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Chapter 1

Introduction

- In very recent times there has been a growing excitement both in string theory [1] and in
quantum field theory [2]. This arises from promising, and in some instances successful,
applications of “duality” properties, conceptually not too much different from the old
electro-magnetic duality of Maxwell theory. Evidences of relizations of these dualities,
that may shed light over classes of non-perturbative phenomena, are becoming stronger
and stronger.

Let us try to describe, in a very sketchy way, the situation as far as string theory is
concerned. Superstring represented, since the discovery of their consistency [3], the
most promising candidate to a unifying theory. On one hand they naturally accomodate
gravity; on the other hand they seem to have the possibility of originating a low-energy
theory with the correct phenomenological content.

The fact that superstrings are consistently defined in 10 space-time dimensions makes
it possible that, by a suitable compactification of the 6 extra dimensions, the resulting
D=4 low-energy theory be compatible with the structure of the elementary particle world.
From this point of view, the most favoured models are those (e.g. heterotic Eg x Eg com-
pactified on a Calabi—Yau manifold [4]) admitting, as low-energy effective field theories,
N=1, D=4 matter-coupled supergravities' with chiral families and with a gauge group
[G C Es in the Calabi-Yau case| that can reasonably be broken to some supersymmetric-
GUT gauge group.

The same freedom in constructing a D=4 theory, that happily allows to reproduce
phenomenologically reasonable theories, is on the other hand related to a serious draw-
back of superstring theory. These theories, whose aim is to represent a “unification”
of all the interactions, suffer from a lack of unicity. There are five distinct superstring
theories in D=10: type-I, type-IIA and IIB, heterotic Es x Fj and SO(32). Moreover,
there is a tremendous degeneracy of the possible vacua that these strings can choose to
compactify on.

In the following D always denotes the dimensionality of spacetime and N the number of space-tlme
supersymmetries of a certain string model.
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Beside this degeneracy problem (and not unrelatedly to it) superstring theories suffer
from the lack of a “fundamental” description; string theory is described as a set of rules for
building up a perturbative expansion in world-sheets of increasing genera; the string field
theory has proved so far elusive. As a consequence the consideration of non-perturbative
string effects is particularly difficult. In turn, any insight in non-perturbative stringy
phenomena may help in the formulation of a fundamental theory of strings.

Duality relations between different string models are emerging as a powerful tool to
reduce the number of truly inequivalent possible models, and also to treat the strong
coupling regime of certain models by mapping it to the weak coupling reg1me of other,
dual, models.

The first types of dualities to be realized were those known as “T-dualities”, that
substantially represent generalizations of the R «+ 1/R symmetry of the compactification
on a circle [5]. These dualities relate two different 2-dimensional field theories (typically
the o-models representing string propagation on two “dual” targets); the relation holds
between the exact quantum theories® and is thus non-perturbative from the world-shret
point of view. They however are valid order by order in the perturbative expansion in
the string coupling constant, that is at fixed world-sheet genus.

In recent years other dualities, known as “S-dualities” have come to attention [6]-
[15]. They act on the dilaton-axion field. The vacuum expectation value of the dilaton
is related to the string coupling constant; S-dualities, inverting it, constitute therefore
strong-weak coupling dualities. These duahtles holds non- perturbatlvely in the string
coupling constant, that is they hold only when the sum over genera is taken into account.
In some cases, these different dualities combine in more complicated patterns, such as
“U-dualities” [168]. Typically these dualities relate the strong coupling regime of a string
model to the weak coupling regime of another model. In string-string dualities, a model
admits non-singular (solitonic) solutions of the classical equations, that appear to be
singular in the dual model, where have to be included as fundamental states [17]-[21].

For instance, a dual pairing exists® between D=6 models obtained by heterotic com-
pactification on T, and type-IIA on K3 [168, 22]. By further toroidal compactification
to D=4, it emerges a triality between heterotic on Ts and type-IIA and B on K3 x T%
[23]-[25].

Other very interesting dual pairs are conjectured* to exist between heterotic models
compactified on K3 x T, and type-II models on Calabi~Yau , both being N=2, D=4 mod-
els [26]-[33]. The last part of this dissertation is related to this conjecture; in particular,
it is investigated from the point of view of the N=2 effective supergravity the “natural-
ness” of the description of the ezact moduli space for the heterotic models in terms of

*Including perturbative and non-perturbative corrections '

3In must be said that in practically all the cases S-dualitites are just conjectured, and not proven.
There are however evidences and tests, in some instances very convincing, and the self-consistency of
the picture that is emerging supports them

*For some pairs, there are in this setting impressive agreements between some exact results on the
type-II side and 1-loop string corrections on the heterotic side [169]-[35]




moduli spaces of Calabi-Yau manifolds, and some “algebric” constraints on these latters
are discussed. ,

Note to this purpose that S-dualities and in general string-string dualities are easier to
analyze for models exhibiting at least N=2 supersymmetry. The basic role of the extended
supersymmetries is that of providing non-renormalization theorems. These theorems are
in some cases sufficient to individuate quantities whose tree-level expression is exact.
Such quantities may be used to test the predictions of supposed dualities, as it is done
in particular for models with N=4 supersymmetry[57]-[59]. In N=2, D=4 heterotic-
typell duality the N=2 supersymmetry ensures the non-renormalization of the vector
couplings (but not of the hypermultiplet couplings) for the models arising from type-II
compactification on Calabi-Yau; the vice-versa is true for the heterotic models. The
supposed duality between a type-II and a heterotic model is therefore powerful enough,
thanks to N=2 supersymmetry, to determine the ezact couplings of both the hyper- and
vector multiplets [29].

The constraints due to the extended supersymmetry play thus a decisive role, both in
this stringy framework and in globally super-Yang Mills theories, as analyzed by Seiberg
and Witten. It is a major challenge to extend the beutiful results and duality relations
of the N>2 cases to at least the N=1 case, more realistic from the “phenomenological”
point of view. However in this thesis we never abandone the N>2 case.

What is rapidly emerging is a unique web of interconnections between all sort of mod-
els, including not only D< 10 superstring models, but also D=11 supergravity [22],[41]-
[47), supermebranes [48, 168], fivebranes [49, 21] and so on. On one hand, this dramaticaly
reduces the “vacuum degeneracy” problem by making plausible the existence of just one,
but huge, moduli space. On the other, it permits to reformulate strong coupling problems
in terms of weak coupling problems in some model (arising at some different point in the
moduli space) reached via a duality transformation.

Important progresses have recently been made also in four-dimensional quantum-field
theory, specifically concerning ezact results in supersymmetric gauge theories.

New and strong evidences have emerged that the N=4 super Yang-Mills (SYM) theory
realizes the Montonen-Olive conjecture [50]-[59]; it possesses an exact electro-magnetic
duality group SL(2,Z) acting on the complex combination S5 = Zé‘; + 2 of the gauge
coupling an theta-parameter. The strong coupling regime of the theory is mapped into the
weak coupling regime, provided magnetic and electrically charged states are interchanged.
This situation is possible due to the very strong constraints posed by N=4 supersymmetry,
that in particular forces the S-function to vanish.

N=2 SYM theory does not show an exact e.m. duality (for instance, the g function
is generically non-zero®). Nevertheless, non-perturbative exact results can be extracted
also in this case, and electro-magnetic duality is realized in a different fashion [60]-[68].

These theories have a manifold of inequivalent vacua (the moduli space). By utilizing

STheories with a suitable number of matter multiplets may make exceptions, e.g. this is the case of
SU(2) with N; = 4 matter hypermultiplets
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the geometrical constraints posed by N=2 supersymmetry on this space® and a deep phys-
ical insight, Seiberg and Witten were able to find out the ezact quantum expression of this
moduli space ([60] in pure gauge SU(2) theory, and in [61] adding matter multiplets).
The physical insight was that that the moduli space should contain non-perturbative
singularities related to particular monopole (and dyon) states becoming massless; equiv-
alently, this means that electromagnetic dualities are realized mapping the perturbative
singularity to the non-perturbative ones. Around these latter the effective theory is dif-
ferent from the original one, as it contains extra multiplets to accomodate the states
becoming massless.

In the last part of this thesis, some remarks about the Seiberg-Witten solution are
contained, mostly in order to detail how it suites the structure of rigid special geometry.
Later, comparison is made with the analogous process in the locally supersymmetric the-
ories, where special geometry is involved. In this case the exact moduli space for certain
N=4 D=2 models (originated, from the string point of view, by heterotic compactifi-
cation on K3 x T2), are suggested to be related to auxiliary Calabi-Yau manifolds, in
analogy to the Seiberg-Witten solution that expresses the exact moduli space in terms
of an auxiliary Riemann surface. This fact has been understood, as already said, as a
string-string duality between heterotic on K3 x T2 and type-II on Calabi-Yau , that has
been named “2"d-quantized mirror symmetry” [29].

Much work has been done also in N=1 SYM theories [2], and exact results have been
established. However, again this thesis is strictly confined to N> 2.

Contents of this dissertation

The above described scenarios in string theory and in supersymmetric Yang-Mills theories
are on the whole very recent, , and is rapidly evolving. Only the last part of the present
thesis (Chapters 6,7,8) is concerned with (or inspired by) related questions, such as the
quest for exact moduli spaces for certain N=2 D=4 supergravity models. It is mainly
based on the papers [69] and [30].

The previous part of the thesis is in a more “traditional” setting, and deals with topics
in D=2 field theories with N=2 and N=4 global supersymmetry. There is a superstring
inspiration, in that N=2 o-models may be used to describe the string compactification on
Calabi-Yau manifolds, and analogously N=4 o-models may be related the propagation
of the string on (non-compact) topologically non-trivial four-dimensional geometries and
in particular on gravitational instantons [72]-[76].

Already before the recent explosion of string-string dualities, a remarkable interplay
emerged between the geometry of Calabi-Yau manifolds and the structure of N=2 su-
persymmetric field theories. In particular in this context it was discovered the higly non-
trivial “mirror symmetry” [70]. This symmetry relates two different Calabi-Yau mani-
folds (whose numbers of harmonic forms of type (1,1) and (2,1) are interchanged) that

6This geometry is known as “rigid special geometry” [26] as it corresponds to the globally supersym-
metric version of the “special geometry” of supergravity models.




abstractly correspond to the same superconformal field theory (SCFT). The mirror sym-
metry permits to obtain non-perturbative’ results [71]. The ezact quantum moduli space
for the (1,1) forms on a Calabi-Yau space M (the classical result suffers from world-sheet
instanton corrections) is expressed in terms of the moduli space of (2,1)-forms (whose
classical expression is exact) of the mirror space M. This is much the same pattern
invoked by the string-string dualities.

More generally, there is a sort three-sided relation between N=2 ¢-models on Calabi-
Yau spaces, N=2 Landau-Ginzburg models and N=2 SCFT’s to which these models flow
in the infrared [77]-[82].

In [83] Witten constructed a N=2, D=2 model (containing Landau-Ginzburg multi-
plets coupled to gauge multiplets) such that its low-energy effective theory shows two
different ‘phases”. In one phase it looks like a o-model on a Calabi-Yau manifold, in the
other like a Landau-Ginzburg model. Smooth transition between the two phases, gov-
erned by certain parameters of the original lagrangian, is possible; and the construction
shows therefore the (quantum) equivalence of the two low-energy models. In Chapter 3
this construction is reviewed and then extended to to the case of N=4 supersymmetry. A
similar matter-coupled gauge model is constructed and its low-energy theory is investi-
gated. It is found that these N=4 models show just a single low-energy phase, a o-model
phase. The target manifold is described geometrically as the hyperKahler quotient of a
flat space.

This makes a very interesting connection with the problem of describing the string
propagation on gravitational instanton bakgrounds, as considered in Chapter 4. The
basic point is that, analogously to the abstract relation between N=2 o-models on Calabi-
Yau manifolds and ¢ = 9 N=2 SCFT’s, string propagation on gravitational instantons;
described by N=4 o-models, is abstactly associated to ¢ = 6 N=4 SCFT’s.

In Chapter 4 it is reviewed the construction of the most interesting class of gravita-
tional instantons [85, 87], the Asymptotically Locally euclidean (ALE) manifolds [86]-[93].
These manifolds admit a ADE classification terms of SU(2) Kleinian subgroups; there
is point in their moduli space in which they degenerate to a non-compact orbifold C/I
(where T is a Kleinian group). This allows to describe explicitely the N=4 SCFT asso-
ciated to an ALE manifold precisely in this limiting situation [94]®. The hard problem
is that of relating explicitely the deformations of this CFT to the geometry of ALE
manifolds outside their orbifold limiting case.

Kronheimer explicitely constructed [92, 93] the ALE manifolds in terms of hyperKahler
quotients of suitable flat spaces. In connection to what said before, this means that the
N=4 o-model on a ALE manifold can be alternatively described as the low-energy effec-
tive theory for a certain N=4 gauge + matter model, of the type described in Chapter 3.
In these models, the parameters of the hyperKahler quotient construction, i.e. the mod-
uli of the resulting ALE space, are explicitely exhibited as parameters in the lagrangian.

"In the world-sheet sense, i.e. for the o-model from a fixed-genus world-sheet
8In analogy for the fact the SCFT corresponding to Calabi~Yau manifolds in some spec1a1 points of
their moduli space are described by tensor products of N=2 minimal models
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Although the explicit map between these parameters and the deformation parameters of
the corresponding SCFT is not exhibited, the setting to obtain it is correctly posed, and
it is possible that this very interesting question could find an answer.

A remarkable property of N=2 supersymmetric theories (both in D=2 and in D=4)
is the fact that one can apply to them the so-called “topological twist” procedure. This
procedure associates to N=2 theories appropriate topological field theories (TFT’s) [95]-
[99].

Topological field theories can be regarded as BRST-quantized theories, where the
symmetry that is “gauged” contains the general continuous deformation of the fields
[97]. These theories have very peculiar properties, such as the correlators of physical
operators being independent on the location of the operators. The physical operators of
the TFT’s obtained by twisting N=2 theories are a consistently defined subset of those
of the untwisted N=2 model; the BRST transformations are reinterpretations of the su-
persymmetry transformation laws. The transformation rules of the antighosts define the
“instanton” equations that gauge-fix the (topological) symmetry. The TFT’s obtained
by twisting are thus in a gauge-fixed form, the instanton equations being determined by
certain susy transformation of the underlying N=2 model. The twist procedure requires
a redefinition of the Lorentz content of the fields,and the existence of certain symmetries
(typically automorphisms of the supersymmetry algebra) in order to change appropriately
the ghost numbers.

Chapter 5 contains a discussion of the possible twists of the N=2 and N=4 models
(in particular of the “two-phase” N=2 model and the “single phase” N=4 model already
pointed out as relevant in connection with Calabi—Yau and gravitational instantons). In
particular, the explicit form of the R-symmetries of these models, needed for the ghost
number redefinition, is described.

The focus of Chapter 7 is again on topological twist, but in a different setting. There,
it is investigated the possibility of defining a consistent topological twist procedure for
N=4, D=2 supergravity coupled to vector and hyper-multiplets. The definition of the
topological twist in this case is delicate [100, 101}, the delicate point being that of finding
a suitable R-symmetry to be used in the ghost number redefinition.

A set of requirements on the model and on the form of the R-symmetry transfor-
mations is individuated that, when fulfilled, allows for a nice topological twist. These
requirements (in particular the existence of a “preferred” vector multiplet with R-charges
reversed with respect to those of the other vectors) are matched by the effective super-
gravities arising at tree level from heterotic compactification on K3 x T3 [102]-[104] °.
The R-symmetry in this case is a U(1) symmetry.

However, the quantum corrected form of these effective theories will differ from the
classical one. These theories constitute the local analogue of the classical low energy
theory in the N=2 SYM theories, for which Seiberg and Witten determined the exact

®And by other heterotic compactifications that give rise to the same type of special manifold for the
gauge scalars [105]-[108].




counterpart. It is therefore not so irrealistic to consider the possibility that the exact
counterparts could be determined also in this case. In the global theory, the continuous
R-symmetry present at the classical level is broken to a discrete subgroup by the quantum
effects. The discrete part survives as a symmetry of the exact moduli space. In view
of the hypothesis that something similar happens in the locally supersymmetric case, in
Chapter 7 it is considered the possiblity that the R-symmetry be discrete. It is found
that, under some conditions, that should apply to the “quantum corrected” heterotic
effective supergravities, it can be sufficient to allow the topological twist.

The structure of the instantonic equations that gauge-fix the various topological sym-
metries of the TFT obtained by the twist is described in the generic case; the ezplicit form
of the equations is worked out in the classical case. These “gravi-matter” instanton equa-
tions are very rich, as they describe a consistent coupling to gravitational instantons of
gauge instantons, hyperinstantons [101, 126] and axion-dilaton instantonic configurations

109, 110, 73, 111].

In Chapter 8 it is reviewed how the Seiberg—Witten solution of the N=2 SYM theory
fits in the geometrical structure imposed by N=2 global supersymmetry on the vector
multiplet couplings, namely rigid special geometry [27]. The novelties arising when the
theory is coupled to gravity, that is when rigid special geometry is replaced by special
geometry [112]-[125], are analyzed. The heterotic classical effective models discussed in
Chapter 7 are shown to represent a local analogue of the low-energy classical theory
in the S-W mechanism. The natural conjecture [26, 27] that the quantum exact coun-
terparts of these theories are realized in terms of Calabi-Yau manifolds is introduced.
For theories with a low number of vector multiplets, the number of possible associated
Calabi—Yau spaces (whose number of harmonic (1, 1) forms must be related to the number
of vector multiplets in the classical theory) is not too high, and thus possible associations
can be proposed. Such proposals agree with those put forward, in more detailed and
extended way, in [28].

In Chapter 8 some “algebric” requirements on the conjectured exact solutions are
emphasized. One request is related to the embedding in the quantum monodromies of
the quantum monodromies of the corresponding rigid theories. In particular there must
exist a discrete R-symmetry with the characteristics described in Chapter 7. Such a
R-symmetry is exhibited explicitely in the case of a avaliable Calabi-Yau solution. Very
recent discussions of these properties are found in [34, 35].

As mentioned before, the interpretation of the quantum expression of these classical
effetive theories (that arise from heterotic compactifications) from the stringy point of
view is in term of a string-string duality between heterotic on K3 x T3 and type-II on
Calabi-Yau models. There have been impressive checks of the actual perturbative string
corrections on the heterotic side against the exact expression of the conjectured dual
models on the type-II side [31]-[40].
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Chapter 2

Structure of N=2 and N=4
supersymmetry in D=2

The present chapter is rather technical. It contains the detailed derivation of the super-
symmetry transformation rules and of the supersymmetric lagrangians for various D=2
theories, possessing (2,2) or (4,4) (left,right)-moving supersymmetries. These results are
of course prerequisites for the investigation of the “low-energy” pahses of such theories,
carried out in Chapter (3) as well as for their topological twist, contained in Chapter (5).

Let us start fixing the notations and formalism that we use to treat extended super-
symmetry in D=2.

2.1 Definition of extended superspace in D=2

We will utilize the so-called “rheonomic formalism”; see [133] for a comprehensive expo-
sition of this method.

Basic one-forms

First of all, one identifies the basic one-form fields for the geometric description of the
(super)space “4 la Maurer-Cartan”. These one-forms are given in Table (2.1). We
denote by e* the two components of the world-sheet zweibein (in the flat case e™ =
dz + 6 —terms, e = dz + 0 — terms), by w the world-sheet spin-connection 1-form (in
the flat-case we can choose w = 0). In the N=2 case (%, 5 * are the four fermionic one-
forms gauging the (2,2) supersymmetries, namely the 4 components of the 2 gravitinos.
In the flat case we have (¥ = df*, (¥ = df*). In the (4,4) case we have four other
fermionic 1-forms y*, ¥*, that complete the eight components of the four gravitinos.
Furthermore, in the N=2 case there is a bosonic 1-form A® gauging the U(1) central
charge, while in the N=4 casewe have two others bosonic 1-forms A* gauging the other
two central charges.
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Table 2.1: Basic one-forms for D=2 extended superspace

N=0 N=2 N=4
one-form e, e w AR T Ar g
fields
statistics bos. bos. bos. ferm. bos. ferm.
geometrical ) ) gauge .. gauge ..
meaning zwelbein  spin conn. feld gravitinos felds gravitinos

(2,2) superspace curvatures

In terms of the above-introduced basic one-forms the definition of the superspace curva-
tures is the following:

de++w/\e+—%(:+/\C“:T+

de“—w/\e"—~—;~g?+/\2":T_

dw=R
dA* ~ AT+ A = F
dCF 4 Jw A ¢ =g At = Jw A (T =t 1)
&+ JwACT =p" A"~ WAl =5
Flat superspace is described by the equations
T* =p* =pF =R="F"=0 (2.2)

(4,4) superspace curvatures

We proceed next to write the curvatures of the N=4 extended two-dimensional super-
space, namely:

i

de++w/\e+—~%c+/\§“*—2x+/\x_=T+
de‘—w/\e‘—%fﬂ\f“—%ﬁ/\y‘:T‘

dv=R
dA = AT+ A AT AR =R A = P
dA* — X" AL+ R A = FY
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dA™ — AT+ AT = F

&t + oAt =pt A&t —lw At =5t
& +IwACT=p A== oAl =77
+1 + = ot S+ 1 St ot
dxt+owAx =7 , dy sWw A X T (2.3)
dx'—l—-é-w/\x“:v‘“ d)?“—%w/\f“:?"

Also in this case flat superspace is described by

TH=p*t=pfF =R=F"=Ff =0 (2.4)

Complex conjugation

For convenience we also recall the rule for complex conjugation. Let 1,2 be two
forms of degree p;,p, and statistics Fy, Fy ( F = 0,1 for bosons or fermions) so that
Prihy = (—1)P1P2+tFiF2 ohoafy then we have:

(d)l 77/)2 )x — (_1)F1F2 1/); ¢; — (_1)P1P2¢; wi" (2.5)
Thus, for examplg, for the gravitinos we have:
(CFAC)Y ==(C)AT) == A= =P A (2.6)

Globally and locally supersymmetric theories

In the sequel we will consider matter fields spanning N=2 or N=4 multiplets, and we will
introduce appropriate “curvatures”. Following the general rules described in Appendix
A, when dealing with golbal supersymmetry, one solves the Bianchi identities for the
matter fields in the background of the flat superspace 1-forms eq. (2.1) or (2.3). In this
way one determines the SUSY rules and the world-sheet supersymmetric actions for the
theories under consideration.

Removing eq.s (2.2) or (2.4) and introducing a rheonomic parametrization for the
curvatures, one is dealing with N=2 or N=4 2D-supergravity and the solution of Bianchi
identities in this curved background constitutes the coupling of matter to supergravity.

2.2 Global N=2

2.2.1 Gauge multiplet

In this section we discuss the rheonomic construction of an N=2 abelian gauge theory in
two-dimensions. This study will provide a basis for our subsequent coupling of the N=2
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gauge multiplet to an N=2 Landau-Ginzburg system invariant under the action of one
or several U(1) gauge-groups or even of some non abelian gauge group G.

In the N=2 case a vector multiplet is composed of a gauge boson .4, namely a world-
sheet 1-form, two spin 1/2 gauginos, whose four components we denote by At A=, A+ X~
a complex physical scalar M # M= and a real auxiliary scalar P* = P. Each of these
fields is in the adjoint representation of the gauge group G and carries an index of that
representation that we have not written.

In the abelian case, defining the field strength
F =dA (2.7)
the rheonomic parametrizations that solve the Bianchi identities:
dF = &}~ = d®X* = d®A* = d®A- = &®M = d*P = 0 (2.8)

are given by

F = Fete - (,\+c +A ) e + = (A+<; +ATCH) e+ M CCH = M7 CHC

dM = O,Me*+9_Me — —(,\-<+ -3*¢)
A\t = 9 tet+0_dFe + (‘;T +iP) (=20 M (t
dX- = A et+0. X e+ (i;- iP) ¢~ + 260_M*C™
d\tY = 9 tet+8_Ate + (g iP) (*t — 258, M* ¢t
d\™ = O A et + 9 ATe + (—j;l +iP) (" + 20, M (™
dP = 0,Pet+0_Pe — 1( O AT(™ — B ACH = A +0.ACF) (2.9)

Note that I am suppressing, from the above eq.s on, the wedge product symbols for differential forms.
This convention will be adopted wherever no possible confusion occur.

Given these parametrizations, we next write the rheonomic action whose variation yields the above
parametrizations as field equations in superspace, together with the world-sheet equations of motion.

£ = [F + % (X+c- + X~<+) e~ L (A+E+ + A-E+) et
~ M (- M c*f“] - %ﬁ etem — —(A+ A=+ A i) e 4 < (,\+ A~ + A" dAY) et
—4 [dM* 7O =X )} (Myet —M_e™) —4 [dM + 7 (A= Xi’—)] (Mret — Me™)
— 4(MIM_ + M™M,) erem — dM (3-8 + A7) + d* (V8- 4 A=¢+)
oM

L ouUr ([ F + U ~ T+ 8uU* ~ +)
4(‘3]\/[*( —iPe e) Z(@M" z\—i-aM pSD)

——~(/\+)\+C T+ A7A" C+C+)+2P“e+e"+4z ou (F-I—zPe e )
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ou* ~ ~ ~ ~
(%’fj + W) [(xfg- ~A7¢H) e+ (A=A ¢H) e+]

, W N omy oo (O U] n
+22[2u_M<6]V[_——3M*>]C ¢ +22[2L{ - M <6M—(‘3M*)]CC

(2.10)

The symbol U denotes a holomorphic function &/ (M) of the physical scalar M that is named the su-
perpotential. It induces a self interaction of the scalar M field and an interaction of this field with the
gauge-vector.

The existence of an arbitrariness in the choice of the vector multiplet dynamics is a consequence
of the existence of the auxiliary field P in the solution of the Bianchi identities (2.8) and hence in
the determination of the SUSY rules for this type of N=2 multiplet. In the superspace formalism the
inclusion in the action of the terms containing the superpotential is effected by means of the use of the
so called twisted chiral superfields. In the rheonomic framework there is no need of these distinctions:

we just have an interaction codified by an arbitary holomorphic superpotential.

From the rheonomic action (2.9) we easily obtain the world-sheet action of the N=2
globally supersymmetric abelian vector multiplet, by deleting all the terms containing
the gravitino 1-forms, replacing the first order fields F, My with their values following
from their own field equations, namely F = 1 (0;A- — 9-A;), My = 9:M, and by
replacing et A e~ with d%z that is factored out. In this way we get:

1 -
L) = -2-f2 — i (APO AT 4+ AFO_AT) — 4(0, M*O_M + O_M~0, M) + 2P?
. oU (F ou* (F o*U ~ o’U* ~
4 — | —+1P ) — & ——iP) = ATA~ At
i (51P) -4 g (5 - P) i GE YN+ g )
(2.11)
In the particular case of a linear superpotential
Z/{zzi—]Vf,tEC (2.12)
setting
t=r—1i0/2r , T € R, 0 €]0,27] (2.13)
the above expression reduces to
1 -~
Lups = —2—}'2 =1 (AP0 AT+ AYOAT) —4(0, M*0_M + 0_M"0,. M)
+2P = 2P + —F (2.14)
27

The meaning of the parameters r and 8 introduced in the above 1agfangia,n is clear. Indeed
r, glving a vacuum expectation value P = £ to the auxiliary field P induces a spontaneous
breaking of supersymmetry and shows that the choice i = —LM corresponds to the
insertion of a Fayet-Iliopoulos term into the action. On the other hand the parameter 4
is clearly a theta-angle multiplying the first Chern class 5=F of the gauge connection.
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2.2.2 N = 2 Landau Ginzburg models with an abelian gauge
symmetry

As stated above, our interest in the N=2 vector multiplet was instrumental to the study
of an N=2 Landau-Ginzburg system possesing in addition to its own self interaction a
minimal coupling to a gauge theory. This is the system studied by Witten in [83], using
superspace techniques, rather than the rtheonomy framework.

By definition a Landau Ginzburg system is a collection of N=2 chiral multiplets self-
interacting via an analytic superpotential W(X). Each chiral multiplet is composed
of a complex scalar field (X*)" = X* (¢ = 1,...,n), two spin 1/2 fermions, whose
four components we denote by 1, %! and 3" = (z/)")*,zzi' = (@Zi)*, together with a
complex auxiliary field H* which is identified with the derivative of the holomorphic
superpotential W (X), namely H' = 7" 9;«W*, 19" being the flat Kahlerian metric on
the complex manifold C" of which the complex scalar fields X' are interpreted as the
coordinates. Using this system of fields, we could construct a rheonomic solution of
the superspace Bianchi identities, a theonomic action and a world-sheet action invariant
under the supersymmetry transformations induced by the rheonomic parametrizations.
In this action the kinetic terms are the canonical ones of a free field theory and the only
interaction is that induced by the superpotential. Rather than doing this we prefer to
study the same system in presence of a minimal coupling to the gauge system studied in
the previous section. In practice this amounts to solve the Bianchi identities for the gauge
covariant derivatives rather than for the ordinary derivatives, using as a background the
rheonomic parametrizations of the gauge mulitiplet determined above. At the end of
the construction, by setting the gauge coupling constant to zero, we can also recover
the formulation of the ordinary Landau-Ginzburg theory, later referred to as the rigid
Landau-Ginzburg theory.

Indeed the coupling of the chiral multiplets to the gauge multiplet is defined through
the covariant derivative

VX dX 4 iAg X (2.15)
where the hermitean matrix qij is the generator of the (1) action on the chiral matter.
As a consequence, the Bianchi identities are of the form V2X* = ininj.

Let W(X*) be the holomorphic the superpotential: then the rheonomic solution of the Bianchi identities
is given by the following parametrizations:

VX' = V,Xiet+V_Xie +4i¢ +0i¢-
VXY = VXU et 4 V_XTem -yt — gt
VY = Veplet 4 Vogien - gvm ¢t 477705 W G + i Mg X O
VT = Vet + Vg e + %V—X” CAHPTGW i M X ¢
V= Vet V_gie — %Vw’f" CF =705 W™ (™ — i Mg X ¢
vt = Vo et 1V g e+ _;'_V+Xi. i TOW T + Z-quin‘ - . (2.16)

e ——
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From the consistency of the above parametrizations with the Bianchi identities one also gets the following
fermionic world-sheet equations of motion:

i . e . i i PR
GV =07 005 W " +AXT MY = 0

i i % i 1° i i vi carx i1 P
5V +17 0105 W ¥ MG X — Mgy = 0 (2.17)

and their complex conjugates for the other two fermions. Applying to eq.s (2.17) a supersymmetry
transformation, as it is determined by the parametrizations (2.16), we obtain the bosonic field equation:

(VV_X 4+ V_V, X)) = 0 040 05200 W " 4 %" 03050 W i aw

Q0| b=

i~_ . N 7 o " N 1 i -

Equipped with this information, we can easily derive the rheonomic action from which the parametriza-
tions (2.16) and the field equations (2.17),(2.18) follow as variational equations: it is the following one:

lgaem = e (v - i - 9 ) (e -
g (VX0 G = ) (et~ T )
+ i (T T 1) ete — dimyye (W Vet — 'V 7€)
+4i (AW CFet — cc.) — 4i(PFOW (e — cuc.)
e (Wi T = T (P e ) o+ 8((@6]- Wil + cc.) + nif‘a,-Waj.W*> ete
— i (VX ¢ = VX 4 ce) — (AMY et XF (et 4 cc)
— (4M* it X e 4 cc) — <8i(1v1*{p7‘n,~j.qik¢k — cc.)
+ 2 (0 migegt XF — e ) + 200 gl XE - )

— 2P X7 g X5 4 8 MM i X7 (qz);;X'“> ete” (2.19)

The world-sheet lagrangian for this system is now easily obtained through the same
steps applied in the previous case. To write it, we introduce the following semplifications
in our notation: a) we use a diagonal form for the flat C™ metric i X1 X7 = XTXT,b)
we diagonalise the U(1) generator, by setting q'j = qiéj (¢* being the charge of the field
X*). Then we have:

LE) ) = ~(V,X'V_X 4+ VXUV, X)) + 4i('V o + BV, 5)

chiral

+8 ((w&f'a,-a,w + c.c.) + a,-wai*w*) +2 3¢ (A XT — A XT — cc)

+ 8i <M S @it — c.c.) +8M*M D (¢ XX -2P> ¢ XVXE (2.20)

7
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2.2.3 Structure of the scalar potential in the N=2 Landau-
Ginzburg model with an abelian gauge symmetry

We consider next the coupled system, whose lagrangian, with our conventions, is the
difference of the two lagrangians we have just described:

L= 'Cgauge - 'Cchiral (221)

the relative sign being fixed by the requirement of positivity of the energy. The world-
sheet form of the action (2.21) is the same, modulo trivial notation differences as the
action (2.19)+(2.23)+(2.27) in Witten’s paper [83]. We focus our attention on the po-
tential energy of the bosonic fields: it is given by the following expression

o ou it
U = 2P~ jD(aM amr*)”PZq'M
— 8O, W 8 W™ — 8| M]? Z )2 X7J2 (2.22)

The variation in the auxiliary field P yields the expression of P itself in terms of the
physical scalars:

o our ,
—_—— i 2 9
P = aM + oM* Z IX | (223)

In the above equation the expression DX (X, X*) = ¥, ¢'|X|? is the momentum map
function for the holomorphic action of the gauge group on the matter multiplets. Indeed if
we denote by X =13, ¢ (X’B X O ) the killing vector and by Q = 33, dX* A dX¥,

then we have (dDX = ixQ. As anticipated the au*czhary field P is identified with the
momentum-map function, plus the term gzif{ + aM* due to the self interaction of the
vector-multiplet. In the case of the linear superpotential of eq.s (2.12) and (2.13), the

auxiliary field is identified with:

P = —%(DX(X, X*) =) (2.24)

Eliminating P through eq. (2.23) , we obtain the final form for the scalar field potential
in this kind of models, namely:

[(82/1 c%{*) 1

2
— ) == X2 T 12 2 2 yi |2 5 9%
V=g ) T2 l} FIOWESIMP (¢ PIXT (229)

In the case of the linear superpotential this reduces to
1
U = [r——Zq be ;2] +8IW +SIMP (o p; 2 (2.26)

The theory characterized by the above scalar potential exhibits a two phase structure as
the parameter r varies on the right line. This is the essential point in Witten’s paper
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that allows an interpolation between an N=2 o-model on a Calabi-Yau manifold and a
rigid Landau-Ginzburg theory. The review of these two regimes is postponed to Chapter
3. Here we note that the above results can be generalized to the case of a non abelian
vector-multiplet or to the case of several abelian gauge multiplets.

2.2.4 Extension to the case of N=2 Landau-Ginzburg model
with non-abelian gauge symmetry

It is quite a straightforward exercise to repeat the above contruction in the case in
which the gauge symmetry is non-abelian. The important point, as will be seen at the
end of this section, is the possibility of Fayet-Iliopoulos and §-term parameters only in
correspondence to the centre of the gauge Lie algebra.

Let us fix our notations and conventions. Consider a Lie algebra G with structure constants fabe:
[te, 7] = ifebeee (2.27)

in every representation the hermitean generators t% = (t")Jr are normalized in such a way that Tr (£°t%) =
53 Let us name T° the generators of the adjoint representation, defined by fobe = i(Te)be.
Let us introduce the gauge vector field as a G-valued one-form:

A= A3T%dz* (2.28)

In the case we are interested, the index p takes two values and we can write A = Afet + A%e™. Note -
that AT = A. The field strength is defined as the two-form

F=dA+iAAA (2.29)

The Bianchi Identities read

VFE dF + i ANF—FAA) =0 (2.30)

The component expression of the field strength and of its associated Bianchi identity is:
a a 1 abe A4b 4c
Fp, = OpAny — §f ALA
0P,y — [ ALFs, = 0 (2.31)
Note that the Bianchi identity for a field M = M®7T* transforming in the adjoint representation is:
VM = i[F, M) (2.32)

The non-abelian analogue of the rheonomic parametrizations (2.9) is obtained in the following way: first
we write the §-valued parametrization of F:

F=Fete — %(Xw— +XC) e+ (W AT et M T - M (2.33)
In this way we have introduced the gauge scalars M = M®T*® and the gauginos A* = AZT*, 2E = XG*T“;

their parametrizations are obtained by implementing the Bianchis for F', VF = 0. One must also take
into account the Bianchi identies for these fields: VM = i[F, M] and V2\* = i[F, A*] ( analogously for
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the tilded gauginos). The rheonomic parametrizations fulfilling all these constraints turn out to be the
following ones:

F = Fete — ;;(X*wg- + X‘c‘r) e+ i(A“‘Z*‘ F AT et M (= MECTCT

UM = V.Met+V_Me - ~(A¢H - X0

4
VAt = V,Atet4+V_Ate + <i§ ~21[Mt, M] + iP) CH—2iV_MC*
VAt = V,A\ter +V_Ate  + (% — 2[Mt, M] - iP) (=0, MICH
VP = V,Pet+V_Pe — % [( 2[A+ M])C’ - <V+X— + 2[A-,MT]>C+
- <v_,\+ +2[A, MT]>Z (vd\- 20+, M])&} (2.34)

We obtain the rheonomic action for the N=2 non-abelian gauge multiplet in two steps, setting:

Liheon) ian = Lo+ Aling (2.35)

non-—abelian

where Lg is the free part of the Lagrangian whose associated equations of motion would set the auxiliary
fields to zero: P = P, = 0 The insertion of the interaction term AL;,; corrects the equation of motion
of the auxiliary fields, depending on a holomorphic function /(M) of the physical gauge scalars M b just
as in the abelian case. The form of L is given below, where the trace is performed over the indices of
the adjoint representation:

L=Tr {f[FJr LR+ 3¢ty e - i(”f* +ATC) et = M+ M C"f_]

-—-%}'Ze“"e"—~2(z\+VA + -V ) e 4o (A+'\’7A + AT VAt et

—4[VMT——(A+C' A~ E}] (Myet — M_e™)

—4[VM+ (A=¢+ =X+ ]MT - Mle)
— a(MIM_ + MEM,) etem = VM (ACF + A7) + VM + A¢Y)
(M, M] ((A+<- A CH)et — (Atem —A—g+)e-)

LT A ) 2P e | (2:39)

As stated above, the variational equations associated with this action yield the rheonomic parametriza-
tions (2.34) for the particular value P* = 0 of the auxiliary field. Furthermore they also imply P¢ =0
as a field equation.

To determine the form of AL;,; we suppose that in presence of this mteractlon the new field equation

of P? yields

oU(M) oUMY\®  SU(M) ouU*(M*) -
@ = = . 2.

P = e T < oMe oMe T oM (237)
U is a holomorphic function of the scalars M® that characterizes thelr self—mteractlon Then we can

express VP? through the chain rule: VP?® = %}; VM + W vmt . Using the rheonomic
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parametrizations (2.34) for VM? and comparing with the parametrization of VP* in the same eq.(2.34)
we get the fermionic equations of motion that the complete interacting lagrangian should imply as
variational equations:

VAT —2if*e 0 ——BQL—M
a ¢ a
* b omMteamt®
V_AF — 95 fobe )+ (= _ou X 2.38
SAa m2fTANM = S (2.38)

plus, of course, the complex conjugate equations. Furthermore also the parametrization of VF is affected
by having P* a non-zero function of M. This can be seen from the parametrizations (2.34). Taking the
covariant derivative of VXj and focusing on the (*{* sector, one can extract V,,F*, the component of
VF® along (*:

i oMU - .
Voo Fo = fOe MV, M. + 53O (2.39)
Analogously one gets the other fermionic components of V.F4.

. T . .
Summarizing, in order to obtain P? = a?&lEM) + az;;&]ﬁ ), to reproduce the fermionic field equations

(2.38) and the last terms in the fermionic components of the parametrization (2.39) of VF*, we have to
set:
a * FG
ALy = 42—8—%(% + P €+€-) — 416—61\—/%—5(7 —pP° €+6_)
U ~ o’u* ~
| e AT A+ ————AFA Jete”
+Z(8M46Mb a b+6MTaaMTb a b)e [

__BLI____QZ:(:_ +F— =)t Y+pr— X+ —]

(e = s ) [ = 25806 + (R = Ko e

. O N\ ey o el OU AU >] iz
22[2U—M (aMa“aMT“)]C ¢ +22[2U M (BMT“ sars ) [¢*C

(2.40)

Note that &/ must be a gauge singlet. A linear potential of the type U = >, c¢*M* with ¢* = const
does not satisfy this requirement. Hence the ”linear potential” of the abelian case, corresponding to
the insertion of a Fayet-Iliopoulos term has no non-abelian counterpart. Similarly a f-term is also ruled
out in the non-abelian case. Indeed a term like -g—:?F“ would not be gauge-invariant, with a constant 4°.
Also in this case, a term of this type would be implied by a linear superpotential I, which is therefore

excluded. The problem is that no linear function of the gauge scalars M*® can be gauge-invariant.

In conclusion, if the Lie algebra G is not semisimple, then for each of its U(1) factors we

can introduce a Fayet-Iliopoulos and a #-term. As we are going to see, the same property
will occur in the N=4 case. Fayet-Iliopoulos terms are associated only with abelian factors
of the gauge-group, namely with the center Z C G of the gauge Lie-algebra. This yield
of supersymmetry perfectly matches with the properties of the Kahler or HyperKahler
quotients. Indeed we recall from Appendix A that the level set of the momentum map
is well-defined only for ¢ € R®> ® Z* in the HyperKahler case and for ( € R® Z in the
Kahler case, Z* being the center of the dual Lie-algebra G*. Now the level parameters
¢ are precisely identified with the parameters introduced into the Lagrangian by the
Fayet-Iliopoulos terms.
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2.2.5 N=2 o-models

As a necessary term of comparison for our‘subsequent discussion of the effective low
energy lagrangians of the N=2 matter coupled gauge models and of their topological
twists, in the present section we consider the rheonomic construction of the N=2 o-
model. By definition, this is a theory of maps:

X ¥ — M (2.41)

from a two-dimensional world sheet ¥ that, after Wick rotation, can be identified with
a Riemann surface, to a Kahler manifold M, whose first Chern number c1(M) is not
necessarily vanishing. In the specific case when M is a Calabi-Yau n-fold (¢; = 0) the
o-model leads to an N=2 superconformal field theory with central charge ¢ = 3n but,
as far as ordinary N=2 supersymmetry is concerned, the Calabi-Yau condition is not
required, the only restriction on the target manifold being that it is Kihlerian.

Our notation is as follows. The holomorphic coordinates of the Kihlerian target
manifold M are denoted by X* (¢ = 1,....,n), their complex conjugates by X* . The field
content of the N=2 o-model is identical with that of the NV = 2 Landau-Ginzburg theory.

In addition to the X -ﬁelc~1§, thELt tﬁgznsform as world-sheet scalars, the spectrum contains four sets of
of s;.)in 1/2 fermions, ¢*, ¥, % | ¢* | that appear in the N=2 rheonomic parametrizations of dX* and
dx*

dX' = et 4T e + ¢ + Picm

dX* = T et 4N em — g — g (2.42)
The equations above are identical with the homologous rheonomic parametrizations of the Landau-
Ginzburg theory [the first two of eq.s (5.66)]. The difference with the Landau-Ginzburg case appears

at the level of the rheonomic parametrizations of the fermion differentials. Rather than the last four of
eq.s (5.66 we write:

Vi = Vigiet + Vogie — %HiC+

VE = Vet 4 v e - m

Vo' o= vawlet 4 voyiTe 4 %Hii ¢

VT = Vet 4 Vog e 4+ %H"_' ¢ (2.43)

where the symbol V denotes the covariant derivative with respect to the target space Levi-Civita con-
nection:

Vi = dyt - Tl dxd g

VY = dy - T dxI gt

Vo = dy' - T Xy ,

Ve = dgt — T8 e dX7T 4% . (2.44)




2.2. GlObal N:,? 21

In agreement with standard conventions the metric, connection and curvature of the Kahlerian target
manifold are given by:

0 8 .
i = Bxi xi-
Fij = F;k d/Yk ’ _;:k = —-g“. ajgkln (F;:k. = ____gi.l 6]"91;‘1)

Rj' = Rijk'ld-Xk. A dX'  Risjge = gips R s RP oy = Ok I
(2.45)

where K(X*, X) denotes the Kéahler potential. The parametrizations (2.42) and (2.43) are the unique
solution to the Bianchi identities:

VB 1/)11 — __Rij wj . 2 wi' — —Ri;. wj‘

Ex=EX" =0 ; . AU o .~
V2t = —R VYt = R

(2.46)

The complete rheonomic action that yields these parametrizations as outer field equations is given by
the following expression:

Stheonomic = / [Qij‘ (dXi - - ”‘Z’E“) A (Hi et — Hj_'ff)
+ gy (aXT it + FTH)A (Wet - Te™) + gije (i o+ o ) et A
—  2igy- (w"wf‘ Net = FVET A ) - gy (0" Vo Aet — PV A e)
— gy (AXTT A CH = X AT ) 4 gyge (a7 A G — dXTF A )

+ gij
+  gije (wi PN =T A (,7") + 8 Rijee ¢ 7 9F 9 et A 6_] (2.47)

From eq. (2.47) we immediately obtain the world-sheet action in second order formalism,
by deleting the terms containing the fermionic vielbein (.s and by substituting back the
value of the auxiliary fields II.s determined by their own field equations. The result is:

Sworld—sheet = / [— i+ (('3+Xi A_X7" + 9_X" 8+Xj'>
+ g (¢iv_¢j* 4ot V_'lﬁi)
+ gy (P VI + VL)
+ 8 Ryt 7 F | P2 (2.48)
where we have denoted by
Vit = 0utp' — I 0. X7 ¢ ,,
Vi’ = 0ot — Dl 0: X7 9% (2.49)

the world-sheet components of the target-space covariant derivatives: identical equations
hold for the tilded fermions. The world-sheet action (2.48) is invariant against the super-
symmetry transformation rules descending from the rheonomic parametrizations (2.42)
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and (2.43), namely:

S = ~-;a+xie+ — ETIE gt

st = ——%a_xi§+ — & Tl 7 §F

St = +%a+xi‘ €™ + ETTE 97 ot

§¢7 = +%a_xi* E™ + et i yp? gF (2.50)

Comparing with the transformation rules defined by eq.s (5.66) we see that in the varia-
tion of the fermionic fields, the term proportional to the derivative of the superpotential
has been replaced with a fermion bilinear containing the Levi-Civita connection of the
target manifold. Indeed one set of rules can be obtained from the other by means of the
replacement:

70 W T
IO W — T g (2.51)

This fact emphasizes that in the o-model the form of the interaction and hence all the
quantum properties of the theory are dictated by the Kahler structure, namely by the
real, non holomorphic Kahler potential (X, X*), while in the Landau-Ginzburg case
the structure of the interaction and the resulting quantum properties are governed by
the holomorphic superpotential W(X). In spite of these differences, both type of models
can yield at the infrared critical point an N=2 superconformal theory and can be related
to the same Calabi-Yau manifold. In the case of the o-model, the relation is most direct:
it suffices to take, as target manifold M, the very Calabi-Yau n-fold one is interested in
and to choose for the Kéhler metric g;;+ one representative in one of the available Kahler
classes:

K =igydX' A dX" € [K] € B (M) (2.52)

If e;(M) = 0, within each Kahler class we can readjust the choice of the representative
metric g;;+ , so that at each perturbative order the beta-function is made equal to zero. In
this way we obtain conformal invariance and we associate an N=2 superconformal theory
with any N=2 o-model on a Calabi-Yau n-fold M. The N=2 gauge model discussed
in the previous sections interpolates between the o-model and the Landau-Ginzburg
theory with, as superpotential, the very function W(X) whose vanishing defines M as a
hypersurface in a (weighted) projective space. -
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2.3 Global N=4

2.3.1 Gauge multiplet

Having exhausted our rheonomic reconstruction of the N=2 models we now turn our at-
tention to the N=4 case. We start with the gauge multiplet. The N=4 vector multiplet,
in addition to the gauge boson, namely the 1-form A, contains four spin 1/2 gauginos

whose eight components are denoted by AF A, M At T, BTLET, two complex phys-
ical scalars M # M*, N # N*, and three auxiliary fields arranged into a real scalar
P = P* and a complex scalar Q@ # Q~.

The rheonomic parametrization of the abelian field-strength F' = dA and of the exterior derivatives
of the scalars, gauginos and auxiliary fields is given below. It is uniquely determined from the Blanchi
identities:

F = Fete — %(X’T' XTIt R x)e + —;(»‘Z* + A
bt ) et MCT xR = MU X R)
FN(CTF —xCH) = N - X*C)

dM = O,Me*+0_Me — i—()ﬁ(“ XNty = EXT)

AV = 0,Net+0.Ne — i(mc- G — At = AR

dt = B atet+ 9 dte + (% +iP)(r—20_ M+ Qx ™ +200_N"X*

D = G NTet 4O e + (g iP) - 2i0,M" C* = QX + 200, N* X*

di+ = O itet+O_fite + (% +iP) x* +200_M* Xt — Q¢ +2{8_N(*

Gt = baprer e + (5 - iP) R+ UMY+ QU 20N C

P = 0Pt O Pe - (03¢ 0K (P =0T 0T
4O T — O Xt —O_pt X+ 0 XT)

d0 = 0,Qet+0.Qe + %(a+u+ CH— Bt — 0 AT X+ OATXT) (2.53)
The rheonomic parametrizations of the complex conjugate fields A\, &\, du~, di~ ,dM* and Q" are
immediately obtained by applying the rules of complex conjugation.

Using these results, by means of lengthy but straightforward algebra we can derive the rheonomic
action of the N=4 abelian gauge multiplet. The result is given below

Liherm) (N = 4) = f-[F + %(XT FAC I+ E X e - —;—(A*E* F AT
Y R e = M(CE ) + MG ) - N = x )
~, -~ 1 9 g N oy oy ~ o~ ~ o~
+ N*(CX* ~ X+C_)] — —2-.7:'“ ete” — %(z\* D=+ 3 - D+t dE AT dEY) e

+ %(ﬁ AAT AT ANt 4 ptdp T dpt) et — 4[dM* - i()ﬁ(‘ — A ¢H
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+umxt - ﬁ”f,%‘)] (Myet —M_e™) —4 [dM + %(,\-c“f — XNty - ﬁ'i*)} :
(Mgt — Mriem) — 4(MIM_ + MEM,) ete — 4 [dN* - i—(u“(*

T =N T | (Wt = W) = Jate + T -t
=T (et ) = [ (T 4 AR B+ R + e |
=[G e e ) + e | - 0N O TR

F X PR A A T N X = AR O 4 T XRY

— Bt 4 e ) + %F+ [2?2 +2Q*Q ~2rP — (sQ* + 5 Q)} ete”

- % [(A‘Z’+ FuTR A ce)et + (AT X + e )e‘]

5|0k =Tt + (e = 5¢)er |+ e

+ar [M(C‘E‘f —X*X7) - e = N(CHE +x7C) + c.c‘]

+s [A/IC“,'\E’ + M*x (= Nx"% + N*C'E‘:{ + c.c. (2.54)

By means of the usual manipulations, from eq.(2.54) we immediately retrieve the N=4
globally supersymmetric world-sheet action of the abelian vector multiplet. It is the
following:

1 e T _
Ll (N=4) = o —i(Xr 0% + i Oyp™ + M 0N+ O_F7)
+ 40, M O_M +O0_M* 0, M +9,N*O_N + 9_N" 0, N)
6 o ..
-}—%}——I— 2P° +2Q%Q — 2rP — (sQ* + 57Q) (2.33)

In the above action we note the announced N=4 generalization of the Fayet Iliopoulos
term. In addition to the f-term, proportional to the first Chern-class of the gauge field,
and to the r-term linear in the real auxiliary field P, we have term linear in the complex
auxiliary field @, involving a new complex parameter s. Differently from the N=2 case,
the only allowed self interaction of the N=4 vector multiplet is given by the analogue of a
linear superpotential term, namely the above N=4 generalization of the Fayet-Iliopoulos
term, existing only for abelian gauge fields. As we are going to see shortly, the parameters
r and s correspond, in the Lagrangian realization of the HyperKahler quotients, to the
levels of the triholomorphic momentum map. To discuss this point, that is one of our
main goals, we have to revert to the discussion of the quaternionic hypermultiplets. These
are the N=4 analogues of the N=2 chiral multiplets.
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2.3.2 Quaternionic multiplets with Abelian gauge symmetry

As in four-dimensions the N=2 analogue of the N=1 Wess-Zumino multiplets is given
by the hypermultiplets that display a quaternionic structure (see section 6.1.2), in the
same way, in two dimensions, the N=4 analogues of the complex N=2 chiral multiplets
are the quaternionic hypermultiplets that parametrize a HyperKahler manifold. If this
manifold is curved we have an N=4 o-model, similarly to the N=2 o-model that is
constructed on a Kahler manifold. Alternatively, if the HyperKéhler variety is flat we
are dealing with the N=4 analogue of the N=2 Landau-Ginzburg model. Here, however,
the more stringent constraints of N=4 supersymmetry rule out the insertion of any self-
interaction driven by a holomorphic superpotential. On the other hand, what we can
still do, just as in the N=2 case, is to couple the flat hypermultiplets to abelian or
non-abelian gauge multiplets. In full analogy with the N=2 case, this construction will
generate an N=4 o-model as the effective low-energy action of the gauge ® matter
system. The target manifold will be the HyperKéahler quotient of the flat quaternionic
manifold with respect to the triholomorphic action of the gauge group. Hence in the
present section, we consider quaternionic hypermultiplets minimally coupled to abelian
gauge multiplets. For simplicity we focus on the case of one gauge-multiplet. All formulae
can be straightforwardly generalized to the case of many abelian multiplets at the end.

Consider a set of bosonic complex fields uf, v¢, that can be organized in a set of
quaternions

Y (Z"Uz ’U,Z ) (""06)

On these matter fields the abelian gauge group acts in a triholomorphic fashion. Accord- -
ing to the discussion of Appendix A (see eq.(A.30), the triholomorphic character of this
action corresponds to the following definition of the covariant derivatives:

V' = du'+ z'Aqijuj

Vol = du' —iAgu’ (2.57)

where qij is a hermitean matrix. Correspondingly the Bianchi identities take the form:

Vi = +z'Fqijuj
V' = —iFgd (2.58)
We solve these Bianchi identities parametrizing the covariant derivatives VZu' and V%'

in terms of four spin 1/2 fermions, whose eight components are given by Wi i bl et
together with their complex conjugates 1/)1’:, f:, ¢i*:¢3*~

In the background of the abelian gauge multiplet (2.53) we obtain:

Vi = Voulet+V_ule  +4i¢” +9 X" +7Zigq +9U %
Vot = Vet +V_viem +9i(T — ¢l x+ i -9l %
Vi o= Viglet+V_ogle — %V+u"c+ - -;—Vw"'x‘
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+ig'; (Mw (* + N*o?" (- — N*ud % 4+ Moi"§7)

g (=M $t 4 N*w T o N F o+ Mo 7)
Vi, = Vidlet+ Vi gle - %v-u’f* - %v-m“y—
—ig'; (M*w/ ¢t + N*of " (- = N*u x* + M*vi " x")
VI, = Vet + Vogle - %V—vi5+ Vo
—ig'; (=M ¢+ Nl ¢ N x* 4+ Mui"x) ©(2.59)

Note that the field content of the N=4 hypermultiplet is the same as the field content
of two N=2 chiral multiplets. For each complex coordinate u or v we have two complex
spin 1/2 Weyl fermions ¢, 1% or ¢, 1. The additional supersymmetries associated with
the gravitinos x* and ¥* simply mix the fields of one N=2 chiral multiplet u with the
other v. Note also that contrarily to the N=2 case, the rheonomic solution (2.59) does
not involve any auxiliary field, namely in the N=4 case there is no room for an arbitrary
interaction driven by a Landau-Ginzburg superpotential U/ (u,v).

From the Bianchi identities one gets the following fermionic equations of motion:

LV_yi4igh, 1X+uf+1ﬁ-uf'+zvuZ{—N*zZ{‘ = 0

gV -YaTM ] 4

i . 1~ . 1 " ~ ~

s i st [ 2N+ Bty | NS —

Vi = ity (33— e+ e %) =0

i~ (1 1 . .

—_ LY S B —_y * — N* =

SV ij(g W+ o M N’sbi) 0

P~ /1. " . .\

%v_¢;+iq3 (E/\+v'7—:1-,u_ul +M*¢1+N*¢1> = 0 (2.60)

Applying the supersymmetry transformation of parameter ¢+ to the first two of eq.s (2.60) we obtain
the bosonic equations of motion, namely:

1 . o e~ ~ . e
s(VeVot VoVt = g (gl a4 il - i)

ANG g 1 1 ] . * 1 _§T

= (IMP+ INP) @] ! + 3P oo 4+ 207 ¢!
1 . P o~ . e
§(VeV-+ V.V = g (R - A gl )

, P S D .
= (IMP+INP) @) o = 1P a7 + Q7 o) (2.61)
The rheonomic action that yields the rheonomic parametrizations (2.59) and the field equations (2.60)
and (2.61) as variational equations is given below:
Lo = (VU =9l — 4y = G0 — G ) (UF e — U7 &)
+ (Vo + ¢+ ixt + U B (Ul et — Ul o) + (U U7 + U U eter
(V0 = R IR (Ve - V)
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(Vo g it O = PR (Viet = Vie) + (Vi VE+ VIV eter

— i Vo 9l V) et + 4i(9 VL + gL VP ) e

(W + i) (CH + xtxT) = (B + ) (CFET +RTR)

+ [(éz»i{ii‘ + 9 Y+ XTRT) + cc ] [(w*w YY) (X = xFCT) + e ]

+ [Vu"' (Wi~ =+ 9y — i x) + c.c.] + [w" (Wi =gl =i x +9U %) + c-c-]
+4 ul,/)iqij (A/I* ul’ Z‘ + N Z‘* — N’ X+ MY i*) et + c.c.]

+4 —zpiq*']. (~M* v 4+ N (P4 N F + M §) et + c.c.]

Ll (M ¢ N G-V X M ) et C-C~]

+4-{£” (=M NW G N T+ M ) et + c.c.]
{Qz[w’ LGl 4 ) - e ] -zi[¢§qu(x—vf' ) — c.c,]
—27,[’(,&1 LT 4 pt) — e ] +2i[$ﬁ ¢ (A — ) - c.c.}
+8i [M* (Wi g ol — i i) — c.c-] —Si[N(wi ¢+ o g ) - c-c-]
+8(|]M|> + N J?) [u*"(qz);iui + v*'(q2)§uf] — 2P (v ¢juf — v i)
+2i(Quigi; — c.c.)} ete” (2.62)

In the above formula, the fields implementing the first order formalism for the scalar
kinetic terms have been denoted by UL, V}. Eliminating these fields through their own
equations and deleting the terms proportional to the gravitinos, we obtain the world-
sheet supersymmetric Lagrangian of the N=4 quaternionic hypermultiplets coupled to the
gauge multiplet. We write it in a basis where the U(1) generator has been diagonalised:

q] = q 51 .
Lg‘jjﬁem = —(V,u' V_u' + V_u' Vou' + V,v' V_vi+ V0" V_v)
+ 4LV YL 4Vl LV P, V)
+ ‘7zZq {[ o + fite') — c.c.]x - [¢: (A=o' — fitu) — c.c.}
[ - ] R0 - - )
#8075 G — ) = o] — [N DT i) e

+8(IM P + IN %) Yo (a? ([ + [o'?) = 2P 30 g’ (Ju'f? — o)

i
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+2:(Q qu '~ c.c.) (2.63)

The most interesting feature of the action (2 63) is the role of the auxilary fields. Re-
calling the procedure of the HyperKahler quotient, as described in Appendix A, and
comparing with formulae (A. 31) we see that the auxiliary field P multiplies the real
component D3(ui,v') = ¥; ¢ (e ]2 |vt|?), while @ multiplies the holomorphic com-
ponent D~ (u',v') = —2i ¥; ¢' u' v of the momentum map for the triholomorphic action
of the gauge group. This fact is the basis for the Lagrangian realization of the Hy-
perKahler quotients. Indeed the vacuum of the combined gauge @ matter system breaks
the abelian gauge invariance giving a mass to all the fields in the gauge multiplet and
to all the gquaternionic scalars that do not lie on the momentum-map surface of level
D? = r, D = 5. Integrating on the massive modes one obtaines an N=4 o-model with
target manifold the HyperKahler quotient. This mechanism will be evident from the
study of the scalar potential of the combined system.

2.3.3 The scalar potential in the N=4 hypermultiplet-gauge
system

As in the N=2 case the correct way of putting together the gauge and the matter la-
grangian fixed by positivity of the energy is the following:

L= Egauge - Equate'rn- | (264)

As a result the bosonic scalar potential is:

U = 2732+2]Ql2—2rP—(sQ*+S*Q)—8(|M12+INIQ)Z(qi)2<|Ui12+]Ui|2>
6

+ QPZqi(luilz - |Ui|2> ~21(Q Zqzulvz — c.c.) (2.65)
Varying the lagrangian in P and @ we obtain the algebraic equations:
1 il i 1
P o= S-S - )] =3[~ )]
Q = ES—%Z futy! —ls-D‘L(u v) (2.66)
- 2 ~ - q - 2 b} L

and substituting back eq.s (2.66) in eq.(2.65) we get the final form of the N=4 bosonic
potential:

U = 5= DY+ 5ls =D P+ SOME £ V) Sl 4 W) (26T

As we see, the parameters r, s of the Fayet-Iliopoulos term are identified with the levels
of the triholomorphic momentum-map, as we announced. In the next section we discuss
the structure of the N=4 scalar potential extrema.

Y
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2.3.4 Extension to the case where the quaternionic hypermul-
tiplets have several abelian gauge symmetries

The extension of the above results to the case of several U(1) multiplets is fairly simple.
This case is relevant to implement the Kronheimer construction of the multi Eguchi-
Hanson spaces belonging to Aj-series [92, 93, 94]. Let the gauge group be U(1)™ and let
the corresponding gauge fields be the 1-forms A* (a = 1,...,n); let the triholomorphic
action of these groups on the hypermultiplets Y* be generated by the matrices (F*);;,
then the covariant derivatives of the quaternionic scalars u', v will be:

V' = dut 4+ iA%(F)
Vo' = dvt — i A(F*)00 (2.68)
Since the group is abelian and the generators F'* are commuting, the gauge part of the

action should simply be given by n replicas of the U(1) lagrangian; thus the world-sheet
lagrangian is given by

gauge

+4(8, M2O_M, + 0_M:0, M, + 8, N:0_N, + 0_N>9,N,) +
90.
+ 571-_‘7:'11. + QPalea + z(Qa)*Qa — rar})a _ <Sa(Qa)* + (Sa)*Qa> (269)

1 —~ ~
LE) = SFOF = i(N: 007 + it Oypig + AT O] + i O-Fi )+

where the summation on the index a enumerating the U(1) generators is understood, as
usual. Similar formulae hold for the rheonomic action. For the matter part of the La-
grangian, note that the covariant derivatives (2.3) are nearly identical to the ones utilized
in the case of one multiplet (2.57) We just have to take into account the substitution
qij — (F%);; and the summation over the index a. The modification of the rheonomic
parametrizations and of the action are almost trivial, substantially because of the abelian
nature of the group that we consider. Let us therefore quote here only the spacetime
lagrangian:

ng;%em = —(V,u" V_u'+V_u" V,u'+ V.ot Voo + V0 Vo)
+4i(Pl Vol + bt Vgl + IV Y 4 P V)

+ 21';;(]”);1{ [¢3 Cowd + ftod) — C.c.] - [zpj (ovd” — Ftud) — c.c.]
= [B Oz 4 atvd) = e |+ [ 000 - ) - e

+ 8 (M S B~ oc

[N S E ) o]+

FE (L + [N) S (" + o)

1
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—2> P Z(F“)j—(u“ui —v' ) 4
+ 2 (Q% Y (F¥iulv — c.c.) (2.70)

a 1

As expected, the auxiliary fields P*, Q% multiply the a** component of the momentum-

map, respectively the real part D° and the anti-holomorphic part D-. ¢
The complete bosonic potential takes therefore the following direct sum form:
U =3 | 50ra = D2 4 s = DI+ S(MLP + [Nf?) X2 (FoF")y (w7 + v"09)
a 0.5 ¢
(2.71)

¢
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Chapter 3

Phase structure of N=2 and N=4
theories in D=2

After the lengthy exercise of constructing D=2 models with extended supersymmetries,
it may be worth to recall some well-known facts about such models and their relevance
to string theory.

At string loop level g, the propagation of a (super)string in spacetime is described by
a (supersymmetric) o-model from a Riemann surface ¥, of genus g (the world-sheet) to
a target manifold M.

From the compactification of heterotic strings, it has been long ago estabilished [4],
by considering the field-theory limit (i.e. D=10 anomaly free supergravity) that, to have
N=1 SUSY in D=4 the internal space has to be a 6-dimensional Calabi-Yau manifold:-

M = Mt @ MSY. (3.1)

Thus one is actually interested in N=2 o-models on Calabi-Yau spaces.

Indeed, at a more “abstract” level, a vacuum of string theory is represented by a
conformal field theory (CFT). In this more general language, the compactification of eq.
(3.1) corresponds [127, 128] to the following splitting of the ¢ = 15 CFT for the type II
superstring in D=10:

(15,15) = (6,6)4,.4 ® (9,9)2,2. (3.2)

The “internal SCFT with central charge ¢ = 9 possesses (2,2) left- and right- supersym-
metry in order N=1 target space supersymmetry to be preserved.

In eq. (3.2) the ¢ = 6 SCFT (with N=4 left- and right-moving supersymmetries) is
just the “flat” theory o 4 bosonic fields X*, the coordinates of the Minkowsi space-time,

plus their world-sheet fermionic counterparts®. From the point of view (3.2), it is clear -

that the relevant D=2 models are the N=2 SCFT’s [129, 130].

'In the next Chapter there will appear some speculation about the possibility of replacing the flat
theory with a (6,6)4,4 SCFT representing a gravitational insantonic background

31
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Relations between N=2 SCFT’s, LG and o-models on CY

From the above considerations, it comes out that a correspondence is bound to emerge
between N=2 g-models on Calabi~Yau spaces and N=2 SCFT’s. Of course, by definition,
the 1% Chern class vanishes for the Calabi-Yau: ¢;[K] = 0, K being the Kahler form.
This means that, within the same cohomology class, certainly there exists a representative
of [K] such that the associated metric is Ricci-flat. If the o-model is written in terms of
this metric, then the 8-function vanishes (at 1-loop), a necessary condition for conformal
invariance. However the task of finding the Ricci-flat metric for a given Calabi-Yau
manifold is verything but trivial, as it is well-known.

Consider, on the other hand, the N=2 Landau-Ginzburg models®>. Under the condi-
tion that the potential W(X*) be quasi-homogeneous,

WO XY LA XY = ewx?t L XY, (3.3)

such models flow in the IR to N=2 SCFT’s [80, 82], whose structure is determinded by
W. In particular the central charge turns out to be

N wa
¢= Z_j 3(1-2-7). (3-4)

For instance, with a single field, the LG model with W(X) = X**? flows to a N=2
minimal model with ¢ = a% There is an ADE classification of the so-called “simple
singularities” [] (X**? is the A singularity, of course) that matches, under the flow to
the infrared, the ADE classification [131] of N=2 minimal models. Thus, if W is a simple
singularity, or a sum of simple singularities, the corresponding N=2 SCFT is solvable,
being given by a tensor product of minimal models. Consider however a “deformed”
superpotential:

W(X) =WX)+ > tpP(X). (3.3)

PER

Here W° corresponds to a tensor product of minimal models; the polynomials P belongs
to the so-called chiral ring of W?,
_ Cix]
oWy’
that is the ring of polynomials in the X’s modulo the “vanishing relation” that sets 9W°
to zero.

The polynomials P(X) of degree less than the degree d of W° are washed away in
the IR limit, as they corespond to irrelevant operators. The polynomials of degree d (the
“marginal deformations” of the singularity) correspond to marginal operators that persist
also at the IR fixed point and can deform the SCFT, in general spoiling its solvability.

R

(3.6)

2These are the model referred to as “rigid” Landau-Ginzburg models in section 2.2.2, i.e. those
without gauge coupling
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The LG model with the potential (3.5) flows therefore to a N=2 SCFT that can be
studied only by perturbing around the solvable point (the theory corresponding to WO).

Notice that at the algebric level the correspondence between N=2 LG and N=2 SCFT
is encoded in the isomorphism between the above-defined chiral ring R of the potential
W and the (c, c) ring of operators® in the N=2 SCFT that are “chiral” both in left and
right sector [77].

It is rather natural to suppose that a relation exists between N=2 o-models on CY
manifolds and N=2 LG models, both types of theories being related to N=2 SCFT in
the way just seen.

At the algebric level, such a correspondence relies on the identification of the chiral
ring R on the LG side, with the so-called “Hodge ring” on the CY side. As it follows from
the definition of Hodge ring, this at once furnishes the reinterpretation of the deformation
parameters t; of eq. (3.5), the moduli of the LG theory?, on the CY side: they correspond
to the parameters of deformations of the complex structure of the CY manifold (“complex
structure moduli”).

This algebric matching is perfectely consistent with the illuminating eurhistic con-
struction of a direct relation between LG models and o-models on CY’s given by [] via
path integral arguments. Consider the realization of CY manifolds as vanishing loci of
quasi-homogenei potentials in weighted projective spaces (see Appendix A):

M) ={X e WCPZ! . W(Xo,..., Xni1; {$}) = 0}, (3.7)

WO yeenyWnt1

W being quasi-homogeneous with weights w;. M is a Calabi-Yau n-fold provided that
d= Z w4 (38)
A

where d is the degree of W. The moduli 1) of W parametrize the complex structures of
M.

It is quite attractive to look directly at the N=2 LG model having precisely W(X, )
as a superpotential. Consider the path integral representing the partition function of
this model. The kinetic terms are irrelevant operators in the IR limit; looking at large
distance properties one can therefore discard their contribution. In this limit, the path
integration over let’s say X° (in the patch where X° # 0) can be performed by means of
the change of variables

XA

Xt — ot =55

(3.9)

3Recall that (anti)-chiral operators in a N=2 SCFT, having non-singular OPEs with one of the
supercurrents, have U(1)-charge ¢ such that ¢ = £2h, h being their conformal dimension. This implies
that OPE’s between chiral operators are non-singular: ¥1(z)¥a(w) ~ ¥3(w) + O(z — w). 3 is again
(anti)chiral; thus in the limit z ~— w a usual ring strucure emerges.

4Actually the moduli are just the parameters in front of the marginal deformations P(d), of degree d,
I=1,..., Fof defs
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introducing the inhomogeneous coordinates ' (A4 = 1,...,n + 1), and gives simply a
0-function )

§ (W(at,...,a™, 1 ¥)) (3.10)

stating the condition (3.7) in inhomogeneous coordinates. This means that, in the IR
region, the LG action inserts in the correlation functions the constraint (3.10), and one
remains therefore with a o-model on the manifold M.

The above argument makes sense only if the Jacobian for the change of variables (3.9)
1s constant. This condition is found to be equivalent to eq (3.8); all the construction works
therefore just for the case of Calabi—Yau manifolds.

LG and o-models on CY as phases of a single theory

A very interesting insight in the corrispondence between N=2 LG models and o-models
on CY (and N=2 SCFT’s) was obtained by Witten in [83]. He considered the N=2 LG
models coupled to N=2 gauge theory whose construction has been reviewed in detail in
Section 2.2.

As we saw, due to the auxiliary field P sitting in the gauge multiplet, the theory
admits a “gauge superpotential” U for the gauge scalars that, when chosen to be linear,
corresponds to having a Fayet-Iliopoulos parameter r for each abelian factor of the gauge
group G.

It will be discussed later (see section 5.2.1) how this theory possesses a left- and a right-
moving R-symmetry®, with currents Jr, g. A R-symmetry is a global U(1) symmetry that
by definition rotates the supersymmetry parameters (left- or right-moving). If the N=2
theory possesses a conformally invariant limit, the R-symmetry currents should become
the U(1)-currents that are part of the left and right N=2 superconformal algebras. It
is important to check wether Jr r are anomalous or not, as this gives indications about
the possible conformal invariant points. In case of an abelian gauge group, let’s say for
simplicity a single U(1), the conditions for R-symmetries to be non anomalous is that

S ¢t =0, (3.11)
A

g* being the charges of the LG fermions, as we will discuss in section 5.2.1.

Witten investigated the low-energy theory obtained integrating over massive fields
around the vacuum configurations. At the classical level, the first thing to do is to
analize the vacuum structure, dictated by the scalar potential (2.26). This structure will
be discussed in section 3.1.1. The interesting case is when the LG superpotential has a
form like in eq. (3.19), W(X% X*) = X°W(X"). The result is that, depending on the
value of the Fayet-Iliopoulos parameter, two phases exist:

®Only a linear gauge superpotential I/ respects R-symmetry. Therefore, if the R-symmetries are not
anomalous, quantum corrections cannot generate a non-linear i
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i) A “LG phase”, where the vacuum is a single point and the massless fields Xt
have interactions governed by the superpotential W , that must have a degenerate
critical point at the origine;

i) A “o-model phase, where the vacuum manifold M is the hypersurface W = 0 in
some (weighted) projective spaces. The fields X* (and the corresponding fermions)
realize the N=2 ¢-model on M

Around the vacuum the gauge vectors acquire mass via Higgs mechanism; also the other
fields in the gauge multiplet get masses. At the classical level, integrating on them in
the o-model phase realizes physically the mathematical construction of Kahler quotients
(see Appendix A). Starting with LG fields X0, X living on €™, one ends up with the
o-model on M, that is a hypersurface embedded in the Kahler quotient of C*™=' by G:

M ={W =0} cC//G. (3.12)

In section 3.1.2 the mechanism by which the N=2 o-model on M emerges and its geo-
metrical meaning are treated in detail, using the explicit example of M = CIP"**,

The geometrical condition under which the hypersurface M is a Calabi~Yau manifold
is found to be exactly the same condition eq. (3.11) for non-anomalous R-symmetry®.
Since the existence of non-anomalous R-symmetries is connected with the possibility of
a conformal limit, this is a nice confirmation of the relation between N=2 o-models on
Calabi-Yau and N=2 SCFT’s.

This type of construction is quite powerful. As shown in Witten’s paper, by choosing
various actions of a group G, with several abelian factors, over sets of LG fields, one
can obtain at low energies o-models on CY manifolds realized in very general ways, like
hypersurfaces or complete intersection of hypersurfaces in (weighted) projective spaces,
grassmanians, toric varieties and products of such spaces. In all these situations, having
built a model, the complete gauged LG theory, that interpolates between the two phases,
and being possible to show that no inescapable singularity separates them, the LG and
the CY phases are shown to be (quantum) equivalent. Notice that the heuristic path-
integral proof of the LG-CY correspondence is much more difficult to extend to so general
cases.

One has to worry about the possible singularity [at » = 0] separating the CY phase [r > 0] from the
LG phase [r < 0]. We are referring explicitely [within the square brackets] to the potential in eq. (3.19);
see the discussion after eq. (3.20). Being interested in quantizing the theory on a circle of radius 27 R
(corresponding to our D=2 theory being actually defined on the wordl-sheet of a closed string), we do
not worry about infinite-volume phase-transitions. The dangerous situation is the loss of compactness
(in field space) of the vacuum manifold.

Notice that for X% = X* = 0, the classical potential energy density eq. '(3.20) has the value U = 5;

irregardingly of the value of the gauge scalar M. This means that for energies above 27 R x 5,,_3 the
quantum states are nout bound to decay exponentially for large M. For r — 0 this seems to produce

®This relation also ensures that the superpotential W(X°, X*) in the complete model is quasi-
homogeneous.
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a singularity separating the two phases. It is thus necessary to investigate better what happens in the
region of large M and X4 near 0. :

In this region the Higgs mechanism for the gauge multiplet does not take place, and are instead
the X# that acquire large masses 2(¢#)2| M2 [see the lagrangian (2.20)]. In this region it is possible to
compute the only relevant quantum effect, that is the 1-loop renormalization of P:

- <r—zqﬂxﬂz> -2 ()
A i A A
&k 1 1 .t 7
— A - = &4A° _log —— (3.13
%:q /(27r)2 (k2+2(qA)2|M|2+... "2+2(qA)2y2+...> 2 M| (3.13)

where the divergent expression has been renormalized by subtracting the value at [M|? = 2. The result
(3.13) can be interpreted as the appearence of a M-dependent effective parameter

A
Teff = I + -—LA 1 log LN{—' (3.14)
27 7

We see that the Calabi-Yau condition is again crucial.

e If the CY condition } , ¢* = 0 holds, the 1-loop effect (3.13) does not contribute. In the large-A
region that we are considering, the X4 fields simply decouple from the effective theory that is
just that of the free supersymmetric gauge multiplet. This theory however contains a f-term, and
it is well-known that in the quantum theory this term contributes to the vacuum energy. The
exact quantum expression for the energy density of vacuum states at large |M]| is given by

1 g\’
2 = 1 =
== — - - . g
U 2{1’ +(27r):| , T<f<7 §—-0¢cnl (3.15)
We see that the dangerous situation, U = 0 at large |M], is avoided, when continuing from CY
[r>> 0] to LG [r < 0] through r = 0, by simply keeping the §-term different from zero.

e When ), ¢* = Q # 0, the one-loop effect (3.13)-(3.14) tells us that in the effective N=2 action
for the gauge multiplet a non-linear term in the gauge superpotential 2{(M) is generated”:

t 1Q M 8

Notice that the non-linear term is explicitely proportional to the anomaly of the R-symmetry
currents. This non-linear potential produces a new term in the action beside the F ayet—Iliopoulos
one [see eq. (2.11)]:
. M . ,
- 1—Q z(log — + 1)(F +iP) + c.c.. (3.17)
27 7
The logarithm is defined only up to 27iZ. The Chern classes are integer: [ d?zF € 27 Z. Since
the action needs to be defined mod. 2, it turn out that we must have 2QeZ.

Notice that, while the continuous R-symmetry (let’s say the right-moving dhe, under which M —
e'“f M, « being a continuous parameter) is lost, a discrete R-symmetry is still mantained. It
Is the Zq subgroup of the classical U(1) corresponding to rotations with parameter ap = 220

Q!
ne.

"See eq.s (2.12.2.13) for the relation between I and the Fayet-Iliopoulos parameter r.

.4
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By eq. (3.16) and by the same consideration about the contribution of the #-term made in the
CY case, the energy density for states at large M is now

o

4

9 %(log M/p+ 1) . (3.18)

1 .
U(M)_—z- ~r+12ﬂ_

At large M there are new ground states (|@| of them when @ > 0, with » < 0 and |Q| when
@ < 0, with 7 > 0), for which U(M) of eq. (3.18) vanishes.

Since U(M) behaves like log|M|? for M large, there is no loss of compactness of the vacuum
manifold, for any value of r and 4. Thus a generalization to this non-CY case of the LG-c-model
correspondence is obtained, being careful to include the discrete set of extra ground states at M
large just discussed.

In the next section 3.1 the focus will be on the classical properties, and in particular
more details are given on the geometrical interpretation of the o model phase. This is
also preliminary to the investigation in section 3.2 of the low-energy effective action for

® the gauged LG theory with N=4 theory, and of its nice geometrical interpretation in
terms of hyperKahler quotients.
Let us conclude these general remarks about the N=2 case by summarizing in Table
3.1 the structure of auxiliary fields of these theories, in relation with the geometrical
- properties of their low-energy limits.

®
Table 3.1: Summary of properties of N=2 gauge & matter system
- aux. fields geom. meaning Fayet-Tliop. geom. meaning  phases
of aux. fields param. of F-I param.
gauge mult. PelR mom. map funct. D relR level of D
in Kdhler quot. o-model
and L.G.
®

matter mult. H 1 holom. pot. W

What about the N=4 case?

In section 3.2 it is investigated in the N=4 supersymmetric case the structure of the
low-energy effective theory for the gauged LG model previously constructed in Section
2.3. The main results are the following:

® i) Differently from the N=2 case, there is just a single phase, the o-model phase.
The deep reason for this stays in the absence of auxiliary fields in the quaternionic
multiplets that represent the N=4 analogue of the N=2 chiral multiplets.

®
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it) The target space of the effective o-model M is the hyperKahler quotient (see Ap-
pendix A) of the flat quaternionic H" space spanned by the quaternionic multiplets
with respect to the triholomorphic action of the gauge group G. The link with the
geometric set-up of hyperKéhler quotients is provided by the very structure of N=4
supersymmetry.

This pattern is the N=4 analogue of the N=2 pattern discussed above and in section
3.1. It is summarized in Table 3.2 We have therefore constructed N=4 D=2 field theories

Table 3.2: Summary of properties of N=4 gauge @ matter system

aux. fields geom. meaning Fayet-Iliop. geom. meaning  phases
of aux. fields param. of F-I param.
gauge mult. PelR mom. map funct. D? reR levels of D3, Dt
QeC hol. mom. map D+ seC in Kéhler quot. o¢-model
only
matter mult. none A holom. pot.

that admits as effective theories N=4, D=2 o-models on hyperKahler manifolds that can
be obtained as hyperKéhler quotients of flat IH™ spaces. This may perhaps seem a quite
particular situation, but it is actually a very interesting one.

Indeed we will see in Chapter 4 that four-dimensional hyperKahler manifolds are
particular instances of gravitational instantons. In particular, the most important class
of gravitational instantons, the Asymptotically Locally Euclidean (ALE) manifolds, have
been constructed by Kronheimer [92, 93] precisely as hyperKahler quotients of flat quater-
nionic planes.

D=2, N=4 o-models® on 4-dimensional hyperKihler manifolds represent, from the
stringy point of view, the propagation of the string on the background -gravitational
instantons. This type of space-time non-perturbative effects are of grat conceptual rele-
vance, and an amout of work has been devoted to their study []. It has been for instance
analyzed how, at a more abstract level, the strings on gravitational instantons are asso-
ciated to (6,6)s4 SCFT’s.

In the next Chapter 4 we will construct the (6,6)44 solvable SCFT’s associated to
ALE manifolds in a specific point of their moduli spaces, i.e. for a specific value of
the levels in their hyperKahler quotient construction. In the present Chapter we pose
the basis for the construction of a N=4, D=2 (microscopic) field theory whose effective
(macroscopic) theory describes the o-model for the propagation of the string on ALE
manifolds at a generic point of their moduli spaces.

8D=2 o-models on hyperKahler manifolds admit N=4 extended supersymmetry
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3.1 The two-phase structure of N=2 low-energy the-
ories

Now we focus on the effective low-energy theory emerging from the N = 2 gauge plus
matter systems described in the above Chapter. Our considerations remain at a classical
level. We are mostly interested in the case where the effective theory is an N = 2
o-model. We show how the N = 2 ¢o-model Lagrangian is technically retrieved, in a
manner that is intimately related with the momentum map construction. Indeed this
latter is just the geometrical counterpart of the physical concept of low-energy effective
Lagrangian. To be simple we perform our computations in the case where the target
space of the low-energy o-model is the manifold CIP.

3.1.1 N=2 scalar potential and its two-phase structure

First of all we need to recall the structure of the classical vacua for a system decribed by
the Lagrangian (2.21), referring to the linear superpotential case: U = (5 —iZ-)M. We
set the fermions to zero and we have to extremize the scalar potential (2.26). Since U is
given by a sum of moduli squared, this amounts to equate each term in (2.26) separately
to zero. A particularly interesting situation arises when the Landau-Ginzburg potential

has the form

W = X°W(X) | (3.19)

Here W(X") is a quasihomogeneous function of degree d of the fields X* that are assigned
the weigths ¢', i.e. their charges with respect to the abelian gauge group..In the case all
the charges ¢' are equal (say all equal to 1, for simplicity) W(X*) is homogeneous. X°
is a scalar field of charge —d; notice that this choice satisfies the CY condition 3" ¢* =
¢® + 3¢ = 0. W(X") must moreover be transverse: ;W =0 Vi iff X* = 0 Va.

In this case we have:
1 N2 .
U = 5(7‘ + d|X°P — Zq‘lX’P) F8IW(X)? + 8| X° PO
+ 8| M| <d2|X°|2 + Z )3 X ) (3.20)

and two possibilities emerge.

e 7> 0. Inthis case some of the X* must be different from zero. Due to the transver-
sality of W it follows that X° = 0. The space of classical vacua is characterized not
only by having X% =0and M = 0, but also by the condition 3=, ¢ 1 X% = r. When
¢" = 1 Vi this condition, together with the U(1) gauge invariance, is equivalent
to the statement that the X* represent coordinates on CIPY. In general, the X*’s
are coordinates on the weighted projective space W(DIP g The last requirement,
W(X*) = 0, defines the space of classical vacua as a transverse hypersurface em-
bedded in (D]PN or, in general, in I/V(DIPéV 1.4~ The low energy theory around these
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vacua is expected to correspond to the N = 2 o-model on such a hypersurface. In-
deed, studying the quadratic fluctuations one sees that the gauge field A acquires
a mass due to a Higgs phenomenon; the gauge scalar M becomes massive together
with those modes of the matter fields that are not tangent to the hypersurface. The
only massless degrees of freedom, i.e. those described by the low energy theory,
are the excitations tangent to the hypersurface. The fermionic partners behave
consistently. We are in the “o-model phase”.

e r < 0. In this case X° must be different from zero. Then it is necessary that
O;W = 0Vi; this implies by transversality that all the X* vanish. The space of
classical vacua is just a point.Indeed utilizing the gauge invariance we can reduce
X? to be real, so that it is fixed to have the constant value X° = \/_:‘.i?_ M vanishes

together with the X*. The low energy theory can now be recognized to be a theory
of massles fields, the X*’s, governed by a Landau Ginzburg potential which is just
W(z'). We are in the “Landau-Ginzburg phase”.

3.1.2 o-model phase and Kahler quotients

Now we leave the CY situation, and look into the simplest possible example, the CIP~-
model, which corresponds to the particular case in which all the charges are equal to 1
and W = 0. We want to compute in detail the N=2 effective action for the o-model
phase [r > 0].

We start by writing the complete rheonomic lagrangian of the system consisting of
N + 1 chiral multiplets with no selfinteraction (X#,44,44), A = 1,...N, coupled to
an abelian gauge multiplet, each with charge one. Differently to what we did in the
previous sections, in this section we make the dependence on the gauge coupling constant
g explicit. To reinstall g appropriately, after reinserting it into the covariant derivatives,
VX4 = dz? + igAXA, we redefine the fields of the gauge multiplet as follows:

A—ta oIy ooy hy (3.21)
g g g

so that at the end no modification occurs in the matter lagrangian, while the gauge
kinetic lagrangian is multiplied by 515.

Altogether we have:

L= ﬂm S+ X e = LT 4 A E) e = MGG - C+5—]

e e L G T ) e 4 e (4 D A i) et
ngfee 2g2()‘ A+ A" dA e +292()\ dA-+ A" d)e
4 * 1 - T~ \ - 4 1 - Y+ F—- . P
—-;5 dM _Z(/\+C - A <+) (M+C+—M_€ )“;—Z‘I:dM-Fz(A C+'—A+C )](M+8+—*M_€ )
4 -~ -~
- MM+ MIM,) ere gisz(/\‘(j“‘ + ) + .g_lng* (+& +A¢*)
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1+ L 2 4 ~ _ g
— S (AFAT T H ATAT () + 5P eteT — 2rPete” + —F
4g° g° 2
+ 5;— [(X“‘C‘ X e+ (W = AT e+] + z;]% (MC”E“ + M*¢+E—>

(VXA = A — A et — T ) — (VXA AT+ 9 () (I e - TeT)
F(IA° T4 — IA O)ete™ + 2i(pA VAT + 9% Vipt)e*

— 2(FAVEY 4 AT VPA)em — pAyA T AT

—pAPAT T = AT PACT T+ VXAATCY = 94T ()

VXA (A — AT+ AM XA (et — AM XA YA et

FAM*XAGA (Yem —AM XA g4 e

+ {&'M*JA' WA+ 8iM YAyt + 2id AT XA 4+ 2ia -y XA

— 2 AT XA 2 AXAT 4 apXAT XA — 8M*MXA'XA}e+e‘ (3.22)

The procedure that we utilize to extract the effective lagrangian is the following. We
let the gauge coupling constant go to infinity and we are left with a gauge invariant
lagrangian describing matter coupled to gauge fields that have no kinetic terms. Varying
the action in these fields, the resulting equations of motion express the gauge fields in
terms of the matter fields. Substituting back their expressions into the lagrangian we
end up with a o-model having as target manifold the quotient of the manifold spanned
by the matter fields with respect to the action of the gauge group [135]. This procedure
is nothing else, from the functional integral viewpoint, but the gaussian integration over
the gauge multiplet in the limit ¢ — oco. As already pointed out in the introduction,
to consider a gauge coupled lagrangian without gauge kinetic terms is not a mere trick
to implement the quotient procedure in a Lagrangian formalism . It rather amounts to
deriving the low-energy effective action around the classical vacua of the complete, gauge
plus matter system. Indeed we have seen that around these vacua the oscillations of the
gauge fields are massive, and thus decouple from the low-energy point of view. So we

integrate over them: furthermore all masses are proportional to 51—7 and the integration

makes sense for energy-scales £ << i, namely in the limit g — oo.

Here we show in detail how the above-sketched procedure works at the level of the
rheonomic approach. In this way we retrieve the rheonomic lagrangian and the rheonomic
parametrizations of the N = 2 o-model, as described in section (2.2.5), the target space
being CIPY, equipped with the standard Fubini-Study metric. The whole procedure
amounts geometrically to realize CPY as a Kahler quotient [135].

Let us consider the lagrangian (3.22), in the limit ¢ — oo and let us perform the
variations in the gauge fields.

The variations in A=, A+, A=, A+ give the following “fermionic constraints”:
XApAT = XATpA = XA = X494 =0 (3.23)

Here the summation on the capital index A is understood. In the following we use simplified notations,
such as X¢* for X4¢4", and the like, everywhere it is possible without generating confusion.
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The fermionic constraints (3.23) are explained by the bosonic constraint X*X = r, for which the
auxiliary fleld P, in the limit g — oo becomes a Lagrange multiplier. Indeed taking the exterior
derivative of this bosonic constraint we obtain 0 = d(X*X) = X*dX + XdX* and substituting the
rheonomic parametrizations (2.16) in the gravitino sectors this implies

X (¢ +9C) = X($*CH+47CH) =0 (3.24)

from which (3.23) follows.

The variation of the action with respect to M™ in the gravitino sectors implies again the fermionic
constraints (3.23). In the ete™ sector we get the following equation of motion:

M= (3.25) |

T XX
The terms in the lagrangian (3.22) containing the connection A are hidden in the covariant deriva-
tives. Explicitely they are:
—IAXA (A et — M4 e™) +iAXA (T4e* — TAe™) + 2igp” (—i) Ay e*
+ 2T iApret — 2 (=) AYA e — 2igt iAY e
= ~ g » e Red 6
HIAXAPY = ) AKX (9 -9 (T) + odA (3.26)
In the gravitino sector we again retrieve the constraints (3.23). In the e* and e~ sector we respectively
obtain:
IXATA — XA 2 —4yty? =0
—iXATIAT XA IA + 49494 =0 (3.27)
At this point we take into account the variations with respect to the first order fields I, that give
04 =V, XA =V, X4 +i4, X4 and so on.

Substituting into eq.s (3.27) and solving for A,, A_ we get:
— (X0, X* — X*0,X) + 4opyp*

A = 2X*X -
_ —i(XOXT — X*0_X) + 4yt a5
A = O (3.28)

Substituting back the expression (3.25) for M into the lagrangian (3.22) in the g — oo limit we have

L=—[dX* +iXA(Ayet + Ae™) =P — 9o (I et — 47 e7)
XA = XA (A et + ALen) + AT CT g T (At — e — (A" TA 4 14T T4 )ete
+ 2i(prdyd” + A dy?t — 2A_e~ At et — 2i(PAdgAT + P dYA = 2iA et P AT e
— AT = AT — A AT — AT A

PP P

+ XA = PATC) — A (g - 9T -8 e +2P(r — X* X)e*e-

(3.29)
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where A, and A_ are to be identified with their expressions (3.28). To obtain this expression we have
also used the “fermionic constraints” (3.23). The U(1) gauge invariance of the above lagrangian can be
extended to a C*-invariance, where C* = C — {0} is the complexification of the U(1) gauge group, by
introducing an extra scalar field v transforming appropriately. Consider the C* gauge transformation
given by

x4 — ei@xA ¢A - ei‘l>¢A .

; .. (2e0) (3.30)
XA — XA o

which is just the complexification of the U(1) transformation, the latter corresponding to the case € R,
supplemented with ‘
v —s v+%(<1>—¢>*) (3.31)
One realizes that under the transformations (3.30, 3.31) the combinations e™*X# (and similar ones)
undergo just a U(1) transformation:
e XA N eiRe‘I’e-—‘u XA
eV XA s miRe®mupd” (3.32)

By substituting
XA A AT g4 0T A, L — et XA eyt ey L (3.33)

into the lagrangian (3.29) we obtain an expression which is invariant with respect to the C*-transformations
(3.30,3.31).
In particular the last term of (3.34) becomes

—2P(r— e X*X) (3.34)

If at this point we perform the so far delayed variation with respect to the auxiliary field P, the resulting
equation of motion identifies the extra scalar field v in terms of the matter fields. Introducing p* = r
the result is that

el = —L (3.35)

What is the geometrical meaning of the above “tricks” (introduction of the extra field
v, consideration of the complexified gauge group)? The answer relies on the properties
of the Kahler quotient construction; extensively discussed in [135], [92, 93]. Let us recall
few concepts, keeping always in touch with the example we are dealing with. We use
the notions and notations introduced in Appendix A. Let Y(s) = Y?k,(s) be a Killing
vector on S (in our case CV*'), belonging to G (in our case R), the algebra of the gauge
group. In our case Y has a single component: Y = i®(X4%w — XA*ST\,T;) (® € R).
The X4’s are the coordinates on S.

Consider the vector field I'Y € G¢ (the complexified algebra), I being the complex

structure acting on T'S. In our case I[Y = @(XAgJW + XA'g;\;F). This vector field
is orthogonal to the hypersurface D~!({), for any level ¢; that is, it generates transfor-
mations that change the level of the surface. In our case the surface D~1(p?) € CV*1
is defined by the equation X4'X4 = p?. The infinitesimal transformation generated
by IY is X4 — (1 + ®)X4, X4 — (1 + ®)X4" so that the transormed X4’s satisfy

XA XA = (1428)p°
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Figure 3.1: Kdhler quotient in the CIPN case

§=C Y generates U(1)
{Y,IY} generate U(1)° = C*
M is a point, that
can be obtained as C/C*
P
X = (14

M = NJU(1)

As recalled in Appendix A, the Kahler quotient consists in starting from S, restricting
to M = D7(() and taking the quotient M = A/G. The above remarks about the action
of the complexified gauge group suggest that this is equivalent (at least if we skip the
problems due to the non-compactness of G°) to simply taking the quotient S/G¢, the
so-called “algebro-geometric” quotient [135], [137].

The Kéhler quotient allows, in principle to determine the expression of the Kahler
form on M in terms of the original one on S. Schematically, let 5 be the inclusion map
of Vinto S, p the projection from A to the quotient M = N /G, Q the Kahler form on
$ and w the Kéhler form on M. It can be shown [135] that

S N=D) B M=N/G
Q— M=pvw — w (3.36)
In the algebro-geometric setting, the holomorphic map that associates to a point s € S

(for us, {X4} € CV*) its image m € M is obtained as follows:

i) Bringing s to V' by means of the finite action infinitesimally generated by a vector
field of the form V = JY = Vk,

T s€S — e Vse D) (3.37)

ii) Projecting e~V to its image in the quotient M = N/G.
Thus we can consider the pullback of the Kahler form w through the map p - 7:

ST N=D¢) 2 N/G

TP — p*w —w . (3.38)
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Looking at (3.36) we see that 7*p*w = 7*j*( so that at the end of the day, in order to
recover the pullback of w to § it is sufficient:
i) to restrict Q to N
7i) to pull back this restriction to M with respect to the map 7 = e™".
We see from (3.37) that the components of the vector field V must be determined by
requiring
D(e7Vs)=( (3.39)
But this is precisely effected in the lagrangian context by the term having as Lagrange
multiplier the auxiliary field P, see eq. (3.35), through the equation of motion of P, once
we have introduced the extra field v (which is now interpreted as the unique component
of the vector field V) to make the lagrangian invariant under the complexified gauge
group C*. The lagrangian formalism of N = 2 supersymmetry perfectely matches the
key points of the momentum map construction. This allows us to determine the form of
the map 7 : it corresponds to the transformations (3.33). The steps that we are going
to discuss in treating the lagrangian just consist in implementing the Kahler quotient as
in (3.38). Thus it is clear why at the end we obtain the o-model on the target space M
(in our case CIPY) endowed with the Kahler metric corresponding to the Kahler form
w. In our example such metric is the Fubini-Study metric. Indeed one can show in full
generality [135] that the K&hler potential K for the manifold M, such that w = 2:99K
is given by
K=K|y+V (3.40)
Here K is the Kahler potential on S; K|y is the restriction of K to N, that is, it is
computed after acting on the point s € § with the transformation e~V determined by
eq. (3.39); V° are the components of the vector field V along the a*® generator of the
gauge group, and (, those of the level ( of the momentum map. In our case we have
the single component v given by eq. (3.35), and we named p® the single component of
the level. The original Kahler potential on & = CV*!is K = 1X4 X4 so that when
restricted to D~!(p?) it takes an irrelevant constant value 32?-. Thus we deduce from (3.40)
that the Kahler potential for M = CPPY that we obtain is K = 1p?log(X~X). Fixing
a particular gauge to perform the quotient with respect to C* (see later), this potential
can be rewritten as K = %pg log(1 + z*z), namely the Fubini-Study potential.

Let us now procede with our manipulations of the lagrangian. It is a trivial algebraic matter to rewrite
the lagrangian (3.29) after the substitutions (3.33) with e™" given by eq. (3.35). For convenience we
divide the resulting expressions into three parts to be separately handled.

First we have what we can call the “bosonic kinetic terms”:

_ p2 XAX}_?' B XAXB B*
L = X*X%{?K‘S‘w“ o )Y x|

—i(X0,X* — X70,X) + 49" i(XO_X* — X*0_X) + 49" -

iXA + XA

e 29X X e XX

—A( - JA&}(H;%' *—I%e")+ cc — Xﬂ“X S o@AmA 4+ TA I eter
A .
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(3.41)

We would like to recognize in the above expressions the bosonic kinetic terms of an N = 2 o-model. By
looking at the o-model rheonomic lagrangian (2.47) we are inspired to perform a series of manipulations.
Collecting some suitable terms we can rewrite

X4X0, X et + X0_X%e™) — XAXdX*
XA4X*0, Xet + X*0_Xe™) — XAX*dX (3.42)

due to the fact that the further terms in the rheonomic parametrizations of dX,dX*, proportional to
the gravitinos, give here a vanishing contribution in force of the constraints (3.23).
We introduce the following provisional notation:

2 A" yB '
. I e e 3.43
Gas S h <5AB % (3.43)

Noting that, because of the constraints (3.23),

2
A p A :
. = 3.44
Gap- % 14 (3.44)
we can write
o 2
L = - [GAB-(dXA — YA =P 2 KT gyt

2
+ ;Zw*e‘)} (Hf‘ etII4 e ) — cc. — X/:‘X(Hf 04 +T_O)ete”

(3.45)

In order to eliminate the terms containing the first order fields II’s multiplied by fermionic expressions
we redefine the II’s:

o4 — oA+ 2iXA%:‘Z)% o4 - mA - 21')04‘3}@;‘7-;F (3.46)
. b* - = oAt YUt e
Hf — Hf—I—QZXAﬂ Hf — Hf —2%XA 5
Then we perform a second redefinition of the II’s:
, XAXB™N\ o
mo- (‘5AB + T’f‘) I
» XA‘XB - b kel
H‘i — <5A3iw>nf (3.41)
in such a way that the quadratic term in the first order fields takes the form
— Gap-(O208" + TATE )ete- (3.48)

After the redefinitions (3.46) and (3.47) we can rewrite the part £; of the Lagrangian in the following
way; we take into account, besides the constraints (3.23), the fact that

A vB
Gap-a* X% « (5AB - %) et XB =0 (3.49)
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and we obtain:

Ly = —Gap-(dXA A = A0 )(F et — 15 e7)
— Gap-(dXF + 977+ %ZB'Z“*)(HA +—T%e)
— Gap-(MLOE" 4+ TAIY Jete + o5 X)2¢¢ Gite (3.50)

Next we consider the fermionic kinetic terms in eq. (3.29). Performing the substitutions (3.33) with
v given by eq. (3.35) and using the fact that, for instance,

LV W = Gapept (3.51)

these terms are

Ly = zi{GAB-(wAd¢B‘+¢B‘d¢A) (X*X)zwzpf“(xa X* - X*a_X)e—}e+

—22{GAB.(¢Ad¢B + 98 &) + - Y)Zd)f*w (X0, X" — X*6+X)e+}e“

~ 16755 WW e (3:52)

Let us introduce another provisional notation:

Thc = X* (‘%Xc' +64XP7) : (3.53)
Tt is not difficult to check that the expression (3.52) can be rewritten as follows:
Ly = QZ{GAB* AP - vB . dx?” )+ Gap- 7 (0" —7ép ¢CdXD)}€+
- zi{aw.waJB' BT A" + G B (@~ 7 B b

— 16 S (8" )($9") (3.54)

( X)?

The remaining terms in the lagrangian (3.29) become, after the substitutions (3.33)

30 pAyE TE A — Gape (bR = TP E O
o X)?

B FACHE) = Gap- XA (WP ¢ = §PTCY) + Gap-dX P (9 — A0

L3=—

(3.55)

We have succeded so far in making the lagrangian (3.29) invariant under the C*-transformations
(3.30) , and to write it in a nicer form consisting of the sum of the three parts £1, L4, L3 as given in egs.
(3.50,3.54,3.55), respectively:

L = —Gap-(dX* —yt¢ — gAY et -5 e)
— Gap-(dXB 4+ 9P ¢ + GBI (M e — M%) — Gap- (4T + TAIT Jete”
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+ Qi{GAB*i,[)A(de. _ 7g:c‘¢c- dXD') + GAB‘Q,bB. (de _ 761D¢CCLX'D)}€+
- 21'{@,,3,@@3. — 7B+ ¥ XY + G (it — 73‘D$CdXD)}e'
= Gap- (W (¢ — APE T A AGE (T 4B AT

= GapdXH (WP ¢ — 98 (%) + Gap-dX B (¢ — A0)

2 e PR
—8(X*pX)2 (WA GBPE 4 pAyB G A" Yo - (3:56)

We can now utilize the gauge invariance to fix for instance (in the coordinate patch where
X0£0) X0 =1, fixing completely the gauge. In practice we perform the transformation

1 —
E{O'XA (3.57)

XA — e—-@x—A —
that is we go from the homogeneous coordinates (X°, X*) to the inhomogeneous coordi-
nates (1,2° = X*/X°) on CPPY.

Having chosen our gauge, we rewrite the lagrangian (3.56) in terms of the fields z* (and of their fermionic
partners ¢, 7;‘) Note that now dz° = 0 implies (because of the rheonomic parametrizations) ¢° = 0
and 9% = 0. The expression X" X = X“" X4 becomes 1+zi z' = 14+z*z. Of the expressions G 45+ and
74 only the components not involvig the index zero survive. We introduce the following notations:

_ 2 XA‘XB _ 2 [
GAB‘ = X X <5AB - X*X ) gl]‘ = Ttz z (61 - f‘+x1‘x) .
— (3.05)
A — 1 » AyvB* L - 1 okt il
TBe = ¥ (AXC" + 66X5) Iy = s (02t + 8l

We see that g;;+ is just the standard Fubini-Study metric on CIPY, which is a Kahler metric of Kahler
potential K = p®log(1 + z*z); I‘;'-k is just the purely holomorphic part of its associated Levi-Civita
connection. Moreover the Riemann tensor for the Fubini-Study metric is given by:

Rijepe = ——p.—__{a;a,’c +6i6F —

= (st sty

1+ z*z

it ikt
rrr e } (3.59)

682! 4 6kl 2~
+JZ'+II):E)+ (1—{»—1*.’[:)2

and we see that using once more the fermionic constraints (3.23) the four-fermion terms in (3.56) can
be rewritten as follows:

gﬁ%;);(wiwf'zlf W Y ) = Ryl G (3.60)

Thus at the end of the above manipulations, corresponding to the procedure of obtaining
CIPY as the Kihler quotient of CV*!, we have reduced our initial rheonomic lagrangian
(3.22), in the limit g — oo, to a form which is that of the N = 9 o-model as given in eq.
(2.47). The target space is CIPY equipped with the Kahlerian Fubini-Study metric.
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3.2 Phase structure of the N = 4 theory and recon-
struction of the associated low-energy theory

We address now the questions related with the structure of the classical vacuum of the
N = 4 theory discussed in Section 2.3 and with the low energy theory around this
vacuumn.

3.2.1 Scalar potential in N=4 and comparison to N=2

To minimize the potential (2.67), which is given by a sum of squares, we must separately
equate each addend to zero . If we compare the N = 4 bosonic potential with the
N = 2 one given in eq. (2.26) we note that the absence of an N = 4 analogue of the
Landau-Ginzburg potential reduces the possibilities. There is only an N = 4 o-model
phase. Beside M = 0, N = 0, we must impose D*(u,v) = r and D* = s. Taking into
account the gauge invariance of the Lagrangian, this means that the classical vacua are
characterized by having M = N = 0 and the matter fields u,v lying on the HyperKéhler
quotient

M =D r)Nn D (s)/U(1) (3.61)

of the quaternionic space JH™ spanned by the fields u’, v’ with respect to the triholomor-
phic the action of the U(1) gauge group (see Appendix (A)). Considering:the fluctuations
around this vacuum, we can see that the fields of the gauge multiplet are massive, to-
gether with the modes of the matter fields not tangent to M. The low-energy theory
will turn out to be the N = 4 o-model on M. .

Here neither we write the explicit derivation of the general form for an N = 4 o-
model nor we give the N = 4 analogue of the recostruction of the low-energy N = 2
o-model discussed in section (3.1.2). We just recall the basic fact that a o-model is
N = 4 supersymmetric only under the condition that the target space be a hyperKahler
manifold. The reason of this omission is not just to save space; the key point of what
happens in the N = 4 case can be fully understood also in an N = 2 language.

Indeed N = 4 theories are nothing else but particular N = 2 theories whose structure
allows the existence of additional supersymmetries.

Which kind of N = 2 theory is the N = 4 gauge plus matter system described in
Section (2.3)? The answer is easily given. If we suppress the additional gravitinos x* and
X*, the N=4 rheonomic parametrizations (2.53),(2.59) and the N=4 action (2.62),(2.54)
of n quaternionic multiplets coupled to a gauge multiplet become those of an N=2 theory
(see eq.s (2.9, 2.16, 2.19, 2.10) containing one gauge multiplet (A, X0 A M, P)
and 2n + 1 chiral multiplets, namely :

w0, B )
v, B, B, ) (3.62)
X0, 900,90, 40, §0°)

(x4, 94, 9%, 94, 947) =

TN NN
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where the index A runs on 2n + 1 values, the index 7 takes the values i = 1,...n and
where we have defined:

X% = 2N
1 .1
¢O——§#+ ;o Wl =Tk
Pl o g _lg (3.63)
=k Y =gk b

The match between the N=4 theory and the general form of the N=2 model is complete
if we write the generator of the U(1) transformations on the X4 chiral multiplets as the
following (2n + 1) x (2n + 1) matrix:

qiﬁj 0 0
g =] 0 —¢'s 0 (3.64)

0 0 0

and we choose as superpotential the following cubic function:
1 1 S
|14 (XA) = - ZXO (" — D (u,v)) = — ZXO (s* +2i ) ¢ vl) (3.63)

where D~ (u,v) = =21 ; ¢'u’v' is the holomorphic part of the momentum map for the
triholomorphic action of the gauge group on H" = C**. The superpotential (3.65) is
quasi-homogeneous of degree

dw =1 (3.66)

if we assign the following weights to the various chiral fields:
wp =1 ;5 wy = wi =0 (3.67)

It is evident from eq. (3.64) that the condition 3" ¢* = 0 is obeyed. Given the different
form of the potential, w.r.t to the one used in the context of the LG-CY correspondence,
1t has no longer the meaning of CY condition. It however still ensures us that the
R-symmetry U(1) currents are non-anomalous.

In particular, it is easy to check that the form (2.26) of the N = 2 bosonic potential
reduces, the Landau-Ginzburg potential being given by eq. (3.65), exactly to the potential
of eq. (2.67):

U = (r_33)2+Z[6AWP+8|MPZ(¢)2 (1P + [o)?)

b= B

1

(n = D)+ s = D 4 (SIMP +21X°7) X092 (el + o)

~(3.68)
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From this N = 2 point of view, why do we not see two different phases in the structure
of the classical vacuum? To answer this question let us compare the above potential with
that of eq. (3.20) i.e. with the simplest of the examples considered in Witten’s paper
[83]. The crucial difference resides in the expression of the real component D3*(u,v) of
the momentum map, see eq. (2.66). It is indeed clear that by setting

r— Zq ()P = ') = (3.69)

the exchange of r > 0 with r < 0 just corresponds to the exchange of the u’s with the
v’s. Since in all the other expressions the u’s and the v’s play symmetric roles, the two
phases > 0 and r < 0 are actually the same thing. This is far from being accidental.
The reason why the charge of v’ is opposite to the one of u’ is the triholomorphicity
of the action of the gauge group, as already noted in section I. The triholomorphicity
is essential in order to have an N = 4 theory; thus the indistinguishability of the two
phases is intrinsic to any N = 4 theory of the type we are considering in this paper.

It would be interesting to investigate in detail what happens at r = 0, or better
in general for the values of the momentum map parameters (r and s here) where the
hyperKéhler quotient degenerates [92, 94]. This might be particularly relevant in the
case of the ALE spaces [89]-[93], four dimensional spaces with ¢; = 0, obtained via a hy-
perKahler construction. Note that the supersymmetric o-model on such spaces, because
of the vanishing of the first Chern class, gives rise, at the quantum level, to a supercon-
formal theory. In these cases, for certain values of the momentum map parameters the
hyperKahler quotient degenerates into an orbifold. If for these particular values of the
parameters there is no real singularity in the complete theory (the gauge plus matter
system), then we have an explicit unification of the "singular” case where the effective
theory is the superconformal theory of an orbifold space with the case where the effective
theory is a o-model on a ALE space.

To complete the definition of the vacuum, we mut set M = 0,X° = 0 and require
Dt (u,v) = s.

We have found that considering an N = 2 theory with a Landau-Ginzburg potential
(3.65) does not introduce the possibility of a Landau-Ginzburg phase for the vacuum.
We can understand this fact because such a potential has a “geometrical” origin and at
the level of the V = 4 theory it is related to the gauge sector; it does not come from a
self-interaction of the N = 4 matter fields (quaternionic multiplets). This self-interaction
cannot exist, as we noted above.

3.2.2 oc-model phase and HyperKahler quotients

To reconstruct the low-energy theory, we must follow the procedure outlined in section
3.1.2. The only difference is that there we considered the CIPY case, in which there is no
Landau-Ginzburg potential. On the other hand here we must take into account also the
constraint D* = s which comes from the potential (3.65).
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To be definite we consider, in an extremely sketchy way, the case that corresponding
to the obvious N = 4 generalization of CIP", namely in the above formule we take all
the charges ¢* = 1. The spaces obtained by means of the hyperKahler quotient procedure
of H™ with respect to this U(1) action have real dimension 4(n — 1); the K&hler metric
metric they inherit from the quotient construction are called Calabi metrics [138].

First of all, if we restore the gauge coupling constant (extending the redefinitions
(3.21) to the other fields of the N = 4 gauge multiplet) before reducing the theory in its
N = 2 components, at the end also the kinetic terms for X° and its fermionic partners
aquire a factor 91—2. They disappear, together with the kinetic terms for the remaining
N = 2 gauge multiplet, when we take the limit ¢ — oo, which should correspond to
integrate over the massive fluctuations. This matches the fact that also the fluctuations
of X© and of its partners around the vacuum are massive.

In analogy with section 3.1.2 we consider the variations of the action with respect
to the non-propagating fields. The variations in X©,%° #° are on the same footing as
those in M, A*, A*. In particular we get fermionic constraints that, by supersymmetry,
correspond to the two momentum map equations

DP=r & S (P-pP)=r (3.70)

Dr=s & 2y u o =s (3.71)

The fermionic contraints are crucial in the technical reconstruction of the correct form
of the rheonomic lagrangian of the N = 2 ¢-model on a space TCIPY endowed with a
Calabi metric, the Calabi space. We omit all the details confining ourselves to pointing
out the essential differences with the N=2 case.

Note that the holomorphic contraint Dt = s is not implemented in the N = 2
lagrangian we are starting from, eq.s (2.21,2.19, 2.10), through a Lagrange multiplier.
This would be the case (by means of the auxiliary field Q) had we chosen to utilize the
N = 4 formalism, see eq.(2.63), and this is the case for the real constraint D* = r,
through the auxiliary field P. This fact causes no problem, as it is perfectely consistent
with what happens, from the geometrical point of view, taking the hyperKahler quotient.
Indeed the hyperKahler quotient procedure is schematically represented by

s £ Dil(s) - N =D3i(r) N D) 2 M =N/G (3.72)

where we have gone back to the general case and we have extended in an obvious way
the notation of eq. (3.36): j* and j® are inclusion maps and p the projection on the
quotient.

We remarked in section (3.1.2) that the surface D5'(r) is not invariant under the
action of the complexified gauge group G°. It is easy to verify instead that the holomor-
phic surface D !(s) is invariant under the action of G°. Just as in the K&hler quotient
procedure of section (3.1.2) we can therefore replace the restriction to D5*(r) and the
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G quotient with a G° quotient, without modifying the need of taking the restriction to
D;'(s). The hyperKahler quotient can be realized as follows:

s & Drl(s) 2 M=Ds)/GF (3.73)

We see that, in any case, we have to implement the constraint D* = s. This does not
affect the procedure of extending the action of the gauge group to its complexification,
which, in our case, is given by:

ut ez@uz : v 6—1®U1
” e - N
Ut e i@ : v ez@ v
4 . -
v v+—2—((1>—~(1> ) (3.74)

and of obtaining the invariance of the lagrangian under this action, by means of the
substitutions
uo— etu v — e (3.75)
and similarly for the other fields, as it happened in eq. (3.33).
The variation in the auxiliary field P, that acts as a Lagrange multiplier for the
real momentum map constraints, gives, after the substitutions (3.75), the equation

D3(e™Vu, ev) = r, that is

,— 6~2uz luitz + ezvz [vilz -0 - (3.76)

This equation is solved for v as follows (we introduce the notation p* = r):

o TP NP A PR P
B 255 v '

We have still to implement the holomorphic constraint D, = s; we have also at our
disposal the C* gauge invariance of our lagrangian. We can utilize this invariance choosing
a gauge which can simplify the implementation of the constraint [135]. One can for
instance, as it is clear from the form (3.74) of the C*-transformations, choose the gauge
where " = v". In this gauge the constraint

(3.77)

D™= -2 u'v'=s" (3.78)

is solved by setting

i 18* ~I oo
vto= \/2(1+ZJ1'ZJ?JJ)(U’1) (3.79)
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where the capital indices I, J, ... run from 1 to n — 1. The final result of the appropriate
manipulations that should be made on the lagrangian, following what was done in section
3.1.2 will be the reconstruction of the rheonomic action (2.47) for the N = 2 o-model
having as target space the hyperKahler quotient IH"/U(1), endowed with that the Kahler
metric which is naturally provided by the hyperKahler quotient construction, exactly in
the same way as it happened in the Kahler quotient case of section 3.1.2. The Kahler
quotient is again obtained through eq. (3.40). In expressing the result, it is convenient
to assign a name to the expressions ¥; [u'|* and 3; [v*|?, that, through eq.s (3.79), must
be reexpressed in terms of the true coordinates on the target space, the @’s and the ¥’s.
Therefore we set
28*

2 ~T12
p ;'“l “2|1+2JaJ6J12(1+;1ul)

il

18*

12 ~Ii2 Q
Z]U| - 2|1 +ZJﬂJ6JIQ(1 +ZI:lU [ ) (3.80)

v

We note that, differently from the CIPY case, the part of the Kahler potential on the
target space that comes from the restriction of the potential for the flat metric on the
manifold IH" to the momentum-map surface D3 (r)ND;* (s) is not an irrelevant constant.
Indeed it is given (see section I ) by:

Vot 46y (3.81)

The final expression of the Kahler potential for the Calabi metric is:

S 1 P =P+ Vet + 4By 3 8
K = —2—\//)4 + 48y + Elog (3.82)

29

[N

- 1 —2v 112 v 7
Kl = S 3 e + e Y ) =

In the case n = 2, the target space has 4 real dimensions and the Calabi metricis nothing
else that the Eguchi-Hanson metric, i.e. the simplest Asymptotically Locally Euclidean
gravitational instanton [92, 93].



Chapter 4

ALE manifolds and string theory

In the previous Chapter, we focused on some questions arising from considering the su-
perstring propagstion on CY manifolds (in particular, of course, the physically relevant
case is that of 6-dimensional CY’s, acting as compactification manifolds), abstractly asso-
ciated to N=2 SCFT’s (in particular, (9,9),,2 theories for the compactifying manifolds).

A rich interplay arises in these cases between N=2 o-models on CY’s, LG models
and N=2 SCFT’s. In particular, there is a microscopic theory, the gauged LG model,
that admits LG and CY models as different macroscopic phases, phases that can be
continuosly connected. Then we considered the construction of the macroscopic theory
in those cases that admit N=4 supersymmetry. We found that in such cases there is
a single macroscopic phase, corresponding to the o-model on a hyperKahler manifold
obtained via a hyperK&hler quotient. _ ‘

In the present Chapter we consider issues related to the string propagation on non-
trivial 4-dimensional spaces. String propagation on non-trivial manifolds is of course
interesting under many respects, both for what one may learn about the manifolds (one
speaks then of “string geometry”: think for instance of how much has been learned about
CY manifolds) and for what one may learn about string theory itself; this line is at the
hearth of the recent explosion of interest in different string theories in different geometric
or non-geometric backgrounds, related by all sorts of dualities.

Much work has been devoted in the recent years to the investigation of black holes
in string theory; these look as laboratories to test the deeper properties of the quantum
theory of gravity encoded in string theory.

Another distinguished class of spaces on which may be worth to study string propa-
gation are the 4-dimensional gravitational instantons, topologically non-trivial solutions
of the vacuum Einstein equations characterized by having a self-dual curvature two-form
R*(w), where w is the spin connection. This is the class of manifolds investigated in the
present Chapter.

In the same way as 6-dimensional CY manifolds are associated to (9,9);, SCFT’s
in a stringy context, 4-dimensional gravitational instantons can be associated to (6,6)44
SCIT’s. Indeed it is possible to show that the most general case in which a supersymmet-

95
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ric o-model on a 4-manifold admits 4,4 left-,right-moving supersymmetries is when the
manifold is a so-called [generalized] hyperKahler manifold?, that is a gravitational instan-
ton [with torsion].Moreover, it is possible to construct explicitely in the (6,6)s4 theory
supposedly associated to a gravitational instanton, the whole set of emission vertices?
corresponding to the zero-modes of massless fields, belonging to the spectrum of the
already compactified string, on the background of the gravitational instanton.

Summarizing, we focus on the first factor (the space-time one) in the following tensor
product of CFT’s representing a vacuum for compactified superstring:

(6,6)4,0 & (9922
space-time internal (4.1)

grav. 1nstanton CY manifold

Whithin this context, two types of spacetimes are particularly interesting.

On one side, there exist gravitational instantons with torsion different from zero that
are asymptotically flat (which is of course a welcome feature if one thinks for instance of
computing scattering amplitudes in this background) although being topologically non-
trivial; this is possible only thanks to the non-zero torsion. An example of such space
is derived in [110, 109]. In the same papers it is also explicitely constructed the its
associated solvable (6,6)s4 SCFT, in the particular limit in which this instanton reduces
to the SU(2)x U(1) manifold (unfortunately, this is also the limit in which asymtpotic
flatness is lost). v

On the other side, one can consider gravitational instantons that, although not being
globally asymptotically flat, still are asymptotic to flat space at least locally. Such mani-
folds are known as Asymptotically Locally Euclidean (ALE) manifolds. They have been
deeply studied by physicists and mathematicians [89]-[93]; they admit an ADE classifica-
tion in terms of finite Kleinian subgroups of SU(2), and they display a lot of interesting
features.

From our particular point of view, ALE manifolds have two particularly appealing
characteristics:

i) Every type of ALE space possesses a limit in its moduli space in which it degenerates
to an orbifold €*/T, T being a Kleinian group. In this limit the associated (6,6)s.
SCFT is solvable and is explicitely constructed in section 4.2.2.

i) ALE spaces are explicitely constructed as hyperKahler quotients of suitable IH™
flat spaces, through a nice mathematical construction due to Kronheimer [92, 93].
This opens up the possibility of studying the o-model on ALE manifolds, in each

1As shown in Appendix A, 4-dimensional hyperKahler manifolds authomatically are gravitational
instantons. Gravitational instantons with torsion possess a self-dual curvature two-form R*(w +T') and
an antisefdual curvature R%(w —T).

?Actually in [74] this construction was carried out in the case of the heterotic string
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point of their moduli space, as the macroscopic phase of a suitable microscopic
N=4 gauged LG theory. '

In section 4.1 we will review the basics of the geometry of ALE manifolds, in partic-
ular the deep relation with the algebric structure of the Kleinian groups to which they
correspond in a ADE classification. Then we go through the Kronheimer construction of
the ALE manifolds as hyperKahler quotients; we try to put this rather abstract mathe-
matical construction in a as much as possible explicit form, in view of the possibility of
utilizing it for the construction of the microscopic theory quoted above.

The Kronheimer construction puts into a more explicit form the relation with the
Kelinian groups, and in particular with the associated “simple Kleinian singularities”.
To this effect, we explicitely obtain (at least for the cyclic A series of ALE manifolds,
that are nothing but the multi-center metrics of Gibbons and Hawking [87]) the map
between the levels of the triholomorphic momentum map in the hyperKahler quotient
and the deformations of the Kleinian singularity.

In section 4.2 we start by introducing briefly the relation between gravitational in-
stantons and (6,6)s44 SCFT’s, looking in particular at the concept of “abstract Hodge
diamond”. This concept can be defined for N=2 theories, and in the N=4 case encodes
the content of so-called short representations of the theory, that contain the possible
marginal operators.

Then we look at the (6,6)4,4 theory that corresponds to the singular orbifold limit
(obtained for levels of the hyperKahler quotient all equals to zero) of an ALE manifold.
In the case of the Ay manifolds, the theory is that of an abelian non-compact orbifold.
Everything can be succesfully worked out explicitely, and the expected correspondence
with the structure of the A; Kleinian group emerges. The set of short representations,
that are constructed using the twist operators, is in one-to-one correspondence with the
elements of A;. Also the partition function can be explicitely written, and its expansion
in N=4 characters agrees with the determination of the contents in short representations.
It remains open the problem of finding the explicit map between the deformation para-
menters corresponding to the insertion in the action of these N=4 marginal operators and
the levels in the hyperKahler quotient, that indeed dictate the resolution of the orbifold
singularity.

A sort of guideline in all our work related with the investigation of the CFT theory
of gravitational instantons has been the (non-trivial) analogy with what happens for the
CY case. In the investigation, however, not only the similarities but the differences as
well between the two cases are very important and must be properly taken into account.
To this purpose, I try to summarize (in a rather unordered way, I fear) some remarks in
the comparison between CY and ALE manifolds in Table 4.1.
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Table 4.1: CY versus ALFE manifolds

CY ALE
compactness Yes No
first Chern class c1[K] = 0 (Ricci flat) c1[K] = 0 (Ricci flat)
associated CFT (9,9)2,2 (6,6)4,4
Kéhler class def.s qtl
7 self-dual norm. 2-forms
complex struct. defs. H1?
CFT def.s for Kahler (c,c) marginal
N=4 short reps.

CFT def.s for complex struct. (c,a) marginal
mirror symmetry hbY s pl2 self-mirror
macroscopic theory N=2  gauged N=4 gauged hy-

LG, with LG permultiplets, no

potential W LG potential
3 a “LG phase?” Yes No
solvable point Gepner point orbifold €2/T

(Fermat point)
solvable CFT tensor product orbifold theory

of minimal mod-

els
singularity sum of sim- Kleinian singul.

ple singul.s

4.1 ALE manifolds

Non-compact hyperKahler four-manifolds

The notion of a hyperKahler manifold M is reviewed in Appendix A. It admits three
covariantly constant complex structures J* : TM — T M, satisfying the quaternionic
algebra: J'JJ = —69 4+ 9% JF. In a vierbein basis {V°}, the matrices JZ, are anti-
symmetric (by hermiticity). By covariant constancy, the three hyperKahler two- forms
Q= jij“ A VP are closed: dQ* = 0. Because of the quaternionic algebra constraint,
the 7, i can only be either selfdual or antiselfdual; we take them to be antiselfdual:

4 = —t€apea Ty Then the integrability condition for the covariant constancy of J!
forces the curvature two-form R? to be selfdual (thus automatically solving the vacuum
Einstein equations).
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A hyperKéhler manifold is in particular a Kahler manifold with respect to each of its
complex structures. Choose one of the structures (say J3) and fix a frame on M well-
adapted to it. Consider then the Dolbeaut cohomology groups HP?(M), of dimensions
hP9. Since M is Ricci-flat, its first Chern class vanishes: ¢;(M) = 0; M is a (non-
compact) Calabi-Yau manifold and therefore A*® = %% = 1. It is easy to see that
QFf = Q' £ 10? are holomorphic (resp. antiholomorphic) so that [Q*] = H?%(M),
7] = H%*(M), where by [Q*] we mean the cohomology classes of QF. Q3 is the
Kéhler form on M and [Q?] is just one of the elements of H'*(M).

On a non-compact manifold it is worth considering the “compact-support” cohomol-
ogy groups, that coincide with the relative cohomology groups of forms vanishing on the
boundary at infinity of the manifold:

e {L?integrable, closed p — forms}

c

= H?(M,IM),

~ {L?integrable, exact p — forms}

of dimensions 62. Analogously we will consider the compact support Dolbeaut coho-
mology groups HE, of dimensions h2?. The Poincaré duality provides an isomorphism
H,(M) ~ Hi?(M), where H,(M) are the homology groups. Call b, their dimensions
(the Betti numbers); then b, = b7

The fundamental topological invariants characterizing the gravitational instantons
were recognized long time ago ([85], for a review see [88]) to be the Euler characteristic
x and the Hirzebruch signature 7 of the base manifold. -

The Euler characteristic is the alternating sum of the Betti numbers:

4 4 4

x = (=1)Pb, = > (—=1)Pb52 = > (—1)PB. (4.2)

p=0 p=0 p=0

The Hirzebruch signature is the difference between the number of positive and negative
eigenvalues of the quadratic form on H2Z(M) given by the cup product [, a A B, with
a,B € H(M). That is, if b2 and 2 are the number of selfdual and anti-selfdual

2-forms with compact support, 7 = b bi(_). At this point, we need two observations.

1. The hyperKahler forms 3, Q%, being covariantly constant, cannot be L? if the
space 1s non-compact

Q)

In the compact case they are the unique antiselfdual 2-forms, so that 5*(7) = 3,
b*+) = 7 4 3. Indeed from the expression of the Hirzebruch signature in terms of
the Hodge numbers, 7 = 3", —omoaz(—1)7h"? (see [143, chap. 0, sec. 7)), using
the consequences of the Calabi-Yau condition ¢;(M) = 0 = A?° = h%2 = 1 and
the fact that 2%° = A% = 1 we obtain A'? = 7 + 4. Hence the cohomology in
degree two splits as follows:

R2:0 38! 10,2
(4.3)



60 Chapter 4. ALFE manifolds and string theory

This leads to the conclusion that 2* € H*! and Q* € H?*° (resp. H®?) are the
unique antiselfdual two-forms. ‘

In the non compact case, by the observation (1) the hyperKéhler two-forms are deleted
from the compact support cohomology groups. However the Hirzebruch signature is
what it is, hence also other three selfdual two-forms have to be deleted as being non
square-integrable, in order to maintain the value of 7.

The “Hodge diamonds” for the usual and L? Dolbeaut cohomology groups are respec-
tively given by:

1 0
0 0 0 0
1 744 1 0 T 0 (4.4)
0 0 0 0
0 1

Note that, from eq.(4.2), x =7+ 1.

In the (4,4) SCFT corresponding to a non-compact gravitational instanton we expect
therefore to be able to distinguish four of the ¥4 as giving rise to “non-normalizable”
deformations. We will see how this is realized in the case of ALE spaces.

ALE spaces

The most natural gravitational analogues of the Yang-Mills instantons would be repre-
sented by Riemannian manifolds geodesically complete and such that

1. the curvature 2-form is (anti)selfdual;

2. the metric approaches the Euclidean metric at infinity; that is, in polar coordinates
(r,®) on R*
G (T, ©) = 60 + O(r™) (4.3)

This would agree with the “intuitive” picture of instantons as being localized in finite
regions of space-time. The above picture is verified however only modulo an additional
subtlety: the base manifold has a boundary at infinity S3/T, I' being a finite group of
identifications. “Outside the core of the instanton” the manifold looks like IR*/T" instead
of R* . This is the reason of the name given to these spaces: the asymptotic behaviour is
only locally euclidean. The unique globally euclidean gravitational instanton is euclidean
four-space itself. This kind of behaviour is easily seen in the simplest of these metrics,
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Figure 4.1: Eguchi-Hanson instanton

the Eguchi-Hanson metric [89]:

. 20,2 | 2 2 [1_ (2] 2 ,
ds* = T+ ri(os o)+ |1 oZ, (4.6)

- (2)

where a is a real constant, 0,0y, 0, are Maurer-Cartan forms of SU(2) realized in terms
of the Euler angles given by the angles of the polar coordinates on IR* 8, ¢, . By changing

4
the radial coordinate: u? = r? |1 — (%) | the apparent singularity at r = a is moved to
r g

u = 0:
ds? = du” 2 2 2/ 2 2 . 4T
5 = 2+u02+r(0x+ay), ()

[1 + (%)4]
Since near u =0 ds? ~ Ldu? + Ju?(dip + cos 0dg)* + %(d@z +sin? #d¢?), at fixed 0, 6 the
singularity in ds® ~ }(du® + u®dy?) looks like the removable singularity due to the use of
polar coordinates in R?, provided that 0 < % < 27, which is not the range assumed by
the polar angle % on IR*; in this case the range is instead 0 < 1) < 4w. Thus opposite
points on the constant-radius slices are to be identified, and the boundary at infinity is
S3/z,

Subsequent work, leading to the construction of the “multi-Eguchi-Hanson” metrics
[90] and their reinterpretation in terms of a twistor construction [91], culminating with
the papers by Kronheimer [92, 93], established the following picture.

Every ALE space is determined by its group of identifications I', which must be a

finite Kleinian subgroup of SU(2). Kronheimer described indeed manifolds having such
a boundary; he showed that in principle an unique selfdual metric can be obtained for
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for each of these manifolds [92] and, moreover, that every selfdual metric approaching
asymptotically the euclidean one can be recovered in such a manner [93].

Number of parameters in the ALE metrics

The number of parameters in a general metric g,,, a part from the breathing mode,
equals the number of zero modes of the Lichnerowitz operator. These modes modes are
represented by symmetric, traceless, harmonic tensors 8g,, that in four dimensions can
be obtained as

6Guw = 8. ap (4.8)

Suv, Gy being the components of a selfdual (resp. antiselfdual) harmonic two-form. For
hyperKahler four-manifolds, the number of such modes is clearly

# traceless defs. = p2(Hp2(7) = 34205) (4.9)

A deformation g, is called normalizable (L*-integrable) if

[\A 9" 977 09u,09vs < 0. (4.10)

The above deformations, eq.(4.8), are not normalizable when they decrease at radial
infinity less strongly than r~*. Adding such a 8g,, to g,, would destroy the asymptotic
behaviour (4.5). In (4.8) the anti-selfdual forms (the hyperKéhler forms) are certainly
non-normalizable; being covariantly constant, they tend to a constant at infinity. Thus
the behaviour of ég,, = sfa,, at infinity is determined by the behaviour of sf,. The
diamonds (4.4) show that the bad-behaved self-dual two-forms s/, are three, so we get

# traceless L? deformations = 3 7. (4.11)

We will see that this number has a particularly clear origin in the construction of the ALE
spaces of section 4.1.1. However one still has to disregard those deformations that can be
readsorbed by means of diffeomorphisms. One must not consider zeromodes of the form
69w = V., for some vector field £#. As shown by Hawking and Pope in [86], any such
vector field £* should tend to one of the SO(4) Killing vectors of the S3-boundary that
commute with the action of T, given in eq.(4.12,4.17). The generators of SU(2)g survive
for all the possible groups T'; in the case Ax_1,k > 2 (Multi-Eguchi-Hanson metric) also
the diagonal generator of SU(2); commutes with Ax_1, and in the Eguchi-Hanson case
(A1) all the six generators of SO(4) commute with Cs.

Of course, we must exclude the true Killing vectors of the ALE metric (that, by
definition, do not give rise to any deformation). The ALE metrics admit one Killing
vector in all cases except the Eguchi-Hanson instanton, which have four of them, as
can be seen also from the explicit form of the metric, eq.(4.6). These informations are
summarized in Table 4.2
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Table 4.2: Number of deformations for the ALF metrics

C2 (E-H) Ak—-l Dk+2 Eg E7 Eg

# of defs. 1 3k—-6 3k+4 16 19 22

4.1.1 ALE manifolds and SU(2) Kleinian subgroups

We have mentioned that the classification of ALE manifolds is in one-to-one correspon-
dence with the classification of the finite (Kleinian) subgroups of SU(2). It is a classical
result [144] that this latter is related in a one-to-one fashion to the classification of simply
laced Lie algebras (ADE classification).

The explicit construction of the ALE manifolds as HyperKahler quotients [92, 93]
relies heavily on the algebraic structure of the Kleinian groups. Furthermore it is this
identification that provides a clue for the construction of the corresponding (4,4) confor-
mal field theories.

Choosing complex coordinates z; = & — iy, z; = t + iz on IR* ~ C*, and representing
a point (z1,22) by a quaternion (see sec. 4), the group SO(4) ~ SU(2)r x SU(2)rg,
which is the isometry group of the sphere at infinity, acts on the quaternion by matrix
multiplication: B

(?1 7)) — (?1 ?fz>-A42 (£.12)
129 Z1 1z 21

the element M € SO(4) being represented as (M; € SU(2)r, Ma € SU(2)gr). The group
I' can be seen as a finite subgroup of SU(2)r, acting on C? in the natural way by its

two-dimensional representation:

YU T C SU(2), U:v=(ﬁ>_qu:(ﬁ ?)(“). (4.13)
Z9 i @ Z9

In characterizing such finite subgroups it appears a Diophantine equation which is just
the same one which is encountered in the classification of the possible simply laced
Dynkin diagrams [145]. As a result, the possible finite subgroups of SU(2) are organized
in two infinite series and three exceptional cases; each subgroup I is in correspondence
with a simply laced Lie algebra G, and we write I'(G) for it. One series is given by
the cyclic subgroups groups of order k + 1, related to Ag; the other series is that of
the dihedral subgroups containing a cyclic subgroup of order k, related to Dyyo; the
remaining three subgroups I'(Eg) ~ 7T, I'(E7) =~ O and I'(Es) =~ Z have order 12, 24
and 60, respectively, and they correspond to the binary extensions of the Tetrahedron,
Octahedron and Icosahedron symmetry groups. See Figures 4.2 and 4.3.

Let us now consider more closely the algebraic structure of these groups, For any finite group I’ we denote
by K;, (i = 1,....,r) the conjugacy classes of its elements: iff 71 y2 € K;then 3h € T'/y; = A7y h
and we name g; = |K;| the order of the i-th conjugacy class. One obviously has |T| = g = 3;_, ¢i. For
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any representation D of I', we denote by (XSD) ) eerens , xSD)) its character vector where xED) = Tr D(v;)
is the trace of any representative of the i-th class. As it is well-known the number of conjugacy classes r
equals the number of irreducible representations: we name these latter D, (¢ = 1,...., 7). The square
matrix x} whose rows are the character vectors of the irreducible representations is named the character
table. It satisfies the orthogonality relations

r T
g
dSoxxt==65, Y xixt=g8" (4.14)
p=1 gi i=1
that imply the following sum rule for the dimensions n, = Tr D, (1) of the irreducible representations:

Z ni =g = |T|. (4.15)
u=1

Relevant to our use of the Kleinian groups are also the g-dimensional regular representation R, whose
basis vectors e, are in one-to-one correspondence with the group elements 7 and transform as

R(yv)es = eqs Vy,6 €Tl (4.16)

and the 2-dimensional defining representation @ which is obtained by regarding the group I' as an
SU(2) subgroup [that is, Q is the representation which acts in eq.(4.13)]. The character table allows to
reconstruct the decomposition coefficients of any representation along the irreducible representations. If
D= @:‘zl a, D, we have a, = % Sy g xED) Xg”)*.

For the Kleinian groups I' a particularly important case is the decomposition of the
tensor product of an irreducible representation D, with the defining 2-dimensional rep-
resentation Q. It is indeed at the level of this decomposition that the relation between
these groups and the simply laced Dynkin diagrams is more explicit [146]. Furthermore
this decomposition plays a crucial role in the explicit construction of the ALE manifolds
[92]. Setting

Q® Du = @ A/.w Du (417)
v=0

where Dy denotes the identity representation, one finds that the matrix ¢,, = 24, — A,
is the extended Cartan matriz relative to extended Dynkin diagram corresponding to the
given group. We remind the reader the the extended Dynkin diagram of any simply laced
Lie algebra is obtained by adding to the dots representing the simpleroots { ¢ ...... a, } an
additional dot (marked black in Fig.s 4.2, 4.3) representing the negative of the highest root
ao = Y.f_; nia; (n; are the Coxeter numbers). We see thus an correspondence between
the non-trivial conjugacy classes K; or equivalently the non-trivial irrepses of the group
['(G) and the simple roots of G. In this correspondence, as we have already remarked the
extended Cartan matrix provides us with the Clebsch-Gordan coefficients (4.17), while
the Coxeter numbers n; express the dimensions of the irreducible representations. All
these informations are summarized in Fig.s 4.2, 4.3 where the numbers n; are attached
to each of the dots: the number 1 is attached to the extra dot because it stands for the
identity representation.
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1 1
&—O
) Diya
&1\ 1o
1 A Oo—C0O—
o 2 2 2 >0
1 1

1 1

Figure 4.2: Extended Dynkin diagrams of the infinite sertes

1
EG(—')TQ
E. 0O 2
O0—O0—0O0—0—0 7
T2 3 2 1
O—O—O—O—O0—0—®
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oO—O—0—0—O0—0—@

Figure 4.3: Fzceptional extended Dynkin diagrams

Let us now briefly consider the structure of the irreducible representations and of the
character tables.

Ap-series In this case the defining 2-dimensional representation @ is given by the matrices

o [ 2/ (k1) 0
mel(A) 5 7= = <e 0 e—27ril/(k+1) {I=1,...,k}. (4.18)

It is not irreducible since all irreducible representations are one-dimensional as one sees from Fig. 4.2.
In the j-th irreducible representation the 1 X 1-matrix representing the I-th element of the group is

. . 21
DY (e) = vi' ; where v = exp——]—:—-l. (4.19)
The (k + 1) x (k + 1) array of phases 17! appearing in the above equation is the character table. Given
the C? carrier space of the defining representation [see eq.s (4.13)] it is fairly easy to construct three
algebraic invariants, namely

P = ()" (4.20)

z =

t

122 5 T = (21
that satisfy the polynomial relation

Wa, (2,9, 2) Ly — 2 =0, (4.21)
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Dy yo-series Abstractly the binary extension Dy42 of the dihedral group could be described introducing
the generators .4, B, Z and setting the relations:

AP = B = (4B = 2

zZ' = 1. (4.22)

The 4k elements of the group are given by the following matrices:

eilrr/k 0
FI = < 0 e—ilﬂ‘/k ) (120,1,2, ..... ,2](,"—‘1)
0 ie—-iln—/k
GI = (ieilﬂ,/k 0 > ; (I: 0,1,2, ..... ,2]\7— 1) (423)
In terms of them the generators are identified as follows:
Fo:].; Flz.A; FLZZ 3 Go:B. (424)
There are exactly r = & + 3 conjugacy classes

1. K, contains only the identity Fj

2. Kz contains the central extension 2

3. Kgeyen contains the elements Go, (v = 1,...., 5k~ 1)
4. Kg 44 contains the elements Gayp1 (v =1,....,k—1)
5

. the £ — 1 classes KF#: each of these classes contains the pair of elements F, and Fag_, for
(p=1,....k=1).

Correspondingly the D2 group admits k -+ 3 irreducible representations 4 of which are 1-dimensional
while & — 1 are 2-dimensional. We name them as follows:

Dy 5 e i Dr,_, ; 2 — dimensional . (4.25)

{De i Dz 3 Dgeven; Dgoda ; 1 — dimensional ;

The combinations of the C* vector components (z1, z2) that transform in the four 1-dimensional repre-
sentations are easily listed:

D, — |zl +]z=f

DZ -—_— Z1 29
k k
DG even T Zy -+ 2o
Dgodd — zf —zE (4.26)

The matrices of the k£ — 1 two-dimensional representations are obtained in the following way. In the DF}
representation, s = 1,...k — 1, the generator 4, namely the group element Fy, is represented by the
matrix F,. The generator B is instead represented by (i)*~'Gq and the generator Z is given by Fiy, so
that:

DF, (Fj) = Fy
DF,(G]') = (i)s—lej. (4.27)

The character table is immediately obtained and it is displayed in Table 4.3.  Using the one-dimensional
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Table 4.3: Character table of the Group Do

KE KZ KG, KG, KK e KFr_ 4
DE 1 1 1 1 1 e 1
Dz 1 1 -1 -1 1 . 1
DG, 1 (=F & i (1) N
DG, 1 (~1)F  —iF (—1)! .. (__1)k—-i
DFy 2 (—2)! 0 0 2cos T 2(:0595771)1
DF,;, 2 (=2)*' 0 0 2cos (k—_kl)—w .-+ 2cos (k—;)%

representations (4.26) we can define the following invariants:

z = —(z1z2)2
o= Lam (- (-1)5)
y = %(zf’“ + (-1)*z3F) (4.28)
that, in the Dgy2 case, fulfill the relation
Woiss (2,9, 2) T o® + ¢z + . 0, (4.29)

the analogue of the relation (4.21) obtained in the A case. The chiral ring of the potential (4.29) has
k + 2 elements just matching the number of non-trivial conjugacy classes. According to our previous

discussion & + 2 will also be the number of short representations in the corresponding (4,4} conformal
field-theory.

In a similar way one can retrieve the structure of the irreducible representations and the
potential also for the three exceptional groups 7, O and Z.

ALE spaces and resolution of simple singularities

The polynomial constraint Wr(z,y,z) = 0, that we have seen to express a relation be-
tween algebric invariants in the Ay case [eq. (4.21)] and in the Diyocase [eq. (4.29)],
plays a very important role in the construction of the ALE manifolds and of the asso-
clated (4,4)-conformal field-theory. Indeed, as we are going to see in the next sections,
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the vanishing locus in C* of the potential Wr(z,y, z) coincides with the space of equiva-
lence classes C*/T', that is with the singular orbifold limit of the self-dual manifold Mr.
According to the standard procedure of deforming singularities [147] there is a corre-
sponding family of smooth manifolds Mr (¢1,t2,.....,t,;) obtained as the vanishing locus
of a deformed potential:

Wr (2,7, 2; by tay e t) = Wz, 2) + 5 t:PO(2,y,2) (4.30)

=1

where t; are complex numbers (the moduli of the complex structure of Mr) and P (z,y. 2)
is a basis spanning the chiral ring

Clz,y, ]
ow

of polynomials in z,y, z that do not vanish upon use of the vanishing relations 0, IV =
9, W = 9,W = 0. It is a matter of fact that the dimension of this chiral ring |R] is
precisely equal to the number of non-trivial conjugacy classes (or of non trivial irreducible
representations) of the finite group I'.

From the geometrical point of view this implies an identification between the number
of complex structure deformations of the ALE manifold and the number r of non-trivial
conjugacy classes discussed above. From the (4,4) CFT viewpoint this relation implies
that r must also be the number of short representations, whose last components (moduli
operators) can be used to deform the theory.

In other words we have 7 = r, where 7 is the Hirzebruch signature. Indeed in the
language of algebraic geometry the singular orbifold C?/T' corresponding to the vanishing
locus My of the potential W admits an equivariant minimal resolutions of singularity

R = (4.31)

M 2 My, where M is a smooth variety, A is an isomorphism outside the singular
point {0} € M, and it is a proper map such that A™'(Mg — 0) is dense in M. The
fundamental fact is that the exceptional divisor A™*(0) C Z consists of a set of irreducible
curves co, & = 1,...r which can be put in correspondence with the vertices of the Dynkin
diagram (the non-extended one) of the simple Lie Algebra corresponding to I' as above.
Each ¢, is isomorphic to a copy of CIP'; the intersection matrix of these non-trivial
two-cycles is the negative of the Cartan matrix:

Co " Cg = Cag - (4.32)

Kronheimer construction, described in section 4.1.2, shows that the base manifold M of
an ALE space is diffeomorphic to the space Z supporting the resolution of the orbifold
My ~ C?/T, see section 4.1.2. Therefore the equation (4.32) applies to the generators of
the second homology group of M. In particular we see that

7 = dimH:(X) = dim Hy(X) =
= rank of the corresponding Lie Algebra =
= 4 non trivial conj. classes in ' = |R|. (4.33)
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Table 4.4: Kleinian group versus ALE manifold properties

r W(z,y,2) R = @—La%ﬁl R  #ec.oe. T=x-1 I35
Ay, zy — zFH {1,2,...,2F1} k k+1 k 2k

Digas 22 +ylz 42 {1,y,2,0% 2%, E+2 k+3 kE+2 2k + 4

Es=T 2?2+ +24 {1,y,2,yz, 2%, y2%} 6 7 6 12
E:=0 2*+y°+y:° {1,9,2,9% 2%, yz,v%z} 7 8 7 14
Es=1 22+ 93 4 25 {1,y, 2, 2% yz, 23, yz2, y2°} 8 9 8 16

The chiral ring of the potential (4.29) has k + 2 elements just matching the number of
non-trivial conjugacy classes. According to our previous discussion k + 2 will also be the
number of short representations in the corresponding (4,4) conformal field-theory.

These results are summarized in Table 4.4 which compares the algebraic information
on the Kleinian group structure with the classical results on the topology of the ALE
manifolds obtained in the late seventies by means of the index theorems (see [88]). Indeed
in the last columns of Table 4.1.1 we list the Hirzebruch signature 7 , the Euler character
x and the spin 3/2 index I3/;. As one sees, the Hirzebruch signature is always equal to
the dimension of the chiral ring, which also equals the number of conjugacy classes of the
Kleinian group. The spin 3/2 index counts the normalizable gravitino zero-modes and
turns out to be equal to 2r = |R]|. This is in agreement with the results of [74].

4.1.2 Kronheimer construction of ALE spaces as HyperKahler
quotients

Kronheimer construction

The hyperKahler quotient is performed on a suitable flat hyperKahler space S that now
we define. Given any finite subgroup of SU(2), I, consider a space P whose elements
are two-vectors of |T'| x |T'| complex matrices: p € P = (A4, B). The action of an element
~v € I" on the points of P is the following:

() = (0 %) (asro-) 3

where the twodimensional matrix in the r.h.s. is the realization of + in the defining
representation @ of I', while R(«) is the regular, |['|-dimensional representation, defined
in section 4.1.1. This transformation property identifies P, from the point of view of the
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representations of I', as @ @ End(R). The space P can be given a quaternionic structure,
representing its elements as “quaternions of matrices”:

A Bt
pep:(iB A’f)

The space S is the subspace of T-invariant elements in P:

A, B € End(R) . (4.35)

SE{peP/Nyvel,y-p=p} . (4.36)

Explicitly the invariance condition reads:

( Uy i—5'7> <A> — (R(')’_l)AR('Y) ) (4.37)
vy u,/\B R(y")BR(v)/) '
The space S is elegantly described for all I'’s using the associated Dynkin diagram.

A two-vector of matrices can be thought of also as a matrix of two-vectors: that is.
P = Q@ Hom(R, R) = Hom(R, Q@ ® R). Decomposing into irreducible representations
the regular representation, R = @)_,n,D,, using eq.(4.17) and the Schur’s lemma, one
gets

S =P A, Hom(C™,C™) . (4.38)
v

The dimensions of the irrepses, n, are expressed in Fig.s (4.1.1,4.1.1). From eq.(4.38)
the real dimension of S follows immediately: dim S = }_, , 24,,n,n, implies, recalling
that A =21 — ¢ [see eq.(4.17)] and that for the extended Cartan matrix ¢n = 0, that

dim S =4 n? =4[] . (4.39)
i3

The quaternionic structure of S can be seen by simply writing its elements as in
eq.(4.35) with A, B satisfying the invariance condition eq.(4.37). Then the hyperKahler forms
and the metric are described by © = Tr (dm A m) and ds*1 = Tr (df @ dm). The trace
1s taken over the matrices belonging to End(R) in each entry of the quaternion.

Example The space § can be easily described when T is the cyclic group Ag—1. The order of Ax_1 is k;
the abstract multiplication table is that of Z;. We can immediately read off from it the matrices of the
regular representation; of course, it is sufficient to consider the representative of the first element e;, as

R(ej) = (R(e1))!. One has

o0 - 01
10 -~ 00

Re)= [0 1 -~ 00 (1.40)
00 --- 10

Actually, the invariance condition eq.(4.37) is best solved by changing basis so as to diagonalize the

regular representation, realizing explicitly its decomposition in terms of the k unidimensional irrepses.

Let v = eEkL, so that v¥ = 1. The wanted change of basis is performed by the matrix Sj; = L’\—;—{— , such
ij

that Si;l =Y = S;fj. In the new basis R(e;) = diag(1l,v,v% ...,v¥"1), and so

R(e;) = diag(1, v, v%,. VA (4.41)
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Eq.(4.41) displays on the diagonal the representatives of e; in the unidimensional irrepses.
The explicit solution of eq.(4.37) is given in the above basis by

0 w 0 --- O 0 0

Vg
0 0 u - 0 U1 0 0
A= i ; B=|0 w2 0 (4.42)
: o Up—2 S : :
Uy 0 0 .- 0 0 0 - v O

We see that these matrices are parametrized in terms of 2k complex, i.e. 4k = |Az—1| real parameters.

In the Dy case, where the regular representation is 4k-dimensional, choosing appropriately a basis,
one can solve analogously eq.(4.37); the explicit expressions are somehow space-consuming, so we don’t
write them. The essential point is that the matrices A and B no longer correspond to two distinct set

of parameters, the group being non-abelian.

Consider the action of SU(|I'|) on P given, using the quaternionic notation for the
elements of P, by

A iBt Agl igBlg-! ,
Vg € SU(IT]), g : (iB AT) — (if;BE;_l iqu—l) . (4.43)

It is easy to see that this action is a triholomorphic isometry of P: ds* and © are
invariant. Let F' be the subgroup of SU(|T'|) which commutes with the action of I on
P, with action described in eq.(4.34). Then the action of F' descends to S C P to give a
triholomorphic isometry: the metric and hyperKahler forms on S are just the restriction
of those on P. It is therefore possible to take the hyperKahler quotient of & with respect
to F.

Let {fa} be a basis of generators for F, the Lie algebra of F'. Under the infinitesimal
action of f =1+ A f4 € F, the variation of m € S is ém = A §4m, with

_ [ fa Al ilfa, BT o
5Am‘<i[fA,BJ [fA,Aﬂ)' (1-44)

The components of the momentum map (see (A.31)) are then given by

o = def Japs(m)  fap-(m) '3
pa=To(mésm) = Tr <f4 n(m) ,us(m)> (4.43)

so that the real and holomorphic maps p3z : § — F* and py : & — C X F~ can be
represented as matrix-valued maps: 3

ua(m) = —i([A, AT+ B, BY)
pe(m) = ([4,B)) . (4.46)

31t is easy to see that indeed the matrices [4, AT] 4 [B, B!] and [4, B] belong to the Lie algebra of
traceless matrices F; practically we identify F7* with F by means of the Killing metric.
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Let Z be the dual of the centre of F. In correspondence ofalevel ( = {(3,(t} e R*@ 2

we can form the hyperKahler quotient M, ! ,u"l/F. Varying ( and T' every ALE space
can be obtained as M.

First of all, it is not difficult to check that M, is four-dimensional. As for the space S,
there is a nice characterization of the group F' in terms of the extended Dynkin diagram
associated with I':

F=QU(n,) . (4.47)

One must however set the determinant of the elements to be one, since F' C SU(|T|).
F has a U(n,) factor for each dot of the diagram, n, being associated to the dot as in
Fig.s 4.1.1,4.1.1. F acts on the various “components” of S [which are in correspondence
with the edges of the diagram, see eq.(4.38)] as dictated by the structure diagram. From
eq.(4.47) is immediate to derive that dim F' =}, n% — 1 = |I'| — 1. It follows that

dimM; = dim S —4dimF = 47| = 4(]T| - 1) = 4 . (4.48)

Example The structure of F and the momentum map for its action are very simply worked out in
the Ar_; case. An element f of F must commute with the action of Ax_; on P, eq.(4.34), where the
two-dimensional representation in the Lh.s. is given in eq.(4.18). Then f must have the form

f = diag(el¥®,e'%, ..., elvr-1) Z(p, =0. (4.49)

Thus F is just the algebra of diagonal traceless k-dimensional matrices, which is k& — 1-dimensional.
Choose a basis of generators for F, for instance f; = diag(1,—1,...),f2 = diag(1,0,-1,..),.. ,fr-1 =

diag (1,0,...,—1). From eq.(4.46) one gets directly the components of the momentum map:
psa = 0P —Jvol® — [ub TP = Jopoa — [ut ) = ol + [t TR~ fvanaf?
fyoa = UO”UO — uk- luk_l -—-'lLAvA-l—'UA_lUA_]_ . (450)

In order for M, to be a manifold, it is necessary that F' act freely on p~'(¢). This
happens or not depending on the value of (. Again, a simple characterization of Z can
be given in terms of the simple Lie algebra G associated with I' [92]. There exists an
isomorphism between £ and the Cartan subalgebra H of G. Thus we have

dim £ =dimH = rank§g

= 7tof non trivial conj. classes in I'. (4.51)

The space M, turns out to be singular when, under the above identification Z ~ H, any
of the level components (! € R® @ Z lies on the walls of a Weyl chamber. In particular,
as the point (! = 0 for all ¢ is identified with the origin in the root space, which lies
of course on all the walls of the Weil chambers, the space Mg is singular. Without too
much surprise we will see in a momentum that My corresponds to the orbifold limit C*/T
of a family of ALE manifolds with boundary at infinity S°/T.
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To see that this is general, choose the natural basis for the regular representation R,
in which the basis vectors es transform as in eq.(4.16). Define then the space L C S as
follows:

L= {(g) € §/C,D are diagonal in the basis {65}} . (4.52)
For every element v € T there is a pair of numbers (¢, d,) given by the corresponding
entries of C, D: C-e, = ¢ye, D-e, = dye,. Applying the invariance condition eq.(4.37),
which is valid since L C &, it results that

C"/-S . U:»y iﬁ,y 65 s
(d~,-5> B (iw, ﬂ“7> (d5> : (4.53)

We can identify L with C? associating for instance (C, D) € L +— (co,dp) € C*. Indeed
all the other pairs (¢, dy) are determined in terms of eq.(4.53) once (cq, dp) are given. By
eq.(4.53) the action of ' on L induces exactly the action of T on C? that we considered
in (4.12,4.13).

Notice that we can directly realize C*/T as an affine algebraic surface in C° [see eq.
4.21)] expressing the coordinates z,y and z in terms of the matrices (C, D) € L.

Example The explicit parametrization of the matrices in § in the Ag_jcase (which was given in eq.(4.42)
in the basis in which the regular representation R is diagonal), can be conveniently rewritten in the
“natural” basis {e,} via the matrix S™! [see before eq.(4.41)]. The subset L of diagonal matrices (C, D)
is given by

C = codiag(l,v,v?, ..., v* 7Y, D =dodiag(l,v =152 . v), (4.54)

N m
where v = ¢ . Thisis nothing but the fact that C* ~ L. The set of pairs (V’Z“/"'CI(ZI ) ym=0,1,..., k-1
0 o

is an orbit of T in C? and determines the corresponding orbit of I' in L. To describe €C?/Aj_; one needs
to identify a suitable set of invariants (z,y, z) € €2 such that zy = z¥, namely eq. (4.21). Our guess is

z=detC ; y=detD, ; =z= %Tr CD. (4.55)

It is quite easy to show the following fundamental fact: each orbit of F in p~1(0) meets
L in one orbit of T'. Because of the above identification between L and C?, this leads to
prove that Xy is isometric to C*/T.

Example Choose the basis where R is diagonal. Then (A4, B) € § has the form of eq. (4.42). Now,
the relation zy = z¥ (eq. (4.21)) holds also true when, in eq. (4.55), the pair (C, D) € L is replaced
by an element (A, B) € p~*(0). To see this, let us describe the elements (A, B) € p~1(0). We have to
equate the right hand sides of eq. (4.46) to zero. We note that [4, B] = 0 gives v; = “2*2 Vi. Secondly,
[A, AT+ [B, BT] = 0 implies |u;| = |uj| and |v;| = |v;| V4,7, L.e. uj = |uole!® and v; = |vole™¥s. Finally,
[4, B] = 0 implies ¢; = ® — ¢; Vj for a certain phase ®. In this way, we have characterized p=*(0)
and we immediately check that the pair (4, B) € p~1(0) satisfies zy = 2F if z = det A, y = det B and
z = (1/k)Tr AB. We are left with k + 3 parameters (the k phases ¢;, j = 0,1,...k— 1, plus the absolute
values |ug| and |vg| and the phase @). Indeed dimp~!(0) = dimM —3dim F' = 4|T|-3(|T|-1) = |T'|+3,
where |T'| = dimT = k.

Now we perform the quotient of p~1(0) with respect to F. Given a set of phases f; such that
S ¢y fi = Omod2r and given f = diag(e/e,el/1, ... e/*-1) € F, the orbit of F in p~1(0) passing
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-1 .
through (g) is given by <;gj:—l> Choosing f; = fo + j¥ + Zfz":thn, j=1,...,k—1, with

Ph=—1 Zﬁ;(l) ¢n, and fo determined by the condition Zf;ol fi = 0mod 2w, one has
(FAF Dm = aobimer 5 (FBF M)im = bobim-1 (4.56)

where ag = |ug|e!¥ and bg = |vgle!{(®~¥). Since the phases ¢; are determined modulo 2, it follows that
1 is determined modulo zk’i Thus we can say (ag, bg) € C?/T. This is the one-to-one correspondence

between p~(0)/F and C*/T.

Levels of the hyperKahler quotient and resolution of ALE singularities

So far we have reviewed the main points of the Kronheimer construction. In particular we
have shown the constructive definition of the quaternionic flat space S and of the “gauge
group” acting on it by triholomorphic isometries needed to retrieve an ALE space as a
hyperKahler quotient. That is, we have described the necessary ingredients to specify,
according to the procedure outlined in sec. 3, an N=4 renormalizable field theory (the
microscopic theory) whose low-energy effective action (the macroscopic theory) is the
sigma-model on the ALE space under consideration *.

We do not insist on the mathematical proofs of the main statements of Kronheimer’s
work (in particular, the identification of all ALE spaces with M.). We rather choose
to illustrate, in the specific case of the cyclic subgroups, an ezplicit relation between
the parameters ¢* € Z,7 = 1,2,3 of the hyperKahler construction (the levels of the
momentum map) and the deformation parameters t* appearing in eq. (4.30). We divide
the ¢ parameters in r-parameters (the real levels of the D* momentum map) and s-
parameters (the complex levels of the D™ momentum map) since this was the notation
utilized in Chapter 3. This relation tells us explicitely which is the “deformed” potential
describing an ALE space, obtained as a hyperKahler quotient with levels {r, s}, as an
hypersurface in €. We stress that the parameters r,s are coupling paramenters (the
N=4 generalizations of Fayet-Iliopoulos parameters) in the “microscopic” N=4 lagrangian
while the t* are parameters in the o-model (the “macroscopic” description), since they
appear in the definition of the target space, and in particular of its complex structure.
This gives a physical interest to the relation we describe.

To find the desired relation, we have in practice to find a “deformed” relation between
the invariants z,y, z. To this purpose, we focus on the holomorphic part of the momentum

map, i.e. on the equation [A,B] = Xy, where Yo = diag(so,s1,...,8k-1) with so =
— k15, Recall the expression (4.42) for the matrices 4 and B. Calling a; = uv;,
[A, B] = X implies that a; = ag+s; fori = 1,...,k—1. Now, let ¥ = diag(s1,...,Sk-1)-

*Of course, to carry out explicitely until the end computations analogous to those for the Calabi
metrics is extremely complicated; indeed the form of the metric that would result from this quotient is
in general not known, with the exception of the Eguchi-Hanson case.
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We have

zy = det Adet B = ao II5Z ll(ao—]—s)—ao det <1+ E) Za Si( (4.57)

- The S;(¥) are the symmetric polynomials in the eigenvalues of ¥, defined by det (1 +
%) = L Si(2). In particular, So = 1 and S; = Y8 !s;. Define Si(Z) = 0, so that
zy = YF ,ab7'5;(T), and note that z = *TrAB = ao + £51(X). Then the desired
deformed relation between z, y and z is obtained by substituting ag = z — $51(Z) in
(4.57), obtaining finally

Ty = ,;-i,g (k ;m> <~%51(2)>k_m~n Sn(E)e" = éot (4.58)
— 4= ; <1° ;m> (—%SI(E)Y " e, (4.59)

Notice in particular that ¢ = 1 and tz—1 = 0, i.e. zy = 2" + zf;;’g t,z", which means that
the deformation proportional to 27! is absent. This establishes a clear correspondence
between the momentum map construction and the polynomial ring C|z,y, z|/0W where
W(z,y,2) = zy—2* [compare with eq. (4.30)]. Moreover, note that we have only used one
of the momentum map equations, namely [4, B] = Xo. The equation [A, AT|+[B, Bl = R
has been completely ignored. This means that the deformation of the complex structure
is described by the parameters X, while the parameters R describe the deformation of
the Kahler class.
The relation (4.59) can also be written in a simple factorized form, namely

zy = {55 (2 — i), (4.60)

where

|

pi = _(31+32+“‘+5i—1“23i+5i+1‘t‘"'+3k)> i=1,...,k—-1

Let us ﬁnally take a brief glance at the more difficult case of the dihedral groups.

The case I'=Dj 2 The case I'=Dryo cannot be treated with the algebraic simplicity of the previous
one. Nevertheless, we can give an ansatz for the expressions of #, y and z in terms of the matrices
(A, B) € p~*(¢)/F. This ansatz surely works for the undeformed case ¢ = 0, because it can be checked
via the correspondence between p~1(0)/F and C*/T that permits to manage with diagonal matrices C
and D instead of A and B. Let (compare with (4.28))

r = ér}:\r [A2k+lB _ (—l)kA B2k+1},
1 :
y = gErI\r [AZk + (_1)kB2L]

= 161;% {4, B}2. (4.62)
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In the undeformed case { = 0, the relation [A, B] = 0 shows that one cannot fix z unambiguously,
because expressions proportional to Tr A2B? or Tr (AB)? are equally allowed. To resolve the ambiguity,
we have worked out the deformation in the simplest case, namely & = 1. A and B are 4 x 4 matrices.
In a suitable basis they have the form

0 ¢ 0 b 0 —f 0 e
_{ec 0 d O .l -h 0 -—g O
A=lo e o £ BT 0 5 0 (4.63)
g 0 h O d 0 ¢ 0
In our case the explicit form of the momentum map equation is 4 (m) = [A, B] = A [see eq.(4.46)], that

we write as

L 0 &L 0
{0 4L 0 I3
[A,B] =i L 0 &L, 0 (4.64)
0 —-Il3 0 -4
Then we have
zz+y22+zz+t1+t2y+t3y2+i42’= 0, (4.65)
where
1 1
o= —g |BE-jeE- g+,
i
o = ‘—11112131
1 9
1
ty = _ZI% (4.66)

Note the presence of both y? and z in the deformed relation, although one vanishing relation of the
chiral ring says that they are proportional. One can make the y’-term disappear by simply performing

a [-dependent translation of z.

This exhausts our discussion of the hyperKahler quotient construction of the ALE man-
ifolds, and of its relation with the resolution of simple Kleinian singularity. Let us now
proceed in different direction.

4.2 CFT of gravitational instantons

4.2.1 String propagation on gravitational instantons

The basic cpoint of view utilized here is the following:

Stringy gravitational instantons correspond to (6,6)s4 SCFT’s, much in the
same way as CY three-folds correspond to (9,9)z22 theories.

The central concept is that of “abstract Hodge diamond”. We start by treating the
c=6,N=4 theory as a N=2 theory. We use the notations for the N=2 primary fields [and
for the corresponding N=4 ones, that are organized in SU(2) representations] collected
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Table 4.5: Notations for N=2,4 primary fields

N=2 primary fields N=4 primary fields
A by
v (LLE) v [J)‘]

h,h = left (right) conf. dimensions
q,§ = left (right) U(1) charges J,J = SU(2) left(right) isospin
m,m = isospin 3¢ components
bosonized U(1) left current: bosonized SU(2) right currents:
-ty

6(:) = L7(:) = g =2m

in Table 4.5 In a given (2, 2) theory one can define “abstract Hodge numbers”, 279, given

by

P g
BP9 = 4 of (c,c) primary fields ‘II(Q’ 2) (z,%). (4.67)
b, q

Note that in the N=4 framework, the chiral and anti-chiral fields are organized in pairs
that belong to the same SU(2) multiplet. For instance, looking only at the left sector, a

chiral \11(1{2) is paired with an antichiral \I’(l_/f ) into a spin %—representation 1\ Eﬁ]

There is an unitarity bound constraining the maximum U(1) charge of chiral fields:

Gmax = § = hmax = (-168)

6.

Moreover, it exists a unique “top” chiral field (in left and right sector), p(iﬁ’ﬁ) and

P (g;;g) This information, together with the existence of a “spectral flow” operator

ei\fg‘b(z), i.e. ¢7(?) in the ¢ = 6 case, that relates primaries with charges differing by
two, leads to conclude that to each ¢ = 6 (2,2) theory [that is authomatically also
(4,4)supersymmetric] we can associate an “abstract Hodge diamond” of the following
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form:
1 il
A1.0 1.0
1 R 1 (4.69)
1.0 10
0
where 2! is the number of N=4 primaries of the type ¥ Bﬁiﬁ] ™™ and k10 the number of
those of type ¥ Eﬁg} ™ We will discuss in a while the structure of the N=4 theory in more

detail; we will see that (in each sector) the ¥ Eﬁ] " fields constitute the higher components
of the so-called “short representations” of the N=4 algebra. The lower components are
just the @ [(1)] and H[(l)] fields that constitute the N=4 marginal operators. Therefore we

see that there are h'"! N=4 short representations in the theory. They contain operators
of conformal dimensions (1,1) that can be used to modify the action preserving the N=/
supersymmetry.

What is the relation between the above CFTstructure and the geometry of gravita-
tional instantons?

As already said, it is possible to see that a supersymmetric o-model on a 4-manifold
admits extended (4,4) supersymmetry precisely when the manifold is generalized hy-
perKahler , that is when it satisfies the equations of gravitational instantons with torsion
[that require R*(w 4+ T') to be resp. selfdual and anti-selfdual]. In this case the classical
N=4 supercurrents can be constructed by means of the set of complex structures of the
manifold. Let us now focalize on the case of zero torsion, and let us moreover distinguish
between compact and non-compact manifolds.

In the compact case (that is, for K3 manifolds or for the torus Ty), the CFT abstract
Hodge diamond exactly coincides with the geometrical Hodge diamond of the manifold.

In the non-compact case, the abstract Hodge diamond contains representations cor-
responding both to the normalizable and the non-normalizable harmonic forms on the
manifold; it musttherefore be possible to distunguish between the two, in order to have at
the CFT level a full correspondence with the diamond for non-compact Kahler mnifolds,
eq. (4.4). We must be able to single out exactly 7 short representations, 7 being the
Hirzebruch signature of the manifold, representing the true deformations of the instanton.

In any case, the complete abstract Hodge diamond describes the correct counting of
zero-energy excitations of light particles moving in the instanton background. Indeed, in
[74] the construction of emission vertices for all such particles was carried out in terms of
the abstract (6,6)44 theory. In particular the following formulae hold for the zero-mode
counting:

# of graviton zero modes = 3(h"!' —1)+1
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# of axion zero modes = A +2
# of gravitino zero modes = 2hM + 4h°. (4.70)

Structure of N=4 SCFT

Let us discuss briefly the N=4 superconformal algebra and its representations.

The N =4 algebra is described in terms of OPEs as follows:

o) = e 25+ 2
T(2)Ai(w) = (;‘:(:"U))z +3;4:(3)

Hegw) = JEN e = AT

G ) = Se i HTE) ) ORI

A (W) = ﬁ(—{—E)-—+kL’°_)<§ w

Note that in the above OPEs and in all the following ones the equality sign means equality up to regular
terms. In general, the central charge c is an integer multiple of 6 in a unitary theory, but we shall only
be interested in the case ¢ = 6. .
To discuss the structure of the representations [149], using the highest-weight method, it is convenient
to rewrite the N = 4 algebra (4.71) in terms of modes:
(L, Ln] ={(m —n)Lpyn + %km(m2 —1)émtn,0

=0 1 —=a

a 1 a -
[Lm;gr} = (im - r)gm-l—r: [Lma gs] = ('im - 3)9m+s
[Lim, AR = —ndf,in
i pay_ L i 4 i Ao 1 b
[Am) gr] = §abagm+r’ [Am)gs] = _igbagm+s
{65,6!} = {G;,G,} = 0
{gf)d} =26%Lyys —2(r — s)aibAi+3 + j;lz‘k(‘lrz ~ 1)br4s,00a5

(AL, AL] = deip Al L, + %kmém—*-n,oéij (4.72)

m-+n

where indices r, s take integral values in the Ramond sector (R) and half-integer values in the Neveu-
Schwarz (NS) sector. The value of the central charge being ¢ = 6k, only the case k = 1 is relevant to our
discussion, as already stated. Furthermore we can restrict ourselves to the NS sector, since the Ramond

sector can be reached by spectral-flow.

The highest-weight states of the N=4 algebra are defined by the conditions:

Lolh, ) = G2l 1) = Golh, ) = ALB, 1) =0, n>1, rs>

b |
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AF|h, 1) =0
Lolh, 1) = hlB, 1), T|h,1) =1|h,1) . (4.73)

Unitarity puts the restriction A > [. There exist two classes of unitary representations of
the N=4 algebra: the long representations

11
E>1 1=0= .. ~(k— .
>, 0,5 ,2( 1) (4.74)

and the short ones 1 1
The short representations exist when h saturates the unitary bound h = [ and the long
representations decompose in short ones in the limit in which A reaches [. The unitary
bound A > [ is the N = 4 transcription of the analogous N = 2 bound h > |¢|/2. The
short representations are in fact defined to obey the condition

G21|h,1) = GLy|h,1) = 0 (4.76)

which is in fact equivalent to h = [ by commutation relations. In other terms, |k, k)
can be constructed using the chiral fields of the corresponding N=2 algebra. Starting
from the highest-weight state we can try to close an N=4 superconformal representation
by repeated application of the generators. The result can be conveniently retrieved and
expressed in terms of OPEs, as follows.

Note that for ¢ = 6 there are only two type of short representations: the |0,0) case,
corresponding only to the identity in a unitary conformal theory, and the |2 2 2) case, the
only non trivial one.

Using the notation introduced in section 4.2.1, the multiplet of a short representation

(1) 3 53] am

It is characterized by the following OPEs with the supercurrents:

G W) = 02 F () = et W)

=W Z =W

G = 2o, (2] 5 TR =2 (o).

z—w z

(4.78)

The first two OPEs define the short representations, while the other OPEs are consequences of the first
two OPEs.
This can be seen by using two Jacobi-like identities, that can be written as

$22 § 504 (6(0) - Ow)) =

2w o

- f d jgc d¢ (Di(z).G(C))-(Q(w):I:G(C).(Di(z).(f)(w))> (4.79)
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¥m, Vn and VO(w), with D*(z) bosonic (resp. fermionic) and G(() fermionic. The dot means OPE
expansion. We specify the order in which the OPE’s are to be performed instead of specifying the equiv-
alent information on the integration contours. One can use the cases m,n = 0, 1 to extract information
about simple and double poles. Explicitly, set

eB(w) = % 9 geyut(w),

2w

5 T(w) = jé ¥ AL} (4.80)

With O(w) = ¥¥(w) and G(¢) = G%(¢) or G°(¢), the identities (4.79) can be used alternatively to check
the conformal weight of ® and II (by choosing D*(z) = T(z)), to check the SU(2) representation (with
D*(z) = Ai(z)) and finally to check the other OPEs of eq. (4.78) (D~ (2) = G*(¢) or G' ({)).

The multiplet of a long representations is instead (see Fig. 4.2.1).

(Q[h} e [h+1/2] s [h+1/2} ’F[thl} ’-f{h+1] = [h—HD, (4581)

0 1/2 1/2 0 0 0
with A > 0.
Its OPEs with the supercurrents are
a( - 2w e )]
G0 = D Faw) =
a b — ab F(w) R -0 =b . .ab _F—(w)
G w) = T T w) = et
Nab At
?a(z)@b — 2haab Q(w) 4 5ab 8Q(w) + }.6“[7 E(U)) — 8h (gz) A (w)Q(w)
(z—w)? z—w 2 z—w z2—w
*\yab 4i
ga(z)'cfb — Qhéab Q(w) + 5ab aQ(w) _ .];65'[7 E(w) +8h (Ji) A (w)Q(w)
(z —w)? z—w 2 z-w z—w
=b —b —=b
ar N\ _ ab < ab 0% ab AP
G(z)T(w) = 2(h+1)e (z__w)2+25 z——w+2h5 p—
—a @b oo AP
o - ab ad ad
G (2)T(w) 2(h+ 1)e = w) + 2¢ p— + 2he P
s _ ok o0 Ade
G42)Z(w) = 2(h+1)(3_w)2+22_w+2hz_w
—a [ 68" AT
G p; = — — - 1 Qs
G (z2)2(w) 2(h+1) = w) 2;: — th — (4.82)

where A®%(w) = limy/—y [4(0;) AH(w)® (w') — 2G%(w)Q(w’)]. As in the case of the short represen-
tations, the first two OPEs are assumptions. They define the highest weight operator Q of the long
representation. All the other OPEs are consequences of the first two and the Jacobi identities (4.79) as

in the massless case.

The structure of the above OPEs is well summarized in Figure 4.4 that can be seen
also as describing the algebra closed on the representations by the zero-modes of the
generators.



82 Chapter 4. ALE manifolds and string theory

» AF Short
~— A~ ®
- —2

VI gt

o Vir x SU(2) primary fields
x Additional primary singlet

OSecondary fields appearing in the OPEs

Figure 4.4: Long and short representations of the N=4 superconformal algebra

4.2.2 (4,4)s5 CFT for ALE manifolds at orbifold points

Now we address the problem of constructing the (4,4) conformal field theory associated
with an ALE instanton. This can be explicitly done in the orbifold limit My = C*/T,
corresponding to {¢* = 0}. The (4,4) theories associated with the smooth manifolds M
can be obtained from the orbifold theory by perturbing it with the moduli operators
associated with the elements of the ring Clz,y, z]/0W.

Orbifold conformal field theory of C*/T

Now we consider the explicit construction of the orbifold conformal field theory C*/T,
starting from the (4,4) theory of C?. Let X, X and Y, Y be two complex bosonic fields,
Wbz, b, and by, 'zp two complex fermions. They are normalized according to

0X(2)0X (w) = —(——}1—5)—2

2

Yo(2)y(w) = — : (4.83)

zZ—w

The N=4 superconformal algebra is realized by setting

T(z) = —% 0XOX + YY) + i@xaz,bm — O 1bg + b, Oy — Oy,
, {(Yathy +0,%,)
AZ(Z) = d’ ¢ ¢r¢y )
dw +y, 1
A 75 Wloxs 5[ 5y v
e 1 fesd B 1 v V3 y
) = [—7}% ]ax+-—2- [:ﬁ] oY (4.84)
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The short representations can be easily obtained by looking at the doublets that appear
in the supercurrents. We have

(4.85)

These representations satisfy the OPEs (4.78).
The long representations are

Q = expi(pX +7.X +p,Y +5,Y),

@a — —-Z\/—é [ ?xrlp:x +ﬁg¢y ] Q’
oty — 1Py ¥z
3 — /5 pr¢_x+py¢y_]ﬂ
d Z\/_ I:_sz’l?/)y + Zpyq.ljf_ ) B
= 2[py8_)_(_ - Pza? + 1 potbe + Pytby) (Pys — Pﬂﬁy)] Q,
= 2[i(p:0X — D,0X +p,0Y — 5,07 — (Ipa|” — Ipy[*) (hotbe — ¥y1by)
_—zpzpyqr/}xd)y + ZPIpy’ZJJ-’L‘d)y] Q. (486)

Now we turn to the study of the orbifold conformal field theory, and, after a brief
review of the generalities on orbifold constructions [141], we will focus on the case I' =
Anq. ,

The construction of the orbifold conformal field theory C*/T begins with a Hilbert
space projection onto I" invariant states. This projection can be represented in lagrangian
form as the sum over contributions of fields twisted in temporal direction by all the
elements of the group, i.e. z(o,7 4 27) = yz(o, 7). n hamiltonian language the twisted
boundary conditions correspond to insertion of the operator implementing v in the Hilbert
space, as it wiil be explained with more details in section 4.2.2, and hence the sum }__.r g
realizes the projection operator onto I' invariant states. To obtain a modular invariant
theory we are forced to consider also twisted boundary conditions in the spatial direction,
ie. z{o + 2m,7) = yz(0o,7); from the stringy point of view, these sectors correspond to
the case in which the string is closed only modulo a transformation of the group I'. One
may think to have a different boundary condition for every element of the group; actually
there is a boundary condition for each conjugacy class of the group, for, if the field obeys

L1

z(z+1) =vyz(2) (4.37)

it also obeys
nz(z+1) = (nyn ™" )nz(=) (4.88)

1

where 7 is any other element of I'. So the sectors twisted by nyn™' are in fact all the

same sector.
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We have to introduce “twist” operators which applied to the vacuum realize the
change of sector in the Hilbert space, modifying the monodromy properties of the fields.
Such situation recalls what happens for fermions, where we are explicitly able to construct
spin fields which change the boundary conditions of the fermionic fields.

_ For the description of the monodromy properties of the fermions 1.(2), ¥,(2), ‘zZI(E),
¥y(Z), in the A,_; case, namely

P (€)= &2 »1hs(z), %( )

Q:Ez(e—%ri 2) e "

= e (o) ,
5.2), l(emE) = ik (2), (4.89)

we introduce the spin fields s{(z), s{¥)(z) and their world-sheet complex conjugates
59 (z), f§§k) (Z). Their OPEs with the fermions are

@br(z)s(k)(w) = (z-w)ﬁt'(k)(w),

T

%Z’-x(z)‘sz'k)(w) = ——_t:c-)(u}) (490)

and similar for the world-sheet complex conjugates. Analogous formulee will hold for

the fermions associated with the Y coordinate. World-sheet complex conjugation means
(z ++ Z, h <+ h). One has 58 = ¢(F),
The spin fields can be represented by means of a bosonization:

Py = —i/2 ez, h, = —i/2e s,
-k
' ) s(F) = einfls o (4.91)
VO _ i et 1) = —ir/Fei( )

The twist operators for the bosonic fields were introduced in [148] and they are de-
noted by ¢{¥)(z,%) and crzgk)(z,E), kE=1,...n. In a neighborhood of a twist field located
at the origin the fields X and Y have the monodromy properties

X(e27riz’e—2m'§) — ez’“ifX(z,E), Y(e%iz,e_hif) - egWin—r_T}EY(z,E). (4.92)

Correspondingly, the OPEs of the twist fields with X (2), X (z), 0X(Z) and 90X (Z) are

X0 T) = ),

(ol m) = jw): ¥ (w,7),

IX(2)0(w,m) = (E_lw)g'(“(w w),

TX(2)o®(w,7) = Ef%{)“f-?;( ) (w, ). (4.93)
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The 7-fields are called ezcited twist fields. Similar formule hold for the ¥ coordinate and
the corresponding twist fields. Unfortunately, we don’t have an explicit construction of
the bosonic twists in terms of the fundamental bosonic fields, a fact which makes more
difficult the computation of correlation functions and fusion rules involving twist fields
[148].

The operator content of the orbifold conformal field theory is given by I' invariant
operators (coming from the untwisted sector) and product of twist fields and IT' invariant
operators (from the twisted sectors). From the operatorial point of view, the projection
onto invariant states is needed to obtain a set of mutually local operators.

The computation of the expectation value of the stress-energy tensor in the presence
of twist fields [148] gives the conformal dimension of the twist 2, = 3(k/n)(1 — k/n).
From the bosonization rules (4.91) we learn more directly the conformal dimension of

: -1 2
the spin field A = 3(k/n)*
From the bosonization rules, we have

2

v()0) = - e (w)
7@ w) = “(7—%5@5&”(@- (4.94)

The other OPEs of this kind (i.e. for ¢,;(z)t’£k)(w) and Ex(z)tgk)(w)) are regular. The analogous
formulee for the OPEs between bosons and excited twist fields will be derived later on, when studying
systematically the product of representations of the orbifold conformal field theory. Moreover, we have,
fork+k <n

W) = (2 - w)F T w),
s0B()s0 ) (w) = %i(z_.w)f"“i%(z)sé"“k"‘”(w)- (4.95)

These formulae will be useful in the following.
As for the OPEs between twist fields, it is reasonable to assume

k k Cﬁk,
o (k' 5 k! k+k —
PN = et E) k4K <n
, Okt =n ,
Jgk)(z’}')o'gk )(w,Tu') = kE O'(k+k _n)(w;m) for k -+ k/ >n,

o — w03

(4.96)

where Cf:',;fc and Cf;',;f“l_" are certain coeficients (a sort of structure constants) that we do not need to
specify here.

We now study the representations of the orbifold theory. The representations that are
defined by means of twist and spin fields and not only with the fields of the C*-theory
will be called twisted representations. The twisted short representations mix the left and
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right sectors. The lowest component of the short representations are

sgk>sgn—k>]“( )[gghggn—k)r(_) won
. . Z). zJ. 3.9
é_t(k)tl(ln-—k) %%‘a(vk)%n—k)

T

117¢@
Uy, {i i] (2,%z) = a:(ck)(z,f)agn“k)(z,"z‘){
212

b

The field content of the representation will be denoted by
(s, (wd)z, (wih)g, (@D, (D), (9B), (2M0)s, (1), (I)x).  (4.98)

The notation of the fields is reminiscent of the fact that they transform as the tensor
product of two short representations [see eq.(4.78)], one in the left sector and one in the
right sector. In this spirit we could have written (\D\i)zg instead of \I/‘,f_;. However, we note
that the twisted representations are not such a tensor product, due to the fact that the
twist fields depend both on z and Z. The operators that are needed for the description
of the deformations of the conformal field theory are (®®), (®1), (II®)x and (IITT);.

We have to work out the required OPEs in order to get their expressions. To do this we write

OX (7P (w, W) = ——-————(k_;)l_ﬁm;“)(w,w),

KPP w0) = e B, m),

K P = b Pw)

IX(E) ) (w,m) = W&w(w,m (4.99)

The Ar-fields are doubly-excited twist fields.

We give the explicit expressions of the fields that describe the deformations of the
conformal field theory, i.e. (®®)g, (PII)x, (I®), and (IIII);. Omitting the superscripts
k and n — k in the X-fields and Y-fields, respectively, they are

(09), = %[&Tzaytxsyﬂgy — FoTySatyleSy — TeTytesyBuly + 0T, 851,521,
(‘I’ﬁ);C = %[Aﬁaytzsygﬁy + Tx%’;txsyﬂgy — T 7y 8oty Saty — U;A?észtyt]gy]
(IId), = %[Kﬁcrysztyﬂ.gy — 7Ty Soty oty + TaT ytedylesy — 0z ATy t58,3:1,],
(), = —%[ﬁ’r’zaysmtyngy + FLT oSy Saty + T/aTySatylsSy + azz—&_T’ytmsyﬂEy].

(4.100)
Consistency, i.e. the fact that the same fields of the short representation (4.98) can be reached from
different paths when one repeatedly applies the supercurrents, implies
1

OX ()7 (w, w) = G_w)i-E

l’iragk)(w,‘u‘)),
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KO0 = P,
X (@)W (w,m) = E:%EA?;“)(w,w),
XE)T (w0, 5) = — AT (w, W), (4.101)

)

Eventual variants of the above representation (4.98), obtained by substituting in \D/{f the product
of twist fields s(xk)sg,n—k)g(mk)gg"‘k) with the product sg,n_k)sgk) E(xk)ggn_k) or sgn_k)sgk) E(xﬂ—k)'ég,k) or
sgk) sg,"’—k) é”_k)égk) and making the analogue for the t-fields, surely satisfy the correct OPEs. However
they are not good representations of the orbifold theory, for sectors with k # 0. In fact, by definition of
twisted sectors, the X-spin fields and X-twist fields must carry the same superscript, say &; in this case

the Y-spin fields and Y-twist fields must carry the superscript n — k.

In conclusion, the short representations of the orbifold conformal field theory are four
(those of the untwisted sector) plus one for each twisted sector.

In this way we recover at the level of conformal field theory the correct counting of
moduli parameters. Comparing with the abstract Hodge diamond [see eq. (4.69)] we see
that A0 = 0 and A0 =4 + 7 (|7| =n — 1). Indeed hf’o) = 0 is explained by the fact

L@ B Ly ”
= g e B = [ ] ot
eq. (4.85) that are present in the C? case, are deleted by the projection onto I-invariant
states in the C?/T" theory. On the other hand, () = 4 + 7 is explained by the fact
that the orbifold theory contains the |7| twisted short representations in addition to the
untwisted ones. The untwisted representations correspond to the 1+ 3 non-normalizable
(1,1)-forms that have to be deleted in compact support cohomology. The abstract Hodge
diamond is thus

that the untwisted short representations \I’{

1
0 0
1 44 |7] 1. (4.102)
0 0
1

We conclude this section by studying the operator product of two short representations, that is the
set of all the OPEs between the fields of the two multiplets. This operation is interesting, because
it provides examples of twisted long representations. For simplicity, we concentrate only on the left
part of the representations, thus omitting all tilded fields. Let us consider the product of an untwisted
representation [say the one of (4.85)] with the representation (4.98). The untilded part of ¥%¢ will be
denoted by ¥§. The two singlets of the untilded part of representation (4.98) will be denoted by @
and IIg, so that the notation for the entire representation will be (¥%, &, IIx). The product in question
gives a long representation in which the lowest weight primary field Qy, is

1 n— n-—
Qk = -———\/_éa'g_k)a'!(/ k)t(xk)sg k)’ (4103)
and its weight is A = 1 - k/n. In particular, we have
1
T2 (2) 0 (w, W) = 6 ———— (v, D). (4.104)

(z —w)=
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One can check that consistency with the general OPEs of (4.82) fixes the OPEs between 0.X, 90X and
the excited twist fields. We only give some examples

) 5
X P (w,m) = L= 0D

(z— w)l_lf? ’
IR (B w,m) = —28— L o m)+ At (w, )
<)y ) - n(z—w)l'l'% T 3 (z_w)% s
(k) s
X P = -2(1-1) — o wm + T,
n/ (z-w) (z —w)l==
— . k)
3X(z)7-’g’“)(w’m) - AT_IQ_U_’EZ, (4.105)

(z—w)*

for certain Arﬁk)(w,ﬁ), er(k)(w,fu'), Ar’(mk)(w,fu") and Kr’gk)(w,'w). Going on in this way, OPEs in-
volving doubly excited twist fields can also be found.

We now consider the operator product of two short representations of the twisted sectors.
Using (4.95) and (4.96), we find that this product gives one of the twisted long represen-
tations that we have just found. So, the product of two twisted short representations of
the orbifold is also equal to the product of an untwisted short representation and a third
twisted short representation of the orbifold. Precisely,

Rk(z’ E)Rk'(w7w) - R(E)k+kl(za.§)Rk+k’ modn(w, ﬂ)—), (4:106)

where Ry(z,%) denotes in compact form the twisted massless representation of the kth-
sector, while R;***'(z,%) is one of the two untwisted short representations, which of them
depending on the sign of £ + k' — n.

In this way we can define a natural product between the short representations of the
orbifold, that still gives a short representation of the orbifold and that satisfies the cyclic
property of the A,_; subgroup of SU(2), namely

R ® R = Rkt modn- (4.107)

The last remark we make concerns the chiral ring [77] of the conformal field theory under

consideration. Let
Ok — Uik)gén—k)sik)sgn—k) gg:k)gg(!n—k) (’1108)

be the operator that, acting on the vacuum, gives the vacuum of the k** twisted sector.
Viewing the N=4 theory as an N=2 theory, the Oy are chiral operators. All of them have
charge 1 (this is the U(1) charge corresponding to the current As(z)). There must also
exist a unique chiral operator of charge § = 2 and conformal weight 1. This operator 1s
A*. These operators (AT, Oy) together with the identity span the chiral ring C of the
N = 2 theory, which happens to have only integral U(1) charges. As a matter of fact,
one verifies that

OO0y = 0 ifk-{—k,#n,
OuOni ~ AT, (4.109)
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It is important to stress that this N=2 chiral ring is not the ring R = C|z,y, z]/0W,
although the short representations are in one-to-one correspondence with the elements of
R. To this purpose, recall that the “potential” W(z,y, z) has not at all the meaning of
LG potential describing some other phase of the theory, in some sense equivalent to the
ALE phase. This is what happens for the CY case; here lies one of the most important
differences between the CY (N=2) case and the ALE (N=4) case.

Partition function and N = 4 characters

As stressed several times, the moduli of a (4,4) theory are the highest components of
short representations. The characters of the short representations were computed by
Eguchi and Taormina in [151]. They read *:

chYS(1 = 0;732) =2 (gﬁ();) + (§(> - 2h3(”> (i?(:)))?
(

chYS(1 = ;—;T;Z) S (g;((Z)DQ + ha(r) (13((:)))2 (4.110)

where h3 is defined by

m2—

. 1 q ,
ha(r) = 7(7)03(0) 5 1+ g™ 2 (4110)

The characters of the long representations are instead given by:

IS
oo

NS(h.r- 5 :qh_% b3(2)\" 119
k™ (hiiz) nm(nm) (:112)

The above formulae apply to a general N=4 theory. We are interested in the specific
case of the orbifold theories discussed in the previous section. We want to explore their
spectrum by investigating their partition function and by decomposing it into characters
of the N=4 algebra.

Consider the partition function for the A;_;models; we have to sum contributions
from the twisted sector, i.e. to sum over different boundary conditions in the spatial
direction. To obtain a modular invariant partition function, we have to twist also in the
time direction. As was already explained in section 4.2.2, the twisted boundary conditions
are associated with the non-trivial conjugacy class of the group. In the abelian case Ax_q,
we have a conjugacy class for every element of the cyclic group; therefore the boundary
conditions are parametrized by an integer 0 < i < k — 1. If we denote v = e*™/*, the
building blocks for the partition function are

Zr,s — (qg)—c/’MTr o ﬁsqL—Oqfo e27rin3 +27wizJs : (4113)

®in the following we use for the theta-functions with characteristic two equivalent notations: 8[J] = 63,
0[y] =02, 0] =04, 0[}] = 61.
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where 7 is the operator on the Hilbert space which implements the action of the generator
of Ax_1. Z, 5 is the partition function twisted by »” in the spatial direction and by v° in
the temporal one.

A modular invariant partition function can be constructed by summing over all bound-
ary conditions '

1
£ = ‘]; Z Z’r,sc"r,s (4114)

with coefficients C,; = 1. In terms of Hilbert space states, the sum over the spatial
conditions takes into account the existence of several sectors of the Hilbert space, while
the sum over temporal conditions, at fixed spatial ones, realizes the necessary projection
of the theory onto group invariant states.

We have to sum over the twisted boundary conditions for bosons and fermions dictated
by the orbifold construction and, independently, over the four spin structures of fermions
to take into account the existence of Ramond (R) and Neveu-Schwarz (NS) sectors.
To compute the total partition function [152] we begin with the contribution from the
untwisted sector. Decomposing the fields X, Y, ., %, in Fourier modes (o, 5, A, 1) with
the commutation relations

[ana am] = n6n+m,0

{_Xna )\m} = 5n+m,0 (4115)

and similar for 8, u, we implement the group transformation on the Hilbert space via

(aTL):-B—n) A'I'Lj-ll‘—l‘-n) - 62ﬂi/k(an7ﬁn7 An)ﬁn) (4116)

In the untwisted sector we take a basis of eigenvectors of Ly, o, fo to perform the trace on
Hilbert space; note that in this sector the zero modes of bosonic fields (the momentum)
commute with Lg. The Fock space is constructed by applying the raising operators
to the vacuum and to the eigenvectors of the momentum |pz,p,). The trace with ¥
inserted picks out contributions only from the vacuum, because U is not diagonal on
the momentum eigenvectors. The computation is now straightforward [152] and reduces
to the computation of the partition function of free bosons and fermions with twisted
boundary conditions. The contribution of the unprojected trace is the partition function
of the flat N=4 space

4

1

L e o 15 PO
k(nﬁ)‘*/dp’”dpy PP D

n

(4.117)

In the sector r-times twisted in the temporal direction, the standard 7 function of a boson
(for example) is replaced by the following infinite product

1
ma(l—vrgr)

n=1

(4.118)

[Sw)]
g
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In the twisted sector of the theory the Hilbert space is constructed by the application of
oscillators to the twisted vacua, obtained by applying the twist fields to the true vacuum.
This explains a further factor of ¢'/? to the energy due to the conformal dimension of the
twist fields O; (see eq. 4.108). The oscillators have now fractional indices and so they
contribute fractional powers of ¢ in the infinite product which replaces the 5 function,
exactly as it happens to free fermions when we change the spin structure (i.e. boundary
conditions). From

: An
10X = Z n+1, ity =) ——— YD (NS),.. (4.119)

and the transformation X — e?™s/k9X , ... under the group Aj_; we learn the modings

menﬂ—na)‘mﬁn (P), neZ——%
Gy Brs Ay fin (P),  meZ + % : (4.120)

Collecting all these informations the general contribution from antiperiodic-antiperiodic
fermions (to give an explicit example) is

_2/24 H 1+e21r12 r n+ 242 )(1+e2w17—rqn+i};—’-—;—) %
n=0

X(1 +e Mz mgntits )(1+e"2”i27q”+£‘;‘£"%) (4.121)

from the triple product identity [152]

[1Q = g™+ ¢ 2w)(1 + ¢ 2w = 3 ¢ 2w” (4.122)
n=0 nez
with w = v"¢*/* we obtain

1

q1/24(1 + esz rqn+ + )(1 + e27riz—17rqn+-'5—g—3——5) —
— Z qn2/2ynr621rinzqns/k — 93(2’ + (7’ + ST)/k) )
n(q) Z n

(4.123)

The introduction of the fermionic spin structures simply shifts some parameters in the 8
function. For simplicity, we collect only the results for the NS sector. Fermions contribute
two factors like the one above, while for the same reasoning bosons (collecting with care

also the ¢/? factor in the twisted sector) contribute a factor g;. The building blocks (in

the NS sector) of the partition function are, for a fixed fermionic spin structure, say [g],

O3(z + (r + s7)/k)03(z — (r + s7)/k)
61((r + s7)/k)? '

Zrsl] = (4.124)
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With the same technique we can compute the partition function for all boundary condi-
tions Z m and from these the analogous of the : = (0, v, s,3) characters for the flat space

and finally the heterotic partition function (see [74])

7 221?9)2(66 B ( ?(EéXSO(G)))* _ (4.125)

The next step to obtain the spectrum of the theory is to decompose the partition function
into characters of the N=4 algebra.

If we are only interested in the field content of the orbifold conformal field theory
(ignoring internal dimensions), the Z m have to be summed with certain coefficients to
obtain a modular invariant “partition function”

2
Z[Z] = Z[g]ﬂatspace + Z z . (4126)

rsle]

In the Eguchi-Hanson (A;) case the above partition function (at z = 0, summed over all
boundary conditions) is easily computed:

1 1 / = = (91' * 91’ *
—— | dpadp, gPeP=TPePy l— — (4.127)
4 (m)* ! Z n j
It is modular invariant by inspection.
In the same spirit, the flat space contribution is
Zongen = —= L [8] (4.129)
flat space — IITT?,T{2|T]{8 i 9 7 -La0,

The momentum integral annihilates the contribution of short representation which are

a zero measure set with respect to the continuum spectrum. We expect that the flat

space partition function is an integral over the continuum spectrum of the theory of long
representations with characters

ChNS — gf_—j_/_s_oé

o7

The continuum spectrum is realized by exponential fields or exponential fields multiplied
by combinations of derivatives of the bosonic fields and the singlets that we can realize
with fermions such that the entire field is an N=4 primary. A combinatorial computation
shows that this sum reconstructs exactly the three factors of n needed to obtain Zgagspace

The twisted sectors Z,, do not receive contributions from the continuum spectrum
given by the exponentials. In the Eguchi-Hanson case the explicit form of Z,; at z # 0

wm = (32) - () (52)

(4.129)
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7 (7) - _ 91('2) ’ _ 9_4 ’ 93(2:) ’
DA 0 0 0

01(2) 2 01 ? 03(2) ?
z) = —|—=] — |+ — 4.130
Zn(2) ( b ) 7 b, (4.130)
The contribution of the spatial twisted sectors is given by the sum of the character of
the short representation which perform the twist and an infinite number of long repre-
sentations, while in the sector twisted only in the time direction we obtain, as one can

expect, the short representation corresponding to the identity plus long characters.
For example

0% (05(2)\°
o= (1= 1/2.9) (ke + o) ()

Ul N
=chiS(1=1/2,2) + > Aich™ (A=t +1i,1=0) (4.131)

at=/8 [ 0.(z 2
chS(1=1/2,2) + ZAiq’g——— (—3—(—~)>

where A;,t are coefficients in the expansion of h3, 7,8 in powers of q. This decomposition
of the partition function agrees with the previous discussion and it explicitly shows the
appearance of a number of massless representation related to the Hirzebruch signature
T.

Perturbation around the orbifold point

Finally, the (4,4)-theory corresponding to the smooth manifolds M, is obtained by
perturbing the C?/I" theory with the operator

0 = exp {z [l @B+ @+ QEB G MDAf, (a3

where the 4 x |7| parameters £& (¢ = 1,2,3,4), that can be arranged into a quaternion
for each value of k, describe the parameters of the Kahler class, complex structure and
torsion deformations. In the geometric treatment we have so far considered only the Hy-
perKéhler deformations (3 x |7| parameters), however the conformal field theory contains
also the deformations of the axion tensor B, leading to the torsion deformations. The
problem of identifying the moduli ¢, of (4.30) in terms of the moduli ¢ of (4.132) remains
open. So far, we have introduced various coordinate systems in the moduli-space: the £
coordinates appearing in (4.132), that are a sort of “flat coordinates” and that describe
all possible deformations, the (-coordinates of the momentum map approach (see section
4.1.2) that parametrize the deformations of the complex structure and Kahler class and
the ¢-coordinates that parametrize the chiral ring R = C*[z,y,2]/0W. Formula (4.59)
established the relation between the ¢ and the (, parameters [called X in the context
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of formula (4.59)]. The extension of this identification to the £ parameters is an open
problem. Related work done in [154], developing some ideas that may prove useful also
to solve this last problem.



Chapter 5

Topological twist of the N=2 (and
N=4) gauged LG theory in D=2

In this Chapter it will be exhamined the so-called “twist” of the N=2 (and N=4) models
constructed in Chapters 2 and 3. The twist associates to these models corresponding
topological field theories (TEFT).

First of all, we will review some basic concepts regarding TFT’s, establishing the
formalism that will be used in the rest of this Chapter and also in Chapter 7, where
arguments related to TFT’s in D=4 will be investigated.

We will consider TFT’s of the type known as “cohomological” (or semi-classical), of
which the prototype is topological Yang-Mills theory (TYM) in D=4 [95]. We will use
TYM as an example to introduce most of the notions. :

Some basic features

The basic feature of a TFT is the independence of the correlators from the location of
the observables:

(O(z1)...0(z,)) = const. (5.1)

Another way of characterize them is through the independence of the correlators from
the metric on the space-time manifold M:

)
5.9#"(3:)

How can theories with the properties (5.1) and (5.2) emerge? Typically, one starts
from some field theory possessing a huge classical symmetry, containing as symmetry
transformations also the most general continuous deformations of (some of) the fields.
Then one performs BRST quantization; the observables are thus in correspondence with
BRST cohomology classes:

(O(z1)...0(z,)) =0. (5.2)

sO=0 , O#s0. (5.3)

95
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If may then happen that the stress-energy tensor T, is exact:
Ty = stu. (5.4)

Eq. (5.2) is easily shown to follow and the theory is topological.

Essentially TFT’s are in correspondence with ordinary field theories. However, through
certain mechanisms briefly discussed later, they select as the only admissible field con-
figurations the instantons of the ordinary theories. The semiclassical approximation
becomes exact for TFT’s, thus reducing the infinite-dimensional path integration to a
finite-dimensional integration over the moduli space M of the selected instantons. The
correlators can then be expressed as intersection numbers on M:

(O)...0.) ~ #£(H, U... UH,), (5.5)

where we omitted the dependence from the points X;, that are irrelevant due to eq. (5.1),
in the L.h.s., and the r.h.s. denotes an intersection number of certain cohomology cycles
Hi of M

Much of the interest of TFT’s comes from the equality (5.4) between the rhis., a
purely geometric quantity often of deep interest in mathematics, and the L.h.s., a physical
correlator to which all the machinery of field theory is applicable.

There is a sort of dictionary to go from the l.h.s. (physics) to the r.h.s. (geometry)
and viceversa. BRST cohomology corresponds to the cohomology of M; the observable
O; (of ghost number g;) corresponds to a harmonic form 2; of degree d; (the Poicaré dual
of the homology cycle H; in eq. (5.4), that has codimension d;). The Lh.s. of eq. (5.4)
can be non-zero only if the ghost-number anomaly is saturated. Let AU = [dPzd*J Eh
be the integrated anomaly of the ghost-number current; we must have:

Y& =AU (5.6)

For the r.h.s. of eq. (5.4) to be non-zero the sum of the codimensions of the H; cycles
must equal the dimension of M:

> codimH; =Y _ g = dimM (5.7)

from which the equality between the ghost anomaly and the (formal) dimension of the
moduli space M follows:

AU = dim M. (5.8)
In order to be less generic, and to introduce the formalism that will be used in the
following, let us start by reviewing the “geometric” formulation of BRST quantization.
Geometric formalism for BRST

Consider a field theory described in geometric formalism (see [133]. The basic fields
are differential forms, whose suitably defined curvatures satisfy Bianchi identities. The
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curvatures are expanded over a set of basic forms (typically, for ordinary theories, the
basis provided by the differentials dz* or by the vielbeins and their exterior products) by
means of so-called rheonomic parametrizations. These latter must be compatible with
the Bianchi identities.

Example The gauge fields of YM theories are Lie-algebra valued one-forms. Let A = AJT,dz¥. For the
curvature two-form we have:

Curvature def. Bianchi ident. (5.9)
F=dA+ [A, 4] dF +[A, F]=0
The rheonomic parametrization compatible with the Bianchi identity is simply
F = Fdetde” = Fy VOV (5.10)

Introduce now two extra fermionic (Grassmann odd) directions, the ghost and anti-
ghost ones, parametrized by anticommuting coordinates ¢ and 8, beside the space-time
directions. Define the (anti-)BRST operator as exterior derivative in the (anti)ghost
directions:

0 — 0

=df— ; s=dI=. 5.1
s ; S 57 (5.11)

0
Extend the form fields to ghost-antighost fields, introducing objects labeled by three
numbers: (d,g,g), where d is the degree as a ordinary form (the number of differentials
of the type dz*), g and § the ghost and antighost number (thee number of df and df
differentials).

Example For the YM theory, the extended gauge one-form is
A=A+c+c=A,dz* + codd + 50 (5.12)

Ais of type (1,0, 0) [physical], ¢ of type (0, 1,0) [ghost] and € of type (0,0, 1) [antighost]. In the following
we will always write simply ¢ also to denote cp; the context should always make clear what is meant.

Introduce also the “extended” exterior derivative-
d=d+s+5 (5.13)

To obtain the BRST and anti-BRST algebra, it is sufficient to consider the extended
curvature, i.e. the one obtained by “tilding” the usual curvature definition, to expand it
in the possible ghost-antighost sectors and to compare with the expansion of the extended
theonomic parametrization.

Example In the YM case, the extended curvature is
1.~ _
F=dA+ -2-[A,A], (5.14)

Its sectors are of type F(a 0,0y, F(1,1,0), - - -- In this case the parametrization F' = Fy VeV? is not really
extended, as the vierbeins are not gauge fields: we can say Ve = V4. Therefore the comparison with the
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parametrization tells us that F2,0,0y only is different from zero, while all the other components, obtained
by eq. (5.14), must vanish. Explicitely we obtain the following:

Fuiom=sA+de+[4,¢c]=0 F =SA+d&+[A,c=0
(1,1,0) [4, ] (1,0,1) [4,7] Fio11y = sE+5c+[6,d] = 0
Fro2,0)=sc+ 3[e,c] =0 Foo2=8c+3[ce=0
(5.15)
These are nothing else than the usual BRST transformations; they can be written explicitely in compo-
nents as

sA} = Dyc® SAS = D"
sc® = —1 ";hcﬁc'V s¢* = —3 Oé,y'c'ﬂ?y sb® =0 (5.16)
sc* = b® 5c* = 6" — % ‘737556’

Notation in the above transformation is standard; the auxiliary field 4% is introduced to solve the

ambiguity due to the fact that the Fig ;1) term in eq. (5.15) just fixes the sum s + Sc.

Once obtained the BRST algebra, a quantum lagrangian that is BRST invariant® and
contains the ghost terms and the gauge-fixing terms can be written in the general form

ﬁq =Lg + sV, (5.17)

where ¥ is called the “gauge-fermion”.

Example In Yang-Mills case, denoting by G* the gauge-fixing function, one has:
U =2c*G* + ;—_aba (G* = 0" A7 for Lorentz gauge) (5.18)

so that, performing explicitely the Slavnov variation in eq. (5.17) one gets

1 1, ]
Lo=La—5(0- AV ~TVFd,ca = —FR S, — 5(0- A = eV, (5.19)

prt pr

Topological BRST algebra

Let us now remove the condition on the extended curvatures that they should just coincide
with the (extended) rheonomic parametrization of the theory. Namely, let us introduce
into the game new objects corresponding to the components along ghost and/or antighost
directions of the curvatures. Then let us solve directly the extended Bianchi identity. In
this way a set of (anti)-BRST transformations is determined for the enlarged set of fields,
that will turn out to describe the BRST algebra associated to the quantization of some
classical topological symmetry.

11t is sufficient to insist on BRST-invariance of the quantum lagrangian, instead of BRST plus anti-
BRST invariace, as the first is already sufficient to enforce all the needed Ward identities on the corre-
lation functions



99

Table 5.1: Field content of pure topological Y. M. theory

Form degree 0 1 2

Ghost-number

-9 )

-1 AP Xuv

0 b,L A,,T, Fu., Bu
1 c,n Xuv

2 ¢

Example Consider the expansion (5.15) of the curvature F , but set now

—F.2
©:2.0) L=Fpouy) (5.20)

o=

¢=—F (9,0,2)

The full set of (anti-)BRST transformations is now derived imposing the extended Bianchi identity
d+[4, F]=o0. ; (5.21)

We have explicitely:

Gauge-free algebra Bfree

sA=—(Dc+ 9) §A=—(De+ )
sF=D¢ ~ [c, F] §F:_D1/) — [, F] (5.22)
SC:QS——%[C,C] §E:¢—%[E,E]
s% =Dy — [c, ¥] sv = DY — [¢, 7]
S¢:—[C,¢] §$—"—‘“‘[E,9—1§]
and
Gauge-fixing algebra Bax
st=1b Sce=L~-b-1c,c]
D=T sYv=—T — D) —[e -
Sf sy [c,¥] - [c,¥] - DL (5.23)

sL=-~n - [E,qb] - [C,L]
§L=-7~— [c, ]~ [e, L]

What is the interpretation of such an algebra? Suppose to start from a classical field theory with the
same field-content as YM theory, but with a purely topological action, the integral of the 1% Chern class
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of the gauge bundle:
Sa = / TrFAF. (5.24)
M

This action is invariant under the following classical symmetry:
§A=De+u (5.25)

where € and u are (infinitesimal) Lie-algebra valued 0-forms and 1-forms respectively. This symmetry
encompasses the usual gauge symmetry (De) and the most general continuous deformation of the gauge
fields (u). Proceed now to the BRST quantization of such a symmetry. By definition of the Slavnov
operator, we must have

sA = —(Dec + ) (5.26)

(analogously for the anti-Slavnov operator). This identifies ¢ as the usual ghost for the gauge symmetry
and 9 as the ghost for the topological symmetry. From eq. (5.25) it is clear that u is defined up to a
gauge transformation u — u -+ DA; so 1 is itself a gauge field and requires its own ghost, the “ghost for
ghost” ¢, that will have ghostnumber 2. Completing the (anti)-BRST algebra by deriving the action on
the ghost fields from the nihilpotency of the Slavnov operator, one ends up exactly with the algebra of
eq.s (5.22,5.23).

We have divided the “gauge-free” part of the algebra from the “gauge-fixing” one: this latter contains
the auxiliary fields arising from the ambiguities in the BRST transformations of the anti-ghosts or in
the anti-BRST transformations of the ghosts. It is useful to introduce a different set of auxiliary fields,
defining:

X = dz* Ade’X,, = Dy
x = dz* Adz¥xu = DY
B = dz* Ad2* By, = ~DT — [Dc, 9| — [¢, ¥] (5.27)
so that
s¥ = B. (5.28)

In the quantum action, & will be the Lagrange multiplier for the gauge-fixing of the ordinary gauge
transformations, while T}, (or rather its functional By, ) will be the Lagrange multiplier associated with
the gauge-fixing of the topological symmetry. Finally 77 will be utilized to gauge fix the gauge invariance
of the topological ghost 7.

This is the general situation. The algebra obtained by solving the extended Bianchi
identities for the extended curvatures without imposing that the rheonomic parametriza-
tion are just the extension of the ordinary ones can be reinterpreted as the BRST algebra
for a classical simmetry encompassing general continuous deformations of the fields. The
(anti)-ghost “components” of the curvatures play the role of the extra ghosts (and ghosts
of ghosts) needed for the quantization of this enlarged symmetry. Of course, it is possi-
ble that the theory possesses a topological symmetry only if the classical action is just a
topological quantity.

Topological quantum action

Once. established the (anti)-BRST algebra for the topological theory, one has to write
down the quantum action, that we choose to be BRST-invariant only (breaking the
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symmetry between BRST and anti-BRST), as usual. The “general” general structure of
the quantum action is the following:

Sq = Oa + /W 5 (\I,top + \Ilgauge + \Ilgh) (529)

where the gauge fermion is the sum of a gauge fermion ¥,,, fixing the topological sym-
metry, plus one, ¥, fixing the ordinary symmetry (for instance the gauge symmetry in
the TYM case), plus a last one,¥,y,, fixing the gauge of the ghosts.

Example In the TYM case, the topological gauge-fixing must break the invariance under continuous

deformations of the connection still preserving ordinary gauge invariance. A convenient gauge condition
that satisfies this requirement is provided by enforcing self-duality (instanton condition):

g:i: = Fy £ _Q—EIJV[)UFPG = 0. (530)

Hence we set

\I’top = Tr {ng (g:,, + B;w) gp” ga"}
Tr {2 (8, Apg™ + )}
Tr {$0, b g™ } (5.31)

G
m 0
1T

fixing the ordinary gauge symmetry of the physical gauge-boson A, and of the topological ghost ¢, by
means of the Lorentz gauge. As one sees, the BRST-invariant partition function is constructed utilizing,
as anti-ghost fields, ¢, ¢, Xy, Tather than ¢, é, E”. This choice is motivated by the previous choice of

the gauge-invariant topological gauge-fixing (5.30).

Descent equations and topological observables

Also in the case of topological field theories, that as we have just seen are obtained
by BRST quantization of topological symmetries, the phisical observables are in corre-
spondence with BRST cohomology classes. There’s a key instrument to construct rep-
resentatives of BRST cohomology classes by means of well-defined local and integrated
composite operators. This instrument is furnished by the so-called descent equations.

To describe them let us first of all introduce “semiextended” fields and curvatures.
That is, let us extend the forms in the ghost direction only. We obtain in this way ghost-
forms, i.e. object, that we distinguish with an hat, labeled by two numbers: (d, g}, the
form degree d and the ghost-number g.

Example The gauge connection of YM theories is semi-extended to
A=A+c= A,de* + cgdd (5.32)
and the semi-extended curvature F is expanded as

F = Foo) + Fau + Foa)- (5.33)
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To obtain phisical observables via descent equation, one starts from a form A of degree
D on the base-manifold M (D = dim M), representing the density of some topologi-
cal number relevant for the system under consideration; typically one starts from some
characteristic class of the fiber bundle of which the physical fields represent sections or
connections.

Then one semi-extends A to A and considers its components A(p-gg)» &=0,...D.

From the identity dA it follows the descent equation:

SA(D-gg) = —dA(D-1-gg+1) (5.34)

Example In 4-dimensional TYM, we consider the semi-extended 15* Chern class of the gauge bundle:

A E 6 = Tr(ﬁ/\ﬁ)
A L AGD L AR L AL L A0 (5.35)

obtaining explicitely, beside Ay oy =c1 =Tr FAF,

A(g'l) = —2Tr (1,/} A F)

Apy = Tr(26F +4 A9

Apg = —2Tr (¢9)

Apg = Tr(é9) (5.36)
Let now cSD-n) be a set of (D — n)-dimensional homology cycles on M, and define the
operators

n) def - o

™ -/C(D_n) A(D-n,n)- (5.37)

Using Stoke’s lemma, the descent equations and 8 cz(-D“n) = 0, we conclude that the Z\™

are BRST-closed. These operators are the physical observables of the topological theory.
Correspondingly, a generic N-point function of this quantum field theory is of the
form

(20 2y & [lages Il I, (539)

11 o N i1 N

These Green functions have the distinguished properties that characterize a topological
field theory:

i) They depend only on the homology class of the cycles cg)—nj ) and not on the indi-

vidual representatives. In particular, if we consider the case of the local observable

correlators:

(ZP ... IP ) = c (@1 ... zn), (5.39)
where the points z1,...zy correspond to the 0-dimensional cycles cz(?), . .cgi), we
see that they do not depend on the locations z;, ..., zy, since the difference of

any two points z; — y; can always be seen as the boundary of a 1-chain. Hence the
correlators ¢ (z ... zx) are constants. Thus the property eq. (5.1) holds.
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i) They do not depend on the choice of a metric g,, for the base manifold M. To see
this it suffices to note that the quantum action (5.29) depends on the base-manifold
metric ¢ only through the gauge-fixing term which, by definition, is BRST-exact.
Hence if we calculate the stress-energy tensor we find that it is BRST-exact. Thus
also property-eq. (5.2) holds.

Let us now very briefly describe a different example of TFT, the topological o-model
in D=2. This model is important for us because it is involved in the discussion of the
topological “two-phases” gauged LG model.

Topological o-model in D=2

The fields are maps X : ¥, — Mg from a Riemann surface of genus g to a K&hlerian
target manifold M. The classical action is integral over ¥, of the pull-back through
the map X of the Kahler two-form K of Mg:

S = —mi [ XK = [ (X, T) X 05X o
1 N S
= 35 /gij* (5+X’ 0-X" —0.X"0,. X’ ) et Ae. (5.40)

The invariance of this action that is utilized to construct a TFT is the invariance with
respect to arbitrary variations of the embedding map:

X)) — X (6) + 6X7(8) (5.41)
within the same homotopy class.

Now we consider the BRST algebra for the quantization of the above symmetry. The
set of needed fields and gosts is summarized in Table 5.2. and the BRST algebra? is the

Table 5.2: Field content of topological o-model in D=2

Form degree 0

Ghost-number

-1 ¢, e
T,
0 XL X000 b
D
1 c,ct

*We omit here for brevity the anti-BRST transformations
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following:
sXi=¢ , .
Brree : . _ st = st =10
A= (5.42)
s¢ =0 . .
Bsy : . . sb = sb =0
s@ = b"

The observables are in correspondence with the Dolbeault cohomology of Mg. The
extension of a generic form of type (p, q) is obtained via the expansion of its p holomorphic
and ¢ anti-holomorphic differentials:

d-X—i — aXidéf(d_*_S)Xi:dXi_}_ci
dx* — dXT € (d+ ) X" = X7+ (5.43)

Expanding an extended harmonic form of type (p,q) into terms Oy of definite form-
degree and ghost number,

&P = O@pta-2) — Opte-1) + O0p4a) (5.44)
as a consequence of the identity (P9 = 0 the following descent equations hold:

5O pte-2) = O(pre-1)
sO@pte-1) = dO (0,p-+q)
sO©rtd — . (5.45)

To write down the quantum action, we have to choose a gauge fermion, picking up a
gauge-fixing. A convenient way of gauge fixing the topological symmetry (5.41) is that
of restricting to the holomorphic embeddings satisfying the condition:

o_X*
9. X7 = 0 (5.46)

I

In particular in genus ¢ = 0 these are the rational curves one can embed in the target
manifold M. The instanton number is the value of the classical action

Sq = —71'1/ X*K = const. k (k €2Z). (5.47)

At any value of k there will be a discrete or continuous family of instantons. In the
case of a continuous family, which is the most interesting, the parameters labelling these
instantons are fill a certain finite dimensional moduli space M), The topological cor-
relators will turn out to be intersection integrals of elements of the cohomology ring of
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M) The simplest choice® of gauge-functions to implement the instantonic conditions
(5.46) leads to the following quantum lagrangian:

Sq=Sa+ [ s¥ (5.48)

with . _

U =2 g0 X" + T g 04 X7 (5.49)
In writing this action we have also explicitely expressed the auxiliary fields as &' =
10X b = 1o, X7,

Topological deformations

Let us make a general remark, valid for generic TFT's in D=2.

The solutions of the descent equations (5.98) are the key objects of topological field
theories. Indeed they provide the means to deform the topological action according to
the generalization of eq. (5.100) :

Sq_a‘%-+§juu/@f) (5.50)
A

@ff) being a complete base of solutions to eq. (5.98), and to study the deformed corre-
lation functions:

ety (8) =< egfg,....,@gf;exp[zu Je|> ey
A

Relation with the N=2 g-model
Upon the formal identification of the fermions 1, %' of the N=2 o-model (see Section
2.2.5) with the ghosts and antighosts of the topological c-model,
P = ¢ Pl =id
. . , _ . (5.52)
@bz* — 162‘ ¢2' = ¢ ’
the the actions of the two models coincide (see the footnote above). Moreover, compare

after the above redefinition, the BRST transformations of the topological model with the
susy transformations eq. (2.43) of the N=2 model:

N=2 susy transf.s topol. BRST transf.s
§X' = cle” +ide sX' = c'A (5.53)
XV = —ic" et — et sX' = cA,

31t is possible to choose more generally the gauge-functions . X* + ol ; L& ¢t where T%, is the Levi-
Civita connection on M g. We have set o = 0, but there’s another interesting possibility, namely o = 1.
With some other consequent rearrangements, one ends up with an expression of Sy that is formally
identical with the action of the N=2 D=2 o-model eq. (2.47) with the same target Mg, upon the
identifications eq. (5.52).
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where A is the parameter of the BRST tyransformation. The two transformations agree
setting A = € = —¢~ (and ¢ = €~ = 0). That is, a subset of the N=2 transformations
can be reinterpreted as BRST transformations associated with the topological symmetry.

Note however that there is a mismatch beween the spin 1/2 of the susy charges and
the spin 0 of the BRST charge. In order to really find out an association between the
N=2 and the topological model, it is necesssary to redefine the spins of the fields in a
convenient way.

This can be done, not just for the -model and not only in D=2. It exists an algorithm,
named the topological twist, associating to a given N=2 theory a TFT (actually, two
distinct TFT’s, as we will seen in a moment). Let us discuss more in detail the topological
twist in D=2.

5.1 The A and B topological twists of N=2 field
theories

It is possible to codify a general procedure that provides a topological reinterpretation
for any N=2 model and which is based on a redefinition of the two-dimensional Eu-
clidean Lorentz group, the topological twist. The goal is that of changing the spin of
the fermions in order to reinterpret them as ghosts of some topological symmetry. at
the same time reinterpreting some of the N=2 supersymmetry transformations as BRST
transformations.

There are actually two different topological twists of the same N=2 theory: in Witten's
nomenclature the A and B twists. The idea is that the topological twist extracts, from any
N=2 supersymmetric theory, a topological field theory that is already gauge-fixed, namely
where the BRST algebra already contains the anti-ghosts, whose Slavnov variation is
proportional to the gauge-fixings. The appropriate instanton conditions that play the
role of gauge-fixings for the topological symmetry are thus automatically selected when
the topological field theory is obtained via the topological twist. This latter consists of
the following steps:

1. First one BRST quantizes the ordinary N=2 theory*.

2. Then one redefines the spins of all the fields taking as new Lorentz group the
diagonal of the old Lorentz group with (a part of) the internal automorphism
group of N=2 supersymmetry.

3. After this redefinition, one recognizes that at least one component of the N=2
multiplet of supercharges, say @, has spin zero, is nilpotent and anti-commutes

“This step is relevant when the ordinary N=2 theory is locally supersymmetric (supergravity) a
and/or it contains gauge-fields. For rigid N=2 theories containing only matter multiplets as the N=2
o-model or the rigid N=2 Landau-Ginzburg models, this step is empty. It is a relevant step for the N=2
gauged LG modells or for N=2 supergravity.
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with the old BRST charge: {@Brsr,Qo} = 0. Then one defines the new BRST
charge as Qgrsy = Qo + @BRsT-

4. Next one redefines the ghost number g’ = g + F, where F' is some appropriate
fermion number, so that the operator (—1)8 anti-commutes with the new BRST
charge, in the same way as the operator (—1)8 did anti-commute with the old BRST
charge. In this way all the fields of the BRST-quantized N =2 theory acquire a
new well-defined ghost number.

5. Reading the ghost numbers one separates the physical fields from the ghosts and
the anti-ghosts. The BRST variation of these latter yields, after elimination of the
lagrangian multipliers, the gauge fixing instanton equations. The gauge-free BRST
algebra (that involving no anti-ghosts) should, at this point, be recognizable as that
associated with a well-defined topological symmetry: for instance the continuous
deformations of the vielbein (topological gravity), the continuous deformations of
the gauge connection (topological Yang—Mills theory), the continuous deformations
of the embedding functions (topological o-model) and so on.

Step 1

One BRST quantizes the local symmetries of the original N=2 model according to the
standard procedures; the geometric formulation of BRST quantization [, recalled in the
introduction of this Chapter,is particularly well-suited to the geometrical (rheonomic)
framework we utilize.

Step 2

The second step is the delicate one. In two dimensions the Lorentz group is O(1,1) which
becomes O(2) after Wick rotation. Let us name Jg the Lorentz generator: the eigenvalues
s' of this operator are the spins of the various fields *. The number s* appears in the
Lorentz covariant derivative of the field ¢":

Vo =dp — s'we (5.54)

The automorphism group of the supersymmetry algebra that can be used to redefine the
Lorentz group is the R symmetry group U(l)r, ® U(1)r. Hence a crucial requirement
imposed on the original N=2 model in order to perform a successful topological twist is
that it should be R symmetric.

Denoting by Ji, , Jg the two R symmetry generators, there are two possible way of
redefining the Lorentz generator and, as a consequence, the spin of the fields:

A-Twist B-Twist
Js=Js+ 3(Jr+ JL) Js=Js+3(Jr— Jr) (3.

ot
Ut
(1
N

s'=s+1(qr +q1) s'=s+qr— qr)
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usually named A- and B-twist [96].

It might seem arbitrary to restrict the possible linear combinations of the operators Js, Jr and Jg to
those in eq. (5.55) but, actually, these are the only possible ones if we take into account the following
requirements. In the gravitational sector the spin redefinition must transform N=2 supergravity into
topological gravity, hence the spins of the vielbein e must remain the same before and after the twists:
this fixes the coefficient of Js to be equal to one as in eq. (5.55). Furthermore, of the four gravitino 1-
forms ¢*, (-, 5*, E‘, two must acquire spin s = 1 and § = —1, respectively, and the other two must have
spin zero. This is so because two of the gravitinos have to become the topological ghosts corresponding
to continuous deformations of the vielbein (so they must have the same spins as the vielbein) while the
other two must be the gauge fields of those supersymmetry charges that, acquiring spin zero, can be
used to redefine the BRST charge. These constraints have two solutions: indeed they fix the coefficients
of Jr and Jg to the values displayed in Eqs. (5.55), the choice of sign distinguishing the two solutions.

Step 3

Naming Qgrsr the BRST charge of the original gauge theory and Q%, Q= the supersym-
metry charges generating the transformations of parameters e*, &%, whose corresponding
gauge fields are the gravitinos (¥, (%, we realize that in the A-twist the spinless super-
charges are Q= and Q% while in the B-twist they are @+ and Q*. In both cases the
two spinless supercharges anti-commute among themselves and with the BRST charge
so that we can define the new BRST charge of the topological theory according to the
formula

Qsrsr = QsrsT ¥ QF + QF (5.56)

The upper choice of sign corresponds to the A-twist while the lower corresponds to the
B-twist. The physical states of the topological theory are the cohomology classes of the
operators (5.56).

Step 4

What matters in the definition of the ghost number are the differences of ghost numbers
for the fields related by a BRST transformation. Indeed ghost number is one of the
two gradings in a double elliptic complex. Hence to all the fields we must assign an
integer grading which has to be increased of one unit by the application of the BRST
charge (or Slavnov operator). In other words Q' gy must have ghost number one. These
requirements are satisfied if, for the redefinition of the ghost number g’ = g + F', we use
the generator F' of some U(1) symmetry of the original N=2 theory with respect to which
the new BRST generator (5.85) has charge one and such that the two gravitinos that
acquire the same spin as the vielbein and become the ghosts of topological gravity have
ghost number one. In this case, the action, being invariant under the chosen symmetry,
has ghost number zero.

We fulfill all the desired properties if we define the ghost number of the topological
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theory according to the formula

A-twist B-twist
(5.57)

g =g+qr—qn g =g—qr—qr

In the A case the U(1) symmetry utilized to redefine the ghost number is generated by
F = J, — Jg and it is a subgroup of the R symmetry group U(l)r @ U(1)g, which
becomes a local symmetry group after coupling to supergravity. In the A-twist case,
however, it is the new Lorentz group that it is not a linear combination of two local
symmetry groups of the original N=2 theory.

In the B-twist case the U(1) symmetry utilized to redefine the ghost number is gen-
erated by F' = J;, + Jg and it is a subgroup of the R symmetry group U(1); @ U(1)g,
which remains a global symmetry group also after coupling to supergravity. In the B-case,
however, the new Lorentz symmetry is a linear combination of the old Lorentz symmetry
with the other local U(1) symmetry of the theory gauged by the graviphoton.

Step 5

This depends on the explicit case considered and there are no general rules. The strategy
relies on first identifying the Bgee part of the BRST algebra so that one knows what are
the topological symmetries one deals with, and secondly on inspecting By in order to
extract the definition of the involved instanton conditions.

Now we want to apply the five steps of the twist procedure that we have just outlined,
to the case of the gauged LG model (and of its N=4 analogue) described in Chapters
2,3. We begin by discussing the explicit form of the R-symmetries for the models we're
interested in.

5.2 R-symmetries of N=2 models

It emerges from the above general discussion that a crucial role in the topological twist
of the N=2 and N=4 theories is played by the so called R-symmetries. These are global
symmetries of the rheonomic parametrizations (namely automorphisms of the supersym-
metry algebra) and of the action (both the rheonomic one and that concentrated on the
bosonic world-sheet) that have a non trivial action also on the gravitino one-forms (in
the global theories this means on the supersymmetry parameters, but when extending
the analysis to the locally supersymmetric case this means also on the world-sheet grav-
itinos). In the N=2 theories the R-symmetry group is U(1)r ® U(1)g, the first U(1),
acting as a phase rotation (* — (% e*®z on the left-moving gravitinos, and leaving the
right-moving gravitinos invariant, the second U(1)r factor rotatinig in the same way the
right-moving gravitinos (¥ — (* e***2 and leaving the left-moving ones invariant. In
the N=4 case, as we are going to see the R-symmetry extends to an U(2); ® U(2)r group
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each U(2)-factor acting on a doublet of complex gravitinos (¢*, x*) with or without the
tildas. .

We begin by considering the R-symmetries of the N=2 Landau-Ginzburg model with
abelian gauge symmetries discussed in the previous sections.

5.2.1 (Gauged) Landau—Ginzburg models

Let us assume that the superpotential W(X) of the gauge invariant Landau-Ginzburg
- model is quasi-homogeneous of degree d with scaling weights w; for the chiral scalar fields
Xt

W (et X)) = W (XF) (5.58)
where A € C. Under these assumption, we can easily verify that the rheonomic parametriza-
tions, the rheonomic and world-sheet action of the N=2 locally gauge invariant Landau-

Ginzburg model are also invariant under the following global U(1)z, ® U(1)g transforma-
tions:

(r — exp[+iar] ¢t £ — exp[+iag)Ct
M exp|Fiag] A* E exp[+iag)\E
M — expli(er — ar)| M M* —  exp|[-i(ar — agr)|M*
P - P
A — A
X — exp[—i——————lw‘ (aLd"'O'R ] Xt X* — exp[i—i———lwi O’TQR 1 X
¥ explilfmlammen] g P explilimlepmmeny g
N ¢ e 5 — expl-ilmanuies) i

If we define the R-symmetry charges of a field ¢ by means of the formula

© — expli (grar + qrar)]w (5.60)

then the charge assigments of the locally gauge invariant N=2 Landau-Ginzburg model
are displayed in Table 5.3

Anomaly of the R-currents

From the lagrangians (2.11) and (2.20) the explicit form of the R-symmetry currents J; »
is derived.
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Table 5.3: N=2 theory: spins and charges before and after the twists
untwisted A-twist B-twist
Field spin qr qr gh # spin gh # spin gh#
cEruEe 0 0 0 1 0 1 0 1
Ag -1 0 0 0 -1 0 1 0
A_ +1 0 0 0 +1 0 -1 0
AT —1/2 0 1 0 0 -1 0 -1
Am =12 0 -1 0 ~1 1 -1 1
At 1/2 1 0 0 1 1 0 -1
A= 1/2 ~1 0 0 0 -1 1 1
M 0 1 -1 0 0 2 -1 0
M 0 -1 1 0 0 -2 1 0
P 0 0 0 0 0 0 0 0
X 0 —wi/d —wt/d 0 —w'/d 0 0 0
X 0 wt/d wt/d 0 wi/d 0 0 0
P —1/2 (d-uw))/d -u'/d 0 —wt/d 1 -1 -1
¥ 12 —wid (d-w)/d 0 1-uwi/d -1 1 -1
U 1/2 (Wi—d)/d wt/d 0 -14wijd -1 0 nd
P —1/2 Wid (Wi-d)/d 0 w'/d 1 0 o d
For uniformity with our notations let us write the &= components of these current:
JE o« —4 Z( Dyt + 212 (XIV, X7 = XUV XD + AN — 4i(MOLM* — M9, M)
I —42 PG - zlz -—(X V_X" - XUV_XY) 4 4i(MO_M* — M*0_M)
Wi gt i it i i - : * *
P« ~4Z — 4 2127()( V+X — XUVLXD AN (MO M* — M 0, M)
JE _42 St -2 Z LXIV_XT - XU V_XY) — (MO M — MO, M) (5.61)
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Since these currents couple differently to the left- and right-moving charged fermions
(¥* and W respectively), an anomaly may arise. Indeed, let use concentrate just on the
part of the currents containing these charged fermions. Recall that the usual vector and
axial currents .J X and J ;f read in 4 components as follows:

JY = St Jf = —Tipip”
= Tip'y” T =T

The part containing the ¢ and @ fermions of the R-currents (5.61) can therefore be
written as follows (the left-moving current, for instance):

DI DD (5.63)

(5.62)

The axial current gives rise to an anomaly, through the standard computation of the

1-loop graphs:
OAp O, JE = 9,J% = Z" e (5.64)

(analogously for the Jg current).

Thus the anomaly of the R—currents Jr,r 1s proportional to the sum of the charges
of the U(1) chiral multiplets 3"; ¢'. Note that while the combination J;, — Jg is never
anomalous, the combination J; + Jg is anomalous if 3;¢' # 0. These wesults were
already anticipated in the introduction to Chapter 3.

The crucial condition 3", ¢* = 0 is obeyed in the two-phases model of section 3.1.1
precisely when in its o-model phase the targhet space turns out to be a Calabi-Yau
manifold. In this case, therefore, no modification of the ghost-current anomaly comes
from the contribution of the R-currents that are added to the untwisted ghost-current in
either A-twist or B-twist procedure.

Relation between gauged and rigid LG models

We can also consider a rigid N=2 Landau-Ginzburg model [77]-[82]. By this we mean
a Landau-Ginzburg theory of the type described in the previous sections, where the
coupling to the gauge fields has been suppressed. The structure of such a theory is easily
retrieved from our general formulae (2.16) , (2.19), (2.20) by setting the gauge-coupling
constant to zero: redefine ¢; — gqj and then let ¢ — 0. In this limit the matter
fields decouple from the gauge fields and we obtain the following world-sheet lagrangian:

LE™ = —(0, X" 0_X +0_X" 9, X)
+ 2i(¢ia_¢i‘ + %Zia_ﬂ';i*) + Qi(ﬁbi*a_l/)i i ¢i*a+1/)i)

8{(@/}‘@516,8]1/\/ + C.C.) + &Wd‘w*} (5.

L
D
Qe
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where to emphasize that we are discussing a different theory we have used a curly letter
W(X) to denote the superpotential. The action (5.65) defines a model extensively studied
in the literature both for its own sake [139] and in its topological version [132].

This action is invariant against the supersymmetry transformations that we derive from the rheonomic
parametrizations (2.16) upon suppression of the gauge coupling (¢ — 0), namely from:

VX' = 0.Xiet+O_X'em +4i¢m +4C"
VXT = 8,X et +0.X e — it — it
Vit = Gputet +ovie - -;—5+X” ¢t 4079w (
VT = 0y et 1oyl em + i58_)("' ¢+ oW
VY = Oudiet+0_Pe — %a_xf Ct— it W ¢
VT = g et 0P e + -12-6+X“ ¢ - oWt (5.66)

Assuming that under the rescaling of the X’s the superpotential W(X) has the scaling
property (5.58) with an appropriate d = dy then the rigid Landau-Ginzburg model
admits a U(1)r, ® U(1)g group of R-symmetries whose action on the fields is formally the
restriction, to the matter fields of the R-symmetries (5.59), namely:

Xi —_— exp[ Eﬁﬂﬂ:’ﬁ&l} Xl X exp[ w;!crl,—{-aR!] X—,

wi — expli (dw— wxgij wxan]wz {b'z — expli (dw~ w‘gij wier] i L

7/)1.‘ — e‘{p[-——l(dw w'g:vl'—w'aﬂ]?ﬁ ,(/A)'i* —_ exp[ (dw—wg;}z UJzQL]L/)
(5.67)

In the case of the two-phases theory, the potential W (X*) of the gauged LG model has
the form of eq. (3.20):
W(X4) = X'W(X") (5.68)

where W(X") is quasi-homogeneous, and has degree dyy. Assigning an arbitrary weight
w® to X°, the potential W(X) has weight d = dy +w°. In the low-energy “LG phase”,
as we saw, the gauged LG model is effectively desribed by a rigid LG model for the X'
fields, with potential W. This effective model has the same R-symmetry assignements
for its fields as in the original gauged LG model, provided that we set w® = 0, so that
d = dw.

5.2.2 N=2 o-models

As a matter of comparison a very important issue are the left-moving and right-moving
R-symmetries of the o-model. Indeed, also in this case, the rtheonomic parametrizations,
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the rheonomic and world-sheet actions are invariant under a global U(1), ® U(1)r group.
The action of this group on the o-model fields is:

(F — exp[Fiag] ¢* (E — exp[+iag]CE
Xt Xt X, X
: . ~ - (5.69)
' — expliar] ¥ P' — expliag] P’
P — exp[—iar] Pt P — exp[—iag| i

where a7, and ag are the two constant phase parameters. The crucial difference of eq.s
(5.69) with respect to eq.s (5.67) resides in the R-invariance of the scalar fields X* that
applies to the o-model case, but not the Landau-Ginzburg case. As a consequence, in the
o-model case the fermions have fixed integer R-symmetry charges, while in the Landau-
Ginzburg case they acquire fractional R-charges depending on the homogeneity degree
of the corresponding scalar field and of the superpotential.

5.3 R-symmetries of N=4 models

5.3.1 The U(2); x U(2)r R-symmetry

The construction of the N=4 gauge @ matter system of section 2.3 can be recast in a
more compact quaternionic notation that allows a simple identification of a U(2)r and
a U(2)r global R-symmetry group, respectively acting on the left-moving and right-
moving degrees of freedom. The SU(2) subgroups of U(2)r g will turn into the SU(2),
and SU(2)gr currents of the N=4 superalgebras for the left-moving and right-moving
sectors, respectively. L et us then introduce the quaternionic formalism. Setting the spin
connection w to zero, we can write the super-world-sheet structure equations as follows:

1

de* = ZL—Tr(ZT Z)
dem = iTr(ZT 7) (5.70)
where iyt B - g N
2=(5- %) 5 2=(0 ) (5:11)
To describe the abelian gauge multiplet we group the gauginos into quaternions, according
to : ~
L E) (G E) em

and the gauge scalars, according to:

(5.73)
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It is also useful, although we do not use such a notation in the Lagrangian, to group the
field strength Fand the auxiliary fields P, Q into another quaternion:

= %) (T %) e

Then the rheonomic parametrizations (2.53) can be written as follows:
F = Trfete” — %Tr (A Z)e + %Tr (AP Z) et + Tr (ZosZix)
1 1~ ~
dv = 9,Net+0.Le — ZiAasZT + 7703
dA = O,Aet+8_Ae” +Zf+2i0,5703
dA = 8+K et +8_Ae + Zf—l— 2i6_2t Z o5
df = O.fet+0_fe + %aJUz - -;—ZTB_A (5.75)

These parametrizations (5.75) are invariant under the following left-moving and right-
moving R-symmetries, where Uy, Ugp € U(2) are arbitrary unitary 2 x 2 matrices:

7 —UpLZ A — UpA

N 3 ;N — UpX Ut (5.76)
4 — UrZz A — UrA
The action (2.54) can also be rewritten in this notation as it follows:
£ = ——f—2 +}'[F+ 5 Tr (A1Z)e — —Tr (AtZ)et —Tr (EZTasZ)]

- —Tr (At dA)e™ + Tr (At dA)e*

—4Tr { [dzf + = ZasAT - —AaszT] (S+e+ S_e")+ (St S +st S+)e+e”}

+ Tr(dE AosZt + dSt Aoszt) — ZTf (At ZosANos

+ %Tr { (’S’" 5r> [ATZ et +I{TZe-]} + 24Ty { (_fs 37 ) ZTEZ}

{+-;—7FF+ [2?24-2@*@-21»73—(3@* +S*Q)He+e~ (5.77)

Written in this form, the superspace Lagrangian is invariant by inspection against the
R-symmetries (5.76).
The hypermultiplets are rewritten in quaternionic notation as follows:

R A L A A AR & 1) NZJ.’,) .
Y ‘“(w’ u) . "“<—izbi e ) L Ti= (W 5 (5.79)
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The Bianchi identities take the form:
VY = iFg oy Y (5.79)

and the rheonomic parametrizations (2.59) become:

VY = V,Yiet+V.Yie 4030 Z +T¥ Zos
. ) ; i . i i s
VI = VTt + V. ¥e — oo V.Y Z1 +iYi o5 21 5
VEH = v, et 4+ V_Tem — %V_Yias Z1+iY7 ¢, 05 21 B (5.80)

These parametrizations are invariant under the left- and right-moving R-symmetries
provided the transformations (5.76) are adjoined to the following ones:

v — Ut U — UG (5.81)
The rheonomic action (2.62) is rewritten as follow in quaternionic notation:

J S { (VY + 030 Z + oW Z) (Yt et — Y _em) 4+ Y, Yieter

quat
, . oy s ~. . ~ 1 . , iy ey ey
— HEN VT et — T VT em) + Tloa ¥ Zo3Zt + 5(\11%3\11’ T Z'Z — %\Iﬂw Z'Z)
- VYiT(og\IliZ - \ii203) — 4\IfiETZqijcr3Y” et — 4\iiEZqinjTaa e”

1 3 _ip- ~ ~ ) 3 _imy=\
’5(—?7% :£3>[ATZe++ATZe—]+2I<i% et )ZTEZ}

+ {QiTr [qinjT\IliK + qij o3Y o3 ATH] — 8iTx \iiEqij @t

+8Tr (BISY*)(¢?);Y7) — 2PD? +1[QD* - Q*’D~]}e+e- (5.82)

Written in this form, also the hypermultiplet action is invariant by inspection with
respect to the R-symmetries (5.76,5.81).

5.3.2 The U(1); x U(1)g part of the R-symmetry

As we did in section 3.2.1, we can always regard the N=4 model as a particular N=2
model. For the notations used in this reinterpretation we refer to eq (3.62-3.64). In the
N=4 case, the superpotential of the gauge model has the structure (5.68) but, in this case,
the holomorphic function is not quasi-homogeneous, a fact that can be retold by saying
that dy = 0 with w; = 0. In this case the R-symmetries of the rigid Landau-Ginzburg
model (5.67) are undefined and loose meaning. Hovever, from the N=4 structure of the
model we deduce the existence of an R-symmetry where the fields X* have ¢ = gr =0,
their fermionic partners 1’ and ¢* have (qz = 1,qr = 0) and (g = 0, ¢r = 1) respectively,
while X° has charges (¢z, = —1,qr = —1), its partners ¥°, 0 being assigned the charges
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Table 5.4: N=/ theory: spin and charges before and after the twists

untwisted A-twist B-twist

Field spin ¢, qr gh# spin gh# spin gh#
c8 0 0 0 1 0 1 0 1
Ay -1 0 0 0 -1 0 1 0
A +1 0 0 0 41 0 -1 0
A —1/2 0 1 0 0o -1 0 -1
Ao —-1/2 0 -1 0 -1 1 -1 1
A+ /2 1 0 0 1 1 0 -1
A~ 1/2 -1 0 0 0o -1 1 1
=12 0 -1 0 -1 1 ~1 1
p= —1/2 0 1 0 0o -1 0 -1
ut /2 -1 0 0 0o -1 1 1
i /2 1 0 0 1 1 0 -1
M 0 1 -1 0 0 2 -1 0
M* 0 -1 1 0 0o -2 1 0
N 0 -1 -1 0 -1 0 0 0
N* 0 11 0 1 0 0 0
P 0 0 0 0 0 0 0 0
Q 0 0 0 0 0 0 0 0
ut 0 0 0 0 0 0 0 0
v 0 0 0 0 0 0 0 0
u'* 0 0 0 0 0 0 0 0
¥ 0 0 0 0 0 0 0 0
Pluw —1/2 1 0 0 0 1 -1 -1
Vs /2 0 10 1 -1 1 -1
Py —1/2 -1 0 0 -1 -1 0 nd
Yy /2 0 -1 0 0 1 0 n.d
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(¢ = =1,qr = 0) and (qr = 0,qr = —1), respectively. These charge assignements are
summarized in Table 5.4.

This result is reconciled with general N=2 formulae if we declare that wy = 1 which
implies d = 1. With this choice the above charge assignements, are the same as those
following from formulae (5.59).

The reason why in this case the formulae of the rigid Landau-Ginzburg model (5.67)
become meaningless is simple: in this case differently from Witten’s case there is no rigid
Landau-Ginzburg phase. For all value of the parameters we end up in a o-model phase.
Indeed the above assignments of the R-charges is just the one typical of the o-model.

Anomaly of the U(1) R-currents

Due to the triholomorphicity of the action of the gauge group (see Appendix A}, the
condition Y4 ¢* = 0 is always obeyed, so that the U(1)r g currents are always non-
anomalous.

5.4 Twists of the gauged LG model

As mentioned we discuss the two possible topolological twists (A- and B-models) of the
N=2 Landau~Ginzburg theories with local gauge symmetries presented in section 2.2. We
focus on the formal aspects of the topological twist procedure, aiming at a clarification
of the involved steps.

Step 1

The first step is straightforward. The case of interest to us just involves an ordinary
gauge symmetry. Hence we just make the shift

(v 4]

A— A=A+ (5.83)

where ¢ are ordinary Yang—Mills ghosts. Imposing the BRST-rheonomic conditions:
Pl dA+ ANA=(d+s) (A+E)+ (A+ ) A A+ )
= Fete — %(M‘ LX) e + %(A*E* AT et £ M — MO
(5.34)

we obtain the ordinary BRST algebra of an N=2 supersymmetric gauge theory.

Steps 2, 3, 4

They are implemented in a straightforward way, utilizing in Eqgs. (5.54)— (5.57) the values
of the R symmetry charges as defined in egs. (5.59).
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5.4.1 A and B Twisted BRST transformations
Step 5

As a preparation for this step, namely for the identification of the topological BRST
algebras and theories generated by the twists, we consider the explicit form of the BRST
transformations of all the fields.

In view of a very simple and powerful fixed point theorem due to Witten [134, 83], we also recall
that the topological theory, besides being BRST-invariant with respect to the supercharge (5.56), has
also a supergroup (0]2) of fermionic symmetries commuting with the BRST transformations and gen-
erated by the two spinless supercharges utilized to redefine the BRST charge. Hence while writing the
topological BRST transformations we write also the (0|2)-transformations. As Witten pointed out, the
topological functional integral is concentrated on those configurations that are a fixed point of the (0]2)-
transformations: these are the true instantons of our theory and can be read from the formulae we are

going to list.

The result that the path integral is concentrated on the instanton configurations can also
be obtained by showing that in the topological theories the semi-classical approximation
becomes exact. The fixed point argument is very convenient for extracting the definition
of the instantons directly from the Bg, part of the BRST algebra obtained through the
twist procedure.

A-twist
In the A-twisted case the BRST charge is given by

(@13
[@s]
W
e

A _ = _
QbAsr = Qarst — @ + QF (5.
Correspondingly we rename the supersymmetry parameters as follows:

= 84

oo
|

(84
A) — E+ - £ = Qg (586)

——

«

where o, is the nilpotent BRST parameter associated with the original gauge symmetry
and o) is the BRST parameter of the A-twisted model. The parameters a and o
correspond to the two fermionic nilpotent transformations, commuting with the BRST
transformations and generating the (0]|2) supergroup of exact symmetries of the topolog-
ical action.

Using the above conventions the form of the BRST transformations and of the (0]|2)-symmetries in the
A-twisted version of the N=2 gauge-coupled Landau-Ginzburg model is given by the following formulae:

sA, = oY (—%/\' + 5+cg> = ——%a,\‘ + ag 0yt

L
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AL = o) (———;—:\"* 4 a_cg> = —%alj\"" + agd_c
M = 0
1 ~ 1 '~
* A4 [+ -y = = + -
§M 70 (A +A) 4(aA +a,\)

fA* = o4 (—f- —17>> =a (%-ip>

A = —2ieMo, M = —2iad M
At = —HaWa_ M = —2ia - M

fA” = (A><5~17>> = a<—§~i’P>

5P = a(A)—[ 0y X + 8. ] = %[—a6+x++a'6_k‘]
§X' = of® (9 +icBgiXT) = ot + iogef i X?
X7 = o (97— icB ‘:Xj*) = o — iagcBg; .l

st = o) 11\[1] X7 +1cgq‘;b])~1oz .Mq]X] +iag ng W

(
s = a(A)<zV Xt 4 " Oj«W* + ic8q W)-—a §V*X’ + anid’ O W* + i cgq]vJ

b = o) (- X+ 0TI W — icB gl ) - —G%V+Xi +a W — lagcB iy

i
2
s = o) (1]\/[ qJ::XfP + icgq;:tt:bvj') = —ianj-:Xj* + iogct qj-:?'J;j' (5.87)

B-twist

On the other hand in the B-twisted version of the same N=2 theory, the BRST charge
1s given by _

QWAsr = Qarst + QT + QF (5.88)
In view of Eq. (5.88) and of our previous discussion of the ghost number, in the B-twist
case, we rename the supersymmetry parameters as follows:

% (5+ + 5+> = «
St o) = o
B = Ft = et = g (5.89)

B) being the new BRST parameter and o, o the parameters of the (0]2) fermionic
supergroup relevant to this case.

With these notations the BRST transformations and (0|2)-symmetries of the B-model are the following:

§A, = o (—%A' + 6+cg) = —%(a—al)/\‘ + og 94t
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A

oM
SM*

§At
§A~
SX*
3%

&P
sX*

§XT

st

e (%}-— + @_cg> = —5(@=a) X + agl et
W1 ‘

a(B)%A— = (a—i—a)zz\'

o 13 = (a-a)i T

oB [(f —iP) - 2i6+M*] =(a—a)(F —iP) - 2i(a+a) 0y M*

0
o) [(f +iP) - 2ia_M] =(a+a) (F —iP) - 2i(a~a)0_M

0

a(3>211-[~a+i* + a_,\-} = %[—(am')aﬂ“ + (a-a')é‘-f\‘}

o B) [icgq;',xj} — iagcgq;:Xj

(B [w"' 4+ + icgq;ixf*} =(a+a )P + (a—a )P + iageEgixs
alB) [—i%V+Xi + iqu.Xj + ic5q§¢j]

(a—}—al)%v_i_Xi + i(e— aI)M q;:Xj +iagct qj-i,bj

o(® [__;_v_xi —iMYXT 4 icgq;',gjj}

—(a— al)%V_Xi ti(ata)M X +iagcs gyl

o®) [ni*j O;W —ic8 q;:,zbj'] =(a— al)ni*j O;W — iagck qj-:vzj‘

a®) [—-ni*j oW + icgaq;::zzj‘] =(a+a)nT W + logc® q;ii;Zf'

Specialization to the N=4 case

121

(5.90)

To discuss the topological twists of the N=4 matter coupled gauge theory it might seem
necessary to write down the analogues of eq.s (5.89 ) and (5.90) as they follow from the
rheonomic parametrizations of the N=4 theory (see eq.s (2.53) and (2.59)). Actually
this is not necessary since the N=4 model is just a particular kind of N=2 theory so
that the BRST-transformations relevant to the N=4 case can be obtained with a suitable
specialization of eq.s (5.89 ) and (5.90), according to section 3.2.1.

5.4.2 Identification of the topological systems described by
the A and B models

In this section we consider the interpretation of the topological field theories described
by the A and B models.
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The A-model and topological o-models

Gauge multiplet

Let us start by considering the fields of the gauge multiplet. We find that the structure in
which these fields are organized is (as expected) that of a TYM theory in D=2, modified
by the presence of the charged LG matter. Let us therefore first of all recall the structure
of TYM in D=2. Since TYM in D=4 has been already discussed in the introduction to
the present Chapter, it is sufficient now to point out the differences that arise in two
dimensions.

In D=2 the classical action is the integral of the field strength in the direction of the
center of the gauge algebra (to ensure gauge invariance):

6
Sa =5 / Feent, (5.91)

The topological gauge-fixing must break the invariance under continuous deformations of
the connection A, without spoiling the gauge-invariance. A convenient choice is therefore
that of imposing

F = const., (5.92)

where F = F{™. The corresponding “gauge fermions” are:

Uiop = Tr[x"(F™ + const.ep,)]
U, = Tr[e(0,4" + b))

Ty = Tr[f0,"]. | (5.93)

In the case the topological Yang-Mills theory is coupled to some topological matter
system, the gauge-fixing of the topological gauge-symmetry can be achieved by imposing
that the field-strength F be equal to some appropriate function of the matter fields:

F = 2P(X) (5.94)

In this case we can also suppress the auxiliary field B and replace the antighost part of
the BRST-algebra with the equations:

s¢ = b
SXa. = (%}“—173)
sp = 7 (5.95)

that substitute eq.s (5.23). Correspondingly, the gauge-fermion Wy, of eq. (5.93) can be
replaced with:

1
Viop = 274 (-2-f +iP) (5.96)
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It is worth noting that, for consistency with the BRST algebra (5.22), if we define the
2-form O = 2P(X, X*) et Ae”, we must have s ©() = dt(cent)- Indeed, by restriction
to the center of the Lie-algebra we obtain an abelian topological gauge theory, for which
s F' = dib. Reconsidering the supersymmetry transformation rules of the gauge multiplet
(2.9) and the rules of A-twisting, we realize that the property required for the function
P(X, X*) is satisfied by the auxiliary field P of the gauge multiplet, provided we identify
Y = -;— (7\" e” + At e+). This is correct since, by looking at table 5.1 and at eq.s (5.87)
we recognize that a subset of the fields does indeed describe a topological Yang-Mills
theory upon the identifications:

¢:%(X‘e‘+/\+e+) 3 -
6 =M =3 (% N ) (5.97)
6= M - =3 ()‘+ B )‘_)

We also see that the descent equations:

s0® = doW
6 = 4o
s0® = 0 (5.98)

are solved by the position:
0@ = 2Pet Ae” = 2AP(X,X*)et A e
1) _ _igo +
oM = ¢_§(A e” + Atet)
00 = g =M (5.99)

so that the quantum action of the topological gauge-theory can be topologically deformed
by:

Sy —» Sq —ir / 0 (5.100)
Altogether we see that the classical action Sgq = % [ Fe* plus the topological defor-

mation —ir [ ©® constitute the Fayet-Iliopoulos term, while the remaining terms in the
action (2.14) are BRST-exact and come from the gauge-fixings:

s [ [7e (5 = 1P) + 3 @0+ apy) (5.101)

Matter multiplets

On the other hand the matter multiplets with their fermions span a topological o-
model coupled to the topological gauge-system. The topological symmetry, in this case,
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is the possibility of deforming the embedding functions X*(z,%) in an arbitrary way.
Correspondingly, in the absence of gauge couplings, the topological BRST-algebra was
described in eq. (5.42). In the presence of a coupling to a topological gauge-theory,
defined by the covariant derivative:

VX =dX' —iAg X (5.102)
the gauge-free BRST-algebra of the matter system becomes:

sXi=c —icsqgi X! sct=iq (dde8 + X7 ¢
P Tl ) (5.103)
sXU =c" +icBgi X7 sc’ =ig; (C’* & + XJ‘Q’))

the last two of eq.s (5.103) being uniquely fixed by the nilpotency s? = 0 of the Slavnov
operator.

Comparing with eq.s (5.87) we see that, indeed, eq.s (5.96) are reproduced if we make
the following idenfications:

¢ =1 , ¢ =, (5.104)
The remaining two fermions are to be identified with the antighosts:
¢ = , g =" (5.105)

and their BRST-variation, following from eq.s (5.87) yields the topological gauge-fixing
of the matter sector:

st = igd &+ n" O;e W* + %V_Xi

i3

s = —igie S g0 W - VX (5.106)

Instantons

Following Witten [134] and [83] we easily recover the interpretation of the instantons
encoded in the topological gauge-fixings dictated by eq.s (5.106) and (5.95). Indeed we
just recall that the functional integral is concentrated on those configurations that are a
fixed point of the (0|2) supergroup transformations. Looking at eq.s (5.87) we see that
such configurations have all the ghosts and antighosts equal to zero while the bosonic
fields satisfy the following conditions:

7" 9. WH(X") 0
I W(X) = 0
V_oX' =0
VXt =0

F o= %P = —i|DX(X, X*) - r] (5.107)
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where DX (X, X*) = ¥; ¢'| X*|? is the momentum map function. Hence the instantons
are holomorphic maps from the world-sheet to a locus in €™ characterized by the equa-
tions 7*7 8; W(X) = 0. In other words the instantons are holomorphic solutions of the
corresponding N = 2 o-model. The value of the action on these instantons is easily
retrieved in our notations. Indeed the Lagrangian (2.21) restricted to the bosonic fields
of zero ghost-number is given by: ’

_ Ll o O
Loy = 2..7: -I—.Q'P —%-27{7: | |
— (V.X"V_X'4+V_X"V, X)) +2PD(X,X*) — 2rP  (5.108)

Using eq.s (5.107) and [V_, V4] X* = 1F ¢} X7, we obtain:
6 : . -
S(o) = (5; + 17") /f = 27it N (5.109)

where N = 5‘; [ F is the winding number and the parameter ¢ = ?07? + ir was defined
in Eq. (2.13).

A-twist in the two-phases model

Let us now consider the “two-phases model”, with superpotential W = X°W(X*), de-
scribed in Section 3.1.1, that has the bosonic potential of eq. (3.20). Recall that the
low-energy effective theory of this model is different depending on the value of the Fayet-
Iliopoulos parameter 7. There are indeed two phases: the o-model phase, for r > 0, and
the LG phase, for r < 0 [see the discussion after eq. (3.20)].

In this case the instanton conditions are given by the specialization of egs. (5.107) to
the case of the superpotential (3.19), namely

we(X) = 0
X" 0w (X) = 0
VX" = 0 V,X' =0
VX' =0 V. X =0
i 1 1 _
| o F = ——P = f‘z"vF(D(X’X) — )
1
- = Z 3.
%/f- N e (5.110)

where by means of the last equation we have specified the Chern class of the gauge
connection. In this twist the field M has the interpretation of a ghost just as the fermion
fields, so that the no-ghost part of the lagrangian L) coincides with the bosonic part of
the lagrangian (2.21) with the field M deleted. The value of the no-ghost action on an
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instanton configuration (5.110) was calculated above in eq. (5.109). In particular on an
instanton we have

/f,gdzz = 277N

i = %]—"2 + (VL XTV_X 4+ V_XTV,XY) - U(P, X, M) (5.111)

where the lagrangian Lo defined above is, after Wick rotation to the Euclidean region,
negative definite. Indeed, as is evident from eq.(2.25), the potential U(X, X) is positive
definite while the kinetic terms are negative definite. It follows that there is a correlation
between the sign of the instanton number and the sign of the parameter r:

r<0 N<?

112
r<0 N>0 (5 )

27rr N < 0 = {
Hence in the two phases we have either instantons or anti-instantons. This has far-
reaching consequences. As recalled by Witten [83], a very general theorem states that
line bundles of negative degree have no holomorphic sections. Hence the two instanton
equations

VX' =0 , V,X" =0
VX =0 , VX =0 (5.113)
do not admit simultaneous solutions, since the field X° and X* have U(1) charges of

opposite sign. Which can be non-zero depends on the sign of the Chern class N and
hence on the sign of r. We have ‘

I

VX! =0 — X! =0 unless sign(¢’) = —sign(NV) (5.114)

so that in the two phases the instanton configuration reduces to

@) x
w(X) = 0 X =0 .

_— V_X° =0, ViX =0
r>0:¢V._X =0, V,X =0, r<0;: LF_LE_(Z§O|2~,,)
i 1 (Arv 2 27 b
;;f_g,—rp(x,X)_r) i

\ﬁIF:NE -
(5.115)

As we see, also at the instanton level the two-phase structure of the theory becomes
manifest.

er < 0. This region corresponds to the Landau-Ginzburg phase: an A-twisted
Landau-Ginzburg model is essentially an empty theory, so that quite little is expected to
emerge from the A-twisted gauge theory in the r < 0 regime. Indeed Eq.(5.115) shows
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that in this regime the fields X play no role, the effective physical system being reduced
to the abelian gauge field plus the massive scalar field X° related by the equations

VX = v, X" =0
1 012
—F = 5-7;(—dpc P —r)
(5.116)

which are the equations of a Nielsen-Olesen abelian vortex line.

er > 0. This region corresponds to the sigma model phase and the A-twisted gauge
theory is expected to reproduce the essential features of the topological sigma model on
the n-fold defined by eq.s (5.110). This is indeed the case although there are some subtle
differences. First let us discuss the topological observables. There are two kinds of them:
those associated with the gauge sector and those associated with the matter sector. We
begin with the first. The corresponding descent equations were discussed above and we
found that a solution of eq.s (5.98) is associated with each abelian factor in the gauge
group and it is given by Eq.(5.99). Hence a set of topological deformations of the action
are proportional, in the A-model, to the r parameters of the N=2 Fayet-Iliopoulos terms.
In the specific case under discussion there is just one U(1) group and correspondingly
just one parameter r.

The analysis of the A-twisted topological sigma model has revealed that the topolog-
ical coupling constants appearing in the action have the interpretation of Kahler class
moduli. It follows that the parameter r should be interpreted as a deformation parameter
of the Kahler class in the effective sigma model. To show this, we recall that the effective
sigma model target space My, namely the locus (5.110), is a hypersurface (W(X*) = O)
in the Kahler quotient D~!(r)/G of flat space with respect the holomorphic action of the
gauge group G. Hence the Kahler 2-form Ky of Myy is the pull-back of the Kahler
2-form K of the K&hler quotient. The deformations of Kyy are simply induced by the
deformations of K. To see that r is a deformation parameter for K it suffices to recall the
way the Kahler potential of the quotient manifold D~*(r)/G is determined (see Appendix
A).

Let Ko = Z?ig X' X7 be the Kihler potential of flat space and D(X,X) be the momentum map.
By definition both K and D are invariant under the action of the isometry group G but not under the
action of its complexification G°. On the other hand the superpotential derivatives 8y W (X) are invariant
not only under G, but also under G°. Furthermore one shows that the wanted hypersurface in the
quotient manifold D~!(r)/G is the same thing as the quotient Mé%(_)_—._o of the holomorphic hypersurface

OrW(X) = 0 in the whole €**? modded by the action of G¢. If we name e” € G° = U(1)* = Can
element of this complexified group such that

D(e'X,eVX) = r (5.117)

1s a true equation on the hypersurface w—é@, then the Kahler potential of the Kahler quotient
manifold D~1(r)/G is
K = Ko(e" XeVX) + rV (5.118)
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Consequently a variation of the r parameters uniquely affects the Kahler potential, the quotient Q—I—-vzg(—;é:)—:—o,

as an analytic manifold, being insensitive to such a variation.

Summarizing the A-model of the two-phase N=2 gauge theory is, as expected, a coho-
mological theory in the moduli space of Kahler class deformations and ¢ = L ~+riisa
modulus parameter for these deformations.

Topological observables

It is then worth discussing the general form of the observables in a topological theory
described by the BRST algebra (5.103) and coupled to a topological gauge theory (5.106).
As we have seen previously [see eq. (5.44,5.45] in a topological o-model the observables
are in correspondence with the cohomology classes of the target manifold.

In a similar way in the topological model described by Egs. (5.91), (5.95), the solutions
of the descent equations are in correspondence with the anti-symmetric constant tensors
as,,..in Which are invariant under the action of the gauge group, namely which satisfy the
condition

G fiz,osin qfl] = 0. (5.119)

Indeed, setting

——~

V = d—igA=(d+5s) —iqg(A + &)

= V(l,g) + V(O,l) = (d - IAQ) + (S —_ ich) (5120)
we obtain V? = —iF g and to every | invariant ant1 symmetric tensor we can assoclate
the d-closed ghost form & = a;,,. ,anX no VXin. Expanding it in definite ghost

number parts, the solution of the descent equations is obtalned in the same way as in
the o-model case.

When we follow the procedure of section 3.1.2 and we reproduce the N=2 o-model by
integrating out the gauge field, the topological observables discussed above and related
to the anti-symmetric gauge-invariant tensors become representatives of the cohomology
classes of the target manifold. This is essentially a field theory reconstruction of the
Griffith residue mapping.

It may then seem that the A-twisted N=2 gauge theory in the r > 0 phase is fully
equivalent to the A-twisted topological sigma model on the target manifold Myy. As we
have already anticipated, this conclusion is not completely true, because there are still
some subtle differences. These occur in the definition of the instantons. The first of Egs.
(5.115), which defines the instantons in the matter-coupled gauge theory, is weaker than
the definition of instantons in the effective sigma model. As a consequence all the sigma
model instantons contribute to the sum defining topological correlators in the A-twisted
gauge theory, but this latter includes additional singular instantons that are absent n
the topological sigma model. Let us see how this occurs. We focus on the equations

wH(X) =0
V.XI =0 V,X =0
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i

— | F = Nez_
2 i
i 1 n o —
o F = -é;(D(A,X) —r) (5.121)

and we observe that, by definition, they are invariant under the gauge transformation:
X' o dXT | A A—idd  (AeER) (5.122)

The first three of Egs. (5.121), however, are invariant under the larger group of trans-
formations where the parameter 6 is complexified:

X' o X Ao A—id® (07 €C) (5.123)

The fourth and last of Egs. (5.121) is not invariant under (5.123) and can just be seen
as a condition that fixes the complex gauge invariance of the first three equations. In
other words, the space of solutions of the first three equations, up to complex gauge
transformations (5.123), is the same as the space of the set of four equations, up to a
real gauge transformation (5.122).

This is the field theory analogue of the equivalence between the algebro-geometric quotient and the
Kihler quotient, namely the fact that the hypersurface ;W (X) = 0 in the quotient manifold D~1(r)/G
Q—’-‘Y—é—}cﬂfp— of the holomorphic hypersurface 8;W(X) = 0 in the whole
C"*3, modded by the action of the complexified group G°.

is the same thing as the quotient

In view of this we can simply study the first three of Egs. (5.121), up to complex gauge
transformations. , '

Let us consider the case of a genus zero world-sheet: %y ~ CIP'. Let u,v be ho-
mogeneous coordinates on the world-sheet. In an instanton configuration the fields X*
are holomorphic sections of a line bundle of degree k¥ = —N on CIP?, namely they are
homogeneous polynomials of degree &k in u, v:

Xi(u,v) = Xk + Xi_ oo + ... X (5.124)

The overall scaling 4 _
X' (u,v) — % X' (u,v) teC t#0 (5.125)

corresponds to the complex gauge transformation (5.123) with constant gauge parame-
ter. The moduli space of the gauge theory instantons (5.121) is therefore the space of
polynomials (5.124) satisfying identically the relation

W <X1(u,v),X2(u,v), e X”“(u,v)) =0 (5.126)

modulo the identification (5.125). Let us compare this moduli space with the moduli
space of the corresponding sigma model (see for instance [163]). This is the moduli
space of the degree k holomorphic maps X : CIPy — My, M)y being the hyper-

surface W(X) = 0 in WCPP}! .o+ Also in this case the homogeneous coordinates X
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of I/V(D]P”Jrl .any» ar€ homogeneous polynomials in the u,v coordinates of CIP!, and also
in this case they must satisfy the constraint (5.126). The difference, however, is that,
being homogeneous coordinates, they can never vanish simultaneously. Hence the ad-
mitted polynomials satisfy the additional conditions that they should have no common
zeros. This shows that all sigma model instantons are covered by the instanton equations
(5.121). In addition one has the singular instantons that correspond to polynomials with
common zeros. The instanton sum in the gauge theory must also include these objects.

Their effect has not yet been fully analysed in the existing literature.

The B-model and topological LG models

In order to identify the system described by the B-model we discuss the structure of a
topological Landau-Ginzburg theory [132] coupled to an ordinary abelian gauge theory.
To this effect we begin with the structure of a topological rigid Landau-Ginzburg theory
(TLG).

Rigid TLG models

The rigid Landau-Ginzburg model was defined in section 5.2.1 and it is described by
the action (5.65). It has the R-symmetries (5.67) and it is N=2 supersymmetric under
the transformations following from the rheonomic parametrizations (5.66). The rigid
topological Landau-Ginzburg model has the same action (5.65), but the spin of the fields
is that obtained by B-twisting: the scalar fields X* and Xi* mantain spin-zero as in the
ordinary model, while %", ¥*" have both spin zero, ¥ and " have spin s = 1 and s = —1,
respectively. In view of this fact it is convenient to introduce the new variables:

C* = 7 44"
C = (Tiet +Tle)=(pet +d'e)
0" = " g (5.127)
and rewrite the action (5.65) in the form:
Lrie = — (0+X70_X' + 0_X" 0, X")
+ 2 (T, 0.0 + TL0,C" ) +2i (T 06" — TLo,6")
+ 8C,C- aiajw + 4CT 67 9:0;W + 8OW 0 W (5.128)

d.
If we denote by [Q], = Qpet — Q_e~ the Hodge-dual of the 1-form = Q et + Q_e

then the action (5.128) can be rewritten in the following more condensed form:
Stre = / Lrrget Ae”

_ / {dxi A axT] 4+ 2T A [dCT] +4T A T 8w

+ 2%dC 6" + 4{ C 07" 0;20;0W + 20:W a,-.W} et A e_} (5.129)
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and it is closed under the following BRST-transformations:

)

sX'=0 .
. . sf" =2nt 7 O;W
Bfree : s X' = Clz Bﬁx . — . ) (5130)
. sC = —5dX?
SC‘L — O .

The ghost numbers assigned to the above fields are those emerging from the B-twist (see
Table 5.2).

The scalar fields X* and X*" have ghost number %—‘{i and — 3—‘5—1, respectively. They behave as physical
fields. On the other hand C*" has ghost number 1 — %’—i and behaves as a ghost, while " and the
1-form éi, which have ghost numbers respectively given by 1 — Zﬁj—i and —1+ -'2—‘5—‘, behave as anti-ghosts.
As one sees in this case the ghost numbers are fractional and the subdivision of the fields into
physical, ghosts and anti-ghosts cannot be done by looking simply at the values of the corresponding
ghost numbers. However, if we decide that the scalar fields X are physical, then the interpretation of
the remaining fields as ghosts and anti-ghosts is fixed by the structure of the BRST transformations.

In particular the gauge-free BRST algebra is given by the first three of Egs. (5.130): it
quantizes a symmetry which corresponds to a deformation of the complex structure of
the target coordinates X*, X*". The variation of the anti-ghosts defines the gauge-fixings:

AIWI(X) = 0 ,_
dX* = 0 . (5.131)

that select, as “instantons”, the constant maps (dX* = 0) from the world-sheet to the
critical points (8;W (Xo) = 0) of the superpotential W. The action (5.129) is the sum of
a BRST non-trivial part:

Q(_g) [W] = / [46i A —Ci-j (91-8]~W -+ ZiCﬂ. A d@i*] (5.132)

that is BRST-closed but not BRST-exact and has ghost-number —2, plus two BRST
exact terms:

K = /{dX" A ax] + 2T A [dC”] )
= s/\II(K"”) = S/Qi@—i A [dX’L
Kl = [4{C7 0 0.0:W + 200 0.} ¢* ne”
= s/\II(W) = 5/48j*W0j' et Ae” (5.133)

that have ghost-number 0 and correspond to the BRST-variation of the gauge-fermions
associated with the two gauge-fixings (5.131). As already pointed out the rigid topological
Landau-Ginzburg model has been extensively studied in the literature.
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Gauged TLG models

Here we are interested in the case where the topological Landau-Ginzburg model is
coupled to an ordinary abelian gauge theory. Under this circonstance the BRST-algebra
(5.130) is replaced by:

P 1Bt X
sX'=ictq; X

sA = dcs sX" =C" —ics¢i X7
sF' =0 sC" =ic8qi CI" (5.134)
sc8=0 s = 20" ;W — icBqi o7

sC' = —%VXi + icgqé—C'—j

where V(...)' = d(...)' + i4 ¢}(...)7 denotes the gauge covariant derivative and the
superpotential W(X) of the rigid theory has been replaced by W (X), namely the super-
potential of the gauged-coupled model. The action (5.129) is also replaced by a similar
expression where the ordinary derivatives are converted into covariant derivatives.

The topological system emerging from the B-twist of the N=2 model discussed in
the present article is precisely a Landau-Ginzburg model of this type: in particular,
differently from the case of the A-twist, there is no topological gauge theory, rather an
ordinary gauge theory plus a topological massive vector. The identification is better
discussed at the level of the BRST-algebra comparing eq.s (5.134) with eq.s (5.90) after
setting:

A =[Ay +2M) et +[A- — 28 M| e~

B=Me*t + M*e C" =" + ¢
ppmass — _}i (A—- et + X-— 6_) g — ¢i" _ {l;i-u (5135)
gm At + 5 O et 4 e

ymass_____;_ [/\—i— - :\;-}—]

With these definitions the BRST-transformations of eq.s (5.90) become indeed identical
with those of eq.s (5.134) plus the following ones:

SB = g SR = P(X, X7) + (98- — 0-By)

!

(5.136)
sy = sx =F

The first two of eq.s (5.136) correspond to the gauge-free BRST-algebra of the topological
massive vector, 1™ being the 1-form ghost associated with the continuous deformation
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symmetry of the vector B. The second two of eq.s (5.136) are BRST-transformations
of antighosts and the left hand side defines the gauge-fixings of the massive vector and
gauge vector, respectively, namely:

P(X,X*) + (0+B_ - 5_B+) - D
F'l=0;A. — 9,4, = 0 (5.137)

Actually, looking at eq.s (5.90) we realize that the configurations corresponding to a
fixed point of the (0|2) supergroup are characterized by all the fermions ( = ghosts +
antighosts) equal to zero and by:

=0

M=M => B
= F =0

j:'
P(X,X7) =
7IgW(X) =
dx’ =

I

[T e B an N e BN an ]

(5.138)

Hence in the B-twist the functional integral is concentrated on the constant maps from
the world-sheet to the extrema of the classical scalar potential (2.25). As we have seen,
in the A-twist the functional integral was concentrated on the holomorphic maps to such
extrema: furthermore, in the A-twist the classical extrema were somewhat modified by
the winding number effect since the equation P = 0 was replaced by P = ——%.7-" . In
the B-twist no instantonic effects modifies the definition of classical extremum. The
extrema of the scalar potential can be a point (Landau-Ginzburg phase) or a manifold
(o-model phase). The B-twist selects the constant maps in either case, and the A-twist
selects the holomorphic maps in either case. However, in the Landau-Ginzburg phase the
holomorphic maps to a point are the same thing as the constant maps, so that, in this
phase the instantons of the A-model coincide with those of the B-model.

In the case of those N=2 theories that are actually N=4 theories, there is only the
o-model phase, as we have already pointed out, and the above coincidence does not occur.

B-twist in the two-phases model

Let us now turn our attention to the B-model, which describes a topological gauge-
coupled Landau—Ginzburg theory. Here the topological observables are in correspondence
with the symmetric invariant tensors, rather than with the anti-symmetric ones. To see
it we recall the solutions of the descent equations in the case of the topological rigid
Landau-Ginzburg model where the topological observables are in correspondence with
the elements of the local polynomial ring of the superpotential W(X):

Ry = 'a%v% (5.139)
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Indeed, let P(X) € Ry be some non-trivial polynomial of this local ring; a solution of
the descent equations (5.98) is given by

o = P(X)
oY) = 2ig,PC
6(,?) = —28,0,PC AT’ + 4 [3;;73 BI*WUH*] et Ae” (5.140)

The reason why P(X) has to be a non-trivial element of the local ring is simple. If P(X)
were proportional to the vanishing relations (i.e. if P(X) = ¥, p/(X )-g—XW;), then using
the BRST transformations (5.130), one could see that P(X) =s K and so @fé’) would be
exact. In the case where the Landau—Ginzburg theory is gauged-coupled and the BRST
transformations are given by Egs. (5.134), the solution of the descent equations has the
same form as in Eq.(5.140), upon a substitution of the polynomial P(X) € Ry with a
polynomial
P(XHYeRr 0 x| 5.141

(X7) € Rw = WX (5.141)
in the local ring of the full superpotential (5.68). In addition, however, the polyno-
mial P(XT) must be gauge-invariant. This is guaranteed, if the polynomial is quasi-
homogeneous of degree zero in X°, X*, namely if it is of the form

P(x) = (x°) P (X9 (5.142)

where P (X*) is any quasi-homogeneous polynomial of degree v in X* corresponding to
some non-trivial element of the local ring of W(X):

C[X7]

P(X') € Ry =

Hence the space of physical observables reduces to the chiral ring (5.139) of the super-
potential W(X') which defines the corresponding rigid Landau—Ginzburg model. At the
level of the B-twist, the Landau—Ginzburg model and the N=2 matter-coupled gauge
theory seem to be fully equivalent.

5.4.3 Topological Observables in the N=4 case and HyperKahler
quotients

Having identified the topological theories produced by the A and B twists, let us consider
their meaning in relation with the HyperKahler quotient construction.

A-twist

In the case of the A-twist we have seen that a solution of the descent eq. (5.98) is
associated with each abelian factor of the gauge group and it is given by eq.(5.99). A
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set of topological deformations of the action are therefore proportional, in the A-model,
to the r-parameters of the N=2 Fayet-Iliopoulos terms. In the N=4 case the effective
o-model target space M, namely the locus of the scalar potential extrema

{N:O

V{ et : 3 ' X'~ = M : =
M=0;D°(XX") =r; WKX) = 0 — DH(u) = s

(5.144)
is equal to the HyperKahler quotient D~'(¢)/G of flat space with respect to the tri-
holomorphic action of the gauge group G. The topological observables of the A-model

associated with the r-parameters correspond to the Kahler structure deformations of of
M.
B-twist

Let us now turn our attention to the B-model, which describes a topological gauge-
coupled Landau-Ginzburg theory. Here the topological observables are in correspondence
with the symmetric invariant tensors, rather than with the antisymmetric ones. To see

it we recall the solutions of the descent equations in the case of the topological rigid
Landau-Ginzburg model: in this case the topological observables are in correspondence

with the elements of the local polynomial ring of the superpotential Ry = %%—) Indeed,
let P(X) € Ry be some non trivial polynomial of the local ring, a solution of the descent
equations (5.98) is obtained by setting:

Op = P(X)
ol = -2i5,PT
of) = —20.PT AT — 4 [0PO Wy ] et Ae™  — (5.145)

The reason why P(X) has to be a non trivial element of the local ring is simple. If P(X)
were proportional to the vanishing relations (z.e. if P(X) = ¥, pi(X)gj%), then using
the BRST transformations (5.130), one could see that P(X) = s K and so Op would
be exact. (For the proof it suffices to set K = p'(X)167"n;;» .) In our case where the
Landau-Ginzburg theory is gauged-coupled and the BRST-transformations are given by
eq.s (5.134), the solution of the descent equations has the same form as in eq.(5.140),
provided the polynomial P(X) has the form

P(X) = sy i XX (5.146)

the symmetric tensor s;,

Spizyein Gy = 0 (5.147)

and such that P(X) is a non-trivial element of the the ring Rw. Consider now the
case of N=4 theories, where the superpotential is given by eq. (3.65), and consider the
polynomial: '

P,(X#*) = const. n (5.148)
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which is gauge-invariant (n is neutral under the gauge-group) and non-trivial with re-
spect to the vanishing relations 3% W(X#) ~ 0. The corresponding two-form is easily
calculated from eq.s (5.140). We obtain:

@g;i) = 2const. (3* — 1D (u, 5)) et Ae” (5.149)
Hence a topological deformation of the action is given by :
S — & [ 0 (5.150)

For a convenient choice of the constant const this deformation is precisely the variation
of the action (2.64),(2.65),(2.66) under a shift s — s -+ &5 of the s parameters of
the triholomorphic momentum-map, namely of the N=4 Fayet-Iliopoulos term. These
parameters define the complex structure of the HyperKahler quotient manifold.
Summarizing, we have seen that the three parameters r = (,s = (' 4+1¢? of the N=4
Fayet-Iliopoulos term, that are on one hand identified with the momentum-map levels in
the geometrical HyperKéhler quotient construction [see Chapter 4 and appendix A], are
on the other hand the coupling constants of two topological field-theories: the A-twist
selects the parameters r that play the role of moduli of the Kéhler structure, while the
B-twist selects the s parameters that play the role of moduli of the complex structure.



Chapter 6

Structure of N=2, D=4 theories

Starting with this Chapter, the topics of this thesis become some aspects, recently of quite
a lot of interest, of N=2 supersymmetric field theories in four spacetimes dimensions, both
in the globally supersymmetric case! and when supersymmetry is made local.

A major source of the recent interest in N=2, D=4 theories arose from the break-
through of Seiberg and Witten [60, 61]. They considered the normalizable N=2 super-
Yang Mills? theory (N=2 SYM). Pure N=2 SYM contains gauge scalars (see Section
6.1.1), whose potential admits flat directions allowing for a Higgs mechanism?®. Seiberg-
Witten investigated the low energy effective theory (l.e.e.t.) describing the fields that
remain massless after the Higgsing. The classical l.e.e.t. is easily decribed; however in
the process of integrating out the massive fields this effective theory receives quantum
corrections, perturbative (1-loop) and non-perturbative (an infinite sum of instanton cor-
rections). There is no hope to have under control directly all of the quantum corrections,
i.e. to obtain the ezact l.e.e.t.; yet this is what S—W achieved.

The reason why this is possible stays in the general structure of rigid N=2 SYM
theories. Indeed the le.e.t. is still N=2 supersymmetric, although of course no longer of
renormalizable type. As we will review in Section 6.1.1, the structure of any N=2 vector
multiplets theory (in particular the form of the efective gauge couplings and the geometry
of the manifold spanned by the scalars) is expressed in terms of a single holomorphic
function. This kind of geometrical structure has been recently reconsidered, because of its
relevance in the S-W mechanism, and named “rigid special geometry” [26], to emphasize
its similarity with its more celebrated local counterpart, “special geometry” [112]-[125].
Basically the exact form of the l.e.e.t. is obtained via the explicit computation of the
1-loop corrections and in force of the very constrained form that the effective theory is
bound to have. The exact solution fixes the moduli space (the manifold of the scalars)
to be a certain Riemann surface, of a class that is rigid special geometric.

'In the following we will often refer to the globally supersymmetric theories as “rigid” theories

2With SU(2) gauge group; the analysis has been extended to many other gauge groups G by a vast
literature; the first extyensions to Su(V) were [62, 63]

3Braking SU(2) to U(1); in general breaking G to U(1)", where r = rankG

137



138 ) Chapter 6. Structure of N=2, D=/ theories

There is a very interesting problem, that indeed received recently a good deal of
attention: what is the analogous of the Seiberg-Witten mechanism when supersymmetry
is made local? Is it possible to obtain exact results also in this framework?

Since locally supersymmetric theories incorporate gravity, they are in any case non-
renormalizable. Indeed they can be thought of as effective theories for a more fundamental
theory, namely (super)string theory, suitably compactified. The geometrical structure of
N=2 gauge- and matter-coupled supergravity in D=4 is very rich (see Section 6.2). In
particular the vector multiplets are described by special geometry. Notice that special
geometry is also the geometry of moduli space of Kahler and complex structure defor-
mations of Calabi-Yau manifolds, consistently with the fact that N=2, D=2 theories can
be obtained by compatification of type-II strings on Calabi-Yau manifolds.

After briefly rewieving the general features of special geometry, in Section 6.3 it is
described a particular class of models, obtained at tree level by certain heterotic com-
pactificatons. One can think of these models as the local analogoue of the classicall.e.e.t.
in the S-W mechanism. Indeed the form of these effective field theories is modified by
taking into account quantum (stringy) corrections. It is at this level that the problem
of finding the “local” analogoue of the exact S-W solution, is turned into a concrete
question. Much work has been devoted to this question.

On one side, it has been faced [169, 37, 38| the computation of the perturbative
corrections to the tree level effective supergravity models, a computations of string loop
effects.

On the other side, it has been suggested that the special geometry of the ezact model
shoud be the special geometry of a suitable Calabi-Yau manifold [26, 27, 28, 29, 30].
There have been explicit proposals[28, 29, 30] of specific Calabi~Yau ’s whose moduli
space should be the exact scalar manifold of specific heterotic compactifications; explicit
checks of (some of) these proposed solutions against the perturbative computations have
confirmed them in a very convincing way [39, 40],[31]-[35].

The correspondence between heterotic compactifications (whose exact quantum ex-
pression is not computable directly) and Calabi-Yau manifolds that do describe their
exact expression has been interpreted as “2"d-quantized mirror symmetry” [29]. Indeed
one can think of the Calabi-Yau model (introduced as an “auxiliary” geometric struc-
ture to describe the exact geometry of the heterotic models, in the same way as certain
Riemann surfaces describe the exact moduli space in the rigid case of Seiberg-Witten) as
having the “physical” meaning of compactifying manifold for type-II strings. Supposing
that a duality relates heterotic N=2 compactifications to type-II compactifications of
Calabi-Yau spaces (that are indeed N=2 supersymmetric,as already remarked), since in
the second case it is known that the tree level result is not modified by stringy correc-
tions, this result is ezact and can be used to describe the exact result on the heterotic
side, that does not coincide with the tree level one. One of course will need a “mirror
map” to identify the relevant quantities on the two sides.

I want to stress here that although a huge* and fascinating web of interconnections

“See for instance the very recent review by M. Duff [1]
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of this problem with very fundamental questions in string theory, such as more general
string-string dualities, relations with D=11 supergravity, relations with supermembrane
theories and so on has emerged, in this thesis [ will not try to say anything about it. I will
just limit to considerations regarding mainly the role of the structure of N=2 supergravity
models in the sarch for the exact geometry of heterotic N=2 compactifications.

In Chapter 7 it will be investigated another interesting question (that as we will
see is not unrelated to the previous one) regarding N=2 locally supersymmetric models,
namely their topological twist. We will find that a nice topological twisting procedure
can be defined in particular for those models that can be identified as tree-level effective
theories for N=2 heterotic compactifications, and we will see that this procedure shuld
work (or may be, it must work) also in the when these models are quantum deformed,
incorporating the stringy corrections.

One of the main points in that Chapter is the individuation of the structure of the
full set of instanton equations gauge-fixing the topological symmetries of the models
under consideration. The instantonic equations arising in topological field theories reveal
usually a great insterest when reinterpreted from a mathematical point of view. This
is the case for instance of the instantonic conditions for the rigid model of SYM +
hypermultiplets [155], that are known as monopole equations [156] and have a great
interest in connection with Donaldson theory. The “gravi-matter” instantons described
in Chapter 7 correspond to the consistent generalization of these equations to include
topological gravity contributions.

A link between the investigation of the topological twist and the search for the exact
moduli space for the N=2, D=4 effective heterotic models stays in the formulation of the
R-symmetry. '

An R-symmetry acting on the gauge scalar manifold is necessary in order to define a
consistent twist of the theory.

On the other hand, the consideration of the R-symmetry behaviour is of great use-
fulness in the analysis 4 la Seiberg-Witten of the rigid theories. The classical l.e.e.t.
admits a countinuous R-symmetry that is broken down to a discrete R-symmetry when
the quantum corrections are taken into account. Therefore also the exact moduli space
of the theory must admit a discrete action that can be identified with this discrete R-
symmetry (see Section8.1.1). In the local case, the same phenomenon is expected. In
Chapter 8 some speculations are made regarding the role of R-symmetry in the search of
the “dual” CY manifold for the heterotic compactifications.

6.1 Globally N=2 supersymmetric theories

Let us now review some basic aspects of globally N=2 supersymmetric theories in D=4.
From our point of view, this overview of the globally supersymmetric case is not just a
preliminary step for the locally supersymmetric case. The geometrical structure, named
“rigid special geometry” underlying the generic action for N=2 vector multiplets plays a
fundamental role in the Seiberg-Witten “solution” of the low-energy effective theory for
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N=2 minimally coupled SYM. Therefore we will mainly review the N=2 vector multiplets,
saying only a few words about hypermultiplets and nothing at all about linear multiplets.

Conventions To describe supersymmetry in D=4 it is again used the geometric rheonomic language,
that was utilized in D=2. The basis of one-forms spanning the N=2 extended superspace is given by the
vierbein V® = vjdz# and by two Majorana “gravitinos” ¥4, A = 1,2. In the following we will almost

always use a Weyl notations for the gravitinos, setting ¥4 = 1ﬂ2i\11 4, P = l—gﬁ\ll 4 so that ¥, ¥
have respectively left and right chirality.
We will use the following conventions for antisymmetric tensors in Minkowski space:

i - *
TAg = §5abchCd s AR = A +tAn ;AL = (AL (6.1)

Written in flat indices, these conventions remain unchanged when gravity is turned on and the base

manifold is no longer flat Minkowski space.

6.1.1 Vector multiplets

Let us consider the case of n abelian vector multiplets
(AT M4 N XD I=1,...n. (6.2)

AT is the one-form gauge connection; X7 is a complex scalar; the gauginos A4 and AL

[A = 1,2 labels the two supersymmetry directions] are respectively left- and right-handed:
ys A4 = A4 and 75,\_{; = —)\f;.

In the rheonomy language, the field content of (6.2) corresponds to the expansion of the curvature
FI = dA! along a basis of one-forms for the N=2 superspace. The basis being furnished by the vielbeins
V¢ and the “gravitinos” 14 (we utilize a Weyl notation also for the gravitinos) one defines the curvatures:

Fl=aa"+ YI'E,U#BGAB + X gPean (6.3)
and parametrizes them as
Fl = FLVSV LN Ao VO + iy vt Ve (6.4)

Implementing the Bianchi identity d7!/ = 0 one determines the rheonomic parametrizations of the
“curvatures” VA4 and dX7, according to the general rules of the rheonomic procedure [133]. We do
not report here the full set of parametrizations; they can be retrieved (with some care) as restrictions
of the parametrizations for the locally supersymmetric theory of Appendix B. In solving the Bianchi
identities, one finds an arbitrariness that allows to introduce a triplet of auxiliary fields Piap) [(AB)
means symmetrization] in order to close the supersymmetry algebra off-shell. In Table 6.1.1 the structure
of the off-shell and on-shell degrees of freedom for the vector multiplets is summarized, both in D=4
and D=2. Notice the agreement between N=2 in D=4 and N=1 in D=2, and between N=1 in D=4 and
N=2 in D=2, explained by dimensional reduction.

The generic (non-renormalizable) lagrangian for these vector multiplets contains interac-
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Table 6.1: Degrees of freedom for vector multiplets in D=/ and D=2

D=4 D=2

off shell on shell off shell on shell

N=1 bos. A, (3) 2 A, (1) 0
M (2) 2

P (1) 0 P (1) 0

ferm. A (4) 2 A A (4) 2
N=2 bos A, (3) 2 A, (1) 0
M (2) 2

X (2) 2 N (2) 2

Pasy (3) 0 P (1) 0

Q (2) 0

ferm. A4 (8) 4 A A, 1, i (8) 4

tions codified by means of a single holomorphic function F'(X). This is a very important
property, and indeed the Seiberg-Witten mechanism relies heavily on this point. The
lagrangian reads:

L = Am{FuFlF+ g 0.XT0*X"
Hgrr X9 AL +hc) + Loans + Livsormi (6.5)

The field-dependent vector coupling matrix is F1y = 327597 F(X). In the following we
will use the notation M;; = F;; to make contact with the standard notation that is
utilized in the locally supersymmetric case.

The geometry of the manifold Mg on which the scalars X live, and of which g+
represent the o-model metric, is constrained by the N=2 supersymmetry, through the
Bianchi identities for the “curvatures” VA4 and dX7 beside that for FZ. Not only Mg
has to be Kahlerian , but the Kahler potential must moreover be expressible in terms of
the function F(X) as follows:

K=iF.Xx -FX"), (6.6)

where Fj = 5%7F (X). This implies the following expression for the metric:

915+ = 010,-K = 2ImFyy (6.7)
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A constraint holds on the Riemann tensor, that can be regarded as the hallmark of “rigid
special geometry”:

Rijerre = —010x0mF D5e0OneF g™V (6.8)

The triple derivatives 0;0;0x F' are usually denoted as Cpjx and have the meaning of
anomalous magnetic moments for the gauginos. They do indeed appear in the Lpaul
lagrangian in the expression

C’IJKFJ,,IXJA')/“”/\KBEAB +h.c.. (6.9)

Renormalizable (“microscopic”) theory

Note that the only renormalizable lagrangian of the type (6.5) is the one corresponding
to a quadratic prepotential F'(X). Let us consider for a moment a non-abelian case
(see later subsection 6.1.2), with the field strength 77, the scalars X' and the gauginos
carrying an index in the adjoint of the gauge group G. Let s;; be the Killing metric
for the Lie algebra G. The renormalizable lagrangian (that we will often referr to as the
“microscopic theory” for the group G) is obtained choosing

F=(—+ i)mXIXJ = ey X X7 (6.10)

where g and 8 are the usual gauge coupling constant and the f-angle parameters. Then
Fry = 71k75 and grg» = 2 217 and the lagrangian reads

L = Am(reFlFL7) + 5 2D XIprXT — kg x! (X, X],X]7 + ferm.
29
1 1 10 I «J
= I‘;EKIJF f +§“—I€] .7'—,, f“u-l'--- (6'11)

As a conseguence of “gauging” a quartic scalar potential, whose flat directions account for
the “moduli space” discussed by Seiberg-Witten, arises. We used in (6.11) the notation
X = XIT;, T being generators in the adjoint of G.

Notice that with a quadratic prepotential, the triple derivatives Cryx vanish. Thus
(consistently with their interpretation as anomalous magnetic moments), their do not
appear at tree level in the “microscopic” theory. From the point of view of the microscopic
theory they can be generated only by loop effects.

Coordinate independent description

So far we have utilized the particular coordinates X7 for the scalar manifold Mg; they
are known as “special coordinates”. It must however be possible a description of the
theory independent from the choice of a particular coordinate system. In the following
we utilize the notation 2*(: = 1,...,n) to mean a generic set of coordinates on Mk.
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Let us introduce the symplectic section, i.e. the 2n-dimensional holomorphic vector
Q= (Xl(z), F[(z)). Introduce also its derivative

Ui = &'Q = (&‘XI,&'FI) = (fiI, h[i) = ( ,iI,J\/[inJ). (6.12)

The reason why {2 is named the symplectc section will be clear in the following paragraph.

In generic coordinates the metric is given by
157
gij= = fi fj-910- (6.13)

By computing its derivatives, the Levi-Civita connection is determined: gij- = Tt gi;+. It is found
that

. =i . ; o= «
F}k = ij +T;k = ffajfl{ —1f7 e Cjklglm (6.14)

where T is a flat connection. f} is the matrix inverse of fiI , and C;jk is the tensor C'4p¢ of anomalous

i

magnetic moments transformed to the z* coordinate basis.

Computing the covariant derivatives of ff and hj; utilizing the above connection, one
ends up with the differential constraints that can be regarded as defining the rigid special

geometry in a generic basis:

Din = iCijk gkl*Ul*

— (6.15)
;U = 0.
The Riemann tensor satisfies the identity
Rijerts = —Citm Cietrnr g™ (6.16)

and the symmetric tensor Cjji, as a consequence of the B.I. of (6.16) satisfies D;;Cjj = 0.

One may also consider the covariant derivative D; constructed utilizing the flat connection T of eq.
(6.14). Then

Diff =0

- (6.17)
Dihy; = CijifF.

These equations may be written in matrix notation. Set v = (gj), with Ut = (19) Then equations
I
(6.17) can be recast in the following form:

Tk
Gl-A=0  with (A= (F(;J f%;k> (6.18)
ik

These matrix equations are known as the Picard-Fuchs equations furnishing another
possible definition of rigid special geometry.
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Symplectic reparametrizations

In terms of the symplectic section ) of eqb.’ (6.12) the Kahler potential eq. (6.6) is
rewritten as

K =1@"|0) =id" cq (6.19)
0 1

where C is the standard symplectic matrix C = (_ 10

>. The metric is given by

gij» = iU CUj (6.20)

and the anomalous magnetic moment tensor is given by C;;x = UF CD;U;.
The Kahler potential (6.19) is clearly invariant under a symplectic transformation of

Q
Q— MQ, M € Sp(2n,IR). (6.21)

A symplectic matrix of Sp(2n,R) is characterized in n x n blocks notation as follows:

ATC —CTA=0
A B ’
= TD - DTB = 29
M (C D), BTD-DTB =0 (6.22)
ATD - CTB =1.

The symplectic transformation (6.21) means XL Fp— XVI(X), FI(X); if the transforma-

tion XTI — X1 = ALXY + BIJFJ X) is invertible, then it exists a new function F(X
J
such that

- OF ‘
T = PR (6.23)
The associated integrability condition is that
~ _ OF -1 9,

be symmetric. It can be proven that this condition coincides with the request that
M € Sp(2n,R).

The above discussion means that the choice of special coordinates is not unique.
There exists different, but equivalent, formulation of the theory by means of different
functions F'; these formulations correspond to different realizations of the target space.
The passage between different formulations is named “symplectic reparametrization”.

Symplectic embedding of the isometries

Suppose that the scalar manifold M g possesses a group of countinuous or discrete isome-
tries Digo:

2t — ¢(2*)  such that g¢'(2)ij+ = gij(2). (6.25)
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Due to the expression (6.6) for the Kéhler potential, we can regard these isometries as
generating symplectic rotations of the section {2 by a matrix My, through the relation:

Q(¢(2)) = € M, Q(2) (6.26)

with the arbitrariness of a phase factor that is irrelevant in eq. (6.6).
The isometries of the scalar manifold must therefore admit an embedding

Tiso — Sp(2n, R) (6.27)

in the symplectic group. Each different choice of a prepotential F' (i.e. of a different
structure of the symplectic section {) corresponds to a different possible symplectic em-
bedding. The symplectic embedding is the basic concept characterizing a certain model.

Symplectic transformations: electro-magnetic dualities

Let us consider the kinetic lagrangian for the gauge fields:
L =TImNpy FLF?, +iReNyy FL FL (6.28)
Notice that N7; = Frej. is a symmetric matrix. Define

_ . oL ~ )
GI;;V = 1*6‘%—_—1: = N[JFIWJ + ferm. (629)
uv
Here for simplicity we disregard the fermionic terms; then G'—p,, represent just the
equations of motion following from the vector kinetic lagrangian (6.28). The set of
Bianchi identities and equations of motion for the gauge fields reads

8”1113,7-:;[ =0 Bianchi id.
(6.30)
#*ImGf,, =0 field eq.

As long as we limit ourselves to consider abelian gauge fieds not coupled to any sources
(as we are doing), the system (6.29) is invariant under the electro-magnetic dualities

acting as linear transformations on the vector (¥}, G7,,) = (F L, N F.)):

F- F A B\ (F-
(6-)=(z)=(c p)(e) (531)
We have suppressed all the indices for simplicity. Eq. (6.31) implies that the coupling
matrix transform projectively:

N = (C+ DN)(A + BN)™. (6.32)
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By consistency, also the new coupling matrix N has to be symmetric. This requirement

A B
: D) € Sp(2n,R).

Indeed the transformation (6.32) of A is the same transformation eq. (6.24) that is
induced on it by the symplectic rotation of the section Q by precisely the same matrix
M.

We see therefore that the symplectic rotations of the section ) are implemented on
the gauge fields as symplectic rotations of the vector (F, ;UI ,GT,.,), 1.e. as electro-magnetic
dualitites. They leave form-invariant the set of Bianchi identities plus equations of mo-
tions, but in general they do not leave the lagrangian invariant. By explicit computation

one has:

coincides, as already remarked [see eq. (624)] to have M = (

ImFH N FH = ImFH Gy — ImFHG
= ImF*Gy +Im (2F*(CTB)G, + FHCTA)FYGL(DTB)G,)  (6.33)

Three cases have to be distinguished.

1. B = C = 0. The lagrangian is invariant; these transformations correspond to classical
symmetries. Therefore isometries of the scalar manifold embedded in block-diagonal form
into Sp(2n,R) constitute classical symmetries, leaving the whole lagrangian invariant:

z— ¢(z) — My= <"L(1)¢ (Ag?)’l> (6.34)

2. C #0,B = 0. The lagrangian is shifted of the quantity
Im(CTA) g FHIFE o (CTA) L FL F, (6.35)

In presence of a non-trivial gauge bundle, ¢; = [ F1,*F)], = 2rk, and the above trans-
formation is admissible at the quantum level if the coefficient is integer (in appropriate
units). This is the firts hint that a symmetry group containing such types of transfor-
mations must actually be embedded into the integer symplectic group SP(2n,Z). It is
thus possible that the scalar manifold admits isometry transformations ¢(z) [we will see
that typically there is a discrete set of them] with the symplectic embedding

z—d(z) — M= (é:: (AZ?)_1> € Sp(2n,Z). (6.36)

These transformations represent (quantum) symmetries of the theory; they are called
perturbative duality transformations.

Indeed under such transformations, we have that A" — (A=) NV A~ + CA~!. This kind of transforma-
tions arises typically in the case in which the N=2 theory considered represents the low-energy effective
theory for some microscopic (non-abelian) theory, that is the case considered by Seberg-Witten. If one
includes the perturbative (1-loop) corrections to the effettive coupling A arising from integrating out
the massive fields then the typical form of the coupling is

X2
A2

N~ ig log (6.37)
2T
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where A0 is the tree-level constant expression, and A an appropriate scale. This expression transform
as N' — N + CN when X? is moved on a loop. This is just a transformation of type (6.36), with

M:(é g’)

The perturbative symmetries are usually associated with the existence of monodromies
on the scalar manifold (that is named the “moduli space” when the theory is an effective
low-energy theory).

3. B # 0. In this case the lagrangian is not invariant [see eq. (6.33)] and the coupling N
is tnverted [see eq. (6.32)]. These transformations are called non-perturbative dualities.
When the scalar manifold Mg admits isometries whose action on the symplectic vectors
is implemented by a matrix M with the block B different from zero, then the full theory
possesses a non-trivial e.m. duality. This may possibly occur, considering a low-energy
effective theory, when not only the perturbative corrections but all the non-perturbative
ones are taken into account in the expression of the effective moduli space.

The typical effect of incorporating instantonic contributions to the effective coupling is that of changing
eq. (6.37) as follows:

.C. X? AZN*
N~ i log =+ Z CE (3{.—5> ; (6.38)
k

ey, ceing suitable numerical coefficients. This makes it possible that under suitable transformations of

the scalars A undergo a projective transformations containing an inversion.

6.1.2 Hypermultiplets and gauging

Global N=2 upersymmetry in D=4 constrains the target space Mpyg of a N=2 g-model
to be hyperKahler . Notice that by dimensional reduction this matches the fact that the
same constraint is posed by N=4 in D=25(see Section 2.3.2). We refer to Appendix A
for a short description of hyperKéahler manifolds and for the related notation®.

The field content of the hypermultiplets is the following:

s N S=1,...,4m world-index on My ,
(27, ¢ar %) (6.39)

a=1,...,2m symplectic index of Sp(2m)

The z° are real scalars spanning Mg; (, and (* are respectively left- and right-handed
spinors, and the meaning of the symplectic index willbe clear in a moment.

The holonomy of a hyperKahler manifold is reduced with respect to the generic
SO(4m) holonomy of any 4m-dimensional manifold, as it contains a zero-curvature SU(2)

°In an analogous way, N=1 in D=4 requires Kahlerian target spaces, and by dimensional reduction
the same is required by N=2 in D=2 (see section 2.2.5).

SActually we use here the notation introduced in Appendix B for quaternionic manifolds. Hy-
perKahler manifolds are particular cases of these latter, for vanishing SU(2)q curvature.
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part. Therefore we split the Lorentz indices of SO(4m) into SU(2) x Sp(2m) indices; that
is we introduce the vielbein /4% as follows:

ds® = gs7da® @ da” = eapCup UL UF’ d2° ® da” = e4pCapU** @ UPP,  (6.40)

A, B = 1,2 being SU(2) indices and ¢, § symplecticindices. C is the standard symplectic
matrix. The covariant derivative contains a Sp(2m) connection A% = AP [but not a
SU(2) connection]:

H

vuAa dL{Aa + Aaﬁcﬁfyu!&y
Vie = Do+ CaﬂAﬁVC'y
(6.41)

As basic “curvature”, in the rheonomic approach we take the vierbein 2/ (instead of
dz%), and we write its parametrization as

U = y2eye 4 ABCeB Y (s + B (. (6.42)

Solving the Bianchi identities one determins also the rheonomic parametrizations of the
other “curvatures” V{(,, and V(* These parametrizations can be retrieved from the
parametrizations of the case coupled with supergravity in Appendix B, turning off the
gravitational part and specializing the quaternionic manifold to be hyperKahler .

The bosonic part of the lagrangian is given by the usual o-model lagrangian:

L = gsr(z)0,z° 9*zT + ferm. (6.43)

6.1.3 Non-abelian “gauging”

Let us now say a few words about the construction of a N=2 SYM theory, coupled to
hypermultiplets, with a non-abelian gauge group G.

We assume now that the indices I, J = 1,...,n = dim run in the adjoint represen-
tation of G. This implies of course the “covariantization” of all the derivatives acting on
objects with such indices. The curvatures are now defined by 7 = dA + g%[A, A], where
F = FITy, and so on.

The model we are consider contains also n complex gauge scalars and m quaternionic
scalars that span the scalar manifold

Mg @ Mpuxk. (6.44)

The construction of a consistent non-abelian model requires a peculiar structure of the
isometries of these manifolds, so that they can be “gauged”.

The group G must act on the manifold of the gauge scalars Mg by means of holo-
morphic Killing vectors [see Appendix A]:

2= 2 4 EI}C} ; [k[, k_]’] = fI‘j;' kr (6.45)
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Associated to this holomorphic action there is a momentum map function of components
PO

The group G must also act on the hypermultiplet scalar manifold Mgy, by means
of triholomorphic Killing vectors [again, see Appendix Al:

2% =21k [kpnky] = fEk, (6.46)

To this action it is associated a triholomorphic momentum map, of components PZ,
(z=1,2,3)).

The “gauging” of the model needs the replacement of the differentials with covariant
differentials also on the scalars:

dz' — Vi =det +gAlk:
de® — V2% =d2¥ + gATkS (6.47)

and the consequent redefinition of the “composite connections”, i.e. in our case the
Levi-Cvita connection I, on Mk and the symplectic connection A*8 on Myg:

I‘; — f‘j-EI‘i-szk—l—gAIajk}

7

AP — A= A 4 g ATOskT U U f . (6.48)

These changes imply also some modifications in the rheonomic parametrizations, i.e.
in the supersymmetry transformation rules. First of all, every occurrence of ordinary
differentials and derivatives has to be replaced with its covariant version. Moreover somne
extra terms, proportional to the gauge coupling constant, arise in the parametrizations
of the fermionic curvatures. In particular, for the gaugino curvature:

VA =+ g PRX g + ig(e0e ) PE 65T s (6.49)

The first contribution comes entirely from M g; the second contribution gives the expres-
sion of the three auxiliary fields of the vector multiplet in terms of the triholomorphic
momentum map for the action of the gauge group on the hyperKihler manifold. Notice
the similarity with what happened for N=4 supersymmetry in D=2 (see Section 2.3).

6.2 Locélly supersymmetric theories

Since many of the basic concepts and tools have already been introduced in the global
supersymimetry case, here we just try to remark the novelties arising in the structure of
the N=2 gauge plus matter theories when coupled to N=2 supergravity. We also refer
to Appendix B where the full set of rheonomic parametrizations, as well as some further
technical remarks, are reported.
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The models that we consider have the following structure:

supergravity vector multiplets matter multiplets
(Ve w0, pa, g4, 4%) (AL N4, 05, X (2)) (5, ¢ C7) (6.50)
7' e SM x° € QM

We used here for the vector and matter multiplets the same notation as in the rigid case.
However, the coupling to supergrtavity changes also the geometry of the manifolds SM
(that was named M in eth global case) spanned by the gauge scalars, and QM (named
Mupx in the global case) spanned by the scalars in the matter multiplets.

AP is the graviphoton vector. It belongs to the gravitational multiplets but in the
coupling with the gauge multiplets it is entangled with the ordinary gauge vectors. Let
us denote then by A* (A =0,I =0,1,...n) the whole set of vectors.

The manifold SM is constrained by local N=2 susy to be a special Kdhler manifold;
in a moment we will try to explain what this means.

The matter scalars (that in the rigid case lived on a hyperKéahler manifold) parametrize
now a quaternionic manifold.

The Hodge connection The manifold SM is first of all a Kahler manifold (of Hodge type). In the
coupling to supergravity, the Kahler transformations of the Kahler potential X(z,Z):

K(z,2) — K(2,2) + f(z) + F(3), (6.51)

where f(z) is a holomorphic function, are “gauged” by a U(1) connection Q defined as follows:

i ) . :
{ — — s Q= —=(8; Kdz* — 8;- Kdz* .52
K 5 Q 2(6 Kdz* — §;-Kdz* ) (6.52)
(where K is the Kihler two-form). Under (6.51) @ transforms as @ — @ + d(Imf). The covariant
derivative acting on a field ® of Kahler weight p (for which we say [®] = p) is deined as

VO = (80 +1pQ)® ie. Vi@ = (8 +50:K)® (6.53)
Vi-® = (0;- — £0;-K)®

The gauginos and gravitinos have non-zero Kahler weights: [4] = D=5 =)= —1.
In analogy with the definition in the global susy case [see eq. (6.3)], the curvature for the vectors is
defined as
FA= At + TV, A e + LN AvPeas (6.54)

Since A has no Kihler weight, the basic objects L*(z), functions of the gauge scalars, must have weight

one: [LA] = 1, [_EA] — —1. One of the first consequences of the Bianchi identity for F* is that these
objects must be covariantly holomorphic:
VLA =0 (6.55)

One can consider then the holomorphic objects X* = e~*/2LA. The X* are the analogue in the local
case of the X! that appeared in the rigid case. Notice however that the X A are n + 1, and therefore
they cannot represent coordinates on the scalar manifold SM. Very roughly we can think of them as a
sort of projective coordinates for SM.
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The SU(2)g connection On the quaternionic manifold Q, beside the symplectic connection A%? already
present in the hyperKahler case, also a SU(2) connection w”, z = 1,2,3, is present [we call SU(2)q this
SU(2) group]. See Appendix 7.9.3 for more details. The covariant derivative of the gravitinos contains
also a contribution from the SU(2) “composite connection”, just as it contains the U(1l) composite

connection Q. Explicitely it reads:

pAEV'l,[)AED’L,bA-F%Q/\’I,DA-l—wAB/\ibB (6.56)

For the whole set of curvature definitions, Bianchi identities and rheonomic parametrizations, we refer

to Appendix B.

In Appendix B it is also briefly explained how to perform the “gauging” procedure.
Here, analogously to what was done in the rigid case, we limit for simplicity to abelian
gauge multiplets.

6.2.1 Special Kihler manifolds

The geometry of a special manifold SM can be described in terms of a (2n + 2)-
dimensional holomorphic symplectic section

Q(z) = (X*(z), Fa(2))- (6.57)
We may consider also the covariantly holomorphic section
V = (I* My) = 3 (X, Fa), (6.58)

of Kihler weight 1. From the point of view of the N=2 model, the LA are the objects
introduced in eq. (6.54).
The Kahler potential of SM is given by

K(z,%) = —log (—1(R' (2)Q(=)) ) (6.59)

The above implies also that (VTIV) =i In eq. (6.59) the same notation is used as in
eq. (ref) for the rigid case potential: (VTiV) — VX CV. However, since the symplectic
section is (2n + 2)-dimensional, C is the standard symplectic matrix for Sp(2n + 2,R).
The Kahler potential (6.59) is Sp(2n + 2, IR)-invariant.

Sp(2n + 2, R) plays in the local case mostly the same role of Sp(2n, R) in the global
case.

Global case Local case
Sp(2n,R) — Sp(2n +2,R) (6.60)
n = # of gauge vectors n + 1 = total # of vectors

In particular, in general a Sp(2n+2, IR) rotation of the section corresponds to a symplectic
reparametrization; that is, correponds to going to a different representation of the same
theory.
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A strong difference between the expression of the Kahler potential in the rigid case,
eq. (6.6), and in the local case, is the appearence in this latter of the logarithm of the
symplectic norm of 2. As a consequence, consistently with the raw picture of the X4
as projective coordinates, a rescaling of the section Q by a holomorphic function only
affects the K&hler potential by means of a Kahler transformation:

Qz) » fPQ(z) = K(2,3) — K(z,2) + f(2) + F(3), (6.61)

so that the metric g;;+ is unaffected.

The intrinsic (coordinate-independent) definition of special geometry may be expressed by a set of
differential constraints (that, from the point of view of the N=2 model, are yelds of the Bianchi identities).
In analogy to what done in the rigid case, let us introduce the symplectic vector

Ui = ViV = (ViL™ ViMy) = (f2 has) (6.62)

of Kahler weight one. The differential constraints of special geometry read:

ViV =0
V,’ﬁjo = gij.V (663)
ViUj = iCijk g*" U

The symmetric tensor Cj;; appearing above is covariantly holomorphic, of weight 2 (which, again, follows
from B.I’s). One may also introduce then the holomorphic tensor Wijr = e"CC;jk.

As an integrabitlity condition for eq.s (6.63) [and, of course, consistently with the expression of the
metric g;;- following from eq. (6.59)], it is found that the Riemann tensor of the special manifold satisfies
the identity:

Rijeiis = gij=grrs + gitgkj= — Citm Cjvpon= g™ (6.64)
The Cj;r, tensor, whose physical interpretation is that of anomalous magnetic moments, as in the global

supersymmetry case, satisfy moreover V;Cy;x = 0.

In analogy with the rigid case, we introduce the matrix ANps via the position hy; =
NasfE.
It is possible to express N directly in terms of the section [27] introducing two (n +
1) x (n + 1) matrices hprr = (haor = My, hps+) and f& = (f& = L%, f2); one has then
Naz = hax ()3

The matrix N undergoes, as a result, a projective transformation:

N = (C + DN)(A + BN)™ (6.65)

g ZB;)’ exactly as it

when the symplectic section is rotated by the matrix M = <

happened for the coupling matrix N in the rigid case.

Indeed one can see that the matrix Mz enters the N=2 lagrangian as the vector
coupling matrix, exactly as M7 did in the global case. We do not repeat the formulas for
the gauge kinetic lagrangian, as it is sufficient to replace in the formulae of the rigid case
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[see eq.s (6.5, 6.28-6.30)] the indices I, J,... with indices A, Y, .... The important point
is that everything can be expressed by means of symplectic invariants or covariants.
In particular, the vector

(]:;VA, Gau) ™~ (f;UA,NAzf;VE) + ferm, (6.66)

where Gpp = i;;_—%, transforms covariantly under Sp(2n + 2,IR). The effect of the
Ny
symplectic transformations of the gauge kinetic lagrangian are just the same as in the

rigid case. Therefore the same classification into classical symmetries (C = B = 0,
perturbative (C # 0, B = 0) and non-perturbative (B = 0) dualities apply.

The typical types of solutions to the differential constraints (6.63) are expressed in
terms of a holomorphic prepotential £ (L), that has to be homogeneous of degree 2. In
this case, the symplectic section reads

oF
_(TA
V=(L ’BLA) (6.67)
and all the geometrical quantities (and everything entering the Lagrangian) are expressed
in terms of F' and of its derivatives. For instance, the coupling matrix is then expressed

as

ImFApImF oI LFLH

LOImFqae L®

It may however happen that, starrting from a formulation based ona prepotential
F., upon a symplectic reparametrization one ends up with a section V that cannot
be expressed in terms of a prepotential F7. We will precisely be interested in such a
parametrization in the case of the special manifold ST'(n) X SQ(m), see Section 6.3.1.
As discussed above, this is not a problem, as everything can be described directly in
terms of the section.

Nag = Fas +2i (6.63)

Symplectic embeddings of the isometries

Analogously to the rigid case, the group of isometries of the scalar manifold SM must
be embedded into the symplectic group, the embedding of a isometric transformation
z — ¢(z) being defined via:

Q(d(z) =efP MpQ(z) , M, €Sp(nt 2,R). (6.69)

This relation is the local counterpart of eq. (6.26). An important difference occurs: while
in the rigid case the only arbitrariness was a phase factor, here a compensating rescaling
by means of an arbitrary holomorphic function is admitted. Indeed we already remark
that the form (6.59) allows for rescalings of the symplectic section.

Different realization of the scalar manifold by means of different sections correspond
to different possible embeddings of the isometry group I of SM into Sp(2n + 2, R).
Between the isometry transformations ¢, there will be a distinction between classical,
perturbative, non-perturbative transformations, corresponding to the form of their sym-
plectic representative M.

TThis does not occur in the rigid case
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6.2.2 Special geometry and Calabi—Yau spaces

We have introduced special geometry as the structure that characterizes the manifold of
the gauge scalars in N=2 supergravity @ gauge models. It is well-known [157, 158] that
special geometry also arise in different contexts, and mainly it is the geometry of the
moduli spaces both of Kahler class and complex structure deformations of a 3-complex
dimensional Calabi-Yau space M¢®.

This fact is consistent with the consideration of the effective D=4 supergravity models
obtained from string compactifications on Ms.

If the heterotic string is compactified on Mg, the resulting effective field theory is an
N=1, D=4 supergravity, with gauge group EgXx Fg. As can be easily seen by Kaluza-Klein
analysis, the spectrum of fields of this theory encompasses two sets of neutral scalar fields,
R fields M® in correspondence with the (1,1)-harmonic forms on Mg and A*? fields
M* in correspondence with the (2,1) forms. These fields appear in the model as “moduli
fields”, i.e. they correspond to flat directions of the scalar potential. Since A'* and h**
cohomology classes are in correspondence with the possible deformations respectively of
the Kahler class [roughly speaking, of the “size”] and of the complex structure [~ of
the “shape”] of the Calabi-Yau manifold, we see that the flat directions in the effective
theory correspond to the freedom of resizing and reshaping the compactifying manifold,
as expected.

The N=1 theory contains also k%! fields C* transforming in the 27 representation of Eg, and A*! fields
C? in the 27. There appear in the lagrangian Yukawa couplings between these fields and their fermionic
partners x°%, x*:

Lyvux ~ VVachabec + I’Vag—yxaxﬁC’y. (6.70)

The Wase [Wag,] are symmetric tensors depending holomorphically on the C* [C® respectively]. The
(1,1)- and (2, 1)-moduli spaces showing special geometry, as we will see, these tensors are precisely the
tensors introduced in eq. (6.63). In turn, this is the reason why the Wjj are often named “Yukawa
couplings” also in the context of N=2 supergravity, where their physical role is instead that of anomalous

magnetic moments.

This being the situation for the compactification of the heterotic string, consider the fact
that (via the so-called h-map mechanism) it can be related with the compactification,

on the same Calabi-Yau manifold, of a type-II theory. In this case, the effective 4-
dimensional effective field theory is an N=2 supergravity. The N=1 W.Z. multiplets
containing the (1,1) and (2, 1) moduli flow into suitable N=2 gauge multiplets. It is then
clear that, as discussed in Section 6.2, the scalar fields span a special Kahler manifold.

This argument shows (heuristically) that the geometry of the moduli spaces of Kahler class

and complex structure deformations of a 3-complex dimensional Calabi-Yau manifold
must be spacial Kahler manifolds.

Let us now see how the basic special geometric objects are expressed in these context.

8The suffix 6 refers of course to the real dimensions of the space.
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Special geometry for (2, 1)-forms

The deformations of type §;; of the metric on a Calabi-Yau space M of complex dimension
n, that is the deformations of the complex structure of M, can be put into correspondence
with the harmonic forms of type (n —1,1).

In the case M is defined as the vanishing locus, in a suitable ambient space, of a holomorphic potential
depending on parameters Pa: W(X1,.. . Xn; {a}) =0, we can take the 1 a coordinate on the space of
complex structure deformations. Indeed the unique Q™° form defined on the Calabi-Yau space varies as
n—1,1

- n,0 . . .
follows unde a variation of ¥q: %:— = ¢ Y0 4+ wi~ 11 providing an association of 1, with a W}

form.

In any case, we denote by ¥a a generic set of coordinates on the moduli space, in corre-
spondence with w?™ " forms. The natural Weil-Petersson metric on the moduli space is
given by

f Wea N _(,Jﬁ*

= fMQno N (6.71)
o

and it is Kahler , with Kahler potential

K (4, %) = — log [—i /M Q™0 A ﬁ“’”]. (6.72)

In the 3-complex dimensional case, this Kihler potential assumes the expression typical
of special geometry. This happens because in this case the middle degree homology
contains b3 = 2k + 2 elemets. Choose a basis of 3-cycles with canonical intersection
matrix:

Gop*

AANA*=By,NBg=0 (6~3)
‘ T
AMN By Z—B};ﬂAA :53.
Notice that the canonical intersection matrix is just the standard 2n -+ 2-dimensional
symplectic matrix C. Consider the 2n + 2 periods of the unique holomorphic (3,0) form
030 on the chosen basis of 3-cycles, defining

XA — fAA 030 = st Q30 A ﬁA
FA = fBA QB’O = fMe QB’O A Qp.

(6.74)

Here ay, 8" are harmonic three-forms related by Poincaré duality to the cycles AL By
Eq. (6.74) corresponds to the expansion of 030 along the ay, f* basis:

030 = Xhay — Faph (6.75)

The symplectic section®), in terms of which the special geometry of the moduli space is
defined, is
Q= (X F). (6.76)

Not to be confused with the Q3 form; unfortunately here the notations have a little clash
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It is immediate to see that the expression (6.72) of the Kahler potential coincides with
the special geometric definition (6.59) in terms of the symplectic norm of this section.
All the quantities of special geometry can be then consistently defined in terms of this
section.

The geometrical Weil-Petersson metric for the moduli space constitute, from the
string compactification point of view, the classical result. In deriving the effective field
theory, in principle one expects quantum corrections to arise. The exact quantum result
should be encoded in the so-called Zamolodchikov metric; the latter is the metric in
the moduli space of truly marginal operators of the (9,9);, SCFT that corresponds
abstractly to the Calabi-Yau compactifying space. We do not want to enter into details,
but the fundamental point is that for the (2,1) moduli space, the classical results suffer
no quantum corrections. This is not the case for the (1,1) moduli space, that we consider
now, more sketchy.

Special geometry of (1,1)-forms

The deformations of type gi;« of the metric, i.e. the deformations of the Kahler class,
are in correspondence withe the (1,1) cohomology classes. The special geometry for
the moduli space of such deformations is obtained directly in terms of a holomorphic
prepotential F(X), homogeneous of degree 2:

1 XeXbXxe
F(X) = §dab°T

where dg. is the intersection number of three elements of a chosen basis {w,} of (1,1)-
forms:

dape = / Wo A\ wpy A w, (6.78)
-/\AG

and the X are “special coordinates”: X° = 1,X® = t*. The t* complex coordinates
parametrize the Kahler structure space.

At the string level, this classical result for the geometry is corrected by world-sheet
instantons contributions. These are in principle beyond reach. However one of the most
remarkable properties of Calabi~Yau manifolds helps in dealing with them. Indeed there
exist pairs of Calabi-Yau manifolds M and M, whose Hodge diamonds are rotated of
90 degrees with respect to each other so that A = A2! and viceversa, such that the
(1,1)-moduli space of the former coincides with the (2,1) moduli space of the latter and
viceversa. Moreover there exists methods to construct explicitely the mirror of (certain
classes of) Calabi-Yau manifolds.

Mirror symmetry is another argument that we do not want to enter; however its con-
sequence are of fundamental importance. In particular, it furnishes the way of computing
the exact metric on the (1,1)-moduli space by going to the (2,1)-moduli space of the
mirror manifold. Of course, it is necessary to construct explicitely a map (the “mirror
map”) relating the parameters ¢* and v, of the two spaces.
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6.3 Effective N=2 theories for the heterotic string
compactified to D=4

We have seen that a N=2, D=4 model of supergravity coupled to vector multiplets and
quaternionic multiplets is individuated by the following choices:

1. The choice of a special Kahler manifold SM for the vector multiplet scalars, of
complex dimension n + 1, where 7 is the number of vector multiplets.

9. The choice of a quaternionic manifold QM for the hypermultiplet scalars, of real
dimension 4m, where m is the number of hypermultiplets.

3. The choice of a gauge group G of dimension dimG = n + 1, that generates special
isometries of SM and should have a triholomorphic action on the manifold QM.

Now we examine in more detail the model determined by the folloing choices:

B W SULY) _ SO@n)
SM = ST()= 70y © 50(2) ® 50(n)
_ o SO(4,m)
oM = HQ(™)'™ 55056 50m)
¢ c SO(n) (6.79)

where G is a n—dimensional subgroup of the SO(n) appearing in the first equatioﬁ above,
such that: ‘ :
adjoint G = vector SO(n). (6.80)

The structure given by eq. (6.79) is what one can obtain by certain N=2 truncations
of N=4 matter coupled supergravity which, as it is well known, displays a unique coset
structure:

SU(1,1) SO(6,n +m)
o) © SO(6)® SO(n +m)

Other types of truncations can give different quaternionic coset manifolds QM [116], for
instance SU(2,m)/(SU(2) x SU(m)). Theories of type (6.79) originate, in particular
cases, as tree-level low energy effective theories of the heterotic superstring compactified
cither on a Z, orbifold of a six—torus T°/Z, or on smooth manifolds of SU(2) holonomy,
like T, ® K3 [102, 103, 104], else when the superstring is compactified on abstract free
fermion conformal field theories [30-33] of type (2,2)e=2 © (4,4)c=6 [159]. Although in
the following we focus on the particular case where QM = HQ(m), our discussion on
R-symmetry is in fact concerned with the vector multiplet ST'(n) and applies also when
HQ(m) is replaced by other manifolds.

Quantum corrections can change the geometry of ST(n) or H Q(m) in such a way
that in the loop corrected Lagrangian they are replaced by new manifolds ST (n) or

—

HQ(m), which are still respectively special Kahlerian and quaternionic, but which can, in

5 ST(n) @ HQ(m). (6.81)
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principle, deviate from the round shape of coset manifolds. It is known that in rigid Yang-
Mills theories coupled to matter the hypermultiplet metric (which is hyperkéhlerian)
does not receive quantum corrections neither perturbatively, nor non—perturbatively [160,
27, 161]. The same is true in N=2 supergravity theories derived from heterotic string
theories: N=2 supersymmetry forbids a dilaton hypermultiplet mixing [27, 169, 37] since
the dilaton is the scalar component of a vector multiplet. Hence in this case, while the
scalar manifold is replaced by ﬁ(n), the quaternionic manifold HQ(m) is unmodified.

The reverse is true (i.e. there are no quantum corrections to the vector multiplet
metric) for N=2 supergravities derived from type II strings [171, 172]

Generically continuous isometries break to discrete ones. This may be a consequence
both of O(a’) corrections due to the finite size of the string (discrete t-dualities generated
by non-perturbative world-sheet effects) and of non—perturbative quantum effects due
to space-time instantons (discrete Peccei Quinn axion symmetries). Furthermore it can
either happen that the discrete quantum symmetries are just restrictions to special values
of the parameters of the classical continuous symmetries or that they are entirely new
ones. Usually the first situation occurs when the local quantum geometry coincides with
the local classical geometry, namely when there are no corrections to the moduli space-
metric except for global identifications of points, while the second situation occurs when
not only the global moduli geometry, but also the local one is quantum corrected. As
we have stressed, although ST (n) and HQ(m) may be quite different manifolds from
their tree level counterparts, they should still possess an R-symmetry or a Q-symmetry
so that the topological twist may be defined.

When N=2 supergravity is regarded as an effective theory for the massless modes
of the compactified heterotic string, the vector multiplets have a well defined structure.
Fixing their number to be n + 1 we have that n of them contain the ordinary gauge
vectors:

(A%, X4 A2 Y?), a=1,...,n (6.82)

and one:

(A5, 254,13, 5) (6.83)

contains the dilaton-axion field:

S = A+iel
VoA = ZEEEDpues o fobe 2Dy g, (6.84)
|g] |9

The symplectic index A runs over n + 2 values, and in the cases related to string com-
pactifications it has the following labels: {0,S5,a} (@ = 1,...n), the index zero being
associated to the gravitational multiplet.
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6.3.1 The model ST(n) x SQ(m)

The special Kahler manifold ST(n)

This manifold has been studied using different parametrizations, corresponding to dif-
ferent embeddings of the isometry group SL(2,IR) x SO(2,n) into the symplectic group
SP(2n + 4,R). The first studied parametrization was based on a cubic type prepoten-
tial F(X) = 5 X°X"X*).;, where n,; is the constant diagonal metric with signature
(+,—,...,—) in a n-dimensional space [114]. In this parametrization only an SO(n — 1)
subgroup of SO(2,n) is linearly realized and it is possible to gauge only up to n — 1 vec-
tor multiplets. This means that, of the n ordinary gauge vectors sitting in the n vector
multiplets, only n — 1 can be gauged.

From a string compactification point of view one does not expect this restriction: 1t
should be possible to gauge all the n vector multiplets containing the ordinary gauge
vectors A%. This restriction motivated the search for a second parametrization, where
the SO(n) subgroup is linearly realized. This parametrization is based on the “square
root” prepotential FI(X) = \ﬂXOZ + XE) XX~ [124].

However, in principle, it should be possible to find a linear realization of the full
S0O(2,n) group, as it is predicted by the tree level string symmetries. In this case one can
also gauge the graviphoton and the gauge field associated to the dilaton multiplet. This is
explicitly realized in a recent work [27], where the new parametrization of the symplectic
section is based on the following embedding of the isometry group SO(2,n) x SL(2,R)
into SP(2n + 4,IR).

A 0
A€ S0(2,n) o € Sp(2n + 4, R)
0 nAn~
(6.85)
a b al byt
€ SL(2,R) — € Sp(2n+4,R),
¢ d en dl

where ATnA = n. Notice that, in this embedding, the SO(2,n) transformations, when
acting on the section (F;", Gas), do not mix the F with the G’s. Thus the true duality
transformations mixing the equations of motion and Bianchi identities are generated
by the embedding of the SU(1,1) factor only, so that the field S, that in our case
parametrizes the coset SU(1,1)/U(1), plays a very different role from the ¥'* fields.

The explicit form of the symplectic section corresponding to the embedding of eq.
(6.85) is:

(X% Fa) = (X%, SnasX®)
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| 1/2(1+Y?) |
Xt = | i2a-vy |. (6.86)
Ya

In eq. (6.86) Y are the Calabi—Visentini coordinates, parametrizing the coset man-
ifold SO(2,n)/S0O(2) x SO(n). The pseudoorthogonal metric nax has the signature
(+7+7"—7"'a_)'

Notice that, with the choice (6.86), it is not possible to describe F as derivarivatives
of any prepotential. The Kahler potential for ST (n) is obtained inserting in eq. (6.59)
the explicit form of the section (6.86), namely:

K = K1(5,8) + Ko(Y,Y) = —logi(T — S) —log X nX. (6.87)
From eq. (6.87) it easy to see that the Kahler metric has the following block diagonal

structure:
gss O { 955 = 050K = (3’:}9)2 (6.88)
0 gapr 9op(Y,Y) = 8,05 KC5.

The explicit expression of gaE(Y, Y) is not particularly relevant for our purposes. In the
sequel, while discussing the instanton conditions, we will be interested only in its value
at Y =0 (Y =0):

Gap=(Y = 0) = 204p-. (6.89)
The connection one form @ of the line bundle Ly is expressed in terms of the Kahler
potential as

QU9 4 QO = Z[95KdS + 9,KdY ] + c.c. (6.90)
2i
The explicit value of Q% at ¥ =0 is
1 dS
WOy =0) = c=——. 6.91
QUO(Y =0) = 3= (6.91)

The anomalous magnetic moments-Yukawa couplings sections Cyjx (1 = S, @) have a very
simple expression in the chosen coordinates:

CSaﬁ = -—e’céaﬂ, (6.92)

all the other components being zero.
In a general N=2 supergravity coupled to vector multiplets the lagrangian for the
vector bosons has a structure generalizing the rigid expression, namely

1
Lyin ‘Q‘i(/vAEf;;Af;:E "“NAE ab ;bz)
1 . .
= S(ImNasFuFo — IReNasFFoi™). (6.93)

<
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The general form of the matrix My in the cases in which the prepotential F' exists is
given in [113, 114, 123]. Its further generalization, including also the cases where I does
not exists, has been found in [27]. In our specific case, My is given by:

Xa X+ X Xy .
Niz = (§ = §)ZA2E T 2ATE L Gijas. (6.94)
X nX

In particular we have that ReNyy = ReSnax = Anas. Moreover, at Y = 0, the only
non-zero components of ImA/,z are given by

Im/\/},ﬁ(Y = O) =ImS 50:[9 = exp D 50,5. (6,95)

Thus at ¥ = 0 the kinetic term for the ordinary gauge vectors A% reduces to —I%;;J—“g,,fgb,
where we have explicitly taken into account the gauge coupling dependence, via the usual
redefinition A% — i—A". This means that we can reinterpret g.q = —VAI{;—E as the effective
gauge coupling.

The quaternionic manifold SQ(m)

It is possible to describe the SO(4,m)/S0O(4) x SO(m) manifold as a “quaternionic
quotient” of the (quaternionic) projective plane HP*™+3) with respect to an SU(2)
action. Such a description allows an explicit parametrization of the manifold in terms of a
set of quaternionic coordinates. In the following we give such a parametrization tegether
with some properties of quaternionic manifolds. We have no claim to mathematical
completeness, and we refer the reader to [137] for more details on the subject

First of all, we realize the quaternionic units e, z = 1, 2, 3, satisfying the quaternionic
algebra

er€y = —Obpy + €xyz€yes (6.96)
by means of 2 x 2 matrices, setting e, = —io,. By o, we denote the standard Pauli
matrices. The e, are imaginary units since e; = el = —e,. 1t will be convenient to treat

also the unit matrix on the same footing, setting eg = 1 and thus having {e,} = {1, —io,},
a=0,1,2,3. Then it is immediate to write the one-to-one correspondence between points
{z°} in R* and quaternions ¢ by setting

u 10 U —iv

qg=z"€ = : 7=1" = (6.97)
v u —iv U
where v = z° — iz® and v = —(z* + iz?). The quaternionic projective space HIP*(m+3)
can be described by the set of quaternions {¢’}, I =0,1,...m + 3 satisfying
¢ ¢'nr; =1  where 7517 =diag(1,1,1,1,-1,-1,...)
(6.98)

{g"} ~{¢fv} with wr=1
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In eq. (6.98) v is expressed by: v = v®e; = —iv®o; so that it can be identified with an
SU(2) matrix. '

The above description is the analogue of the usual description of a CIPY space, where
the role of the SU(2) element v is played by a phase, i.e. an element of U(1). Notice,
however that the quaternionic product is non-commutative and the choice of v acting
from the right in eq. (6.98) is relevant.

The fundamental quaternionic one-form gauging this right SU(2) action is

w™ = gldg;. ' (6.99)

The index are contracted with 77;; the choice of the notation w~ for the SU(2) connection
will be clear in the sequel. Its curvature, defined as 0~ = dw™ +w™ Aw™, is

Q- = dgf Adgr — Gdgr A ¢/ dg;. (6.100)

It is immediate to verify that £~ is covariantly closed. This 2-form is the quaternionic
analogue of the Kahler form of CIPY. Indeed, writing Q= = 2_, Q- *el, we have that
2~° is the K&hler form, the metric being

ds?1 = d¢f ® dg; — 7' dq; @ ¢/ dg; (6.101)

Consider now the left action of an SU(2) on HPH™+3), o pql, with Ty = 1. The
infinitesimal action is
beq" = ezq" (6.102)

Such transformations leave the metric invariant, and they leave the quaternionic structure
invariant up to a gauge transformation. This property can be reexpressed as

i.Q0" =VP_, where Po o Geqqr (6.103)

where i, denote the contraction along the killing vector in the z direction, k, = ex—é%—,- —

8
gl €=

The quaternionic functions PJ are the quaternionic momentum map functions for
the left SU(2) action. They are the key ingredient needed to perform the quaternionic
reduction of HIP*(™*3) with respect to this action. The quaternionic reduction procedure
consists in the following two steps.

1. Restriction to the null level set of the momentum map,

(P)70). (6.104)

T

The dimension of the level set surface is dimIHIP*(™*3) —3 % 3 as for every quaternion
P- x = 1,2,3 three real conditions are imposed. The level set surface can be
shown to be invariant with respect to the action of the group for which P_ are the
momentum map functions.
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2. Quotient of the level-set surface eq. (6.104) with respect to the action of the group
itself (in this case the left action of SU(2), eq. (6.102) ).

The dimension of the resulting quotient manifold, which is usually denoted as HIP*™+3) //5U(2),
is the dimension of the level set minus the dimension of SU(2), that is

dimMHIP™3) //5U(2) = dimHP* ™) — 3 x 3 — 3 = 4m; (6.105)

By the general properties of the quaternionic reduction, the quotient manifold is quater-
nionic, when it is equipped with the quaternionic structure obtained by restricting that of
HIP4™*3) to the level set (eq. (6.104)) and projecting it to the quotient. The quaternionic
quotient construction implies that we can describe IHIP*™+3)//S1/(2) by parametrizing
a set of 4(m + 4) quaternions ¢/, I = 0,...,m + 3 in terms of 4m independent real
variables, so that the following equations holds:

=1
Flerqr=0 V=123

(6.106)

_ The first equation comes from the definition of the HIP*™*3space, (eq. (6.98)); the
other equations define the level set of the P_ functions. We need to fix the gauge for the
left SU(2) acting as ¢/ — ug’, but we also have to recall that the coordinates ¢’ were
defined up to an SU(2) acting on the right: ¢’ — ¢'v, with v = zp = 1.

; vl iVt (6.10)
q = . . . 07
v T

We split the index I = 0,1,...,m+3intoa =0,1,2,3and ¢ = 4, E;, ...,m+3. We choose the quaternions

] ut vt
= " (6.108)
it w

to represent the independent 4m real coordinates. In terms of the U’, V!, the equations (6.106) become

Ul =0 Vivi=0 Ulvy =0
s . ., (6.109)
U Ur=1/2 Vvi=1/2 T Vi=0

Let us use the following notation:

Notice that for V! = 0 (and with I assuming only m+2 values ) these equations reduce to the equations
defining SO(2, m)/SO(2) x SO(m), in terms of the Calabi-Visentini coordinates U/ = ¥, and viceversa.
Therefore we expect the solution to the complete set of equations to be similar to a pair of Calabi-
Visentini systems suitably coupled.
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Let us denote by u?,u-wv, ... the scalar products (SO(m) invariants) u'u®é;s, u'v® by, . ... A solution
to eq.s (6.109) is g

1/2(1 + u?) B(u,v)
1/2(1 — u?) +iB(u,v)

U= m A(u, v) V= —7(%—5 1/2(1+v?) (6.110)
—iA(u,v) i/2(1 —v?)

where

Alu,v) = e [u-v—v?u-v+ub?(@ 7 —3u- 7))

(6.111)

B(u,v) = T:Wg?l? [@ v—v% 7+ (u -7 —u- )]

and where My (u,v), Ny (u,v) are two normalization constant satisfying Ny (u,v) = Ay (v, @), which are
determined using the second row in the constraints (6.109). Notice that the V! are obtained from the
U! by substituting u — v, v — .

The quaternionic structure and the metric of IHIP*™3) eq.s (6.99,6.100,6.101) for the
quotient manifold IHIP*™*3) / /SU(2) are obtained by substituting the explicit parametriza-
tion of eq.s (6.110,6.111) for the quaternions ¢’. For instance, the connection for the right
SU(2) action becomes

w™ =g (u, v)&q;(u, v) = ¢ (u,v)dg*(u,v) — g(u,v) - dg(u, v) (6.112)

Biquaternionic structure

From now on we refer to HIP™3)//50/(2) and when we write ¢/ we mean ¢(u,v).
Beside the right SU(2) action pertinent to the definition of HIP*™+3 in taking the
quaternionic quotient we have introduced into the game a left SU(2) action. Both these
actions are gauged by a connection 1-form, from which a curvature 2-form is defined.
This pair of curvature 2-forms constitutes a pair of independent quaternionic structures
on HIPY™+3)//SU/(2) that correspond to the same metric. The metric is left invariant by
both SU(2) actions and this restricts the holonomy group to SU(2) x SU(2) x SO(m). We

name quaternionic manifolds with such a reduced holonomy as biquaternionic manifolds.
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Here we just summarize our result for HPY™+3)//SU(2)

Connection Curvature Metric
right SU(2) w™ = gldgs O =dv +w Aw™ ds?1 = dg’ ® dg;—
= dg’ A dg; — Gldg; A dg’ —gldg; @ dg’
q qr —q aqr ANdg qg ¢ aqr W dg qg (6.113)
left SU(2) w* = d¢q, OFf = dot +wt Aw? ds?1 = dg! ® dg;—
=dg' Adgr —dg'g A dg;  —Tldgr @ dglgs
The "gauge” SU(2) groups act as follows:
right SU(2) left SU(2)
¢ = q'v ¢' — pq’
wT — TwV W™ — w” (6.114)
wt — wt wt — pwtn
ds? — ds® ds? — ds?
The coset space SO(4,m)/S0O(4) x SO(m) A SO(4, m) matrix LY} satisfies
LTpL =1 ie. L Ly = ngm (6.115)

The left-invariant 1-form u = L—1dL satisfies the Maurer-Cartan equation du+uAu = 0, that encodes the
structure constants of the algebra. Let now L be an element of the quotient SO(4, m)/SO(4) x SO(m),
then the 1-form u can be interpreted in the following way

ab

A u®  SO(4) connection
uﬂ u[]
u= ( ) u®  Vielbein on the coset (6.116)

u**  SO(m) connection.

Moreover the Maurer-Cartan equation can be accordingly splitted in three equations:

du® + u® A ubt — ul* Au® =0 Torsion equation

dud® + ut Au = —u® Aub*  SO(4) curvature (6.117)

du®® —u'm Au" = u® Au®* =0 SO(m) curvature
The above equations describe the geometry of the coset space E‘o%%gg—zm) in terms of coset representa-
tives. Notice that the vielbein u® = u}‘tdqj explicitly carries a vector index a = 0,1, 2, 3 of SO(4) and an
index t in the vector representation of SO(m), which means that the holonomy group is SO(4) x SO(m).
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Identification of HIP*™*3) //SU(2) with SO(4,m)/SO(4) x SO(m)

In the above notation the identification is provided by the position,

¢ = %Llaea. (6.118)
With this position, one can easily check that the constraints eq. (6.106) turn into the
orthogonality condition LY LYnrs = &u.

In eq. (6.118) we have converted SO(4) vectors into quaternions, that is object trans-
forming in the fundamental of SU(2)xSU(2), by contracting them with the imaginary
units {e,}. To show the equivalence at the level of the connections and curvatures we
must convert the adjoint indices of SO(4) into adjoint indices of SU(2)xSU(2). This con-
version is realized by two set of 4 X 4 antisymmetric matrices {J**},{J~"}, z = 1,2,3,
satisfying

J:i::Jiy — _6:1:y+€1:yz']iz
1
J:%I = :f:;)*éabcd(];iz
[J£5,J%Y] = 0 Va,y. (6.119)

They can be expressed in terms of the quaternionic units by the following key relation:

{ 47 =1/2 Tr (es85es) (6.120)

37 =1/2Tr(esezs)

The identification between the SO(4) connection p® of SO(4,m)/SO(4) x SO(m) and
the SU(2)xSU(2) connections w* goes as follows. Set

Then
wt® = %J:brua.b
1
u? = (et D) e : (6.122)

W = %Ja—bruab

This can be checked substituting into the explicit expressions (6.113) of w* the identifi-
cation (6.118) of the quaternions ¢’.
At the level of curvatures we analogously set

Q= QFce,, (6.123)
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and, recalling that by eq. (6.117) the SO(4) curvature is —u® A u®®, we have

Otz = __;_J:b:ruas A ubs
1
A o (6.124)
0-= = _% ‘;—bxuas A ubs

Note that upon use of the definitions (6.121,6.123) the curvature definition 0* = dw* +
wE A w* is rewritten as Q*F = dw** + Tegyw ! Aw
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Chapter 7

Topological twist in D=4 and
R-symmetry

In Chapter 5 we discussed certain topological field theories in D=2 arising via the topo-
logical twist of N=2 models. Also in four dimensions a large class of topological field
theories can be obtained from the twist of N=2 supergravity and N=2 matter theories
[95, 97, 100, 101, 126, 155, 60, 156].

We emphasized in Chapter 5 the role of the R-symmetries of the parent N=2 mod-
els, that were essential in order to perform a consistent twist. Analogous symmetries
are required also in the four dimensional case. In particular, the requirement that the
twist should be well defined implies certain additional properties on the scalar manifold
geometries, besides those imposed by N=2 supersymmetry, in order to obtain suitable
ghost-number charges and in order that the quaternionic vielbein be a Lorentz vector
after the twist. Specifically they are:

i) for the vector multiplet special manifold, an R-symmetry, which is essential to
redefine the ghost number of the fields after the twist.

ii) for the hypermultiplet quaternionic manifold, an analogous “Q-symmetry”, which
permits a consistent redefinition of the Lorentz spin.

In this Chapter we first review the main steps of the topological twist in D=4 (in analogy
with what was done in the D=2 case in Section 5.1). We are then interested in the twist
of general models containing N=2 supergravity coupled to vector and matter multiplets.
The definition of a suitable R-symmetry for supergravity-coupled N=2 vector multiplets
is not a trivial point, as was already elucidated in [101], where a construction was carried
out for the so-called “mimimally coupled” models.

Here we concentrate of a certain class of models characterized, roughly speaking, by
the fact that the special Kahler manifold SM of the gauge scalars admits a “preferred
direction”; in the interpretation of such models from the string compactification point of
view, this direction is the axion-dilaton direction. One of the aims of the present Chapter
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is that of writing down the form of the R-symmetry for a generic model in this class; this
permits then to twist the model.

As a consequence, one can express the full set of instantonic conditions that gauge-fix
the topological symmetries of the considered models. We recall indeed that the TFT’s
obtained by topological twist are in gauge-fixed form, the form of the instantonic gauge-
fixing conditions being determined from the supersymmetry transformations laws of the
fields that will become antighosts after the twist. Specifically it turns out that there are
four equations describing the coupling of four types of instantons:

i) gravitational instanton
il) gauge-instantons
)

iii) triholomorphic hyperinstantons

iv) H-monopoles.

Instanton equations of this type have already been discussed in [100, 101, 155, 156]; the main difference
is that in [101, 155] the instanton conditions were only the first three of eq.s (7.1). The H-monopoles
[109, 110, 73, 74] namely the instanton-like configurations

aaD = eabcdeDHde (72)

in the dilaton-axion sector were missing. In eq. (7.2) D is the dilaton field and H,, is the curl of the
antisymmetric axion tensor By, : 0, By = Hpuy,. The reason why they were missing in {101, 155] is
the type of symmetry used there to define the ghost number, namely an on-shell R-duality based on
the properties of the so-called minimal coupling. The new type of gravitationally extended R-symmetry
that we present here is typically stringy in its origin and for the classical moduli-spaces is an ordinary
off-shell symmetry, which does not mix electric and magnetic states as the R-duality of the minimal case

does.

The typical models that possess the required properties, with a continuous R-symmetry,
are the those based on the ST(n) x S@Q(m) scalar manifolds, i.e. the “classical” low energy
effective field theories for many heterotic compactifications. As already said in Section
6.3, quantum (strmgy) corrections will modify the low energy theory to a model based on
some 5T(n) x SQ(m) “quantum” manifolds', and many efforts have been (and are being)
devoted to the determination of the exact (perturbatlve + non-perturbative) quantum
model. This would constitute the local analogue of the Seiberg-Witten determination of
the exact low-energy effective theory for the rigid N-2 Yang-Mills theory. In the rigid
case the classical effective theory possesses a continuous R-symmetry, that is generically
broken down to a discrete subgroup by the quantum effects?.

The same phenomenon is expected to take place in the local case. Therefore in this
Chapter we keep in mind the possibility that the R-symmetry be discrete, and we find

! Actually the quaternionic manifold SQ(m) is expected not to receive corrections, see Section 6.3
2A similar situation occurs also in D=2; see the discussion after eq. (3.17)
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that indeed a discrete R-symmetry satisfying suitable conditions can still be sufficient to
define a consistent twist. In particular, the structure of the instanton conditions that fix
the topological symmetry is independent of the detailed form of the theory and simply
follows from the existence of a discrete or continuous R-symmetry with the properties we
shall require. Hence the form of these instanton condition is universal and applies both
to the classical and quantum case.

In the quantum—corrected effective lagrangians R-symmetry actually will appear to
be an R-duality, namely a discrete group of electric-magnetic duality rotations; yet the
preferred direction of the dilaton—axion field is mantained also in the quantum case as it
is necessary on physical grounds.

7.1 Topological twist in D=4 and instantonic con-
ditions

In his first paper on topological field theories [95], Witten had shown how to derive a
topological reinterpretation of N=2 Yang-Mills theory in four-dimensions by redefining
the Euclidean Lorentz group:

SO(4) = SU(2)r ® SU(2)r ‘ (7.3)
in the following way:
SO(4) = SU2)L ® SU2)R;  SUQR)R = diag(SU(2); ® SU(2)R) (7.4)

where SU(2); is the automorphism group of N=2 supersymmetry. In order to extend Wit-
ten’s ideas to the case of an arbitrary N=2 theory including gravity and hypermultiplets,
four steps, that were clarified in refs. [100, 101], are needed:

i) Systematic use of the BRST quantization, prior to the twist.

ii) Identification of a gravitationally extended R-symmetry that can be utilized to
redefine the ghost-number in the topological twist.

iif) Further modification of rule (7.4) for the redefinition of the Lorentz group that
becomes:

SU(2), = diag (SU(2); ® SU(2)r)

S0(4) = SU(2), ® SU(2) { SU() = dine (SUn © ST(2)) (7.5)

Here SU(2)g is a group whose action vanishes on all fields except on those of the
hypermultiplet sector, so that its role was not perceived in Witten’s original case.

iv) Redefinition of the supersymmetry ghost field (topological shift).
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Points 1) and iv) of the above list do not impose any restriction on the scalar manifold
geometry, so we do not discuss them further; although we shall use the concept of topo-
logical shift in later sections. (We refer to [100, 101] for further details). Points ii) and
iii), on the other hand have a bearing on the geometry of ST(n) and HQ(m).

Topological field theories are cohomological theories of a suitable BRST complex and
as such they need a suitable ghost number g that, together with the form degree, defines
the double grading of the double elliptic complex. In the topological twist, at the same
time with the spin redefinition (7.5) one has a redefinition of the BRST charge and of
the ghost number, as follows:

Qprst = @BRST + GBRsT
g = g+ qr (7.6)

Here Qpgrgr is the old BRST charge that generates the BRST transformations of the N=2
matter coupled supergravity and g is the old ghost number associated with the BRST
complex generated by Qprsr. We discuss now the shifts Qggst and ¢gr, beginning with
the former. The whole interest of the topological twist is that Qgggr is just a component
of the Wick-rotated supersymmetry generators. It is defined as follows.

Writing the N=2 Majorana supercharges in the following bi-spinor notation:

(9% {em1 :
QA N <Q&A d:1727 ((7)
so that a transformation of spinor parameter x4 is generated by:
X Q= Xaa @** + x* Qan, (7.8)

we can perform the decomposition:
Qaa = €aa Qsisy + (U:c 5—1>M Qsisy (7.9)

and identify Qggy with the shift of the BRST charge introduced in eq. (7.6). It has
spin zero as a BRST charge should have. In eq (7.9) o, are the standard Pauli matrices
and €45 = —epy, with €13 = 1. Eq. (7.9) makes sense because of the twist. Indeed,
after SU(2)g has been redefined as in eq.(7.5) the isotopic doublet index A labeling the
supersymmetry charges becomes an ordinary dotted spinor index.

7.1.1 R-symmetry in rigid N=2 theories

The topological twist of a rigid N=2 supersymmetric Yang-Mills theory yields topolog-
ical Yang-Mills theory, where the fields of the N=2 supermultiplet have the following
reinterpretation:

gauge boson A — phys. field g =10
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left~-handed gaugino A** — top. ghost g =1
right-handed gaugino A4, — top. antighost g = —1
scalar Y! — ghost for ghosts g = 2
__I*

conjug. scalar ¥ — antighost for antighosts g = —2 (7.10)

Hence, for consistency, the N=2 Yang-Mills theory should have, prior to the twist, a
global U(1) symmetry with respect to which the fields have charges identical with the
ghost numbers they acquire after the twist. In the minimal coupling case, described in
Section 6.1.1, such a R-symmetry does indeed exist (see for example [162]); the R-charge
of the fields coincide with the ghost numbers reported in eq. (7.10).

7.2 R-symmetry in the local SUSY case

7.2.1 Relation with topological gravity and moduli spaces of
ALE manifolds

This being the situation in the rigid case, it is clear that, when N=2 supersymmetry
is made local, R-symmetry should extend to a suitable symmetry of matter coupled
supergravity. This problem was addressed in [101], where it was shown that the minimally
coupled local theory, which is also based on a quadratic generating function of the local
Special Geometry:
F(x°,x%) = (X°) - 3 (x°), (7.11)
=1

and which corresponds to the following choice for SM:

SU(1,n)

SM = 5 e sUm)

possesses an R-duality, namely an extension of R-symmetry that acts as a duality rotation
on the graviphoton field strength,

6y = &FY
SFO = e FY (7.13)

mixing therefore electric and magnetic states. This result enabled the authors of [101] to
discuss the topological twist in the case where the choice (7.12) is made.

The string inspired models that we consider in this Chapter admits another form
of R-symmetry that allows the topological twist to be performed also in these cases.
Actually the new form of R-symmetry displays a new important feature that leads to the
solution of a problem left open in the previous case.

In the case (7.12) all the vector fields, except the graviphoton, are physical since they
have zero R-charge and hence zero ghost number after the twist. On the contrary, in
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this case, all the vector multiplet scalar fields are ghost charged and hence unphysical.
The limit of pure topological gravity is obtained by setting n = 0 in eq. (7.12). This
definition of 4D topological gravity [100] is correct but has one disadvantage that we
briefly summarize. The topological observables of the theory

/Cz B (ran-2) = /C T (RARA.AR),, (7.14)

(where C; is a two cycle) have a ghost number which is always even being obtained
from the trace of the product of an even number of (extended) curvature 2-forms (that
this number should be even is a consequence of the self~duality of R®® in instanton
backgrounds). On the other hand the moduli space of a typical gravitational instanton,
an ALE manifold, (see Chapter 4) has a moduli space Marg of complex dimension
(74, 86, 87, 91, 92]:

dim/\/tALE =37 (7.15)

7 being the Hirzebruch signature. It appears therefore difficult to saturate the sum rule
gl =3r (7.16)
=1

needed for the non-vanishing of an n-point topological correlator of local observables.
Notice, however, that it is possible to find nontrivial topological correlation functions,
satisfying the selection rule (7.16), between non local observables of the form [, ®(1.4n-1)
for the topological gravity with the Eguchi~Hanson instanton [164].

" The number 37 emerges as the number of deformations of the self-dual metrics on
the ALE-manifold. To each self-dual harmonic 2-form one attaches a complex parameter
(and hence 2 real parameters) for the deformations of the complex structure and a real
parameter for the deformations of the Kahler structure, which sum to three parameters
times the Hirzebruch signature. This counting, appropriate to pure gravity, is incomplete
in the effective theory of superstrings where one has also the axion and the dilaton,
besides the metric. An additional real modulus is associated with each selfdual 2-form
for the deformations of the axion. This parameter can be used to complexify the complex
structure deformations making the total dimension of moduli space 47 rather than 37.
Hence a sound 4-dimensional topological gravity should include also the dilaton and the
axion, as suggested by the superstring. In the N=2 case these two fields are combined
together into the complex field S, which is just the scalar field of an additional vector
multiplet. Therefore we would like a situation where of the n+1 vector multiplets coupled
to supergravity, n have the ghost numbers displayed in eq. (7.10), while one behaves in
the reversed manner, namely:

gauge boson A} — ghost. for ghost g = 2
left-handed gaugino A** — top. antighost g = —1
right-handed gaugino A% — top. ghost g =1
scalar § — phys. field g =0
conjug. scalar S — phys. field g = 0. (7.17)
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This phenomenon is precisely what takes place in the new form of R-duality, which is
actually an R-symmetry, which applies to the classical manifold ST'(n).

The proof of this statement is one of the main points of the present Chapter.

In the quantum case we should require that the same R-charge assignments (7.10)
and (7.17) holds true. For this to be true it suffices, as stressed in the introduction, that
only a (suitable) discrete R-symmetry survives.

7.2.2 Requests on R-symmetry

In this section we give the general definition of gravitationally extended R-symmetry.
Such a definition in the continuous case pertains to the ST'(n), but in the discrete case
can be applied to much more general manifolds. Furthermore it happens that in the
classical ST'(n) case the continuous R-symmetry is an off-shell symmetry of the action
while in the quantum ST (n) case the discrete R—symmetry acts in general as an electuc*
magnetic duality rotation of the type of S—duality. The R-symmetry of rigid N=2 gauge
theories should have a natural extension to the gravitationally coupled case. In principle,
given a rigid supersymmetric theory, it is always possible to define its coupling to su-
pergravity, yielding a locally supersymmetric theory. This does not mean that, starting
with a complicated “dynamical” N=2 (or N=1) lagrangian, it is an easy task to define
its gravitational extension. So we need some guidelines to relate the R-symmetry of a
rigid theory to the R-symmetry of a corresponding locally supersymmetric theory The
main points to have in mind are the following ones:

e The R-symmetry group Gr, whether continuous or discrete, must act on the sym-
plectic sections (X, 0F) by means of symplectic matrices: ]

Vg € Gp — (g%gg ggg) € Tr C Sp(2n + 4, R). (7.18)

e The fields of the theory must have under Gr well defined charges, so that Gp is
either a Ugr(1) group if continuous or a cyclic group Z, if discrete.

e By definition the left-handed and right-handed gravitinos must have R-charges
g = &1, respectively

e Under the G action there must be, in the special manifold, a preferred direction
corresponding to the dilaton—axion multiplet whose R-charges are reversed with
respect to those of all the other multiplets. As emphasized, this is necessary, in order
for the topological twist to leave the axion—dilaton field physical in the topological
theory, contrary to the other scalar partners of the vectors that become ghosts for
the ghosts

The last point of the above list is an independent assumption from the previous three.
In order to define a topological twist, the first three properties are sufficient and are
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guaranteed by N=2 supersymmetry any time the special manifold admits a symplectic
isometry whose associated Kahler rescaling factor is fos(2) = €%’ (see below for more
details). The third property characterizes the R-symmetry (or R—duality) of those N=2
supergravities that have an axion-dilaton vector multiplet.

For the classical coset manifolds S7'(n) the appropriate R-symmetry is continuous
and it is easily singled out: it is the SO(2) ~ U(1l) subgroup of the isotropy group
SO(2) xS0(n) € SO(2,n). The coordinates that diagonalize the R-charges are precisely
the Calabi-Visentini coordinates discussed in the previous section. In the flat limit they
can be identified with the special coordinates of rigid special geometry. Hence such
gravitational R-symmetry is, as required, the supergravity counterpart of the R-symmetry
considered in the rigid theories. Due to the direct product structure of this classical
manifold the preferred direction corresponding to the dilaton-axion field is explicitly
singled out in the SU(1,1)/U(1) factor .

Generically, in the quantum case, the R-symmetry group G is discrete. Its action
on the quantum counterpart of the Calabi—Visentini coordinates Y must approach the
action of a discrete subgroup of the classical U( )r in the same asymptotic region where
the local geometry of the quantum manifold 5 ST(n ) approaches that of ST'(n). This is the
large radius limit if we think of ST(n) as of the moduli-space of some dynamical Calabi-
Yau threefold (see next Chapter). To this effect recall that special Kahler geometry is the
moduli-space geometry of Calabi~Yau threefolds and we can generically assume that any
special manifold SM corresponds to some suitable threefold. Although the G group is,
in this sense, a subgroup of the classical Ugr(1) group, yet we should not expect that it
is realized by a subgroup of the symplectic matrices that realize U(1)r in the classical
case. The different structure of the symplectic R-matrices is precisely what allows a
dramatically different form of the special metric in the quantum and classical case. The
need for this difference can be perceived a priori from the request that the quantum
R-symmetry matrix should be symplectic integer valued. As we are going to see this is
possible only for Z, subgroups of U(1)g in the original symplectic embedding. Hence
the different Z, R-symmetries appearing in rigid quantum theories should have different
symplectic embeddmgs in the gravitational case.

Let us now give the general properties of the grav1tat10na11y extended R-symmetry,
postponing to section 7.2.3 the treatment of the specific case ST'(n).

The general form of R-symmetry in supergravity

R-symmetry is either a U(1) symmetry or a discrete Z, symmetry. Thus, if R-symmetry
acts diagonally with charge gr on a field ¢, this means that ¢ — e'®?¢, 9 € [0,27] in
the continuous case. In the discrete case only the values ¥ = 25’51 ,1=0,1.. P = 1 are

allowed and in particular the generator of the Z, group acts as ¢ — R¢ = e‘m_qﬁ
By definition R-symmetry acts diagonally with charge +1 (—1) on the left-(right)-
handed gravitinos (in the same way as it acts on the supersymmetry parameters in the
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rigid case):
. Gl? _
vamea L wlB=] (7.19)
W,Z)A — e~lﬁ¢A QR(7/1A) = 1.

R-symmetry generates isometries z' — (Rggz)* ® of the scalar metric g;;- and it is em-
bedded into Sp(2n + 4,1R) by means of a symplectic matrix:

Q29 5219

Moy = € Sp(2n +4,R). (7.20)
o9 day

As we have already pointed out it turns out that in the classical case of ST'(n) manifolds
R-symmetry does not mix the Bianchi identities with the field equations since the matrix
(7.18) happens to be block diagonal: byy = cgp. In the quantum case, instead, this is
in general not true. There is a symplectic action on the section (X%, F}) induced by
2t — (Ryp2)": .

(X, F) — fan(2")Mag - (X, F) (7.21)
where the Kahler compensating factor fys(z') depends in general both on the transforma-
tion parameter ¥ and on the base-point z. By definition this compensating factor is the
same that appears in the transformation of the gravitino field ¥4 — exp[fas(2*)/2] 4.
Since we have imposed that the transformation of the gravitino field should be-as in
(7.19) it follows that the R-symmetry transformation must be such as to satisfy eq.(7.21)
with a suitable matrix (7.20) and with a compensating Kéahler factor of the following
specific form: S

fas(2') = &®, (7.22)
Condition (7.22) is a crucial constraint on the form of R-symmetry.
The action of the R-symmetry on the matrix AV is determined by the form of the matrix
Mgﬂ:
./v -t (ng + dgﬂN)(azﬁ -+ b219./\/)_1 (723)
The supersymmetry transformation rules are encoded in the rheonomic parametrizations

of the curvatures, summarized in Appendix C. For instance the supersymmetry transfor-
mations of the scalar fields are given by

V= V2 Ve + Xy = 8.2 = Neq (7.24)
Let us denote by J the Jacobian matrix of the transformations
. O(Rasz : _
(‘]219)1 = (021 ) . ((25)

3As in the rigid case, the action of the R-symmetry group on the gravitinos, and more generally on
the fermions, doubly covers its action on the bosonic fields. This property will become evident in eq.
(7.22); it explains the chosen notation (Mayg); for the matrix expressing the R-action on the tangent

bundle T(1LOSM.
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If we now act on the scalars z* by an R-transformation we conclude that, using eq.s
(7.24,7.19) . o . . .
Vzt — (J29); V2! = - e‘”g(.]w)}/\m (7.26)

Analogous considerations can be done for the hyperinos.

The supersymmetry transformation of the gravitino field are encoded in eq.s (B.16, B.17, B.23, B.24)
and in their gauged counterparts (B.46, B.47). Requiring consistency with eq. (7.19) determines the
R-charges of the various terms in the right hand side.

i) The terms like AABM that contain bilinear in the fermions are neutral (cfr. eq.s (B.31,B.32))

ii) The R-symmetry acts diagonally on terms Taﬂl:,. These terms must have charge qR(T;*;) = 2.
Notice that T:'g can be expressed by the following symplectic invariants (see eq. (B.35))

— K A j:\tjszm e oyer
T, oxez(X ,Fp): . (7.27)

AT qp

where 7’-\'&' = fé\b"—{— %\7,--?;-\.3\1 7,,1,/\35 ¢AB_ Under an R-transformation the symplectic product appear-
ing in eq. (7.27) is left invariant up to the overall (antiholomorphic) factor coming from eq. (7.21),
namely ’

T — Fae( )T (7.28)
Since the R-symmetry act diagonally on T, and ¢r(T},) = —2, we necessarily have
T, —e T (7.29)

Eq.s (7.28) and (7.29) are consistent with eq. (7.22).

Let us consider the supersymmetry transformations of the gauginos, encoded in eq.s (B.27, B.28)
[and their gauged counterpart (B.50,B.51)]. We impose that the Jacobian matrix is covariantly constant,
V(Jas)i = 0. It then follows that the curvature VA*4 transforms as A*4, that is as in eq. (7.26). We can

in this way verify that the R transformations of Ga_;. (and its complex conjugate) transform consistently
with the gaugino transformation.

The terms y;'B are proportional to the Yukawa couplings Cj;i. These latter can be written in terms
of a symplectic product:

fx
Cijr = (fi, i) - Vj .
h (7.30)
(FA hai) = V(XA Fi).
Their R-transformation is therefore®:

Ciji — €™ (T3 (T35 (T g )i i (7.31)

e - . . - . —ic
Utilizingeq. (7.31)in eq. (B.28) one can check that the transformation of Y5 = ¢*' 7 CjimA A™Pescenp
is consistent with the transformation of the left hand side.

As can be easily verified, all the terms due to the gauging of the composite connections transform
in the correct way to ensure the consistency of the R-transformations [see eq.s (B.45-B.54)].

4Indeed the section (f;, h;) transforms into e®? May((J55):' fis (Jog' )i Ri). Then eq. (7.31) follows.
Notice that this transformations is the appropriate one for a section of £} x [T(HOSM]3, that is the
correct interpretation of the Cyjy’s.
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Summarizing: :

The R-symmetry must act holomorphically on the scalar fields, z* — (Rag 2)'(z), being
an isometry. Moreover the matrix (Joy); has to be covariantly constant: V(J2s)5 = 0.
The R-transformation of parameter ¢ on the scalar fields must induce the transformation
(X, F) — e Myg(X, F), where May is of the form (7.20). In the topological twist, the
ghost numbers are redefined as in eq. (7.6) by adding the R-charges.

The dilaton—axion direction in the discrete case

In the classical case of the ST(n) manifolds the existence of a preferred direction is
obvious from the definition of the manifolds and R-symmetry singles it out in the way
discussed in the next section. Let us see how the dilaton—axion direction can be singled
out by the discrete R-symmetry of the quantum manifolds ST (n). Let Gp = Z, and let
a = e*/P he a p-th root of the unity. In the space of the scalar fields z' there always
will be a coordinate basis {u'} ( = 1,...n + 1) that diagonalizes the action of Ry so
that:

Rogu' = o%d'  ¢;=0,1,...,p—1modp (7.32)

The n + 1 integers ¢; (defined modulo p) are the R—symmetry charges of the scalar fields
u;. At the same time a generic Sp(4 + 2n, R) matrix has eigenvalues:

1 1 1
(A()’)‘l)"')/\n—{'l::\;)x:'"7)\—+T> (733)

The R-symmetry symplectic matrix Mg of eq. (7.20), being the generator of a cyclic
group Z,, has eigenvalues:

)\0 = ak", Al = akl, cey /\'ﬂ+1 = ak"“ s (734)
where (ko, k1, ... knt1) is a new set of n + 2 integers defined modulo p. These numbers
are the R-symmetry charges of the electric-magnetic field strenghts

0 0 : n © - s
F), +iG%,, F,,+iG,,, ... Fib+iGntt, (7.35)

their negatives, as follows eq. (7.33), being the charges of the complex conjugate com-
binations F,, — iG,,. Since what is really relevant in the topological twist are the
differences of ghost numbers (not their absolute values), the interpretation of the scalars
u' (i = 1,...,n) as ghost for ghosts and of the corresponding vector fields as physical
gauge fields requires that

g = Kk +2 1=1,...,n (7.36)

On the other hand, if the vector partner of the axion—dilaton field has to be a ghost for
ghosts, the S—field itself being physical, we must have:

kn+1 = gn+1 + 2 (737)
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In eq. (7.37) we have conventionally identified
S =yt (7.39)

Finally the R-symmetry charge ko of the last vector field-strength F, is determined by
the already established transformation eq. (7.29) of the graviphoton combination (7.27)°

Summarizing, this situation is similar to that occurring in the topological Landau-
Ginzburg models [161] where the physical scalar fields X* have a non-zero R-symmetry
charge equal to their homogeneity weight [84, 163] in the superpotential W(X). After
topological twist they acquire a non zero (fractional) ghost-number that however differs
from the ghost-number of the fermions by the correct integer amount.

7.2.3 R-symmetry in the classical model ST(n) x SQ(m)
R-symmetry in the ST(n) case

In the case of the microscopic lagrangian the special Kahler manifold of the scalars is a
ST(n) manifold. The action of R-symmetry is extremely simple. As already stated in

section 2, see eq. (7.17), the S field has to be neutral, while the Y fields have R-charge
9.

e

S— S ; 1 0
. = (Jog); = ' . (7.39)
Yo eZlﬁch 0 8211963
Using the factorized form eq. (6.88) of the metric, it is immediate to check that the
matrix Joy is covariantly constant.
Utilizing the explicit form eq. (6.86) of the symplectic section, eq. (7.39) induces the
transformation:
X may | 0 X

— 2

F 0 (mly? F

cos2y —sin2d 0
may = | sin2d cos2d 0 € S0(2,n).
0 0 Loxn

We see that the crucial condition (7.22) is met. Furthermore note that in this classical
case byy = cag = 0, the matrix (7.20) is completely diagonal and it has the required
eigenvalues (e!%,e™ 1,...,1).

5In Chapter 8 an explicit example is provided of quantum R-symmetry based on the local N=2
SU(2) gauge theory associated with the Calabi-Yau manifold WC P4(8;2,2,2,1,1) of Hodge numbers
(k11 = 2, ha; = 86) that can be considered (see [35]) as an example of heterotic/type II duality.
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At this point we need no more checks; the R-symmetry defined by eq. (7.39) is a true
symmetry of the lagrangian and satisfies all the expected properties. The gauge fields
A® do not transform, while the A%, AS gauge fields undergo an SO(2) rotation:

A° cos 29 —sin 29 A°
—
A® sin2d  cos 29 A°
(7.41)
A~ — A°.

Notice that from eq.s (7.40), (7.41) and from the explicit form of the embedding (6.85) we
easily check that the R-symmetry for the ST'(n) case is nothing else but the SO(2) ~ U(1)
subgroup of the isometries appearing in the denominator of the coset SO(2,n)/S0(2) x
SO(n).

At the quantum level the R-symmetries should act on the symplectic sections as a
symplectic matrix belonging to Sp(2n + 4,7). Consider then the intersection of the
continuous R-symmetry of eq.s (7.39,7.40) with Sp(2n + 4,Z): the result is a Zy R-
symmetry generated by the matrix May with J =7 /4, where:

0 -1 0
mye=11 0 0 € S0(2,n;Z). (7.42)
O 0 1nxn

As already observed, in a generic case, after the quantum corrections are implemented,
the discrete R-symmetry Z,, is a subgroup of U(1)g as far as the action on the moduli
at large values is concerned, but it is implemented by Sp(4 + 2n,Z) matrices that are
not the restriction to discrete value of theta of the matrix Msg defined in eq.s (7.40).
In the one modulus case where, according to the analysis by Seiberg-Witten the rigid
R-symmetry is Zy, there is the possibility of maintaining the classical form of the matrix
M,y also at the quantum level and in the case of local supersymmetry. This seems to be
a peculiarity of the one-modulus N=2 gauge theory.

To conclude, in Table 7.1 we give the R-symmetry charge assignments for the funda-
mental fields of the ST'(n) case together with the spin and R-symmetry assignments for
the hyperini and for quaternionic vielbein u, which will be properly defined in appendix
A. Notice that in this table, concerning the quaternionic sector, we have explicitly split-
ted the SO(4) index a (see appendix A for details) into the SU(2); x SU(2)q indices
(A,A) so that u** = u“:*. This splitting is fundamental, in order to redefine correctly
the Lorentz group for the twist, so that, after the twist prescription is performed, the
quaternionic vielbein become a Lorentz vector. This is consistent with the fact that
appear in the topological variation of { 4t which acquires spin 1 after the twist. But we
are going to analyse these problems in the following section.
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Table 7.1: Spin-R phdrges assignments

Field  SU(2), SU(2) SU(2); SU(2), R ¢
175 1/2 1/2 0 0 0 0
Yua 1/2 0 1/2 0 11
ik 0 1/2 1/2 0 -1 -1
A% +iAZ 0 0 0 0 2 2
A% —i47 0 0 0 0 -2 -2
A 0 0 0 0 0 0
S 0 0 0 0 0 0
e 0 0 0 0 2 2
7 0 0 0 0 -2 =2
ASA 1/2 0 1/2 0 -1 -1
Ay 0 1/2 1/2 0 11
AxA 1/2 0 1/2 0 1 1
" 0 1/2 1/2 0 -1 -1
ut 0 0 1/2 1/2 0 0
(At 1/2 0 0 12 -1 -1
¢4 0 1/2 0 1/2 11

A note on Q-symmetry In order to redefine the Lorentz group for the twist, we have to write the quater-

nionic vielbein as a doublet under both the SU(2); and SU(2)g groups, and as a vector under SO(m).
The group SU(2)q for the classical manifolds is the normalizer of SO(m) in the Sp(2m) subgroup of the
Hol(QMay,). Now, in those quantum cases, where the hypermultiplet metric receives corrections (type
II string, for instance) it suffices that only a discrete subgroup of SU(2)q survives, namely it is not nec-
essary for the vierbein to be a doublet under a full SU(2)q group. It is sufficient that it is doublet under
the isometries generated by a Kleinian finite group G, whose normalizer in the holonomy group should
be SO(m). We name such group the Q-symmetry group. An interesting example is provided by the
case where for G we take the binary extension of the dihedral group Ds. In this example the vielbein is
acted on by a second set of quaternionic structures (such as the J} we have defined for the classical case)
acting on the index A in the fundamental representation of SU(2). This means that the Q-symmetry

group is composed of eight elements, namely the second set of quaternionic structures J;}, Jf, JF, their
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opposite —JF,—J,F,—J; and the two matrices &=1. This, however, is just one possibility. In the same
way as any cyclic group Z, can emerge as R-symmetry group of the quantum special manifold, in the
same way any Kleinian subgroup of SU(2) can emerge as Q-symmetry of the quantum quaternionic

manifold.

The twist procedure

In this section we perform the topological twist—shift, following the four steps pointed
out in the introduction. :

Step 1) is explicitly done following the procedure indicated in [97, 100, 101]. We
extend the forms to ghost—forms, and we set

d=d+s (7.43)

then we read the BRST variation of each field from the rheonomic parametrization dis-
played in Appendix C, selecting out the terms with the appropriate ghost numbers. This
step is a purely algorithmic one, and we do not find convenient to write it in a fully ex-
tended form. A simplified example of this calculation will be presented analyzing step iii)
‘and iv) of the twist-shift procedure, when we consider the variations of the (topological)
antighosts. These variations are the only one we are ultimately interested, since they give
the “instanton” conditions of our topological field theory. T he second step is immediate.
We have analyzed in section 4 the gravitational extended R-symmetry associated with
all the fields of our model. This global symmetry is utilized to redefine the ghost number
according to equation (7.6).

Let us now consider with more detail steps iii) and iv). The twist is obtained by re-
defining the Lorentz group as in eq.s (7.4,7.5). The spin assignments of the fundamental
fields of our theory is resumed in table 1. Following the notations of references [101] we
classify each field, before the twist, by the expression (L, R, I,Q)%, where (L, R, I, Q@)
are the representation labels for (SU(2)r, SU(2)xr, SU(2)1,SU(2)q), r is the R-charge as-
signments and f,g denote the ghost number and the form degree. The twist procedure
is summarized as follows:

SU@2), — SU(2), = diag[SU(2)r ® SU(2)e]
SU@2)r — SU(2)R = diag[SU(2)r ® SU(2)1]
U(1), — U(1), = diag[U(1), ® U1)a]

"LRI,Q% — (LeQ,I®R} . (7.44)

The second fundamental ingredient is the topological shift. As anticipated in section 2.2
this is a shift by a constant of the (0,0)3—field coming by applying the twist algorithm
to the right handed components of the supersymmetry ghost. Let us denote this ghost
by ¢*, with spinorial components #A. As it is immediately verified ¢* has the following
quantum numbers, before the twist:

~10,1/2,1/2,0)g. (7.45)
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According to the prescription (7.44) we identify the SU(2)g index & with the SU(2);
index A, and we perform the shift by writing

A ~§ee“A + 4, (7.46)

In eq. (7.46), e is the “broker”. The broker, as introduced in ref. [101], is a zero-form
with fermion number one and ghost number one. It is a formal object which rearranges
the form number, ghost number and statistic in the correct way and it appears only in
the intermediate steps of the twist. €? has even fermion number and even ghost number,
and can be normalized to e? = 1.

The BRST quantized topological field theory is thus defined by the new set of fields,
obtained from the untwisted ones by changing the spins and the ghost numbers; and by
the shifted BRST charge, which is the sum of the old one plus the shifted component of
the supersymmetry charge. In our approach we are not interested in writing down all
the twisted-shifted variation. We just point our attention to the variations of the (topo-
logical) antighosts, namely the fields YA, A4 \s7 (At appearing in Table 7.2.3. Such
variations (or some particular projections of these variations) will define the instantons
of our theory. As anticipated, we are looking for (0,0)3 component of the supersymmetry
ghost ¢®4. Moreover, to select the instanton conditions we set to zero all the fields which
have non zero ghost number.

Let us firstly consider the varlatlon of the right handed gravitino ¥%%4. Following
equation (7.44) we find that

P 710, 1/2,1/2,0)6 — (0‘, 0);t e (0, 1)1 (7.47)

As a consequence, in the “extended” ghost—form ¥ = P44, the supersymmetry ghost
A which has labels as described in eq. (7.45), becomes, after the twist:

¢t 71(0,1/2,1/2,0)5 — (0,0)g & (0, 1)g. (7.48)

To read off the gravitational instanton condition we have just to consider the variation
of the gravitino along the (0,0)3 component of ¢*, and to set to zero all the non physical
fields.

Actually, we better consider the gravitino with the field redefinition P4 — egzb’l,
in such a way that, in the curvature definition, only the holomorphic component of the
Kahler connection appears. Moreover, in presence of gauging, the Kéhler and the SU(2);
quaternionic connections are extended as in Appendix C, i.e.

Q = Q+gA'R
67 = w4 gAMPLE. (7.49)

It is quite immediate to verify that Pj does not give any contribution to the variation
of 1# (at ghost number zero), while the only contribution to &@* come from the SO(n)
indices, i.e.

577 = w™® + gAPL" (7.50)
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The twist procedure permits the following identification ¢°‘A wd’i where we identify
the left handed Lorentz index & with the SU(2); one A = A. Next, we define the following
fields (see reference [100]):

T 51
b o= —epCes 84 (7.52)

where % are defined in Appendix B [actually here we use the euclidean version of
the matrices defined in (B.10)]. Looking at the curvature definition (B.17) and at the
rheonomic parametrization (B.24) we find that the only contributions coming from the
ghost zero sector along the (shifted part) of the supersymmetry ghost are:

6{5«11) — —ab Z Iab"—u (753)
§p = :)‘Qhol(S) (7.54)
where the matrices I®® = —iTr(6%0]), u = 1,2,3 ==z y,z can be identified (up to a

trivial SO(3) rotatlon) with the anti-selfdual matrices J % introduced in (6.119,6.120).

Eq. (7.53) becomes precisely the first of eq.s (7.62), once expressed in terms of the

curvatures. u
Moreover, in eq. (7.54), Qror is given by

Qo = —EBSICV:&IS. (7.55)

Therefore the instanton condition 51:/; = 0 corresponds, in the euclidean formalism, to the
Rey instantons. Indeed

9.8 =0 & 8.D = egpeac” H™. (7.56)

Let us go on and consider the instanton condition obtained from the variation of the
gaugino A54. In this case there is just a term which contribute, namely

§A54 =19, 57" (7.57)

so that the instanton condition obtained from eq. (7.57) is the same as the one obtained
from eq. (7.54).

Working in a similar way on the antighost A% and using the formule for the metric
tensor, for G52, Y355 and for W5g, given in appendix C, we find the following condition

I__j-sbpre, (7.58)

f——aab
2expD
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Notice that eq. (7.58) identify the anti self dual part of the gauge connections with
the quaternionic momentum map P~ times the square of the effective gauge coupling.
Indeed by performing the redefinition A% — i—A"‘ we precisely get

1

Foo = gl Iy P (7.59)

with Geff. — - .
Finally, the instanton condition arising from the topological variation of the hyperini
¢L At gives the following equations:

yrlay, bJ qu —
VEu¥V,et = 0 (7.60)
where u® is the vielbein defined in eq. (6.116). Eq.s (7.60) define the so called “gauged

triholomorphic maps”. To rewrite them in the more compact notation appearing in eq.

(7.62) we have to define the three almost quaternionic structures in the space-time My,
and HQ(m), namely

Gu)p = Ji"ViW
(J); = (JD)oufup (7.61)

il

7.2.4 Gravi-Matter Coupled Instantons

Let us now summerize the instantonic equations that we have obtained from the twisting
procedure. Let us remark that the structure of these equations is independent from the
specific model considered, and applies also to “quantum” models where the R-symmetry
1s discrete.

The set of instantonic equations is the following:

3
R——u.b _ ZJu—a,bq*ﬁ—u = 0

0,D — EabcdeD H = 0

—oab abay— _
d erD ZJ Pa* 0
3
,Dqu - Z(ju)uu Dqu (Ju)QP = 0. (7.62)
u=]

In the above equations R~ is the antiselfdual part of the Riemann curvature 2-form
(a,b are indices in the tangent of the space time manifold), ¢*2~* denotes the pull-back,
via a gauged—triholomorphic map:

q: My — HQ(m) (7.63)
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of the “gauged” 2-forms Q- corresponding to one of the two quaternionic structures of
HQ(m) (see Section 6.3.1 and Appendix A). P * are the corresponding momentum map
functions for the triholomorphic action of the gauge group G on H@Q(m). Furthermore
J-% is nothing else but a basis of anti-selfdual matrices in IR*. The second of equations
(7.62) describes the H-monopole or azion—-dilaton instanton first considered by Rey in
[109] and subsequentely identified with the Regge-D’Auria torsion instantons [110] and
also with the semi~wormholes of Callan et al [73] according to the analysis of [74]. In the
Rey formulation, that is the one appearing here, the H-monopoles have vanishing stress—
energy tensor, so that they do not interfere with the gravitational instanton conditions.
The last of eq.s (7.62) is the condition of triholomorphicity of the map (7.63) rewritten
with covariant rather than with ordinary derivatives. Such triholomorphic maps are the
four-dimensional c—model instantons, or hyperinstantons [101, 155]. Finally, in the same
way as the first of eq.s (7.62) is the deformation of the gravitational instanton equation
due to the presence of hyperinstantons, the third expresses the modification of Yang-
Mills instantons due to the same cause. The space-time metric is no longer self-dual yet
the antiself~dual part of the curvature is just expressed in terms of the hyperinstanton
quaternionic forms. The same happens to the antiself-dual part of the Yang-Mills field
strength. Deleting the first three of eq.s (7.62) due the gravitational interactions one
obtains the appropriate generalization to any gauge-group and to any matter sector of
the so called monopole-equations considered by Witten in [156]. That such equations
were essentially contained in the yield of the topological twist, as analysed in [101], was
already pointed out in [155]. The main novelty here is the role played by the dilaton-
axion sector that, as already emphasized, should allow the calculation of non—vanishing
topological correlators between local observables as intersection numbers in a moduli-
space that has now an overall complex structure.
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Chapter 8

The search for exact quantum
moduli spaces in N=2, D=4
supergravities

In this Chapter are presented some investigations, that are contained in [30], about the
determination of the quantum exact counterparts of the classical ST'(n) x SQ(m) N=2,
D=4 supergravity models considered in Chapters 6,7.

Basically, along a suggestion of [27], it is emphasized how these counterparts are
naturally exptected to be related to Calabi-Yau manifolds, that properly replace in the
“local” case the Riemann surfaces in terms of which the rigid solution of Seiberg-Witten
is expressed. Some “algebraic” criteria are proposed that a Calabi-Yau -based solution
should satisfy in order to represent the analogue, in the considered supergravity context,
of the rigid solution, to which it must correspond when gravity is turned off.

As already said, the classical supergravity theories considered here arise in string
theory from suitable heterotic compactifications. It is in this stringy context that makes
sense to speak about “quantum” corrections to these non-renormalizable theories.

In fact, the whole question faced in this Chapter were “lifted” to the string level in
[28] and [29]. The Calabi~Yau manifold M determining the “exact” version of a heterotic
model are interpreted as the compactifying manifolds for a type-IIA compactification on
M (or as its mirror, for a type-IIB compactification); it is introduced, that is, a new
string-string duality. In this picture, the special Kahler manifold (moduli space for the
(1,1)-forms) for the gauge scalars on the type-IIA side is not renormalized by virtue of
N=2 non-renormalization theorems. This is the reason why in the supposed duality this
moduli space gives the ezact expression of the special manifold for the gauge scalars on
the heterotic side (that is instead modified by perturbative and non-perutbative effects).

In [28] several examples of specific heterotic compactifications are shown, that possess
the correct numbers of vector multiplets and hypermultiplets to be dual to compactifica--
tion on known Calabi—~Yau manifolds; these latter are also those taken in consideration,
at least for small number of vector multiplets, in the present Chapter.

189
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Highly non-trivial checks, in which the perturbative (1-loop) corrections of the het-
erotic model are retrieved from the exact expression of the dual type-II model, have been
performed in [28, 31, 39, 34, 35], utilizing also some previous perturbative computations
on the heterotic side {169, 37]. In particular in [34] and [35] some non-perturbative prop-
erties of the “rigid” theories are retrieved, is suitable limits, and reinterpreted in the
string-string duality framework.

These developements succeded very rapidly, so that I will not be able to describe
them in this dissertation. I will illustrate the quite simple considerations of [30], that
anyhow are in agreement with the more detailed results from heterotic-type II duality.

Let us first review some aspects of the Seiberg-~Witten mechanism, in particular the
relation of its expression by means of auxiliary Riemann suerfaces in the general setting
of rigid special geometry.

8.1 Seiberg-Witten mechanism and rigid special ge-
ometry

Let us summarize the results obtained for pure N=2 gauge theories [60, 62, 63], without
hypermultiplets coupling. .

The starting point is a renormalizable theory, with gauge group G, as described in
Chapter 6', after eq. (6.9). The scalar potential in eq. (6.11) admits flat directions, that
are the directions along the Cartan sub-algebra (CSA) of G. We use the labels a,b,...
for the CSA directions. A a consequence, non-zero vacuum expectation values of gauge
scalars with indices in the CSA are allowed, and they Higgs the gauge group generically
down to U(1)", where r = rank G. A gauge vector A¥ with index outside the CSA (these
vectors are in correspondence with the roots & aquire a squared mass ~ Y& ="Ya,.

The classical l.e.e.t. for the fields that remain massless after higgsing, that are those
of the r multiplets with indices in the CSA, is a N=2 theory that is simply the reduction
of the original one to such multiplets; it has a quadratic prepotential and a coupling
matrix My = Tk, [see eq. (6.10)].

However there are quantum corrections to the effective theory to be taken into ac-
count. There is a 1-loop contribution to the effective coupling matrix:

—

— Y.-& 2
Z a@wb =4 ANab ~ Z Qo ay 10g (——7\—;)—-, (81)

where A is the dynamically generated scale. Then there is an infinite set of non-
perturbative instanton corrections. The final outcome is that the quantum corrected

1For consistency with later notations, we only rename here Y the gauge scalars that were called X
there
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le.e.t. is a N=2 theory with the following? prepotential:

Py = =07 ofls Ly 70 e () 6)
2 G A & k=1 (Y -a)

The knowledge of all the numerical coeflicients C, of the instanton expansion eq. (8.2)
is required in order to determine the exact solution; it is not possible to obtain this by
direct computation. If, on the other hand, one can determine via other considerations
the exact expression of F', this provides, via the expansion (8.2) the full set {Ck} of
instantonic contributions.

Notice that the perturbative corrections (8.1), that dominate in the large-Y™ region,
introduce a non-trivial monodromy in the expression of the couplings; when Y2 is moved
around a circle enclosing the ¥ ~ co point in the compactified moduli space, the matrix
N undergoes a transformation that can be thought (see Section 6.1.1) to be induced by
a symplectic matrix of Sp(2r,Z) on the basic symplectic vectors of the theory:

Nap — [(C+ DN)Y(A + BN, (8.3)
with
A B 1 0 ~.
= € Sp(2r,Z) (84)
C D Saacay 1 )

Notice that this symplectic matrix (that is due to perturbative effects) is indeed of the
type that was shown in Section 6.1.1 to generate “perturbative dualities” of the theory.

The knowledge of the perturbative monodromies, the fact that the structure imposed
by N=2 supersymmetry is, as we saw, quite constrained and very deep intuitions (in
particular about the role of the requirement of positivity for the metric on the moduli
space) permitted to Seiberg and Witten (in the case of SU(2) gauge group) to obtain
explicitely the expression of the ezact l.e.e.t.. Their “solution”, as well as those obtained
(or guessed) by various authors for other gauge groups, is expressed in terms of a Riemann
surface. The rigid special Kahler manifold spanned by the scalars in the exact theory is
a moduli space for this Riemann surface.

Here we will not repeat the derivation of the S-W solutions. We try rather to see how
the solution in terms of an auxiliary Riemann surface fits in the general framework of
rigid special geometry.

At the classical level, the r-dimensional moduli space of the l.e.e.t. (that is the scalar
manifold of the higgsed model) can be parametrized in a gauge-invariant way by the
quantities
ya | y®Hs (8.5)

U = dal...a;+1

>The classical contribution has been readsorbed, as usual, by a shift in the dynamical scale A
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where dq, ..o, i1s the restriction to the Cartan subalgebra of the rank ¢ 4+ 1 symmetric
tensor defining the (2 + 1)-th Casimir operator®. Note that the Y* fields represent, in
the classical theory that has quadratic prepotential, the rigid special coordinates.

At the quantum level, we reserve the name Y® to the special coordinates, that is we
assume the symplectic section to be of the form

Qu) = (Y*(u), Fa(w)) = (Y7,

). (3.6)

The quantum special coordinates ¥ are related to the gauge-invariant moduli u by eq.
(8.5) only in the “classical region” Y — co. In general, to find the expression of ¥*(u')
means to solve the problem, determining the quantum rigid special geometry.

Consider the derivatives with respect to the coordinates u* of the section Q, U; = %}i)—.
The relation between the auxiliary Riemann surface and the rigid special geometry is the
following: one identifies the U; symplectic vectors with the period vectors:

aye )
are LW
Ui=| ™ | = Ja ‘ (8.7)
5 Jp, &'
of the r holomorphic 1-forms w' along a canonical homology basis:
A°NA =0 By,NB=0 A°NBs=—-BsNA*= 845 (8.8)

of the genus r “dynamical Riemann surface” M;[r].

The generic moduli space M, of genus r surfaces is 3r —3 dimensional. The dynamical
Riemann surfaces M;[r] fill an r-dimensional sublocus Lg[r] (indeed their moduli space
must coincide with the rigid special manifold parametrized by the u' “scalars”, that is
r-dimensional). The problem is that of characterizing intrinsically this locus.

Let
i : Lg[r] — M, (8.9)

be the inclusion map of the wanted locus and let
H 5 M, (8.10)

be the Hodge bundle on M,, that is the rank r vector bundle whose sections are the holomorphic forms
on the Riemann surface L, € M,. As fibre metric on this bundle one can take the imaginary part of the
period matrix:

ImNyg = / W AT (8.11)
s, :
where w® is a basis holomorphic one-forms. The locus Lg[r] is defined by the following equation:

00|l ="K (8.12)

3In the case of SU(n + 1) gauge group, the usual choice is to set u; ~ Tr é%l, where ¢ =

diag(Y!,...,Y"*) with 5", Y4 =0.
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where ||[w||* = [; w AW is the norm of any section of the Hodge bundle and X is the Kahler class of
M,.

Once the Riemann surface M;[r] is found, it can typically be described as the vanishing
locus a holomorphic superpotential W(Z, X,Y’; u;). Then every property of the effective
N=2 theory is expressed in a (quite) straightforward manner.

In particular, the set? of duality transformations I'}, € Sp(2r,Z) that correspond to
the symplectic embedding of the isometries of the rigid special metric [see Section 6.1.1],
is determined in this case as

% =719 x T, (8.13)

where I'Y, is the symmetry group of the potential W, and 'Y, is the monodromy group
of the differential Picard-Fuchs system associated to it.

Symmetry of the potential

The group 'Y, contains those linear transformations X — M4X of the ambient coor-
dinate vector X = (X,Y, Z) such that

W(M4X;u) = e IW(X; da(u)) (8.14)

where ¢4(u) is a (generally non-linear) transformation of the moduli and elfa(®) i a
compensating overall phase rotation of the superpotential. We noticed indeed in Section
7.2.3 that the rigid special geometry Kahler potential eq. (6.19) only admits overall phase
rotations of the section. This makes a substantial difference with respect to the local case,
where the expression eq. (6.59) of the Kahler potential allows arbitrary holomorphic
rescalings.

Monodromies

To obtain the the group I'Y; one has to study the so-called Picard-Fuchs equations
associated to the W(X;u) = 0 surface. The Griffith residue® map [181] provides an asso-

ciation between elements of the chiral ring R = %%(—l with certain degrees and elements
of the middle cohomology of the surface. If d is the degree of W and d,, the homogeinity
degree of the volume form in the ambient space, the association goes in our 1-dimensional
case as follows:

cohom. degree polynom.
HO d—d, PiX) i=1,...,r (8.15)
HY + HO 2d — d, PY(X) *=1,...,r

*We use here the notation '}, 5, to distinguish these groups from those considered later in the local
suersymimmetry case

5This construction is often used in th case of 3-complex dimensional Calabi—Yau manifolds, but can
as well be utilized in the present 1-dimensional context
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Figure 8.1: Symplectic duality transformations of the N=2 theory are reinterpreted as
changes of the homology basis for the Riemann surface

The periods of the r holomorphic (and anti-holomorphic) one-forms that must exist on
the surface along any homology cycle C' are represented as

| . pi ) pi*
i_ - . V= — .16
/0 “ /o we /o YT e wr® (8.16)

and, by standard reduction techniques, one can obtain the first-order Picard-Fuchs dif-
ferential system

ou

satisfied by the 2r-component vector:

(a.l—A,—(u))Vzo I=1,...2r—1 (8.17)

V= (ff;:’) (8.18)

In the following, the explicit form of the potential is reported in the case of the SU(r +1)
theories, so that the above discussion of the symmetry and monodromy groups becomes
more concrete and, prhaps, more clear.

The duality® group T'}), composed of the symmetries of the potential and the mon-
odromies, is realized by means of integer symplectic matrices of Sp(2r,Z) on the sym-
plectic section {2 and on its derivatives U;. Given the geometrical interpretation (8.7)
of these sections, these matrices correspond to changes of the canonical homology basis
respecting the intersection matrix (8.8).

Sthat represents also the group of “special isometries” of the rigid special moduli space
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The case of SU(r + 1) theories

To be specific we mention the results obtained for the gauge groups G = SU(r + 1).
The rank r = 1 case, corresponding to G = SU(2), was studied by Seiberg and Witten
in their original paper [60]. The extension to the general case, with particular attention
devoted to the SU(3) case, was obtained in [62, 63]. In all these cases the dynamical
Riemann surface Mj[r] belongs to the hyperelliptic locus of genus r moduli space, the
general form of a hyperelliptic surface being described (in inhomogeneous coordinates)
by the following algebraic equation:

24-2r
T.U2 = P(2+21-)(Z) = H (Z - )\1) (819)

i=1

where )\; are the 2 + 2r roots of a degree 2 + 2r polynomial. The hyperelliptic locus
Lglrlc M, , dimLg[r]=2r—1 (8.20)

is a closed submanifold of codimension r — 2 in the 3r — 3 dimensional moduli space
of genus 7 Riemann surface’. The 2r — 1 hyperelliptic moduli are the 2r + 2 roots of
the polynomial appearing in (8.19), minus three of them that can be fixed at arbitrary
points by means of fractional linear transformations on the variable z. Because of their
definition, however, the dynamical Riemann surfaces M;[r}, must have r rather than
9r — 1 moduli. We conclude that the r—parameter family M;[r] fills a locus Lg[r] of
codimension r — 1 in the hyperelliptic locus:

Lg[r] C Lg[r], codimLg[r]=r—1, dimLg[r] = r. (8.21)

This fact is expressed by additional conditions imposed on the form of the degree 2 +2r
polynomial of eq.(8.19). In references [62, 63] Pra12r)(2) was determined to be of the
following form:

Payany(z) = Phaay(z) — Py(2)
= (Prany(2) + Py(2)) (Pran(2) — Poy(=) (8.22)

where P;41)(z) and Fy(z) are two polynomials respectively of degree r + 1 and 1.
Altogether we have r 43 parameters that we can identify with the r 41 roots of F;11)(z)
and with the two coefficients of P1)(2)

Poiny(z) =T (z=X) , Pylz) = pz+po - (8.23)

Indeed, since the polynomial (8.22) must be effectively of order 2 + 2r, the highest order
coeficient of Pr41y(2) can be fixed to 1 and the only independent parameters contained

"For genus 1, the moduli space is also 1-dimensional and the hyperelliptic locus is the full moduli
space.
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in P,11)(2) are the roots. On the other hand, since Fy)(z) contributes only subleading
powers, both of its coeflicients py and pp are effective parameters. Then, if we take into
account fractional linear transformations, three gauge fizing conditions can be imposed
on the r + 3 parameters {\;}, {u:}. In ref. ([62, 63]) this freedom was used to set:

41
X =0
i=1
pr = 0
po = A" (8.24)

where A is the dynamically generated scale. With this choice the r—parameter family of
dynamical Riemann surfaces is described by the equation:

, 2
w? = (z”‘l = ui(A) zr'i) — APTH2 (8.25)

=1

where the coefficients
U (Ala---))\r-}-l) (Z = ]_, ’I‘) (826)

are symmetric functions of the r + 1 roots constrained by the first of eq.s (8.24) and can
be identified with the moduli parameters introduced in eq.(8.5). In the particular case
r = 1, the gauge-fixing (8.24) leads to the following quartic form for the elliptic curve
studied in [60]

w2:(zz—u)g—A4:z4—2uz2+u2—A4 (8.27)

Of course other gauge fixings give equivalent descriptions of M, [r]; however, for our next
purposes, it is particularly important to choose a gauge fixing of the SL(2,C) symmetry
such that the equation Mj[r] can be recast in the form of a Fermat polynomial in a
weighted projective space deformed by the marginal operators of its chiral ring. In this
way it is quite easy to study the symmetry group of the potential I'yy identifying the R-
symmetry group and to derive the explicit form of the Picard-Fuchs equations satisfied
by the periods. This is relevant for the embedding of the monodromy and R-symmetry
groups in Sp(2r,Z). The alternative gauge-fixing that we choose is the following:

r+1

SSA =0

i=1
r4l 1\ Tl
H1 fo + <z r) H Mo=0
=1 't/ =1
r+1
e+ I M =1 (8.28)

i=1



8.1. Seiberg- Witten mechanism and rigid special geometry 197

To appreciate the convenience of this choice let us consider the general inhomogeneous
form of the equation of the hyperelliptic surface (8.22) and let us (quasi-)homogenize it
by setting:

- X 2
=£ . (8.29)

w=Zs
With this procedure (8.22) becomes a quasi-homogeneous polynomial constraint:

0 = W(Z,X,Y;{/\},{p,})

r+1 2
= —Z*+ (H (X — X\ Y)) — (,ul XY+ po YT+1)2 (8.30)
=1
of degree:
degW = 2r 42 (8.31)

in a weighted projective space WCIP% 111 where the quasi-homogeneous coordinates
Z, X, Y have degrees r+1,1 and 1, respectively. Adopting the notations of [180], namely
denoting by®

WCP™(d;q1,q2, - - -y Gnt1)x (8.32)

the zero locus (with Euler number x) of a quasi-homogeneous polynomial of degree d in
an n—dimensional weighted projective space, whose n+ 1 quasi-homogeneous coordinates
have weights ¢1,. . .,gns1:

WO Xy, A X)) = MW(Xn s Xan) | VAEC  (8.33)
we obtain the identification: j
My[r] = WCP(2r + 27+ 1,1,1)50-r) (8.34)
that yields, in particular:
Mi[1] = WCP 4;2,1,1)0;  M[2] = WCP?(6;3,1,1), . (8.35)

for the SU(2) case studied in [60] and for the SU(3) case studied in [62, 63]. Using the
alternative gauge fixing (8.28), the quasi-homogeneous Landau—Ginzburg superpotential
(8.30), whose vanishing locus defines the dynamical Riemann surface, takes the standard
form of a Fermat superpotential deformed by the marginal operators of its chiral ring:

2r—-1
WI(Z, X,V { L {p}) = =22+ XP P2 Y P24 37 o () XTH YL (8.36)
=1
The coefficients v; (¢ = 1,... 2r — 1) are the 2r — 1 moduli of a hyperelliptic curve.
In our case, however, they are expressed as functions of the r independent roots A; that
remain free after the gauge-fixing (8.28) is imposed.

8Note the difference of notation: WCIP™4:924n+1 is the full weighted projective space, in which
(8.32) is a hypersurface.
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The coefficients v; have a simple expression as symmetric functions of the r + 1 roots ); subject to the
constraint that their sum should vanish: 3

Ul(/\) = Zz\,z +4Z)\i/\j

i<j

va(A) = =23 (AN + NAT) =8 > Mk

i<j

i<j<k

va(A) = D AFATH16 > (AFA e 4+ M AT A + A A AD)

i<j i<j<k
va(d) = =2 > (AZAZAe +AZA AL+ X A2AD)
i<j<k
=8 D> (M AT NN AR A+ A AR A A+ ATX Ak Ar)

i<j<k<s

Vs ()\) = ...

In particular for the first two cases r = 1 and r = 2 we respectively obtain:

o
i

U3 =

W(Z,X,Y;v=2u) = =Z2 4+ X* 4+ 7* 4 0(2) XY
AMF A =0

p1=0

po =1/A{A5 1

A FAZ AN = 2229y

W(Z,X;Yivl:v'z;vs)

—Z2 4+ XS+ Y® 4 0 XY 4 0o X3Y? 4+ w3 XOVH

A+ Aa+A3=0
/\1 Ag A3

T AT -1
Ho = \/AIA3A5 -1
2(A1A2 4+ A1 A3+ Aads)
—2 A1 A2 A3

—u2 4+ (A1da 4+ A + dadg)?

(A1 A2+ A1 Az + A2l3)

(8.37)

(8.38)

(8.39)

(8.40)

Alternatively, using as independent parameters the coefficients u;(A) appearing in eq. (8.25), we can
characterize the locus Lg[r] of dynamical Riemann surfaces by means of the following equations on the

hyperelliptic moduli v;:

Vg

Ur4-k

= —2up+ Z Uiy, k=1,...,r
itj=k—1

9
= E UsU; — Op1 kU7
i+j=r+k-1

(8.41)
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Let us now consider the Picard-Fuchs system associated to the potential eq. (8.30), that
has degree 2r + 2. The expression eq. (8.16) of the periods in terms of elements of the
chiral ring become explicitely:

E . Xr——iYi—l . Xr+iY2r—i+1
Sy i SRR Y [ S $.42
/c “ /c wo o /o“’ /0 wr (8.42)

where the volume form is w = ZdX A dY + cycl, of degree d, = r + 2. The reduction
techniques [182, 179] give us a differential system of the form

0
(WI—A[(’U))VZO I=1,..2r—1 (8.43)
the derivatives being taken with respect to the 2r — 1 hyperelliptic moduli, that appear
in the definition (8.36) of the potential W. Using the explicit embedding of the locus
Lg[r] € Lg[r] described by equations (8.41), we obtain the Picard-Fuchs differential
system of rigid special geometry by a trivial pull-back of eq. (8.17):

0 vt :
-1 — Aflv)=— |V =0. 8.44
(21 - 411 55) (344
The explicit solution of the Picard—Fuchs equations for r = 1,2 has been given respec-
tively in [26, 64]. The solution of the Picard-Fuchs equations for generic r determines in
principle the period of the surface and the monodromy group.

The hyperelliptic superpotential (8.36) admits a I'Yy symmetry group which is iso-
morphic to the dihedral group Dy, 2, defined by the following relations on two generators
A, B: V

A¥2=1 , B’=1 ; (AB)=1. (8.45)
The action of the generators on the moduli is the following. Let o +? = 1 be a (2r 4 2)
root of the unit and let the moduli v; be arranged into a column vector v. Then we have:

2 0 ... 0
3
v = Av, A= 0 a: ;
0 0 ... &
0 0 1
”:B — . .
visBv,  B=1g 1 (8.46)
1 0 ... 0

For the transformations A and B the compensating transformations on the homogeneous

coordinates M4 and Mp are
0 0 0 1 0
10 : Mp=1]1 0 0 (8.47)
0 1 0 0 1

]\/IA:(

o o0
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Consequently the differential Picard—Fuchs system for the period (8.18) of the generic
hyperelliptic surface has a I')y = Dj.12 symmetry as defined above and the generators A
and B act by means of suitable Sp(2r, Z) matrices on the period vector (8.42).

However the equations (8.44) are invariant only under the cyclic subgroup Zs,4s €
Dori2 generated by A. Hence the potential W(u) = W (v(u)) of the r-dimensional locus
Lg[r] of dynamical Riemann surfaces and the Picard-Fuchs first order system admits
only the duality symmetry I‘%} = Zaryo.

Relation with R-symmetry

The physical interpretation of this group is R-symmetry. Indeed, recalling eq. (8.5) we
see that when each of the elementary fields Y* appearing in the lagrangian is rescaled
as YP — VP then the first u; moduli are rescaled with the powers of predicted by
equation (8.46). According to the analysis of reference [69] this is precisely the requested
R-symmetry for the topological twist. All the scalar components of the vector multiplets
have the same R-charge (¢g = 2) under a Ur(1) symmetry of the classical action, which is
broken to a discrete subgroup in the quantum theory. Henceforth the integer symplectic
matrix that realizes A yields the R-symmetry matrix of rigid special geometry for SU(r+
1) gauge theories. An important problem is the derivation of the corresponding R-
symmetry matrix in Sp(2r+4, Z), when the gauge theory is made locally supersymmetric
by coupling it to supergravity including also the dilaton-axion vector multiplet suggested
by string theory.

8.1.1. Quantum moduli space for the SU(2) theory

Let us rewrite the potential for the SU(2) dynamical Riemann surface as follows:
1
0 = WY, Ziu) = =22+ 7 (X*+Y) + %‘-XW? (8.48)

One realizes that this potential has a I'yy = D; symmetry group [194, 173] defined by
the following generators and relations

A=1 | C®=1 , (CA?’=1 (8.49)

with the following action on the homogeneous coordinates and the modulus u. (We forget
about the action on the Z coordinate, which is immaterial, contributing with a quadratic
term to the polynomial):

o~

A My = <6 (1)> ; pa(u) = —u;  falu) =1
C: Mg= <_ZZ D i go(u) = 225 fo(u) = ¥
meaning that W(MX;u) = f W(X, é(u)).

Only the Z; cyclic subgroup of D3 generated by A is actually realized as an isometry
group of the rigid special Kahlerian metric. Indeed it is only Z, that preserves the

(8.50)
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potential with a unimodular rescaling factor. The natural question at this point is what
is the relation of this Z; C D3 with the dihedral D4 symmetry expected for r = 1. The

answer is simple: the Z4 action in D4 becomes a Z action on the u variable, u — o’u,

(o = 1).
The rigid special Kahler metric for SU(2)

As it has been shown in [26] the Picard—Fuchs equation associated, in the SU(2) case,
to the symplectic section:

2

Y Jaw
Qu = 8.0= au< ): (A > 8.51
% fB w ( )
is
(01— AV =0, (8.52)
where V is defined in (8.18), and the 2 x 2 matrix connection A, is given by:
0 1
Au= (:uz g ) (8.53)
1—u? 1-u?

with solutions®

(8.54)

The duality group of electric-magnetic rotations is defined as the subgroup of the elliptic
modular group I' = PSL(2,Z) generated by the two matrices acting on the section {1,:

S:G :?) T1:<(1) _12) (8.55)

where S is the R-symmetry generator and 73 is the monodromy matrix associated to the
singular point u = 1 of the Picard-Fuchs system (8.52). These symplectic transforma-
tions are retrieved via eq. (7.2.3) from the action of the R-symmetry (symmetry of the
potential):

 Ou(—u) =i (1 j) @8%) — 5 0.() (8.56)

and the monodromy around u = 1:

0 ((u=1)e) = ((1) —12> <§8;EZ:3> = Ty Qu(u—1) (8.57)

9The notation is related to the one in Seiberg-Witten papers by dya(u) = f(w), 8yap(u) = & (u)
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on the (derivative of the) symplectic section. :

Having recalled the explicit form of the isometry-duality group let us now study the
structure of the rigid special metric. To this effect let us introduce the ratio of the two
solutions to eq. (8.52),

_ )
N(u) = D ()" (8.58)
Such a ratio is identified with the matrix A appearing in the vector field kinetic terms:
vector 1 - - o -
Lsetr = 5 (N(u) F, F,, — N(u) F} Fl] (8.59)

If we look at the inverse function u(N'), this latter is a modular form of the group I'(2)
that has the following behaviour: '

Vv eT(2) U(V'W): “(N>
(1 D1)etme=ns w(-4)= -u(¥) (560)
(é 1) €T/T(2) =Ds u(N+1)= Z(%ﬁ

Recalling eq.(6.7) we can now write the explicit form of the rigid special Kahler metric
in the variable u:

ds® = gy l|dul?; Guw = 2Im N (w) | fO (u)? (8.61)
Calculating the Levi-Civita connection and Riemann tensor of this metric we obtain:
u — Lrery - 1 du
F = —g Oy Gz = —% m — aulogf(l)(u)
u_ — u — 1 1 2 2 '
R‘Eu'iu = guuRzuu = 2 IrnN u) |8N/aul2 |f 1)( )[2

so that we can verify that the above metric is indeed rigid special Kahlerian, namely that
1t satisfies the constraint:

by calculating the Yukawa coupling or anomalous magnetic moment tensor:
Cons = AN (fO(w))’ (3.64)

As one can notice from its explicit form (8.61), the Kahler metric of the rigid N=2
gauge theory of rank r = 1 is not the Poincaré metric in the variable N, as one might
naively expect from the fact that N = 7 is the standard modulus of a torus and that
Gy C PSL(2,Z) linear fractional transformations are isometries.
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The rigid special coordinates

Having recalled the solution of the Picard-Fuchs equation, the relation between the
special coordinate of rigid special geometry and the invariant variable v is obtained by
means of a simple integration:

u 11 2
= M) = 24 65
v = [ a0 2(1+u)F( 2,2,1,———1+u) (8.65)
In the special coordinate basis the anomalous magnetic moment tensor is given by:
u\’® 21 1 du\®
CYYY - Cuu‘u (5Y> = “’;1 2 (BY> (866)

The second of equations (8.66) follows from the comparison between equation (8.64) and
the Picard-Fuchs equation (8.52) satisfied by the periods that yields:

21 1
¢ T 1—u? (8.67)
In the large u limit the asymptotic behaviour of the special coordinate is:
Y(u)~2vV2u+... for u — o0 (8.68)
so that we get:
3 . :
Cyyy(u) = g%(u) = ﬁu"l/z + ... for u — co (8.69)

and by triple integration one obtains the asymptotic behaviour of the prepotential 7(Y")
of rigid special geometry:

F(Y) ~ constY?logY? +... for Y — oo (8.70)

Formula (8.70) contains the leading classical form of F(Y') plus the first perturbative
correction calculated with standard techniques of quantum field—theory. Eq.(8.70) was
the starting point of the analysis of Seiberg and Witten who from the perturbative
singularity structure inferred the monodromy group and then conjectured the dynamical
Riemann surface. The same procedure has been followed to conjecture the dynamical
Riemann surfaces of the higher rank gauge theories. The nonperturbative solution is
given by

i Y? i A?
F(Y) = ——~Y210g 3 +YZZC (Y?) (8.71)

The infinite series in (8.71) corresponds to the sum over instanton corrections of all
instanton—-number.

The important thing to note is that the special coordinates ¥Y*(u) of rigid special
geometry approach for large values of u the Calabi—Visentini coordinates of the manifold
O(2,n) /O(2)x O(n) discussed in section 6.3.1. As stressed there, the Y'* are not special
coordinates for local special geometry.
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8.2 Local analogue of the Seiberg-Witten solution

8.2.1 Coupling to supergravity

When we couple vector multiplets to supergravity, in the scalar sector rigid special ge-
ometry [26] is replaced by its local version, namely by special geometry [112]-[125]. For
the coupling of the microscopic N=2 gauge theory we have two possibilities.

The most natural generalization of the minimal coupling is given by the gravitational
minimal coupling where the number of vector multiplets n = dimpG remains the same
as in the rigid theory and the scalar manifold is %?X(IS%)(TZ—) This 1s a consistent choice
from the point of view of supergravity (but some unpleasentness arise in its topological
twist, as was remarked in Chapter 7). Here, however, we are interested in the second
possibility, that is the one suggested by the string.

We consider from now on the ST'(n) theories described in Section 6.3.1.

When the theory is classical and purely abelian, with matter fields carrying no electric
and magnetic charges, the supergravity based on the ST(n) special manifold admits a

continuous group of duality transformations & la Gaillard-Zumino [165]:
SL(2,R)® O(2,n), (8.72)

whose symplectic embedding into Sp(4 + 2n,R) was described in eq.s (6.85).

Consider the abelian phase of a spontaneously broken Yang—Mills theory coupled to
supergravity. If one takes into account the massive charged modes, the duality group I'p
is a discrete group. The reason is that the lattice of electric and magnetic charges of the
BPS saturated states must be preserved by the duality rotations. This would happens
even in the case the local special geometry of the moduli space does not receive quantum
corrections and remains the same as that of ST'(n). In such a case the duality group I'p
would be a discrete subgroup of (8.72):

I'p CSL(2,Zz)®@ 0(2,n;Z) (8.73)

the embedding into Sp(2n + 4,Z) being the restriction to the integers of the embedding
(6.85).

In general, however, the local geometry of the moduli space ST(n) is modified by
perturbative and non perturbative effects. Therefore, considering the effective N=2 la-
grangian describing the dynamics of the massless modes, that admits the r—dimensional
maximal torus H C G as gauge group, we are faced with the problem of finding the
r + 1-dimensional special manifold 57'(r) that encodes the complete structure of this
lagrangian and the exact quantum duality group I'p.

We note that ET(T‘) is a quantum deformation of the manifold ST'(r): for large
values of the moduli, namely in a asymptotic region, to be appropriately defined, where
the quantum theory approaches its classical limit, the manifold ST (r) should reduce to
ST (r). This manifold is the truncation to the Cartan—subalgebra fields of the manifold
ST(r + # of roots = n), that corresponds to the gravitationally coupled microscopic
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gauge theory. At the same time, the quantum duality group of the rigid theory I'}
should be embedded in the quantum duality group of the local theory

Sp(2r,z) D T% — T'p C Sp(4+2r,z) (8.74)
In special coordinates
S=% t=% i=2...,r+l (8.75)

this means that the prepotential of the quantum local special geometry is of the following
form:

Floe(S,t) = (}?’)‘2 Fe(X) = %Stitjmj+A]—"°°(S,t)
lim  AFP(S,t) = 0 (8.76)

t‘—+t6, S Sp

the asymptotic region corresponding to a neighbourhood of S,# = Sy, ) where So, t}) are
appropriate values, possibly infinite.

The reason why we have put a hat on the X* is that they cannot be directly identified with the
X4 introduced in eq.(6.86). Indeed, in the symplectic basis defined by eq. 6.86, namely in the basis
where, according to the embedding (6.85), the O(2,n) symmetry and, hence, the gauge symmetry
G C O(n) C O(2,n) are linearly realized, the special geometry of the manifold ST(n) admits no
description in terms of a prepotential F(X) = X%Fx/2. This is due to the constraint 0 = X* X¥ nu 5
[27]. Hence, although the Calabi-Visentini coordinates Y are identified with the special coordinates of
rigid special geometry, yet the X appearing in eq. (6.86) are not independent special coordinates for
local special geometry. To obtain a prepotential one needs to perform a symplectic rotation to-a new

basis:
TA A
XA ) M xt
OsF(X) Snza X

1 0 -1 0 0 0
0 0 0 1 0 1
6 -1 0 0 0 O
M= 0 0 o i 0o -i1 € Sp(4+2n,IR) (8.77)
-1 0 -1 0 0 o
0 0 0 0 -1 o0

The matrices describing the embedding (6.85) must of course be consistently transformed to this basis.
After this change of basis the symmetric constant tensor 7;; appearing in (8.76) is not the positive
definite kop, , namely the reduction to the Cartan-subalgebra of the Killing metric x7;.It is rather a
form with Lorentzian signature (—,+,+, ..., +).

8.3 Search for the Calabi—Yau associated to the ex-
act moduli space

Now, the basic idea [26, 27] to obtain the explicit form of the gravitationally coupled
effective lagrangian is to identify the special Kahler manifold S7'(r) with the complex—
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structure moduli space of an r+ 1-parameter family of dynamical Calabi—Yau three—folds

M3[7’]. )

This is the obvious generalization of the procedure adopted in the rigid case. In the
same way as the rigid special manifold is the moduli-space of an r—parameter family
of genus r dynamical Riemann-surfaces M[r], the local special manifold 5T(r) is the
moduli-space of a family of Calabi—Yau threefolds. The relation between local special
geometry and the variations of Hodge-structures of Calabi—Yau threefolds is well known
[157] but we have of course to impose further requirements on Mj[r] in order for its
moduli space to represent the gravitational coupling of an already given rigid effective
theory.

Any N=2 globally supersymmetric field theory can be made locally supersymmetric by
coupling to N=2 supergravity. This is always possible because of the off-shell structure of
N=2 supersymmetry. However the procedure is generally one-to-many as a consequence
of the interplay between the auxiliary fields belonging to the matter multiplets and those
pertaining to the gravitational multiplet. Once the latter are introduced we have an
additional freedom in framing the interaction and various results can be obtained that
would be the same if we had only the matter auxiliary fields to play with. Correspondingly
the infinite Planck-mass limit

Mp=% 5 oo (8.78)
K

of a locally supersymmetric theory is not the same thing as a globally supersymmetric
theory: this is a quite familiar phenomenon in all the phenomenological applications of
supersymmetry. Therefore, in order to state which locally supersymmetric theory can be
regarded as the coupling of which rigid theory, one needs some criteria.

In the case of a rigid gauge theory one uses its renormalizability to study the sin-
gularities and monodromies produced at the perturbative level and then guesses the
complementary singularities introduced by non perturbative effects. This procedure is
not available if we start from the gravitational coupling of the microscopic gauge theory
since this theory is no longer renormalizable. One can calculate perturbative effects in
string theory and then implement them in the effective lagrangian. This is one possible
route and corresponds to the gravitational counterpart of the procedure followed in the
rigid case [169, 37, 38]. The task of guessing the complementary singularities remains and
this amounts to guessing a dynamical Calabi-Yau with the appropriate monodromies.

8.3.1 Geometrical constraints on the Calabi—Yau

The central question appears thus to be the following: which is the Calabi-Yau three-
fold with the appropriate monodromies? A reasonable request is that these monodromies
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must include the monodromies of the rigid theory. More specifically we should have:

_ T C Tl
Iy c Tse — Sp(2r+4,2) |
/ bard
U U ; (8.79)
i i Z2T+2
F]V[g C Fx\f}g
R-symm.

Indeed, in the previous section we have studied the general form of I'),, for SU(r + 1)
gauge theories showing that it is Z,,4, and that it coincides with the R-symmetry group.
It follows that the symmetry group of the gravitationally coupled theory, namely of
the dynamical Calabi—Yau threefold, should conveniently embed the rigid R-symmetry
group. This is the same request formulated in [69] in order to be able to define the
topological twist of the quantum theory.

These are the basic criteria that allow to identify a matter coupled supergravity as
the locally supersymmetric version of the already determined globally supersymmetric
effective gauge theory.

Summarizing, we propose to consider families of dynamical Calabi-Yau manifolds
M3[r] with the following properties.

e M3[r] is realized as a r + 1-parameter family of algebraic three-folds in a (product of)
weighted projective spaces'® described by the vanishing Wi = 0 (i = 1,...,p) of the p
addends of a Landau—Ginzburg superpotential:

P
WX, X ™) = SOWHXY, X0, ) (8.80)

=1

depending on the r + 1-parameters tq,...,%,+; and on the m = 3 4+ p + 1 quasi-
homogeneous coordinates of the ambient space!*. The superpotential must obviously be
such that the Calabi-Yau condition ¢; (M3]r]) = 0 is obeyed.

e In order to guarantee the embedding of the rigid R-symmetry group (Za,+2 for SU(r+1)

rigid theories), The family Ms[r] must contain some multiple cover of the family M;[r]

of genus r Riemann surfaces!?.

10This assumption is actually done for the sake of sumplicity; in principle, one could consider more
exotic realizations of Calabi-Yau manifolds, (in toric varieties, for instance)

Notice that we are associating ST(r) to the moduli space of (2, 1) forms on Mg[r], that must have
therefore A%! = r + 1. from the point of view of heterotic-type II duality, M3[r] is the compactifying
manifold for a type IIB string; its mirror, that has A! = r -+ 1, is the compactifying space for a type
ITA string.

12This idea has been substantiated by the analysis in section 3 of [34], where the rigid theory is
recovered as a limit in the stringy treatment, and the rigid manifold do indeed appear via multiple
coverings
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e One should actually check that the full rigid duality group I'}, is properly embedded
into the duality group I'p of the theory based-on gT(r). This latter is in principle known,
once ST(r) is expressed in terms of a Calabi-Yau space; it has been explicitely computed
in several examples in [177]. Very recently, progress in this comparison has been achieved
in [34] and expecially in [35].

e The geometry of the quantum manifold S T(r) must reduce in the classical large-complex
structure region to the geometry of ST'(r).

Writing the degree v superpotential (8.80) as the deformation of a reference superpo-

tential Wo(X)

W(X;$) = Wo(X) + 3 ¥ P, (8.81)
I=0
The chiral ring :
ClX R
Rw, = ag/vj (8.82)

of the degree v reference superpotential (8.80) should contain a subring of sr+4 elements,
with the following structure:

deg 0 deg v deg 2v deg 3v
P, P, (8.83)
Py v ) Pav)
Pl Play
0 i 7 i i B
PPl ~ Plawy PinyPiay ~ 8iPa)

D DI g0 DO Pl D 'P(O,,)’P(ZV)'P(JU) ~ 055 P(au) (8.34)
)7 ) T T (2) ()" (2v) (@)

Recall that these elements with integer degrees of the chiral ring are related by the
Griffith residue map [181] (See also eq. 8.15) and that the fusion coeflicients of their
subring give the Yukawa coupling tensors, in the “natural” basis given by the parameters
r. Thus eq. (8.84) is intended to guarantee that, in the asymptotic region where the
classical limit of the moduli space is attained, the geometry of ST [r] converge to that of
ST[r]. The fusion coefficients of the chiral ring displayed in eq. (8.84) coincide indeed
with the anomalous magnetic moments of the ST'[r] manifold [see eq. (6.92)] in its
asymptotic region.

This condition is posed at a classical level. In [28, 31, 39, 34, 40, 35] checks have been
performed about the agreement of certain proposed Calabi-Yau exact solutions with the
1-loop deformed geometry.

An obvious approach to the construction of suitable dynamical Calabi-Yau threefolds
for rank r locally supersymmetric gauge theories is that of identifying these manifolds
with the mirrors of Calabi-Yau threefolds with A1) = r + 1:

Malr] = M (R =r+1; B = z) (8.85)
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Table 8.1: Low-rank Calabi—Yau spaces

r=1 (hY1, B21) r=2 (Rb1, 21
WCPY(8;2,2,2,1,1) (2,86) WCPY(12;6,3,1,1,1) (3,165)
WCPY12;6,2,2,1,1)  (2,128) WCP4(12;3,3,3,2,1) (3,69)
WCP%12;4,3,2,2,1)  (2,74) WCP4(15;5,3,3,3,1) (3,75)
WCPY(14;7,2,2,2,1)  (2,122) WCP4(18;9,3,3,2,1) (3,99)
WCP(18;9,6,1,1,1)  (2,272) WCP4(24;12,8,2,1,1)  (3,243)

Next one looks at the duality-monodromy groups and at the structure of their deforma-
tion ring to see whether the other requests are satisfied. This programme corresponds to
a viable possibility if the class of manifolds with given A(!) = r + 1 is known and small.

8.3.2 Low-rank available Calabi—Yau spaces

Such a situation occurs, under additional reasonable assumptions, for low values of r, in
particular for » = 1 and r = 2. Restricting one’s attention to those threefolds that are
described as the vanishing locus of a single polynomial constraint in weighted WC P4,
the class of A1) = 2,3 threefolds is known [177] and displayed below. Hence, under
these assumptions, for the gravitational coupling of an r = 1 gauge theory, (i.e. for
the G = SU(2) case) we have five possibilities distinguished by five different values
of the second Hodge number A(*V). Since this number counts the Kahler classes of
the mirror manifold under consideration it has no relevance as long as we deal with
locally supersymmetric pure gauge theories. So we are allowed to inquiry which of these
manifolds satisfy the additional embedding criteria outlined above.

This is reasonable only if we limit ourself to the supergravity point of view, that is if
we just ask ourselves what can be the locally supersymmetric version of a certain rigid
theory. If one takes the stringy point of view, then one cannot disregard the number of
hypermultiplets: this number is fixed by the choice of a specific heterotic compactification.
In [28] are proposed “dual pairs” of models in which the heterotic model (containing a
gravitational-gauge sector based on ST'(r)) arises from a specific compactification with
the correct number both of vector and hypermultiplets to match the hodge numbers of a
Calabi-Yau manifold, the compactifying space for the dual type-II model. The matching
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in this heterotic-type II duality goes as follows:

heterotic model tipe I[TA model matching
vector mult.s r+2 AU 41 Ml =r+1 (8.86)
hyper-mult.s | m % 41 Rt =m —1

In [28] several such examples are produced as compactifications on K3 x T, with non-
standard analogues of the usual embedding of the spin connection in the gauge connec-
tion. The heterotic compactification corresponding to the type-II model based on the
Calabi-Yau with Hodge numbers (2,86), that will be considered in the next section as
an example, was not presented in [28]. However, it is has been considered more recently
in [35], giving also to this model the appropriate string interpretation.

8.3.3 Examples

Consider the second model in Table (8.3.2) with Hodge numbers (2,128). Its mirror man-
ifold is described as the vanishing locus of the following weighted projective polynomial

Wo=224 72124 784 78+ 72 — 127, 23,75 Z4 75 — 20 5578 (8.87)

This two moduli potential admits the I'yy = Z;, symmetry given by:

11
0 I B N 4 (8.88)

¢ 0 o®/\¢

where a denotes a 12" root of the unity. Clearly Z;; contains a subgroup Z4 acting as

13
0 I v (8.89)

¢ 0 o ¢

with o™ = 1. This Z4 group should be the R-symmetry group of the rigid SU(2) theory
which, therefore, should be embedded in the gravitational symplectic group Sp(6, Z) with
generators A = (A;;)® where A;, is the matrix generating the Zy5 I'yy group in Sp(6, Z).
Such a triple covering of the of the rigid theory R-symmetry inside the gravitational one
(and quite possibly also of the monodromy group) appears to be the result of a triple
covering (apart from exceptional points) of a dynamical Riemann®® surface M;[1] inside

131t is important to stress that we do not mean that such Riemann surface should be identified with
the rigid theory solution, but as a mathematical explanation why the R-symmetry is Zg rather than Z4.
We expect that a more profound argument should be found in the microscopic original theory in terms
of space-time instanton sums.
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this particular M3[1]. To see this it suffices to set Z3 = Z, =0, 23 = X, Z} =Y, Zs = Z
in eq. (8.87) and compare with eq. (8.38).

What is only a plausible conjecture for model #2 can instead be proved for model
#1 of Table (8.3.2) thanks to the explicit results contained in [177]. Indeed the mirror
manifold of WCP%(8;2,2,2,1,1) has been studied in detail in [177] and it is described
as the vanishing locus of the following octic superpotential'*:

W o= X5+ X8+ X2+ X + X — 89 X1 Xo Xa Xu X5 — 29 X1 X5 (8.90)

Also this manifold embeds (apart for exceptional points) a multiple covering of the rigid
theory elliptic surface M;[1], which, this time, is double rather than triple. For its
realization it suffices to set, in eq. (8.90):

X,=Xs=0 X’=X Xi=Y X!=1Z (8.91)

The potential (8.90) has a I'yy = Zs symmetry group whose action on the moduli ¥, ¢ is
the following:

A:{z/z,qé} — {ayp, —¢} a® =1 (8.92)

Clearly the transmutation of the rigid Z, R-symmetry into Zs is due to the double cov-
ering, just as in the other possible case WCP4(12;6,2,2,1,1) of gravitational coupling,
its transmutation into Z,2 was due to the triple covering. In the present case, however,
using the results of [177], this statement can be verified explicitly. The integer symplectic-
matrix that represents the Zg generator on the periods has been calculated in [177] and
has the following form: '

-10 1 -2 2 0
-2 1 0 -2 4 4
: 0o 1 -1 0 0 2
Sp(6,Z) 5 A = . 00 1 0 0 (8.93)
-1 0 0 -1 1 1
1 0 O 1 0 -1

It is obtained by a change of basis which makes it integer symplectic from the matrix
given in [177]. Its second power R4 = A? is the generator of the Z4 R-symmetry of the
original theory. If we calculate its eigenvalues we find:

eigenvalues of Ry = {-—1,¢,—1,—1,1, 1} (8.94)

As we see, in agreement with the properties of R-symmetry discussed in [69], (apart from
an overall change of sign) there is a pair of complex conjugate eigenvalues ¢ correspond-
ing to the graviphoton and gravidilaton directions and a unit eigenvalue corresponding to

14Note that this example is connected through a conifold transition [172] to the Calabi~Yau manifold
described by a quintic equation in CPy (R™! = 1, k%! = 101).
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the physical vector multiplet of SU(2). The matrix R, = R2, if written in its eigenvector
basis as diag(l,—1,—1,1,—1 — 1), realizes-the Z, R-symmetry as it apin a Calabi-
Visentini basis for the classical manifold ST'(1) = SU(1,1)/U(1) x 0(2,1)/0(2). Hence,
as we see, the Z, R-symmetry of the SU(2) theory is indeed transplanted into the grav-
itationally coupled theory and can be reduced to the canonical form it takes as discrete
subgroup of the O(2) group in the corresponding classical moduli manifold, by means of
a change of basis. This change of basis, however, is not symplectic and in the same basis
the monodromy matrices are not symplectic integer valued. The quantum basis where
both the R-symmetry and the monodromies are symplectic integers is determined via
the Picard-Fuchs equations and gives for R, the expression

3 -2 4 0 0 -4

6 -1 0 0 0 0

a4 10 0 =3 4 0 O
Re=A=19 0 2 3 0 o (8.95)

o 0 1 -2 -1 0

2 -1 0 4 0 =3

The matrix R, realizes, in the gravitational coupled theory, the symmetry:

U — —u (8.96)

of the rigid theory discussed below in eq.(8.50).

Next we verify that the deformation ring has the correct structure, that is the special-
ization to the case of r =1 of the structure in eq. (8.83). With reference to the notation
of eq. (8.84), we find indeed the following subring:

XiX; X{XFX3X1X3
1 XSXSX2X2XE (8.97)
X1 X0 X3 X, X5 XPX5X3 X4 X5

which shows that, from this point of view, the model (8.90) is a viable candidate for the
description of the moduli space of a locally supersymmetric N=2 theory.



Appendix A

Kahler, hyperKahler, quaternionic
manifolds and quotients

Kahler manifolds

A Kahler manifold M, of real dimension 2n, is first of all a complex manifold. It admits
therefore a complex structure I : TM — TM (to be represented in components as a
tensor I*, u,v = 1,...,2n), such that I? = —1; a metrix hermitean w.r.t. I exists:

9(X,Y) =g(IX,Y)

& Ly =0. (Al)
VX, YeTM "

The manifold is Kahler if moreover the complex structure is covariantly constant:

VI =0. (A2)
Introducing the Kéahler form (2, defined by

OX,Y)=9(IX,)Y), ie . =gul’, (A.3)

the Kahler condition eq. (A.2) states that Q has to be closed:

dQ = 0. (A.4)
Introducing the usual coordinates well-adapted to the complex strucure, one has I =
1 ( (Z’D (;5 ), p,q¢ = 1,...,n; the hermitean metric is then ds? = g,zd2? ® dz%; the
Kéhler for; is given by Q,; = igy7 = 0,0;K(2,%), where K(z,%) is called the Kahler

potential.
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Momentum map

Consider a Lie group G, subgroup of the isorﬁetry group of M, acting on M by means of
holomorphic Killing vectors. A Killing vector field X is such that it preserves the metric

g:
Exg = ( (i.e. Xi;j -+ Xj;i = 0) (A5)

It is holomorphic if it preserves also the complex structure:
LxI =0, (A.6)

which in well-adapted coordinates means that X has only holomorphic components:
X = X?0,.

Eq.s (A.5) and (A.6) imply, due to eq. (A.2), that a holomorphic Killing vector
preserves the K&hler form as well:

0= Lx =ixdQ +d(ixQ) = d(ix) (A.T)

In the above eq.s, Lx and ix denote respectively the Lie derivative along the vector field
X and the contraction (of forms) with it.

From eq. (A.7) it follows that (if the manifold is simply connected) a function D¥
exists, called the Killing vector prepotential, such that

aDX = ixQ. | (A.8)

Let k4 be a basis of Killing vectors generating the Lie algebra G of the group G:
[ka, kp] = = f,Ske. A generic holomorphic Killng vector can be expanded in
this basis: X = X“k,4. Then we can expand also the prepotential:

DX = XAD, where Dy =D (A.9)

Note that, from eq. (A.7), DX is defined only up to a constant. Utilizing this freedom is
always possible to ensure the equivariance of these functions:

X(DY) =DEYl je dD¥(Y) = (X, Y). (A.10)
What we really have defined in the above formulae is the so-called momentum map:
D:M-—G" (A.11)

from the Kahler manifold to the dual of the Lie algebra. Indeed, let z € G be the Lie
algebra element corresponding to X. Then, for a fixed point m € M, D(m) : z
DX(m) € C is a linear functional on G, that is, an element of G*. The Dy in eq. (A.9)
are the components of the momentum map; they carry explicitely an index of G~.
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Kihler quotient

Consider a “level set” of the momentum map

N =D, (EZCT (A.12)
A

where Z is the dual of the centre of G. Quite obviously, one has
HmN = dmM —dimg. (A.13)

Indeed, consider the tangent space; N being a level set for D, a tangent vector Y satisfies

Figure A.1L: Kéhler quotient

ﬂ G-orbit

0=dDX(Y) = X, Y) VX representing a G-action. ) being non-degenerate, this gives
dim G independent equations for Y, so that eq. (A.12) follows.
The important point is that V¢ € Z, N =D () 1s (i-invariant, due to the equivari-
ance of D.
meN = (€2

G—action l ‘L g—action (A.14)
m' 2, (eZ

The G-action leaves ¢, that is in the (dual of the) center, invariant, so that also the
G-transformed point m' stays in N
It is thus possible to take the quotient

M=N/G. (A.15)
If G acts freely on N, M is a manifold of dimension dim M = dimN — dim G, that s,

we have

HmM = dimM — 2dimG (A.16)



216 Appendiz A. Kdihler, hyperKdhler, quaternionic manifolds and quotients

M is a Kahler ‘manifold; it is usually named the Kahler quotient of M by G, and it
is denoted by M = M//G. The Kahler form of M is naturally defined as follows.
VY1,Y, € TM consider any Y;,Y; € TA such that project to Y1,Y,, i.e. coincide
with Yy,Y; when restricted to the “horizontal” subspace H of Fig. A. The Kahler form
p on M is defined by o

p(Yl,Yz) = (Y1, Y>), (A.17)

) being the Kahler form of M restricted to M. That is, we have:

M - N=D1() -2 N/G
Q — 7 Q=p — p, (A.18)

where j stands for the inclusion map of N into M, and p is the G-projection from A
onto the quotient M = N/G. See section 3.1.2 for an application where these concepts
play an important part, which may further clarify the matter.

Algebro-geometric quotient

Consider the horizontal subspace H of the tangent space to N (see Fig. A), that prac-
tically describes 7M. Look at its complement H* in TM: H & H* = TM. Note
that

i) The complement of TA in T M is generated by the normals gradD,

ii) The complement of H in TN (the vertical subspace V in Fig. A) is generated by
the Killing vectors k4

Since g(gradDX)Y) = dDX(Y) = Q(X,Y) = g(IX,Y), we have gradX = IX for all
holomorphic Killing vectors. The remarks 1) and ¢) above amount therefore to say that
the complement to the tangent space to M is generated by the vectors ks and Tk..
These vectors span the complexification G¢ of the Lie algebra G. By exponentiating G¢
the complexification G° of the gauge group G° is obtained.

As it is pictorially expressed in Fig (A), the space M can be thought of simply as the
ordinary quotient of M by G¢:

M=M/|G~M|G (A.19)

Due to the non-compactness of G°, however, it is in general possible to obtain non-
Hausdorff behaviours. Therefore care is needed to restrict the action of G° to the so-
called “stable points” (those points in M whose G° orbits meet A'). Note that the set
of stable points depend on the chosen level-set N/, that is on the chosen level ¢ for the
momentum map. A higly non-trivial dependence from the levels is therefore contained
in the Kahler quotient procedure. It is possible to see that in some cases it is possible,
varying the level of the momentum map, to obtain resolution of the singularities of some
singular manifolds that can be thought of as the result of a Kahler quotients at some
specific level.
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Figure A.2: Algebro-geometric quotient

/ ‘k/ G orbit

I l_— G-orbit

HyperKahler manifolds

On a hyperKahler manifold M, which is necessarily 4n-dimensional, there exist three
covariantly constant complex structures I' : TM — TM, 1 = 1,2,3, the metric is
hermitean with respect to all of them and they satisfy the quaternionic algebra:

I' = -6 4 g9 -, (A.20)
In a vierbein basis {V*}, hermiticity of the metric is equivalent to the statement that the
matrices I’ are antisymmetric [see eq. (A.1)]. The request of covariant constancy, i.e.
the HyperKahler condition, is equivalent to the request that the three hyperKahler two-
forms Q' = I,V A V® be closed: d)' = 0.

In the four-dimensional case, because of the quaternionic algebra constraint, the I,
can be either selfdual or antiselfdual; if we take them to be antiselfdual: I}, = —Zeupcallpeq,
then the integrability condition for the covariant constancy of I° forces the curvature two-
form R® to be selfdual: thus, in the four-dimensional case, hyperKahler manifolds are
particular instances of gravitational instantons.

Note that a hyperKahler manifold is a Kéhler manifold with respect to each of its
complex structures. As a consequence, much of the facts about momentum map and
Kahler quotients can be quite straightforwardly generalized to the hyperKahler case. In
the following, therefore, just some statements are collected without much more discus-
sions.

Triholomorphic momentum map

Suppose that the Lie group G acts on the hyperKahler manifold M by means of triholo-
morphic Killing vectors. Such vectors preserve all of the complex structures on M. As
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a consequence [see eq.s (A.5-A.6)] a triholomorphic Killing vector X respects also the
three hyperKahler two-forms: :

0= Lx = d(ix?) (A.21)

and three functions D;.X exist such that dDz-X = 1x{¥'. As in the Kahler case, one can
manage them to be equivariant, defining thus a triholomorphic momentum map

D:M— R*QG" (A.22)

The components D; 4 are obtained by expanding in a basis of Killing vectors: DX =
X A'Di A

HyperKahler quotient
For each {¢} € R® ® Z* the level set of the momentum map

N =D C M, (A.23)

which has dimension dim N = dim M — 3 dim G, is invariant under the action of G,
due to the equivariance of D [see eq. (A.14)]. It is thus possible to take the quotient

M=N/G. (A.24)
M is a smooth manifold of dimension
dimM = dimM — 4dimG = 4(n — dim G) (A.25)

as long as the action of G on A has no fixed points. The three two-forms o' on M, defined
via the restriction to A/ C M of the Q' and the quotient projection from N to M, are
closed and satisfy the quaternionic algebra thus providing M with a hyperKahler struc-
ture.

For future use, it is important to note that, once J? is chosen as the preferred complex
structure, the momentum maps Dy = D £¢D; are holomorphic (resp. antiholomorphic)
functions.

Consider the level set A+ of the holomorphic momentum map: N = D;'(¢). To
obtain the hyperKéahler quotient M one has to perform its Kéhler quotient by G: M=
N*//G. Moreover, it is possible to see hat Nt is left invariant by the action of the
complexified group G¢ (while N® = D3*(() is not). Indeed Dy can be thought of as the
complex momentum map Dy : M — € ® G* for the action of G° on M; this action
leaves invariant the (anti)-holomorphic combinations 1* = Q' +iQ? of hyperKéhler forms
(but not Q3). It is possible to repeat for N* alle the considerations about the algebro-
geometric quotient: one has M =N+ /G¢. See also section 3.1.2, where this point of
view is applied.
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. Triholomorphic G-actions on R*"

The standard use of the hyperKahler quotient is that of obtaining non trivial hyperKahler
manifolds starting from a flat 4n real-dimensional manifold IR*" acted on by a suitable
group G generating triholomorphic isometries [135, 136]. For instance this is the way it
was utilized by Kronheimer [92, 93] in its exhaustive construction of all self-dual asymp-
totically locally Euclidean four-spaces (ALE manifolds). We reviewed this construction
in Chapter 4.

Indeed the manifold IR*" can be given a quaternionic structure, and the corresponding
quaternionic notation is sometimes convenient. For n = 1 one has the flat quaternionic

space IH % (IR‘*, {J '}) . We represent its elements
geH=z+iy+jz+kt=2"+2'J, =z,9,2,t€R (A.26)
realizing the quaternionic structures J* by means of Pauli matrices: J* = i(ai)T. Thus

u ; u*  —w*
qg= — q' = (A.27)
v Ut ' —1v U .

where u = 2° + 222 and v = z' + 122 The_euclidea.n metric on IR? is retrieved as
dg' ® dg = ds?1. The hyperKahler forms are grouped into a quaternionic two-form

def i v Q3 QT
O=dsiandg € QJ = : o (A28)
Q- —iQ3
For generic n, we have the space IH", of elements
u® ; T U—L u®,v* e C"
qg= . . — qg' = . ( 29)
w?*  u? —v®  u a=1,...n

Thus dgf @ dg = ds®1 gives ds? = du® ® du® + dv*" ® dv® and the hyperKahler forms
are grouped into the obvious generalization of the quaternionic two-form in eq.(A.28):
O =" dg*T A dg® = QJF) leading to Q% = 209K where the Kahler potential K is
K=1 (u“*u“ + v“'v“), and to Q1 = 2idu® A dv*, Q™ = (Q1)".

Let (T4), be the antihermitean generators of a compact Lie group G in its n x n
representation. A triholomorphic action of G on IH" is realized by the Killing vectors of
components

,__Aabi bT’\ba . S\ (TA)Z 0
Xa = (TA)bq aqa +q (TA>a aan ! (TA) - 0 (TZ)Z ) (ASO)



220 Appendiz A. Kahler, hyperKdhler, quaternionic manifolds and quotients

Indeed one has Lx© = 0. The corresponding components of the momentum map are:

Ta), 0 c b
(La)s ¢+ (A.31)
o (T3 b —ic

DA — qa]‘

where ¢ € R, b € C are constants.

Quaternionic manifolds

On a quaternionic Kahler manifold @, that is necessarily 4n-dimensional, there exists
three locally! defined complex structures J* : TQ — T'Q that satisfy the quaternionic
algebra of eq. (A.20) and there is a metric hermitean with respect to all of them. Then
it one defines locally three quaternionic Kahler two-forms

in = 9,. (T, v =1,...4n. (A.32)
These forms are covariantly closed with respect to a SU(2) group (that we denote as
SU(2), for consistency with section 6.3.1) rotating the indices 2,5 =1,2,3:

VO = dQ + kWi AQF =0 w' = SU(2), connection
. _ - where . : (A.33)
O = dw' + LetFw! AWF Q' = SU(2), curvature.

If the SU(2),, is flat, the hyperKahler case is recovered.

The holonomy of Q must be containded in SU(2), x Sp(2n), Sp(2n) being the nor-
malizer of SU(2), in SO(4n). This fact can be expressed in terms of the vielbeins of Q,
that must carry explicitely indices in the fundamental of the holonomy group. Therefore
we will have

A, B = 1,2 [fundamental of SU(2),)]

Guw = UL UTPCapean (A.34)
a,B=1,...,2n [fundamental of Sp(2n)]
. . . 0 1
where Cp is the standard symplectic 2 x 2 matrix C = ,and €15 = —€y; = 1.
-1 0
The torsion equation for the covariant derivative of the vielbeins reads
VUL = U + %wi(eaie"l)AB AUBY + AP AUACg, = 0, (A.35)

where the o' are the Pauli matrices and A*? is a Sp(2n)-valued connection.

!They undergo SU(2) rotation in transitions between different patches
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Since the intrinsic components €, pg of the quaternionic Kéhler two-forms are an-
tisymmetric and must satisfy the quaternionic algebra, we can assume

fapp = QU Ups = —iMCap(0'€) A (A.36)

where ) is a real parameter, related to the value of the scalar curvature.

These notations about quaternionic vielbeins are utilized in Appendix B in writing
the set of supersymmetry transformations for N=2, D=4 matter-coupled supergravity.
Indeed in these theories, the scalars in the hypermultiplet span a quaternionic manifold.

Quaternionic Kéhler quotients

Consider a Lie group G acting on Q via Killing vectors such that their action on the
quaternionic Kahler forms is the following:

Lx ¥ = e*rl QF, (A.37)

where ’";( is a SU(2),-compensator. This means that it is possible to find quaternionic
momentum map functions DY such that

ixQ = VD, (A.38)

where the derivative is of course SU(2)-covariant, that can be made equivariant.

Then the level set N = ), D~1(¢) is G-invariant and the quotient 9 = N/G, of
dimension 4(n — dim @), is quaternionic with a quaternionic structure that descends
from that of O. See also section 3.2.2 where the quaternionic quotient is utilized to

construct explicitely the quaternionic manifold "s'%%%?n—)‘
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Appendix B

Supersymmetry transformation
rules for locally supersymmetric

N=2, D=4 theories

In this appendix we write the full set of rheonomic parametrization for the matter cou-
pled N=2 supergravity pertaining the examples studied in this paper. These are essential
ingredients while studying the topological variation of the fields, and we report it for com-
pleteness. Here we limit our exposition only to the essential points and to the formulae
that are needed in the present paper. For a detailed treatment on this subject we refer
to [123].

To write the set of curvature definitions and rheonomic parametrization we need to
recall a procedure named in [123] “gauging of the composite connection”.

On the scalar manifold ST(n) x H@(m) we can introduce several connection 1-forms
related to different bundles. In particular we have the standard Levi-Civita connection
and the SU(2) x U(1) connection (w™, @), as defined in (6.100) and (6.90). Gauging the
corresponding supergravity theory is done by gauging these composite connections in the
underlying o-model. For a Kahler manifold, if we call 2! the scalar fields' and k'(z) the
Killing vectors, we have to replace the ordinary differential by the covariant ones:

dzt — V2t = dz' + gA Kk (2) (B.1)
together with their complex conjugate. Ineq. (B.1) A% is the gauge one form (A =0, 5, a

in our case). At the same time the Levi-Civita connection Tj- = I‘j-kdzk is replaced by:

Tt — Tt =T, V2 + gAY Ok} (B.2)

J

so that the curvature two form become (as in the previous equations we omit the obvious
complex conjugate expression)

E; = R;k,Vzk AV + gF 0k} (B.3)

L For the manifolds ST(n) considered in the present paper we have z* = {z°,2°} = 5, Y%, e =1,...n

223
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where F is the field strength associated with A*. In a fully analogous way we can gauge
the Sp(2m) connection of the quaternionic scalar manifold, but we will now focus our
attention on the SU(2) x U(1) connection. In this case the existence of the Killing vector
prepotentials PR, Py* (z = 1,2,3) permits the following covariant definitions:

Q — Q=0Q+gA'R
WT o BT =wTT 4 gAMPLT (B.4)

where P;° is given in eq. (6.103) and P} is defined by the relation
WK =—dPy (B.5)

In computing the associated gauged curvatures we get:

—~

_ K = igij.Vzi A sz* + ngPX
0 = OVl AV + gFAPLe (B.6)

where
Vg’ =dq" + gA kL (q) (B.7)

ki (q) being the quaternionic Killing vectors.

We are now able to write down the full set of curvature definitions and rheonomic
parametrizations of the N=2 matter coupled supergravity. We start with the hypermul-
tiplets in the ungauged case. In the notation appearing in table 1 we have the positive
and negative chirality hyperini (4¢, C‘tg For the ungauged case we can write the following
curvature definition for the right handed hyperino (a similar one holds for the other):

VC_A_t — dczt _ ivabwabé-;{t _ A%ZCES + _;_cht (BS)

In the above equation ABsAt ig the S p(2m) connection, which in our example can be
easily written as

AEsZt — Emé‘st (Bg)

where raising and lowering of the SU(2) indices is performed with the ez symbol (and
it is trivial in the SO(m) indices). Moreover in eq. (B.8)

1 20, 0
Tab = ;[711)’)%] = (BlO)
= 0 2645

where we choose (in Minkowskian notation)

(@) = P04 (B.11)
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with 0° = diag(—1,—1). The superspace parametrization of the quaternionic vielbein
A t is given by

qut A tva+€AB¢BCBt€BA+¢ é-A (BIZ)
Eq. (B. 12) just fixes the supersymmetry transformation law of the quaternionic coor-

dinate ¢’. The rheonomic parametrization VCAt compatible with the Bianchi identity
coming from eq. (B.8) is the following one:

VA = V(Y 4 iuB Sy teanetPoy (B.13)

For the gauged case we have just to replace the V derivative appearing in (B.8), which
is covariant with respect to the spin, Kéahler and Sp(2m) connection with a derivative
V, covariant also with respect to the gauge connection. This substitution implies the
following change in the rheonomic parametrization:

—A
CAt = VCold + 29”] At BAkA( )L 4 (B.14)

The ungauged curvature definition of the gravitational sector are:

R* = DV®—igh, Ayt (B.15)

pa = diba— r® A+ SQAa+w P AU =Tihs  (B16)

= A= e A - SO AP ApTE T (BT

R® = dw™—wfAw® . (B.18)

where w8 = 1/2i(c;) Bw™ and wB, = eAlw; M, rg. For the vector multiplet we define,

together W1th the differentials dz*, dz*’ (“curvatures of ¢, z'"), the following superspace
field strengths:

VA4 = dA - :l-%,,wabw ~ -Q-Q,\“* —TEX4 +w A NP (B.19)
% ] l bl ) e ] ) sk .

VNG = AN - et + %Q/\f,1 T —w B AN (B.20)

FA = dAM £ TG, A pet® + LA A pPep (B.21)

where I" is the Levi-Civita connection and L* = e*X*,
The complete parametrizations of the curvatures, consistent with Bianchi identities

following from eq.s (B.15)-(B.21), are given by

R =0 (B.22)
pa = paVEAV'+ {(AJanab + A'fllb Boas)B +
+ (eapTH)Y* BT A V” (B.23)

a —1Ab 4
pto= oV AV {(A) 77ab+A | 7 )bs
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+ (PTp)r s} AV - (B.24)
R¥® = R“bchCAVd—z(¢A9A|ab+¢ 05, AV + eI Ay ppp(ABy, — A7)
+ i BP, AT —icap NPT (B.25)
FN = FAVE AV 4 G Ay Beap +ifAN v s’ B) AV, (B.26)
v/\iA — v /\14Va+iZ17a¢A+Gab")’ab¢BﬁAB+YiAB’I,bB (B27)
VAL = VAV +iZ voha + G 1P ean + Y0 (B.28)
d= = Zive+ 3y, (B.29)
dZ = ZUVe Nt (B.30)
where
i — ¥ —k* :
Ay ]a,B = —ng'z(/\f; Y AB — BNG 70 (B.31)
Tkt 1 gk* —
AP, = e o NB iaﬁxc e ACT) — Zafg-fmgzt (B.32)
Sup=5"=0 (B.33)
9 — 27 pj + ,chizib’ agb A _ zv[apb]clA 4+ 7c ab|A (B34)
1 — .
T:l; = G_K/Z(X:/V-—F)A(fcﬁﬁ- +§V,fA/\ A’)/ab/\]BEAB)
1
Ty = e (XN -F)\(Fiy + vaf X Yas Xy €4F) (B.35)
, 1
Gt = ¢F ImJ\frA< A O eAB>
. 1
o= g T (FA + Ve Tk ) (B.36)
Y4B = gij*0j~k~g~xg*/\geAceBD (B.37)
Yip = ¢ wex MPeacenp (B.38)

The special geometry gadgets LA,—EA, fA, f4 and the tensors Cijk, and Cisj=x+ turn
out to be constrained by consistency of the Bianchi identities as it follows

Voelt =V,I' =0 (B.39)

A=A fA =Vl (B.40)
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Vel = ViCisjopr =0 (B.41)
V[gCi]jk = V| Cispjerr = 0 (B.42)
—ig" fACi = Vife (B.43)

We do not report the explicit calculation to prove the above equations, but we stress that
they are fully determined by the Bianchi identities of N=2 supergravity. The solution
for Cy;x can be expressed by ([27])

Cije = —NanfAV;fr (B.44)

In the gauged case we have firstly to replace in the curvature definitions V with
V namely the derivative covariant with respect to the gauge field. Secondly, the new
parametrization will contain extra terms with respect to the old ones which are propor-
tional to the gauge coupling constant g. In particular the new parametrization are:

R = 0 (B.45
pa = 25D +igSaprap® AV® (B.46
pA = pAld) igSP yabs AV (B.47

Rab —  Pab(old) _ EA A ,/awagrgAB . JA A ’Yabd)BgSAB (B.43

FA = pA(eld) (
TAiA = Nl L ng‘AB B ‘ (B.50
N = 0 gy (
Ty o= v Tyt = vt (

together with equation (B.8) for the hyperinos. In eq. (B.52) Sap and the corresponding
conjugated expression is given by:

1.

SAB = iz(am)ACGBC'PXLA

— 1

#BzomhﬁmL (B.53)

4

while Wi4B is given by the sum of a symmetric part plus an antisymmetric one, where

WiaB) —  ABRi TR
WiAB) = _i(o,) P4 PEgY fh (B.54)
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