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Introduction 1

INTRODUCTION

§0.1. The variational approach to the Smale-Birkhoff Theorem.

This thesis deals with the problem of existence and multiplicity of homoclinic
orbits for a class of asymptotically periodic Hamiltonian systems shaped on the

following Dufling like equation
§=q—a(t) (1 + ecos(w(t)t)) ¢* (1.1)

where € € R, a(t) and w(t) are continuous real functions such that a(t) — a4 > 0
and w(t) — wy # 0 as t — +co. We say that u € C*(R,R) is a homoclinic solution
to ¢ = 0 for the equation (1.1) if u satisfies (1.1) and u(t) — 0, %(¢) — 0 as |t| — oo.

The dynamics associated to (1.1) is well known in the periodic case, i.e. when
the functions a and w are independent on time and ¢ is taken sufficiently small (see
for example [GH], [KS], [W]). In this case the perturbative theory can be applied.

Indeed for € = 0 the equation reduces to § = ¢ — ag® which is integrable and
admits a unique homoclinic orbit go(t) = \/-7.%@03}115)“1 up to time translations
and reflection. In the phase space the stable and unstable manifolds relative to the
origin, resp. W?(0) and W*(0), coincide and are given by I's = {(g0(t),qo(%)) /1t €
R}U{(0,0)}. Moreover I'y is a closed curve which separates the continuous family
of periodic orbits with negative energy lying in the interior of I'y and the continuous
family of periodic orbits with positive energy.

For € # 0 the integrability falls and the stable and unstable manifolds do
not coincide any more. The separation of the manifolds is measured at the first
perturbative order in € by the Melnikov function [Mel]. The Melnikov function
depends only on the unperturbed homoclinic solution and for the equation (1.1) is

given by:
M(s) = sin(ws) /Rﬁf cos(wt)|qo(t)|* dt = sin(ws) C(go)-

Since C(go) € (0,+o0) and since the zeros of sin(ws) are simple, the Melnikov
theorem gives that the stable and unstable manifolds for the perturbed system
intersect transversally.

It was known since Poincaré [P] that if the stable and the unstable manifolds
relative to a hyperbolic fixed point p intersect transversally then the system exhibits

infinitely many homoclinic orbits. Moreover the winding of the manifolds W*(p)
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and W*(p) in a neighborhood of p leads to a sensitive dependence on the initial
conditions. Indeed the Smale-Birkhoff theorem (see [GH], [Mos|, [W]), implies that
any diffeomorphism ¢ on R™ with a hyperbolic fixed point p, whose stable and
unstable manifolds intersect transversally, admits a Bernoulli shift. Precisely, en-

dowing {0,1}% with the usual metric d(s,s') = 2iez -‘-ﬁ%i’—l
¢™-invariant set 4 C R™ and a homeomorphism 7 : {0,1}* — A which conjugates
the dynamics of ¢ on A with the dynamics of the shift o : V{O,I}Z — {0,1}%,
(08); = sj—1 Vs €{0,1}%, Vj € Z. Since the shift has

i) a countable set of periodic orbits of arbitrarily long periods

, there exists 7 € N, a

ii) a countable set of homoclinics
iii) an uncountable set of bounded non periodic motions
this is true, by the conjugation, also for the map ¢®. Taking ¢ to be the time-
T Poincaré map associated to (1.1) in the periodic case, the above theory applies
giving informations on the dynamics of (1.1) when € # 0 and small. In particular
(1)-(ii1) hold for (1.1).

Another consequence of the Smale-Birkhoff theorem is that the dynamics of ¢
exhibits sensitive dependence on initial conditions. This can be expressed by saying

that the topological entropy of the system is positive, where the topological entropy
is defined by

h(¢$) = sup lim lim sup 1 log s(n, ¢, R)
R>0¢0 n0 T

with s(n, ¢, R) = max{card(E); E C Bg(0), maxo<i<n |$*(z) — ¢*(v)| > €, Vz #
y € E}. The existence of the Bernoulli shift together with the fact that the topo-
logical entropy is a conjugacy invariant (see [Pol]), implies that h(¢) > 1~°§L—2

We point out that the geometrical approach of the Dynamical Systems Theory
requires the existence of a transversal homoclinic intersection between the stable and
unstable manifolds. Such an assumption is difficult to check and has been shown to
hold by perturbation techniques for low dimensional systems which are the sum of
integrable autonomous systems having a homoclinic orbit and small time periodic
perturbations.

In the last few years the variational techniques have been applied to prove that
these kind of results (in particular (i)-(iii) above) hold for a wide class of systems
where no small parameter appears.

Moreover these methods turn out to be useful to get a series of results on the
dynamics of the system (1.1) even in cases, like the asymptotically periodic one,

which cannot be studied with the perturbation techniques recalled above.
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The application of variational arguments in the study of the homoclinic ex-
istence problem was pioneered by V. Bolotin in [Bol] but the fundamental paper
should be considered the one by V. Coti Zelati, I. Ekeland and E. Séré [CZES]

which has stimulated a long series of research works.

In that paper the authors consider a Hamiltonian system of the type
¢ =JVH(t,z) (t,z) € RxR?*" (1.2)

where J = ( $71) is the usual symplectic matrix and H(t,z) = 3z - Az + R(t,z)
being A a constant symmetric matrix such that JA has no eingevalue with zero real
part and VR(¢,z) = o(|z|) as z — 0, so that ¢ = 0 is a hyperbolic point for the
system. They look for solutions of (1.2) homoclinic to z = 0, i.e. u € C}(R,R?*")
satisfying (1.2) and such that u(¢) — 0 as ¢ — oo.

They proved that if R is smooth, T-periodic in time, positive, convex and su-
perquadratic in z (i.e. Ja > 2 such that VR(t,z) - ¢ > aR(t,z) for all (t,z) €
R x R2™) the homoclinic problem has at least two solutions ui, ug, which are ge-
ometrically distinct (in the sense that ui(-) # ua(- — jT') VJ € Z). This was done
using a dual variational transformation, the concentration-compactness lemma by
P.L. Lions [L1] [L2], the mountain pass theorem (see [A]) and a related minimax

argument.

Using a linking theorem H. Hofer and K. Wysocki [HW] were able to extend
the existence result contained in [CZES] dropping the convexity assumption. The
same was proved also by K. Tanaka [T1] using a method of subharmonics which was
introduced by P.H. Rabinowitz [R1] in studying second order Hamiltonian systems

of the form:

§=L(t)g— VV(t,q) (1.3)

where L is a continuous, T-periodic, symmetric and positive definite matrix and
V € C}(R x R™,R) is T-periodic in time, positive, globally superquadratic in z.
In the autonomous case existence of homoclinics have been obtained under very

general assumptions concerning the properties of the zero energy manifold. We refer

to [AB], [C], [RT], [S3].
A new impulse to the subject was given with the paper by E. Séré [S1], in which,

extending the results contained in [CZES], the author proposed a novel variational
method to prove that the system (1.2) actually admits infinitely many geometrically
distinct homoclinic solutions. This work inspired the one by V. Coti Zelati and P.H.
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Rabinowitz [CZR1] were the authors gave the same multiplicity result and a more
detailed description of the set of solutions for the class of second order Hamiltonian

systems (1.3) already studied in [R1].

To give a more precise idea of the results obtained in [S1] and [CZR1], let us
consider the system (1.3) studied in [CZR1]. _

The homoclinic solutions of such a system are found as critical points of the
functional p(u) = [ 3(|4f* + uL(t)u) — V(¢,u)dt defined on the Sobolev space .
X = H'(R,R").

Such a functional has the geometry of the mountain pass and one can define

the min-max level

= inf 0
c = inf errl[gﬁ]so(‘/(S)) >

where I' = {y € C([0,1],X)/~(0) =0, ¢(v(1)) < 0}. However, since the functional
¢ is invariant under the action of the non compact group of translations by integer
multiples of T, i.e. ¢(u) = ¢(u(- — pT")), for any p € Z and for any v € X, there is
an essential lack of compactness in the problem. In particular the functional does
not satisfy the Palais Smale condition and one cannot in general prove that c is
a critical level for . It is however possible to prove the existence of at least one
solution by techniques similar to those of the concentration compactness lemma. In
such a way one can show that (1.3) admits a non zero solution at a level ¢y < c.

In order to prove the multiplicity result an additional assumption has been
introduced by Séré in [S1]

(#) there exists ¢* > ¢, such that the set of critical points contained in {p < ¢*} =

{v € X / o(u) < c*} is finite up to translations by pT, p € Z.

Let us remark that whenever (#) is not satisfied, (1.3) has infinitely many solutions
(different in the sense that they cannot be obtained one from the other by translation
of integer multiples of T').

On the other hand, whenever the system is autonomous, (#) is never satisfied.
Indeed in such a case the solution u, which exists at a level ¢y < ¢, give rise to a
continuum {u(- — 8), § € R} of critical points.

Assumption (#) is used to show that, even if the Palais Smale condition does
not hold, enough compactness is in the problem in order to ensure that there exists
a solution u at the level ¢ and then to prove that close to the levels k¢, V& > 2, there
exist infinitely many critical points. Such solutions have a very precise structure,
namely:

there exists a homoclinic solution u € X of (1.3) for which V» > 0, Vk € N,
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3K = K(r,k) such that Vp = (p1,...,Px) € ZF* with p; — p;—1 > K there exists

a homoclinic solution u; which verifies

k .
lup =D u(-—pi)ll < 7.
i=1
This result was obtained by E. Séré in the convex case for k£ = 2 and by V. Coti
Zelati and P.H. Rabinowitz for any k for the systems (1.3).

This kind of solutions are called k-bump solutions. They are homoclinic solu-
tions of (1.3) which emanates from 0 at ¢ = —oo0, stay close to the origin for a long
time and leave it k times following the homoclinic solution u.

We note that in this result, the minimum distance between the p; becomes larger
and larger as k increases. For this reason one cannot recover the full generality of
the results given by the Smale-Birkhofl theorem. In particular one cannot prove
that the entropy of the system is positive.

Another drawback of the result is that the assumption (#) is very difficult to
be checked and one does not know if it is satisfied even for the model case (1.1)
(on this problem see also the paper by U. Bessi [B1] in which the author proves the
same kind of results for a a one dimensional model under a condition weaker than

the classical transversality one).

Again E. Séré in [S2] gave a first answer to these questions. In that paper he
proved the following theorem '
Theorem. [Séré] Assume that the same hypotheses made in [CZES] hold and
that the set of solutions of (1.2) homoclinic to 0 is countable. Then there exists a
homoclinic orbit © for which Ve > 0 3K (¢) € N such that for any finite sequence of
integers § = (p1,...,px) satisfying pi+1 — p; > K(€), there is a homoclinic orbit y;

with
E

lys(t) = > 2(t—pT)| <e  VieR.
i=1

There are two differences with the preceding works [S1], [CZR1].

The first one is that the existence of the multibump solutions is proved assuming
only that the set of homoclinic solutions to 0 is countable. This is always true when
the intersection between W*(0) and W*(0) is transversal, and it is in fact weaker
than the transversality condition.

The other fact is that the least distance between the bumps of a k-bump so-

lution, represented by K(e), turns out to be independent from k. As a corollary,
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using the Ascoli-Arzela Theorem he gets that for any given sequence of integers {g;}
(finite or infinite), such that gi+1 — ¢; > K(e) for any 1, there is a solution y; of
(1.2) satisfying |yz(¢) — >, z(t — ¢;T)| < e for any t € R.

This set of solutions contains a countable set of homoclinic orbits and an un-
countable set of nonperiodic bounded motions. He was able to construct an e-
approximate Bernoulli shift and to prove that if ¢ is the T-map of the flow then the

topological entropy of ¢ verifies h(¢) > 1?{9%6—2)

We lastly mention the works by U. Bessi where variational tools are used to
prove the existence of homoclinic bifurcations for a class of second order damped
systems [B2], [B3], and a very recent work by V. Coti Zelati and P.H. Rabinowitz
[CZR3] where they prove the existence of periodic solutions of multibump type.
Contrary to the non autonomous case, very little is known about the multiplicity of

homoclinics for conservative systems. This problem was studied by A. Ambrosetti

and V. Coti Zelati in [ACZ] and by K. Tanaka in [T2].

80.2. The asymptotically periodic case.

To present the results on the asymptotically periodic Hamiltonian systems
which we have obtained in a series of papers ([M1], [M2], [CM], [ACM]) and are
contained in this thesis we describe them in the model case (1.1) which we think
interesting in its own.

In contrast with the periodic case, the asymptotically periodic one presents
situations in which no homoclinic exists. For example in the case € = 0 and a(¢)
smooth, bounded and strictly monotone, the equation (1.1) does not have non zero
homoclinic orbits. In fact if ¢(¢) is a homoclinic solution for (1.1) and H(g(t)) =
314()12 — $1a(?)1> + a(t)3]q(t)|* denotes the energy of ¢(t), then

o:/lﬁfg%@dtzifma(twdt

which implies ¢ = 0. '

In the study of this class of problems a very important role is played by the
problems at infinity as it is often the case for elliptic problems on unbounded domains
(see [BL], [EL], [L1], [L2]). By this we mean the equations one obtain replacing
the Lagrangian L(t,q,q) = 3(|4|*> + ¢L(t)g) — V(¢,q), by the Lagrangians obtained
considering his asymptotic behavior as ¢ — foo (if these are well defined). In
the model case (1.1) the Lagrangian at +oo is given by the periodic Lagrangian
Ly(t,q,4) = 3(|d|®+]q/?) — a4 (1 +€ecos(wyt))g®. In the non existence example given
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above the Lagrangians at infinity do not depend on time (and the corresponding
problems are autonomous).

The behaviour of the system at infinity determines the properties of the studied
system. Indeed we prove that if the set ofjhomoclinics of the system at infinity
is countable then the asymptotically periodic system itself admits infinitely many
homoclinics. Precisely we prove:

Theorem 2.1. If a(t) and w(t) are continuous real functions such that a(t) —
ar > 0 and w(t) — w+A7é 0 as t — —+oo, then there exists o > 0 such that for any

¢ € (0,¢) there is a homoclinic orbit v for the system at infinity
§=q— ay(l+ ecos(wit))g®

for which the following holds: for any r > 0 there are M,p € N such that for every
k € N and (p1,...,pr) € Z* with py > p and pjp1 —pj > M, for j =1,...,k -1,

there exists a homoclinic solution v of (1.1) which verifies:
o(t) — vy (¢ — pyT)l < v and [5() — bt — pyT3)| <7

for any t € [3(pj-1 + pj)T4, 2(pj + pj+1)T4] and j = 1,...,k, where py = —0o0,
Prt+1 = +oo and Ty =2m/w,. '

Proof. The conclusion follows from our general theorem 2.2 together with the fact
that, as we have showed in the preceding section, the system at infinity exhibits
transversal intersection between the stable and unstable manifolds relative to 0 and

therefore the set of the homoclinics is countable. 4

We note that also these solutions are of the multibump type like the ones
constructed in [S1], [CZR1], [S2]. The difference is that they are generated by a
homoclinic of the system at infinity. This is clearly in the nature of the problem and
we cannot expect that there are homoclinics which are not related to the dynamics
at infinity since no assumption is made on the continuous functions a(t) and w(t)
at finite time. ,

For k = 1, for any r > 0 the theorem assures the existence of an integer
p = p(r) € N and a sequence v; of homoclinic solutions of (1.1) each of them
belonging to a Cl-neighborhood of v (- — (p + 7)T4) of radius 7. These homoclinic
solutions remain in a neighborhood of the origin for a long time and then leave it
following the homoclinic solution v4 of the system at infinity.

For a general k € N the theorem provides k-bump homoclinic orbits of (1.1)

which behave in a similar way.
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This type of results are interesting also from the bifurcation point of view.
While for € = 0 the system has no homoclinic solutions different from the trivial
one g = 0, there exists ¢ > 0 such that for any 0 < |¢| < ¢ the equation (1.1) has
infinitely many homoclinic orbits. Geometriéally this means that while the stable
and unstable manifolds do not intersect when € = 0 (apart from in the origin), if

€ # 0 then they intersect in an infinite set.

All this results and the others, which we will state below in a more general set-
ting, are obtained via variational techniques linked with the ones already developed
in [S1], [CZR1], [S2].

The very first work on this subject is [M1] (see also [M2]) where systems like
(1.3) were studied in the case in which L and V are no more periodic but only
asymptotic as ¢ — +oo to two periodic functions Ly and V;. In this work, to
avoid the above non existence result, it was asked that the functional at infinity:
e+(u) = [ 3(12)* + wLi(t)u) — Vi(t,u)dt satisfied the finiteness assumption (#).
Under these conditions it was proved that (1.3) actually admits infinitely many
k-bump homoclinic solutions generated by a homoclinic solution of the system at
infinity (in the sense explained in theorem 2.1).

Besides treating the asymptotically periodic case, the techniques developed
in [M1] were able to prove the existence of k-bump solutions of (1.3) (k € N) with
distances between the bumpsindependent from k. This reproduced the Séré’s results
[S2] for second order asymptotically periodic Hamiltonian systems implying all the
consequences on the associated dynamics already explained in the preceding section.

The techniques developed in [M1] are inspired but different from those intro-
duced in [S2]. Indeed Séré is working in first order convex Hamiltonian syste.ms and
make use of the Clarke dual Action Principle [Cl]. This allows him to construct a
minimax procedure based on homological argument. Such a minimax is not directly
applicable to our functional. For such a reason we have used a different more direct
minimax procedure related to the one used in [CZR1] together with the construction
of a suitable pseudogradient vector field. |

These techniques were improved with P. Caldiroli in [CM] in studying again
(1.3) in the periodic case. In that paper the existence of infinitely many k-bump
homoclinic solutions with distance between the bumps independent from k was
proved.

The main improvements contained in that paper with respect to [M1] are

a) the set of critical points of ¢ in {¢ < ¢*} is assumed to be countable
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b) V(¢,z) is allowed to change sign.

Therefore in such a paper we extend to the to second order case (with V possibly
changing sign) all the results Séré obtained in [S2].

The proof of such a result requires a refinement of the minimax procedure
developed in [M1]. Indeed, as in [S2], in this situation it is necessary to select
between the possibly countably many points at levels close to ¢, one having an
additional property. This is done here by proving the existence of a critical point
of the local mountain pass type (see [H], [PS] and definition 4.1 in §1.4). Starting
from such a point and using its variational characterization one can construct the
minimax procedure which yields the result. _

- The fact that V can change sign gives rise to some additional problems in
proving the boundedness of the Palais Smale sequences. Several attempts have
been made to handle this problem. Considering the factorized case, when V (t,z) =
b(t)W(z), with W(z) positive and superquadratic and b(¢) periodic and changing
sign, existence and multiplicity results for the periodic problem are obtained in [GM]
and [L]. Instead, the homoclinic problem has been studied in [GY], where — as in

(L] — the further homogeneity assumption on W(z) is made.

The first chapter of this thesis is extracted from this work.

These papers stimulated the one with S. Abenda and P. Caldiroli [ACM] in
which systems asymptotic to those studied in [CM] were considered. To describe
precisely the results we put U(t,z) = —3zL(t)z + V(¢,z) and we assume:

(U1) U € CY(R x R™,R) with VU(¢,-) locally Lipschitz continuous uniformly with
respect to t € R;

(U2) U(2,0) = 0 and VU(¢,q) = L(t)g + o(|g|) as ¢ — 0 uniformly with respect to
t € R where L(t) is a symmetric matrix such that ¢1]q|* < ¢- L(t)g < c2|q|? for
any (¢,9) € R x R™ with ¢;, ¢, positive constants.

We ask that there is a function U4 (t,q) = —3 ¢ - L4 (t) g + V4 (2, q) satisfying
(U1), (U2) and |

(U3) Uyi(t,q) =U4(t + T4, q) for some Ty > 0;

(U4) (i) there is (¢4,¢+) € R x R™ such that U4 (t4+,q4) > 0;

(il) there are two constants f4 > 2 and ay < -ﬁ-zj'— — 1 such that:

B+Vi(t,q) — VVi(t,q) - ¢ < ayg- Ly(t)g for all (t,¢) € R x R™;

(U5) VU(t,q) — VU+(t,q) — 0 as t — +oo uniformly on the compact sets of R™.

As discussed above, the functional ¢ (the one associated to U, ) satisfies the

geometrical properties of the mountain pass lemma. Denoted with ¢y the mountain
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pass level of ¢ and Ky ={u € X : u #0, ¢/ (u) = 0}, we assume that
(*) there exists ¢} > c4 such that theset Ky N{u € X : py(u) < c} }is countable.

We know that this condition does not hold when the system at infinity is au-
tonomous and it is satisfied if the system at infinity exhibits transversal intersection

between the stable and the unstable manifolds.

We have
Theorem 2.2. Assume that U and U satisfy (U1)-(U5) and (*) holds. Then (1.3)
admits infinitely many homoclinic solutions. '
Precisely there is v € Ky with the following property: for any » > 0 there are
M,p € N such that for every k € N and (py,...,px) € Z* withp; > p and pj41—pj >

M, for j =1,...,k — 1, there exists a homoclinic solution v of (1.3) which verifies:
() — v (t—p;Ty)| <7 and [6(t) — o4(t — p;T4)| <7

for any t € [3(pj—1 + pj) T+, 3(pj + Pj+1)T4] and j =1,... .k, where py = —co and
P41 = +00.

As noticed in [S2], since the distance between the bumps does not depend on k,
one could consider the CJ. —closure of the set of the multibump homoclinic orbits,

which contains solutions with possibly infinitely many bumps. Thus we have

Theorem 2.3. Under the same assumptions of theorem 2.2, it holds that for any
r > 0 there are M,p € N such that for every sequence (p;)jen C N satisfying p; > p
and pjy1 —p; > M (j € N), and for every sequence ¢ = (0j);en € {0,1}" there is
a solution v, to (1.3) such that

[os(t) = oo (t — pT4)| <v and [oo(t) = o304 (¢ — piT3)| <

for any t € [3(pj—1 + pj)T4,2(pj + pj+1)T4] and j € N, where py = —co and
v+ € K is the same of theorem 2.2. In addition any v, also satisfies v,(t) — 0 and

bs(t) — 0 as t — —oo and it is actually a homoclinic orbit if ¢; = 0 definitively.

As we know the presence of these solutions leads to a rich dynamics, which is
determined, in a certain sense, by the chaotic dynamics of the system at infinity.
The presence of these solutions implies sensitive dependence on initial data.

We point out that in the previous theorems no assumption is made on the
behaviour of U as t — —oo, but the regularity and hyperbolicity hypotheses (U1)
and (U2).
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If the system (1.3) is doubly asymptotic as ¢ — oo to two, possibly dif-
ferent, periodic systems (1.3)x, then, by theorem 2.3, we have two different sets
of multibump solutions, that, at Zoco are near to solutions of (1.3)+. Here and
in the sequel, with (1.3)- we denote a sys’tem ruled by a potential U_(t,q) =
~1g-L_(t)q+V-(t,q) satisying (U1)-(U4).

In fact, we prove that there are also multibump solutions of (1.3) of mixed type,

as stated in the following theorem.

Theorem 2.4. Assume that U,U, and U_ satisfy (U1)-(U5) and that () holds
both for (1.3)+ and (1.3)_. Then there are vy and v— homoclinic solutions respec-
tively of (1.3); and (1.3)- having the following property: for any r > 0 there are
M,p € N such that for every sequence (p;j)jez C Z satisfying p1 > p, p-1 < —P,
pj+1 —p; = M (j € Z) and for every sequence o = (6j)jez € {0,1}% there is a
" solution v, to (1.3) such that

o (t) — ojua(t —p;Ty)| <7 and  |bg(t) — ojis(t —pT)l <
for any t € [3(pj—1 + P;j) T4, 2(pj +pj+1)T+], 7 =1,2... and
oo (8) — oo (t —psT)| <7 and [9(t) = oo (t — ;)| <7

for any t € [3(pj-1 +p;)T-, 5(pj +Pj+1)T-], 5 = -1, -2...
In addition, if o; = 0 for all j > jo (respectively j < jo) then the solution v,

also satisfies v,(t) — 0 and 9,(t) — 0 as t — +oo (respectively t — —00).

Clearly, in the previous statement, when we say that U, Uy and U- satisfy (U5)
we mean that VU(t,q) — VU+(t,q) — 0 as t — +oo and VU(2,q) — VU_(t,q) — 0

as t — —oo uniformly on the compact sets of R™.

The second chapter of this thesis is devoted to the proof of these last results
and is extracted from the work with S. Abenda and P. Caldiroli [ACM].

0.3. The semilinear elliptic equation.

The techniques described in the preceding section can be adapted to study a

class of semilinear elliptic equations on R™. Consider the problem
(P) —Au+tu=f(z,u) , v€ HY(R™)

where m > 1 and f satisfies the assumptions
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fl) fe C*(R™ x R,R)
2) f(z,0) = f.(z,0) = 0 for any z € R™.
13) 3b1,b2 > 0 such that ]f(:t: z)| < by + b2]z|°, V(=,2) € R™ x R, where s €

(1,2* — 1) with 2* = 21 5> if m > 2 and s is not restricted if m = 1,2.

The hypotheses (f1)-(£3) are exactly the ones studied in [CZR2| assuming also that
f(z,2) is periodic in ¢ and superquadratic in z. Here we are able to drop these
conditions considering the following more general case.

We say that a set A C R™ is large at infinity if VR > 0 Jz € A such that
Br(z) ={y € R™ /|y —z| < R} C A. Clearly any cone in R™ is large at infinity.
Another example is a cone minus the union of the annuli centered in zero and with
radii (2n)?, (2n + 1)%

Then we ask that there exists a function f. : R™ x R — R verifying (f1)-(£3), and
a set A C R™ large at infinity for which '
f4) 3p > 2 and a € [0, § — 1) such that pF, (=, z) =p f; fo(z,t)dt < foo(,2)z +

a|z|?, V(z,2) € Rm X R, and Fi,(2o,20) > 3%52¢ for an (z0,20) € R™ x R.
f5) fu(z +p,2) = fu(z,2) for any p € Z™, (z, 2 )ERmXR'
f6) Ve > 03R > 0such that sup,¢ 4\p,(0) |1£(2;2) — foo (2, 2)| < €(|2]+]2]°) V2 € R,

Putting F(z,z) = [ f(z,t)dt we define on X = H'(R™) the functionals
o(w) = 3wl — fom F(2,) dt, pu(u) = Hjull? — fyn Fu(z,u)da, where [Jull? =
Jgm |Vu]? + |u|?dz, and we look for solutions of (P) as critical points of .

As for the homoclinic problem, the assumptions (f1) — (f5) are sufficient to
guarantee the existence of at least one non zero critical point of the "periodic”
functional ¢, as in [CZR2] in the case in which F,, does not change sign. Also in
this case the asymptotically periodic problem presents a non existence example.

Let f(z,z) = a(z1)|z|?z with a € CY(R,R), a(t) > ap > 0, &(t) > 0Vt € R,
and assume that u is a solution of (P). By standard bootstrap argument we get
that € H?(R™), therefore ¢'(u)8iu = 0. But, if e; = (1,0,...,0), we have
o' (u)oiu = %(p(u(-—i—sel))h:g = [ d(:cl)lz—ﬁ dz = 0 which implies u = 0 (see [EL]).

To avoid this situations we make a discreteness assumption on the set of the
critical points of the functional at infinity.

We note that ¢, satisfies the geometrical hypotheses of the mountain pass
theorem. Letting I' = {y € C([0,1],X); v(0) = 0, p.(7(1)) < 0}, we put ¢ =
infyer maxeeo,1] Yo (7(2))-

Setting K, = {u € X \ {0}/ ¢/ _(u) = 0}, we assume
(¥) Je* > c such that K& = K., N {p. < c*} is countable.
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We easily guess that also in this case the hypothesis (¥) excludes the asymptotically

autonomous cases.

In this setting we are able to prove the following

Theorem 3.1 If (f1)-(f6) and () hold then (P) admits infinitely many distinct
solutions.
Precisely there exists u € X, solution to the equation —Au+u = fo(z,u) for which
we have that Vv > 0 there exist M = M(r) € N and R = R(r) > 0 such that for
any finite sequence {pi,...,pr} C Z™ that verifies

i) |p1| > R and |pi| > |pic1| +2M i=2,...,k,

i1) Bar(pi) C A\ Br(0) i=1,...,k,

there exists a solution v to (P) such that if we put |pg+1| = +oco then

lo = P * u“B%(mmpzn(O) =7,

R < , =2,...
v p‘*UHB%(IP;|+|p.~+1|)(°)\B%(|p;1+|p.~_ln)(°) Sroi=2,..0k,

where if A C R™ is measurable then |[u|% = [, |Vu|* + |u|?dz.

In particular, for k = 1 we get that if p € Z™ verifies Bar(p) C A \ Br(0)
then there is a solution v to (P) which is near u(- — p). Moreover for k > 1 if we
choose any set of k disjoint annuli centered in zero, each of which intersects the set
A\ Bg(0) in a ball of radius M centered in a point of Z™, then there is a solution
to (P) which is near a translate of u in each of this balls. We call also this type of
solution k-bump solution.

In [CZR2] the authors adapted some of the tools developed in [CZR1] to find
infinitely many k-bump solutions for any k¥ € N for the problem (P) in the case in
which f(z,z) is periodic in z and superquadratic in z. S. Alama and Y.Y. Lee in
[AL] studied the problem (P) assuming f asymptotic as |z| — oo to a function feo
of the type considered in [CZR2]. In that paper they were able to prove that the
problem (P) admits infinitely many k-bump solutions. All this results are based on
assuming that there exists ¢* > ¢ such that K:: /Z™ is finite (clearly, in'the ?eriodic
case, the functional @, is ¢ itself).

Theorem 3.1 differs from the cited results principally in the important fact that
the minimum distance between the bumps of any k-bump solution depends only on
r (being given by M(r)). As in section 1.2, using the Ascoli Arzela’ theorem, this
implies the existence of a uncountable class of bounded solutions of the equation

—Au+u = f(z,u). Precisely we have:
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Theorem 3.2 Under the same assumptions of theorem 3.1, it holds that for any
T > 0 there exist M = M(r) € N and R = R(r) > 0 such that for any sequence
{pj}jen CZ™ that verifies
i) lpi|l 2 R and |pi| 2 |pia| +2M 122,
1) Bar(pi) C A\ Br(0) i€N,
and for every sequence o = (o;)jen € {0,1}N there exists v, € H}

L (R™) satisfying
—Av, + v, = f(z,v,) such that

loo — o1 (pr + UL ORE

”’Ug B C"i(Pi * u)HB%(IpfI+IP;+1I)(O)\B%Up”.'_w‘.__lI)(U) <722,

We note that our result holds in a more general setting then the one studied in [AL].
In fact the superquadratic assumption (f4) is verified also by functions fo, which
change sign. Moreover the assumption (x), is satisfied if the functional ¢, is for
example a Morse functional. In the one dimensional case (m = 1), as we discussed
it is possible to verify this condition via the Melnikov theory when f., is a periodic
perturbation of particular autonomous problems.

Another difference with the work by S. Alama and Y.Y. Lee [AL] is the fact
that f is not assumed to be asymptotic to f, as |z| — co but only on a set large
at infinity. This permits us to consider the problem (P) when f is assumed to
be asymptotic in different sets large at infinity to different functions. Precisely we
consider the hypothesis
f7) JA1,...,4; C R™, large at infinity, fi,...,fi satisfying (f1)-(f5) for which

Ve > 0 IR > 0 such that sup,e4,\pa(0) 1F(2,2) = fi(z,2)] < €(]z] + |2]°)

VzeR,Vee {1,...,1}.

If for any ¢« € {1,...,1}, we define ¢, (u) = 3|u|® - o F.(z,u(z))de, K, =
{uv € X\ {0}; ¢'(u) = 0}, ¢, the mountain pass level of ¢, and we assume
(*,) e > ¢, such that K& =K,.n {p, < ¢!} is countable
then, by theorem 3.2, we have [ different sets of multibump solutions, each con-
structed with a suitable critical point of the functional ¢,. |

In fact, we prove that there are also multibump solutions of (P) of mixed type,

as said in the following theorem.

Theorem 3.3 Assume that (f1)-(f5), (f7) and (*,) hold. There exists uy,...,u; € X,
satisfying —Au, + u, = f.(z,u,) for which we have that for any r > 0 there exist
M = M(r) € N and R = R(r) > 0 such that for any sequences {p;}ien C Z™,
{7:}ien € {1,...,1}N, that verify
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i) |p1| > R and |pi| > |pi—1| +2M @22,
i) Ba(pi) C 45 \ Br(0) €N,
and for every sequence o = (o;)ien € {0, l}N there exists v, € H} (R™) satisfying
—Avy + v, = f(z,v,) such that

”vd - 0'1(}91 *ujl)“B—lz-(lpﬂ-{'lel)(O) S r
”’Uo- — oi(pi * uji)llB%(lpi|+IP.'+1l)(o)\B%(lp.‘I+|p.‘—1l)(0) STz

If 0; # 0 only for a finite number of indices then vy is actually a solution to (P).

As last remark we point out that an analogous result was proved by S. Angenent
in [Ang] in a different setting (z— f(z, z) is assumed to be periodic in x and bounded
together with its derivatives), using essentially fixed point arguments. He proved
his result under the assumption that the solution u was such that the operator
—A +1I — f.(z,u(z)) had a bounded inverse. He was able to verify this hypothesis
for periodic perturbation of particular autonomous problem which admits a unique
(up to translations) radial solution, using a bifurcation theorem due to A. Weinstein
[W]. It is known that the problem (P) when f(z,2) = 2P admits a unique positive
solution (see [K]) and it should be interesting to check if the hypothesis (%) holds
for periodic perturbations of this f.

The third chapter of this thesis is devoted to the proof of these results
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CHAPTER ONE

Homoclinic orbits for second order Hamiltonian systems

with potential changing sign. !

81.1. Introduction.

We study the second order Hamiltonian system
i=-U'(tq) (HS)

where ¢ : R — R¥ and U'(t,q) denotes the gradient with respect to g of a smooth
potential U : R x RY — R, T-periodic in time, having an unstable equilibrium
point Z for all £ € R. Without loss of generality we can take T =1 and Z = 0. Thus,
g(t) = 0is a trivial solution of (HS). We look for homoclinic orbits to 0, namely non

zero solutions of the problem

qg= "‘Ul(t')Q) )
g(t) -0 ast— too (P)
g(t) >0 ast— +oo

We consider a potential U of the form
1
U(t,z) = —5%" L(t)z + V(t,z)

where L and V are asked to satisfy the following assumptions:

(L1) L e C(R,RNV*N) 1-periodic;

(L2) L(1) is a symmetric, positive definite matrix, for any ¢ € R;
(Vi) Ve C? (R x RM,R), 1-periodic in ¢;
(V2) V(t,0)=0and V'(¢,z)/|z| — 0 as ¢ — 0, uniformly in ¢;
(V3) thereis (¢g,20) € R x RY with z¢ # 0 such that U(to,zo) > 0;
(V4) there are two constants 3 > 2 and a < —g — 1 such that:

BV (t,z) — V'(t,z) -z < az - L(t)z for all (t,z) € R x RY,

1 This chapter is extracted from a joint work with Paolo Caldiroli: Homoclinic orbits for

second order Hamiltonian systems with potential changing sign, Comm. on Appl. Nonlinear

Anal., 1, 97-129, 1994.
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In this chapter we prove that, under the above assumptions, the problem (P)
admits infinitely many solutions. We recall that when V({,z) is positive and su-
perquadratic, there are several existence and multiplicity results for homoclinic or-
bits, as [4], [8], [9], [10], [15], [21], [22], [23], [24], [25]. We generalize some of these
results, treating also cases where V (¢,z) can take negative values as well as positive.

In general the fact that V changes sign can give some difficulties to verify a
suitable compactness property which plays an important role in the study of the
variational problem associated to (HS). Several attempts have been made to over-
come this difficulty. Considering the factorized case, when V (t,z) = b(¢)W (=), with
W (z) positive and superquadratic and b(t) periodic and changing sign, existence
and multiplicity results for the periodic problem are obtained in [13] and [16]. In-
stead, the homoclinic problem has been studied in [10], where — as in [16] — the
further homogeneity assumption on W (z) is made.

Actually, in our situation we do not reduce ourselves to the factorized case;

moreover U(t,z) can change sign both for ¢ fixed and for = fixed.

Remark 1.1. By the periodicity of U in t,if g € C*(R,RY) solves (HS), then also
g(- — n) solves (HS) for any n € Z. We agree to identify two solutions ¢; and g2 of
(HS) whenever g; = gz(- — n) for some n € Z.

Remark 1.2. The assumption (Vi) gives the behavior of V' with respect to z.

In fact, one can infer that V({,z) > [V(t,—!—%) - E%izle([?x”‘”Iﬁ + 5552 - L(t)z

for any ¢t € R and |¢| > 1. In particular V(to,520) ~ §ps? as s — oo, being

8o = V(to,z0) — —ﬂi—zmo - L(to)zo > U(to,z0) > 0. Moreover we notice that for a =0

and V(t,z) positive the assumption (Vy) reduces to the usual superquadraticity
condition: BV (t,z) < V'(t,z) - = for all (t,2) € R x RY, as in [10].

The assumptions (V3)-(V4) come out as attempt to weaken the global su-
perquadraticity and positivity conditions. A similar trial was made by Alama and
Tarantello [1] for an elliptic problem and by Giannoni, Jeanjean and Tanaka [11], for
the problem (HS), but with some differences. First of all, they prove the existence
of one homoclinic orbit for a second order Hamiltonian system on a non compact
Riemannian manifold M, whereas in our main theorem a multiplicity result for a
second order Hamiltonian system on R¥ is given. Moreover, if we specialize their
result to the case M = RY, we can notice that they always assume that the set
Q= {z € RY : U(t,z) < 0} is compact for all ¢ € R. We point out that our
result can cover also situations where {; is unbounded. For instance if p(t) is 1-

periodic and not identically zero, e € RY is a fixed unit vector and § > 2, then
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V(t,z) = p(t)e - z|z|f~! satisfies (V1)-(V4) but Q; contains a half space for any
t € R. In spite of that, there are some situations that cannot fall within the condi-

tion (V4) but can be treated in their setting (e.g. see example 0.4 in [11]).

As said before, the main theorem of this chapter states that if (L;)-(L2) and
(V1)-(Vy4) hold, then (P) admits infinitely many solutions. Actually we can give
more information about the solutions to (P). Indeed we will prove that either the
set of solutions is uncountable or there exists a homoclinic orbit v such that for any
finite set {p1,...;pr} C Z, near the function v(- — p1) + -+ + v(- — pg) there is a
solution to (P), provided that the distance between two different "bumps” v(- — p;)
and v(- —p;), given by |p; — pj|, is sufficiently large. This kind of solutions are called

multibump solutions and their existence has been first proved by Séré in [23].

To give a more precise statement of our result we have to introduce the vari-
ational setting of the problem. Homoclinic orbits are obtained as critical points of

the Lagrangian functional
1.
o) = [ +u- E(Ow) = V(t,)

defined on the Sobolev space H!(R,R”). This functional exhibits the geometrical
properties of the mountain pass lemma, namely there is u; € H*(R,R¥) and a
positive constant a such that ¢(u;) < 0 and max, ¢ > a > 0 for any path v joining
0 to u;. Let ¢ be the mountain pass level of ¢ and let K = {u € H*(R,RY) : u #
0, ¢'(u) = 0}. Then the following holds.

Main Theorem. If (L, )-(L;) and (V1 )-(V4) hold and if

(*) there is ¢* > ¢ such that the set X N {u : p(u) < ¢*} is countable

then there is v € K with the following property: for any » > 0 there is 7 € N
such that for every k € N and (pi1,...,px) € Z* with |p; — pj| > @, for i # j,
we have K N By(v;p1,...,pr) # O where B(v;p1,...,px) = {u € H(R,RY) :
o —v(- =p)ll; <r Vji=1,....;k} and || - [l; = | - lEr((2 (414050, 2 (p+ps— ) BY)
(here py = 400 and pry; = —0). ‘

Remark 1.3. As a direct consequence of the theorem, one easily recognizes that the
system (HS) exhibits sensitive dependence on initial conditions on a set around the
homoclinic orbit v. Moreover, as proved in [24], since the number 7 does not depend
on k, one could consider the C}_—closure of the set of the multibump homoclinic
orbits, which contains solutions with possibly infinitely many bumps. Then one

could conjugate this set of solutions to (HS) with a diffeomorphism of R2N, given
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by the step—one map associated to (P) in phase space, whose dynamics exhibits

the structure of a Bernoulli shift, with positive topological entropy (see also Bessi,
[5]-[7])-

Remark 1.4. The existence of infinitely many homoclinic orbits was proved by
Melnikov [17] for 1-dimensional systems, with perturbative methods. In that paper
he was able to make suitable assumptions on V to assure the transversal intersection
between the stable and unstable manifolds, fundamental fact to get his multiplicity
result. Using variational methods one introduces the hypothesis (*) or analogous as
in [10], [23]. In particular Bessi in [5] gives in the one dimensional case a condition
on the potential which is weaker than the Melnikov assumption. Moreover Séré
introducing in [24] the hypothesis (*) observed that it is in fact a weakening of the
transversality condition. However we notice that (%) is not an explicit assumption
on the potential. It is an open problem to find general conditions on U, consistent

with (Ly), (L2), (V1)-(V4), which guarantee (x).

Remark 1.5. We notice that () does not hold if the potential U(t,z) does not
depend on time. In fact if the system is autonomous, we are able to prove existence
of only one homoclinic solution modulo the translational invariance under R. For

results concerning multiplicity of homoclinics for the conservative case see [3] and

[26].

Remark 1.6. If U is radially symmetric (with respect to ) then (x) does not hold.
In such a case we can reduce ourselves to a 1-dimensional problem, removing this

degeneration.

The method of the proof of the main theorem is based on a variational approach
to the problem and is related to previous papers [10], [19], [24]. In particular we
give an analogue of the minimax characterization just used in [24] for first order
convex Hamiltonian systems. However we adopt quite elementary arguments without

employing homology theory as in [24].

The chapter is organized as follows: section 2 contains some preliminary results,
including the mountain pass geometrical properties of the functional ¢ and some
properties of the critical set K; in section 3 we discuss the Palais Smale condition
and other compactness results; in section 4 we introduce the assumption (*) and we
prove that the functional ¢ admits a local mountain pass—type critical point; finally
section 5 is devoted to complete the proof of the main theorem. During this proof

we use a technical result that we discuss separately in the appendix.
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81.2. Preliminary results.

We point out that (P) defines a variational problem and we will find its solutions
as critical points of the usual Lagrangian functional. Thus, in the Sobolev space
H'(R,RY) we introduce the inner product:

(u,v) = /ﬂ;[u -0+ u - L(t)v]

whose corresponding norm ||u|| = (u,u)% is equivalent to the usual one, because of
(L1)-(Lg). We will call X this Hilbert space and we notice that X is continuously
embedded in the space of continuous functions converging to 0 at infinity; moreover
CX(R,RY) is dense in X. Then we define the functional ¢ : X — R by setting
o(w) = 3lul = [ V(tw),

It is well known that, under the assumptions (L )-(Lz) and (V1)-(V2), ¢ is well
defined and the following holds.
Lemma 2.1. ¢ € C'(X,R) and ¢'(u)v = (u,v) — [ V'(t,u) - v for any u,v € X.
Proof. Let us prove first that ¢ is Gateaux differentiable. Let v, A € X. Then
im0 2(p(u+ sh) — p(u)) = (u,h) — im,o 2 o V(t,u + sh) — V(¢,u)dt.
Since u(t) + sh(t) — 0 as |[t| — oo, by (V3), there exists T' > 0 such that if |t| > T
then |V'(t,u + sh)| < |[u(t)|] + |h(t)], Vs € (0,1). Then, again by (Vi) and (V)
there exists a positive constant C such that |V'(t,u + sh)| < C(|u(t)| + |h(¢)]|) for
any t € R, therefore

%[V(t,u + sh) = V(t,u)| < —1— /8 |V'(t,u + Th)||h|dT <
< C(Ju(®)| + |R@)IR(E)] ViteRVse(0,1).

By the dominated convergence theorem we obtain that ¢ is Gateaux differentiable
and
ol(u)h = (u,h) — / Vit u)hdt, Vu, h € X.
R

Let us prove now that ¢, is continuous. Let u, — u and, given € > 0, let us choose
R, > 0 such that fltI>Re lun|? dt < €2, fItI>Re [u|2 dt < €2, |V'(t,un)| < |un(t)| and
V(6 0)l < [u(@)], ¥ [t = Re.

We deduce that there exists a positive constant C independent from € for which
((pa(un) — @ (u))h] < (flun —ull + ( ’ RIV'(t,un) = V'(t,u)] dt)? + Ce)||h|| =
I <He

= (o(1) + COlIR]| 7 — +oo.

Since € is arbitrary, the continuity of ¢/ follows. U
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As first aim, we intend to show that ¢ verifies the geometrical hypotheses of
the mountain pass theorem. In particular, this implies the existence of Palais Smale

sequences.

b

Lemma 2.2. [, V(t,u) = o(||u[|*) as u — 0.

Proof. Since ||u||ze < C||u|| for any u € X and since V(z) = o(|z|*) as ¢ — 0, given
¢ > 0 there is § > 0 such that if |Jul| < § then [5|[V(u)| < e fp lul?2 < fgnuﬂz where
Ly =inf{z - L(t)z : t € R, || =1} > 0. U

Remark 2.3. More generally, using the same technique of this proof, one can prove
that for any measurable set M C R, [, V(t,u) = o(Hquql(M)) as ||u||grary — 0.
Moreover this estimate is uniform with respect to |M|, for |M| > 1, because the
embedding constant of u € H*(M,R”Y)into L=(M, R”Y) depends on | M| like 1—{—!—_,‘—1[—',

Lemma 2.4. There exists u; € X such that ¢(u;) <0.

Proof. Let (to,z0) € R X RY be given by (V3) and let &y = V(to,z0) — E‘{—z—mo .
L(to)zo > 0. There is € > 0 such that V(t,zo) — Tf'_‘—imo - L(t)zg > %60 for any
t € [to — €ty + €]. Chosen p € CZ°(R,R™) with suppp = [to — €,t0 + €], we define
uo(t) = zop(t) and estimate p(Aug) for A large. We write w(dug) = ->\2—2'II’LL0“2 —
fo V(t,Aug) — ‘fBA V(t,Aug) where Ay = {t : [Muo(t)] < |zol} and Bx = R\ Ax.
Then [, [V(¢,Auo)| < 2emax{|V(t,z)| : t € R, |z| < |20}, whereas, by remark
1.2, fB,\ V(t,Aug) > AP fB,\ [V(¢,20) — Eif‘_—zmo - L(t)zo]lp|? + /\2—59_—5 fo ug » L(t)uo >
—%50Hp||€ﬂ(BA)Aﬁ. Therefore (M) — —oco as A — oo and the thesis follows. U

Clearly ©(0) = 0 and there is 71 €]0, ||us||[ such that for any 7 €]0, 1] o(u) >
ir? if |lu|| = r. Hence we can apply the mountain pass theorem: denoting by
I = {y € €(0,1],X) : ~(0) = 0, ¢(y(1)) < 0} the class of paths and by
¢ = infyer max,epo,1] ¢(7(s)) the corresponding minimax level, we infer that cis a
positive, asymptotically critical value for ¢, namely there exists a sequence (un) € X
such that ¢(u,) — ¢ > 0 and ¢'(u,) — 0. However the Palais Smale condition does
not hold; the main reason is given by the translational invariance: if v € X and
n € Z, then [lu(- = n)]| = [[ul, p(u(- ~n)) = p(u) and [¢'(u(- ~ )] = ¢’ ()] In
particular if u is a non zero critical point of ¢, then u, = u(- —n) (n =1,2,.. ) is

a non compact Palais Smale sequence for .

However we can obtain the existence of a critical point different from 0, by

using a first property of the Palais Smale sequences.

Lemma 2.5. If (u,) C X is a sequence such that ¢'(un) — 0 and lim sup e(un) <
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+o0, then (u,) is bounded in X and liminf ¢(u,) > 0. In particular any Palais

Smale sequence for ¢ is bounded in X.

Proof. By (V4), we have that for any v € X, (3 — ﬁ)Hqu = o(u) + [ V( -

b/ = § o V() - < p(w) + 3¢/ @)l + § fou - L(tyu and s0
(G~ 5~ Sl = el Il < pla). 2.1)

Now, given a sequence (u,) C X such that ¢'(u,) — 0 and limsupp(u,) < +oo,
since ||¢'(uy)|| and ¢(u,) are bounded from above, from (2.1) we get that ||u,|| < C
for all n € N, C being a positive constant. Consequently we have that ¢(u,) >
—C|l¢'(un)|| and this implies that iminf ¢(u,) > 0. O

Now we are ready to prove a first partial result.

Theorem 2.6. The problem (P) admits a non zero solution.

Proof. From lemma 2.1 it is enough to show that ¢ has a non zero critical point.
Let (un) be the Palais Smale sequence given by the mountain pass theorem. For
any n € N there is t, € Z such that max;er |un(t)| = maxyepo 1) [un(t — t2)]. We
put v, = u,(- — ¢,) and notice that (v,) is again a Palais Smale sequence at level
c. By lemma 2.5 (v,) is bounded in X and then, up to a subsequence, converges
to some v € X, weakly in X and uniformly on compact subsets of R. We claim
that ¢'(v) = 0. Indeed, taken an arbitrary w € C®(R,RY), it holds that. ¢'(v)w —
o' (vn)w = (v — va,w) — [ VI(E0) = VI(tve)] - w — 0 as n — oo, that
is ¢'(v)w = 0. By density we infer that ¢'(v) = 0. Finally we claim that v # 0.
Otherwise ||up||pe = ||vn|lzee — 0 and, by (V2), for any € > 0 there exists n € N
such that [V(¢,un)| < €lun|? and [V'(¢,%n) - un| < €lun|? on R. Then, by lemma 2.5,
P(n) = 3¢ (nYtnt 3 fo V't un) ttn— fy V(b um) < ()| -+ Selunl e <
C(|l¢'(un)l|+€)- Since ||¢'(un)|| — 0 and € is arbitrary, we have that lim sup p(u,) <
0 contradicting the fact that ¢(u,) — ¢ > 0. UJ

We now get some estimate on the critical set of ¢ defined by K = {v € X :
©'(v) =0, v# 0}. Notice that by theorem 2.6, X is not empty.
Lemma 2.7. inf ||v]| =: A > 0; inf ¢(v) =:¢y > 0.
veK veK
Proof. First, we point out that for any v € K |[v||? = [ V'(¢,v) - v. If A = 0 then
there is a sequence (v,) C K such that ||v,|| — 0 and so |jvs|lz — 0. By (V2) we

get that fR [V'(t,vn) - va| < %Lg fR |va|? for n large enough, where Ly is defined in
the proof of Lemma 2.2. Therefore ||vy|> < 1||vn||? in contrast with the fact that
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v, # 0. To prove the second estimate we observe that, by (2.1), for any v € K

@) 2 (=5 - HIIP 2 (G- — 50 >0 0

81.3. Palais Smale condition and other c;ompa,ctness properties.

We saw that any Palais Smale sequence is bounded in X but is not necessarily
precompact. Qur aim is to investigate in a deeper way the behaviour of Palais Smale

sequences.

First, we give a result already presented in [9] and [10].

Lemma 3.1. Let (u,) C X be such that ¢(u,) — b and ¢'(un) — 0. Then there
are vy € K U {0}, v1,...,vx € K, a subsequence of (u,,), denoted again (uy,), and

corresponding sequences (t1),...,(t*) € Z such that, as n — oco:

[un = [vo +v1(- = t5) + -+ v(- = t5)][ = 0
p(vo) + -+ p(ve) = b

]| = 40 (1=1,...,k)

) 4o (j=1,...,k—1).

Proof. Let (un) C X be such that p(u,) — b and ¢'(uy) — 0. By lemma 2.5,
b > 0 and (u,) is bounded in X and so, up to a subsequence converges weakly
to some vg. By (_2.1), if b = 0 then u, — 0. Let us suppose now b > 0. We can
repeat the proof of theorem 2.6 to say that there is a sequence (¢;,) C Z such that
|wn|lee = maxepo,1) [un(t — t5)| and the sequence (uy,), given by ul = un(- —t}),
~is a Palais Smale sequence at level b and — up to a subsequence — converges to
some vy € K, weakly in X and uniformly on compact subsets of R. Then we define
u2 = ul — v;. One has that (u2) is a Palais Smale sequence at level by = b — ¢(v1)
(this will be study in a more general setting in chapter 2, lemma 2.2.2). Thus, if
by = 0 then, as proved before, u2 — 0 and the thesis holds with & = 1. If by > 0
then we are in the above case b > 0 and we repeat the argument. Thanks to lemma

2.7, this process must end in at most [b/co] steps. : U

Remark 3.2. We point out that if (u,) is assumed to be a bounded Palais Smale
sequence, then the conclusion of lemma 3.1 holds by using only the assumptions

(L1)-(Ly) and (V1)—(V2).

Remark 3.3. Lemma 3.1 in particular shows that there is no Palais Smale sequence
at any level b €] — o0, co[ \{0}. Moreover, at any level equal to a finite sum of critical

values one can find Palais Smale sequences which do not converge.
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Then, lemma 3.1 explains how the Palais Smale condition fails and characterizes
all the Palais Smale sequences. ,
To derive some consequences of this characterization we prove the following

result.

Lemma 3.4. Given a sequence (u,) C X of the form u, = Y. v;(- — ) where
v1,...,vx € X and (t}),...,(tX) are sequences in R such that |t} — ti| — oo for
i #J, then [[un|® — 37 [lvj1*-

Proof. By induction. The lemma is true for ¥ = 1. Now, we show it for k+1 assuming
that it is true for k. Since [Jun|®> = | ¥ v;(- — )12 + [lor+a]® + X5 (vj, 0041 (- —
t:+1 4+ ¢4)) and since v(- — t,) — 0 weakly in X when |t,] — oo and v € X, the
thesis follows. U

It is easy now to prove a local compactness property.

Lemma 3.5. If (u,) C X is a Palais Smale sequence with diam (u,) < A, then (u,)
admits a convergent subsequence.
Proof. Let (un,) C X be a Palais Smale sequence with diam (u,) = § < A. There is

u € X such that |ju, — u|| < § for every n € N. Moreover, up to a subsequence, by
lemma 3.1, u,, = vy + vaj(- —t4)+w, where k € NU{0}, |lwa] — 0, |t{]| — +o0,

971 — tJ — +oo. Then, by lemma 3.4, ||u, — u||® = |Jvo — ul|® + E;-c___l lvill? +
€n > kA2 + €,, where €, — 0. Therefore A2 > 62 > kA2 and so k = 0. Hence
Up = Vo +Wy — Vg ]

Remark 3.6. Arguing asin lemma 3.5, one can show that any Palais Smale sequence
(un) C X such that fR\[_R R [@nl? + un - L(t)u,] < A? for some R > 0 admits a

convergent subsequence.

In the context of Palais Smale sequences, we introduce two sets of real numbers,

studied also in [24], which will play an important role in the sequel. Letting
Sps ={(un) C X : lim¢'(u,) =0, limsupp(u,) < b}

we define

" = {1 R : Iun) € Sk s.t. p(un) — 1}

the set of the asymptotic critical values lower than b and

Db = {reR: I(un), (@) € Sfﬁs st ||un — Gnl| — 7}
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the set of the asymptotic distances between two Palais Smale sequences under b.
Notice that if (u,) € Sg, by lemma 2.5, up to a subsequence, p(u,) — ! € [0,5]. A
first property of ®° and D? is given in the next lemma.

Lemma 3.7. For b > 0, ® and D® are compact subsets of R.

Proof. As in lemma 3.1, we can see that any sequence (un) € Sfés is bounded by a
constant depending only by b. Hence D® is bounded. To prove that D% is closed we
show that for any r & D? there is € > 0 such that Jr — €, + e[N.D* = (). Arguing by
contradiction, we assume that there is » ¢ D® and a sequence 7, € Jr— %,r-l— i—[ﬂDb,
Then there exist u,, 4, € X such that ||¢'(u,)|| < —71;, lle'(Tn)|| < —71;, o(un), ¢(@n) <
b+ ;11- and | ||up — @n]| — ra| < _17; Then (un),(@n) € Sig and ||un — Un|| — 7, Le.
r € DY, a contradiction. In a similar and simpler way one proves that ®’ is compact.

O

Before stating a crucial consequence of lemma 3.7 we introduce some notations:
fora,b e R,a<b weset po ={ucX : a<opu)} e’ ={ueX: o) b}
ot ={ue X :a<ep() <b} K =Kne®and £(b) = K N ). Moreover, given
any non empty subset S of X, we put B.(S) = {uv € X : dist (u,5) <7} forr >0
and Ay, r,(S) = Uyes{u € X : r; < dist (u,v) <72} for 0 <ry <73

Corollary 3.8. Given b > 0, for any » € RT \ D® there exists d, €0, %[ such that
[» — 3d.,» +3d,] C RT\ D® and there exists p, > 0 such that |¢'(u)|| > pr for
every u € Ar_34, rtad, () N b.

Proof. The first part is a restatement of lemma 3.7. For the second part, arguing
by contradiction, we assume that there is a sequence (uy) C Ar—ad, r+34,(K?) N ®
such that ¢'(u,) — 0. Moreover for any n € N there is v, € K° such that r — 3d, <
lun — va|| < 7+ 3d,. Hence (u,), (vn) € SBg and, passing to a subsequence, if
necessary, ||un, — vn|| — 7 € [r — 3d,,7 + 3d;]. Therefore ¥ € DY, in contrast with
the fact that [r — 3d,.,7 + 3d,] N D® = 0. [

Remark 3.9. A property for ®° analogous to corollary 3.8 holds: given b > 0, for
any [ € R\ ®° there exists § > 0 such that [I— 6,14+ §] C RT\ ®° and there exists

v > 0 such that ||¢'(u)|| > v for every u € pité.

We point out that by lemma 3.1 the set ®° can be characterized in a better
way as follows: ®° = {> ¢(v;) : v; € K} N[0,b]. Next lemma gives an analogous
characterization for the set D°.

Lemma 3.10. D* = {(XF_, llv; — 5|*)/2 : k € N, v1,...,vg,51,...,5 € KU

{0}, S o) <b, SFo(m) <b}.
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Proof. If r € D® then there are two sequences (uy),(@,) € Sig such that ||u, —
Un|| — 7. By lemma 3.1 we can assume that u, = vy + Ef vi(- — tfl) and 4, =
ZZif V(- —t)) + vhtprt1 where bk >0, [t]| — oo and [t; — #]| — oo for n — oo
fl<i<j<kork+1<1i<j<k+h. We point out that for any label
7 € {1,...,k} there is at most one label I = I(5) € {k + 1,...,k + h} such that
sup,, [tJ — t!| < oco. If this is the case, we pass to a subsequence (that we write
1(5)
n

without change of notation) so that #J — = const = ¢/ and we set v} = v; and

v? = vy(j). Otherwise we put I(j) = —1, v} = vj, vi = 0 and t/ = 0. Now it is clear

that for all labels j € {k+1,...,k+h}\ {I{(1),...,1(k)} it holds that |t} —tI| — oo
if1 € {1,...,k + h}\ {j}. For these j’s we set v; = 0 and and v} = v;. For the
remaining labels j € {k +1,...,k + A} N {I(1),...,l(k)} we define vj = 'u;f = 0.
Moreover we call v} = vy and v2 = vpyry1. Therefore Zf:g‘ p(v}) = Eg o(v;) =
lim ¢(u,) € [0,b] and Zf:g p(v?) = Zfigill ¢(v;) = lim¢(@,) € [0,b]. In addition
Up — Tp = V] — V7 + Zf:lh [vi(-— t — i) — vf( —t1)]. Finally we can apply lemma
3.4 to conclude that r? = lim ||u, — @,||? = Zf:c’,l Hle - ,03‘;”2_ The inverse inclusion
is easier to prove. In fact if 7 = (35 ||lv; — 9;]|2)/2 we define u, = 3% v(- — jn)
and 4, = }:If 5j(- — jn). We observe that (uy),(@,) € Sig. Moreover, by lemma

3.4, ||[un — @nl| — r. OJ

81.4. Existence of a mountain pass—type critical point.

In this section we will show that the functional ¢ admits a non zero critical
point v satisfying some properties which describe topologically the behavior of f in

a neighborhood of v and characterize v as local mountain pass—type critical point.

To this extent we mention here the definition of mountain pass—type critical
point given by Hofer in [14], according to which a point v € K is said of mountain
pass—type if for all open neighborhoods A of v the set {u : ¢(u) < f(v)} NN is
nonempty and non path connected.

Actually, in our context, the version of Pucci and Serrin [20] is to be preferred.

We modify their definition, giving a local version.

Definition 4.1. Let f be a functional of class C* on a Banach space X and let

be a nonempty open subset of X.

We say that two points zg,z; € () are c—connectible in 2 if there is a path p €
C([0,1], X) joining z¢ and z;, with rangep C £ and such that max, f < c.

A critical point Z € X for f is called of local mountain pass—type for f on Nif z € N
and for any neighborhood A of Z subset of () the set {z : f(z) < f(Z)}NN contains
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two points not f(Z)-connectible in (2.

It is easy to recognize that Z is of local mountain pass type for f on {2 if and only
if # € 0 and there are sequences (z,,) C  and (r,) C R™ such that z, — %, 7, — 0
and 8B, (z,)N{z : f(z) < f(Z)} contains two points not f(Z)-connectible in (1.

Notice that in this characterization the balls B, (v,) are not required to contain Z.

We will prove the existence of a local mountain pass—type critical point v for
¢, by using this last characterization, which permits us to specify something more;
indeed, we will also show that the sequence (v, ) convergent to v can be taken in K

at level o(v).
To obtain this result, we need a sequence (r,) C R*\ D®, with b > ¢, such that

rn — 0, ¢ being the mountain pass level of . Therefore, we make the assumption:
(%) there is ¢* > ¢ such that the set £ is countable.

Remark 4.2. As we will see, the main theorem holds under the following weaker

condition:

(%) there is ¢* > ¢ such that the set D¢ does not contain any neighborhood of 0
and [0,c*]\ ®° is dense in [0, c*].

We point out that it is satisfied if we know that K¢ is made by isolated points or,

more generally, if it is countable, as in [24]. In fact, in this case also D¢ and &%

are countable and then (%) holds.

The next step will be the construction of a flow, that is found as solution of
a Cauchy problem set up using a suitable vector field. First, we state the following

result.

Lemma 4.3. Under the assumption (x), if V :+ X — X is a locally Lipschitz
continuous function such that ¢'(u)V(u) < 0 for all w € X, [[V(u)| < m for
all w e X \ (K U{0}) and V(v) = 0 for every v € K* U {0}, with b < ¢*, then the

Cauchy problem
d

“Lsyu) = V(n(s,u)
n(0,u) = u

admits a unique solution 7(-,u) for any v € X, depending continuously on u and

defined on Rt for all u € p°. Moreover the function s — @(n(s,u)) is nonincreasing.

Proof. The existence, uniqueness and continuity in u of the solution 7(-,u) of the

Cauchy problem is a standard result obtained using the local lipschitzianity of V.
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Moreover, since fgcp(n(s,u)) = ¢'(n(s,u))V(n(s,2)) <0, the function s — o(n(s,u))
is non increasing. Now, we have to show that for u € ¢° the solution 7(-,) is globally
defined. We argue by contradiction, assuming that for some u € ¢ the maximal
right domain of 7(-,u) is [0, 5[, with § < co. Then there is an increasing sequence
(sn) C [0,5[ such that s, — 5 and ||V(n(sn,u))|| — oo. We set u, = n(sn,u)
and we observe that, by the properties of V, ¢'(u,,) — 0 and, since 0 < s, < $nt1,
©(unt1) < (un) < (u). Therefore (uy,) € 8{;5. But (up) cannot admit any Cauchy
subsequence because, otherwise it should have a limit point v € K®, where, by the
hypothesis, V(v) = 0, contradicting the fact that ||V(uy)|| — co. Then there are two
sequences (ﬁn),(qn) C N such that p, < gn < pny1 and |Jup, — ug,|| > 6 for all
n € N, being § > 0 constant. Hence, from the assumption (), there is an interval
[r1,72] CRT\ D® with 0 < 7; < 75 < § and, consequently, there are two sequences
(0pa)s(0g,) C [0,5] with s,, < 0y, < 0y, < g, such that ||p(op,,u) — up, || =1,
|1(0gn,u)—up,|| = r2 and n(s,u) € Ar r,(up, ) for any s €0y, , 04, [ Then, for any
n € N, it holds that 7y —r; < f;’: WV(n(s,u))|| ds = (oq, — 0p, )|V(1(5n,u))| for

a suitable 5, € [0p,,04,]. Now we call @, = n(5,,u) and we notice that |V(&y,)| >

;;’%E;—. Since s, — 5and s,, — 5 we obtain that ||V(@,)|| — co and so (Z,) € S&g
and 7y < ||&n, — ugn|| < 72, that implies [r1,79] N D® # 0, a contradiction. ]

Let now b € [c,c*[, » € R*\ D¢ and h, = 1drpr, with d, and p, given by

corollary 3.8. Moreover we define A = min {c* —b,h,}.

Lemma 4.4. For any h €0, iz[ there exists a continuous function 7 : E?th — b+
such that:

(m) ¢(n(u)) < ¢(u) for all u € P+,

(12) #(n(u)) <b—h if n(u) & B(Ky*+1);

(13) (n(w)) <b— ke if n(u) € Ar—g, rta, (KIE7).

Proof. By corollary 3.8, ||¢'(u)|| > p, for every u € Ar_zq, rtaa, (KPTH) N Pt
Then we can build a vector field V on X with the properties of lemma 4.3 and such
that '

(4.1) ¢/ (w)V(w) < 1 for u € [P\ By, (5] U [+ 1 Ar iy rtaa, (KLE).
By lemma 4.3, there is a continuous function 7 : R¥ x @®th — b*% solving
the Cauchy problem corresponding to V. By abuse of notation, we define n(u) =
n(3hr,u) for all u € p®**. Again by lemma 4.3, p(n(u)) < p(u) for any u € **".
To prove that 7 verifies the property (n2), we argue by contradiction, assuming
that there is some u € @'** such that n(u) € pp_p \ B-(KIT]). We distinguish
two alternative cases: (a) 7(s,u) & Br_zq4,(KLTH) for all s € [0,3h,]; (b) there is
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5 € [0, 3h,] such that n(5,u) € Br-24, (KCX+). If (a) holds, then, by (4.1), ¢(n(u)) —
o(u) = fo ©'(n)V(n) < —3h, and so p(u) > p(n(u)) + 3h, > b—h +3h >
b+ h Whereas u € p*Th If (b) occurs, for n(u) ¢ B A(KCIHT), there exist 0 < 53 <
so < 3h, such that n(sy,u) € Br_24, (K1), n(s2,u) € OB (KPTE) and n(s,u) €
A _ zd”,-(}C'b""Z) for all s €]s1,s2]. Hence, we have that 2d, < ||n(s2,u)—7n(s1,%)|| <
fsslz IVl < fn W Now, by corollary 3.8 (with b+ h instead of b), we get
that 2d, < %(52 — 81), that is s; — 53 > 4h;, in contrast with the fact that
(51, 2] C [0, 3hs].

The proof of (n3) is similar to (72). By contradiction, we suppose that (n3) fails,
i.e. there exists u € ©®*? such that n(u) € Armd,,rwr(lc,’jfg‘) N @p—h,. Then we
distinguish the two following cases: (a’) n(s,u) € Ar—2d,,r+2d,(’(:zi';:) for all s €
[0,3h,]; (b’) there is some 5 € [0,3h,] for which 7(5,u) ¢ Ar_og, rroa (KoTT). If

(a’) occurs, since 7(s, u) € @2t for any s € [0,3h,), thanks to (4.1), we infer that
o(n(w)) = @(u)+ f;" ¢'(n)V(n) < p(v) — 3k, and then (u) = p(n(u)) + 3hr >

b— hy+ 3h,. > b+ h, whereas u € >tk If (b’) holds, then there are 0 < s; <
s3 < 3h, such that ||n(s2,u) — n(s1,u)|| = dr and 77(5 u) € Ar_zdr,r_;_zd,(}Cgi',’:)
for all s € [sy,52]. Since ||p(s2,u) — n(s1,u)|| < f31 m, using corollary 3.8, we
get that d, < %(52 — 51), that is s; — s; > 2h,. Contrary to the previous case
(b), this estimate is not sufﬁcient to reach a contra,diction But we notice that, by

(4.1), p(n(u)) < e(n(s2,v)) = p(n(s1,u)) + [, ¢ ) < p(u) — (52 —s1) and so
o(u)>2b—hr+2h, >b+h,in contrast with the fact that u € phth, l

Corollary 4.5. For any h €]0,h[ there exists a path v € T and a finite set of
critical points vy,...,v € K§+Zr depending on h and «, such that:

(71) maxyp < c+h;

(12) i p(7(s)) > ¢ = h, then 7(s) € Uj—; Br(v;)

(vs) ifv(s) € U?__-l Ar—d, r+a.(vj) then p(7(s)) < ¢ — hp.

Proof. Taken v € T such that max, ¢ < ¢+ h we define ¥ = 0+, 7 being given
by lemma 4.4 with b = c. Clearly ¥ € T and ¥ satisfies (1), because of (7;).
Moreover, if ¢(3(s)) > ¢ — h, then, by (12), 7(s) € B A(KTHM). But the family
{B.(v) : v € KF}'} is an open cover of the compact set rangefy N @c—p. Hence
there are vy,...,v; € ]C”'h such that rangey N @c—p C U 1 Br(v;) and so (72)
follows. Finally, if 4(s) € Uj_,:l Ar_d. rta,(v;) then, by (n3), ¢(3(s)) <c—h,. U

We fix 7 €]0, [\DC and A €]0,2 min{hs,c* — c}[. By corollary 4.5, there
is a path ¥ € T' and some critical points v1,...,v; € }Cgf% satisfying (71)—(7s)
with & instead of h. Then, by definition of ¢, there must be 4 € {v1,...,vx} and
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[s0,s1] € [0,1] such that ¥(s) € B(¥) for s €]sq,s2[ and F(so) and F(s1) lie on
OB(%) and are not c—connectible in X. Moreover, by (v3), (s0), 7(s1) € @ %
Hence we put up = 9(sp), u1 = ¥(s1) and we consider the class of paths I' =
{y € ¢([0,1],X) : ¥(0) = up, (1) = u1, rangey C Bx(#) U p°~%57}. Since
T’ # 0 we can define the corresponding minimax value ¢ = infp sup., ¢ that satisfies:

c<é<c+h<ch

Lemma 4.6. For any r €]0,1d:[\D®" and for any h €]0,c + h — & there exist
v € KEPE N Br(3), ul,,ul, € Bx(7) and a path v, € C([0,1],X) joining ("
with uih such that: ’ ’

(i) ug prurp € OBrga, (vrn) Nt

(11) u?,,h and uy , are not c—connectible in B#(7);
(#1) rangeyrh C Brta, (vrn) Nttt

(v) rangevrn O Ar—d, rid, (vrn) C oo Pr.

Proof. We can take 6§ €]0,ds[ such that Bs(uo) U Bs(u;) C 9° 2 and we consider
a cut—off function x € C*(X,R) such that 0 < x <1, x(u) = 0if u € Bs/2(uo) U
Bssa(ui) and x(u) = 1 if u ¢ Bs(uo) U Bs(uy). Now, given r E]O,%d;[\DC‘ and
h €]0,c + h — € we can build a vector field V,.;, on X such that ¢'(u)V,a(u) < 0
for all w € X, |[Vrn(uw)| < ﬂ?"%ﬁ)’ﬁ for all w € X \ (K U {0}), Vr1(v) = 0 for any
v € K" and
(4.2) @'(u)Vrn(u) < —lforue
[oSE i\ Br—2a, (I U [p* A N Ar 24, ot (KT U [0 PN Ar 24, 5424, (8)]-
Then we consider the function 1_),«,;, = X Vr and we observe that ?r,h is again
a vector field on X satisfying the properties of lemma 4.3. Therefore, there is a
continuous function 7, : RT x @®* — %+ solving the Cauchy problem corre-
sponding to Dr,h. Thus, we set 5 = max {3h,,3h:} and n,x(u) = 7,,1(5,u). Since
h<h< %hi, we have that [Bs(uo) U Bs(u1)] N pe—p = 0 and then vr,h(u) =

Vra(u) for any u € %TE. Moreover, since ug,u; € 8B#(7) and § < dr, we have

that Bs(uo) U Bs(u1) C Ar—d, 7+4,(?); in addition, from K n Ar_3d. r43d.(T) =
0 and 7 + 2d, < d;, it follows that Bria2a (K ) N As—24, 7+24,(7) = 0. Then
[Bs(uo) U Bs(u1)] N Ar_zdmr_der(lC“*) = 0 and so V,x(u) = Vpu(u) for any v €
peth N Ar_zd”r+2dr(lc§t2). Then we are in the same situation of the proof of
lemma 4.4, where V., satisfies the condition (4.1), with ¢ instead of b. Hence we
deduce that 7,5 is a continuous function on p®*t* verifying the properties (7;)-
(n3), always with b = & Now we take a path v € T’ such that max,¢ < ¢+ h

and we put v, 5 = 7,5 0v. We claim that v, € T and vr,n satisfies the proper-



Chapter I. Homoclinic orbits for second order Hamiltonian systems 35

ties (71)—(73) of corollary 4.5, but with ¢ instead of ¢. Then, assuming the claim,
by definition of ¢, there is at least one critical point v, € ]Cgi',’: and an interval
[60,6:] C [0,1] such that v, 4(0) € Bria,(vrn) for 8 €161,02] and 7rn(fo) and
vrn(01) belong to 0Bry4,(vrr) and are not &connectible in B#(v). Moreover, by
(73), rangevrn N Ar—d,,rtd, (vrn) C ¢°7.

We conclude the proof showing the previous claims. First, we prove that yr5 € T.
Clearly, vr5 € C([0,1],X), rangev,n C ©®t* and 4, 1(0) = nra(uo) = uo because
vrjh(uo) = 0. For the same reason 7, (1) = ui. Now we show that rangevy,r C
Bx(5)Up~ 2% Fixed 6 € [0,1] we call u = 7(8) and @ = 7,,1(0). lfu € @~ 2" then,
by (71), also @ € ©°~ 3% So, let us suppose that u € B;(ﬁ)\gac_%hf and @ € B(9).
We have to deduce that @ € (pc'%h”. In fact, if 7, 1(s,u) € Bs(uo) UBs(uy) for some
5 € [0,3], then (2) < @(nrn(s,u)) < c— %hf, because Bs(uo) U Bs(ui) C t,ocﬁéh".,
Alternatively 7 4(s,u) & Bs(uo)UBs(u1) for any s € [0, 5]. We distinguish two cases:
(2) 7rn(8,u) € Ar—2d,,7+24-(7) for any s € [0, 5]; (b) there is some s € [0, 3] for which
Nen(8,%) & As—sd, rt24,(7). In the case (a), with calculations similar to those of
case (a’) in the proof of lemma 4.4, we get that (@) < p(u) =5 <+ h —3h: <
¢ — Lhs. Instead, the case (b) is similar to the part (b’) in the proof of lemma 4.4.
Indeed we see that the trajectory n. (-, %) crosses an annulus of thickness dy. Then,
there is [s1,82] C [0,5] such that dr = |[pra(s2,2) — 7rn(s1,2)]| < _f:z Verll <

1
f:: Wp—'(%m < 22';(52 — s1) and so sy — s1 > —;—p,ﬁd,: = 2h7. On the other hand
(@) < @(rp(s2,u)) = @(mrn(s1,u)) + [T ' Ven < p(u) = (s2 = 51), becanse of
(4.2). Then ¢(@) < ¢ +h — 2hs < ¢ — Lh;. Finally the properties (71)—(7s) can be

proved as in corollary 4.5. 0J

In the following lemma we construct a convergent sequence of critical points

vn, all at level &, which give the topological structure of a local mountain pass.

Lemma 4.7. The functional ¢ admits a critical point of mountain pass type in
B#(%). In particular there for any sequence rn | 0, there exists (vs) C K(€), with
B, (vn) C B#(%) and v, — veo € K(&), such that for any n € N and for any h >0
there is a path v € C([0,1],X) satisfying the following properties: |

() 2(0),7(1) € BBy, (va) N1~ Hhoe;

(ii) «4(0) and (1) are not é-connectible in B(7);
(i) rangey C By, (va) N T

(iv) rangey N As,_ya,. 1. (00) C o5 Hbre;

(v) suppv(8) C [~Rn, Ry] for any 0 € [0,1], being R, a positive constant indepen-

dent on 6.
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Proof. Fixed r €]0, %d;[\Dc*, we take a sequence (h,,) C]0,c+4h—g| such that h, |
0. Let v, p, € ICS'_%: , ug,h",ui,hn € OBria, (vrh,) N e and 4,4, € C([0,1],X)
be given by lemma 4.6. We notice that (vr4,)rn C B#(%) is a Palais Smale se-
quence at level ¢ and diam (v, ) < 27 < /\,’so that, by lemma 3.5, up to a subse-
quence, v}, — v, € K(€) N Bz(9). Taken h > 0, we choose n large enough so that
AT_%dr’r_l_%dr(vr,hn) D Ar—%d,,rq-%d,('”r) and h, < h. We define xg : R — R in the
following way: xr(t) =0 as [t| > R, xr(t) =1 as |[t| < R—1 and xgr(t) = R — |¢| as
R—1< |t| < R. Then we put .4, = Xr7Yrh, and we observe that for R sufficiently
large, ¥r 1, is a path in X such that F.4,(0),%ms,(1) € Aryag rq5g (Vrn,) N
S0&——lh
SDE_ h
B(7), because otherwise, since max{p(u) : © € [Frn, (1), 1rr. (1)]} < € (i = 0,1),

2P | range¥,5, C Br() N ¢®t*n and ranged,.p4, N Ar_24, ry2a,(vrp,) C
2k 'We also notice that the two points ¥, 4, (0), 774, (1) are not é-connectible in

we contradict the property (i) of lemma 4.6. Finally we notice that there is a com-
ponent of range ¥ 5, N Br(v,) whose extreme points are not é-connectible in B (7).

If we reparametrize this piece of ¥, ,, we obtain a path satisfying the properties

n?
(i)-(v). To conclude we have to show that for a sequence (r,) convergent to O,
Vr, — Voo. This follows immediately from the fact that v, € Bz(%) for any r and

from lemma 3.5. 0

§1.5. Proof of Main Theorem.

To begin, we introduce some notation. For k&, N € N we set
P(k,N)={(p1,...,px) €Z* : p; —piy1 >2N2 +3N Vi=1,...,k—1},
and, for (p1,...,pr) € P(k,N) we define the intervals:
I =) Risddpi RikPisil (5 =1,...,k)
M; =]pit1 + N(N +1),p; — N(N +1)[ (i=0,...,k)
with the agreement that py = +co and prr; = —oo.

Then, given any measurable subset A4 of R we denote (u,v)4 = [,[4 9 +u - L(t)v]

and |[u]|4 = ((u,u)4)? for u,v € X.

In addition, given (pi,...,pr) € P(k, N) we introduce the functionals ¢; : X — R

(i=1,...,k) given by p;(u) = %Hul[i - fI; V(t,u).

We notice that any || - ||7; is a seminorm on X, ||u||? = Ele ), ¢ = Zf__.l ©i,

any @; is of class C' on X with @}(u)v = (u,v)r, — fI; V'(t,u) - v for any u,v € X.

Lastly, given (p1,...,px) € P(k,N),v € X, b€ Rand r > 0 we set

Br(vipi,..ype) ={v € X :|lu —v(-—pi)|jr, <r Vi=1,...,k}

Bi(vsp1y. .o ypk) = {u € Be(vip1,y...,p1) :0i(u) <bVi=1,...,k}

and, given € > 0,
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Mc={ueX : Hul]%u, <e Vi=0,...,k}.
We point out that B,(v;p1,...,pr) contains functions with k bumps; in particular,

each of these bumps is localized on an interval I; and is near a p; translated of v.

)

Now we can state the main theorem in the following way.

Theorem 5.1. Assume that (Ly)-(L2), (V1)-(Vs) and (%) hold. Let v, be a critical
point of ¢ given by lemma 4.7. Then for any r > 0 there is N € N such that for
every k € N and (p1,...,px) € P(k,N) we have K N Br(voo; P1,-..,0k) 7 0.

Proof. Suppose the contrary, that is: there exists p € ]0,7[ such that for any N € N
there are k£ € N and (py,...,px) € P(k, N) for which XNB,(veo; P1,---,Pk) = 0. Let
(vn) C K(€) and (r,) C RT, be the sequences given by lemma 4.7. Since v, — v
and 7, — 0 we can choose n € N such that ||v, —veo|| < &, 7n < § and Ba,, (vn) C
B:(7). In particular we have that By, (vn;p1,. .. k) C Bp(VooiP1ye -y PE)-

Now we state a technical result that we will prove in the appendix.

Lemma 5.2. Thereis vy > 0 such that for any r, €]0,7¢[ there exists p = p(rn) >0
and, for any r,7_,ry € R with r, — %drn <ro<r<ry <rp-— %drn, for any
c—,cq,8 > 0 such that [c_—8,c_+26] C]0,e[\@° and [cy —6,c+26] C, [\ &,
there exists €; = €1(r,c—,c4,8) > 0 for which the following holds:
Vv € K(¢), Ve €]0, €| there exists Ny € N, such that, for any k¥ € N and
(p1y-.-,p) € P(k, Ny), there is a locally Lipschitz continuous function W : X — X
with the following properties: '
Wo) IWE)|l, <2Vue X,i=1,...,k,
o' (u)W(u) >0Vue X,
W(u) =0Vu e X\ By (v;p1,---,Pk);
W) @' (u)W(u) > p Vu € B (v;p1,.. ., pe) \ Br_(vip1,- -« P1);
Wa) @i(u)W(u) 2 p Yu € Bi 0 (v;pr,...,px) with r— < Jju —v(- — pj)llz; <75
Ws) Ghu)W(w) > 0 Vo € (i \ 9ift) U (pi= 0\ =), i = 1y
Ws) (u,W(u))ar, 20V €{0,...,k} ifue X\ M.
Moreover if K N Br(v;p1,...,pr) = 0 then there exists py > 0 such that
(Ws) @' (u)W(u) 2 pr Yu € Br_(v;p1,---,Pk)-
Thus, assume also that 7, < 7o and fix any r—,7,74 as in lemma 5.2. Next fix
c- €)e— i min{h,,,pu(r —r-)}, e, cy €]¢,min{c*,é4 u(r —r_)}[ and 6 as above.
Using lemma 4.7 we can choose v € C([0,1], X) such that
(i) 7(0),7(1) € 8B, (va) N 27"
(11) v(0) and (1) are not ¢-connectible in B#(7);
(iii) rangey C By, (va) N @°+;
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(iv) rangey N A, _14 . (va) C @t Thrn s
(v) suppv(s) C [~ R, R] for any s € [0,1], being R > 0 independent on s.
We recall that, by remark 2.3, there is €5 > 0 such that for any measurableset A C R

with |4] > 1 and for any u € X with ||u]|% < €3 we have that [, [V (¢,u)]| < ||u]/4.
A A 4

Fix 0 < € < min{e, €2, 5(¢ — c_), 3d%_}. We can also assume, enlarging R if neces-
sary, that “v"”[ztlzR < € and we fix an integer N3 > max{R, Ny, 2, fn— where L is
defined in the proof of lemma 2.2 and Ny is given by lemma 5.2 for these values of
T,C4,C—, € and for v = v,.

Since K N By, (vn;p1,-..,pk) = 0, by lemma 5.2 there exists a locally Lipschitz
continuous function W : X — X which satisfies the properties (Wy)-(Ws). Let us

consider the flow associated to the following Cauchy problem

2 (o,u) = ~Win(s,u) , 2(0,w) = w.

By (W), |[W(u)|| < 2k for any u € X . Therefore for every u € X this Cauchy prob-
lem admits a unique solution 7(-,u) defined on R and the function 7 is continuous
on R x X. Moreover, again by (W), the function s — ¢(n(s,u)) is nonincreasing.
Then we define a function G : @ = [0,1]¥ — X by setting G(6) = Zle v(6;)(- —
pi) for any 8 = (61,...,0;) € Q. We notice that the boundary of the cube Q is
given by its 2k faces: 6Q = UL, (FP U F}), where F) = {§ € Q : §; = 0} and
F} = {6 € Q : 6; = 1}. Moreover we point out that G(8)|r, = v(8:;)(- — p;) and
suppy(8:)(- — pi) € [-R+ pi, R+ p;] C I; \ (M; U M;_;). Thus, in particular,
¢i(G(0)) = o(v(6;)) for any ¢ € {1,...,k} and for any 8 = (6:,...,0;) € Q.

To prove the theorem, we make the following claim.

Claim. There exists 7 > 0 such that the continuous function G : Q — X given by
G(8) = n(r,G(8)) satisfies the following properties:

(vi) G =G on 0Q;

(vii) G(6) € M, for any 0 € Q;

(viii) there is a path ¢ inside Q joining two opposite faces FJQ and F} such that,
along ¢, the function ¢; o G takes values under c_ + €; namely: 35 € {1,...,k} and
¢ = (&,...,) € C([0,1],Q) such that ¢;(0) = 0, ¢;(1) = 1 and G(£(s)) € i
for any s € [0,1].

Assuming the claim holds, we continue the proof of the theorem, and we introduce
a cut-off function x € C(R,R) piecewise linear, such that 0 < x < 1, x(¢) = 0if
t ¢ I;, x(t) =1ift € I; \ (M; U Mj_,) where j is that index for which property
(viit) of the claim holds. We can always suppose that |x| < min{l,%g} Then we
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define the path g € C([0,1],X) by setting g(s) = xG(£(s)) for s € [0,1]. We observe
that, because of (vi) and (viii) and since supp (y(s)(- — pj)) C I; \ (M;-1 U M;)
for all s € [0,1], we have that g(0) = xG(£(0)) = xG(£(0)) = v(0)(- — p;j) and
similarly g(1) = «4(1)(- — pj). We have also that the path g is contained in the ball
B#(%(- — p;)). Indeed, since supp g(s) C I,

l9(s) = va(- = p)I* = llg(s) = val- = p)IZ; + lloa(- =)y~ (5:1)

On one hand

lon(- = pi)lEng; = lonlliey s 1) < lonllfyzn < e (5.2)

On the other hand
lg(s) —va(-—pi)lIF, < Igleag(llx(@(f’)—vn(-—Pj))HIj +I(1=x)on(- = pi)ll;)* (5.3)

But for any measurable set A C R and for any v € X it holds that

2

el < [ UGl g lulil i+ e L) < 2ulfinr, (54)

because N > max {2, f;} With similar calculations one finds that ||(1 — X)uﬂi <

2/l ~(az;unr;_,y and in particular

1L = x)oa- = 2T, < 2llonl- = 2T aagong_y < 2onllfyzr <26 (5:5)

Moreover

1G(6) = va(- — pj)ll; <74 (5.6)
because G(0) € By, (vn;p1,...,pk) and, by (Wo), Br,(vn;p1,...,pk) is invariant
under the flow 5. Hence, from (5.1)-(5.6), it follows that ||g(s) — va(- — pj)|I* <
2(rs +4/€)? + € < 4r2 since € < 1d? and ry < r, — 3d,,. Therefore g(s) €
Bar, (v (- — pj)) € B#(3(- — pj))-
If we translate by —p; the path g, we obtain a curve joining 7(0) with (1) in B#().
We will get a contradiction with the property (i) of v if we show that along this

path the functional ¢ remains under the level ¢.

To prove this, we notice that

p(a(s)) = #3(0(a)) < @3(CEE)) + 39N nagoas -

. (5.7)
v o VEOE) - / o V68t
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By (viii), ¢;(G(£(s))) < - +e. Moreover, by (5.2) and (vii), '21'“9(5)“21’, A(M; UM _1) <
IGEENNR, + IGEEN,-, < 26

Finally, being € < e, f_r N(M;UM; _4) V(t, G(E(S)))I < |IG(€(3))”I N(M; UM 1) = < 2
and fIJ-m(MjuJ\-I,»_l) |V(t,g(s))| < 2||G(£(s))”I n(yung;_y) < 4e. Putting together all
these estimates in (5.7), and considering that € < (¢ — c_), we finally get that
©(g(s)) < c— +9e < ¢, which contradicts (ii).

To complete the proof of theorem, it remains to check the claim. As we will see,
the properties (vi) and (vii) are true for any 7 > 0, whereas (viii) holds only for a

suitable choice of 7.

Property (vi)

If 6 € 0Q, then 8; € {0,1} for some index j € {1,...,k}. Assume that §; = 0.
Keeping in mind that G(0)|r; = v(0)(- — pj)|5; we get that ||G(8) — vn(- —pj)]]% =
17(0) — vn||* = |Jva(- — pj)“ﬂz%\Ij > 7 — € > 7} since € < 3d2 . From this we infer
that G(0) € X \ By, (va;p1,...,pk) and so, by (Wo), that W(G(6)) = 0 and that
n(7,G(6)) = G(0) for any 7 > 0. With the same argument we cover also the case
6; =1 and (v1) is proved.

Property (vii)
Since supp (G()) C UL I; \ (M; U M;_;) we have that ||G(8)|lar; = 0 for all
1=0,...,k and so G(#) € M.. Thus the property (vii) is proved if we show that M,
is positively invariant under n, namely n(s, M.) C M, for all s > 0. To prove this,
we argue by contradiction. Suppose that there exist u € M., an interval |s;,ss[
and an index j € {0,...,k} for which [[7(s1,u)[3;, = € and In(s,u)ll3;, > € for
w7 ¢ oo Then Flalo = ~20¥alssun(srw) g Sice, by O1)
W(n(s,u)),n(s

(1, )3y =

)) 2 0 for any s €]s1,52], we obtain that |Ip(s2,u)[|3;, <

7
€, a COIltI‘&.dlCthIl

Property (viii)

We divide the proof in some lemmas.
Lemma 5.3. The functional ¢ sends bounded sets into bounded sets.

Proof. Fixed a positive constant C, let us consider any u € X with |Ju|| < C. First,
we notice that |u(t)] < Cy|lu|| < Cy for every t € R. Secondly, by (V2), there is
6 > 0 such that |V (t,z)| < Lg|z|* for each ¢ € R and for |z| < §. Now, let A = {t €

: u(t)] < 8} and B =R\ A. Then |p(u)] < 3C* + [, u- L(t) u+ [5|V(tu)] <
30 + maxser [V(4,u(t))] [ b < 2C2 + maxyer, o1<c, [V(£,2)|C2 = Cs and for
the time periodicity of V, Cj; is a finite constant independent of w. O
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Lemma 5.4. For any s > 0 and for any i € {1,...,k} it holds that n(s,¢:") C @i,
1(s,:7) C @i

Proof. If, by contradiction, 7(3,u) ¢ ¢;" for some u € ¢;* and for some 3 > 0, then
there is an interval [s;,s2] C [0,3] such that p;(n(s1,u)) = ¢y, wi(n(s2,u)) > ¢t |
and 7(s,u) € gof++6 \ p;* for any s €]s1,s2]. Then, by (W) and (Ws), we get that
ei(n(s2,u)) —cq = — :12 ©h(n(s,u))W(n(s,u))ds < 0, a contradiction. This proves
that n(s,0;*) C ¢;*. Analogously we can prove also that 7(s, ;™) C ¢; . 0

Lemma 5.5. There is 7 > 0 such that for any,u € BrX(vn;p1,- .. ,pk) there exists
j €{1,...,k} for which n(7,u) € gag‘.
Proof. Set o = 2diam ¢(Br, (vn;p1,---,Pk)). Since By, (vn;p1,-..,pk) is a bounded

set, by lemma 5.4, 0 < +00. Define v = min{y, ux} and put 7 = £. We notice that
for any u € Br¥ (vn;p1,...,pk) the curve s — n(s,u) remains in ﬂf___l @;T but goes
out of B,(vn;p1,---,pk) at some 5 €]0,7[. Otherwise, if (s,u) € B(vn;p1,---,Pk)

for all s € [0, 7], then, by (W) and (Ws),

o)~ olnlr,) = [ "ol (s, w))W(n(s,w))ds > vr = o

in contrast with the definition of o.

Then, taken u € Brf(vn;p1,--.,Pk), there are j € {1,...,k} and an interval
[51,52] €10, 7[ such that n(s,) — o — i), = 7=, [1(s2,w) = o(- = p3)lz, =7
and 7_ < ||n(s,u) —v(- — p;)||; < r for any s €]s1,s2[. Then by (W>) and since by

lemma 5.4 n(s,u) € go;"' for any s > 0, we obtain

pilnoz,u)) < pilntor, ) — [ el ) Wlals,u))ds < ex = plan = o).

But since |[W(n(s,u))||r; <2 for any s > 0 we get also

P < lnoa,) = nlon il < [ Vsl < 2o = er)

from which ¢;(n(sz2,u)) < ¢y — p(r —7_) < c—. By lemma 5.4 we then have that
n(s,u) € go;‘ for any s > so and in particular that n(r,u) € tp;". ]

Lemma 5.6. For any € Q thereisi € {1,...,k} such that ¢;(G(0)) < c—.

Proof. Assume first that G(8) € B,_(vn;p1,...,Pr). Then, since by construction
G(0) € ﬂle @;*, we obtain the result by lemma 5.5.
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In the other case there exists 1 € {1,...,k} such that

Tn — —;—drn <7 <[|G(6) - ‘v,,(:.ap,-)”L_ =
= [17(6:)(- = pi) = vn(- = i)z < [[7(6:) — wnll

so using the properties (7i:) and (iv) of 7 we get

Pi(G(6)) = p3(1(8:)( ~ p3)) = $(1(6:)) ST~ Lo, <.

By lemma 5.3 we then have that n(s, G(0)) € ¢;~ for any s > 0 and the lemma
follows. O

Now we can conclude the proof of property (viii). We proceed by contradiction
assuming the contrary. That is, for every 1 € {1,...,k} the set D; = (p;0G) ™ ([c_ +
€,+oco[ ) separates F? from F} in Q Let C; be the component of @ \ D; containing
F} andlet o; : @ — R be the function given by

)

(@)= [tO:D:) HoeQ\C
T\ —dist (6, D;) if 6 € Ci.

Then o; is a continuous function on @ such that o;|po > 0, oy Fr <0 and oi(6) =0
if and only if 6 € D;. Using a theorem by Carlo Miranda (see [18]) we get that there
exists 6 € () such that ¢;(f) = 0 for all 7 € {1,...,k} which means that N%_, D; # 0.

But this is in contrast with lemma 5.6. U]

§1.6. Appendix. The construction of a pseudogradient field of .

We will prove here lemma 5.2. First, we investigate some properties of the
functionals ¢ and ¢; on the sets B,.(v;p1,...,px) for an arbitrary v € X and r > 0

sufficiently small.

We note that for any given v € X, r > 0, there exists N = N(v,r) € N, such
that if k € N, N > N and (p1,...,pPk) € P(k,N) then Vu € B.(v;pi1,...,px) and
Vi€ {1,...,k} there exists j € {1,...,N} such that

2 47‘2
”u”leS[t—p,-|S(j+1)N < N (6.1)

In other words if u € Br(v;p1,...,px) we have that, for any 7 € {1,...,k}, the
interval I; contains two intervals of length N, symmetric with respect to p;, over

which the norm of u is small as we want if N is sufficiently large. We note also
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that, by construction, M; never intersects any of these intervals and it is contained
between the one which is on the right of piy1 and the one which is on the left of
p1, for any | € {0,...,k}. To fix these intervals we call j,,; the smallest index in
{1,..., N} which verifies (6.1). |

For any € € (0,r) there exists Ne € N, N¢ 2 max{N(v,7), 2, i 2.1 such that

7'
ma'x{“vnlzt|>N5a w1 < 5-

Soif k € N, N > N. and (p1,...,pr) € P(k,N), then Vu € B.(v;p1,...,pPk) and
Vie{l,...,k} we get that
[l v te—pil<Giusrn < 5 (62)
Now, for any u € B.(v;p1,...,pr) We define the following subsets of R:
Au,k:] — 00, pk — (Jur + N[,
]pz+1+(.7u z+1+1)N,Pi"(ju,i+1)N[ i=1,...,k=1,
A =]P1 + (Jua + 1)N, +ool,
Ay, =UF Ay,
B, ,_{teR / d(t, Ay) <N} 1=0,...,k,
B, = UzzoBu,la
Fui=LN(Bu\A) i=1,...,k.
By (6.2), we get that Vu € Br(v;p1,...,Pk), Vi € {1,...,k},

b;

(6.3)

NN

lul%,, <

and that, V1€ {0,...,k},
HunzBu'(\AuJ -—<— €. (6“4)

We remark that, by construction, we always have that M, C Ay, therefore | Ayl >
|M;| > N, V1l e {0,...,k}, Vu € Br(v;p1,--.,pk). Moreover |Fy;| = 2N and
| Bu \ Ayl =2N.

For I € {0,...,k}, we define the cut—off functions:

1 te Ay

bt ={o 1550,

with 8, continuous on R and linear on the connected parts of By \ Au. Then, for
ie{l,...,k}, we set:

o 0 t¢I;
Buit) = {1 —Buic1—Pu; t€L
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We note that if 8 is any one of the above defined functions then |3(t)| < #, for
a.e. t € R, therefore, as in section 5, if A is measurable C R then [|fu|} < 2|u|%,
Vu € X. Moreover if u € Br(v;p1,...,px) and [ € {0,...,k}, then by (6.4), we get

(w, Buu) = [ul?, , + /B B B Dt w) it 2
u,l u,l

1 1
> lully - —— 12+ —L()u-u)dt > 6.5
2l — g5 [, (0 O u)de > (6.5)

1 1
2 Nlully,, = B, pan, > Il — e

4 4

Now we define, for [ € {0,...,k}, the functions

1 ul|3, >
) {_1_ fulih,, 2 ¢

) otherwise

and we set finally

k
Wu = Zfl(u)lgu,lu .

=0

As in section 5 we can fix an g € (0, min{),+/2 — 1}) such that if u,w € X and A
is an open subset of R with |4]| > 1, then '

1 1
fulla <ro = [ Vitu)d < hul and [ Vi uhwdi < Shullalola. (66
A A

Using (6.5), (6.6), we can prove now that:
Lemma 6.1. Let r € (0,3ro) and 0 < € < 72. Then Yu € B,(v;p1,...,ps) we have
(W)W > § T, flw)(lull,, — ),
W > 3 50 file)(lulfna,, — )
Proof. We have that N > 2, IAu 1] > N and |By,; \ 44,1| > N. Moreover Hu“ Ay <
dr < 1o (indeed ||lulla, ,nr < 2r Vi € {1,...,k}) and |ulp, \4,, < €7 < 7.
Therefore, by (6.5), and (6.6), we get

€

k
W 32 Al - § - [ v [ Vi) >

k

> D fulu)(

=0

U)—H uli,, — 6——6)..2Zfo) lull,, —€)-

The computation is perfectly analogous for ;. ]
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We remark that, by lemma 6.1, we always have

[ R

k
PW 2 2 A, ~ 925 Y Ak, —92 -

1=0 {1/l , <<}

and analogously

Plu)Wu 2 5 Vie{l,...,k}

for all w € Br(v;p1,.-.,Pk) '
Moreover if ||u|/1;n4,, is greater then 2¢7 , for a certain couple of index (i,1), then

W, indicates an increasing direction both for ¢ and ;.
Now we can pass to restate and prove lemma 5.2.

Let b < c* any critical level of ¢, and given r € (0,370) \ D¢, let 71,79,73 be
such that » —3d, < 71 <71y <73 <7+ 3d,. Let also b_,by and 6 be such that
Jb_ — 6,b_ +26[C]0,5[\®" and Jby — &by + 26[C b, c*[\ @,
Proposition 6.2. There exists p = p(r) > 0 and €1 = €1(r,by,b_,8) > 0 such that:
Vv € K(b), Ve €]0, e1] there exists N € N, such that, for any k € N and
(p1,-..,p1) € P(k, N), there exists a locally Lipschitz continuous function W :
- X — X which verifies
(Wo) |W(u)|lr;, £2Vue X, j=1,...,k

o' (u)W(u)>0Vue X,

W(u)=0Vu€ E\ Bry(v;p1,---,P8),
(W1) @' ()W (u) 2 p Vu € B (viprs o pk) \ Bro (93 p1s -5 R),
(W2) @)W (w) > pifry < flu—o(-—pi)llr; <72, w € B (vipn,-. o p0),
(Ws) @i(u)W(u) >0 Vue (pi"+F8\ pt+) U (0’ +0 \ i),
(Ws) (u,W(uw))ay; 20Vj€{0,...,k} ifu € X\ Mue.
Moreover if K N By, (v;p1,...,pr) = 0 then there exists uj > 0 such that
(Ws) @' (u)W(u) > pr Vu € By, (vip1,---,Pk)-
Proof. Let 7y =71 — %(7'1 —r+3d;), 73 =73 + %(7‘ +3d, — r3) and let u, be given
by corollary 3.8. ‘

Let also v = inf{|¢!(u)]| / © € (p*++29 \ gP+=9) U (b= +26 \ b==F)}; by remark

3.9 we have that v > 0.

(ri—r+3d,) (r+3d.—713) pr v 62
12 ) 12 ' 878> 6"

Let’s fix v € K(b), e € (0, €1), k € N, N > N, and (p1,...,pr) € P(k,N).

We construct the vector field W, on B, (v;pi,...,pk), using lemma 6.1 with r = r3.

(S

1
Let ¢f = min{

We will now define another vector field analyzing the different cases.
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b+t
case 1) (S BT: : (v;ph"‘ ,Pk)\Brl('U;Pl,---,Pk) .

Weset Zy(u) = {i € {1,...,k} / ||lu—v(- — p;)||; > 71}. Obviously Z; (u) # 0.
Let i € Zy(u) and &; = 1 min{r; — 71, 73 — r3}.
We consider the two possible subcases:

lullina, 2 & o fuflnna, <é.
In the first one, using lemma 6.1 and the fact that €7 < %, we get

1 €
CWe 2 Sl + B, 20— Y AW
{711l | <el
1 € ¢2 2 (6.7)
2 5(lfna, =290 = >0 Alw)g > 227,
{7 11ully, | <el
and analogously
: & 3

by+32 . .
For all w € B ¥ (vip1,. ., 54) \ B (0391, - 8) I 5, > & and i € T (w)
we put W, ; = 0.

In the second subcase we claim that Eu,iu € Ar—sd, r+34,(K(5)) N°.
First of all, since ||v(- — pi)||jt—p;|>v < €7, using (6.3), we get

lu=v(- = pa)lIz, = llw —v(- = pi)IF\ a, + e = 0(- = P)[ T, <
1
Sl =v(- = p)llzap, + lull, ; + llullfni, + 23 |ullnna, + 3¢ <
<l —v(-=pi)ll7\5, + & + 2t €, + de.

Therefore, since [lu — (- — p;)||3, > r?, we have
1
I =v(- = p)lZ\B, 271 — (& + 2676 + 4e)
from which, since ¢2 + 261% €1+ 4e; <r? —(r —3d,)?, we obtain

1Buiu = o(- = p)II* = llu = v(- = p)lFm, + [Buiv = v(- = i)l + 03z, >
> 72— (€2 +2e7£; + 4e) > (r — 3d,)%.

We can conclude —ﬁ-uﬁ-u € X\ Br—3a, (v(- — p:))-
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—1; —~
On the other hand we have also &; + 2¢} + r3 < 73, so

18w = v(- = p)|I> < ||Buu —v(- = pi)||7, + € <
< (1Buse — ullz + llu = (- = pi)llz)* + e <
< (11 = Bui)ullr +Ta)2 te<
+ (1 = BuJullr.,: +73)° +e<
< (& + €t +73) +e< (& + 2 +13)? < (r+3d, )2

therefore Bu,iu, € Ar—s4, r+3d. (K(D)).
To finish the proof of our claim we note that, since l[u[l; nB, < 370, by (6.6), we

have that % Hu”I AB, fI;nB V(t,u)dt > 0 and fj_. V(t,B,u qu)dt < i“ﬁu,i““%—‘u',ﬂ
From this we derive that go(ﬁ u) = ¢i(8 w,i) < i ( )+ Hﬂu,,ulléuv‘. < pi(u)+e<
by + 28 < ¢* as we claimed.

So, there exists Z, ; € X, || Z4,i]| £ 1, such that

g —_ . /‘I'T
0i(Bu,it) B = ¢'(Bu,iw)Zui 2 5 -
Using (6.3) and (6.6) we get

01 (B ) Zu,i — @5(W)By i Zuil = |(By ity Zui)Fu; — (s ByiZui)Fuit
— [ VB ) = V0B T ] =

fu,i

= I/ '?u,i(uz.u,i - ’L'LZu,i) dt — L '(V’(t,au,iu) _ Vl(t’u)‘ﬂ‘u’i)zu,i dt‘ S
22 .

< —HUIIR, +—~—-HUHf <er < LT T

ux——-

and the same argument gives also

! (Bui2) Zu,i = ¢/ (W)By i Zusil <

From the two above inequality we finally get that
min{(p’(u) u zZ'U: iy (P (u)ﬁu zZ'lL ‘L} fall 4

byt 3 : ;
For all u € BT‘:-}— : (’U;pl,... ,Pk) \ BT1(p17"' ,Pk) and @ € 1-1(’(1,), if ”u”IiﬂAu < 51
we put W, ; = %B’u,izu,i, observing that

min{g}(u)(Wai + Wa), @' (@)Wai + W)k 2 2 -2 200 (69)
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We now set 2u = min{ 4z, } and

bp+38
Va1 = {Wu + Ziefl(u) Wai w€Brf ?(v;p1y---y0k) \ Br, (v;P1,- .. ,Dk)
0

otherwise
obtaining by (6.7), (6.8), (6.9), that Vu € B (v;p1, ..., ) \ Bry (vip1y .-+, 1)
o' (w)Vu1 > 2p
0i(u)Vu1 > 20 Vi€ Li(u) (6.10)
(s Vo) = (u, Walag > ﬁi”u”ﬁﬁ 1=0,....k.
We note that for any i € {1,...,k} we have |[Vu1lln; < [[Wailln + |Walln, <
—\}—;(1 +79) <1 which implies that V, 1 € B1(0;p1,...,pk)-
case 2) u€ Bry(v3pa,-..,pr) N (Uhy (i)t 70).
We put T (u) = {i € {1,...,k} /u € (pi)t***} and fix i € 5 (u).

Fixing also £2 = g it can be either

”““I;nAu >& or “u“I;nAu <&

In the first case, considering that ¢; < 52

o (u)Wy 2 %fg —2e2> 155 and pi(w)Wy 2> 552 —2e2 lfz
- For all w € B, (v;p1,...,p) N (UE 1((,a,)bJ“—F ) and ¢ € Tp(u), if ||u||r,n4, = & we
put Wu,i = 0.

, using lemma 6.1, we get as above that

In the second subcase we claim that Bu’iu € (gai)zifis .

For this we first observe that
lullf, = 18, ullZ = lull3q., + |IUI|?fu, + Hullfr,-\B,, — 1By, %, — )75, <

<lullhos, +5 <6+

and that, using (6.6),

/V(t,u)—V(t,—ﬂ_u’iu)dt:/I N V(t,u)dt+/ V(t,u) — V(t,B, u)dt <

:F‘Lll

i

(& +e).

N =

” ”Imt +5 ||u”f <

Considering that ¢; < 5156 , we finally derive

i) = oiB] = 5l = B ul) - [ Vi) = Vit B ) el <

I;

<€ +e<é,
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which implies ﬁu’iu € (i )Ziigé
So there exists Zy,; € X, ||Z4,i|| £ 1, such that 991(31&,1'”)2“”' = wg(ﬁ“’iu)zu’i =

As in the case 1) we have |¢'(8, ;u)Zu,i — Lp'(u)ﬁu i < €7 < ¥ and analogously
also that |p}(8, ;u)Zu,: — ¢} H(w)By iZu,il < €7 < %, therefore

w’(u)ﬂu,izu,z > I and w; (u)ﬁu ;Zu i > %
For all u € Bry(vip1,..-,Pk) N (Ule( b++ )and i € Iz(u) if ||ullrna, < &2, we
PUt Wu,i = %Bu,izu’i.

2
Let now vt = min{%, %2} and

x bo+6
Vap = {W” + Vierru Wi wEUL(9i)] " NBry(vip1,. .-, pk)
0

b
otherwise

obtaining, as in the case 1), that Vu € By, (v;p1,-..,pk) N (Ui_y (9 )b++6)

Sﬂl(u)vu,z Z V+
Pi(u)Vuz 2 vt Vi€ L) (u) ‘ (6.11)

1
(w, Vu,2)ns, = (u, Wu)ag, 2 P H'u’”J\I, 1 €{0,...,k}.

As in the case 1) it is easy to prove that Vy 2 € B1(0;p1,---,Pk).
case 3) u € Bry(vip,---,pk) N (Uka (9037 7).
As in case 2) we put &= ¢, v~ = min{%, 3}, and I_(u) {i e{l,...,k} Jue
(0:)2-7%}, getting that Vu € By (031, - - pr) N (Uksy (9i);~ ) there exists Vu3 €
B1(0;p1,...,px) such that
@' (w)Vuz 2 v~
pi(u)Vus 2v™ Vie Iy (u) (6.12)
1
(u, Vus)an = (u, Wu)ar, 2 k+1l|ull}°‘u, 1 €40,...,k}.
We put Vy 3 =01if u ¢ Bry(v;p1,...,0k) N (UE_ (vi), - +6).
case 4) u € B, (v;p1,...,Pk)-

In this case we distinguish between the two subcases:

> 2 .
OrgngHUHM de or  max flullhy, <4e

In the first case, if we have ||u|[a; = maxo<i<k Hu]l%h > 4e¢, we get using lemma 6.1
that

1 1
P W > Sl — ) - e 2 5l -9 - 5e>e

Mll—‘
L\’JI'—‘
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and we set V, 4 = W,.
In the second case, by remark 3.6, we obtain that if K N B, (v;p1,...,px) = 0 then

there exists V,, € X, |V4]| <1 and there exists p} > 0, independent of u, such that
o' (u)Vy > %"— We set Vo 4 = V.

Let also Vy 4 = 0if u ¢ B, (v;p1,...,pk)

We can conclude that if put 2u; = min{e, ﬁz—lﬁl} we have Vu € B, (v;p1,-..,pr) that
@' (u)Vue > 2pp and if maxj—p & ”u”%u, > 4e then

(wy, Vuadar, = (u, Wy)ar, > lu”}?\[l 1 €{0,...,k}. (6.13)

-
+1
For v € X we put V, = Z;l Vu,i noting that V, € Ba(0;p1,...,px). Then the
proposition follows with a classical pseudogradient construction, by using (6.10)-

(6.13), a suitable partition of unity and suitable cutoff functions. L]
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CHAPTER Two

Multibump solutions for Duffing-like systems. !

§2.1. Introduction.

In this chapter we deal with second order Hamiltonian systems in R
i=-U'(t,q) (HS)

where U'(t,q) denotes the gradient with respect to ¢ of a smooth potential U :
R x R¥ — R having a strict local maximum at the origin.
Precisely we assume:

(U1) U € CYR x RY,R) with U'(t,-) locally Lipschitz continuous uniformly with
respect to t € R;

(U2) U(t,0) = 0 and U'(t,q) = L(t)g + o(lg]) as ¢ — 0 uniformly with respect to
t € R where L(t) is a symmetric matrix such that ¢|gf* < ¢- L(t)g < c2lq|? for
any (¢,q) € R x RY with ¢;, ¢z positive constants.

The condition (U2) implies that in the phase space the origin is a hyperbolic
rest point for the system (HS). We look for homoclinic orbits to (HS) as critical

points of the Lagrangian functional
plw) = [ Gl - V() d

defined on X = H(R,R") and of class C?, by (U1)-(U2) as proved in chapter I

Here, as pointed out with the model case described in the introduction of this
thesis, we consider asymptotically periodic potentials. By this we mean that there
is a function U4 (t,q) = —% q-Li(t)q+ Vi(t,q) satisfying (U1), (U2) and

(U3) Ut(t,q) = U+(t + Ty, q) for some T > 0;
(U4) (i) there is (t4,g+) € R x RY such that Uy (t+,q+) > 0;
(ii) there are two constants 4 > 2 and a4 < —ﬂ—z't — 1 such that:
BiVi(t,q) — Vi(t,q) - g < crq- Ly(t)g for all (t,q) € R X RY;
(U5) U'(t,q) — U’ (t,q) — 0 as ¢ — +oo uniformly on the compact sets of R™.
As we have seen in §0.2 for the model equation (1.1) with € = 0 and a(?)

increasing, these assumptions are not sufficient in order that (HS) admits homoclinic

1 This chapter is extracted from a joint work with Simonetta Abenda and Paolo Cal-

diroli: Multibump solutions for Duffing-like systems, Preprint 5.1.5.5.A., 142/94/M, 1994.
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solutions. To avoid this situation, we make an assumption on the cardinality of the
critical set of the functional

psw) = [ GIP -~ Ustw)at.

As discussed in the preceding chapter, the functional ¢ satisfies the geometri-
cal properties of the mountain pass lemma. If we denote with ¢y the mountain pass

level of o and K ={u€ X : u#0, ¢/, (u) = 0}, we assume that
(*) thereexists ¢§ > cy such that theset K N{u € X : @+ (u) < ¢} }is countable.

Plainly, condition (x) excludes the class of asymptotically autonomous systems,
because of the translational invariance under R of the functional Ot

On the other hand, (*) holds when the system at infinity exhibits countable
intersection between the stable and unstable manifolds relative to the origin.

We can now state a first result.

Theorem 1.1. Assume that U and U, satisfy (U1)-(U5) and () holds. Then (HS)
admits infinitely many homoclinic solutions.

Precisely there is vy € Ky with the following property: for any r > 0 there are
M,p € Nsuch that for every k € N and (p1,...,px) € Z* withp, > p and pji1—pj >
M, forj =1,...,k — 1, there exists a homoclinic solution v of (HS) which verifies:

() —ve(t —p;T4)l <7 and [9(2) —o4(t — piTy)| <7

for any t € [1(pj—1 + p;j) T4, 2(pj + pj+1)T4] and j = 1,...,k, where py = —co and
Pk+41 = +00.

We notice that this theorem can be seen as a version of the shadowing lemma
(see [Ang], [KS]).

Fixing k = 1, for any > 0 the theorem assures the existence of an integer
p = p(r) € N and a sequence v; of homoclinic solutions of (HS) each of them
belongs to a C'-neighborhood of v (- — (p + )T ) of radius . In general, unlike
the periodic case, these solutions are geometrically distinct.

For a general k € N the theorem provides a homoclinic orbit of (HS) having
k bumps, whose positions are defined by the sequence py, ... , Pk More precisely,
for any j = 1,...,k there is an interval P; centered on p;T; where the k-bump
solution v of (HS) is not farther from v (- — p; Ty ) than . The value §; = pj41 — p;
represents the distance between the corresponding bumps. Fixed 7, we can find a

solution of this kind for any choice of £ € N and of the sequence py, ... , Pr provided
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that p; is sufficiently large, depending on r, and that the distances §; are greater
than a certain value M which also depends only on 7.

As explained in tre introduction, since the number M does not depend on k,
using the Ascoli Arzela Theorem we get:
Theorem 1.2. Under the same assumptions of theorem 1.1, it holds that for any
r > 0 there are M,p € N such that for every sequence (pj)jen C N satisfying p1 > p
and pj+1 —p; > M (j € N), and for every sequence o = (oj)jen € {0, 1}N there is
a solution v, to (HS) such that

[oo(t) = o704 (t — i Te)| <7 and  fbo(t) — 055 (t = piTH)| <7

for any t € [3(pj—1 + p; )T+, 2(pj + pj+1)T+] and j € N, where py = —oo and
vy € K, is the same of theorem 1.1. In addition any v, also satisfies v,(t) — 0 and

b, (t) — 0 ast — —oo and it is actually a homoclinic orbit if o; = 0 definitively.

The correspondence o — v, permits to define an approximate Bernoulli shift
for the system (HS) (see [S2]). The presence of this structure implies sensitive de-
pendence on initial data.

For a system (HS) which is doubly asymptotic as ¢ — oo to two, possibly

different, periodic systems

§=-UL(t9) (HS)+

we prove that there are also multibump solutions of (HS) of mixed type, as said in

the following theorem.

Theorem 1.3. Assume that U, U, and U_ satisfy (U1)-(U5) and that (x) holds both
for (HS); and (HS)-. Then there are vy and v homoclinic solutions respectively
of (HS)4+ and (HS)- having the following property: for any r > 0 there are M,p € N
such that for every sequence (p;)jez C Z satisfying py 2 p, p—1 < —P; Pj+1 — Pj >
M (5 € Z) and for every sequence ¢ = (0j)jez € {0,1}% there is a solution v, to
(HS) such that

0o(8) — st = psTi)| <7 and [3a(t) — ool TN <7
for any t € [L(pj—1 + pj)T4» 3 (ps +pj41)T4}; 5 =1,2... and
lve(t) — oju_(t —p;T-)| <7 and [0s(t) — oiv-(t —p;T-)| <r

for any t € [3(pj—1 + p;)T—,5(pj + pj+1)T-1, 5 = —1,—2...
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In addition, if o = 0 for all j > jo (respectively j < jo) then the solution v,

also satisfies v, (t) — 0 and v,(t) — 0 as t — +oo (respectively t — —00).

Clearly, in the previous statement, when we say that U, U, and U_ satisfy
(U5) we mean that U'(t,q) — U, (¢,q) — 0 as t — +oo and U’(t,q) — U'(t,q) — 0

as t — —oo uniformly on the compact sets of R".
Notation.

Through this chapter we denote:

X = HY(R,R™).

(u,v)4 = (&9 +u- L(t)v) dt where u,v € X and A is a measurable subset of R.
lulla = (u,u)i{z for w € X and A as before.

In particular ||u|| = ||u||r is 2 norm on X equivalent to the standard one.

p(u) = [p(31%* = U(t,u))dt for u € X.
fr<B={ueX:pu<bh{p>a)={ueX :pu)>a {a<p<b)=
{p < b} N {p > a} where a,b € R.

K={ueX\{0}: ¢'(u) =0}, K = KN {p <b}, K(b) = KN {p =b}.
B.(S)={uv e X : dist (u,S) < r} where S C X, § # 0 and = > 0.

Ary rn(8) = Upes{v € X : 1 <|lu —v|| <72} where 0 < 7y < 7.

The same notation for ¢y, ¢_, K., K_, etc.

THu(t) =u(t —nTy), Tou(t) =u(t —nT ) forue X,t € R,n € Z.

82. A local compactness result.

In this section we discuss some basic general facts which depend only on the hy-
perbolicity assumption and therefore are true for both the periodic and the asymp-
totically periodic problem. During this section we will always assume (U1)-(U2),
without any hypothesis on the time dependence of the potential.

First of all we note that thanks to (U2) we have
o(v) = 3 ul® + o([[u]]®) and ¢'(u) = (u,") +o(||ul) as u— 0. (2.1)

Secondly we give some properties of the Palais Smale sequences of ¢. In gen-
eral (U1)-(U2) are not sufficient to guarantee the boundedness of these sequences.
Anyhow we can state the following results, concerning the bounded Palais Smale

sequences.
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Lemma 2.2. If (u,) C X is a Palais Smale sequence at the level b (namely o(un) —
b and ||¢'(un)|| — 0) weakly convergent to someu € X, then ¢'(v) = 0 and (un —u)
is a Palais Smale sequence at the level b — go(u) weakly convergent to 0.

Proof. We write U(t,q) = —1q- L(t)g + V(t,q) for any (t,q) e Rx RM.

If u,, — u weakly in X and so strongly in L (R,RY), then, for any w € »C’;’"(R,R”)

we have:

TR —

o'(v)w = (u,w) — / V'(t,u) - wdt = lim ({vn,w) — / V'(t,un) - wdt)
supp w o0 supp w
= lim ¢’ (un)w.

Therefore since ¢'(u,) — 0, ¢'(u) = 0 follows.
To prove that ||¢'(u, —u)|| = 0, fix € > 0 and take any w € X. It holds that for
any T > 0: '

!t — o (] = | [ (V0 =) = V) + V00 -]

< | (V,(t>un - u) - V’(ta“n) + V,(tau)) tw dtl
[t|<T

V'i(t;un —u — V' (t,un)| |w|d V'(t,u)| |w|dt
+/M>T| (tyn — ) — V'(tyun)l | ‘”fmﬂ‘ (b, )] o]
<) ([ pPaod+ [ Cnhllola

[t]<T It|>T

(R /IM hol? dt)¥

[>T

where:

50(T) = (/WT V't un — ) = V(& un) + V(&) dt)F

{ V'(t,q) — V'(t,9)|
lg — gl

and R > 0 is such that |un(t) —u(t)] < R and |un(t)] < R forany t € R and n € N.

We note that R < +oo since (uy) is bounded in X and so in L°°(R,R"). Then, by

(U1), Cr < +o0 too. Hence we get:

: teR, lg,|@dl <R, ¢g#4}

Cgr = sup

(= w)w — ' (un )] < 8a(T) ( [ bt dt)%

+CR</1t|>T |u|2dt)% (/ﬁ;hulzdt)% + (/WTlV (t,u) |2dt> (/ |w|? dt)
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which implies:

I (un =) = @'Cwn)l < 60(T) + CR</M>T Iulzdtf + (/m>T V' (t,u)? dtf

for any T' > 0. We now choose T > 0 such that

) )
CR</ |u|2dt> + (/ V' (2, 0)2 dt) <e
t|>T 1t|>T

For the dominated convergence theorem, 6,(T) — 0 as n — co.

Therefore lim sup ||¢'(ur, — u)|| < € and, for the arbitrariness of € > 0, we get that
lim [l (un — w)| = 0.

Finally we prove that if b = lim (u,) then ¢(u, —u) — b — ¢(u). Indeed, arguing

as before, we have that:
[p(un —u) = p(un)+o(u)] < | |lu]® = (wn,u)|
+ / V(t,un —u) — V(E,un) + V(¢,u)| dt
LT

+ / V(t,un —u) — V(¢,un)| dt + / [V (t,u)| dt.
[t[>T [t|>T
Taking R > 0 such that |u,(t) — ()] < R for any ¢ € R and n € N and setting

o su IV,(taQ)l
“a= p{ lg

from the mean value theorem we get that for any ¢ € R:
V{2, un(t) —u(t)) = V& un(®))] = V' (¢, ua(t) — bu(?)) - u(?)]
< Crlun(t) — 6u()] [u(t)] < Crlua(t)|[u(t)] + Crlu(t)?
where 8 € [0,1] and so
lp(un =) = p(un)+o(u)l < ||ul® — (un,u)|
+ / V(t,un —u) = V(t,un) + V(¢,u)| dt
[t|<T

+ C’"R/ |wn | |u| dt + C’};/ |u|2dt + / [V (¢,u)|dt.
t|>T [t|>T It|>T

Taking now € > 0 we can find T > 0 independent from n € N such that

0;2/ ]un|}u]dt+0}z/ |u[2dt+/ IV (t,u)| dt < e.
jt>7 e > T

Since ft|<T|V (tyun —u) = V(t,un) + V(t,u)|dt — 0 as n — oo and up, — u
weakly, we infer that imsup [p(usn — 1) — (un) + ¢(u)] < € which implies that
lim p(ur, —u) = b — ¢(u). O

=teR,lq15R,q¢o}
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As next step we study the Palais Smale sequences which converge to 0 weakly
in X.

Lemma 2.3. If u, — 0 weakly in X and ¢'(un) — 0 then un, — 0 strongly in
H} _(R,RY) and the following alternative holds: either

(i) up — 0 stronglyin X, or (i) 3 [tn,| — o0 s.t. i%f |un,c(tnk)l.> 0.

Proof. Let (u,) C X be a sequence such that up — 0 weakly in X and ¢'(us) — 0.
First we suppose that u, — 0 in L®(R,RY). By (U2) there is § > 0 such that
|V'(t,q) - g| < %c1lg|? for any ¢ € R and |g| < §. Then we can find 7 € N such that
|un(t)| < 6 for any ¢ € R and n > 7. Hence lunll? = @' (un)un +f1R V'(t,un)-undt <
1/ ()l [l Jo S unf?dt and thus [fua* < O [l¢/(ua) | where C =2 sup unll

Therefore ||u,|| — 0 and the case (i) holds.

Let us now suppose that u, /4 0in L°°(R,R"). Then there are sequences (nk) CN
and (tn,) C R such that ng — 00, |tn,| — 00, un, — 0in L (R,R") as k — o0
and inf [tn, (tn, )] > 0. So we are in the case (i) and we only have to prove that
u, — 0 strongly in HL _(R,R"), that is |lun||4j<7 — 0 for any T' > 0. So, we fix a
piecewise linear cut—off function x : R — [0,1] such that x(t) =1 for |t| < T and
x(t) = 0 for |t| > T +1. We point out that the mapping u — xu is a bounded linear

operator on X and

T<ll<T41
/ 410, (1) 2dt
TLHLT+1

< Gl (wa)ll + / V!(tyun) - xundt+Co sup |ua(t).
tI<T+1 1I<T+1

< @' (un) xun + f V’(t;un) - x, dt + Co
R

This shows that ||us|||y<7 — 0. , O

Therefore if (u,) C X is a Palais Smale sequence which converges weakly but
not strongly to some u € X, then there exists a positive number 7 such that for any
T > 0 we have lim sup ||un||jgj>7 > 7. As we will see in the next lemma, we can take

the value r independent from the sequence. Indeed, from (2.1) we easily get that
Jp > 0 such that : limsup ||jus]| < 2p, ¢'(un) =0 = un — 0. (2.4)

Then we have this first local compactness property of the functional ¢.
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Lemma 2.5. Let up, — u weakly in X and ¢'(u,) — 0. If there exists T > 0 for
which im sup ||un||yj>7 < p (where p is given by (2.4)), then u, — u strongly in X .
Proof. Fix R > 0 such that ||ul||y>r < p. Putting M = max{R, T}, by lemma 2.3,
we have that ||u, — ul|jsj<ar — 0. Therefore ||u, — ul|? = o(1) + |jun — 7"”|2t|>M <
o(1) + p* + 2p |lun|ljt>ar + ”un”|2t|>M’ from which we get limsup ||u, — u|| < 2p.
Since ¢'(un, —u) — 0 we derive from (2.4) that u, — u strongly in X. O

From the previous lemma we deduce this second property.

Lemma 2.6. If diam {u,} < p and ¢'(u,,) — 0 then (un) admits a strongly conver-
gent subsequence.

Proof. Let § = p—diam {u,} and T' > 0 such that |Jui||j3j>7 < 6. Then [un|jg>7 <
lun — u1ljgj>7 + 8 < p. Since the sequence (u,) is bounded, there is a subsequence
(#n,) which converges weakly to some u € X. Hence, using lemma 2.5, u,, — u

strongly in X. 0

82.3. The periodic case.

Here we recall some properties satisfied by the functional ¢, already proved

in the preceding chapter.

First of all we note that the hypothesis (U4.ii) implies that

(3 =77 — 75l - gl ()l lull+ < pa(u) YueX (3.1)

where [ul|2 = [o(|4* + v - L4(t)u) dt. Therefore, if a sequence (u,) C X is such
that ¢! (u;) — 0 and limsupyi(un) < oo, then (u,) is bounded in X and
liminf ¢4 (u,) > 0.

So, as first result, we get that any Palais Smale sequence of ¢, is a bounded

sequence, at a non negative level.

Moreover, the hypothesis (U4) gives information about the behaviour of the
potential at infinity with respect to g. In fact, from (U4.ii), one can infer that

Vi(tisq) > s (Vi(t,q) — 55554 L()g) VY(t,9) ERxRY, ¥s>1. (3.2)

In addition, if (¢+,¢+) € R x R" is given by (U4.i) then &§ = Vi (t4,q4) — E%j_:—z;q.; .
L4 (t+)g+ > 0. Therefore, there is € > 0 such that V. (t,q+)— %q_{_ -Li(t)g4+ > %5
for any ¢ € [t} — €, + €] and so, by (3.2), choosing p € C®(R,R*) with suppp =

[t+ — €,1+ + €], and setting uo(t) = p(t)g4 we have that o (sug) — —o0 as s — oco.
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Together with (2.1), this says that the functional @ verifies the geometrical

hypotheses of the mountain pass theorem.

Then, if we define

T'={7€C(0,1],X) : 7(0)=0, p+(+(1)) <0}

and

ct = inf max p+(7(s))

we infer that c; > 0 and there is a sequence (u,) C X such that ¢4(un) — ¢+ and
¢! (vn)|| — 0. Using the periodicity hypothesis (U3), one infers that the functional

¢ always admits a non zero critical point (see chapter I, theorem 2.6).

To investigate the Palais Smale sequences, we introduce two sets of real num-
bers, already studied in [S2]. Letting

SII:S((p'F) = {(un) cX: ]imcp'_l_(un) = O, ]imsupso_l_(un) < b}

we define
8% ={IeR: Hun) € Sis(p+) st pi(un) = 1}

the set of the asymptotic critical values lower than b and
DY ={r € R : 3(un),(@n) € Sis(p4) 5t um — Tl > 7 }-

the set of the asymptotic distances between two Palais Smale sequences under b.
As proved in chapter I, lemma 3.7, fIJz_ and Dz, are closed subsets of R. Thus,
we have:
(3.4) given b > 0, for any I € (0,5) \ &’ there exists § > 0 such that 1-61+6]C
(0,5) \ % and there exists v > 0 such that ||¢/, (u)|| = v for any u € {b—-6<
o+ < b+ 6}
(3.5) given b > 0, for any r € R\ D} there exists d, > 0 such that [r — 3dr,7 +
3d,] C RT\ Dt and there exists pr > 0 such that el (w)|| = pr for any
u € Arsd,,rtad, (KL) N {p+ < b}

Actually Di and @Z_ can be described using the set K of the critical points of
¢4. In fact, by the translational invariance of the functional ¢, by concentration-
compactness arguments [L], it is possible to prove the following result, already pre-

sented in [CZES] and [CZR] (see chapter I, lemma 3.1).
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Lemma 3.8. Let (u,) C X be a Palais Smale sequence for ¢ at the level b. Then
there are vo € Ky U {0}, v1,...,vx € Ky, a subsequence of (u,), denoted again

(un), and corresponding sequences (t1),... ,(t}) € Z such that, as n — oo:

len — (wo +Tt+;”1+"'+7t+ﬁvk)!l -0
P+(vo) + oo+ pi(ve) =0
t| — 40 (G=1,...,k)
1t too (f=1,...,k—1).

This implies

Q)z_ = {Z?=1(P+(vj) :keN, vj € -K+}ﬂ [O,b]
DY = {(Tillv; — 5;]%)Y/% : k€N, vj,5; € Ky U{0},
S (v;) <b, S5 04 (5;) < b}

Now it is clear how the hypothesis () enters in the argument. Indeed if
(*) there exists ¢ > cy such that K" is countable

then both the sets D% = D_? and @} = @jf are countable too, and since they are
closed, it holds that:

[0,¢%]\ @1 is open and dense in [0, c}] (3.7)

there is a sequence (r,) C RT\ D% such that r, — 0. (3.8)

Therefore, by (3.5), near any level set {¢ = I} at a critical value [ € (0, c*) there is
a sequence of slices {I}, < ¢4 <12} with {2 — ! smaller and smaller on which there
are neither critical points or Palais Smale sequences. Analogously, by (3.5), around
any critical point u € K_c& there is a sequence of annuli of radii smaller and smaller
(independently of u) on which, as above, there are neither critical points or Palais
Smale sequences. From this last fact and from lemma 2.5 it follows, as proved in

chapter I, §1.4, that the functional ¢, admits a critical point of local mountain pass
type:

Lemma 8.9. If ¢, verifies (*) then it admits a non zero critical point of local
mountain pass type. In particular there exist ¢, € [c4,c}) and 71 € (0,£) such
that for any sequence (r,) C Ry \ D%, r, — 0 there is a sequence (v}) C K (1),
v} — o4 € K4(¢4) having this property: for any n € N and for any h > 0 there is
a path v} € C([0,1], X) satisfying:
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(i) 1%(0),7x (1) € 0Br, (v3);

(ii) v} (0) and v} (1) are not connectible in By, (34)N{p+ <e4};
(iii) rangev; C Br,(vi)N{ps <2 +h};

(iv) rangery N Ayn, 34, pn(0F) € {p4 S8t — b

(v) suppv;(s) C [~ Rn,Rn] for any s € [0,1],

where R, > 0 is independent of s, hy, = %dr, pr, and d., and pr, are defined by
(3.5).

Remark 3.10. In [CZR], [M], [AL] and [S] a stronger condition than (%) is consid-
ered. Precisely it is assumed that there exists ¢} > cy such that K_CE' /Z is finite. In
this case the property (3.8) becomes

there exists € > 0 such that D% N (0,&) = 0. (3.8)

This permits to get more information about the mountain pass structure described
in lemma 3.9. Indeed, if (3.8)' holds, in the statement of lemma 3.9 one can specify

that ¢, = ¢4 and v} =94 for all m € N.

Remark 3.11. If the potential U, is time independent, then the mountain pass
level ¢y is always a critical value for ¢4 and there is a critical point v4 for ¢4 at
level ¢; and a path 4 € T passing through v such that ¢ |range~ takes a strict
maximum value at v. Hence the mountain pass geometry is realized in a sharp way

and clearly the lemma 3.9 holds again, even if (*) is not satisfied.
To prove this fact we make use of some results contained in [RT] and [C], where

a homoclinic orbit for a conservative system § = —U (q) is found as minimum of

¢+ on the set
S={ueX:ult)=u(-t), uw0)ed, ut)cAVteR}

where Q = {g e R" : Up(q) <0}.
If Uy : R — R satisfies (U1), (U2), (U4.i) and Ul (q) # 0 for g € 0%, we can
show that:
(3.12) for any u € S there is v € T such that 7(3) = v and ¢4 (7(s)) < ¢+ (u) for
s 0,1\ (&}

(313) infs Y4+ = C4t.
To prove (3.12), we define, in correspondence to any u € S, a family of functions
u, € X, with s € R, in the following way. First, fixing 5 > 0 we set fors <5

u(t) fort <0
uq(t) = {u(o) + 25U, (u(0) for0<t<s
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and us(s+1) = u,(s—1t) for any s € R. Hence, ug = u and for s € (0, 5] u, extends
outside of {3. Moreover, choosing 5 > 0 sufficiently small, we have that p(u,) < ¢(u)
for any s < 3, 5 # 0. Then, for s > 5 we define
_ <3

us(t) = {38 rssr<s
and us(s+1t) = us(s —t) for any s € R. We see that for s > 5, u, extends us, staying
at the point u;(5), where the potential is positive, for a time 2(s — 3).
Finally, if we define v : R — X by setting v(s) = u,, we get that 4 is continuous,
v(s) — 0as s — '—oo, p+(7(s)) = —o0 as s — +oo and max,p4+ = @i(u).
Therefore, cutting v after a suitable sy > 5, up to a reparametrization, v satisfies
(3.12).

Let us now prove (3.13). From (3.12) we have ¢ < infs ¢ . Thus, we show that
for each v € T there exists u € S such that ¢ (u) < max, ¢. Indeed, if vy € T then
rangey Z {1 and, for the continuity of v, there is § € [0,1] such that range~(3) C
and rangey(5)NON # 0. Let @ = 7(3), ¢, = inf{t € R : 4(t) € 80} and t; = sup{t €
R : a(t) € 00}. Set T =ty if [ (3|G[>~Uy(a))dt < Jo GlaP—Us(a))dt orf =ty
otherwise and define u(t) = @([t| — 7). Then v € § and ¢4 (u) < p4(7) < max, p4.

Finally we observe that if also (U4.ii) holds, then the conditions studied in [C]
and [J] which guarantee that infs ¢ is reached are satisfied and so we get a critical

point of mountain pass type at the level c..

§2.4. Study of the Asymptotically Periodic System.

In this section we tackle the problem of existence of homoclinic orbits for the
Hamiltonian system (HS) in the two following cases:
1. (HS) is asymptotic, as ¢ — +oo to a given periodic system (HS); with no
assumption on the behaviour of U for ¢t — —oo;
2. (HS) is asymptotic as ¢ — oo to two, possibly different, periodic systems
(HS)x+. |
As shown in chapter I, if the functionals ¢4 satisfy the condition (%), then each
of them admits a class of homoclinic orbits obtained as multibump solutions.
To describe this situation in a precise way, we introduce some notation. For
the sake of simplicity, for the moment, we consider only the problem (HS)+. Given
M,k € N we set

P:(M)z{P=(P1,---,Pk)EZk P pjr1—pi>M Vi=1,...,k—1}

PH(M) = | PF(M).
kEN
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To any finite sequence p = (py,.-.,pr) € PT(M) we associate a partition of R into
intervals { P1,..., Py } where, for any j =1,...,k:
P =[3(pj + pj-1)T4, 5(pj +Pj+1)T+]
with pp = —o0 and pg4+1 = +o0.
Then, forr >0, p = (p1,---,pr) € PT(M) and v € X, we set

Bf(vip)={uveX : Hu—rgvnpj <r Vi=1,...,k}.

The elements of B, (v;p) are k—bump functions associated to v according to the
sequence p.

For the system (HS)_- we modify the notation in the following way. Given
M,k € N we write

Pr(M)={p=(p-tse- sp-1) €ZF : pjr1—p; 2 M Vj=-k,...,~2}
P~ (M) = | J P (M).
keN

and, forr >0, p= (p-k,...,p-1) € P7(M) and v € X, we set
Bo(vip)={ueX : lu—7,v|[p <r Vij=—k,...,—1}

where P; = [5(pj + pj-1)T-,3(p; + pj+1)T-]:

Now we study the functional ¢ corresponding to the problem (HS) assuming
the periodically asymptotic behaviour of U only at +oo.

First of all we point out that for (U5), the operator ¢'(u) is close to ¢! (u) for

those elements u € X with support "at +co”, as stated in the next lemma.

Lemma 4.2. For any € > 0 and for any C > 0 there exists n € Z such that

o' (u) = @l (w)l| <€
for any u € X with ||u]] < C and suppu C [n,+00).

Proof. Let € > 0 and C > 0 be given. Plainly, by (U2), (U5), we can choose n € Z
such that if [|u|| < C then [, [u(L(t) ~ L4(t))h|dt < sup;s, |L(t)— Ly (8)|C'||R]| £
£||k|| (indeed (U2), (U5) imply sup;s, [L(t) — L4+ (t)] — 0 as t — +00).

Then we observe that if |ju|| < C then |u||ze®gry) < C". Moreover, by (U2),
for any p > 0 there exists § > 0 such that |V'(¢,z)—V{(t,z)| < plz|forany ¢ € R and
for any |z| < 8. Then |V'(t,z) — VL(t,z)| < (p+ 3 sup|p<cn [V'(t:2) — Vi(t,z)])|z]
for any ¢t € R and for any |z| < C".

Therefore choosen p sufficiently small there exists n € Z such that, if [ul] < C
then [, [V'(t,u) — Vi(t,u)||h|dt < 5|[h|| and the lemma follows. O
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Now, since B (v4+;p) N K4 # 0 for every p € PT(M), provided that M € N is
large (see chapter I, theorem 5.1), we expect that also Bt (94;p) N K # 0 for those
sequences p € P+(M) with p; so large that lemma 4.2 can be applied. In other
words, also the system (HS), as well as (HS), admits a family of homoclinic orbits

obtained as multibump solutions.

We define, for M,py € N
PH(M,p)) ={p€ P*(M) : pr2po+ M}
and analogously

P (M,po)={peP (M) : p-1<—po— M}

We now state the result concerning the case of asymptotic periodicity of (HS) only
for £ — +o0o0. We omit the proof which can be obtained by simple modification of

the proof of theorem 4.5 below.

Theorem 4.3. If U and U, satisfy (U1)—-(U5) and if the condition (*) holds for the
functional ¢, then for any r > 0 there are M,py € N such that B.(v4;p)N K # 0
for every p € PT(M,p,), where 5, € K is given by lemma 3.9.

Remark 4.4. The multibump homoclinic solutions of (HS) found with the previous
theorem are near to T;; ¥4 on the interval P; in the H'-norm and so in the sup norm.
Since they verify (HS), we infer that they are actually near to T;; 74+ on P; in the

C'-norm, too, as stated in theorem 1.1.

When U is doubly asymptotic to Uy for £ — F0c0, we can find critical points of
¢ among doubly multibump functions, according to the following procedure.

Given M,py € N we put:
P(Mypl)) = (P—(MJ’O) X P+(M7P0)) U P“(M,pﬂ) UP+(M7PU)
For p = (p_p,...,P-1,P1,..-,Pk) € P(M,py) we define the family {P_p,...,Px}
by setting ‘
P—.[%( +PJ I)Ti72(p] +pJ+1)T:i:] for -hSJSka j7é07“1
Py =[5(p-1+p-2)T-, 3(p-1 — po)T-]
Py = {%(P 1—po)T-, 2(?0 +p1)Ty4 |

where p_p_1 = —00, pr+1 = +00 and one takes Ty = T_ for j < 0 and Ty = Ty
for 7 > 0.
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Finally, for v—,v" € X and r > 0 we set
B,(v™,v*;p) = By (v7;p7) N B2 N B (vF;p")

where p~ = (p—h,.--,0-1), T = (P1,...,p¢) and B ={u € X : [ju|p, < T},
With this notation the theorem concerning the doubly asymptotic case can be

stated in this form.

Theorem 4.5. If U, Uy and U_ verify (Ul)-(U5) and if the condition (*) holds
for the functionals ¢ and p_, then for any r > 0 there are M,py € N such that
B.(v_,54;p) N K # 0 for every p € P(M,po), where T4 are critical points of
given by Lemma 3.9.

Proof. We start by giving an idea of the proof. Fix a sequence (r,) C RT\(D31UDZ)
such that r, — 0. Let v7,5_ € K_ and v},5; € Ky be given by lemma 3.9.
Arguing by contradiction, suppose that the conclusion of the theorem is false. Then
there exists 7y > 0 such that for any M,py € N there is a finite sequence p =
(DP—tyeresP15P1,--+,Pk) € P(M,po) for which By, (7-,74;p) N K = 0. Fixing a
suitable A > 0, lemma 3.9 assigns two sequences of paths v, ;7 such that v, (0) and
47 (1) belong to two different components of Bz_(9_-)N{p- < ¢~} and analogously
for 4;+(0) and 4;F(1). To reach a contradiction, we will construct a path ¥ joining
47(0) and v (1) (or 7;(0) and «; (1)) inside Br_(-) N {p- < &-} (respectively,
inside By, (34+)N{p+ < &+}). This path 7 is built in the following way. We consider
the surface @ : [0,1]*t* — X defined by

G(B-tyees0-1,01,.8) = Y T (8)+ Y mhva(85)- (4.6)

—h<ji<-1 1<i<k

=+

For the properties of 45 listed in lemma 3.9, we have that

¢;(G(0)) < e+ +h for any j and for any § € [0,1]h+*

where

pi) = [ GlP - Ustu)) d

PJ
with Uy = Uy if 5 > 0 and Ux = U- if j < 0. Since v, — 7, v} — 74 and
rn — 0, we can choose n € N so large that B, (v, ,v;;p)NK = 0. This allows us to
construct a deformation 77 of X such that the surface n o G has the property that:

(4.7) for any 6 € [0,1]*** there is an index j such that p;(n70 G(0)) < c=.
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Using (4.7), by a Miranda fixed point theorem ([Mir]), on the surface no G we can
select a path g joining two opposite faces 7 o G({f; = 0}) and o G({f; = 1}) such
that rangeg C {¢; < €+}. Finally, let ¥ be the path obtained by multiplying g by
a suitable cut-off function x on P; and by translating by p;T4. It turns out that ¥
is the required path which gives the contradiction.

‘The deformation 7 is obtained as a solution of a Cauchy problem

2 = —Vin)
7(0,u) =u

ruled by a pseudogradient vector field ¥V : X — X for ¢ which acts in this way.
First of all V is a bounded locally Lipschitz continuous function on X which does
not move the points of X outside the set B = B, _14,. (v ,v;};p) and such that
the functional ¢ decreases along its flow lines. This holds asking that:
(V1) ¢'(u)V(u) 20 Vue X, V()| <1 VueX,V(u)=0 VueX\B,

To get the property (4.7), we want to use the following argument:

- we can choose by > ¢4 near as we want to ¢+ such that starting from a point
v € {p; < by}, along the positive flow line {n(s,u) : s > 0}, one always
remains inside {¢; < bt }. .

- if u € M;{¢; < b+} and the trajectory {n(s,u) : s > 0} crosses an annular
region of the type A;i = {u € B : 1, — 1d,, < |ju— sz"?vfn <rn— Fdr, 1N
N;{#j < bs} then the functional ; decreases of a positive uniform amount
Ay; independent of the sequence (p_p,...,pk).

- we can choose a4 < €+ near as we want to ¢4 such that also the sets {¢; < ax}
are positively invariant with respect to the flow 7.

Thus, taking a4 and b4 such that by —aq < Agy, if the trajectory {n(s,z) : s > 0}
crosses some A; starting from {¢; < b1} then it reaches the sublevel {¢; < a+}.
These properties are obtained requiring that:

(V2) ¢i(u)V(u) > v Vue A;

for some v > 0 independent of (p—4,...,pr) and:

(V3) i(u)V(u) 20 VYu € {ax <pj <ax+8}U{bs <p; < bs+ 8}

for some § > 0. :

Thanks to the contradiction assumption, for which B N K = 0, it is possible to
construct V in such a way:

(V5) V(W) > v VueB, 4, (v7v5p)

for some v/ > 0.
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This implies that any flow line starting from a point w € B, _14, (v;;, v} ;p) crosses
some A; for an index ¢ depending on wu.
Finally we need a property of V which permits us to control the error [tp i(g) —
©;(xg)| produced by the cut—off procedure. As we will see this can be realized if:
(V4) (u,V(u))g; 20 Vue X \Y.andVj=—h,...,k
where Q; = [p; T+ + m(m +1),pj41T4 —m(m +1)] (1 <j<k),
Q; = [psa T+ m(m +1),5;T- —m(m +1)] (~h <j < 1),
Qo = [p-1T- +m(m +1),p1 T+ — m(m +1)] and
Vo={ueX : [uly, <e ¥i}
with € > 0 small enough.
The vector field V as well as the positive constant h chosen at the beginning is

assigned by the following lemma, whose proof is given in the appendix.

Lemma 4.8. For any r, sufficiently small there is v = v(rp) > 0 such that for any
a—,ay,b_,by € R and § > 0 with

[a_ —6,a_ +26] C (a)\@c* [b_ — 6,b_ +26] C (c—,¢*)\ &°-

[a’+_6a++25]C(0- )\@+ [b+“57b++25]C(5+,ci)\¢'cjr (4'9)

there exist py € N and €; > 0 for which the following holds:

for any € = (0,€1) there is m € N such that for each p € P(2m? + 3m,po) there
exists a locally Lipschitz continuous vector field V : X — X satisfying (V1)-(V4).
Moreover, if BN K = () then there is v > 0 such that (V5) holds.

So, we follow this scheme: we first fix n € N such that |[v — 9+ < §, rn <
min{%,7} and By, (vE¥) C B#(91). In particular we have that B, (vy,v8;p) C
B,(5,54;p) for all p € P(M,po) and for all M,py € N. In correspondence of the
value r,, > 0 above fixed, lemma 4.8 gives a suitable positive constant v. Thanks to
(3.7), we can choose at > ¢+ — min{hn, 3yvdr,} and by < min{c}, e+ + 53vdr, }
and § > 0 satisfying (4.9). Then lemma 4.8 assigns two values pp € N and e > 0.
Now we take e; > 0 such that for any Borel set A C R with [4] > 1 and for any
u € X with ||ul|’ < e it holds that [, |Vi(t,u)|dt < |lu[|%. This is possible because
Us satisfy (U2). Then we fix e € (0, min{e;, 22, 3(c4 —a4), $(c-—a- ),372,2d2 1)
By lemma 4.8 there exists mg € N such that for any p € P(2m} + 3mg,po) there
is a vector field V, : X — X satisfying (V1)-(V5). Now we apply lemma 3.9 fixing
h = min{b_ — &_,b; — ¢4} and finding two paths v with supp yE(s) C [-R,R]
for any s € [0,1], where R > 0 depends only on n. Moreover we can always assume

that ”U%“?tlzR < €. Then we choose m > max{m,, R} and we use the contradiction
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assumption, for which thereis p = (p—s,...,p-1,P1,...,Pk) € P(2m?+3m,py) such
that B, (v ,v};p) N K = 0. Consequently, there is a vector field Vp=V:X->X
that satisfies (V1)-(V5). ,
Finally, for any s > 0 we consider the continuous function G, : [0,1]**% — X
given by
G.(6) =n(s,G(8) (6 € [0,1]"*H)

where G(0) is defined by (4.6) and 7 is the flow generated by —V.

Lemma 4.10. (i) For any s > 0 G, = G on 8[0,1]"**,
(it) For any s > 0 range G, C Y..
(111) There exists § > 0 such that range Gz C U;{pj <ax}

Before proving lemma 4.10 we continue the proof of the theorem showing that:

(4.11) there is an index j € {-h,...,—1,1,...,k} and a path ¢ € C([0,1],[0,1]**F)
such that £{(0) € {#; = 0}, €(1) € {6; = 1} and ¢;(G5(8)) < a+ + € for any
0 € rangeé.
Indeed, if (4.11) were false, for any : € {—h,...,—1,1,...,k} theset D; = {§ €

[0,1]%% : ©(G5(8)) > ax + €} should separate the faces {f; = 0} and {6; = 1}.
Then, from a Miranda fixed point theorem ([Mir]), it follows that (), D; # 0, that
is there exists 6 € [0,1]"** such that ¢;(G5(6)) > ax + € for any 1, in contrast with
the point (71} of lemma 4.10. '

From now on, let j be the index for which (4.11) holds. Let us assume that j > 0.
Clearly the same argument works if 7 < 0. Put Q = U;-‘z_th. Let x : R — [0,1]
be a piecewise linear, cut—off function such that x(r) = 1if r € P;\ @ and x(r) = 0
if » € R\ P;. Notice that, since m > 2, for any v € X

Ixulfne < 2lullbng and [I(1=x)ul}ng < 2luldng (4.12)
and for any s € [0,1]
suppT;;'yI(s) C [p;j — R,p; + R] C P;\ Q. " (4.13)
Then we define a path v : [0,1] — X by setting
71(s) =75, xGs(£(s)) (s €[0,1)).

By lemma 4.10, part (i), and from (4.13), we have that

7(0) = v7(0) and ~(1) =~} (1). (4.14)
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Now we will prove that
rangey C Br, (T4)- (4.15)

Indeed, if we set u = G;5(é(s)) we have that

lv(s) = v 1P = llxw = o |

(4.16)
= ||} Tp; Un A lRe, +llv— g ”P, o T llxu -, v (I

By (4.12) and (4.13) it holds that ||7;fv +I|§\P < “”+“|t|>R < € and analogously we
also get [|(1 — x) i v [|B g < 2|lvt|Ify>R < 26 Consequently from (4.16) we infer
that

lv(s) = v |I* < 3e + 3l|u — vl |15 (4.17)
Since, by (V1), B is n-invariant and, from lemma 3.9, rangey} C B, (v}), we
deduce that ||u— Tl;tv,'i‘ﬂpj < 7. Thus, from (4.17), we get that ||v(s) —vF||? < 4r2,
because € < 372, and, since Bar, (v) C Br,(94), (4.15) follows.
Now, we show that for any s € [0,1]

e (7(s)) < 2. (4.18)

As before, we set u = G5(£(s)). It holds that @i (v(s)) = or(xu) = pj(xu) =
oj(u)+3 ”Xu“p Q2 HuHP nQ—I—fP nQ (Vi (t,u)—Vi(t,x u))dt. From lemma 4.10.iii,
we know that ¢;(u) < ay. Using agam lemma 4.10.iii, and (4.11) we estimate
ZHX'U,“P no < HuHP no < eand, for € < 16, fP nQ |[Vi(t,u)|dt < HuHP no- Hence
o+(7(5)) < ay + 4e and (4.18) follows, because € < (64 — aq)-

In conclusion, from (4.14), (4.15) and (4.18), v is a path joining A7+ (0) with v (1)
inside Bz, (94)N{p+ < ¢+} and this gives the contradiction and concludes the proof
of the theorem. 0

Proof of lemma 4.10. (i) If 8 € 8[0,1}*** then 6; = 0 or 6; = 1 for some i€

{~h,...,—1,1,...,k}. Let us suppose for instance that 2 > 0 and §; = 0. From (4.13)
and lemma. 3.9 (i), we deduce that ||G(0 )—-Tp'v,fnpl Iy (0)—v +H2—-—HT;:Un ”R\P >

72 — ¢ > 72 because € < 172, Then G(f) € X \ BF and consequently, by (V1),

3

(s, G(6)) = G(9)-

(ii) By (4.13), we have that ||G(6)|lq; = 0 for any j and so G(8) € Y.. But (V4)
gives that Y, is positively n-invariant. Hence (s, G(6)) € Y for all 6 € [0,1]*** and
for all s > 0.

(i3i) First of all, (V1) and (V3) imply that the sets {¢i < ai} and {p; < by} are

positively n-invariant sets.



72 Piero Montecchiari

Fix now 6§ € [0,1]"**,
If G() ¢ B, _14. (v;,v};p) then there is an index 7, for example positive, for
which ||G(6) — 7,fv} ||, > rn— 3 d,,. But, using (4.13) and lemma 3.9 (i), we have
also [|G(8) — vt |2 < v (6:) — vt|| < 7. Therefore 7(6:) € 4, 14, (vF)
and, by lemma 3.9 (%) ¢1(v7(6;)) < €&+ —hn. Thus, since ay > & —hy,, we have that
G(8) € {p: < a1}, and, for the n-invariance of {p; < a1}, also G5(8) € {p; < a;}.
Suppose now that G(f) € B, _1i4,, - First, we notice that, from (4.13), lemma 3.9
(i1i) and by the definition of ¢; and h, G(8) € ),{p: < b+ }. Hence, on one hand, for
the n—invariance of each {p; < b1}, all the positive trajectory s — G4(8) remains
in ,{¢i < b+}. On the other hand, we claim that

(4.19) as s > 0 increases, the curve s — G,(6) must go out from B, _sg4  in afinite

time 5 > 0 independent of 4.

During this amount of time, G,(f) crosses the annular region A4;. In fact,

there exists an index 1, let us say positive, such that [|G3; () — T;;’U:”p‘. =71, —
30rs (G2 (8) — Thvtllp = ma — &dr, and rn — 3dr, < [|GL(8) — ot P, <

Tn—15dr, for s € (s},s3). Then, by (V2), ¢}V > v along the curve described by G,(8)
as s goes from s} to s3 and consequently, p;(G,(8)) decreases. Precisely cp,-(ng (8) <
0i(G41(0)) — v (s5 — s3). But, using (V1) it holds that %d,, < Gz () = Go1 (0)]] <
I3 17105, GO < 335} am 50 6:(G5 () < by — oy < 54— Fydn, v <
a+. Then the p-invariance of {p; < a;} implies that ¢;(G5(9)) < a.

Now, it remains to prove the claim (4.19). Arguing by contradiction, if (4.19) is
false, then there are sequences (s,) C R4 and (8,) C [0,1]%+* such that s, — +o0,
0, — 0 and, for any n € N, G,4(8,) € B, _s4,, (vy,v7F;p) for s € [0,5,]. Then,
from (V5) (G, (0n)) < ©(G(6n)) — snv' and so ¢(Gs,(0,)) — —oo. This is in
contrast with the fact that zp(Bgi) is bounded. O

§2.5. Appendix. The construction of a pseudogradient field of .

This appendix is devoted to prove lemma 4.8. The proof strictly follows the

lines already explained in appendix 1.6 and we give only a brief description of it.

Also in this case the functionals ¢ and ¢; satisfy suitable properties on the sets
B:(v—,v4;p). In fact given € € (0,7) we choose N, € N such that

2 9 472 €
max{||v—|[iy>min{1, 1, 70 ), 0 10+ > ming, 7y, 7o 13, 5 {1, T5 TN <3
? ) bl €

If m > Ne and p € P(2m? + 3m,py) then for any v € B.(v_,v4;p) and for any
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1€ {—h,...,k}\ {0}, there exists 7, ; € {1,...,m} for which

9 : €
”u’“ju,imT:x: Slt=pi| L(Ju,i+1)mTs < 2

where Ty = T if ¢ > 0, Ty = T if 2 < 0. Then, for any u € B,.(v—,v+;p) we define
the following subsets of R:

Au k :]ka+ + (j%k + 1)mT+ ’ +o°[7

A, =]piT++(jui+1)mT+,p,-+1T+—(ju,-+1+1)mT+[ i=1,...,k—1,
Auo =]p=1T- + (Ju,—1 + 1)mT_, p1 T4 — (Ju,1 + 1)mTy |,

Aui =1pia T + (Jujia + 1)mT_ , piT— — (Ju; +1)mT-[ i=-h+1,...,-1,
Ayp =] =00, ppT- — (Ju,—n +1)mI_[,

A, _..u,__hAu,,

Bui={tcR / d(t, dy)) <N} l=—h,...,k,

B, :Ul— W B,

For I = —h,...,k we define the cutoff functions B, i, Bu 1 and

A otherwise

fi(u) as in appendix 1.6. Then we set

k
Wu= Y filu)Bum.

l=—h

Moreover we fix 7o € (0, min{7},7_,+/2 — 1}) such that if u,w € X and 4 is an
open subset of R with |A| > 1, then

la<ro = [ Vitwdt < glulf and [ Vi(wwdt < glulaful.
A A

and the same hold with V and V_ instead of V.
As in chapter I we get
Lemma 5.1. Let r € (0,3ro) and 0 < e < r?. Then Vu € B.(v_,vy;p) we have
o (W)W > 3 S flw)(lul,, — o),
wWM%Z%Zﬁ%ﬁ@WM%mM~Q
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By lemma 5.1, we always have

k
o' (u)Wy > % Z fz(u)(||u||f1u, —€) > % v Z fl(u)(”““z‘xu, &> __%

I=—h /0l <e)

and analogously
Pu)Wy > —g Vie {—h,...,k}

for all u € B,(v—,v4;p).

Moreover if ||u||p;n., , is greater then 22, for a certain couple of index (i, 1), then

u,l

W, indicates an increasing direction both for ¢ and ¢;.
Now we can pass to restate lemma 4.8 and give a sketch of the proof.

Let ¢4 be any nonzero critical level of ¢+, and r € (0, 379)\ (D5 UD%), r1,72,73
be such that » — 3d, <7y <ry <r3<7r+3d,. < %;7‘0 where d, = min{d},d;}.
Let also ax,bs and & be such that lax — é,ax + 25[C]O,ci[\<§l§‘ and |by —
8,bs + 28] Clex, i \BF.
Proposition 5.2. There exists p = p(r) > 0 and ¢; = € (r,a+,b1,6) > 0, pg > 0
such that: _
Vvt € Ki(cx), Ve €]0, €| there exists N € N, such that, for any h,k € N, and
p € P(2m?+3m,py), there exists a locally Lipschitz continuous function W : X — X
which verifies
(Wo) |W(u)llp, £2Vue€ X, j=—h,...,k,
o' (u)W(u) >0Vue X,
W(u)=0Vu€ X \ By, (v-,vy;p)
(W) QW) > pifrs < Jlu—vi( = pi)llp < 72, 4 € Bu(oo,vip) N
nk by+6

i=—h 1 ’
(W2) @i(u)W(u) 20 Vu € (o210 \ o2 ) U (pi% 0\ ;22),
(Ws) (u, W(u))g; >20Vje{l,...,k} if max|[ul|?), > 4e.
Moreover if KN By, (v—,v4+;p) = 0 then there exists puy > 0 such that
(Ws) ¢'(u)W(u) = px Yu € Bry(v—,v4;p).
Proof. Let 7, =r; — %(7‘1 —r+3d;), 73 =73 + %(r + 3d, — 73) and let p, be given
by (3.5).

Let also v = inf{flo%(u)]| / v € (p£"+72\ o2 70) U (pa®4+28\ pyo2—0)} by
remark 3.4 we have that v > 0.
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Let C = 2sup{||u||; v € Kx(cx)} + ro. By lemma 4.2 there exists po > 0 such that
if ||z|| < C and suppu C [poT+,+oo) or suppu C (—00,—poT-] then it respectively
holds that |[¢/y () — '(w)]| < 3 min{v, e}, lle’(u) — @'(w)]| < 2 min{y, e}

As in the appendix of chapter I we choose €; sufficiently small depending on 7,
L, dry at, by, § and v. Let’s fix v € Ki(cx), €€ (0, &), b,k € N, m > N, and
p € P(2m? + 3m, po).
We construct the vector field Wy, on By, (v—,v+;Ppo), using lemma 4.1 with r =73

and we define another vector field analyzing the different cases.

bi+32
case 1) uE( r_.,(v_,v+,p)\Brl(v-—,v+,P))ﬂﬂz—_h i ;

case 2) u € Bry(v—,v45p) N (Uz—-h(‘w" )bi“)’
case 3) u € Bry(v—,v4;p) N (UL _,(pi )ai_l_&)
case 4) u € By (v_,v4;p)

and we argue in the same way of §1.6.

The relevant difference occurs in the case 1 when £, U € Ar_ad, rt3a,(K(ex))N
¢°% and in the case 2 (and analogously in the case 3) when 8, ;u € (i ):i+§5 .

In this cases we have to prove that |¢'(8, ;u)| is uniformly positive. This easily
follows from the choice of py and from lemma 4.2. We omit the details and we refer

for a similar procedure to §3.4 where an analogous result will be discussed. L
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CHAPTER THREE

Multiplicity results for a class of Semilinear Elliptic Equations on R™ !

84.1. Introduction.

In this chapter we are concerned with the study of existence and multiplicity

of solutions to the problem
(P) —Au+u=f(z,u) , ve HRM

where m > 1 and f satisfies the assumptions

f1) fe CY(R™ x R,R)

2) f(z,0) = f,(z,0) =0 for any z € R™.

£3) 3by,b2 > 0 such that [f(m z)| < by + bal2|®, V(z,2) € R™ X R, where s €
(1,2* — 1) with 2* = 2™ if m > 2 and s is not restricted if m = 1,2.

The hypotheses (f1)-(£3) are exactly the ones studied in [CZR2] assuming also that

f(z, z) is periodic in z and superquadratic in z. Here we consider the following more

general case.
We say that a set A C R™ is large at infinity if VR > 0 3z € A such that Br(z) =
{y e R™/|ly —z| < R} C A. Clearly any cone in R™ is large at infinity. Another
example is a cone minus the union of the annuli centered in zero and with radii
(2n)?, (2n + 1)%
We assume that there exists a function f., : R™ x R — R verifying (f1)-(13),
and a set A C R™ large at infinity such that
f4) 3p > 2 and « € [0, £ — 1) such that pF.(z,2) = p f§ fu(e,t)dt < fuo(z,2)z +
alz|?, V(z,2) € R™ x R, and F, (z0,20) > ————zo for an (zg,20) € R™ x R.
15) ful(z +p,2) = fuo(z,2) for any p € Z™, (z,2) € R™ x R.
f6) Ve > 03R > 0such that sup,¢ 4\5x(0) 1£(2,2)— fs (2, 2)| < €(|2]+]2|") V2 € R,

Putting F(z,z) = foz f(z,t)dt we define on X = Hl(Rm) the functionals
o) = 3l — fyn F(o,0)d, () = 3l = fyu Fu (2, u)de, where [[ul? =
S |Vu|2 + |u|?dz, and we look for solutions of (P) as critical points of ¢.

As we will see the assumptions (f1) — (f5) are sufficient to guarantee the

existence of at least one non zero critical point of the "periodic” functional ¢.,. By

1 This chapter is extracted from the paper: Multiplicity results for a class of Semilinear
Elliptic Equations on R™., Preprint S.I.S.S.A., 139/94/M, 1994.
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(£5), if u is a critical point of ¢.,, then also p * u = u(- — p) is a critical point of ¢,
for any p € Z™. If we translate this u in a region where f and f., are very close
one to the other, one could expect that nearby this translate of u there is a critical
point of . In general this is not true as the \'following example shows.

Let f(z,z) = a(z1)|z|?z with a € C}(R,R), a(t) > apy > 0, &(t) > 0 Vi € R,
and assume that u is a solution of (P). By standard bootstrap argument we get that
u € H*(R™), therefore ¢'(u)8;u = 0. But, if e; = (1,0,...,0), we have ¢'(u)du =
L o(u(- + se1))]s=0 = fd(ml)ll‘fi dz = 0 which implies u = 0 (see [EL]).

To avoid this situations we make a discreteness assumption on the set of the
critical points of the functional at infinity.

We note first of all that ¢, satisfies the geometrical hypotheses of the mountain
pass theorem. Letting I' = {y € C([0,1],X); v(0) = 0, v.(7(1)) < 0}, we put
¢ = infyer max;eo,1] Yo (7(%))-

Setting K, = {u € X \ {0} /¢’ (u) = 0}, we assume

(%) Je* > ¢ such that K& = K., N {p. < ¢c*} is denumerable.

We note that the hypothesis (x) excludes the asymptotically autonomous cases,
because if f,, does not depends on z and u € Kf: then pxu € K:: for any p € R™.

In this setting we are able to prove the following

Theorem 1.1 If (f1)-(f6) and (*) hold then (P) admits infinitely many distinct
solutions.
Precisely there exists u € X, solution to the equation —Au+u = f,(z,u) for which
we have that Vr > 0 there exist M = M(r) € N and R = R(r) > 0 such that for
any finite sequence {p1,...,pr} C Z™ that verifies

i) [p1| = R and |pi| > |pi—1| +2M i=2,...,k,

1) Bar(pi) C 4\ Br(0) i=1,...,k,

there exists a solution v to (P) such that if we put |pg41] = +oco then

V— P xU <r

lo = pr HB%(lmHlpzl)(O) =

V—1: kU <r 1=2,...,k
lo = »: ST OLE TN O AR

where if A C R™ is measurable then ||ul|% = [, |[Vu|? + |u|*dz.

In particular, for £ = 1 we get that if p € Z™ verifies Bas(p) C A\ Br(0)
then there is a solution v to (P) which is near u(- — p). Moreover for k > 1 if we
choose any set of k disjoint annuli centered in zero, each of which intersects the set
A\ Bg(0) in a ball of radius M centered in a point of Z™, then there is a solution to
(P) which is near a translate of u in each of this balls. We call this type of solution

k-bump solution.
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The problem (P) was already studied in [CZR2] where the authors find the
existence of infinitely many k-bump solutions to (P) for any k£ € N in the case in
which f(z,z) is periodic in z and superquadratic in z. S. Alama and Y.Y. Lee in
[AL] studied the problem (P) assuming f asymptotic as |z| — oo to a function f
of the type considered in [CZR2]. In that paper they were able to prove that the
problem (P) admits infinitely many k — bump solutions. All this results are based on
assuming that there exists ¢* > ¢ such that K¢ /Z™ is finite (clearly, in the periodic
case, the functional Yo 15 ¢ itself).

The main difference in our result with the above cited work, is the fact that
the minimum distance between the bumps of any k-bump solution depends only on
r (being given by M(r)). Using the Ascoli Arzela’ theorem it is therefore possible
to prove as in [S2] the existence of a class of bounded solutions of the equation
—Au+u = f(z,u). Precisely we have:

Theorem 1.2 Under the same assumptions of theorem 1.1, it holds that for any
r > 0 there exist M = M(r) € N and R = R(r) > 0 such that for any sequence
{pj}jen C Z™ that verifies
i) |p1| 2 R and |pi| > |pi—1| +2M 122,
it) Bar(p;) C A\ Br(0) ‘€N,
and for every sequence o = (o;)jen € {0,1}N there exists v, € H}, (R™) satisfying
—Av, + vy = f(z,v,) such that

I = o1 (pr u)”B%(ImIHnI)(D) =7

lor — oi(pi * u)”B%(Ip;l+|pi+1l)(O)\B%(lp,-l-l—lp;-ﬂ)(O) sroiz2.

The tools used in the proof of theorem 1.1 are related to the ones developed in
[M] and then improved with P. Caldiroli in [CM] and with S. Abenda and P. Caldiroli
in [ACM] studying the homoclinic existence problem for second order Hamiltonian
systems and already explained in the preceding chapters. These arguments permits
us to strengthens the results contained in [AL] in a more general setting. In fact the
superquadratic assumption (f4) is verified also by functions fo, which change sign.
Moreover the assumption (*), is satisfied if the functional ¢, is for example a Morse
functional. In the one dimensional case (m=1), as explained in the introduction, it
is possible to verify this condition via the Melnikov theory when f. is a periodic
perturbation of particular autonomous problems.

Another differences with the work of S. Alama and Y.Y. Lee [AL] is the fact

that f is not assumed to be asymptotic to f, as |z| — oo but only on a set large
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at infinity. This permits us to consider the problem (P) when f is assumed to
be asymptotic in different sets large at infinity to different functions. Precisely we
consider the hypothesis
f7) 34i1,...,4; C R™, large at infinity, f1,...,f; satisfying (f1)-(f5) for which
Ve > 0 3R > 0 such that supxeA \Br(0) [f(2,2) — fu(z,2)| < (]2 + |2]*)
VzeR,Vee{1,...,1}.
If for any ¢ € {1,... 1}, we define ¢,(u) = 3||ul|? — [im Fi(z,u(z))dz, K, =
{u € X\ {0}; ¢'(u) = 0}, ¢, the mountain pass level of v, and we assume
(*.) Jef > c, such that K& =K.n {¢. < ¢} is denumerable
then, by theorem 1.2, we have [ different sets of multibump solutions, each con-
structed with a suitable critical point of the functional ¢,.
In fact, we prove that there are also multibump solutions of (P) of mixed type,

as said in the following theorem.

Theorem 1.3 Assume that (f1)-(£5), (f7) and (*, )hold There exists uy,...,u; € X,
satisfying —Au, + u, = f,(z,u,) for which we have that for any » > 0 there exist
M = M(r) € N and R = R(r) > 0 such that for any sequences {p;}ien C Z™,
{7itien C {1,...,1}N, that verify
i) [p1] = R and |pi| > |pi—1| +2M 12> 2,
1) Bar(pi) C Aj; \ Br(0) €N,

and for every sequence o = (0;)icy € {0,1}N there exists v, € H} (R™) satisfying
—Av, +v, = f(z,v,) such that

— oi(p; * us <r i>2.
loo — i(p: * u]')”B%up;x+1p;+1|)(°)\3%(|p;|+|p.-_1¢)(°) srt22

If o; # 0 only for a finite number of indices then v, is actually a solution to (P).

As last remark we point out that an analogous result was proved by S. Angenent
in [Ang] in a different setting (z— f(z, z) is assumed to be periodic in x and bounded
together with its derivatives), using essentially fixed point arguments. He proved
his result under the assumption that the solution u was such that the operator
~A+1I— f,(z,u(z)) had a bounded inverse. He was able to verify this hypothesis
for periodic perturbation of particular autonomous problem which admits a unique
(up to translations) radial solution, using a bifurcation theorem due to A. Weinstein
[W]. It is known that the problem (P) when f(z,z) = 2P admits a unique positive
solution (see [K]) and it should be interesting to check if the hypothesis (*) holds
for periodic perturbations of this f.
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84.2. A local compactness property.

In this section we study some properties of the functional ¢ which are indepen-
dent on the assumptions on the asymptotic behaviour of f. All the results contained
here are true under the hypotheses (f1)-(f3). In the proofs that follow we shall always

consider the case m > 3, the proofs for m = 1 or 2 being not more difficult.

We have to note first of all that (f1)-(f3) imply
Ve>0dA4c >0/ |f(z,z)h| < €|z||h] + Ae|z|°|h] for all (z,2) e R™ xR (2.1)

and obviously an analogous estimate holds also for F(z,z). This permits us to say
that ¢ is well defined on X because of the Sobolev Immersion Theorem. Actually
the following holds:

Proposition 2.2. ¢ € C'(X,R).

Proof. We prove first that ¢ is Gateaux differentiable. Given A € X, by (2.1),
we get that 1|F(z,u + th) — F(z,u)| = 1| [ f(z,u + sh)hds| < [h(z)|(Ju(z)| +
|h(z)]) + c1Ai|h(z)|(Ju(z)|® + |h(z)|®). Being this last function in L*(R™) we can
use the dominated convergence theorem to get that lim;_o 3 |@(u + th) — p(u)| =
(u, h) — me f(z,u)hdz = @g(u)h.

We prove now that ¢{; is continuous. Let u, — u and {u,,} C {u,}. By the Sobolev
Immersion theorem there exists {un, } C {un,} and a function v € L2(R™) N
Lst1(R™) such that Un,, (2) — u(z) a.e. in R™ and [un,, (z)| < v(z) a.e. in R™.
Using again the dominated convergence theorem we get (Plc(unkj) — pg(u) in X*.

Since this can be done for any subsequence of {u,} the proposition is proved. [

Lemma 2.3. o(u) = 3|[u||® + o(||u]|?) and ¢'(u)u = ||ul|? + o(||u|?) as u — O.
Proof. If € > 0 then, by (2.1), | o f(z,u)udz| < (e + codellul|*T*72)||u||® from

which [fp. f(2,u)udz = o(||u|?). Analogously [,. F(z,u)dz = of||u|?). [

As a consequence we get a first compactness property of ¢:

dp > 0 such that if ||u,|| <2p and ¢'(u,) — 0 then u, — 0. = (2.4)

The hypotheses (f1)-(f3) are not sufficient to guarantee that the Palais Smale
sequences are bounded in X. In the following we study the behavior of the bounded
Palais Smale sequences of . If M C R™ is measurable then we put ||ul}; =
Jar VUl + |uf® dz.

Lemma 2.5. If u, — u weakly in X is such that ¢(un) — b, ¢'(un) — 0 then
©'(u) =0, p(up —u) — b —p(u) and ¢'(un —u) — 0.
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Proof. We prove first that ¢’(u) = 0. Let h € X with ||h|| = 1. Fixing € > 0 there
exists B > 0 such that ||A||.>r < € Let {un,} C {u,} and v € L?(Bg(0)) N
L*t1(Bg(0)) be such that u,,(z) — u(z) a.e. on Bg(0), |un,(z)| < v(z) a.e. on
Br(0). By (2.1) and the dominated convergénce theorem we get

' (w)hl = l¢" (uni ) + (v — un,, B) — o F@ ) = (o, un,))h de]

<o)+ [ (fm,0) = floun s
< o(1) + e / DB+ )l

< o(1) + callbllsn + IBIEE) € of1) + cale + &),
Since € is arbitrary the claim follows.
Let’s now prove that ¢'(u, —u) — 0. Since ¢'(un —u)h = ¢'(upn)h — me (f(z,un —
u)— f(z,un) + f(z,u))hdz, it is sufficient to show that sup| =1 | Jgm (F(@, %0 —u)—
f(z,upn) + f(z,u))hdz| — 0. Given € > 0 fix R > 0 such that ||u||.;sz < €. Then
supjpj=1 | Jgm (F(Z%n — ) = f(z,un) + f(z,u))h dz| < supypyzy | f, (- - Y del +
SUp|p =1 | f'zbﬂ(. ..)hdz|.
Consider the first addendum. Given {u,,} C {u,} there exists {unkj} C {un,} and
a function v € L?(Bg(0)) N L*t(Bg(0)) such that Un,, (z) — u(z) a.e. on Bg(0)
and [un, (z)| < v(z) a.e. on Br(0). We get |fBR(0)(f(a:,unkj —u) = f(z,un,, ) +
f(e,w)hda| < es( S5, o) 1F(@runs,) = F(@sun,,) + Flz,u)| T da) ][R
Since |f(:z:,'u,nkj —u) — f(.'z:,unkj) - f(:z:,u)[i;f'L < cs(lfvls—itl + |o|*t + |u|‘a’%l +
lu|**1) € L*(Bgr(0)) we can use the dominated convergence theorem to get that
IBR(O) |f(m,unkj —u) = f(@,un,, )+ _)"(:c,u)lgji;_1 dz = o(1). Considering that this can
be done for any subsequence of {u,} we actually get that SUP|h|j=1 fBR(o) |f(zyun —
u) = f(z,un) + f(z,u)||h| dz = o(1).
For the second addendum we note first, by the choice of R, j;sz flz,u)hde <
¢6 J s n [ullh] + [u]®|h] dz < cz(e + €*)||A]. Since f,(z,0) = 0 we also infer that

|F(@yun — ) — F(@un)hlde < cs / (14 fun — "™ + [un] ) [u || de

lzI|>R z|>R

s— 241 o §— 2+
< eo([ulliesr + ([ (Jun —ul* 7 u) 7 de) 5 + ([ (Jual" " [u])™* do)
Iz|>R {z|>R

=1 a1
< co(([ullieisr + ([ fun =l de)F ullsr + ([ [ual*™ de) = Jullieis =) | 2]
lz|>R lz|>R

1)l

< cme“hH .

The proof that ¢(un, —u) — b — p(u) is analogous. U
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Lemma 2.6. Let {u,} be a bounded sequence in X and suppose that there exists
p > 0 such that sup,cgm [p5 ) lu,|?dz — 0 as n — oco. Then u,, — 0 in LY(R") for
any q € (2,2*) asn — oo.

Proof. Given q € (2,2%) let § € (0,1) be such that ¢ = 2+ 6(2* — 2). By the Holder
ineaualty f, ultds = o, "=l do < (I, e~ o )

(1-6)

_ 1
L2(Bp(y))“ ”Lz (Bp()) ” ” 2(Bp(y))” ”if(Bp(y)) where

Vu € X.So |lullLes,@w) < vl

a2 2 a=D(n=2) _ g2

q 4 qn'

By the Sobolev Immersion theorem there exists A = A(g,m, p) such that
lullzaes, () < Aillullzzls, @y lluls,q YveX,VyeR™.

Assume now that ag > 2 that is ¢ > = + 2. We have

[ul? de < AfJJul| 2557, lull*e~? Vul? + [ul? da.
B,(y ( oY

B,(y)

Choosing a family of balls {B,(y:)}ien such that each point of R™ is contained in

at least one and at most k of such balls, summing over this family, we obtain

el sty < 3 ol < AT s [l dey = Sl
yEeR™ B,(y) i

< kA%|u||®? sup (/ lul? dz)?1 =) Vue X.
yER™ JB,(y)
Setting in the above formula u = u, we get u, — 0in LI(R™) for all g € [= +2,2%).

The proof now go on with another interpolation inequality.

If g € (2,9) (7 =2 +2), we have ¢ = 20 + (1 — 6) for some 6 € (0,1). By the
Holder inequality we have |[un|[Lq(-\m) < HunHLg(Rm)HunHL(ql(&m), for any natural n.
The lemma follows from the fact that u, — 0 in LI(R™). 0
Lemma 2.7. Let u, — 0 weakly in X such that ¢'(u,) — 0. Then, for any R > 0

we have |[un||zj<r — O and the sequence {u,} verifies either

@) up =0 or b)3p,n>0,{y.} CR™/ limsup |[unl|Zz(p,(y.) = 7-

n-——oo

Proof. Let R > 0 and let gg € C*°(R™,R) be such that gr(z) > 0 for any = € R™,
gr(z) = 1if z € Bg(0), suppgr C B3r(0). Cleatly [[ual%, o) = (¥n;gRUR) —
(Un, gRUR) > r- We prove first that (u,,grun) — 0.
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Since (un, grUn) = @' (vn)gRUn + Jom F(€,Un)gRUR dx and since ||grun| < c10, it’s
enough to show that [i. f(z,un)grundz — 0. But this is a consequence of the
Lebesgue dominated convergence theorem since suppgr C Bzr(0).

Therefore we have ”“n”ian(o) = o(1) — f|=|ng9'Rvu"u" dz — flleRgR(Iv’u’nP +
u2)dz. Since Jioizr 9R([Vun|? +u2)de > 0, to prove that [us|lp,) — 0 it is
sufficient to show that [

l=z|2 R

VgR'Vunun dz — 0.
This is true since ,

I fmzn VgrVunun dz| < (fnsmsm IVgrVun|? d‘”)%(fasmsm [un? dw)%
and since u, — 0 in L?(B2g(0) \ Br(0)).

The first part of the lemma is so proved. It’s easy to prove the alternative.

Assume that (b) does not hold. In that case lim,— o0 sup,cgm ||tnl|B,(y) = 0 for any
p > 0. Since {u,,} is bounded, by lemma 2.6 we get that u, — 0in L**!(R™). Since
[ f(z,un)unde < eHunHsz(Rm) + A;”un][;ﬁl(m), we get me f(z,up)undz — 0.
Therefore ||un||? = ¢'(un)un + Jzm F(z,un)un dz — 0 as we claimed. U

Therefore if u,, is a Palais Smale sequence which converges weakly to a certain
point u, then u, converges to v in H} _(R™). Moreover if u, does not converge to
u in X, then fixed any R > 0 we have liminf, o0 ||tn|jzjsr > 7 > 0. This mass =

cannot be smaller than a certain positive fixed value as the next lemma says.

Lemma 2.8. Let u, — u weakly in X, ¢'(un,) — 0. If there exists R > 0 such that

Hm sup,_, |[%nll|z|>k < p then up — v in X.

Proof. Fix T' > 0 such that |ul|zj>7 < £. Putting M = max{R,T} we have

by lemmas 2.5, 2.7, that ||u, — ul||zj<ar — 0. Therefore |jun, — u|* = o(1) + [Jun —

u||le>M =o(1)+ ££+p]]un|]|z|>M+ ”uanzDM from which we get lim sup ||u, —u|| <

2p. Since ¢'(up — u) — 0 we derive from (2.4) that u, — u. O
This is a first local compactness property of the functional which will be useful

in the following. From it we derive easily

Lemma 2.9. If diam{u,} < p and ¢'(u,) — 0 then {u,} has an accumulation
point.

Proof. Let diam{un} = py and T > 0 such that [lusl/j;;>7 < p — po- In that
case ||Unll|zj>7 < |[Un — v1ll|jzj>T + P — po < p. Since {u,} is bounded it has a

subsequence {un,} which converges weakly in X to a certain point u. Then, by

lemma 2.8, u,, — u. O
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84.3. The periodic case

Here we will study some properties of the functional ¢,.. Obviously all the
results given in the previous section remain valid for ¢.,. First of all we see how
the further hypothesis (f4) implies that the functional ¢, satisfies the geometrical

hypotheses of the mountain pass theorem.

By lemma 2.3 we just know that there exists » > 0 such that ¢, (u) > 172 for
any u € 8B,(0). Then we note that the assumption (f4) gives information about the
behavior of F, at infinity with respect to z. In fact, one can infer that given z; # 0
then if ;z: > 1 we have

F (z,2) > [Fu(z,21) —

2 E sy 2 R™ 2 >1 3.1
ﬂ—-221”zll +'B_2z Yz € 2L (3.1)

Lemma 3.2. There exists u; € E such that ¢, (u1) < 0.

Proof. Let (zg,20) € R™ x R be given by (f4), then §y = F..(z0,20) — ﬂ—'f_izg > 0.
By continuity there exists € > 0 such that F(z,20) — ﬂ"‘zzg > %50 for any z €
B.(2g). Chosen p € C°(R™,R™) with suppp C Be(zo), we define uo(t) = z0p(1).
Then ¢ (Aug) = )‘72”11.0”2 f4 (z,Aug)de — fB foo(z, Aug)dz where Ay = {z :
Ap(z) < 1} and By = R™\ A,. Then Ja, 1Fs(t, Auo)] < |Be(zo)| max{|F.(x,2)| :

z € R™, |z| < |z|}, whereas, by (3.1), fB (z,dug)dz > NP fB [Fo(z,20) —

Ef—2z§]|p!ﬁdm + )\zﬁ fBA uldz > %‘SOHPHL/S(BA)}‘@’ Therefore ¢, (Aug) — —o0 as
A — 400 and the thesis follows. O

This shows that the functional at infinity verifies the geometrical hypotheses
of the mountain pass theorem. Then, if we define I' = {y € C([0,1], E) : ~(0) =
0, w(7(1)) <0} and ¢ = inf er max,eo,1] Po(7(5)), we infer that ¢ is a positive,
asymptotically critical value for ¢...

Now we use again (f4) to show that the Palais Smale sequences of ¢, are in fact

bounded sequences in X.

Lemma 3.3. If {u,} C X is such that ¢/ (u,) — 0 and limsup ¢ (un) < 400,
then {u,} is bounded in E and liminf ¢(u,) > 0. In particular any Palais Smale

sequence for ¢, is bounded in E.

Proof. From (f4), we easily get that

————— )l ~ —Ilsom(u)ll [ull € po(u) VueX. (3-4)
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Now, given a sequence {u,} C X such that ¢/ (u,) — 0 and im sup ¢, (u,) < +0o0,
from (3.4) we obtain ||u,|| < C for all n € N, C being a positive constant. Conse-
quently we have that ¢, (un) > —C||¢., (un)H and this implies that iminf ¢ (u,) >
0. [

Using the periodicity we can now prove that the problem at infinity always
admits a non zero solution which is obtained as weak limit of a suitable translated

of the Palais Smale sequence given by the mountain pass theorem.

Theorem 3.5. The problem: (Py) —Au+u = f.(z,u), v € H'(R™), admits a

non zero solution.

Proof. Let {u,} be the Palais Smale sequence given by the mountain pass theorem.
By lemma 3.3 we can assume that u, — u weakly in X. If u # 0 then by lemma 2.5
the theorem is proved. Assume u,, — 0 weakly in X. Since Voo (Un) — ¢ > 01t cannot
be u, — 0 so the alternative (b) of lemma 2.7 holds and (up to a subsequence)
da; az > 0, {yn} C R™ for which lim,_ o Hunnizwal(h)) > as. Define v, =
un( = [yal) where [yn] = ([yn,a];- .., [¥n,m]). Then 9o (va) = ¢, pL (v2) — 0 and
lvnl| £ C. Let v, — v (up to a subsequence) weakly in X. By lemma 2.7 we have
””n_”“L'*’(BQIH(O)) — 0 therefore |]v||i2(3a1+1(0)) > ay > 0. So v is a non zero critical

point of ¢,. O
Therefore K., = {v € X\ {0}/ ¢! (v) = 0} # 0 and using 2.4 we have also that

véxgm v =X > 0. (3.6)

As we have point out in the introduction, the fact that the set of critical points
of the functional at infinity is not empty does not guarantee that the problem (P)
has non trivial solutions. We will prove that if the set of the critical points of the
functional at infinity is numerable then this forces the functional ¢ itself to have
infinitely many critical points.

To study better the Palais Smale sequences we introduce as in chapter I the

following sets of real numbers. Letting
Shs ={(un) CE : im¢'_(u,) =0, limsup g, (un) < b}

we define

3" ={lcR: 3(u,) € S s.t. poo(un) — 1}

the set of the asymptotic critical values lower than b and

Db = {r eR : I(un),(@n) € Sf;s s.t. ||[up — Up| — 7}
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the set of the asymptotic distances between two Palais Smale sequences under b.
The sets ®° and D® are actually closed subsets of R and we have:
(3.7) given b > 0, for any r € RT \ D? there exists d, > 0 such that [r — 3d,,7 +
3d,] C RT\ D® and there exists g, > 0 such that |@ (u)| > pr for any
€ Ar3d,,rrsa, (KL) N {pe < B
(3.8) given b > 0, for any I € (0,b) \ " there exists § > 0 such that l—61+4+8] C
(0,6) \ ®® and there exists v > 0 such that |p[ (v)| = v for any u € {b—-6<
Yoo < b+ 6},
where, if § C X and 0 <71 < 79, Ar,.1,(S) = UsesBr,(2) \ Br, ().

Using lemmas 2.5, 2.7, 3.3 and (3.6) together with the periodicity assumption
it is possible to characterize the Palais Smale sequences of p.
Lemma 3.9 Let {u,} C X be such that ¢ (u,) — b and . (un) — 0. Then there
are vg € K., U{0}, v1,...,v; € K., a subsequence of {un}, denoted again {un},

and corresponding sequences {y.},...,{tf} € Z™ such that, as n — co:

lun — [0 +v2(- —yp) + - +or(- —ym)ll = 0
Poo(V0) + -+ Poo(vk) = b
vl = 400 (j=1,...,k)
lyi, — il = +o0 (87 7).

Proof. By lemma 3.3 {un} is a bounded sequence in X and we can assume that
3limp oo ||un]] € R and that u, converges weakly to some vg in X. If up — o
the lemma follows. Otherwise the case (b) of the alternative in lemma 2.7 holds
for the sequence u, — vo: 3p,n > 0, {yn} C Z™, such that, up to a subsequence,
limp— oo ||en—20 Hig(Bp(yn)) > 7. Putting u}, = (2, —v0)(-+yn) We observe that there
exists v; € K., such that ul — v; weakly in X, imp—oo [[un — vo — v1(- —%2)|I> =
limpen ||unl|2 = |Jvol|? = |Jv1||?. If imyen ||un]|2 = ||vol|? + ||v1]|* the lemma follows
because in that case 0 = liMp—oo Poo(tin — Vo — v1(+ — ¥3)) = lIMn oo Pool(Un —
50) — pultr) = b p(0) — pu(wr). T limne fuall? > [l + a2 we have
that the sequence {u, — vo — v1(- — y1)} verifies the case (b) of the alternative in
lemma 2.7 and we can continue as above. After a number of steps not greater than

im0 ||un|l/inf k., ||u||, the lemma follows. 0

This characterization reflects on the structure of the sets ® and D®. In fact we

refer to chapter I to prove that

B = {3 ¢ (v:) 1v:€K e } N [0, ]
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b
D® = { (305, o= 11%)" /% kEN, :,5: €K oo U0}, s 0o (9) Kb, 3 s 000 (31) <D )«

Using the hypothesis (%) given in the introduction this permits us to bound
from below the norm of the gradient ¢’  in large regions of X. In fact if we assume
(%) there exists ¢* > ¢ such that K< is countable
then both the sets D¢ and ®° are countable too. Being D¢ and ¢ also closed
we then have that

D¢ does not contain any neighborhood of 0in R™. (3.10)

10,¢*[\@°" is open and dense in [0, ¢*] (3.11)

By (3.7) and (3.10) we have that around K¢ there is a sequence of annuli of radii
smaller and smaller on which there are not Palais Smale sequences at a level less
then or equal to ¢*. Analogously, by (3.8) and (3.11), fixed any € € (0,¢* — c) there
exist two closed intervals [ay,b:] C (c — €,¢) and [as,b2] C (c,c + €) such that the
sets {a;1 < ¢, < b1} and {az < ¢, < by} do not contain Palais Smale sequences.

Using (3.7), (3.10) and the local compactness property given by lemma 2.9 it
is possible to show as that the functional ¢, admits a local mountain pass type
critical point (see [PS]).

We refer to §1.4 for the proof of the following
Lemma 3.13. If ¢, verifies (*) then it admits a non zero critical point of mountain
pass type. In particular there exist ¢ € [¢,c*) and 7 € (0,p) such that for any
sequence (r,) C R4\ D*, r, — 0 there is a sequence (v,) C K (¢), v, — o €
K. (¢) having this property: for any n € N and for any h > 0 there is a path
1n € C([0,1], X) satisfying:
(1) 1n(0);1n(1) € 8Br, (va);
(i) 4n(0) and v,(1) are not connectible in B:(%) N {p.. < &};
(z”) rangey, C Brn (vn) N{pe < T+ h};
(iv) rangeyn N A, 14 . (vn) C {pe < T~ hn};
(v) suppvn(s) C [—Ry, R,] for any s € [0,1],
where R, > 0 is independent of s, hn = id,, pr, and d,, and p.,, are defined by

(3.7).

Remark 3.14. Clearly the property given in this sections are true for all the
functionals ¢, (« =1,...,1) if the assumptions (*,) are verified. In the following we
write ¢, as the mountain pass level of ¢,, ¢, as the local mountain pass level near 7,

etc. etc.
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84.4. The construction of a pseudogradient vector field.

In this section we will study some consequences of the assumption (f7) with
which we ask that there exist A;,...,4; C R™, large at infinity on where f is
asymptotic to [ different periodic and superquadratic functions f1,..., fi as |z| — oo.

First of all we show that by (f7) if a function u is translated in a region where
f and fL are close one to the other then ¢'(u) is near ¢!(u) (here ¢,(u) = |u|®> -
Jgm F.(z,u)dz is the functional associated to the function f, (v =1,...,1)).

Lemma 4.1. For any § > 0 and C > 0 there exists R > 0 such that if Hu” < C and
suppu C A, \ Br(0) then ||¢'(u) — ¢} (u)|| < 6.

Proof. For any € > 0 we choose R > 0 such that, if suppu C A4, \ Br(0), we
have |f(z,u(z)) — f.(z,u(z))] < e(Ju(z)| + |u(z)|?) for almost every ¢ € R™. Then
lo'(u)h — @l (u)h]| < efAl lul|h| + |u]®|h| dz < ecigllu]|||k]| and the lemma follows. []

Given k, N € N we say that p = (p1,...,pr) € P(k,N) if p; € Z* for any j
and |p;| > |pj—1| +4N? + 6N for j > 2.

If p € P(k,N) we define the annuli #; = {|z| < 3(|p1| + |p2])}, U; = {3 (Ipj] +
ps-11) < [e] < 215l + o)} (G = 2,-.,%) and M; = {|pi| + 2N (N +1) < [o] <
|pis1] —2N(N + 1)} (z = 1,...,k)), where |pg+1| = +oo. Since p € P(k,N) the
thickness of the annulus M; is alway greater than or equal to 2NV.

Givenr >0,p € P(k,N), V = (Vi,...,Vi) € X1, J = (1,...,58) € {1,...,1}F

we define the set
Bo(VipiJ) ={u € X/ max IIu-VJ.( pi)llu; <}

It is easy to see that if IV is sufficiently large (depending on V and r) then
B.(V;p;J) is a nonempty open subset of X. Moreover the elements of B,.(V;p;J)
are multibump functions of the mixed type. In fact if w € B,(V;p;J) then u is near
the function Vj;(- — p;) on the annulus Z/('

Defining ¢, i(v) = 1|u|l?. - fu (z,u(z))dz, v € X, (¢ = 1,...,k), (¢t =
1,...,1), we investigate some properties of the functionals ¢ and ¢, ; on'the set
B.(Vip; J).

We note that for any given V € E', » > 0, if N = N(V,r) € N is such that
”V&”[z|>N < r for any ¢ € {1,...,l} then given k € N, N > N, p € P(k,N)
and J € {1,...,I}* then Yu € B.(V;p;J) and Vi € {1,...,k} there exists j €
{N +2,...,2N + 1} such that

472

lellin<ial-pai<G+on < 57 - (4.2)
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Therefore if u € B.(V;p;J) then for any ¢ € {1,...,k}, the annulus //; contains
two annular regions of thickness N, symmetric with respect to p;, over which the
norm of u is small as we want if NV is sufficiently large. Moreover, by construction,
M; never intersects any one of these annuli.

We call j, ; the smallest index in {N +2,...,2N + 1} which verifies (4.2).

For any € € (0,7) there exists N, € N, N, > max{N(V,r), 2} such that

V2 472
LGi,ax,l{“ L”|:c]>N€ ) F} <

€

£
5"
Soif k€ N, N > N, and p € P(k,N), then Vu € B.(V;p;J) and Vi € {1,...,k}

we get that
€

e ll5, N <tz lpsli<GatnN < 5 - (4.3)
Then, fixed u € B,(V;p; J), we define the following subsets of R™:
Eyi = {lpil + (ju,i + DN < 2| < |piva| = (Gu,itr + )N} E=1,...,k),
Eu = U?:lEu,z b '

E,i={zeR™ / dist(z, E,;) <N} (i=1,...,k),

-~ -~

E, = Uéc:lEu,i ,
Fui=UN(E\E,) (i=1,...,k).
With this notation (4.3) can be rewritten in the form

lull%, , < :;- VueB(VipJ), Vie{1,...,k}. (4.4)

We plainly recognize also that

”u”%u,;\Eu,i <e YueB.(V;p;J), Vie{l,...,k}. (4.5)

By construction M; C E, ;, therefore the thickness of F, ; is greater than or
equal to N Vi € {1,...,k}, Vu € B.(V;p;J). This is true also for the connected
parts of the sets F, ; and Eu,i \ By i

For: € {1,...,k}, we define the cut—off functions:

1 z€ekl,;
Bui(z) = {0 z ¢ Ey;

with B,,; continuous on R™ and linear if restricted on the connected parts of E, \ E,
intersected with any straight line passing through the origin. We put also £, = 0.
Then, for 7 € {1,...,k}, we set:

— _Jo z ¢ U;
ﬂu’i(m) - {1 - ﬂu,i—l - ,Bu,i zel;’
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If B is any one of the above cut—off functions then |VA3(z)| < —]lv, for a.e.
z € R™, therefore since N > 2, it is easy to see that, if A is measurable C R™
then ||fu|% < 2||u||%, Vu € X. Moreover if u € B,(V;p;J) and i € {1,...,k}, then
by (4.5), we get |

(u, Buiu) = [ully,  + / (Vi Vuu + Bui(|Val + [ul?)] de >
1E“"\E""‘ ) (4.6)
>l — glels, s, > Il - 3¢

Now we define, for 7 € {1,...,k}, the functions

xi(uw) = {1% lull%, ;> e

otherwise
!

and we set finally

k
W, = ZXi(u),Bu,z’u .
=1

If we define the finite cone C = {y € R™; |y| < %,% < y1 < 3} then the
embedding constant relative to the immersion H*(2) — L**t1(Q) can be chosen to
be independent of Qif Qis an open set of R™ which verifies the cone property with
respect to C.

This implies, by (£2) (f3), that we can fix 7y € (0, min{F,+/2 — 1}) such that if
u,w € X then

1 1
[la<r = [ Flewde < glulfand [ flo,wwdo < Gllullalwla (47

for any open set A C R™ which satisfies the cone property with respect to C. We can
assume that 7y is such that (4.7) holds also if we consider f, (v = 1,...,1) instead
of f.
Using (4.6), (4.7), we can prove now that:
Lemma 4.8. Let 7 € (0,1rg) and 0 < e < 72, Then Vu € B,(V;p;J) we have
@ (WWa 2 § 35 xi(w)(lull,, — ¢,
el Wa 2 § Ty x5 () ([ellfinm, ; —€)-

Proof. We have that N > 2, and the thickness of the annuli E, ; and of the ones
whose union is E, ; \ E, ; is greater than or equal to N. Therefore these sets sat-

isfy the cone property with respect to C. Moreover |u|g,; < 47 < 7o (in fact
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1

lullg, ;ru; < 2r Vie {1,...,k}) and lullz, \£.; < €7 < ro. Therefore, by (4.6),
and (4.7), we get

Ma—

' (u)Wu > )y xj(u)(|ullf, 5 ——/ f z,u)ude — /}; Ef(:c,ﬂu,,-u),@u,iu dz) >

1 u,i \Eu,;j

] Tl — e 10> 1S wiul,, - 9.

.,
Il

Ma-

S,
I

The computation is perfectly analogous for ¢, ;. U
By lemma 4.8 we always have that

I)—‘
N =

> @, -9 = -3

k
+2 5 2k, - 92
i=1 U g, <€)

and analogously

ol (u)W, > —g Vie{l,...,k}

for all w € B.(V;p; J).

Moreover if ||u||y;nE, ; is greater then 2¢7, for a certain couple of index (4,7), then
W, indicates an increasing direction both for ¢ and ¢, ;. We note also that W, has
support in a region where each Vj; (- — p;) is small and it holds that < W, u >p,>
+llull3, for any w € B,(V;p;J) and for any i € {1,...,k}.

Given J = (j1,...,7%) € {1,...,1}*, R > 0 we say that p € Pg(k,N,J) if
p € P(k,N) and Bynv+1y(pi) C 45 \ Br(0) (4 =1,...,k). .

Let b, be any nonzero critical level of ¢,, and r € (0 ro)\U _.D;*,71,75,73 be
such that » — 3d, <7 <Py <73 <7 +3d, < 47'0 where d, = min{d‘;¢ =1,...,0}
(t=1,...,0).

Let also b_,, b, , and § be such that Jb_, —§,b_ ,+26[C]0,b,[\& and b4, —
8,b4,, +26[Clb,, e[\ & . ‘

Proposition 4.9. There exists p = p(r) > 0 and ¢ = € (r, b4 ,,b-,,6) >0, R>0
such that:
Vv, € K,(b) (t=1,...,1),Ve€]0, e there exists N € N, such that, for any k € N,
J = (j1,...,jk) € {1,...,1}* and p € Pg(k,N,J), there exists a locally Lipschitz
continuous function W : X — X which verifies
(Wo) IW(u)|lu; <2VueX,j=1,...,k,

o' (u)W(u) >0Vue X,
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Wu)=0Vue X\B(Vip;J) (V= (v1,...,9)),

(W1) @ ()W) > pifmy < o= o3, — p)ls < 720 % € Bra(Vimsd) 0

ko byt
Niz=1®jii ,

(W2) @}, (W)W (u) 20 Vu € (), 450 \ g, 45 ) U (9., =3+ \ i),
(Ws) (u,W(u))nr, >0Vje{l,...,k} if max|ul|f, > 4e.
Moreover if KN B,,(V;p;J) = 0 then there exists pp > 0 such that

(Ws) @' (u)W(u) > pr Yu € B, (Vip; J). |
Proof. Let ry =7r; — %(rl —r+3d,), 73 =73 + %(7‘ + 3d, —73) and let g, be given
by 3.8.
Let also v = inf{|lgi(u)l| / u € (p. ++ T2\ @+ =8 U (0.0 H20\ @, 0= "0)50 =
1,...,1}; by remark 3.9 we have that v > 0.

Let C = 2sup{||u||; v € K,(b.), t=1,...,l} +7¢; By lemma 4.1 there exists & > 0

such that if [u]] < C and suppu C 4, \ Br(0) then ||¢!(v) — ¢/(w)]| < 1 min{v, ur}.
1 . ri—r+3d, r+3d,—r - v 3
Letef:mm{(‘lg3 ),(+312 3),%,33,%2—

Let’s fix v, € K, (b) (¢« = 1,...,0), e € (0,&), k € N N > N, J =
(F1s--+»J%) C {1,...,1}* and (p1,...,pk) € Pr(k,N,J).
We construct the vector field W, on B, (v;p;J), using lemma 4.8 with r = r3. We

will now define another vector field analyzing the different cases.

case 1) w € (Bru(Vim; 1)\ By (Vips D) N (Vg 0¥

We set Zy(u) = {i € {1,...,k} / |lu —v;.(- — p:)||; > 71}. Obviously Ty (u) # 0.
Let 2 € Zy(u) and &; = —mm{rl —71,Ts —T3}.

We consider the two possible subcases:

lulluine, =& or |lullu B, <&
In the first one, using lemma 4.8 and the fact that e"’ <3 & we get (putting Eq = 0)

1 €
oW > S(lullf, , +lullz,, —200- D> xiluwz >
{t/llulg,  <e} (4.10)
4.10
1 € 52 52 4
"(“u“u NnE, — 2¢) — Z xi(w)z > 2L _9ex> 2L
2 2 2 4’
{71l  <e}
and analogously
€f ¢
@ (W)W 2 2 —2e > il (4.11)

Forallu € (BT’B(V;pv )\B"‘l(v’p’ J))ﬂnz 1 (P_l;:l.h if ”u”l,{,»nEu >¢iandi € Il(u)
we put W, ; = 0.
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In the second subcase we firstly note that, arguing as in (4.3), there exists j, €
{1,...,N} such that ”u”?uNS‘I_PiIS(J.u"'l)N < 5. We put B, = B(;.+1n(pi) and
B, = Bj,n(pi) noting that dist(E’u, Eu) > N and therefore that the set U,-\(BuUE',,)
has the cone property with respect to C. |

We define also the cutoff function 7, € C(R™,R) such that n,(z) = 1if ¢ € B,
7u(z) = 0if z ¢ B, and in such a way 7, is linear if restricted on the connected
parts of B, \ B, intersected with any line passing through p;.

Consider the following alternative:

i) H“Hu,-\(faquu) 2 %101” ii) “’““u,-\(é,,uéu) < %
If i) holds we put Wy ; = (1 — 74)8, ;u and by (4.7) we get

1 & £

2 2 1 1

@' (u)Wa,i > HUHUg\(Bquu) —3e— g”ullui\(ﬁuugu) > e 3e > 16
Analogously we get

- &
Sogg,i(u)wu’i 2 -ﬁ .
We finally observe that
: I 1 é% € 612.
min{p} (u)Wha,i + Wa), 0" (u)(Wa,i + Wu)} > 16 3 > 39" (4.12)

If ii) holds we claim that n,u € Ar_3d, r+34,(vj; (- —pi)) N ga;: .

In fact we firstly note that since 3¢2 — 3¢2¢; — Te < 72 — (r — 3d,)? we have

e =05 = p)I* 2 llw = w5 =p)lB, =11 Mo = N+ Wz =l I+

2>

I W zavsy = I IBa5,
2
>l —(ff—{—Ze%fl +e)——3e—(§41— +e%£1 +¢€)—3e=

5
=73 — fo —3e3¢y — Te > (r —3d,)%.
On the other hand since %51 + 73 + 3¢t <7+ 3d, we get

Imue—vj: (- = pi)|)? < lInuu — vy, (- — pi) |7, + € <
< U = mu)ullus + v —v5(- = pi)llu)? + € <
1
< (lellwsnp, + llullF: + lullyy ooty T 2% lullgas, +73)° +€<

3
<(Gat+rat 3¢7)? < (r + 3d,)?.
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To end the proof of the claim we note that, since ||uly,\5, < 370, by (4.7) we
have that %Hu“lzli\Bu - fui\Bu Fj.(z,u)dz > 0. Therefore pj,(nuu) = ¢j; i(M.u) <
wjii(u) + |]'LLH21§H\Bu < @ji,i(u) + e < by j + 26 < cj; as we claimed.

Therefore there exists Z,,; € X, || Z4,i]| £1 such that

@ () Zy,i = @5 (nuu)Zu,; > 5.

Since p € Pgr(k,N,J) we have suppn,u C Aj;, \ Br(0). Moreover ||p,u| <

27 ||luly; < 27 (||vj;]| +70) < C, which implies by the choice of R that
@' (M) Zu,i = @5, (M) Zu,i + (9 (nuv) — @5, (Muu)) Zu,i 2 5
As last step we note that

|05, i (M) Zu i — @, (W Zui| = | < 0wty Zui >50p, — < UMului >5,\B,

- /_ (fji(zvnuu) - fj,-(m,'LL)T]u)Zu’id:ﬂ <
Bu\B,

2 1 1 Hr
< F”’““z‘au\Bu + Z“u“Bu\Bu Se? < )
and the same argument gives also
! Z 7 .| < Hr
| (Muu) u,i — P (U)ﬂu u,zl =%
From the two above inequality it follows that
. ’ ' ' Hr
min{¢ (u)"]uzu,ia‘Pj,-,i(u')nuzu,i} 2 g
In this case we put W, ; = %nuzu,; observing that
i ! ! By € Kr
min{p (v)Wa,i + Wa), @5 ;(u)Wa,i + W)} > — — = > = (4.13)
i 16 2 7 32
We now set 2p = min{ £, g—g} and
' . koo byt
Vu,l = { Wy + ZiEI1(u) Wu,i U € (Bra(v7p7 J) \ BTI(V,p, J)) n ni:‘:l Piiri
0 otherwise

b+,ii+§§5'

obtaining by (4.10)-(4.13) that Vu € (B, (V;p; J) \ Br (V;p; J)) N ﬂi-;l Py

(P,(u)vu,l > 2u
@5 ()1 > 2 Vie I

(w, Vi) = (u, Wau)ag, >

v) (4.14)
1
EH“”?\{, [=0,...,k.
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We also note that ||Vyu1llu; < |[Wa,illus + [[Wallu, < \/-(1 +17) < 1 for any z €
{1,...,k}.
k biji+8
case 2) u € By, (Vip;J) N (Uizi(9iiidoy )
We put T () = {6 € {11, B} /u € (o)t} and fix i € T} (u).

Fixing also ¢2 = % it can be either

lullwire, 2 €& or |ullune, < &2-

In the first subcase, considering that €; < 52 , we get as above that

@' (u)Wy > §€§ —2e2 %52 and ‘Pj,-,i(u)Wu 2 %’52 —2e2 %fg .
For all u € By, (V;p; J) N (UL, (vj, i )b+ it ) and 7 € Zy(u), if ||u)lw;nE, = & we put
Wu,z' =0.
In the second subcase we proceed as in the case 1 considering the alternative

i) [ellunBaug,) = % or i) l[ulluB.08.) < 2.
If i) holds then putting W, ; = (1 — 14)B, ;v arguing as in case 1 we get

min{e'(w)(Way,; + W, ),LpJ' W)W i + W)} > 52; . (4.15)
If if) holds then we claim that 7,u € (¢j,), 715 .
In fact
lullz = muullz, < lelliinp, +lullZ, ; +1ul?y z08.0T
Ful . + Il 5, < 28 +2¢
and

/Fji(m,u)—Fji(m,nuu)d:c = / :Fji(a:,'u,)d:c—F
U; 174

Fji (z,u) — Fj;(z,quu)dz <
i\Bu B,

Lo 2 L2 1 .2
< g””'lu,-\éu + '2'”ul|j9u\Bu < 5(52 +e).
We finally derive that
)i i) = @jii(muu)] < & +e<§

which implies n,u € (¢}, i )b+ ”+56 as we claimed. So there exists Z, ; € X, ||Z, ]| <
1 such that <pji(77uu)Zu,; go]l,’,(nuu)Zuﬂ > Z.
As in case 1, since suppn,u C Aj; \ Br(0), we get ¢'(nuu)Zu,; > 5.
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. . . 1
Moreover, again as in the case 1, since €7 < {5

. v
min{ ()7 Zui @, i(W)muZu,it 2 3
and we put in this case Wu,,- = %nuZu,i noting that
v o €e_ Vv
min (! (u)(Wa 4 Wat) ol @)W + W)} 2 = S22 (416)
Let now v = min{, %} and
= by +6
Vuz = { W + Ziezj(u) Wi u € Uk, (@i )bij' NBr(VipJ)
0 otherwise
obtaining, as in the case 1), that Vu € Br,(V;p; J) N (Ule(tpji,i)zrj‘:-*.&),
‘P'(U)Vu,z > vt
@ i(WVuz 20T Vi€ I (u) (4.17)

1
(u, Vu,2)at, = (u, Wa)ag, > E““H?\L 1 €{0,...,k}.

As in the case 1) it is easy to prove that max; Wauzllu: < 1.
+6
case 3) u € B, (Vip;J)N (Uk 1(‘P1x,z)b_ h. )

As in case 2) we put & = &, v~ -—mm{az, 3 ,andI (u) = {iE{l Lk} Jue

b- ; b_
(¢ji i b_'j.: }, getting that Vu € B, (Vip;J) N (U (@i ’f ) there exists

Vu 3 € X such that max; ||V 3|y, <1 and
' (u)Vu,s 2 v~
@ i(WVus 2v7 Vi€ (u) (4.18)
(0, Vashan = (W, > plully 1€ {1 b}

We put Vus = 0f u ¢ Bry(Vips /) 0 (U (03050
case 4) u € B, (V;p; J).

In this case we distinguish between the two subcases:

2
g&};HUIIM de or max fluflyy <de.

In the first case, if we have [|u|}; = maxo<i<k |lul|3;, > 4e, we get using lemma 4.8
that

W > S(lully,, — 9~ 5e2 5l -9 - Fe= ¢
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and we set V, 4 = W,.

In the second case, by the local compactness property of ¢ (lemma 2.8), we obtain
that if K N B, (V;p;J) = 0 then there exists V,IL € X, ||Vull €1 and there exists
py > 0, independent of u, such that ¢'(u)V, > £:. We set Vy 4 = V.

Let also Vy 4 = 0if u ¢ B, (V;p; J)

We can conclude that if put 2u; = min{e, %,&} we have Yu € B, (V;p;J) that
©'(w)Vu,s > 2pr and if maxj=y,.. & Hu||?uj > 4e€ then '

1
('”'7Vu,4>Mz = (’”ﬂqu}J\It > Z”u”?\h I €{0,...,k}. (4'19)

For v € X we put V, = Z?:l Vu,; noting that max; ||Vy||u; < 2. Then the proposi-
tion follows with a classical pseudogradient construction, by using a suitable parti-

tion of unity and suitable cutoff functions.

84.5. Multiplicity result.‘

In this section we will state and prove the main Theorem.
Theorem 5.1. Assume that (f1)-(f5), ({7) and (*,) (« = 1,...,1) hold. Let v, be
the critical point of ¢, (v = 1,...,1) given by 3.14. Then for any » > 0 there is
N €N, R > 0, such that for every k € N J € {1,...,k} and p € Pr(k,N,J) we
have KN B,.(V;p; J) # 0. |

Proof. Suppose the contrary, then there exists 7 € (0, %) such that for any N e
N, R > 0 there are k € N, J € {j1,...,jx} and p € PR(k,J\.f,J) for which
KnBsi(VipJ) =0 (V = (v1,...,u)). Let (v5) C K,(&) and (r,) C R, be
the sequences given by 3.14. Since v, — v, and 7, — 0 we can choose n € N such
that ||y — .|| < I, 7o < £ — 3d,, and Ba,,(v4) C Bs(%,). In particular we have
that By, (Va;2;J) C Ba(V;p;J) (Vi = (v1,...,91)).

Fixing this n, fix also any r_,r,r4 such that r, —3d,, < 7_- < r < r; <
rn +3d,, and fix c_,, ¢4 ,, § such that Je_ , — §,c—, + 28[C]c, — imin{hn,,u(r —
r )L e\& and Jey, — 8¢y, + 26[ C 5, min{c?, &, + Lu(r — r_)}\ O

By 3.14 we can choose v, € C([0,1],X) such that

() 7.(0),(1) € 0B, (v) Nl T3
(i) 7.(0) and +,(1) are not connectible in {¢, < &} N Bz(v,);
(iii) rangey, C By, (v;,) Nt
() rangey, NA, _14 . (v)C T
(v) supp~.(s) C [-T,T] for any s € [0,1], being T > 0 independent on s.
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Fix 0 < € < min{ez, 3(E—c—,.), 3d2_}. We can also assume, enlarging T if necessary,
that ”v:‘lllzz.lZT < £ and, we fix an integer N; > max{T, N,4} where N is given by
proposition 4.9 for these value of 7, by, = ¢y ,, b, = c—,, £ instead of € and V,,
instead of V.

If R > 0 is given by the proposition 4.9, since X N B, (V;p;J) = 0 for a p €
Pr(k,N,J), there exists a locally Lipschitz continuous function W : X — X which
satisfies the properties (Wy)-(Wy). Let us consider the flow associated to the follow-
ing Cauchy problem

%(s,u) = —W(n(s,u)) , n(0,u) = u.

Plainly, by (W) for any u € X this Cauchy problem admits a unique solution 7(-,%)
- defined on R™ and the function 7 is continuous on R* x E. Moreover, the function

s +— ©(n(s,u)) is nonincreasing. |

We define the function G : Q = [0,1]* — X by setting G(§) = ZLI v;: (0:)(- — pi)

for 0 = (01,...,0,) € Q. Weput F? ={0ecQ :0;=0}and F} ={0 e Q : 6; =1}

and we note that G(0)|y, = v;,(0) if 8 € F?, G(0)|u, =v;;(1) if § € F}.

Moreover G(8)|u; = 7;;(6:)(- — pi) and suppy;;(8:)(- —pi) € [-R+pi, R+pi] C
U \ (M; U M;_y). Therefore p;, :(G(8)) = ¢j;(7;;(6:)) for any i € {1,...,k} and for
any 0 = (61,...,0r) € Q.

To prove the theorem, we make the following claim.

Claim. There exists 7 > 0 such that the continuous function G : Q — X given by
G(9) = n(,G(8)) satisfies:
(vi) G = G on 8Q;

(vii) max; ||G(0)3,, < € for any 6 € Q;

(viii) there is a path ¢ inside Q joining two opposite faces F;O and F} such that, along
&, the function ¢j; o G takes values under ¢ j; + € namely: 4 € {1,...,k} and
¢ = (b1,---, &) € C((0,1],Q) such that £(0) = 0, &(1) = 1 and G(£(s)) € ¢ 7

for any s € [0,1].

Assume the claim holds and introduce a cut—off function x € C(R™,R), such that

x(z) =0ifz & U;, x(t) =1if t € U;\(M;UM;_,) and linear on the connected parts

of the intersection of any line passing through the origin with the set Z;N(M;UM;_, ).

Define g € C([0,1],X) by setting g(s) = xG(£(s)) for s € [0,1]. We observe
that, because of (vi) and (viii) we have g(0) = xG(¢(0)) = xG(£(0)) = v;,(0)(- —p3)
and similarly g(1) = 5;,(1)(- — p;). We have also that the path g is contained in
the ball Bz(vj,(- — p;)). Indeed, first of all ||vf§ — ;|| < % < I. Secondly, since
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supp gj;(s) C U;, € < 1d?_ and since By, (Vn,p,J) is invariant under 7, we get

lgs: (s) = o3 (- = p)II* < llgis () — v (- = pa)llFy, + € <
< max(Ix(G(6) — vz (- = pi))llu +2¢)° <
72
<2ry + € +e<4r <T
Translating by —p; the path g, we get a curve joining 7;,(0) with v;(1) in
B#(vj; ). Showing that on g the functional ¢;; remains under the level ¢;; we will get
a contradiction with the property (%) of vj,.

To prove this, we notice that
= 1
23 (9(5)) = ¢5:1(9(s)) < 5 3(GE)) + SM9(Znanuns_p+

* /l;;n(M;uM;,l) Fin(2, G(E(2))) = L{”(AI;UAI;_I) Fj;(z,9(s))

Bj)_r (viii), wj;,;(@_(.f(s))) < c¢_ j; + €. Moreover, by (viz), %I]g(s)||§1?n(]\{?u]‘[;_l) <
IGEEDIs + IGEEDIRL_, < 26 Finally,
Juorriong, ) [V (& GES)] < NGE 2 narons, .y < 2€

(5.2)

and
fu;n(M;Uz\p 1)1 Fj, i(z,9(s))| < 2”G(£(5))”u~n(1\l UM;_,) = < de.
Putting together all these estimates in (5.2), and con51der1ng that e < 3(¢—c_),
we finally get that ¢;(g(s)) < c— j, + 9e < ¢, , which contradicts ().
To check the claim we firstly note that the properties (vi) and (vii) are true for any
7 > 0, and follows easily from (W>) and (W3).

We divide the proof of (viil) in some lemmas.

Lemma 5.3. There is 7 > 0 such that for any uw € Br_(Va;p; J) N ﬂz 1 <p_1+ Ji there
exists © € {1,...,k} for which n(r,u) € 90

Proof. Set o = 2diamtp(Br+(Vn;p, J)). Smce (,o( r+(Vn,p, J)) is a bounded set,
o < 4oo. Put 7 = -2 and let u € By_(Va;p;J) N ﬂl_l <p;+l” By (W2) the curve
s — n(s,u) remains in ﬂl 1 cpJf" Moreover it must goes out of B.(V,;p;J) at

some 5 €]0,7[, otherwise, by (W),

o(w) — plntr,w) = [ (s, w))W(n(s,u))ds > pir = o

in contrast with the definition of o.Then, there are 7 € {1,...,k} and an interval
[31,52] € 10, 7[ such that ln(s1,u) — v (-~ p2)llus =, [In(52 )~ (- — i) =
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and r— < ||n(s,u) — o3 (- — p;)|ly; < 7 for any s €]s1,52[. Then by (W1) and since
by (W2) n(s,u) € go;:"{ for any s > 0, we get

v i(n(s2,u)) < pji(n(s1,u)) — fsz ¢};,z(n(5,U))W(n(s,u))ds < 4,4 — M52 — 1)

But since ||W(n(s,u))|l; < 2 for any s > 0 we get also

r—r < lnfonyu) = (ss )l < [ s, u)lls < 2sz — =1)

81

from which ¢ ;. ;(n(s2,u)) < ¢t ji—sp(r—r_) < c— j. By (W2) we get that n(s,u) €
go;;%jr for any s > s, and in particular that n(r,u) € go;;%h. O
Lemma 5.4. For any 0 € Q thereis i € {1,...,k} such that ¢; ;(G(8)) < c— j;-
Proof. Assume first that G(8) € B,_(Vn;p; J). Then, since by construction G(6) €
ﬂi-;l go;:’ij" , we obtain the result by lemma 5.3.

In the other case there exists 2 € {1,...,k} such that

Tn = %drn <r_ <|G(8) —v¥ (- — pi)llu; =
= 173 (8:)(- — p3) — w5 (- — p)lleey < |75 (62) — o3 |l

so using the properties (%) and (iv) of 7;, we get
_ 1
©5::(G(8)) = @5 :(v(0:)(- — 73)) = 5 (V(8:)) <€y = 5hn S e

By lemma 5.3 we then have that (s, G(8)) € (,o;—'.j? for any s > 0 and the lemma

follows. " O
Now we can conclude the proof of property (viii). We proceed by contradiction as-
suming the contrary. That is, for any 7 € {1,...,k} the set D; = (j:i0G) e+
€, +0o| ) separates F? from F} in Q. Let C; be the component of @ \ D; containing
F}! and let o; : @ — R be the function given by
oi(0) = {dis’?(é),Di) %fGEQ\Ci
—dist (4, D;) if 8 € C;.

Then o; is a continuous function on @ such that oi|pe > 0, oi|pp <0 and () =0
if and only if # € D;. Using a theorem by Carlo Miranda (see [Mir]) we get that
there exists § € Q such that o;(§) = 0 for all 7 € {1,...,k} which means that
N¥_, D; # 0. But this is in contrast with lemma 5.4. O
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