Iicm f(2) :== f(¢) and if there exists
z—
¥ € R such that

K-l —_
Sl arg T

By the Julia-Wolff-Carathéodory Theorem, any f € Hol(A, A) conformal at ¢ is
isogonal at . If this is the case, then

(1.3.16) K-tim EZOF () _ 1.

¢ f(2) = f(Q)

We say that a curve v : [0,1) — A is a (-curve if %m% v(t) = ¢. The use of the adjective
-——>
“isogonal” in Definition (1.3.15) is justified by the following

Proposition (1.3.17) If f, holomorphic in A, is isogonal at { € A, then smooth ¢-
curves contained in a Stolz angle at  are mapped by f onto smooth f(¢)-curves, and the

angles between curves are preserved.

Proof - Let «; : [0,1] — A for s = 1, 2 be two smooth ¢-curves. Consider F(vi(®) :==T:(2).

Let T';(1) = K- licm f(z) = }m} S(7%:(8), (i are smooth (-curves in a Stolz angle at ().
z— —

Since

: flz) - f(Q) _
sz-_}ém arg '—?:"‘——19,

by the Julia-Wolff-Carathéodory Theorem, Kz —_}icm f'(z) # 0. We claim that f is injective
in any Stolz angle of vertex ¢, near ¢. Indeed this is an obvious consequence of Noshiro’s
Lemma if Kz ~_+hgm /'(2) has positive real part. If, on the contrary, Kz— _}ém 1'(z) is pure
imaginary or has negative real part, by the transitive action of Aut(A) on OA, we can
always find ¢, an automorphism of A, such that Kz - _}igm(go o f)'(2) has positive real part
and then apply Noshiro’s Lemma to fo = ¢ o f. We have

arg [La(1) — To(0) = arg FO=FO®) | <=t

+ arg
¢ — (%) 1-t

+arg [1—1t].

Hence
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limarg [[(1) = Ti(t)] = 9 + arg 7' (1),

t—1

that is T';(¢) has a tangent of direction angle 9 + arg ~;/(1). Moreover, it follows that the
tangent vector to I';(¢) depends continuously on [0,1], so that I';(t) is a smooth (-curve.
Finally, the angle between ; and v, at ¢ is arg ~;/ (1) —arg ~2'(1) which is also the angle
between I'; and I'; at £(¢). QED

Proposition (1.3.18) Given f € Hol(A, A), take o € A and suppose there exists T € OA
such that Bs(o,T) is finite. Then f is isogonal at o. Moreover if the angle of opening ¥
at o between two smooth o-curves is symmetric with respect to the ray Oc, then these o-
curves are mapped by f onto two smooth T-curves, which form an angle of opening 9 at T,
symmetric with respect to the ray 0T.

Proof - If f¢ (o, 7) is finite, by the Julia-Wolff-Carathéodory Theorem, K- lim T=f(z) =

Z—0 g — 2z
= 700¢(0,7) is finite and K- hm f(z) = 7, therefore f is isogonal at o. Consider now

two smooth o-curves r; and rz as in the hypothesis. Suppose that the (symmetric) angle
between these two o-curves has at o opening ¥ < 7. Since f is isogonal at o, r; and r are
mapped by f onto two smooth 7-curves - call them R; = fory and Ry = fory respectively
- and the opening of the angle between them at T is 9. Suppose that the angle between R;
and Ry at 7 is not symmetric with respect to the ray 07. Hence R; and the ray Ot form
an angle o at 7 which is, for instance, greater than the angle 3 formed by Ry and the ray
07; in any event o+ 3 = ¢9. In this case, given € > 0, consider p = Z — —’2 €. Let r, be a
o-curve in A forming with r; an angle at o of opening n. By the 1sogonahty of f at o, r,
is mapped by f onto a smooth 7-curve - call it R, - which forms with the ray 07 an angle
at 7 of opening o + 7. Since o + 8 = 9, we have a+n= Qg—ﬁ——k 5 —¢ thusife < 9‘;—‘3,
then o +7n > %, which is a contradiction. QED

By the doubly transitive action of Aut(A) on A, we can always find ¢ € Aut(A) in
such a way that 7 becomes a fixed point for fo¢ = foand fyis isogonal at 7. If 7 € A is
the Wolff point of a function f € Hol(A, A), then it is easy to see that f is conformal (and,
then, isogonal) at 7. In this case not only the angle between I'y = fovy; and I’y = fovs at
7 has the same opening of the angle between 71 and 2 at 7, but these two angles actually
coincide, in the sense that there is no rotation. Notice that the same result follows also
from the Proof of Proposition (1.3.10), since, if 7 is the Wolff point of f, then K - hm ()
is real (and in particular non negative and less or equal to 1), that is
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K-lim arg fe) - =K-lim arg f'(z) =0;
Z—rT zZ—T Z2=T

hence the angle between v, and v, at 7 is exactly the angle between I'y and I'y at 7.

In the next Section, we will show why it is very natural to extend the class of possible
domains of definition of holomorphic self-maps. In particular we will be interested in
hyperbolic domains whose boundaries are well featured. According to these requests, the
unit disc A will be then replaced by the domains described in the following definition
and whose main geometric properties will be investigated in the final part of the present

Section.

Definition (1.3.19) A (always non compact) domain D of a compact Riemann surface
X is of regular type if

i) every connected component of the boundary of D, 8D, is either a Jordan curve (that
Is a closed simple continuous curve) or an isolated point, and

ii) for every connected component ¥ of 8D there exists a neighbourhood V' of ¥ such
that VN aD =X.

Hyperbolic domains of regular type form a large class of (hyperbolic) Riemann surfaces
which have very good properties for our investigations.

Let 3 be a connected component of OD; we shall say that ¥ is a point component
if it is an isolated point, a Jordan component otherwise. Let us immediately remark the |
following

Lemma (1.3.20) Let D cX be a hyperbolic domain of regular type. Then 8D has a

finite number of connected components.

Proof - Assume, by contradiction, that {En}nen is an infinite sequence of connected
components of dD. Take z, € ¥, for any n €N; up to a subsequence {z,},en converges
to a point wg € 0D. But then the connected component of D containing wg cannot be
separated from the other components of 8D. QED.

Hence hyperbolic domains of regular type are particular finitely multiply connected
hyperbolic domains, but as stated by Julia in [Jull] and, more recently, by Goluzin in
[Gol], any finitely multiply connected domain “can easily be mapped univalently onto a
domain bounded by closed analytic Jordan curves and isolated points.” (see [Gol], pg. 262).
Furthermore the correspondence of the boundaries of the domains under such univalent
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mapping is completely exhibited, so that it will be sufficient to consider hyperbolic domains
of regular type for the study of all finitely multiply connected hyperbolic domains.

Since we are essentially interested in hyperbolic domains and, in particular, in the
behaviour of holomorphic maps at the boundary of such domains, we will heavily use the
properties of the universal covering A of hyperbolic domains. Just to fix the terminology,
we will recall some basic facts for covering spaces and maps of Riemann surfaces.

Let X and Y be two Riemann surfaces,

rx: X —+ X and Wy:?——)Y

their universal covering maps. Any f € Hol(X,Y) admits a lifting, that is a holomorphic
function f € Hol (X,Y) such that forx = 7y o f. The function f is uniquely determined
by its value at one point. In particular, since A is the universal covering of any hyperbolic
Riemann surface X, if f € Hol(X, X) has a fixed point in X, (i.e. if there exists zo in X
such that f(20) = 20), we can always lift f to a map f € Hol(A, A) with a fixed point wg
in A, where mx(wo) = 2. Suppose now that f has no fixed point in Dj clearly no lifting
f can have a fixed point in A. But since f is a holomorphic map of A into A, by Wolff’s
Lemma, f has a fixed point 7( f ) on the boundary of A in the sense of non-tangential limit.

Since for topological reasons the universal covering map mp of the hyperbolic domain
D gives a correspondence of the boundaries of A and of D, we have to study the boundary

behaviour of mp very accurately.
For later considerations, it is worth stating the

Osgood-Taylor-Carathéodory Theorem (1.3.21) Any biholomorphism f : D — A
extends continuously to a homeomorphism between D and A if D is a simply-connected

bounded domain such that OD is a Jordan curve.
A proof of this Theorem can be found in [Bur], [Gol] or in [O-T].

Now let ¥ be a connected component of the boundary of a hyperbolic domain D of
regular type and denote by Cy the largest open connected arc (possibly void) of points
of the boundary of A corresponding to ; Cs, is also called the principal arc associated
to 2. So far we have introduced the terminology we need; now we recall the main results
concerning the boundary behaviour of the universal covering map mp we will use in the
sequel.
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We will also recall the following version (see, e.g., [Aba]) of the

Fatou’s Uniqueness Theorem (1.3.22 ) Let D be a domain in a Riemann surface X
such that 8D is a Jordan curve. Let Y be another Riemann surface and let f: D — Y

be holomorphic. Assume there is a non-void open arc A C 0D and yy € Y such that

Vre A lim f(z) = yo.
Z—=T

Then f is constant, namely f(z) = yo.
Finally

Theorem (1.3.23) Suppose that D is a multiply connected hyperbolic domain of regular
type, and denote by m : A — D the universal covering map of D. Let 3 be a connected
component of the boundary of D. Then,

i) if E={a} is a point component of 8D, then Cyx is empty and if T€ OA is corresponds
to X, then w(z) tends to a as z tends to T non-tangentially;

i) if ¥ is a Jordan component of D, then Cs is not empty and if C C A is an open
arc associated to X, then m(z) estends continuously to C and the image of C through this

extension 1S exactly ¥.

Proof - Assume by contradiction that Cy is not empty and let {z,}nen C A be any
sequence converging non-tangentially to a point 7 of Cx. Then z, will be eventually in any
horocycle centered in 7 so that 7(z) tends to a as z tends to Cx. The Fatou’s Uniqueness
Theorem then implies that 7 is constant, which is impossible.

To prove ii) observe that, up to a homotopy, f can be restricted to a biholomorphism
between two simply-connected domains bounded by Jordan curves, having inverse w. Then
the Osgood-Taylor-Carathéodory Theorem applies, so that 7 extends continuously to a
neighbourhood of 7 (in A) and, furthermore, 7 is locally injective at 7. QED

The boundary behaviour of the projection map = : A — D or, more in general,
the local behaviour of holomorphic maps at corresponding boundary components have
been widely investigated - among the others - by Cornea ([Cor]), Heins ([Hei], [Hei3))
and Ohtsuka ([Oht], [Oht1], [Oht4], [Oht5]). In particular in [Oht] a result analogous to
Theorem (1.3.23) is stated and proved, and a great attention is given to the study of a
generalized boundary which will be briefly introduced at the end of the next Section.

We are now going to apply the above results, which give a geometric characterization
of the behaviour of a map f in a neighbourhood of the boundary of a hyperbolic domain
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of regular type, in order to focus our attention on those boundary components which are
- in some sense - “non-removable”.

For this purpose, we will recall the following version (see, e.g., [Aba]) of the

Big Picard Theorem (1.3.24) Let X be a hyperbolic Riemann surface contained in
a compact Riemann surface X and let A* = {z € C:0 < |z| < 1}. Then every
f € Hol(A*, X) extends holomorphically to a function f € Hol(A,X).

Our application of the Big Picard Theorem is the following

Lemma (1.8.25) Let D CX be a hyperbolic domain of reqular type and let f € Hol(D, D).
Suppose first that 0D, the boundary of D, has at least one Jordan component, so that
in particular D #X. Let P denote the set of point components of 0D. Then any f €
Hol(D, D) estends to f € Hol(DU P, D).

Proof - Assume first that D is bounded in X; then the Riemann’s removable singularities
Theorem (see [For]) allows us to extend f € Hol(D, D) to f € Hol(DUP, D). We have
only to prove that f (DUP) C D. Assume by contradiction that, if peP, f (p) belongs
to an unbounded region T delimited by a Jordan component of 8D; one can always find
a neighbourhood U of f(p) such that U ccC T. Since f is continuous at p there exists
a neighbourhood V' of p in DU{p} such that f(V) C U. But, since f extends f and
f(D) C D, we get a contradiction. ’
Assume now that D is unbounded in X; then the Big Picard Theorem allows us to extend
f € Hol(D,D) to f € Hol(DUP,X). But, again, by the continuity of f at each point of
P, we may conclude that actually f € H ol(DUP,D). QED.

Suppose now that D has no Jordan components so that 0D = {z1,...,zz}. In par-
ticular D =X. There are three cases:

a) X is hyperbolic. In this case, since D is hyperbolic, D may be empty. Since,
moreover, D is of regular type and D =X, X itself is of regular type.

b) X is a torus. In this case, since D is hyperbolic, 0D = {z1, ..., 7} contains at least
one point (k > 0).

¢) X is the Riemann sphere C. In this case, since D is hyperbolic, D = {z1, ..., 3}
contains at least three points (k > 2).

Let f € Hol(X,X) be the extension of f € Hol(D, D) by means of the Big Picard
Theorem or by Lemma (1.3.25). Let us observe that, in general, if X is a torus, f(X) =X:
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indeed, if f(X ) is hyperbolic, f would be constant, since f would be a holomorphic function
of a non-hyperbolic Riemann surface onto a hyperbolic Riemann surface. For the same
reasons, f (@) must be C minus at most two points. So far we can state the following

Lemma (1.3.26) Let D CX be a hyperbolic domain of regqular type. If f € Hol(D, D)
doesn’t (already) have a fized point in D and is non-constant, the extension f (by means
of the Big Picard Theorem or of Lemma (1.38.25)) must have a fized point in D.

The fixed point mentioned in the above Lemma must be an isolated point of 9D, when
0D has no Jordan components while when D has at least one Jordan component, it can
be either an isolated point of D, or a point of one Jordan component of 0D.

We will proceed as follows: if f € Hol(D, D) has a fixed point in D, there is nothing
to say. If it doesn’t, and the fixed point of the extension f as in Lemma (1.3.25) is an
isolated point p of 9D, we will add this point p to D, and we will consider D’ = D U{p}
and f € H ol(D', D), as the restriction of f to D’. Observe that D’ is still a hyperbolic
domain of regular type if we assume that D is properly contained in the Riemann sphere
C minus three points, or in a torus minus two points. In this way, by adding a point to D,
we will still obtain a hyperbolic domain (of regular type).

With this procedure, we have generalized our considerations to hyperbolic domains of
regular type D and to maps f € Hol(D, D) with, either a fixed point in D, or with a fixed

point on a Jordan component of D. Let us summarize it by means of the following

Proposition (1.3.27) Suppose that D is a hyperbolic domain of regular type contained
in a compact Riemann surface X . Assume, furthermore, that D is properly contained
in the Riemann sphere C minus three points, or in a torus minus two points. Then any
f € Hol(D, D) can be extended to f € Hol(D',D"), where D’ is still a hyperbolic domain
of reqular type containing D, and where f has either a fized point in D', or a fized point

on a Jordan component of the boundary D’.

According to the purpose of this work, in the next Section we will start the study of
iteration and boundary behaviour of analytic self maps in hyperbolic domains of regular
type. For a less introductory description of the theory of holomorphic maps on hyperbolic
domains we refer the reader to the references and results in [Acc], [M-R-R] or [L-O];
in particular, in [C-W] a generalization of the Blaschke products in multiply connected
domains is constructed which are also studied in [Col].
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2. Pseudo-iteration semigroup and commuting holomorphic maps

2.1. The pseudo-iteration semigroup.

The definition of the pseudo-iteration semigroup of a map f € H ol(A,A) as it is
given in [Cow2] is essentially based on a Theorem due to Cowen (see [Cow]). Therefore
we will follow the formulation as in [Cow] and [Cow2] but, by applying the results and
the terminology of the previous Sections, the approach will become somehow original and
more suited to our interests.

To state the “main Theorem” of Cowen and some of its consequences, we need the following

Definition (2.1.1) Let o € A and let T be the line containing the diameter of A passing
through o. An angular sector of vertex o and opening ¥ in A, is the intersection of A
with the open angle having vertex in o, bisectrix line 7' and opening 9. A small angular
sector of vertex ¢ and opening 9 in A, is the intersection of an angular sector of vertex o
and opening ¥ in A with some open, Euclidean disc of positive radius centered at o and

contained in A.

Definition (2.1.2) An open, connected, simply-connected subset Vi of A is called a
fundamental set for f € Hol(A,A), if f(Vy) C V; and if for any compact set K in A,
there is a positive integer n so that f°"(K) C V;.

Roughly speaking, the fundamental set of a map f is a set of points “near” the Wolff
point 7(f) “small enough” that f is “well behaved” on it, and “large enough” that f°"(z)
eventually sits in this set. Assume that the map f has a fixed point in A; then, by the
Schwarz’ Lemma, this fixed point is attracting unless f is an elliptic automorphism of A.
Therefore, except for the elliptic automorphisms of A, any map f with a fixed point in A
admits a fundamental set, which is easily seen to be - for instance - any circular domain
centered at the fixed point. Suppose now that f has no fixed points in A; then, keeping
in mind the Wolff-Denjoy Theorem, a fundamental set for a map f must be close to the
Wolff point 7(f). This point can be regarded as a fixed point of f on the boundary of A,
so that, according to Definition (1.2.15), a fundamental set of f may be considered as a
simply-connected attracting petal at the Wolff point 7(f)-

Finally the already celebrated Theorem due to Cowen.
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Theorem (2.1.3) Let f € Hol(A,A) be neither a constant map nor an automorphism
of A. Let T be the Wolff point of f and suppose that f'(r) # 0.*

Then there ezists a fundamental set Vi for f in A on which f is univalent.
Furthermore there also exist: '
1) a domain Q, which is either the complez plane C or the unit disc A
2) a linear fractional transformation ¢ mapping Q onto
8) an analytic map o5 mapping A into Q,
such that
i) o5 is univalent on Vy
i) o¢(V}) is a fundamental set for o in §
i) of o f = pooy.
Finally, ¢ is unique up to a conjugation under a linear fractional transformation mapping
§2 onto Q , and the maps ¢ and o depend only on f and not on the choice of the fundamental
set Vy; that is if o1 and oy satisfy i), i1) and iii) then there exists an automorphism p of

Q such that @1 = p~*!

ocpopando; =pooy.

Proof - We will only give a proof of the Theorem for the case of holomorphic maps which
either have a fixed point in A, or are such that there exists a point zg € A such that the
sequence of iterates {f°"(20)}nen converges to the Wolff point 7 non-tangentially. For a
complete and detailed proof of the general statement of Theorem (2.1.3) we refer to [Cow]
or to [Vla].

When the Wolff point 7 is in A and f/(7) # 0 the existence of a fundamental set
for f on which f is univalent is an obvious consequence of the local inversion Theorem.
Furthermore, f/(7) # 1, since f is not an automorphism of A. By the Schwarz’ and Wolff-
Denjoy Lemmas, the basin of attraction {2, of the fixed point 7 in A is A itself; therefore,
by applying the Konigs’s linearization Theorem (1.2.9) to f and in particular Corollary
(1.2.12), it immediately follows that f is conjugated in A to the map ©(z) = A- z (where
A = f'(7)) by means of an analytic map ¢ : A — C which is injective in a neighbourhood
of 7. Moreover, this conjugation is unique, up to multiplication by a non-zero constant,
that is to say within the set of hyperbolic automorphisms of C. If, instead, the Wolff point
is on the boundary of A then, by the J ulia-Wolff-Carathéodory Theorem, Kz -_}iTm f'(z)#0

and the construction of a fundamental set Vf in A, where f is injective, becomes in general

quite complicated. Cowen [Cow] uses a deep result of Pommerenke (see [Pom1] and also

* By this we mean that either 7 € A and f/(r) # 0, or |T| = 1 and K- lim f'(2) # 0;
Z—>T
observe that if |7| = 1 this hypothesis is implied by Theorem (1.3.10).
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[G-V]), which guarantees the existence of a region G near the Wolff point such that f is
injective in G and such that for any compact set K in A, there exists an integer N such
that nf_jN 7o (K) C G.
When, in particular, we assume the hypothesis of non-tangential convergence of the it-
erates {f°"(20)}nen of a point zo, this result may be obtained as a consequence of the
Lemmas (1.3.11), (1.3.12) and (1.3.14). Indeed if for some z; in A the sequence of
iterates {f°"(z0)}nen converges to T non-tangentially, then for any compact set K in
A, the sequence of iterates {f°"(K)}nen converges to 7 non-tangentially. Hence, since
K- lim f'(z) # 0, the Noshiro’s Lemma (1.3.11) implies that f is univalent in an angular
neighbourhood of ().

Without loss of generality, we may assume that zy = 0 and define z, = fer(0).
Consider Vj € N, ¢; = wa (0, z;) and define

Bnj={2z€A : wa(z z,) <cj}.

By the Schwarz-Pick Lemma, f (Bn,j) C Bpyi1,j Vj,n € N. Furthermore, B, ; is an
open Euclidean ball in A. Let Ky, ; = B, j; notice that, since z, tends to 7 as n — oo,
then, for a given j, K, ; (and then B, ;) is eventually in a Stolz region of vertex T.
Hence the Noshiro’s Lemma (1.3.11) implies that there is an integer ng such that fis
injective in By ; for n > ng. Consider then Vi = HQO By, ;. Clearly V; is an open set
on which f is injective and such that f (V;) € Vj. Now, by the Schwarz-Pick Lemma |
WA (2Zn-1,2n) = wa (£°"71(0), £°7(0)) < wa(0, £(0)) = ¢ and since c; > Mif 7> jg, we
have that z, and 2z,_1 are in By, ; for j sufficiently large, that is V; is connected for 5 > jo.
Let V' = j>LJj0 Vj; This set is, by construction, open and connected and is such that, given a
compact set K in A, it eventually contains an iterate f °*(K) for some n € N. This depends
on the fact that K is contained in some By, ;. To finally obtain a fundamental set V¢ which
is also simply-connected, one adds the possible “holes” to the previous unions of iterates
of V;’s and the enlarged set is still fundamental, since f is injective on the boundary of
the holes, and this implies that the interiors of the holes are mapped into themselves by f,
which is moreover univalent there (see [Pom] for details). The proof of the remaining part
of the statement starts from the achieved result of existence of a fundamental set Vy for f
in A, on which f is injective. Then, a Riemann surface is constructed by adjoining to V¢
points corresponding to the “negative iterates” of f. To do this, one defines an equivalence
relation ~ in V¢ x N as follows: (z,n) ~ (w,m) if and only if there is k > max(—n, —m)
such that fo"+%)(z) = fo(m+k) (4)) Tt is natural to take the quotient S =Vs x N/ ~, which
turns out to be a Hausdorff space, once, as a basis for the topology of V¢, one defines
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{[(z,n)]}sev where n € N and U is an open set in V;. Indeed, if [(21,71)] # [(22, ng)], then
FomHR) (20) £ fo(m2+k) (25 so that it is possible to find two open sets U and Us in Vs
which separate fo("1+5)(z) and fo(m2+5)(z,),

Actually, by putting s, : V; + S, s,(2) = [(z, n)], one defines a holomorphic structure
on S, since each sy, is a homeomorphism and, if m < n, s, 71 0 8,(2) = s, ([(2,7n)]) =
=5, ([(z,m +1)]) = s H([(f!(2),n)]) = F°}(2). Hence S is a Riemann surface, which
is not compact, since from the sequence {[(z, —k)]}ren no convergent subsequence can be
extracted. Furthermore, given a closed path «([a,b]), which is compact in S, there are
only a finite number of open sets of the form sp, (V5), ..., $n, (V) which cover v([a, b]).
Hence, since sp11(Vy) C s,(Vs) and V} is simply-connected, v is homotopic to a constant.
Therefore, for the Riemann’s Uniformization Theorem, S is biholomorphic to either the
unit disc A, or to the whole complex plane C.

Then, the map f induces a one-to-one map 1 of S onto S defined by

b([(z,n)]) = [(£(2), ).

If [(z,n)] = [(w,m)] then, for k& > max(—n, —m), one has fo(*+5)(z) = fo(m+k)(y)),
that is '

V([(z0)]) = [(£(2),m)] = (£ (2), —k)] =
= [(f* D (w), k)] = [f(w), m)] = [(w,m)),

which means that v is well defined and injective.

Moreover, since Vz € Vi and Vn € N, [(z,n)] = [(f(2),n — 1)] = ¢([(z,n — 1)]), ¥ is
also surjective.

Notice that Vn € N, o s,, = s, o f.

The equivalence of S to either the umit disc A, or to the whole complex plane C
makes possible to conjugate 9 - by an appropriate Riemann map p - to either a Mdbius
transformation of A, or to an automorphism of C. Therefore, call  either the unit disc A,
or to the whole complex plane C, and put ¢ = p~lothop : Q — Q and oy, = posg: Vi — (L

Clearly, pooy, = oy, o f, and, then, ov; (V) is a fundamental set for ¢. Furthermore,
ov; can be extended to a map o5 : A — Q by putting o(2) = o~ "(ov,(¢™(2))), where n
is the smallest integer such that f°"(z) € V;.

The uniqueness of the conjugation is again a consequence of the defined equivalence.

QED
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It is interesting to observe the deep analogies between the statements of Theorem
(1.2.17) (or Corollary (1.2.18)) and the just recalled main Theorem of Cowen. In particular,
notice how similar to the Ecalle cylinder is the construction of the Riemann sphere S as
a quotient of the fundamental set V¥, and the consequent conjugation of the map f to a
transformation of 2 by means of the analytic map o, when Q=C. We can actually restate
Theorem (2.1.3) by means of Theorem (1.2.17) and Corollary (1.2.18) in the case |7¢| = 1
and K- lim f'(z) = 1 when the additional (strong) hypothesis of holomorphic extension of
f on ng 7éxssumed. Indeed if f is holomorphic in A U{r}, the Wolff point 7 can be regarded
as a neutral fixed point of f and a fundamental V7 is precisely a simply-connected attracting
petal of 7. Since, by the Wolff’'s Lemma and from the definition of fundamental set, the
basin of attraction Qdv, of the petal V; turns out to be A itself, then by constructing the
Ecalle cylinder on Vi as in Theorem (1.2.17), one deduces that the domain Q in Theorem
(2.1.3) is C and f is conjugated to the linear transformation ©(z) = 2+ 1 by means of
an analytic map o, which is injective in V. Moreover, up to conjugation, the map ¢ is
unique, according again to Theorem (1.2.17).

Cowen in [Cow] shows that the domain § coincides with C whenever f’ is continuous
in AU{7}, f'(r) =1, and the non-tangential convergence of the iterates of a point in A
is assumed. In particular, if £ is continuous in A U{7}, then one can consider a horocycle
E(r,r) - with 7 small enough so that f is injective in E(7,r) - to be a fundamental set
for f as in Theorem (1.2.17) (see also Proposition (2.2.9)). In [Cow] the techniques used
involve the introduction of Green’s functions and, however, refer to the consideration of .
the following

Remark (2.1.4) One of the purposes of Theorem (2.1.3) is to classify holomorphic maps
by means of “representing” linear fractional transformations of €. For example one can
reduce the investigation of the behaviour of { f"}nen to the description of the (known)
behaviour of {¢°"},cn. This also clarifies why the theorem does not consider the case of
an automorphism of A.

If we are given f, it is natural to ask what  and ¢ are. One can show that Q and ¢, up
to conjugation, fall into one of the four cases:

LOQ=C o(1)=0 ¢(z)=sz 0<|s|<1

2.0=4A o(r)=1 w(z)zé%%ﬁi—i% 0<s<1

3.0=Co(r)=c0 @(z)=z+1
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4. Q=A o(r)=1 ¢(2)= %——1—

Deciding which of the four cases a particular f falls into may be difficult, but, from the
study of fixed points of f and ¢, we can say that case 1 happens if and only if the Wolff
point 7 of f is in A; moreover, in this case f/(r) = s; case 2 happens if the Wolff point 7
of f is on the boundary of A and the value of the derivative of f at 7 is smaller than 1
and, finally, cases 3 and 4 happen when the Wolff point = of f is on the boundary of A
and if the value of the derivative of f at 7 is 1. These facts depend on a result proved in
[Cow] that relates the value of the derivative of f and of ¢ at their Wolff points by means
of the properties of Green’s functions in simply-connected regions. For the relationships
between these functions and the solutions of functional equations see also [B-E] or [C-G].
Notice furthermore that in case 2., by using the Cayley transformation C which maps the
Wolff point of f to 0o, ¢ becomes equivalent to w € H+ s s~ lw.

In the same way, the function ¢ of case 4. is equivalent to translation by 1in H* or in
H™ ={we C: Imw < 0}.

We are now going to recall the definition of the pseudo-iteration semigroup of a map
f € Hol(A, A), which actually splits in two separate definitions, depending on the value
of the derivative at the Wolff point.

Definition (2.1.5) Let f and g be holomorphic maps of A into A. Let 7(f) be the Wolff
point of f. Assume that the value of the derivative of the map f at the Wolff point 7(f) is
0. Then by the Julia-Wolff-Carathéodory Theorem this can occur only if 7(f) is in A, and
it is not restrictive to assume that 7(f) = 0. Then, by Theorem (1.2.14), f is conjugated
in a neighbourhood of 7(f) to the map w + w?, where p is the order of 7(f) as a fixed
point. We say that g is in the pseudo-iteration semigroup of f if there exist a positive
integer m and a number X with AP~! = 1, such that o(g(z)) = Ao (z)™.
Suppose now that f’(7) # 0. Let Vi, Q, oy and ¢ as in Theorem (2.1.3), for f.

We say that g is in the pseudo-iteration semigroup of f if there exists a linear fractional
transformation v that commutes with ¢, such that grog=1oo;.

It is easy to verify that the set of functions defined above is a semigroup under com-
position.

The following Proposition, (see also [Cow]), establishes a geometric property of the
fundamental set of a map f without fixed points in A, which will be used in the sequel

Proposition (2.1.6) Let f € Hol(A, A) be neither a constant map nor an automorphism
of A and let the Wolff point T(f) of f belong to the boundary of A. If, for some point z,
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of A, the sequence {f°™(20) }nen converges to T(f) non-tangentially, then the fundamental
set Vi of f contains small angular sectors of verter 7(f) and opening 9, for all 9 < .

Proof - It suffices to consider the construction of the fundamental set given immediately
after the statement of Theorem (2.1.3) when the hypothesis of non-tangential convergence
of the iterates { f°"(20) = zp }nen to 7(f) is assumed. It can be also written in the following
way: given any M > 1 there exists ng such that z, € K(r(f), M ), for n > ng. Analytically
this means that, for n > ny,

IT(f) B an

. < M.

For simplicity we may take 7(f) = 1. If w in is an angular sector of vertex 1 it means
that w € K (1, M), for some M; > 1, or

1 - wl

T < M.

Then |zn —w| = |z =14+ 1 —w| < M(1 ~ |2,]) + M1(1 — |w|); since z, — 1, then
|zn| — 1, so that the first addendum of the right hand side is infinitesimal. If Rew is close
to 1, 1 — |w| approaches 0, so that |z, — w| may be chosen arbitrarily small, which means
that w is in some B, ; C V; whenever w is in an angular sector of vertex 1 and close

enough to 1, that is to say when w is in a small angular sector of vertex 1. QED

The following Proposition is related to the isogonal property of a holomorphic map
at its Wolff point.

Proposition (2.1.7) Let f € Hol(A,A) be such that T € OA is its Wolff point. Let
W be a subset of A which contains small angular sectors of vertex T € A and arbitrary
opening ¥ < w. Then f(W) also contains small angular sectors of vertezx T and arbitrary

opening ¥ < .

Proof - Indeed, fixed o < =, consider in A the open sector S, of vertex 7 and opening .
Take e > 0 and define r;**¢ and r,2*¢ the two sides of the angular sector S, of opening
a+¢ at 7. We recall that an angular sector at 7 is by definition symmetric with respect to
the ray 07. The angle at T between f(r,°7€) and f(r,+%) has amplitude o + ¢, and hence
the two curves delimit a region in A which contains a portion of Stolz angle of vertex 7
and opening a. Let O; be a horocycle of center 7 such that 01N f(Sare) C W and f
is injective on O1 N f(Saic). Let O, be a horocycle of center 7 such that O, C f(O1);
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then Oz N Sq C f(O1 N Saqe) C F(W). Since f is injective on (01 N f(Sate)) then it
maps the inner domain of boundary 8(01 N f(Sa+e)) onto the inner domain of boundary
F(0(01 N f(Sa+e))) (see [Pom]). | QED

Take now a hyperbolic domain of regular type D endowed with the induced hyperbolic
metric wp (as it was defined in Section 1.1) and assume that f € Hol(D, D) has a fixed
point zg in D. Let wg € A be such that mp(wg) = 2z and let f be a lifting of f such that
f(wo) = wo. By taking the derivative of f(rp(w)) = 7p(f(w)) in wo, one gets

wp'(f(wo)) - F'(wo) = mp/(wo) - F'(wo) = f(mp(wo)) - 7p’ (wo) = F'(20) - 7p’ (wo)

and since mp is a local homeomorphism at wy, 7p’(wp) # 0, so that f/(wg) = f'(z0)-

The proof of the existence of a fundamental set for f in D, on which f is injective in
the case that f € Hol(D, D) has a fixed point in A, and the derivative of f is not zero at
this fixed point, is completely analogous to the case of f € Hol (A, A) with a fixed point-
namely an (obvious) application of the Local Inversion Theorem - and doesn’t involve any
other result.

Suppose now that f € Hol(D, D) has no fixed points in D and assume that 8D has
at least one Jordan component. Assume furthermore that f has a fixed point on one of
- these Jordan components, fixed point which is, as already observed, the image of the Wolff
point 7(f) on the boundary of A of the lifting f of f. Since f € Hol(A,A) has no fixed
points in A, there exists, in a neighbourhood of 7( f), a fundamental set for f , Where f is
injective.

Our aim is now to prove the following

Proposition (2.1.8) Suppose that D is a hyperbolic domain of regular type contained in
a compact Riemann surface X. Let f € Hol(D, D). Assume that 8D, the boundary of D,
has at least one Jordan component and that neither f nor any estension f of f on the
point components P = {p1,pa, ...,px} of 0D has a fized point in DUP. Then there erists,
in a neighbourhood of a fized point of f on a Jordan component of D, a fundamental set
for f in D, on which [ is injective.

Proof - We will retain the notations introduced so far and keep in mind the steps of
the construction of the fundamental set, which has been sketched after the statement of
Theorem (2.1.3). The Wolff-Denjoy Theorem asserts that the iterates f°™(K) of a compact
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set K in A converge to the Wolff point 7( f) € A of f; now, mp is locally injective at

7(f) by Theorem (1.3.23), whereas f is injective in a fundamental set, which has been
constructed by “gluing” unions of iterates of interiors of the family of (exhaustive) compact
sets of A. Then, according to these observations, one can always find an integer N' >N
in such a way that not only f but also the covering map 7p is injective on U f°”( K,)
and each step of the construction can be repeated in the very same way. So let V be a
fundamental set for f where f and 7p are injective and let Vy = wD(V ). First of all by

definition, we have

F(V) = f(mp(V§)) = mp(f(V})) C mp(Vf) = Vy;

let zo = 7p(0) and let K C D be any compact set in D. Consider r = = sup wp(z, 2p);
z€K
clearly 7 < oo since K is compact. We can always find a real number 7*, 0 < r* < 1, in

such a way that, taken B(0,7*) = {z € A : wp(z,0) < r*}, we have

Tp(B(0,7*)) = {w € D : wp(w, z) < r}.

Hence K C mp(B(0,7*)). B(0,7*) is a compact set in A, thus, since V% is a funda-
mental set for f in A, there exists an integer ng such that Vn > ng f°”( (0 T*)) C Vi
then

FTUE) C £ (B(0,17)) = mp(f"(B(0,77))) C np(Ve) = V; Vn > ny.

So V; is a fundamental set for f in a nelghbourhood of a fixed point of a Jordan component

of 0D; moreover f is injective on V. since f and = p are and since forp = wp o
y ) D =

QED
Therefore, putting together all these results, we have

Proposition (2.1.9) Suppose that D is a hyperbolic domain of regular type contained in
a compact Riemann surface X. Let f € Hol(D, D). Assume, in addition, that the value of
the derivative of f at the fized point (if any) in D is not 0; then there exists a fundamental
set for f in D, on which f is injective.

This Proposition is the first step to extend the Theorems proved by Cowen in [Cow]
and in [Cow?2].
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The crucial facts used in these considerations are, essentially, that f has a unique
attractive fixed point in the domain (to carry out the construction of the fundamental
set V¢ for f), that V; is simply-connected and that f is injective on V¢ (to apply the
procedure of “equivalence” already described). We have so far shown that all (minimal)
conditions necessary to repeat a construction similar to the one which appears in the proof
of the main Theorem of Cowen are also fulfilled in case of f € Hol (D, D), where D is a
hyperbolic domain of regular type contained in a compact Riemann surface X. Hence, we

can restate the main Theorem in [Cow] as follows

Theorem (2.1.10) Let D be a hyperbolic domain of reqular type contained in a compact
Riemann surface X and let J € Hol(D, D) be neither a constant map nor an automorphism
of D. Assume, in addition, that the value of the derivative of f at the fized point in D (if
any) is not 0. Then there exist:

0) a fundamental set Vy for f in D, on which f is univalent;

1) a domain 2, which is either the compler plane C or the unit disc A;

2) a linear fractional transformation ¢ mapping Q onto 2,

8) an analytic map o5 mapping D into Q;

such that

i) oy is univalent on Vy;

i) o§(Vy) is a fundamental set for ¢ in Q;

i) ogo f = pooy.

Finally, ¢ is unique up to a conjugatioh under a linear fractional transformation mapping
onto §) , and the maps ¢ and s depend only on f and not on the choice of the fundamental
set Vy; that is if o1 and oy satisfy i), ii) and iii) then there exists an automorphism p of
Q such that 1 = p~toypopand oy = pooy.

The case of f € Aut(D) (automorphism of D) is excluded in the classification of Theorem

(2.1.10) since the following (strong) characterization result of the automorphisms of D
holds (see [Abal).

Theorem (2.1.11) Let D CX be a hyperbolic domain of regqular type. If D is not doubly
connected, then Aut(D) is finite. If D is doubly connected, then D is biholomorphic either
to A* = A\{0} or to an annulus A(r,1) = {2 € C: 7 < |z| < 1} for some real T 0 < r < 1.
Then every v € Aut(A*) is of the form y(z) = €z (9 € R) and every v € Aut(A(r, 1)) is
either of the form ~(z) = €'z or of the form vy(z) = e®rz—!.
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By applying the same techniques used in [Cow], one can prove that, up to conjugation,
in the classification given by Theorem (2.1.3) only four cases may actually occur. In

particular

Proposition (2.1.12) Assume that f € Hol(D, D) has a fized point z in D; let 7p (wg) =
= zp and f € Hol(A,A) be the lifting of f such that f(wo) = wo. Then, with the notations
of Proposition (2.1.10), Q= C and ¢(z) = sz, with 0 < |s| < 1 if and only if f has a fized
point zg in D. Moreover, f'(z) = s.

Proof - As already observed, f(z0) = f’(wp), so that the proof can be carried out as in
[Cow]. QED.

According to the results of the previous Section, the other possible cases may then
occur only if f or any other extension f of f to the point component of 9D has no fixed
point in D.

For all these remaining cases, however, it is possible to use the definition of the pseudo-
iteration semigroup, given in [Cow2] for f € Hol(A,A). In the case of f € H ol(D, D),
where D is a hyperbolic domain of regular type, this definition can be extended since it
essentially relies upon the generalized version of Theorem (2.1.3), namely Theorem (2.1.10).
According to [Cow2] for the case D = A, we give the following

Definition (2.1.13) Assume that f € Hol(D, D) is as in the hypothesis of Theorem -
(2.1.11) and let ©Q, o and ¢ be the “objects” related to f whose existence is stated in
Theorem (2.1.11). We say that ¢ € Hol(D, D) is in the pseudo-iteration semigroup of
[ € Hol(D, D) if and only if there exists i € Aut(£2) such that ofog = 9 ooy and
PYop=gporp. We will also write g € SPI(f).

We will end this Section by remarking that the Picard’s Theorem and the Osgood-
Taylor-Carathéodory Theorem are the key steps for the extension of many of the concepts
introduced in A. As already observed the work of Ohtsuka is substantially in the direction
of generalizing these results, In particular in [Oht1] a generalized version of the classical Big
Picard Theorem is proved for a generalized definition of boundary. The usual boundary
of a set consists of the points in the closure of the set (for the standard topology) which
are not in the interior of the set. Then by taking different topologies one obtains different
closures and therefore different boundaries. For a general introduction of the so-called
“ideal boundaries” we refer the reader to [C-C] and [Has]. In particular among several

kinds of compactifications, the Martin compactification of an open Riemann surface seems
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the most successful; furthermore, when applied to A, it provides the usual compactification.
Thus we will only sketch the construction of the Martin compactification of a connected
Riemann surface S.

Let @ = C°(S,R) be the set of all continuous functions s : S — RU{~0c0, +o0} =R
and denote by CQ(S,R) the set of continuous functions s : S — R with compact support.
Let us define

P= I I
fEQUCY(SR)

~

where Iy = R.
Once the product topology is defined on I%, by the Tychonoff’s Theorem, I? is a
Hausdorff space. Let i : S — I? be defined as follows:

i(z) = {f(z)}feQucg(s,R);

@ is Injective, since if a 7 b there is a f € QUCQ(S, R) such that f(a) # F(b).

Now S ~4(S) C I9; let S° be the closure of S in the topology of I : S° is called
the Q-compactification of S.

In particular let S be a hyperbolic Riemann surface; this allows us to define (see
[Has]) Va € S the Green’s function g, for S with pole a. Fix a point O € S (which will
be regarded as the origin in S) and consider Q,; = { ke = Zv% 0 S = R} . Then, with the

above notations, 5~ is called the Martin compactification of S and 9, S = e \S is
the Martin boundary of S. Moreover given y € 0q,,S the limit function k&, of g,/go as
a — y is called Martin function. The Martin compactification is in general finer than
the usual one. Larusson in [L4rl] has recently shown that if f is a holomorphic self-map
of a hyperbolic Riemann surface S whose Martin functions ky extends continuously to
92,,S\{y} and vanishes there, then the iterates of f converge locally uniformly to a point
in the Martin boundary of S.

This version of the Wolff-Denjoy Theorem generalizes previous results of Heins and
applies to a wider class of Riemann surfaces, such as infinitely connected Riemann surfaces
(see [Lar] and [Lérl]); many other results analogous to the Osgood-Taylor-Carathéodory
Theorem are then stated so that it seems that it could be possible to extend some of
the results obtained for holomorphic self-maps of hyperbolic domains of regular type (and
therefore finitely connected) to analytic endomorphisms of special infinitely connected

Riemann surfaces.
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2.2. Commuting holomorphic maps.

Perhaps the most intriguing fact concerning two commuting ** holomorphic self-maps
f,g of A - which are not the identity - is that, in general, they have to share their Wolff
points. This is not very much surprising when the Wolff point - say - of f is actually a
fixed point 2 in A, since the relation f(g(20)) = g(f(20)) = g(z0) immediately implies
that g(z0) = zp. In fact otherwise f would have two different fixed points in A, namely zg
and g(zo), and the Schwarz-Pick Lemma would then imply that f is the identity in A.

The case in which the Wolff point is in A is completely described in [Beh] and [Shie],

so that we recall this result as the

Behan-Shields Theorem (2.2.1) Let f,g € Hol(A, A)\Ida be such that fog=go f.
Let 7(f) be the Wolff point of f and 7(g) be the Wolff point of g. Then

(i) if f is not a hyperbolic automorphism of A, then (f) = 7(9);

(1) otherwise, g is also a hyperbolic automorphism of A, with the same fized point set as

[, and either 7(f) = 7(g) or (1) = 7(g).

Proof - Assume first that f is a hyperbolic automorphism of A; since f,9# Ida, g cannot
have a fixed point zq in A, since otherwise g(f(z0)) = f(g(z0)) = f (z0) would immediately
imply that f(z0) = 20, a contradiction. Let 7(g) € A be the Wolff point of g. We have
(2.2.2) K-limg(f(z)) = K lim Fg(2)) = f(7(9)),

z—7(g)

since f as an automorphism of A can be extended on A.
Furthermore

K-lim|g'(f(2))| = K- lim l9'(f(2)) - f'(2)] — K- lim (g0 f)'(2))] _

z—7(g) z—7(g) |f'(2))] zrle)  |f'(2))]
e (LT )AC) IR 160 RGO W {C1C))]
(2.2.3) = 5—”—1(9) _————lf,(z))l ]z—{__n_l(g) 17(2) < ‘5{_”_1(9) |f'(2)] <1

Hence from the uniqueness of the Wolff point and from equality (2.2.2), it then follows
that f(7(g)) = 7(g). If we transfer everything to H+ by means of a suitable Cayley
transformation, then f turns out to be conjugated to the map

** We will generally say that f and g are commuting functions, even though some other

authors also say that f and g are permutable functions (see for instance [Bak1], [Jull] or
[Rit3]).
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Fw)=X-w, A#1, \eRF

according to the description of the hyperbolic automorphisms of H+ given in Proposition
(1.1.16). Let G be the map in H* conjugated to g; we have FoG = GoF or G(Aw) = AG(w)
for any w € H*. From the above assumptions one has G(A\"w) = A"G(w) = F°*(G(2))
for any w € H*, which implies that

1< Br = h G\ ) = G(w),

k—co Ay w

where G is the boundary dilatation coefficient of F' at hm M*w, which is the Wolff point
of F. The inequality 1 < B follows from the Juha—Wolff Caratheodory Theorem and the
assumption that f - and then F - is not the identity map. Thus G(w) = Brpw, that is G
and - then g - is a hyperbolic automorphism with the same fixed points of I - respectively
of f. This completes the proof of (ii).

For the proof of (i) we can assume that f and g are without fixed points in A, since,
otherwise, one can repeat the same argument given in the introduction to the present
theorem. We want to show first that g has non-tangential limit 7(f) at 7(f). It will suffice
to construct a continuous curve v : [0,1) — A with v(t) — 7(f) as t — 1 such that
9(v(t)) = 7(f) as t = 1, by the well-known Lindelf’s Theorem (see [Aba]). For0 <t <1
let k£(t) be the greatest integer less than or equal to — logy(1 —¢). Call zg = f(0) and for
t €[0,1) put ‘

(2.2.4) V() = PHO(2[1 - 260 (1 — )]z,

Observe that k(t) = 0 for 0 < ¢ < 1/2, k(t) =1for 1/2 <t < 3/4, k(t) = 2 for
3/4 <t < 7/8, so that k(t) = n for (2" — 1)/2" < t < (2(n+D) 1)/2(m*+1) | and since
v ([ =277 1 - 27k®)-1}) s the image by fo*® of the segment S from 0 to z, v is
continuous and such that y(¢) — 7(f) as t — 1, since foF®) 5 7 uniformly on the compact
set S. For the same reason, since g(S) is compact, fo*® —s 7 uniformly on ¢(S). Since

finally g(f°*®(8)) = f°*®)(g(3)), this implies that g(v(t)) = 7(f) as t = 1. Thus we
have

g(_—wl(ljrgglg(z) K- l(ljrg)lf(z) =7(f)

and analogously
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K- lim f(2) = K- limg(z) = 7(g).

z—71(g) z—1(g)

Assume now by contradiction that 7(f) # 7(g).
By applying the Julia-Wolff-Carathéodory Theorem, we know that K - 1(1m q'(z) = g'(7(f)),

K- limg'(z) = ¢'((g)), K- llmf (2) = f'(r(g)) and _5{_-”1(11{51]“( ) f'((f)) are all real

z—1(g)

numbers, possibly mfimte In particular, by the Wolff’s Lemma, 0 < ¢’(r(g)) < 1 and
0<f(=(f) <1

We recall now (details in [Aba]) that for the angular derivatives the usual chain rule
holds, namely if f,g € Hol(A,A) and o,7,n €A are such that K- hmf(z) = 7 and
K hmg(z) =1, then

K- hm?? g(f(z)) = g'(7)f'(o).

Z—r0 g —
The Wolff’s Lemma implies that g’(T(f)) > 1 and f'(7(g9)) > 1. Now let us call

a = log(f'(r(f))), b = log(f'(r(9))), ¢ = log(g'(r(f))), and d = log(g'(())). I a and d
are not zero, take two integers h, k such that |a/c| < h/k < |b/d]; if a (or d) is zero take
h =1 and k large (k = 1 and h large). In either cases, the integers h,k are such that
ha +kc > 0 and hb + kd > 0, or, in other words, are such that (f°% o g°%)(14) > 1 and
(F°" 0 g°F)'(14) > 1. Let 7 be the Wolff point of f°* o g°*; the above inequalities imply
that n # 77 and 1 # 7,.

Since f and g commute, both f and g commute with f°h o g°k then, according to

what has already been shown above,
K-limg(z) = K- lim f(2) = n,
zZ—n z—n
and since neither f nor g have n as their Wolff point, necessarily

K-limg'(z) >1 K- lim f'(z) > 1
zZ—n z—n
But then the chain rule implies that
: oh ok\/ ok
K lim(7*" 0 %)/ (2) = K- lim(7°4)'(2) - K. Jim(g™)'(2) > 1

which is a contradiction. QED

Remark (2.2.5) The Behan-Shields Theorem gives very strict conditions on the holomor-
phic self-maps of A which commute with a given hyperbolic automorphism of A. Part (ii)
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of the statement of the Behan-Shields Theorem - which can be regarded as a generalized
version of Proposition (1.1.16) - asserts in fact that the structure of these maps is extremely
rigid: all such maps have to be hyperbolic automorphisms of A as well, with the same
fixed points.

On the other side, except for the case of commuting hyperbolic automorphisms which
might interchange their fixed points, all the other holomorphic self-map of A which com-
mute have to share the same Wolff point, and the Wolff point plays a central role in the
study of the iterates of self-maps holomorphic in A, as it has been already pointed out in
Section 1.3. The main known results concerning the relationship between Iteration The-
ory and the study of sets of commuting holomorphic maps in the unit disc are essentially
obtained by using the theory of functional equations. In particular the approach given by
the definition of pseudo-iteration semigroup, which is deeply related to specific functional
equations, seems to be the most elegant and fruitful, so that we entirely devote this part
of the Section to the investigation of the interesting aspects which link the study of sets of
commuting holomorphic maps and their pseudo-iteration semigroups.

We start from the observation that in general not all the maps g which belong to the
pseudo-iteration semigroup of f commute with f. Take, for example, f(z) = T(1+2%); f
is a self-map well defined and holomorphic in A. Furthermore it has no fixed points in A
and is even. Therefore, a map g € Hol(A, A) belongs to the pseudo-iteration semigroup
of f if and only if g satisfies the following relation oo g = U o of, where o is - according
to Definition (2.1.5) - such that oo f = ® o o¢, and the automorphisms ¥ and ® of Q
commute. But from oy o f = ® o o; and the fact that f is even it easily follows that also
oy is even, thus o¢(—f(2)) = o(—f(2)) = ®(04(2)), and then g(z) = —f(z) = -11+2?)
belongs to the pseudo-iteration semigroup of f. Evidently f and g do not commute, since
otherwise, as they are not hyperbolic automorphisms of A, for the Behan-Shields Theorem
they should share the same Wolff point. But while the Wolff point of f is 1, the Wolff
point of g is -1.

The above example is in some sense very sharp. We will see in a while that for a map
g the fact of belonging to the pseudo-iteration semigroup of a map f and of having the
same Wolff point of f give a condition which is almost equivalent to ask that g commutes
with f. This condition is a precise equivalence when the Wolff point 7 of f is a fixed point
in A and f/(7) = 0, as it is shown in the following

Proposition (2.2.6) Let f be a holomorphic map of A into A, neither constant nor an
automorphism of A. Let T be its Wolff point. If g is in the pseudo-iteration semigroup of
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[; then there is an integer n such that f" o g and f commute. In particular, if f'(7) =0
(which implies T € A), then n = 0, that is f and g commute.

Proof - Assume first that /() = 0. Since in this case 7 € A, it is not restrictive to assume
that 7=0 and that, in a neighbourhood of 0, f(z) =azF+... witha # 0 and k > 2. Take
the map o, given by the Bottcher’s Theorem, which is univalent in a neighbourhood of 0,
such that o(f(2)) = [0(2)]*. Then g is in the pseudo-iteration semigroup of f if there exist
a positive integer m and a number A with A*=1 = 1, such that ¢ (g(z)) = A(c(2))™. Thus,
in a neighbourhood of 0,

o) =07 ([ (¢ Qlo(™)]*) =
=07 (X @) =0 (Mo(2)]™) =

=0 (Ao (o7 (0*))] ") = 072,

that is f and g commute in a neighbourhood of 0, and hence in A.

Assume now that f’(7) # 0; by this, we mean that either 7 is a fixed point in A
and actually f'(7) # 0, or, T€0A, since the Julia-Wolff-Carathéodory Theorem implies
K- lim f'(2) # 0. In both cases, we will say that g is in the pseudo-iteration semigroup
sz ?Tlf there exists a linear fractional transformation Y that commutes with ¢, such that
ofog=1ooy, where Vy, Q, o5 and ¢ defined as in Theorem (2.1.3), for f.

Now, given any compact set K with non-empty interior in A, g(K) and g(f(K)) are
compact as well, thus there exist an integer n such that f°(®*+1(g(K)) and e g(f(K))
are contained in the fundamental set V. Since g is in the pseudo-iteration semigroup of f,
we have, for z € K

o5 (f"(9(f(2))) = (W (R(0(2)))) = 2D (U (04(2))) = 04 (2D (g(2))).

Since oy is univalent in Vy, this means that f"(g(f(z))) = £+ (g(2)), or, otherwise
stated, f°"(g9(f(2))) = f(f°"(g(2))), in the non-empty interior of K and thus in A. QED

If f'(7) # 0, then the following result states a condition for g, which belongs to pseudo-

iteration semigroup of f, in order to commute with f

Proposition (2.2.7) Let f be a holomorphic map of A into A, neither constant nor an
automorphism of A and let 7 be its Wolff point. Let g be in the pseudo-iteration semigroup

66



of f- If f'(1) # 0, then f and g commute if and only if, there is an open set U in A such
that g(U) and g(f(U)) are contained in the fundamental set V; of f.

Proof - Assume first that f and g commute. Let K be a compact set with non-empty
interior in A, and let n be an integer such that the n—th iterate of f of the compact
set g(K) is in the fundamental set Vy, that is such that f°"(g(K)) = g(fo™(K)) C V;.
Let U be the (non-empty) interior of the f°*(K); then g(U) C V¢, from above, and
9(F(U)) = F(g(D)) C Vy since f(V;) C V.

Assume now there exists an open set U in A such that g(U) and g(f(U)) are contained
in the fundamental set V; of f. Since f(Vy) C Vy and g(U) C V¥, necessarily f(g(U)) C Vi
and g(f(U)) C V;. Since moreover g is in the pseudo-iteration semigroup of f, then, with
the standard notation,

01(f(9(2))) = @(¥(0(2))) = ¥(2(04(2)) = o5(9(f(2))).

Now o is univalent on Vy and both f(g(U)) and g(f(U)) are contained in Vy, therefore
f and g commute in U and hence in A. QED

Corollary (2.2.8) Let f,g € Hol(A, A), neither constants nor automorphisms of A, and

let g be in the pseudo-iteration semigroup of f. Suppose that g and f have the same fized
(Wolff) point 7 € A. Then f and g commute.

Proof - If f'(7) = 0, then f and g commute by Proposition (2.2.6). If f'(r) # 0, then f |
and g commute since the condition stated in Proposition (2.2.7) is fulfilled. QED

It follows from the Behan-Shields Theorem that, if we want that a map g in the same
pseudo-iteration semigroup of f commutes with f, we have to ask that the Wolff points
of f and g coincide. Taking into account this result, the following theorems identify a
first relationship between the fact that g is in the pseudo-iteration semigroup of f and the
fact that f and g commute under composition by means of techniques from the Iteration
Theory.

Proposition (2.2.9) Let f,g € Hol(A,A), neither constants nor automorphisms of A,
and let g be in the pseudo-iteration semigroup of f. Suppose that f and g have the same
Wolff point 7€ 0 A and assume that f' is continuous on AU{7}. Then f and g commute.

Proof - Since f' is continuous on AU{7}, there exists a horocycle O of center 7 on which
[ is injective. If V; is a fundamental set for f where f is injective, then also Vy U O
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is a fundamental set for f where it is injective. Indeed, f (O) € O, by Wolff’s Lemma,
and f(Vy) C Vy, by definition of fundamental set of f. So that f(VyUO) C VyU O;
moreover, if K is any compact set in A, by definition, there is a positive integer n such
that f°"(K) C V; and then f°"(K) C V; UO. Now, by the Wolff’s Lemma f(O) C O and
9(0) € O. Hence Proposition (2.2.7) implies the assertion. QED

The assumption on f’ is a very strong condition, so that Proposition (2.2.9) may be
considered as a slight extension of Corollary (2.2,8) (see [G-V] for further examples), even
in the case f'(r) = 1. The most interesting (and difficult) case is the one in which f and g
have no fixed points in A and no conditions on the “regularity” of their derivative is given.
We prove the following result by using hypotheses on the “behaviour” of the iterates of f
and g:

Theorem (2.2.10) Let f,g € Hol(A,A) be neither constants nor automorphisms of A,
and let g be in the pseudo-iteration semigroup of f. Suppose that g and f have the same
Wolff point T€ OA. If there ezist zg and wy in A so that 9°"(20) = 7 and f°"(wo) — T

non-tangentially, then f and g commute.

Proof - By Proposition (2.2.7), it is sufficient to prove the existence of an open set U in
A such that g(U) and g(f(U)) are contained in a fundamental set Vi of f. Let A be an
open set in A, so that A C A. By Lemma (1.3.14), there exists an angular sector S, of ,

vertex 7 and opening o < 7 so that Vn > 7
g°"(A) C S,.
Now, by Proposition (2.1.6), there exists a horocycle O, with center 7, so that
SaNOq C V5.

Using the Wolff’s Lemma inequality, we have

P i@ _ =4 141f@] -2
(2:210) TP W R e ey oS

The right-hand member of inequality (2.2.11) is, by Julia-Wolff-Carathéodory Theorem,
bounded from above if we suppose that z belongs to some Stolz region K (7, M); so we
have proved that a holomorphic map f with Wolff point 7 sends Stolz angles of vertex 7
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(i.e. portions of Stolz regions near 7) into Stolz angles of vertex 7. Therefore, there exist
B,v < w such that
f(Sa) C Sﬁ <

9(Sp) C Sy v<m

Again, let O, be a horocycle of vertex 7 so that
Sy N0, C V5.
Let U = g°™(A) C So N O, ng > 7. We have
g(U) = g°"*D(4) € O, N Sa,

since, by the Wolff’s Lemma, g(O,) C O,, and since, by definition of S,, ¢°™ (A) C S,.
On the other hand,

9(f(U)) = g(f(g°™(4))) C 9(£(Sa N O4)) C 8, N O,

since, by the Wolff’s Lemma, g(f(0,)) € O, and since g(f(S,)) C S,. So g(f(U)) and
g(U) are in V; QED

Remark (2.2.12) The proof of Theorem (2.2.10) is the original given in [G-V]; an
equivalent proof can be obtained by applying Proposition (1.3.18), which, however, has -
been stated in [Vlal] more recently.

By Lemmas (1.3.12) and (1.3.14), if f'(7) < 1, then for any z € A the sequence {°"(2) }nen
converges to 7 non-tangentially. Therefore the above result holds if f/'(7) < 1. We still do
not know whether the result is true in the remaining case, that is when f'(7) = ¢/(7) = 1
and when we do not suppose that ¢g°*(z) — 7 and f°*(z) — T non-tangentially, for all
z € A. In the proof of Theorem (2.2.10), we used in an essential way the geometric
property of the fundamental set V; of f stated in Proposition (2.1.6), and it is impossible
to apply the same technique to construct a proof without the hypothesis of the existence
of some 2o in A such that f°"(zy) — 7 non-tangentially. In the proof of Theorem (2.1.3),
when there is not any z; € A such that f°™(z0) — 7 non-tangentially, Cowen himself
([Cow]) has to use a different approach to obtain a fundamental set V¢ for f on which f
is univalent and uses a result due to Pommerenke, [Poml], to explain which regions one
has to choose in order to get a set where f (mapping A into itself, with Wolff point 1 and
angular derivative 1 at the Wolff point) is univalent.
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Commuting holomorphic maps of A into A belong to a same pseudo-iteration semi-

group, namely,[Cow?2],

Proposition (2.2.13) Let f and g be holomorphic maps of A into A, which commute
and which are not automorphisms. Then f and g are in the pseudo-iteration semigroup of
fog = h. In particular, if T is the Wolff point of f and if |f'(7)| < 1, then g is in the
pseudo-iteration semigroup of f.

Essentially it is proved (from the uniqueness of the data) that if V4, Q, o and @ are given
for h by Theorem (2.1.3), one can always find two automorphisms ¢ and v of € such that
onof =@ooy and o 0 g = 1 00y, and such that g o ® = Popand Ypod = P o
Notice that the above functional equations do not imply in general that g belongs to the
pseudo-iteration semigroup of f. We omit the proof of Proposition (2.2.13), since it will be
analogous to the proof of Theorem (2.2.16).

As remarked by Cowen himself in [Cow2], the difficulty in the case f/(r) = 1 occurs in
the transition from a fundamental set for ® on © to a fundamental set for won ). In general
a fundamental set can be quite odd, even though the corresponding map is very simple,
as it has been shown in [Vlal], where a suitable fundamental set for the automorphism in
HT, ®(z) =z+k, kreal and positive, has been constructed in such a way that it is not

stable for ¢(z) = z 41, [ real and positive, even though these automorphisms commute.
Notwithstanding these considerations, we can obtain the following

Lemma (2.2.14) Let f and g be holomorphic maps of A into A, which commute and
which are not automorphisms. Let fog = h. Consider Vi, 82, on, @, given for h by Theorem
(2.1.8) and, ¢ and 1 , as in the above considerations; suppose there erists a fundamental

set Vi, for ¢ such that V,, C op(V3), then g is in the pseudo-iteration semigroup of f.

Proof - Since V,, C 04 (V4), we can define V = o, 71(V,,). We have only to prove that V'
is a fundamental set for f and that f is injective on V. Since oro f = ooy, in particular,
on(f(on ™1 (Vy))) = o(V,,) C Vo, that is f(V) C V.

Given any compact set K in A, o (K) is compact in (2, and then there exists an integer
n such that

(,DOn(O’h(K)) C V(p C O’h(Vh).

Therefore
on " @M (on(K))) C on~H(V,) =V,
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that is
fFPYK) c V.

Moreover, since f restricted to V' is equal to o, “towoay, f is injective on V. The uniqueness
statement of Theorem (2.1.3) means that there exists a linear fractional transformation n
of £ onto 2 such that o, = 1o oy, where oy is as in Theorem (2.1.3) relatively to the
fundamental set V for f. We have

ahof:noo'fof:(ponoaf,

that is
oo f=n""ponooy;
analogously
grog=n""Yonooy;
moreover 17”1 o and n~ 1y o n commute, since 1 and ¢ commute. QED

We are now going to show that in some cases it is possible that V, is contained in
0n(Vr). Consider in particular case 4. of the classification given in the Remark (2.1.4).
That is suppose that Q=A~ H+ o, and ® are such that opoh = ®ooy, where (in H™)
®(z) =2z+a, acR Each automorphism of H+ which commutes with ® is a map of the
form z = z+b, b€ R So, if ¢ is such that o, o f = @ ooy, since & and ¢ commute,
in HT, we obtain ¢(2) = z+b, beR Suppose that ®(z) = z+a, a > 0; there is no
restriction if we assume that ¢(z) = z+b, b> 0. In fact, if b < 0, from the functional
equations

on(h(2)) = on(£(9(2))) = ®(on(2)) = on(2) + a;
o (f(2)) = ¢(on(2)) = on(z) +b;

7r(9(2)) = ¥(on(2))

we get

Y(on(2)) =on(z)+a—b, and a—b=c> 0,
so that we can consider g instead of f.
Take any compact K in H+. There exist p € K and r > 0 such that
K C Dy, (p,r)={2€ H"| wg+(p,z) <r}.
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where wpr+ is the Poincaré distance in H+. Let D = Dy, (p,r+a+b) D D, .., (p,r); since
D is compact in H*, then there exists an integer n such that o4 (V) D °*(D) > ®°*(K).
Notice that

(D) = Dy . (p+na,r+a+b).

Let mq be the integer such that mgb > na and mob — b < na; we have 0 < mgb — na < b.
This also means that ¢°™ (K) C ¢°™ (D, (p, 7)) = D, . (p+meb,r) C ®™(D) C

2 ™ (Du,, (7))

N N NN

$"(D) = D, (p+mna,r +a+0).

£
&

C or(Va). Since ®(o4(V3)) C orn(Vh), then <I>°(”+k)(D) C on(Va), Vk € N. Therefore
a Euclidean strip of height 2/ is eventually in or(Vh) (for real part increasing); since
[ = \/(r +a+b)2— L > polmetk) (k) on(Vr) VE € N. Thus, for any compact set
K in H*, there exists an integer mgo such that Vm > mo @™ (K) C ox(V4); by repeating

the construction of the fundamental set as in [Cow], we can find a fundamental set V., for
¢ such that V, C 0 (V},). Therefore we have

Proposition (2.2.15) Let f and g be holomorphic maps of A into A, which commute
and which are not automorphisms. Let fog = h. Consider Vi, Q, on, ®, given for h
by Theorem (2.1.3) and suppose Q=A=~ H* and (in HY)®(z) =z+a, a€R Let o
and ¢ be the two automorphisms associated to [ and to g respectively given by Proposition
(2.2.13); then there exists a fundamental set Vi for ¢ such that V,, C o (V3), and g belongs
to the pseudo-iteration semigroup of b

Notice that the same considerations cannot be used in case 3..

We are now going to show that if g commutes with f, then g belongs to the pseudo-
iteration semigroup of f if the iterates of any point z € A under f and under g converge
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non-tangentially to their (common) Wolff point. This hypothesis seems very natural in
this environment and has already given a very deep geometric approach to the inves-
tigation of the relationship between commuting holomorphic maps and Iteration The-
ory. Unfortunately, the proof cannot be repeated in the most general case, that is when
f'(r) = ¢’(r) = 1, and nothing is known on the kind of convergence of the iterates of f
and g. In this case - as already remarked - there is no easy geometric interpretation of the
data.

Finally, the following Theorem strengthens the link with Theorem (2.2.10) and, actu-
ally, it can be viewed as a vice-versa of Theorem (2.2.10).

Theorem (2.2.16) Let f and g be holomorphic maps of A into A, which commute and
which are not automorphisms. Let T be the (common) Wolff point of f and g. If there
exist zo and wo 1n A so that g°™(z9) — 7 and f°™(wo) — T non-tangentially, then g is in

the pseudo-iteration semigroup of f.

Proof - Let Vy, §2, oy and ¢ be given for f by Theorem (2.1.3). By Proposition (2.1.6) we
can find a fundamental set V; such which contains small angular sectors of vertex at 7 and
arbitrary opening ¥ < m. Consider Vp = o¢(g(V;)). We claim that V; is a fundamental
set for p on 2. Indeed we immediately have

o(Vo) = (a5(9(Vy)) = o (F(g(V§))) = a¢(a(f(V}))) C o4(g(V}) = Vo

Since o7(Vy) is a fundamental set for ¢ on , if K is a compact subset of 2, there is an
integer mg such that ¢°*(K) C o¢(V}) for n > mg. If n > my, since o is injective on V7,
we can invert it so that oy ~!(¢°™*(K)) is compact in A. Now, since there exists wg in A so
that g°"(wo) — 7 and f°™(wg) — 7 non tangentially we can find Vg, a fundamental set for
g, where g is univalent and such that Vy C V;. Moreover V, can be chosen in such a way
that it contains small angular sectors of vertex at T and arbitrary opening ¥ < w. Therefore,
by Proposition (2.1.7), also g(Vj) C V, contains small sectors of vertex at 7 and arbitrary
opening ¥ < 7. Since there exists wq in A such that f °"(wg) — T non-tangentially, then by
Lemma (1.3.14), for any compact set H in A the sequence f°*(H) — 7 non-tangentially.

Hence there exists m; € N such that for any m > mg

FoMos e (K)) € g(Vg) €V, C V5.

Since g is univalent on V,, we can invert it, so that g='(f°™ (o1 (¢°"(K))) C Vg C Vp;
then
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o5(9(g™ F™ (o7 9™ (K))))) = o* (K C o (9(Vy) = Vo,

that is, Vp is fundamental for ¢ on Q. Finally ofogof =osofog = poosog, which means
that V¢, Q, ¢ and o o g are as in the conclusion of Theorem (2.1.3) with respect to f. We
now claim that Yw € Q there exists no € N such that ¢°*(w) € ¢4(V,) for any n > ny.
Indeed there exists mo € N such that ¢°™(w) € of(V;) for any m > my, since o¢ (V) isa
fundamental set for ¢. Since o is univalent on Vy, we can invert it, so that a;l(gown(w)) is
apoint in Vy. Now, by construction of V, there is kg € N such that f°’“(a;1(go°m(w))) eV,
for any k > kq. Therefore af(f"k(a;l(gfm(w)))) = @° (MR} () € o ¢(V,) for any k and m
such that m + k > mg + ko. Define ¢ : @ — Q by ¢(w) = ((,0‘“1)"”(0]:(g(a;l(go"”(w)))),
where n is an integer large enough that ¢°"(w) € 0£(Vy). The map 1 is well defined, since
if p°"(w) € 0#(Vy), and if p is a positive integer then

(™) 04 (g(o7 (9P () = (6™ ) (o4 (g (F°P (07 (" (w))))) =

= (p7 )™ (o5(g(o7 (" (w))))-
Finally, since o is injective on V¢ and g is injective on V4, 9 is injective on €2; one then
easily verifies that 1 is also surjective on €, so that 1 is a linear fractional transformation
of £2 onto 2. We have 1 o p o 9~! = ¢ (that is ¢ and 9 commute) and

—l)on

Yooy = ((p_l)onoafogog;10900"00'f = ((p“l)onoa'fogofon = (p op°oofog = ooy, .

which means that g is in the pseudo-iteration semigroup of f. QED

Notice that in the above statement the existence of an element zo € A such that
g°"(20) — 7 and f°"(29) — T non-tangentially is assumed both for f and for g. When f
and g commute the following Proposition, (see [Cow2]), holds.

Proposition (2.2.17) If f and g commute and T is their Wolff point, then
i f(r)=0 =g'(r)=0;

2)if0<|f'(T)] <1 =0< lg'(7)| < 1;

3)iffl(r)=1 =g'(r) = 1.

Proof - 1) If f'(r) = 0, we know that 7 is in A and it is not restrictive to assume
that 7

(f
a(9(2))

) = 0. In this case, g is in the pseudo-iteration semigroup of f if and only if
= A(o(2))™, where o is such that o(f(2)) = o(2)¥, k> 2 and is injective in a
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neighbourhood of 0. Since g is neither constant nor an automorphism, then m > 2, so that
the above functional equation implies that ¢’(0) = 0.

2) If 0 < |f'(7)] < 1, then, if V}, Q, o and v are given for f by Theorem (2.1.3), g
is in the pseudo-iteration semigroup of f if and only if there exists 9 € Aut() such that
ofog =19 oos and Pop=¢orh. Now, according to the classification of Remark (2.1.4),
¢ is such that K- lim|¢'(of(2)] = |f'(7)] < 1 that is ¢ has another fixed point in AA
and so does . };g;ce I(;-_}iTmlz,b'(af (2)] < 1, which implies that 0 < |¢’(7)] < 1, since
K- lim |/ (o(2)] = |9/ (7))

3) If ¢'(7) # 1, in any case |g'()| < 1, since 7 is the Wolff point of ¢, and then
f'(7) # 1, by applying 1) or 2). QED

Suppose now that f and g commute and 7(f) = 7(g) € A. If 0 < f'(7) < 1, then,
by Lemma (1.3.12), for all z € A, f°*(z) — 7 non-tangentially. Since by Proposition
(2.2.17) also 0 < ¢'(7) < 1, then for all z € A, ¢g°*(2) = 7 non-tangentially. When
f'(t) = ¢'(7) = 1, one cannot say that the iterates of two commuting maps have the same
“behaviour”: consider, for instance

f(z) = C7HC(2) +1)

9(2) = C7HC(2) + 1),

where C': A — H™ is the Cayley transformation which maps the Wolff point of f (and
of g) to co ; even though f and g commute, {f°"},en converges to T tangentially (i.e.
{f°"(2)}nen converges to 7 tangentially for all z € A), while {¢g°"},en converges to T
non-tangentially.

Assume that f € Hol(D, D), where D is a hyperbolic domain of regular type and
that g € SPI(f). Let f and g be their liftings. Since the Identity Principle holds for
holomorphic functions, from the definition of lifting, one immediately has that fog = go f
if and only if fog = jof. Hence, keeping in mind the construction of the fundamental set
Vi for f € Hol(D, D), one can easily deduce the results analogous to the ones following
Proposition (2.2.7) for the case of a hyperbolic domain of regular type, namely

Proposition (2.2.18) Given f € Hol(D, D), let g € Hol(D, D) be in the pseudo-iteration
semigroup of f. Then f and g commute if and only if there is an open set U in D such
that g(U) and g(f(U)) are contained in the fundamental set Vi of f.
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In particular, let f € Hol(D, D) have a fixed point zg € D and fe Hol(A, A) be the
lifting of f such that f (wo) = wo (where mp(wo) = z). In this case, as already remarked,
the fundamental set V; for f reduces to a neighbourhood of 2, according to Proposition
(1.1.12). Therefore, as in the case of the unit disc A, any g € SPI(f) commute with f.
But something more can be added. Theorem (2.1.12) yields that, in the case examined,
one has 2= C and ¢(z) = f/(z0)z. Now, by definition, g € SPI(f) if and only if there
exists 1 € Aut(§2) such that o7 o g = 9 0 oy and op=gpoy, (where & is such that oof =
f'(20)-0. These functional equations imply that ¥(z) = Az and A = g’(2g). Therefore

Proposition (2.2.19) Let D be a hyperbolic domain of regular type. Assume that f
and g are non constant holomorphic maps of D into D, not automorphisms of D, which
commute under composition. Then, if f has a fized point zo € D, g also has zy as a fized
point and moreover g € SPI(f).

Proposition (2.2.20) Let D be a hyperbolic domain of regular type and f € Hol(D, D)
have a fized point zo € D. A function g € Hol(D, D) commutes with f if and only if g is

a solution of the functional equation

cog=g'(20)-0

where o 1s the “unique” solution of the functional equation o o f=Ff(z) 0o

Remark (2.2.21) We can summarize Proposition (2.2.19) by saying that, given a function |
f € Hol(D, D) with a fixed point zy € D, (D hyperbolic domain of regular type) the set
of holomorphic functions in D which commute with f coincides with the set of solutions
of the Schrdder’s functional equation in g, o o g = A- o, where ¢ is given by the functional

equation oo f = f'(z) - o

Call this set of functions F. Take g € F and let g € Hol(A, A) be the lifting of ¢ such that
§(wo) = wo (mp(wo) = 20). Since g’(zp) = §'(wo), by the Schwarz-Pick Lemma we have
9'(20) € A. Let A: F — A be defined in the following way: A(g) = ¢’(20). Clearly, since
zp is a fixed point for any g € F', X is multiplicative, that is Agoh)=X(g) - A(f).

In [Pra], Pranger shows that

Theorem (2.2.22) Let f € Hol(A,A) be locally univalent and such that £(0) =0 and
0< |f(0)] < 1. Then A(F) is a closed subset T' of A, such that

1) 0,1€T andTNA #{0};
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2) ift,sel, thent-seT;
3) C\I is connected.

Conversely, given a closed subset T" in A with properties 1 ) 2) and 3) there exists a locally
univalent f € Hol(A,A) such that f(0) =0, 0< I7(0)] <1 and A(F) =T, where F' is
the set of of functions, holomorphic in A, which commute with f. (The choice of 0 as a

fized point is arbitrary, since A is homogeneous).

Proof - Consider ¢(z) = 1 and define (C\I') = V. We have that 0 € V and that
Veel, c#0andVz €V, cz= £ withw € C\T, so that cz = & = (). Now, if £ T,
then ¢- % = w € T, since T is multiplicatively closed. But w € @\F, so that = € C\I‘,
and then cz = 2 € V.If ¢ =0, cz = 0Vz € V, and 0 € V. Given t €A\’ =AN(C\I),
call z=¢(t) = ;. Then z-t = 1 -t =1 €T, therefore 1 ¢ C\I' and 1 ¢ V. In particular,
Vt € A\D there exists a z € V such that z-¢ ¢ V.

Since V' is a hyperbolic domain, let m : A — V be the holomorphic universal covering
map such that 7(0) = 0 from the universal covering A.

For any c € v and for any z € A, we have that c- 7(z) € V; since 7 is surjective there
exists w € A such that 7(w) = c¢- w(2).

Define f. from the following properties:

f(0)=0 f(0)=c mof.=c-m.

Since 7 is locally injective, from above, f. is well defined and holomorphic in A; moreover

|[fe(2)] < 1.
Therefore, if we define S = W,T(ro), S is the unique solution of the Schréder’s functional
equation

Sof=7"(0)-5

such that S(0) = 0 and S’(0) = 1.
Since a map g € Hol(A, A) commutes with f if and only if g belongs to the pseudo-
iteration semigroup of f, that is if and only if

Sog=yg'(0)-5

it is evident that I' C {¢’(0) | g € Hol(A, A) such that go f = fog} := A(F).
So, take g € Hol(A, A) such that go f = f o g; necessarily g(0) = 0. If we assume,
by contradiction, that g’(0) € AN(C\I'), from the above considerations there exists z € A
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such that g'(0) - 7(2) ¢ V. On the other hand, the assumption go f = fog implies that
Sog=g'(0)-S, where S = =70y, thus ¢'(0) - m(2) € V, which is a contradiction. Thus
I = A(F).

Take now a locally injective f € Hol(A,A) such that f(0) = 0 and 0 < If(0)] < 1.
Since for any n, f°" is locally injective, the uniform limit S - which exists, see [Val] -
compact sets of A, defined as (f—,f(c%;; — .S, covers S(A) = W and is such that S(0) = 0
S§'(0) =1and So f=p-S. The set

A(F)={g'(0) | g€ Hol(A,A) such that gof= fog},

is a closed subset of A, which contains 0 and 1 and verifies 1) and 2). We have only to
show that C\A(F) is connected. First of all, we get A(F)N{ze C : |[z] >1} =g,
as a consequence of the Julia-Wolff-Carathéodory Theorem. We want to show that if
a € A\A(F), then there exists 2 € W such that o -z ¢ W. In fact, fVz € W a - 2 € W,
then by defining the map g, as g, = S™!(a - S), one has g, (0) = o and gy 0 f = f 0 ga,
which implies that o € A(F), a contradiction. Now, S (0) = 0 € W, which is an open set,
so that there exists a radius r > 0 such that 0 € D(0,r) = {z € C : |z| <r} CW.
Therefore, since oz 2 ¢ W and A(F)N{z € C : |z| > 1} =&, then by taking 8 whose
norm is sufficiently greater than 1, it is possible to find w € W so that B-w=a-z¢W.
Since W is connected, let ¢ : [0,1] = W be a continuous curve which connects z to w in
W and does not take the value 0. Define then p(t) = 2Z. We have p(0) = @ and p(1) =

Furthermore, if p(t) € A(F), p(t) - q(t) = « - z would belong to W, which is a contradlctlon. '
Therefore the curve p : [0,1] — C\A(F) connects o to 8 in C\A(F), that is C\A(F) is
connected. : QED

Let D be a hyperbolic domain of regular type. Consider f € Hol(D,D) with a
fixed point zy and let f € Hol(A A) be the lifting of f such that f(we) = wo, where
Tp(wo) = 2o. Since f'(z0) = f'(wo), by applying the results of Pranger to the lifting f of
f, one immediately gets that F is a closed subset of A, which has exactly the properties
1), 2) and 3). On the other hand, consider a closed subset T in 7 with properties 1), 2)
and 3); take a neighbourhood V of wy on which 7p 1s injective and let W = 7p (V). Let
z € W and zZ € V such that np(2) = z; take t € " and let fi € Hol(A, A) be the locally
univalent map, whose existence is proved by Pranger in [Pra]. Define f; : V — D by
putting f;(z) = np(f(2)). If w € D\W, let v be an arc in D connecting w to zp; consider
7 the lifted arc connecting @ (7p (W) = w) to wy and put ft(w) = 7p(f:(w)). Hence the
definition of ft is extended to D. By construction f; is locally univalent, f;(z0) = zy and
Fi'(z0) = f (wo), thus 0 < |f,'(0)| < 1. Moreover, by construction
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O’Oft:t'O'

and f;'(z0) = t. Now, given s € I' and by repeating the same procedure shown above, one
obtains a locally univalent map fs : D — D such that ft(z0) = 20, fs'(20) = s and whose
lifting fs is such that g o fs = s-0. Hence, by the above Remark, fs and f~t commute and,

therefore, fs and f; commute. So we have extended the results of Pranger, namely

Theorem (2.2.23) Let D be a hyperbolic domain of reqular type contained in a compact
Riemann surface X. Fiz zo € D and let T be a closed subset of A, such that

1) 0,1€T and TN A # {0};
2) ift,seTl, thent-seT;
3) C\I' is connected.

Then there ezists a locally univalent function f € Hol(D,D) such that f(z0) = 2o,
0<|f'(20)] €1 and AM(F) =T, where F' is the set of of functions, which are holomorphic
i A, and commute with f and where X : F — A is defined by A(9) = g'(20).

Conversely, given f € Hol(D, D), having the above stated properties, then A(F') is a closed
subset of A, which has the properties 1), 2) and 3).

As in the case D = A, Theorem (2.2.23) gives rise to a great number of examples and -
possibilities: T' may be a closed segment, a finite number of closed segments, a spiral, a
closed disc and a finite set of points, which all fulfill properties 1), 2) and 3). In particular,
taking I' = {0, %, é, é— ...1}, one can show that there exists a locally univalent function
f € Hol(D, D), (where D is a hyperbolic domain of regular type) such that the only maps
which commute with f are its natural iterates {f°"}nen.

An example of such functions is known in the set of entire functions, namely f(z) = e* —1,
(see [Bak], [Szel] and [Sze2]). No explicit examples for holomorphic functions in hyperbolic
domains D are still exhibited even in the case D = A. Cowen for instance in [Cow?2] first
shows that if f € Hol(A, A) and sup{|f(2)| : z € A} = |||f]|| < 1, then there are infinitely
many holomorphic functions besides the natural iterates of [ that commute with f and
then gives an example (but not explicitly) of a map g € H ol(A, A) such that the only
functions commuting with g are its natural iterates. Of course one immediately deduces
that ||[g]|] = 1. Notice that, since g(z) is defined as the conjugate of the map ¢ - w by
means of a Riemann map of A onto a suitable domain D with countably many cuts, it is

in general not possible to give an explicit expression for g.
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The techniques used by Pranger in A and here applied for any holomorphic map with
a fixed point in a hyperbolic domain D of regular type, even though cannot be considered
a direct method to obtain explicit examples for each kind of map, can give a precise
description of the set of maps commuting with a given holomorphic map. We refer to
[V1a2] for further details.

The approach given by Pranger to describe the set of holomorphic maps commuting
with a given map by means of suitable closed subsets of C was already adopted by Baker
and Szekeres, for the same purpose, in the case of analytic functions which have a fixed

point ¢ with multiplier 1. Any such a function has a form

f(z) =z+ i ar(z =%, amp1 #0 (m>1)

k=m-+1
if ¢ is finite or

f(z) =z + Z akz ", am 1 #0 (m>1)

k=m-1

if ( = co.

Given an analytic function f with a fixed point of multiplicity 1 as above (which is
still only a formal power series!), from the (formal) identities

fofs=/fsolf,

it is possible to (formally) determine all the power series, for s real or complex, i.e.

f@ =24+ 3 anls)(z-OF,

k=m+1
if ¢ is finite or
oo
fs(z) =2+ Z ar(s)z7"
k=m—1

if ¢ = oo, which satisfy f o f; = fs o f. These identities imply that am+1(8) = Samy1 or
am—1(8) = Sam;,—1. In particular if s is an integer then f, = f°°. Thus the set of all f,
represents all possible functions which commute with f and forms a continuous family of
functions which contains the (discrete) subfamily of iterates of the function f. This explains
why very often the maps f; are called fractional iterates. The possibility of embedding the
iterates in a continuous set has been investigated by Karlin and McGregor in [K-G] and
[K-G1] and also by Cowen in [Cow].
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o0 oo
Given a convergent power series f(2) = 2+ Y. ag(z—Q)For f(z) =24+ 5 agzF,
k=m-+1 k=m-—1
then all the iterates f°" are convergent, but for arbitrary s, f, may or may not converge

as it is shown in [Bak] for the function f(z) = e* — 1, which commutes only with its
iterates. On the other hand, for the functions f(2) = 2/(1 + 2) and g(z) = z + 1 each
fs(2) = 2/(1+ sz) and g5(2) = 2+ s converges. In some sense these are the only examples
as we will see very soon. It is very natural to ask which kind of subset of C can arise as the
set of those values s for which f, has a positive radius of convergence. Essentially most of
the Theorems obtained in this field are a consequence of the following deep result on the
normality of the family of functions f, due to Baker (see [Bakl]).

Theorem (2.2.24) Let f(2) = 2+ po .1 ax(s)(2—C)* be a commuting family of formal
power series with fized point ¢ of multiplicity 1. For p > 0 let R, be the set of complez s
such that |s| < p and for which fs has a positive radius of convergence, then there exist
constants p > 0 and M > 0 such that
[s(2) converges in |z — (| < p for all s € R,
and
|fs(2)| < M uniformly for all |z —¢| < p and all s € R,

Let R =U R,; we want to describe the possible forms of R. Clearly R is a lattice since
p

if s and ¢ belong to R so does ms 4 nt for every couple of integers m and n. We first show
the following topological property of R.

Lemma (2.2.25) The set RU{oo} is closed.

Proof - Let {sp}nen C R be a sequence converging to a finite value s0. Eventually all
the s, are in R, for some p and by Theorem (2.2.24) there is a circle |z — ¢ | < p in which
{fs.}nen form a uniformly bounded or normal family. Thus it is possible to extract a
subsequence {f;,, }n, which converges uniformly to a limit function g(z) in |z = (] < p.
Then g(z) is either the infinite constant or an analytic function. Since fsni () = ¢ for each
Nk, it follows that g(¢) = ¢ and, furthermore, taking into account the convergence of the

coefficients (since the coefficients of fs, are polynomials in s) we have

9(z) =z + spame1(z = )™ 4 = fso-
Therefore sp € R. QED
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From the lattice property of R it is clear that either every element of R is a point of
accumulation of R or no finite point of R is a point of accumulation. Putting together this

consideration with Lemma (2.2.25) one gets

Lemma (2.2.26) If L is any line through the origin of C, then RN L is either

i) the set {0};

it) the set L itself or

1) a set of the form {nso}nez, where sy is one of the two values of least nonzero
modulus in RN L.

In particular when case ii) occurs something special happens, namely

Theorem (2.2.27) If R contains a whole line L through the origin, then R is the whole
plane C.

Proof - Take p = 1. By Theorem (2.2.24) there is a disc |z — ¢l < p in which all f,
with s € R; are uniformly bounded by M > 0. In particular so do the functions fs
for s € L N Ry. Then the coefficients am4x(s), % > 0 of the power expansion of f,
satisty |amx(s)| < Mp=(M*K) for s € L N Ry. In other words, the polynomial ap,+x(s)
of degree m + k in s is bounded by Mp—(m+k) along the interval L N R; symmetric
with respect to the origin and of length 2. Without loss of generality for the following
considerations, we may assume that L N R; = [—1,1]. Now it is easily seen that the
fanction z(t) = Z(¢ +¢~') maps the unit circle of C onto the interval [—1,1] and that if
|2(t)] < 1 then v2+1 > |¢t| > v/2 — 1. Thus, since [t E Gk (2(E + 1) < Mp=(m+h)
for [¢t| = 1, necessarily |amix(s)| < Mp=(m+R)(\/2 4 1)=(m+k) for a]) |s| <1 so that f,
converges in |z| < p/(v/2+1) for all |s| < 1. Hence R; is the whole disc A and so R is the
whole plane C. QED

The above result is strengthened by the following

Theorem (2.2.28) The set R has no finite points of accumulation unless it consists of
the whole plane C.

Proof - Assume that R is not the whole plane C, and by the lattice property of R it
suffices to show that 0 is not a point of accumulation. Suppose, by contradiction that 0
is a point of accumulation. Then, by Theorem (2.2.27) any line L through 0 cannot be
entirely contained in R. Furthermore, by Lemma (2.2.26), for any line L through 0, there
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is a s(L) € L U R with minimal positive modulus. This value may be also infinite. By
our assumption that 0 is a point of accumulation of R it follows that there is a sequence
of lines {Ln}nen for which s(L,) — 0 as n — co. We may also assume that the lines L,
tend to a limit line L. For any s; € L and ¢ > 0 we may find a line L(n) of the sequence
such that

i) the perpendicular distance from s; to L(n) is less than /2 and

i) |s(L,)| < g/2.

Thus s(Ly) - which is in R - is closer to s; than e, that is to say that an arbitrary
point of L is in the closure of R so that the whole line L is in R. Therefore, by Theorem
(2.2.27) R is the whole plane C, which is a contradiction. QED

Finally we have a complete description of the set R.

Theorem (2.2.29) The set R of all possible s corresponding to the convergent fs has one
of the following forms:

i) the point s = 0;

ii) the linear set {nsg}tnez, with sq # 0;

i) the lattice plane {nsy + M1 tn,mez, With so # 0 and s, # 0;

i) the whole plane C.

Proof - If R is not the whole plane C, then R is discrete. If R does not reduce to the
single point 0 (case 1)), taking a disc centered at the origin of finite radius, it contains a
finite number of elements of R, because of Theorem (2.2.28). If one then takes sy as the
one of minimal positive modulus, certainly all the points nso, with n € Z, lie in R and they
are the only points of the line L passing through 0 and sy which lie in R. If R contains
further points, then case ii) does not apply, and we can take the point s; as the one of
minimal positive modulus which is first encountered on the anticlock rotation of I, around
the origin. Clearly sp/s; is not real and R is exhausted by nso +ms; with n,m € Z. This
completes the proof. QED

It is remarkable to observe that while an example for case i) has been found (inductively)
by Baker in [Bak1], and that the function f(z) = e* — 1 provides an example for case ii),
no example has been exhibited for case iii) (see [Bakl] and [Bak2]). Finally, the functions
f(z) = 2/(1 + 2) and g(z) = z+ 1 determine the whole plane C as their set R, and
Szekeres in [Sze2] shows that these are the only interesting examples; he proves in fact
that all entire transcendental functions with a fixed point of multiplicity 1 behave like

f(z) = ¢ — 1 and that among rational and entire rational functions with a fixed point
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of multiplicity 1 the only functions which have C as the set of s for which the fractional
iterates fs of f converge are the linear functions g(z) = z+a, a € C or the bilinear
functions f(z) = (+ (2 - ¢)/(1+a(z—()), a € C. Notice that f(z) = z/(1+ 2) is
one of such bilinear function, namely the one with ¢ = 0 and a = 1. This result has been

extended to the case of meromorphic functions by Baker in [Bak2).

We will end this Section by describing some properties of commuting rational maps
with the terminology and notation of Section 1.2. In the previous Sections we tried to
make clear how the condition for two holomorphic self-maps in a hyperbolic domain to
be commuting forces many implications on the properties of the fixed point they have to
share. For the rational case, the study of the local behaviour of a map in a neighbourhood
of its fixed points (or more in general of its periodic points) is naturally linked to the
description of the Fatou and Julia sets of a map, as it was remarked in Section 1.2 with
the considerations on the basin of attraction of periodic points. In this environment,
therefore, new interesting relationships can be found, among which very relevant is the

following result proved in [Jull].

Theorem (2.2.30) Let f and g be two commuting rational maps. Then F(f)=F(g) and
J(f) = J(g)-

Proof - Given 29 € F(f) and § > 0, we may choose € > 0 in such a way that the disc
D(z0,¢) = {z € C: [z—2z| < €} C F(f) and that the spherical diameter of fo(D(zp,¢€)) is -
strictly less than ¢ for all n € N. Since g is uniformly continuous in the spherical metric we
can assume that the spherical diameter of f°"(g(D(z0,¢))) = g(f°™(D(z0, €))) is uniformly
small for all n € N. Thus g(z0) € g(D(z0,¢)) C F(f) or g(F(f)) C F'(f) which implies
that F'(f) C F(g) so that by the symmetry, F(f) = F(g) and J(f) = J(g). QED

The converse is not true in general; for instance two finite Blaschke products B; and B,
with 0 as a fixed point have the same Julia set, namely 0A, but do not necessarily commute.
However, except when the Julia set J is smooth, that is except when J :C, or J is a part
of a circumference or of a straight line, the Julia set has a very complicated structure and
this suggests that the condition J(f) = J(g) is so strong that it might actually determine
those maps g which commute with f. This is certainly true for polynomials but the proof
given in [B-E] does not extend to rational maps; more precisely, it is shown that if f and g
are polynomials with the same Julia set J, then either f and g commute or J is invariant
under some linear function L(z) = a(z — b) + b, where b € C and la| = 1,a # 1. Any
such a linear function is called a rotational symmetry of J. More in general, in [Lev],
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Levin defines a symmetry on the Julia set J(f) of a rational map f to be any map H,
meromorphic in a disc B(a,r) with a € J(f) and r > 0, such that z € B(a,r) N J(f) if
and only if H(z) € H(B(a,r)) N J(f). This is done when J(f) is neither the Riemann
sphere (@, nor a part of a circumference or of a straight line, cases which are regarded as
exceptional. With the purpose of giving a definition of symmetry on these smooth Julia
sets, a measure (s has to be introduced with “ergodic” properties (see [Lev]). Essentially,
the main results on this topic can be summarized in the following way. Let f be a rational
map of degree m at least 2 and denote with R4(f) the set of rational maps g of degree d
such that J(f) = J(g), if the Julia set J(f) is not smooth; otherwise, in the exceptional
cases, Rq(f) will be the set of rational maps g of degree d such that ps = pg . Then, either
it is possible to conjugate f to z=™ and then Rg(f) is isomorphic to S* for any d > 2, or
f is not equivalent to z — 2%™ and then Ry(f ) is finite for any d. In particular if f is not
equivalent to z — 2*™ and J(f) is a circle, given any g € dL>J2 R4(f), there exists a linear

fractional symmetry h on J(f) such that fo! = f o h and g°* = f° o h, for I,k € N.
Finally, if g € dL>Jz R4(f) commutes with f, then either f! = g% for some [,k € N, or the

sets of iterates of the critical points of f and g is finite. Proofs can be found in [Lev],
[Lyu] and [Rit3]; these results give a more complete overview on the known relationships
between the behaviour of iterates of holomorphic maps and the description of the set of
commuting holomorphic maps.
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