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INTRODUCTION

Numerical solutions (Nakamura, 1981 and reference therein,
Piran and Stark, 1984) of Einstein's equations following the
collapse of axially symmetric rotating bodies show, for some value
of the initial ratio a/m, the formation of structure with a
toroidal shape around centrally condensed core. If by some
mechanisms, the a/m ratio of the core is reduced (see HMiller and
De Felice, 1985 and De Felice et al., 1985 for a discussion of
such mechanisms) to a value less than unity then a rotating black
hole may be formed, which will be surrounded by a massive toroidal
structure.

Other situations in which toroidal structures may be relevant
are in the modelling of quasars, active galactic nuclei and other
similar objects which most probably contain black holes and thick
accretion disks.

So far the general relativistic description of these
situations had been restricted to the <case in which the
self-gravity of the disk was negligible (Abramowicz et al., 1978
and Kozlowski et al. 1978) op to the <case when both the
self-gravity of the disk and the rotation of the black hole could
be considered as Perturbations (Will, 1974, 1975) to the
Schwarzschild black hole. However there may be situations in which
the mass of the disk or tori is comparable with that of a rotating
hole (Wiita, 1985). In this case the full Einstein equations
should be solved for the perturbations induced by the self-gravity
of the matter to the Kerr black hole.

Moreover it is not clear vet whether the self gravity of the
disk induces runeway instability. Abramowicz et al. (1980), wusing
a very simple model of the black hole accretion disk system
suggested that this kind of instability «could act in a fey
dynamical time scales so that the disk itself could eventually be
eaten by the black hole. This instability occurs because the
growing black hole changes its gravitational field and therefore
the location of the cusp through which matter is accreted changes.
on the other hand, Wilson (1984), using models of



non-self-gravitating disks in the Kerr metric, concluded that
there is no such kind of instability. A final answer to this
problem can be given only after sequences of equilibrium
configurations of self-gravitating disks or tori around black
holes for different masses ratio have been constructed. This means
solving numerically Einstein equations consistently with the given
distribution of matter.

Since the problem is quite complicated in structure and a
standard numerical method will not easily cope with it, we have
decided to use the Multigrid method (Brandt, 1977) which although
is complicated to program will deal naturally with the
difficulties of the model. As one of the first applications of the
method in general relativity (see Choptuik and Unruh, 19846, for a
different one), we decided to solve feuy representative test
problems before solving the entire one.

The plan of the thesis is as follows. In Chapter I we review
the general theory of figure of equilibrium in Newtonian and
relativistic theories. Chapter 1II contains a discussion of
stationary and axisymmetric space-times and a derivation of
Einstein's equations with the relative boundary conditions. Also,
included is a discussion and derivation of the equations governing
the fluid confiquration. Chapter III reviews some numerical
techniques used to solve Einstein's equations for stationary and
axisymmetric configurations, with particular emphasis to the
Multigrid which is the method applied by us. Chapter IV contains
an application of Multigrid in general relativity in the case of
vacuum stationary and axisymmetric space-times. In Chapter V ge
write down the equations for an infinitesimally thin disk around a
black hole in Newtonian and relativistic theories. Also, an
outline on how to apply the Multiqrid in this case, is given.
Finally, Chapter VI contains the outline of the application to the
case of a self-gravitating toroidal structure around a rapidly

rotating black hole.



CHAPTER I
FIGURES OF EQUILIBRIUM

It is well known that when rotation and magnetic field are
neglected, an isolated self-gravitating star assumes a spherical
shape, i.e. the surface upon which the total pressure P vanishes
is a sphere.

If the body rotates around a fixed axis, then we have no
apriori knowledge of its shape and stratification. Information on
these is provided only by solving the hydrodynamical equations. In
general, simplifying assumptions are made in order to approximate
stars in a state of differential rotation by means of
time-independent models. With this approximation sequences of
models can be constructed for different amount of a rotation
Parameter.

The study of these stationary confiqurations contributes to
understanding the mechanical properties of rotating bodies.
Moreover the study of stability along these sequences has provided
useful information about the fate in secular and dynamical
time-scales of idealized evolving objects for increasing amount of
rotation along the sequences.,

This chapter is devoted to reviewing the important group of
results that apply to rotating stars both in Newtonian and General
Relativity theory.

1.1 The mathematical problem.

In this and next few sections we assume that the space-time
is Euclidean and all the material velocities are small compared
with the speed of light so that the Newtonian theory of gravity
can be used. Moreover, we assume that the stars are composed of
continuous and inviscid fluid s0 that the fundamental principles
of classical mechanics hold. The hydrodynamical equations derived
on the basis of this continuous model can be found in any book of
classical mechanics. In particular, Tassoul (1978) derives them

for a rotating star.



In the hydrodynamical description the state of the system is
characterized by the density p, pressure p and velocity of the
fluid v at a given point. The basic equations are the continuity

equation

(1.1.1) g_§+ Ve(w) =0

and the Euler equations

dv. oy .
(1.1.2) o e+ (USPIV ®m = = Pp + E
dt &t e

where F is the force per unit mass additional to the pressure

force. In the case of self-gravitating system in Newtonian theory

(1.1.3) F = - V&(p,t)

where @ is the gravitational potential. The relationship between
E, pand v is given by the Poisson equation
2 8%z %3 &%z

(1.1.4) Ve = =+ + = 406G P

ax oy az?

where 6 is the gravitational constant. It is well known (see any

book on theoretical physics or potential theory, e.q. Morse and
Feshbach, 1953) that the solution of equation (1.1.4) of physical

interest is

plz,t)dx
(1.1.5) B(r,t) = - @G
x - L

where the integration is extended over the entire volume of the
system (that is, over all regions where p differs from zero).

The system of equations (1.1.1), (1.1.2) and (1.1.4) is
incomplete and in general a relation between the pressure and the
density (equation of state) must be provided. This constitutive
equation (i.e. function of density, temperature T and chemical
composition x) is characteristic of +the stellar material. In

general

(1.1.613 P =p(o,T,x)




This equation introduces tuwo additional variables, therefore the
system has to be supplemented by the energy equation
y T r 3 . {vaVis } PP V.g + &
L& "= 2
and by the equation expressing the change in time of the chemical

composition due to nuclear reactions
dx
(1.1.8) JE-EG(X,,O,I)

In equation (1.1.7) s is the specific (per unit mass) entropy, @&
is the radiative flux and e is the rate at which enerqy is
generated per unit mass. Constitutive equations for @ and &£ must
also be provided. Supposing that thermal energy 1is transferred
from regions where the temperature is large to those where it is

small, the diffusion equation gives

(1.1.9) Q@ = - kYT

where k=k(p,T) is the transport coefficient. The enerqgy generation
€ per unit time and unit mass is in general a known function of 2,

T and the chemical composition x of the star

(1.1.10) £ = 2(p,T,x)

Finally, in order to make a solution of the above system unique,
initial data and boundary conditions must be specified. If the
boundary &% (surface of the star) is expressed by the equation

Flr,t)=0 the simple boundary conditions are

(1.1.11) g-;l:o, P mo T =0 on &v.

These particular boundary conditions are valid only when the star
is supposed to be non-radiating. Integration of equations (1.1.1),
(1.1.2) and (1.1.7) over the entire volume gives as a result that
mass, angular momentum and total energy must be conserved
respectively.

Moreover combination of equations (1.1.2) and (1.1.5) gives

as a result the second order virial theorem which should be




satisfied by any ideal and self-gravitating fluid model

i dzI
(1.1.12) T — = 2K + W + BJ p dx

2
dt ”
where I, K and W denote, respectively the moment of inertia, the

kinetic energy and the gravitational energy

(1..1.13) 1 uj o= %dx K.—.:%j ovZdx
¥ ¥
and
(1.1.14) w--;-j pE dx
f‘/
The set of equations described so far can be reduced to stationary
ones when the characteristic time scales for the fundamental

physical processes involved are large.

1.2 Time scales and steady-state approximation.

There are three main time scales which are important during
the life of a star: the dynamical time scale or free fall time
scale tff (during which a unit of mass will fall freely under the
action of the star's gravitational potentialy, the contraction
time scale or Kelwvin time scale tk (during which the energy
released by radiation is comparable with the gravitational energy)
and the nuclear time scale th (during which a substantial fraction
of the nuclear fuel is consumed). For the Sun these time scales
are roughly one hour, 107 vears and 10'° vears respectively. For
other stars the numbers can change, but the ratios tﬁ/tk and
tk/tﬁ are often still small. Different phases of stellar evolution
can be treated by different approximations of the full
hydrodynamical equations depending on which time scale dominates
during that phase.

The first phase of a star's life, when the temperature 1is
still low, is characterized by a rapid contraction or collapse.
Here the dominant time scale is toe and the other ones can be

considered infinite. In this case the full time-dependent



equations are needed and the mathematical problem is not trivial.

During protostars collapse when the temperature increases
but is still below the value at which thermonuclear reaction are
ignited the time scale of the contraction changes from tﬂ to tk
and the star begins to radiate energy at the expenses of the
gravitational energy. Here th can be still considered infinite. In
this situation the characteristic velocity is comparable to the
ratio of the radius of the star R to the Kelvin time which, in
solar unit, is v =~ R/tk ~ 10 %, Such small velocities allow to
neglect the local derivatives in equations (1.1.1) and (1.1.2) but
not in equation (1.1.7). Therefore the star can be c¢onsidered
hydrodynamically, in steady state but not thermodynamically.

When the temperature reaches the thermonuclear reaction
critical value the radiative losses are balanced by the energy
released and the contraction stops. Here the dominant time scale
is the nuclear one and the star can be considered hydrodynamically
and thermodynamically in a steady state if we restrict our
attention to short time intervals such that variations on chemical
composition can be neglected.

After a succession of equilibrium core burning phases
separated by periods of core contraction all of the available fuel
is finally exhausted. At this stage the star cannot support itself
against gravitational collapse by generating thermal pressure,
then it will collapse till the pressure of degenerate electrons
can support it forming thus a white dwarf or till when the support
is provided by degenerate neutrons forming a neutron star or it
will collapse for ever (no other means can support now the inward
pull of gravity) forming a black hole. It is well know that the
three situations will occurs for different values of the mass of
the star. In table I (from Shapiro and Teukolsky, 1983) besides
the range of typical masses for these objects (considered not
rapidly rotating) one «c¢an read the radius, mean density and
surface potential. It is clear from the table that these objects
are very compact and have much stronger surface gravitational
fields than a normal star. General relativistic corrections become
progressively greater as one moves from ordinary stars to white

dwarfs and then to neutron stars and black holes.




Table I

Object Mass Radius Density Surface Potential

-3 2
M) (R} g.em (GM-Re )
sun M R 1 10 °
e Oz ? &

White Dwarf =M o ~10 RO =40 ~10
. -5 1 -1

Neutren Star ~1-.—5MG ~30 Ro <i0 ~10

2 3
Black Holse >aM 20M = ~MR ~g

The characteristic time scale for this phase of a star's life
is given by the time during which the star releases the residual
ion thermal energy cooling down. An estimate of this time scale
(Shapiro and Teukolsky, 1983) is

tc ~ 10Q yr
for a white dwarf whose luminosity is % =~ 10_3 Lo . Here again the
steady state approximation is valid.

The above analysis shows that in general the stars spend most
of their life in hydrostatic equilibrium, therefore it is not a
bad approximation for studying stellar structure to consider only
the time-independent part of the system of equations discussed.

This even applies in the framework of Gaeneral Relativity to
study the structure of neutron stars and other configurations for

which the above time scales can be neglected.

1.3 Some general results

Different situations can be described by different equations
of state and different rotation law. The first model of star in
hydrostatic equilibrium have bheen constructed supposing that the
star does not radiate and it is in permanent rotation around a
fixed axis (see Tassoul, 1978). The equations describing
stationary configurations of rotating and self-gravitating gases
are

(1.3.1) —(1;%2_='J“

— + 93
F4 VP g




4TIG P inside

(1.3.2) v%g ={

0 outside

The left hand side of equation (1.3.1) can also be written as

(1.3.3) —7—:-=W2—(ny_)xv_

therefore the integrability condition for equation (1.3.2) is

(1.3.4) Vx[ ; W o+ (ny_)x\L] = 0

Using cylindrical coordinates (r,z,p) the fluid velocity is given
by

(1.3.5) Vv =D Q(r,z)g@

and equation (1.3.1) and (1.3.4) reduce to

i 2
(1.3.6) — m-=V2 + r Q(r,z)e
P P g Tr

(1.3.7) 2r Qgg g@ = VE=%=JxVb

Here, gw and e, are the wunit vectors in ¢ and r-direction,
respectively, and 2 is the angular velocity. Equation (1.3.7)
implies that for barotropes, where the pressure is a function of

the density only, the angular velocity distribution has to be

constant over cylindrical surfoaces

(1.3.8) gg = 0
Horeover, if we consider a rotating star for which condition
(1.3.8) holds, then equation (1.3.7) shows that the tisopyenic
Cegual densityd- and the isobaric Cegual pressured-surfoces nust
colnecide. Furthermore, if equation (1.3.8) holds, the c¢entrifugal

force term in equation (1.3.6) can be obtained from a centrifugal

potential §c




r
2
(1.3.9) §c = J Q(r)r dr
0

Another simplification is provided by the

Lichtenstein's theorem: rotating flulid masses for which the

angular velocity does not depend on =z have a plane of symmetry
perpendicular teo the axis of symmetry. This theorem, first proved
for rigid rotation and uniform density has been extended . even to
differential rotation with non uniform density (see Stoeckly,
1965). When the potential is expanded using orthonormal
polynomials this symmetry requires only even terms in the series.

All these results are derived from the condition of
mechanical equilibrium and are valid for any rotating systems.
However, they do not provide any idea on the distribution of
angular momentum or the rotation law. Constraints on it come from
considerations of dynamical and thermal stability.

The usual approach to stability is the normal-mode one. This
consists of considering small perturbations of the system and
therefore studying the linearized time dependent equations of
hydrodynamics. Since the problem is linear the space wvariable r
can be separated from the time so one search for normal-mode
solutions for the displacement of the form

(1.3.10)  £(r,t) = &(r,we"
The equations then will provide a dispersion relation from which
one can study the sign of w°. It turns out that if w°<w® the system
will be unstable since perturbation will increase in time, and if
aFﬂ) the system will be stable. The onset of instability occurs
when uF:O, the modes corresponding to these values of ® are called
neutral modes.

When the system is unstable we say that it is dynamically or
thermally wunstable if the characteristic time scale of the
instability is of the order of the free fall time (Gp)ﬂb? or of
the order of the Kelvin time GHE/LR respectively.

The main condition governing the rotation law criterion is

the Hwiland which states that a general non-tsentropic




configuration is dynamically unstable (f on each surface of
constant entropy s the specific angular momentum .&|r20| must  be
increasing function of r
(1.3.11) dg}O.
dr

In view of these results a model of a rotating confiquration
can be specified giving the total mass M, the total angular
momentum J and a distribution of specific angular momentum
satisfying the above criterion. Then fizxing the mass one can
construct a sequence of models with different amounts of rotation.
Instead of J, one can use another parameter to characterize the
main features along the sequences. In the case of a spheroid it is
natural to use as a parameter the eccentricity e since it gives an
idea of how oblate the object is. The most convenient measure is

the ratio of rotational kinetic energy to the gravitational energy

(1.3.12) TB-{%

By virtue of the wvirial theorem, a vrotating confiquration in

equilibrium composed by perfect fluid must satisfy
(1.3.13) 2K + W + 3(I’ - 1)U =0

where I' is the adiabatic index and U is the internal energy. Since
the last term must be positive otherwise the configuration would

be radially unstable we have

(1.3.14) 2K £ W]
then
(1.3.15) 0 =7 0.5

This parameter gives us a qualitative idea about the concept of

slow and rapid rotation according to the inequalities

(1.3.16) T £« 1 slow rotation

(1.3.17) T ~ 0.5 rapid rotation.
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Fig. 1 - The eccentricity e along the MacLaurin
sequence, as function of the ratio =K/ |W].




1.4 Equilibrium confiquration of ellipsoidal shape

Hydrostatic equilibrium of rotating stars has been studied
using different approaches. As a first approximation we can assume
that the configuration is incompressible and rotates with the
simplest rotation law, e.g. uniform rotation. These models can be
thought of as a particular case of the more general centrally
condensed polytropic bodies, rotating with a differential 1law.
Making this generalization we can divide the approaches wused so
far into four groups. The first one adopts models in which the
equipotential surfaces are level surfaces of tractable coordinate
systems. This is applied to homogeneous and uniformly rotating
bodies no matter how rapid is the rotation. The second is a
modification of the first and treats slowly rotating objects whose
equipotential surfaces deviate only slightly from simple surfaces
(Chandrashekar-Milne expansion). The third group uses a
variational method in which the changes of the parameters
describing the model are chosen among the ones which minimize the
total energy (Roberts, 1962), The fourth group uses the most
straightforward approach, that is the direct integration of the
partial differential equations of equilibrium. This method has no
limitations and can study as precisely as desired centrally
condensed uniformly or differential rotating configurations.

Homogeneous uniformly rotating bodies share many properties
with the differential polytropes. There are mainly two classes of
such objects, the MacLaurin spheroids and the Jacobi ellipsoids.
The former are axially symmetric, the latter are non-axisymmetric.
Fig. 1 shows the eccentricity of such objects as a function of the
parameter 7. Jacobi ellipsoids exists only for in the range
0.14=7=0.5. This means that only rapidly rotating configurations

can have triaxial symmetry. In Fig. 2 the dimensionless quantities

2

a2 9}
(1.4.1) Q5 = —
~ J

(1.4.2) J =

10




Fig. 2 - The squared angular velocity oF and the total
angular momentum J along the MacLaurin (solid line) and
the Jacobi (daoshed iine) Sequences, as functions of <.



where éz(aiazag)bq and a,L are the axes of the configurations, are
Plotted. The full line refers to the MacLaurin sequence, whereas
the dashed one refers to the Jacobi sequence.

If we consider a star contracting slowly J will increase
monotonically as do T and e, the object become progressively more
oblate and it ends up as an infinitely thin disk. Moreover, for
0=7=0.14 the MacLaurin spheroids are the only possible equilibrium
configurations, whereas to each value of T in the range 0.14=%7<0.5
there corresponds two figures of equilibrium. In Fig. 3 the total
mechanical energy X + W in units of gﬂGpﬂéz is plotted against 3.
The figure shows that a Jacobi ellipsoid has lower mechanical
energy than the MacLaurin spheroid with the same M, J and volume
V. If there is some dissipative mechanism a MacLaurin spheroid
will evolve to a Jacobi ellipsoid beyond the point of bifurcation
T=Tb=0.14. In order to check if this is the case one should solve
the full set of hydrodynamical equations in which the dissipation
is included. Press and Teukolsky (1978 integrating the second
order virial equations with viscosity found that the MaclLaurin

spheroids slowly deform into stable Jacobi ellipsoids. An insight

into the problem comes from the stability analysis. It c¢an be
shown that there is a neutral mode (w=0) at the bifurcation point
Tb’ but nf>0 on both sides of it. HMHoreover «w=0 at T=Tb is a

double root and two sequences branch off the HacLaurin sequence at
this point, namely, the Jacobi ellipsoids and the Dedekind
sequence of triaxial ellipsoids whose overall shape is stationary
relative to an inertial frame, although fluid circulates about the
least axis . Now, if one includes viscous dissipation it «can be
shown that w- becomes complex beyond Ty and the imaginary part is
proportional to the viscosity. Then the perturbation increases
slowly (on the viscous time scale) and the MacLaurin spheroid
evolves into a Jacobi ellipsoid minimizing enerqy. This is a
so-called secular instability because it is slow and needs
dissipation to operate. Including dissipation by gravitational
radiation instead of by viscosity, Chandrashekar (1970) has shown
that there is again a secular instability driven by gravitational
radiation reaction. The mode that is made unstable by

gravitational radiation is not the same one that is made wunstable
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Fig. 3 - The total mechanical energy E=XK+W along the
HacLaurin (seolid line) and the Jacobi (deshed line)
sequences, as functions of J.




by viscosity. For a discussion of such instability see the next
section.

Another point of onset of instability occurs beyond Tb at
T=T50.2738 along the MacLaurin Sequence. At this point &F=O, but
w goes to negative values beyond T, no matter what physical
Process is going on. At this Point the MacLaurin spheroids beconme
dynamically unsteble. This Point can be reached when viscosity and
gravitational radiation reaction work together or when dissipative
effects are negligible.

James (1964) relaxed the hypothesis of homogeneity and solved
numerically the equation of hydrodynamical equilibrium
constructing sequences of uniformly rotating axisymmetric models
with increasing rotation velocity, keeping constant the polytropic
index n and the central density P, The range of polytropic index
covered by his calculations wsas 0=n=3. According to these

calculations all the sequences for n#0 terminate for a value of

the parameter T, Tmmﬁ which depends on the wvalue of n. The
Sequences stop because of equatorial shedding, that is when the
effective gravity at the equator becomes zero. Fop n<0.808, Tmax

is greater than Ty therefore there is always a non-axisymmetric
bar mode inspability at 7=0.14 irrespectively of n if the sequence

extend that far. For n=0.808, Tmm<is smaller than therefore

Ty e
the configurations are always stable up to the sh;;ding point.
This results suggests that wuniformly rotating polytropes with
n=0.808 cannot store rotational energy to reach the point Ty they
cannot rotate rapidly.

A different picture, which resembles the MacLaurin sequence
more, comes out from considering differential rotating polytropes.
Stoeckly (1965) solved numerically the relative set of equations
and constructed self-consistent models of axisymmetric
differential rotating polytropes with n=1.5. The results of this
numerical integration indicate that for models whose rotation was
nearly uniform the sequences terminate with models with Zero
effective gravity at the equator confirming the results of James.
As the differential rotation increases the equidensity surfaces in
the interior of the configuration assume g more elliptical form up

to the case in which the models pass from a cusped interior

12



equidensity surface to a completely detached ring.

Hore general polytropic sequences with indices 0=n<2 have
been obtained by Bodenheimer and Ostriker (1973) using the
self-consistent-field (SCF) method developed by Ostriker and HMark
(1968). Analysis of stability (Ostriker and Bodenheimer, 1973)
indicates that the instability points of the MacLaurin sequence
(secular at T,=0-14 and dynamical at 7~0.27) seem to be quite
general (however see section 1.5). The method used did not allowed
the authors to calculated <configurations with high degres of
flattening. A modification of the SCF method (Hachisu, 1986)
removes those defects and enables to calculate structures such as
ring, core-ring and very flat disk (see Chap. III).

Only very recently (Vandervoort, 19280, Vandervoort and Welty,
19281 and independently Ipser and Managan, 1981) study of
non-axisymmetric inhomogeneous bodies has begun. In the past,
efforts to generalize the axisymmetric configurations to
non-axisymmetric ones, have been discouraged by the c¢ircumstances
that, in the case of uniformly rotating polytropes, bifurcation
occurs only for values of the polytropic index which are too low
to be representative of the central concentrations of most real
stars. On the other hand, it now appears that polytropes of a low
polytropic index can model the structures of neutron stars. These
studies are still in their infancy and only few cases have been
considered. In particular Ipser and Managan under the assumptions
of incompressible flow, absence of meridional motions and linear
dependence of the motions upon the position, have constructed
sequences for value of n in the range 0.5<n=<0.7. For larger n such
configurations can exist only over a narrow range in angular
velocity, since larger amounts of rotation vields outer regions in
danger of succumbing to mass shedding. This result is in agreement
with calculations made by James (192643, Vandervoort (1980) and
Vandervoort and Welty (1981).

The problem of finding equilibrium configuration of rotating
system in general relativity is far more complicated even in the
simplest «case of incompressible rigidly rotating fluid. The
difficulty arise by the fact that no general solution is known for

the exterior gravitational field. The Kerr solution can describe a
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very restricted class of axisymmetric objects. So one must resort
to approximated method or numerical methods. Here again we can
divide in four different classes the lines of research which have
been followed. The first one considers the effect of relativity
fairly small (post-Newtonian approximation, hereafter PN) in which
GH/RCE« 1; the second one considers only slowly rotating objects
for which RZQZ« GH/R. The third and fourth ones apply to rapidly
rotating fully relativistic models by wusing a variational
principle method or by self-consistent-field calculations.

In a series of papers Chandrashekar (1965, 1967, 1971a,) used
the PN approximation to study the effect of general relativity on
the c¢lassic MacLaurin spheroids and Jacobi ellipsoids. The
principal correction to such configurations is that the isobaric
surfaces are pulled inwards at the equator and become 1less
eccentric than predicted by Newtonian theory.

Bardeen (1971) reexamined +the PN forn of the HMacLaurin
spheroid using a different method. An interesting new axisymmetric
instability point along the sequence of MacLaurin spheroids has
been found by these PN analyses. The value of the eccentricity e
at this point is 0.985. Bardeen suggested that a ringlike
structure or a central bulge confiquration may develop according
to whether dissipation transfers angular momentum inwards orp
outwards. This is a subject which is not fully investigated yet.

When centrifugal effects are small compared with the
gravitational ones, the rotation can be treated as a small
perturbation on an already known non-rotating configuration. The
field equations are then expanded in powers of the angular
velocity . Hartle (1947) derived the structure equations correct
to second order in . These equations were solved by Hartle and
Thorne (1948) for modelling rotating neutron stars and white
dwarfs whose matter was assumed to obey either the Harrison-Weeler
(1965 equation of state or Tsuruta and Cameron (19664) V? equation
of state. They concluded that the effect of slow rotation on the
determination of the mass limit is not very large.

Chandrashekar and HMiller (1974) studied wuniform slowly
rotating configurations. Their aim was to mimic a quasi-stationary

collapse through a sequence of models for different values of the
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ratio of the radius R of the star to the Schwarzschild radius R .
From this analysis appears a purely general relativistic effect on
the behaviour of the ellipticity as function of the ratio R/RG. As
this ratio decreases (i.e. during contraction) the body becomes
more and more oblate till reaches a maximum at R/Ra~2.3 and then
the ellipticity decreases again to zero. Non-linear relativistic
effects enable the inward gravitational forces to overcome the
outward forces.

For studying the effects of rapid rotation and of general
relativity altogether, the methods described above cannot be
applied anymore. Then one should use numerical techniques or
variational principles. The aim of these 1latter is to find an
expression which, when minimizing under some constraints, can lead
to equations and conditions which determine the equilibrium
structure of the body in consideration.

For axisymmetric configurations in uniform rotation which are
barotropic, Hartle and Sharp (1965, 19673 developed a wvariational
principle. They gave expressions for the total mass-enerqgy M,
angular momentum J and baryons number N in terms of the metric
functions and density distribution. An equilibrium model is then
found minimi;ing M under the constraints of specified J and N in
all the configuration.

Abramowicz (1970) and Bardeen (1970) independently developed
a rather more general variational principle for perfect fluid
configurations which can be differentially rotating and
non-barotropic. Again here the equilibrium configuration is
calculated minimizing the total mass under the constrain that J
and N are fixed for each ring of matter belonging to the body 1in
consideration. This was used by Abramowicz and Wagoner (1976} to
compute neutron star models.

Numerical relativistic calculations have been carried out
first by Bardeen and Wagoner (1969, 1971) for disk configurations
in which the pressure vanish (see later). Wilson (1972) considered
differentially rotating polytropic models with n=3. He used a full
2-dimensional finite difference code for solving the field
equations. Bonazzola and Schneider (1974) developed numerical

methods for constructing rotating fluid bodies with various

15




Pressure density relations and various amount of flattening. This
method is a general relativistic version of Ostriker and Mark's
one in which the Green function techniques for formulating the
Einstein's equations in integral form is used. However, this paper
together with that of Wilson are opened to a certain amount of
criticisms. Wilson approximates the boundary conditions
quaranteeing asymptotic flatness by certain ad hoc Newtonian-like
conditions and this might lead to significant inaccuracy in highly
relativistic models. Bonazzola and Schneider's method contains
artificial restrictions that cause it to break down in highly
relativistic situations before many interesting rotational
effects may appear.

Very detailed sequences have been calculated by Butterworth
and Ipser (1975, 1976) (hereafter referred to as BI), Butterworth
(1976, 1979) using the general relativistic version of Stoeckly's
method. In the first papers BI applied their method to construct
sequences of uniformly homogeneous bodies which in certain cases
exhibited interesting phenomena. Specifically, it was found that
unlike the Newtonian sequences of MacLaurin spheroids, fully
relativistic sequences terminate at points where centrifugal
forces balance gravity at the equator (points marked shed in Figqg.
4). Also, highly relativistic models with sufficient amount of
rotation were found to develop regions within which observers must
rotate with positive angular velocity relative to infinity (see
Chap. II) (point marked ergo in Fig. 4). Figq 5 shows the
eccentricity versus J/Hz, where Ho is the rest mass of the
configuration. A body with J/nzso.s reaches a maximum eccentricity
=0.7 then moves downwards through states with smaller and smaller
value of e. This confirm the result of Chandrashekar and Miller
mentioned above.

In a further paper Butterworth (1976) considered uniformly
rotating pseudo-polytropes (paé+bw5. He did a comparison with the
Newtonian computations made by James. In Fig. 6 we c¢can see how
close are the results between the Newtonian case and the
relativistic case. The only difference is that for n<2.5 the
relativistic objects are more spherical than their Newtonian

counterparts of equal angular velocity and central rest mass
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density, while for n>2.5 they are more flattened. No ergoregions
were found for these objects.

A modification of the numerical method allowed Butterworth
(1979) to compute solutions with angular velocity decreasing as a
function of the angular momentum (high eccentricity). These models
are important not only to extend the relativistic sequence
further, but also to investigate the association between the
termination points on relativistic sequences with the first
axisymmetric secular instability of the MacLaurin spheroids which
occurs after the maximum in angular velocity.

Fig. 7 shows that sequences with y=1~evﬁo.30 have maxima in
the angular velocity, whereas sequences with »20.30 terminate at
the mass-shedding instability point before a peak in the angular
velocity is reached. The figqure shows that these calculations are
not very accurate since, for instance, the sequence with »=0.004%
does not pass very near to the three points of Newtonian
instabilities (open circle).

Using a numerical code based on the program developed by BI,
Friedman, Ipser and Parker (1984, 1986), Friedman and Ipser (1%986)
have studied the structure of rapidly rotating relativistic
models, based on equations of state proposed for neutron star
matter. Particular emphasis was given to establishing upper limit
on rotation and mass. Figure 8 (from Friedman et al 19864) shous
the relation between 7 and €. The end-point of each sequence
represents a star rotating sufficiently rapid that particles at
the equator move at the Keplerian velocity C& (angular velocity of
a free particle in circular orbit). Because no uniformly rotating
star can have Q}Qk, the Keplerian fregquency gives a definite upper
limit on rotation (however see section 1.5). Table II (from
Friedman et al., 1984) shows the effect of rotation on the upper

mass limits for four equation of state with different stiffness.
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TABLE II

Maximum mass models

Eg. of M M increase M M 9] T/
4 T (o] 73 o 'Oa
is -g 4 -1
state % 10 g cm 3 40 3 )
3. 53 30 3. 58 O. B4 0. 89 0. 108
s 2.15 17 2. 47 2.7 1. 44 O. i08
F 1.72 17 1. 95 3.0 1. 23 . 094
a 1. 55 14 1.73 5,5 1. 53 0. 101

Uniform rotation increases the maximum gravitational mass of a
model by an amount ranging from ~14% for the softest to ~30% for
the stiffest models (see Friedman et al. (1988) for the
identification of the L,C,F and ¢ equations of state which are 1in
the order of decreasing stiffness). The table also provides the
upper limit rotation rate . The softest equation of state permit
the largest rotation rate.

The mass limit increases if the equation of state is only
constraint by the energy condition e>0, microstability condition
dp/dezo and causality condition dp/de=i (Friedman and Ipser,
1986). The maximum mass given for a uniformly rotating neutron
star is then +8.4 Ho' The motivation for the causality constraint
is not completely obvious and if it is discarded then the upper
mass limit increases to ~14 Ho‘

Differentially rotating polytropes have been calculated by
Komatsu et al. (1984). They used the generalization of Hachisu's
method to calculated Newtonian equilibrium configurations (see
Chap. III). The result which they obtained is that the mass
increase due to vrotation is much 1less for a differentially
rotating configuration <case than for a uniform rotating
configuration, the increase being less than 1% in the
differentially rotating case. This can be seen in Fig. 9 where the
ratio of rest mass to non-rotating mass (Ms) is plotted against

the axes ratio 1-» /pr .
p e
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1.5 Gravitational radiation instability.

The discovery of the millisecond pulsar PSR 1937+214 (Backer
et al., 1982) has renewed interest in the study of the stability
properties of rapidly rotating stars. The combination of the high
density and high rotation rate of the millisecond pulsar makes it
a likely candidate for an object where the gravitational radiation
reaction-driven instability have played a physically important
role in its formation and evolution.

Already in 1978, Papaloizou and Pringle predicted the
possible existence of a class of rapidly rotating neutron stars,
arising when old neutron stars (with weak magnetic fields) are
spun up by accretion.

Since Chandrasekhar’™s (1970) discovery of gravitational
radiation reaction secular instability, the understanding of such
instability has greatly improved because the advances in
Lagrangian variational techniques (Hunter 1977, Bardeen et al.

1977, Friedman and Schutz 1978a, 1978b). Using such techniques

Friedman and Schutz (1978b) have shouwn that gravitational
radiation makes all differential rotating, self-gravitating
compressible perfect fluids unstable to non-axisymmetric

perturbations. The eigenfunctions of the unstable modes have an
exp(ime) azimuthal dependence. Slowly rotating fluids are unstable
only to modes with extremely long growth times and short
wavelengths (large m). This instability time scales are function
of the density of the fluid p and wave number m of the mode. They
increase as p decreases and as m increases accordingly to the

formulae (Comins, 1979b)

+

(m—1)[(2m+1)!!]2 e 2m
&)

i
W (m- 1) a
2)1z2

2O6

(1.5.1) L
(m+1)(m+2)(1-e

where R is the radius, & the eccentricity of the model and the
frequency of the instability. As one spins up a perfect fluid
model, it becomes unstable to modes with successively shorter
growth times (and smaller value of m). For solar density, the ¢
for all modes are much greater that all other relevant

evolutionary time scales. Only for rapidly rotating white dwarfs
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and neutron stars are the ¢ small enough to make the insfability
physically important. For white dwarfs, only the m=2 modes grows
quickly enough to be significant and only differentially rotating
dwarfs can spin fast enough to be unstable to it.

Work by Detweiler and Lindblom (19773, Lindblom and Detweiler
(1977) on the 1l=m=2 mode of the MacLaurin spheroids, by Comins
(1979)and Baumgart and Friedman (1986) on all the 1l=m modes and by
Lindblom and Hiscock (1983) on the general «class of imperfect
relativistic stars show that when dissipation due to viscosity is
comparable to the loss of energy due to gravitational radiation,
viscosity will damp out a gravitational-wave-driven instability.
In the case of neutron stars, the instability can be expected to
play a role only for old stars spun up by accretion or newly
formed stars. In either case, because the star is hot, viscosity
will be relatively small: viscous dissipation should stabilize
modes with m>5 for which the viscous damping time scale is shorter
than the growth time of the instability in a corresponding perfect
fluid model. Therefore the m=3 and 4 modes can be expected to set
the limit on neutron stars rotation (Friedman, 1983, Wagoner,
19843 .

Work on white dwarfs for calculating the instability points
by Ostriker and co-workers (Tassoul and Ostriker, 1968, 1970,
Ostriker and Bodenheimer, 1973, Ostriker and Mark, 1968, Ostriker
and Tassoul, 1969) showed that the value 7=0.14 at which the l=m=2
mode of MacLaurin becomes unstable was surprisingly insensitive to
the compressibility and rotation law of the star. Although the
tensor virial method they used, it turned out to provide neither a
necessary (Hunter, 1977, Friedman and Schutz, 1975) nor sufficient
(Friedman and Schutz, 1977b, Friedman, 1978) condition for
stability, when Durisen and Inamura (1981) recomputed the
instability points using a genuinely sufficient condition, they
again found only small (<7%) departures from the MacLaurin values
of 7. Inamura, Durisen and Friedman, (1985), and Managan (1985)
have independently determined the gravitational-radiation
instability points for polytropes in terms of the parameter 7. The
adiabatic index governing the perturbations was assumed identical

to the equilibrium value of d(logp)/sd(loge)=1+1/n where n 1is the
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polytropic index. As can be seen from table III the

TABLE III

Instability points of uniformly rotating polytropes

n=a "AEO. 5 n=4 n=i. 35
TEI . . og9 O. 09s 0. a80 0. 059
s 3. 077 0. 074 o. o058 0. 043

critical values Tq and T, of 7 at which the m=3 and m=4 Dbecome
unstable were found to increase with increasing stiffness, taking
their maximum value for the incompressible (n=0) MacLaurin model.

In the calculations by Friedman, Ipser and Parker (1984,
1986) there 1is a second wupper 1limit on rotation set by
gravitational radiation instability. Using the results of Inamura
et al. (1985} and Managan (1985) together with a numerical
determination of the relation between 7 and the angular velocity
2, they found that all the sequences for different equations of
state terminate before the ratio 7T/ |W]| reached 0.14, therefore
instability to a bar mode appears unlikely. Then the modes with
the m=3 and m=4 are expected to set the upper limit on rotation
for accreting neutron stars. Horeover, using two independent
results of Lindblom (1985) and Managan (1985) they estimated the
growth time of m=3 and m=4 modes finding that the growth times
range from months to years.

These estimations, however, should be compared with the
viscous damping time T, Because of the wuncertainty in the
viscosity v, one cannot definitely decide when the gravitational
radiation instability will be important. However, since in
superfluid interior the viscosity 1is expected to go with the
temperature as uam_z for hot configurations the effect 1is small.
Therefore, one can say that newly formed neutron stars which
should be relatively hot (T~102K) have their rotation limited by
gravitational wave instability because in this case the viscous
damping time is relatively long. Whereas, old accreting neutron
stars with an expected temperature of T~107 can have 7, of the

order of months or years and the question remains still open.
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1.6 Equilibrium confiqurations of self-gqravitating tori with or
without central body.

Spheroidal or ellipsoidal configurations are not the only
axisymmetric equilibrium configurations that have been studied S0
far. Toroidal configurations have been considered partly because
they are the next stage , in order of complexity, and partly for
understanding astrophysical systems which surely have ring-shaped
configurations like Saturn. Two groups of systems have been taken
into account: rings with and without central bodies. Basic work on
the subject includes contributions of Laplace (1789), HMaxwell
(1885), Poincare’ (18913, Dyson (1893) and Randers (1942). These
discussions of the equilibrium of rings have been rpestricted to
those configurations which were slender (i.e. minor axis d « major
axis R), uniformly rotating and homogeneous. A remarkable step in
the study of self-gravitating rings has been made by Ostriker
(1964b) who considered slender uniformly rotating rings wmodelled
by a polytropic eguation of state. Using a perturbation technique,
he was able to find a quite general solution of the Laplace
equation which applies to any axisymmetric slender system. This
method is quite similar to the Chandrashekar and Milne's method.
Here the undistorted body is an infinite cylindrical polytrope
whose structure was found in an early paper (Ostriker, 1964a).
Treating the rotation, the curvature of the c¢ylinder and the
presence of a central bhody as perturbations then the equilibrium
structure of the rings can be constructed. The main results can be
sunmarized in the following statements. The equidensity surfaces
of the ring are more distorted towards the center as the
polytropic index increases (this seems obvious since as n
increases the fluid becomes more compressible). The second result
is that a central body forces the ring to rotate more rapidly.
This is not surprising since if we put a body in the center of
the ring the gravitational attraction will increase and only
centrifugal forces which have opposite sign can compensate for it.

Toroidal figqures of equilibrium without a central body have

been reexamined after Dyson (1893) by Wong (1974). He was
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motivated by the conjecture of Chandrashekar and Bardeen mentioned
above that toroidal sequences of equilibrium could branch off from
the MacLaurin sequence. Although these configurations have the
stablest minimum-enerqy shape (HMarcus et al., 1977) they do not
departure from the MacLaurin spheroids directly (Wong, 1974), but
through an intermediate sequence of very flattened objects called
MaclLaourin hamburgers by Eriguchi and Hachisu in a series of papers
(Eriguchi and Hachisu, 1983, Eriquchi and Sugimoto, 1981, Hachisu
and Eriguchi, 1983, Hachisu and Eriguchi, 1984 and Erigquchi and
Hachisu , 1985) where they investigated bifurcation points of the
MacLaurin sequence finding that many sequences with different
shapes bifurcate from the spheroids.

Detailed numerical solutions of Einstein's equations for the
structure of uniformly rotating infinitesimally thin disks have
been considered by Bardeen and Wagoner (1969, 1971) . In this
approximation the Einstein equations outside the disk are those
for wvacuum and the matter source terms enter only as a
discontinuity in the boundary conditions. With this simplification
the general relativistic effects on the structure of the disk due
to rotation were studied. Although these configurations are too
unstable against fragmentation- to be considered seriously as
realistic astrophysical confiqgurations, this work represent the
starting point for the study of relativistic figures of
equilibrium, since detailed techniques have been carried out for
solving the stationary and axisymmetric Einstein equations. The
relativistic generalization of the gravitational potential is
expanded in powers of the relativistic parameter }t1~ep. The
equilibrium configurations are characterized by the rest mass Ho
and the total angular momentum J.

Figure 10 shows how the ratio J/HE decreases monotonically as
¥ increases. For a given angular momentum there is an upper limit
to the rest mass or alternatively for fixed Mo' there exist a
minimum angular momentum for which equilibrium is possible.
Moreover, the fractional binding energy Eb/Ho is plotted against
¥. The lack of a maximum suggests that uniformly rotating disks
are stable against overall gravitational collapse.

Figure 11 shows how the angular velocity  increases to a
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Fig. 12 - Curves of 956" 0 for the indicated values of ¥
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limiting finite value as ¥—0. The same figure shows that the
ratio H2/J—-ﬂ as py—31. Figure 12 shows the development of
ergoregions. - Such regions first appears at p~o.s. Figure 13 shouws
the surface density against the dimensionless radial coordinate.
It can be seen that for =i 2 the maximum is not longer at the
center of the disk and surface density distribution becomes
somewhat ring-like.

The authors generalized the Newtonian stability criterion
against fragmentation to general relativity. The result is that
the relativistic disks are more unstable than the Newtonian ones.
The reason perhaps is that the former are more concentrated
towards the rim of the disk. Since these configurations are
unstable, it is important to consider differentially rotating
disks. No computations have been done so far for such
configurations.

Will (1974, 1976) considered the equilibrium confiquration of
a weakly self-gravitating ring of matter around a slowly rotating
black hole. Considering the rotation of the black hole and the
self-gravity of the ring as perturbations, he constructed
sequences of equilibrium in terms of the quantity p already used
by Bardeen and Wagoner, and ﬁzth where h 1is a parameter which
characterize the size of the horizon and W is the angular
velocity of the black hole. To first order to the mass m of the
ring and second order to W he obtained sequences of equilibrium
configurations characterized by four parameters: the irreducible
mass Ht;=(AH/16n)1/2 of the black hole, the mean proper
circumference radius R, m and wH. In Fig. 14 the mass curve
resulting from this model is plotted. The fiqure suggest that the
Penrose process (by which energy can be extracted from a rotating
black hole) may be different for a black hole-ring system than for
Kerr black holes. This suggestion derives from the fact that the
total mass for the black hole-ring configquration has a minimum for
non-zero values of W - for this reason the black hole still
PosSsesses an ergosphere in which particles can have negative
energy as seen from infinity, and such energy can in principle be
extracted. This situation is in contrast with the Kerr case, where

the minimum energy configuration occurs precisely when the
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ergosphere vanishes. Thus a Penrose process can in principle
extract further energy from the system and this energy comes not
only from the rotational energy of the hole but even from that of
the ring.

In the case of vorticity free <(constant angular momentum)
self-gravitating ring around a black hole, Abramowicz (1982) has
shown that the number of unknown metric functions reduce only to

three.
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CHAPTER I1I

SELF—GRAVITATING TORI AROUND A RAPIDLY ROTATING BLACK HOLE: THE
EQUATIONS.

This chapter is devoted to derive the set of equations which
describe the equilibrium structure of tori around a black hole.

The theory of stationary and azxisymmetric space-time is
reviewed and the Einstein equations with the relative boundary
conditions are derived. Not all the theorems involved are proved
but only those which we believe are more relevant for our purpose.
In particular many theorems about the Black holes equilibrium
states are not included. The reader is referred to the book Black
Holes and to the paper by Carter in General Relativity = An
Einstein Centenary Survey for a complete treatment of that theory.

Prescriptions are given on how the matter configuration has
to be specified consistently with the theory of equipotential
surfaces in general relativity.

2.1 Stationary and axisymmetric space-times.

A space-time is said to be stattonary if there exists a one
parameter group of isometries whose orbits are timelike curves.
These groups of isometries €Xpress the time translation symmetry
of the space-time (i.e. the timelike coordinate t is c¢yclic, in
the sense that ye regain the same event if we change sign of it).
Therefore a stationary space-time Possesses a timelike Killing
vector %. Similarly, we call a space-time axisymmetric if there
exists a one parameter group of isometries whose orbits are closed
spacelike curves (i.e. there exist a spacelike coordinate ¢ which
is c¢yclic). This implies that an axisymmetric space-time possesses
a spacelike Killing vector £. A space-time 1is stationary and
axisymnetric if it Possesses both these symmetries and, in

addition, if the two killing vectors n and & commute

(2.1.1) [n.&1 = 0

that is under simultaneous change of sign of ¢ and t we regain the
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same event. In general the commutator of two Killing vectors is
itself a Killing vector. We are considering asymptotically flat
space-times in which property (2.1.1) holds. Since n and £
commute, we <can choose coordinates (xozt,x15¢,x2,xa) 50 that
n=8/8t and £=d8/8¢ are linearly independent and form a coordinate
basis vector field. Moreover the space-time we are considering is
associated with a body rotating around the & direction. Therefore

the four-velocity of a fluid element ua has the form

(2.1.2) u=un+uté

with

(2.1.3) u°=0 u'= oau®=0 u% u*: o

where bexx1,x2) is the angular velocity measured in coordinate
time G=u'/u®=derdt.

Because of the isometries, the components of the metric gaﬁ
will be independent on t and ¢, and so the line element takes the

form

(2.1.4) d52= PR | (xz,xal dxadxﬁ
ap  F

Now, let us consider a surface, &, spanned in each point by the
vectors n and £. This is the surface of orthogonal transitivity of
the group of motions generated by the Killing vectors n and ¥. On
this surface we can define coordinates g and 'z such that the
vector fields {=8/8p and x=8/8z are orthogonal to both the wvector
fields wn and &, therefore,

3

9y X =0 9 o5t =0

(2.1.5)

o f3 & f3_
95" X =0 S5 € =0

from which we derive that

(2.1.6) 952" 9059459 ,5°0

and the line element on the surface £ is

2 2 2
(2.1.7) ds2 = goodt + 2g01dt deg + gudqb
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Then, since this surface is orthogonal to the two-dimensional
surface described by t and Xs the metric of the whole space-time

can be written as

o

(2.1.8) ds™= g_ dt® 29,dt dg + g _des gijdxldxj i.j=2.3

Any transformation of the form

(2.1.9) x'——5 2% g hx? 59
leaves (2.1.7) invariant. Therefore one has two degrees of freedonm
to express gtj
g and g are invariant under

o' ‘o1 11
any transformation of x2 and xg. This suggests that they must be

The metric components 94

geometric invariants associated with the symmetries of the
space-time. Their invariance is elegantly expressed in terms of
scalar products constructed out of the coordinate basis vectors n

and & as follouws

oL a

(2.1.10) Ioe= M Ny T N &

ol

g = &7¢

o i1 (a1

Let us introduce now the quantities v, w and ¥ by the following

invariant definitions

2y o
(2.1.11) ™= &7

(2.1.12) @ = —(nafa)/(fﬁfﬁ)

v a o 2 f3
(2.1.13) e = -y Ny * (1 Ea)/(f fﬁ)

Using these definitions the line element (2.1.8) takes the form

(2.1.14) dsfT = - e®at® + e™dep - wdtr? « g,u,dx‘dx’
One degree of freedom can be used to reduce gijin diagonal form
(see e.g. Chandrashekar, 1983)
R 2w 2y 24 2L

(2.1.15) ds™= - e dt™ e (do - wdt)% e ZdxDH% o ZaxH?

and the other one can be used to relate M, and # - It is important
to note that in the non-stationary case we do not have this

freedom. Thus, if we should consider time dependent departures
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from equilibrium of axisymmetric systems, we must allow that in
consequence of the perturbations, the Eulerian changes in H, and
Hg will differ.

Because the behavior of the metric functions at spatially

infinity it is much more transparent in spherical-polar
coordinates, we will specialize the coordinates x2 and x°
accordingly

(2.1.16) x%= r x% @&

Making use of the freedom of gauge still left, we can define new

functions

2y - 2w 24 20y- 1) 2L 2ey-1)
2 ., 2 2
(2.1.17) e = r sin & Bze e 2 e e = r e

and the line element takes the form

(2.1.18) ds?= - e®at% r’sin®8% (de - w dt) 2 o 2VTV,
(dr2+ rzdez)
reducing the number of independent unknown metric functions only
to four. This is the form used by Bardeen (1970) and Butterworth
and Ipser (1976). We will use such a form as well.

There 1is a wunique way to single out the physical
interpretation of the components of the metric tensor which
remains valid for rapid rotation and strong gravitational fields.
In such cases an analysis based on static observers at rest as

seen from infinity, is not appropriate because such observers may

not even exist in certain regions of the space-time. Indeed

2w 2 . 2. 2 -2w
goo= - e + rsin $B'e

can have either negative and positive sign. In the region where
g00>0, the line (&,r,® =const is not a timelike direction. In
other words, no local observer with angular velocity £=0 and
u2=u3=0, that is an observer who would be stationary as seen from

infinity can exist in such a region.
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2.2 Locally non rotating frames and Einstein equations.

For any stationary axisymmetric, asymptotically space-time it
is useful to introduce a set of local inertial frames in which the
description of the physics is much simpler. The <construction of
such frames consists on replacing coordinate frames by orthonormal
tetrads which are carried by locally non rotating observers.

An orthonormal tetrad is a set of four perpendicular wunit
vectors at a point in space-time, one timelike and three
spacelike, which give the directions of the four axes of a locally
Minkowskian coordinate system. The tetrad vectors can be used to
express tensors in an arbitrary coordinate system in terms of
physical quantities measured in this local reference frame.
Associated with the metric (2.1.18) there is a wuniquely sensible
choice of observers and tetrads: the locally non rotating frames
(LNRF) introduced by Bardeen (19270), for which the observers world
lines are r=const, ®=const and ¢ = wt + const. The orthonormal
tetrad frame carried by such an observer is given by the following
basis vectors (indices in pParentheses will be wused to denote

components in the local orthonormal frame)

e = e’dt
{QO)
. - . -p
€,° - wrsin® Be "dt + rsin® Be do
(2.2.1) v
-‘(2): e d‘
= r e’ Vgs

The corresponding controvariant vectors are

e e et « w oo
. -v -1
g.,," (rsin® Be 7) “a/ép
(2.2.2) b
e = e 8/ ér
e =1 e Vs 58
{3}

It is easy to verify that
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-1 0o © o
i o 41 ©Oo o©
(2.2.3) e e = =
@ wi” M c o 1 o©
c o o 1

that is the chosen frame is Hinkowskian, therefore represents

locally an inertial frame. The rule for calculating the physical

components of a tensor T is
P op

_ a3

(2.2.4 Tumbf Taﬁ € (o

and conversely

{ay (&
(2.2.5) TO‘ﬁ = T(a){b>ea eﬁ

Indices are raised and lowered by using the Minkowskian metric

(2.2.6) T {b)= [{=31¢-}]
[{h} faie)

At any instant in time, the 1local frame of any physical
observer differs from the LNRF at the observer's location by a
Lorentz transformation. We need only to know the velocity of an
observer relative to the LNRF, and the transformation formulae of
special relativity, to obtain any physical quantity in an
arbitrary frame.

In this orthonormal frame the physical meaning of the metric
functions is more transparent. Since w, ® and wof (2.1.15) have
invariant meaning, there exist a way to determine them by
measurements. This can be done in the following way (Bardeen,

1970).

Consider an observer whose coordinate four-velocity is given
by

- i
o_ dt _ e 1 deg _ o i dx _ .
(2.2.7)  u'= g - z iz 'S FsC ™ UT g0 2,3

(1~-v

where vz(Q—w)rsinﬁﬁe_zu. In the local inertial frame, the same

observer will have the four-velocity
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o) @ i (aelsy i
(2.2.8) u = e u = e 1
i (b1l

or explicitly

e =12
(2.2.9) u' P 0 rsind®Be ~({rw 0@ 4
2_1/2 2 105
(i-v ) C1-v )

The three-velocity relative to the LNRF has components
L (a3

(2.2.10) v o=

a=1,2,3

In the case considered, the only component different then zero is

1)

(2.2.11) V = v = p sin® B e ¥

(92 - w

and this is the velocity in the local inertial frame. Accordingly,
a point which is considered at rest in the local inertial frame
(i.e. uutuﬁ22u&m=0) will have an angular velocity w as seen
from infinity. Therefore the metric function wlr,® is referred to
as the angular velocity measured at infinity of the 1locally non
rotating observer and it is the angular velocity of any particle
with zero anqular momentum that is why these observers are called
ZAMO (zero angular momentum observers). The non vanishing of w is
said to describe a dragging of the inertial frame.

The metric function @ can be considered as the genersal
relativistic generalization of the Newtonian gravitational
potential. In fact the ratio of the observed frequency at infinity
to the emitted frequency in the locally non rotating frame is
equal to ev for photons with zero angular momentum. Therefore
(e-p-i) is identified as the gravitational red-shift. Moreover
rsin®Be’ is the proper circumferential radius of a circle around
the axis of symmetry.

The physical simplicity of the locally non rotating frame is
reflected into a mathematical simplicity of the Riemann and Ricci
tensor components measured by the locally non rotating observer
when expressed in terms of the metric functions (2.1.18). The
Riemann tensor components Projected onto this tetrad are given in

Appendix A.
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In the present study, we shall limit ourselves to the case in
which the source of the gravitational field is a perfect fluid

described by the energy momentum tensor

(2.2.12) Tz (e + pruu’ + p g“

where ¢ and p denote the energy density and the pressure,
respectively; these are considered to be functions of two

independent thermodynamic variables through the equation of state

(2.2.13) P = ple,s) or e = e(p,s)

where s is the specific entropy.

The Einstein field equations can be written

(d){b)_ {ayib) {a)ib) {aXb)

(2.2.14) G R = % g R = 8m T

or, equivalently

(2.2.15) R(cu(b): - [Teaub)_ T_g&:u(b}_l, ]
2
where
(2.2.16) T = - (e - 3p)
is the trace of Taﬁ. If the Ricci components are substituted in
(2.2.15) then the R{OKB}Einstein equations gives
€2.2.17) V(B V) = %-rzsinzesze“meﬁ?w +

P
4w ezy—zv[(e+P)1+v2 + 2p]
1-v

where ¥ and ¥s are the gradient and divergence operators in the
Euclidean three-space. Equation (2.2.17) 1is the Raychaudhuri
equation for the world 1lines of the ZAKO*s. The acceleration

four-vector &a of a ZAMO has components

(2.2.18) a = a,= 0 a = v, a=r,&

The square of the shear of the world lines of the ZAMO's is
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[a1 1 2, 2,2 -4V
& a-’?= = P sin 8B e VwaTw

o3 4

therefore equation (2.2.17) can also be written

(2.2.19) &=

NI—‘

(2.2.20) &2 = 2 o4 R
= o OXO)

In highly relativistic rapidly rotating stars the shear of the
ZAMO world lines can predominate over the matter terms as source
for the relativistic gravitational potential ». This is important
for numerical considerations.

The equation

(2.2.21) R = 8n T
(O 1) {0

gives
2 . 2, .3 - . -
(2.2.22) Velrsin®™$8 e 4”7@) = - 146m rs:m@Bzezy aid —31%-v
1-v

We will see later that the source for wipr, & is the angular
momentum of the matter configuration since any axisymmetric field

carries no angular momentum on its own.
{0) {1
R R

The metric function B is obtained from the " @

Einstein equation

(2.2.23) Fa(rsind®¥B) = 14ém PSin@Bez{y—U)p

The remaining metric function vy appears multiplying only matter
source terms, and therefore it decouples from the other metric
functions ¥, @ and B in the vacuum. Once these components of the
metric are known, y can be found by quadrature integrating the

following linear equation

. B,
Ve = {sinzécur --é—i)z+(cos@ + sin® -ﬁﬁ)z "

B' Y B, x1 X!
[{(cos@ + siné - 8 sind® ‘& [p(._...:.) z2_ (......_"?.) 2]

B
i cos& r 1 r
FyR [PQTB, — B, so * ss—mn B, @] + 5 [cosz?(g- + 1:'———-B )
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(2.2.24)

B, . X, X, rB,
i . Sr r r ., 2
= e mme—=l + P SISO + 2 (1 + } + sin &e
2 B 2 B

B p:4
zf B -
B j1 =2 ) . * & : 2 .
~ P (coS® + SIin® ———m) rztw, Y = (w, Nl sin®s
xd. & B E & 2
B,
r3(1-+ r——i)w A
B B S
which is the Rmxm’Rmxm Einstein equation. In this equation
we used X=lnwv instead of w. Equations (2.2.13, (2.2.22)

and(2.2.23) are invariant under coordinate transformation as long
as ¥ and Ve are reinterpreted accordingly, whereas equation
(2.2.24) changes in a straightforward way.

Besides the Einstein equations for the four metric functions

¥, w, B and y, we also have to impose the conservation condition

(2.2.250 1t =90 .

2.3. Equations _governing the fluid confiagurations.

Since our space-time is axisymmetric and stationary equations
(2.2.25) reduce to only one. This equation can be written
explicitly (see Appendix B for a derivation of it) as

i
i i t £ 0
(2.3.1) & = V(an) —m
the four-acceleration is equal to
i VLp

(2.3.2) O e
pre

i k . . . .
and éz(fﬂh)/(rpuk)=u¢/ut is the angular momentum per unit inertial
mass. From the definitions of € and € we can get the following

relationships which will be useful later
gt¢;ﬂg¢¢ _ gt¢#£gtt
gtt+ §t¢ g¢¢+ gt¢

and for our metric these become

(2.3.3) £ =
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2 ., 2 2 -2 .
(2.3.4) £= 0L Sin 8B e (2w or £ = rsindBv

ezv—wrzsinzéﬂze'zvtn—w) e Y+ ursin By
and
2
2 w( 1~ wd) + 2£e -
(2.3.5) o=V (1-wd)+wd or O = r sin ©B
4
(1-wd)

Following Thorne (1971) and Bardeen (1970) we next define some
quantities of physical interest and some general characteristics of
rotating equilibrium configurations. Some of these results are due
to Abramowicz (1971a,b,c, 1974) and Steguin (1975).

The quantity e+p is the inertial mass per unit volume as
measured in the rest frame of the fluid. It 4is this mass which
determines how a fluid element responds to a force acting out it
(see eq. (2.3.2)). The inertial mass per baryon is (e+p)/n, where
n is the number baryon density. The quantities

(2.3.6) ¢ = ?-%2- (uh T &ER P, 212

and

erp . #oL erp

O{g:

172

(2.3.7) i rsind®Be “v(i-vo

are the energy required to inject a baryon into a star with zero
angular momentum, and the angular momentum per baryon
respectively. The energy required to inject a baryon into a ring
with non-zero angular velocity © and bring it into equilibrium

with its surrounding is (Thorne, 19711

(2.3.8) %= g+ O = --9%-’3- (uana)

The angular momentum per baryon j is conserved in any axisymmetric
motions (but not necessarily stationary) inviscid, adiabatic
motion (Bardeen, 1970, Abramowicz, 1971). This is a direct
consequence of the equation of motion (2.2.25) and the equation

for conservation of barvons
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(2.3.9) (tn v = o
s O

However the quantity j is not conserved in non adiabatic motions

(Steguin, 19275). The zlresz: A

¥ introduced quantity <€ can also be

i
Eds

fi

written
b
(2.3.10) P A J——
g

This quantity is a purely geometric object which does not depend
on the thermodynamic properties of the fluid and it 1is conserved
along the world line of the fluid element (Abramowicz, 1971). This
property again can be derived from the equation of motion together

with the conservation of baryon number.

Having defined such quantities the equation of mwmotion «can

also be written as

(2.3.11) - Tuh ™' + Vo - jva = o

if we use the thermodynamic identity

(2.3.12) —P - q(&B) _ 1 4s
1] n

where T is the temperature of the fluid element defined by

(2.3.13) T = %)rﬂcomst

Also we rewrite here equation (2.3.1) as

v'p i ¢ 290
(2.3.14) e—+5—— V(ln u '} —m

From equations (2.3.11) and (2.3.14) we can derive a number of
interesting theorems about the topology of rotating stars which
apply to any configurations.

Hereafter we will assume that the fluid is governed by a
barotropic equation of state for which the pressure is only

function of the energy density

(2.3.153 P = p(e)
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A straightforward consequence of this assumption is the
possibility to write (2.3.2) as

dp

(2.3.16) dU(P) = E-e-:-;—)-)—

where we put dW=a. The surface of constant W are called level
surfaces. In the Newtonian limit the level surfaces are those of
constant potential (gravitational and centrifugal) therefore they
are even called equipotential surfaces. From (2.3.16) we see that
the surfaces of equal pressure coincide with the equipotential
surfaces.

If the rotation is rigid a number of simplification permits

to deduce some theorems. In this approximation equation (2.3.14)
‘reduces to

(2.3.17)  —2 - 9(1n ubH
e+p

Therefore the surface of constant pressure and constant redshift

factor 1/ut are parallel Boyer, (1965). Taking the curl (% of
both sides

(2.3.18) Yex¥ _

(e+p)2
This results owed to Thorne (1971) can be interpreted saving: 'n o
rigidly rotating star the surface of constant pressure p and
constant densiiy e must colncide.

From the equation of motion written as (2.3.11) we derive
that: In the case of rigid rotation the injection energy @ tis
constant inside the matter configuration if and only tf ¥s=0.This
result was first obtained by Boyer (1965, 19667.

We also see from equation (2.3.11) that: The surface of
constant anguler velocity Q and the surfoces of constant injection
energy ¢ musi coincide if the configuration is isentropic.

For differentially rotating configurations Abramowicz
generalize some of these theorems. Indeed taking the curl of
equation (2.3.14) we obtain '

(2.3.19) Ve x¥p _ FLx TN

(e+p)2 (1- &%
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From this equation we can state the following theorem: The sur foces
of constant specific angular momentum & and the surfaces of
constant angular velocity Q. coincide if and only if the star is
barotropic.

Taking the curl of (2.3.11) we obtain

(2.3.20) Wx[?-f_] + v[-ir)xm:v's) = U x90
u u

If the configuration is isentropic then

(2.3.21) Vjix90 = 0

therefore: The surface of constant angular momentum per baryen 7
and the surfaces of constant angular wvelocity Q coincide each
other if the star is isentropic.

If the surfaces £&r,® =const and Ar,®=const coincide, they

then describe a surface whose equation can be written as

(2.3.22) F(Q,H =0

It can be shown (Abramowicz, 1974) that such surfaces have the
topology of a cylinder and are called Von Zeipel's cylinders.

Such theorems do not tell us how to choose the rotation law
of a relativistic configurations. Here the situation is the same
as in the Newtonian theory. Constraint on the distribution of the
specific angular momentum is provided by local stability analysis.
Steguin (1975) has shown that necessary conditions for stability
for a rotating configuration in which the viscosity is negligible
are that Cit> the level surfaces of the pressure and the total
energy density must coincide CiiD the gradient of the geometrical
specific angular momentuﬁ.t must never point inward from o surfacce

of constant {:

(2.3.23) %é >0

The generalization of the convection criterion for stability has
been provided by Abramowicz (1971b) and Bardeen (1970) for the
special case of isentropic perfect fluid configurations. A more

general criterion was found by Stequin (1975). The result is
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formally identically to that valid in Newtonian theory.

2.4. Relativistic tori around Black Holes.

Non-self-gravitating fluid disk configurations around a
Schwarzschild and Kerr black holes have been studied by Fishbone
and Honcrief (19741, Fishbone(1977), Abramowicz et al. (1978),
Koztowski et al. (1978) and Jaroszyﬁski et al. (1980). Very
recently Kuwahara et al. (1986) have extended the theory to a
family of space-time with Tomimatsu-Sato metric. These are the
fundamental papers about the structure of such disks in general
relativity.

After the introduction by Paczynéki and Wiita (1980) of a
pseudo-Newtonian potential which mimics the circular orbits around
a Schwarzschild black hole with an error of about 102, a 1large
number of papers have been written on accretion disks. This
potential permits study of the physical properties of such
configurations avoiding the complexity of wusing full general
relativity. It is in this theory however, that new features appear
in the theory of equipotential surfaces of a fluid around a black
hole. Hege we will give an account of this theory since we will
specify our matter configuration accordingly. Following

Abramowicz et al. (1978) we introduce the function

z
(2.4.1)  F(d = [ ;%

4

18 2]

which is called the Von Zeipel's formulae, where the subscript in
refers to the inner edge of the disk. Using (2.4.1) the equation

of motion of the fluid can be written as

(2.4.2) W - wu = 1nh - lnh + FcD
Therefore, for a given gravitational field the equipotential
surfaces can be found by specifying the function =& or L&,
Since the boundary of any perfect fluid barotropic stationary
body has to be an equipotential surface (Boyer, 19653, from
(2.4.2) we get
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t £

u aut
sut 9's IPA
(2.4.3) In T = rETovA
u,
in £

in
For a known gravitational field this eguation links L and T oout?
the inner and outer edge of the disk. A particular simpler
solution of this problem is given by the <case in which the
specific angular momentum is a constant 50. According to the
condition of stability given by the equation (2.3.23) this

corresponds to a marginally stable configuration. For such a case

(2.4.4)  W(p,® = 1n u®

and from equation (2.4.3)

(2.4.5) ut = 1.1.t
out in

The nature of such solutions can be understood by examining the
behaviour of the potential W on the equatorial plane for a Kerr
black hole. Figure 15 shouws such a behaviour. For W<0 the
equipotential surfaces are closed, for W0 they are open. The
minima and maxima correspond to places where the pPressure gradient
is zero (cfr. equation (2.3.14)). Figure 16 shows the topology of
the equipotential surfaces around a Schwarzschild black hole. The
topology of such surfaces around a Kerr black is the same. One of

this surfaces has a c¢usp. In this point WW=0 therefore Vp=0 and

(2.4.6) £ = £ () at &=
Q k

o) I~

since it is on the equatorial plane, where %Jr) is the angular
momentum for Keplerian circular orbits. For a Kerr black hole the
function ﬂzcan be calculated using (2.3.3) and the angular
velocity in the equatorial Plane for circular orbits

1,2

2.4.7)  0=0 =z 3/2 —
(pr +aM )

where the upper sign is for direct orbits and the lower sign for
retrograde orbits , o is the is the total angular momentum per
unit mass M of the black hole. The behaviour of ﬂfr) is shown in

Fig. 17. From this Picture we can see that the cusp is located in
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Fig. 16 - Equipotential surfaces for a disk orbiting
the Schwarzschild black hole. From Abramowicz et al.,
1978.




(8]
(1
~
~)

Fig. 17 - Location of disk's center and its cusp.




between the marginally bound orbit L and the marginally stable
orbit L The presence of the cusp is important for the accretion
process. This point resembles the Lagrange L1 point on the Roche
lobe model in the close binary stars: due to the existence of the
critical surface associated with it U=Hﬂmp (for which ®© is
maximum) a little deviation from hydrostatic equilibrium will
drive matter to fall into the black hole without need of viscosity
(Kozlowski et al., 1978).

Since in our case we are not interested in the accretion
process, the radius of the inner edge of the torus is chosen to be
slightly larger than the corresponding value of the cusp. The
fluid is modelled by a polytropic equation of state

(2.4.8) p = k p? or P = (¥ - 1)ps and e = pli+&)

where p=4/3 is the adiabatic index, &£ 1is the specific dinternal
energy and k is a constant which 1in general depends on the
entropy. In this case the equation of hydrostatic equilibrium can

be integrated giving (see Appendix C)

(2.4.9) p = 4 [ ]

?klf? at

To get this equation we have imposed the <condition that at the

boundary p=o. Once the equation of state (2.4.8), the rotation law

(2.4.10) £ = const £ = &£ < ¢
mb ma

and a value for the radius of the inner edge of +the torus are
specified, the value of the radius of the outer edge and its
surface are determined by solving alternately the Einstein

equations for the field and (2.4.9) for the matter consistently.

2.5 Boundary conditions.

Einstein's equations (2.2.17), (2.2.223-(2.2.24) and
(2.4.8)-(2.4.10) form a complete set. However, to solve them we
need boundary conditions. The boundary condition p=o for the
hydrostatic equilibrium equation was already imposed. For the
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Einstein equations we must impose boundary conditions on the event
horizon of the black hole, at asymptotically flat infinity and on
the axis of symmetry.

On_the axis of svmmetrv », @ and B must be regular functions

with zero gradients normal to the axis

(2.5.1) W, = cmé = B.s = 0 at & = 0

Integration of equation (2.2.24) then guarantees that the same is
true for the function y. The constant of integration is determined
by the requirement of local flatness on the axis: The 1linear
radius of a circle around the axis of symmetry rsin®e ¥V must be

equal to the circumferential radius rsinﬁBe_v, then

(2.5.2) e¥ = B

Reflection symmetry about the equatorial plane implies

T
(2.5.3) V,@ = W, B. 0 at & = 5

To get the boundary conditions at infinitvy we suppose that

our configuration is an isolated system, that is we ignore the
influence of distant matter and cosmological curvature on the
system, therefore at infinity the space-time can be considered
flat. Thus asymptotically flat space-times represent ideally
isolated systems in general relativity. Unlike Maxwell theory of
electromagnetism, the structure of an isolated system in general
relativity is no longer straightforward. The asymptotic form of
the gravitational field in terms of an infinite set of multipole
coefficients which are related in a simple way to the source of
the field is no more possible. This difficulty arises since 1in
general relativity there is no longer a background flat metric naﬁ
in terms of which the fall off rates of the curvature of the
space-time metric gaﬁ can be specified. Therefore there 1is no
unique way of specifying how the limit r——w has to be taken. One
way of doing it is to define a space-time to be asymptotically
flat if there exists a system of coordinates such that the metric

components in these coordinates behave in an appropriate way at
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large coordinate values e.qg. gaﬁ = naﬁf 0(isr) as r—3m along
either spatial or null directions. Another way which is
coordinates independent is to wuse the <concept of conformal
infinity (see e.g. Wald, 1984). In either case there is no simple
relation between the distant gravitational field and the matter
distribution since the non-linearity of Einstein's equations
allows the geometry to be also a source for them. We will follow
the coordinate dependent way to settle down the asymptotic
behaviour of the gravitational field since it is more transparent
for the application we have in mind.

According to our definition of asymptotic flat space-time the
metric functions », w, B and y have the following values at

infinity
(2.5.4) v, O, Yy —8—3 and B —— 1

so that at infinity the metric (2.1.18) reduces to the flat one in
spherical coordinates. At infinity one has e=p=zo, the equation
(2.2.23) becomes

(2.5.5) Ye(rsind¥B) = 0 .
As r——mw then
-2
(2.5.6) B =1 + 0(r ) .

Also, as we shall show below © is O(D—BJ as r—m, therefore the
term r °Puws Vo in (2.2.17) 1is O(P-G), and this is an order higher
than any that we shall retain in our analysis. Then equation
(2.2.17) reduces to

(2.5.73 Vv = 0
therefore
(2.5.8) T ..‘I.E.+ ocr 5

where M is a constant whose physical meaning will be explained in
the next section. The behaviour of w as r—s®w is determined by the

equation
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&2

(2.5.9)  Fe(r sinZ®B% *Y9w = o

or, in view of (2.5.6) and (2.5.8)

(2.5.10) va[u + 4 g—)r"'sin '&Vw] =0 .

The solution of this equation in seroth order is of the form

(Hartle, 1967)

zw: ©) dpL :m: JL L
(2.5.11) A w L(r) — = P - — (i = cosH
L=4 du =1 r d

i

the definition of the

where a factor 2 has been introduced in
denotes a Legendre

also P

constant JL for later convenience; L

polynomial of order 1.
The solution for o including the
can be obtained by substitution

first-order term 4M/r in

equation (2.5.10)

[4:4]
dp
(2.5.12) @ = E [w‘°’+ 413.@‘“] L
1 r 1 d
l=1 H

Equation (2.5.10) then gives

1 d doo(1>
(2.5.13)  —— —— [r“ L ) S ek N S T L
4 2 L L+5 L
r dr dr r r
A particular solution is
J
1) L+ 2 L
(2.5.14) &)L = = ;TT;

Therefore the solution for ® to 0(r %) is given by

2J s] H
1

(2.5.15) W = -
3
r r

+ 0(r )

More terms in the expansions can be computed in a way similar to

BI (1976).
These conditions define
total angular momentum as we will see in the next section.

the total gravitational mass and

The remaining boundary conditions on the functions v, & and B

are to be imposed at the inner boundary of the configuration that
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is the event horizon.

The event horizon can be defined as a smooth two-dimensional
null surface, spanned by the Killing vectors & and n of the
space-time. Let the equation of the event horizon be

(2.5.18) F(r.® 0.

The condition to be a null surface is

(2.5.17) g”F,,LF,J, = 0 (Lj= 1,8 .

For the metric (2.1.15) the condition is

20—t )
(2.5.18) e 2 5[(P,}2+ (P,)Z] =0
2 3

Using the gauge freedom we can set
240~y
(2.5.19) e 2 % - £(m

where f is a function only of r (see (2.1.17)). From equation

(2.5.18) it then follows that the equation of the null surface is
given by

(2.5.20) f(r) = 0.

This means that without loss of generality the coordinate locus of
the horizon can be made a sphere of constant radius. Horeover, the

value of the coordinate radius of the horizon is

(2.5.21) r = 2
2

where h is a free parameter of the black hole therefore the
coordinate radius can be rescaled by this wvalue. (This is very
useful for the numerical calculations since it avoids the problem
of calculating the change in the coordinate radius of the horizon
induced by the self-gravity of the matter around the black hole
(see Chap. IV)).

The second condition that the null surface is spanned by the
Killing vectors requires that the determinant of the metric of the

subspace (t,¢), vanishes on f(r)=0
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(2.5.22) %

1]
[w]

on f(r) = 0.

The metric coefficients Be © and r%¥” must be a regular
positive function in order that the intersection of the horizon

with a space-like hypersurface have regular geometry. Therefore

(2.5.23) B = 0 at r = h/=.

Immediately outside the horizon the space must be vacuum,
since any stationary matter configuration would have to resist an
infinite gravitational acceleration on the horizon (see (2.2.18)
and (2.5.22)). The general vacuum solution for B consistent with
equation (2.5.23) is (Bardeen, 1973)

0

(2.5.24)  B(r.®& -= E erLEr(h2/4r2)“4]th2(cosﬁ)

L=o

where thz(cosé) are Gegenbauer polynomials. If there is no matter
between the horizon and infinity, the boundary condition at
infinity gives bo=1 and blzo for Wwo. However, if a source for B
is present outside the horizon the bL should be adjusted to
compensate for it. We will not make use of the general solution
(2.5.24), but rather we solve equation (2.2.23) numerically
together with the other field equations.

Carter (1973) has shown that certain quantities are constant
on the horizon. Indeed, if the horizon is spanned by the Killing

vectors § and n it is possible to define a null tangent vector A
by

(2.5.25) A=np+ QF

where QH is a scalar which is a constant on the horizon and
represent the local angular velocity of the horizon. Let's now
prove that it is a constant (rigidity theorem. Contracting
(2.5.25) with #% we get

o

(2.5.26) (&5 = - (£ with  (£.8) = £°¢,

since &€ is orthogonal to A. Taking the gradient of (2.5.26) and
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using the relations

(2.5.27) f"‘vanﬁ:: —%Vﬁ(g,p)

(2.5.28) E&vagﬁ= —%Vﬁ(§,§')

(2.5.29) Eavanﬁ =

1
=3
<]
e
W

holding for the Killing vectors £ and n and wusing (2.5.26) we

obtain
‘2 3 B o fa't 3

(2.5.30) (EHVa = [teHn - g 1v.¢
Making use of the definition of (2.5.25) and (2.5.26) equation
(2.5.30) can be written

. PR Oy o3

(2.5.31) (£.5)¥ Q.= 22 vi
By using the property (2.5.27) we get

(2.5.32) 2.9 = - Vo - o

since A and & are orthogonal. From (2.1.12) and (2.5.26) then
follows that on the horizon wzQH which is a constant.

Summarizing, a complete set of boundary conditions on the
horizon, one for each of the equations (2.2.17), (2.2.22) and
(2.2.23) is

(2.5.33) %% g

n
w2

(2.5.34) 0

(2.5.35) B 0.

These boundary conditions ensure the regularity of the

solution on the horizon.

2.6 Total mass and angular momentum.

The angular momentum and gravitational mass of the system as
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whole are defined by the asymptotic behaviour of the geometrvy at
infinity. We will now obtain explicit integral expressions for
these quantities.

The approach (Komar, 1959) we will follow uses the fact that
the contraction of the Ricci tensor with a Killing vector 1is a
pure divergence in a stationary and axisymmetric space-time. For
the angular momentum the relevant Killing vector is fa, while for
the gravitational mass is n&. Consider an integral over a

f3

t=constant spacelike hypersurface whose surface element is dZ

£ .o 1/2 5 1/2 3
(2.6.1) R dE (-g) = an d’x
J ot RYy (- L

where g is the determinant of the metric. This 1is equivalent to

integrate equation (2.2.22)

(2.6.2) -”r‘zsinﬁ'dr'dt? Vs [rzsinzﬁﬂse_éva]
- 1GHJ]; sinop e TV E+P2v drd®
1-v

The volume integral over the divergence (on the left hand side) is
converted into two surface integrals using Gauss's theorem, one at

infinity and one on the horizon, of the form

(2.6.3) J = J'dg r‘singﬁsse~‘v %;

At infinity, e—4v=1, B=1 and

S -
(2.6.4) w2 s Jix'

therefore
(2.6.5) J = =8 J

The volume integral of the left hand side of equation (2.6.2) is
then equal to —BJM where JM is the angular momentum of the matter
outside the black hole. It is then natural to define +the angular

momentum of the black hole from the surface integral on the
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horizon such that

1
(2.6.6) J
H

it
[

i
("
i
B

a

therefore the total angular momentum is

j d® r®sinvsp% g;

- 2 2y-41> e+p
(2.6.7) I =3 0+ 211.]]1:' 51n§drd6‘[}3 —, ]

For the gravitational mass we have the relation

anj(r‘- Iy (-
¢ 2

(2.6.8) J’? n dZ fR‘t(—g)“zdgx -

i-v

1/2.3
) X

This involves a combination of equations (2.2.17) and (2.2.22)

(2.6.9) Jfrzsinédrdﬁ Zeo [BVL’ - %rzsinzﬁBgeﬂvaw]

2
4njfrzsin§drd§{Be2{y—p}[(e+P)kvz + ZP] +
1-v

2 2vy-41° +
zrsin®eB e <Y 2P

1-v=
Now the surface integral has the form

T

&}

which can be represented as the sum of two parts, 81

infinity the dw ér term is negligible

‘)

(2.6.10) § = Jsin@d@[ 235. - -‘-p sinZeB % ¥y

term, therefore S can be neglected with respect to S;

asymptotic expan51on (2.5.8) we have

(2.6.11) g;zﬂr‘z
then
(2.6.12) s =5 =z2m

Taking into account the boundary
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equation (2.6.6), the surface integral at the horizon becomes
T
(2.6.13) §_ = Jrzsin@das LA
H ar H H
3]
The integral can be written as
T T
2 v a'EH - -
(2.6.14) j,r sin&d& B = -—-Jizn d&(rsin®Be N (re’ ") = » &
217 H H
o
where m% is the area of the two-surface describing the horizon and
%H is the rescaled gravitational acceleration of the ZAMO on the

horizon. The ©physical acceleration felt by a ZAMO 1is (see
(2.1.18))

(2.6.15) (a a2 e"‘y"w[w, 12 e 7, )2]
o * &

This is for unit proper time; when it is rescaled to per unit
. , . . .. ©
coordinate time (proper time at infinity) by a factor e~ , the

limit on the horizon is

(2.6.16) x = (e, o ¥
H *

Carter (1973) showed that this is another <quantity which is
constant on the horizon.

Thus the total gravitational mass is given by

2
(2.6.17) M = H_+ znjjrzsinﬁdrd@ Bez{y_w[(e-'-p)i V2 + zp] +
i-V

. 2z 2v—-4l; e+
2rsin&uB e —J%y
i-v

here HH is the mass of the black hole

(2.6.18) H = e o2 &+ 0]
H H

Smarr (1973) first showed that the mass of a Kerr black hole could
be put in this form. Equation (2.6.17) was derived by Bardeen,
Carter and Hawking (1973) and generalized to include

electromagnetic fields by Carter (1979).
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CHAPTER III
NUMERICAL METHODS

The Einstein equations derived in the previous chapter for an
axisymmetric and stationary space-time are a complicated coupled
system of non-linear partial differential equations and, as for
most non-linear partial differential equations, there exist no
general analytical methods for obtaining all solutions. Indeed,
aside from the Kerr solution very few solutions of physical
interest have been found. The way of obtaining other solutions of
physical interest is to solve the set of non-linear partial
differential equations using numerical techniques. This chapter
describes a few methods which have been used in the past by other
authors and the Multigrid method which will be applied for solving
the Einstein equations for our configuration. This is not the
first application of Multigrid to general relativity since very
recently Choptuik and Unruh (1986) applied the method to obtain
initial data for already solved axisymmetric problems in the
vacuum for boosted and spinning black holes, but the first
application for a more realistic and without any doubt much more
difficult problem from the numerical point of view. Indeed in
their case they had to solve only one non-linear equation (the
Hamiltonian constraint equation) for the conformal factor (see
Choptuik and Unruh, 1986) through which the determination of the
initial data for the space-times analyzed is done via the Bowen
and York's (1980) formalism. 1In our case we have a set of
non-linear equations and among other difficulty an interface (the

surface of the torus) to treat consistently.

3.1 Discretization of elliptical tvpe partial differential

equations.
The stationary and axisymmetric Einstein equations are
non-linear elliptic type partial differential equations. The

numerical techniques developed to solve them are all based on a

self-consistent iterative method. The aim of these methods is to
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give a tool for solving the field equations consistent with a
given distribution of matter. The method consists of two steps:
the potential step, in which the field equations are solved for a
given distribution of density and the eguilidbrium step, in which a
new distribution of density is computed from the previously
computed potential.

These two steps involve the discretizations of the
corresponding equations. The general approach is that of using a
finite difference scheme transforming the partial differential
equations into finite algebraic ones. Another way of discretizing
partial differential equations is that of using the finite element
methods (for an application of this method to general relativity
see Mann (1982, 1983, 1985)). Since we will use finite difference
schemes we will give here some general concepts on them.

Using finite difference a function is transformed into a
vector of finite dimensions, a differential operator into a matrig
operator and differential equations into matrix equations.

To construct a difference approximation to a given elliptic
problem we must first select a discrete subdivision of the domain
of integration. Consider a two-dimensional problem and suppose we
divide the plane x-y into sets of equal squares of sides h, by
equally spaced grid lines parallel to the y-axis, defined by
xizﬁu i=1,..,n where n-1 is the number of squares and equally
spaced grid lines parallel +to the x-axis defined by yjzﬁ
F=1,..,n. For any function u which 1is continuous and has

continuous derivatives we can write the Taylor expansions

(3.1.1) ulx+h,y) = u(x,y) + h;; + %hza 2 + %haé;% . ...
&x ax
2 g
(3.1.2) u(x-h,y) = u(x,y) —-hg; + ;hzf—% . %hsa g ...
8x &y
Addition of these expansions gives
262u 4
(3.1.3) u(x+h,y) + u(x-h,y) = 2ul(x,yv) + h —_— * 0(h"

&x

neglecting terms of order higher then hZ it follows
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2 2
(3.1.4) a z ~ ul(x+h,y’ zu;x,y)+u(x—h,y) + K %E
8x h
where [K|Zmax|u _ (x,y)|. Similar formulae can be derived for

derivatives with respect to y. The leading error of formula
(3.1.4) is 0¢h® this error is called truncation error resulting
from the truncation of the Tavlor's series. Equation (3.1.4) is
called central difference formulae since for calculating the
derivative at the point (x,y) uses the wvalues of wu at points
immediately before and after which lie on the same grid line.
Subtracting equation (2.1.3) from equation (3.1.2) and neglecting

terms of order h3 we get

du _ u(x+h,y)-ul(x-h,y) 2
(3.1.5) -a)T— 2h + D(h™)
This 1is the central difference approximation of the first

derivative. Less accurate formulae (first order in h) can be
obtained directly from (3.1.2) and (3.1.3) neglecting terms of
second or higher order in h. Equation (3.1.2) gives the

Fforward-di f ference formula

du L ulx+h,y)-ulx,y)
(3.1.6) == n

Equation (3.1.3) gives the baockward-difference formula

ulx,yl)-ui(z-h,y)
h

(3.1.7) %}g

From now on we will denote the value of any function at the point
P(ih, 1) by u,L’j. k

Using the formulae derived above it is straightforward to
approximate the Laplacian by finite approximation. The result is
the following
2

(3.1.8) Vu ~ (4, -u _ -u . -u _~-u . /h
i, ] i-4, j i, j-1 i+, j i, j+1

This formula is the so called 5-point stars approximation for the
Laplacian. The particular form (3.1.8) holds in the case when the
mesh-sizes in the directions are the same. This formulae is

approximated to the second order in h. Higher order formulae can
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obtained just retaining more terms in the expansions. However
second order difference formulae are probably the most commonly
used approximation 1in finite differencing since higher order
schemes generally requires more work numerically.

As another example of differencing techniques we consider the
expression VcEE(x,y)Vu] which will be useful later. The
discretization of this eXpression 1is made applying central

differences directly to the divergence obtaining

(3.1.10) Vs [f(x,y)Vu] "

2
o i f - -
E‘t+1/2,j(ui+1,j ut,j)+ft—1/2,j(ui—1,j ui'j)]/fl

2
B3 - —
[f,L‘ i+ 1/2(1.1’;‘ o1 u_L‘ j) +ft, J,_1/2( ui‘ j-1 u.L, j) ]/h

This form is convenient because it 1is tonservative (expression
(3.1.10) wusually appears in inteqrals which express some
conservative law) therefore it will preserve the properties of the
differential equations.

The treatment of the boundary conditions depends on the type
and on the method (see later). There are three different type of
boundary conditions in elliptic problems: 1) Dirichlet conditions,
where the value of the unknown function is given on the boundary,
2) Neumann conditions, where the normal derivative isg specified,
and 3)Robbins or mized conditions where some combination of the
function and its first derivative on the boundary are given.
Dirichlet type of boundary conditions present no difficulty when
formulating finite difference scheme. The other two type need
particular care. Usually extra grid lines are introduced in a such
a way that the derivatives can be approximated to the accuracy
desired and then they can be imposed on the interior equations
either including them or treating them separately (see later)

The problem of solving an elliptic equation of the Laplace
type (?%1=0) or Poisson type (92u=f) reduces on solving the set of
algebraic equations obtained after a discretization of the type
(3.1.8) is used. There are several methods for solving those

equations and the choice depends on the problem at hand.
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3.2 Numerical methods for solving set of alqgebraic equations.

When the system of equations to solve is linear then the
discretized system of n equations will also be linear and may be
written in the form

(3.2.1) Au = b

where A is a nxn matrix and u and b are n-components vectors.
Broadly speaking there are two classes of methods for solving
equations of the type (3.2.1): direct methods, which solve the
problem in a given number of steps and i{iterctive or relaxation
methods which compute an infinite sequence of better and better
approximation.

Direct methods wusually involve the decomposition of the
matrix A into lower and upper triangular matrices accomplished by
the Gaussian elimination (for an account of this method see any
textbook on numerical analysis, e.g. Numericel Recipes by Press et
al. 1984). These methods, in general, require large computing
time (0(n”)) and large storage (0(n?) so even with today's large
computer it is prohibitive to use them forp complicated problems
like the one we have to solve. Therefore we remand the interest
reader to those books which describe them in an extensive way
(e.g. Numerical Solutien of Elliptic Problems by Birchoff and
Linch, 1984) since we will not use them.

In contrast with direct methods which, neglecting the machine
precision, can give the exact solution in a finite number of
steps, iterative methods require, theoretically, an infinite
number of operations to determine the solution. In practice, the
solution process is in general stopped, after some number of
iterations, when some criterion of convergence 1is satisfied.
Because these methods are widely used to solve the system of
equations resulting from the discretization of boundary value
problem and because these relaxations play an important role in
Multigrid (see later this chapter) we will give a brief review
here.

Consider the following boundary value problem in a

two-dimensional domain O
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(3.2.2) L u=f

(3.2.3) Bu-=g

where L and B are differential operators corresponding to the
interior and boundary equations for the unknown. Suppose that L is
a second order, elliptic operator and B can be the identity or
normal derivative or a combination of both operators. Suppose
next, that the discretization of the problem is the following

(3.2.43 LM = gh

(3.2.50 BN - "
For simplicity suppose thsat the boundary conditions have been
already imposed into the interior equation so the equation to be
solved can be thought to be only (3.2.4). wWith iterative methods,
equation (3.2.4) is solved starting with an initial appreoximation
ﬁﬁ and then the new iterate approximation is calculated from

previous iterates detting thus a sequence of iterates g&) such
that

(3.2.¢) lim ou®= 4"
ke —30
For one-step stationary iterative method the k+1-th iteration is

obtained by the formula

(3.2.7) u—€k+1): e

G u + b

where GzI—uD-iL and Q;umnﬂi (D is the diagonal of the matrix Lh

and I is the identity matrix and o is a parameter in the range
(0,1) which is used to accelerate the process of getting the

k+1)
Lig from the

solution). It is one-siep because it generates
single estimate gm)and stationary because ¢ does not depend on
k. The condition for convergence of such methods 1is provided by
the following theorem: An tterative method is convergent if and
only if the spectrol radius eCG2 of the matrix G, defined as the

largest in magni tude of the eigenvalues of G, is less than 1.
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To this class belongs the commonly called Jacobi iteration
which consists on changing the value of the unknown using the
required neighboring values from the previous iteration such that
the local difference equations are satisfied. In this case we do
not need to store the matrix 6, all it is required is sufficient
information to evaluate the difference equations in each point.
This is characteristic of any iterative method and it is the
pPrimary reason why they have been extensively used in the past.
For the particular case of Jacobi iteration only two vectors
containing the current and previous iterations are needed to be
stored. An improvement to this iteration can achieved wusing the
newly calculated quantities whenevep possible in the course of an

iteration. In terms of components this can be written as follows

{e+1) Jetd) ke
(3.2.8) u.+ = E ¢ u. + % c.u.) + b,
i Ly L i

i irti
where

(3.2.9) €. .= =a /a. . b. = fra .
L, Ly Ll L LI A &

being a the element of the matrix L™ This is the Gauss-Seidel
iteration which has the advantage of requiring storaqge for a
single vector to maintain the estimate of the grid function.

Since these methods solve for one value of the grid function
at a time, they are often referred to as point relaxation methods.
Another class of iterative methods involves the simultaneous
replacement of those values which belongs to a given grid 1lines
and that simultaneously satisfy the equations on that line. This
Process is called line relaxation. The simultaneous replacement is
easy and inexpensive to do, since the system of equations to be
solved for each line is tridiaqonal (see e.g. Press et al. 1986).

The above briefly described methods tend to have asymptotic
slow convergence. This can be seen through a simple example.

Consider the one-dimensional boundary value problemn

(3.2.100 - u'(x) = f(x) o= U0)=u(1)=0

whose discretization is the following
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(3.2.11) . = £ i=1, N

where N-1 is the number of intervals in which the domain is
divided. The discratization can also be put in the general form
(3.2.4). Suppose we solve the equation using the iterative method
in €(3.2.7) which can also be written as

(k+1) ke ~1
u = u - (

R h [4'3] -4 k)
D u - £ r

= u + D

(3.2.12) L

ky o, , .
where the gf} is the residual vector given by

(3.2.13) p®o gh _ h®

Using (3.2.12), this gives

(3.2.14) p&D. o B
Clearly

(3.2.15) p% - gk p@
where Gk is the k-th power of the matrix 6 and r“n is the
residual corresponding to the initial solution estimate. This

residual can then be expressed as combination of the eigenvectors

¢m of ¢ as
N-1

. o _ Z :
(3.2.16) T = cm¢m.
m=4i
It then follows from (3.2.15) that
N-1
ey k
(3.2.17) r = E cm(Xm) ¢ﬁ
m=4i
where Km are the eigenvalues of the matrix 6. Now the eigenvalues

and eigenvectors of the matrix 6 are given by (supposing w=1-2)

I

(3.2.18) # [sinamh), sinCzmmh), »$inC(N-1) amh) ]

(3.2.19) cos’(mmh/ 2) m=1, ..., ,N-1.

m

Therefore the spectral radius of the matrix G is
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(3.2.20) coszgh;m ' _:_1_2_}_1_2+ 0ch*

For small h, this spectral radius will be of order 1 resulting in
very slow convergence ratsa, This slowness is due to the lowest
frequency components (smooth components) of the residuals. on the
other hand the spectral radius is much less than 1 for those high
frequencies (non-smeooth components) for which cosztnmh/z) is much
less than unity.

For a given approximation Gm’of the problem we can define
the error as

~ ke
(3.2.21) - %o

Therefore the iteration equation can also be written as

(3.2.22) M. g W

The analysis made for the residuals holds even for the
errors. Thus we can conclude, with the help of Fig. 18 that those
error components which are not visible on a given grid are the
ones responsible for slow convergence, whereas high frequency
errors are very efficiently smoothed by relaxation. The situation

is that of Fig. 18 in which typical error smoothing behaviour is
shown.

3.3 Methods used to solve stationary and agisvmmetric Einstein's

eguations.

As already mentioned in Chap. I several numerical techniques
have been developed to solve the Einstein equations for stationary
and axisymmetric systems (Bardeen andg Wagoner, 1971, Wilson, 1972,
Bonazzola and Scheneider, 1974, Butterworth and Ipser, 1976,
Eriguchi, 1980, Komatsu et al., 198é6). Among these the most
promising are the ones developed by Butterworth and Ipser and
Komatsu et al.. Here we give an outline of these methods and
explain why we will not use them.

Butterworth and Ipser generalized Stoeckley's (1945) method

on rotating Newtonian polytropes to general relativity. Briefly,
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they used the Newton-Raphson method to approximate the solution
(gaﬁ,p) of Einstein's equations

(3.3.1) Gaﬁ = am Taﬁ

As a zeroth approximation they took a previously constructed model
(ggﬁ,po) close to the one to be computed. Then after slightly
increasing the rotation parameter, the pressure pi was recomputed
using the hydrostatic equilibrium equation and the following

perturbation equations were solved

(3.3.2) & .- emor, =c (q% - enT (g% phH
o ap = “optd o3 3 P

for the perturbed é&ﬁ obtaining a first order approximation
(g;ﬁ,pﬂ. The (n+1)-st approximation is obtained from the n-th by
first solving the hydrostatic equilibrium equation to find ph+i in
termiﬂof g;ﬁhand then solve (3.3.2) to find g;;;=g;ﬁ+égaﬁ in terms
of p and gaﬁ' This process is continued wuntil convergence is
reached. A sequence was constructed for a succession of increasing
values of the rotation bparameter.Equations (3.3.2) involves a
global linearization. Actually they do not linearize the equgtions
globally, but for each of them (regarded as an equation for each
metric function) the linearization is done with respect one metric
function only. The discretization is made on a finite grid which
consists of a chosen number of radial spokes emanating from the
origin at the Gauss-Legendre quadrature values and a chosen number
of equally spaced radial intervals along each spoke. The choice of
Gauss-Legendre quadrature values is dictated by the fact that each
function is expressed in terms of Legendre Polynomials for the
angular part. The radial derivatives are approximated wusing
central difference formulae. This method allows to use a few
points in the angular direction and still have good accuracy. The
drawback is that since the spokes emanating from the origin of the
domain of integration the resolution of external configurations
which do not contain the origin cannot be controlled in an easy
way. Thus, although this way of discretization gives a good
accuracy for systems of elliptical shapes, it is not adequate for

body with toroidal shape or for very flattened objects in general.
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Hore adequate, for this purpose, 1is the method used by
Eriguchi (1984, GR11) to constructed relativistic Sequence of
polytropic spheroidal and toroidal (without central body) bodies.
The method is not yet published in detail, and only a brief sketch
is contained in a very recent preprint (Komatsu et al., 198s).
They divide the Einstein equations into three parts: a linear
part, a non-linear part and the matter source term. Then by
introducing a Green's function for the linear part they reduce the
equation to an integro-differential pProblem. This seems to be a
procedure which it can only be followed if the non-linear term is
thought to have 1little contribution. Therefore the method in
pPrinciple might not be able to treat a strong gravitational field.
Their c¢laims, to be able to compute highly relativistic
configurations, are questionable since their strenath of
relativity parameter is only the ratio of the pPressure to the
energy density and they do not give any information about the
strength of the gravitational field. One advantage of using an
integral formulation of Einstein's equations is that the boundary
conditions are already imposed on the equations and so nothing
special needs to be done to treat them. in contrast Butterworth
and Ipser had to calculate asymptotic expansions of the metric
functions up to higher orders than those of Chap. II in order to
impose the conditions at a finite distance (tuwo zones outside the
surface of the confiquration considered). The expansion of the
metric functions to higher order introduces a formidable
difficulty, namely the calculation of the multipole moments, since
in general relativity their source is not only the matter but also
the geometry (see Chap. II). & generally covariant integral
formulation of Einstein's equations was made by Sciama et al.
(1969). This formulation gives a better representation of the
mathematical structure of Einstein's equations (regarding only the
source terms as contributing linearly to the potential g&ﬁ) and so
a similar form would be suitable to solve numerically the

equations.
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3.4 Multiqrid Methods.

In the previous section we have seen that the standard
iterative methods in some situations can be very slow since the
local nature of a relaxation sweep which is efficient on smoothing
those modes with very short wavelengths that interact at short
distance and are not influenced by distant boundaries. Brandt
(1973) used this property to construct the Hultigrid method which
solves a system of discrete equations using a collection of grids
with different mesh-sizes taking advantage of the relation between
different discretizations of the same continuous problem. In order
to have a good convergence rate one should be able to reduce as
many error components possible. The use of different grids with
different mesh-sizes provides a good tool for this, since a large
spectrum of frequencies can then be represented. The idea of the

method is very simple and can be stated as follows.

a’ coarse grid correction.
For ease of exposition we suppose that the differential

problem to be solved is

(3.4.1) L u =f with b.c. Bu =g

where L is a linear operator. Suppose that the discretization of

equation (3.4.1) on a grid with mesh-size h is

h ]
(3.4.2) Lhu = f B.h u}”-’.--..-f_:fh

After applying any iterative procedure suppose we have an

. . edla) o) h ~ 1y . .
approximate solution u . The error v m u - u then satisfies

(3.4.3) 1" v" =" where r" o= eho Lhyh

Since relaxation reduces only high frequency components, the only
modes left after few Sweeps are the smooth ones therefore vh iz a
smooth function and can be approximated by a coarser gqrid function

H . . .
v which satisfies

(3.4.4) LH yH o pH where pH =I:I r"

H , , . . . .
Here L~ is a coarse grid approximation of Lh and Iﬁ is the fine to

63



Coarse grid transfer operator, Note that since the grid H has much
less points than the grid h (one quarter of points inp two
dimensions, if H = 2h), it is much easier to solve (3.4.4) than to

solve (3.4.3). Having obtained ap approximate solution v@o of

&

il 7 2o

-%.%)  We use it ag correction to accelerate the

]

¢ e fo B o
equation

ok
-

convergence of the fine grid

(3.4.5) ol e P, I; vH

ko, . . . .
where IH 1s a coarse to fine grid interpolation operator. This

Process is called coarse grid correction.

b2 Full Multi-Grid.

To solve efficiently the €quation (3.4.4) we can employ g
coarse grid correction recursively; i.e., equation (3.4.4) is
itself solved by relaxation Sweeps combined with a still coarser
grid correction. We thus have a sequence of grids with mesh-sizes
h1 >h2 b S hM, where hME h  and I’x\j = Zhﬁd' In the Full
Multi-Grid (FHG) algorithm, the first approximation is obtained by
interpolating from a solution on the next coarser level, which
itself has been calculated by a similar (FHMG) algorithm. From the
differences between the final solutions at different mesh-sizes,
we can directly calculate the rate of convergence to the
differential solution (see Fig. 19).

Independently, Hackbusch in 1975/7s developed the fundamental
elements of multigrid methods without knowing the existing
literature. His major contribution consists of Presenting a
general convergence theory of Multigrid methods (Hackbusch, 1980,
1981, 1985). For a large class of problems the theory predicts
that the number of operations needed fop solving the problem to
the level of truncation error is less than Cen (see for instance
Hackbusch, 1985) where C is a constant and n is the number of grid
points of the finest grid used. Usually the theory gives quite
large values of ¢ and 50 on this basis one might not choose to use
the Multigrid method. Howevep Practical experiments give a
different answerp. For example for problems with singularities it
is not possible to have a rigorous proof of convergence. However

in practice these problems are solved with the same efficiency as
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is smaller than the discretization error of
that level

Fig. 19 - Fized Full Multi-Grid (FHG) algorithm.




regular problem (see e.qg. Brandt, 1981 and Brandt and Ta*asan,
1985).

c2 Full Adpproximation Scheme.

The correction scheme is not applicable to non-linear
problems since equation (3.4.4) is valid only for 1linear Lh. In
this case we should wuse the Full Approximation Scheme (FAS)
performing the same steps but in terms of another coarse grid

, H
variable. Instead of v we use

(3.4.6) uH-I': ate yvH
as the coarse grid unknown variable. This function approximates

the full solution represented on the coarse grid. Using (3.4.6)

the coarse grid equation (3.4.4) becomes

(3.4.7) LT 4% = F where fHaLH(I: L II: r"

Then the coarse grid correction equivalent to (3.4.5) becomes

~ -uh h A ~ A
(3.4.8) o e—— 3P 1" - If: ah

One important advantage of FAS is its direct application to
non-linear problems without linearizing the equations. The
correction equation (3.4.3) in the case Lh is non-linear, can be

written in the form

(3.4.9) L@ v™ - LPa? mph

Transferrlng thlS equatlon to the coarse grid (replacing L by L

by IHuh, by vH and r by Ihr ) we get the FAS equation

(3.4.7).

d> Dual point of view.

We may write equation (3.4.7) also as

(3.4.10) LE ¥ - gH T:

where

H H -H ~k H _h
(3.4.11) Th = L (Ih u ) - Ih(L
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and
(3.4.13) £ = I f

Equation (3.4.10) without T: is the usual coarse grid equation and
Tﬁ is the fine-to-coarse defect correction.

We can now reverse our point of view of the entire multigrid
process: instead of regarding the coarse grid as a device for
accelerating convergence on the fine grid, we can view the fine
grid as a device to calculate the correction T: to the coarse grid
equation visiting a finer grid. This is the so called dual point

of view.

e> T - extrapolation.

H .
The defect Th can serve as an estimation of the local

. H
truncation error T

-~

(3.4.14> =% = 1" - 1% w
where u is the true solution of the differential solution and IH,
IH are continuum-to-H-grid interpolation operators. Note the

analogy between (3.4.11) and (3.4.14). The term <72 1is the

correction for the right hand side of the equation

(3.4.15) LT ¥ - gH

~

in order uH coincides with the true solution IHu at the grid H,

]

whereas 1 is the correction in order that uH will coincide at
convergence with the fine grid solution I uh. It 1is then clear

o g+

that at convergence

(3.4.16) =% =" s Tﬁ

h,2h h . . \ . . .
where Th=L (I u)-I (Lu). This relation is very important since it
allows to raise the approximation order. Indeed, suppose that the

local approximation order is p, i.e.
(3.4.17) Th(X) = c(x) h°® c(x) independent on h

then for the next coarse grid (H=2h) we can write
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(3.4.18) (x) = 2 ¢c(x) BP
therefore equation (3.4.16) becomes

(3.4.19) r:‘(xa = (2P-0 c(x) pP

using then (3.4.18)
(3.4.20) iz = zptzp-n’irr’h‘(x)

Then the approximation order of grid-H can be raised by just
multiplying the truncation error T: by the factor zp(z‘ﬂi)_1 and

using equation (3.4.10) as a coarse grid equation. This operation

is called T extrapolation and it is a by-product of FAS.

F2 Local grid refinement.

In most practical problenms non-uniform resolution is needed.
Finer grids are needed near singularity, non-smooth boundaries,
boundary layers, shock, etc. In our problem the solutions 1is
characterized by three different lengthscales: the horizon size,
the scale corresponding to the structure of the torus and
infinity. The FAS algorithm can deal with these needs in an
automatic way, wusing 1local grid refinements and/or local
coordinates transformation.

Non-uniformity in multigrid methods 1is reached, realizing
that finer grids can extend only in subdomains. Allowing for grid
contraction or extension the FasS scheme with <-extrapolation
technique will give a very efficient solution Process. The idea is
that 7 will tell us where further resolution is needed in the
domain. If in some subdomain the local truncation error is far
below the average, a finer grid is introduced in that subdomain
and a local multigrid cycle will be applied till +the truncation
error will be below the lavel desired. This c¢an be done
automatically selecting the mesh-size h in an optimal way trying
to minimize the work invested to obtain a given accuracy. This is
a typical optimization problem.

When a proper multigrid algorithm is wused, the amount of

invested work W, is proportional to the number of grid points in
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the domain, and can therefore be approximated by

(3.4.21) u mJ‘!’- dx
hd

s

- . . -4 -
tie problem’s domain, h is the local

Ui

where 4 is the dimension of
number of grid points and w is the work per grid point, which is
generally proportional to the complexity of the finite difference
formulae.

The solution error E can always be approximated by a

functional of the form
(3.4.22) E -’R‘,JGde

where 7 is the 1local truncation error. The error weighting
Ffunction 6 is chosen according to the problem. Equation (3.4.22)
states that the error made at one point affects the solution
error, and its measure E, independently of that made at another
point.

The Euler equation for optimizing h by minimizing E under

fixed W is

OE M
(3.4.23) m-"‘ ;\E_ 0O

or by using (3.4.21) and (3.4.22)

(3.4.24) G%: adwh %"

where A is a constant independent of the position of the grid,
expressing the rate of exchange optimal accuracy for work.
Equation (3.4.24) can be used either <calculating with FAS the
estimation of the truncation error and then when the 1left hand
side is larger than the right hand side a fine grid is introduced
or alternatively if an estimation of the truncation error is known
in advance then equation (3.4.24) is used to constructed the set
of grids to use in the Multigrid (for an application of the latter

case see Bai and Brandt, 1985 and Dendy, 1984).
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CHAPTER IV
MULTIGRID IN GENERAL RELATIVITY: VACUUM SPACE-TIHMES.

The multitude of features (non-linearity, Neumann-1like
boundary conditions, unbounded domain or, in general, different
lengthscales, etc) characteristic of our problem require a
thorough understanding of their implications in terms of the
Hultigrid process. Mistreating just one of them may cause the
solution time to increase very significantly. Therefore it 1is a
good strategy to proceed step by step, introducing one new feature
at a time. For this reason, we have started with the simplest
models connected with our problem for which analytic solutions are
known.

We start with specializing our system consider the vacuum
case, then we neglect rotation. Therefore the first experiment
done is for getting numerically the Schwarzschild solution. Next
the rotation is included so the corresponding analytic solution is
that of the Kerr metric. The experiments done concern only the
equations for the metric functions B, v and ®. The equation for y
does not presents large difficulties being a 1linear first order

differential equation.

4.1 The Schwarzschild case.

When outside the horizon of the black hole no matter is
present then the right hand sides of the equations (2.2.17),
(2.2.22) and (2.2.23) go to zero. Moreover if the black hole is
supposed to be non-rotating then the metric becomes spherically
symmetric and the metric function ® is identically zero in all the

space-time. Therefore the equations reduces to

(4.1.1) ¥(BV) = O

(4.1.2) Val{rsind®¥B) = 0

with the following boundary conditions
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(4.1.3) v'& = B‘g = 0 at & = 0, mnrz
E2
(4.1.4) e = 0 B =0 at r = hr2
M
(4.1.5) [EIEC - = B = 1 at large r.

Since the boundary condition for the » metric function at the
horizon it is more convenient to work with the variable X=e?
instead of w». Moreover, the radial coordinate can be rescaled
using the value of the coordinate radius of the horizon. Therefore

the system of equations to solve in this case is

(4.1.63 Va(g V) = 0
(4.1.7) ¥el(rsind¥B) = 0

with the boundary conditions

(4.1.8) X =0 B =0 g regular at r = 1
2

(4.1.9) ¥ = 1 - = B = 1 at large r

(4.1.10) X‘ﬁ' = B,_3= 0 at & = 0, mnre

Although we know that in this case the solution does not depend on
the angular coordinate we still retain the angular part of the
above system in our numerical experiments. It easy to verify (see

Appendix C) that the solution in this case is given by

-1
r+1

(4.1.11) X =

1
and B = 4 e o2
r

As we can see from the Appendix, it is very crucial to use the
regularity condition in order to determine the solution
analytically. We will see that is crucial numerically as well.

In order to solve numerically our equations using the
Multigrid it is important to chose first a good discretization

scheme and then an efficient relaxation algorithm. To analyze
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different discretizations and relaxation methods let's concentrate
our attention, for the moment, toc the equation for the metric
function B which, being linear, is much simpler to analyze.

Since the equation is in divergence form it is natural to
discretize it in a conservative form. Before doing that we have to
chose our grid. We chose r=R=50 as outer edge of the domain where
the boundary condition at infinity should be imposed. Note that
this approximation introduces a lower limit on the error we can
obtain, unless an adaptive Hultigrid scheme is used. This lower
limit is easily calculated from the difference between the value
of B given by the analytic solution for r=50 and one. Chosen the
outer edge of the grid we have now a finite domain which <c¢an be
subdivided using a finite number of meshes in both directions.
Suppose, that the resulting mesh-size in the r-direction is hr and
the one in the &-direction 1is h@- In selecting the discretization
scheme we should keep in mind the local property of relaxation,
therefore we can confine our considerations only to those terms
which are locally important. For a 1linear equation the 1locally
important terms are those which contain the higher derivatives.

The locally important part (principal part) of equation (4.1.7) is

B.so

+
e r

(4.1.12) r B, 0

the discretization of such an equation is

ira, i 2B Bl 0 B a7 ®B B
(4.1.13) r, S e e =0
hr i h"9

In the Gauss-Seidel relaxation scheme the points (i,)) are scanned

n~

one by one in some prescribed order. Given an approxzimation Btj’
at each point this value is replaced by a new value, B. - such

v

that equation (4.1.13) is satisfied. That is, §1_ satisfies

»

o

Bi,o, 7% "B, | f B e B,
(4.1.14) r ! = - . . ,

hZ P h
I

&

2
&

where the new values B, , B
i1, i1

chosen (lexicographic), by the time (i.)) is scanned new values

are used since, in the order
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have already replaced old ones at (i-1,)) and (ij-1). The new
approximation ﬁ;i does not satisfies (4.1.13) and further

relaxation sweeps may be required to improve it. It is therefore

important to define the convergence factor as

(4.1.15) p=llvilVlIvll where Vi Biy Bup Vii Bui B
and |[|s|] being a suitable norm. An analysis of the smoothing effect
can be done expanding the errors v and v in Fourier series
LT L+8 p
i 2

(4.1.16) v = LAge Vg Lhge

L& i+ _p
12

where 6:(61,6é) and the summations are extended over a subset of
the square [&|=max(|® |, |®_ |Zn,z. Subtracting (4.1.13) from
(4.1.14) and substituting (4.1.16) we get
i&i i@z -i&i —i@z
(4.1.17) (ae + Cce )AG + (ae + ce - 2a - zc)A@= 0

where a:(h@ri)/hr and c=hP/(h@pL). Hence the amplification factor

of the & component due to one relaxation sweep is

& ie
1 2
ae +ce
-1 -1
1 2
2a+2c-ae -ce

(4.1.18) pHe®) =

lgﬂqul
1

Among all components we are interested only in those which <cannot
be represented on a coarser grid. These are the components for
which (h/H)n=|&|=r, where H is the mesh-size of the next coarser
grid. Since we will assume from here on that H/h=2 we will be
interested in those components for which n/zslgiSn. From (4.1.18)
we see that as §f4(0,0), u(i)—ai, which explains why smooth
components are slow to converge. We can then define the smoothing
Factor as the largest convergence factor for all components not

represented at coarser level

(4.1.19) s = max peS)
n/ 22 |&|<n

This factor gives the relaxation convergence factor for those

components which converge on grid h; others will converge on grid
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H. Now, provided that a/c~1 the function defined in (4.1.18) has a
maximum for the pair (m/2,arcos<-rs) and the value of it for this
value of g is EE.S, which means that as long as a=~c point
relaxation needs only three sweeps to reduce the high-frequency
error components by almost an order of magnitude. The situation is

different when a<« (or a>»c). For instance

z2 2
a“+¢ ]

(4.1.200 w(Z o) = [
2 2 2
a +{(c+23)

which approaches 1 as a-=0. In such cases there are other kind of
relaxation methods that one should wuse, namely 1line relaxation
which can give a good smoothing factor as the point relaxation.
The line to be simultaneous updated in +the course of a Sweep
depend on which condition is meet: a<« or a>>c. In the first case,
being the coefficient of the r-derivative term in the principal
part more important than the other term, the discrete operator has
strong connection in the 1r direction therefore only in that
direction we can have smoothing of the error and the line to relax
simultaneous is the r-line; vice versa for the other case, the
line to relax simultaneous is the #-direction. In our case the
three conditions a~c, a<c or a» will be meet depending on how far
we are from the inner edge of the grid (see definitions of a and
¢). Therefore in such coordinates, the relaxation method used will
depend on the value of r. This may be quite expensive in terms of
computational work since during a sweep we should check which of
the above three conditions is satisfied. Not only this, but line
relaxation can be very expensive if it has to be employed for a
system of equations. A way out of this problem 1is to use a
different coordinate.

A quite natural change of coordinate is to use s=1lnr instead
of r. The reason is that this will provide a natural non-uniform
grid in the radial coordinate giving more resoclution in r near the
horizon, where the metric functions have most of their variations
in terms of the radial coordinate. Moreover using s instead of r

equation (4.1.12), assumes the form
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(4.1.21) + = 0
r

whose discretization, provided that hé;:hr satisfies the condition

. T o R ey e Tn e e o
azg. Therefore using

as independent radial variable we can still

143

5
use the point relaxation which is the most inexpensive relaxation
technique.

Another important piece of the Multigrid mosaic is the
transfer of the residuals. This transfer serves, essentially to
calculate the right hand side of the coarser grid equation after
few relaxation sweeps have been made on the fine-grid to smooth
the high-frequency error components. The choice of the proper
operator Ii applied to the residuals, depends on the type of
equation we are dealing with. For constant coefficient equations
like the Poisson's equation in Cartesian rectangular coordinates
it is enough to inject the value of the residuals at a given point
in the fine-grid to the corresponding point in the coarse-grid
(see Fig. 20).

{ie—-1, je

N . Y
S A

= : 2 “c':‘]u (Ii'l;lrh)i_c:,,jc: r:i.c-—i, 2ic-1
S : S —:_ —

4 i 5

Fig. 20

For equations with rapidly varying coefficients or for
non-linear equations the simple injection is not a good transfer.
The reason is that when the coefficients vary rapidly in two
contiquous meshes then even the residuals change rapidly. To have
a good representation of them in the coarse grid we should use
full residual weighting. There are several ways to construct such
transfers, one of those is that of requiring that the integral of
the residuals on the fine grid should be equal to the integral

extended on the coarse grid of the transferred residuals
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) b
(4.1.22) I‘:r dxdy :a:Irdxdy

voression ¥e geh

ectangular grid with coordinates % and y. Then discretizing
i

H Bk H s h
(4.1.23) HH EI;r(x) =hh Frix)

For each point in the coarse grid the summation is 1limited to a
subset of neighboring fine grid points for reducing the
computational work. On the other hand the number of points should
be large enough to give a good averaging of +the residuals. An
optimal subset is the one made of those nine grid points just
around the coarse grid point considered. Using these nine points

full weighting can be done through the formula

h
LE,jf

(4.1.24) (%™ = Lo
h te.je 4

. 1 [I‘h +I‘h +I‘h +I‘h ]
8 Lf+a,jf L, jf+s T if-4,jf O LS, jf-1

. i h h h I} ]

= T U AR R A R A .
185k if+4,jf+4  if-4,jf+14 = if+a,jf-1  if-g,jf-4

where ifszie-2 and ji=2je-1. ~Equation (4.1.24) is the transfer
operator generally used for equation with wvariable coefficients
like Navier-Stokes equations (Brandt, 1984). However for diffusion
equations (Alcouffe et al. 19813 with discontinuous coefficients a
better operator needs to be constructed. A way is to construct it
by uéing the diffusion coefficients itself as weights in a fashion
that we will explain. The operation of transferring the residuals
from fine to coarse grid c¢an be regarded as a process of
distribution of the calculated residuals in the fine grid to
nearby coarse grid points in a such a way that the right hand side

of the coarse




grid equation still preserve the smoothing properties of the fine
grid residuals. Now, consider two grids with mesh-sizes ratio
H/h=2 (see Fig. 21). Each coarse grid cell contains four fine grid
cells and therefore nine fine grid points. These can be divided in
three classes: those which coincide with the coarse grid points,
those which lie on coarse grid lines but do not coincide with the
..coarse grid points and the ones at the center of the coarse grid
cell. Each point belonging to different class contributes
differently to the nearby coarse grid point. The residuals at the
point at the center of the c¢ell will contribute to the residuals
of the four vertices of the coarse grid cell, whereas the
residuals relative to the finer grid points bracketed by two
coarse grid points will contribute only to the residuals relative
to the bracketing coarse grid points. Those residuals relative to
the fine grid points which coincide with the c¢oarse grid points
will give direct contributions to the residuals of those <coarse
grid points taking into account the presence of the contiguous
cells. The proportion of these splitting of the residuals are
dictated by the weights chosen. A way for choosing these 1is to
reverse our point of view and think how we would interpolate the
residuals to the fine grid points given those at the <coarse grid
points for each of the above classes. This process is equivalent
to construct the inverse coarse-to-fine interpolation operator
which is used in the process of HMultigrid to interpolated the
coarse grid corrections.

The choice we have done is that of taking as weights the
diffusion coefficients which appear in the egquations. With

the use of s as coordinates, equation (4.1.2) can be written
(4.1.25) @ (r°sin®6B.) + &.(r°sineB.) = 0
& 8 & &

the discretization of it is

h
.2 Op 2 2
(4.1.26)  sin’®, H:[ri.u/z(Biu,j B T2 B, B,w,)]
2 o , 2 L2
Ty ﬁg[S:m .&j+1/2(Bi,j+1 B, tsin éj—ixztBt,j—i i.,j)]

Using the coefficients of (4.1.26) with the above prescriptions
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the residuals transfer operator is

H h i '
(£.1.27) (Ihr )i.c,jc_ Y ri.f,jf

h - B
P -
~4/2,if-1/2 Lf-1,jf-1 Dif-1,2" if-1,§f

&

[g""
s

B

-+ [} - h
+ A , ro. ... +C. ro_
Lf-4-2,jf+4.-2 if-4,jf+1 jf-1-2 if,jf-1

+ h + - A
C

+ © . + .
jE+Ls2 Lf, 4 A Uf 2, 120 Lf+e, -1

+ 1o + + A
B. r. L+ A A r. ‘
Li+1,2 if+4,jf Li+i,2,§f+172 Lf+4,jf+4
h =+ * d * defined foll
a a o)
where AifJf' E_Lmr n Cihﬁ re defined as fo ws
++ + +
Ai. £, Bi. £ iE,jf
r? r?
- if + if
(4.1.28) BLF r? .p? BLF r? .p?
if " if-1 if " if+1
,_ 2 . 2
sin & sin &
C = if ¢t - if
if if

, 2 . 2
sin ij+51n &

., 2 , 2
sin & +sin" &
Jf—-1 if

Jf+1
It is then clear that the interpolation of the coarse grid
corrections should be done using the formulae
2 H 2 H
r. . R 3 o ) ,
h Lf-1-2 ie¢e, je Lf+1./2 ite+d, je

Lf+e,jf 2 2
. +p
itf-1,-2 if+ar-2

(4.7.29) v

for those points which lie on the horizontal lines,

. 2 H . 2 H
o} sin i9'i‘—1/.‘2Bic 'c+81n 9'f+1/2Bi.c je+ 4
(4.1.30) ! 2 ] 23

v =
Lf,jf+1

., 2 . 2
sin & +sin &
jf-1-2 if+ir2

for those lying in the vertical lines, and
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h .2 H . 2 H
'a o= E\ (sin”“&. B +sin’ ¥, B

Lf+a, jf+1 if-1-2 f-1r2 Le,je f+1-,2 Lejet+d

2 , 2 H .2 H

(4.1.31) + T, (sin &, B  +s5in" 9, B nNV
if+1/2 if-1/2 Let+d,je jf+i-s,2 Le+djf
2 2 2
+p i & +51 &
(r if-1.-2 Lf+112) (sin f-1-,2 sin f+i,2

for fine grid points centered in coarse grid squares. A good test
to see if this operators transfer the residuals of our equation in
a proper way is the following. Consider the following problem on a

grid with mesh-size h

(4.1.32) Lhuh = éh(é‘) = {1 g_zg x=(r,®
0 x&&
with the boundary conditions
(4.1.33) uh = 0 on the four edges of the grid,
where Lh is the discretized operator (4.1.26) of equation

(4.1.25). Consider now the same problem on a grid with mesh-size
H=2h whose right hand side is calculated using the operator Ii of

equation (4.1.27)

(4.1.35 L™ = 1l
This problem together with (4.1.32) should be the same discrete
representation of the differential equation Lu=4&(¥¢) whose solution
is the Green's function. Then choosing & on grid h we solve
equation (4.1.32) by doing a certain number of relaxation sweeps
(until convergence) getting a solution UZ' Separately, we transfer
the right hand side of equation (4.1.32) on grid H using the
operator (4.1.28) and solve equation (4.1.33) till convergence by
relagation. The solution v® then it is interpolated using
(4.1.29)-(4.1.32) to the fine grid obtaining another fine grid
solution u:. Far from ¥ these two solutions should coincide and
their ratio be near to one. In table IV the results of such an
experiment for two grids in which the coarsest grid has 8x4 grid

points, are shown for different grid points. We see that there is
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a good agreement between the two solutions.

TABLE IV

The position of a grid peint is referred te the finer grid

rid point {2,2) (2,2} (3,3 id,4) (2.8
g p
La I
ud/ub a.7? a.7 0.8 .8 o.9

Using the &relaxation scheme and the transfer operators
described above we have implemented a Multigrid method for solving
equation (4.1.26). The algorithm used is FMG with fixed FAS. The
number of grids (levels) used was 5 and the coarsest grid had 4x2
grid points. We choose this pair of grid points because for it the
ratio of the two mesh-sizes is nearly one (h /h g=1-24 for R=50).
An optimal pair would be 8x3 which gives h /h s 93 but this would
require more computational work on the coarsest grid. In order to
Separate any possible interferences of the boundary conditions
(see later) with the interior equations we have done the first
experiment using Dirichlet boundary conditions on the axis of
symmetry and on the equatorial Plane. This can be done since we
know the analytic solution. Figure 22 shows the behaviour of the
logarithm of the Euclidean norm of the residuals
(Hrhﬂ=CZ|r Iﬁxhsjlfz with the number of relaxations sweeps
made on the finest grid for each level. We show here the results
for level 3, 4, and 5. These plots show the asymptotic algebraic
convergence. The residuals decrease by several order of magnitude
in a small number of relaxzation. Here we used fixed algorithm. It
is enough to make tuwo relaxation sweeps before going to the next
coarse grid. After a coarse grid correction another vrelaxation
sweep if made in order to smooth those high frequency components
that the interpolation could introduce. Therefore for each 1level,
in every cycle we make three relaxation sweeps on the finest grid.
Then in Fig. 22, for each level 30 relaxation sweeps correspond to
ten Multigrid cycles. The results are very good, the residuals
decrease with a more or less constant rate. This is a completely

different situation with respect the standard iterative methods in
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which the convergence rate is not constant and tends to slow down
after a certain number of iterations.

To include the Neumann type of boundary conditions is not an
easy task. The efficiency of the Multigrid is easily destroyed if
these boundary conditions are not treated properly. The problem
being that the interior equations are of an order higher than the
boundary conditions. This can be seen as follow. Consider the
usual model problem Lu=f with boundary conditions Bu=g. Suppose
that L is an m-order differential operator and B is an f&order
one, with &m. For those interior points close to the boundary the

solution error v satisfies the discretized m-order interior

equation

h K - I}
(4.1.35) Lv =h a v, =
o E a3’ 13

as well as the &order boundary conditions
(4.1.36) BN = mnfya "o o
T ¥ ¥en
Combining the two equations and solving with respect to the
[a} . . .
interior residuals r, we get an expression whose leading term 1is

0(h£“3 for smooth errors (vh0(1), therefore rp

;, r;~0(1)), for
non smooth error that term should be multiplied by the magnitude
of the residuals. This means that if the boundary conditions are
mixed with the interior equations then the interior residuals will
change by an O(h&m5 and since &m the smoothness of the interior
residuals after relaxation will be destroyed, being usually h<1.
Following Brandt, a way around this difficulty is to relax
the equation V§B=Vig instead of Bu=q, where ﬁi is the Laplacian
operator along the boundary and s is the boundary arclength. This
increases ¢ by 2, making the perturbation to the interior
smoothness negligible. 1In practice, this means that, instead of
satisfying the given conditions at each boundary points, we only
change its error to be equal to an average of the errors at
neighboring boundary points. In case the boundary smoothing factor
is not as good as the interior one, a couple of boundary sweeps
may be done per each interior one. In our coordinates the operator

7 corresponds to take the second partial derivatives with respect
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to r along the boundary. This operator can be applied to the
discretized version of the boundary conditions. We use second
order central differences for approximate the derivatives at the
boundary. This introduces extra grid points at which the value of
the unknown variables can be extrapolated using a certain number
of interior grid points. We used a three points interpolation

formulae and the final discrete version of the boundary conditions

is
i 5Bt J-zB.L g +0‘SB£ g2
(4.1.37) - - - = q,. at &=rn-z
h i,d
&
_1'5BL 1+2BL g—o.sBi a
(4.1.38) - < - = qg. at &0
h N i,4

Taking the second derivative with respect to r of both sides of
-B new B old

) . due to a
g LL.d LLd

equation (4.1.37), the wvariation &B

relaxation sweep is given by

(4.1.39) & = [ - %—(riﬂ';ri_i,J) Thg/1.5
where
1'5BL,J_ZBL J_1+o.5BL _
(4.1.40) © =g =+ ht; :

Similar relations would hold for the boundary condition at &0 if
this boundary conditions had to be treated in the same way. At
this boundary, however, the situation is different. For &—0 the
left hand side of equation (4.1.25) goes to =zero. Theraefore the
residuals relative to interior points near that boundary are very
small and the changes on the residuals are very small so we do not
need to treat this boundary conditions separately and we impose
them.

Near the boundaries the residual transfer should be modified.
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This is because the influence of the residuals on the solution
depend on the distance from the boundary. Therefore the residuals
relative to the fine grid points close to the boundary should be
represented differently as (4.1.27) in the coarse arid. HWe will
not write the formulae here because they are easily constructed
from (4.1.27) taking into account that the residuals of the fine
grid points near the boundary should be distributed according to
the scheme of Fig.23.

Fiqure 24 shows the history of the residuals versus the
number of relaxation sweeps for each level when the Neumann
boundary conditions (4.1.10) are implemented in the Multigrid
scheme described above. Comparing these graphs with those relative
to the experiment made with Dirichlet boundary conditions, we see
that the efficiency is not anymore the same, but in comparison
with standard iterative methods is still very good (see Figqg. 25).
Horeover we see that for each level a Multiqrid cycle is not as
efficient as it should be, in fact the wobbling showed in Figq 24
is not an effect of the graphics, but a real oscillation perhaps
due to the intermixed residuals of the boundary with interior
ones. After all their treatment is not +trivial and it is
significant Dendy's opinion (1982) about it: Something special

must be dorne at the boundary. This is easy in principle =
especially tf Brandt is nearby to advise - but it is a pgain in
practice. In any case, this does not effect the relative solution
error [[B|| defined as

computed axact
| ) -B |

(4.1.40) Bl = max
i,

which is of the order 10 % already at level 3. This is the minimum

exact
B

error we could expect since- the approximation of applying the
asymptotic boundary condition at r=50; the accuracy cannot be
improved by going to finer grids.

Consider now the non-linear equation for the metric function
X. This equation using the s coordinate can be written

(4.1.41) é(rsinég .Y + @& (rsin@E-X ) = 0
£ X 8 & X

&

We discretize this equation in conservative form, obtaining
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h 2
" &, BY h h
(4.1.42) H—-Blﬂ@j [ri.+1x"2[)-(- t+1f2’j(x‘,_+1f2,j Xi—»i) +

L) h )
B [a) h H . B
Tian [5::-} i -g,/g,;z( 2 PER X @,j) _-j[ * 5'; Ty !:s in 6}%1/‘2 {?{'} Ljticz

h
. h h
" -x" + sins [‘-3-] ot gt .)] = 0.
L.j+i 2 L) J=1s2 X jly-1s2 T -1z T

The resulting discretized equation is a non-linear algebraic
equation since the values of B/¥ at mid-points are functions of ¥
at full grid points. However relaxation in Multigrid is wused to
smooth the error and not for solving the equations,\ then it is
enough to relax a non-linear equation through an approximate
linearization. Thus, for example, if the equation has a term of
the type uu and the current approximation just before relaxing at
some point is u, then the relaxation at that point will involve
only the term Eur. A full linearization would in addition include
the term (u—u)ur, but on local scale this term is negligible as
long as the differences of u at adjacent grid points are small
compared with u itself. Now, it is easy to verify that this is the
case for large values of r, but not near the horizon where the
metric functions have their most variations. In view of this
considerations we have decided to construct a relaxation ‘routine
for equation (4.1.42) making one Newton step for the two nearest
radial grid lines and apply Gauss-Seidel point relaxation, in the
rest of the grid, to the approximated <(as described above)
discretized equations. The full Newton step require a full
linearization of equation (4.1.42) and this depends on how X is
evaluated at mid-points.

Since the metric functions are defined at full grid points
their values at mid-points need to interpolated from those at full
grid points. This can be done 1in several ways, using linear
interpolation averaging the values at two adjacent grid points or
using higher order interpolation which involve more points, in
general the number of points (minus one) 1is the order of the
interpolation. In our case we need to know the values of the ratio
B/%X at mid-points which lie on r=const or on $=const grid lines.

We could interpolate separately the two functions and then take
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the ratio but since the ratio B/¥X is close to one from the

of the itself
calculated at full grid points. Referring to Fig. 26, those points

far

horizon we decide to interpolate the value ratio

marked with the symbol ® or mE are interpolated linearly. After a
few experiments we found that 3-point polynomial interpolation 1is
needed to recover O(hz) accuracy, for those

points marked by ¥
near the horizon. Any interpolation formula would require the
value of the function at a grid point whose position for a given
line precedes the position of the point in consideration. For
evaluating (B /X ) we cannot use the wvalue of B/X at im=1
a-2,j  8r2.j
since on the horizon X=0. However the function B/X is regular at
7 I ! j T : =
g--——:——%--:- ——:—-1}—-:-—
é o ¥ | l H . o
hortzorﬁé i < ] — a? 0 ? =2
f; 1 1 ] 1 =g=J
é t ] i ] 4 O 3 J=3=
i=g1 i=2 i=g iz=4 i=5=1
Fig. 2¢
the horizon therefore we can extrapolate backward the value of

(B/X)a/z‘using the next three interior points for each value of .

Then for i=2 the formulae used to interpolate the function B/X at

mid-points are

BY" 1 [1sBY" " a 31"
(4.1.43) = = = || = s|=] o+ ==
Xji-1-2,] e 2 (XL L i+, 2 |X ji+2,j
(4.1.44) B)" ~"—E’Bh+th L (81"
T X Ji+terzj @ |Z|T )i Llivaj zZ|8|i+2
For i=3 we use

~h - ) 5 h ~h
B 1 |=2{B B 1 {B
(4.1.45) e = e el RN ) D oy )
X#L—i/Z,J 4 |2 X ji-1,j XHL,J 2 XHL+1,J
= h - h PR o P o
B 1 1 |B B 3 [B
(4.1.46) g = o e =] + 3l o+ el )
XJ L+1-2,§] 4 2 {X ji-1,§ L.X i,j 2 Hx L+,

For those points lying

on &=const
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ponh 1 FﬂB.h rB'qh -
(4.1.47) T = =1 o+ =l
Xji,j-1r2 2 i1 4 RAN
“ o w Ry o Y -t
rst'ﬁ 5 —ﬂth ,aBs*}‘q -
(4.1.48) = = e = =1
X L. j+ir2 2 X ji.j+1 4 R
Y o ol T Ry S o

When these expressions are put in (4.1.42) we get a non-linear
equation in X, . We solve it by using the Newton method (see any
textbook on nﬁﬁerical analysis, e.g9. Press et al. 19848) on the two
nearest grid lines to the horizon and the approximate relaxation
on the rest of the grid. Let QTJ be the current approximation of
the solution. After a Newton stép the change éX?j due to the
iteration can be written symbolically as ’

rh(gb )

(4.1.49) & = - .

o)
i,] firat derivative of (4.1.42) w.r.t. Xi, j

where rh is the residual function. Putting the expressions for B/X
calculated in mid-points in (4.1.42) and taking the first

derivative of it the result is, for i=2

“h
(4.1.50) &%" = — pl(x _)/th,+
2,] 2,] 2,]

h _h h _h " _h S ETRS A h h T
+=p X )+n_ X_ = +s5 =X = ) J+n_ +s5_
2, 1, 2§ 2,41 T2, 2,j1 2jla 2, 2, 2,j "2,

and for i=3

1)
(&£.1.511) &R =
3,
h _hk B h h _h kK [a w h 3] h
+w_ X J)+n_ X . +5 X = -X .[—(e +w_ )+n_ +5 .] H
9,§ 2,f 3, 3,jH1 " i.j 3,1 3a,jlz "3,j 3, 3,§ "3,
where ei, » W i’ nuf 5 and qLJare given by

h &

e . = T, sin&
i,] h s L+1/2 i

fa

o] &

W, = T siné&
i, h . i-1-2 i
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h
a8 .
(4.1.52) n = H:;riSIn@ju/z

hg
in®
L. ﬁ'; r iS in j=ir2

L - L FULAN D L
RTINS o PRV N o IRy

n 1" h BY°
n. =i . +s . =1
LK Jijrerz T XJL¢112

The transfer operators are constructed again wusing the

w
i

diffusion coefficients of the original equation. In this case gye
should even include the ratio B/X, but this would require an
unacceptable computational time to compute the residual transfer
therefore we decide to use as weights only the function rsiné.
This is not bad, since the ratio B/X is close to one except near
the horizon where in any case a much better relaxation is used. We
will not write here the expressions for these operators since they
can be obtained from those used for the B equation replacing r?
with r and sinZ® with sin#$.

Using the recipes described above we solved the equation for
X using the same algorithm (FHMG with fixed FAS) wused for the B
equation. The first experiments were made trying to separate
several features which when present together would make it
difficult to decide which in Particular was the cause for any
possible trouble. The way in which we proceeded was the following.
First we fixed the analytic value of B avoiding having to solve
its equation at the same time and for the non-linear term we
similarly used the analytic value of ¥, in order to see the
performance of the relaxation routine neglecting the
non-linearity. When we got a satisfactory answer we started trying
several interpolation choices in the tuwo nearest grid lines on the
horizon. As ye already mentioned the best answer was given using
three points interpolation formulae. These experiments were done
using Dirichlet boundary conditions as for the B equation. Then we
introduced the Neumann boundary conditions and finally we
considered the full problen. The two equations are solved

separately using Gauss-Seidel point relaxation as described above.
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In Fig. 27 the behaviour of an average of the residuals
relative to the two equations versus the number of relaxation
sweeps in successively finer grids is shown. The figure shows how
the residuals decrease rapidly in a small number of relaxations.
For comparison in Fig. 28 the same quantities are plotted when
only one grid is used with different meshes. The result of this
comparison is that Multigrid needs only a few iterations to reduce
the residuals by several order of magnitude whereas for the fixed
grid even a hundred iterations do not decrease the residuals to
those values. Moreover for a given grid, we can compare the slope
of the curve. In the Multigrid case the slope 1is more or less
constant whereas in the one-qrid case it tends asymptotically
towards a horizontal line. As noted previously, this is due to the
fact that smooth components are not reduced and therefore
convergence slows down.

In table V the relative errors for the metric functions B and

¥, calculated using La’norms (see definition in (4.1.40)), are

TABLE V
levsl grid =]l =l
~d -2
2 B8x4 4. %10 7. 3xi0
- -2
3 15x%8 4. %10 2. 9xi0
-4 -3
4 F2R1S 4. X10 4. 510
-4 -4
5 S4x32 %. 10 8. 3x10C

shown. Notice that the equation for B is already solved on grid 2
up to the approximation of applying the asymptotic boundary
condition at r=50 M. This approximation (used even for the ¥
mefric function) sets a lower limit on the error; the accuracy
cannot be improved by going to finer grids. For the non-linear
equation in X we need to use five levels to reach the lower limit

on the accuracy.
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4.2 The Kerr case.

We now turn our attention to the Kerr solution for a
stationary and axisymmetric vacuum space-time. This solution is
generally expressed in terms of Boyer and Lindquist (BL) (1967)
coordinates which are different than the ones used in this thesis.
In BL coordinates the metric is written (here M=1) as

5 2

2R 2 aRsinzé < 2 4
]dt -4—-—:———dtd¢ + KdR + 2d& +

2
(4.2.1)  ds®= = f -
‘- T

., 2 2
sin &

[R 2 %28 -—E_Js in%s dg’
Where @ is the specific angular momentum and Z and A are defined

as follouws

(4.2.2) T = R+ a%os?s
(4.2.3) A=R%- R + o2

we define here another quantity A which will be used after

t4.2.4) A = (R®+ a5% - %A sin’s.

Since the radiél coordinate appearing in the metric (2.1.18)
is different of the BL radial coordinate R, we need to Kknow a
relation between them that is a function T©D(R). Comparison of
corresponding differentials vields five relations forp the eight
quantities X, w, B, vy, t, r, & and ¢ in terms of BL coordinates.
We impose three additional relations on the coordinates to make

the problem determinate

v

(4.2.5) t = t &= & @ = .
Then, equations (2.1.18), (4.2.1) and (4.2.5) imply

(4.2.6) e (-5 + r%in%e8%% %) . , _ R/S

(4.2.7)  rB% ¢ . som/x

(4.2.8) ¥ ™4r% - (s/A)dr2

2y-21°
o ¥

(4.2.9) = S/pZ
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(4.2.100 r3B% % - g% LA z&Rsin 28/ T

Substituting the expression (4.2.9), equation (4.2.8) becomes

(4.2.11) g-?- = g—i,z
Ai/

which, if we impose the condition

(4.2.12) lim g-= 1
R—sm

may be integrated directly giving

(4.2.13) p = L [/R2—2R+a2 + R - 1]
2 |V
or inverting,

(4.2.14) R

]

[(zr+1)2—a2]/4r.
Then combining the other equations we get finally

(4.2.15) %Y = sA/A

(4.2.16) @ = 2eR/A
(4.2.17) &% - $%pn/p%

(4.2.18) B = A/p
The parameter h of the horizon in our coordinate then is

(4.2.19) h = (1 - 252

This quantity divided by =2 is used to rescale the

radial

coordinate as in Schwarzschild case. Equations (4.2.15)-(4.2.18)

represent the analytic solution of the present test problem andg

this is used as initial approximation as well.

For stationary and axisymmetric space-times, in addition to

the equation for B (which will not be considered in the
discussion because this equation is treated as described
previous section), we have

B 1 2 2 Bs
Vele= V&) = =1r'sin"® 2 JwsVw = 0
b4 2 4

(4.2.20) X
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2 2 B3
Pe(r'sin ™ ® = V) = 0
¥ %

with the boundary conditions

(4.2.213 2 =0 w o= i"zﬁz &fi—&zli/%‘;iﬂfﬁ'ii—ag}szj at r=1
(4.2.22) E = 1 o= 2 w = 5z [-— S ] at r=so
r 2.9 2 1,2
(i-a)p (1-a) r
(4.2.23) X,éz axe = 0 at &=o, 2.
Note that the equations have already been rescaled by h.reo. The

metric function ® is not dimensionless, so doing the rescaling ye
need to multiply it by hr2. 1In these wunits the solution is
determined by two parameters QH and a. For our experiments ye
choose QH to be given by the Kerr solution as (4.2.21), then it
will be enough actually to specify a wvalue for a. The range
allowed for o« is O0=<a<1i. |

Equations (4.2.20) are strongly non-linear and coupled each
other. To relax them we apply the same idea of doing a Newton step
on the two nearest grid lines to the horizon and make relaxation
of the approximate equations on the rest of the grid. The
divergence terms are discretized in conservative form. The extra
term in the first equation (4.2.20), which will be referred to as

the equation for X, is discretized as follows

3

h
(4.2.24) -ir.sinsﬁl: & (w, —w (W -w ) o+
2 i ﬁ-: i+, ] i

i i, 4 -4,
h

“(w . cw ) —w )
& Litt  Lj R N B B |

The second equation (4.2.20) is discretized as

h 34k
L g k
(4.2.25) h—slnse. r B o —wt )+
s A i+ti-2| 4 L+ir2,j 1§
L+1-2,§
k] BEI h h o) hs g - Ba h
T e (. ~w. )| o+ r |sin &, e
i-1-2 X-s i-1r-2§ L,j Eﬁr i j+1-2 . 4
i-1-2,j i,j+1r2
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I B

o) (o] .3 [a) o]

W -w, ) + sin &, FL& (w | -~w, 3| = 0.
L,j+i72 L, ji-i-2 4 L,j-1-2 i,]

i,j-1-2

These two equations form a set of non-linear algebraic equations
which are sclved as we already said using the Newton method only

in the first two grid lines. For a system of equation
(4.2.26) Frxhx® = o0 Fox%hxH = 0o

the method gives the solutions in the form

- 6?2 6F1 - -Fi.
" " i éxz axz
(4.2.27) X =X = == n=1,2
k+1 Tk D éFz éFl Fz
o’ ' |1 |
where D is
oF © ot
oz ox
(4.2.28) D = 2 .
&r &F
ax ox’t

In order to calculate the Jacobian of the system in consideration
we must decide first the interpolation formulae for picking wup
values of the function BS/X4 at mid-points. Far from the horizon
we can use the same formulae used for B/7X in the previous case
considered. Approaching the horizon both B and X go to =zero and
BS/X4 tends to infinity, therefore no¢ polynomial interpolation
there could give the right behavicur of the function. This is the
most difficult task of the test problem in consideration. It 1is
important to solve it definitely since as long as an horizon is
present in the configuration we look for equilibrium we will face
with this divergenca. Again to make experiments for this
interpolation we used Dirichlet boundary conditions and as
boundary conditions at r=s0 the analytic value of ¥, © and B were
used. The best interpolation of this function which we have found
so far is based on the following argument. In the Schwarzschild

case the function BB/X4 has the following dependence on r
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w

?
(p+ 1)

=5}

(4£.2.29)

p rSr-1)

[

For a given value of &, Bs/x‘ is only a function of r, then we can
construct an interpolation formulae from the assumption that BQ/X%

on r grid lines behaves like

B2
(4.2.30) - = R a + b

b

where a and b are two arbitrary constants and

R = (r+1) "

(4.2.31) -
S

r (r-1)
The constants a and b can be determined supposing that (4.2.30)
holds for two different points giving two equations. After sonme

trivial algebra we get, for i=z

BB o} BS h
(R, _-R )[_] (R -R )[_]
g2 3 ) 2 3,2 4

Ba A p4 2, X l38.j
(4.2.32) [—:] = s
. 2 3
8/2,‘1 o
34 K 9. h
(R_. -k B +(r -k B
5.2 g Py . 5.2
Bs h X 2, X 3.}
(4.2.33) [—:} = - |~
. 2 3
5,2,
and for irz
= I Ga I
(Rt—ixz-m ) ET +(RL~1- i-1-s2 i
BB h t X L—1,j b4 i+4,
(4.2.34) [—:] = | ——
) . i-1 i
i-1-2, j
2~ h - N o
R ‘R B sk -rR y (B
L+ir,2  L+4 &1 i i+4,2 P )
Bs h X i, p4 i+1, ]
(4.2.35) [—:J = I g—_
p:4 . . i L4141
i+1-2, j

For interpolating the values of the function of the mid-points
which lie on r=const grid 1lines we used formulae similar to

(4.1.47) and (4.1.48). Using then the equations (4.1.43)-(4.1.48),
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(4.2.32)-(4.2.35) we can calculate the changes to the metric

functions X and @ due to a Newton step by the following formulae

(4.2.36) &= D" oH" B 2B |, a p" - B"
] i . L. L. % I W T A

i.j i,j L T i,j L L.j il il

-
(4.2.37) S = |- (rH P gD (2P ]/uss"’ " -¢ch B" )

where (r'i)h and (Pz)h are the residuals relative to the

equation re?gtive to X gxd to w respectively. The grid functions
Qh., Bb,, Gh, and mh. are defined in Appendix C.
L.l L.] L.} L.

The transfer operators are constructed wusing the diffusion
coefficients of the differential equations. The residuals relative
to the equation for ¥ are transferred in the same way we have done
in treating the Schwarzschild case. For the equation in ® again,
including the ratio Ba/X4 would require an unacceptable
computational time for calculating the residuals so we use as
weights only the function rssinsé and the weights can be written
from (4.1.27)-(4.1.28) replacing r? with p° and sin-®& with sin’®.
The experiments were done using FMG with fixed FAS algorithm. The
relaxation of the system and the residuals transfer were tested
solving the pr@ﬁlem with the analytic wvalues of the metric
functions at the boundaries. The results of these runs are shown
in Figs. 29-31. In these Pictures an average of the residuals of
the three equations are shoun in function of the number of
relaxation sweeps for different levels and three different wvalues
of the specific angular momentum o (ag=o.001, ©.5 0.9),. The
algebraic convergence factor is still as good as would be
expected, but it deteriorates increasing «. This is perhaps due to
the increase of the non-linearity. In highly relativistic cases
those terms which we have neglected in the relaxation may become
important in some coarse grid and there we need to update the
right hand side of the coarse grid equations with those terms.
Table VI-VIII show the solution error for the metric functions ¥
and « defined in a similar way as in (4.1.40). The tables do not
contain the same quantity calculated for the B metric function,
since, being the relevant equation solved separately by the same

algorithm used in the Schwarzschild case, the results are exactly
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the same. Going from coarse grid to pProgressively finer grids the
ratio of these errors should be asymptotically equal to four. From
the tables we see that this tendency is clear for the slow
rotating case (o=o. o). In the other cases is not as clear as it
was for the Schwarzschild case. This is perhaps due to the way how
the ratio B¥/x* is interpolated at half grid points near the
horizon. Further numerical experiments using different
interpolation formulae need to be done to improve the. solution
errors.

Fig. 32 show the history of the averaged residuals versus the
number of relaxation Sweeps in the case in which the Neumann
boundary conditions were implemented. This is a clear example
which shows how a bad treatment of non-Dirichlet boundary
conditions completely destroy the efficiency of the Multigrid
method. In this case the coupling of the boundary conditions
residuals with the nearby interior residuals make some of the mode
unstable (the residuals in the coarser grids are not smooth).
These modes are very slow to converge in relaxation. Perhaps an
averaging of the solution, done in the coarse grid where the cost
is negligible, could annihilate these unstable mode. Further

investigations and more numerical experiments need to be done to
take care of this.
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TABLE VI

a = 0.001

level grid "x " ||w "
-2 -2
2 x4 2. 810 2. 4%1i0
-2 -2
3 isx8 1. 3x4i0 i. 8x1i0
-3 -3
£ I2xis 3. 4x%10 8. 8x10
- -39
5 S4x32 5. 2xio 3. 2xi0
TABLE VII
a = 0.5
leval grid "x " "w "
-2 -2
2 8x4 3. 4x10 2. 2x10
-2 -2
3 15%8 1. ?x10 1. 5210
-3 -3
4 32xisS S. 410 S. P10
-4 -3
5 S4%32 2. 2Zxwi0 2. 9%10
TABLE VIII
a = o.¢
level grid =]l llw]]
-2 -2
2 Bxd &. 2%i0 2. 2%10
-2 -3
3 15%8 3. 5%1i0 7. P10
) -3 -3
& I2xis i. 8%10 2.1%10
-3 -4
=1 54x32 S. 8xi0 5. 5%10
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CHAPTER V

HULTIGRID IN GENERAL RELATIVITY: INFINITESIMALLY THIN DISKS

The next step on the wéy to developing a numerical code for
finding the equilibrium configuration of a self—gravitating torus
around a rapidly rotating black hole, is that of considering g
Zero pressure self—gravitating infinitesimally thin disk around g
black hole. This confiquration represent the simplest sort of
rapidly rotating object which can be considered. The configuration
without any black hole at the center has been extensively studied
by Bardeen and Wagoner (1969, 1971) and we take this work as
background for writing down the equations which we will solve
numerically using the Hultigrid. The solution of such a problenm
represent a new numerical solution of Einstein's equations which
can give us a physical insight of the more complicated one, that
is when the disk is supposed to have finite thickness. The
simplicity of the Problem stay on the fact that matter source
terms enter into Einstein's equations only throughout the boundary
conditions on the eéquatorial plane where the disk is supposed to
lie representing a discontinuity and outside of it the space-time
can be considered vacuum. Therefore, from the mathematical point
of view the structure of the problem is the same as of the vacuunm
stationary and axisymmetric Space-time described in the previous
chapter, but with different boundary conditions.

Before writing down the relativistic equations for this
configuration we consider the corresponding Newtonian case using a
pPseudo-Newtonian potential to describe the field generated by the
black hole. This problem can be solved analytically and it 1is
interesting to consider such a case because this 4will serve to
test, again with an analytical solution, the performance of the
numerical code in the case of no rotation and Newtonian limit.
Since even in Newtonian theory this is a new solution we shall

dedicate the next section on it.
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5.1 Newtonian infinitesimallv thin disks around a black hole.

Since Newtonian theory is linear the total Potential of a
configuration made of an infinitesimally thin disk and a black
hole can be considered to be the sum of the Pseudo-Newtoian
pPotential plus the potential due to the disk, which is given by
solving the Poisson equation for a given distribution of density
representing the disk. The solution for an infinitesimal thin disk
without central body was found by Hunter in 1963 for modeling
spiral galaxy. We will use such a solution for constructing g
sequence of new ones representing a disk around a black hole in
the following way. We write down the potential ¢ih of a disk whose
radius is L then we compute the potential ¢Lutof a disk with
radius Pouffln' The difference ¢gut

Potentials then will be the potential of a disk whose inner edge
finally to this we add the

—qﬂv,u_I between the two

is at th and outer edge at rouU
Pseudo-Newtonian potential.

To solve the Poisson equation for an infinitesimally thin
disk we use oblate spheroidal coordinates since such a disk can be
made a level surface of one of the spheroidal coordinates. In this
coordinates Laplace's equation 1is separable and elementary
solutions that represent matter distributed on the disk can be
found. By superposition of such solutions, expressions for the
density on the disk, the gravitational potential in its plane, and
hence its rotational velocity can be derived in the form of series
of functions. By means of these series, it is possible to derive
the density distribution from a given rotational law or vice
versa. For axisymmetric distribution of matter, these quantities
are given in the form of 8@ series of Legendre polynomials and
functions have to be eéxpressed in this form rather than as
Fourier-Bessel integrals as required for not finite disk (Toomre,
1963).

An infinitesimally thin disk with radius i is a level
surface {=0 of one of the spheroidal coordinates defined by the

relations

2 2 ~1s2
(5.1.3) r = ro[(t-+ﬂ(1—y )] zZ = r tp
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The surfaces tzzconst and pﬁ:const are respectively confocal
ellipsoids and hyperboloids of revolution around the z-axis (see
Fig. }J. The coordinates £ and u in our case vary in the ranges
o={Z%w and -1<€u<i. In these coordinates Laplace’s equation is
separable and the solutions are of type (see e.g. Horse and
Feshbach, 1954)

" mi

(5.1.2) p’:(t)p':(meL and q:({')P:(p)elma

where

(5.1.3) p':(x) = i"’"“p’:(ix)

ms2

(2n) 1 (1+x 2y LPm (n-m) (n-m- 0 x "

2" 0t (n-m)r zlzn- o)
and
o
T
(5.1.4) qtx) = (-p"R2DT m dy
o] (n-m) ! n (1+ 2) m( )]2
Ly [Py

m . . . m
where Ph(x) are associlated Legendre functions. Since as x-—sm, ph

becomes large, whereas q: goes to zero we can consider, according
to Hunter, the gravitational potential to be

&

a (P (et

(5.1.5) W =

J Fiz 3

q (0)

This potential satisfies Laplacersg equation at all points not on
the disk, and decays at large distances from the disk as
(x2+y2+22)%h+“/2. It is continuous across the disk only if {n-m)
is an even integer and therefore P:(p) is an even function of M.
The normal component of V¥ however is discontinuous across the
disk, therefore we must have a surface density of matter o on the
disk. Integrating Poisson's equation, imposing that the integral
of a secend normal derivative is equal to two times the normal
derivative on the disk and that integrals of finite quantities on

the disk are zero we Jget

(5.1.6) - 4G o = 2[}-1-(.3?-]:
=0
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where hﬁ is the scale factor relative to the spheroidal coordinate

{, which is given by

¢2+N2
(5.1.7) ht. =rg [tz )
3 +1

On the plane of the disk ({=0), we have ht=iyr0 on both sides of
the disk. Defining £=|u| we make use of the reflection symmetry

around the equatorial Plane and on the disk we can then write

(5.1.8) & = (1 =p%p3trz |

<E<
o C/Po a=<f=<y,

Using (5.1.5) and (5.1.6) we get then a relation for the surface
density
P:(f)elmﬁ
(5-1.9) & = R i
2n2ymGr &
ial [a]

where
m(o)
(5.1.10) ;Vm = — % = (rn+m) T (n-m) I
T no me T 2ntdip nim Zr hemm P ~
a2 2 T [ ]

For a derivation of this last formulae see Hunter (19¢3).
For an axisymmetric distribution of matter (m=0) on the disk,

Suppose that the surface density can be represented by the general
Series

a
(5.1.11) o'=§ ConP, (8178
=D
where Pzh are Legendre Polynomials, +then the gravitational

pPotential can be written as

o
2 o
(5.1.12) ¥, o= zn'Gro E CZhyZﬁPZh(E)
hED
o 2R+ .. .
where y2h=1/(2 nt).The coefficient ¢,. c¢an be determined as

follows. Recall the orthonormality property of the Legendre
polynomials

i

(5.1.13) fpzﬁ(f)pzm(f)df =

{ o P-m even nES
o

17 (4n+1) n=Em
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Multiplying then (5.1.11) by sztf) and integrating over ¥ we get

i
(5.1.14) ¢ = (m+1)f Eot&Hp, (5)dE.
3]

Using such an expression we can write the potential on the disk as

® 1
2 o
(5.1.15) w = zn'Gro E (4n+1)y2hP2h(E)J'Ea(f)ch(f)dE.
"=0 8]
The mass of the disk can be calculated integrating the

surface density function over the disk

o
(5.1.16) m = Jiazn ¢ rdr
o
Using (5.1.8) we change variable of integration from r to & and
then putting the expression (5.1.11) for the surface density we

get the result
2
(5.1.17) m= 20 r ¢ .
0o o

Therefore the surface density can also be written as

[a 4]

m ;
(5.1.18) & = — + cmpzﬁ(fllf.
znrof

"n=0o

We specialize now the surface density to be given only by

the first term of the series (5.1.18)

m

(5.1.19) & =
znrzf
a

For this e the potential on the disk 1is easily calculated from

equation (5.1.15) giving as result

p]

(5.1.20) W =

3}

L) I~
e

We construct now a new solution of an annulus wmade. by the

difference of two disks with radii r and . (pr e ). The
aut i &Lt itn

surface densities of the two disks are chosen to be the following

functions
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aut ' in

Sut m in m
(5.1.21) o = & = —
2mp 2 & zrr © g
aut in
2, 2 _ir2 2 12
where F=(a-n /e ) and §E€z~?§rt% ; Although the

spheroidal coordinates ¥ are different for the two disks the
radial coordinate r must be the same. This condition allows to get

a relationship between ¢ and E through equation (5.1.1)

2 2

r r
(5.1.22) E% = 4 - SML (4 - g3 §dE = ——— zdz.

in in

For each of these disks the potential on their pPlanes are formally

given by an expression as (5.1.20). The potential on the plane of

. aut AR o TN
the annulus with mass m=m" -m is then
- mout mi.h mout mout n
(5.1.23) W= =6 [ -...__]= [ - + ]
2 r r. r r. r
out [ Sut Lm Lhn

. t . . . .
A relation between m°" and m can be found imposing that in the

region r<th the surface density should be zero. Then

mcut mi.h
(5.1.24) = - ——— = 0.
outf ri.'h E

. sk i
After some algebra using the definition of m=m" - " we get

(5.1.25) ot . _m¢

(£-5°F

is the ratio between the inner and outer radius

where B5=r /r
{3 in aut

of the disk. Putting (5.1.25) into equation (5.1.23) and wusing

(5.1.22) after some algebra we obtain

2 2 i-2
om & [ﬁ -(1-¥ )]
out f-{?[ﬁ’z—(i—fz)]ifz

(5.1.26) W =

M

r

By superposition of solutions like (5.1.5), the external
potential «c¢an be written in the general form
3.3]
(5.1.27) " - Z ALd, (OP_ (&)
"=0
The constants A2h are determined imposing continuity of the

external potential on the surface of the disk
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&5t

(5.1.28) W =
=0
By using (5.1.26) and (5.1.27) we have
) 2 2. mir 2
e em & [,ri—(i—éf )]
(5.1.29) § BopdgnlOIP, () = = r 2 2. 21/2
- sut f-f?[ﬁ‘ -{1-¥ )]

Multiplying by Pm}f) and integrating over ¥ we get

(5.1.30) A_q_(0) = P_(&)d¢
2L " 21 2 2 i-2 2L
g-pp-1-85]

therefore the external potential of the disk is

zZr

i 2 2 12
7 Gm J- 8—D?~(1—E )]
(al+1)

out
3]

1l
M
r

@ q_ O
(5.1.31) ™" cm E 2n (al+1) P__(§)
sut (0)

1f* D?z_(i_fz)]ifz
j f“ﬁ[ﬁz"( 1_52)]1/2P2L(E)df'

For obtaining the total potential of the configuration made by our

QO

disk and a black hole described by the pseudo-Newtonian potential
we should add the expression

(5.1.32) Yo 5 = cH

whera R:(r2+22)pq and RG=2GH/C2 is the Schwarzschild radius (¢ is

the velocity of light). The potential on the plane of the disk 1is
then

- - om E‘ [ﬁz_(l_fz)]ixz

r - R_ z L sut E—ﬁﬁ@z—(i—fz)]1/2

while the total external potential is

(5.1.33) W ==

q_ (&)
(5.1.34) % . SH__ -:-FG'“ E 2P (e ) P (£)
R - R sut q (0)

a n=0 2n

1&— [ﬁ2—(1~52)]1/2
j Z’—f?[ﬁz‘( 1_52)]1/2P2L(E)df.

a
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From the expression of the potential it is pPossible to study the
theory of orbits around the black hole. In particular, calculating
the specific Keplerian angular momentum and the binding energy we
can locate the radius of the marginally stable and marginally
bound orbits. Constructing then a disk whose radius is at the
marginally stable orbit value we can study the runaway
instability, varying the mass of the black hole and see how the
location of the marginally orbits changes. This is one the aims to
compute such a Newtonian solution. Another one is for purpose of
testing the numerical code that we will develop to integrate the
Einstein's equations for the analogous relativistic
configurations. In the limit of small gravity and slow rotation

the two solutions should be very similar.

5.2 Relativistic infinitesimallv thin disks a black hole.

In this paragraph we specialize the Einstein's equation to
the situation when a infinitesimally thin disk is present around
the black hole. In relativity, in contrast with the Newtonian
theory, the field equations are non-linear therefore it is not
possible to approach the problem as described in the previous
section. Here we need to solve numerically the Einstein equation.
We assume that the disk is xially symmetric, time-independent,
and embedded 1in an asymptotically flat space-time. The
energy-momentum is taken to be that of a perfect fluid in the
limit that the pressure P is infinitesimally small in comparison
with the energy density e. In the limit of infinitesimal thickness
e-—00. The pressure gradient force per unit inertial mass in the
equation of hydrostatic equilibrium is proportional to Vb(e+p)-{
This force is significant in the direction perpendicular to the
plane of the disk, where the infinitesimal thickness allows to W
to become large enocugh to compensate for the infinite energy.
However along the plane of the disk ¥p is finite and the pressure
force is negligible compared with the gravitational and
centrifugal forces.

In the disk limit of the gravitational field equations the

matter source terms can be treated as surface densities which
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cause discontinuities in the normal derivatives of the
gravitational potentials across the plane of the disk. The
detailed distribution of matter perpendicular to the Plane becomes
unimportant. The metric functions themselves are continuous across
the disk. Obtaining the solution of the field equations reduces to
solving the vacuum field equations with boundary conditions on the
disk, at infinity, on the horizon and on the axis.

In cylindrical coordinates (g,z) the disk is located at z=0

and aispSaz. In spherical coordinates it will be at @&=mn.2 and

r =r=r . We define a surface density e by
in Sut
itd
(5.2.1) o = J.e —_—r d&
g 2

The boundary conditions on the disk ($&=m-2) are obtained by
integrating the full equations trough the disk. In integrating we
should take into account that the metric functions and their first
derivatives are finite, but their second derivatives normal to the
disk are infinite. The integral of a normal second derivative
through the disk equals the discontinuity in the normal first
derivative, equal to twice the first derivatives itself at the
surface. Moreover the integral of a finite quantity through the

disk vanishes. The normal derivative at &=mr2 is

Consider the equation for X at &=wnrz for p=0, integrating

over the disk we get

z s BeZY 1ey?
(5.2.3) Jr X,..d® = “IJP e 2d§

S&

>

The equation for B gives

3
(5.2.4) J‘P B,_&9 d& = 0 then B'@ = 0.

Therefore B is independent of &. Moreover v is independent of &
then

X, 2
& 1+v
——— = &7 O >

):4 i1-v

(6.2.5)
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is the boundary condition to impose for the metric function ¥ on
the plane of the disk. It easy to verify that the equation for o
gives

Q- w

P
i-v

(5.2.6) m,, = - 8y &
&

The conditions to impose on the other boundaries are those
already discussed in Chap. II and so we will not discuss them
here.

In this approximation the material of the disk is pressure
free and the stress energy tensor is

o

(5.2.7) T2, = ¢ u

f3 f3
The hydrostatic equilibrium equation then gives

(5.2.8) (c‘z-w)z(pzsinzﬁg-z-), o e (rfsin%shay (x%H.= 0

x.'-'.’ b bl XZ r
The angular velocity then can be determined in terms of the metric
functions which in turn can be calculated once a surface density
is specified. Therefore, choosing a surface density function we
can determine the angular velocity. This point of view is
different than that of Bardeen and Wagoner in which they
specialize the angular velocity to be constant and so simplified
the problem.

The configuration is completely specified when in addition to
the surface density a value for the angular velocity of the black
hole is given if the radial coordinate is rescaled by the horizon
size in a way which is described in the next chapter.

An improved version (to take care of the present suboptimal
performance) of the Multigrid method used to test the Kerr
solution, will be used to solve such a problem. The modifications
which are needed are in the treatment of the boundary conditions
on the plane of the disk. In this <case an higher order
discretization of the boundary conditions may be needed. Moreover,
local refinement only in the direction parallel to the plane of
the disk and nearby it may be needed as well. The organization of
the grids can be done in a way which is described in section 4 of

the next chapter.
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CHAPTER VI
HULTIGRID FOR SELF-GRAVITATING TORI AROUND BLACK HOLES:
SOME PRELIMINARIES

S50 far we have discussed the necessary numerical experiments
which needed to be done before solving the full problem of finding
the equilibrium confiqurations of self-gravitating tori around
rapidly rotating black holes. The full problem presents many
difficulties which we will describe below, giving a prescription
on how to deal with them using the Multigrid. Work is in progress

towards obtaining a full numerical solution of this problem.

6.1 Initial confiquration.

When the matter is put around a rotating black hole and the
mass of it is not negligible compared with that of the black hole,
the metric describing the exterior space-time will not anymore be
the Kerr metric because of the contribution of the matter to the
field. In particular we expect that the location and the shape of
the horizon will change according to the quantity of matter we put
around the black hole. This will complicate the mathematical
nature of the problem since now the radius of the horizon is an
eigenvalue. For avoiding this we decide to rescale the radial
coordinate with the quantity hr2. With this rescaling the field
equations will preserve the same form if we define the following

new variables

(6.1.1) w = hw /2 eC = hey/z

In the following, we will still use w and y as variables although
they are the rescaled ones. The boundary conditions keep the same
form as well, since we can repeat the derivation of them as in

Chap. II writing the metric as

2 28
(6.1.2)  ds® -x%t% r%inZe E-E(d¢*—wdt)2+?-§. (dr%r%ae%
% X

H \ ;
where @ =h¢/2. Using such a metric we can re-formulate all the
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boundary conditions and write integral expressions for the
rescaled total mass H*zzu/h and total angular momentum J*=4J/h.
The integral expressions for these quantities are formally
equivalent to those for M and J.

Using such a rescaling a first solution will then be
constructed as follows. We start off with the Kerr metric
specifying a value for the specific angular momentum . Given a
value for @ we can calculate, via equations (4.2.15)-(4.2.18), the
metric functions X, B, w and y. Knowing these quantities we can
compute the quantities HH and JH. Then we choose a constant value
of specific angular momentum qu in between the wvalues ngS&Sﬁﬂb
(which correspond to values of the anqular momentum for Keplerian
orbits at the marginally stable and marginally bound values of the
radial coordinate) and using the theory of equipotential surfaces
of a fluid around a black hole we can determine the location of
the cusp and of the center of the torus solving the non-linear
equation {o=ﬁfrﬂ. The value of the radius of the inner edge of
the tori then is chosen in such a way that riﬁzrcusp in order that
matter cannot flow through the inner edge. Since the surface of
the torus is an equipotential one (see section 2.4) the outer edge
will be determined solving the equation u:ugrurnm)zu:h(r,nzz).

The surface of the torus is determined by the condition
pl(r,®=0. This equation can easily be converted in the form &=&(r)
using the hydrostatic equilibrium equation (see Appendix E) giving

as result the following differential equation

t
de (In u ),r(i—ﬁi) - JQ.r

(6.1.3) I -

(In u"), (1-Q8 - 20,

& &
The angular velocity 2 in terms of the metric functions and <& 1is

given in (2.3.5). The four-velocity ut is given by the formulae

t rsin® B ¥

[rzsinzﬁﬁz( we-1) 2~ £%% 4]1’,2

I

(6.1.4) u

Knowing the inner and outer edges of the confiquration, we
can distribute the matter in between using the hydrostatic

equilibrium, which written in terms of the metric functions is
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(6.1.5) e

ut &1-vH 2 rsinsBy ¥ AP —1)
¥ o= 1 n
2 ]
rsin& B v

where u:m is the value of the four-velocity calculated 2t the inner
radius and v is the three-velocity which in terms of the metric

functions can be expressed as

(?XZ

(1-wdrsin > 68

(6.1.5) v =

Then the total energy density is calculated according to the

equation of state

1Y
(6.1.5) e = [E] + ?-}2—1-

The model is then completed if we choose values for ¥ and k. These
values will be fixed requiring that the torus is radiation

dominated. In this case the equation of state can be specialized

as

4 13
_ B (1-/3) 4-3
(6.1.6) p = [gﬁpﬁ] = ] o

where ﬁ’zpr/pg is the ratio of radiation to gas pressure, kB is the
Boltzmann's constant, mp is the proton mass and a is the radiation
density constant. So, what we should really fix is a value for the
pPressure ratio f3.

The choice of a wvalue of the constant specific angular
momentum is important because it determines the thickness of the
tori. The closest is {D to me the thicker 1is the torus. For
constructing the first model we will choose a value of £0 close to
Jms so that the torus is fairly small and we will make sure that

the rest mass Ho of the torus, defined as,

Tout " t 2y-210 2
(6.1.7) HO = 2nJ JleBe Y %5 insdrd e
v o

ih

will be small so that the starting approximation for the  metric

functions (the Kerr metric) will not be so bad since the
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contribution of the self-gravity of the torus to the field will be
small as well. This is important from the numerical point of view
because being Einstein's equations highly non-linear it is better
to start off with a very good initial gquess. If the requirement of
having a small mass ratio is not satisfied then one can go back
and try a different value of ﬁ]and/or a different value of £.
Once the first model is constructed we wuse this as initial
approximation to find the solution for another torus with slightly
greater value of ﬂ! or (3, keeping constant all the other
parameters. in a such a way that this torus will have more mass.
When the next solution is found, this is used to construct a
further one with more mass in the torus and so on. Doing this we
can find a set of solutions with increasing amounts of
differential rotation. Different Sequences can then be constructed
using different values of C% or r, .

al

6.2 Multigrid for the full set of equations.

An efficient way of treating system of non-linear
differential equations with the Multigrid is described 1in Brandt
(1984). Since relaxation is a 1local process, only the 1local
important terms contribute to smooth out the high-frequency
components of the error, therefore it 1is enough to relax the
principal part of the full system, that is the system of
differential equations constituted only by the higher order
derivatives terms (see Chap. IV). Since in the process of finding
solutions for our problem we will consider the self-gravity of
torus as a small perturbation to the Previous constructed solution
as described in the Previous section, the pPrincipal part of the
system can be considered to be the corresponding full system 1in
the vacuum. So for the purpose of relaxation it is the vacuum
system of equation that will be considered. This is not a bad
approximation since in high relativistic situation the shear
contributes more than the matter as source of the gravitational
field. The right hand side of the Einstein's equations do not need
to be update during the relaxation Process, but they will be

transferred to the coarser grids as well as all the algebraic
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relations which describe the matter configuration 1like the
hydrostatic equilibrium equation the definition of the total mass,

angular momentum and so on. Only in coarser grids we will update
the right hand sides of Einstein's equations and the fluid
variables with the updated metric functions. This can be done if

we use the FHMG with FAS and write the coarse grid equations like
(3.4.10).

6.3 Ireatment of the interface of the torus

The surface of the torus represents an interface between tuyo
region of the space-time in which the physical conditions are
different. Inside the torus we have a pressure different than
zero, whereas outside the Pressure is zero. Since we are using a
polytropic equation of state the surface of the matter
configuration does not introduce any discontinuity in the metric
functions being the Pressure a smooth decreasing function as one
goes towards the surface. However the field equations nearby the
surface need to be discretized with care. In general the surface
of the torus will not be a coordinate line and the discretization
will be very complicated. The most effective discretization 1is

made in terms of coordinates in which the boundary is a coordinate

line. In such coordinates it is much easier to formulate
high-order approximations near and on the boundary. With the
Multigrid this can be combined with local refinement. One c¢an

introduce a coordinate transformation only near the boundary such
that the boundary is a grid line and create a subset of grids in
such coordinates and apply the Multigrid cycle on them. The result
of this local refinement then can be transformed back to the
original coordinates. This Process is not very much time consuming
because it will be limited only to a small region of the entire
domain therefore the number of grid points involved in such an
operation will be small as well (however see next section). Since
the transformation has to be done only locally, it can be obtained
by a simple and standard transformation. In our case the boundary
is given by the differential equation (4.1.3) which introducing

the arclength v can be split in the following two differential



equations

F(r,®»/ /F% + g2
i i 2

(6.2.1) I

F (r,®/ /F%2 + p2
2 i 2

i

(6.2.2) I

where Fitr,@) and FZ(P,@) are the numerator and denominator of
equation (6.1.3) respectively, and

2 2
dr d&]
(6-2.3) [d_‘z_)l] + [a—z)—] = i

After solving the equations (6.2.1) and (6.2.2) we get a
parametric form of the equations describing the boundary r=r(w
and #(wv). To get a coordinate system (6,vw) in which the surface of
the torus coincides with the grid 1line 6=0, we can use the
standard transformation
dé dr
(6.2.4) ri8,v) = p(v)} - & I (8, U = (V) + & Iz
The differential formulae which allows to go from the (r,®

to the (8,8 coordinates are the following

(6.2.5) a d& & _ dr 18 g _dr @& , d4¢& 1 &
T ar T Jv 3@ dv 1+8q 3o % " duv e " T e 7
where
2 2
dr A4¢ d & Ar
(6-2.6) q('U) = ——-/——: o eosmsm——
qu2/ dv dus dv

Therefore the discretization of the field equations should be done
according to the transformation (46.2.5). In this approach (Brandt,
1984) the curved grids are regqgarded as finer levels which correct
the finest grid near the surface boundary.

This process should be done together with the a more general

local refinement needed near the horizon.

6.4 Organization of non-uniform gqrids.

In our problem there are three lengthscales which

characterize the solution: the horizon size, the scale
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corresponding to the structure of the torus and infinity. In order
to have a good resolution of these scales the organization of the
grids must be done carefully. Near the horizon and inside the
torus a sequence of local finer grids will be wused while the
position of the artificial edge where the boundary condition at
infinity is to be imposed <c¢an be decided during the solution
process by extending the coarsest grid as required by the solution
as described in section 3.4f. This avoids the necessity of
computing the multipole moments appearing in the asymptotic
expansions of the metric functions which are usually needed when
infinity is put near to the configuration being studied. As we
already said in section 3.4f, this can be done in an accommodative
way or in a fixed way if an estimation of the truncation error can
be obtained. In our case we do not have an apriori estimation of
the truncation error but we know approximately where we need more
resolution, therefore we will use a fixed scheme to do local
refinement based on the so-called A-FMG algorithm (Bai and Brandt,
1985). This is designed for reducing the computational work that a
regular FMG would invest when local levels of refinement are used.
In this case in fact, when finer 1levels <cover much smaller
subdomains the number of points on coarser grids is not
necessarily small in comparison with the finest grid, therefore
the computational work of FMG will not be anymore proportional to
the number of grid points of the finest grid since now the coarser
grids have not fewer points. In A-FMG algorithm the problem is
solved for a given sequence of different values of the exchange
rate of accuracy for work X introduced in section 3.4f such that
Ko>hi>...>kh. For large value of A we get an optimized grid with
less work and poorer accuracy, for smaller value of A, we invest
more work and get more accuracy. For each value of A a sequence of
grids is constructed and a Multigrid cycle is applied to it. The
first value of X, ko is <chosen 1large enough so that a crude
solution is obtained by investing a small amount of work. For each
xtttzﬂ the first approximation is obtained by interpolating the
kva solution to the relative grids. Assuming kbd close enough to
htthen only a small number of cycles on the grids relative to Ri

would be enough to obtain the solution to the 1level of the



TABLE 1IX

h ko2 hod h-8 ho15
Ko 100 i00 20 10 o
Xi i00 i0o0 40 20 10
kz 100 i00 80 40 20
Ka i00 100 100 80 40
A 100 g0
. &
A i00
5

truncation error. An example of organization of the grids is shown
in Table IX. For each value of X the table shows the values of the
radial coordinate used as outer edge of the grid for five 1levels
with different mesh-sizes. The values in the table are only
indicative because the value of the radial coordinate at the outer
edge depends on the configuration which we are dealing with. In
particular it depends on how far from the hole, the torus does
extends. For each A those are the grids to which the Multigrid
will be applied.

6.4 Ireatment of the boundary conditions at_infinitv.

To impose the boundary conditions at infinity we heed to
evaluate the total mass and total angular momentum. The source for
these quantities is not only the matter, but even the geometry and
in order to evaluate them we should know the metric functions.
Therefore the evaluation of them should be done consistently
inside the solution Process. With the help of Multigrid this can
be done without spending too much computational time.

Being global relations since they involve integral
expressions these quantities do not need to be treated at all on
fine grid. There is no error smoothing related to such relations.
What one has to do is to transfer the residual of the relation to
serve as right hand side for a similar relation on the coarser
grid. In the coarsest grid the condition must be imposed in order
to solve the problem.

The boundary conditions are then treated in a similar fashion
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like the Neumann boundary conditions, with the difference that

they are not relaxed but only transferred to coarser grids.




CONCLUSIONS

Several numerical experiments have been done for developing a
numerical code which 1is able to deal with quite <complicated
general relativistic equilibrium configurations. The main interest
is that of solving Einstein's equations for self-gravitating
fluid tori around a rapidly rotating black hole, but the
flexibility of the code is such that only small changes need to be
done to consider spheroidal type of configurations.

The difficulty of the problem is a good challenge for wusing
the Multigrid method. Although today's computers are very fast and
have a large capacity, one should always try to solve any problem
in the best efficient way and the Multigrid provides this high
efficiency. Moreover the impact of new techniques is always source
of new ideas.

The construction of numerical code able to make 1large scale
calculations is, in general, a long process. Testing and debugging
are very important tools that any computational physicists should
always consider as the only way to approach the final goal,
although they take most of their time. This is particularly true
when the equations to solve are complicated partial differential
equations, for which no general packages exits (and perhaps will
never exists) which are able to solve a large spectra of physical
problems.

With this in mind, we considered first those significant test
problems which <contains separately several features that are
present together in the full problem. The results of the tests
considered so far show that the method is so efficient that
numerical relativists should consider to use it even in different
applications. The complicated structure of the method very often
discourages people on using it, objecting that it is not worth
spending several months of human time more to get as result a
decrease on computational time. However, this is true when one is
dealing with a small scale numerical calculations, but it is
questionable for problems which are already complicated in

structure and their solution requires in any case a lot of human



time to spend on it. Moreover, after one understands the structure
of the Multigrid method and has already constructed the
inter-grids communication routines, the human time spent for
solving the problem is at most comparable with that one would
spent using any other method.

Hore work needs to be done for solving the full problem.
However, this thesis contains the solution of many crucial related
problems (treatment of the horizon, relaxation schemes, etc.)

which were necessary to test using simplified models.




APPENDIX A

The physical components of the Riemann tensor in the locally
non-rotating frame take on a relatively simple form when expressed
in terms of the metric functions defined by equation (2.1.15).
Direct calculation gives

—H, ~Hg
R = (1w, w e + W, Y, e ) +
(03RO L) 2¥2 a¥g
~H, ~Hyg 2y-2w
= (W, W, e + W, W, e Je
2 3
- - - w -
M, H, Hy
R = e 7] (e 3, + e v, U -
ONBHOND) 2], 3" 2,3
-2
3 Hy 2y-2v
- e W, W, e
)
- -V - v -2
= e #3 e yste ) + e pzv
oxaxoNa ‘g R ’2“&2
-2
3 Hg 2y-2w
- e W, W, e
4 3
-1~ - -z
R = e #2 v a yz(eyg + e #3 -
axzanzy 2 R wé#aa
-2
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-8 W, W, e
4 2
- - - -2
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4 3
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2 2 2 k2] g 2
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The remaining non-zero components are equivalent to these though
the symmetries of the Riemann tensor. The Ricci tensor can then be

computed using

.S
R(axﬁ>" R OO D
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APPENDIX B

The energy momentum tensor for a perfect fluid is

B.1) T - (e s+ py v%B. p ¢

applying the normal pProjector tensor to the divergence of it we

get

u v ¥ - g

(B.2) (gwfua(? ¥

since the four velocity is a time-like unit vector
o'} a1
(B.3) u u& = - 1 — u Vﬁua = 0.

Applying equations {B.3), then after some trivial algebra equation

(B.2) becomes

v
(B.4) [ = i
[a
e+p

where a, is the four-acceleration.
On the other hand the four velocity can be expressed as a

linear combination of the Killing vectors

(B.5) u% = an®+ ¥

The four-acceleration is then

(B.6) %= ufvu® - a%y? . v n® .
Since

(B.7) nﬁvﬁna = = Vo
we have

(6.8) %= %Az[va(p,p) + 209%n.8) + Va‘(g,g)]

s o
From the condition u uof - 1 we get
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2 o o
(B.9) AT(n + QF )(na + Qfa) = - 1

(B.10) A% = - [ (pm + 20né) + &S£.67].

i

Taking the derivative of equation (B.10) we obtain

(B.113  VHam + 209°(n8 + VEE =

VR - 2nH %0 - g V0

therefore equation (B.8) can be written as
[(n.5)+08.5]

[(n.m+200n.8)+0%%.6]

(B.12) & = ¥¥in & =+

o

Recalling the definition of +the specific angular momentum per

inertial mass we can write

(u. &) [(n.&r+qg.6]
(B.13) &= = -

1]

(u.n [tn.m+0n.5)]

therefore equation (B.12) can be written

e
(B.14) @ = ¥¥%1n &) = 2

i~ 08

Using the relations (2.3.3) which link © and £, equation (B.14)

can also be written as

(B.15) a = =V (1In u) 4 e—

Consider a disk with constant specific angular momentum £,
equation (B.15) now can be integrated
P t

(B.16) j b . _3n Lo
e+p t

u.

[ iy

£, . . .
where u , is the four-velocity at the inner edge of the disk. If
the matter compounding the torus is modelled by a polytropic

equation of state
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(B.17) p = kp
and
P
(B.18) p=(y - 1upes € = P+ e
¥-1

then the hydrostatic equilibrium equation is trivially integrated

to the expression

t
¥-1 ueL ¥/ -1
(B.19) p = [ — ( - 1]] .
yk v u

or

F-1 u. 10 -1)
(B.20) e [Yk_ [ :“ _1H .
k u
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APPENDIX C

We derive here the Schwarzschild solution in our coordinates.
For convenience we report again the equations to solve with the

relative boundary conditions

(C.1) Vs(BVw) = 0

(C.2) Vel(prsindV¥B) = 0

(C.3) v —» 0O, B = 1 r — o
(C.4) e’ - o B = o Be ” regular ar r = 1.
Here the radial coordinate has already been rescaled by h/=z. In

the Schwarzschild <case the space-time is spherical symmetric
therefore the metric functions are only function of the radial

coordinate r. Equation (C.2) then becomes

(C.5) a-g-(l‘s g.g.) -0

whose general solution is

]

(C.6) B = ¢ + —
i 2

H

the boundary conditions determine the constants c1 and c, to be

uniquely equal to cim.and c_=-1, hence the solution is

(C.7) B = 1 = e
2

Equation (C.1), when the wvalue of B given by (C.7) is
substituted, becomes

d 2 dv
(C.8) = [(r -1) a-1-1-] =0

whose general solution is

(C.9) v = ¢ 1n [E-Zi] + C
] r+4 a
the constant ¢ is determined by the boundary condition at

@
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infinity and its value is c =o. The constant cg is not uniquely
determined by the requirement that X:eblo at the horizon, but ye
need to impose the regularity of the ratio B/X

. o c_+1
-1 fr+aYa (peay °

. B _ 3
“roog o2 F=7) ° - c, -1
ro(r-1)

oy

this ratio is regular at r=1 when Cg=1, therefore the solution is

(C.11) w» = 1n [I-'-li]

or in terms of X=e

"

(C.12) b4
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APPENDIX D

The grid functions used in equation (4.2.36) and (4.2.37)
.y ") . =0 .
& , B , €  and @  are defined as follous
i.§ LA | . L.
R A B[ n  ~n ~hy ~h  m~h
(b.1) A = q -4 —In, (@ —w e, ~w, ) o+
i, i,§ xs_ L t+1,j TLL§ i, i-4,f
h =~k ~ R ~h o~k T h TR "l & B h
Pl @ (079 [m ey R ) w [}'{']
- L - - -1 ] . L . L L+02,)
b "h _Qh) & [B]}'I “nP kP _;(h) & [B]h
i, i-1,§ L. ai,,j X i-1s2,] L lLjve L &i-.i X L, oz
- 1)
Mgt _gh, 8 [B]
L. L1 L] at,} L, 12
g~k
o) h ~ ~ ~
(D.2) B = B p. (w - X ) o+
L. X‘ L,  t+4,j i, i-1,]
i.j
h . ~h mly o~
- +
L. i, j+ 1 R W £ § ]
3.k
h h _ ~h ~h a8 B
(D.3) CL,;" et'j( w'x+1.j wi.,J)ﬁT,[—:]
& i+1.-2,]
wh (ah __;}h ; & ]3El h __nh (Zjh —Z)h) a BB h
L i-1,j i,j 8%, |4 L igva iy @, . |oe
Ly , . Lt .
i-1-2,] i,j+1,2
3
shoah Jah, 2 |8 "
L, i1 i.j @R, |- a
iLjiX .
i,j-1-2
- PR 3~k
(p.4) D" = " [B_ sl B +
i.j t.] X-& i, g
L+1-2, i-1-2,]
R Ba]h h [BS]h
e o= S
L. g i,] &4
i,j+i 2 L,j-1r2
. . 1 k R h . .
The grid functions etj, wij, n. i and s ; are defined in
, . . .

126




. o) h R )
(4.1.52), while & wo, n o, S mh. and ph< are
i, i.j L. i t.j i.j
as follows
2] h@ 3 , 3
e = ) o sin~ &
L.t na L4472 i
ol hs r3 sinaé
i.j R T i-io2 i
8
3] ha 3 , 39
.= H—-r,51n S
i s jris2
(D.5)
o) hs 3 ., 38
.. = E—-r451n &
L. N i j-1i-2
- h@ r’sin’®
i =z h Tt j
8
- ha r%in’s
Pii~ z H; i j
The derivatives are easily calculated and the result is,
= = h B.
(D.6) o ;,B';' = -%3 Lo
i.js Ji-1,2,] Xl,j
PEEN . B . .
(D.7) & _[B AL
X ], ) 8 _2
L,j% #L+41/2,] b
i,
= nh B
(D.8) o_ B AL
i '“-x-‘i,,j-ifz z X
i . C
(D.9) s )" Sl
B &) e z g%
L,
g
) -
(D.10) 8 B _ 4[Rt-1/z [Et+1 Bt,j
. ﬁL - - !R._i—ﬁ?, e
! i-1-2,] ' t i,
R _ 3
(D.11) & Bsh s — e i+1.-2 Uev‘.+1 Bi.,j
: gi.t N k. -Ik. ) g5
- i+1-2,] t v i,
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i=2



3
u B B’
(D.12) =2 [?_:} = -z =i
L i, j-1-2 XL > §
3
I h B
a B i,
(D-13) ) Z mm 2
Esit,j[x‘]_ . x>
i, j+i-2 L,
for i=s, the derivatives that have different expressions are
s h B.
v di-as2,j b4
i,
(D.15) a__a [B.h R
i, xet+1/aj ¢ X? .
L,
8
(D.16) a _B;ih N _4[Ri.——1— [Ri.—i/.'i.’ B'L,j
) ai,x.; ER,’i—fFf, XS
A V- X - i,

the others are exactly the same expressions as for i=z.
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APPENDIX E

Since the pressure is, in general, a function of the
coordinates r and ®, the surface of the matter configuration can

be expressed as an equation
(E.1) p(r,® = 0

being an equipotential surface. Taking the differential of

equation (E.1) we have

(E.2) %dr*- %d@:o

therefore

p.
(E.3) gl.g: - —
p’&
then using the expression of the hydrostatic equilibrium equation
(2.3.1) we get

L
as (1-40(1ln u ).r— £8,
(E. 4) a—r-=

r

t
(- (1n u )’67 50,3
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