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I. INTRODUCTION

String theories are attractive candidates for unifying gravity with the other forces
of nature into a hopefully consistent quantum mechanical framework, as it was first
proposed by Scherk and Schwarz [1]. Moreover, calculations of scattering
amplitudes do not require renormalization because they are finite. At least these are
the indications obtained from the analysis of string perturbation theory up to one loop
level.

It is obviously an important problem to know if the indications of one loop
finiteness and unitarity persist to all orders in perturbation theory. Most of this thesis
will be devoted to explaining the general framework for perturbative calculations of
scattering amplitudes.

The evolution of a closed string describes a world-sheet which is a two
dimensional surface imbedded in a target space-time. String interactions result from
non-trivial topology of the surface. This is a very peculiar aspect of the string theory.
In point-like particle theories the dynamics of freely moving particles and the
interaction between several particles are separate components of the theory and the
nature of the interaction is an additional input in the theory. On the contrary, the local
dynamics of the string does not depend on whether there are interactions or not. In a
Lorentz covariant formulation, the action of an interacting string is the same as that of
a free string. The topology of the world-sheet swept out by the string alone is able to
tell us that the string interacts. The number of handles of the surface gives the order
of the interaction. The boundary curves are related to initial and final strings.
Quantization may be performed by summing over all compact, closed surfaces (or
with given boundaries) in the functional integral. This formulation in which the
topological and the geometrical character is manifest was first proposed by
Polyakov[2].

Local symmetries of the world-sheet action have been recognized for a long
time to play a fundamental role in string theories. The string dynamics should only
depend on the intrinsic geometry of the world-sheet and not on the way in which the
coordinates are chosen. This reparametrization invariance was first emphasized by
Nambu. A natural way for achieving a manifestly reparametrization invariant
two-dimensional action is to introduce a metric tensor g for the world-sheet. In
terms of this metric tensor the action



S = jdzg Jg g™ 0,49, %, (1)
is known to be reparametrization invariant, i. e. it is invariant under arbitrary changes
of the world-sheet coordinates &1, 82 — ET(ET,E2), E2(E1,£2). x! describe the
space-time trajectories of the strings and the g,,, are unphysical auxiliary coordinates
introduced to incorporate the desired symmetries. Eq. (I.1) is an action appropriate to
describe bosonic strings. As it was emphasized by Polyakov [2], eq.(I.1) is also
invariant under local Weyl rescalings of the metric.

In the Polyakov formulation, quantization is obtained treating both the
coordinates xM and the world-sheet metric as two-dimensional quantum fields.
Quantization breaks conformal invariance which can be restored in the critical
dimensionality d=26 [2,3]. The understanding of the fundamental role of the
conformal symmetry was developed by Alvarez [3], Friedan [4], Belavin, Polyakov
and Zamolodchikov [5], Friedan, Martinec and Shenker [6] and others.

It is very convenient to consider an Euclidean world-sheet, then the space
traced out by the string can be thought of as a Riemann surface. For closed bosonic
strings, the perturbation expansion consists of Feynman diagrams which are
Riemann surfaces, and one can classify them by the topology. At g-loop level there
is topologically only one of these surfaces, which is a sphere with g handles. The
number g is the genus of the surface. Thus the tree approximation corresponds to a
genus zero surface, which has the topology of a sphere. The one loop term
corresponds to a genus one surface, which has the topology of a torus, and so forth.
In each case the diagram corresponds to a path integral of the form

fD 9., Dx"e ~S(eX)

where g decribes all possible geometries of the given topology. However, because of
the local symmetries of the action, one has to fix the gauge, i.e. a conformally flat
coordinate system [2,3], and introduce Faddeev-Popov ghosts [4,6]. Thus, after fixing
the gauge, one is left with an integration over the space of conformally inequivalent
geometries of a given topology. This space is called moduli space. It has 3g-3
complex dimensions for g>1 (one for g=1 and none for g=0). The integration
measure on this space provides a starting point for calculations of covariant multiloop
amplitudes in a bosonic string [7-11]. Great efforts have been made to evaluate
explicitly this measure and the integration region on moduli space, first with the help
of real moduli geometry [8,9], then with the help of complex geometry [7,12-14].
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Explicit formulae can be deduced from the principles of modular invariance and
holomorphic factorization. The former refers to invariance under topologically
non-trivial reparametrizations. Holomorphic factorization is roughly the requirement
that the right-moving modes only give a function of the holomorphic coordinates and
the left-moving modes a function of the antiholomorphic coordinates in the integrand.

A question of particular interest is whether the loop amplitudes have
divergences. Studies of multiloop bosonic string amplitudes indicate that there are
divergences associated with certain corners of the integration region on moduli
space. They correspond to degenerating surfaces, i.e. when the length of some
closed geodesic on the world-sheet shrinks to zero. These divergences can be
physically interpreted as due to the presence of the tachyon in the spectrum of the
bosonic string [15,13].

Soon after the discovery of bosonic strings, it was realized that world-sheet
spinors WK carrying a space-time vector index could also be incorporated in the
theory. Consistent theories are obtained by requiring also local world-sheet
supersymmetry [2]. Then, besides the metric, a world-sheet gravitino must be
introduced. From a geometrical point of view, the starting point for the fermionic string
is a two-dimensional supergravity [16]. These theories are consistent only for
space-time dimension d=10. The original models [17] contain both space-time
fermions (Ramond sector) and space-time bosons (Neveu-Schwarz sector). This last
sector still contains a tachyon. The analysis of the spectrum in the light-cone
formulation of the fermionic string theory shows that it is possible to make a suitable
projection (the GSO projection) [18] which eliminates the tachyon and yields to a
Supersymmetric spectrum, i.e. an equal number of space-time fermions and bosons.
Only after several years Green and Schwarz [19] discovered a light-cone formulation
of the NRS theory which contains only physical bosonic space-time vectors and
fermionic space-time spinors. This is known as the light cone formulation and it is
manifestly supersymmetric.

Superstrings are classified in three groups: type I, type Il and heterotic. Type |
superstring theory contains both open and closed unoriented strings. The open
sector can support nonabelian gauge fields when one attaches nonabelian charges
to the ends of the strings. The theory is anomaly free only for the SO(32) gauge
group [20]. Type Il superstrings contain only closed strings. Heterotic strings [21]
contain only closed strings and are obtained as a hybrid between the type Il
superstrings and the oriented closed bosonic strings. The sixteen extra dimensions
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of the bosonic string components are compactified to yield a Spin 32/Z, or EgxEq
gauge group.

There also exists a manifestly covariant and supersymmetric formulation which
is known as Green-Schwarz formulation. Quantization in the Green-Schwarz
formulation is a subject which is still under development.[22].

The covariant Neveu-Schwarz-Ramond formulation is instead more suitable for
guantization. In the Polyakov formulation, quantization is performed by integrating
over all possible configurations of the metric and the gravitino field. However, it is
non trivial to extend the analysis of multiloop amplitudes to the type |l superstring or
to the heterotic string [23-28].

First of all the measure for the type Il superstrings and for the heterotic theories
must be found following the standard gauge fixing procedure. This leads to the
introduction of the superghosts and reduces the functional integral to a finite
dimensional integral over the moduli space and 2g-2 anticommuting variables, the
supemoduli, which parametrize the gauge inequivalent gravitino configurations.

Moreover for a world-sheet of non trivial topology one must define the spin
structure of the spinorial fields, i.e. their phase shift under parallel transport around
closed loops. For closed oriented strings there are 229 spin structures [26,29]. In the
functional integral formalism the GSO projection is enforced by summing over all
spin structures for the left and the right sectors separately [30]. The sum over the spin
structures is necessary for the consistency of the theory. Since a modular
transformation mixes different spin structures, the relative weight of the different terms
of this sum must be determined imposing the requirement of modular invariance.

At first sight there are ambiguities in the measure coming from the integration
over the supermoduli. They are related to different choices of the world-sheet
gravitino. It has been formally shown that these different results are related by total
derivatives in moduli space [27,31]. However, it is generally expected that
superstring loop amplitudes are well behaved and finite. For supersymmetric
theories the vacuum amplitude must be zero due to the bose-fermi cancellation when
there is supersymmetry.This is true at the tree level. At the one loop level the
vanishing of the vacuum amplitude [25,26,32] follows from the Riemann identity. It
has also been argued that a number of so-called nonrenormalization theorems hold
[33,34], which states that the loop corrections to the vacuum amplitude and to the
massless one, two and three point functions vanish to all order. These arguments are
based on the existence of a conserved space-time supersymmetry. A direct proof is
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still missing. Explicit computations are given only up to genus two [35]. Here, as in
the one loop case, it is the requirement of modular invariance that makes the
amplitude vanish [36], after the sum over the spin structures has been performed.

Unfortunately the computation of non vanishing scattering amplitudes is much
more complicated. Although the superstring theories are expected to yield finite loop
amplitudes to any order in perturbation theory, it is difficult to show their finiteness
explicitly beyond one loop level. This comes mainly from the ambiguities related to
the path integral measure. From the two loop analysis it seems that the modular
invariance determines completely and uniquely the non-vanishing amplitudes.

The computation of the scattering amplitudes is the main physical problem in
string theory. In the Polyakov formalism the scattering amplitudes are given by the
functional integration over surfaces bounded by the position of the initial and final
string states. In order to obtain the transition amplitude the initial and final string
configurations should be integrated with their wave functions. In pratice, this difficult
procedure is replaced by a computation of S-matrix elements, where the initial and
the final states are set into infinity and only the lowest mass excitations contribute for
a given set of quantum numbers. In such calculations the incoming and the
outcoming particles are represented by vertex operators, and the scattering
amplitudes is given by the vacuum expectation value of the product of the vertex
Operators. Therefore a systematic construction of the vertex operators is needed.
They must be consistent with the symmetries of the action and, in particular, they
must lead to Weyl invariant and modular invariant scattering amplitudes. At tree level
classification rules for the vertex operator was done in Ref. [37] for the bosonic strings
and in Refs. [38,39] for the fermionic strings.

A question of particular interest is whether the loop amplitudes have
divergences, and if so, whether they are physical singularities. Singularities of this
kind arise, for example, when the points where some of the external vertices are
attached coincide [40]. They appear as poles in appropriate momentum square
variables and correspond to particles of various masses and spins that are
exchanged in the different channels of the scattering process. This allows us to study
the vertex operators for arbitrary mass states in a covariant way at any loop order
[40,41].

Finally, we would like to mention another approach which looks promising. It
concerns the generalization of the notion of a Riemann surface to a super Riemann
surface parametrized by coordinates (z,0) where 8 is a Grassmann number [42,43].
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Here the moduli and the supermoduli characterize the superconformal structure of
the super Riemann surfaces.The theory of supermoduli space is just at the beginning
[44].

This thesis is organized as follows:

In Chapter Il we review the derivation of the path integral measure both for the
bosonic string and the heterotic string. In particular, for the heterotic string two
different derivations are given, one with bosonic superghosts and the other with
fermionic superghosts.

In Chapter Il we present a systematic discussion of all of the propagators of
fields appearing in the Polyakov formulation, both for the bosonic and the general
spinning case. The construction of the propagator must take into account the
presence of possible zero modes. In this case the propagator is only defined as an
equivalence class, modulo the addition of a term containing the zero modes, which
turns out to be irrelevant in the non vanishing amplitudes. We use this ambiguity for
expressing the various propagators, except for the case of the scalar, as
meromorphic sections of the appropriate holomorphic line bundle on the Riemann
surface. We complete the discussion by also constructing the related zero modes.
Our discussion is based on the differential equations defining the propagators and
the zero modes. Similar results can also be obtained with the bosonization method
[45-47], which provides an alternative way of constructing the amplitude. We
complete our discussion by examining in detail the transformation properties of
propagators and zero modes under modular transformations, an essential step for
guaranteeing the modular invariance of the result.

We construct the correlation function for the scalar field, discussing the < xx >,
<dxx> and <dxdx> propagators, and the correlation functions for the anticommuting
system ¢p, ¢1_x (for half-integer A both even and odd spin structure are considered).

These propagators are used in Chapter 1V, V and VI for computing scattering
amplitudes.

Scattering amplitudes for a given configuration of the external states are
expressed in string theory as an expectation value, in the functional sense, of the
vertex operators. In Chapter IV we review briefly the standard construction of the
covariant vertex operators for the bosonic string, requiring the cancellation of all
possible sources of Weyl anomalies. Then an alternative method is followed. The
vertex operators for arbitrary mass level states are read from the residues of the
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poles for the intermediate states of the N-tachyon amplitude. The introduction of
Riemann normal coordinates allows us to describe in a covariant way the process in
which two or more external vertex insertions tend to a same point on the Riemann
surface, giving rise to the pole in the relevant square momenta. This formalism allows
us to obtain a vertex operator which is covariant and conformal invariant. The
covariance is achieved by means of a particular holomorphic abelian differential,
which is intrinsically definite on the Riemann surface. The vertex is also conformal
invariant since it contains no metric at all. The rules that are necessary in order to
perform selfcontractions, that are contractions within the same vertex operator, are
an automatic output of the formalism. These prescriptions are also covariantly
formulated.

In Chapter V we generalize this construction to the case of the vertex operators
for bosonic states (Neveu-Schwarz sector) of the supersymmetric and heterotic string
theories. They are obtained via factorization of the scattering amplitude on a general
Riemann surface for an arbitrary number of gravitons and massless gauge bosons,
respectively. The two-dimensional supersymmetry is manifest in the formalism
through the construction of covariant superfields, superpropagators and
super-normal coordinates. Thus the residues at the poles are a covariant
supersymmetric expression from which we extract the vertex operators with the same
properties.

In the last Chapter we construct the fermionic vertex operators (Ramond sector)
and we discuss the factorization properties of the amplitude for an arbitrary number
of external fermionic and bosonic massless states. The exchanged particles are here
both fermionic (Ramond states) and bosonic (Neveu-Schwarz states), then by the
same method desribed in Chapters IV and V we obtain the vertex operator for
Ramond and Neveu-Schwarz states. In particular an intermediate Neveu-Schwarz
state is obtained from the collision of two Ramond states and then the corresponding
vertex operator has a ghost number (-1 picture).



It MEASURE FOR MODULI AND SUPERMODULI

II.1  BOSONIC STRING MEASURE

Closed string models are described by a two dimensional field theory on the
world-sheet, a multiconnected two dimensional manifold embedded in space-time
traced by the string in the evolution from vacuum to vacuum. A closed surface T with
g handles, or Euler characteristic y=2g-2, corresponds to a g!'- loop diagram. The
path integral formulation [2] provides a natural framework to study the multiloop
amplitudes. We will concentrate here on the integration measure for the vacuum
amplitudes with no string coming in or out, so X will have no boundaries or
punctures.

On X we construct a two dimensional gravity theory with d scalar matter fields, d
being the dimension of space-time, that is with the action

2 mn
S=fd§,/§g anx“anxu
z

where & are local coordinates on the surface. x* (u=1,...d) is the field describing the
embedding of the string in the space-time and g describes the metric on . We
always assume that the Wick rotation has been performed both on the two
dimensional world-sheet and in the the target space-time where the string moves,
taking the latter to be flat. The action is clearly invariant if we rescale the metric by
gmn c0€) gmn
i.e. it depends only on the conformal structure. In two dimensions it turns out that a
conformal structure on a orientable manifold is the same thing as a complex
structure, i.e. a system of complex coordinate patches on Z [3,4]
z=E14j€2 z=t1-7€2
with holomorphic (antiholomorphic) transition functions. A two dimensional complex
manifold is called Riemann surface [48].

The string is also invariant under coordinate transformations which preserve
orientations or diffeomorphisms of ¥ and under the group of Poincare'
transformations in the target space-time.

In the Polyakov's approach to string theory quantization is performed by
summing the functional integral over all closed compact surfaces, treating both x4
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and the metric g as two dimensional quantum fields. In order to compute the vacuum
amplitude one must average over all embeddings xH and over all surfaces 3

X" Dg .S (xg)
Z = E —— ¢ (I11)
g f N

where the normalization factor a( is the volume of the symmetry group of the action
and will be determined later on. Eq.(IL.1) represents the partition function for the
bosonic string.

Scattering amplitudes are instead given by the functional integral over surface
with boundaries. For the S-matrix scattering elements the initial and final strings are
on shell and set at the infinity and they are represented by infinite cylinders attached
to the surface. Alternatively, on-shell scattering amplitudes are given in terms of
vacuum expectation values of local operators with the quantum numbers of the
external string states. These operators are called vertex operators. The amplitude is
obtained by summing over all compact surfaces and over all possible locations of the
vertex operators. The equivalence between the two formulations has been discussed
in Ref.[49]. If one wants to compute on-shell scattering amplitudes, one has to include
the insertion of vertex operators representing the incoming and the outcoming states:

DX DY oS (xg)
<v1(k§‘)...vp<k*;)> = z; j — " © Vi (K)o V(Y (1.2)

In Chapter IV we will give a detailed discussion of the vertex operators for the
on-shell physical particles.

For flat Euclidean space-time the x are free fields and their path integral is
Gaussian, so the crucial part of the computation of the vacuum amplitude is the
functional integration over the metric. The integration over the measures oxH and Dy
are determined by the requirements of symmetry and locality [7-10]. For oxH, the
measure is completely determined by a metric function on the space of small
variations SxH

2 2
8xH]° = J'd zJg 5X“5X” :
z

Note that this norm is reparametrization invariant but not Weyl invariant, then the
measure will contribute to the conformal anomaly. With the principle of ultralocality,

i.e.
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3 i
J.@x*L e IFox7] = const.

the functional integration over the field xH gives:

- S(x, det'A i
f@x“ o SO _ g )9 (11.3)

Q(=—=)
szz@
z

where Aq is the Laplacian on Z with metric g and the prime indicates the delation of
the constant zero mode of Ag related to the traslational invariance of the action. Here
Q1is the volume of the space-time and comes from the integration over this constant
zero mode. _

In order to define the integration measure over the metric, we first define a
metric on the space of small variations 8g:

2 2 m
1891% = [d*2/g 8g,, 50" . (1.4
Then, as before, the measure g is defined by requiring

2
j@g e 15 | = const. (11.5)

The metric tensor g can always be decomposed in a trace and a traceless symmetric
part which in complex coordinates are given by the components g,z and g,, , Us3,
respectively [3,4]. The joint action of coordinate and Wey! transformations on the
metric is given by

z z
89 5= 90,- (V,V" + VEV ) + 8697_2 , (I.6a)

Z

zZZ

Sg° = -vViV© 5g” = -vZiV?© (1.6b)
for infinitesimal diffeomorphisms generated by the vector field VZ and Weyl
transformations with parameter §c. Here VZ and V, are the covariant derivatives
and are defined in Appendix I. Clearly the total trace part can always be eliminated
by a Weyl transformation, so the only metric deformations 8g which are not obtained
by reparametrizations and Weyl transformations are those which are ortogonal to
eq.(l1.6b). Therefore they must be proportional to a combination of zero modes of the
operator V# acting on (2,0) tensors
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az (p'ZZ =0 .
(The antiholomorphic part 0g57 must be proportional to a combination of the
antiholomotphic (0,2) tensors). The dimension of such space is finite and it is
determined by the Riemann-Roch theorem [48]. For a Riemann surface of genus g
there are 0,1 and 3g-3 linearly independent zero modes for g=0,1and g=2
respectively. They are called quadratic differentials or moduli transformations, and
parametrize infinitesimal deformations of conformal classes of metrics.

We introduce also the concept of Beltrami differentials and quasi-conformal
vector fields [3,50]. Beltrami differentials are tensors of weight (-1,1), i.e. of the form
us*, which span the space dual to holomorphic quadratic differentials. A basis for

such space is defined by:
S 5 , y
<“'IZ‘Z(P;_2> = J-dz u'EZ (piz =3 (1.7)
b3

Note that this pairing depends only on the conformal class and not on a particular
choice of metric.

Beltrami differentials provide a natural parametrization of the metric on the
Riemann surface. Let g a reference metric for which ds@= d,5 dzdZ. Then any other
arbitrary metric can be written as

2 ~ z - 2
ds =g - {dz+pE dz |
with 1 a suitable Beltrami differential. The local change of coordinates z—w that

makes the metric diagonal, i.e. with only the dww Component, is given by the solution
of the Beltrami equation

I

az W= (zz) o, w
For us*=05v* the metric g differs from the metric g by a Weyl transformation and a
local reparametrization. Therefore the deformations of this form are not really distinct
from the original conformal structure. On the contrary for

3¢:3
b = i y
4 i1 Z

a different complex structure is obtained and then different complex structures are
parametrized by the coordinate yi. These are the coordinates of the moduli space.

Beltrami differentials are related to quadratic differentials, since we can raise
and lower the indices using d,5, and from eq.(I1.7) we obtain

-12.



- 3a3
ht = g i Y (N, )y 055 (118)

i=1
where N, = < ', ¢, > is the norm of the quadratic holomorphic differentials. We
can then express moduli deformations of the metric both in terms of quadratic
differentials or Beltrami differentials:

_ i iz _ i -1 i
59;2 =9 - Sy H-o = - 8y (N, )ij Rt (11.9)

Notice that locally the Beltrami differentials can always be put in the form
ns?=0svZ. Then p deforms complex structures when the field vZ has jump
discontinuites along closed curves on the surface X [50]. Vectors of this kind can be
used to introduce shifts, stretches and twists. The corresponding transformations are
called quasi-conformal transformations, and we can also parametrize in this way all
deformations of the complex structure.

Now we want to express the measure 2g in terms of a measure over the group
of local coordinate transformations, Weyl transformations and moduli deformations.
The change of variables g— (o, vz,yi) requires a Jacobian which can be evaluated
inserting in eq.(l1.4) the transverse variations (l1.6) and the moduli deformations (11.9):

2 2 2 2.7 z.\,2 S
139 1% = [o2 {5 86" + (0.0 VF v,V 7V “Zj’y ;') 7

Then imposing the condition (11.5), the Jacobian is given by

39-3 2

- i —. Z - 6 .

| 1=fﬁdy‘dy'@c oo o 109l _ (detV, v, )" det(N,),
=1

where Do and DVZ, pVZ are integrations over conformal transformations and
diffeomorphisms, respectively. Therefore
39:3 - det (V, V. )

_ i z Z
Dg = Ddy @ ponViov — et (I110)

These determinants are diffeomorphism invariant and, when they are muitiplied by
the result obtained from the x* integration (11.3), the total expression is also invariant
under Weyl rescaling of the metric, since for d=26 the conformal anomaly cancels
[2,3,9] and the o field decouples. Therefore the integration over Do, DVZ and TVZ is
trivial and simply provides the corresponding volume of the symmetry group, i.e. the
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volume of the conformal transformations and the diffeomorphisms, which cancels
with the normalization factor in the denominator of eq.(ll.1). Then the result for the
vacuum amplitude is

S92 ,det (V, V&) det'a

7 - Z f [or o7 O, (jdgz‘% )"
z

where I\/Ig is the moduli space. In this expression it should be understood that the
background metric with respect to which all determinants are evaluated is
characterized by the 3g-3 complex parameters yi.

The expression for the partition function (11.11) can be generalized to the case
where the basis of the Beltrami differentials is not dual to the basis (pizz as

det A i
Z ﬁd dy 'de”<“ LEThge (V, VE) (——2)" g
i=

(Nz)ij fd z‘/—

A convenient set of coordinates must be chosen for domg this last integration.
Explicit calculations are given only for the particular cases g=1,2,3 [10,51]

, (I.11)

IZ  FORMULATION WITH GHOSTS

The one loop amplitude can also be obtained by introducing Faddeev-Popov
ghosts. This is not strictly necessary for the bosonic string, however a ghost
formulation will be indispensable for the fermionic string, where the ghost couple
also to the fermionic emission vertices.

Following the standard Faddeev-Popov procedure, the gauge parameter VZ for
reparametrization invariance is replaced by an anticommuting ghost field cZ.
Introducing its conjugate antighost field b,,, we can now write down the
reparametrization ghost action [4,6]

S, (bo) = fdzzJE b, V& + co. (11.13)

The Jacobian (11.10) for the change of variables g— (o, VZ,VZ) can be represented in
terms of the functional path integral over the ghost fields
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— - -Sgh (b’C>
zg:f@brpo'pb@ce . (I1.14)

However in presence of the ghost zero modes this functional integral would vanish.
For g=2 the field has 3g-3 zero modes, i.e. the quadratic differentials. Thus the non
vanishing functional integral is

__ %gs _ - Sgh(b,c)
Zg:f@b DCc Db DcC b(z) b(z;) e =
i=1

| det ¢ (z)]° s
) det<(pi,(pj> . (119)

= det'(V, V[,

Therefore the Polyakov measure (I.12) can also be expressed as [50]

.S, (bo)
7= Jﬁd dy det<“ (p>]2ﬂ>b'zbﬂx3@cﬁb Bz)e O =
det<p( W, i=1

3g-3 o N _ 3g-3 : 5 - Sgh(b’C)
=J dy'dy sbabaocas | [ [<u b>|%e (IL16)
=1 i=1

where we have used the standard notation for the pairing between the b field and the
Beltrami differentials

2 z
<u,b> =J.d zu-z. bEE

Therefore the measure for the integration over the metric is just given by the path
integral over the ghost fields with the insertion of the right number of b fields to
absorb the zero modes and pairing them with the Beltrami.

II.3  HETEROTIC STRING MEASURE

In this chapter we will derive the basic formulae for loop amplitudes in the
heterotic string [21]. We are interested in keeping manifest space-time Lorentz
invariance, and hence we will work within the covariant RNS and Polyakov
formulation. As a draw back, space-time supersymmetry will not be manifest.

We begin by recalling that the g-loop contribution to the partition function of the
heterotic string can be derived from a functional integral over all possible two
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dimensional background metric of a g-handled Riemann surface M, over their
Rarita-Schwinger partners, and over the quantum matter fields living on this surface.
The action corresponds to a two dimensional field theory coupled to supergravity
[16]. Introducing complex coordinates z, z on the surface, the quantum fields can be
considered as (n,m) tensors. We also need semiinteger tensors for the Fermi fields,
for which we use subscripts 6, 6. The matter field can be described by 10 left and
right bosonic string coordinates xM, which are two dimensional scalars, and provide
the embedding of the string in a ten dimensional space-time. The Fermi fields on the
surface are 10 right moving two dimensional spinors AM5, which are (0,1/2) tensors. A
gravitino field Xz§» which is a tensor (1,-1/2), must also be included in order to insure
local supersymmetry. In addition there are internal degrees of freedom, they are 32
left moving (1/2,0) tensors which we represent by a fermionic variable A’e.

Using an infinitesimal diffeomorphism and the Beltrami equation, one can
choose a gauge where the metric has only the different from zero component 9,5
Slmllar!y the gravitino field can be decomposed into a y-trace part, a (1/2,0) tensor
Xz and a traceless part, a (1,-1/2) tensor Xz Since the y-trace part of the gravitino
does not couple to the matter fields [16], we can set it to zero by using a super Wey|
transformation sze =0y . This transformation is anomalous in principle, the anomaly
being the supersymmetric partner of the Weyl anomaly and therefore disappearing in
the critical dimensionality [25].

The traceless part in general cannot be completely eliminated. In fact from the
supersymmetry transformation of the gravitino |

8y ~ 9,00
we see that there are configurations of the gravitino field which are orthogonal to this

variation. These are parametrized in terms of the 2g-2 zero modes %2, (holomorphic
(3/2,0) differentials: d, 33,4 =0)

- - 29-2

+ 6 6 06

, }q:paxa =9 ipaxze (117)
a=1

We have introduced here the symbol g5 = ( g%9 )1 = (9,5)"2. The supermoduli p2
~describe gauge inequivalent gravitino field configurations. Xaze' are the
supersymmetric partners of the Beltrami differentials, and are then called super
Beltrami differentials.

Notice that in the case of the sphere, g=0, there are no supermoduli and the
gravitino field can be made desappearing completely (in the zeroAIoop contribution to
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the partition function). However, as noted in Ref.[24], in general there are
supermoduli in the case of the marked sphere, i.e. the zero loop amplitude with
external vertices insertions, and they play a crucial role in properly defining the
vertex operator. There is also one supermodulus for the odd spin structure in case of
the torus [25].

One can then cast the action in the superconformal gauge:

RN By Hoqlny ak ! I oo K
Span®) = a2 {0230, x L A LT (I118)

matt

The partition function for the heterotic string is then obtained by summing over
all configurations of the metric, the gravitino and the matter fields

-S_ L (XAA0.%)
Dg Dy DX DA DA matt
Z=2 nan - e , (11.19)
g of

where #(is the volume of the gauge symmetry group, i.e. superdiffeomorphisms,
Weyl and super Weyl transformations. Here «,B are the spin structures of the
world-sheet spinor AHgand the internal spinor Ale. (We have chosen the case O(32),
if instead we want to consider the EgxEg string, then the 32 internal spinors split into
two sets of 16, each with indipendentent spin structures  and y.) The phases MNop are
determined in order to have modular invariance. This is the GSO projection in the
functional integral formalism [30]. (Notice that world-sheet supersymmetry requires
that the gravitino field has the same spin structure as the spinorit.)

Once we have fixed the gauge, the integration over all equivalent metric and
gravitino configurations gives rise to the gauge volume factor, which is then
absorbed into the normalization. However one has to take into account the Jacobian
of the transformation in order to obtain the correct measure [23-28]. This procedure
reduces the infinite dimensional functional integral to a finite dimensional integral
over the moduli space of X together with a finite dimensional Grassmanian integral
over supermoduli space, these describe background metric and gravitino
configurations which are not equivalent under a gauge transformation.

The measure can then be obtained by looking at the variations which are
orthogonal to the chosen gauge. Then we consider the infinitesimal change of
coordinates generated by the complex vector field VZ, the supersymmetry and the
Weyl transformation with parameters £% and 8o respectively:
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, .
89 - =9, (V,V + VEVZ) +8g- =009 -

zZzZ

ngz _ -VZVZ

5977 = -VIVi - gty lee (11.20)

zZ 49 N z 5
&8 = V,(V x®) + szze Ve "5 xzeVEV -2V, &0

where we have introduced the parameter 6¢

50 = 80 + V, V' + v;_vZ
in order to reabsorb the trace part of the diffeomorphisms.

As in the bosonic case we can compute the integration measure in two slightly
different ways, which give the same result: either we define a metric in the space of
the variations 8g and &y or we introduce the Faddeev-Popov ghosts.

Let us follow the former method. We define the integration measure in the
space of metric and gravitino transverse variations by requiring

1 2 2 =
S8 [ozn 6
6 z0
1=j@g oM. DY, € , (1.21)
28
where the norm 1|891|2 is defined in eq.(ll.4) and we have introduced an additional
field m, a (0,3/2) tensor, necessary for a covariant definition of the measure [24]. In

fact, the norm of y does not exist, since it is a Grassmanian field. Then the Jacobian
is given by:

1 2 2 =
L gl e fon e
-1 z z 6 zO
J =f@qmv DV @n_éﬂg e ,
Z
where in the exponent we have to insert the variations eq.(I1.20) in terms of the

parameters. The integration over 8¢ decouples and we are left with:

- . -S
J7 = f@VZ DV DN - DE9 @ o
z

where after an integration by parts

2 2.2 - =1 7= > 3 s
— - — 6 - o
S, = fd 2(g, VY, V'V 4NV 80 - (8 [ 5 0,5 9V'E0 - Von oV - 5. VoV (11.22)
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where we have also redefined the £ parameter by (-2 &6 + xzé Vé)— &,é.

The Jacobian recieves also a contribution from the integration over the
inequivalent gauge configurations y* (see eq.(Il.17)), and the variations of the
supermoduli p2 gives

- 29:-2 -
L0
5x*, = 2 5px2° (11.23)
a=

Factorizing from the measure the volume of the gauge group, the final
expression for the partition function is

T [t o oate it
z=) Zna[} f[DT] [IES — , (I1.24)
9 of a=1 J@VZ@VEQM@& . eif(X )H J.dzz —
a
where [DT] is the integration measure over the moduli
3g-3 dyid§/|
[DT] = m (I1.25)

i=1
(see Section I1.1) and the product over a in the denominator is an antisymmetric
product since it comes from the integration over the anticommuting variables p@s.

1.4 SUPERCONFORMAL GHOSTS

In this section the Faddeev-Popov determinants together with the finite
dimensional determinants involving Beltrami, super Beltrami, quadratic and 3/2
differentials are expressed in terms of a functional integral over ghost and
superghost fields, with local actions on the wold-sheet.

Similarly to the bosonic string case we can write

f@g@x = f@GQ)VZfD\/EQ)&(; J
where Jacobian J is the superdeterminant of the matrix giving the change of

variables from the parameters of the gauge group to the transverse variations
(egs.(11.20)).
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/69”‘\ - 0 0 0 # |
| | : r
f&g”‘ o vk 0 0o g v?
| — = - - - -
%ngz 0 0 V2 gCyr) Ve

; i - — - - /
0 l{ * * * 1 * -
\Bxg | EO sz2+x§\72 szg—gxgvz -2 VZ/ i\‘ge

(11.26)
Notice that it is important to consider the transformation of the metric and the gravitino
simultameously, since in general the Jacobian is not the product of the Jacobians for
separate transformations.

The integration over ¢ decouples. We compute the superdeterminant J of the
matrix (I1.26) as a path integral over two canonically conjugate pairs of fermionic
ghost fields (b,,, ¢*) and (bs5, cf) for the analytic and the antianalytic
reparametrizations respectively, and a pair of bosonic ghost fields ( Bsq. ) for the
supersymmetry transformations:

- - = = " Sgh(X*)
J= J.@b b Dc ¢ 7P Dy e
S (x*):fdgz{b 92"+ bos (3, %4 x* P 90) 4 P [ V(240 - %0 ¢ - Vo O 67 4
gh 2275 z z z >0 z z z

Z Z

T 0o 2
+5 1", Vot )

Redefining the ghost field 1

- ~— - 5

¥ - y¥=2vy-x"c
(notice that (x*)2=0, x* being a Grassmanian field), and integrating by parts we
obtain

Z

s a0 2,0, 1 5 z 3 7
Sgp) = Sy +fd 207, (-5 b330+ Vi B e+ 2B V. &%) (11.27)

where Sgho is the standard ghost action
o (2 z Z 5
sgh..Jd 2(b,,9;¢"+ b_9,0* + B2, 7P)
Since we are only considering the variations transverse to the moduli and

supermoduli deformations, we can restrict the integral over the ghost fields b, b and
B to the space orthogonal to the zero modes, i.e. orthogonal to (anti)-holomorphic
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quadratic and 3/2 differentials respectively.
Adding the matter action to the ghost action we see that the gravitino field ¢*
couples to the supercurrent [6]

1 - ' 3
- = AHooxt - —Dba- _Bo-c” - B_- V-
TEe 7\,6 sz 2bzzyﬂ + VZB'z‘eC t 3 Bzevzc . (11.28)
Factorizing from the measure the volume of the gauge group, the final

expression for the partition function is

-g° -s dzx o1 .

matt 79

7= Znuﬁ» J.[DT] [Dp] ox* DA DA b Db D Dy € (11.29)
9 of

where S°_ ., is the free matter action, i.e. withx* equal to zero. Here [DT] and [Dp]
are the integration measure over the moduli, eq.(l1.25), and the supermoduli space
respectively. Using for the Beltrami differentials a basis dual to the holomorphic 3/2
differentials x2,4 (eq.(l1.17)) the last measure is given by

N

g-2
dp® (11.30)

a=1 dety (N, ) 1z

where N3/2 is the determinant of the 3/2 zero modes
Na/o), Id z2g’

Notice that it is raised to the power 1/2 since we have only one chirality.
After the integration over the supermoduli, the partition function can be put in
the form

_i1det(V,v*y  det(v, v e, detd, . o
),
Z‘%ZJ‘HW Y —getn, 1 Tdetn, 17 [det, 7%

jdzg

2g-2 -
(1/2,0) , 16 1 J‘ 2 ad
[detBV ] ————————deta N, LE dz det, %, (z)< TE 6(21) T_Z é(229_2) > (1.31)

As for the bosonic system we can extend the functional integrations over the
ghost fields in eq.(l1.29) and include the zero modes of the B field by inserting a
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product of Dirac 8-functions. By using expression (11.16) for the bosonic measure, the
ghost part of the integrand of eq.(11.29) becomes

3g3 __ -s? 3g3 2g-2 .
ﬁdy'dy' Dbb.ccpByle " | <u, b>]? ﬁ6(<xa,[3>) det, <x"(z,), T(z,)>
i=1 =1 a=1
(1L.32)
In fact the integration over the zero modes and the functional integration over the
matter and the ghost fields gives eq.(11.31).

In writing the moduli and supermoduli measure (11.25) and (11.30) we have
assumed that the gravitino configurations are independent of the moduli parameter
(we have computed them separately). As it has been seen from explicit computations
in the genus two case this choice can be done in a consistent way. However we can
be more general and allow also for the possibility that the gravitino depends on the
moduli. In this case the matrix for the variations along the gauge slice is given by

Iz iz i

{ |

&g ‘a\ |9 K 0 0 y |
|
8g°° J = 2 0 gzzuz'z 0 y' )
6
- | Sy -

5x8 | z 0 29 2
i \ 5y Xz P / (1.33)

where we have taken g independent of p and we have choosen, for simplicity, a
holomorphic slice [27,31].
Notice that the Jacobian for the general transformation
8(1) P = Ai m 8Xm

is given by

[[Tee ] 56 A,,) = supdeta (1134)
1 m

where the variables Bj have opposite statistic of the variables ¢; (this can be seen by
defining ausiliary variables Dm=BjA;y). For the transformation (I.33) the B; are given
by the zero modes of b, b and B.Then inserting the elements of the matrix (1.33) in
eq.(I1.34), the measure becomes
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3g-3 2g- _c0 3g-3 2g-2
| iadE - —-=- Sgh —j - i oy* a
dydy ﬁdpa Dlbp,c.c,B,vl e <p, D> (<p, b> + <B,— >)H5 (<B,x>)
i=1 a=1 i=1 oy  a=1

J-dzz T (11.35)

where we have used the fact that §(0) = 6 for anticommuting variables. By doing the
integration over the supermoduli, finally we obtain

3g:3 _— I -Sgth-s___ 2g-2 2g-2 3g3
[ [ovdy piobecpye s [ [owats] [ o>+ 2] [<'B>1
; a p=0
i=1 =1 a=1 a=1 op° i

where (11.35)

and the last product over a is an antisymmetric product, since it comes from the
integration over the anticommuting variable pl. This expression for the measure was
obtained in Ref.[27], for the superstring in the superfield formalism.

Let us compare the two expressions egs.(11.24) and (11.32) obtained for the
measure. First we note that the effective action in the denominator of eq.(l1.24) is just
the ghost action eq.(l.27) with a "ghost" b ,,=V,V,. (Notice that using the spectral
decomposition of the Laplacian, any (2,0) tensor orthogonal to the zero modes can
be cast in this form.) The only difference is that all fields have opposite statistic.
Consistently, the "ghost" fields in eq.(Il.24) are in the denominator, in order to get the
various determinants defining the measure with the correct power. In particular, in
this formulation, the superconformal ghosts m, & form an anticommuting system and
therefore they are appropriate for a 1Storder Lagrangian (on the contrary the
commuting system B, vy suffers of ambiguites and the correct understanding of it is
through bosonization [6,45-47]). Moreover, as we will see in Chapter lll, correlation
functions are more easily constructed for the anticommuting ghosts.
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i1 CORRELATION FUNCTIONS ON HIGHER GENUS RIEMANN
SURFACES

III.1 ~ CORRELATION FUNCTIONS FOR SCALAR FIELDS

Scattering amplitudes for a given configuration of external states are expressed
in string theory, within the covariant Polyakov formulation and at a given order in the
loop expansion, as an integration over the moduli of the underlying Riemann surface.
The integrand contains the integration measure computed in Chapter Il and a factor
representing the expectation value, in the functional sense, of the vertex operators,
appropriate to a given external state

-S(x,
<V, () .V () > = ZJ (DT] D s ¢ o9 V(@Y - V() (1)
g

A detailed discussion of the vertex operators for the on-shell physical particles
will be presented in Chapter IV . For the bosonic string they are typically of the form

ip x*
V(K" = P(e,Dx")e *

where P(g,DxH) is a polynomial expression in the derivatives of x* and ¢ is a
polarization tensor. Its form is dictated by the symmetries of the action. The
momentum of the emitted particle satisfies the mass shell condition p2=8(n~1),
n=0,1,... Moreover the total momentum of the amplitude (lll.1) must be zero. The
amplitudes can then be expressed using the Wick theorem in terms of propagators
of the scalar field and its derivatives on the Riemann surface. Therefore we discuss
the correlation functions which are relevant for the scattering processes in the
bosonic string theory, namely <xx>, <dxx>, <dxdx> .

Notice that, in particular, the integrand of eq.(lll.1) must satisfy the requirement
of Weyl invariance and therefore it is necessary to know the Weyl transformation
properties of the propagators. As we will see, all relevant propagators can be
constructed in a metric independent way. We also examine the transformation
properties of the propagators under modular transformations, which is an essential
step in guaranteeing the modular invariance of the amplitude.

The various results are expressed in terms of theta functions on the Riemann
“surface and their derivatives. In Appendix II we review some aspects of the theory of
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theta functions which are relevant for the construction of these propagators [52,53].
Our discussion is based on the differential equations defining the propagators [54].

A scalar field in 2 dimensions can be interpreted as an electrostatic potential of
a Coulomb system of charges. To avoid infrared divergences the sum of the charges
must be zero. We consider then a system of charges o; setin the positions z,i=1.m
interacting  with another system of charges Bj setin Wi, j=1.n, satistying X o;=3%

G(z..z W { Z Z o, <Xx(z J) BJ (11L.2)

i=1  j=1
be the corresponding correlation function (since the propagator for the scalar field is
proportional to 34V we omit the space-time indices).
The propagator for the scalar field satisfies
2

1 1
= azaz <x(z) x(w) > = & (z,w) - N 9.3 (111.3)

where
2
N = jd Zg -
and g,5 is a metric on the Riemann surface. The last term in the eq.(l11.3) results from
projection on the space of the zero mode of the scalar Laplacian, i.e. the constant
function. This term breaks Weyl invariance and therefore the scalar propagator

depends on the metric in a complicated way. However in the case of a neutral system
(XB;=0) the equation for the propagator is

'115 azkaz i ZO‘ <x(z 206 8%( (1l1.4)

=1 j=1
and the metric disappears from the equation. In fact, because of the neutrality of the
system, there is no contribution from the zero mode. The correlation function
G(z4..zpp,w4..wy) is a one-valued function in each z, w; with logarithmic singularities
only for Zi= W, (like Iog]zi—wj]). A candidate for this correlation function is the
logarithm of the modulus of the theta-function e[ﬁ‘;]wij) with an odd characteristic,
(see Appendix ll), where

is a g-component vector, ® = (a)l...cog) is a vector whose components are the
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Abelian differentials o® normalized as in egs.(A.2.2) and (A.2.3) and ag and b, are
half integral g-component vectors such that 4a b =odd. A theta function of an odd
characteristic is odd under u® — - u so it vanishes for Z=W,

Since the theta function is not single valued as we move the points z; around the
oy and By cycles of the homology basis, we must introduce a compensating factor. In
fact, by using the transformation rule of the theta-function underu - u +Qn +m

(eq.(A.2.9)), we have
Iog]@[:](u)lz S log @[ (| -min. (Q-Q) n -2nin. (u-T) (I11.5)

Here the bar means complex conjugate and Q is the period matrix. This
transformation can be compensated by adding a term
Rzw) = (u-u).(ImQ)". (u-u) (11.6)
which indeed transforms as
Rzw) — Rizw) +2in.(Q—5).n + 4in.(u-u) .

Therefore we define the correlation function of neutral systems of charges as

G (2,2, W., Z}:a{xome ](”)1 ZR(ZIZJ)}BJ (111.7)

The term R(zi,wj) makes indeed eq.(lll.7) one valued. Notice that, requiring the
one-valuedness of the scalar Green function, we are forced to introduce the term
R(z; w) which breaks the holomorphicity of eq.(lll.7). As a result G cannot be
expressed as the modulus square of a holomorphic function of z; and the period
matrix Q.

The singularities of eq.(lll.7) come from the zeroes of the theta-function [52,53].
For odd spin structures (see Appendix Il) 6[%] (u )|s zero for z; =W and also for z;
= Py, k=1...9-1, where the P, are some given pomts on the surface. However since
these points are independent on Wi, eq.(l11.7) is not singular when z;— P

G (212 Wy W) ~ 00, log [2,-P | D B, = 0. (11.8)
j
In fact G can also be expressed in terms of the prime-form [55,56]
ao z
6, 1(Jo)
h(z) h(w)

which is a (-1/2,-1/2) differential with only one zero for z — w h(z) is the holomorphic

E(z,w) =
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1/2 differential satisfying

n°(2) = 0*(2) 3y, 01, 0),
as
G (21,...zm,w1,...wn) = Z o {log|E <Zi’Wj) 12 +—72-C— R (zl.,wj) } [3}. =
=1 j=1

= 2D 010G | O (up) '+ 2R (zw) B - Do log | h(z)* B, -
i i

i
- D00 DB log | h(w) [
i i

where the last two terms on the r.h.s. are zero, due to the neutrality of the system.
Moreover the Green function G is modular invariant since the combination

log | Ezw) | + —’é‘- R (z,w) (IIL.9)

is modular invariant. In fact, under a transformation of the homology basis (see
Appendix I1), the Abelian differentials ® and the period matrix Q transform according
to egs.(A.2.5) and (A.2.6). Then, the positive definite immaginary part of the period
matrix Q transforms as

ma" > ma” = (ca+D).Ima’.(ca+D)"

and

U > u=u.(CQ+D)"
so that
R(zw) — R(z,w) =R(z,w)-2iu.(CQ+D)'1C.u+2iG.(C§+D)'1C.G .

Finally, using the transformation rule for the prime-form (eq.(A.2.21)), one can finnaly
verify that eq.(l11.9) is modular invariant.

As said previously, the vertex operators can also contain derivatives of the field
x! and therefore one needs the propagator <oxx> . From eq.(Ill.3) this propagator
satisfies

1 2 1
p az <d, X(z) x{(w) > = 8§ (z,w) - N9 (1.10)

so that it depends on the metric. Actually, since we are interested in computing
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scattering amplitudes with zero total momentum, it is sufficient to construct the

propagator
G (zw,..w ) = Z< az x(z) x(wj) > BJ. (NL.11)
j
with 2 B; = 0. In this case the last term of eq.(l1l.10) does not contribute
—:; 9-G, (2, Wyw,) = Z & (zm) B, (11.12)

and the correlation function (lll.11) can be constructed in a metric independent way.
In fact this correlation can be derived from eq.(I11.7)) when one of the two systems is
composed of only two charges, i.e. for oy =+1, 0, =-1setin zy =z +egand z,=z
respectively, and taking the limite — 0.

G, (zw;..w ) = lim 1—2 <[x(z+e) - x (@) ]x (W) >B, =
e—»0 & ]

- Z{ 2, m(z).xmg“.(uJ 1B, (11.13)

Z
where uj =.[co.

Notice that, since the X B;=0, the last term of eq. (l1.13) is independent of z, so that
G, is indeed a holomorphic function of z (with poles), but it is still non holomorphic in
the period matrix Q. From the expression (lll.13) one can prove that G, is singular
only for

Z-—-)WJ-I

§

Z - W,
i

as required since the propagator G, satisfies eq.(ll.12) (again there are no poles
corresponding to the extra zero of the @ function since X Bj =0). Then G, is a one
form in z with a single pole at z = W (j = 1...n). Notice that Eq.(Ill.12) determines G,
up to a holomorphic 1-tensor in z since

G Zw.w) ~ (I11.14)

1

w ) = G, (zw,,..w) + Z W, (2) Cp (W, W) (I11.15)

G (zw, ... w_
A
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equally satisfies eq.(l11.12) (5 o = 0). However, since x(z) is a one-valued function
on the surface, d,x(z) is an exact 1-tensor, i.e. §azx(z) = 0, and G, must satisfy the
requirement:

§G (Zw,,..w ) =0 - (lI.16)

This condition completely fixes the Green function G,, in fact if G, and G,' of
eq.(l11.15) both satisfy the requirement (1il.16), then for y = o We get:

CaWq,.. W) =0 A=1,.4.
It is immediate to see that G, satisfies eq. (l1l.16) as it is the first derivative of a
one-valued function by construction (see eq.(l11.13)).

Then the expression (I11.13) is the correct propagator for the derivative of the
scalar field and a neutral system of scalar fields. (The one-valuedness and the
modular invariance of eq.(lll.13) follow directly from the fact that the combination
(l11.9) is single valued and modular invariant).

Notice that eq.(lll.13) also satisfies

w) = -8zw) B+ o(z) . mQ.ow) B

1
= avvj Gz(z,w1,..

where the second term projects exaotly on the space of the zero modes of Vzm, i.e
2
Jow, o, Gtz o) = fo%2 6 ey jo' @) =

for o® (@*), A=1,...g a basis for the holomorphic (1,0) tensors (antiholomorphic (0,1)
tensors).

Another interesting propagator is the one for the derivatives of the scalar field
Gy(zw) = <9,X(z) 9, X(w) > (M.17)

From eq.(l11.3) it must satisfy the requirements

1 2
p 8.2 G,, (zw) = d 8 (z,w)

1 2
p avv G, (zw) = d,8 (z,w) (11.18)

Then G,,,(z,w) must be a meromorphic 1-tensor both in z and w with only a double
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pole at z=w.

This propagator can be similarly constructed from the Green function for the
neutral system eq. (ll.7) in the case m,n=2 and taking aq=-+1, a,=-1set in z; =z+e
and z,=z and By=+1, B,=-1 set in w,=w+n and Wo=W respectively, in the limit e—0
andn —0

p 20 O O 1) - OITIWa. D, O T
= (z) = : - o W)
o, 1w
-0 (2) Im Q) jo®w) . (IL19)

Notice that also this propagator is a holomorphic function of z and w (with poles) but
it is still not holomorphic in the period matrix Q. The expression (Il1.19) satisfies all the
requirements for the propagator G,,,(z,w), in fact its behaviour for z — wis, as
required,

1
G,, zw) —

(z-w)"
Moreover since we have constructed G,,,(z,w) as a limit of the interaction between
two neutral systems, which, as we have shown, is singular only for Zj =W, there are
no other singularities in eq. (lil.19). This can also be seen directly from the fact that
the other zeroes of the theta function at z=Py,... Pg_1 are independent on w and
taking the derivative with respect to w they do not give any contribution.

Eq.(l11.18) determines G,,,(z,w) up to a holomorphic tensor in z and w:

B

G, (Zw) = G, (zw) + Z O)A @) Apg (W) . (11L.20)

AB
still satisfy eq.(l11.18). As previously the requirement of the exactness of G,y (Z,w),
completely fixes it; in fact if G,,, and G',,, of eq. (111.20) are both exact, then for the 0
cycles we get 0=A 5 wB(w) which implies A=0, since the o are linearly independent.
Therefore G, (z,w) is unique. One can indeed check that the expression (I1.19) is a
single valued, modular invariant and exact 1-tensor in z and w, with only a double
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pole at z=w. Therefore eq.(lll.19) is the correct propagator for the derivative of the
scalar field.

The one valuedness and the modular invariance follows directly from the
corresponding properties of the combination (11.9). The expression that we have
achieved for G, (z,w) is also exact in z and w since it is the 1st derivative with
respect to z and w of a single valued function.

III.2  CORRELATION FUNCTIONS OF ANTICOMMUTING FIELDS

A fermionic string theory contains, besides the scalar field x4, the left and the
right spinors A" and Agh (AeI and Agt for the heterotig string). The vertex operators
for the fermionic strings are expressed in terms of the various fields defining the
theory. Then, by using the Wick theorem, the scattering amplitudes are expressed in
terms of the propagators for these fields and their possible zero modes. The fields
are described by anticommuting variables of conformal weight A =(1/2,0) and (0,1/2),
respectively. The vertex operators may also contain ghost fields. For example, they
are present in the so called -1 picture (i.e. with ghost number -1) of the
Neveu-Schwarz states and in the fermionic vertices, i.e. for the Ramond states [6] (we
postpone the discussion of the correlation functions involving spin fields to Chapter
VI). Ghost fields also appear in the measure through the coupling of the gravitino to
the supercurrent .

We discuss here the construction of the correlation functions of two fermionic
fields ¢, and ¢;_, of conformal weight A and 1-A, respectively (for A>0 integer and
half-integer), living on a compact Riemann surface 3 of genus g. In local complex
coordinates in which the metric looks like d52=gzzdzdz, the action for these fields is
given by [4,6]:

, -
S = J.d 2090, .

(Here we consider only the left sector, but the same analysis can be done for the
other sector). In order to fix the boundary conditions on the fields we choose a
canonical basis of the homology cycles op, Ba (A=1,...9) as in Fig.1. For integer A we
consider only periodic boundary conditions. For half-integer A we fix periodicity
conditions around the o, and B, cycles corresponding to some spin structure an Da-
This means that (relative to some reference spin structure) around o, the fields are
multiplied by exp(2ni a,), and around Ba by exp(2mib,).
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For A=1/2 this action describes the matter fields Ay, for A=2 the
reparametrization ghosts b,c and for A=3/2 the superconformal ghosts B,y (recall that
this system can also be described in terms of anticommuting fields, as it has been
discussed in Section 11.3).

By the Riemann Roch theorem we know that the number of zero modes of ¢ ,
(i.e. of holomorphic A-tensors) minus the number of zero modes of $,.4 1s equal to
(2A-1)(g-1)where g is the genus of the surface. For A> 1 there are no holomorphic
(1-A)-tensors so that the number of zero modes of Oais (2A-1)(g-1). (The case A=1/2,
where the number of zero modes depends on the spin structure, will be considered
Separately).

Due to the presence of these zero modes the only correlation functions which
are different from zero are [56,47]

AGpzgw,.w) = <[] 0.z | 0 (w) > (1.21)
=1 p

with m-n = (2A-1)(g-1) = s. Using the Wick theorem we can express all these
correlation functions in terms of an orthonormal basis of the zero mode wave
functions cpiA, i=1,...s, and the propagator

G, 1L@W = <0 (@) ¢
Since a ¢, field is either used to absorb a zero mode or it is conctracted with a b1

field, meaning that the pair Gp 0q_p is replaced by the propagator (11.22), the
correlation function (lil.21) is given by:

RUE (11.22)

(p1 (21) (ps(z1) G(z1,w1) G(z1,

A 22 W ) = det (1.23)

w)

¢ (z,) - ¢°(z,) Gz, w,) ... G(z, )

(in eq.(lll.23) it is understood that the zero mode wave functions are properly
normalised, as required by the definition of the functional integration average).
Notice that the correlation function A(z1,...zm,w1,...wn) is antisymmetric since NI
are anticommuting fields.
The propagator GA,I_A(Z,W) is the Green Function of the Operator d; acting on
the space of the A-tensors orthogonal to the zero modes:
1

e,

zw) = 8% (zw) (I1l.24a)

Tz Al-A (
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2 Cpa @W) = - 82w + 2 9 @0 wlg-1" (Il1.24b)

~
where g, is @ metric on the Riemann surface.
Egs. (11l.24) say that Gy 1.4(z,w) is analytic in z with only a single pole at z=w,
but it is not analytic in w. However if we consider any meromorphic tensor Ky 1.4(Z,W)
which satisfies ’

1 2
= az KA,1~A (z,w) = & (z,w) (11.25)

it will differ from the true progagator Gy 1.a(z,w) by the addition of a combination of
zero modes, i.e.

S

G, alew) = K @w) + ; @iA(z) f W) (11.26)

and therefore can be equivalently used in the construction of the correlation functions
(l1.21), since the second term of eq. (I11.26) does not contribute to the r.h.s. of eq.
(111.23).

Notice that eq. (111.25) is independent of the metric and that it only requires
Ka 1-a(z,W) to be meromorphic in z, with a single pole at z=w. Then Ka 1. (2, W) may
have extra poles in w; these extra singularities will be always in some fly_a(w) on the
r.h.s. of eq. (ll1.6), and therefore they will not contribute to the correlation functions.

In the following we will discuss the construction of the "propagators” Ka1-4(zW)
and the zero modes for different values of A. We will also discuss the modular
invariance of the results.

I3 THE A=1/2 CASE

For A= 1/2 there are two different situations according to whether the fermionic
field ¢4/5(z) =w(z) satisfies the periodicity conditions of an even or odd spin structure
(see Appendix II).

Even spin structure.
For the even spin structure the field y(z) is a section of a spin bundle & with no

holomorphic section (i.e. with no zero modes). In this case the fermionic propagator

- 33-



G (zw) = <y(z) y(w) > (11.27)
satisfies:

-:; 9= G (zw) = 5 %z w) ?1{ - Gzw) = - 82(z,w) (111.28)

then G(z,w) must be a meromorphic section of £ both in z and w with only a single
pole at z=w. The expression for this propagator has been obtained in Refs. [32,56,57]
a+a°

Ol l W)

o1 -
where the prime-forme E(z,w) is reviewed in Appendix Il and e[‘?,'ffo](u) s an even
theta function such that to correspond to spin structure considered for the  field. The
expression (111.29) has in fact only a single pole at z=w and satisfies the appropriate
periodicity conditions of the spin bundle &. According to the Rieman-Roch theorem it
has also g-zeroes (those of the even theta-function 0[2:%2](u)).

Using the transformation property of the theta-function and the prime form
under modular transformation (see Appendix I[I), we see that the propagator for the
field wy(z) of the spin bundle & goes into the propagator for the field (z) of a different
spin bundle &' with still even spin structure:

G(zw) = (111.29)

a+ao ~ o~
OlrlGID

<v(Zww) > - ora, = =

e [b+b 1 (0] EZ) E (z.w)
Ol )
o = <v(2) viw) 3 (111.30)

Oly,, 010 EEW

where a', b’ determines the spin structure of &' and it is given by eq. (A.2.20).

Qdd spin structure.
In the odd spin structure case the field y(z) is a section of a spin bundle s with

the holomorphic section h(z), i.e. h(z) is the zero mode of the F) operator acting on
1/2 tensors. This zero mode can be constructed from the odd © function @[‘Q;], where
a,, b, are the odd characteristic of the spin bunble s, as follows. Let
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"

w
then ®(u) has single zeroes for z=w, z=Pj and w=P; , i=1,..g-1 (see also Appendix ll).
Therefore for both z and w in the neighbourhood of one of the Pi, ©(u) looks like
©(u) ~ const. (z-w) (z-P)) (w-P) .

Differentiating this w.r.t. z and taking z=w one finds that the one form:

o) = Y, o 9,,000) |,
A

has g-1 double zeroes for z=P;. Therefore there exist a 1/2 differential, with single
zeroes in these points, such that

©(z) = h'(2)

h(z) is the meromorphic section of the spin bundle s.
For the odd spin structure case the propagator G(z,w) = <y(z)y(w)>, satisfies:

;1{5;@ zw) = 8%zw) - 9, @@ hw (1.31a)

-:;avv G@Ew) =-8%@zw) +h(@) hWw) g _ W) (11.31b)

00

where ggg is the square root of the metric tensor d,7 Then
G (zw) = K(z,w) - (z) h(w) + h(z) f(w) (11.32)

where K(z,w) is a meromorphic 1/2 tensor both in z and w, with only a single pole at
z=w and satisfies the same periodicity conditions of the field .
Since there is one zero mode, the only non-vanishing correlation functions are

Azz) = <[> (111.33)
i=1 .

with n = 1421, | > 0 (recall that one has to repeat this for the various space-time
indices p=1...D). Using the Wick theorem these correlation functions are obtained by
antisymmetrizing over all permutations of the zero modes h(z;) and the propagators
G(zi,zj), therefore the terms in eq. (111.32) proportional to the zero modes do not
contribute to eq. (11.33). K(z,w) can be defined as [47]
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;200,10 e Q)
K (zw) = - . (11.34)
=E 5 el 106 @

where Q is an arbitrary point on the surface such that h(Q)=0. In fact K(z,w) is a 1/2
differential both in z and w with only a single pole at z = w. Note that eq. (I11.34) can
be used as a propagator in eqg. (I11.33) even if it does not satisfy the correct periodicity
conditions of the field . In fact when we move z around the o, and B, cyles:

2mi a,m- 2mi bO n
K(zw) — e K' (z,w) (111.35)

where

| ;o (Q)
K (zw) = K(zw) - 2nih (z) h(w) ' (111.38)

2,010,106 @

o]

but with respect to the correlation functions (111.33) K and K' are the same, since their
difference is proportional to the zero modes. K(z,w) has a similar transformation
property under modular transformations:

u.(CQ+D)'C . Q)

+
N
4,
i)
N
ot

(111.37)

(w)

Kz,w) — - 5
10) 0(Q) 0,071 0@

where the odd spin structure %JO,ASO corresponding to ag,bg is given by eq. (A.2.20),
and h is the corresponding zero mode. Again, it is seen that the last term of the r.h.s.
of eq. (11.37) does not contribute to the correlation function of eq, (I11.33).

II.4 THE A=2 CASE

Propagator for the bc system.
The propagator for the bc fields [54]

Glzw) = <b(z)cw)> (11.38)
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satisfies

1 -G (zw) = & (zw)

T
3g-3 -
-:;avv Gzw) =- & (z,w) + i 0 @) wWg (W)
i=1

where the (pi(z), i=1...3g-3, are an orthonormal basis for the space of the holomorphic
2-tensors. Again, as said in Section 1.2, instead of G(z,w) we can use in the
construction of the correlation functions for the bc system any solution of the equation
1oK@w = 82 zw (111.39)
T z

i.e. any 2-tensor in z and (-1)-tensor in w, which is meromorphic in z with only a
single pole at z=w. Such a tensor can be constructed from the propagator for the
derivative of the scalar field G, (z,w) = < 9x(z) dx(w) > eq. (11.19), which, we recall, is
a meromorphic 1-tensor in z and w with a double pole at z=w. Starting from two of
the g Abelian differentials oh, A=1...g, for example o! and w2, we can construct a
holomorphic 1-tensor in z and w with a single zero for z =w

1 2 2 1
Vi, = 0,02 o,w - o/ () o, (W)
V,, ~ @w)u,. (111.40)
Z—W
where
U 3 o 2 e 1
www wmw(w) @y (w) - me<w) Dy (w)
is a holomorphic A=3 tensor in w.
Then we define
K(zw) = V,, <3, x@2)d,xw)> U, (I1.41)

In fact it is a 2-tensor in z and a (-1)-tensor in w, meromorphic in z with only a single
pole at z=w. The factor UWWW'1 introduces extra poles in w (which are actually
unavoidable due to the Riemann -Roch theorem, if we want the propagator to be
meromorphic), but, as said, only the analyticity properties in z (eq. (lll.39)) are
sufficient to determine the propagator to be used in the correlation functions.

The choice of the two Abelian differentials ! and w?is clearly not modular
invariant, since they are mixed under modular transformations
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A AB

o = 0t = 0?[(Cca+D)]
but under modular transformations
v.oulo v oyl
ZW WWW ZW WwWw

where/\\7 and G have the same expression of V and U but with o' and w?® replaced by
&1 and 32, i.e. with a certain combination of the w”'s. Therefore it is still a
holomorphic 1-tensor in z with a single zero in z=w, therefore K(z,w) transforms into a
K'(z,w) which is still a solution of eqg. (lI1.39), so that the correlation functions are
indeed modular invariant.

Obviously there are many solutions of eq. (111.39), all different by a combination
the zero modes (pi. We can construct another solution of eq. (l11.39) using instead of

the propagator < dxdx > another modular invariant meromorphic 1-tensor in z and w
with only a double pole at z=w. For example we can use

1 2
@ (ZrW) = 'N— Z < W(Z) W(W) >[ab]
e [ab]
where the sum is over all even spin structures [a,b] and Ng = 29-1(29+1) is the
number of the even spin structures. Then

K (zw) = Vo Ow) Uppw (111.42)
is another solution of eq. (I11.39) (note that eq. (l1l.42) is holomorphic also in the

period matrix Q, while < dxdx > depends also on ﬁ). Using the relation between the
even theta functions and the prime-form [52]

1 A B a
® (zw) = 2,0, log E (zw) + o @ o’ W, a, ;b;log@[b] (0)
and the eq. (I1l.19), we find
: A B 1 a - -1
Kizw) - Kzw) = V,,, 0" (@) 0°w) { 579 435 2,109 ©[10) + Im U,
e [ab]

and, as expected d5(K'(z,w)-K(z,w)) = 0, i.e.

3g-3
K (zw) -K(zw) = i@' (z) ¢ (w)
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and we can put the dependence on Q of eq. (I1.41) in a term proportional to the zero
modes.

The zero modes

The last ingredient needed for the construction of the correlation functions of
the bc system is an explicit expression for a basis (pi i=1...39-3 for the quadratic
holomorphic differentials [49]. This can be done making use of the standard
holomorphic Abelian differentials w®, A=1,...g, as well as the Abelian differentials of
the third kind with simple poles at P and Q with residues +1 and -1 respectively,
which we denote by wpq [52]

E (z,P)
E (z,Q)
Besides these differentials there exist on the surface at least one holomorphic
Abelian differential [58], which we call 1(z), having 2g-2 zeroes all simple (in fact this
1n(z) can be used to construct light cone coordinates on a general Riemann surface
[49))- |

We can now write down the basis ¢':

Wpq (2) = 9, log (11.43)

¢ (2) = M(@2) o @) j=1,..29-3
y (1.44)
¢ @ =n@ o @ A=1,.g
where the PJ-, Q are fixed to be zeroes of n(z). They are holomorphic 2-tensors (the
poles of wp o are cancelled by the zeroes of n(z), so that the ¢)(z) are indeed
holomorphic). They are also linearly independent since ¢l (z) = Sj, and cpA(z,) =0 and
since the Abelian differentials w” are linearly independent .

The basis (Ill.44) is clearly related to the choice of the homology cycles oAl Bar
Using the modular transformation of the prime form eq. (A.2.21), the third Abelian
differential wp( transforms as

Q

@pq (2) = pg (2) = wpq (1) + 2 0 (2) [(CR+D) C, fmj

P

but the poles still remain in the same positions P and Q. Then in the new basis &VA,
[?Athe zero modes become:

&m=naw%aw 0" @) =@ o

(n(z) will be expressed in terms of the new basis & with different coefficients). They
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clearly remain linearly independent.

III.5 THE A=3/2 CASE

Propagator for the By system.
The propagator for the By fields [54]

G (zw) = < B(2) v(w) > (H1.45)
satisfies

1 0-G (z,w) = 5° (z,w)
o zZ

1 N = 60
—0,8Ew =- & @w +i X (2 wg" (w)
=1

where the %! (z), I=1...2g-2 are an orthonormal basis for the space of the holomorphic
3/2 tensors. Again instead of G(z,w) we can use for the correlation functions of the
By system any 3/2 tensor in z and -1/2 tensor in w solution of

Lo K@w =8 ew (I11.46)
T Z

i.e. K(z,w) is mermorphic in z with only a single pole at z=w.

The ghost fields B and y satisfy the same periodicity conditions of the
corresponding fermionic field y (z). This requirement can be automatically satisfied
constructing the superghost propagator K(z,w) for the even and odd spin structure
cases in terms of the corresponding propagator < y(z) y(w) > egs. (111.29) and (l11.34)
respectively and an Abelian differential (z) as:

Kzw) = o(z) <y(z) yw)> ow)] (111.47)

K(z,w) is in fact meromorphic in z with a single pole at z=w and it has the correct
tensorial transformation properties. There are again extra poles in w, but they are in
terms proportional to the zero modes (for example a propagator with no extra pole in
w is constructed in Ref. [32], however this propagator is not holomorphic in w, i.e. it
depends also on w: if we ask for a holomorphic propagator the extra poles are
unavoidable due to the Riemann-Roch theorem).
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The modular transformation property of K(z,w) is determined by the < yy >
propagator; since it transforms into the propagator for the v field with another even
(odd) spin structure, eq. (111.30) (eq.(l11.37)), K(z,w) transforms into the propagator of
the Bywith the new even (odd) spin structure. Recall that for odd spin structures,
<y(z)y(w)> satisfies the required periodicity conditions only up to the addition of zero
modes, see eq.(l11.36), and therefore the same is true also for K.

The zero modes.

We construct an explicit basis for the holomorphic 3/2 differentials v, 1=1..2g-2,
separately for the even and odd spin structure cases.

In the even case the %!(z) are given in terms of the Abelian differential 1(z)
having only simple zeroes, introduced above, and the propagator < y(z) y(z) >,
eq.(1l.29), where z,is fixed to be a zero of n(z):

L@ =@ <v@ vE)> |=1,.29-2. (111.48)

They are holomorphic in z, have the correct tensorial transformation properties and
are linearly independent since X'(Zk) ~ 8. Moreover they satisfy the correct
periodicity conditions as the field y(z). Under modular transformation they satisfy
new periodicity conditions corresponding to the new spin structure of the transformed
< Yy > propagator.

In the odd spin structure case one cannot use directly the propagator
<y(z)y(w)>, eq. (I1.34), since, as we have already remarked, it does not satisfy the
correct periodicity conditions (see eq. (l11.36)). For this reason we introduce the
completely antisymmetrized expression

F(z;z,2,) = h(z) K(z,z,) - h(z) K(zz,) + hiz)) K(zz) (111.49)

where K(z,w) is given by eq. (111.34) and h(z) is the holomorphic section introduced
before. Using eq. (111.36) one can easily prove that F(z;z,z,,) indeed satisfies the
correct periodicity conditions

2nima, -2ninb,
F(z;z,z) — e F(zz,2)

Since F(z;z},z,y) has simple poles for z=z| and z=z,,, we define
|
x (2) =n(2) Fzz,2) (111.50)

where zj, is fixed to be one of the zeroes of n(z) and z, goes over all the other 2g-3
zeros of n(z) different from z,. In this way we have constructed 2g-3 holomorphic
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3/2-tensors, the remaining one is

u

¥ (20 =n(2) hz) (l.51)
Egs.(111.50) and (I11.51) form a basis for the 3/2 holomorphic tensors, in fact they are
linearly independent since x’(zj) = 8” and x”(zj)=0. Moreover, since the effect of a
modular tranformation on F(z;z,z,,) is to change its periodicity conditions (see
eqgs.(l11.37) and (111.49), with this transformation we get the zero modes of the related
odd spin structure.

III.6 THE GENERAL CASE A

Propagator of the fermionic fields o, d1.A.

The generalization of the construction of the correlation functions for a system
of fermionic fields ¢4, 1.4 can be done defining the propagators

K, @w) = (2)" Ky (zw) mw) ", A=2+n (1L.3)

KA’ 1_A(z,w) = n(z)n <y (z) y(w) > n(w)_n A=-;—+n (I1.53)

where K, 4(z,w) is the < b(z)c(w) > propagator eq. (lll.41) or eq. (lll.42) and
<y(z)y(w)> is the propagator eq. (I11.29) or eqg. (l11.34) according to whether we are
considering an even or odd spin structure respectively. In fact in both cases
Ka.1.a(z,W) is meromorphic in z with a single pole at z=w and has the correct
tensorial transformation properties. The properties under modular transformation
comes directly from those of K, _;(z,w) and <y(z) y(w) >.

The zero modes.

The construction of an explicit basis for the holomorphic A-differentials (piA(Z),
i=1,...(2A-1)(g-1), can be done in terms of the zero modes and the propagator for the
system with conformal weight A-1, by defining

¢ @ = 1@ o, @ . k=1,..[2 (A1) -1] (g-1) (I11.54)

@L (2) = n@ K, ,,227) i=1,..2g-2 (111.55)

Altogether they are (2A-1)(g-1) holomorphic linearly independent A-tensors.
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In the case of half integer A and odd spin structure we must modify eq. (ll1.55)
by introducing the completely antisymmetrized expression F(z;z,z,), eq. (111.49). In
this case Eq. (111.55) is replaced by:

¢, @) = n@)" Fzzz), |=1,..29-3
(I11.56)

'@ = n@" h@).

Notice that this construction contains also the case A=2, i.e. the zero modes (111.44).
In fact using egs. (111.54) and (I11.55) they are written in terms of the zero modes and
the propagator for the system with A=1, w(z) and < V,(2) o(w) >, where V, and ¢ are

1-tensor and a scalar fermionic field respectively [47]

<V,(z) ¢(w) > = 9,logE(zw). (111.57)
This expression is not single valued, since by moving z around the ap Ba cycles:
d,logE (zw) — d,log E (z,w) - 2nin.ow(z) .
It can be still used in the correlation function for the V, ¢ system but cannot be used
directly in the construction of the zero modes ®'s_5(z); in order to have the correct

transformation properties we have to antisymmetrize the propagator (l11.57), and
define

90, @ =M@ {<V,20()> - <V,(2)0(2y,) >}  k=1...23

A

L, @ =@ ol A=1,.9

¢

which are exactly the zero modes constructed before (see eq. (111.44)).
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IV. VERTEX OPERATORS FOR THE BOSONIC STRING

IV.1 COVARIANT PROPERTIES OF THE VERTEX OPERATORS

In string theories scattering amplitudes are given in terms of the vacuum
expectation values of local operators which represent the emission of the physical
particles. These operators are called vertex operators. The amplitude is then obtained
by summing over all possible compact Riemann surfaces and integrating over all
possible locations of the vertex operators. The general rules for constructing these
operators where partially known from the days of the dual models. In Polyakov
formalism they must be consistent with the symmetries of the action, i.e. space-time
Poincare' invariance, world-sheet reparametrization invariance and invariance under
Weyl rescaling of the metric. Moreover, since one has to integrate the vertex operator
on the world-sheet, it must have conformal dimension (1,1). Vertex operators also give
a simple explanation of the space-time gauge invariance of the physical states since
the scattering amplitudes do not change if terms which are total derivatives on the
world-sheet are added to the vertex (we shall discuss for example the gauge
symmetry of the graviton).

Vertex operators for on-shell physical states of a given momentun p must obey
the following covariance properties [37] (we choose conformal coordinates z, Z such
that the metric is ds?=g,sdzdz).

(i) Space-time translation invariance . Each vertex must take the form

ip x"(2)

V(z, X gy=e H U(z, P £) (IV.1)
where U depends only on the derivatives of x*, the momentum p and the polarization
tensor e of the state.

(i) Space-time Lorentz invariance. The space-time indices (u,v,..) of all the
fields appearing in U must be contracted with a polarization tensor suv___(p) which
transforms under a real representation of the little group of Pu-

(iii) World-sheet reparametrization invariance. This is ensured when the vertex
transforms as a tensor of conformal dimension (1,1) under reparametrizations. Since
the exponential factor in eq.(IV.1) has conformal weight (-p%/8, -p%/8), U must transform
as a tensor. This implies that all derivatives has to be covariant derivatives.
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(iv) Weyl invariance. The vertex operator must be invariant under Weyl rescaling
of the metric, after inclusion of all anomalies which are introduced by the
regularization procedure of the two point function at coincident points.

Notice that, at first sight, the conditions of 2-dimensional covariance and Weyl
invariance seem to be incompatible since, while the former requires a metric tensor
in order to have well defined tensorial objects, the latter requires that all the metric
dependence drops out. However it has already been noticed that both conditions can
be reconciled by introducing a normal ordering prescription [37-39,59-62].

With all anomalies cancelled, we can then apply the general procedure for
factorizing out the volume of the gauge group and reduce scattering amplitude to finite
dimensional integral over moduli space

'S(X,g)
<V1(p*1*) ....Vn(pﬁ‘])> = ZI[DH Dx*e V1(pﬁ) Vn(pﬁ) (IV.2)
g
Therefore the general form of the vertex is
F oyl
_ -(N-1) M m Mmoo S V1 s P
V(z,pu, €) _(gzz) Eul---umvl.--vnvz X .V, X ‘VE X .V-"Xx e

with

i=1 i=1
(here V, and V5 are the covariant derivatives with respect to g,3). Notice that in the
vertex there are no terms with mixed derivatives. In fact, by using the eq.(Ill.3) for the
scalar propagator these terms do not contribute to the amplitude (by analytic
continuation in the external momenta).
The cancellation of the metric dependence coming from the contractions inside
the exponential and the factor (g,5)" "), gives the physical mass shell condition

2
p =p”p“= 8(N-1).

Anomalies come also from the contractions among the derivatives and with the
exponential factor. These anomalies are eliminated imposing a traceless and
transversality condition for the polarization tensor

K = H = v = .
N 8;,Lv... P guv... P Epv... 0. (IV.3)
The cancellation of metric dependent terms coming from contractions between V™

and V" leads to the introduction of counterterms containing powers of the
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world-sheet scalar curvature and its derivatives (which by themselves are not Weyl
invariant). In particular the counterterm for <x(z)x(z)> contraction has been computed
in Ref. [62] leading to the Fradkin-Tseytlin vertex [63].

In general the different approaches to the construction of vertex operators for
arbitrary mass states follow the steps outlined above. Namely, imposing the symmetry
conditions plus a rule for substracting divergences at coincident points, usually by
means of a regularization scheme. These approches differ in the regularization
procedure used.

In the following sections we will give an alternative method for constructing a
covariant vertex operator together with a set of rules for doing self-contractions without
the introduction of a reference metric [40].

The vertex operators obtained in the Polyakov formalism are equivalent to the
vertices in the operator language. Here, one requires that physical states are
annihilated by the Virasoro generators L, for n>1, therefore the vertex operators
creating such states are conformal fields while the Lo condition dictates that they must
have conformal weight (1,1). It can be checked explicitly, by inspection of the operator
product expansion of the vertices with the energy-momentum tensor [6], that these
requirements give the same form of the vertices and the same conditions for the
momentum and the polarization tensor of the states.

IV.2 N-TACHYON AMLPITUDE.

Having constructed the physical vertex operators, we may construct their
correlation functions which are completely determined in terms of the propagators
given in Chapter Ill. For the lowest mass state, the tachyon, the vertex operator is
given by

2 .
V=fd29-e * (IV.4)

with p?=-8. At the tree level, i.e. on the sphere, N-tachyon amplitude is given by the
Koba-Nielsen amplitude [64]

P, B PP
-——-—loglz z]

erZ)y) H_IdzHe 4 JHdz |z, - z| 2 (IV5)

i<j i<]
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(we suppress the sum over ). Since we want to generalize this expression to the
general Riemann surface case, we do not factorize the infinite volume of the Mdbius
transformation which is particular of the sphere case.

For a fixed Riemann surface and for fixed moduli (the integral over the moduli,
with the corresponding measure, and the sum over all surfaces at the end has to be
performed) the amplitude for N tachyons is given by

N . .
Az, Zy) = IHdszi g -(z) < el P eI pNX(ZN)> =
i=1

zz' |

(IV.6)
i=1
where G is the Green function of the scalar Laplacian in the metric g. At first sight this
amplitude seems to depend on the choice of the metric trough ¢,5(z;). Moreover
€q.(IV.6) contains also divergent factors coming from the Green function at coincident
points
2

P;

N --Z-G(zi,zi)
I]e
i=1
To define the Green function at coincident points we have therefore to subtract this
leading divergence defining
Gzw) = limG(zw) - log d(z,w)

Z—W

where d(z,w) is the distance between z and w. This subtraction process also depends

on the metric. In fact, if we rescale the metric g by g,5—€°9,5, then

2
1 2= P12
7P Glzz) 5 -7 P Glzz)
e — € €

so that the integrand in eq.(IV.6) is independent of the conformal factor ¢. This suggest
that there may be a way of writing the amplitude without introducing any reference
metric (we have already seen in Chapter lll examples of effective propagators giving
the same amplitude as the true propagators but metric independent). As noted by
Hamidi and Vafa [55], this can be done generalizing the Koba-Nielsen amplitude
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(IV.5).
On a general Riemann surface the integrand of eq.(IV.5) must be replaced by a
(1,1) differential in each variables. For emphasizing the tensorial structure of the
integrand in eq.(IV.5) we introduce a holomorphic 1-differential w, (for the sphere
there is only one holomorphic 1-differential, i.e. the constant), then the amplitude
becomes
Py Py P.Pj

KNf &z 0z I)EDZ ZI-T:: ]N1 dzzigl\/ \/w 2 vy

where the last equality has been obtained by using energy momentum conservation
and mass shell condition which gives

2_p o
2 2 -
l;[l,/ =Hl,/mz<zj> | ‘H 0,(z) (7).
We see that inside the modulus of eq.(IV.7) we have a holomorphic (-1/2, -1/2)
differential in each variables z; which has zeros of first order only for coincident points
(corresponding to a logarithmic divergence of the the Green function at coincident
points). Notice that the introduction of the holomorphic differential w, makes the point
at the infinity of the complex plane a regular point.
A generalization of this (-1/2, -1/2) differential on an arbitrary Riemann surface is
given by the prime forme E(zi,zj) introduced in the Chapter lll (see also Appendix ),
which is indeed a (-1/2, -1/2) differential with only a single zero for Zi=z]

ol 1 (Jo)
E(z,z) = ’ -, (IV.8)

\/ w*z) 2 , 0[] (0) \/ w"(2) 2 O[] ()

where @[i‘;] is a theta function with odd characteristic. Notice that the denominator of
eq.(IV.8) is the generalization of w,(z) mz(zj) introduced before in eq.(IV.7) for the
sphere (recall that on a Riemann surface of genus g there are g holomorphic
1-differentials). Moreover the theta function in eq.(IV.8) is zero not only for Zj=zj but
also in some extra points Py, k=1,..g-1, which are the zeros of the holomorphic 1/2
differential in the denominator of eq.(IV.8). Therefore the denominator in eq.(1V.8)
makes these points regular (as the w, introduced for the sphere makes the infinity a

- 48-



regular point).
Then the generalization of Koba-Nielsen amplitude is given by [55]
b P
N , R(zi,zj) e
A,z = J]—Id 2T tEGz) e | (IV.9)
i=1

i<j

&3

where R is defined as in eq.(lll.6). This extra factor is needed in order to make the
integrand a single valued function of the z; (see eq.(lll.5) and eq.(lll.7)). We have
therefore constructed an object which has all the necessary properties (i.e. correct
weight and singularities) and which is conformal invariant since it contains no metric
at all. It is written only in terms of objects intrinsically defined on the Riemann surface,
as the Abelian differentials and the period matrix Q. The amplitude eq.(IV.9) has still to
be multiplied by a suitable product of the determinants which occur in the closed
bosonic string measure, and finally integrated over the moduli. It is easy to check that
eq.(IV.9) reproduces the direct computation done at one loop level [10].

IV.3 FACTORIZATION OF THE N-TACHYON AMPLITUDE

We analyse now the pole structure of the amplitude for N-tachyons. As it is
known since the old dual models, the Koba-Nielsen amplitude has poles in the
Mandelstam variables (pi+pj)2 corresponding to intermediate on shell states

(p;+pj)2 = p?=8(n-1), n+0,1,2,.. (IV.10)
of the spectrum of the closed bosonic string (n=0 tachyon, n=1 massless, n>1
massive). Actually, one can think of obtaining all the physical states and studying their
properties by colliding the lowest energy particles in the theory. These singularities
occur when the two external particles set in zj and Z| collide to a same point. Physical
singularities also appear when z; ,...zj , k<N, collide to the same point for (pj+...+ pj )2 =
8(n-1), but we concentrate in the particular case of eq.(IV.10). This can be easily seen
from the expression (IV.5) by change of variable as Z,= z4 + g and studing the limit
Zo— Z4

Ay ™ fd221d28 dzzi e Fle.z,,z)
i>2
where v= (py. p,)/4 and F is a regular function of &. Expanding F in powers of ¢ and
introducing polar coordinates ¢ =peie
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_ 2 -2Vaen+em+t _i(n-mye 1 n=m
A= nzomojdzdpdegdz e —— 9" 0" Flez,z) |, _, =
1 -2V+2n+2
- . [z ] 1oz 00 0" Fez,2) 1, _, . (IV.11)
n=0 (n!) -2v+2n +2 5 e=0

which ideed shows the infinite set of poles satisfying the relation (IV.10). The residues
at these poles correspond to the scattering amplitudes of the remaining N-2 tachyons
with the corresponding intermediate exchanged states. Then it is possible to extract
from these residues the vertex operators that reproduce the residues.

For example the residum for n=0, i.e. (py+ p2)2=-8, is just the amplitude for N-1
tachyons (one of them with momentum py+ p,) .

From eq. (IV.11), the residum for n=1, i.e. (p{+ p2)2=0, is given by

(Pytpo) py

fdz1Hd 2 | -———-——alogzz}{Z—————B_log ez [ 1=z ° .

i>2 2 >2

where Kij gives the interaction between all the other tachyons, is therefore
reproduced by the vertex

-, 1Py+p,) X
. 1A \Y)
anHax |p2vax e
i.e. by the graviton vertex.
More general examples will be given later.

The same analysis can be done for eq.(IV.11) which gives the scattering
amplitude for genus g=1. The vertex operators are read from the residues of the poles
in the Lorentz scalar combinations of the external momenta that correspond to the
masses of the intermediate states. Since the original expression is metric
independent and already normal ordered without the need of inventing any
regularization scheme (in fact the term i=j is absent), we expect the vertex operators to
share these properties.

The N-tachyon amplitude (IV.9) may be rewritten as:

g
AP, j H Iz 0(z) 3z) | ] expl- —Lazz)) (IV.12)

i>]

where the holomorphic differential
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0@)=h’(z) = i o*2) 0 , 0[] (0) (IV.13)

A=1 u
gives the total conformal weight of the amplitude. The rest is given by the scalar
function

T
A(z;2) Y R(zz)

e = |®(zi,zj)| e (IV.14)
(here and in the following this shorthand notation will be used for @[ij ). Expression
(IV.12) suggests that o(z) w(z) may be interpreted as an intrinsically defined metric.
As such, this metric is singular, and in fact its curvature is zero with isolated §-like
singularities, corresponding to the (g-1) double zeroes of w . The zeroes of the metric
cancel corresponding poles of

Pi P,
e °
e
i>]
which would represent spurious singularities. The only possible remaining
singularities are the physical ones as z; — Zj

PP i P,
- —-4—-—- A(Zi,zj) - --'é—-
e - 12z (IV.15)

which give rise to poles in (p; + Pj )2 = p2 whenever the relation (IV.3) is satisfied.
Therefore we can find the residues of the poles following the steps done previously for
the Koba-Nielsen amplitude.

In order to obtain a covariant expression for the residue the expansion in
eq.(IV.11) must be performed in a covariant way. We do it by introducing normal
coordinates [65]. Since we may think of @ @ as a metric g,5 , we take the
meromorphic connection:

I =T = . (IV.16)

In order to study the limit z,—z,, we write z,=z4+y and y=A(1)-A(0) where, for 0 <t <1,
the geodesic A(t) joining the points z1 and z5 satisfies the equation
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d*At) ) 0 (IV.17)

+ I'(
dt?
Defining &:(dl/dt)lbo we obtain the following expression
cz 1E- Y DrEYR
z,=2,+§ é DF(n+2)! (IvV.18)

where D"I" means that the covariant derivative should be taken with respect to the
lower indices DI'= (9-21°)[

Notice that & transforms like a (-1) differential: £= &% . We may then write the
expansion of a scalar as

@(z,) =O(z,) + £DD(z,) & D°®(z,) + (V. 19)
V(z,) =V(z,) + §DV(z, & DV(z,) + (IV.20)

Of course, D® = 0® and DV=(a--a—w)V. In general, Dn<D=co"[J—a]nCI>.
0] ®

From the definition of the covariant derivative, it is easy to see that o has vanishing

covariant derivatives
D'w =20 . (IV.21)
Exactly the same analysis can be carried over for the antiholomorphic part.

Let us then rewrite the amplitude of eq. (IV.12) as

AJ-dzlcoldzz]led @ [Tk,

i>2 i,j>2
P4B; PP,
oxpl - 2102 Z 1 )y - == Az2)] (IV.22)
1,2 i®1,2
where
—pi i Alz,z)
- /2,
H Ky = He
-2 L2

remains fixed in the computation. Under the change of variables z,— & , d%z, |0(z,)?
=d?E lw(z4) |? due to eq. (IV.21) and coa(&:O) = m(z4). We then define Ag by
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exp A(z,z,) = |Ea(z,)] 2 exp Ag (24,2,) (1V.23)

Therefore,

Ag (z4,2,) = log| R (z,,2,) (IV.24)
is regular for & —0 and it is the regular propagator. The term w(z4)§ can be
interpreted as the distance that one has to subtract to the propagator in order to make
it regular at coincident points (see the discussion in sect. IV.2). Notice that with this
procedure we have obtained this distance which is conformal invariant since no
reference to any metric has been made.

The amplitude can then be written in terms of the following scalar

= PoP;
¢(§>§) =exp {-v AR T4 - '_4"" AR(ZQ(};))Zi)} (V'-25)
as
= [ TT 2 106)F &2, lo@ ) °dE o) E o)™ @&HF (1v.26)
i#1,2
where

P, P,
F = expl- D, —= A(z.7) ] HKU.
Li>

i>2

does not depend on &, E. By the same analysis performed for the Koba-Nielsen
amplitude, we find that the residue of the pole at (p1+p2)2=8 (n-1) is given by

A = J.Hdzlm ) K, o’z Joz) " expl - Z——-——Azz

i#1,2 i>2

N o= p2p
D, D, exp{-v Ag(z.,2,) - 2, —5— AlZ,(8).z)}
i>2

2,=2 (IvV.27)
(where z denotes the previous z4). Since by construction D and D commute,
derivatives with respect to z never acts on any power, positive or negative, of «.

Let us begin the interpretation of eq. (IV.27) by considering the lowest mass
levels.

First we notice that eq.(IV.27) for n=0 is the amplitude for (N-1) tachyons, one of
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them with momentum p=(p;+p,). Then the vertex reproducing this amplitude is
obviously given by

V, = fdzz 0(z) ©(z) : exp (ipx) : (IV.28)

Here and in the following we use <x(z) x(w)> = A(z,w)/4 for contractions, where A
is given by eq.(IV.14), and the symbol : : means that self contractions should not be
considered at all, i.e., only contractions with other vertex operators are allowed.

IV.4 GRAVITON VERTEX

The graviton vertex (p2=0) is obtained from eq.(lvV.27) for n=1. This is the first
interesting case where we can see how the method works. For n=1 eq.(IV.27) gives

A, = jdzszzzi{co(zi)[ (1. -piﬁ DAZZ) 1D %P-‘- DA(zz)] +

i>2 i>2 i>2
(Py+P,) P;
- Z___l._z._._i A(le_)
(p1+p2)p2 S P2 4 :
+1 [v- ———Ta@) ImQ w(z)} e (IV.29)
where we have used
Dz2 AR(Z1 ’22) l22=z1=z = DzzAR(ZVZZ) l22=z1=z =0, (IV.30)
— T — 1
D22 DZ2 Ag(z,,2,) 'z?_=z1=z =7 D, D, R(z,,z,) 122=Z1=z =7 Q(z) (IV.31)

where Q = -4nn? (ImQ‘1)abo3b , and the equation for the propagator A(z,zj) defined in
eq.(IV.14)

-1
D, D, A(z,z) = 1 8(z,2) ”':I Q@z)+ = i 8(z,P) (IV.32)

i=1
The last term in the r.h.s. can be neglected since it is due to the (g-1) further zeroes of
the theta function which cancel in the amplitude. Moreover, we can perform the
computation by analytic continuation in the external momenta from the region where
also the 6(z,zj) gives no contribution.
Notice that the last term in eq.(IV.29) is not present in the case of the sphere,
where the holomorphic and the antiholomorphic part completely factorizes.
We define now a vertex for the intermediate massless state that reproduces the
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first term of eq.(1V.29), when it is contracted with the other tachyons, the last term
being interpreted as coming from the normal ordering of the vertex.
The massless state vertex turns out to be
e Q

v, =J.d22 exp(ipx) € Dx*Dx’ = :V,: - fdzz exp(ipx) -——1—6ﬂ— (IV.33)

where p=p4+p,, and, in our case, the amplitude is reproduced when the polarization
tensor is given by e*V=-p,* p,¥ . Notice that it satisfies
pueu":O

and that the polarization tensor "V can be decomposed into a traceless part (graviton)
and a trace part (dilaton)

Py Py = (P +PY) (P) - py) + (P pY - P Py - Yy pY)
Since our starting point is a tachyonic amplitude, the residues of the poles produced
when the positions of two tachyons coincide, will correspond to the physical particles
that can couple to tachyons. In particular, the antisymmetric tensor field can not be
produced by this mechanism.

The term containig Q in eq.(IV.33) reproduces exacly the last term of the
amplitude and can be interpretated as the contibution of the normal ordering. In fact,
using eq.(1V.24) as a definition for the regular propagator at coincident points, the self
contraction between Dx and Dx corresponds to performing the following operation

v
e <Dx"z2)Dx¥(z)>=n*e lim D. D A N e . (V1.34)

z, "z
Hv W, oz=z 7172 4 16

(the local part of the self contraction, i.e. the §(0) is automatically avoided by
construction).

The term Q is an explicit expression for the dilaton coupling to an arbitrary

Riemann surface with g = 1. It gives rise to the tadpole divergence of the closed
bosonic string, representing the coupling of the dilaton to the vacuum [15].
To clarify the connection between this result and the dilaton counterterm suggested in
references [59,63], we notice that Q corresponds to the finite part of the curvature
R=-2gziazaz Ing,; obtained from the singular metric (which is a generalization of the
metric usually taken for the sphere, flat everywhere but singular at the north pole):

-4 _-4U
gzz=|EI e ..
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Note that since the & -part of the curvature is avoided by construction, the

integral of its finite part
J.dgz Q=-4ng
is proportional to the genus g rather than to the Euler characteristic.

Notice that in the vertex (IV.33) there are no terms proportional to DDx. It can be
seen, by using the eq.(IV.32) satisfied by the scalar propagator A(z,zj), that these
terms do not contribute to the amplitude. In fact, the last two terms of eq.(lV.32) do not
depend on Z, therefore their contribution cancel in the amplitude, by summing the
contractions with the external tachyons, due to energy momentum conservation and
pua“"= 0. Moreover, we can perform the computation by analytic continuation in the
external momenta from the region where also_ the 8(z,zj) gives no contribution. We
shall see indeed in the general case that DDx never appears in the vertex, and that
the terms proportional to Q(z) arise due to the normal ordering in the self contractions
between left and right moving sectors as in eq. (1V.34).

Let us notice that the extra zeroes of the propagator A could give spurious
singularities, i.e. not related to physical poles in the external momenta. By the same
mechanism described above, they cancel in the amplitude due to pueu"=0. We shall
see that this problem arises in general and it is solved due to relations among the
polarization tensors.

By construction the vertex V4 is obviously defined up to total derivatives. For
example, we can add a term '

D (eipx Dx* n;) +D (eipx Dx* ni)

with p”n1’2u= 0 . In fact, by using eq.(IV.32) for the propagator A and the
considerations made before, this term does not contribute to the amplitude. Adding
this term to the vertex (1V.33) corresponds to a shift in the polarization tensor

, 1, 2
E = € 4+ + i
v wy AL pvﬂu

which generates the gauge transformations associated with the graviton.

IV.5 MASSIVE STATE VERTICES

The vertex for the fisrt massive state is obtained from eq.(IV.27) for n=2. The
residue in this case is given by
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A, fdz — ]z jow)P 1 v DA, @5, sz,

ZOJZ |>2 i>2
z Z——‘D A(zz)]x[D—>D]
i>2 P2
+1§Qz()-—;—DDQ [D,Q(z Z Mzz)+D D] +

i>2

(P4+P,)P:
Q) 22D, Azz) 22D, Alz.z) e —;_LZE_—LA(Z,ZJ')
=1 Z Z

i>2 >2

where we have used egs.(IV.31), (IV.32) and

2 _ 1
D, D, Aaz12) |, _, , = 7D,Q@)

2
D, D A

Zy 2y R(Z1’22) Iz?_=z1=z =
2 2 1 —
Dz2 Dz2 AR(Z1’22) [zz=z1=z = Z Dz D Q(Z)

(IV.35)

As before, we interpret the terms in eq.(IV.35) dending on A and Q as coming

from the normal ordering of the vertex for the intermediate state.
The vertex for the first massive level turns out to be

- | & 2 - B Dy 2Hy 0 BBy o Dok
V,= f ¢’zlo(@)[” explpx) (¢, DX"Dx' +e D*) &, Bx'Dx’+E B x*)
2

_ D2A

=&z () explion) (ke e 1) —

-Té-es DDQ+—1—2—8—8 E’WQ -—e e*DQDxY -1—8 s“DQDx -le e”QDx"

Py.
By 8 4 v Dx}:

+ eusz” e, Dx*Dx]x [D—D;e—E]

(IV36) ‘
Similarly to the massless case, the terms corresponding to the self contractions can

be obtained using the following rule
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AL(z,,2,) 3
<D, x(@)D,x(z)> = lim DD, ——2__LPO o o2ima) o7 (vara)
Z,—Z=Z T2 4 4" 3w
_2 —2 Ag(z,2,) -
<DxBoxs= im D’D 22 __ 1 p5q (IV.37b)
z" "z Zy 7 4 16
22——>Z1=Z
By using this rule and the polariztion tensors
eh=1iph eV =-0;p, (Iv.38)

the vertex (IV.36), when it is contracted with the other tachyons, reproduces the
amplitude (IV.35).

We have already observed that exp A (z,z;), defined in eq. (IV.14), has extra
zeroes, and they are at the same position of the zeroes of w. These zeroes can
appear in the denominator and give rise to spurious singularities (notice that w also
appears inside the covariant derivatives). Therefore we must require that the spurious
singularities cancel in the amplitude of this vertex and, for instance, an arbitrary
number of tachyon vertices.

By doing all contractions this amplitude is given by

PP,
—IA(z,2) 2

=l 4 ] Ag(z,,2,) D A(z,z)
2 -2 J . g RM1172 . H |
J’d zlo(z)| e {[(laup n“"sw)DQD2——-——-—-—----4 IZZ:ZFZHE“Z’M — °

DA(z,z) DA(z,z) - _
-s“vai” n ';pr n L 1x[e—e, D-D]-

e g e & DA(z,z) & ¢ DA(z,z,)
=y 5 i’ j
- pBQ-i-L-pQ E,- pt i-2pQ Ej -

16 8 4 8 4
e Y & & DA(z,2) DA(z,2)
Ly IR 1 ] v !
+ 158 Q + 7 ij ) zpj 7 } (IV.39)

i j

(where we have written only the terms which depend on z). The behavoir of this
amplitude for z near to one of these extra zeroes is obtained by noticing that
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PP, 2

—L 2
2 574 A & -2 %—log|z-P]
lo(z)] e — |[(z-P) | e =1
z—P
It
Zp“D Azz) > -p*(0-22) dlog(z-P) = 2B (V.40
z—P W (Z-P)

z—P

Z PDA(z,z) — - i

where we have used the energy momentum consevation, and that for the
selfcontractions

1
(z-P)°
Then, in order to cancel the singularity in P in the factorized part of the amplitude, we
obtain the following constraint

2
DZAR(Z1 ’22) l22=z1=z

2
3

z-P

7 1 1
—nte - — HpY
12|ep+6n uv 165 PP (IV.41)

Moreover the extra singularities also appear in the terms of eq.(1V.39)
depending on Q. Recalling that D and D commute, i.e. D never acts on o, we have
DBQ = a3Q-2235q -22 50+ 22 e q
W o 0
then the terms proportional to 9Q, 9Q and Q contain spurious singularities. By using
eqs.(lV.40), the rest of the amplitude for z — P is given by

1=, 1 1 1 1 1 1
_u_..__ LT ._u___ Wiy e—
aQe{ € P+ 3 lp_ }+8Qe{ g +—ch IpVZ-P}+

32 : Z-P " 32
Q 1 -, 1 oy 1= y .
L= w1 1 -, 1 .
4 IZ'PI2 {e“e TAEEVIP TTEETP T TSP P } + regular terms.

Therefore in order to cancel the singularity in P we must impose the condition
pue“" -4igv =0 (IV.42)
Multiplying this equation by p* and inserting in eq.(IV.41), we obtain
WVop 2] =0 V.43
n, e+ 2ip e (IV.43)
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Equations (IV.42) and (IV.43) coincide with the requirements of conformal invariance
obtained from the operator product expansion [6]. In particular the polarizations
(IV.38) obtained from the amplitude satisfy these equations.

Again, the vertex V, is defined up to total derivatives. The addition of total
derivatives induces a redefinitions of the polarization tensors and this corresponds to
the addition of null states mentioned in Ref. [66] (we recall also that it has been noted
in Ref. [39] that some null states correspond to total derivatives both in z and in the
moduli).

We are now able to generalize the construction outlined above for an arbitrary
mass level state. From eq. (IV.27) we can read the vertex for the n-th massive
state, p2=8(n-1), to be

_ 2 e =N 1 . N 1R oAy ] n-lulv
vV, _fd z (ww)  exp(ipx) {e”D X +st X"Dx"+ ... +8uvD x*Dx” + ...

~ m o - -
e Dx '.Dx "}{D—D,e—t} (IV.44)
-ty

(this can be further generalized to non-factorized polarizations by €u1...unBvi...vs™

Eul...unvl...vs )
The particular vertex obtained from the multitachyon amplitude has definite -

polarization tensors, which can be read from the expansion:
2 s
2 =l n! . ke, Dtk Dx*k
Vo= J dz (ww) " exp(ipx) {Z PRPRRELLE Dx"] [ip, R e
1. 2-... S- P' u p.
x{D—D} (IV.45)

where the sum is restricted to ky + 2 ky + 3 Kg + ... + s kg = n.
The self-contractions are computed with the prescription,

Ap(z,,z,)
<D"x(z) D(z)>= lim DI p} 212 (IV.46)
z,>z=z ' 2
form,g=0,1,..,n and 1<m+qg<n, and
- — A (Z 'z ) (-1
<D"x(2)Bx@>= im DD, 412 . L pmptig (IV.47)
z,oz=z | 2 4 16

for 1 <m, g <n. Notice that even though there are no D™D! x terms in the vertex, there
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will be contractions <D™ x(z) D! X(w)> which are different from zero only forg > 1.

In Appendix Il we check that, in the case that the polarization tensors are those
of eq. (IV.45), the sum over the self-contractions according to the above rules, gives
back eq. (IV.27).

The polarization tensors appearing in eq. (IV.44) are constrained by linear
relations following from the requirement of conformal invariance. In fact, as observed
in reference [6], conformal invariance requires that the short distance expansion of the
product of the T,, (=:d,x* d,x, 1) component of the energy momentum tensor and
the vertex V, has no poles of order higher than 2. By looking at the possible
singularities one can derive the corresponding equations. (For this purpose, it is
enough to consider the surface of genus g = 0 and to take ordinary instead of
covariant derivatives). For example, in the case of n= 3 (p? = 16), where the vertex
operator is :

_ 2 “2 . u vV p 2 H’ AV 3 l‘L gl oo
V, = J.d z (ww) ~ exp(ipx) (euVPDx Dx'Dx" + z—:uVD x"Dx" + e“D X" ) x ( D—D, e—e)

the relations are easily derived to be of the form

eV raip e+t =0
nuv pu

P +bip e*P+ceP=0
nw pu
ipus“"P+d(e"P+8P") =0

ippe“"+es" =0

where the coefficients have the values [39]: a=3, b=2/3, ¢=8, d=4/3 and e=24. We
check that the polarizations corresponding to the special case of eq. (IV.45) satisfy
these relations.

Since conformal invariance guaranties the possibility of choosing an arbitrary
metric, the relations following from it have to insure the cancellation of the spurious
singularities which appear in our expression, as they can be interpreted to be due to
the use of the singular metric ww .

The formalism which we have shown permits therefore to obtain the vertex
operators for an arbitrary mass level state. It has several conceptual as well as
technical advantages. There is no need of inventing a regularization, since the
original expresion (IV.12) is already normal ordered; therefore our
intrinsic-normal-ordered vertex operators have this property built in. The original
expression is also conformal invariant since it contains no metric at all; therefore
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there is no need of going through the process of cancelling the different possible
sources of Weyl anomalies. Even though no reference to any metric is made at any
stage, the intrinsic-normal-ordered veriex operators are covariant objects by
construction. The mechanism used to obtain the vertices automatically gives all the
self-contraction terms.

The polarization tensors coming from this procedure are of course particular
ones: they depend only on p,. However, once the conditions that the polarization
tensors must satisfy are enforced, the formalism is completely general and we can
then derive the general form of the vertex operators. As we have already noted, no
antisymmetric particles can be otained from tachyon scattering. Greater generality
could be achieved considering the scattering of massless particles as the starting -
point. However, we prefer to postpone the study of this possibility up to the
consideration of the supersymmetric case.
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V  BOSONIC VERTEX OPERATORS FOR THE SUPERSTRING AND THE
HETEROTIC STRING

V.1 GENERALITIES

In fermionic string theories the vertex operators for on sheel physical states must
obey all the requirements listed in Section IV.1 and must also be invariant under local
supersymmetry transformation, in both left and right sectors in the case of the
superstring and only in the right sector for the heterotic string.

For the superstring case supersymmetry is ensured by constructing the vertex in
terms of superfields [6]

X¥z,6) = x"2) +Oyr (@) + Byt (z) +0OF
where x* , u=1,...,10 are the string coordinates, w7 are 2-dimensional fermionic fields,
0,0 are anticommuting variables and F auxiliary fields, nedeed for close the
supersymmetry algebra. Then the vertex are defined in the superspace (z, 8, 8) by
imposing the various symmetry requirements as in the bosonic string. The vertex turns
out {o be

- ip X*(z9)
V=Jd22d26(gea) N0y pe) e (V.1)
where U is a function of the covariant derivative
D=2o +0V
6 z
acting on the superfield X and

roou r i S v N A
1 1 - m m 1 1 n X n ’ (VZ)
with

n

iri = Zsi=N

i=1 i1

As in the bosonic case the Weyl invariance imposes some constraints on the
momentum and the polarization tensors. Conformal invariance, in particular, gives

pP= 4(N-1).
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Moreover one must cancel the dependence on the conformal factor coming from the
regularization procedure of the propagator at coincident points.

Finally to obtain ten dimensional space-time Supersymmetry one has to impose
the GSO projection. In the path integral formalism this procedure is achieved by
summing over the spin structure of the spinor fields on the world-sheet with appropriate
weights. The G-parity condition imply that the vertex contains an even number of
fermions, therefore the total number of covariant derivatives in eq.(V.2) must be odd
[38,39] (one spinorial field is already present in the exponential factor). This
requirement, in particular, excludes the vertex with N=0

2 . .~y IPX 2
szdzggélpuuflpvufe : p =0 (V.3)
which corresponds to the Neveu-Schwarz tachyon.

The vertex for the lowest energy state is obtained therefore for N=1 and it is given
in terms of the component fields x, y and y by

V= fdzzz—:w(ax”—i\y“p.\y) Ex-igpyer’, =0 (V.4)
since by using the equation for the fermionic propagator (see Chapter lll) we can
neglect the terms proportional to \;/5\4/ and yoy. This vertex describes only the massless
particles of the Neveu-Schwarz sector which are transvers and traceless (the graviton
and the antisymmetric tensor), since the conformal invariance requires

€ pH = € p'=0 (V.5a)

ne Euv =0. (V.5b)
As we have already seen in the bosonic string, the vertex for the dilaton requires the
introduction of a counterterm, proportional to the scalar curvature, in order to cancel the
conformal anomaly coming from the self-contraction between the left and right sector
(notice that only the bosonic field x* contributes to these self-contractions).

For the massive states the procedure of cancelling the dependence of the
conformal factor requires more general counterterms. A classification of the vertex
operator for the massive states by using this method of cancelling all possible source
of Weyl anomaly is outlined in Refs.[38,39]. In the following section we will derive an
alternative method which gives automatically all vertices and the rules for performing
the self-contractions [41].

The vertices for the states of the heterotic string are similarly constructed in terms
of the right superfields |
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XF = x4 5;“
where yH, u=1,...10, are two dimensional right spinor fields, and the gauge fermions
wl 121,..32. The right part of these vertices coincides with the right part of the
superstring vertices and the left one contains both the scalar coordinates x* and the
internal fermions YL The general form of the vertex [41] will be given in Section 4.
The simplest possibility:
Vee szzg- gyl e P” 2
I 60
: 2 - i px
=eI|puJ-d 29~ ¥l yk e P
with p2=-4 is still eliminated by the GSO projection, then the lowest mass state vertices
are:

e — 1 X
V=g Jndzde‘P“PJ Bxe P =
Iy
=€ jdzzllﬂ‘{“](éx”-iq—f”p -\Tf")elpx (V.6)
Wp v
and
pX

<
i

e J.dQZda XFDxX'e' P" =
[IRY
2 L= v .7 - ipx
=g |dzdx (ax -iyVY P)e
uvj. ( vp vP)
with p2=0. They describe the massless gauge boson and the graviton (or the
antisymmetric tensor) respectively.

(V.7)

V.2 N-GRAVITON AMPLITUDE IN SUPERSTRINGS.

We generalize here the procedure introduced in Chapter IV for the N-tachyon
amplitude. We derive the vertex operator corresponding to arbitrary mass level states,
starting from the scattering amplitude of an arbitrary number of massless particles
(gravitons). This amplitude has singularities, corresponding to the exchange in
different channels of a scattering process of the various physical particles of the
spectrum. Singularities occur when the points, where some of the external vertices are
attached, coincide and the residue of the pole in the square momentum variable
corresponds to the scattering amplitude of the remaining massless particles with the

- 65-



intermediate exchanged state (see fig.2). From the latter amplitude we extract the
vertex operator corresponding to the state in question.

As a starting point for our computation we need to construct the scattering
amplitude of Neveu-Schwarz physical particles in terms of objects intrinsically defined
on the Riemann surface. This procedure requires, as initial data, the vertex operators of
the external particles to be scattered. The natural objects to start with are the lowest
energy states, i.e. massless particles in superstring theory, since tachyons are
projected out by G-parity conditions.

The vertex operator for these particles (i.e. graviton or antisymmetric tensor) is
given by eq.(V.4). with the conditions (V.5a) and (V.5b). We choose the external state
to be traceless n“"ew = 0, since with this extra condition the vertex is already normal
ordered (recall that, since p?=0, there are no self-contractions in the exponential).
Therefore we need not introduce any regularization a priori. Rather, we expect to
obtain the normal ordering prescription as a result.

The propagators for the fields x, y and  are given by (see Chapter llI):

- - n 2 T
<xMz,2,) X' (2,2,) > = —2—" [log | E(z,,2,) | +5 R(zy2,)] (V.8)
C(z,,z,)
- - n 142
< W,’L (Z‘I 721) Wv<22122) > = n4 E(Z1 ,22> (VQa)
- - C(z,.2,)
m vz 3 ys - DBV 712
<W (21’21) \U (22’22) > 4 -E(-i1’52) (ng)
where
0. (z,z,)
C, _—evenf%2) for even spin structures
C _ G)even(o)
3, ©(2,,2,) 0 (zp) (v.10)
Cogg =" for odd spin structures

W(Zp)

and zp is an arbitrary point on the surface. Here and in the following the shorthand
notation ®(z4,z,) will be used to denote the odd theta function @[ﬂg]. In practice we will
work mostly with the even spin structures but the main results will hold also for the
odd ones.
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The N -graviton scattering amplitude reads

- ip-x(zj,zj)

N
2 - - - - - -
A=< Hfd ZJ-ELV [aszu(Zj,Zj) - |WH(Zj,Zj)p'W(Zijj) ] [anXV(Zj,Zj) - l\;fV(Zj,Zj)p'\ll(Zj,Zj) le >
(V.11)

Some comments are necessary in order to understand this expression properly, before
rewriting it in a way technically more convenient for our purposes.

The symbol < > denotes a path integration over the fermionic and bosonic fields
with the appropriate measure. This measure should contain in general a product of
supercurrents, (see Chapter Il) due to the presence of two dimensional gravitino zero
modes in genus g > 2 Riemann surfaces, coming from the integration over the
supermoduli. This factor is a function of fermionic and bosonic fields and could be
considered effectively as a collection of intrinsic vertices carrying zero momenta which
should be contracted with the physical vertices. However, since we are interested in
producing intermediate states from the scattering of external physical particles, we
expect these supercurrent insertions not to modify the poles in the momenta and we
will not include them in our computation. Of course, if we want to compute the whole
amplitude explicitly, contractions between the physical states and the supercurrent
must be included.

The computation of equation (V.11) should be performed analytically continuing
the external momenta from the region where the 3(z; ,zj), coming from the contractions
between the left and right sectors, give no contribution. Expression (V.11) must be
summed over spin structures and integrated over the moduli with the corresponding
measure [23,28]. The sum over different topologies must be performed at the end.

We would like to rewrite the vertex (V.4) in terms of two dimensional scalars. This
can be achieved by using the holomorphic differential w(z) defined as in eq.(IV.13).
We find here more convenient to deal with scalar objects therefore we define a scalar
covariant derivative

1
V= —a, (V.12)

0,

and also introduce the "scalar" anticommuting fields

AL () = %2) i)

where h is holomorphic 1/2 differential of an odd spin structure (h2= ). Since h
corresponds to an odd spin structure, A* is a true scalar when y* is also odd. When y#

-67-



is even, then strictly speaking, A*turns out to have twisted boundary conditions.
However, in the vertices only bilinear expressions in A appear which are well defined,
univalued objects. (The same construction can be made also for the other chirality, i.e.
y*, A% o and h.)

In order to have in the formalism a manifest 2-dimensional supersymmetry we
construct covariant superfields and superpropagators. Then we introduce a scalar
superfield

XP = x* 4ot v ot (V.13)
with 8 a world-sheet constant scalar Grassmann variable.
By defining the supercovariant scalar derivative

D=6V +ae (V.14)
we can rewrite the vertex (V.4) as

pX

V = j[ dzmd@[zewox“'ﬁx” e (V.15)
Equations (V.8) and (V.9) lead to the superpropagator
v 2
<X X'(2) > = %r—- [INO, | +2U(z,,z,) - Info(z,) o(z,)]] (V.16)

where
O, = 0(z4,2)) - 6,0,C,(z,,2))

appears here as the generalization to an arbitrary Riemann surface of the variable
Z1,=24-Z, -0, 6, naturally defined on the sphere.

In order to compute the correlation function (V.11) it is usefull to introduce
auxiliary Grassmann variables ¢ and 6. Then the vertex eq.(V.4) can be rewritten as

2 IPX
V=J]dzwd6dcl e
where we have defined the operator
iP" =ip" +ce*D +0e"D (V.17)

and we have introduced, without loss of generality, the factorized polarization tensor

£,, = €,€, satisfying

ept=ept=p =0 (V.18a)

e et =0. (V.18b)
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Introducing a different set of variables (cj,0i) for every vertex, we are finally able to
rewrite the amplitude (V.11) in a form more convenient for our purposes, namely

. 2 1P X(j)
A =<i if]dzj.co(zj)dej do; " e N
j=1

N
2 .
B f H | dz; ©(z;) df; do, I1HN exp |- F’j*L P < XE() XV(K) > ] (V.19)

where
iP¥ =i+ 0,8 D +o,etD
Notice that in eq.(V.19) the term with i=j is not present. In fact eqs.(V.18) imply
that Pjtu“ for every j is equal to zero and then in equation (V.19) no self-contractions
appear. Moreover conditions (V.18a) ensure that the term Infw(zy)w(z,)] in eq.(V.16)
drops off in eq.(V.19). Therefore from now on we can replace equation (V.16) with the
effective scalar super propagator defined by

< XH1) X¥(2) > = ﬂg-v- A(1,2)
(V.20)

A(1,2) = In10,,]*+2U(z, 2,)

This propagator contains spurious singularities because the function ©(z4,2,) is zero
not only at z; = z, but also at z, = Zpa (a=1,...,g-1) with Zpa being fixed points on the
surface. Therefore, in our way of writing the amplitude, equations (V.18a) can be
interpreted as a requirement for the cancellation of these non physical singularities.

The amplitude (V.19) has poles in the square of the sum of external momenta
corresponding to the intermediate states. We have seen in Chapter IV that the poles
come out of the integration over z when two or more vertices coincide and in particular
we will analyse the case when two particles, say with momentum P, and p,, collide at
the point z,.

In order to study the limit when z, — z, we introduce of Riemann normal
coordinates [65] and their supersymmetric generalization. This allows us to covariantly
describe the process in which two or more external vertex insertions tend to the same
point on the Riemann surface, giving rise to the poles in the relevant square momenta.
The residue is thus a covariant supersymmetric expression from which we can extract
a covariant and supersymmetric vertex operator.
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Then we introduce the normal coordinate &g (which transforms as a (-1)-'
differential) as in eq.(IV.18). In terms of the scalar covariant derivative (V.18) the
expansion of z,around z, is given by

((DE_, )n+2
n B
- - _— 21
z,=2, +Eg n;v r 2] (v.21)
where VT is that the scalar covariant derivative of the connection T,,Z =0d,,/w,
vir= (1) Loty Leenr
® (Y ()] (03
The expansion of a scalar becomes
1 2 v2
D(z,) = @(zy) + 0 &y V., 0(z,) + 57 (&) Vi d(z,) +... (V.22)
where
v 1 3 3"
1 (13(21) = (5 21) (D(Z1)

is still a scalar (notice that expressing the scalar covariant derivative in terms of the
covariant derivative (IV.21) the expansion (V.21) and (V.22) becomes equal to
eq.(IV.18) and (IV.20)).

By using eq.(V.22) we can now write a covariant expansion for a superscalar
F(z,,6,) around (z,,6,) as

Flzp0) = Flz,0) +(6,-0)9, F(z;,6,) =

Z (OJ EJB)n i n+1
= n=0_—_n! {Vy [F(z,,0,) + (6, -6,) D, F(2,,6,)] - 0,6, V" F(z,,0.)} =

)" V] [F(z,8,) +(6,-6,) D, F(z,,6,) =

= = v, [1+(8,-0,)D,]F(z,.8,) (V.23)
where we have introduced the supercoordinate

5,9, (V.24)
co(z1)

g=éB'
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It is easy to show that it satisfies the following equations:
D, (0&) = D, (0f) = 6,-96,, D,D, & =1 (V.25)
and that
de(D(ZQ) = d&Bﬂ)(Z-I).
Equation (V.23) is the covariant version of the Taylor expansion in superspace

which, for the sphere, is written [6] in terms of the variable Zyy =2,-2,-0,0, .The
amplitude (V.19) becomes

2 2 2. ...
A = J|d21w(z1)d91 do, | | 0, w(z,) d8, do, | || dz; o(z) 8, doi|* K(m)

i=3
P1P2 2
coxp [- —Llog| 0| *] F(1.2)) (v.26)
with
P.P
Kam =[] ewr- L2 agm]
3<j<msN
and
P.P P.P. PP
. 1 . .
FU2]) = epl- =2 a5012) - D —da) - D) 2L aehl ey
j

a regular function in the limit z, — z,, which must be expanded according to equation
(V.23).

We have split the propagator A(1,2) into a regular and a non-regular part. The
regular superpropagator is defined by

C)
Ap(1,2) = A(1,2) - ln|co§|2= In|— | + 2U (V.28) .
)
and it leads to the regular expressions for the bosonic and fermionic propagators
Z,) 5 Co(24,2,) ]

@(21,
= In + 2U A =
BR | oy | R e (z;z,) oy

A

The non-regular part in equation (V.26) has thus been isolated in the factor
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P.P -
1 2 C 2
exp[-—=In|wg[] = exp [ — + = - vin|wE|]
ol o
c 2 -2V
=1+ —]| |0g] (V.29)
wt
where
,_ PP p°
T4 8
and
¢ =0,0,a- (0,-0,)(c, b, +0,b,) (V.30)
with
€€ Ep E,p
_ a2 o2 _ 21
a_4, b1—l4, b2..|4

(and similar expressions for ¢, a, b,, b, just replacing 6,6, — o, b, €).

11
By using egs.(V.23) and (V.29) in the amplitude eq.(V.26) we obtain

N
A= _[|dz1m(z1) do, do, | | dego(z,) 00, do,” | [ 1 dzo(z) d6, o Kii)
n,k=0 i=3
- )n-v —‘)k-v N o= — - .
x(1+£-g) (1+:£—§) (mil (“’i! V) Vs [1+(8,-0,)D,1 [ 1+(8,-6.)D,] F(1,2,) I,

where |,_; means that the derivatives are evaluated at (z,,8,) = (z4,94).

The residues of the poles are obtained by integrating over &g, Eg. By introducing
polar coordinates

é:‘:r:),:peiq)

then

0, 9,

E=pel(1-—"e™)
wp

and it is easy to show that
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r+8+2 0 91 r+s+1 9261 Ar+s+1

2¢ grgs A - S(r- 2 VA -1) § —
jd g6 & o(1,8) r+s+2 o(r-1,8) 1 @ [+s+i o(r,s-1) s o TSt
0,6 5 6 r+s
+3(rg)re—21A (V.31)
oo S

with A being an arbitrary cut off, irrelevant at the pole. The last three terms are regular
while the first has a pole at r=s=-1.

Therefore, the poles of A are found for v=0 and v=n+1 (n=0,1,2,...), corresponding
to a state of total square momentum (p4 + p2)2 =0and (py + p2)2 = 8(n+1) respectively.
In particular, there are no poles for v =-1 and v = -1/2, which would correspond to the
bosonic and Neveu-Schwarz tachyons. Moreover, we do not find poles corresponding
to intermediate states of wrong G-parity as expected, since we are scattering physical
particles. The residues of the physical poles are given by

N

2 2 2. ..

A, = | 10z,0(z,) do,do, " | d6,00, | si 1dz, (z) d0.do;|” K(ij)
I=

x cC[1+(8,-6,)D,] [1 +(0,-6,) D, ] F(1,2,)) |,_ (V.32)

N
A, =j| dz,0(z,) d8,do,|” | d8,do, | E |dz, o(z) deday” K(ij)

¢V, &y nen = == ~
x (I4) (14 =) VpVp [T+ (8,0)D,1 [1+(6,0)D) F(120 s (v.33)

From these expressions we want to extract the form of the vertex operator for the
state of mass p?/ 8 =v written in terms of the superfield X and its derivatives . This
operator, with prescriptions to perform self-contractions, must reproduce the residues
(V.32) and (V.33) when contracted with N-2 massless particles.
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V.3 VERTEX FOR THE SUPERSTRING MASSIVE STATES.

We will concentrate first on the case v=n+1 to obtain the vertices for the massive
states and normal ordering rules. The v=0 case will be considered separately since,
as we will discuss later, the vertex for the massless particles cannot be obtained from
the scattering of two gravitons.

Let us start with the first massive state.

n=0 p?=8 -
In order to identify the vertex we still need to integrate over 0,06,in eq.(V.33). We

get

fldzcn 2,) d6,do, [lda ]H]dza) ) dodo | K(i)

x [Dy~ (01b1+0,b,)V ,+a0,5,V,D,][D,- (6,0, +6,b,)V,+ a0,0,V,D,] F(1,2,i) |,_,

We obtain a more explicit form for A, if we insert the definition (V.27) for F(1,2,j)
and express the result in terms of derivatives of the propagators. Integrating also over
o, and 6, we obtain

N
Aq
2 2.....
A, =f]dz1m(z1)d91| E 3i [dzo(z)d8PK(i) {[ & ZP“V D, ( 20 4o ev,0, R L
j:

ne AU J) v A1 k) o A1) " (,J) v A(1,K)
+8MVP%IPD 2 ipip, = ippp, 20 +8“V%PV iPyD, =

Mg - o A1)
+a“V1D2 ) ]2 _ x[the same with bars]+terms with DD derivatives}exp[—(p1+p2)§j::Pj-(—4Q]
(V.34)

Here
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gt =aip} - b.e}
eV =D rpze" b lp28V + €5 €Y - ap2 p2 (V.35)

WP — gkt &¥ pP
€ iel! € ps

We begin by looking at the terms which are factorized into a left part (i.e. with only
derivatives without bars) times a right one. From these terms, we read a vertex of the

form
V=[ldzwdeP v, Vg elPX (V.36

which, for the particular case we are considering, is the following
_ 2 B HoyyY HryyY B o1 oPX
V, _J-[dz1co(z1)de1| [euVDX +ewVX DX" + SuvaX DX'DXP][ D—D, e—¢ e (V.37)

where p = p; + p, and the propagator of eq.(V.20) must be used in performing
contractions with other vertices. The polarization tensors given by eq.(V.35) are of
course the particular ones obtained for the intermediate state n = 0, produced when 2
external graviton insertions coincide. We can imagine more general processes like the
gathering of many graviton vertices at the same point, thus obtaining more general
polarizations. We therefore discuss the features of our vertex imagining general
polarization tensors (one can also further generalize them to non chirally factorized)
provided they satisfy certain constraints to be discussed below.

The vertex of eq.(V.37) is not normal ordered. We can rewrite it as a normal
ordered part plus extra terms which correspond to the self-contractions. Looking at eq.
(V.34) we can identify the terms which correspond to self-contractions. Therefore we
obtain the rules to be followed in order to compute them.

We begin with the terms containing Ag explicitly written in eq.(V.34) which are
interpreted as self-contractions within the same chiral sector . They can be
reproduced by using the following rules

Ag -ip.€0
ipuz-:v<X”(z)VDX"(Z)>=ip.eIim V2D24 |

Zy—Zy=Z

1 3 a -1 b 2
0= (Vo@loy T IMQ0*+V,C )
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A e n*e
e <VXz)DX'(z) >=e n*lim V,D,—* - (V3@ o ima o+V2C

17277 lo = loat)
# i Zy—Zy=Z 4 00, 8 e2=1t .

All the other self-contractions are zero since

= D1D2A =0

R12=1 R|2=1

DoAgloq = VoA

Let us now discuss the terms with DD derivatives in eq.(V.34). As in the bosonic

case they do not give rise to terms DMD!'X in the vertex with both n and | = 0. In fact
such terms would never contribute to the scattering amplitude since

| —
<D"D Xi) DD X¥()>=0 for m+q = 0

and moreover

| .
euz p/ <D B, X*(1) X"(j) > ~ Z p/=0.
j j

Therefore the terms in eq.(V.34) containing DD derivatives are interpreted as _
self-contractions betwen left and right chiralities . The following rules are obtained

i vV . —= AR — Q(Z)
<DX¥z)DX'(z) > =n* lim DD, —| = -n%0,8, —— (V.38)
2,—52,=Z 4 00, 160w
where Q = - o' Im Q;@ and in general
DX D'X) > = 1 im DIDE R
< (2) (z)> = 1 im D, D, 7 |92=61

with m,n = 1,2,3 also expressed in terms of Q and its covariant derivatives. For the
vertex of eq.(V.37) only the case m=1 and n=1,2,3 (or viceversa) will appear due to

the particular polarizations of eq.(V.35).
Notice that the contribution of the normal ordering terms arises automatically in

our formalism.
The polarization tensors that we have obtained satisfy the following constraints
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pv iphE =0
e, IPTE

piE,, - 4L, =0 (V.39)

pP & Heg =0

[vp]  Clwv]

where [ ] denotes antisymmetrization over all indices. The same relations are obtained
in Refs. [6,39] for general polarization tensors from the requirement of conformal
invariance, for instance from the condition that the O.P.E. of the vertex with the
superstress-energy tensor has no poles of order higher than 2. As in the bosonic case
this is equivalent to the requirement that the spurious singularities, which could come
from the zeroes of w(z) and from the fact that @(zi,zj) has extra zeroes in z; and Z;
besides z; = z; cancel.

n>0,  p?=8(n+1)

As can be seen from the general expression (V.33), we obtain the vertex for
higher mass level states by applying V," §7-2“ to the integrand of eq.(V.34)  (before
evaluating it at 2 = 1) . Then the left part of the vertex that reproduces the amplitude
A, .1 is given by

Vall e V,D, X*(2) + é;ivzx“(z)mxvm + eﬁ)vzx“(z)ozxv(z) +

ipoX(2) ip,X(1)
tE D1X“(1)D2X"(2)D2Xp(2) le o © (V.40)
where Euvp is given in eq.(V.35) and
e =m[aipg— b,e}]
el = F%.T [biph el +ele)] S =E-'}T [b.iph &)+ aph py] (V.41)

Notice that since we are looking at the intermediate state produced when two
external graviton vertices coincide, a state with at most four fermion fields A* can be
obtained. In order to get more fermions in the intermediate state we need to consider
more gravitons coming to the same point. For example, a term like
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e DX"DX'DXPDX°DX’ e
pvpad

which contains six fermions, appears when we compute the residue of the pole at
p?=16 when three of the external gravitons collide at the same point. This, combined
with terms similar to those coming from eq.(V.40), for n = 1, (now with other polarization
tensors) gives the full vertex. The analysis becomes more complicated since two Taylor
expansions must be done simultaneously, however it is easy to see that this term is
indeed present. For example, if we consider the limit z,—z, and z;—z,, and we Taylor
expand A(2,)) and A(3,k), the integration over 8, and 6, gives
ip, Dyi P A2, )] 541 P3Da 1 P ABK)Ig 4
the integration over ¢,, o, and 63 brings down from the exponential

exp [ PzP 2k

the term

jE;lD [) :E:iak[)2 2ok :E;Fﬂ

and we obtain a contribution to the vertex of the form
. Lo vV p O 5
i paL DX™ i p3VDX 3 pDX 820DX 835DX

The above considerations lead to the general V|. It will be a sum of all possible
terms of the form

N M
- E[ DX such that Z;\ = 24 (V.42)

with general polarization tensors €yt .. s (and similarly for Vg replacing D — D).

€1 .. us Must satisfy appropriate constraint equations [6,39] which are the
generalization of eq.(V.39). In our scheme these constraints ensure the cancellation of
spurious singularities. In fact they are automatically satisfied by the particular
expressions obtained by colliding at the same point a definite number of external
gravitons.

Together with the form of the vertex we also get the rules for the self-contractions
to normal order it. These rules generalize what we have already seen fur the case n=0
and are the following
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(V.43)

e n A(1,2)

NPT R I
<D X"(z)D X'(z) > =1 zzln;1=ZD1 D, — Iez=e1

The regular propagator has been defined in eq.(V.28) and from eq.(V.25) it is
seen that egs.(V.43) are symmetric under the interchange 1-2.

We recall that contractions with other vertices are performed by using the
propagator of eq.(V.20). Notice that even though there are no DMD"X terms in the
vertex with both m and n different from zero, contractions of the form <DmX(z)5“X(w)>,
which are nonvanishing for g > 0, will appear in the amplitude. ‘

V.4 SUPERSTRING GRAVITON VERTEX

Let us now discuss the massless case. After performing the integration over oy
o, and 6, we get for A, from eq. (V.32)

N

- 2 2, A1,

Ao =2 [ldz 0(z,)d0, " | 3i dz(z)dedo* K(i) exp[- péj‘dpj_(_zl)_]
I= .

- AR
«D,D, exp [- p2ZPj—%)—] » (V.44)
]

where we have used v =b , = b, = 0 since p, = p,2 = (p; + P, )2 = 0 means that p, is

parallel to p, . Therefore A, can be expressed as a total derivative. This reflects the
fact that the 3-graviton scattering amplitude vanishes at the tree level (i.e. on the
sphere). The reason is that, on the sphere, the propagators completely factorize (U =0
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in eq.(16)). Therefore there is no mixing of left and right chiralities and the amplitude
must necessarily contain a factor gh(i) Piu (with eH(i) the left polarization of the
ith-graviton) which is zero since p; is proportional to p; As the residue of the pole is
proportional to this amplitude, it also vanishes.

In fact the amplitude (V.37) can be reproduced by the vertex operator

ip X

2 —
V, = j |dz, o(z)) d6, e DX“DX'e (V.45)

with €y = -aa Pay Pay » which corresponds to a gauge state, as p, is proportional to p.
This is a particular feature of our analysis, since we are considering the case where
only two gravitons come together. In the general case, when more particles coincide,
we expect to find a vertex of the form (V.45) with a physical polarization. As a check we
have studied the residue of the pole for v = 0 when three massless incoming particles
collide at the same point. Since we already know how to normal order, for the sake of
simplicity we have done this computation on the sphere, just to obtain the polarization.

The N-graviton scattering amplitude on the sphere is given by eq.(V.19) with w=1 "
using the propagator

2 2
A(1,2) =In|zy,|” = Injz,-2,-0,9,| (V.46)

We analyze the behavior of the amplitude when three of the external gravitons
collide at the same point. The singularities are studied keeping z, fixed -and
considering the region where z,—z, and z3—z,. We first isolate the divergent part of
the integrand, which comes from the factor

A(1,2) A(1,3) A2,3)
expl-PiPy—5— -PPy—F— - PPy—7—1=
c c c Vo VgV
21 31 32 21 31 32 2
=|(1+—)(1+—) (1+—) z z z [
2, Zy, Zg, 20 a1 Fa
where
PP,
Vor= T Cot =Dy = (8,60 fy;
€,8, Ie.p, 5P,
byy = =040, 21 = T2 4 2 %2

and similarly for ¢g4, C3p, V34 and vg,
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Since the rest of the amplitude is regular, we can perform the Taylor expansion
around z4 interms of z,; and z4, obtaining

Vaptn . Voy#n
031 32 2 2V 21 Z
A..H ildzdedcl K(ij) 1(1+——-)(1+—)(1 '—ll 32| Zz

Za1 m Kk
Vggrk _ Varrk
x 23‘k! 23%! VoV 1+4(8,-0, D, F p(2)],_, Vi VE [1+(8,-6,)D, ° Fo(3),._, (V.47)
where
P2 =exp P P2l Fa)-enpl P@Pﬁ—f—’”]
!

By performing the change of variables

and z5-2z4=VU,, andusing the relations

Zyy = Uy - 6,0,

1 959,
Zgy = VZpy [T-5— (== - 6,8,) ]

(V.48)
21

1 32
Z,, =(v-1) 2,, [1-2—21( i 0,6.)1]

we can express the integrand of eq.(V.47) in powers of z,; and v as

N Lo
. - K1 = ~V+ntk+1
A=f|dz1d91d0'1du2dvd62dc52d63d(53|2H ldz,-dejdﬁjlzK(!J)ZZZ}"‘”* +1 z.
j=4 nnkk
“Va,+K -=.'V3 +R 2V B ] \V Vn ,
cy S 1 [v-1] 32!1+ A +— +C; | 2 2|1 +(8,-6,)D,| F,(2)
nin!
21 2y 2y

lo-1

k ok
Vv,V
3 Y3 2 .
X KRl |1+(93-61)D3| F3(3;J) l3=1

(V.49)
where

1 2
V=Voq ¥ Vgy + Vgp = 5 (P Pyt Pg)
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and A,B,C are functions of v and the Grassmann variables 6; and oj, i=1,2,3 which are
obtained inserting eq.(V.48) in eq.(V.47).

The singularities come from the integration over u,. We use eq.(V.31) with &g
and & replaced by u, and z,4 respectively. We find that the amplitude has , in
particular, a pole for v=0. The corresponding residue is given by

2 . 2 “Vaq Va2 2
A0=j[dz1d61d01dvd82d02d63d03[ H ldzjdejdcyj| K@) v “(v-1) |
j=4

x {1 B+C(Vyt VW) | * [1+(8,0,)D, * [14(0,-0,)D41 * } Fyl2,) FoB) lp_y g (V.50)

In order to identify the vertex, the integration over the Grassmann variables 6;, o; and
the variable v must be performed. At the pole the original N-point amplitude factorizes
(see fig.2) into a 4-point amplitude and a N-2-amplitude, here both at the tree level.
The variable v represents one of the four complex coordinates on the Riemann sphere
of the four point amplitude. The other three are irrelevant by Mobius invariance. The
integration over v is performed by means of the formula

J-dzv v lza | v-1 12b V"= (1) I'(a+n+1) I'(b+m+1) I'(-1-n-m-a-b)
I'(-a) T'(-b) [(a+b+2)

We obtain, as expected, that the only terms which remain are linear expressions in

DA(1,j))DA(1,j). From the resulting expression for the amplitude we read a vertex of the
form eq. (V.45) with the polarization

_ e _ b !
ev=EE B =0 + 0pf + G58 + g,P; + OgPy (V.51)

where

9y = N{V358,P; &3Py - Vgy €Dy 3Py - Vipy E3:Py E5-Pg + 4 V34 Vy €585}

9 =N{Vy &,-Pp 83Pp = Vap 1Py €5-P; = Viy €1-P3 E5-P, + 4 V5oV €465 }
93 =N{V,; &/P3 &Py = Vg1 &-Py €5-Py ~ Vg €5-Py &Py + 4 VgpVs €., }
9, =N{v;, &8 &.p, - Vg, €y.85 Eq-Py ~Vy((E(-E5€xPy-E)E5E.P5 ) }

95 =N{vy, €858 Py - Vyq €85 € .Pg - Vg, (&85 E5-Py - €585 8P, )}

with
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N = F(v,4) T(-vg4) T(vgy)
16 T(vpy+1) T(vg +1) T(vg,+1)

(a similar expression is obtained for € in terms of barred objects). The polarizations
(V.51) satisfies ewpv =0.

This result coincides with the graviton polarization which can be read from the
4-graviion amplitude A computed in reference [1] (this amplitude is linear in each &,
i=1,2,3,4, and the above polarization is given by 9A(4) /g *).

The vertex (V.45) with the polarization (V.51) can be split into a graviton, an
antisymmetric tensor and a dilaton part. In particular, we obtain the dilaton vertex
eh ioX

2 = ipX 2 i
v, = j|dz1 (z,) de, | e, DX*DX"e™ = :Vj : - 7E6_ dzQ(z) e

where the normal ordering symbol : : means that only contractions with other vertices
should be considered. The second term on the r.h.s. comes from the rules for
self-contractions given in eq. (V.38).

Let us consider the expectation value of V; on a general Riemann surface with
genus g 21, i.e. the residue of the dilaton tadpole [15]. Both terms on the r.h.s. of
eq.(V.52) seem to contribute, due to the fact that there are always supercurrent
insertions which can be contracted with DX or DX of the vertex. It has however been
argued in reference [31] that the contribution of the first term vanishes. Notice that the -
second term, which is the same as in the bosonic string case [40], gives rise to a term
proportional to the partition function on the surface (i.e. the cosmological constant at g
loop order) since forp =0

fdzz Qz) = -4ng.

(V.52)

The residue of the dilaton tadpole and the cosmological constant are expected to
vanish after performing the sum over spin structures.

V.5 HETEROTIC STRING VERTICES

The lowest energy states for the heterotic string in the Neveu-Schwarz sector are

the graviton, the antisymmetric tensor, the dilaton and the gauge boson. The vertex for
these states is given in egs.(V.7) and (V.6), respectively.The natural object to start with
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is the gauge boson since we want to construct vertex operators cointaining internal
degrees of freedom (say in the left chirality sector) as well as ten dimensional fields.
We rewrite the vertex (V.6) in terms of two dimensional scalar anticommuting fields

= 1

LT
iz ¥
and
1
I o e w1
A= h(z) E
Then the vertex operator (V.6) for the gauge boson becomes:
V=fldz o(z)f @ €0 AR B x+ ™ (V.53)

where D is the scalar covariant derivative

D=6V+a-

]
and the scalar superfield X* is given by
XE=xt 4 0" (V.54)
Vo'l
For further convenience we consider a factorized polarization tensor gy, =1, f; &,

satisfying the conditions

- ! 2
p”su=f1f =p =0
Due to these conditions the vertex (V.53) is already normal-ordered.
In order to compute the scattering amplitude, we define the superpropagator,
using egs.(V.8), (V.9b) and (V.54):
2

b oo
<XM(2,,8,) X'(2,,8,) >=T=[In ©,,+ InO(z,,2,) +2U-In | a(z,) 0z;) |'] (V.55)

Notice that the left chirality part of the superpropagator contains the ordinary bosonic @
function whereas the right chirality part contains the super ®,, defined in eq.(V.16).
The fermionic propagator for the left movers is

I - J = 5“
<A (21,21)1\ (22,22)> = I F(21,22)
(V.56)
C.(z,.2,)
Ap (24,2,) = ————
6(z,,2,)
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Introducing Grassmann auxiliary variables o, n, ﬁ/ the vertex (V.53) becomes

5 — - ~ IPX+E Al
V= ldzo| ddodndn e I

where we have defined
iP*=ip* +oetD

~ o~
Elanflent
Introducing a different set of variables (o, 7, 'ﬁ') for every vertex, the N-gauge

boson-scattering amplitude becomes (as before we do not write explicitly the
supercurrent insertions):

A= <H|dzco z)/°d0 dodnan, exp [i P, X(z 28) +E Al(z)] > =

N — ~ N A(z,,z,)
- 2 A(1,2) F\21i4p
- HJIdZiOJ(Z)! dé, do, dn; dn, ]i;[ex PP - EE | (V.57)

As in the case of the superstring we replace here and in the following eq. (44) with the
effective propagator

<Xt X (2) > 5: (1,2)
(V.58)

A(1,2) = In[®12®(z1,22)] + 2U(z,,z,)

In order to study the limit z,—z, it is convenient to use a mixed expansion. The
supersymmetric Taylor expansion (V.23), in terms of the normal supercoordinate 5
(V.24) will be used for the right moving part of the amplitude whereas g (V.21), the
holomorphic bosonic normal coordinate, is appropriate for the left moving part. Using
the change of variables z, — &5, eq. (V.57) can be written as

2 = ~
A=f|dz1co(z1)| do.d o,dn,dn,|dEg0(z I de dc dnzdnzi lldzw z)| dedcdn dn K(ij)
j=3
PP, _ E.E, 1 _
n(@Ewsy) - ——= —] F(1,2)) (V.59)
iy

x exp[-
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where

. Alij A(z,z)
ki) =[] exol- Pin——(AfL) o
3<icj<N

does not depend on z, or z,, and

An(1,2) A i App(Z,4,2)
. R J) A(2.)) FR\Z 1%
F(1,2,])) = exp[- P1P2T_P1 E]- Pj....___4 - P, Ej PJ'T - E1E2—4-——

A-(z,,2) A(z,,2) |
F\"1'7 F\=2'7
- E, Ej Ej__Z_ - E, E} E,- 7 ] (V.60)

is a regular function as z, — z;, which must be expanded in £ and E
We have again introduced both a regular superpropagator

A(1,2) =A(12) - Iog, - ot (V.61)

and a regular fermionic propagator
1

co&B

Acg (2425) = Ap (24,2,) + (V.62)

As in the SST [l case, we can now perform the expansion of the exponential in
eq.(V.49) to get
N
2 — = ~ 2 = — ~ 2 — — ~
A= j[dz1co(z1)[ do,do,dm,dn,ldege(z, ) d8,do,dn .0, ] [l0z0)*dadadn dn, K(i)
=3

c E =

x (@) (k)" [1+==] [1+—+ S1F(1.2)
g by 2(wEy)

where cis given by (V.30 )and E=E,.E,/ 4. _
In Taylor expanding F(1,2, j) we will typically find different powers of & and &g.
By introducing polar coordinates &g = pe’e it is easy to show that the integration over
€g gives
r+s542 9291 r+s+1

2, Tr.s A A
Jd & Gp = 0(rs) r+s+2 - 8(r-1,8) ® e

and only the first term has a pole at r=s=-1. Then the pole of the amplitude are found
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for v=0 and for v=n+1 (n=0,1,..) corresponging to a state of total momentum square
(P4+P2)?=0 and (p,+p,)?= 8(n+1) respectively.
The residue of the poleatv=_0is

Ao= [Idz,0(z,)dd,do,dn df,d0,d5,dn dn2H|dzm z) 6 do dn d, K(i)
j=3

2
- E - - = .
xC(E+—2 V) [1+(8,-8,)D,] F (1.2 ], (V.63)

It can be seen that this amplitude, coming from the collision of two gauge
bosons, is actually vanishing (or, more exactly, it is a total derivative) due to the same
considerations discussed previously for the massless states in the SST Il case. One
has then to produce a massless particle by the collision of at least three gauge bosons.

For v=n+1(n=0,1,2,...) we get

N
2 ~ - ~ = ~ 2= =~
An+1=_[[dz1m(z1)] d6, do,dn i, do,do,d nzdnzﬁmzjm(zj)[ dé dodn df K(i)
j=
— 22
&, EV, EVE
L1+ B 14 2 b e B V3 [0+ (B6)) D,] Vo1 F(1,2) I,

From this expression we can now read the general form of the vertex operators.
We notice that the operator

is the same that appears in eq.(V.33) and it will generate an expression for the right
chirality part of the vertex similar to the one obtained for the SST Il case. Therefore we
will focus our attention on the left chirality sector.
. . - \ ~r o - - -
The integration over the auxiliary variables m4, M4, Mo, Ny, and over 6,, 0y, G4
leads to

Ag( ) V,AL(z, )
I J "27F
A dezm |de E !ldzco ldedcdndn K(ij) {V, [&IJE E, E——
VA A Az, ) A(z,,z,) | A(2,,2)
J'2 FR 1 J K=p\e2rek/ L2 FVe2r T
&J éEv*IJKLZE ' 4 k 4 L:'I 4
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2 ZP” A AF(Z1,Z) +§ ZP“ oA V2A(2,k)
nlJ '

% 4 4
2P“V2A(2 0 . VZAR(1’2) aht hiral
; i T tip; éu . Ix [right chiral sector]
+ [ mixed derivatives terms ] } F ol1:2.) lo_y (V.64)
where
- - - — _ AL(1,2)
[right chiral sector] = V) (EHZIP“VQDz (i”) +iphe V,D—p—
f— - - A (1 )2)
~(1) vo A2, . v e A2K) ~(ps = 2R
+e, ZIP V,—= 2 iP,D ZP“V P}‘:D2 7, v,D, Tt

- e A1) v A(2K) o= A(2,D)
B P
+8uvp%lpj D, ) iP, D, 7 iPD, 7 ]

(compare with eq.(V.40) ), and the mixed terms contain both V and D derivatives.

Notice that the derivatives VNand V™ act also on Fy(1,2,j). We have defined in eq.(V.64)
_1

gIJKL T4 (fn fa

1 .

~ ~ ~ ~

) (e Ty - T

i1 119/ Vo T f

o)

=" 4(n+1) (3 fyp-f fa ) - (o Ty f f5)

E_.II F’II (V.65)
S~ e2) Pau = Bee2) PaPay
E”IJLL = §IJ p

and Fo is equal to F(1,2,j) given in eq. (V.60) when the auxiliary variables 14, 14, 15, nz,
61, o, are set to zero.
As before the vertex will be of the form

ipX

[10z06)1%d0 v, v, (V.66)

Notice that in eq.(V.64) each propagator Ac(1,j) corresponds to a fermionic field
A(1) contracted with a A(j) from any one of the N-2 external gauge bosons and
similarly, associating a X (1) to each A(1,j), then the general V| turns out to be a sum of

-88-



terms of the form

M N
ki 1 q M
V' A A _
&11...IM Koy I];IO g (V.67a)
with k; = 0 and q;>0 satisfying

M N
Z(Qki+1)+ 2qj=2v+2

i=0 j=0

In our case, M is at most 4 because we cannot obtain more than 4 fermions from
the scattering of two massless gauge bosons. In general, however, it will be an
arbitrary even integer.

Vg on the other hand, contains terms of the form
T5oy"
j=0
where s, > 0 with £s;,=2 v +1, as in the SST Il case (eq.(V.42)). The propagators to be
used in performing contractions with other vertices are given in egs.(V.56) and (V.58).
The polarization tensors & ...y |, .., andg, .., again must satisfy certain constraints
coming from the requirement of conformal invariance, ensuring the cancellation of

£ (V.67D)
[T

spurious singularities.
For instance, the general massless particle vertex is

vo_ﬁdzml dd (e VX“+5 AIAT)DX'e

where the conditions on the polarizations are
B Y Y —
P euv_ P Euv_-p &IJV_—O
The vertex coming from eq.(V.63) has g,,=-pPy, Pay and &, =4ai&; ;p,, which

satisfy them automatically. This is however, as said, a pure gauge term since p, is

proportional to p.
Let us now write the vertex for the first excited state ( p?> = 8 ). Taking the

polarization tensors left-right factorized we get

ViL= E"IJKL

and V, i is the same as that obtained in the SST Il case (eq.(V.37)).
The polarization tensors for the left part must satisfy the conditions [39]

[ AJdAK,L [ 7 ad I aY n 7 v 241
AAARAE g AVA+ & ATATUXE +8 VX VXY +E VX
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4 ip'E =
&, Tip g, =0
" 1 . _
2n"§w+6 &IJ +4|p”§“ 0 (V.68)
_ _int -
26,-8,)-ip7g =0

whereas the conditions for those of the right sector are given in eq.(V.39). The
particular polarizations (V.65), obtained for the intermediate state produced when two
gauge boson vertices coincide, indeed satisfy these constraints.

The self contraction prescriptions can be read from eq.(V.64). We get again the
rules of eq.(V.43), using for Ag the expression (V.61), together with the additional rule

App(z4.2,)

<V'A) V" Az)> =8 im V]V -

Zy, —Z4=Z

(V.69)

where Agg is given in eq.(V.62).
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VI FERMIONIC VERTEX OPERATORS
VL1 MASSLESS FERMIONIC VERTEX

The vertex operators for the emission of fermions are more complicated than the
vertex operators seen previously. The difficulties arise from the fact that we must
construct space-time spinors when the fundamental fields on the world-sheet are
space-time vectors. Also the insertion of a fermion emission vertex operator at a point
z, on the world-sheet must introduce a branch cut originating a z,, since the fermions
are double valued around z,. These operators are called spin operators and can be
obtained by bosonizing the world-sheet fermions [6,67]. Alternatively the fermion
emission vertex can be computed from the Polyakov path integral over a surface with
punctures [24].

Let us first impose the antiperiodicity condition of y* around z,. We divide the ten
fields y into five complex conjugate pairs y2, w2, a=1,...5, defined as

a

1 a . .. a+b -a 5
Yo == (YT iy T,
/2

1 a . &t
Vo= = (Y o-iy ) (VI.1)
/2
Then the wave function for a string state emitted at z, is given by the path integral over

the fields on a neighbourhood U, around z,:

2__ -3y a
A v T1TTv: 12

a=1 n>o

B(yo.z,) =

5
a=1

\yalaUO:ﬁxed

where we have chosen the coordinate z such that Uy={z: |z|<1} and z(z,)=0. Here the
v, 2 are the boundary values of w2 on the boundary of U,

-n-1/72
Vil = 2z (V1.3
n

The quantum numbers of the state 9 are determined by the stress energy tensor and
the fermionic currents
5
1 . 1 .
T2 D (3av w2y oyt (VL4

a=1 a=1

T =

e
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_ 1
Jioyiye Ta=—2-:(Ja)2: (VL5)

The charges and the conformal dimension can be obtained by using the mode
expansion of egs. (VI.4) and (V1.5) and considering the coefficients of the expansion for
\y‘a as differential operators
-a 0
Wn aw-an )

Then the fermions y*2 have charges J,°=t5%° and conformal dimension 1/2; the state
© has charges J,'= - = Jo°= -1/2 and conformal dimension 5/8. Therefore © is the -
ground state of the Ramond sector [6,68]. This state is degenerate. In fact by
multiplying 9 with a combination of y,2 we obtain a state with the same energy. We
can construct in this way 32 states: 9, y,2 9, y,2 \yobﬁ , ... having different charges (for

example Jo®y,P0=-1/2 for a=b and J Py,>8 =1/2). Following the standard convention

components of an SO(10) spinor, since the operators J,2 are the Cartan generators of
the Lie algebra of the SO(10) group.

The appearance of the dimension 5/8 was one of the major difficulties of the
fermionic emission amplitudes already encountered in the dual models (recall that a
physical vertex operator must have conformal dimension 1, so that it may be integrated
on the world-sheet). In the covariant formalism also the superconformal ghosts
contribute to the vertex and we can use them in order to construct a vertex with the
correct dimension. Therefore we compute the wave function for the ghost state emitted
at z,. For the anticommuting ghosts B,y, we obtain [24]

-n+ 12
o=]n . vy =2z ™ (v16)
n

n>0

(since, due to supersymmetry, the ghost B,y must be antiperiodic around z, and the
derivation of eq.(V1.6) is exactly the same as the one of ©). The state ¢ is degenerate; in
fact o'=y,c has the same energy of 6. The conformal algebra for the anticommuting
system B,y (A=3/2) gives

1

1 3 .12
Ton=7 YOB-5 BOY =5:J5149,dy . Jg=VB (V1.7)

Then we find that the state ¢ has ghost charge 1/2 and conformal dimension -3/8.
Notice that since we are considering anticommuting ghost fields, all quantum number
are opposite to those obtained from the bosonization of the bosonic superconformal
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ghosts. In particular the anticommuting ghosts appear in the denominator of the
measure (see eq.(l.24) and also the ghost spin field ¢ must be put there. Then we write
the vertex for the emitted space-time fermionic state as

42 1pX

V. =u"(p) S S, e (V1.8)

-172
where u%(p) is a space-time spinor reflecting the polarization of the external state, ais
a five component vector giving the fermionic charges of S and p is the momentun of
that state. Here, following the standard notation, we denote with Sg'”2 the previous ¢™.
The correct conformal dimension is achieved for p“(yu)aBuB=O=p2=O, so that the
space-time fermion emitted is massless (here Ty denotes the 10 dimensional gamma
matrices).

In general we also need another fermionic emission vertex with opposite ghost
charge [6,67-70]. This can be constructed, for example, considering the first excited
state of the superconformal ghost system

A=B-1G:I—‘[Yn

n>1

which has in fact ghost charge -1/2 and conformal dimension 5/8. Therefore it
combines with the fermionic ghost field S, to produce an operator with zero conformal
dimension. Then we have to introduce a dimension 1 bosonic operator. The vertex V, ,
is obtained by chosing the operator for the massless bosonic vertex
Vip=t0) (93 +ipyryt) (v) P s 8% e ™
where following the standard conventions we call (A)'= Sg”z. Notice that this vertex
must be properly normal ordered. In the following section we will give the rules for
performing the self-contraction between the spin field S and the world-sheet spinor .
Obviously egs.(VI.8) and (VI.9) refer only to the holomorphic part of the vertex
operators (except for the exponential factor). In the superstring Il theory, the right part

of the massless state vertex is given by axV-iyVp.y, whereas in the heterotic string
theory it is oxV.

(V1.9)

V1.2 FACTORIZATION PROPERTIES OF THE CORRELATOR FOR
FERMIONIC AND BOSONIC VERTICES

Here we extend the analysis of the factorization properties of the scattering
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amplitudes to the case of an arbitrary number of massless Neveu-Schwarz (NS) and
Ramond (R) states. In particular we study the residues of the poles in the square
momentum variable, occuring when the points where some of the external vertices are
attached coincide. By colliding one R and one NS states we obtain R intermediate
states, whereas from the collision of two R states the exchanged intermediate state is
NS.

We consider here, for semplicity only the left sector, since there are no
correlations between fermionic right and left movers and since we have already
considered the x-dependence of the vertices. Therefore we shall work only with (V1.8)
and the left part of the graviton vertex eq.(V.4)

, i px
Vo=eu(ax“—l\y”p.w)e (VI.10)

Instead of the SO(10) spin operators we may introduce five sets of SO(2) spin
operators S,, S.. Then correlation function of the SO(10) spin operators is simply
given by the product of the correlation functions of the five SO(2) spin fields.
Covariance can readly be restored by first writing down the most general Lorentz
structure for a given correlation function and then determining the various Lorentz
invariant coefficients from the calculation of the correlation function with fixed
polarizations [69].

The correlator for the fermions and spin fields, which we generically denote by @,
has been found in Ref. [71] and it is given by

N N % 3 w3 5 Z) 2
<[Io"'@)>=TTedox*"* ITo_ (Zj a1a] @) Tl @)% (VL11)
i=1 i >j z; a=1 P i
where
@ (2) = 0(2) a@(:) |2 (VI.12)
ou

is a holomorphic 1-form and must not be confused with the argument of the ®-function
(@={o?z),A=1,..,g}), ©®is an odd theta function and ® - is a shorthand notation for
even characteristic theta function, m refering to the spin structure chosen for the v .
fields and the related ghosts. In eq.(VI.11) a)l is a 5-component vector giving the
fermionic charge of the field in z;. In particular, g, ,=£8,, for®@=y*, a,b=1, ..., 5,
and g, = 1/2 (£, 1,11) for @ = S, (£ denotes S or S_ for each SO(2)) and X; q; = 0
in order to conserve the total fermionic charge.

The correlator for the superconformal ghost system is more complicated. In
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fact there are subtleties in the computation of the correlation functions involving the

superconformal ghosts due to the presence of the 2g-2 ghost zero modes on a surface

of genus g>1 and due to the integration over the supermoduli. A possible prescription

for doing this computation is given in Ref. [71], where the ghost zero modes has been

inserted in pairs at the points where the holomorphic differential » has double zeroes.

Following this prescription the correlator is nonvanishing provided the total ghost
charge of all the other fields adds up to zero and it is given by [71]:

<[ > = [Tedon™® o Safo) [Toer ) (V1.43)
i z I p i

i>]

where g;=+1/2 for )(:Sgi”2 and the ghost insertions are not written explictly.

Since we want to obtain the vertex operators corresponding to R states we have
to consider the situation in which one R and one NS vertex come together on the
Riemann surface. Therefore our starting point is the amplitude for the scattering of N
massless bosonic and 2n massless fermionic particles

n+1

N+1 n
A=< H:Idzzi dzwi dzyi Vo(21) Vip(2) gv-m(zi) gvo(wi) L[Vn/z(yi) > (V1.14)

Here the symbol < > denotes a path integration over the fermionic and bosonic fields
with the appropriate measure (i.e. supercurrents, ghost zero mode insertions, )
However, since we are interested in producing intermediate states from the scattering
of external physical particles, we expect these extra terms not to modify the poles in the
momenta and we will not include them in our computation. The sum over spin
structures and the integration over the moduli with the corresponding measure must be
finally performed as well as the sum over different topologies.

The amplitude (VI1.14) has poles in the square of the sum of external momenta
corresponding to the intermediate states. As we have seen in the previous chapters,
these poles come out of the integration over z; when two or more vertices coincide on
the Riemann surface.

Expression (V1.14) contains several terms. Since we have dealt with the
x-contribution in Chpater [V we shall now concentrate on the fermionic part. (As can be
seen from the vertices (VI.8) and (VI.10) the x-part is identical to that of a graviton and a
tachyon, respectively). At the end, however, we shall write the complete form of the
vertex operators.

In order to avoid complications with the ghost part of V_ o we shall keep its
position fixed and shall consider the limit z,»z,= z in eq.(VL.14). Let us then explicitly
write the z,, z, dependence of the fermionic part of eq.(VI.14): |
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ipy X (z4) -1/2 i Py X (2,)

A=-iu p < Mdzzi Wz W(z,) e S (z,) S, (z;)e X >

where K is a functional of the fields contained in all the other vertices. In terms of
®-functions this amplitude reads:

914,V
u® J'Hdzi o(z) [O(z,,2,)] F(z,,2,,2) K.J (VI.15)
where v=p,.p,,
—> =) —) =3 — = — —
q1.q P1-B Q2-G"P2-R+9;/2
2,252) = | ]16( " e(zp2)]

5 Zy Z; Z Z, Z;
10 Jor g o T for o zJo+ Zg [0l (it
a= P P b p P L

is a regular function in the limit z,—z, and

1

ai-qj‘ - p,B
Ky = H ©(z,z)

2<i<j

'gigj

e

does not depend on z,, z, and therefore does not enter explicitly in the calculation.

Here @(zl,z) is a shorthand notation for E-)f co ) which will be used in the following. In

egs. (VL.15) and (VI.16) we have wirtten the holomorphic part of the amplitude and

then we have only consider the holomorphic part of the bosonic propagator (notice that
we also have rescaled the momenta p—p/2 with respect to Section IV.3 (see
eq.lvV.12)).

In order to covariantly study the limit when z,—z, we use the generalization of
the method of normal coordinates expansion [65] introduced in Chapter IV. We may
now covariantly Taylor expand (VI.15) in terms of &, the tangent vector to the geodesic
joining z, and z,. It becomes:

. o <m&>q_1)"‘_£"’+“
A=-ie, by, 0 [ezy00z) o Tloz o) 3,
N
* Y, {(8p(z, e 2,,2)} |Z1=7_?_=Z K., V1.17)
where
Vn— c{)aaz

-96 -



and

0(z,,z,)
Z,,Z

ORl24:25) = “‘gé—

(V1.18)

The residues of the poles are obtained by integrating over &. In order to perform
this integration we have to include the contribution from the right sector of the vertices.
If we consider gravitinos in the heterotic theory this integral takes the form

> B OEE
Jofe e EY I 1 4 (i 9T, -1, )2’.‘ o
Therefore, the poles of A are found for v =n + q,.0, + 1, corresponding to a state of total
square momentum (p; + p,)2 = 2v . Notice that q,.q, =#1, 0.  After performing the §
integration, from the residues of the poles we may read the vertex operators
corresponding to the intermediate states [72].

The most simple example is clearly the massless intermediate state. For p2=0 the
only contribution to the residue of the pole will arise when q,.q,=-1. For example we
could consider q,=(+,+,0,0,0) and g, =1/2 (-,-,+,+,+). The original amplitude will then
read:

]

i p.x(z,) i pox(2,)
1 2 17V 172 2"\
<y (z,)¥(z))e S, .42 Sg (z,) e . > =
1 E )
-Gy = (- G4~ Gj o+ G g+ Qi 4+ G 59) P2-Py
-1 q|' +q|' p 'p| 2 ’ b y
=Hdzim(zi) 0(z,.2,) iI;[(~3(z1,zi) e 8(2,,2)

2 Z 2z % 5 Zz 4 Zz %
x[1e, (o- lj 0+ yq,[o) H@m(ljm + 2.0 )0 [@m(ljm + Egijm)f K
a=1 P 2z Pp &3 2p i p 23 PP

expanding z, in terms of & and integrating over &, only the term n=0 of the expansion
contributes to the pole. Then the residue is giving by:

£t

1
oz () [Tezoiz) [[0@2) H@( fm+§:qlajco [0,(u)1 'k (VI.19)

i>2 i>2

where

z Zi
1
= EJ(O + Z gi J(D .
P P
As can be seen from this equation the intermediate state will have total fermionic
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charge qy+d, = 1/2(+,+,+,+,+), which is that of the spin field S, , ., .. In orderto have a
covariant expression for this vertex operator it is convenient to introduce the y-matrices.
We follow the conventions of Ref. [69]. The tensorial structure of the original fermionic
part of the amplitude as well as expression (VI.19) allow us to read the form of the
massless state vertex, which is:

i &1, Pry U (17),P S S(12) el (Py+ Po) - X

where €4, and p,, are the polarization and momentum of the original graviton
respectively. For example the previous choice of Eﬂ and (fz contributes to V(-1/2)
(Y'¥?)-- 4+ ++P, which is non-vanishing only for B=+++++ and therefore reproduces the
Si+444 iNtermediate state in the ampilitude (V1.19).

Notice that (y“y")aﬁ is in general non-vanishing only when (9,+a,)-9, = -1 forany
choice of u,v and o, which is precisely the condition for the pole, and also that the total
fermionic charge is conserved (ci;+ av + E]’a: aﬁ).

The massless state vertex will also have a contribution from the ox term of the
original graviton vertex, so finally it turns out to be:

V., va(p) Sa 8;/2 el pX
where p= p,+p, and the polarization u® is given by
vP =i p, b e, Py U (#7)P (V1.20)
By using the conditions for the polarization of the initial states, that is 51-p1=p12=0 and
pgu(yu)aBuB=O=p22=O, one can verify that the polarization eq. (VI.20) satisfies the
constraint equation pH(y, ) ,5vP=0.

VI.3 MASSIVE FERMIONIC VERTICES

)p?=2

The poles at p? = 2 of eq. (VI.17) are found both when g4-0, = 0 and g4.q, = -1
taking the term n=0 and n=1 respectively in the expansion. Let us first look at the
former case (i.e. q;.q, = 0). Again we find it more convenient to consider a particular
example. Let us consider q;=(£,4,0,0,0) and q,=1/2(+,F,+,+,%). Then, performing the &
integration, the residue at the pole p? = 2 is given by
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1 - =
(1)._ - o E(ﬂq',1iQ,2i G 3tq 4G 5)- (Py+Po)-PrH=Y;
Al=-ig B U _[dzos(z)Hdzim(zi) TTie@z,z)2 ' 2

i i>2 !

z z 5 z z;
Opez [0+ 30 o) 10 o+ S fo 10, (ul (vi21)

This expression must now be reproduced by the scattering of an object with
tensorial structure T#, conformal weight 1, fermionic charge 1/2(£3,£,%,£,%) and ghost
charge -1/2 , with the remaining states of the original process (that is, the original
external lines except the two massless particles that collide to produce the
intermediate state). Let us first concentrate on the fermionic part.

The objects to our disposal are v, y, S and derivarives of the fields. Therefore
we could consider the following combinations:

(8) WS, (B) Mgw(wS)P, (© (P (FyS), (M) (9, VSP.

Possibility (a) must be excluded since in this term the indices p and v are not
related to o while the vertex for the intermediate state must "remember" the condition
that produced the pole (i.e. (qu+qv).qOC = -1,0). The original choice of 6’1 and Efz gives
vanishing contribution to cases (¢) and (d). Actually it may be easily checked that any
choice of c—ﬁa; such that q.g, = 0 will have the same property. We are then left with
the term (b). Notice that when q,.¢,=0 it contains only terms of the form \ya\bewaith
azb and a;+cfﬁ=az (in particular, for the original choice of 31,62 we have a = *1,
qa+qb+qﬁ=1/2(fr_3,i,i,i,i)). These terms must be normal ordered. The self-contractions
between the y's and S for a=b are perfomed by taking the regular part of:

a +b

2 yPs x> = im <yTiz) v OZ) S (z,) K > =
B 2,Zy=2 B
. a}a) iqi,aniqi, _~)
- im0 RG] e,z K,
2,2,=2 i»2 i>2
><l—I@m(q1 cJ.(D + q2 cjm + Zqi cjw) H®m(q2 cjm + Zqi cjm)
c=ab b P i '"p ceab p i P
2 v3
, Q.47 & V,,0(z2) (@1+9)G;
= lm (@& [1+qy.gy— | +.] [leez))
§—0 3l o zZ,=Z,=2 52

2 2
1+ 3 0, 20, )50+ 38k, 20, ) g ~Cgh 12 [ ko) Yo%)

1
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w,) A

H ©,.[(qy 9y o) Jqu, Joo (1420, c—i‘f-nz—)-l mz
1‘ 2
0 1 g
1 0 Vz1 cl:ai)@m(qtc!m + ;qi,cﬁ[m)
+ 5t gz, oz o] (VI.22) -

®m(q1 ,c.l-m + ; qi,cPJ.CD)

Using this prescription, the contraction of (b) with the rest of the amplitude
reproduces 4 times the c-ﬁ—dependent part of eq.(VI.22). In order to reproduce the
whole expression, the vertex operator corresponding to this intermediate state must be

1 g2 '(P1+P2) X
-—ie [
7l R U (¥S)"* (V1.23)

We now have to consider the situation q,.q, = -1 which will contribute to the pole
when n=1. Let us take, for example q,=(+,+,0,0,0) and q,=1/2(+,+,+,%,%). Then, after
performing the & integration in eq.(VI.15), the residue at p2=2 reads
a " %(iq 1302501 349440, 5+0) - TP #P2) By
Al=-iepu jdszziw(zi) {[©(z2)]

V,8(z,z)
Tlowetfor o oo, 1" e sasm e o
g auaA@m( %)
+§q1,a ot (V1.24)

The total vertex operator for the intermediate state must reproduce eq.(VI.24).
Notice that eq.(V1.23) for this choice of g4 and g, contains also terms of the form
yy*aS, . The normal ordering prescription is given by the regural part of

<yPYES K >= M o< (2 W (zg) +W (2 V()] 8,(2,) K >

21423_;22_22
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3 2
v’e Vi®(zz) V,0(zz), VYO 8 ® (u,) -

aA m
el 3lw 2%l 0(z,z) ( O(z,z) )1+ ®,(u,)
1 : ; iqi,a
<O (5 cho + 2 q %[ ®) g(—)(z,zi) K, (VI1.25)

Notice that in order to covariantly describe this limit we had to consider two
geodesics, both of them originating in z,. If we denote by & (€) the tangent vector to the
geodesic joining z, and z, (z5) and introduce an arbitrary parameter v such that {=vE,
the normal ordering prescription (VI1.25) is obtained by taking the limit v—1.

The contribution of the terms \;fa\beB with a=b must be computed considering the
terms of order £ of eq. (VI.22) since now q,.q, = -1. Finally the contribution from the
fermionic part of (V1.23) adds up to

N VOEZZ) 22 1& . A aUaA uy)
{Zﬁ- : 1+q| 2 2 (qi’3+ qi'4 ¥ qi'S)] Mi (E; ' é ;) ¢ ®m(ua) }
xg@m(i %Jm Zqi’&!w) Ki; (V1.26)

Therefore in order to reproduce eq.(VI.24) more terms must be added to the vertex.
Since the combinations (c) and (d) will give non-vanishing contributions only for
d1-go=-1, the terms that must be added to the vertex (VI.23) must be of this form. Let us
first analyze the term (yl* yV1) 4 orwS)B. Using (VI.11), (VI.22) and (VI.25) its
contribution turns out to be

V,8(z,z) 9 On(u,) b-l_z_lqi,a

{z q|1+q|2+ q'3+q'4+q'5)]_(:)-(?,z_i)—i

[{e]
» ]
@ |
>
-
)
N
=

z

S ENC: —;—J o+ Zqiyai[;o)

a=1

Therefore, the following combination
-1/2 1(Py+Pa)X

use, P [-—v[” Wy 1 (199" (S)y1 S,

completely reproduces the terms in eq.(V1.24) depending on the fermionic charge q;.
The rest is clearly reproduced by
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-i Ug gm pm (- Yv])aB SB i P, Vx© 89-1/2 e| (Py+p2)X
since the gamma matrices select the condition qg,.q,=-1. Finally, by adding the
contributions to the pole of the original amplitude (VI.14) which come from the ox term
of the initial graviton vertex (VI.10), the vertex for the first massive fermionic state is
given by:
Vo1 B L W S - 5 (YR (Sl s )P S ip, V]

o ) m 2 H(pFR)x
+U, Sa (em €,-Py pm) Vx }Sg e (V1.27)

i) p?=4

For the second excited level all three possibilities g.g,= %1 and 0 contribute to
the residue of the pole. Let us first analyze the case gqy.q,=1 in which no derivatives
have to be taken in the original amplitude (V1.17). For example, if q4=(+,%,0,0,0) and
gq,=1/2(+,%,£,£,%) the fermionic charge of the intermediate state will be
Q;+0,=1/2(£3,£3,+,%,%). As all the elements of the ymatrices vanish in this case, the
only possible object that can be constructed with all the desired properties (i.e. the
appropriate conformal dimension, tensorial structure and fermionic charge) is

V)P Sy (V1.28)

This object contains, for the particular choice made for @ and @, terms of the
form y*1 y#2 2 ¢S, with a, b»1,2 and §,+3,+dy=F,=d, which must be properly
normal ordered. Since the correlators for these terms factorize, i.e.

<\Pi1 \lftz\f:a\p’—tb SBK> = <\[)i1 \l}ig SiiK 12 ><\p:ta\{/ib SB B B:K’ 34? (V|29)
3F4Fs5

we may use eq. (VI.22) and define this normal ordering as the regular part of the
product. When a=b the product of egs.(VI1.22) and (VI.25) must be used.

With this definition, the residue of the pole at p?= 4 of eq.(V1.17) is reproduced
by

2
75 Cue p VAV (yyS) (V1.30)

Next we consider the case in which one derivative has to be taken in eq.(VI.17),
i.e. when q,.q,=0. For example let us consider q,=(£,%,0,0,0) and q,=1/2(%,+,+,+,%).

The fermionic part of the intermediate state must reproduce (from eq.(V1.17)) the
expression:
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1
V @ Z Z @ ( ) E(sqn q[ 2+q| 3+q| 4*q| 5)

UaA mUa

| 266 #+6,) ——— o) "‘“@"m—" |

«JTe, la,+ay) Jo+ 2a;Jol K (VL.31)
a [ i P

With this choice of Eﬂ and ¢, the contribution of (V1.30) is of the form

2,19

1
V,0(z w, 9, ©. () +=(80; 19,2+ 3+ %)
)‘) LY — 3 [Treez) 2
a U i

<TI0+ Jo + X fal K,

since the regular part eq.(V1.29) is obtained by taking the term proportional to & in one
of the two correlators. Collecting all contributions the five components vector | turns out
to be I,=1/5(£7,+9,£4,+4,+4), and therefore more terms have to be considered.

There are several terms with the correct properties that could be added to (VI.30).
In particular,

iu%e, | vﬂl W Oy wS ) --—v[” V(W) S)) (V1.32)

reproduces eq.(V1.31). Here the covariant derivative is defined, as in Chapter IV, with
respect to the metric |@|?, that is

Vy=0-+22)y
[4}]

Notice that eq.(V1.32) is zero for w,v and a corresponding to g,.g,=1, as it must be
since in this case the residue is completely reproduced by eq.(V1.30).

In order to obtain eq.(V1.31) we have normal ordered using egs.(V1.22), (VI.25)
and the derivative of eq.(V1.22) with respect to &, since the last term in eq.(V1.32)
contains only contributions of the form V(\ya\yb)SB with a#b).

Finally we give the result for the case q;.9,=-1. The calculations are too tedious
to be detailed here and they follow the same pattern we have described in the previous
cases. The fermionic part of the residue af the pole at p2=4 of eq.(VI.17) when 2
derivatives are considered is reproduced when we add to egs.(V1.30) and (VI.32) the
term
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hu® sm p1v [-‘T%- ( ’Y”’YV)I;{V( WS}B 135 (W 'YV)B (WWWWS) ] (VI.33)

Notice that other than the prescriptions we have already discussed to perform
the normal ordering, (VI1.33) contains terms of the form V(y*2@ \;fﬂta)Si, which is
defined as the regular part of the derivative of eq.(V1.25) with respect to &.

In order to complete the analysis of the vertex operator corresponding to the
second excited Ramond state we have to consider the x- and ghost-dependent parts.
We find that the original amplitude (V1.17) plus the contribution from the dx term of the
original graviton vertex, for p?=4 is reproduced by the scattering of the following vertex
operator

- 2 1
Vi, =tiute, P, Tg‘WW"(MWS ) * 35 M WIS + 1 Vipsy
1
-—— VB Y
75 (5 (VS - 135 ()P e S),
v[“ W (wS)? 75 (), (WWS)B)ip1.Vx

1 , . _
) (Y”YV)EL SB (i p1.V2x +ip,.Vxip,.Vx)]

172 1 (py+py) X

1_ o 2.1 . 58 Vv
+=1U Sa[(e —&,.p, pw) VoxX© + i pm(ew- &Py pw) Vx"Vx'1} Sg e (VI1.34)

2 |n
with the remaining of the original process. Notice that at this level there will be
contributions from the derivative of ®g, namely

v3e(z

-(14) 1%

3lw
The self-contractions of the x-dependent part of the vertex reproduces the term
proportional to v whereas the term -1 is reproduced by adding up the contributions
from (V1.31), (VL.32) and (VI1.33).

VI.4 BOSONIC VERTEX OPERATORS WITH GHOST CHARGE -1

The starting amplitude (VI.14) contains also poles corresponding to exchanged
bosonic particles. They are produced, for example, when the points where two of the
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external fermionic vertices are attached coincide. Since in this process the ghost
charge is conserved, the intermediate states have ghost charge -1, therefore we will
obtain the vertex operators for the NS states in the -1 picture [6].

Let us consider the amplitude for N gravitinos

A=<Vl Vi, qul z)

N ip,x(z,) ip,x(z
- uyuy < J];[dzzi s, (28, (2) 8, () 5, " ) o P L vias)
where K depends on all the fields contained in the other vertices ti, i=3,...N (they
have to be chosen in order to have a non vanishing amplitude). In order to study the
poles in (p1+p2)2 of eq. (V1.35) and the properties of the residues, it is not necessary to
fix exactly the other vertices, the ghost and the supercurrent insertions. In fact the
residues reproduce the amplitude of the vertex operators corresponding to the
intermediate states in presence of all the other vertices, ghost and supercurrent
insertions.
By using the explicit expression for the correlator of fermionic and ghost spin

fields in terms of theta functions (egs. (VI1.11) and (VI.13)), we obtain [71]:
v+ aaz -1/4

N
o a
=u, U H [ 0z, 02) 0@,2,) F(z,2,2) (V1.36)
i=1

where v=p,. p,, 0y and g, are five component vectors giving the fermionic charge
of the spin fields in z, and z, respectively and

Y a’l.aj BB o2 d.0 8, B g
F(z,2,.2) I_BI@ 0(z,.7)
i=

Ay

z, z, z, Z _
H@ @, J o+, f 028, f [onz] mjz'i @ +Zgji oIk e
p

where Kii is given by eq.(Vl.16) and q;, g; are the fermionic and the ghost charges of
the field in Zi, respectively.

As before the vectors g; are a collection of +1/2. However, since all the gravitinos
involved in a scattering process must be of fixed chirality, the total number of minus
signs is fixed and we choose it to be an odd number [6,67]. Hence the possible values

-105-



of gyy- Qoo are 5/4, 1/4 and -3/4 and therefore in eq.(V1.36) there are no fractional
singularities.
In order to study the limit z,— z,=z we introduce as before the normal coordinate
¢ and we expand the regular part of the integrand of eq.(V1.36), obtaining:
-v+q q -1/4+n

o,

Ay jdzco )déw Hdza) )Z( = v, 2 [Og(2,:2,) Flz, 22:21)}|7_1=22=Z

[

(V1.38)
Once we introduce the right-handed part of the amplitude, from the integration
over £ we find poles for values of the external momenta satisfying the relation

1
v =_cjal. aaz il +1 (V1.39)

corresponding to an intermediate particle of square mass (p4+ p, )2 =2v. As before we
extract the vertex operator of the exchanged particle from the residue of the
corresponding pole. It will be written in terms of the matter fields x and v, the ghost
field and their derivatives.

We will give now some examples to see how the method works.

i) p2=0
In this case from eq.(V1.39) we see that there is a pole only when Je1-Go="3/4,
and the residue is given by the term n=0 of the expansion of eq.(V1.38), i.e. by:

N == = >y o
Ay = U uz_’.dz o(z Hldzjcu(zj)lz H@(z )@ *,)- G - Py B + g

] oy 0, K, (V1.40)

where u, and ug are g component vectors given by

Z Zj

.- J‘ quaj oy=-fop e g o

P P
doi- Ao =-3/4 implies that four of the five components of q, are opposite to the
corresponding components of q,,. For example we can take qy,=1/2 (+,,+,%,+) and
Qg =1/2(%,+,+,+,%) then qg(+ gy, = (£1,0,0,0,0) is the charge of a y*! and the part of
eq.(V1.40) depending only on the fermionic charges corresponds to the interaction of a

-106-



y! with the remaining vertices. All the other possible choices of g, and g, which
contribute to this pole give similarly y*@ and can be reproduced by means of the
y-matrices. In fact following the conventions of Ref. [69] it can be seen that Wu)ou,ocz
vanishes for qg,;. qqp =1/4 and 5/4, then, since for v=0 these values do not contribute to
the pole, the fermionic part of eq.(V1.40) is reproduced by
Uy Up (), o W

The momentun dependent part is obviously reproduced by expli(py+p,)x] while
from the ghost part we are forced to introduce a new field Sg(‘” of ghost charge -1. The
correlator of this new field with the other sg<i1/2> is defined by

(-1) (£1/2) B
<Sg (z)ijng (zj)>..
, 14 J412) 1/2) H (:!:1/2
= lim E_, < ég S

Zy—Zy=Z

- o) H % H 0z Oy (VL.41)

j i<
Sg('” has then ghost charge -1 and conformal dimension 1/2. Therefore the vertex

operator for the massless state is given by
o Oy i(p4+P,)X
V=) weste

and it has the right dimension +1. By using the equation for the polarization of the
gravitinos, u,p,=u,p,=0, the polarization tensor in V_{) satisfies the transversality
condition, namely eup“=0, where p=p;+p, and gu=UyYpUs = 0.

(V1.42)

i) pe=2.

Here there are two different contributions to the residue. In fact eq.(V1.39) is
satisfied for qgq. Ao =1/4 and Qg 4. dop =-3/4 taking the term n=0 and n=1 of the
expansion of eq.(V1.38) respectively. The residue of the pole p2=2 is therefore given

by
->—a)

_u1u2sz w(z H[dzm z)| H@ q *

- - = g
d - Py +Py )- P +9,

107-



5
-1
X H@m(ua) 0, (uy) for . q” =1/4 (V1.43)
Qo=

and
N N @ +0 ).q - (O +P, )-P; +0; 5
@ % o op oy’ 27 F -1
A =uy u2jdzw(szzjw(zj)H®(z,zj) H@m(ua) ®m(ug)
=3 =3 a=1
N
N ' _ 1 87_ O(z, zj)
x { (. g +ip, . ip, +=¢ ) ——— +
i o 1 } 2 ¥} @(Z , Zj)
A A
5 w'od O (u 0 ©
+Zq il i +—1- Y s 1K forq”. q=-3/4
a=i 12 Gm(ua) 2 @m(ug) ” a0
(VI1.44)

Let us first analyze the case q,,. qy, =1/4 which is given for example choosing
Qu1=1/2 (£,1,11,1) and qgo=1/2(2+,%,F,F). Then qgq+ Ggp = (£1,£1,£1,0,0) is the
charge of the composite field y*1 y*2y*3 | Similarly as for the massless case we can
use the y-matrices in order to collect all possibilities, then eq.(V1.43) is reproduced by
the correlation of

i(p,+P,) X

-1
37 Yt Uy (WYY, ., Wy yP Sé o (VI.45)
: 2

P a0

with the remaining vertices. Notice that for o4 and o, satisfying qq 4. g, =1/4 when we
express the three y in complex notation they belong to different SO(2) and therefore
there are no selfcontractions among the y's .

When qg4. g =-3/4 the vertex must reproduce eq.(VI.44). This can be achieved
adding to (Vi.45) terms which are zero when q 4. gy, =1/4 but contribute for qg4. qg,
=-3/4. As seen before these terms must be proportional to only one y-matrix.

We first compute the contribution of (VI.45) in this case. For example if we take
Aoi=1/2 (££2%+) and qy,=1/2(%,FF,+,F) then

1
37 (W)

5
1 ta;
v S, ) | a, +a
pho V VWP =5V é\r ¥

which must be properly normal ordered. From the residue we obtain that its correlation
function with the rest is given defining
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a -a . 1 a -a

V@V k2= lm <z [W(2) v 2, + vz vz K> =

Zy—Zy=Z
q q Z1 22 Zj

. _1 .’ = .‘
=lim ©(z,,z,) {H@(z1,zj) Ja@(zg,zj) b @m(fco- fm +Z q ajco)

22,2 j P P 0 P

1/2 12
-z =z} oz) o(z,) Kij
9,0(z.2) o’ d, ©_(u)
aA

= K. V1.46

([ 2% e o) (vi46)

Therefore (VI. 45) reproduces all the fermionic part of eq.(VI. 44) exept the term
proportional to qou 1 Which can be obtained by adding

1 1) (p1+p2>
— H
5 (vu)al,az VS, “e

The part in eq.(V1.44) proportional to p is obtained doing the contractions of

| i(p,+p,) X
(), o V1P Vx e

with the rest.

From the remaining part of the residue it may be seen that the vertex for the
intermediate state must contain also the derivative of the ghost field S4t1). By defining

VS (1) as the derivative with respect to & of eq.(VI1.41) we obtain that the vertex for the
mtermedlate state of mass p?=2 is given by

(1)

VO s ) v s el werst ) Uig v
-1 - 1 2 3| ’YPL’YV’YPOLI,OLZW W g 2 ’Yu'al’az W g Y“OC p[

Y 2

i(py+p,) X
+ ), W“VS“)} Tre (V1.47)

i) p2=4.

For v=2 all possible choices of o4 and o, contribute to the residue taking the
terms n=0,1 and 2 in eq.(VI1.38) when Qo1+ Ao =9/4, 1/4, -3/4 respectively. The first
possibility is obtained chosing Qo1= o= 1/2 (£,x,1,++) that corresponds to Aot o2

= (#1,21,41,41,11) i.e. the charge of the state y*! y*2 yE3y24y5  Therefore
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{1 o o

1 2
gl Uz (v“vvvpvc

W, VWV WPy 8L o/ PrP2) X (vi.48)
reproduces the term n=0 of the expansion (notice that for q. gy, =5/4 due to the
y-matrices there are no selfcontractions among the v fields).

For qgq- 9gp =1/4 two of the five y-matrices in (V1.48) must have opposite
complex indices and the correlation functions must be computed using the rule (V1.46).

For example the choice Q=172 (££1,1,1), qyo=1/2(x+,%,F,F) gives

1 _ -

_é_wil wiz Wﬂ (Wi-4\lﬁ4 +\Vi5\l’+5 )
The term n=1 of the expansion (V1.38) is reproduced adding terms proportional to three
y-matrices (which therefore do not contain selfcontractions between the y's for this
choice of oy and o)

1 -1 i(p1+p2) X
3 (oo VOV W) S, Ve (V1.49)

v Tploy,o
In fact with the previous choice this contributes 1/2 V( y*! w2 y#3) so that all terms
proportional to g, are obtained.
The p, and the ghost charge dependent part are reproduced by

(py+py) X

1 , (-1) 1)
31 % Vo, VIV WP LI VXT S T+ VS T e (V1.50)

For qg - Ggp =-3/4 we can add to (V1.48)-(V1.50) terms proportional to only one
y-matrix in order to reproduce the n=2 term of the expansion (V1.38). The analysis in
this case becomes more complicate and we give only the result together with the rules
for doing the correlations when there are selfcontractions. For example with the choice
Qo=1/2(£,£,£,1,1) and qu,=1/2(%,%,+,%,+) in (V1.48) one has to compute the
correlation function for terms like y*y*ay ay# ywFb  Generalizing eq.(V1.46) we
obtain

V(@) v 2 v @) v @)K > =
0.0(z,2) RCH
= { qu,a ( )J + '
J

Z
O(z,z. ®_ (u)

] m‘~a

A
w aua

B
3,0(zz,) @ d, O (u)
H zqk,b - + - K
k

O(z,z) 0. (u.)

m
The contribution (V1.49) to the vertex operator contains now terms like V(y+1ytby0)
~ whose correlations are given taking the derivative of eq.(V1.46), namely:
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a -a + . 1 a -a a -a
Vi v v HK> = V,<y(@) Im STV E) V) vz vz K> =
A
9,0(zz) @9 Opnu) 9
) VZ{@qj'a oen) oy | L10EA) T e, (vi51)

m+>-a
The rest of the fermionic part of the expansion is reproduced by adding the terms

(1) 1 (Py+Py) X
e

3 1
)y o {g VPV + 5V Yy v} s,

wogop 16

Notice that yHVy.y for our choice of g, and duo Contains terms of the form
\yi1(V\y+aw‘a+V\y'a\4ﬁa). The normal ordered for these terms is given by

r\l/ta( Zl) "Wta(zg)

VIV < g le) P Ve
V) Wz L v )
T LG L SR

where & (C) is the normal coordinate along the geodesic joining z, and z; (z5). When
a=1 we have to do yet another point splitting, that is

+1 +1
Y (Z) -y (Zg)w-ﬂ

1o 1. T : 1 41
<YyT VYT K>= szl;r'r;4 ~_)22;1—5{\,11 (z,) [ ot -0 (z,)
1 s 1 L .
+\Vt (7—1) Vv (24) ‘4;‘_1(23) . Wt (23) y (24) \‘;‘1(21)]+CyC|.(1,2,3,4)} X > (VL.53) -
¢ o(C—¢)

where ¢ is the normal coordinate along the geodesic joining z, and z,.
If we parametrize these vectors in reference to £ as { = V€, e = t€ itis interesting to
notice that prescriptions (VI1.52) and (VI.53) are independent of these arbitrary
parameters and furthermore that the quadratic as well as the linear divergences
cancel.
All the other mixed fermionic, momentum and ghost dependent terms are
reproduced adding
i(p,+p,) X
(1), o 1 %- vy [ Vs +ip V' 8. e yrig v vs My e Pepe)

while the terms in the expansion of eq.(V1.38) depending only on the momentum and
the ghost charges are given by

A11-



i (py+Py) X
1 . 2 v . . Vo opy ol )
(v) \lju{|p1vi+|p1V|p1pVx Vx'}8, e

00
and
4 1P
L0 Y S (V154

Here, stg(‘” is defined by taking the second derivative with respect to & of
eq.(VL.41).
Notice that at this level of the expansion of eq.(V1.38) there are also terms coming
from the derivative of ©z(z4,2,):

V2 @ (z,,2,)

3l
The normal ordering for the x-dependent part of the vertex reproduces the term
proportional to v (see Chapter V), the rest comes from the normal ordering of the terms
(VI.52), (VI.53) and from the term (V1.54). In fact, by using the definition of Sg('” from
(VI.54) we get a contribution of -1/4, while from the terms yHVy.y the contribution

adds up to -3/4.
Putting everything together, the vertex operator for the second excited NS state is

-(v+2)

() 0y o

D 1
S=ug Uy {[g—(vvvvv)

Lv'p o '8ogo,

\ W Y P yo

1 . c
3,2 VYV )g o VWV WP) o+ ST (V) o WP PV

1 1 1 2
2 — . AV . vV
+(Y) (16‘7 WYV y +5 VWHip Vx4 sytip, VX

Boo,00n

-1

'1 TR . AY] P
+_2_qf |p1vlp1pVx V X )]Sg

[-é—(wv)

Ploy oy

1
—_ K H v 1)
L L %%w + (vu)alazw ip VX 1VS,

) . 1 (Py¥Po) X

2 le (V1.55)

1
—_ 1}
P ), WEY

R o0

Sg
To conclude we would like to make some general remarks about the vertex
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operators corresponding to higher excited states. In the first place notice that a NS
vertex operator in the -1 ghost charge representation cannot contain more than nine 1
fields (without derivatives). In this case eight of these fields will be paired in four
different SO(2) whereas the ninth one will belong to the remaining SO(2). The
prescription to be used in order to normal order such term is to take a product over the
four SO(2) corresponding to the paired y's of eq. (VI1.46). There will also be more
complicated terms containing higher derivatives of y's in the same SO(2). We believe
that the normal ordering of these terms can be obtained generalizing egs. (V1.51)-
(VI.53).

The vertices (V1.42), (V1.47) and (V1.55) must be related to those in the zero ghost
charge representation, which were given in Chapter V. At tree level this is done by the
picture changing mechanism as it was discussed in Ref. [6]. The relation between the
two representations was also discussed in Ref. [24] on a sphere with punctures. It is
interesting to see how this analysis can be generalized to an arbitrary Riemann
surface. On a Riemann surface of genus g and N punctures, N being the number of
external fermionic particles there are 2g-2+N/2 supermoduli. Therefore the scattering
amplitude contains, beside the standard measure corresponding to a non-punctured
Riemann surface, N/2 supercurrent insertions as well as N/2 B fields, in order to take
care of the extra zero modes. Then the integration over these extra supermoduli has to
be performed and the contribution of these extra insertions has to be taken into
account by computing its correlation with the other external vertices. In particular, one
puncture is associated to the two incoming Ramond states, and therefore one more
supermodulus. The vertices with zero ghost charge are then reconstructed in the limit
where one supercurrent and one zero mode insertion goes to the position of the
puncture. This has been explictely checked for p?=0, 2 and the general case is
currently under investigation.
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APPENDIX 1
COMPLEX TENSOR ANALYS

The Riemann surface is a real two dimensional manifold with coordinates &M and
euclidean metric g, m=1,2. One can always choose a set of local coordinates ( £1,62)
where the Rimannian metric takes the form

2 920(&1,&,2)

ds” = dg™ dg" 8

In each local chart of the surface it is possible to introduce complex coordinates z, z
[3.4]
z=ElyjE2 z=¢l-jg2

which diagonalize the metric i.e. the only non vanishing component of the metric is 9,5
The transition functions from one chart to the others are holomophic. The quantum
fields defined on the surface may be considered as two dimensional (m,n) tensors, i.e.
tensors which are locally of the form Tz,_..zz‘,...z‘ (dz)™ (dz)", where T has m(n) unbarred
(barred) indices. Under holomorphic coordinate transformations Z—w(z) a rank m

tensor transforms as
. dz .m
T = (—)

W..w oW (A1.1)

2.2

In the same way we can define a tensor w.r.t. Z. A rank (m,n) is a tensor of rank m(n)
w.r.i. z(z). We can rise and lower the indices by the metric tensor g, .
The covariant derivatives of a rank n tensor are defined by
2z, n

VO, = 020, (6", ) (A1.2)

Z...

3
Vi) Tzz = 9 T, , (A1.3)

r4
(n)
They send (m,n) tensors in (m+1,n) and (m-1,n) tensors, respectively.
For a rank n tensor the commutator of two covariant derivatives is given by
[V5V,] =%nR | (A1.4)
where the curvature R is definite by L

R = 2979,(g7 2.9 ) L (A.1.5)

zZ
The adjoint of the covariant derivative (A.1.2) is defined with respect to the inner
product ‘ ‘
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<S,T>=J-d2292.£(g )"s. T, (A.1.6)

where S and T are n tensors.

Then
o) | + z 7z
(V,") = -V(m) =-g a.z. (A.1.7)
By using egs.(A.1.2), (A.1.3) and (A.1.7) we can construct the Laplacians
+ z (n)
A<n) = - V(M)VZ (A.1.8a)
- (n-1) oz
A(n) =-V, V(n) (A.1.8b)

A(n)+ and A(m)’ have the same spectrum of non vanishing eigenvalues [73]. For the
zero modes, the Riemann-Roch theorem states

dim Ker V" _ dim Ker Vi, =-(2n1) (1) (A.1.9)

Z

Moreover when g>1 and n>1 the dimension of Ker V"1 is zero and
dim Ker v(ﬁ) = (2n-1) (g-1) (A.1.10)

One of the pleasent feature of the Riemann surfaces is that we can describe
spinors in terms of half-integer differentials. Left spinors have transition functions
across patches U, UB with coortinates z, and Zg given by [26,29]

dz
_ 172
W(a)(Z) =Mg (——ﬁ—dZ ) WB(Z) (A1.11)

where m gives the spin strucutre relative to one particular choice of the square root.
Right spinors transform as in eq.(A.1.11) but with z replaced by Z.
On a Riemann surface of genus g there are 229 possible choices of these phases.
The difference between two spin structures is given by an assignement of a plus or
minus signs on the cycles of the canonical basis (see Fig.1).
We introduce coordinate indices 6 6 for these fields and the square root of the
metric
eg , -1 12
9,5 =0@") =(9,) (A.1.12)
and we use it for rise and lower the 6 6 indices. The covariant derivative of spinor fields
are definite as in egs.(A.1.2) and (A.1.3) with half-integer n.
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APPENDIX I
MODULAR INVARIANCE AND THETA FUNCTIONS.

We introduce on the surface a canonical basis (0,8,), A=1,...g, of closed curves,
as in Fig.1. Then any other closed curve on the surface can be decomposed in terms of
this basis. The canonical basis has the property that the number of points at which the
curves intersect counting orientation is

(OLA’ OCB) = (BA’ BB) =0, (OLA: ﬁB) = 5AB (A21)

To a choice of the homology basis corresponds a choice of g holomorphic and g
antiholomorphic closed one forms. They are known as the Abelian differentials Wp,
wu. A standar way of normalizing the w,'s is to require [48]

J' 0y = 8,g (A2.2)

Op

Then the periods over the B cycles are completely determined

j ©g = Q4 (A.2.3)
P

Qg is known as the period matrix of the Riemann surface. It is a symmetric matrix with
a positive definite immaginary part. In the case of the torus w=1 and Q=t. The matrix Q
depends on the chosen homology basis. Two different canonical basis are related by

gc | D C o
[; = B A B (A.2.4)

where A, B, C, D are gxg matrices. In order to preserve the conditions (A.2.1) the matrix
in eq.(A.2.4) must be a symplectic modular matrix with integer coefficients, i.e.

DC'-CD' =BA'-AB'=0,
DA' -CB' =AD' -BC'=1.
It is easy to compute the change of the Abelian differentials and the period matrix

under the change of basis (A.2.4). By imposing the new abelian differentials to be
normalized as in eqgs.(A.2.2) and (A.2.3) with respect the new homology basis
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we obtain
~ -1
0, =0 [(CQ+D) lga (A.2.5)

and the new period matrix is given by

~

Q=(AQ+B)(CQ+D)” (A.2.6)

A very important object associated to any Riemann surface of genus g is its

Jacobian variety. We define the Jacobian lattice
L, =2°+qz®

where Z represents the integers. This lattice is the generalization of the two
dimensional lattice generated by 1 and t which describes the torus. The Jacobian
variety of the Riemann surface is defined by
c9
L
The Riemann theta function [52,53] is associated to the Jacoby variety. It is a function of
the period matrix Q and a g dimensional vector u representing a generic point in J(Z):

ouQ) = Z o it n.Q.n + 2xi n.u (A2.7)

nez®

J(2) =

It is usefull for describing spin structure to generalize eq.(A.2.7) to include
characteristic a, b € R9. The Riemann theta function with characteristic a,b is defined by

6[21 Ul Q) = Zein(n+a).§2.(n+a) + 2ni (n+a). (z+b)

nez®

ina.Q.a + 2mia (U+b
_erataremalih) o oarh) (A.2.8)

(in the following, the dependence on Q will be understood); it is not a single valued
function on J(Z), since under a shift by an Lo lattice vector it transforms as

-t n.Q.n -2zin. (U+b) + 2rim.a_ a

e[ 1 (u+Qn+m)=e e[, ] (u) (A.2.9)
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The theta-function can be divided into even or odd depending on whether they are
symmetric under u — -u. From the defintion (A.2.8) one can see that
org1(u = o™ P ety (A2.10)
then @ is even or odd depending on whether 4a.b is an even or odd number.
For fixed u one defines the multivalued function on the Riemann surface [52,53]
P
f(P):@(u+fco). (A2.11)
Po
The Riemann vanishing theorem says that f(P) either vanishes identically or {(P) has
g-zeroes P1,...Pg satisfying the relation

u+i JF;co=A (A.2.12)

=1 p_
where A is some vector € J depending on Po and the canonical homology basis.
Conversely, for all P1,...Pge Z, if we define u according to (A.2.12), then f(P;)=0. A is
known as the vector of Riemann constant. The set of points ue J(Z) for which the theta
function vanishes is a subset of complex codimension one in the jacobian known as
the theta divisor. A simple consequence of the Riemann vanishing theorem is that
©(e|Q)=0 iff there exist g-1 points in X so that |

S

i=1 PO

An important consequence of this theorem is that it allows us to characterize the spin
structures of a Riemann surface [26,29].

There is a one to one correspondence between characteristics a,b where
a;=0,1/2, bj=0,1/2, and spin structures.

Let ay,by be an odd characteristic corresponding to a spin bundle s. We can
construct explicitly. its holomorphic section. Let us consider the function

CN (jm) (A.2.13)

where z and w are two arbitrary points on the surface. Keeping w fixed, eq.(A.2.13) will
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vanish as a function of z in g-1 points P1,...Pg_1. Similarly, as a function af w, keeping z
fixed, it will also vanish at the same points. Since the spin structure is odd it also
vanishes to first order when z and w coincide. If we now take z and w very close to
each other and to one of the P;s, eq.(A.2.13) behaves like

(z-w) (z-P,) (w - P,) (A.2.14)

thus if we differentiate eq.(A.2.13) with respect to z and then set z=w, we obtain a
holomorphic one form

- Y o ISP (A2.15)
A=1

From eq.(A.2.14) we know that h(z)2 has only double zeroes at the Pj's and therefore

we can take its square root.
Then the prime form is defined as

E@zw) = ———- (A.2.16)

where

E(z,w) is a -1/2 differential in z and w with only one zero at z=w and E(z,w) = - E(w,z). It
is independent of the choice of the odd spin structure 85,0, From the transformation
property of the Riemann theta function (A.2), E(z,w) is single valued when z is moved
around the o cycles, but when z is moved around the B; cycles n; times it transforms as

itn.Q.n-2nn.
Ew) — e oot e owy (A.2.17)

The theta-functions and the prime-form depend on the basis ®? of the Abelian
differentials and on the period matrix Q, which are fixed once we have chosen a
canonical homology basis «,,,. The action of a nontrivial diffeomorphism on the
homology basis is given by eq.(A.2.4) and the corresponding transformations of the
Abelian differentials and the period matrix are given by egs.(A.2.5) and (A.2.6), then

U = u.(CQ+D)" (A.2.18)

The transformation rule for the theta-function is [74]
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~ A

OLluIQ) - o[ 1u|Q) =

12 inu. (CQ+D)'Cu_»

g mO@D) o (CQ+D)e exlulQ) . (A.2.19)

where ¢(a,b) is some phase independent of u and Q and the new characteristic a,b is
related to a,b by

al D -C
bl | -B A AB'

Notice that if a,b is an even (odd) characteristic also ’é’,gis even (odd) since if e[?; {u]Q)

is an even (odd) function of u also e[é 1(u|€2) is an even (odd) function of u. _
The prime-form depends on the choice of the homology basis. In fact from the

definitions (A.2.15) and (A.2.16), we have that the transformation (A.2.4) gives

cD'

+ 1/2 diag ( (A.2.20)

2 ~5 e-in: o(a,b)

h°(z) — h°(z) = det' (C Q+ D) 0l(z) aui@[Z"](um)

and the spin structure aq,by is related to é"o,go by eq.(A.2.20). Then

) - [, 1(18)
E (zw) - E (zw) = M55 -
h*(z) h°(w)

-1 ~
2rniu. (CQ+D) C.u ay
o BEHBICU g2y 1a)

£

J @ 1l 4

Since‘E(z,w) is independent of the particular odd spin structure chosen, the modular
transformation of E is given by:

w(2)3,0[5 11D, ow)d

~ : -1
E@zw) — E(w) = ert ©@+D) Coup (A.2.21)
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APPENDIX [l

In this appendix we show that the vertex given in eq. (IV.45) reproduces the result
(V1.27) for the residue of the n-th massive level with the rules given in (V1.37) for normal
ordering.

Notice that the vertex (1V.45) can be reconstructed from the expansion in € of the
expression

exp[ ipyx(z+e)] (A.3.1)
where z +& means a displacement along the geodesic joining z4 =z and z, . (In order
to obtain the coefficient of | € |‘2 also the antiholomorphic part of the expansion has to
be considered.)

The normal ordering of this expansion is evaluated by using the contraction

| pm ARZ)

| m .
<Dx(z) D x(z) >= Ilim 2, D, 7

2y, —Zy =L

and similarly for D —D and mixed terms.
Recall that Ag can be split into a holomorphic, an antiholomorphic and a mixed

part
AR=A+K+H
where
0z,2,) ¥
2,2 )
= In —2 +7‘J.ooa(lm§21)abj.mb
o(z) § ; Z
and
z, z,
a -1 —b
H =_nf o (ImQ )abJ' ®
3 &=

Consider first the terms coming from contractions of the form < Dlx DMx > with
L/m =1 orcontracting DSx (s =l+ m) with exp (i p x). Expanding (A.3.1) we obtain
terms of the form
. k
> Z [ ipx(z+e)]

{<ip,x(z+e) ipx(z) > + % <[ipx(z+e) ] >} 1
” !
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where < > means all possible contractions inside. The terms proportional to €5 are

s-1
1 s 1 2 s sl |
{}:-szpDzA'é‘pz;(l) [)1 D2A

where D4 (Do) denote derivative with respect to the first (second) argument of A.

Since
S aS
s s-1 |
Z(I ) D DA = = A(z+e, z+€) = g
=0
we find
S -
{}= -_p__i_p_z Dsz A =.§_S[_sz_2 A(z,2y(e)) ]
€

which reconstructs precisely the term with s derivatives of A coming from the expansion
of exp(-v AR) ineq. (VI.27).
Similarly, terms containing H come from the contractions
2
pg r e

<ip,Dxip, D x> = --2D' D,

z D1Dp H

. ro=m r —=m r—m t =M
(notice that D, D, H = D,D,H=-D,D, H = -D, D, H).
The equivalence of the above expression with the terms

3" -vag - %E i A(%E€),2)}

de’ deg™
coming from the expansion of the exponential in (VI.27) can be easily established by
noticing that D,"D,M A (2.2)) = D,'D,™H (z4,2,) (independent of j) and using
momentum conservation.
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fig. 2
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