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PREFACE

In this thesis, several aspects of the cosmological
quark-hadron transition are studied in detail. A general
introduction discusses the importance of phase transitions in the
early wuniverse with particular emphasis on the quark-hadron
transition and its possible cosmological consequences.

In the second chapter we first give a brief review of present
knowledge of the quark-hadron transition on the basis of lattice
results from quantum chromodynamics. These are then used for a
general discussion of the possible large scale cosmological
effects of the confinement process. In the following discussion
it is assumed that the transition is of first order, as suggested
by many lattice computations, and that bubbles of the hadronic
phase are nucleated in a supercooled quark medium. Lattice
resulﬁs, however, are not accurate enough to give a reliable
equation of state for use in hydrodynamical calculations of bubble
growth and so we also discuss phenomenological models which are
more convenient.

The general relativistic hydrodynamical equations governing
the bubble growth are presented in detail in Chapter III.
Particular attention is devoted to the characteristic formulation
of the hydrodynamical equations and to a correct specification of
the junction conditions at the phase interface. For the latter,
Israel’'s method for singular hypersurfaces is used to give a
proper treatment of surface effects.

In Chapter IV a short review of classical bubble dynamics is




presented, followed by a description of the characteristic
structure of detonation and deflagration solutions. For the
deflagration case we point out that it is necessary to specify an
extra condition giving the rate of the transition as determined by
elementary processes. These considerations are then used for
showing some important features of a plane deflagration front.

Chapter V is devoted to discussing the numerical integration
of the coupled system of hydrodynamical equations, junction
conditions and the transition rate equation which together govern
the dynamics of bubble growth. Some results of the computations
are also described.

Some possible effects of long range conduction mechanisms are
analysed in Chapter VI. In particular, we discuss the ratio
between the hydrodynamical and neutrino fluxes and its relevance
for possible baryon concentration. There is then an analysis of
how the transition would have proceeded on a large scale if the
neutrino flux were the dominant mechanism for transfering energy
from the quark phase to the hadron phase.

Finally in the Conclusion we summarize some main points and

discuss some of their wider implications.
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CHAPTER 1

INTRODUCTION

In the last decade the subject of phase transitions in the
early universe has attracted a lot of interest which has mainly
been related to the new theories developed in trying to unify
known particle interactions. It is characteristic of these
theories that symmetry breaking, which eventually produces the
observed particle interactions, usually occurs at energies which
are unattainable in the laboratory. On the other hand, the
standard model of cosmology suggests that the corresponding
temperatures were reached shortly after the big bang. The early
universe appears to be the only possible place where most of the
higher order symmetries could ever have been manifest and where
the associated symmetry breakings could have occurred.

Of particular interest is the possibility that one or more of
these symmetry changes was a first order phase transition. Such
transitions normally proceed 5y the formation and growth of
bubbles of the new phase (which corresponds to the minimum of free
energy for the system). The inhomogeneities connected with the
coexistence of the two phases may have produced perturbations or
structures which could survive after the completion of the
transition and affect the subsequent evolution of the wuniverse
(Brandenberger (1985), Bonometto and Masiero (1986)).

A first order phase transition is characterized by the

presence of a finite difference in energy density between the two



phases, the emission or absorption of latent heat as matter is
converted and the existence of associated metastable superheated
or supercooled states. Qualitatively, first order cosmological
phase transitions concerning symmetry breaking would be closely
similar to boiling in a superheated fluid (Gunton et al. (1983)).
The state containing false vacuum corresponds to the superheated
fluid phase and that with true vacuum to the vapour phase.
Boiling bubble nucleation can be initiated by  thermal
fluctuations, acoustic disturbances, the influence of impurities
or the effect of imperfections on the surface of a containing
vessel (Hetsroni (1982). Of these, the first three may be
relevant for cosmological transitions (Linde (1977, Guth and
Weinberg (1981), Hogan (1983)). For wvacuum phase transitions at
zero +temperature, bubbles of the true wvacuum state can be
nucleated by quantum fluctuations (Voloshin et al. (1975), Coleman
(1977)). In the thermal nucleation picture, bubbles of the new
phase are continually being formed within the old metastable phase
but the only ones which survive are those large enough so that the
energy deficit of material inside the bubble can compensate for
the work done in creating the phase separation surface (Landau and
Lifshitz (1959), Lifshitz and Pitaevskii (1981)).

For clarity, the dynamics of a first order phase transition
may be divided into several stages. First we are concerned with
bubble nucleation mechanisms, which determine the degree - of
supercooling undergone by the system, and next, with the growth of
an isolated bubble in a metastable medium. Coleman (1977) has
shown that at zero temperature the acceleration of the bubble wall
would be very rapid and the velocity would quickly approach the

speed of light. At early times, however, the universe was not at



zero temperature and, in fact, the bubble surface would expand as
either a deflagration or a detonation front depending on the
degree of supercooling (Steinhardt (1982), Berezin et al.
(1983a,b), Gyulassy et al. (1984)). The next stage concerns
bubble collisions and coalescence and here it is important to
determine how the energy stored in the bubble wall is released and
how quickly it is thermalized (Berezin et al. (1983c), Hawking et
al. (1982)). Eventually the metastable phase is present only in
disconnected regions which then shrink until probably only the new
stable phase remains. The way in which the transition proceeds
through these stages and even whether or not it will ever be
completed, depends on the particular phase change and on the
conditions in the universe at the corresponding temperature (Guth
and Weinberg (1981), Witten (1984)).

The last of the possible phase transitions which have been
proposed for the very early universe (at least, within the
standard "hot" model) concerns the confinement of quarks and
gluons whithin colour singlet states (hadrons). According to the
present theory of strong interactions (quantum chromodynamics -
QCD), hadrons are composed of more fundamental particles, quarks,
which are characterized by a new quantum number called colour.
Quarks interact through a colour field whose quanta, gluons,
themselves carry colour charges. An important feature of the
interaction is that the potential rises linearly with distance for
separations greater than about one fermi and, under normal
circumstances this gives rise to permanent confinement of quarks
within hadrons since an infinite amount of energy would be
required to isolated a colour charge completely. However, at

short distances the interaction becomes weaker, vanishing



asymptotically as the separation between particles tends to zero.
For matter compressed to sufficiently high density, individual
hadrons would lose their identity and a quark-gluon plasma would
be formed (see Miller (1985)).

In the early universe, if we accept the standard model, the
conditions for the existence of a quark-gluon plasma were
satisfied before about ten microseconds after the big bang. As
the universe continued to expand and cool, strongly interacting
matter would then have changed to the hadronic state. The
quark-hadron transition is the only one of the early universe
transitions which is likely to be recreated under laboratory
conditions within the forseeable future (see Van Hove (1986)). It
marks a watershed in the history of the universe since it is the
beginning of the present era in which matter appears in states
which can be studied now in laboratory experiments or in processes
which can oécur naturally.

Whether this transition is continuous or a first order phase
transition is not yet completely clear. QCD lattice calculations
(Cleymans et al. (1986a), Svetiski (1986), etc.) strongly suggest
the possibility of having a first order phase transition at least
for certain ranges of quark masses but, because of the
difficulties of the calculation, a definitive answer is not yet
available.

In the cosmological context, different consequences can arise
depending on the order of the transition. In the case of a
continuous transition the most important cosmological effect is a
temporary delay in the general cosmic cooling (Bonometto and
Pantano (1984), Bonometto and Sakellariadou (1984)).

If, on the other hand, the confinement occurred by a first
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order phase transition various sorts of inhomogeneity may have
been produced as well. These could be created in many ways.
DeGrand and Kajantie (1984) considered the possibility that shocks
were formed during the transition and they found that turbulent
structures produced as a result of shock collisions might survive
diffusive dissipation until the end of the transition if the
initial supercooling was larger than 6%. Kajantie and
Kurki-Suonio (1986) also considered shock collisions and possible
consequent reheating of the metastable medium. Another
possibility is that a dark matter component may have been produced
in the form of black holes or other condensed objects (probably
with planetary masses). Either these objects or shock waves
arising from the transition could have been starting points for
processes subsequently leading to galaxy formation (Crawford and
Schramm (1982), Carr and Silk (1983)).

Witten (1984) showed that in the case of a phase transition
occurring without any large departure from equilibrium, baryon
number conéentration might occur. Baryon number is carried by
almost massless particles in the high temperature phase but by
massive particles in the low temperature phase and therefore, in
conditions of chemical equilibrium, one expects a higher baryon
number density in the quark phase. In the final part of the
transition, up to 99% of the total baryon number may have been
contained within the shrinking quark regions. If as the universe
continued to expand, these regions lost energy primarily by
processes, such as neutrino radiation, which do not deplete their
baryon number, then it is possible that they might have formed
dense "nuggets" of strange quark matter (matter with equal number

of up, down and strange quarks) which could have survived without
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being converted into the hadron phase. Witten predicted that the

masses of the nuggets formed could be in the range 109-1018g

(baryon number A of 1033-1042) and suggested that they might be a
baryonic dark matter component. However Alcock and Farhi (1986)
found that any nuggets with A =< 1052 would evaporate completely
before nucleosynthesis, leaving concentrated baryon clouds. A
more recent analysis by Madsen et al. (1986) reduced the limit to
A = 1046 but this is still much larger than the maximum value
suggested by Witten.

Even if quark nuggets are ruled out, it is reasonable to
expect some baryon concentration around the points where the last
remnants of the quark phase finally evaporated. Bound objects
with planetary mass might have been formed out of these
concentrantions {(Iso et al.(1986)) and nucleosynthesis could also
have been affected if diffusion was not able to homogenise the
baryon medium before then (Bonometto et al.(1985), Applegate -and
Hogan (1985)).

The standard model of primordial nucleosynthesis, which
assumes a homogeneous medium, is in good agreement with the
observed abundances of light elements if 0.0l = Qb < 0.2, where
Qb=pb/pC is the ratio between the present baryon density Py and
the critical density necessary for closing the universe (Boesgaard
and Steigman (1985)). This result seems to exclude the
possibility that a sufficient amount of dark matter to provide the
closure density could be in baryonic form. Observations seem to
show a rather high degree of homogeneity in 1light element
abundances. However, these observations refer to regions which at

the epoch of nucleosynthesis would have contained many horizon

volumes and even more nucleon diffusion volumes. Therefore, they
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do not exclude, a priori the possibility that baryon
inhomogeneities were present at the nucleation epoch and that
nucleosynthesis products were homogenized later on the scale which
we 1niow observe. Sale and Mathews (1986) showed that computed
light element aboundances still agree with observations for szO.A
if one allows isothermal baryon fluctuations at nuclesynthesis.
By making the additional assumption that regions of high baryon
density are then included in cold dark matter (planetary-type
objects, brown dwarfs or black holes), the constraints from
nucleosynthesis can be satisfied for Qb as large as 1.

Alcock et al. (1987) and Applegate et al. (1987) have
independently calculated primordial nucleosynthesis taking into
account possible consequences of the quark-hadron transition.
They considered baryon fluctuations and also inhomogeneities in
the neutron-proton ratio arising because of the different
diffusion of neutrons and protons through the radiative plasma.
Both analyses suggest that baryon fluctuations might make the
observed light element abundances consistent with a larger value
of Ob' For Qb~1, however, they found an overproduction of 7Li
compared with the standard model. Applegate et al. also noticed a
slight increase in 4He and a decrease in deuterium. The studies
disagree on the estimates of heavy element aboundances with
Applegate et al. finding values higher than the observed ones,
while Alcock et al. found values in agreement with the results of
the standard model. These discrepances are probably due to the
approximations used and might be eliminated when an improved
knowledge of the initial fluctuations allows more detailed
calculations.

In view of the important possible consequences for structure

13




formation and nucleosynthesis, a full-scale hydrodynamical
calculation needs to be made for the first order case, to
investigate how the transition proceeds under various assumptions
about the basic input parameters. This is one of the main
objectives of the present work. The initial supercooling will
have to be left as a free parameter and suitable phenomenogical
models used for describing the two phases until the lattice
calculations are able to provide a more complete treatment of the
transition.

Throughout the thesis we use units for which ¢ =h =k = 1.

14



CHAPTER II

STRONGLY INTERACTING MATTER AT HIGH TEMPERATURE.

In recent years QCD has gained increasing acceptance as the
fundamental theory of strong interactions (see Marciano and Pagels
(1978)) and within this framework it is possible to explain the
characteristics of hadrons revealed in experiments. High energy
scattering of leptons on hadrons in the laboratory shows that
hadrons are composite particles whose constituents, called in the
first place partons, are point-like particles with spin 1/2 and
with non-integer electric charge. Partons have been identified in
QCD with quarks, particles introduced by Gell-Mann (1962) in an
attempt to clarify the rich hadronic spectrum revealed by high
energy experiments.

Today there is experimental evidence for the existence of .
five different flavours of quark called up (u), down (d), strange
(s), charm (c) and bottom (b) and symmetry considerations suggest
the existence of a sixth flavour called top (t). Some of the
properties of quarks are summarized in Table 1. Quark masses
cannot be measured directly since most of the hadron mass comes
from the binding energy of quarks; the values written in Table 1

refer to the bare quark masses as calculated by current algebra

Table 1.
Flavour up down strange charm bottom top
Electric
- - + -1/3 +2/3
charge +2/3 1/3 1/3 2/3 / /
CUITERE  Siey 10MeV  150MeV  1.5MeV  SMeV 40MeV
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methods. The charges are expressed in units of the proton charge.

The existence of hadrons formed by three apparently identical
quarks and the ratio between hadron production and muon pair
production in e'e” collisions indicate that quarks must be
characterized by a further internal quantum number and this is
called colour. It is probably more correct to talk about "colour
charge" since it plays a réle similar to that of electric charge
in quantum electrodynamics (QED). Like electric charge, colour
charge is exactly conserved and acts as the source of a force
field. However, there is a fundamental difference between the two
kinds of charge which is that, whereas electric charge is a
one-dimensional quantity, there are three different colour degrees
of freedom. This implies a very different behaviour of the strong
interaction as compared with the electromagnetic one in spite of
their analogies.

In this chapter, after a brief introduction to the
thermodynamical relations which we are going to use later, we give
a general introduction to the main properties of QCD and review
the results obtained by perturbative methods and by numerical
calculations. Next an application of lattice QCD results in
cosmology 1is presented. Finally, we proceed to a two phase
description of strongly interacting matter with the presentation

of phenomenological models suitable for use in the hydrodynamical

treatment of a first order confinement transition. For the
quark-gluon phase, we discuss the effect of perturbative
corrections within the bag model. For the hadron phase, the

thermodynamics of a system of extended hadrons is discussed in

detail.
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2.1 Thermodynamic relations

The thermodynamic functions of a system governed by a

Hamiltonian H can be derived from the grand partition function

defined as

11 1

Z =Tr {exp{-ﬂ[ Q-Z.p.ﬁ.) ] (2.1)

where B=1/T is the reciprocal of the temperature and By is the
chemical potential conjugate to the conserved charge Ni (e.g. the
total baryon number). From the grand partition function it is

possible to calculate the expectation value of an observable O by

the relation

<0> = z7 1 1r [ 8 exp{-ﬂ( ﬁ-zi#iﬁi) ] (2.2)

From equation (2.2) it can immediately be seen that the mean value
of the energy density e and the charge density n, are given

respectively by

<> TS 8

e = —‘{"— = V_ 3T (IDZ) + Zi[.tini (2.3)
<N, >

n, = —= =12 (1nz) (2.4)

i \Y v ayl

A well-known result from statistical mechanics relates the grand

partition function to the thermodynamical potential Q(T,V,pi) by
Q= -T InZ (2.5)
We also have the thermodynamic relations
dQ = -SdT -pdVv -EiNidpi (2.6)
and

Q= E -TS -EN;p, = -pV (2.7)
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where E is the total energy of the system, S is the total entropy,
V is the total volume and p is the pressure. Combining equations

(2.6) and (2.7) with (2.5) we have

S 13
s =< 9T (1nZ) (2.8)
T InZ
p =g (2.9)

For ui=0, the energy density can be expressed in terms of the

pressure as (see equations (2.3) and (2.9))

_2238 | p
e =T HT{T] (2.10)

2.2 Quantum chromodynamics

2.2.1 The gauge field theory of strong interactions.

QCD is constructed as a gauge field theory in which quarks
are represented by a spinor matter field ¢§ with colour index «
(a=1,2,3) which corresponds to the three possible colour states (f
indicates the quark flavour). If we think of colour as forming a
three dimensional abstract space, QCD is required to be invariant
under local SU(3) transformations in this space. This invariance
is obtained by introducing eight distinct gauge fields Fg
(a=1,..,8), called gluon fields, whose quanta are massless vector
bosons (gluons). These fields mediate the strong interacﬁion
between quarks but the gluons themselves are also coloured
particles and so they self-interact. The Lagrangian density of
QCD is given by

- s3F |t 1 & _ £ 1 .4 1]
L = 2f¢a [7 (1aaﬁai+ ZgTQﬂFiA ] meQﬁ]wl)ﬂ 4 GijGA (2.11)
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where g is the coupling constant, me is the quark mass and

¢® -5 F - 8.7 + g £ FF.
ij j i B

c
i3 eFi Fj (2.12)

r* are the eight generators of the SU(3) colour gauge group
. A B AB
normalized so that 7 r = 2§ and %wc are the structure constants
c
. A term (-p¥

of SU(3) defined by [r*,7"] = 21if.°r ) must be

f%f
added to (2.11) if the net baryon number is different from zero.
The coupling constant g is dimensionless and hence the theory is
invariant under scale transformations and only the ratios between
physical quantitiés can be predicted.

In QCD hadrons are colour-neutral bound states of quarks and
quark-antiquark pairs. The non-abelian character of the theory
(the symmetry group is SU(3)) which leads to self-interaction of
gauge bosons, produces a confining potential which, at large
separation, is proportional to the distance between quarks (r).
This prevents quarks appearing as isolated particles. On the
other hand, perturbative expansions together with renormalization
group techniques show that for r - 0, the effective coupling
constant tends to zero (asymptotic freedom) so that quarks. and
gluons then behave like non-interacting particles.

Once the Lagrangian 1is given, the analysis of the
thermodynamic properties of QCD at finite temperature and density

is, at least in principle, a well defined problem. The grand

partition function is written in the path integral formulation as

z =j [&5 ][ av ][ ar] & (2.13)

where [ ] denotes the sum over all of the possible configurations

of the system and S is the Euclidean QCD action
B 3 _
S = J dr J d’x LE(¢,¢,F1) (2.14)
o
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where LE is the Euclidean Lagrangian density obtained from (2.11)
by making a Wick rotation of the time, t—ir. If the fields

satisfy the periodicity conditions

Fi(x,O) = Fi(X,ﬂ)

it follows that B is equal to the reciprocal of the temperature.
All of the thermodynamical quantities can then be derived from
equation (2.13) wusing the relations presented in Section 2.1.
However, 1in practice the calculation of observables in QCD
encounters two main obstacles. Perturbative calculations (i.e.
power expansions of Z in terms of the coupling constant g) lead to
the usual divergences of quantum field theory and therefore the
theory has to be renormalized in order to obtain finite results.
Moreover, it is not possible to study the behaviour of the system
with perturbative methods over the whole range from confinement to
asymptotic freedom because in the strong coupling region this
would require the evaluation of the whole infinite series of terms

of the perturbative expansion.

2.2.2 Perturbative QCD at high temperature.

Here the results obtained from perturbative QCD at high
temperature are reviewed mainly with a view to their use in the
equation of state for the quark-gluon plasma phase. We refer here
to the results presented by Toimela (1985) who extended the
previous calculations by Kalashnikov and Klimov (1979) and Kapusta
(1979), including terms up to O(galn g) in the coupling constant.

In the ultra-relativistic regime (mf=0)the pressure is equal to

20



p = [{N2-1+ 7N Nf/a]"r4 + 15N Nf[T202+02]} 2 /45

—[Nz-l] N+5N/4}T4+ 9Nf(T292+02]] g/lbk

L\

- 3/2
+[N2-1] 2N+Nf]T2/6 + Nfez] g3T/12w

L\

[2N+N ]T2/6 + Nfﬁz]nghlng/(BZKZ) (2.16)

£

where Nf denotes the number of quark flavours which are
relativistic at the temperature under consideration, N 1is the
dimension of the gauge symmetry group SU(N) and 62=u2/(2w2).
Although in the early universe the net baryon number density was,
in fact, different from zero we can nevertheless neglect its
contribution to the equation of state in many cases. Specifying
equation (2.16) for up=0, Nf=2, N=3 and introducing the running
coupling costant as=g2/(4w2) we obtain

3

- 2 a
2.4 |37 11 %s 128( %s)2 %s s 2
) %-T{ﬂ]wﬂ[ﬂ]w[ﬂﬂ]1n[.—_w}+o<as>

(2.17)

From the renormalization group equations (Caswell (1974)) we have

in the high temperature limit:

a (1) g (D) 6
i T ax? (1IN-28)1n(T/A 219
. SN In(T/A )

o
where AQCD is a dimensional parameter which fixes the scale of QCD
and whose value has to be determined independently by reference to
some physical quantity such as, for example, the proton mass.
AQCD is estimated to be in the range 300-500 MeV (Maller (1985)).

From equation (2.18), it is evident that as the temperature

increases the effective coupling strength decreases, vanishing for
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T + o (asymptotic freedom).

The energy density can be calculated from equation (2.17)

using relation (2.10) giving
o - a 2 a
oo 2 B o9 -
a §2 a4t o a
BT - BT e )ed e

From equations (2.17) and (2.19) it is easy to obtain the sound

velocity in the quark-gluon plasma

2 _9dp| _ oatB
Vs T Bels 3a+7f (2.20)

with

Neglecting terms of order higher than O(a3) we obtain

2_ atp (18] .1 _ 4P
Vs T T3a [1 Ba] 3 9a (2.21)

. 2 . .
and expressing v, in terms of the sound speed in a gas of

ultrarelativistic free particles (v§=l/3), we finally have
a 2 ' a E a a
2 195 s 11 64 sz s s 3
3"3‘1“37[“] [—9 - m[“;r] - 16{7]“[7”*““ ) (2.22)

3

From equation (2.17) we can also derive an expression for p in

terms of e. At zero order in o we have the following relation

for e (from equation (2.19)):

1n E——] -4 1n [AT ] (2.23)

(¢} QCD

with e =e(A__ ). Thus o can be written as
o QcD s
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R

s 6 24
_S _ - (2.24)
™ 29 ln(T/AQCD) 29 ln(e/eo)

and finally

-

b - e Ji. 30 |576 1 11 64./8 1 _
3 37 {174 1n2(e/eo)g 9  3/29 lnllz(e/eo)
1n ln(e/e ) )]
o ||+ o]—5—— } (2.25)
ln(e/eo) | In (e/eo)

In section 2.3 we will see how non-perturbative effects may be

introduced near the confinement region.
2.2.3 Lattice QCD at finite temperatures.

In the last few vyears, numerical methods have been
increasingly widely wused for studying QCD (see, for example,
Cleymans et al. (1986a)). The procedure is to evaluate the
partition function (2.13) on a large bﬁt finite lattice where
points are separated by a common spacing a, so that the possible

momenta range between 1/a and 1/Na, where Na is the linear lattice

size. The results then have mno infrared and ultraviolet

divergences. If Nr and NS are the number of lattice sites in the
. . . . 3

7 and space directions respectively, then the volume is V = NSa

and the reciprocal temperature is 1/T = NTa. The spinorial quark
fields % and ¢ are defined at each of the NrNs lattice sites. 1In
order to ensure the gauge invariance of the formulation, the gauge
fields F; must, however, be defined on the links between adjacent
lattice points.

Physical observables must, of course, be independent of the
the choice of the lattice and this is guaranteed by the following

relation betweeen the lattice spacing a and the coupling g
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obtained from the renormalization group theory:

4 2 6 459-57Nf 8w2 6
aAL= exp < - al 5 + 5 In 5 (2.26)
33—2Nf g (33—2Nf) 33—2Nf g

where A.L is a dimensional parameter which characterizes the
interaction scale. All physical quantities calculated by computer
simulation techniques are then given in terms of AL. Their values
in physical units are obtained at the end by fixing the arbitrary
lattice scale AL with the calculation of some experimentally known
quantity such as the proton mass.

The main objectives that lattice QCD tries to achieve are the
following: (i) to give a complete description c¢f strongly
interacting matter in the range of temperatures and densities
which cannot be analysed by perturbative methods and to decide
whether or not the confinement process is a first order phase
transition with true discontinuities in characteristic parameters
at a clearly defined critical temperature; (ii) to determine the
transition temperature and its dependence on the chemical
potential (in other words, to find out how the transition
temperature changes for increasing baryon number density); (iii)
to see whether or not confinement is related to the breaking of
chiral symmetry. This symmetry is a quasi-exact symmetry of QGCD
which is restored at high temperatures in the limit of zero mass
for quarks with the flavours up, down and possibly strange. At
low temperature, the dynamical breaking of this symmetry
corresponds to a finite value of the mass term <yp> which becomes
zero at highvtemperature when the symmetry is restored.

At present, the calculations are most accurate for pure gauge
theory (quarkless QCD), and for this, the existence of a first

order phase transition connected with confinement has been
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demonstrated both analytically

(Borg and Seiler (1983))

and

numerically (Celic et al. (1983), Kogut et al. (1985), Gottlieb et

al. (1985), Christ and Terrano (1986)).

The order parameter of

the transition is the thermal Wilson loop <I> (« e-wI) which is

associated with the free energy F of an isolated quark.

Its

expectation value is zero in the confined phase (F is infinite

since a quark can only exist

finite in the deconfined phase (see Figures 1 and 2).
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is estimated to be in the range

(150-230) MeV with the corresponding latent heat being between 1.5

(GeV/fm3) (Kogut et al.(1983), Celik et al.(1983), Svetiski and

Fucito (1983)) and 2.5(GeV/fm3) (Gottlieb et al. (1987)).

The

large uncertainty of the results comes mainly from systematic

errors related to the finite volume correction and from the fixing



of the physical value of lattice scale AL.

The situation for full QCD is still quite unclear. The
qualitative features near confinement are similar to those for a
pure Yang-Mills theory, but the different groups of people
involved in these large scale computations claim different answers
for the order of the transition. All of the groups agree on the
general behaviour shown in Figures 3 and 4. 1In Figure 3, one can
see that the energy density varies rapidly from a value typical of
a gas of pions to a value similar to that for a gas of free quarks

and gluons. Coinciding with this change there is also an abrupt
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Fig.3. Wilson line (crosses) and Fig.4. Gluon and fermion energy
- 2 2
<'l,b¢’> (circle) as functions of ﬁ=5/g densities u as function of ;3=6/g
(Kovacs et al.(1887)). (Kovacs et al.(1987)).

change in the thermal Wilson loop <I> and in the chiral order
parameter <yy>. The analyses have been performed with algorithms

which differ in the range of quark masses considered.
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The current overall picture of finite temperature QCD is
summarized in Figure 5 which shows the range of quark masses for
which a first order phase transition has been claimed. Clear
signs of metastability have been found by Celik et al. (1985) in
the limit of high quark masses (the limit m. + @ corresponds to
the pure gauge theory where, as we have seen, there is definitely
a first order phase transition). In the limit of low quark masses
there is probably a first order phase transition for mf=O but the
transition becomes continuous at some value finite of me (Fukugita
and Ukawa (1986), Fukugita et al. (1987), Gupta et al. (1986),
Kovacs et al. (1987), Gavai et al. (1987); for previous results

see references therein). The transition temperature is estimated

to be about (200*x50) MeV.

Fig.5 Possible phase diagram

-2
g for the SU(3) gauge theory with

fermions. The crosses indicate

3 4
\ / the deconfinement transition in

the pure gauge sector (m=%) and

the chiral transition at m=0.

2
g & InT.

The great difficulties encountered in studying QCD at high
temperatures, increase further when a net baryon density is
included. 1In the limit of large quark masses, Berg et al. (1986)
have obtained the results shown in Figure 6. The points plotted
indicate a rapid variation in <I> and <¥y> but do not necessarily

imply a phase transition. Although they should be considered only
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as a qualitative description of the true behaviour, it is
interesting to notice that the transition temperature decreases

with increasing baryon number density.
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Fig.6 Phase diagram for strongly interacting matter:critical
temperature T for deconfinement (x) and for chiral symmetry
restoration (o), versus critical baryonic chemical potential 73

(Berg et al. {(1886)).

In summary we can say that at temperatures larger than 200
MeV, strongly interacting matter is in the quark-gluon plasma
state and that the deconfinement process of ordinary hadronic
matter, as temperature increases, is characterized by a very rapid
variation in the energy density and other thermodynamical
quantities. The transition is likely to be first order in the
case of quark masses tending to zero or for very large masses but
the general situation is not yet completely clear. Because all of
these calculafions require large amounts of computer time and
memory, we will probably have to wait for the next generation of
supercomputers before there will be a definitive answer (Toussaint

(1987)).

28



2.3 Llarge scale analysis of confinement processes using lattice

QCD results.

The first attempt to use lattice QCD results in cosmology was
made by Bonometto and Pantano (1984) who considered the case where
the transition occurs smoothly and continuously without
supercooling. The aim was to check which kinds of deviation from
the evolution of a simple radiation dominated universe would be
produced by the confinement processes under these circumstances.

According to the standard model the universe is assumed to be
homogeneous and isotropic for temperatures well above 200 MeV so
that it can be described by the Friedmann-Robertson-Walker (FRW)
metric

2
5 dr

as? = at? - a2(t)|—— + r2av? +rlsin’odg’ (2.29)
1-k2r2

where r is a comoving radial coordinate, t is the proper time of a
comoving observer, a(t) is the cosmic scale factor and k is a
constant which takes the values +1, 0 and -1 for closed, flat and
open universes respectively. The time evolution of the scale
factor a can be calculated from the Einstein equations which for

the metric (2.29) give

82

(_z_] S (2.30)
a 4G

- -z— = —-——g—— (e+p) (231)

where G is the gravitational constant. We have also assumed that
there are no dissipative or wviscous phenomena. If the system
evolves through equilibrium states, the entropy S per unit
comoving volume is conserved (see,for example, Weinberg (1972)),

i.e.
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S - a>(t) ﬁ—e—;f’—)— ~ constant (2.32)
In the case of a universe dominated by radiation-like particles

w2 4
e =3p = [56] g T (2.33)

where the degeneracy factor g is equal to o+ z

8nf’ with nb and n

£
being the number of boson and fermion degrees of freedom

respectively. For constant g, equation (2.32) implies
aT = constant (2.34)

Consider now the confinement period with the assumption that
the transition from the quark-gluon plasma state to the hadron
state is continuous, although very rapid, and that the hypotheses
of homogeneity and isotropy continue to hold at least for scales
larger than the strong interaction length scale. In this work,
equation of state used for strongly interacting matter was derived
from the lattice calculations of Montvay and Pietarinen (1982).
Although improved lattice <calculations have appeared more
recently, the qualitative behaviour of the results has not changed
and so the conclusions presented hereafter are still reasonable.
The energy contribution of radiation-like particles (photons,
neutrinos, relativistic leptons) is given by equation (2.33) with

g=gr=la.25. From equation (2.32) we have

2 2 :
4 3 4
[ ES+ ®S+ 3 [%6] gr] (aT)™ = 3 {%6] [gr+gs}(a T )i (2.35)

where the suscript s refers to the strongly interacting matter and
E=e/T4 and ®=p/T4’ are derived from the lattice results. The
subscript = refers to temperatures well above 200 MeV where
strongly interacting matter behaves as a gas of free quarks and

gluons (with gs=37 if two quark flavours are essentially massless
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at the temperature under consideration; gs=47.5 for three massless
flavours).
The behaviour of (aTS '°) is shown in Figure 7 for the

temperature range (80-800)AL. It can be seen that the evolution
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N
RTs ™

04+ .

! i i ! ! 1 1 L
80 90 10 150 ] 200 400 600 800
/A,

1/3
Fig.7. The deviation of aTS from its behaviuor in

a radiation dominated universe is shown as function of T.

deviates from that of a simple radiation-dominated universe as T
approaches lOOAL and that the temperature then temporarily
stabilizes at a value of roughly 8OAL (AL= 2.0x0.6 MeV). During
the confinement period, quarks and gluons are transformed into
leptons and photons as can be seen in Figure 8 which shows the
fraction of the total entropy per comoving volume which is carried
by the 1leptons and photons. The binding energy of quarks .and
gluons 1is released as confinement proceeds and this prevents
further cooling of the universe despite its continued expansion.
Bonometto and Sakellariadou (1984) wused the same data to
derive expressions for a(t) and T(t) during the confinement. They
found that the plateau of temperature would probably last for -~

lO‘Ss which is comparable with the Hubble time t= H_1 = (a/a) at
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the beginning of the confinement. However, no significant change

was found in the behaviour of a(t).

1 L 1 1 L

80 0 100 150 200400 600 800
T/4,

Fig.8. The fraction of the total entropy which is carried by
leptons and photons is plotted. The sharp increase corrasponds

to the onset of the confinement.

If the transition is not continuous and the system, instead,
undergoes a first order phase transition for which the energy
density has a true discontinuity at a ecritical temperature Tc’
then the situation becomes more. complicated. In the case in which
the transition takes place without supercooling and it is possible
to neglect density fluctuations related to nucleation of the new
phase, the analysis of a first order phase transition can be made
assuming that the system remains in equilibrium at the critical
temperature TC and pressure pc=p(TC). For an 1isothermal and
isobaric transition, equation (2.32) is still satisfied and the
Einstein equations can be integrated analytically (Bonometto and
Matarrese (1983), Lodenquai and Dixit (1983)). Under these
assumptions the length of the transition appears very short
(~10_7s) compared with the length of the temperature plateau.

This comparison suggests that the effect of confinement forces is
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already significant for some time before the actual phase
transition starts. It is clear that it is not only important to
know the order of the transition but also to know the detailed
behaviour of strongly interacting matter at temperatures near TC.
At present, lattice QCD data are not very accurate and so, for
hydrodynamical calculations, it seems best to wuse simpler
phenomenological models which aim to reproduce the most important
features of strong interactions. These allow one to make some
predictions about the effects of the transition both in the early

universe and in laboratory heavy ion collisions (Van Hove (1986)).

2.4 Phenomenological models for strongly interacting matter near
the confinement transition.

2.4.1 Quark phase: the MIT bag model.

The main properties of QCD are (i) asymptotic freedom: at
short distances the «coupling constant goes to zero, (ii)
confinement of quarks within hadrons for energy densities lower
than ~500 MeV fm-3 (the energy density of nuclear matter is -~150
MeV fm-3). These properties are included in the "bag" model
(Chodos et al. (1974)) by considering quarks confined inside a
"bag" within which the strong interaction is either neglected or
treated by perturbation theory. This corresponds to assuming that
the vacuum inside the bag is different from the "true" vacuum
outside, with the "perturbative wvacuum" inside the bag being
characterized by a finite energy density B. This corresponds to
adding a term 1n Zvac = BV/T to the partition function given by
perturbation theory. A mnegative contribution (-B) then appears in

the expressions (2.16) and (2.17) for the pressure and a positive
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X/Xsb

contribution (+B) must be included in the energy density

expression (2.19). Figure 9 shows the behaviour of p and e for
three different values of B proposed in the literature. Nf has
been chosen equal to two and AQCD set equal to 100 MeV. We can

see that the temperature at which p=0, increases with increasing
values of B, as one expects, since B essentially determines the
temperature at which non-perturbative effects become important.
In the plot corresponding to BY/*~145 MeV the pressure reaches a
minimum and then starts to diverge as T is further reduced; this
behaviour is due to perturbative corrections of order higher than
o - The fact that the non-perturbative contribution (-B) is not
able to compensate for perturbative corrections suggests that the
value B'“=145MeV is too small to give a realistic description of
confinements effects. Actually, cufrent analysis of the hadronic

Y4 in the higher part of the

spectrum suggests values for B
proposed range, 1in agreement with the above considerations.

Hereafter we will use the value B1M=200 MeV.
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Figure 9 also shows the temperature

dependence of the sound
speed in the quark-gluon plasma according to equation (2.22). All

of the quantities have been plotted in units of their value in a

free relativistic gas of quarks and gluons.

In the limit p=0 and as=0 we obtain the bag equation of state
for high temperature and zero baryon number in its simplest form

(i.e. free quarks inside the bag):

37 2.4
pq——%ﬂ'T-B

o
i

(2.36)
I+ 4B - 37 2.4
q q

30 x T + B

(2.37)

2.4.2 Hadron phase: finite volume models

Just

below the critical temperature,

pions are the only
hadronic species present in large numbers since they are the only

species whose mass is likely to be lower than TC (mﬂ=137 MeV) .

In
a first approximation, the hadronic phase can then be described as
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an ideal gas of relativistic pions with the equation of state

being given by:

ﬂz 4
PL = 30 T (2.38)
2
T 4
eh— 3ph=1*61‘ (239)

The critical temperature Tc of the phase transition is the
temperature for which the pressure of the two phases is the same
(i.e. ph(TC)=pq(TC)). By wusing equation (2.%?) for the
quark-gluon plasma and (2.38) for the hadron phase one obtains TC=

lM=2OO). Including perturbative corrections (see

144 MeV (Nf=2, B
equation (2.22)) increases the value of TC to 148 MeV.

However, describing the hadron phase as an ideal gas of pions
is obviously not completely correct. Pions are not point-like
particles and if we compare their size (~1/mﬂ) with their mean
separation dﬂ we can see that these are already comparable at T ~
m (dﬂ= 1.7 T_l). Moreover, pions are not the only hadrons

present and although the number density of higher mass hadrons is

m/T

depleted by a Boltzman factor e the spectrum of hadronic
resonances 1is such that a divergent behaviour arises in the
thermodynamical quantities at a critical temperature TH if we sum
the contributions from the whole spectruﬁx (Hagedorn (1965)).
However, if finite volume corrections are also taken into account
the divergences do not arise and the total energy density is
limited by the total volume available. Finite volume corrections
were considered by Karsch and Satz (1980) in the case of a system
consisting only of pions and Bonometto (1983) included the
contribution of protons and neutrons for the case where p is not

sero. A wider hadronic spectrum, including a continuous part as

in the Hagedorn model was analysed by Kapusta and Olive (1982) and
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Kapusta (1982).

Here we will discuss the thermodynamics of a system of
extended hadrons in its most general form without making any
assumption about the nature of the hadronic spectrum. The method
followed is similar to the one presented by Hagedorn (1983) (see
also Hagedorn (1985)) except that there a pressure ensemble was
considered by using, as a thermodynamical potential, the function

I=I(T,px,p) obtained from (2.7) by the Legendre transformation
H(T’/J':P) = Q(T“LL,V) - Pv (2.40)

With this choice, he found a singularity in the energy density
which he then interpreted as a sign of a phase transition to a
quark-gluon plasma. The analysis is made by keeping the pressure
constant while the total volume of the system is allowed to vary.
As these conditions are not suitable for cosmological applications
in which the total volume of a comoving region is given and the
pressure varies, we have calculated the thermodynamical quantities
by considering Q(T,un,V) as the thermodynamical potential. In our
case the appearence of divergences is prevented by fixing the
total volume.

The finite extension of the hadrons is treated as in the Van
der Waals analysis and their strong interactions are simulated by
using the hadronic mass spectrum r(mz,b), where r(m2,b)dm2 is the
number of different types of hadrons with baryon number b and
squared mass between mzand m2+dm2. In the expression for r(mz,b)
all allowed bound states and resonances are considered, and so the
interacting hadron gas formally reduces to a mixture of infinitely
many ideal gases.

The grand partition function for a system having variable

total baryon number, volume V and temperature T is
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Q
z2(u,v.T) = 3, PP (0, v,m) (2.41)

- a0
where u is the chemical potential conjugate to the baryon number
and Qb is the partition function for a system with total baryon

number b:
4 i P
Qb(V,T) = d P exp ﬂiP a(P,b,V) (2.42)

where o(P,b,V) is the density of states for a system enclosed in a
volume V and having four-momentum P and total baryon number b
(Hagedorn and Rafelski (1981)). ﬂi is .the reciprocal of the
temperature four-vector and it is defined by the condition that in

the rest frame of the system ﬁiPl=E/T (Touscheck (1968)) and the

density of the states o(P,V,T) is given by

Nmax 1 4 N N
CAREDE AR ERPIEACE AP
{b }
[#4
i
N |2A.P
i« 2 4
Ii1——=s 7(p,.b,) 4P, (2.43)
(2x)

The maximum number of particles Nmax is determined either by the
finite mass of the particles compared with the total four-momentum
P or by their finite volume compared with the available volume V.
As the number of particles is not fixed, o¢(P,V,T) corresponds to
the ensemble formed by systems with different numbers of
particles N, but with the same total momentum P and same total
baryon number b (the two last conditions are guaranteed by the two
§-functions present in equation (2.43)). The factor 1/N! must be
introduced because the integration with respect to the coordinates
of each particle 1is made separately, with the integration
extending over the whole volume V, and so the result must be

divided by N! which is the number of possible permutations of the
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N clusters. The summation ), 1is made over all possible
{b )
a

combinations of N particles each carrying a baryon number ba' The

result of the integration with respect to the coordinates 1is
i 1o i
expressed by the term A=V -Zava which is the covariant

1
N

generalization of the non-relativistic available volume A=v-2ava
1

(Va is the volume of the particle labelled by o). According to
the Van der Waals treatment, the density of states of extended
particles in the volume V is jdentical to that of point particles
in the available volume A. For hard core particles, a factor 4

=2d-1), d being the dimension

must be introduced in front of ZVa (
of the space).

We can introduce into the integral (44) the identity
2 2 2 2 2
r(p2.b ) = | 8 (pL - m) T(m,b) #(p)) dm, (2.44)

where § is the unit step function. Then in the rest frame of the

system we have

i
ZAipa
3

(2r)

SO(p

R~

2 2 . o 2 4
- ' ] { dm
ma) (ma’ba) 6\pa) o d |

B ; r(mt.b ) dm® dop (2.45)

where we have performed the integration with respect to the time
component of the four momentum. The grand partition function

(2.41) then becomes

=

—ﬁiPl max

N © N
4 1 4 Bub
7 = e e - b-
dp ZN N! 5§ (P 1apa) b ¢ Z Sk( %aba)
o {b }
@
N A
1I r(mz,b ) dm2 d3p (2.46)
la 3 a’ T« [oY a
(27)

Making the integration in P and the sum over (ba} we obtain first
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and then
Nma_x 1 N 0 2 ﬁ#b 2
z =73 | 2,4, rmb) ém T) e dm
o N!(2nx) o
(2.48)
with
-pe 2 2.1/2
$(m,T) = J e op - Aﬂjpze mp) /T g
2 \
= 4T K, (m/T) (2.49)

where Kz(m/T) is a modified Bessel function. In the limit m/T » 1
we have ¢(m,T)=(2mT)>/ 2 ™T.

The available volume A can be taken out of the integral in
equation (2.48) if the volume of a cluster does not depend on the
mass. Assuming that all of the particles have the same volume Vo’
then NmaX=V/4VO for hard core particles and Nmax=v/vo for
deformable particles. This assumption seems a good approximation
for temperatures below 200 MeV where high mass clusters (m > 1GeV)
are strongly depleted by the factor e-m/T contained in ¢(m,T).

If we assume that all particles have the same volume and hard

core repulsive interactions, the expression for Z(u,V,T) becomes

VI, (V—&NVO)N © ) pub N
Z=% 5 | Ly | @) 4(mT) e dnm (2.50)
0 N!(2xn) -~
Let
C = VN with V=2 (2.51)
o o 3 T )
and
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Avo s 2 Bub 2
X{(p,T) = . ). b r(m”,b) ¢(m,T) e dm (2.52)
(2m)" -

Then the grand partition function is

a-nof
N N!

I
™M a

Z(p,V,T) (CX)N

I
™M a

> GN(X,C) (2.53)

Let Gﬁ be the largest term of the sum, then
Gﬁ (X,6) = Z(p,V,T) = C Gﬁ (X,C) (2.54)

If we take logarithms and divide each term by C, then in the

thermodynamic limit (C-«) we have

. 1 . 1
lim < InZ = 1lim < Gﬁ (X,0) (2.55)

C— C—

Using the Stirling approximation le(ZwN)l/z(N/C)N, G

N may be
written as
-1/2

G (X,C) = (2nl) exp {N+1nX-1n(N/C)+1ln(1-N/C) (2.56)
and the condition for the maximum is

ln X = In[N/(C-N)] + N/(C-N) (2.57)
which is equivalent to

X = b(X) exp(b(X)) with b(X)=N/(C-N) (2.58)
Then

L 6-(x,0) = bx) + £ 1n (2.59)

c NS T c J2xN :

and in the thermodynamic limit we have
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lim —%— InZ = b(X) (2.60)

c—e
It is now possible to calculate all of the thermodynamical
quantities using the relations presented in Section 2.1. In the

thermodynamic limit, the pressure is given by

; T T 1
p(p,T) = ].lm(’—v'an} = Zv“{ Ean}
V—+0 o
T
- b(X) (2.61)
)
The energy density e is given by equation (2.3). Ve calculate
first the term (41nZ/3T):
31nZ 2, d1lnZ 38X
ar - T 3% E
4y
2 C -b(X) o
- - (T momT e —=
[1+b(X) ] (2n)3
2 2 pub.
) b r(m”,b) [pb é(m,T) - G(m,T)]e dm (2.62)
with
-Be(m) 4
§(m,T) = | e(m) e d'p
4 m 2 m 3 -
= 4T [3{—T—} Kz(m/T)+{—T—] Kl(m/T)] (2.63)
Then we computé (81lnZ/dp)
dlnZ _ d1nZ 48X
dp X dp
AV
1 ¢ -b(X) 0 2 2
=T T ®] e — Y LHb|7(m ,b) ¢(m,T) dm” (2.64)
(2r)" =

From equation (2.3) and expressions (2.62) and (2.64) we obtain
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L 2 2 Pub
e = 3 5 ). b |7(@7,b) #(m,T) e dm (2.65)
(21)” [14b(X) Je -

Finally from relation (2.4) and equation (2.64) we compute the

baryon number density n:

! ° 2 Aub -,
n = 3 5% Y p B|7(m",b) $(m,T) e dm (2.66)
(27) " [1+b(X) ]e -

These expressions for the pressure, energy density and baryon
number density have been obtained without making any assumptions
about the hadronic spectrum. If only pions are considered,

r(m2,b) reduces to
r(mz,b) = g7r S(m—mﬂ) ék(b,O) (2.67)

where gﬂ(=3) is the degeneracy factor of the pions. Then

4v
X = (2wj3 g $(n_,T) with ¢(m ,T)=4rm’TK,(m /T)  (2.68)
T
p.= 7y P (2.69)
O
and
AKTA [ m 2 m 3
e = 3{ ] K, (m /T)+(—-] K. (m /T)] (2.70)
T (2ﬂ)3[l+b(X)]eb(X) T - 2V T 1%

These expressions were originally found by Karsch and Satz (1980).

A general expression for the mass spectrum can be obtained
from the "bootstrap" equation (Hagedorn (1965), Frautschi (1971))
In this approach some elementary hadronic particles are given as
inputs, and tﬁen one considers all of the possible resonances and
bound states which can be formed with these and their products.
The mass spectrum obtained consist of a discrete part and a

continuous part. Following Kapusta and Olive (1982) the
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expression for 7(m,b) is

k
5/2 -7/2
r{m,b) = § - Sb,b(a) 5(m-ma) + c 0(m~m0) TH/ m /

7W2T b2
H

m
exp TH © T30m (2.71)

By = (21a+l) (ZJa+1) (2.72)

where Ia and Ja is the isospin the angular momentum of the
particle labelled with e, TH is the Hagedorn temperature and m is
the mass at which the continuous spectrum is assumed to start.
The coefficient ¢ is determined experimentally and values obtained

for it range between 4 and 40.
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CHAPTER TIII

RELATIVISTIC BUBBLE EXPANSION

In many astrophysical situations we are faced with the
necessity of calculating the dynamics of spherical shells. First
order phase transitons (Guth and Weinberg (1981)), void expansion
(Maeda and Sato (1983)) and cosmological detonation waves
(Bertschinger (1985)) are all examples of this.

A lot of work has been done on the nucleation and growth of
"true" vacuum bubbles in a metastable "false" vacuum (Voloshin et
al. (1975), Coleman (1977), Linde (1977), etc.). Coleman found
that at zero temperature the expansion velocity of "true" vacuum
bubbles soon approaches the light velocity since all of the energy
released in the transition goes into accelerating the bubble wall.
However, when gravitatonal effects are taken into account, bubble
dynamics may change considerably (Coleman and De Luccia (1980)).
Steinhardt (1982) showed that high temperature corrections'also
make Coleman’s result inapplicable and that the bubble wall
behaves more like a relativistic detonation wave. His analysis
was made for a planar surface, neglecting surface tension.
Surface effects were introduced by Berezin et al. (1983a) by using
Israel’s method for singular hypersurfaces (Israel (1966)). This
method has been applied by several authors for studying the
expansion of a single bubble either in a Minkowski background
(Berezin et al. (1983b), Lake (1984)), in a De Sitter space-time

(Maeda (1986)) or in a FRW universe (Laguna-Castillo and Matzner
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(1986)). Many of these studies are concerned with the
inflationary scenario; however, one should be aware that the
Israel’s formalism can be applied to bubble growth during
inflation omly when when the “thin wall" approximation is wvalid
(in other words, when the quantum tunelling is direcly between the
false and the true vacuum states - see also Blau et al. (1987)).
In all of the previous literature in which bubble evolution 1is
described by time-like hypersurfaces, the metrics for the
space-time of regions inside and outside the bubble are given a
priori and then the interface dynamics is determined consistently
with this choice. Recently Sato (1986) has also analysed the
kinds of junction between Minkowski, Schwarzscild and DeSitter
space-times which are allowed on the basis of a positive energy
condition for the shell.

However, the kind of procedure used in the above work is not
completely correct because the Einstein equations are coupled with
the interface <conditions and they ought to be solved
self-consistentely. The aim in this chapter 1is to present the
complete set of hydrodynamical and interface equations valid for a
spherically symmetric system in which a phase transition,
combustion or void expansion is occuring.

We review, first of all, the relativistic hydrodynamical
equations for a spherically symmetric syste;n and then we present a
derivation of the characteristic form of the hydrodynamical
equations. After this, junction conditions at the interface are
discussed. The Gauss-Codazzi method 1is wused for deriving
energy-momentum conservation equations at the bubble wall and
these are then compared with the relativistic Rankine-Hugoniot

junction conditions for a shock. Finally, thermal nucleation
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theory is reviewed.

3.1 Coordinate frames and metric components.

The most general metric exhibiting spherical symmetry is:

dsz= -az(dxo)2 - Zaﬂdxodxl + 72(dxl)2 + R2d02 (3.1)

with d02= dﬁz + sin62d¢2

where a, B, v and R are functions of xo and xl only. It is always
. - . . -0 -.-0 0 1
possible to define a new time coordinate x , by adx = adx -Bdx",
such that the metric becomes orthogonal.
We use a Lagragian (comoving) coordinate system in which the
spatial coordinates are kept constant along the world line of each
fluid element. Let t and p be the time and radial coordinates

respectively, then the metric is

: 2
as? = -aZac? + p%ap? + r%an® (3.2)

The metric component R(t,p) 1is often referred to as the
"Schwarzschild circumference coordinate” since the  proper
circumference at time t of a sphere characterized by the radial
coordinate p is

J ds = f g;/?zdﬁ = 27R(p,t) (3.3)

In the newtonian and special relativistic limits, R represents the
Eulerian radial coordinate at time t of a shell of fluid labelled
by the comoving coordinate u.

The four velocity of the fluid in our Lagrangian frame is
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o= at1.0,0,0 (3.4)

where the normalization factor is determined by the condition
uu,= -1 (3.5)

In order to see how disturbances propagate in the fluid, it
is convenient to introduce also a suitable analogue of the
classical Eulerian coordinate frame. The geometrical
interpretation of R suggests choosing it as the radial coordinate
for the new frame which is referred to as theSchwarzschild frame.

The metric is

as?= -a%ar? + BZaR? + rR%an’ (3.6)

where A and B are functioms of R and T only. The radial component
of the fluid four-velocity 1is denoted by u and from the

normalization condition (3.5) we have:

G atassZe® 2w, 0, 0) (3.7)

The transformation rules for the metric components give the

following relations between the two coordinate frames:

1 th T”2
— = — 4 = (3.8)
A2 a2 b2
1 th R#2
—_— = =+ = (3.9)
B2 a2 b2
T R T R
_tt ey _ 0 (3.10)
2 2
a b

where the subscripts indicate conventional partial derivative,
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while for the four-velocity components we have

t
w- (3.11)

2 241/2 T
(1B "7 —g (3.12)

R
r=-£ (3.13)
b

and then, using equations (3.11) and (3.13), we can rewrite

equation (3.9) as

1
— = r2. o (3.14)
B

From relations (3.8) and (3.10) we get

= and = — (3.15)

3.2 Hydrodynamical equations for a perfect fluid medium with

spherical symmetry.

In the absence of dissipation and conduction, the

stress-energy tensor of a fluid has the form:

3~ (e 4 py Wt 4 pgtd (3.16)

Where the source of gravitational field is the fluid itself, the

metric is determined by the Einstein equations

R.. -
1]

N[+
4]

..R=-8rG T, . (3.17)
1] 1]

Rlijl is the Ricci tensor defined in terms of the

where R._ .,
i
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Riemann curvature tensor lekl and R = glJRij is the scalar
curvature.
For the spherically symmetric metric (3.3), the Einstein

equations reduce to

) 1 R Ri R R
4nGeR'R =5 | R+ —5= - “”EE (3.18)
® a b
m
) 1 RR. RR
4rGPRR_ = - 5 | R+ —5= - —5~ (3.19)
a b
t
3 R Ri R R R? |(a b,
4nG(e+p)R™ = |R + p— . (3.20)
2 2 b a
a b ab 7 t
a bt
+# R +—R -R_=0 (3.21)

a t b " ut

The local conservation laws for energy and momentum are

expressed by:
™ -0 (3.22)

where the semicolon denotes covariant derivatives associated with
the metric gij'

The comoving coordinates are not yet uniquely determined and
we still need to fix the scalé of the radial and time coordinates.
The comoving radial coordinate p can be fixed by identifying it
with the proper volume Vo of the sphere contained within the shell
labelled by p at an initial time s when the medium is uniform.
This is

1
V0 = | 4=« boRi du (3.23)

0

For a thin shell
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2
AVO = 47 boRo Ap (3.24)

At the initial time we set

Ap = AVO (3.25)
then
b, = L ; (3.26)
AWRO

As the system evolves, material is compressed or rarefied and then

the proper volume of a shell of fluid becomes
2
AV = 4nbR™ Ap (3.27)

If we introduce the compression factor p defined as

AVO
=<5 (3.28)
then from equations (3.25) and (3.27) it follows that
b= —1 (3.29)
4 pR

Equations (3.18)-(3.21) and (3.29) are not sufficient for
completely determining the system. We need one more equation and
this is the equation of state of the fluid. 1In chapter II we have
discussed the equations of state that can be used for describing
the quark and hadron phases. In particular, equations
(2.36)-(2.39) describe the two phases for zero net baryon number
density.

We can rewrite equations (3.18)-(3.21) in a form analogous to
the classical one. In order to do this we follow the procedure
described by May and White (1967) and Misner (1968). Our set of
equations differs slightly from theirs because we use the total
energy density as a fluid variable instead of the specific

internal energy.
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First, we write explicitly the energy-momentum conservation

law (3.22)
TOJ;j -0 et (b/b + 2R /R) (e+p) = 0 (3.30)
i _ -
0.y =0 a/a+p,/(etp) =0 (3.31)

e =wp (3.32)

where w = (etp)/p is the specific enthalpy of the fluid. From

equations (3.21), (3.24) and relation (3.11l) we have

(). s,
- - (3.33)

R R
£ [

and the constraint (3.31) can be written as

(=), (o,w,)

(3.34)
aw oW

using the first law of thermodynamics.
From equations (3.18) and (3.19) we see that it is convenient

to define a mass function m such that

B
1

hﬂeRzR” | (3.35)

m =-mmﬁit (3.36)

We can integrate equation (3.18) and by using relations (3.11),

(3.13) and (3.32) we obtain the constraint equation:
%= 1+u’-2Gm/R (3.37)

with
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L

m(p,t) = AweRzRu dp {3.38)
0

In the newtonian limit, I'=1, while in the special relativistic
. . 2.1/2
case it reduces to the Lorentz contraction factor I'=(1l+u”) .
Since equation (3.37) includes the relativistic corrections due to
both kinetic energy and gravitational potential energy, we can
consider I' as the general relativistic analogue of the Lorentz
contraction factor. Finally after some manipulations -in which

we use equations (3.11), (3.13), (3.21), (3.22) and (3.37),

equation (3.19) is written as

2

I'p Gm
= -a[—~——‘£—+—-—+4ﬂch] (3.39)
b{e+p) R

Equations (3.11), (3.13), (3.29), (3.32)-(3.37) and (3.39)
together with the equations of state comprise the set of partial
differential equations which describes the evolution of our system
once initial and bogndary conditions have been specified. The
initial and outer boundary conditions will be discussed in detail
in Chapter V where we present the numerical integration scheme for
the hydrodynamical equations while the junction conditions at the
phase 1interface are presented in Section 3.4. The boundary
conditions at the centre p=0 are u=0, R=0 and m=0. At the origin
we also put I'=1, which is the requirement of local flatness; we
have already imposed this in the integration of equation (3.18).
The special relativistic form of these equations can be
obtained by setting G=0 and the plane symmetric form is then
obtained by letting Ap/(&ﬂRz) - Ay, pR2 -+ p, mneglecting the

equation in m and putting b=1/p.
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3.3 The characteristic form of the hydrodynamical equations.

3.3.1 General formalism.

When we deal with a quasi-linear hyperbolic system of partial
differential equations it is often more convenient to rewrite them
in a "characteristic form". In other words, we look for a linear
combination of the evolution equations such that the new system
can be written as a set of ordinary differential equations along
particular directions in the independent variable space, called
characteristic directions.

Let us review briefly the method for obtaining characteristic
equations (see Jeffrey 1980). A general quasi-linear system of
hyperbolic equations with two independent variables may be written

in a compact form as
— + A I +C =0 (3.40)

where Z is a column vector of n dependent variables, 4 = A(Z,x,t)
is an n X n matrix and C=C(Z,x,t) 1is a column vector not
containing derivatives.

Let li be the left eigenvectors of A given by
liA = X,1, (3.41)
where Ai are the n eigenvalues of A. The characteristic equations

corresponding to system (3.40) are then

Y/ EY/
Lo+ Al50+1,6=0 (3.42)

which gives
1.dZ +1.¢dt =20 (3.43)
i i

along
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dx/dt = Ai (3.44)

Equation (3.44) identifies the characteristic direction along
which the corresponding equation (3.43) holds.

The characteristic form of the hydrodynamical equations has
been used for numerical calculations in newtonian theory (e.g.
Hoskin (1965), Henshaw (1987)) and in special relativity (McKee
and Colgate (1973)), mainly in connection with the exact treatment
of shock discontinuities. In general relativity, Bicknell and
Henriksen (1979) have used characteristic methods for studying

adiabatic gravitational collapse
3.3.2 Characteristic equations for relativistic hydrodynamics.

In order to write in characteristic form the set of
hydrodynamical equations presented in Section 3.2, it s
convenient, for the moment, to limit our considerations to
equations (3.32), (3.33) and (3.39). The subsequent extension to
the whole system is straightforward.

Let us first rewrite equation (3.33) in an alternative form

using relations (3.11) and {(3.13):
2.2
Pe + |4xp R7a/T u'u + 2aup/R = 0 (3.45)
We then substitute it into equation (3.32) to get
2 2.2
pt+ we 4rp R a/T u# + 2aup/R| = 0 (3.46)

L 1/2
where we have introduced the local sound speed c, = (8p/ae)/,
with the partial derivative being evaluated at constant specific

entropy. The compact form (3.40) then corresponds in our case to
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u a(e+p)c§ b(etp)
Z=1rp A= S 0 0
p
ap
BT 0 0
[e4
2
c = ﬁpcS (3.47)
Bp
where
a = aG [ m/R2+ QWPR} and B = 2au/R (3.48)

The eigenvalue equation for the matrix A is

2 37 %t -0 (3.49)
which gives the eigenvalues

A, =0 ’ (3.50)

A, = hﬂpchSa (3.51)

[

The corresponding eigenvectors (defined up to a multiplicative

constant) are

1
lO = ( 0, - 5 1 (3.52)
wC
S
r
1, - | s, £ o0 (3.53)
x pWC

For i=0, which corresponds to the directions of fluid streamlines,

we obtain from (3.42) and (3.44)

dp = wczdp along du =0 (3.54)
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The curve given by dp=0 is called the advective characteristic.

For i=*, we obtain after some manipulations

r
pwc

[uti hwachaup) + ( pti Awazcsapp) + ZachS/R
+ aG (m/R2+ 47pR) = 0O (3.55)

which gives

du

I+

e dp + [i 2achs/R + aG(m/R2+ AﬂpR)] dt =0 (3.56)
s

along

dp

I

+ QWpchsa dt (3.57)

The two curves defined by equations (3.57) are called the forward
and backward characteristics, respectively. These are the world
lines of disturbances moving with the local sound speed relative

to the fluid. 1In fact, we can rewrite equations (3.57) as

dp

5 -+ c (3.58)
4rpR7a dt

where the left-hand side is the ratio between the proper distance
(bdp=l/(4wa2)) and the proper time (adt) as measured by an
observer comoving with the fluid. Equations (3.56) are referred
to as the forward and backward characteristic equations.

Equations (3.54) and (3.56) do not form a complete the set as
we still need the characteristic equations for R, m and a. It can
immediately be seen that R and m can also be calculated along the
advective characteristic as equations (3.11) and (3.36) involve
only time derivatives. The corresponding characteristic equations

are
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&

au dt (3.59)

dm — -4rpR2dt (3.60)

The expression (3.34) for a, however, 1is a constraint
equation on each time slice t. In terms of characteristics, it

has to be integrated along dt=0.

3.4 Junction conditions.

In this section we discuss the formulation of suitable
relativistic junction conditions at surfaces of discontinuity. We
are concerned with discontinuity surfaces whenever a system
éignificantly changes its properties over a distance negligible
compared with the characteristic dimensions of the problem. The
time evolution of fhe discontinuity 1is described in the
four-dimensional space-time V by a time-like three-dimensional
hypersurface ¥ which divides V in two regions V' and V.

We <can distinguish between two types of discontinuity
surface. The first are surface layers, which are namely surfaces
representing the transition region between two different types of
medium (for example, two different phases). These are
characterized by a §-discontinuity in the density. The second
type includes all boundary surfaces, shock waves and contact
discontinuities, characterized by a finite jump in the density.
The relativistic junction conditions for the latter type of
surface have been discussed in detail by Lichnerowicz (1955) and
many others authors but the form which they used can be applied

only in particular coordinate systems, called admissible
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coordinates (Synge 1960). A general method for treating both
kinds of discontinuity has been presented by Israel (1966) and we
follow his formalism for imposing conservation of energy and

momentum across the interface.
3.4.1 Metric junction conditions.

Before going into the details of Israel’'s method we want to
discuss the junction conditions for the metric. Because of our
particular choice of coordinates, some of the metric components
are not continuous at the interface. The junction conditions can
easily be found by observing that the space-time interval between

two events on the hypersurface ¥ is an invariant quantity so that

-a2ac? + Py’ + R2an” = -a’ae” + P’ + RPa0’ (3.61)

where the subscripts * refer to quantities defined on the two
+
sides of 3 bordering V  respectively. We define two types of
+
bracket, {A}I and [A] such that for every variable defined in the

two submanifolds we have
+ +
{ A } NS [ A ] NN (3.62)

R must be continuous across Z as 4nR2 gives the proper area of the
shell at a fixed time t. Therefore equation (3.61) may be divided

into
[ R ]i -0 (3.63)

and

+
{a2~b2ﬁ§] -0 (3.64)
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where By is the value of p at the interface and ﬁs= dps/dt.
From the continuity of R at all times it follows that
(dRs/dt) is also continuous across the interface. This provides

another junction condition equation

+

[ au + bpsr ] =0 (3.65)
Analogously we can find the junction conditions for the
Schwarzschild frame which are again equation (3.63) and

2 2 .917F
it

=0 (3.66)
where
drR R+ R
S t "'s u

S =37 - o (3.67)
t “s Ji3

Using equations (3.11), (3.13) and (3.15) we obtain

au+bﬂ r
s = A/ r%u® —=- (3.68)
aP+ubuS

From equations (3.14) and (3.37) it can be seen that in the case

of a boundary surface, for which there is no contribution to the
~ - . . - - + -

mass function m from the discontinuity surface (i.e. m =m ),

equaﬁion (3.66) reduces to
[a]%0 [8]% o0 (3.69)

However, equations (3.69) do not hold if ¥ represents a surface

layer.
3.4.2 Enerngmomentum conservation conditions.
We now introduce the Gauss-Codazzi method (Israel (1966),
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Maeda (1986), etc.) which we wuse to compute the junction
conditions for the fluid flow. Our presentation closely follows
that of Maeda. The hypersurface Z is completely described in

terms of its intrinsic metric

h,.= g..-n.n, (3.70)

and the extrinsic curvature Kij defined as

1 .m

=h ih 3 n(l;m) (3.65)

K..

1]

where n, is the unit space-like vector orthogonal to X and n(l_m)=

nl‘m+nm'l' Whereas the intrinsic properties of the hypersurface

are described by hi:, the extrinsic curvature tells us the way in
J

which it "bends" in the four-dimensional space-time.

From the Gauss-Codazzi equations, we have

(3) - .-
R + K, K9 - k% = -26, n'n] (3.72)
1] 1]
kI, - K, =G hio" (3.73)
iy i T s '
where K=g13K.., G..=R..- 1 g..R is the Einstein tensor in the four
ij ij iy 2 Pij

(3)
dimensional space-time, R is the scalar curvature of the three

geometry }Hj and || denotes the intrinsic covariant derivatives
associated with hij'

+ - .. .
Let Kij and Kij be the extrinsic curvature of X associated

with its embedding in Viand v respectively. If ki, = k.1, =

ij ij

. . . . +
represents the time history of a surface layer, while, if Ki‘=
Kii' it refers to a boundary surface. 1In our problem we may be
concerned with both kinds of hypersurface since the confinement

region can be described as a surface layer and shocks may form

during the bubble growth.
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We introduce now the two quantities Kij and Sij defined as

[K..] - -8xG (s lh._s] (3.74)
ij ij 27ij
+
{K..}=21‘i_. (3.75)
1] 1]
where S=g1JSij. The symmetric tensor Sij defined in equation
(3.74) is called surface energy-momentum tensor. In fact, it is

possible to show that
¢ I, m
= lim T, h. h, dx (3.76)

where x is a Gaussian coordinate in the ni direction and x=0 on Z.

From equations (3.17) and (3.72)-(3.73) one obtains

+

2 . +
} - 87G {TlJn.n.} (3.77)
ij

rojwn

R + K. g . 22= -161r2G2[SijSij-

g. st _ [Tijn.n.:‘ (3.78)
ij 1]
+
~i ~ 1m l_
K.y, - Ky. =4nG4{ T h, 3.79
il " s T { "1m | 3.79)
. 1 t
] _ m

In highly symmetric systems, equations (3.78) and (3.80) are

sufficient to completely describe the evolution of the surface

+
layer once they have been coupled to the Einstein equations in V.

Equations (3.77) and (3.79) need to be solved only if it one wants

to know the form of the fictitious background space V in which T

is a regular surface with extrinsic curvature K, ..

1]

We will restrict our attention to matter which behaves as a
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perfect fluid so that Sij and Tij take the form:

+ + * + + + + 3.81)
ij = e+ p uiuj +p gij (3.
S.. = (a + a] v.v, + ah_ . (3.82)
ij 1]

where ¢ and a are the surface energy density and the (negative)

. . - . . +

two-dimensional surface pressure(-a is the surface tension); p ,

+ .+ - locity in V&

e~ and u~ are the pressure, energy density and four-velocity in V—
i. . . . .

and v is a unit time-like vector tangent to . In a spherical or

planar system there are two space-like Killing vectors ezA)

. i
(A=2,3) and these together with v~ and n; form an orthonormal

tetrad system on Z. Projecting equation (3.80) along each of the

tetrad directions gives

[[oveffe - g = [ [ore) (7o) () ] 653

A
(a-i-a] vie(A)vJ“i= 0 (3.85)

where all of the fluid quantities are calculated at the

hypersurface. From the symmetry, it also follows that
Vlvui=0, (3.86)

so that the last two equations are trivial and we are left with
only equation (3.83) which represents the conservation of energy
across . From this point on, we will consider only spherical
symmetry.

Using condition (3.86) it can be shown that the acceleration

vector is given by
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(3.87)

where 7 is the proper time of an observer moving with the singular
surface. Then, using equations (3.70) and (3.71), it follows that

the left hand side of equation (3.78) can be written as

SIJK.. = [avlvJ + ael eJ(A)] K. . (3.88)
ij (a) ij
i+
I (U il IR TSN B (3.89)
2 | 7idr (a) 1j )

For a spherically symmetric orthogonal metric (such as (3.2))
et®ed k. = nl[ln R} . (3.90)
(a) 1j i

and so finally equation (3.78) reduces to

+ +

i . + .
{— % nig¥— + anl[ln R} i} = { (p+e} {ulni}+p } (3.91)

Equations (3.83) and (3.91) govern the motion of a surface layer
in a spherically symmetric system. However, in order to use them,
we first rewrite them explicitly in terms of our chosen metric
(3.2). First of all we calculate the expressions for the tangent

and normal vectors to Z. The hypersurface equation is
F=pu - ps(t) =0 (3.92)

and the unit normal is given by

n, =N% N (-4 1.0,0) (3.93)
1 aXl S

where N is a normalization constant calculated by the condition

ninl=l. It follows that

. dt a
N = by with v =ag=—"—73 1/2

(a -b"p )

(3.94)
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The tangent vector to the hypersurface is given by
. . .
vi=3 =3 (L.,.0,0) (3.95)
The intrinsic metric of ¥ is
2

ds% — -dar?+ R%(rydn (3.96)

and, using this,

I

[ (o+a) vi} 7%1- [ (o+a)/-h vi]

|1 i

I

e [(d+a)R2] (3.97)
R

where h = det <h*j) = stinﬁ. Using equations (3.93), (3.95) and
(3.97), the energy conservation equation (3.83) becomes

i o2 ar? 2. 2 7%
ad .
o RT) +a = [(e+p)R bu_y /a] (3.98)

Next, we consider the rewriting of equation (91). Using

relations (3.11), (3.13), (3.93), (3.95) and (3.96) we have

r‘2
R’i Py Rt 1 Ru
LR S Tt
L a | b™ R
( U r
=+9b | —/— + — (3.99)
L ak bR
i d2 2b d a b d 2
Dv b s £Y g |73 i # ap
i odr Ty * *lat T3
v dr ab dr dr ab
2.
b u f
_lpld s| 4 &
T a [ b dt [ c ] + b } (3.100)
i 12 1 2.2 2
{ e+p ] [ u n.] +p == [ eb"u” + pa } (3.101)
i f2 s
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9.9 ]1/2

where f= a/vy = [a2~b Py Because of the continuity of £

across T we can finally write equation (3.91) as

I+

bzp f
2-2 21 L2 c | 14d s i o« .
¢ K +pa | = £9- 2a{ b dt [ c ] + b }+ fR (ubps+ aFj
(3.102)

For a surface layer the mass function receives a nom-zero

increment at the interface. From equations (3.35) and (3.36) we
have:

d- .

dc mlz_mt+”smp

~ 4nR? ( be Te - apu ) (3.103)

+
Therefore [m]" satisfies the following differential equation

& [n]* = 4me® [ bpTe - apu 1* (3.104)

For a sufficiently small bubble, space-time may be considered as
. . +
locally flat and so one can use the newtonian expression E@] =
2 s as - .

47R"0 as an initial condition for equation (104).

For boundary surfaces, the surface energy momentum tensor is
. . + - - -
identically zero and Kij = Kij' Therefore we can immediately
compute the junction conditions across a shock front by setting o

+

= g =[m]" = 0. Equations (3.98) and (3.104) reduce to the well

known relativistic Rankine-Hugoniot relations (May and White

(1967):
+
{ aw ] =0 (3.105)
and
. +
[ bu e - apu 17 =0 (3.106)
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In deriving equation (3.105), the metric junction condition (3.64)

has been used.

3.5 Nucleation theory during first order phase transitioms.

3.5.1 Thermodynamics of the transition region.

It is usually convenient to describe the transition region as
a discontinuity although we know that the physical properties of
the system in fact change rapidly but continuously across a thin
region separating the two phases. The discontinuity may then be
characterized by excess functions which represent the variation of
quantities across the transition region away from their values in
the bulk phases. Figure 1(a) shows clearly that the calculation
of a surface excess function depends on the location of the
hypothetical dividing surface between the homogeneous bulk

"liquid", with density P and homogeneous bulk "vapour", with

t

density Py The two locations A and B yield different excess
values, the former being essentially the excess with respect to
the 1liquid, while the latter yields the excess with respect to the
vapour. Following the argument presented by Gibbs (1928), it is

convenient to choose the position of the separation surface so

that the superficial excess of matter vanishes, i.e.

4} o] .
J (p(z)-p )dz = J (p(2)-p ) dz (3.107)
-0 0

where p(z) is the real matter density across the transition region
and P and P, represent the constant matter density in the liquid
and vapour phases respectively (each of which is assumed to be

homogeneous away from the interface). The origin of the z-axis
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has been located at the interface (see Figure 1(b)).

Dividing surface

(a)

Vapour

Fig 1 (2) Density profile of the transition region from
the liquid to the vapour phase. A and B are two possible
choices of positioning the hypothetical transition surface.

(b) The Gibbs location of the dividing surface is chosen
such that there is zero surface excess density of matter, the

the dashed areas being equal (Croxton (1980)).

Consider for simplicity a plane surface of area A separating
the two homogeneous phases. The free energy of the system
F=f(T,V,A,NV,NL) is now a function also of A. Nv and NL denote
the number of particles in the vapour and 1liquid phases,
respectively. The infinitesimal change in F due to small changes
in temperature, volume, area and composition is given by

dF= - SdT- PdV + vd4 + ) ,u,idNi (3.108)

i=L,V
where the entropy S, pressure p, surface tension vy and chemical
potential By associated to the ith particle component, are given

by
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g - -|9E _ _|8F
B 3T }Jv,a,N ¥ P oV lt.aN N
viL V'L

aF aF
1T °[ 34 ]VJLN,N oo™ -( aN )vx,&u (3.109)
VL L(V) V(L)

Since F is a homogeneous function of first degree in V, A and the
composition, it may be written as
F=-PV++A+) pN (3.110)
i=Lv
Following the convention of Gibbs, we assume that there is no

Y p AN, ], associated with the
i ils

particle function excess,[i.e.
i=L,V

surface and therefore the surface part of the free energy is

F_ = 74 (3.111)

The new function of state of the system ¥y (surface tension)
completely describes the interface and represents the gain in the
free energy of the system (at constant temperature, volume and
composition) for unit increase of the interface area 4. If we
assume that the bulk properties of the two phases remain
unmodified by the increase of surface area, then the change in
free energy can be expressed in terms of the surface quantities

only:

dFs = -SSdT + ydA (3.112)
From equation (3.111) we also have

dFS = vydA + Ady (3.113)

and then combining equations (3.112) and (3.113) gives:

s_ = -4 (3.114)

The thermodynamical relation between the internal energy (U) and

the free energy of the surface gives
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F =U_ - TS (3.115)
and the surface energy per unit area (as) is then

- &y
o =7 -T 3 (3.116)

The surface excess entropy per unit area is a measure of the
disorder of the interface region relative to that of the bulk
liquid phase. If the bulk liquid properties extend unmodified up
to the discontinuity surface, then SS=0. From equation (3.115) we
see that a minimization of the free energy -favours a broadening of
the transition zone due to the SS term. The internal energy
contribution favours a sharpening of the transition region with
surface particles residing in the energetically most favourable
region of the attractive surface field of the bulk fluid. The
surface entropy term is likely to be negligible in a strongly
first order transition where atoms are more strictly bound to the
liquid bulk phase.

Surface tension acts as a tangential negative pressure at the
phase interface and so the equilibrium pressures in the two bulk
phases can no longer be equal in the presence of a curved
interface. TFor discussing the equilibrium state of a spherical
bubble it is convenient to introduce the thermodynamical potential

1 defined by

Q=F - pN = -PV+ 4 (3.117)
with

dQ = -SdT - PdV + ~vdA - ), py AN, (3.118)

i

The conditions of thermal and chemical equilibrium between
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the two phases are

#1(pHT) = py(py, T) = p(T) (3.119)

(where the subscript 1 refers to the interior phase and 2 refers
to the surrounding medium). The equilibrium radius of the bubble
corresponds to the minimum of O at a fixed total volume for the

two phases combined, keeping g and T constant. Since
= - - +
Q prl pZVZ YA (3.120)

the minimum of Q corresponds to

, -2 (3.121)

Figure 2 shows the behaviour of pressure as a function of
temperature for a first order quark-hadron. transition. . The
critical temperature Tc is the temperature at which the the two

phases have the same pressure and the dashed line refers to the

Fig. 2. The behaviour of the total pressure

as a function of temperature near to T .
c
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metastable supercooled quark phase. 1In order for a hadron bubble
to exist in equilibrium with the quark medium at a common
temperature it is necessary to have Py > pq and clearly this is

only possible at temperatures below Tc'
5.5.2 Thermal bubble nucleation.

According to thermal fluctuation theory (Landau and Lifshitz
(1980)) the probability f of a fluctuation producing a bubble
nucleus is proportional to exp(-R . /T) where R . 1is the minimum

min min
work needed to form the nucleus. This work is given by the
variation of Q at constant T and p. Before nucleus formation Q =
- Py (V1+V2) while after the nucleation process Q = - prl - p2V2

+ vA. Thus

R . =- (p; PV, + 74 (3.122)

For a spherical nucleus of critical radius (3.121) we have

16ﬂ73 )

£(T) « exp (3.123)

3o, py )
Bubbles formed smaller than the critical radius immediately shrink
and disappear while the probability of forming larger bubbles
decreases exponentially with increasing size. It is therefore
only bubbles formed at the critical size which are of interest.
For applying equation (3.123) to the quark-hadron transition
we first of all need an expression for the surface tension 7.

Following Witten (1984) we approximate vy by
3
v =T (3.124)

0 C

where TC is the critical temperature, which is related to the
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strong interaction length scale, and 7, is an adimensional factor

whose value has to be derived from the details of strong

interactions in the transition region. Because its value is at .
present uncertain, we plan to check its effect for a range of

cases. We also make the assumption that 7, is constant which

corresponds to assuming that the transition region is very thin

and that the surface energy density is equal to the surface

tension (see equations (3.115) and (3.116)).

By usingvequations of state (2.36) and (2.38) for the quark

and hadron phases respectively, equation (3.123) becomes:

4 wo
£(T) = fOTC exp W (3_}_45)
with
l6n73
W= 02 (3.126)
[(g,-g, ) /10]
and Q=T/TC. The factor in front of the exponential is again

related to the strong interaction length scale with f0 being an
adimensional factor which is probably of order unity.

After a bubbles has been nucleated its surface expands as
detonation or a deflagration front according to the degree of
supercooling at the nucleation epoch. DeGrand and Kajantie (1984)
made a highly simplified large scale analysis of the nucleation
process which implied that only bubbles nucleated at a particular
epoch are important for the overall dynamics of the transitién.
This analysis gives the following relation between WO and Tn
(nucleation temperature):

1/2
W/

0
Tn = [1 © IS } TC {3.127)

This last equation is used in the code, at least as a first

73



approximation, in order to leave only one initial input parameter
for the nucleation state. However the validity of (3.127) still

needs to be checked on the basis of a more complete analysis.
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CHAPTER IV

BUBBLE DYNAMICS AND COMBUSTION FRONTS

Boiling phenomena connected with classical first order phase
transitions have been widely studied and a knowledge of the main
results obtained can give a useful background for the discussion
of the relativistic problem examined in this thesis. A brief
review of classical bubble dynamics is presented in the first
section of this chapter with particular emphasis on the important
characteristics of each of the stages of bubble growth.

In the literature, both detonations and deflagrations have
been discussed in connection with the quark-hadron transition (Van
Hove (1983), Barz et.(1985), Seibert (1985,1987), Danielewicz and
Ruuskanen (1987), etc.). It seems that, in practice, it is almost
certainly deflagration fronts which are relevant here but the
literature on these within the cosmological context is rather
confused and it seems that the process as considered have not been
well understood in general. In the second section of this
chapter, we focus attention on the deflagration case and describe

some of its interesting properties.

4.1 Classical bubble dynamics

We give here a brief introduction to the classical theory of
bubble dynamics in order to provide a background for our later

discussion. The extensive literature on this subject, starting
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with the fundamental paper by Rayleigh (1917), has been reviewed
by Plesset and Prosperetti (1977).

The subject divides mnaturally between the study of those
bubbles whose interiors contain only vapour of the surrounding
liquid and those where the internal medium is mainly composed of
permanent gas. The first class subdivides further into cases
where the surrounding liquid is superheated (boiling bubbles) or
cool (cavitation bubbles). For boiling bubbles, the consideration
of heat transfer4is important whereas for growth of cavitation
bubbles, the 1inertia of the 1liquid always dominates. We
concentrate here on the growth of boiling bubbles.

At the phase interface, one has to consider conservation of
mass, momentum and energy as well as the supply of latent heat
necessary for continuing the evaporation of liquid into the bubble
interior. Also, there is the effect of surface tension. Most
studies, consider only the behaviour of a single bubble with
spherical symmetry which 1is a good approximation for many
purposes. From a mathematical point of view, the bubble growth
problem is of the free-boundary-value type since the position and
shape of the interface (which forms the boundary for each of the
two separate regions) are not know until the solution has been
completed.

Plesset and Zwick (1954) extended the pioneering work by
Rayleigh, on cavitation bubble, to study the dynamics of wvapour
bubbles in a superheated liquid. According to their analysis (and
the subsequent later work reviewed by Plesset and Prosperetti) the
growth of the bubble proceeds as follows. After its formationm,
the rate of growth depends on the surface tension and on the
thermal conductivity and inertia of the fluid. In the initial

stages of the expansion, the pressure and surface tension forces
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are nearly in equilibrium and the growth is slow. However, as the
bubble radius increases, the effect of the surface tension
decreases and the interface motion is accelerated. As the bubble
expands, the rate of wvapour inflow increases (since it 1is
proportional to the square of the radius) and so a more rapid
supply of latent heat 1is required in order to maintain the
evaporation. This produces a substantial cooling in the bubble
region which tends to reduce the pressure gradient in the liquid
and to slow down the expansion. At this stage, both thermal and
inertial effects limit the grbwth rate but cooling rapidly becomes
dominant as the expansion slows down. In the final asymptotic
stage, the growth is essentialy controlled by the rate at which
heat can be transferred to the bubble wall.

In order to study  bubble dynamics, some further
simplifications are wusually introduced. For small bubble
expansion velocities the bubble interior is usually assumed to be
uniform, so that the parameters which characterize it are set
equal to the corresponding equilibrium values at the interface.
Therefore, in the wvapour phase the temperature is taken to be
equal to the 1liquid temperature T at the bubble wall and the
pressure‘pv(T) is set equal to the equilibrium vapour pressure for
that temperature. In addition, viscosity and compressibility are
neglected both in the wvapour and in the liquid. Liquid
incompressibility implies that the velocity of the liquid at a

distance r from the bubble centre is

R ' (4.1)

u(r,t) = <

I w
N0

r
where RS is the radius of the bubble boundary and Rs=dRS/dt its
velocity at the time t. From the Euler equations integrated

between Rs and « we obtain that the boundary obeys the relation
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P(R )P,

3 .
(RS) -, {4.2)

BRs ¥ 2
where p 1s the 1liquid density, P, is the pressure at large
distances from the bubble (which is also the pressure everywhere
in the liquid at the time of bubble formation) and p(Rs) is the
pressure in the liquid adjacent to the interface.

The relationship between the internal and external pressure

in given by

20
P(R) =p (T) - &~ (4.3)

s
where o is the surface tension, and inserting this expression into

equation (4.2) gives

et

. 3 .
RE + 5 R = [pv<T> - P, - §f} (4.4)

This is a specialized form of the Rayleigh-Plesset equation which
is the fundamental equation used in classical studies of bubble
dynamics. Further extensions may be made to include the effects
of wviscosity and mass exchange across the interface (see
Prosperetti (1982) for the latter). In the following discussion,
we will neglect the small variations of ¢ and p with temperature.
It is »convenient to introduce a radius RO defined by the

relation

20
LGRS (4.5)

where TOO is the temperature of the liquid at large distances from
the bubble. RO is the radius of a bubble in equilibrium with its
surroundings at a constant temperature T_ and it is assumed that
the bubble expansion starts from an initial state similar to this.
The equilibrium is an wunstable one. Denoting by T the

b

temperature at which the equilibrium vapour pressure is equal to
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p., i.e. pV(Tb)=pm, equation (4.5) implies Tw > T, and AT = T®~T

© b b

is referred to as the liquid superheat. Using equations (4.4) and

(4.5), one can obtain

R
1 d 3. 1 20 o

o a (RR) = > | P (TP (T )+ R (1 "R, } (4.6)
s

2R

0 ~

and if the cooling effect of evaporation is disregarded so that

pv(T)=pv(Tm), this equation can be integrated to give

R 43
.2 o -2 4o 3 20 2
RS - {“ﬁ;} R+ 3/)RO[JL-(RO/RS) ] - ;ﬁ;[l-(Ro/RS) ] (4.7)

which is referred to as the Rayleigh solution. In the limit R »

Ro, this gives

-2 Lo 2
Rs B 3pRO N §;~[pv(Tm)—pmJ (4.8)

which means that the expansion rate tends to a constant limit.
However, the cooling effect tends to make the actual motion
deviate from the solution given by equation (4.7) and the limit
(4.8) can be only reached for high superheats.

The latent heat required in order to maintain 1liquid
evaporation into the bubble is carried to the interface by means
of conduction in the liquid and this situation is expressed by the

following relation at r = RS

2 aT d (4 2
-hﬂRs kL 3 L Fr L‘WR pVJ (4.9)

where L is the latent heat per unit mass, Py, is the vapour density
and kL is the thermal conductivity of the liquid. The temperature

structure within the fluid is given by the equation

2
R D
aT s - 4T L 3 2 3T
ac * 2 Rs 3t = 2 ar[r Br] (4.10)

where DL is the thermal diffusiﬁity‘ of the 1liquid, while the
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pressure structure may be calculated using the general Bernoulli
equation, from which one obtains

R

R 3
p(r,t) = p_+ —z [p(RS)-pm] + % p % Rs[l-(—f;} } (4.11)

Equations (&4.1), (&4.4), (4.9), (4.10) and (4.11) together with
suitable initial and boundary conditions give a complete
mathematical specification of the problem. At late times, one
finds the asymptotic solution Rsa tl/z.

iﬁ this discussion, the thermodynamic state of the vapour in
the bubble has been assumed to correspond to conditions of
thermodynamic equilibrium at the instantaneous bubble wall
temperature. However, under some circumstances, deviations from
equilibrium are important (Plesset (1964), Theofanous et al.

(1969)). These can be estimated by considering the mass balance

at the bubble wall.

d 4 3 ] 52
ac {gﬂRSPV) = 4R W (4.12)

where W is the net mass flux per unit area across the interface.
The standard way of calculating W is as follows (see Plesset and
Prosperetti (1976) and Theofanous (1969)). It is assumed that the
velocities of the vapour molecules follow a Maxwellian velocity
distribution and then one can use standard methods (Landau and
Lifshitz (1959)) to calculate the mass fluxes away from the
interface towards the body of the vapour and from the body of the
vapour towards the interface. The difference between these is
then the net flux into the bubble. The temperature and density of
the incoming material are taken to be the temperature and
equilibrium vapour density of the adjacent liquid (TL,pz).
Corrections to the pure kinetic theory result (due to surface

emission and absorption effects and deviation away from the
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Maxwellian distribution) are represented by adjustable
accomodation coefficients « and f. The flux formula is then given

by

2r v v v

R 1/2
W= [ & ] { aps Ti/z- Bp Tl/Z] (4.13)

where Tv is the temperature of the vapour phase and Rg is the gas
constant per unit molecular weight. It is conventional to set B=c
(although the motivation for this is obscure for the case of
dynamical bubble growth) and equation (&4.13) then implies that the
equilibrium solution (TV=TL, pv=p$) corresponds to a -+ = which is,
of course, strictly unphysical. However, the mnature of the
equilibrium assumption is classified by the following argument
(after Plesset (1964)). Suppose that we take TV=TL, B=a and
combine equations (4.12) and (4.13) neglecting the term in dpv/dt.
It is then possible to show that
PP M

_ (4.14)
p a(1/2m7) 7 24

where +y 1is the adiabatic index of the vapour and M is the
dowstream Mach number. Equation (4.14) then implies that the
equilibrium assumption is satisfactory provided that the bubble
expansion is sufficiently ﬁlow. In the general case, however, one
needs to solve the dynamical equations coupled with junction
conditions across the interface and Theofanous et al. (1969)
performed a calculation of this type. Their results for a=1 are
in good agreement with the equilibrium solution  but
non-equilibrium corrections become progressively more important as
a is reduced (and the measured value of a for water is -~ 10-2).

In discussing the classical bubble growth calculations our

aim has been to emphasize the various factors involved and the

importance of a proper treatment of each of the them. Although
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the relativistic case requires a more complicated system of
dynamical equations, classical bubble growth is a useful guide for

implementing them.

4.2 Analysis of a discontinuity surface using the method of

characteristics.

In this section we discuss the conditions under which the
system of Thydrodynamical equations (3.11), (3.13), (3.29),
(3.32)-(3.37) and (3.39) plus the set of juction conditions
(3.64), (3.65), (3.98), (3.102) and (3.104) completely determine
the evolution of the transition front and the fluid flow in each
phase once initial and the boundary conditions have been given
(Miller and Pantano (1986)). As the system of hydrodynamical
equations under comnsideration is hyperbolic, it is possible to
rewrite them in characteristic form as seen in Section 3.3. All
of the evolution equations were there rewritten as ordinary
differential equations along the three families of characteristic
curves in the ut plane. Physically these directions indicate how
disturbances are propagated during the fluid motion (for details
see Section 3.3.2). This way of rewriting the evolution equations
is particularly useful for discussing causal structure either for
continuous flow or in the presence of some discontinuity.

In the case of a continuous flow, suppose that we know the
complete solution everywhere on some base time level t and want to
calculate the new solution at the point X on a subsequent time
level (t+At) (see Figure 1). 1In order to find this solution we
need to use data at points N, M and H where the forward, backward

and advective characteristics, respectively, intersect the base
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time level. Equations (3.56) are solved along the forward and
backward characteristic directions to give u and p. Then p, R and
m are calculated from equations (3.54), (3.59) and (3.60) along

the advective characteristic while

X
/:\ t+AL
i
I
I
i
i
|
I
H

Fig. 1. Tllustration of the characteristic solution at a normal
point. XH is the advective characteristics while XN and XM are the

forward and backward characterics respectively.

a is given by equation (3.34) which must be integrated across each
time slice.

Consider now the situation for a phase interface. For stable
physical solutions the interface always moves sonically or
subsonically relative to the medium behind but, relative to the
medium ahead, it may either move supersonically (giving a
detonation front) or subsonically (giving a deflagration). In the
case of a detonation, pressure and energy density are larger
behind the interface than ahead of it while the reverse situation
holds for a deflagration (see Courant and Friedrichs (1948),
Landau and Lifshitz (1959)). The two cases are examined below.

Figure 2 shows the <characteristic curves for points
immediately ahead of and behind the interface in the case of a
detonation front (notice that the scale is different in the two

phases). As the interface is moving supersonically relative to
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the medium undergoing the transition, all three characteristic
curves may be drawn from the point just ahead of the interface
back to the base time level. Then all of the hydrodynamical
equations can be solved as well as the a equation whose boundary
condition can be fixed in the medium ahead of the interface. This
means that the state of the fluid ahead of the interface is
completely determined by initial data in the same phase and so is
not affected by the presence of the transition front. In the
medium behind, only the forward characteristic can be drawn up to
the fluid element just behind tﬁe interface. However, the
junction conditions have to be satisfied across the interface and

these together with the forward characteristic equation are

t+ At

Fig. 2. Characteristic structure of a detonation solution.

The heavy line marks the path of the interface.

exactly sufficient to fix completely the ~velocity of the
transition surface and the values of u, p, p, a and R just behind
it. Actually, the only possible solution for a self-sustaining
detonation front is that corresponding to a Chapman-Jouguet
process where the velocity of the medium behind relative to the
interface is equal to the sound speed (Courant and Friedrichs
(1976), Gyulassy et al. (1984)).

For a deflagration (which moves subsonically relative to the
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medium ahead), the characteristic structure is as shown in Figure
3. In this case it 1is not possible to draw a forward
characteristic wup to the point just ashead of the interface since
it would need to have a slope smaller than that of the interface
path. This means that the state of the fluid just ahead is not
now determined only by initial data in the medium ahead and so it

is perturbed by the presence of the transition front. Moreover,

Fig. 3. The characteristic strcture of a deflagration solution.

the absence of the forward characteristic also means that the
number of equations is one less than the number of unknowns. In
order to close the system an additional equation is required and
this should be an expression for the rate at which material is
transformed from one phase to the other. Whether the transition
front is supersonic or subsonic therefore deeply influences the
way in which the transition proceeds: for a detonation, the
hydrodynamics forces the rate of flow across the interface, while,
for a deflagration, it is the rate of flow which controls the

hydrodynamics.
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4.3 Hydrodynamics of a deflagration front.

4.3.1 Transition rate equation.

For the quark-hadron transition, the front is likely to be a
deflagration since a detonation requires much greater supercooling
than is expected here (Seibert (1985)). 1If this is the case then
we need an extra condition for closing the system of equations as
shown in the previous section. In the literature, this extra
condition has usually been provided in one of two ways, either by
assuming that the velocity of the hadron medium is always zero
(this requirement is connected with the construction of similarity
solutions - Gyulassy et al. (1984), Kurki-Suonio (1985), Seibert
{1985), Blaizot et al. (1986), etc.), or by fixing the temperature
ahead of the interface equal to TC (Applegate and Hogan (1985),
Cleymans et al. (1986b), Kajantie and Kurki-Suonio (1986), etc.).

One expects to have a similarity solution in situations where
there is no preferential scale and this is, at least, unclear in
the present case. Significant scales include the nucleation
scale, the scale defined by the evaporation process, the
characteristic scales of strong, electromagnetic and weak
interactions and the current Hubble radius. The assumption that
the temperature ahead of the interface remains strictly equal to
TC during almost all of the transition (some initial supercooling
being accepted for allowing bubble nucleation), seems to be
fundamentally inconsistent as we will discuss in the next section.
It is likely. that the temperature ahead does, in fact, remain
close to TC but the expected small deviations away from this are
nevertheless crucial.

From a physical point of view, the extra condition should be

obtained by setting the hydrodynamical flux (FH) across the
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interface equal to Ft’ the rate at which energy passes from one
phase to the other as derived from considerations of the
transition process. The imposition of any other condition
effectively determines Ft' A simple expression for this quantity

is given by

Ft = a [F(Tq)-F(Th)} (4.15)

where F(Tq) represents the thermal flux from the interface (at
temperature Tq) into the bubble, F(Th) is the corresponding flux
from the hadronic matter towards the buBble wall and a is an
accommodation coefficient which takes account of deviations away
from the ideal situation. This expression is analogous to the one
discussed in Section 4.1 for the net mass transfer across a
vapour-liquid interface in classical bubble dynamics (Theofanous
et al.(1969)). It is an idealization to take Ft equal to the
thermal flux given by (4.15) since the correct expression would be
more complicated and would have to be calculated on the basis of
detailed comnsiderations concerning the conversion of quarks into
hadrons. Several detailed calculations on the hadronization rate
have been made within the context of heavy ion collisions where
one considers evaporation from the surface of the quark matter
into vacuum (Danos and Rafelski (1983), Banerjee et al. (1983),
Miller and Eisenberg (1985)). However these are not directly
applicable to the present case where leptons are also present and
the evaporation is not into vacuum. In the absence of improved
calculations, equation (4.15) provides a fair approximation with
the uncertainties being included in the accommodation coefficient
a.

Using the equation of state (2.39) for the hadron phase,

equation (4.15) becomes
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2
T a4
Fe=z ey {30}[ LT ] (4-16)

the hydrodynamical

This has the important feature that for Tq= Th’

energy flux across the interface is equal to zero. In the limit
in which the temperatures in the two phases are close to TC we can

write:

2
T 4 [AT
Ft =a g, {55} TC [T;} (4.17)

with AT=T§-Th. This expression is mnot in agreement with the
result claimed by Applegate and Hogan (1985) that FH @ (AT/TC)I/Z.
They obtained this using the junction conditions together with the
assumption Tq=Tc apparently not realising that, far from being an
innocuous approximation, this 1is a drastic assumption which
determines the solution iIn a non-physical way. It 1is a
fundamental feature of deflagration solutions that the energy flux
is not determined by the hydrodynamics but must be given by an
additional separate condition. While the formula (&4.17) is
approximate and subject to modification, we expect that the true

relationship is still likely to give th(AT/TC).
4.3.2 Plane deflagration transition fronts.

We want now to examine which kinds of constraint the
transition rate expression puts on the hydrodynamics of a
deflagration transition front. The analysis presented here is for
the case of a plane interface in the special relativistic limit.
However, the conclusions drawn can be extended to a spherical
transition front at least when the radius 1is 1large and the
gravitational corrections are small.

In the rest frame of the interface, energy-momentum

88



conservation across the front simply reduces to the continuity of

o1 11
the T and T~ components of the stress-energy tensor (3.16),

namely
(e +p. ) v2v. = (e +p )y2v (4.18)
2 2 2 2

where the subscripts h and q refer as usual to the hadron and

quark phases respectively, v is the fluid three velocity in the
. 2, -1/2 .- .

rest frame of the interface and =(1-v") 2 Combining equations

(4.18) and (4.19) one obtains the following expressions for the

velocities v, and v :
h q

2 (pq-ph)<eq+ph)

(4.20)
(eq ) (o ¥P)

(p_-p. ) (e, +p )
V2 - 4 h7h g 4.21)
T (egrep) Cegtry)

Using the expressions (2.36) and (2.37) for the quark phase and
(2.38) and (2.39) for the hadron phase one gets
(eq—eh-aB)(3eq+eh)

v, o= (4.22)
(eq-eh)(eh+eq—QB)

N
W=

(e -e, -4B)(3e,+e -4B)
Vi - q h h g (4.23)
(eq-eh)(3eq+eh)

[\
W

The energy flux in the hadron phase measured in the rest frame of

the interface, is equal to

2
Fy = Cptpp) Mm%y
1/2
[(eq~eh)(pq-ph)(eh+pq)(eq+pq)] /

e - -e
q Pq

I

(4.24)
htPp
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which is, of course, also equal to the corresponding flux in the
quark phase. Cleymans et al. (1986b) claimed that the expression
(4.24) is sufficient for calculating the energy flux across the
interface as a function of Th since, in their view, the deviation
of the quark temperature Tq away from TC can be neglected. The
same comments apply as above. Figures 4-6 show the value of FH
given by (&4.24) (solid line) and the value of Ft given by (4.16)

(dashed line) plotted as functions of T, for a given value of T

h
We take E%=Ft and this gives a relation between the
temperatures ahead of and behind the interface. For the equations

of state (2.36)-(2.39) this relation is

1/2

L ZE b ) [(eq-eh>(eq-eh-45)(3eh+eq-45)(3eq+eh)]
%8y q h 2/3 (eq-eh+2B)

(4.25)

In the Th—Tq plane, equation (4.25) gives the curves shown 1in

28
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Fig. 4. Behaviour of FH (continuous 1line) and

F (dashed line) as functionS of T /T for T /T =1.
t h ¢ qg ¢
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correspond to intersection points such as those shown in Figures
4 and 5.
Let us concentrate on Figure 7 which has been obtained for

a=1. We can see that for Tq=TC also has to be equal to TC and

) Th
therefore there is no energy flux across the interface. This fact
shows that the transition cannot proceed if Tq=TC and small

deviations from it are important for Thaving any phase

transformation at all.

1.000

04995

o
g 09%

0985 L.

0.980 4 1 2 1 2 1 z ! N
6o 02 0.4 0.6 08 1o

Fig. 7. Relation between T and Th for a plane deflagration
q

Transition front for o=1. The cross indicates a Chapman-

Jouguet process.

The second important point illustrated by the plot is that,
for o=1, 'I‘q cannot be lower than 0.989 TC which represents a very
small variation from TC. The minimum for Tq depends on «, as one
expects, and it decreases as a decreases (compare Figures 7-9) but
even for a as small as 0.6 it is still larger than 0.98 Tc'

The behaviour of the fluid velocities corresponding to the
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allowed coupled values of Tq and Th is the following: both N and

Vq increase for decreasing values of Th and in the case of a
Chapmann - Jouguet (CJ) process (i.e. N equal to the sound speed
2

Ve in the hadron phase) VqlCJ is as large as 1.2x10 . The

Chapman-Jouguet point is indicated by a cross on the curve Tq('I‘h).

LU
0.995
9
E 0.9%0
&
0985 (. -
0.980 " ! 2 H N 1 : 1
0.0 0.2 0.4 0.6 0.8 1o
ThTc
Fig. 8. As in Figure 7 for =0.6.
1000 T T N T T T
0995 L .
k3
S_ 0990 [ 4
&
0985 - -
0.980 L 1 N 2 1 L i N
0.9 0.2 0.4 0.6 0.8 1.0
ThTc

Fig. 9. As in Figure 7 for =0.1.
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For decreasing values of «, vq]cJ also decreases. Since the part
of the Tq(Th) curve to the left of the CJ point corresponds to
strong deflagration fronts (vh>vs) which are not allowed solutions

represents the maximum

(see Courant and Friedrichs (1976)), quCJ

velocity relative to the medium ahead which can possibly be
reached by a deflagration transition front.

On the basis of this analysis we can derive two important
conclusions: (i) the temperature in the quark phase must be
smaller than the critical temperature Tc in order for the phase
transformation to proceed; (ii) only small deviations of Tq away
from TC seem to be allowed, at least for o>0.6.

It is interesting to notice that for a range of temperatures
Tq above the minimum of the curve Tq(Th)’ two possible values of
Th are consistent with the same wvalue of Tq' This could be
related to instability phenomena already observed in classical
deflagration fronts. In general, instabilities are often related
to double valued solutions.

Although our solutions use a simplified expression for Ft’
our conclusions, at least on the point concerning the quark phase
being below the critical temperature Tc’ should be correct even in
the case of a more accurate expression for Ft' TC represents the
temperature at which the two phases can coexist in equilibrium and
any expression for the transition rate has to give Ft=0 for
Tq=Th=TC. In the presence of a curved interface with surface
tension, we expect equilibrium to be possible at some slightly
lower temperature Tq==Th=TN and the phase transformation then
proceeds when the equilibrium is perturbed in some way such as,

for the cosmological quark-hadron transition, by the general

expansion of the universe.
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CHAPTER V
COMPUTATIONS OF BUBBLE GROWTH DURING THE QUARK-HADRON PHASE

TRANSITION

In this chapter we apply the formalism introduced in Chapter
III to the particular system in which we are interested, i.e. to
the growth of a bubble during the cosmological quark-hadron
transition.

In the literature, this problem has already been discussed
under particular assumptions or restrictions. Van Hove (1984)
made the assumptions of entropy conservation and of the
temperature everywhere returning rapidly to the transition
temperature Tc after bubble nﬁcleation. On this basis he found
that the bubble expansion velocity would be very low (~lO-1l).
Similarity solutions have been studied by Kurki-Suonio (1986) in a
discussion of deflagration transition fronts (see also Kajantie
and Kurki-Suonio (1987)). As mentioned earlier, there are doubts
about whether these methods are applicable here and even if they
are, one would still need to clarify why one similarity solution
from the infinite family should be preferred to the others
(Zel'dovich and Raiser (1967)). Witten (1984), DeGrand and
Kajantie (1984) and Iso et al. (1986) made overall conceptual
analyses with various simplifying approximations. It is a general
result that the bubble expansion velocity increases with the
degree of supercooling.

Our aim in this computation 1is to relax all of the
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restrictive conditions imposed 1in the above papers and to
determine the bubble growth velocity and the fluid flow in both
phases as a correctly formulated initial wvalue problem. in
addition, for the first time, the effect of surface tension on
hadron bubble dynamics is also included.

It is important to stress that, although we have restricted
our attention to the confinement transition, the method which we
present can also be applied for studying bubble growth during
earlier cosmological phase transitions. For these the method used
until now is, in a certain way, opposite to the one which has been
followed in the confinement transition. The space-time 1is
described by different metrics inside and outside the new phase
bubble and the motion of the bubble wall (within which there is a
surface tension o), is derived from the junction conditiomns across
the time-like hypersurface separating the two phases ( Berezin et
al. (1983 b,c), Maeda (1986), Laguna-Castillo and Matzner (1986),
for false vacuum bubble see also Blau et al. (1987)).

Our method, instead, provides a numerical solution of the
coupled system of hydrodynamical and surface equations and
therefore gives the evolution of the system from the nucleation
epoch.

The hydrodynamical equations in the two bulk phases are
integrated using a largely explicit two step finite difference
method (Richtmyer and Morton (1967), May and White (1967), Potter
(1973)). Particular care is required in solving the junction
conditions at the interface and this is done with the aid of the
characteristic form of the hydrodynamical equations.
Characteristic equations have previously been used for treating

boundary surfaces and shock discontinuities both in newtonian
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hydrodynamics (Keller et al. (1960), Hoskin (1963), Henshaw
(1987)), and in special relativy (McKee and Colgate (1973)), but
here they are applied for the first time to study the evolution of
a surface layer. This case is more difficult to handle because a
surface layer corresponds to a §é-function singularity of the
Stress-energy tensor; in other words, the discontinuity surface is
characterized by an intrinsic tension and energy density which
make the solution of the junction conditions at the interface much
more difficult.

In this chapter we review first the system of hydrodynamical
equations and junction conditions which we use in the numerical
treatment. Some of the junction conditions are also rewritten in
a form more convenient for the numerical calculation. Initial and
boundary conditions are then discussed in detail. Following this,
we present the numerical integration scheme and, finally, discuss

the results obtained for two different transition rates.

5.1 Basic equations

5.1.1 Hydrodynamical equations in the two bulk phases.

To clarify the presentation of the numerical scheme, we
repeat here the set of hydrodynamical equations, for a spherically
symmetric system, derived in chapter III. Their order is the same

as that followed in the numerical integration.

R_ - au ' (5.1)
2

(pR ] a
— = - =t (5.2)
R R

£ B
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(5.3)

(5.4)

aw pwW
2

m = 4weRR (5.5)
7 p

r2- 4npR2Ru 1+ ul- 2Gm/R (5.6)

b = (awpazj“l (5.7)

Tp Gm

= -a[ ——F£ &+ — + 4nGpR ] (5.8)
- b(e+p) R

p = p(e) (5.9)

The mass function m is also calculated by using the alternative

equation:
m_ - -47pR°R ' (5.10)
t t )

The above set of equations is used for studying the evolution in
both bulk phases, each of which is characterized by a different
equation of state.

It is wuseful to derive also an alternative form for the

constraint equation (5.4). From the first law of thermodynamics
we have:
pT ds = de - w dp (5.11)

where s is the specifis entropy. By using equation (5.3) and the

fact that for a perfect fluid the motion is adiabatic (i.e. st=0)
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we have
pT s =e - wp (5.12)

which combined with equation (5.4) gives

(aw) Ts
©o_ _;E (5.13)

aw

For a one-parameter equation of state, it is possible to integrate
equation (5.13); in fact, in this case, s = w/T and then equation

(5.13) reduces to
aT = const. (5.14)

By using the equations of state (2.36) and (2.37) or (2.38) and

(2.39) we have
a (e+p)lm = const. (5.15)

Equations (5.15) can be applied as long as the fluid properties
are continuous and we do not introduce any dissipative processes.
In our case it has to be applied separately in each phase and the
constants of integration are different in the two cases but not
independent. The metric factor a is set equal to unity at large R
thus synchronizing the coordinate time t with time as measured by

a FRW fundamentalobserver at infinity. Then we have in the quark

phase
e _+p_ 1/4
a - [____e+p J (5.16)
and in the hadron phase
e +p_ 1/4
a-a (] (5.17)

where the subscript = refers to distant points that have not yet
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felt the effect of the transition and the subscript - refers as
usual to quantities just behind the interface obtained by applying
the junction conditions.

We convert the previous set of differential equations into
difference equations on a finite mesh grid of between 25 and 75
zones depending on the stage of calculations. Each zone
corresponds to a spherical shell of matter with shell boundaries
identified by a time independent value of p and indexed by a
subscript j. One computational cycle advances the solution from

+1 n n+i/2

. n . n
the time level t (base time level) to t = t + At , where

n+i/2 .
At / is

the time step which is varied according to
computational requirements. Truncation errors are minimized by
taking Ap=constant and the initial Apg 1is chosen such that the
interface coincides with a zone boundary at the beginning of the
calculation. The equations are written in the system of. units

mentioned at the beginning and we use the fm as the fundamental

unit.
5.1.2 Calculation of interface quantities.

The transition front acts as an internal boundary for the
system and solutions in the two bulk phases are connected there by
the junction conditions discussed in Section 3.4 and the
transition rate expression presented in Section 4.3 Actually, in
our calculation we do not use the junction equations in the form
shown in Section 3.4, but we specify them for the case o = -a =

constant. Then equation (3.98) reduces to

+

[(e+p] sz/:zs'yz/a] -0 (5.18)
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which can be shown to be equivalent to the simpler form
+
[aw [T =0 (5.19)

using equations (5.7), (3.64) and (3.94). When ¢ = -a = constant
g eq

it follows that
d 2 dr”
o @R) +ag =0 (5.20)

which shows that the increase in total energy of the interface is
due only to the work done by the surface tension. There is no
flow of energy from the two media to the interface.

Under the same hypothesis, equation (3.102) becomes

bzu f
2.2-2 _ o 2 1d s| , i 2 -
e’ b Py + pa -3 £ { 5 dc - + EB—,+ TR (ubps+»aF)

(5.21)
In spherical coordinates the hydrodynamical flux equation.

(4.15) assumes the form

awp

s
= F ’ (5.22)
202 ;22 t
4nR”(a%-b%0)
where Ft is the transition rate as given by microscopic
considerations. Equation (5.22) can be rearranged to give an

explicit expression for g :
s

2 (&)Yt

He™ 4np+RSa+ £
ZFt
ith = - (5.23
wi € (e+p), ( )

Following the discussion in Section 4.3, we use for Ft the
corrected net thermal flux expression and then, for the equations

of state which we are considering, we obtain

101

I+



2 4 4
ag (ﬂ /BOJ(T —T_]
g - 1B * (5.24)
2(e+p]+

The metric junction condition (3.64) and equation (5.19) are

combined so that we obtain

c 82 c 82
b p (e+p), [b, p
<+ { L+ | S] <> - (e+p)+ l 2 -0 (5.25)
+ - +
(etp)
p_= P+XW (5.26)

with x = (a_/a+).

Finally the junction condition (3.65), is written as an
explicit expression for u_ where we keep only the negative root
since this satisfies the wvelocity relation for a deflagration

ront (v_ > Ve Vv being the fluid velocity in the rest frame of

the interface):

. . cn_ 1/2
a A - b_us AT + [a+-b+ps] 1 - ~§;
u_—_
i 2 b2-
R
with A= au, + b+pSI‘+ (5.27)

Equations (5.19), (5.21), (5.23), (5.25) - (5.27) are the five
junction conditions to be imposed at the interface. In Section
3.3, we also mentioned the condition for the mass function m which
is not, however, used directly in the code because m is computed
on the two sides of the interface in such a way that it satisfies
(3.104) automatically.

In order to impose the junction conditions accurately, we

need the values of fluid variables immediately ahead of and behind
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the interface, while the finite difference scheme gives values
only at grid points (or half zones). 1In addition, the presence of
the 1interface prevents correct centring of the difference
equations in the two adjacent =zones and, therefore, any
extrapolation to the interface points making use of values
computed in these particular zones looks quite doubtful. This
difficulty may be overcome by using characteristic equations. We
have seen in Section 3.4, how information flows along
characteristic directions and so it seems natural to use them for
calculating the interface quantities which must be inserted into
the junction conditions.

The characteristic structure of a deflagration front has
already been illustrated in Section 4.2. Here, in Figure 1, we
show again the interface path SS’ and the characteristic curves
from the interface position at tn+l back to the base time level
™. Mesh points’ are also shown with js being the grid peoint

nearest to the interface.

S tn-H

[ ]
[:

A\
/l\
/
;Y
AN
\
l \
1 .

&

o1 ©
is2 is1 N S ISH M jst1 js+2

//
tn

&

L ]

Fig. 1. Motion of the deflagration transition front across
the grid. S8’ is the interface path and characteristics

are shown with dashed lines.

In the fluid ahead, we have the following equations along the

advective characteristic HS' (i.e. along dy = 0):-
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&

au dt (5.28)

dm = (5.29)
dp = L d (5.30)
P =wc P .
s
while along the backward characteristic MS’, given by
2
dpy = - 4wpR c.a dt (5.31)
we have:
du - ;gg— dp + [- Zachs/R+ aG [m/R2+ AHPRJ}ﬁé 0 (5.32)
s

and along the forward characteristic in the fluid behind, given by
2
dp = + 4rpR ca dt ‘ (5.33)

we have:

e s

du +

dp + [ 2achS/R+ aG (m/R2+ Awa)1®i~o
L

5.34
S (5.34)

wC
P S

As discussed in the previous chapter, the set of equations
(5.4), (5.19), (5.21), (5.23) and (5.25) - (5.34) is sufficient to
completely determine the interface variables. Because of its
complexity, the system has to be solved by an iterative procedure
at several levels.

The quantities which we need to compute at the transition
discontinuity‘are: the position By of the interface, its velocity
hs" the radial coordinate Rs and for each phase the metric
component a, the fluid wvariables e, p, p, u and the mass function

m.
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The outer iteration in the interface calculations concerns
the position of the deflagration front at the new time level. 1In

-nt+1/2
! a wvalue

the first loop, ps is calculated by using for
obtained by linear extrapolation from the values at the two
previous time levels.

We then proceed to solve the equations for matter on the
metastable phase side. As we have already discussed in the
previous chapter, the state of the fluid ahead of the interface is
not independent of conditions behind it and so, in principle, one
"should solve the equations for fluid ahead and behind

simultaneously with the junction conditions.

The procedure used here is the following:-

a) A value for T+ is estimated by extrapolation (as for ﬁs)
and then all of the other variables just ahead of the interface
may be evaluated in terms of this.

b) e, and p, are computed from the equation of state and then

+
p. is calculated using the advective equation (5.30). Thus all
+

of the quantities required for calculating w, are known and then
the constraint equation (5.4) can be solved for a

c) The advective equation (5.28) is solved for Rs.

d) The position of the foot of the backward characteristic is

o

determined by (5.3%3 and u, is computed using (5.3%L).
e) Equation (5.29) for the mass function is solved.

The steps c¢), d) and e) are initially carried out using data at

the base time level in one-sided difference formulae. When

provisional values at the new time level have been calculated in

this way, these can then be used to centre the differences at

successive stages of the iterative procedure in which steps b)-d)
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are repeated until convergence is obtained.

f) Next F+ and b+ are found using equations (5.6) and (5.7).

g) A provisional wvalue for e is next obtained by an
extrapolation similar to that used for As'

h) p is calculated using the equation of state. Equation
(5.5) for m is integrated and the interface velocity is computed
from equation (5.23).

i) Equation (5.25) for the a_/a+ ratio is solved by the
Newton-Raphson method with the initial estimate being a value
extrapolated in the usual way. Then p is calculated from
equation (5.26).

j) Equation (5.27) gives u_.

k) The position of the foot of the forward characteristic is
calculated from equation (S.Qiﬁ.

1) The forward characteristic eqﬁation (5.3§) is used for
obtaining successive improved values of e by means of a secant
iteration looping over steps h) to 1). The two initial estimates
required for this are given by (i) the extrapolated value
introduced at step g) and (ii) a value obtained by an explicit
solution of equation (5.3%3 at the end of the first pass through
the loop.

m) Successive improved values of T+ are obtained from the
junction condition equation (5.21) also by wusing a secant
iteration. The two initial estimates required for this are given
by (i) an extrapolated value obtained in the usual way (see point

a)) and (ii) a small perturbation away from this. The iteration

loops from b) to m).

106




The values of variables at the feet of the characteristic
curves (points H, M and N in Figure 1) are calculated by linear
interpolation. We choose as interpolation points the position of
the interface at the base time level (point S) and the points jsil

or js+3/2 for zone boundary or mid-zone quantities respectevely.

+1/2

. . . -+ .
At this point pz is calculated by using “2 ! as obtained

above. If the extrapolated value of ﬁ2+1/2 was not accurate
enough, the interface position can be computed again and then
steps b)-m) repeated. Convergence in this case is made faster by
considering as initial values in all iterations the ones obtained
at the end of the previous secant iteration for T+. However this
outer iteration is not wusually necessary since the interface
velocity changes in a regular way and the extrapolated value is

o . -ni+1/2
often a very good estimate of the true g !

5.1.3 Shock treatment and artificial viscosity

In principle we can treat shocks formed during the evolution
with the same method as wused for the tranmsition surface.
Actually, for a shock discontinuity the system of equations to be
solved and the iteration scheme would be simpler than in the case
discussed above. The metric junéfion conditions are the same,
while energy and momentum conservation are given by equations
(3.105) and (3.106). As the shock moves supersonically relative
to the medium ahead, the state of the fluid ahead is unperturbed
by the presence of the shock. Therefore the characteristic
structure is the same as that for a detonation front and the
energy flux is completely determined by the dynamics of the system

(see Section 4.2).
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In our code, however, we have chosen to handle possible
shocks by means of an artificial wviscosity (cf. Richtmyer and
Morton (1965)). The introduction of an artificial bulk viscosity
is based on the observation that, although a fluid may be properly
described in many circumstances by mnon-dissipative evolution
equations, viscous forces and heat conduction can no longer be
neglected in the presence of a sufficiently strong compression.

It is a natural consequence of the non-linearity of the fluid
flow equations that the kinetic energy associated with acoustic
disturbances tends to be channelled progressively to higher and
higher wavenumber modes. In nature, this process 1is always
eventually terminated by vthe action of dissipative mechanisms
which convert this kinetic energy into internal energy of the
fluid. When we treat a shock as a discontinuity in the solution
of mnon-dissipative evolution equations, we simply make the
idealization that all dissipative and entropy-producing mechanisms
operate only within an infinitesimal surface layer.

On a computational mesh, there is an upper 1limit to the
wavenumber that can be reached corresponding to a wavelength of
two zones. In the absence of dissipation, energy builds up in
oscillations with this wavelength which grow and destroy the
solution preventing the calculation of shock behaviour unless a
dissipative mechanism is added. This can be provided either by
intrinsic diffusion within the difference scheme or by means of an
explicitly added artificial viscosity.

Von Neumann and Richtmyer first suggested the introduction of
a wavelength dependent artificial viscosity which has a neglegible
effect for long wavelength modes and becomes important only for

short wavelengths. This spreads shocks over several zones of the
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mesh and automatically ensures that the junction conditions are
satisfied. A suitable artificial wviscosity for wuse with
spherically symmetric relativistic problems is given by (May and

White (1967))

2 22 [2 12
k* p/T (op/R7) {(R u) ] if p >0
Q = # (5.35)
0 if pt<0
Clearly, Q operates only in the case of a compression. The

coefficient k2 is commonly set equal to two.

Although the effect of artificial wviscosity is very small
outside shock regions, we have noticed that its presence is also
important in our calculation when we perturb the initial

conditions and the system has to relax to a consistent solution.

5.2 Initial conditions.

5.2.1 Conditions at the nucleation time.

We start to study the evolution of the bubble from the moment
immediately afte£ its nucleation and so the interface
discontinuity 1is already present at the initial time and the
initial data have to satisfy the junction conditions. At this
time, the system is taken to be in thermal equilibrium at a

temperature Tn with the medium being everywhere uniform within

each phase. In the numerical calculation Tn is treated as a
parameter whose value is related to the surface tension v = 70TC
through the relation (3.127). The critical radius of a hubble

nucleated at temperature Tn is

109



_ 2
R (T ) = (5.36)

Ph'Pq
Throughout Section 5.2 the subscripts h and q will indicate values
of the wvarious quantities in the hadron and quark phases
respectively at the nucleation time.
Since the temperature 1is constant, it follows from equation

(5.23) that ﬁs= 0 and from equations (5.25) and (5.27) we then

obtain
a, =a_ (5.37)
u, = u_ (5.38)

where the +wvalue of a, at infinity is fixed by the time

+
synchronisation condition mentioned earlier. Using equations
(5.16) and (5.17) we obtain a = 1 everywhere. From equation

(5.18) we compute the relationship between the compression factors

(e, +p.)
h “h
p = —— (5.39)
e +
(qpq)
and using the equations of state (2.36) - (2.39) we obtain p_ =

(gh/gq) - The value of p 1s set equal to one everywhere in the
homogeneous quark medium immediately before the nucleation of the
bubble and we assume that its wvalue at all points of the quark
medium is not changed significantly by the bubble formation
process. Therefore, immediately afterwards, p+=1 and this gives
p =0.17.

The velocity field near to the bubble just after nucleation
is difficult fo estimate precisely but it is safe to say that the
values will be small enough to be neglected. Further away, it is

reasonable to assume that the velocity field has not been
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significantly changed by the nucleation process so that is still
given by the solution for a FRW universe in the quark phase.
Equation (5.36) which has been obtained from a classical

discussion, also corresponds to the limit of the momentum equation

+

(5.21) for ﬁs = 0, p constant in each phase and a, = 1. The mass
function m 1is discontinuous at the interface because of the

surface energy density contribution, namely
+
[m ] = 4rR%o (5.40)
s

The wvalue of m at all points is obtained by integrating (5.5) on
the time slice with the condition (5.40) on the interface. At the
nucleation time the relativistic correction to relation (5.40) is
very small and can be neglected.

The last quantity which we need to specify 1is the
relativistic T factor. According to the standard model, the
evolution of the early universe is well approximated by a flat FRW
model and therefore immediately before nucleation T' is equal to
one everywhere. The nucleation process cannot change the
situation substantially and so we assume that T' is equal to one
everywhere also immediately after nucleation.

The state of the system at the nucleation time can therefore
easily be calculated as long as we know Tn but unfortunately these
conditions cannot be applied directly as initial conditions for
the numerical calculation because the initial evolution is so slow
that round-off errors dominate and destroy the solution. Instead,
one must perturb the state at the nucleation time and set initial

conditions accordingly.
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5.2.2 Perturbation of conditions after nucleation.

The following physical considerations suggest a way of
introducing a perturbation of the conditions after nucleation. We
have seen that the bubble is first formed at rest with respect to
the metastable medium but, as the universe expands further and
cools, the equilibrium condition (5.36) ceases to be satisfied.
The pressure inside the bubble becomes greater than the effective
pressure outside (surface tension forces also being taken into
account) and the bubble expands compressing and reheating the
medium ahead. Matter transformation starts at the bubble boundary
and the latent heat released goes both into accelerating the
interface and into thermal and kinetic energy of the two media.
However, as soon as new material undergoes the transition the
effective pressure outside becomes greater than the pressure
inside as is always the case for a deflagration front.

In the calculation, a small temperature pertubation AT is
introduced between the two phases such .as to have a positive
pertubation in the quark phase where material is compressed and a
negative one inside the bubble where the medium is expanding.
With these perturbed initial conditions we want to reproduce the
state of the system after the interface has already stérted to
move. Because we do; not expect an explosive initial growth (and
this is confirmed by the numerical computations) it is possible,
as a first approximation, to think of the evolution from the
nucleation state to the perturbed state as a succession of
equilibrium states. Of course, this assumption is not completely
correct, but we can demonstrate that it corresponds, in equation

(5.21), to neglecting the interface acceleration and the second
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order term in (AT/Tn). The first of these omissions is probably
the more doubtful ome but, in any case, the stability properties
of the computer code ensure that the solution always relaxes
towards the correct one as long as the initial conditions are
roughly reasonable and as long as the initial temperature
pertubation is not too large [ AT/Tn =< O.l(TC-Tn)/Tn].

Let AT+=(T+~Tn) and AT = (AT+- AT) be the temperature
perturbations ahead of and behind the interface. There is then a

corresponding variation in Rs equal to

20
AR = - —— (Ap_-£p ) (5.33)

Ap and Ap can easily be obtained from the known equation of state
in each phase.

At first order in AT, the rate equation (5.21) reduces to
i = 4nR%e (e, /v ) (AT/T ) (5.34)
S s h’ 'q n :

while the junction condition (5.27) gives
wu o= (b_-b ) g . (5.35)

where we have put P+,F_=l and a+,a_=l since the deviations from
those values are of second order in (AT/Tn).

Sufficiently far from the bubble, the medium.ﬁas not yet been
affected by the transition and it can still be considered as being
at a temperature of approximately Tn and expanding according to
the relation for a FRW universe in the quark phase. Here we have
implicitly assumed that the time interval necessary for producing
the temperature difference AT is much smaller than the Hubble time

1

t{%f Material is reheated and accelerated at the transition

front from which outgoing compression waves are propagated, but on
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the other hand, since the medium sufficiently far from the bubble
i; unperturbed and homogeneous there should be no incoming waves.
This can be convenientely expressed in erms of characteristics. As
discussed in chapter III, the hyperbolic system of fluid equations

may be written in the characteristic form

a2 az
liat + AiliEZ + liC =0 (5.36)

and Hedstrom (1979) has proved that when such a system is

homogeneous (C=0) the condition for a pure outgoing flow is

3z
15, = © (5.37)

for each incoming characteristic curve Ai=dp/dt. However C=0 in
the present case. Thompson (1987) attempted to extend Hedstrom's

result to inhomogeneous systems and his argument proceeds as

follows. If it is possible to define a function V such that
dv, = 1.dZ + 1._Cdt . (5.38)
i i i

then the system (5.36) becomes

BVi 6Vi :
—a-?-‘./\iW:O (5.39)

which is a set of wave equations for waves with characteristic
velocities Ai. Each wave amplitude V_l is constant along the curve
Ci' in the pt plane, defined by dp/dt=Ai. The condition that

there are no incoming waves is then expressed by

av,
=0 (5.40)
or
az
152 +1.0=0 (5.41)
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for disturbances along the incoming characteristic curves. The
problem with this argument is that in general it is not possible
to make the definition (5.38) except in the trivial cases where
either A and C are constant everywhere or, alternatively, there
are no more than two differentials appearing on the right hand
side of (5.38). Failing this, the coefficients in (5.38) would
have to satisfy Pfaff's condition for the integrability of
differential forms in order for the function V to exist but this
condition is not met for the fluid equations (see Whitham (1974)).
However this fact did not deter Thompson from applying the
prescription (5.41) to non-homogeneous systems and, despite the
lack of mathematical rigor, it turns out to be surprisingly
successful in obtaining the desired objective. We have therefore
used it in the absence of anything better, but note that further
mathematical investigation would be desirable.

Applying conditions (5.41) to the backward characteristic
(see equation (3.50)) we obtain the following relationship between

the spatial derivatives of u and e

u = e 4 (5.42)

When we introduce the initial perturbation we impose condition
(5.42) throughout the whole quark phase.

The velocity field is determined on the basis of the
following considerations. For small perturbations, the quark
medium remains almost incompressible. From equation (5.9) which

can be written as

— =5 (5.43)

we see that p = 0 corresponds to a solenoidal velocity field
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uR2 = constant = u+R§ (5.44)

Differentiating equation (5.44) with respect to g and combining it

with (5.42) we obtain

e# 2u+R§RN
= - = (5.45)
(e+p) ch R3

Equation (5.39) can be integrated between Rs and R » Rs' At the

first order in AT+/Tn we obtain a relation between e and u (taking

I'=1)
eq+p Rs 2
- = —= 5.46
e eq A u g (5.46)
s
At first order in (AT/T) the p equation (5.2) becomes
e-e
p = p { 1+ —3 ] (5.47)
q eq+pq

By substituing equation (5.46) into equation (5.47) one gets
u R

2
p=p |1+ Ei = (5.48)
! S

which shows that the assumption of a solenoidal velocity field is
approximately correct as long as the fluid Mach number is small,
(u+/cs)< 1.

Relations (5.46) and (5.47) are used both just ahead of the
interface and throughout the quark phase. Finally the metric
function a is computed by equation (5.16).

Inside the bubble the temperature is assumed constant -and
this is justified by the fact that the small bubble dimensions
allow rapid thermalization of the hadron phase. The advective
characteristic is used to calculate p everywhere except just
behind the interface (i.e. an expression is used which is similar

to equation (5.47) but with eq and pq being replaced by N and




ph). However, p 1is calculated by using the junction conditions
since this refers to material transformed into the new phase after
nucleation. We know that the phase transformation 1is not an
adiabatic process and therefore we have to take into account
entropy production mechanisms.

The relation between a, and a 1is obtained by combining

equations (5.12) and (5.13) to give

b2b2
2 +s 1
x -1 = 5 [72 - l] (5.49)
a, 7 X
where x=a_/a+ and n = (e‘+p_)/(e++p+). For (AT/Tn) < 1 we can

approximate equation (5.49) by
1.2-2,-2
a = a+[ 1+ 3 b+/.ts(r) -1)] (5.50)
and then p 1is given by
p=p,Xn7 (5.51)

The values used for u inside the bubble are found by linear
interpolation in p between the centre, where the fluid is at rest,
and the interface where it moves with velocity u .

I' is computed everywhere by the approximate expression
1
r=1+ 3 u (5.52)

and m and R are given by equation (5.5) and (5.6) respectively

with the boundary conditions

m= 0 R=20 at the centre
' (5.53)

- 2 .
m =m -+ AnRsa at the interface

In summary, once we have chosen the initial temperature
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pertubations AT+ and AT at the interface and calculated the
corresponding value for the energy density and the pressure in the
two phases we can compute ARS and ﬂs by (5.33) and (5.34)
respectively. Then we compute Py by (5.47), a, by (5.16), the a
ratio by (5.50), u, by (5.46) and u_ by (5.35). The specification
of the state of the hadron phase is then completed by using the
hypothesis of constant temperature and the interpolation in the
velocity field. Ap is fixed in such a way that the interface
coincides with a zone boundary. Next m, is calculated from (5.53)
and then the set of equations (5.44), (5.45), (5.47), (5.52),
(5.5) and (5.16) provide the complete description of the quark
phase.

The approximations made in specifying the initial conditions
are such that the code needs some time for relaxing the system to
a fully consistent solution. For this reason it is important to
introduce only a small perturbation so that the relaxation
phenomena occur well before the interface motion starts to become

relativistic.

5.3 Numerical integration scheme.

5.3.1 General considerations.

The method used for integrating the hydrodynamical equations
in the two bulk phases is a standard explicit two-step
finite-difference scheme (Potter (1973), Richtmyer and Morton
(1967), May and White (1968)) which we have modified in the zones
near the interface for implementing the solution of the junction

conditions. The time and space centring of the various quantities
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is the following:

i) The quantities e, p, p, w and ' are calculated at the full time
step and at mid zones.

ii) R and the mass function m are calculated at the full time step
and zone boundaries.

iii) The metric function a is calculated at the full time step and
both at the zone boundaries and at the mid zones.

iv) The fluid velocity u is calculated at the half time step and
at the zone boundaries.

v) The artificial viscosity 1is calculated at the half time step
and mid zones.

Temporary auxiliary values of the various quantities necessary for
correctly centring the equations are obtained by extrapolation or
interpolation. However the choice of points for calculating the
different variables is such as to limit the necessity of auxiliary
steps. Figure 2 shows which lattice points are used in the time
integration of mid-zone quantities (straight line) and of the

velocity (dashed line).

~ n+1
t

=
@

®
t

Fig. 2. Two step finite difference scheme.

The time step At is adjusted after each cycle so that it

satisfies the relativistic generalization of the Courant condition
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for numerical stability:
2
At = kAp/4nR pac (5.54)

where k is a number less than 1 (for which we take the value 0.2).
The time step is further limited so that changes in e and p are
restricted to 2% per cycle. This condition may be relaxed to 10%
per cycle if a strong shock is present.

Note that for a deflagration front, which moves subsonically
relative to the medium ahead, the Courant condition prevents the
interface from crossing more than one zone in a cycle. Actually,
by fixing k=0.2, the discontinuity moves forward by less than one
fifth of a zone per cycle and this is important for the way in
which we perform the solution.

At the centre the boundary conditions are:
=0 =0 =0 (5.55)

The outer boundary conditions (at j=jG) are discussed in the next
section together with the zone adding procedure.
The integration of the set of hydrodynamical equations plus

junction conditions proceeds in the following way:

a) R, e and p are evolved in each phase; in the hadron phase these
quantities are evaluated from the centre (u=0) up to the grid
point (js-l) and in the quark phase from the grid point (js+1) up
to the outer boundary of the grid.

b) The m equation is integrated only up to (js-l) in the hadron
phase since for completing the calculation in the quark phase we
need to solve the interface equations.

c) The a equation is integrated only in the quark phase since its
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boundary condition is at « and we need, as for m, to solve the
interface equations before completing its calculation on the time
slice.

d) Then we solve the interface equations, calculating the
interface position and velocity, RS, and the values of e, p, p, u
and I' immediately on either side.

e) Values of quantities at intermidiate points are found by
interpolation.

f) Next we complete the integration for a (in the hadron phase)
and for m (in the quark phase).

e) The velocity is calculated at the next time level.

f) Finally the time step is set for the next time cycle.
5.3.2 Boundary conditions and regridding procedure.

The choice of uniform zoning, made for reducing truncation
errors, has as a major consequence the necessity of dealing with
time varying boundary conditions. The zone width is set in order
to have a satisfactory description of the bubble interior while
the total number of zones' is mainly limited by computational
constraints. However, since the Mach number of the interface
relative to the medium ahead is very small, at least in the first
stages of bubble growth, disturbances moving with the sound speed
relative to the fluid are continuously travelling outside the
region in which the numerical calculation is performed. As the
bubble grows, the grid needs to be extended to a larger region and
this requires the adding of new zones at the grid boundary. This
procedure cannot continue indefinitely and the region covered by

the numerical computation has to be periodically regridded in



order to keep the number of grid points reasonable.

As the system evolves, the conditions near the outer boundary
of the grid change and so in order to give suitable boundary
conditions one needs to make some extrapolation from the computed
values (see Roache (1976)). In particular, one needs to supply
boundary values for the metric functionr a and the velocity u. At
infinity a is set equal to unity and its value at jG+1/2 can then
be calculated wusing the integral expression (5.16) with
extrapolated values for e (which also gives p) and p. Then the
value of a at jG can be obtained by space averaging the
slowly-varying quantity (aw) Dbetween jG_l/2 and jG+1/2' The
integral expression (5.16) holds only for a strictly adiabatic
motion and therefore it cannot be applied within the grid since an
artificial bulk viscosity has been introduced as part of the
numerical scheme.

The calculation of the velocity u at the boundary presents a
problem because it is not more possible to correctly centre
equation (5.9). However, it has been observed that p is almost
constant in the quark phase and, as previously mentioned, it
follows from this that the velocity field 1is approximately
solenoidal (see also Bachelor (1967)). It is then convenient to
calculate u at jG by extrapolating (uRz) which is a slowly wvarying
quantity. After many experiments with extrapolation techniqués,
it seems best in this case to make the extrapolation using an
exponential least square fit, while the extrapolation of e and p
is performed by wusing a linear 1least squares fit. Direct
extrapolation suffers from the disadvantage of tending to amplify
small oscillations whereas least squares extrapolation does the

reverse. Making numerical least squares fits at each time-step
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would be very computationally expensive but fortunately it is
possible to make fits analytically (see Press et al. (1986)) and
then use these to derive very simple extrapolation formulae.
Fitting a linear function to the last four computed points within

the grid gives the formula

1
Y66 = 2 (ZyJG—1+yJG~2—yJG-;) (5.53)
while fitting an exponentional gives
_ Yi6-2 172 (5.56)
Y56 = Yie-1 | ¥ ‘
JG-4

The expomential has the advantage for some applications of giving
a negative but increasing gradient without the danger of
introducing a minimum.

The method used for assigning values to new zones as they are
added, closely follows that for the calculation of a and u at the
boundary. The quantities e, p and T are extrapolated using a
linear least squares fit, a , R and m are calculated using
equations (5.16), (5.6) and (5.5) and u is obtained by exponential
least squares extrapolation of uRz.

At present, the computétion is started with 75 grid zomes,
five of which are contained within the hadron bubble. When the
interface has crossed 10 zones the regridding procedure is applied
with a grid expansion factor equal to three, (i.e. the width cf a
new zone is three times the previous width - see Figure 3). Then,
as the bubble expands further a new zone is added at the outer
grid boundary .each time the interface crosses one fifth of a zone.
When the total number of zones 1is again equal to 75, the
regridding 1is repeated. For avoiding instabilities due to an

over-rapid variation of the time step following regridding, an

123



extra condition is imposed in setting the time step which limits
its variation to a maximum of 20% in any cycle.
The criterion used for specifying the various quantities on

the new grid is the following

* x x x old grid

¥ * new grid

Fig. 3. Regridding

(1) quantities defined at the grid points (such as a, R, m, u) are
set equal to the value at the corresponding grid point of the old
grid;

(ii) quantities defined in the mid zones are then specified

consistently with the constraint equations (5.4)-(5.6).

5.3.3 Results and discussion.

There are many experiments which it would be nice to make
with the code and also a number of ways in which it could be
extended. These things will be the subject of future work.
However, the results that have been obtained so far, already show
some very interesting consequences.

Figures 4 and 5 show results for a nucleation temperature
Tn=0.98TC with two different wvalues of the accommodation
coefficient, a=1 and a=0.6 respectively. The quantities plotted
in each case are the radial component u of the fluid
four-velocity, the energy density e and the compression factor p.
The fm is used here as the fundamental unit. The curve labelled

with O shows initial wvalues and the other curves show results at
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Fig. 4. Plots of the velocity u, energy density e and compression
factor p against the Lagrangian coordinate L. The value of « is
set equal to one. All of the quantities are measured using the

fm as the fundamental unit.
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Table 1

curve

label ! 2 3
¢ .00 1.75x10° 2.75%10° 3.61x10°
R_ .98 14.42 23 .42 36.50
T /T .982 0.984 0.985 0.986
T_/T .980 0.924 0.888 0.833
u, _46x107° 5.43x1072 1.04x107 " 2.06x10" "
u .09x107> 4.55x107% 1.25x1072 3.45x1072
M .ogxm'4 5.82x10 > 8.98x10 > 1.29x1072
Table 2
a=0.
Label : : :
t .00 1.84x10° 2.85x10° 3.72x10°
R_ .98 16.17 25.29 40.94
T /T 982 0.982 0.983 0.983
T_/T .980 0.887 0.833 0.758
u, 46x107° 6.08x10"2 1.21x10" % 2.50x10° 1
u 64x107° 7.72x10" 2.01x10"° 5.45%x10"
M .25x10”% 5.26x107> 7.64x10"> 1.02x10 "2

127



successive regriddings up cto the third.

Let us first examine the curves for the energy density and
the compression factor. It can be seen that in the quark phase
the values of these quantities change only slightly as the system
evolves and that the reheating and compression resulting from the
phase transformation are less than 1%. Inside the bubble, the
consequences of the transition are more evident and the decrease
in temperature in the hadron phase is greater than 10% during the
inFerval considered. This was, in a certain sense, already
anticipated by the relation between the temperatures in the two
phases found for a plane deflagration front (see Section 4.3),
although some care is required in comparing the results obtained
in the two cases particularly as those in the spherical case refer
to a period in which the effect of surface tension is important.
Surface forces act in the direction of increasing the effective
pressure pushing inwards on the interior of the bubble which
mimics the effect of a higher temperature in the quark phase.

The bulk velocity is increased by two orders of magnitude in

the quark phase and by more than one order of magnitude in the

hadron phase. It is important to mnotice that, in disagreement
with some  previous literature (Gyulassy et al. (1984},
Kurki-Suonio (1985), etc.), there 1is no evidence of shock

formation ahead of the deflagration front. Two factors which may
contribute to this are the geometrical (l/Rz) fall-off factor and
the very relativistic sound speed. Another point on which these
results are in disagreement with assumptions in the previous
liﬁerature concerns the velocity field inside the bubble. We have
already mentioned that the extra condition required for a

deflagration solution has sometimes been fixed by taking the



hadronic medium to be at rest inside the bubble. Here, we can see
that the medium inside is, in fact, expanding. Its velocity is
lower than that of the fluid ahead of the interface but it is far
from vanishing. We can see that most of the latent heat liberated
by the transition is going into bulk kinetic energy rather than
into thermal energy.

Tables 1 and 2 show comparative results for interface
quantities in the two cases. While the effects of changing a are
cowplicatedly non-linear, they may be understood as follows. A
lowerlﬂvalue for « implies that, for a given temperature
difference, there is a lower energy flux. The smaller energy flux
tends to give a lower temperature inside the bubble which produces
a bigger temperature difference between the phases leading, in
turn, to an increased energy flux. The self-consistent balance of
these effects produces greater cooling of the hadron medium and
higher expansion velocities although tﬁe Mach number (M) 1is
reduced.

Twé particularly important points for further work will be
the extension of the present computation to include long-range
radiative processes and enlargement of the region covered by the
computational grid. Although the effect of electromagnetic and
weak interactions does not influence bubble dynamics significantly
at the present stage of the computation, it will no longer be
possible to neglect electromagnetically interacting particles when
the bubble radius has grown to order 103 fm. Neutrino transport,
however, becomes significantly only at much larger distances.
Although the characteristic method is related to the hyperbolic
nature of the equations, it is nevertheless possible to extend it

to cases including radiation and viscosity.
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Enlarging the region covered by the grid would provide
interesting information on how the 1large scale bulk motion
produced by the transition process influences the medium between
expanding bubbles. In particular, it should be possible to say
whether the occurrence of a shock ahead of the deflagration front
can be completely ruled out. It has been expected that any shock
would initially form near to the bubble surface and therefore
would be seen in the present computation but this could be wrong.
Another reason for wanting to move the outer grid boundary far
from the bubble surface is to improve the problems connected with
having time varying boundary conditions.

For making the enlargement, it is not a good idea simply to
add further zones of equal width to the present grid because it
would not be possible to increase the region covered very much in
this way without prohibitive computational expense. One
possibility would be to add zones of exponentially increasing
width in to the edge of the present uniform grid in such a way
that the join was made smoothly. If each successive new zone were
20% wider than the previous one and 75 new zones were added to the
edge of uniform grid also of 75 zones, the region covered would be
increased by a factor of 5.8X104. A drawback of this method is
that truncation errors are increased by using a variable mesh size
but since the flow is expected to be quite smooth far from the
bubble, this may not be a serious difficulty. An alternative
would be to use log p as the independent variable and then to have
a mesh uniform in this new coordinate. It will be necessary to

experiment in order to find the best solution.
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CHAPTER VI
THE ROLE OF NEUTRINO CONDUCTION DURING THE TRANSITION

In the ©previous <chapter the hydrodynamics of the
quark-hadron transition was studied neglecting thermal conduction
and dissipative mechanisms. . However, in addition to strongly
interacting matter there are also photons and light leptons (ue,

+ +
uy, v e, p ) present in each phase and they could play an
important rdéle in determining how the transition proceeds.
Electromagnetic interactions can  thermalise the strongly
interacting particles with the photons and charged leptons on
scales greater then 103 fm which 1is larger than the strong
interaction length scale but much smaller than the mean-free-path
for neutrinos which only interact weakly with the other particles
( AU ~ lcm(l&O/TC)S). For bubbles having radii large compared
with 103 fm the strong and electromagnetically interacting
components can be taken to behave as a fluid with the neutrinos
‘providing a longer range heat conduction mechanism.

If neutrino conduction were to dominate over
hydrodynamical flow, this could cause a concentration of baryon
number within shrinking quark regions at the end of the
transition, as first pointed out by Witten (1984). Both neutrino
conduction and hydrodynamical flow carry energy out of the quark
phase but baryon number can only be carried along with the
hydrodynamical flow.

In a subsequent paper, Applegate and Hogan (1985) presented a

more detailed analysis of flow across a phase interface and

131



reached the conclusion that if the temperature difference between
the two phases (AT) remains small then the ratio of the neutrino
energy flux (Fy) to the hydrodynamical energy flux (Fa) is
proportional to (AT/TC)l/Z. It follows that the hydrodynamic flux
would then dominate wunless either AT became large or the
hydrodynamical flow were strongly suppressed for some reason. The
secend possibility (which they considered unlikely) corresponds to
the transition having a very small accommodation coefficient «
(see section 4.3.1). Using FV/FH as a parameter, they then gave a
detailed discussion of baryon concentration. However their
analysis was based on fixing the temperature of the quark phase
equal to Tc as the extra condition needed for a deflagration
solution.

The plan in this chapter 1is to discuss the relative
importance of hydrodynamic and neutrino flow and to present a
revised analysis of baryon concentration at the transition. Then
we present an analysis of how the transition would have proceeded
on a large scale if the hydrodynamical flow was strongly supressed
and the evolution of the transition was controlled by neutrino

conduction.

6.1 Neutrino flow and baryon concentration.
6.1.1 Ratio between the energy fluxes of hydrodynamical flow and

neutrino flow.

In Chapters 1III and V, only hydrodynamical flow was
considered in the evolution equations for the bubble growth.
Particles having a long mean-free-path provide an energy

conduction mechanism and act in the sense of tending to smooth
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discontinuities (see Mihalas and Mihalas (1984)). However, the
underlying structure of the solution is not expected to be greatly
changed and, in particular, it continues to be necessary to supply

an additional expression for F,, as long as the transition front

H
remains subsonic. We have already suggested in Section 4.3 that
for a deflagration, in which the development of the hydrodynamical
flow is regulated by the details of the transformation process, it

is a reasonable approximation to set the hydrodynamical energy

flux equal to the corrected net themal flux:

2
Fo=—ag [%} (T:- Tﬁ} (6.1)
Some care is needed over specification of the factor &, which
represents the total number of degrees of freedom for particles
which are in thermal equilibrium in the hadron phase within the
length scale under consideration. In the first stages of growth
of a bubble when 1its radius is much smaller than the
electromagnetic interaction length scale Aem’ the fluid equations
refer only to the strongly interacting components. However, when
the bubble size is much greater than Aem’ we can consider charged
leptons and photons as being in thermal equilibrium with strongly

interacting matter and in this case gy in equation (6.1) refers to

the total degeneracy number for the strongly and
electromagnetically interacting particles. The interval in which
r~Aem requires some care, but we can reasonably expect that the

effect of charged leptons and photons is of slowing down the
interface velocity and smoothing out structures formed in the
previous evolution.

In this chapter we will consider the epoch in which neutrino
transport is also important, namely for r > AV. At this stage the

fluid description 1is appropriate for all particles except
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neutrinos since X » X .
v em

A temperature difference AT between the two phases causes an

energy flux carried by neutrinos given by :

2
1 T 4 4
f, - 1s [5) [ ) (6.2
where g, is the degeneracy factor for neutrinos. In this case T

and Th have to be thought of as mean temperatures in each phase
over a distance of the order of the neutrino mean-free-path. If
each phase is at roughly uniform temperature then the ratio

between the neutrino and hydrodynamical energy fluxes is given by:

F/F =g /(ag) (6.3)

and we can see that the remaining temperature dependence is
through the « and & terms. 1In &y the dependence on temperature
comes from considering the finite mass of the hadronic particles
and the more important finite volume corrections. Both of these
effects, but in particular the second one, imply a higher wvalue
for FV/FH. The maximum value that o can take is unity which
corresponds to a hydrodynamical flux equal to the net thermal
flux. Considering only pions in the hadron phase and neglecting
mass and volume effects we obtain a rough lower limit for the
energy flux ratio of ~ 0.44. Therefore, as long as the bubble
radius 1is larger than the neutrino mean-free-path, neutrino flow
and hydrodynamical flow are comparable and the first might become
the dominant mechanism of energy transfer if the nature of the
emission process from the interface determines that o is small.
It is interesting to note that this result is in agreement with
that suggested by Witten on the basis of a rather conceptual
argument but fundamentally disagrees with the subsequent more

sophisticated analysis by Applegate and Hogan.
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6.1.2 Change in the entropy per baryon.

Now we examine how the previous results change the predicted

distribution of entropy per baryon S, in the last part of the

b
transition during the shrinking of disconnected quark bubbles. We
consider the scenario in which the transition occurs under
conditions of quasi equilibrium between the two phases. In this
case baryons are likely to have already been concentrated in the
quark phase in the first part of the transition. The condition of
chemical equilibrium between the two phases favours baryons
staying in the quark phase as there baryon number is carried by
almost zero mass particles while, in the hadron phase, it is
carried by massive particles (mainly protons and neutrons - Witten
(1984), Bonometto et al. (1985)). It seems that about 99% of the
total baryon number would be contained within the quark phase at
the time when it becomes disconnected. As a quark bubble
evaporates and shrinks, it loses both entropy and baryon number
and if the entropy per baryon of the remaining material decreases
then the remaining baryon number will become progressively more
concentrated. We will now analyse the way in which entropy and
baryon number leave the bubble, using always quantities in the
quark phase unless otherwise stated.

The entropy flux ¢5 leaving the quark phase, as measured in

the rest frame of the interface, is given by
¢S = yVs (6.4)

where s 1s here the entropy density; v is the velocity relative to

the interface and 7=(l-v2)-1/2. If we express ¢S in terms of the
energy flux, which is
2 p
F = (etp)y'v (6.5)
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we have

é = s (6.6)

s vy(etp)

This relation holds both for neutrinos (v) and for the particle
components carried along with the hydrodynamical flow (H).

- Analogously, if baryon number is taken to be strictly carried
along with the hydrodynamical flow, then the baryon number flux ¢b

can be expressed in terms of the hydrodynamical energy flux:

b

CRENCE N -

where b is the baryon number density.
The relative variation of the total entropy S within the
bubble compared with the relative variation of the total baryon

number B contained within the bubble is given by:

ds _ b (¢S)H+(¢S)U (6.8)
dB s +s
B v b

wnlw

Therefore the variation of the entropy per baryon Sb (=S/B) with
respect to the fraction N (=B/BO) of the initial baryon number Bo
which is still contained within the contracting bubble is given by

d lnSb _
d 1nN S dB

I I e N 1 (6.9)
s ts, 7V(e+p)V FH

This expression does not reduce to the one given by Applegate and
Hogan. From equation (6.9) we can immediately see that there

would be no baryon concentration if

F v (e+p)
FV - vu(e+p)y (6.10)
q q q

Neglecting deviations of the y-factors away from unity, taking the
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neutrino temperature equal to that of the quark fluid and using
the bag model equation of state and expression (6.3) for the flux
ratio, equation (6.4) can be rewritten as

d lnSb g

v o1
d InN ¢ +g o
q q v

o

(6.11)

L
}——3

Since gq > and « =< 1, it follows that some baryon

&h
concentration is a generic feature of the transition according to
this picture, with the concentration becoming greater as o is
reduced. As an example, if we consider two cases of shrinking
bubbles with e=1 and a=10_1 and choose as initial entropy per
baryon Si=1010; for the final remaining 10% of the material, Sb is
reduced by factors of two and lO4 respectively. The temperature
differences between the two phases do not influence these results
and the only further condition which we have introduced is that r
remains greater than AV up to the end point of the calculation.
We can also notice that the inclusion of a finit¢ volume
correction in the equation of state for the hadrons acts in the
same direction as smaller o values.

While the reductions in Sb suggested here are not as large as
some which have been claimed in the literature, they might
nevertheless have some 1interesting consequences. Also, the
picture used here is a very simple one and a more sophisticated

treatment of phase transformation at the interface might perhaps

lead to greater reductions.
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6.2 Progress of the transition if neutrino flow is dominant.

6.2.1 Basic equations

We consider here the picture in which the hydrodynamical flux
is negligible (a~0) and the energy flux between the two phases 1is
dominated by neutrino conduction (Bonometto and Pantano (1987)).
All components apart from the neutrinos are taken to be in thermal
equilibrium within their respective phases. This analysis does
not apply to the initial stages of the transition when surface
tension is important or to the final stages where surface tension
is again important and the effect of baryon concentration needs to
be included in the equation of state. If the average distance
between the bubble "centres" § is much smaller than AV, it is a
fair approximation to assume a homogeneous distribution of
neutrinos described in terms of a constant temperature TU.

In the case in which there is no hydrodynamical flux across

the interface we have from equation (4.19)
P (T = Pp(Ty) . (6.12)

At temperatures below TC, this implies Tq > Th. Radiative

effects, such as neutrino conduction, tend to eliminate the
difference in temperature; however, this causes a higher pressure
in the hadron phase which tends to make it expand producing again
Tq > Th. The two phases could coexist in thermal and mechanical
equilibrium only for Tq = Th = TC but the general expansion of the
universe acts in the direction of decreasing the temperature and
perturbing this equilibrium.

We want to calculate the time dependence of the scale factor

(a), the fraction of the total volume occupied by the quark phase

(y) and the temperatures Tq’ T

and T . We will denote by V _, V
h v q

h
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and Vu the volumes occupied by the various components within a
given large volume Vtot (the subscripts q and h refer, as usual,
to the components in thermal equilibrium within the quark and
hadron phases while v refers to neutrinos). Clearly Vy= vtot'
Provided that the initial bubble nucleation is such that § < CH,

and that local motions are negligible, we can define a mean energy

density e over scales large compared with §
e = eh(Th)(Vh/Vtot) + eq(Tq)(Vq/Vtot) + eU(TV) (6.13)

and an averaged scale factor a can be calculated from the

Friedmann equation

. \2
{—3—} -3 (6.14)

s - G Lo (6.15)

where p (=pq<h)+py in the quark(hadron) phase) 1is constant
everywhere because of the condition (6.12). Equation (6.15) is

equivalent to

- d d
. ) [(ei+pi)az Vi + Vi T ei] =0 (6.16)
i=h,q,V

Assuming that neutrino conduction 1is the only mechanism for

entropy transfer, the energy balance in each phase is given by

\Y
: 9 _
+ + = -(T -T N 6.17
et (2P 7, (T,-T,) N (6.17)
eh+ (eh+ph) ﬁ; = -(Th-TU) Nh (6.18)

where the dot indicates a time derivative and

2
N = f Gw (4/3)eu(eq

a.h = fgon v Pq, 1) (6.19)

3
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is the average number of v-collisions per unit volume and time in
the quark and hadron regions. The factors fq,hzl take account of
the different relations between energy density and number density
in the two phases and of the fact that the average energy transfer
per collision is not simply given by the temperature difference.

2 22

G; (=1.3x10" MeV‘A) is the weak interaction comnstant.

6.2.2. Expansion law and temperature behaviour.

The large scale behaviour of the transition is then
calculated by solving the system of equations (6.12), (&8.15),
(6.16)-(6.18). It is convenient to introduce the quantities
E=eT.br and ¢=pT_4. For the hadron phase the equation of state

used is

2
T
Eh = 3¢h = {gaJ[gr + 3frid] (6.20)

- where 8, is the degeneracy factor for the photons and charged

leptons, which are in equilibrium with each phase, and 3frid

is
the effective number of degrees of freedom for the strongly
interacting component. The degeneracy factor for pions is equal

to 3 and £ .
r

id (set equal to 0.1 here) takes account of finite mass

and volume effects. Taking Eh/¢h=constant seems reasonable since
photons and charged leptons give the dominant contribution to the
ey and Py -

For the quark phase we use an equation of state given by
%2 KZ - Tr n
g~ (5] &+ (5] et - () ] -2

7r2 ﬂ2 r Tr n
%y~ [55) 5+ ) sl - 02 0[5 | (6.2

where g(q) is the degeneracy factor for the quark-gluon component,
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n is an adjustable parameter and T _ = Tc(l~3f This

rid/8(q))

equation of state is based on a phenomenoclogical model proposed by

Bonometto and Sokolowsky (1985) in order to give a suitable

analytic expression for fitting 1lattice data. The case n=4
corresponds to the bag model with bag constant (ﬂz/QO)g(q)TZ. For

these calculations, three quark flavours were included giving g(q)
= 47.5. The values of the time and scale factor at the beginning
of the transition are denoted by = and a; respectively and it is

convenient to write the temperatures in terms of their relative

variations from TC as follows

h = (6.23)

By using relations (6.20)-(6.23) the Friedmann equation (6.14) can
be rewritten as
1/2
, 4 4 4 4
a'=Ta {Eu(l+u) +E, (1+h) +{Eq[l+q) -E, (1+h) }y (6.24)
where the prime indicates a derivative with respect to (t/tl) and

T' is given by
r = (87r/3)l/2 (tl/tpl) (6.25)

where tpl is the Planck time. In order to obtain a differential

equation for the volume fraction occupied by the quark phase, we
rewrite equation (6.15) in the following way:
- a ég 2 4
= 3 = + - -
y =y [ + Gw(Tq T, )fq 3 pu] (6.26)

a e +
q P

Changing the independent variable to (t/tl) and using definitions

(6.23) we have

, ' h' 4 4
ny'= 3y [ ng + nF (D) gy (q-u]fq 3 E, (1+/) ] (6.27)

where n is defined by



& - -
7 =30 /e) (/62T = 3x107 (m /7 )% (8.3x10 s e))  (6.28)

AC is the Compton wavelength corresponding to Tc and (using

equation (6.12)) F(h) {m %71 is given by

F(h) ?dqu_—TI:L (6.29)

fal

The differential expression for TV is derived by combining

equation (6.16) with equations (6.17) and (6.18) giving

. a 2 4
e = - 3(eu+pu) 2 + GW[Tq—TU)(eq+pq)§ fey

v q v

2 3 4 p
- CW[TU-ThJ(eh+ph)3 fe (1-y) (6.30)
and then, after some manipulations,

nv'= -(1+v) [ ngl- <l+q)4yfq<Eq+¢q>(q-V) *

(1+h>4<1—y)fh(gh+¢h>(u-h)] (6.31)

Th and Tq are related by equation (6.12) and so we only need a
differential equation for one of them. Summing equations (6.17)

and (6.18) we get

33+ {dph T () +’“ﬂ } *
h "h q q
fe g2 |(x.-t)Ey -(T -T)E (1-py| = 0 (6.32)
3vw q v qy v "g’h Y| = )

Expressing Tq in terms of Th in this equation, one can obtain,

after several steps,
(l+h){ n -5 E (1+) [ yfq[q-u) + (1-y)fh(h-u)]}/
{(l-y) + F(h)y} (6.33)
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The complete system of differential equations for this problem is
then given by equations (6.24) for a, (6.27) for y, (6.31) for v
and (6.33) for h. The quantity q can be calculated by using the
pressure balance equation (6.12). An analysis of this set of
differential equations shows that it is possible to obtain from it
a well-approximated analytical solution in spite of the
non-linearity. In fact, from equation (6.33) we see that q, h and
v ought to be of the same order as n (see equation (6.28)) and
therefore the left hand side is negligible provided that neither y

nor (l-y) are less than n. Then, to lowest order, we have

Wty (a-v) = - yE (0] - n(a'/a)/(E +4) (6.34)

On the basis of similar arguments and using equation (6.34),

equation (6.31) yields

yfq(q—v) = n (a'/a)B (6.35)

with

B = _ (6.36)

Substituing equation (6.35) into (6.27), one obtains a relation

between y’ and a' which can be integrated giving
3
y = (1+B) (a;/a)” -B (6.37)

Using expression (6.37) in (6.34), the a equation (6.24) can also

be integrated and this gives

R (t-t,)

3
[—;—] = Usinz[(6ﬁ¢c)1/2(Tc/mpl)-—le— + arcsin{U—l/z)] (6.38)

1
with U=[1+(Eq+EU)/(¢q+¢U)] and ¢C being the pressure at the
critical temperature TC. This expression is the same as that for

a phase transition taking place exactly at TC {(Bonometto and
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Matarrese (1983), Lodenquai and Dixit (1983)).

From equations (6.34), (6.35) and (6.12) one can finally

derive expressions for the temperatures which are

~
I

q Tc{1-4[ p+ry)] / [Ec,q/¢c’q-3]}

3
I

Tq - Tcﬂ(y)

T, - Tq - T e
where
T(y) = A (BB vy 48] /(£ Y)
p(y) = Al (B 8+ +6) / [£, (1-v)]
with
awy) -8 (2x/3) 2 (1 /m ) (G570) '%Eq-i;iijﬁu)

Log (A‘n/Tc)

E = Eh + Eu + (Eq-Eh) y

al | ) N

Log (AT, /T.)

Fig. 1. The temperature behaviour and the quark volume fraction y are
plotted. The ordinate scale refers only to the temperatures. Among the
three nearby curves, the upper and lower ones refer to the quark and
hadron phases respectively while the intermediate one gives the neutrino
temperature. The almost diagonal curve, ranging between 1 and 0, gives
the time dependence of y. The cases a) and b) refer to quark equations

of state with n = 4 and n = 2.7 respectively. T = 150 MeV is taken.
c
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The behaviour of the temperatures and of the volume fraction
occupied by the the quark phase 1s shown in Figure 1 for the two
cases n=4 and n=2.7. It can be seen that there is oniy a small
amount of supercooling (~10‘4) during most of the transition if
the flux of energy from the quark phase to the hadron phase is due
to the long range neutrino transport. Although this result holds
only in the absence of a hydrodynamical energy flux, it 1is
nevertheless a further indication that, contrary to the
conclusions of Applegate and Hogan, neutrino transport can be

important even in the case of small supercooling.
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CONCLUSION

In this thesis we have presented results from a detailed
study of some aspects of the cosmological quark-hadron transition.
As is often the case in astrophysics, this has involved the use of
a wide range of ideas and techniques drawn from various branches
of physiecs and mathematics. The transition 1is particularly
interesting becouse its consequences may well affect two of the
most important central questions of current work in cosmology:
the formation of pregalactic structure and the presence and
influence of dark matter. At present there are still considerable
uncertainties related to the behaviour of strongly interacting
matter during the confinement process but, nevrtheless we think
that it is worthwhile to explore the possible consequences of a
first order transition with a range of assumptions about the
relevant parameters. Much of the previous work in this area has
been of a very approximate and conceptual nature and, while this
is wvaluable in the early stages of development of a subject, at
some stage more detailed analysis 1s required. This 1is
particularly true of the hydrodynamical phenomena involved here -
and, in this thesis, we have tried to lay the basis for such a
detailed analysis.

A key point to emerge from this work is that the nature of
flow in the neighbourhoud of a deflagration front seems to be
different from what has been assumed in most of the previous

literature on the transition. Three particularly interesting
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consequences have emerged from the present study. Firstly,
neutrino flow may be relatively more important than had been
supposed, leading to a greater possibility of baryon concentration
and subsequent effects on nucleosynthesis. Secondly, most of the
energy liberated by the transition seems to go initially into bulk
kinetic energy of the quark medium rather than into thermal
energy. Contrary to previous statements in the literature, this
means that the temperature of the quark medium will not quickly
return to TC after bubble growth has commenced. Thirdly, there is
at present no evidence in our calculation for shock formatiocn
shead of the interface as has been widely assumed in the
literature. If a shock were to form, this would travel out ahead
of the phase interface and the first interaction between
neighbouring bubbles would be the meeting of the shocks. This
could produce a turbulent medium through which the interface would
"then propagate more slowly. High velocity bulk motion without
shock formation might well cause large hydrodynamical compression
of the medium between the bubbles leading to baryon concentration
or even formation of compact objects. This needs to be further

investigated.
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