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INTRODUCTION

String physics occupies an appealing position among today’s theoretical con-
structions. It constitutes a new kinematical framework which enables in principle
to quantize gravity and, moreover, to incorporate it in an elegant way to the grand
unified models together with remaining known physical interactions [1]. Probably
the most elaborated and understood approach to the string theory constitutes the
Polyakov path integral formalism [2]. The basic quantity to be computed is the
S-matrix of the spacetime string excitations. The latter are put in correspondence
with certain local composite operators of an underlying twodimensional conformal
field theory called the nonlinear o-model. This o-model describes, in turn, the
propagation of the string in some background. The S-matrix elements of the phys-
ical spacetime particles of the string theory are given as N-point functions of those
composite operators integrated over a compact twodimensional surface called the
world sheet. An expansion in the number of handles of the surface corresponds to
the usual field theoretical loop expansion. Thus, in a sense, the string interactions
are of topological nature.

A crucial role in the string theory is played by the twodimensional conformal
invariance and, as noticed since long, the absence of the conformal anomaly needed

to avoid unphysical states poses severe restrictions on the theory. The conformal

invariance itself is also the key which enables to identify the composite operators

mentioned above commonly referred to as the vertex operators. These vertex oper-
ators fall into representations of the spacetime Lorentz group in the flat background
and by suitable construction they may possess also other (gauge) quantum numbers
so that every phenomenologically known excitation including the graviton finds its
way to an appropriate vertex operator. An analysis of the string tree amplitudes
reveals that they are identical in the field theoretical limit to the usual gravitational

and Yang-Mills tree amplitudes.




Besides other theoretically appealing properties of the string theory the major
novelty relies essentially in the use of a totally new theoretical language. It is worth
to notice at this point that one surpasses in a nontrivial way the framework of the
conventional field theory yet resisting the basic consistency tests. The prediction
power of the string constructions is, however, restricted to scales far beyond those
presently experimentally available yielding a space only for very indirect verifica-
tions. A possibility to obtain a further conviction in a solidity of the string theory
may be provided by ”gedanken” experiments. One may probe the string results in
these corners of kinematical parameters of some model situation in which one has
at his disposal independent methods. In fact we shall give in this thesis a concrete
example of such situation.

Among the most fascinating domains of the string research there is undoubt-
edly the quantum gravity. The subject resisted for long to numerous attempts
of field theorists to be furnished at least with a consistent perturbative meaning.
Due to problems with renormalizability one feels clearly a necessity of modifying
the theory at very short distances - perhaps about the Planck scale. What should
have been this modification was highly unclear however and the conventional field
theory did not leave much space for consistent models incorporating the spin-two
excitations. The string theory opens new horizons in this unpleasant situation.
The theory is in fact modified at the short distances by the presence of the mas-
sive string modes in the loop integration whose contributions add up to give finite
results for the amplitudes! Once having an effective method for evaluating some

quantum gravity results we may link them to the well-established and populous

classical ones. As we already pointed out the string theory is essentially the S-°

matrix theory hence until we understand better its nonperturbative aspects one is
constrained rather to study the scattering processes.

There exist a lot of the solutions of the Einstein equations concerning the
mutual interaction of the gravitational waves and, rather favourably, they exhibit
remarkable properties. In particular, for majority of the known cases a collision of

two gravitational waves results in a creation of the curvature singularities [3-11].



We need not therefore necessarily to translate the complicated black hole physics
in a language appropriate for the string theory questionning if we want to learn
something about such important problems as a possible smearing of the curvature
singularities due to string effects. We have instead the examples of ”legitime”
curvature singularities occuring directly in the scattering processes!

Another logical direction in the string gravity is an investigation of the prop-
erties of the spacetime around the Planck scale, where the quantum effects should
become truly important. A way how to do it is obviously to study the S-matrix
at ultrahigh energies as was in fact done by the Princeton and the CERN groups
[12,13]. Slightly controversial seems to be the fact, that one expects to reveal non-
trivial properties of the spacetime starting with the formulation based essentially
on the trivial flat o-model. One of the main results of this thesis is to show that
indeed a nontrivial curved geometry is generated. A very question of the dynam-
ical creation of nontrivial structures out from an a priori given rigid background
deserves certainly a further study, which should reveal a lot about the structure of
the string theory. One of possible manners how to conduct such research would be
to study the string dynamics in various backgrounds. The consistency requirement
for corresponding o-models i.e. the conformal invariance, is extremely severe, how-
ever, and up to now a number of known ultravioletly finite o-models is very small.
Another main result of this thesis constitutes in an identification of a new example
of such situation, namely, the gravitational plane waves are shown to be the solu-
tions of the classical string equations of motion, or, in other words, they are the

classical string vacua. Rather remarkably a particular case of these plane waves is

generated dynamically in the ultrahigh energy collision of two gravitons, so one may =~

say loosely that we have at hand also an example of dynamical travelling from one
string vacuum to another. From the strictly field theoretical point of view, by the
way, there is an interesting fact that the Weyl anomaly of the gravitational plane
wave o-model may be computed even nonperturbatively as we shall also present in
what follows.

Since the conformal field theories with the direct g-interpretation (i.e. which




allow a natural metric interpretation in the target space) are so rare it is not
surprising that studying them one may reveal interesting new structures. We shall
argue, in particular, that the gravitational plane waves are particularly appealing
string vacua since they are highly asymmetric. This fact results in remarkable
phenomena occuring in studying the low level string spectrum in such o-models.
One is led to an observation that there is no preferred principle how the space of the
vertex operators should be organized such as the simple plane wave decomposition
in the flat background is. There is therefore natural to introduce ”in” and ”out”
vertex operators in close analogy with the field theory in curved backgrounds. In
this way also the important phenomenon of the particle creation by a background
(the Hawking effect [14]) may find its natural settlement within the framework of
the string theory!

In particular case of the gravitational plane wave vacuum the identified vertex
operators are singular in the target space and these singularities are related directly
to the curvature singularities found in the collision of such waves! An introduction
of the ”in” and ”out” vertex operators and the study of their properties constitutes
our third main result, the relation with the curvature singularities in the collision
of the waves together with an investigation of the field theory in such kind of the
string vacuum represent the fourth one.

In the first chapter we give a short review of techniques and concepts needed
in the further study of the thesis. We shall provide elementary facts from the
string theory and give a detailed computation of the Weyl anomaly. Starting from
the second chapter we shall present our own results. In the second and the third
chapter there will be the resolution of the field theory [15] and of the supersymmetric”
nonlinear o-model in the plane wave background [16] respectively. We shall use the
obtained results in connection with the paper [13] to illustrate, that in the ultrahigh
scattering energies indeed a generation of nontrivial geometry occurs. Then we
provide the example of the "gedanken” experiment alluded at the beginning of
this introduction. We let scatter two strings at very high energy and show, that

three totally independent theoretical approaches yield in fact the same result for the




outcome of such process. We hope that also a reader enjoy a ”miraculousity” of such
result in the light of the presented calculation. The fourth chapter is devoted to the
evaluation of the Weyl and the superWeyl anomalies in the plane wave backgrounds
[17]. We shall provide a close expression for the quantum effective action of the
theory. It will turn out that the Weyl mode couples to the matter fields. One may
expect nontrivial consequences of such result in attempts to formulate the string
theory in the presence of the Liouville mode [18]. The fifth chapter will be more
technical and we provide a detailed perturbative investigation of the lowest level
string spectrum in the background under our study [19]. We shall compute and
solve a Virasoro condition for the scalar vertex operator up to third order in the
usual string tension expansion and to all loops of the weak field limit. We shall
find that the resulting condition with this precision is just the generally covariant
Klein-Gordon equation so that one has to solve effectively the field theory problem
in order to evaluate the vertex operators. We shall finish this thesis with a discussion
of the obtained result, then we shall draw the conclusions and shall provide also a

brief outlook.




1.ELEMENTS OF THE STRING THEORY

1.1.The bosonic string

In this paragraph we establish the basic formalism for calculating the string
S-matrix in the Polyakov formalism. We shall deal for concreteness with closed
strings. The closed string is a one-dimensional smooth manifold without boundary.
When it moves it sweeps out a two-dimensional surface in the space-time called
the worldsheet. This surface may be parametrized by a pair of coordinates (o,7),
where ¢ runs from 0 to 27 and —oco < 7 < co. An evolution of the string from some
initial 7; to final r; may be represented by a sum over surfaces with fixed initial
and final boundary conditions with an appropriate weight to be discussed later. If
this formalism is conformally invariant we may use an equivalent description of the
string propagation by mapping the strip to the whole complex plane by a conformal
transformation z = exp (10 + 7). The lines of constant 7 map to concentric circles
as is obvious from the transformation formula. Moreover the initial state of the
string at 7 = —co is mapped to the origin of the complex plane while the final
one to the infinity. By another transformation we may eventually arrive to the

Riemann sphere with the south and the north poles corresponding to —co and +oco

respectively. Processes with virtual strings are then described by adding handles.

(loops) to the sphere.

Now we turn to a more quantitative presentation and provide a definition of

the S-matrix. It is given by




b DhosDXpm
S(1,2,...,N) = > ,\"‘“/————fﬁ————exp—I(X,h)X
k=0

. (1.1.1)
x [ T ¢ 6/BTE)Ve(Xoms g (€9)
=1
where
1 [ d? o
I(X,h) = 5/5?3\/%“%&)(”3[,}(%%+u3/d2§\/ﬁ (1.1.2)

Here X™(£) is embedding of the world sheet in the spacetime and h,p is an
intrinsic metric on the surface. The introduction of the metric hop corresponds
to the usual way how to make the classical theory invariant with respect to dif-
feomorphisms of the coordinate space. In order to keep this invariance at the
quantum level one has to integrate over the space of the metrics. I(X,h) is the
action, pg is the bare cosmological constant in 2 dimensions needed for renormal-
izability, o' is the string tension making X™/ Vo' dimensionless. The composite
operators V;(X (&), h(&;:)) are called the vertex operators and describe the states of
the string. Finally N is a normalization constant, ¥ means number of loops and A
is the coupling constant.

As the next step one must learn to use the formula (1.1.1) or, in other words,

to give a sense to the measures Dh,yDX,,. In order to keep the formalism in-

variant with respect to worldsheet diffeomorphisms the measure has to possess this S

invariance too. This may be easily accomplished by choosing a reparametrization
invariant scalar product for small deformations éh,ps and 6§ X™ around some point
hap, X™ of the space of all metrics and the string embeddings. The only choice
(due to Polyakov) is .

16X™)° = / d2eVhEX™(€)6X™(€)bmn (1.1.3)
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and

6hagpl]® = %/dzgx/ﬁh““’hﬁﬁéhaﬁahﬁ (1.1.4)

We shall not discuss in this thesis the string loops in the covariant formalism.
Therefore we restrict our attention to the tree level case and choose the globally

defined gauge slice

hog = upe? (1.1.5)

We have to reduce the integration in (1.1.1) to one over the slice factorizing
properly the volume of the group of reparametrizations. In order to do it one first

represents conveniently the small deformations of the metric in (1.1.4) as follows

bhap = Vatp + Vpta + (66 — V7ey) hap (1.1.6)

where v/, means the usual covariant derivative at the ”point” h,p. Inserting
(1.1.6) into (1.1.4) we arrive to

16A]* = /dzﬁx/ﬁ[wz I CRvAR VAR VAR VAR VA Vf7]65] (1.1.7)

Now we pick up a point ¢ at the slice (1.1.5) and consider an orbit Q, of

the diffeomorphism group D. We define a measure on 14 by an invariant scalar -~

product

lel|? = /dzgx/ﬁeqm%ﬁ (1.1.8)

where ¢, are generators of the infinitesimal diffeomorphisms. It is important to
realize that the measure (1.1.8) does not depend on the conformal factor ¢, therefore

neither does a volume Vy of each orbit. Due to reparametrization invariance of both

8



measures (1.1.7), (1.1.8) it is enough to compare them on the slice (1.1.5), where

the formulae acquire the following look

lhapll® = /dg&e"s (662 + €2(—2 V> V7)€ + e5(—2 V5 V7)€7] (1.1.7)
[6eal = / e (e,e + ex¢”) (1.1.8)
]
where
z= ¢l 4487, z = ¢l — g2 (1.1.9)

From (1.1.7°) and (1.1.8’) then follows that the (tree level) S- matrix may be

cast in the form

Siree(1,2,...,N) = AV / m%@det% (—2 7. 7%)det? (2 vz V7) X

2 4ot

) ,
X exp [——1—/ a7¢ e? X (—e7%0,0,)X™ —ug/dgfe‘f’]x

N
x [ TTacvi(xm (&), e(e)
i=1
(1.1.10) -+ o=
Here V is the volume of the diffeomorphism group and D¢ is given by

16¢]1% = /dzé\/ﬁ5¢2- (1.1.11)

It should be read off from (1.1.7°) on which svpace act the covariant derivatives
in (1.1.10). |
We may rewrite the formula (1.1.10) as follows

9




Sera(1,2,.. . N) = AV %?KK@ (1.1.12)

Then the basic requirement of the string theory is

6K
— =20 1.1.13
= (11.13)
Stating differently, all Weyl anomalies should vanish. The equation (1.1.13) is
extremely powerful. It gives not only the wellknown condition on the dimensionality
of the spacetime but it also enables to construct the vertex operators themselves.

If (1.1.13) holds denote W the volume of the Weyl group

W:/D¢ | (1.1.14)

and set

N=VW (1.1.15)

Here we shall present a computation of the Weyl anomaly for the simplest case
with no insertion of the vertex operators. In this case one studies the partition

function of the model given by

Z =XV / P—?—gﬁdet% (—2 7. v7)det? (=2 Vs V7) x
(1.1.16)

1 dQE dym - m 2 2.0
><exp[~§ ePX™(—e7%0,0,) X™ — ug dﬁe}

4o’

The gaussian integration with the measure (1.1.3) is now easily performed

yielding
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Z = ;\V/ %—?det% (—2v. V)det? (-2 75 v7)x
(1.1.17)

X det“%(—e“qbaaaa) exp [—ug / d*¢e?]

Before entering the evaluation of the ¢ dependence of the determinants in
(1.1.17) let us mention several technical subtleties which we have ignored in the
presented derivation. The point is that not all worldsheet diffeomorphisms must
necessarily bring out the metric h,pg from the slice (1.1.5). This means that a part
of the orbit {14 of the diffeomorphism group would be parallel to the slice. In order
to avoid the double counting of such metrics one is restricted to integrate over an
orbit Qf;s where the prime means that only the diffeomorphisms orthogonal to the
slice should be taken into account. It is not difficult to see from (1.1.6) and (1.1.7°)
that this is equivalent to an omission of the zero modes from the determinants of the
operators —2 v/, V7 and —2 /5 V7 and replacing the volume V by V'. If moreover
the ordinary laplacian 9,0, possesses some zero modes those should be omitted
as well from the determinant and an integration over them should be performed
independently. We shall not consider these questions here and shall concentrate on
the local properties of the world sheet only. For those interested in full details of
the zero modes problem we recommend a beautiful paper by Alvarez [20].

The usual way of an evaluation of the ¢-dependence of the determinant exploits

the heat kernel regularization. For concreteness we start with the operator
Ly=—e%9,0, = —4¢7%0,0; (1.1.18)

and regularize IndetL, in the following way

oo

E?TT lexp (—tLy)] (1.1.19)

&

IndetLy = —/

Varying ¢ one produces a variation of IndetLy given by

11




§lndetLy = — /co dtTr [5¢L¢ exp (~—tL¢)] = (1.1.20)
= —Tr[s¢exp (—cLy)] |

Working in &-representation this may be rewritten as

SindetL, — — / P2£66(8) < & | exp (—eLy) | € > (1.1.21)

There remains to compute the heat kernel G(¢,¢,e) =< & | exp(—eLg) | € >

or in other words the solution of the equations

(—aa_t + L¢)G(£a glat) =0 (1.1.220,)
G(€,¢,0) =8(&,¢) (1.1.225)

for € — 0. Since we are interested only in the knowledge of the kernel for an
infinitesimal ”time” ¢ we may exploit the perturbative methods. One first cast Ly

in the form

Ly=—48,8; -V  (1.1.23)

where

V =d(e~? — 1)9,9; (1.1.24)

The equations (1.1.22) are now equivalent to an integral equation

i
G(ﬁ) 'ffat) = GO(S) ’St:t) + /0 dt,dnGO(&-:n;t - t’)V(Tlat’)G(na Sratl) (1125)

Here

12



Gol6, €)= = exp [- E=E0) (1.1.26)

is the solution of (1.1.22) for L replaced by —40.0:. Expanding now (1.1.25)

as

G = GO + G()VGO —l— GoVG()VGO + G()VG()VGO + 200y (11.27)

taking V from (1.1.24) and using (1.1.21) one arrives after some work to

o e 1
= — a” T aVa 1.1.
dlndetLy /d 55(13(4 -y 040 qS-i—O(s)) ( 1.28)
and
IndetLy = — / dzf(‘—“e(b - "‘“"‘1 $0o0a ) + const | (1 1 29)
¢ dre 487 ¢ ) ' o

From (1.1.29) then follows in a straightforward way our first contribution to

eq.(1.1.17) namely

det™P/2(-e#0,0,) = Fexp o= [ #e(-390.0.8+ %) (11.30)

where F is ¢ independent.

Much in the same way one evaluates the remaining determinants

det%(—2 vz V) = det= (~4e"2¢82(e¢85)) =

B 13 [ o, 1 6 (1.1.31a)
“CeXp[ 487r./d {(=589x0ud+ T5oe )]
det? (—2 v %) = det? (—4e2%0,( ))—
(1.1.31b)

= Cexp ———~—/d E(~3$0adad + =c*)]




where C is ¢ independent. Putting together (1.1.17),(1.1.30) and (1.1.31) one

has the final result for the partition function Z

Z = V' / PNfczFexp [ zigﬂp / df(——%gbaaﬁagb + u2e?)] (1.1.32)

This formula constitutes the famous result by Polyakov [21] and it shows clearly

the origin of the critical dimension D = 26.
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1.2.The Superstring

Let us briefly extend the bosonic result (1.1.32) to the supersymmetric case.
For an illustration and also in view of later applications we shall work in the
Minkowski formalism. A quantity analogous to the partition function is now a gen-

erating functional for the correlation functions evaluated at the external sources

equal to zero, i.e.

W (0) = / DhapDxoa DX™DY™ expil(X, 1, h,X) (1.2.1)

where

2
I3 =5 [ S VR0, X7 0 X, ~ §7ip" Dt
o 2 A (1.2.2)

1 _
’1’ 2Xapﬁpa¢nLaﬁXm + EXapﬁanﬂQ:bm"/’m]

Here X™ and h,p are the same fields as before, ™ i’séa/multiplet of D Majo-
rana fermions, x is a spin 3/2 two-dimensional gravitino field and p, are the Dirac
matrices in the curved background. This action possesses several local symmetries.
Apart from the worldsheet diffeomorphisms there is a local supersymmetry gen-
erated by an arbitrary Majorana spinor e. Under this transformation the fields

transform as follows

X =™, 6™ = —ip"e(uX™ — " xa)

) (1.2.3)
562 = —218p" X a» 6Xa = Vat
where €% is the zweibein. Then there is the local Weyl symmetry
1
SX™ =0, 5P = —EAzﬁ,
(1.2.4)

1
bel = Aeg, X = EAxa

15




and finally a superWeyl local fermionic symmetry given by

§Xa = ipan, et =6 =6X"=0 O (1.25)

To evaluate W(0) in (1.2.1) we have to fix a gauge with respect to the (su-

per)reparametrization'group. One picks up usually the following choice

haﬂ = 624’77@, Xa = Z.F’ozX (126)

Inserting the gauge slice (1.2.6) into the action (1.2.2) one finds out that
all dependence on the superconformal fields ¢ and x disappears due to identity
pppap® = 0. Since the measure of the functional integration does depend on the
superconformal fields, as we shall see later, the ”partition function” (1.2.1) after
the gauge fixing will be in general a nontrivial integral over the fields ¢ and x. The

integrand is given by

exp1S = /DX’”szmexp 1 (1.2.7)

In order to simplify an evaluation of S we shall adopt a reasoning originally due
to Polyakov [22,23]. S[¢, x] must possess a (superconformal) symmetry which is
the remnant of the local supersymmetry which preserve the superconformal gauge
(1.2.6). It may be shown that the only possible local expression with this property

is a supersymmetric extension of the Liouville action (1.1.32)

S =i / P¢d*0(33DDB — pe?) (1.2.8)

with an appropriate coefficient in front of the integral. Here @ is the supercon-
formal field, @ is the supercoordinate and D, D are the supersymmetric covariant

derivatives®. The announced simplification relies now on the fact that we may set

* Precise conventions we set in the Chapter 4, where the superWeyl anomaly

will be evaluated for the gravitational plane wave g-model.
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x = 0 and compute only the ¢-dependence of the determinant. A dependence on
x may be restored by a "supersymmetrization” of the result. The determinants
to be evaluated origin from a gaussian integration over X™ and %™ and from the
gauge fixing (1.2.6). A measure for the fermionic fields ¢™ and x, is given by the

following scalar products
lwlP = [ devion® 129
and

16x]1* = /dQS\/f—zh“ﬁf?xaﬁx;a (1.2.10)

We follow now the same procedure as in the bosonic case. Inserting the last of
the equations (1.2.3) into (1.2.10), using (1.2.9) and the formulae for the bosonic

integration one eventually arrives at

expiS(4, x = 0) = det™*/*[v*p? a7 4]
x det'2[R7 (— 7* v,e) + V'V = v V7] (1.2.11)
x det=P/2[e=2952|detP/?[—p*8,]

where % pf P« p acts on the Majorana spinors and all covariant derivatives

are to be evaluated on the slice (1.2.6) with x = 0. The standard heat kernel

method then gives

e 10-D [,1 |
e S(#x=0) — Aexpy = /(—2—q§82¢ — puPe??)d?¢ (1.2.12)
So that
: 10 — 1 -
eS(#X) — Aexpi 327rDz'/d2§d29(<I>DD<I> — pe®) (1.2.13)

17




where

®=¢+0xe ?+ %—503 (1.2.14)

and B is an auxiliary field. The equation (1.2.13) generalizes the bosonic result

(1.1.32) and shows clearly the origin of the superstring critical dimension D = 10.
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. 2.THE GRAVITATIONAL PLANE WAVES

2.1.Plane waves solutions and their geodesics

The gravitational plane wave is any metric of the form

D=2

ds? = —dudv + f(z*)r(u)du® + ) _ (dz*)? (2.1.1)
=1

w=20—2Pt, w=2+2P? (2.1.2)

One recognizes clearly a wave moving along the positive X7 ~laxis with a
support of the function r(u) as the wavefront. One may call r(u) the longitudinal

and f(z*) the transversal polarization functions respectively. A particﬁlar case with

r(u) = é(u) (2.1.3)

is called the shock wave since in this case the pulse is concentrated on the
hyperplane v = 0. One finds easily that the only nonvanishing component of the

Ricci tensor is

mm=~%Aﬂﬂy@) (2.1.4)

where A is the Laplacian in the transverse coordinates. Thus, unless the
function f is too singular, the metric (2.1.1) is always a solution of the Einstein

equations with a source T}, given by

Tow = p(2)r(u)  (215)




where

o(o) = 7&1;5 A f(z) (2.1.6)

and all other components of T}, being zero. Given a particular wavefront
energy density one obtains a corresponding profile modulo some sourceless plane

wave, as may be called any solution of the homogeneous equation (2.1.6). If one

puts

p(z¥) = p6 P2 (%) (2.1.7)

the solution of (2.1.6) is proportional to the Green function of the Laplace

equation, namely

f(z%) = —8pGin(|z|/C), D=4 (2.1.8a)
. T aD/2
f@w:(D—4§ZiﬂﬂD”“ D >4, Xhﬁzgaﬁﬁ (2.1.8b)

Eq. (2.1.8a) corresponds to the wellknown Aichelburg-Sexl metric [24]. An-
other interesting class of the shock waves is that of homogeneous planar shells. In

this case the wavefront energy density p is given by
o _ o, for|z|<R
p(a’) = {0, otherwise (2.1.9)
For R finite (R — co) one has the finite (infinite) planar shell. In what follows

we shall often need the explicit form for the infinite case. One has immediately

8w G
D -2

f(@) = —az®+ f,, a= (2.1.10)
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For definitness we shall study the case f, = 0, where the subscript ”s” obviously

indicates that f, is a sourceless wave.

The formalism just presented does not reveal sufficiently its physical content.
Indeed one may give another visualization of the fact that (2.1.1) solves for some
cases the Einstein equations. To do this we start with the wellknown Schwarzschild

solution in D = 4 describing the gravitational field of a massive neutral point-like

particle at rest . The metric reads

‘ 2 o 2m. —
ds? = — (1= Z0)dt™ + (1 - =) "' £ 0%d0%  (2.100)

where Q' denotes the angular variables. Boosting the solution (2.1.11) one
obtaines a field created by the particle moving with a constant velocity, which is
of course smaller than that of light. To obtain a gravitational field generated by a
lightlike partiéle we may perform an infinite boost going with m to zero in such a

way that the momentum of the particle remain finite [25,26]. Explicitly

m = 2pe?, uw = ePu, v =e"Fy (2.1.12)

Since p'* = (m,0,0,0) we have

pH = ﬁlim (coshﬁZpe'ﬂ,0,0,sinh62pe_ﬁ) = (p,0,0,p)
-+ OO
Now we boost the metric (2.1.11) to the unprimed coordinates. This may be

done most easily by rewriting it in a form

4pe"ﬁ

le + (:Cf_wl)z

ds® = dz™? + (w'.d:c')2+

(2.1.13)

o0 =B n [(x’.dm’) + (z".w') (dz' W) ’
*E( = ) T @R W) |

=i :EIQ + (xr.wr)z
where
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w™ = (1,0,0,0).

In fact

2
[(z'.dw') + (z'.w") (dz'.w')] = dr®
Note, that the factor (1 —2m/r’)~! in (2.1.11) is expanded in the geometrical
series, which is allowed, since m — 0. The boosting amounts simply to erasing the
primes over z’,dz’ and w’. It is convenient to study the limit # — co separately

for the cases u # 0 and v = 0. For u # 0 one has

ds® = —dudv + dz? + %duz (2.1.14a)
u
while for v = 0
8
ds® = —dudv + dz® + %duz (2.1.14b)

Note that here z unlike z' denotes just transverse coordinates. To study the

divergence in (2.1.14b) it is convenient to rewrite the expressions (2.1.14) in a form )

valid for all u,i.e.

4
ds? = ———=2 _4u® — dudv + dz?, a—0 (2.1.15)

v u? + a2

Perform now a transformation

w = v+ (0u(—u) — 0a(u))dplny/u? + o222 (2.1.16)
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where 0, is some regularization of the usual step function. Going with « to

zero one gets the Aichelburg-Sex] metric

ds® = —dudw — 8pin(|z|/C)6(u)du® + dz* (2.1.17)

with C an irrelevant scale.

We observe therefore that the shock wave metrics (2.1.1),(2.1.3) corresponds
to sources moving with the velocity of light. In particular the point-like source
generates the metric (2.1.17). This observation - by the way - led t’Hooft [27] to a
method how to compute the high energy scattering due to gravitational interaction
between two neutral pointlike particles. One may study the process in a reference
frame in which one particle is soft but the other one very hard. In this case the
hard particle creates the field (2.1.17) and the soft one is viewed as a test particle
in this field. The problem may be studied in that manner even in the quantum
level as we present in the next paragraph.

We turn now to the study of null geodesics. Their importance is at least
twofold. They provide an information which enabled to t’Hooft to find the phase
shift of a wave function of the quantum relativistic test particle in the shock waves
backgrounds [27]. Supposing that this is the only change that the wave function
suffers (which was shown in ref. [15]) one derives the correct S-matrix for the
scattering on the wave. The other reason lies in the fact that for some particular
wave front préﬁles there occur interesting focusing phenomena. As was argued in

[28,29], it is natural to believe that focusing of the geodesics is a sign of a generation

of the gravitational singularities, since the matter is getting concentrated to a point. - -

The infinite energy density produced in this way should generate a singularity of
the curvature tensor. Indeed, in a head-on collision of two homogeneous infinite
planar shells [3] the curvature singularity occurs, which lies exactly at the location
of the focal point of the family of null geodesics perpendicular to the wave front
of the planar shell. One sees, quite remarkably, that nonlinear effects do not spoil
the singularity picture found in the geodesical computations. We postpone a more

detailed discussion to the next paragraph, in which the focusing phenomenon will
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be studied at the quantum level; here we provide a classical picture.
The Christoffel symbols of the metric (2.1.1) and (2.1.3) read

T =2 @8,  Th=—f(2)6'(w), T%=—fu(@)6(u) (21.180,5,c)

Where the index 1 denote the transverse coordinate z* , the comma means the
partial derivative and the prime over the §-function means the usual derivative.

Thus the equation for null geodesics is

d>z# u dz® dzP dz® dz?

de” dz” _ B Z 2.1.10
dr2 af dr dr ’ Jab ™3 dr (2.1.19)

Since d?u/dr? = 0 and the geodesics are null we may choose directly u to be

an affine parameter. So we have

dug = Efaz (IE)(S('U,) (2.1.20&) B
d?v , dz*
Tuz = [(2)6'(w) + 2/, (z)6(u) — (2.1.208)
and the constraint
dv . d:z;i 2
T S (@8() = (==)" =0 C (2.1.21)

Note that the equation (2.1.20b) is a consequence of (2.1.20a) and (2.1.21)." "~ -

Since for u # 0 these equations are those for the flat space time one has immediately
Ty () =biio) F 0y ven)(U) = ve(s) F P (syu (2.1.22a,b)

PLs) = (Pi(5))? (2.1.23)
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where the subscript < (>) indicate v < O(u > 0) respectively and &%, p*, v and
p? are constants. The problem is to find ”"out” quantities (i.e.u > 0) in terms of the
”in” ones. This is a simple matter. Since z*(u) is continuous at u = 0, integrating

(2.1.20a) one has

: . 1 .
P> =pct 50 (0),  ba=0bs (2.1.24)

Integrating (2.1.21) as well we obtain

vs = ve + £(0) (2.1.25)

Due to (2.1.23) we know also p” and the problem is solved.

Let us consider now the homogeneous infinite planar shell shock wave (2.1.10)
and a family of geodesics, for which v(—1) = 2*(—I) = 0 and [ is a positive num-
ber.Thus the geodesics of this family are parametrized by p*. From (2.1.22-25) one
has for u > 0

2t (u) = p’l + p*(1 - al)u, v(u) = p*l(1 — al) + p*(1 — al)?u (2.1.26a,b)

We see that for up = I/(al — 1) the focusing of geodesics occur which is real
or virtual depending on the sign of ur. The parameters ! and u r fulfil, quite

remarkably, the perfect lense equation [28]

S : (2.1.27
m—— — a, P
up | )

Another type of focusing occurs when initially (u < 0) all geodesics in the
family are colinear, i.e.v< is fixed (and put to zero for simplicity) and p* = 0. Then
for u > 0 '

2 (u) = b —ab'u,  wv(u) = —ab® + a?b%u  (2.1.28a,b)
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The focusing occurs for up = 1/a.
We finish this paragraph with a brief discussion of a ”partial” focusing taking

place for the sourceless shock waves, i.e.

f(a) == ai}, D a;i=0 (2.1.29)

Such sourceless waves are of particular importance since they are also the string

vacua. Fixing v« = 0 and p* = 0 and all * = 0 except b’ one gets

i(u) = b7 — a;b’u, w(u) = —a;b7 + aZbu (2.1.30)

where no summing should be performed for the indices occuring twice. The
indicated subfamily gets focused for u = 1/a? hence some (milder) concentration

of energy occurs.
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2.2.The field theory in the shock wave backgrounds

In the previous paragraph we have discussed the focusing of the geodesics in
the shock wave metrics. It is of obvious interest to obtain a field theory picture
of corresponding phenomena, i.e. the field theory in these background metrics.
Such information would be more complete simply because the geodesical picture
should be reobtained in some appropriate limit. This is not the only reason why
to pursue such a program. Since the dynamics of the general relativity is described
by the Einstein equations, the field theory language should provide a more relevant
information on the problem of a creation of the curvature singularities. It may
also happen that one finds no energy density singularity at the quantum level
(the indicated ”geodesical” singularity would be smeared due to wave or quantum
effects). It cannot be said, however, that in these cases the creation of a singularity
is excluded. A large enough energy density at the scale of the Schwarzild radius
for the given energy may create a singularity as well. We shall see that in some
cases the indicated geodesical singularities do survive in the framework of the field
theory while in others they are smeared. As an example of the former there is the
homogeneous infinite planar shell , the latter is represented by the finite planar
shells.

There is another reason why to study the focusing phenomena at the quantum
level. We would like to have a quantitative expression for the energy density. We

may model the family of the classical geodesics by some quantum state and calculate

expectation values of the energy-momentum tensor in these states. A singularity .. --. .

of this quantity suggests an appearance of a curvature singularity via the Einstein
equations, if we study in the first approximation the back-reaction on the metric.
Besides the investigation of the focusing phenomena there is also a motivation
to solve the problem of the scattering of the quantum relativistic particle on the
Aichelburg-Sex] metric (2.1.17). Having supposed, that the only change which
the relativistic wave function suffers crossing the wavefront is the change of its

phase (which may be found knowing the geodesics of the metric),t’Hooft found the
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S-matrix [27]. We shall show from the first principles that his assumption was
correct. |

To build a quantum field ktheory on a general curved background is somewhat
intricated task (for a detailed discussion see f.i. ref.[14]). The main problems are
connected with a possible nontrivial topology of the manifold (cf. the Hawking
effect [30]), with a physical interpretation of the quantum modes if the curvature of
the backgrounid is non-zero and also with a renormalization of the enérgy momen-
tum tensor, which - by the way - is the basic quantity needed for our discussion.
Fortunately we are not forced to enter these difficult problems here since the shock
wave backgrounds are particularly simple. Indeed, they are topologically trivial
and ”almost everywhere” flat, so, for instance, the renormalization of the energy
momentum tensor outside the wavefront does not constitute any problem.

A quantum field theory on the shock wave background may be easily formu-
lated. One must find two complete sets of solutions of a generally covariant field
equation. These solutions should look like the plane waves (not to be confused
with the gravitational plane waves!) for v < 0 (in-region) and u > 0 (out-region)
respectively. The Bogolyubov transformation that connects these two sets then
follows and the dynamical content of the theory is fixed i.e. the S-matrix elements
and the expectation values of observables may be found in terms of the Bogolyubov
coefficients.

For simplicity we will consider the scalar theory setting a mass of the field
to zero, since we wish to mimic a classical picture of the null geodesics. A gen-
eralization to the massive case is trivial as will be clear from what follows. The

Klein-Gordon equation in the shock wave background reads

5’2 32
Jdudv = 6(u)f(z) ov?

1
o+ D=0 (2.2.1)

The in-modes must look like the free ones

Ufree k_.k(Z,%, V) = Nyezp[i(—k_v — kyu + kz)] | (2.2.2)

28




for u < 0. Here kp—1,k are the components of the (D — 1)-momentum, E is
the energy ,
_El/Q(E-ICD_l), IC.*_E]_/Z(E‘FICD._]_) (22.3)

and

Ny = ((2m)P~t2k_)~1/? | (2.2.4)

The normalization factor N . ensures the usual normalization of the modes and
hence of the annihilation and creation operators with respect to the measure dk_dk
(note that dk_dk = (k- /E)dkp-1dk) so that

ole) = [ dh-db(on_sun_s(s) + af_ 40l i)

with

lak_e,af_ ] = 6(k —1)8(k- —1-) (2.2.5)

If we happen to know how the in-modes look in the out-region it is easy to de-
compose them in terms of the out-modes, to compute the corresponding Bogolyubov
transformation between a;,,, afn and @z, alut operators and, consequently, the S-
matrix elements and various expectation values of the field observables.

We will look for the in-solutions of (2.2.1) of the form

Uk,in (U, v, ) = Ngexp(—ik_v)vg in(u, z) | (2.2.6)

From (2.2.1) one sees that the functions ¥k,in must fulfil the Schrédinger equa-

tion with the ”"time” dependent potential

A

e,
to Yhin = (*Z/;:_— — f(2)8(u)k= ) in (2.2.7)

29




All information about the dynamical evolution of a quantum mechanical system
is contained in the kernel G(z",u",z',u’) of the equation (2.2.7). Once we know
this kernel it is a simple matter to continue a solution from the in- to the out-
region. Moreover, since the evolution is that of the free system unless v = 0 in
fact we need just G(z”,0%,z',07). We provide two simple ways of a determination
of this quantity using the operatorial language and the path integré,l formalism.
This is quite remarkable in view of the fact that the integral is not gaussian. We
shall see that both methods give the same result thus having another example of
an exact result obtained by means of the continual integration. Let us start with
the ”cla,ssical”j operatorial approach. One regularizes the é-function in (2.2.7) by

an expression |

5o(u) = 21—6(0(11, +e) = 0(u—¢)) (2.2.8)
thus having
d A
Zéziﬁk,m = H:(u)Yr,in = (*:ﬁ;: — f(2)6e(u)k=) Yk in (2.2.9)

A solution of (2.2.9) must be a continuous function since the right hand side
is bounded. Now the only nontrivial propagation occurs in the interval —¢ < © < &

and one has

Vi in(+e,T) = /dy <z | exp[—z'HE(O)ZE] |y > Yrin(—c,y) (2.2.10) =+ -

because in this interval the Hamiltonian is time-independent. Performmg the

limit € — O we obtain for an arbitrary k

$in (0%, 2) = (07, 2)exp(ik- f (2)) (2.2.11)

or



G(a",0%,2,07) = §(z" — z')ezp(ik- f(z)) (2.2.12)

We turn now to the continual integration formalism starting with the well-

known Feynman formula for the kernel,i.e.

"
u

Dy(u) exp (z/ du [lc__yz + f(y)kfé(u)]) =

ul

y(u”):m”

G(x”, u”,ml,ul) — /

y(u')=a'

_ / Dy(u) exp (k- f(y(0))) exp (iSsreely(w)]) =

= c/ dz exp [ik_f(:c)]Gfree(a:",u",a:,O)Gf,ee(a:,O,a:',u')
- (2.2.13)

where ¢ = 1 in order to recover the correct expression for the f =0 case. Thus

G(z",0%,',07) = 6(z" — ') exp (ik- f(z'))

what coincides with (2.2.12). Substitute now the in-mode ¥,in to (2.2.11), Le.

Poin(0F,2) = expli(kz + k- (2))] (2214

It is not difficult to see from (2.2.6) and (2.2.14) that the energy k- +ky

remains positive for all out-modes in the decomposition of the in-mode. We can. .. ..

therefore conclude that no particle production is seen, or in other words, the in- and
out-vacua are identical. It is easy now to find the Bogolyubov coefficients. Indeed,

we look for a function (or a distribution) ®(k-,k,l-,l) with a property (for u > 0)

/ dl_dl@(k,l)ul‘mt = Uk,in (2.2.15)

and hence



Qi out :/dk_.dk@(k,l)ak,in. (2216)

Clearly
O(k,l) = 6(k_ —1-)®(k,1) (2.2.17)
Thus
/ dl®(k,1) exp (ilz) = exp (i[kz + k- f(z)]) (2.2.18)
and
B(k,1) = —s / dzexp (i (k — Dz + k_f () (2.2.19)
’ (2m)P—2

Knowing ®(k,!) one may compute the S-matrix elements. For example

k_
<0} az,oufaLin |0 >= N
0¢0

Note that the factor k_/v/kolg is needed to make a transition from the light-

cone formalism to the usiual one.

B (k,1)6 (k- —1-) (2.2.20)

As an example let is shortly discuss the Aichelburg-Sex! metric in D = 4, i.e.

f(z) = —8pGlin(|z|/C) (2.2.21)

The basic quantity @ 45(k,l) reads

(2.2.22)

~ 1 T'(1 —t4pk_G) 4 1—idpk_G
& 45k, l) = —
Gas(k ) =2 T (idpk_G) ((k~l)2)

This result was obtained also by t’Hooft supposing (what we have shown pre-

cisely) that thé only change which the wave function suffers crossing the wavefront
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is the phase shift. We have solved the field theory on an arbitrarfr shock wave
background reducing the problem to a mere irtegration. Now we shall study the
expectation values of the energy momentum tensor in the scattering states. Having
prepared the system in a one-particle state with a sharp value of the momentum
k_,k we want to know the mean value of the energy momentum density in the out-
region. As we already have mentioned one has no problem with the renormalization
of this quantity. Indeed, the stress tensor as a local quantity must bé outside the
wavefront the same the same as in the flat space time so we adopt the usual nor-
mal ordering procedure. Since we shall find that the in-vacuum is the same as the
out-one, the ordering with in- and out-operators coincides. The energy momentum

tensor in a flat region of the manifold is given by

Ty (2) =: 8,0(2)0,0(2) — %n,i,,n"pac,(p(z)aptp(z) D (2.2.23)

and

QO(Z) = / dk - dk(a’k,in(out) Uk, in(out) (Z) + a’lt,in(out)uzgin(out) (Z)) (2224)

Here z stands for u,v and z. Inserting (2.2.24) into (2.2.23) one may derive

that

o 1 o
<0 | @b snTon(2)a] g, |0 >= (878 = Sn,un™)

x (uk.imd (Z)u;.imﬂ (z) T Ukinsp (Z) uz,inw (z))

The formula (2.2.25) is valid in both in- and out-regions. It describes the expec-
tation value of the energy momentum tensor in the scattering state | k_,k > with
the sharp value of the momentum in the in-region. After crossing the wavefront,
however, the same state will not be that of a sharp momentum anymore. Therefore

(2.2.25) in the out-region contains a nontrivial information about a distribution of
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the energy and momentum of an initially homogeneous signal. We know how the
in-modes look in the out-region from (2.2.15). One sees again that all information
is contained in the basic quantity @(k,l) given by (2.2.19). For which particular
polarization of the shock wave may be interesting to evaluate the expectation value
(2.2.25) explicitly? Clearly the most interesting candidates are the metrics where
the geodesical focusing occur. In (2.2.25) we have the quantitative expression for
the energy density we may learn therefore whether it possesses a singularity or not.

Set the polarization function f (z)

flo) =Y Agyz'e’ - (2.2.26)

where A;; is some symmetric matrix. If TrA = 0 the wave is fsourceless, if
A;j = —ab;; the profile (2.2.26) is that of the homogeneous planar shell with the

wavefront energy density given by

_ (D=2)a
= T8nG

One may always work in the transverse coordinates in which the matrix A;;
is diagonal. Moreover we shall consider it as nonsingular since otherwise the inte-
gration in (2.2.19) would give rise trivially the §-function contributions to & (k, 1)

i1 the momenta corresponding to the zero eigenvalues directions. Put therefore

Ai; = aibij (2.2.27)

and compute

1 :
o(k,1) = (2—7—;)—5:—,2 / dzexp [t[(k — Dz +1- Zaﬂ'xﬂ] =
A 'S aT (ke —1)3
= (47rl—)~(D_2)/2’/detiA"1exp [_7’2%4[( )J]

Consequently, for v > 0



Uk in (T, 4, v) = Nge =" (dnk_)~(P=2)/2\/deti A1 x
Iz ( —Uur, ) . 'U'F’,"kz' . k'up,'
/dlexp o L +z§: 4]:_3 —zZ(—-——;k“J ——mj.)lj}

where a] ! = —up;.

(2.2.28)

The integration in (2.2.28) is simple. Unless u = up,; for some j it gives

Ug,in(Z,u,v) = Nke_ik"”(\/detz'A"l/\/detz'R(u)>e:z:p(zupjk J4k_)x

kj (2.2.29)
| Xexp[k D Ty )2J
f J -

'u,'—’UpJ

here R(u)s; = (u — ur ;)6

fu=u r,; for some j the integration is again trivial, nonetheless the result
is somewhat cumbersome, therefore we do not list it here in a general case. One
gets typically a product of § (z; — kyup;/2k_) (no summing) and of an expression
of the kind (2.;2.29). There is a particular case, however, which we do Ppresent since
it is directly connected to the very purpose of these computations, namely to the
focusing phenomenon. It it the case of the full degeneracy i.e. up,; = up for all j.

Then for v = u one has

k_v) K=\~ (D=2)/2 .
Uk in(x,up,v) == Nke(—1'k“v')(-—-) (P=2)/2 dettA—1x
m

Speaking loosely we observe a ” focusing” of the in-mode on the line u = Up,T =
kup/2k_ and v arbitrary. Having u ;, we can compute the expectation value of
the energy momentum tensor from (2.2.25). Of particular interest is the head-on
scattering state i.e. k£ = 0. As we said already in the introduction in the head-on

collision of the shock waves the curvature singularities occur [3-11] moreover at the
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same location u = up at which the geodesical focusing (2.1.28) and (2.1.30) occur.
What will happen at v = up with the expectation values of the energy momentum

tensor? The results of the computation reads

<0 aoinToo(z)ag ;, | 0 >=2N2 | detR(u)A |~ x

2p—1 2 3532 2 2.2.31
x ETr“R W)+ (2 s 1) ] (2.2.31)

unless v = up,; for some 5. Thus the energy density is singular at this point!
We witness again a presence of the ubiquitous singularity at v = up yet in another
context. One has thus the singularity of the curvature tensor, of the energy mo-
mentum tensor of the quantum field theory, the focal point of the geodesics and we
shall see that in the string theory framework the vertex operators will be singular
at u = up as functions on the target space! We conclude now the presentation of
the field theory in the shock wave background. A more detailed physical discussion
of this material we postpone to the following chapters where a comparison with the
string results will be made.

We shall present a closer study of an interplay between the classical and the
quantum focusing of energy in the Appendix 1, where we shall argue, in particular,
that for homogeneoiss finite planar shells the geodesical singularity is smeared by

the quantum effects.
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3. THE NONLINEAR ¢-MODEL

3.1.The bosonic string

In this section we shall treat the string - both bosonic and super - in an
arbitrary shock wave background metric in D dimensional space time. Why is it
interesting to study the string propagation in this particular case of gravitational
field? The reasons are at least three. First of all there is an obvious motivation to
learn something more about the fate of the focusing singularities in the quantum
gravity context. The second is to obtain an information about the ultrahigh energy
string scattering in the spirit of t’Hooft described in the preceding chapter. The
third, in turn, has to do with a purely field theoretical point of view . We have
in mind the fact that the nonlinear o-model corresponding to this background can
be solved exactly providing a nontrivial S-matrix given explicitly in terms of the
shock wave profile. This is quite a rare situation. Slightly anticipating we shall see
even fourth interesting aspect; i.e. some of the shock waves are the classical string
vacual

We shall show first that the model may be integrated as the classical theory
[16]. Start therefore with an action for the generic o-model with a background

metric gmn (zF)

1 )
S = —‘é‘;/dadT\/}:haﬁaaX1n(aa T)aﬂ){n(a, T)gmn(X(U’T)> (311)

Note that (3.1.1) is written in units in which o' = 1/4 (cf.(1.1.2)) and differ-
ently with respect to the first chapter we work in the Minkowski signature in both
worldsheet and the space time sense. To be closer to the usual string formalism

we slightly change our conventions and set the shock wave metric in the following
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form

ds® = —2dudv + f(z)6(uw)du? + dz? (3.1.2)
or, in other words, we put

JJO—:I;D 1

U= —— v

2 3

8
o

+

8
v
A

(3.1.3)

(%)

The action (3.1.1) becomes

=~ / dodry/Rh (90X ™99 X N + F(X)6(U)0aTUB5T)  (3.1.4)

For certain f(z) (to be specified in the next chapter) the Weyl anomaly is
absent so that one may fix the conformal gauge h*? = 7*#. The equations of
motion then read

02U =0 (3.1.5a)
X = %amf(x)a(v)aaUa“U (3.1.58)
%V = -;-f(X)a'(U)aaUaaU + 20, f(X)8X™6(U)O*U  (3.1.5¢)

We must add also equations obtained by varying (3.1.4) with respect to hap
which amounts to vanishing of the world sheet energy momentum tensor of the

theory.

—20V —2U'V' + XP 4+ X7 4 f(X)5(U) (U +UP) =0 (3.1.6a)
~UV' —VU' + XX'+ UU'f(X)6(U) =0 (3.1.60)
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where, as usual, the dot and the prime represent derivatives with respect to r
and o respectively. One may simplify considerably these equations by noting that
U fulfils the free equation hence we are allowed to go to the lightcone gauge by

setting

Ulo,r) = p“r (3.1.7)

The remaining equations of motion then become

8°X,;(0,7) = -%puai F(X)6(r) (3.1.80)
82V (0,7) = _-;- FO8 () - 0, (X)X8(r)  (3.1.8)

and the constraints

2p*V = X2+ X2 1 p*f(X)6(r) (3.1.9q)
V' =XX' (3.1.9%)

It is instructive to compare these equations with the geodesical ones (2.1.20)
and (2.1.21).The sign — on the right hand side of (3.1.8) and (3.1.9) arises from the
convention 82 = —~92 + 32. As in the geodesical case (3.1.8a) and (3.1.9) imply the
V-equation of motion (3.1.8b). We shall therefore solve (3.1.8a) for the transverse
coordinates X and then obtain V from the constraints (3.1.9). For 7 # 0 the

problem is the same as in the usual flat space time, and we shall denote modes and o

solutions in terms of the free ones for 7 < 0 and 7 > 0 with the subscripts < and

> respectively. Thus for the open string, for instance,

: . . , 1 . i
Xz<(>) (0,7) = Tois) T Pe(s)T Z ;a;7<(>)e **Tcosno  (3.1.10q)
7540

. 1 ;
Veylonr) = Ve(>) tPs)T 1 E ;Oz:’h<(>)e “*Tcosno  (3.1.100)
n#0



where

1 ; ; 2,v
a:;,,<(>) = '51;[[ Z a:z—m,<(>)a:n,<(>‘)’ a0,<(>) = p<(>) (3‘1'11)
e

The problem is to find the out-quantities pg,xg,a;) and v, as functions
of the in-ones xi,aﬁb,<,v< and p%. We start by inserting in (3.1.8a) a following

ansatz

X*(o,7) = (1) +1 Z —i—lafl(r) cosno = z*(r) +1 Z i—(ai — ot _)(7) cosno

n0 n>0 ;
(3.1.12)
The equation for the zero mode z*(r) becomes
. 1 ,,1 /" :
~5(r) = ~3"(5 [ dod:f(X(0,0)))5(r) (3.1.130)
0

and for the other modes n > 0

. . o : 1.,2 [~ ,
_.Z_(&” — &L ,) —in(a}, —av,) = —gp”(;/ 9:f(X(0,0)) cosnodo) (3.1.13b)
0 .
From these equations follows immediately that

=z, ~ (3.1.14q)

and

(an,> - a?i-n,>) = (an.,< - ai—n,<)a n>0 ‘ (3115)

Integrating (3.1.13ab) one has




b=t O / 8.1 (X (0, 0))do (3.1.16)

and

. w ™ .
(@n>+a, )= (o, c+ab, )= %_/o 0*fcosnode, n>0 (3.1.17)

Putting together (3.1.15-17) one has for all n

o s = ab o+ %/} 0:f(X(0,0)) cosnodo (3.1.18)
o

Then we obtain «f, . from the equation (3.1.11). There remains to determine

v>. One uses the constraint (3.1.9a) that may be integrated directly yielding

Va(,0) = Ve(0,0) + 3/(X(0,0)) (3.1.19)

For the zero mode of (3.1.19) we thus obtain

vs =vc+— [ f(X(0,0))do | (3.1.20)

It is not difficult to check that the nonzero modes of (3.1.19) are solved by
ay, . given by (3.1.11) and (3.1.18) as a consistency requires.
For the closed strings the situation is not much different. We proceed analo-

gously having

; i i 1 L ~2i R i2n7y  —2ing

Xz<(>)(aa T) = Te(>) TP<(»)T T+ 5 Z “TZ( n.<(>)¢ - O‘;i;,<(>)€ "7)e zn
. “ nF0

(3.1.21a)

and
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: g 1 v —2inTr v 2inTy —2ino
Veylosr)=ve(s) + P57+ 3 Z 1‘{(5<(>)5 i L<(>)eo Je™*
i n#=0
| (3.1.218)
The ansatz reads
| z i 1 LPs i —2ino
Xi(oy7) = 2 (r) + = > =(BL(r) — ol (7))e (3.1.22)
2 4~n
n#Q
The equation (3.1.8a) becomes
i 1,1
—i(r) = -5 (;/3 f(X)do)é(r) (3.1.23q)
and for n # 0
=1 1: 1 u 1 ir 2ino
-—(ﬂ‘ 6,) = 2mi(f, —ol,) = —op ;/8 fe¥nodo (3.1.23b)
As before we find
-
0‘; > = ai <+ E_/ aif(X(O‘,O))e_%”"da
! ! 47 0

:;,> = ﬂ:;.,( + ’p““/ aif(X(a, O))ezmada
'U>———'U<+""/fx¥0'0

We may finish at this point the treatment of the classical bosomc string and

turn to a study of the superstring.

(3.1.24) .




3.2.The superstring

In the covariant gauge the action for the superstring moving in a generic grav-
itational field 1s that of the nonlinear supersymmetric o-model i.e.

5=~ / drdod®0 DY ™ DY g, (¥) C @321)
m

where

Y™(o,1,0) = X™(0,1) + 0p™(0,T) + -;—@Bm(a, T) (3.2.2)

¢ and 1 being the 2-dimensional Majorana spinors, B™ the auxiliary field and

D, D the usual covariant derivatives i.e.

J .., - a .
D= ry i 1p%00,, D= ~37 +120p%d, (3.2.3)

with the 2-dimensional Dirac matrices

p°=(‘3. BZ> p1:<(; 8) (3.2.4)

In our specific case we have

7

S = — [ dodrd*0(DY™DY™n,,, + DY“DY* F(¥Y*)s(r™) (3.2.5) -

:47r

Varying (3.2.5) one produces equations of motion which we list directly in the

superfield formalism

(DaD* -~ DADy)Y* =0 (3.2.6a)
(DaD? — DAD4)Y* + DY“DY*f,; (Y¥)6(Y*) =0 (3.2.6b)
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(DaD* — DAD)Y" — DA[f(Y))6(Y*)| DAY ™+

_ 4 . =, " NP (3.2.66)
+DA[f(Y")6(Y™)| DAY ™ — DY“DY fY*)é'y*)=o0

Since we have obtained for the components of the Y supermultﬁiplet the free

equations of motion, we can choose the light cone gauge for which

U(o,r) = p“r, A Y*(o,7) =0, B"(o,7) =0 (3.2.7)

The equations (3.2.6bc) now written in the components become

%Xt = —%ai F(X)p¥é(r) | (3.2.84)
9%V = —% F(X)6'(r) — 8: 7 (X)X58(r) (3.2.86)
ip%,t =0 (3.2.8¢)
ip*0ath” = -21-2‘31- F(X) e 6(r) (3.2.8d)
B*=B"=0 (3.2.8¢)

We observe that, rather remarkably, the bosonic equations of motion remain
untouched by the presence of the fermionic modes. There remains to compute

the worldsheet energy momentum tensor and the supercurrent in order to find the

(super)constraints to be attached to the equations (3.2.8). Working directly in the. .. .

light cone gauge they are

2%V = X2 4 X2 %@i(poao +p101) Y + f(X)pU6(r)  (3.2.94)
2V =2 XX %W’(awl + 81p0) " (3.2.9b)

pupopa¢t' — pﬂpdd)iaﬁ)&“‘ (3.2.96)



It may be shown again that the transverse equations of motion ‘(3.2.8ac) and
the (super)constraints (3.2.9) imply the Y equations of motion (3.2.8ac). We
observe that the transverse fermionic modes are not influenced by the presence of
the shock wave and the equation (3.1.20) for the zero mode vs by the presence of
the fermionic degrees of freedom in the constraint equation (3.2.9ab) from which
it was derived. Finally the superconstraint (3.2.9¢) gives us 92 in terms of the in-
modes. Having solved the classical equations we may now perform a quantization

of the presented formalism.
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3.3.Quantization

To quantize the classical theories discussed in the previous two sections is now
a simple matter. We may do it in terms of the in- or the out-modes, both satisfying

the canonical commutation relations i.e.

[mi<(>)’pi(>)] = iéija [v,pu] = —1 (3.3.1(1)
[afn,<(>)>ai,<(>)J = 57:'?.m5m+na [6jn,<(>)’ﬁi’<(>)] = 5i]im5m+n (3.3.1b)
and

[ (0), ¥ (0)] = 76964p6(0 — o) (3.3.1¢c)

These two sets of modes should be related by a unitary transformation which
is by definition the S-matrix. It will turn out, rather remarkably, that this S-
matrix is given by the same expression for all cases previously discussed i.e.for the

bosonic,super,both open and closed strings. The formula reads

m

S = exp [%pu /0 do (X (0,0))] (3.3.2)

It may seem strange at a first sight that the S-matrix does not contain the
fermionic degrees of freedom. This should be the case, however, since the transverse -
fermionic modes fulfil the free equation of motion (8.2.8c). We shall formally prove
that the expression (3.3.2) correctly transforms the in- into the out-modes mot
entering possible ultraviolet problems in (3.3.2). We may start with the open string

for which immediately

. . 1 ™
Stpes =p*,  Sleis =12z sty =0v+ 5;{-/ f(X(0,0)) (3.3.3)
0
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To compute the transformation of the of, modes is slightly more 1nvolved We

start with a trivial formula

Stal S = of — [, ST]S j (3.3.4)

In order to evaluate [;,, ST] one first realizes that

[, F(X(0,0))] = =8 F(X(0,0))i cos no ‘ (3.3.5)

Now from [8°F, f] = 0 it follows also llet, f], f] = o. Knowing this we may

!

write

[of,, exp (—;%pu /wa(X(a, 0))do)] =

: . . (3.3.6)
= [}, —5p" /0 £(X(0,0))do] x exp (~i 2 /0 £(X(0,0))do)
Using (3.3.6) we have
Stai § =of — [afl,——ri p“/wf(X(a, 0))d0]STS =
0 (3.3.7)

=o' + El—p”/ 8*f(X(e,0)) cos nodo
s

Putting together (3.3.3) and (3.3.7) we observe that the equations (3.1.14a), . .

(8.1.18) and (3.1.20) are reproduced as they should. For the closed strmg one has

in the same spirit

65, £(X(0,0))] = ~2e%70,£(X (0, 0)) (3.3.50)

0%, F(X(0,0))] = -éxﬁn-aa,- £(X(2,0)) EEED)
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and

Sfa;S = o, + %/ 9 f(X (o, O))e"zi”"do‘ (3.3.9a)

51815 = 6+ 2 [ 0 (X(0,0)) 7 do (3.3.90)
T Jo ;

This result reproduces the formulae (3.1.24). We notice also that at the quan-
tum level an ambiguity in the operator ordering arises. For instance, it is not dif-
ficult to see that the normal ordering in the exponent of (3.3.2) causes the normal
ordering in (3.3.3),(3.3.7) and (3.3.8). For an illustration let us list some particu-
lar examples of the shock waves profiles. To make a connection with the focusing
phenomena we give the S-matrix for the homogeneous infinite planar shell shock

wave (ie.f(z) = —az?,a > 0)

S =ezp[— %pua[xz + E 4n9( L—abh) (gl — o)) (3.3.10)
n#0

where we have considered for concreteness the closed string case. In some
situations it is interesting to study the regime , in which we consider the string
zero mode, i.e. the string position, to be large with respect to the string scale (see
[13]). In this regime one may decompose f(X (o, 0)) in (3.3.2) in a Taylor series in
X , where X denotes the non-zero modes contribution. At the lowest non trivial

approximation one has (again for the closed strings)

1
4n?

g(2) — exp(—;—pu [f(z) + %aqzaJ'f(m) Z

n#E0

(5 - o) (6}~ od)])  (3:3.1)

Here the superscript (2) indicates that the approximation is quadratic in the

nonzero modes. For them one obtains



s@htei 52 = o, — %ai 89 f(z) (B ; — n.d) (3.3.12a)

(3.3.12b)

T

Nt ai a2 ;WY nigg

@i g™ = g — L'd7 f(a) (e~ ra)
i.e. a Bogolyubov-like transformation. For other curved backgrounds [31] for
nly in the qua
d. Our result follows from the ezxact

which an S-matrix can be found o dratic approximation a similar
.12) has been foun

kind of expression as (3.3
f the shock wave background.

expression which is an unusual feature o



3.4. High energy string scattering

We have mentioned in the introduction that one of the most appealing features
of the string theory is the new language which it uses for a description of the physical
phenomena or, in other words, the string theory constitutes a new kinematical
scheme. Up to now two kinematical conceptions had to be used, i.e. the classical
field theory for the general relativity and the quantum field theory for the other
interactions. It was because the usual way of quantizing a classical field theory did
not work for the general relativity. The situation has evolved in the last decade,
however, with an appearance of the string theory. We have more or less explained
in the introduction and the Chapter 1 what are the basic mathematical concepts
of the string theory so that clear difference with the usual space time field theory
is seen. In spite of (or due to) this difference the string theory does the right job,
it yields a consistent and finite S-matrix which in an appropriate limit reproduces
the tree level field amplitudes including those of general relativity. But what kind
of physics does it predict? To get an answer we could in principle compute some
string amplitudes with certain precision in the perturbation theory and check them
at an accelerator. We cannot do the latter since the direct string theory predictions
lay far beyond scales presently available.

Yet suppose that we have an example of a physical situation in which we can
adopt several :kinametical schemes for its description. Moreover the dynamics is
such that ezact results may be obtained. In such case we may learn more than the
fact that one kinematical scheme gives a tree level of another one in some limit. ..
If one has exact results at his disposal the comparison of the various kinemati-
cal schemes is not only more convincing it may also rule out the theory. We can
therefore test the string theory in the sense of giving the same results in an appro-
priate limit as gives a hierarchically lower theory, without running inevitably to an
experiment. Such testing of the theory may be called a ”language” testing.

We shall argue that we have the example alluded above.We show that three

different kinematical languages, the field theory in curved background, the exactly
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solvable nonlinear o-model and the string perturbation expansion in the flat space
time summed up to all orders, fit very well together. To show this we have to
undertake yet another digression which will turn out actually to be starting point "
of our discussion.

In the reference [13] there have been computed the S-matrix for the ultrahigh
energy scattering of low level superstring excitations. It was obtained by resumming
- at high energies - a leading asymptotic behaviour of all order multiloop amplitudes
in a flat metric o-model. The explicit formula for two string scattering (in the

impact parameter space) is given by

m

| . N do,d
S = exp [22/ s a(s, b+ X%(0y,0) — X%04,0)) : __o_r;r_z_aé] (3.4.1)
0
where a(s,b) is the tree level string amplitude
12 (Y —in/2)
__ 8 Gnyup [* -t,D/2-3 —
(L(S,b) - WTH-—‘Z——Z) A dte™ "t / 3 Y = IOgS (342)

Here /s is energy of the process, b the impact parameter, X“(au,O) and
X 4(04,0) the non zero mode transverse position operators of the strings (denoted
”up” and "down”) participating in the process. Comparing this result with the

shock wave o-model S-matrix (3.3.2) we see that the string "up” with a momen-

tum p“ moves effectively in the shock wave background with the profile f given - -

by

fly) = q"/o S alsy— X%(04,0)) : fl% (3.4.3)

Here ¢” is the momentum of the "down” string impinging in the v-direction,
= z% — 2% is the difference of the zero modes and s = 2p*q¥. Moreover for very

large y(or b) the profile (3.4.3) becomes
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167G N 1

fly) =4¢" GRS

This is the Aichelburg-Sex] metric in D dimensions! We remind the t’Hooft’s
idea mentioned in the previous chapter. The ultrahigh energy gravitational scatter-
ing of two objects may be described as a collision of one object with a gravitational
field created by the other [27]. This is precisely the state of affairs which we have
obtained. The object is the noninteracting (test) string moving in a gravitational
field which must be of the shock wave type since the process occur at the ultrahigh

energies. The profile (3.4.3) of this shock wave is the result of the full-fledged string

Op = 27P/2/T(D/2) (3.4.4)

theory. For large b one has the Aichelburg-Sex! metric corresponding effectively to
the pointlike source. For smaller b the string corrections become important and
the metric differs from the A.S. one. Tt develops an imaginary part thus indicat-
ing a presencé of inelastic channels. The real part for small y avoids the singular
A.S.behaviour and consequently the poles in the field theory S-matrix (2.2.22).
There is yet another remarkable property of (3.4.1). Though computed in
the framework of the superstring theory the final expression does not contain the
fermionic modes. This is in perfect accordance with the irrelevance of the shock
wave background for the fermionic degrees of freedom. Putting all these facts
together we arrive to the conclusion that a nontrivial curved geometry is generated
in the mutual collision of the superstring excitations around the flat string vacuum!
This result cannot be obtained by any truncation of the perturbation expansion

hence, if the expansion has a sense, it should be exact in the high energy limit.

Let us recapitulate. The full-fledged string theory gives the S-matrix (3.4.1) - -

describing the scattering of two strings. This S-matrix is identical to the S-matrix
(3.3.2) which solves the nonlinear o-model for an appropriate profile of the shock
wave. This profile gives for large values of the impact parameter b the Aichelburg-
Sexl metric which is therefore generated dynamically in this process. Going with
string scale to zero we produce the field theory limit which is precisely the S-matrix
(2.2.22)! We wittness that the results of three different kinematical (and mathe-

matical) schemes, i.e. the full-fledged string theory, the twodimensional nonlinear
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o-model and the field theory in the curved background, fit perfectly each other as

we have promised to demonstrate.
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4. NONPERTURBATIVE EVALUATION OF THE WEYL ANOMALY

4.1. The bosonic string

It is wellknown that quantizing a generic o-model action (3.1.1) one need not
obtain a consistent string propagation. The trouble is that we must fulfil the
basic condition (1.1.13) meaning the quantum conformal invariance. A nonlinear
field theory is plagued in general with the ultraviolet divergences which must be
regularized in some way. Such regularization brings into the theory a scale factor
which, in turn, endangers the conformal invariance. In order to be conformally
invariant the field theory coupling constants must be independent on the scale or,
in other words, the f-functions ought to vanish. This is a very severe constraint on
a possible background metric gmn (X %) in (3.1.1). A natural question arises: What
conditions must the metric fulfil to give the vanishing S-functions? Expanding in
the parameter o in the o-model perturbation theory up to one loop omne finds that
the Einstein equations have to be satisfied! This is the famous result [32-37] showing
that the string equations of motion for the metric tensor are identical to those of the
general relativity. Higher loop computations give further string corrections to the
Einstein equations [38]. Unfortunately it does not seem to be technically possible
to compute the conformal invariance conditions up to all orders of the perturbation
theory and even if it were possible it is hard to imagine how such monstrous set”
of equations could be solved. Yet there is a way how to look for solutions of the
classical string equations by an ”insert-and-check” method. One picks up a metric
suspected to be a good candidate and performs the perturbative calculations. It
may happen that due to special properties of the metric a general argument might
be given that f-functions vanish at all orders. We shall see in what follows an

example of such situation. A more ambitious task would be to identify a nontrivial
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classical string vacuum nonperturbatively evaluating directly the Weyl anomaly
and checking ihe basic equation (1.1.13). It turns out that even such a program
can be realized.

It is obvibus that we shall suspect the gravitational plane waves to be the
classical string vacua since we have found that they are dynamically generated in
the string theory. To check such a hypothesis is needed also for learning for which
profiles of the shock wave f(z) the corresponding o-model solved in the light cone
gauge in the previous chapter is indeed the consistent theory in the sense of the
conformal invariance. The light cone gauge condition (3.1.7) may be imposed only
if the theory 7s conformally invariant - the fact that we have not checked at the
quantum level. We remind that the usual requirement of the Lorentz invariance in
the light cone gauge cannot be used here since the background is not even classicaly
Lorentz invariant.

From the technical point of view one may expect that the conditions for con-
formal invariance should be found exactly in the theory which is exactly solvable.

Consider therefore a simple generalization of the shock wave metric described by

D-2
ds? = —2dudv + Z (dz?)? + F(z,v)du? (4.1.1)

=1

where the light cone coordinates u,v are given by (3.1.3). String motion in
such background may be also solved exactly by a suitable extension of the method
used in the previous chapter picking up the light cone gauge being again the crucial

step. We shall now demonstrate that if

Z Eﬁ—F(x,u) =0 (4.1.2)

zIQzd

the corresponding o-model is conformally invariant if D = 26 for bosonic string
and D = 10 for superstrings. The condition (4.1.2) is equivalent to the vanishing

of the only nontrivially zero component R,, of the Ricci tensor. This will not
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necessarily imply the vanishing of the curvature tensor so that the geometry of the

model is nontrivial.
We shall be able to prove this result nonperturbatively for the case described

by
F(z,u) = Z Ajzir(u) (4.1.3)

where r(u) is an arbitrary function. For general F (z,u) we are able to show
that the condition (4.1.2) implies the vanishing of the B-function perturbatively at
all orders of the o-model perturbation expansion.

Before plﬁnging into details it should be noted that the model under question is
formulated necessarily in the Minkowski spacetime. Indeed a motion of the lightlike
signals has no counterpart in the Euclidean formalism where the concept ”light
cone” itself does not exist. But it is precisely the Minkowskian nature of the model
which is responsible for its splendid ultraviolet behaviour. One may suspect it even
before starting to do actual calculations since states with negative norms formally
propagate in the theory (they drop out from the physical spectrum after imposing
the Virasoro conditions). An experience , say, from the Pauli-Villars regularization
teaches that the short distance behaviour of the theory should be better. There is
nonetheless a price to be paid for this advantage, namely, the world sheet differential
operators which are in fact sources of an appearance of the Weyl anomaly are not
formally positive definite therefore one encounters problems in an evaluation of
their determinants. This may be cured, however, by computing the determinants
in the Euclidean regime and then rotating the result to the Minkowski formalism
as we shall show in what follows.

Let us start with the nonperturbative case described by the metric of egs.(4.1.1)
and (4.1.4) for the bosonic string. We shall find the Weyl anomaly by computing

the effective action of the o-model in the conformal gauge

hap = € Nup (4.1.5)
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where hyp is the world-sheet metric.

The action reads

S = —%— / dzﬁ(zvagU — X982 X7 + Z AJ'(X")Qf(U)(aU)Q) | (4.1.6)

M)

where, as usual, V(¢),U(€), X7 (&) are embeddings of the string in the space-

time. The generating functional for correlation functions in this gauge is

WylJ] = exp (iZ4]J]) = Arp / DV DU DX? i
4.1.7

exp (iS 43 / e (T, V + T U + JJ.XJ')),

where J are the sources and App is the Faddeev-Popov determinant for the
gauge fixing (4.1.5) which may be read off from (1.1.16). We shall suppose for
convenience to work on topologies without zero modes being interested only in a
contribution due to local properties of the world sheet. The treatment of topologies
with zero modes is of course possible [20] even if more laborious.

We define the measures DV and DU by the scalar products

| IIWHQ=/dZe\/EW2, 16U2 = /d?g\/ﬁwg (4.1.8)

Denote then ), and f, eigenvalues and normalized eigenfunctions of the .

d’Alambertian e~ %92 so that

e 0% fr, = A\ f (4.1.9)

and decompose generic U,V and J, into the eigenfunctions f,,

V = Za'nfnn U - Z bn.fn.a ‘]'U - chfﬂ- (4110)
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The integral (4.1.7) may be now rewritten as

exp (1Z4]J App/HdaanmeX’ exp ( Zan/\ by, —t—zZancn)
xexp —-—/d‘ — X782 XJ+ZA (X9)2r (U )(3U)~)]

x exp (+ /d ge? (T, U + J; X7))

(4.1.11)
An integration over a,, now produces
exp (iZ4[J]) = Arp / H dbom, H §(Ambm — ¢m)DX?
3 2 ' 02 vd 2
X exp [—E/d ¢(-X79°X? %-ZAJ'(XJ) r(U)(8V) )} (4.1.12)
J ;

x exp (+i / d2eet(J, U + J;X7))

and over b,

exp (iZ4[J]) = Appdet™!(e~?8%) / DX exp +i / d?¢e?(J U + J; X7)

X eXp [—% / d2E(— X782 X7 + ZAJ-(XJ')%(U')(aU')Z)]
’ (4.1.13)

where

1
U= 'g‘:;—a—g“]v (4114)

The remaining X integration is Gaussian and gives
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exp (zZ¢,[J]) = Appdet ™! (e™?0?%) exp [z/ d?¢e? T, U’

D-2 :
< I1 det~1/? (—z‘e"f’[az - Ag-r(U’)(aU’)Q]) (4.1.15)

N e L .
X exp [ 2 / ST =@ — A (U (8072 "]

Before evaluating the determinants it is more convenient to obtain a formula

. for the effective action by performing the Legendre transformation

Tyl X%, Ve, Uil = Zy[J] — / dP€e? (J; X0 + TuUet + JuVat)

Lz sy . ez (4.1.16)
Y N S NPT N o T ebSJ;
we find that
1 — I
Vo = —555J0 =U (4.1.17)
and
X3 = - J

I = J (4.1.18)

T e=%(0% — A;r(Ua) (8U4)2)

We do not need a formula for V,; in order to evaluate the effective action.

Inserting (4.1.17) and (4.1.18) into (4.1.16) we compute the effective action

exp (iI‘qs[Xcz]) = Appldet_l[e—d)a?']l
D-2
X H dd_l/g (_-7’.6‘([’[82 - AJ'r(Ucl)(aUcl)QD exp (iScI[Xch
=1
(4.1.19)
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where S, represents the classical action (4.1.6). The usual ¢ dependence of
the determinants arising from the X7 integration in the free case is modified by the
interaction term, proportional to A;. Working in the euclidean formalism and with

the standard heat kernel method the ¢ dependence of those determinants is

D-2
I det~? (e’¢[~— A +AJ-T(UCI)(8UCI)Z]>
woxp | Do [ el1/28 28+ et~ Loy ) [ @erwaovarel

(4.1.20)
Collecting the ¢ dependence of eq. (4.1.20), of the (free) determinant that
arose from the U,V integration and of App and performing the Wick rotation

to Minkowski signature we arrive at the effective action

g : 26 — D 1 '
rqS[Ucl;Vc[XZ[] = Scl[UclaVcla XZ[] + 48 dgé(—qﬁag(ﬁ - .U'2€¢)
(4.1.21)
ZA ) [ @erwaovas + S B (U 4)
=1

where thé term Y F represents the ¢ independent part of the deferminants in
(4.1.19).

At this point we note a modification of the Liouville action (1 1.32). Due .

to the nontrivial background, ¢ couples here to Uy. This fact may have certain
consequences in attempts to construct string theories including propagation of the
Liouville field ¢ [18]. If we reset o' from the convention of = 1/47 we have used,
that modification is proportional to «'.

We see in (4.1.21) that the effective action is ¢ independent if

S 4;=0, D=26 (4.1.22,23)
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For the background metric (4.1.1,4) we are discussing, the independent nonzero

components of the curvature and the Ricci tensors are

Rinju = —Azbiyr(w),  Ruuw=—(D_ A;)r(u) (4.1.24)

so that the Ricci flatness of the target manifold implies the anomaly cancella-

tion in D = 26.
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4.2. The superstring

In this section we extend a discussion of the Weyl anomalies to the super-
symmetric o-model. We shall compute the effective action of this ﬁheory in the

superconformal gauge

hap = €Map,  Xa = iPaX (4.2.1)

Here x4« is a spin % gravitino field, x is a two component Majorana spinor
and p, are the usual Dirac matrices in two dimensions. Actually we will compute
only the ¢-dependence of the effective action (by setting x = 0) and then use

supersymmetry to restore the dependence on the whole superconformal field ®

8(6,0) = ¢(¢) + Ix()e™* + 500B(€) (4.2.2)

where B(¢) is an auxiliary fleld.

The action is

5= ——;- f d2§(2V82U — X992X7 4 2" Dy — T DI+
+ 3 A (X7 (U)[(0U) — 4 Dy + % Do Ar(U) = (03
. j

J
— 21> A X (U) 7 0, U)
-

where D = ip®d, is the free Dirac operator. The generating functional now is

Wy|J,w] = exp (1Z4[J,w]) = sArp / DU DV DX’ Dyp* Dy* Dy’
(4.2.4)
X exp (z'S 41 / d2ee*P(J,V + JU + J; X7 + avg? + oup™ + wj-zpﬂ'))
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where w are the spinor sources and sApp is the Faddeev-Popov superdetermi-
nant which may be read off from the equation (1.2.11). Repeating the procedure

followed beforé we arrive at

exp (zI‘¢) = exp [iSy]sApp|det ™ [e™??8?]|det(e* D)

D-2
X {I;Il det‘1/2< 62 (9% — A;r(Uy)|(0UL)? — _2‘1151#31]}) | 425)

D-2
X H det'!?[e=*iD exp( Z Uet, Yot ))}
j=1

where the term in the square brackets represent the superdeterminant arising
from the gaussian integration over the fields X¥,47. The last factor is its ¢ inde-
pendent part which, as before, we need not calculate. Notice that the fermionic
contribution to the superdeterminant that depends on ¢ does not depend on A; and
hence on the interaction term of the o-model (nontrivial part of the background
metric).

The determinants in (4.2.5) are calculable as before to give

- D
P¢=S (XchUl, c[7¢c[’ cl’ gl) /d 6( ¢a ¢ /1'2 ‘7q.'>)
~ 4.2.6)
S A4 [, , (
- &L | Per(Ua)|(0U)® — B4 DYl)é + Z Fr(Uet, ¥, Aj)
Restoring the whole dependence on the superfield ® of eq.(4.2.2)
10— D
F@ZSC[( c{lLa clalrj)—{‘ /d fd 0( D@——/J,e‘b)—— ‘
D-2 | (4.2.7)

A -
2 / PEPODYIDY (YD + 3 Fo(VE, Aj)




where

D = 3/38 — ip“09,, /d20§0 = 2,
(4.2.8)

YH(E,0) = XP(€) + Byt () + 00F*(8)

F# being an auxiliary field. We thus see from (4.2.6) or (4.2.7) that the effective

action is ® independent if

Y 4;=0, D=10 . (4.2.9,10)

so that the Ricci flatness of the metric ensures the absence of the anomaly in
D=10.

Let us néw discuss (and at first for the bosonic string) the generic metric
(4.1.1), ie., tliat is not necessarily quadratic in the transverse coordinates. The
explicit integration over the transverse coordinates X7 we did in order to obtain
the effective action cannot be done anymore. Nevertheless, the fact that the in-
teraction term is V' independent simplifies greatly the ultraviolet behaviour of the
perturbation expansion of the o-model. Since the UV -propagator cannot connect
two interaction vertices there are only X7 loops in the theory.

A simple power counting argument then reveals that the tadpoles are the only
sources of the ultraviolet divergencies. A simple tadpole with an arbitrary number
of X7 and U external legs will have a coefficient proportional to AF(X,U) where

A is the laplacian in the transverse coordinates X7. If therefore

AF(X,U) =0 (4.2.11)

the theory is finite so that the §-functions vanish at any order of perturbation
theory. On the other hand, the only nonzero component of the Ricci tensor for the
metric (4.1.1) is

1
By, = —5 A F(X,U) (4.2.12)
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and thus (4.2.11) implies the Ricci flatness as the condition for lack of the
ultraviolet divergences and consequently a preservation of the conformal invariance
at all orders of the perturbation expansion. The extension to superstrings is trivial
by remarking that only the tadpoles are potentially ultraviolet divergent.

We witness the recurrent irrelevance of fermions in this kind of metric. They
contributed neither to the S-matrix (3.3.2) that solved the theory nor to the con-

ditions for the anomaly cancellation as we found here.
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5”IN” AND "OUT” VERTEX OPERATORS

Vertex operators play an important role in the string theory since they trans-
late an information é,bout the physical spacetime string spectrum into a language of
the world sheet phenomiena. In other words the S-matrix elements of the physical
spacetime particles of the string theory are given as integrated N-point functions
of certain local composite operators (i.c. of the vertex operators) of an underlying
worldsheet conformal field theory. If the spacetime is curved the corresponding
worldsheet theory is the nonlinear o-model. A requirement of its conformal invari-
ance gives restrictions on the allowed curvature [32-37] and its conformal properties
also in principle determine the vertex operators [39- 40]. Thus the presence of a
nontrivial backgrotnd field influences not only a measure of the o-model functional
integration but also modifies the composite operators whose correlation functions
are to be evaluated.

In this chapter we will present results of a study of the string theory vertex
operators in tl:ie gravitational plane waves backgrounds. As we tried to illustrate in
the preceding chapters there are several reasons why the gravitationa,i plane waves
attracted recently an attention in the string theory . First of all the corresponding
o-models are in some cases u.v.finite constituting thus one of few known solutions

of classical string equations . Moreover for particular wave profiles (so called shock

wave ones) motion of string can be solved exactly in terms of explicite unitary

transformation , which reproduces the S-matrix obtained by resumming - at high
energy limit - string multiloop amplitudes in the flat background . Thus the shock
wave background is dynamically generated in the string theory. Finally such gravi-
tational waves act as perfect lenses in the sense that they focus energy of a classical
or quantum physical system being scattered on them producing singularities of the
energy momentum tensor. These singularities - by the way - lie exactly at the

location of the curvature singularities found in collisions of the gravitational waves
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suggesting thus that the focusing of the energy is related somehow to creation of
the gravitational singularities [15,28,29,41]. Since the string theory is believed to be
a correct description of the quantum gravity phenomena it would be interesting to
investigate related phenomena in its framework. We shall find in fact a * focusing”
of the vertex c;perator itself! :

Though our work is motivated mainly by the phenomena occurmg in the grav-
itational plane waves backgrounds it may have some consequences in the general
string theory : jas well since a detailed treatment of a simple model may reveal a
presence of new structures. Indeed the necessity of introducing of the ”in” and
"out” vertex operators in an analogy with the case of the field theory in curved
spaces promises an interesting physics concerning a string counterpart of the famous
particle creation phenomena (the Hawking effect).

In what follows we shall study a renormalization of the composite operators in
the o-model corresponding to the plane wave metric in 26 spacetime dimensions.
We shall evaluate the anomalous dimension operator for composite operators with
a naive dimension zero up to three loops of the usual perturbation expansion. Then
we calculate this quantity to all loops of the weak field limit. The result of this
two approaches happens to coincide. Eigenfunctions of the anomalous dimension
operator are found explicitly and those with the eigenvalue two are interpreted as
the scalar vertex operators. Finally we discuss their splitting in the ”in” and ”out”

ones and the relevant physics.
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5.1.Evaluation of the anomalous dimension operator.

A simple generalization of the plane wave metric in 26 spacetime dimensions

is given by
24
ds? = —2dudv + Z dz?" + F(z,u)du? (5.1.1)

J=1

u= (22 =2®)VE = (2 +2%)/VE

The only nonzero components of the curvature and the Ricci tensors for this

metric read respectively

Riwju = —(1/2)0F, Ry, = —(1/2)0%F (5.1.2)

If F(z,u)i= f(z)r(u), f(z) is called the transverse polarization function, r(u)
gives a distribution of the amplitude along the axis 2. As in [39] (where the vertex
operators were studied for a generic o-model to the lowest order in the string tension
o!) we understand the scalar vertex operator to be the composite operator with the
naive dimension zero and the anomalous dimension two. The latter requirement
follows easily from the Weyl invariance of the string amplitudes. Note that the
world sheet in this case may be considered as flat since no mixing with derivatives
of the Weyl mode may occur.The o-model action in the dimensional regularization

and with an infrared cutoff m reads

1 du2—25 . .
S=—= [ ————[(=28U0V + 8X70X7 + F(X.U)(3U)2
2/4,.(&,“25[( + + F(X,U)(8U)%)+

+ (—2VU + X7 + F(X,U)U%)m?] (5.1.3)

In this convention we may define a bare string tension a/p = a/u2® with p

an arbitrary scale while the fields remain dimensionless. As in the chapter 4 we
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find convenient to work in a special coordinate chart in the target space differently
from the usual approach based on the normal coordinate expansion [39]. Though
technically correct such procedure may look awkward from the point of view of
covariance with respect to the spacetime coordinate transformations. We shall see,
however, that the resulting anomalous dimension operator is a covariant expression
in the space time sense. An unusual form of the infrared cutoff term in (5.1.3) is
needed to maintain this covariance.

The diagramatics of the model is contained in Fig.1. Note a simple ultravio-
let behaviour of the theory due to absence of the field V in the interaction term.
Since the UV -propagator cannot connect two vertices there are just X7 loops in
the theory. Moreover only X7 tadpoles are potential sources of divergences in cor-
relation functions of the elementary fields. Their contribution vanish, however,if
d%ZF = 0, which is nothing but the condition on the Ricci flatness of the back-
ground.(Nevertheless the background may remain still curved - see eq.(5.1.2)). Now
correlation functions with an insertion of a single composite operator B(U,V, X)
are,of course, much more singular objects due to (infinite) multiplication of the
elementary flelds at one point.

By performing the loop expansion we evaluated diagrams with the single inser-
tion of the composite operator R up to three loops. The results of computations are
summarized in Table 1. Here , being proportional to the value of the propagator
at coincident points, is given by :
(1 eTm?

- —In(
€ 4mp

K ==

where « is the Euler constant. Using the minimal subtraction renormalization
scheme and taking into account the contributions of the lower order counterterm

graphs one finds for the renormalized composite operator R,.,,

D2

ot D? 1
)3(7)3] Rpare =

RO = 2L Lo
O=n-28 4 (e

1,

)* =

DQ
2 3!

g
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/
= exp(_—s—"——)Rbare + O(a’4) (5.1.5)

where

D? = -20,0, + 8%, — F(z,u)d? (5.1.6)

It is easy to realize that the anomalous dimension operator D? is just the
generally covariant Klein-Gordon operator in the background (5.1.1). One now
may extract from (5.1.5) a condition for a general composite operator R to be a

scalar vertex operator. It reads

(D*+ =)R=0 | (5.1.7)

af

The condition (5.1.7) is direct generalization of the usual flat space condition
with D2 instead of 82.
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5.2.The weak field limit and multiloop contributions

One may try to improve the result (5.1.7) by organizing differentiy the pertur-
bation expansion, namely to consider expansion in the coupling funci:ion F (since
the model is ﬁfaite F does not acquire any renormalization). Contribufjing diagrams
to the first order are depicted in Fig.2. We denote as Hy ; the graph with & tad-
poles and j R — F contractions. At zero external momentum one has for Hy, ; the

following contr1but10n

(—idraug)?+t
27!

HO’J' - (0%+...8%F)(a, ...04,02R) I} (5.2.1)

where

(pg —m?)

/ dpdqzzl—‘[l % (p? + m?)(g? + m?) HJ l(lo +m?)[(p+q+ Zf;ll ;)% + mz] -
= [dpaa]] a W[J(Jfl,,) pa — Jm) - sy -

(P2 + m?) (g2 +m?) [TIZ (17 + m2) [(p + ¢ + V2 1)? + m?]
1 1
_ / dpda [[ 1 =5 Lpg P T
1 J—1 (lf + mg) ‘ ‘

(oot it +m?] Ll (p? + m?) (g2 +m?) [T{Z; (1 + m?)

: 1 | S
N _ n _ H+ 75 5.2.2
P +m) 2 +m?) (P +m?) 21 @+m2) o2

and f; are finite.In (5.2.2) we used a short notation dp instead of —(—2——;2—?%

Now the integration is easily performed giving

.0
1 ikp ‘e)fﬂ

e +f; (5.2.3)




Collecting (5.2.1) and (5.2.3) and taking into account a trivial contribution of

k tadpoles one has

2 7 k
Hy; = —(8™ ...aﬂjg.)(aal ...aajaf(%-)kR)%'f—)—x
~g+1 . . . |
%’:—)1-)—,— — %(—i)”l(zxng)“l] (5.2.4)

Note that graphs G3,G3 + tadpoles from the Table 1 fall in the class of the

Hy, ; graphs.
It is not difficult now to find all counterterms needed to cancel the divergent
part of Hy ; diagrams. First of all one realizes that to the zeroth order the renor-

malization of R is the same as in the free theory i.e.

R(O)ren = [eXP<——€_—)]Rbaré ; (525)

Inserting %R(o)ren into (5.2.4) (we mark it by an index on Hj, ;) one has

0) (k)™ ey g E > 5
; ; ng,}{Z - Zj: W [8 1,..0% —2—} 8a1 e Bajaz exp(alﬁ:?)R(o)rm+
2

o ..
+ exp(aln—Z—)R(o),.m + finite (5.2.6)

Using a simple combinatorial identity

t
(7 +1)!

exp(A+1tB) = (1+tB+i [A[A...[A,B]...]])eA+O(t2) (5.2.7)

valid for arbitrary operators A, B one can rewrite (5.2.6) in the form

72




' 2
Z Z Hlioa) = exp [O‘"‘:(% - %’33)] Ro)ren + O(F?) + finite (5.2.8)
i ok

Hence

ol D? 5
R(l)rcn = exp '"’;_2_ Rypare + O(F ) (529)

and we reproduced the result (5.1.7).

One may conjecture that the series (5.1.5) or (5.2.9) ultimately exponentiate.
Despite some effort we were not able to prove it, nevertheless it may be of interest to
present some arguments for plausibility of this conjecture working with the simplest
(but physically relevant) case F(X,U) = A;X??r(U). Such theory in fact possesses
only one loop diagrams in the correlation functions of the elementary fields and one
may easily classify all contributions to the anomalous dimension operator. Besides
the already encountered Hyp,; diagrams and the trivial tadpoles G1 they are depicted
in Fig.3. It is somewhat cumbersome to demonstrate but with a little patience not
difficult to see that each contributing diagram is proportional to some term in
an expansion of the exponential of the generally covariant Klein-Gordon operator
(5.1.6) and vice versa. For example, contracting the interaction vertex with the
composite operator corresponds to term 8%F3,02R, the tadpole is mapped to
9%R and a line connected two vertices to 9*Fd,F. A problem remains however
what is the coefficient of proportionality. One must master the loop integration .
and a relevant combinatorics. Rather amazingly the former problem seems to be

simpler. To give a flavour what the integrals O . and C[ ., are about we

oin

provide an evaluation of the residuum of the highest order pole in the dimensional

regularization parameter ¢ for the graph O . (note that OF, = G3). One

writes for the relevant integral
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7

i
In ] H dp; H dg; H 1 dix.;x

( ' Prqre — m” )
i\ o+ )+ ) TS0, +02) | (D4 0+ iy L))
(pnqn: ™) NG (2m)26(3_p+ a+) 1) =

(g2 +m?)(p2 +m?) T3z, (12 ; + m?)

/HdedQHdl H Z PnQn'_ ’ )( ) (ZP+ZQ+ZZ) (5.2.10)

k=1 (P2 +m?2) (g2 + m?) HJ-:I(ZZJ- + m?)

X

Here 75 is a number of the dashed line propagators entering the vertex k, I
are the corresponding momenta labeled then by j ie. lg;. pk,qx , in turn, are
the momenta of the full lines entering the vertex k (see Fig.3). We again used
the brief notation for the integration measure . Modulo the lower order poles (or,
equivalently, ignoring the infrared cutoff m in the numerators of the fractions) one

may write

1 1
11, vt /Hdequdl 21+1 21+2)[ iy -

(p + md)(ql + m.‘) szl(lij + m2)

1 N 13+ m?
N z 2 2>< L 2 3

7 S
(pl + q1 + Zjl:'l lieJ‘)d +m t=1 (pI + mz)(qi + m2) Hj]:_—yl(lij + m2)
1 1 ~
R T ) (6 ) Ty 0, + o))
p m i= l( +m q1 m _';::l( 1,J+m ) :
3 (H Zk) (Pogn =) (2n)*8(Sp+ X g+ 20 1

(g2 +m2) (p2 +m?) [, (2 ;+m?)  (1+1)(+2)

n,J

oy —2¢
-1 . TR L i1+l -1
X [Ig.+7:2+21i350“17:k - (Zl + 2)( 47]_ ) ' I’i’;‘l‘lqiSy..qin} (5'2'11)

k=2
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This simple recursive formula reduces the problem to an evaluation of the

integral I} which, as already the notation reveals, is just the integral (5.2.2).
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5.3.The vertex operators

We will now study eigenfunctions of the anomalous dimension operator (5.1.7)
for the background (5.1.1) with F(X,U) = ZAijg&(U) and ). Ay = 0. Thus we

have

(28,0, + 82, — 24,27 6(u)d2 + z—/)R =0 (5.3.1)

The factor 2 we put for the later convenience and ) ;Aj = 0 is the condition
of the u.v. finiteness. In this background the focusing phenomena occur, moreover
due to its relative simplicity one may hope to obtain exact results.

Every solution of (5.3.1) is clearly a ”good” vertex operator. Nevertheless
one has to identify some principle which would ”organize” the space of the vertex
operators or, in other words, to find a complete set of the solutions of the linear
equation (5.3.1) which would allow some natural physical interpretation. In the flat
spacetime one simply performs a decomposition in the plane waves and interpretes
a single mode as the vertex operator with the corresponding momentum. In curved
spaces there does not exist any plane wave decomposition, however. The problem is
identical to that of the field theory. Its usual solution constitutes in finding several
sets of the mode decompositions whose elements look like plane waves (or, more
generally, have some prescribed form) in appropriate ”pieces” of the manifold. A

following physical interpretation then relies on the knowledge of the transformation

matrices among the complete sets. Not to enter in somewhat vague and unnecessary -

general formulations we may use as an example precisely the background under our
study. One has in this case two flat pieces of the manifold for v < 0 and v > 0
respectively. They are glued together along the wavefront v = 0. Two complete
sets of solutions of (5.3.1) may be introduced [Chapter 3], elements of the first one
- called the in-modes - look like the plane waves in the region v < 0. The second
set contains of the out-modes having the same property for © > 0. Due to presence

of the gravitational wave the in-modes will not be anymore plane waves in the
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out-region. This means that a quantum state with a sharp value of the momentum
before the arrival of the wave , which is described by the in-mode, will scatter on
the wave in a nontrivial way (for details see Chapter 3).

Coming back to the string theory one is naturally lead to introduce the ”in” and
" out” vertex operators *. Slightly extrapolating there can be drawn a conclusion
that a string counterpart of the noninteracting field theory in curved spaces lies
in the vertex operators sector of the string theory. This would mean as well that
the interesting conceptual problems of the field theory in curved spaces such as
a notion of the particle, the particle creation by the background etc. can be in
this way directly translated in the string physics. It may be therefore of interest
even from the point of view of the general theory to find a framework in which the
phenomenon of a string creation may be understood. In the usual geometric picture
of the string scattering one may shrink a single string leg to a point on the world
sheet by a suitable conformal transformation maintaining the information about
the string state in an appropriate vertex operator. But a *number of strings in the
vertex operator” in a curved background may depend on the observer precisely as
in the field theory!

After these somewhat premature considerations let us find explicitly vertex
operators fulfiling eq.(5.3.1). Such equation for the massless case was actually
solved in the Chapter 3. The modification due to tachyon mass is easily taken in
account. To work with the same conventions as in the Chapter 3 we perform a

coordinate transformation v — V/2u,v — +/2v thus changing (5.3.1) to

)

o 1

— Zad . 3'2 2 1 _ e
(=0udy + = = Ay §(u)0; + 50 R = 0 (5.3.2)

One calls the in(out)-modes those solutions of (5.3.2) which look like the usual

plane waves in the region u < 0 (u > 0) i.e.

* That such splitting may in general take place was already remarked in [39]. We
provide an explicit example of the solution of the classical string equations when

this indeed happens.
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Rin(out) (z,u,v) « exp [i(—k,,v — kyu + ijj)] (5.3.3)

with the obvious mas shell condition. Using the method of Chapter 3 one finds

for u > 0 the following form of the in-mode (or the in-vertex operator)

R P S
26!//(:,,, Hj.z(u -+ Ag‘ )

— S AT E? : :
X e:»(p1,'[~—z——1—-—‘7-——i + k, Z ———-1-—~:I(3:J + A'lekT’)z] (5.3.4)

4k, - u 4+ A~ J
K] a

Ryin(z,u,v) exp(—z'lcvv +17 X

For the out-operator may be obtained an analogical expression. We see the an-
nounced singularities of the scalar vertex operator in the target space at the points
with u = —A;l. Since the singularities occur for an arbitrary small magnitude
A; of the gravitational wave one may use the weak field limit result (5.2.9) to con-
jecture that, in fact, the higher orders corrections should not smear it. A physical
meaning of these singularities in the framework of the string theory is quite a subtle
problem which deserves further investigation. In the field theory one can evaluate
the density of the energy momentum tensor in the quantum state corresponding to
the in-mode finding a singularity of that quantity at the same points. What is an
energy momentum tensor of the string field theory or how the string amplitudes
»feel” the presence of the singularities are interesting questions to which we hope

to return elsewhere.
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6.CONCLUSIONS

We have studied in this thesis a string theory in the gravita,tional plane wave
backgrounds. It turned out that in particular cases of these backgrounds the Weyl
anomaly vanishes hence the string theory may be consistently formulated. The
gravitational plane waves constitute therefore an example of a solution of the clas-
sical string equations of motion or, in other words, they are the classical string
vacua. Apart from the Calabi-Yau spaces this is up to now probably the only known
solution. It is moreover ”exact” in the sense that the Weyl anomaly was computed
nonperturbatively . A sufficient condition for the vanishing of the anomaly was the
Ricci flatness of the manifold at the critical dimension D = 26 for the bosonic and
D = 10 for the superstring.

A string motion in the gravitational plane wave background was found exactly
for the bosonic string and for the superstring as well. The quantization of the
corresponding o-model was performed for the case of the shock wave background
and an exact expression for the S-matrix was given in terms of the shock wave
profile. It turned out that this S-matrix coincides with that computed from the
full-fledged string theory in the high energy limit [13]. This fact may be interpreted
as an evidence of a creation of the nontrivial geometry of the space time from the
string theory formulated around the flat vacuum. We have obtained therefore an

example of a dynamical travelling from one string vacuum to another.

The gravitational plane wave vacuum is highly asymmetric. The spacetirri;“

has a (topologically simple) sandwich-like structure, i.e. two flat pieces of the
manifold are divided by a curved one. These fact have a consequence for an explicit
form of the string spectrum around this vacuum. Having studied the lowest string
excitations we found that the vertex operators have to be divided into "in” and
"out” omnes precisely as in the case of the field theory in curved backgrounds. This

means an appearance of a new structure in the string theory which may account
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for such phenomena as a string creation by a curved background in analogy with
the usual field theoretical Hawking effect. We have computed the ”in” scalar vertex
operator up to three loops of the usual perturbation expansion and to all loops of
the weak field limit. This operator happened to possess singularities in the target
space. These singularities, in turn, are connected with the curvature singularities
of the general relativity which occur in collisions of the gravitational plane waves.
We have solved the field theory in the shock wave background and have shown
that expectation values of the quantum field energy-momentum tensor are singular
precisely at the same location. We gave also an exact derivation of the S-matrix
for the field theory in the shock wave background having confirmed the result of
t’Hooft guessed from the behaviour of the phase of the quantum wave function.
As far as the perspectives are concerned there is obviously a lot of work ahead
in knowing a detailed spectrum of various string theories in the gravitational plane
wave vacuum, a behaviour of the string amplitudes and pa,rticularly how all this
stuff is influenced by the presence of the vertex operators singularities. Another
direction would be to study in a closer way the dynamical travelling from one to

another string vacuum in the particular context described in this thesis.
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APPENDIX

1.Finite fplanar shells

In this appendix we shall present a closer study of an interplay between the
classical and the quantum focusing of energy. We shall argue, in particular,that
for homogeneous finite planar shells the geodesical singularity is smeared by the
quantum effects.

We start with a computation of the expectation value of the energy momentum
tensor for the infinite planar shell (2.1.10). Evaluating (2.2.31) for (2.1.10) gives

D2
u
< k-,0|Too(z)|k-,0 >= ZN’?TE_:SHB:'EX
- (u, - uF)2

(
[4(11, - up)
for u # up,u > 0. Using (2.2.25) and (2.2.28) we may obtain also a formula
for v = up; explicitly :

(0, forz#0

<k, 0[Too(z)|k_,0 >={ Al
|Too()] o =0 (4.1.2)

In the derivation of this formula one must take care for the usual damping

e-regulator needed for computing the gaussian integral. The infinity in (A.1.2) is
an ill-behaved expression due to multiplication of distributions.

Let us now remind the basic results obtained before for the homogeneous pla-
nar shell. If one chooses u as an affine parameter, for the family G of geodesics

perpendicular to the wave front there was obtained

r(w) = b— b(u/ur)6(u) | (A.1.30)
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v(u) = —(b%/ur)0(u) + (6% /uF)ub(u) + v (A.1.30)
p(u) =vo (A.1.3¢)

Here b is the ”impact” parameter, r the transverse radial coordinate, © the
set of angular/coordinates, v is the ”initial” position on the v-axis and 6(u) the
usual step function. If we fix ve and vary b it follows that such subfamily of G gets

focused at

U= ur, v=vg, z=20 (A.1.4)

Varying also v« one spreads the focal point (2.2.33) over the v-axis. Moreover
no geodesic from G crosses the points v = up,z # 0, but one sees an ”accumulation”
of the geodesics with a large impact parameter b near the plane v = upr. We observe
that the described geodesical picture corresponds very well to the quantum results
(A.1.1) and (A.1.2). We should clarify, nevertheless, in what sense the family of
geodesics is a classical limit of the state |k—,0 >.

Generally speaking the classical limit of a quantum field theory is the classical
field theory and the geodesical picture is the geometrical optics’ approximation to
it. Therefore in the strict sense we should consider an expectation value of the
quantum field in some manyparticle state with a property that this mean value
would look locally like a plane wave with an eikonal giving rise to the family G.

This is obviously not our case since we have considered only the one-particle states

in which the mean value of the field operator is simply zero. There are other reasons, - -

however, why the quantum results (A.1.1-2) are analogical to classical ones (2.1.28).
It is not very surprising, indeed, since the state |k_,0 > is a translationally invariant
state and as such it models at the quantum level a family of colinear geodesics. Yet
there is a deeper connection between both pictures and relies on the important role
played by the Schrédinger equation (2.2.7) in our analysis. From (2.2.2),(2.2.29)
and (2.2.30) one sees that the u-dependent potential term in (2.2.7) has an amusing

property, namely it changes in the course of the evolution the state with a sharp
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value of momentum into the state with sharp value of the coordinate z at the ”time”

w = up. One has for u <0

2
 Ykin(u, ) = exp [_ii—r;;u + 1kz] = exp (15 (z, u, k)) (A.1.5)
and for u§> 0
— (k )2 .
Yrin(u,T) = Aexp [2%1- (= ij?iur) ] = Aexp [zS'(az,u,q)] (A.1.6)

here m = 2k_, ¢ = (k/m)ur and A does not depend on z.

The point is, that the functions S(z,u, %) and S(z,u, q) are both the full in-
tegrals of the Hamilton-Jacobi equation (HJE) for a free particle with mass m.
Having some full integral of the HJE denoted ¥ (z,u, ) it is easy to find the tra-
jectories of the particle by expressing = as the function of v, and S from the

equation

%(x,u, o) =p (4.1.7)

where 8 is canonically conjugated variable of . Hence giving a full integral
of the HJE, fixing a and varying the canonically conjugated variable £ a family of
classical trajectories is defined. Thus one may say loosely, at least in our special

case, that a quantum eigenstate of the observable a ”contains” all classical states

with « fixed and B varying. If, in particular, one considers the full integrals S,S’;- ----

given by (A.1.5) and (A.1.6) respectively, for k¥ = 0 (and, consequently, ¢ = 0)
one finds that the corresponding family of classical trajectories is precisely the
family (A.1.3) with varying impact parameter b and ¢o. Thus the behaviour of the
phase of the in-mode 1y ;, is dictated by the behaviour of the beam of all classical
trajectories with the incidental momentum k. In the same spirit a "geodesical
content” of the state |k—,0 > would be the full family G with varying position
in both v— and z-axis, namely both v and b,dp in (A.1.3). In this sense the
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scattering state |k—,0 > corresponds to the family G, therefore our results may be
interpreted as the quantum version of the geodesical focusing obtained before.
The analysis just performed finds another immediate application, namely it
enables us to say something about the status of the singularity for the homogeneous
finite planar shell (2.1.9). For u > 0 a trajectory with large transverse momenta are
not present in the family G since the trajectories with very large impact parameters
(b > R) are only slightly deflected (slightly because they still "feel” the null matter
in the domain |z| < R). Therefore the corresponding quantum state cannot be a
true position state in which, as we have seen, all momenta must be present. Note
that for « > 0 the momenta here play the role of the parameter 8 in eq.(A.1.7).
We may conclude from the Heisenberg uncertainty principle that the focal point
should be spread over the scale /A, where A is the momentum cut-off. Thus,
though geodesical behaviour signalizes also in this case a singularity of the energy
density, the quantum picture shows that the singularity is smeared. This simple
fact gives an indication that in the collision of two finite homogeneous planar shells
(which is physically realistic situation) the creation of the curvature singularity may

be avoided.
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2.The anomalous dimension operator - higher loop contributions

In the paragraph 5.2. we have presented the results of the computation of
the anomalous dimension operator in the o-model (5.1.3) up to three loops of the
usual perturbation expansion in . These results are summarized in the Table
1 and for the sake of simplicity the external momenta were set to zero since the
power counting shows that at most logarithmic divergences may occur. It may
be demonstrated, however, that even keeping the external momenta nonzero all
potential overlapping divergences cancel as they should. As an illustration we
present a more detailed evaluation of the most involved graph Gz.

One starts with

1 83 2 . . 1 2 ;. 2= 22z '
@5 =3(3) Rbm(g)(—z)z(mab) /d“; 2¢duy " 0, F (u1) 07 F (us)

X < X (1) X (ug) > [< V(E)OU(uy) >2 +m? <V()U(uy) >3] (A2

X [< V(€)0U (uz) >* +m® < V(€)U (uz) >?]

which is nothing but the graph G2 rewritten in the coordinate space. Turning

to the momentum space this may be cast as

1,022 ~ "

Gi=3(3) Rbare(ﬁ)(‘iﬂab)s/dlldlzajF(ll)aa'F(lz)
B 2m? — 2p1p})(2m?2 — 2paph)
x exp [—1(l1 + I /d i'ddd,( : g,
pl=illi+1a)e] [ dpadpidpadpa e S A e
(2m)272¢8(ps + P + p2 + Py — L — I3)

(p7 +m?)(p3 + m?)(p5 + m?)

where
dlz—zs
il = oy (4.2.3)

(422)




and

PO = / =22 p () (A.2.4)

We set

Oy, 1) = )? Rpare(£) (47 a®)2 85 F(1,)8; F (I2) exp [—i(ly + 2)€]  (4.2.5)

(

co |
QO
N‘cw

and continue

G3 = f dpydp' dpadphdly dlaQ(ly,12)

[2p1p} — m? 415 — 204 (ps + p}) —m® — 1§ + 2l (p1 + P})] (A.2.6)
[(p1 + P} — 11)% + m2](p} + m?) (p? + m?)(p3 + m?) (P + m?)

X (2p2ps — ng)(27r)2"2°.5(>__:p - Z 1)

Then we rewrite the integrand as follows

. » 1 ; 1
%z/TL“H“ﬂ@%wﬂ@%wﬂme+m—hw+mmﬁ+mﬂ‘
m? +12 — 2l (p1 + pY)
[(p1 + 27 — 1)+ m2(pZ +m?2)  [(p1+ P} —11)% + m?|(p] + m?)(p7 + m?)
(329} = 2m%)(21)5(S p = )

(7% + m?)pF + )

, (A.2.7)
A naive power counting indicates that the last term in the squared bracket
might be discarded as finite. A closer analysis, however, will reveal that this is not

so. Going on in the computation one easily arrives at
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G2—~/Hdede I, 1) [ (2paph — 2m?)(2m)*2¢6(3p — 20)

1 +m?)(pf’ +m?)(p} + m?)(pg’ + m?)
-2 pr e}
: ikp 28 (2paph — 2m?)(27)272¢6(py + p2 + Ph — 12)
——2/dp1dp2dpfo,( e ) (P2 + m2)(p2 + m?)(ph, + m2) Hdp

m® +13 =21y (p1 +p1)  (2paph —2m?) (2m)2 726 (X0 p — 301)
<I1a7 (P + m?)(p? +m?) [(p2 + 95— 12)> + m?|(p §+m~)(P’°+;m2)}

(4.2.8)
where & is given by (5.1.4) and further

-2 —2¢

)% +20(

G2 = /dlldlg[gﬂ(mz )T (m, )

Vs
2-2e m 1 — 2 (ps + pl)
/Hdp 2m)9T26 ZP Z (% + m?) (p2 + m?) (A.2.9)
o [2p2ph — m? + 13 — 2l5(ps + pb) — m? — 15 — 2la(p3 + p3)]
[(p2 + P = 12)? + m?|(p3 + m?) (p5" + m?)

o
4

and T'(m,[5) is finite and given by

1

m?2 412 — 2l(p + p')
T(m,) = | dpdp'— m A.2.10
(m. ) / pep (p® +m?)(p"® + m?)[(p+ p' — 1) + m?] ( )

Then we have

4 ikpT%\3 1K 2%,
G2 = [ diydly| - 20 !
1= [ e 30 4 00( )2, 1)

-0 / Hdpmg + Z% — 20y (p1 + p}) (27‘_)2~255(ZP _ Zl)
7+ (7 + )

1 : 2

(A.2.11)




It may be shown that the last term in the smaller square bracket leads to a

finite contribution and may be therefore discarded. We may finally write

2 ~ ~ .
G3 = %(%)ZRbare(f)(‘”aﬁa)s / dly 207 F (11) 9, F (lg)e 5 H2)¢
A.2.12
0 (B L (0, 1,) + Tom, 1) | + fimite A
3\ d4r 2\ dr . 2

The ?dangerous” T-term cancels with the analogous T-terms coming from the
graphs G? x Gi, G1 x G} and a counterterm graph G} where Ry, is replaced by
Rr(i,)z The product of graphs is defined in the Fig.3.
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Figure Captions

Fig.1. Diagramatics of the model (5.1.3). Dots near the lines mean the deriva-

tives, the circle with a point inside is the composite operator.

Fig.2. Contributing diagrams to the first order of the F-expansion. k and j

give numbers of contractions.

Fig.3. Contributing diagrams to the anomalous dimension operator at all or-
ders of the perturbation theory for F = A_,-ijr(U). All contributions can be
obtained by taking product of O™, C™, Hy ; and G} diagrams in the depicted sense.

Table 1. Contributions to the anomalous dimension operator up to three loops.
The lower index means the loop order. We list only graphs irreducible with respect
to the product defined in Fig.3. The dashed line means either UV or XX propa-

gators.
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Table 1
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uv propagator
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