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1. Introduction and Summary

The notion of statistics plays a fundamental role in the theory of elementary parti-
cles, its importance being related with the even more simple concept of ”indistinguish-
able particles”. This concept does not seem to play any important role in classical
physics, but gives rise to far-reaching consequences at the quantum level. The dynam-
ics of an assembly of identical particles in Quantum Mechanics is influenced not only
by ”conventional” forces but also by the particle statistics, which in some sense can
be seen as an additional interaction. In (Quantum) Statistical Mechanics a system of

fermions acts like a classical gas with repulsive interactions, while a system of bosons

"sta-

acts like a classical gas with attractive interactions. The significant role of these
tistical forces” in physics can be inferred remembering, for example, Pauli’s exclusion
principle which forms the basis for the explanation of the periodic table of the atoms,
and the concepts of Bose condensation and Fermi surface in the theories of superfluidity
and superconductivity. |

In three spatial dimensions the only possibilities are Bose and Fermi statistics, the
(covering of the) rotation group being SU(2). But in two spatial dimensions particles
can carry any real spin, the rotation group being U(1), and due to a generalized spin—
statistics connection they can obey arbitrary statistics: under interchange of two parti-
cles the quantum mechanical wave function can pick—up an arbitrary phase. The idea
of fractional statistics in D = 2 + 1 dimensions appeared rather recently in physics 12!
and it became popular only through the work of Wilczek [#l, who called particles with
strange spin and statistics anyons in that they can carry any spin.

Apart from opening a new research channel the introduction of anyons in two—
dimensional physics created also a new point of contact between Solid State Physics
5,6]

and the Theory of Elementary Particles. The role of anyons(®®l in the explanation of

the Fractional Quantum Hall Effect!”] is now widely accepted: the vortex excitations
of Laughlin’s wave function, which represents the ground state of the 1/m effect, carry
fractional statistics, and the ground states of the general fractional effect result from a

condensation of those vortices 8! (hierarchy).
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The theory of anyonic superconductivity presents a candidate for the explanation
of the superconducting properties observed in certain materials at high temperature for
which up to now no satisfactory explanation exists. It was argued by Laughlin!® (one
should habituate to the frequent recurrence of his name in the physics related to anyons)
that a system of particles obeying fractional statistics becomes superconducting by itself.
This expectation has been confirmed in refs. [10,11] which are based on a Mean field
approximation. Although the phenomenological relevance of anyonic superconductivity
is still unclear the theory merits the granted interest in that it presents a new mechanism
which is not based on the "Fermi liquid” concept as a matter of principle in Solid State

Physics.

This thesis should clarify some of the aspects of fractional statistics physics through
the study of a system of anyons on a torus. We found that the mést convenient (and
evidently consistent) way to introduce anyons is through a fictitious gauge field [12] whose
dynarmics is governed by an (abelian) U(1)- Chern-Simons action. The resulting theory
has attracted a lot of attention not only because of its possible relevance for condensed
matter physics, as said above, but also as an interesting case of a topological field theory,

see for example refs. [13-18].

The motivations for considering anyons on a toroidal surface are many, in a certain
sense it is the most natural choice: the torus is compact, boundaryless and translation
invariant. Its compactedness gives rise to a discrete spectrum of energy and momentum
providing thus a discrete counting of states and multiplicities; this allows for a detailed
analysis of many properties of the system (many treatments in the literature are implic-
itly based on a finite surface). One of the distinctive features of the torus with respect
to Riemann surfaces of different genus, for example with respect to the sphere, is its
translation invariance. Any sensible theory on a torus should respect this intrinsic sym-
metry and allow therefore for the construction of a covariant conserved total momentum
operator whose components commute among them and also with the Hamiltonian. This
program can be indeed implemented and during its implementation we discovered the re-
markable role played by the topological components of the Chern—Simons field with this

respect: their presence is needed to restore the commutativity of the Hamiltonian and
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the two components of the momentum operator. This fact, together with the absence
of boundary of the toroidal surface, permits us then to analyse autonomous currents
along the handles and we can investigate in particular the possibility of the existence of
persistent currents, which would constitute the distinctive features of a superconducting
system. Moreover, the so constructed theory admits naturally a truly translation in-
variant Mean Field Approximation, while the usual treatments on the plane give rise to

a Mean Field approximation in which translations are only projectively presented[”].

Our theory is described by a first quantized non-relativistic matter fleld interacting
with a statistical abelian Chern—-Simons gauge field at a certain adimensional coupling
constant k. Ultimately we deal with a (rather intriguing) quantum mechanical problem.
The first "intrigue” comes from the introduction of a rational coupling constant & (which
is needed if one wants to analyse, for example, Laughlin’s vortices) because of the
appearance of a global anomaly at the quantum level: the generators of global gauge
transformations along the two handles of the torus commute only up to a phase, while
classically they commute of course, the gauge group being U(1). This anomaly does not
destroy the consistency of the theory [18.19) 1,4t gives rather rise to an enlarged Hilbert
space to represent the algebra of global gauge transformations. In this "large” Hilbert
space we can finally invoke a superselection rule making a corresponding projection
of the Hilbert space, which can be viewed also as a gauge fixing of the global gauge
transformations, and we can show that the expectation values of the physical observables
are independent of the gauge fixing. These results can be viewed as generalizations of

the ones obtained in refs. [18,19] for the pure Chern—Simons theory.

The second "intrigue” is Modular invariance. We view our torus as a physical
object immersed in three-dimensional space and from this point of view it is not obvious
to us to what this invariance corresponds. However, as it stands our Hamiltonian s
indeed modular co-variant; moreover, for each rational k we are able to construct a
unique modular invariant large Hilbert space. That also the gauge fixed physical Hilbert
space carries a representation of the modular group is due to a non trivial factorization

property of the representation of the modular group in the large Hilbert space.

As we said above, the two components of the momentum commute among them
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and with the Hamiltonian. This allows us to diagonalize simultaneously the Hamilto-
nian and the momentum and to search in particular for the minimal energy eigenvalue
at fixed total momentum. This happens also in our translation invariant Mean Field
Approximation of a system of anyons at integer k, which on the plane is supposed to
exhibit a superconducting ground state with "k Landau levels filled”. We find that
on the torus a ground state with (a translation invariant version of) "k Landau levels
filled” exists only for macroscopically quantized values of the total momentum, while for
generic momenta one has to excite also the (k + 1)-th Landau level which is separated
by an energy gap. So the energy has a sharp minimum for those particular momenta
and the ground state is not degenerate. Trying to change slightly the momentum would
require an amount of energy larger than the gap and therefore the corresponding macro-
scopically quantized currents are protected against external perturbations which try to
reduce them, a property which characterizes superconducting states. With this respect
it is interesting to note that we find that also the Laughlin-like ground state which
arises in our treatment of anyons in an external magnetic field, relevant for the frac-
tional Hall effect hierarchy, exists only for macroscopically quantized values of the total
momentum, and hence the just described mechanism gives rise to zero diagonal resis-
tance. In this case, however, although the result concerning macroscopically quantized
momenta is the same, the way it comes out looks completely different; the energy gap,

for example, is provided in this case by the Coulomb interaction.

The results presented in this thesis are based on refs. [20,21] and on work done in
collaboration with R. Iengo. We will also describe further developments which are not

contained in those papers.

The thesis is organized as follows. In Chapter one we recall how the notions of
fractional spin and statistics appeared in two—dimensional physics and expose briefly
the role played by anyons in the explanation of the Fractional Quantum Hall Effect and

the mechanism of anyonic superconductivity.

In chapter two we treat in some detail the canonical quantization of the pure abelian
Chern—Simons theory at arbitrary rational Chern-Simons coupling constant k: our

formulation of the theory of anyons on the torus in the next chapter is based on this
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theory. We use an algebraic approach to investigate the main properties of this system
concentrating on the construction of the Hilbert space and on its modular properties.
We explain in detail how to manage consistently the global anomaly mentioned earlier.
The structure of the Hilbert space which results, in the coherent state representation,

constitutes the starting frame for the coupling to matter in chapter three.

In chapter three we introduce a (non relativistic) matter field and develop its cou-
pling to the Chern—Simons gauge field, which induces the statistics flip, in first quantiza-
tion. Due to the presence of aﬁ integer number of anyons and to the Dirac quantization
condition on a torus k is forced to be rational. We construct the Hamiltonian and the
total momentum operator, evidencing the crucial role played by the topological compo-
nents of the Chern—Simons field with respect to their commutativity, and determine the
conditions which define the Hilbert space. These conditions are then completely solved
to obtain an explicit basis for the whole Hilbert space. We define then a gauge—fixed
Hilbert space proving that it carries a representation of the modular group and that, a
necessary consistency check, the physics is independent of the gauge—fixing. In secy}tion

4.6 we find the exact ground state solutions of a ”self-dual” Hamiltonian [22,23]

Throughout this thesis we work in a "gauge” where the wave function obeys ordi-
nary statistics and the fractional statistics is presented by a (non trivial) Hamiltonian
which contains the Chern—Simons field. On the plane there exists a singular gauge
transformation which transforms the Hamiltonian in the free one and the wave function
in a "function” which picks up a phase if two particles are interchanged. In section
4.7 we determine the singular gauge transformation on the torus which transforms the
Hamiltonian in an "essentially free” Hamiltonian and the (bosonic or fermionic) wave
function in an anyonic one. We find that the ”essentially free” Hamiltonian can be
further reduced to the free one at the expense of introducing a multi-component wave
function, in agreement with general braid group analysis results on non simply connected

surfaces [24],

In chapter five we consider a system of anyons at integer coupling constant k& with
the purpose of investigating its superconducting properties. We consider in particu-

lar its Mean Field Approximation which turns out to be translation invariant. In this
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approximation the Hamiltonian problem of the many-body system can be completely
solved; the many—body energy eigenstates at fixed total momentum turn out to consti-
tute a kind of translation invariant Landau-levels, with a collective degeneracy which
turns out to be somewhat smaller than the one obtained on the plane by taking direct
products of single—particle Landau-levels. In particular, our many-body momentum
eigenstates can not be factorized into one-particle states. We derive explicitly the an-
tisymmetric many-body ground state at fixed momentum and find the macroscopic
quantization of momenta and the corresponding superconductivity mechanism, men-
tioned before. These protected states generate a real magnetic field inside the cavity of
the torus, which we compute, and whose flux turns out to be quantized as ¢ times the
fundamental unit of flux. It is interesting to note that this is precisely the amount of

the elementary fluxoid excitation entering the discussion in refs. [9,11].

Chapter six is devoted to the analysis of a system of anyons on a torus in a (real)
external magnetic field, which we think of as one of the vortex excitation components
appearing in the ground state of Haldane’s hierarchy of the Fractional Quantum Hall
Effect. Said in other words, we consider the Hall Effect of anyons. Our treatment
differs, however, from the usual ones in that we impose the vanishing of the Lorentz
force, as is appropriate for the classical Hall effect, by means of an effective Lagrangian
(the Lorentz force has to be cancelled by the electric field). Accordingly this Lagrangian
has then to contain a Chern—Simons action also for the real electromagnetic field. Then
topological components of the electromagnetic field appear naturally and, as one can
expect, the overall translation invariance, which is broken by the introduction of the
external magnetic field, is restored. In summary, the introduction of an electromagnetic
Chern—Simons action in the Lagrangian imposes the vanishing of the Lorentz force and
restores, at the same time, translation invariance. Using the results of the previous
chapters we construct the Hilbert space, and we find, moreover, the exact ground state
at fixed momentum (minimizing the Coulomb repulsion a la Laughlin). This Laughlin-
like ground state turns out to exist only for particular values of the momentum of the
total system (electrons plus vortices) and this explains, as said above, the vanishing of

the diagonal resistance. Finally we repeat the steps, which lead to the fractional Hall
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hierarchy, on the torus.



2. Fractional Statistics and Anyon Physics

In this introductory chapter we recall some of the fundamental notions regard-
ing fractional statistics in 2 + 1 dimensions and their appearance in effectively two-
dimensional physical systems. We do not pretend to be exhaustive from the historical
point of view nor to present all the developments in various directions which occurred
since the discovery of this interesting "new” physics (for instance, the important rela-
tionship between Chern—Simons Theories and Conformal Field theories, see for example
refs. [13-18|, and the interesting feature of P and T violation in the presence of anyons,
see for instance refs. [25,26], are not discussed all). We will in particular concentrate
on those aspects which enter crucially in the theory presented in this thesis. For more
details about the role of excitations with fractional quantum numbers in the quantum
Hall Effect see refs. [27,28]; for their role in two dimensional models of high-T. super-

conductivity see ref. [29].

2.1 Fractional statistics and spinin D =241

In rotation invariant quantum systems in D space-time dimensions the spin, S,
of massive particles labels the irreducible unitary representations of the covering group
%(D — 1) BY3 For D = 4 these representations are labelled by integers and half-
integers, but in three space-time dimensions the rotation group is SO(2) ~ U(1), whose
covering group is isomorphic to the real line. Therefore the spin S can be any real
number: § € R. This is the reason why Wilczek[® called particles with arbitrary real

spin S in 2 + 1 dimensions anyons.

In analogy with the Spin-Statistics theorem in four dimensions it is then expected
that those particles obey fractional statistics. That this is indeed the case is also well
established from an axiomatic point of view, especially in Relativistic Quantum Field

Theories (see [32,33] and references therein). If under interchange of two particles one
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gets a phase e'?, the corresponding spin is

g

§ = 0 corresponds to bosons and § = 7 corresponds to fermions. This U(1)-spin should
not be confused with the three-dimensional spin.

The paper by Leinaas and Myrheim (2 presents the first explicit and particularly
lucid account of the possibility of fractional statistics. It should be noted that also in
ref. [34], independently of Leinaas and Myrheim, the possibility of fractional statistics
particles and many of their main properties have been discovered. The importance
of topology for the quantization of extended objects and its role in giving rise to the
phenomenon of ”strange” quantum numbers have already been established in 1967 by
Finkelstein and Rubinstein!!l. Several of the results of the quoted references were
rediscovered and made popular by Wilczek[®#. Following him we can explain the
principal ideas in a simple physical situation. Let us imagine to have a very thin and
very long solenoid disposed along the z—axis. The singular limit of this situation is a
delta~function flux tube, realized by the vector potential

2 &7

- . 2.2
2r |Z)? (2:2)

A; =

For what follows it is not essential to take this limit, (2.2) permits however to check

everything directly. Away from the origin the corresponding magnetic field, B=Vx

—

A, is zero, as is appropriate for a solenoid of course, while its flux across a surface

/E-da:fi-d;a_—.@.

This can be seen most easily by writing the components of A in polar coordinates:

perpendicular to the z—axis is

A, =0, A, = 5—1; Classically this vector potential has no effect since it gives vanishing
magnetic field strength, but it gives rise to a non trivial quantum mechanics, as pointed
out by Aharonov and Bohm %3, We consider a particle of charge g which is bound
to move in a surface perpendicular to the solenoid. Clearly, if no current flows in the

solenoid then, due to the facts that the wave function is periodic in ¢ and that rotations
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around the z—axis are generated by [, = %(’l{,, the angular momentum is quantized in
units of integers: [, = m. If, on the other hand, & # 0 rotations around the z-axis
are generated by the covariant angular momentum [, = %Qg — gA,. If the azimuthal
dependence of the wave function is ¥ ~ ¢'™?, with m integer for continuity, then the

angular momentum is quantized as
. =m— = (2.3)

which in general is neither integer nor half integer. Things can be presented in a different
way eliminating the gauge potential via a (singular) gauge transformation

: 3
Ai=4;—BA=0, A=— ¢

27r.

Then the wave function, ¥ = e~ **¥, is no longer single valued, but behaves as
T (p +2m) = e 4P (o). (2.4)

There is no vector potential and the angular momentum is identified as usual by
[, = —1:(%, and the same spectrum (2.3) of fractional spin is gotten. Wilczek expected,
according to a generalized spin—statistics connection, that these "flux-tube—charged-
particle composites”, which he called anyons, obey fractional statistics, interpolating
between bosons and fermions. If we take, in fact, two anyons and transport the first
of them covariantly in the vector potential of the second along a closed loop, which
—igdh

contains the second anyon inside, we get a phase e~ (a contribution e comes

from rotating the first anyon around the second and the other contribution e~ T comes
from rotating the second anyon around itself). However, if the two anyons are identical
particles we have to get a definite phase also if we interchange them; for consistency
this phase has then clearly to be half of the phase we have just computed, i.e. e 19T,
Comparing with (2.3) we realize that the spin—statistics relation (2.1) is indeed satisfied.
We should notice that the "charges” and ”fluxes” entering the discussion are fictitious
objects which should not be confused with the corresponding "real” electromagnetic
counterparts.

The scenario presented here, a part from explaining the consistency of the notions

of fractional spin and statistics in two dimensions, constitutes also a proposal, even if
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somehow implicit, of how to introduce objects with fractional statistics in quantum me-
chanics, i.e. via the use of fictitious gauge potentials. The Chern—Simons construction
for fractional statistics, which extends naturally the above ideas to a many body system,
appeared clearly for the first time in the paper by Arovas, Schrieffer, Wilczek and Zee
[12] on the "Statistical Mechanics of Anyons”. They introduced a (2 + 1)-dimensional
fictitious gauge potential A, and a matter current J, together with the action
S = zé;/claz e 4,0, Ay + /d3mA# A

The first term in this expression is called Chern—Simons action. The zero—th component
of the equations of motion gives the constraint 0,4, — 0,4, = -——27}]0, which states
that the magnetic field is proportional to the matter density. In quantum mechanics Jy
becomes a sum of §—functions and one can solve this equation for A. The I-th particle
feels then a vector potential A = %\?1 X Zj¢lln|fl — &;|. It is not difficult to realize
that, as before, also this gauge field can be eliminated by a gauge transformation at the
expense of introducing a multivalued wave function (see section 4.7 for more details)

pon — H (_zf_f__zllz}: v} (2.5)

icj el

where U obeys ordinary statistics and z = z + 1y. This wave function gives under the
interchange of two particles a phase exp (lkl) In section 4.7 we will in particular see in
which sense this "anyon gauge”, in which the Hamiltonian is the free one and the wave
function is multivalued, is accessible also on the torus.
Let us also state the composition law for fractional spins. If we have a composite of
n identical anyons, each of which carries spin S, the composite carries a spin 5, which
is given by
Sp=n*-S mad Z. (2.6)

It is easily checked that for the ordinary cases S = 0,1/2,1,... this gives the usual

composition law.
In this thesis we will concentrate primarily on non relativistic Quantum Mechanics

of anyons; for a non relativistic second quantized formulation on the plane see for

instance [23].
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For completeness we remark also that in the classical non linear sigma model the

introduction of the so called Hopf term in the action (2] gives rise, at the quantum level,

to fractional spin and statistics too.

2.2 Anyons and Quantum Hall Effect

Laughlin’s explanation of the Integer Quantum Hall Effect [37] (IE) is based on very
fundamental considerations. Relying on the hypothesis of the existence of an energy
gap and using gauge invariance Laughlin showed that the Hall conductivity is quantized

as

82

oH =M (2.7)

where n is an integer, and only the fundamental constants e and h show up. This is the
conductivity which would arise from n Landau levels (see below) being completely filled.
Two peculiar features of the (IE) are the appearance of plateaus of the conductivity
as a function of the filling factor (classically one would obtain a straight line) and
the corresponding vanishing of the longitudinal resistance (™28, If the system were
described by the ideal one-particle ”free” Hamiltonian given below, i.e. in the absence
of disorder, both these phenomena would not occur. The fundamental importance of
the presence of impurities for the existence of the (IE), i.e. plateaus and zero diagonal
resistance, was noted by Praﬁge in ref. [38]. In the presence of impurities localized
states are created, in contrast to the extended states corresponding to (perturbed)
Landau levels, and the Fermi level can ly in a mobility gap in a band of localized states.
Roughly speaking, this gap insures the vanishing of the diagonal resistance and, as shown
in [38], the current carried by the remaining extended states is appropriately enhanced
to give just back the conductivity (2.7) of ”n filled Landau levels” (with respect to this
"conservation law” see also the review [28] and references therein).

To summarize the essential features of the explanation of the Fractional Quantum
Hall Effect "% (FE) let us recall the form of the ”free” one-particle Hamiltonian (we
neglect the spin):

Hy = 2 DD+ eB (2.8)

m 2m’
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Here B is the external magnetic field, orthogonal to the plane, and m and e are the
mass and charge of the electron respectively. In Laughlin’s treatment of the (FE) the
Coulomb repulsion is taken into account indirectly!”, see below, and the disorder is

treated as in the (IE). The covariant derivative (in complex notation) is given by

1
D:8+E€B2

and satisfies [D, DT] = %Bi. We define the magnetic length [, which determines the scale

of the problem, as [> = -t=. The energy levels (Landau levels) are given by

( 1) eB
En=|Nn+ 35| —
2 m

and the related eigenfunctions are
Y = (Dlr)n Yo
where the ground state is determined through the equation Dy = 0. This condition
is solved by
%o = g(2) -

where g is an arbitrary antiholomorphic function. So, on the plane each Landau level
is infinitely degenerate. If the surface has a finite area v, however, this degeneraéy Q
becomes finite in that it is proportional to the total flux of the magnetic field according

to
B-v
27
Given a system of N particles the "filling” factor f is defined by f = %—7 If f<i,

l=e

according to the (FE), all the electrons can be accommodated in the ground state, and,
in the ideal case under investigation here, the many—particle antisymmetric ground state
exhibits a large degeneracy (only for f = 1, i.e. N =  this ground state is unique).
This degeneracy is clearly removed if one takes into account the Coulomb interaction.
Supposing that the introduction of the Coulomb repulsion does not lead to the excitation
of the higher Landau levels (as is reasonable if the magnetic field is large) one has to

minimize it among the states

;N
9(Z1,...,Zn) exp <_Zj§ Z lzi|2>
1=1
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where g is an antiholomorphic function. For fractional fillings of the form f = 2—};; with
J integer Laughlin "] proposed as minimizing solution, according to his ”one—component
plasma analogy”, the state

v = [[ -z e m L, (29)

i<j

which describes a circular, incompressible!” droplet of fluid. This state, which, as
emphasized by Laughlin, is an angular momentum eigenstate, is antisymmetric and has
a zero of the highest possible order as z; — z; as is appropriate to minimize the repulsive
Coulomb interaction. The projection of this state on the one computed numerically, with
various kinds of repulsive potentials, gave 1 with a precision of one per thousand "
meaning that ¢ reproduces the correct ground state with very high precision and that
the solution in (2.9) has universal character in that it is largely independent of the form
of the interaction. The analog of (2.9) on the torus was found by Haldane and Rezayi
in ref. [40]. In this case it follows from the theory of holomorphic sections on the torus
that the highest order of the zero for z; — z; is precisely 2J +1. This rederivation of the
Laughlin wave function (2.9) emphasizes that it is the correct short distance behavior
of the wave function rather than angular momentum considerations that lie behind the
explanation of the (FE).

In ref. [7] Laughlin gave also an (approximate) analytic expression for the elemen-
tary excitations of 17, localized in zg, which correspond to piercing the fluid at z; with
an infinitely thin solenoid and passing through it a flux quantum A® = 263- adiabatically.
Accordingly approximate quasi—holes and quasi-particles are given respectively by:

p? =T LI ] (5 - 2) [ (5 — 2027

i<j

N (R DI (R s
; Zq

i<j

(2.10)

Also the projection of these states onto the ones computed numerically shows that they
represent the excitations of the Laughlin wave function with a high accuracy. The quasi-
hole state 1Y represents a charge deficiency in zy (the wave function goes to zero if one
of the particles approaches zp) whose amount Laughlin derived already within his "one-

component plasma approach”. He obtained that the charge of the quasi-hole/electron
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state is given by

(2.11)

and is thus fractional.

If the filling is not of the particular form s+ a state of the form (2.9), which gives

2J-4+1
rise to a particularly low Coulomb energy, does not exist; hence this state is protected
by an energy gap and particularly stable, explaining the drop in the diagonal resistance
in the (FE) at those fillings. The presence of a corresponding ”small” plateau in the
conductivity is explained like in the (IE)!".

The Hall effect at more general rational fillings f = p/q < 1, where ¢ is an odd
integer, cannot be explained in this way. For these fillings Haldane!®], using a formalism
based on a spherical geometry, proposed a hierarchical scheme of ground states. Within
this proposal for fillings f = p/q the ground state is derived from a parent state of the
form (2.9) with an imbalance of quasi-particle or quasi~hole excitations. In the simplest
case we have a two—component fluid with an eleciron component and one fractionally
charged say quasi-particle component. If the effective filling (see chapter six) of the
quasi—particle component is of the form Ej,l—ﬁ, for some integer J', the collective ground
state of the excitation fluid is analogous to the ground state of the electron fluid (2.9)

and hence particularly stable. In this way Haldane deduced that the filling factors at

which a (FE) can occur can be expressed by a continued fraction

1
f= : (2.12)
(24}
2J+1+
a2
2Jy +

e + 27

2Jn
where o; = +£1 according to whether the corresponding component is made out of

quasi-holes or quasi-particles. The fillings given in this formula are all rational with an
odd denominator.

Halperin realized in ref. [5] the important fact that the quantization rule (2.12) is
just the one which arises from a set of identical charged particles that obey fractional

statistics, i.e. such that the wave function changes by a complex phase factor when
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two particles are interchanged. He got this result on the plane in the "anyon gauge”,
i.e. using a representation in which the Hamiltonian for the excitations contains only
the external magnetic field while the wave function is multivalued. In our treatment of
the hierarchy on the torus (see chapter six) in order to solve certain phase ambiguities
it is necessary to work in a gauge in which the wave function is well defined and the
statistics is represented by a fictitious Chern—Simons gauge potential. For the details
on the derivation of the allowed fillings within the framework of the hierarchy we refer
to chapter six, where the extension to the torus is given too.

Let us also state the important result obtained by Arovas, Schrieffer and Wilczek
in ref. [6] who computed explicitly the quantum numbers of the quasi-holes and quasi—
particles given by Laughlin (2.10), using a Berry-phase technique 411 According to
Berry, given a Hamiltonian H(zy) which depends on a parameter 2o, if zy transverses
slowly aloop, then in addition to the usual phase ft E(t')dt', where E(t') is the adiabatic

energy, an extra phase v occurs in () which is independent on how slowly the path is

transversed. This phase is given by

v = *if <¢i(t), %-i-> dt. (2.13)

A particular case is given by the Aharonov-Bohm phase discussed in section 2.1. Let
us consider a path in which z;, moves adiabatically around a circle of area A enclosing
magnetic flux ® = —B - A. From (2.4) we see that the wave function acquires a phase
which is given by

e*B-A (2.14)

where e* is the electric charge of the Quasi—hole 7. On the other hand eq. (2.13) can
be easily evaluated[¢] to give

eB. A
2J +1

¥ = — 2 Ap = — (215)

where p is the electron’s density. Comparing with (2.14) we get back Laughlin’s result
(2.11) for the charge of his excitations.
With the same method we can compute the phase we get if one excitation moves

around another. Eq. (2.15) is in fact very general; it says that the phase is —2m times
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the matter density enclosed by the loop times the area, i.e. —2m times the number
of electrons enclosed. But we have just learned that Laughlin’s (hole)excitations carry
electron number ___2_J_1ﬁ. Taking into account that an interchange is half a winding we
get that the statistical phase of a quasi-hole is given by

17T
exp 71

This shows explicitly that the elementary excitations of Laughlin’s wave function obey

fractional statistics and confirms therefore Halperin’s results about the origin of the

fractional Hall hierarchy.

2.3 Anyons and Superconductivity

In refs. [9,42], based on a previous paper by Kalmeyer and Laughlin [43] on the
"Equivalence of the Resonating~Valence~—Bond.a.nd Fractional Quantum Hall States”
Laughlin argued that a system of two—dimensional quasi—particles with fractional statis-
tics exhibits a superconducting ground state, and that this mechanism could account
for high-T, superconductivity. Based on Andersons resonating-valence-bond idea [*443]
Kivelson, Rokhsar and Sethna!*®] proposed an explanation of this phenomenon which
relied on a Bose condensation of "holons”, i.e. charged particles with zero three-
dimensional spin, which can be thought of as formed by a charged fermion and a
"spinon”, a neutral spin 1/2 excitation. Since holons have zero spin one can imag-
ine that they are bosons and that they can undergo a direct bose condensation without
any pairing. If this would be so then the flux quantum would be h/e. Experimentally
it appears, however, to be h/2e, at least in the regimes where it has been studied so
far, indicating the presence of a charge-2 condensate. Laughlin suggested(®] then that
spinons as well as holons obey 1/2 (semionic) fractional statistics. If this is so then
holons are no longer bosons, they cannot undergo Bose condensation, but pairs of them
are bosons, see (2.6), and Laughlin found this to be a good reason to suspect that a gas

of particles obeying 1/2 statistics might actually be a superconductor with a charge-2

order parameter (see also ref. [47]).
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There is an extremely naive argument, which suggests that in general — excluding
fermions - an anyon gas will be superfluid (or, if the anyons are electromagnetically
charged, superconducting) at zero temperature. Fermions with arbitrarily weak attrac-
tive forces are, in fact, known to form superfluids at zero temperature; on the other hand,
the analysis about the statistical mechanics of anyons in ref. [12] revealed that anyons
interpolate between fermions (which act like a classical gas with repulsive interactions)
and bosons (which act like a classical gas with attractive interactions). Therefore anyons
can be seen as fermions with an attractive force among them.

Following Laughlin one is therefore led to consider a system of N, particles with
fractional statistics eikl, whose wave function is given by (2.5) where we take ¥ to be
fermionic (see [11] for a discussion of the bosonic case). The dynamics of this system

- 2
is governed by the free Hamiltonian H free = Z;'V;l %. It is convenient to present the

?

system in the "fermion gauge” where the Hamiltonian becomes

po_ L% (8 - ieEj>2 (2.16)

2m 4
Jj=1

and acts on a wave function ¥ which is antisymmetric under z; <« ;. Here the vector

potential (we introduced the fictitious charge e) is

— 1 — - _'
A]‘ = ?e— 8j X Zln|.’l¢j — :Eil. (2.17)
i#]j
The (pointlike) fictitious flux associated to each particle is therefore given by ——%%,
i.e., restoring the fundamental constants, —g—i— (the sign is of course only a matter of
convention). The Hamiltonian problem can unfortunately not be solved exactly; in ref.
[48] the Hartree-Fock approximation is used to solve for the ground state, showing also
that the method gives sensible results for the case k& = 1, which corresponds to free
bosons and whose solution is explicitly known. In that paper it is also realized that the
Hartree-Fock approximation is equivalent to the mean field approximation; we will now
expose briefly the results of the latter(®:11:49],
We saw that the statistical interaction can be implemented by attaching fictitious

charge and flux to fermions, which give rise to long range interactions, see (2.16). We

would like to replace the effect of many distant particles by a mean field; the deviations
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from the mean interaction should be represented by residual weak or short-range in-
teractions which one hopes to can treat as a perturbation. In our case it corresponds

to replace the many singular flux tubes by a uniform fictitious magnetic field with the

Na

same total flux. If the total area is v, and hence the average particle density p = ==,

the magnitude of this mean magnetic field, tied to the density of the particles, is

27

b= ——p.
ke

Classically the particles move then along cyclotron orbits with radius

mv

T:——“ég‘.

Taking for the velocity the one of the nominal Fermi surface

4mp

m

v =

one finds[*!l that a typical cyclotron orbit contains prr? = k? particles on the average.
If this number is large with respect to unity, we should expect that the mean"field
approximation gives sensible results in that each particle "sees” a large number of pbint—
like fluxes which on the average can then likely be replaced by their constant mean
value. From this point of view this approximation corresponds to an expansion around
fermionic statistics since as & — oo the wave function in the anyon gauge becomes
antisymmetric. The ultimate goal would be to hope that the results obtained in this way
can be extrapolated 'down to small values of k, e.g. k = 2. In ref. [50], based on exact
numerical calculations with a small number of particles, it is found that the statistical
fluxes and the external constant magnetic fluxes are to some extent interchangeable.
This is can be viewed as a signal for the fact that the mean field approximation gives
indeed sensible results even if the number of particles and k are not extremely large.
Let us state the most important results of the mean field theory. The system
corresponds to N4 particles which move in a constant magnetic field and is solved

exactly by the Landau levels (see sections 2.2 and 5.2). The one-body energy spectrum

E._. _}_l eb— +121r_
n= T\ Ty m T\ ) mE
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and the degeneracy of each Landau level is determined by the total flux of the magnetic
field
—— by = —/. (2.18)

Tf the statistics determining parameter k is an integer then the ground state of the system
is constituted by k exactly filled Landau levels. So, at these values of the statistical
parameter the ground state will have a particularly favorable energy. Exactly filling
the top band ought to be analogous to complete a shell in an atom, or filling a band
in a solid. The ground state should therefore exhibit a certain rigidity with respect to
external perturbations and an energy gap, which is nominally the difference between
two Landau levels AE = -f;’i— p, and which is also the energy needed to create a particle-
hole excitation. In ref. [11] the effect of adding, or subtracting, a real small magnetic
field to the system in the ground state is investigated and it is found that in both cases
the energy increases. This suggests that the anyon gas will strive to exclude an external
magnetic field, which points in the direction of a Meissner effect, a phenomenon which
is typical in superconducting systems (see also refs. [51,52]), and induced the authors
of [11] to identify the charged quasi-particles excitations with the flux carrying vortex
excitations. Via this identification the value of the flux quantum can also be inferred.
Adding, in fact, a single fundamental unit —Zf of real flux increases the number of
available states per Landau level by one, see (2.18). Thus for k filled Landau levels this
corresponds to create k holes. But this is not the most elementary excitation; the most
elementary excitation corresponds to the creation of just one hole and the elementary
fluxoid is therefore % of the fundamental unit:

f_2_7£

ke’

Another important aspect of the system under investigation here, which is not
exhibited by the mean field approximation, is the existence of a sharp isolated Goldstone
mode in the spectrum, i.e. the existence of an excitation with the dispersion relation
w o~ ’UU“;;| at low frequencies. This was discovered by Fetter, Hanna and Laughlin 2]
who, taking into account the residual interactions which are neglected in the mean

field approximation, found the necessary pole in the current—current correlator (their
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computation does, however, unfortunately not reveal the origin of this massless mode).
This points on one hand in the direction of the existence of long-wavelength sound waves
which have nothing they can possibly decay into and present therefore dissipationless
superflows (the anyon gas is compressible in contrast to the ground state of the Quantum
Hall effect which is indeed incompressible, due to the fact that the external magnetic
field is fixed). In ref. [29] this longitudinal mode is viewed as an essential ingredient
for the full explanation of the Meissner effect. On the other hand the presence of this
bosonic zero mode should be related to some spontaneously broken symmetry, which
is exact in the microscopic theory, but violated in the effective mean field theory. It
is not obvious at all, at least to me, which is the symmetry that is broken; in refs.
[11,29] it is argued that what is broken is not a symmetry, but rather a "fact”, namely
the generators of the magnetic translations, which commute with the Hamiltonian, do
not commute among themselves (their commutator is a c-number) meaning that in the
mean field theory the group of translations is projectively represented (see for instance
[53]). This implies in particular that there are no states which are invariant under
translations. From this point of view it is interesting to notice that in chapter five we
will be able to construct a mean field theory for anyons on the torus which is iruly
translation invariant, i.e. where H, P, and P, commute. Still we find evidence of a
superconducting quantum state. | :
The unsatisfactory aspects of the theory of anyonic superconductivity in its prV(;sent
stage, apart from its still unclear relevance from the phenomenological point of view,
are the elusiveness of the order parameter, the unclear role of the spontaneous sym-
metry breaking, which is of fundamental importance in the "classical” theories of
superfluidity ®* and superconductivity [®®!, and, perhaps most importantly, the fact
that the mean field theory and the related self-consistent field approximation (see for
instance refs. [49,56]), on which many theoretical derivations rely heavily, are so little
under control (it is sufficient to remember that one replaces very singular mathematical

objects, the point-like fluxes, with very smooth ones, actually constant magnetic fields).
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3. Pure Chern-Simons Theory at rational coupling

3.1 Canonical quantization

The pure three-dimensional U(1) Chern—Simons theory constitutes an interesting
example of a topological field theory!*®!, with the peculiarity that it does not exhibit
dynamical degrees of freedom describing the propagation of point particles, like ordinary
Quantum Field Theories, see for example ref. [57]. Rather, the phase space variables
of the theory are the integrals of the gauge field around the non contractible loops C
of the underlying two—dimensional surface. The gauge invariant observables are the
exponentials of those integrals when appropriately weighted with a charge ¢, that is,

the Wilson lines
W(C,q) = exp {z qﬂ{ A} (3.1)
c

where A is the gauge potential one—form. Moreover, in the models we will consider,
the Hilbert space, which is entirely spanned by those physical observables, will be finite
dimensional, which excludes the possibility of the propagation of ordinary particles.

We consider a three~dimensional Chern—Simons theory living on a space-time man-
ifold which is the direct product R x X, where X is a compact two—dimensional Riemann
surface of genus 1, i.e. a torus. Actually, many features of this theory carry over to
the case of higher genus, but here we are manly interested in the specific case of the
torus because of our applications in the subsequent chapters. At the end of this chap-
ter we will briefly review the distinctive features of the canonical quantization of the
Chern—-Simons action on surfaces with genus g > 1.

We write the action as
Scs = —k—/dga: e 4,0,45 = —k—/AdA (3.2)
S 47 i 4 )

where the gauge potential one—form is given by A = dz*A, and normalized so that

under a gauge transformation it changes by

A— A+igdg™! (3.3)
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where d is the differential and g is a map from R X ¥ into U(1). Here we assume that
the U(1) is compact, i.e. equivalent to a circle (see however ref. [58] for non compact
U(1) and also for the effect of the introduction of the Maxwell term in the Lagrangian).
The type of values which the positive coupling constant k in (3.3) assumes triggers the
structure of the Hilbert space in a very sensible way. Let us anticipate that, at least
in the present case in which the Chern—Simons potential is not coupled to a matter
current, the coupling constant k of the abelian theory, in consideration here, is not
quantized '®, What actually happens is that the Hilbert space assumes very different
structures according to integer, rational and irrational values of k. For rational values
the Hilbert space becomes finite dimensional, carrying a finite dimensional irreducible
representation of the group of gauge transformations with non zero winding numbers
around the two periods of the torus (in the following we will call these transformations
large or global gauge transformations). If, on the other hand, k is irrational there are
no finite dimensional irreducible representations of the group of global gauge transfor-
mations and the Hilbert space becomes infinite dimensional. When coupling the pure
Chern-Simons theory to matter with non vanishing total charge, as we will do in the
next chapter in order to describe anyons, the Dirac quantization condition will actually
restrict the parameter k to rational values. In this Chapter we describe therefore in
some detail the quantization of the pure Chern—Simons action on the torus at rational
coupling k, our further developments in this thesis being heavily based on it. For'the
discussion of irrational k, which force the total charge of the matter system to be zero,
see however refs. [18,19].

We expa,nd the a.CtiOIl in (3.2)
CS { 2411 1412 0412 .

The time derivative of 4y does not appear in the action and so variation with respect

to Ay gives the constraint

F12 = alAg — 82A1 =0 (35)

which says that at fixed time the spatial gauge potential is pure gauge. We choose to

quantize the theory by first solving the constraint and then quantizing the independent
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degrees of freedom [*®]. Note that in refs. [14,57] a different procedure is followed, in
which the constraint (3.5) is imposed on the states of the Hilbert space.
The Lagrangian is first order in time derivatives and canonical quantization of the

spatial components of A gives the commutation relation

[41(2), 42 ()] = =—6°(z — 9) (3.6)

So A4; and A, are already phase space variables (and span not only the configuration
space). The Hamiltonian turns out to be zero, which is of course a consequence of the
metric-independence of the Chern—-Simons action. We can therefore conclude that a
complete set of observables is given by the Wilson loops of eq. (3.1) for all loops C
lying in X. For the case of compact U(1) we are considering here, g has to be integer to
insure invariance of W(C, ¢) under (3.3). In fact, if we parametrize the gauge—functions
| g, which have to be well defined on the torus, as g = exp(tca(z)) where now «(Z) has to
be periodic on the torus up to integer multiples of 27, we have that under (3.3) iq §C A

changes by
2mig(Ny + Na) (3.7)

where the N; are the (integer) winding numbers of g along the two handles of the torus.
Due to the fact that Fi», = 0 Wilson loops that can be continuously deformed into
each other are equal. Therefore there are as many independent observables as there are
independent non trivial loops on ¥j in the case of the torus these are precisely two.
We choose the usual cohomology basis and set, in order to simplify writings, the
cycles’s lengths equal to one, imagining the torus as a rectangle with identified edges.
This corresponds to set in the Fuchsian torus the modular parameter 7 = 7, + v = 1.
In section 3.4 we will re-introduce the modular parameter in that in the coherent state
representation it permits us to keep conveniently track of modular covariance.

The two basic (unexponentiated) Wilson line operators are then given by

o :/U dey A () (3.8)

1
ag = / d.BzAg(:I—f)
0
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which, due to (3.6), satisfy the algebra

271
a1, a2] = —— (3.9)
and change under large gauge transformations b
a; — a; + 2rN; (3.10)

We can therefore regard a; as canonical coordinate and a; as canonical conjugate mo-

mentum. The gauge invariant Wilson loops‘ are given by

Walp) =< (3.11)

Wa(q) = &%

The different signs and the association of indices in (3.11) are only a matter of conven-
tion, p and ¢ being arbitrary positive or negative integers. Summarizing, the operators
Wi(1) and Wo(1) constitute the full set of observables and span thus the full phase
space of the theory, not just the configuration space.

We want also to implement the global gauge transformations (3.10) through unitary
operators; these operators have simply to shift the a; variables by multiples of 27, so it
is not difficult to write them down:

Ui(p) = &

| (3.12)
Ua(q) = 0k :

Taking into account (3.9) one sees that Uy (Us) shifts a3 (az) by 27p (27¢) and leaves

the W; invariant:

[U;(m),W;(n)] =0  foreachi andj (3.13)

as it must happen, as the Wilson lines are gauge invariant. For completeness we report

also the commutation relation between the Wilson lines:
Wi (p) Wa(g) = e 2% Wa(g) Wi(p)- (3.14)

In order to realize the algebra of all these operators in a Hilbert space one has to specify
the value of k and search for a list of its irreducible representations. This will be done

in the next section via the individuation of suitable Casimir operators.
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3.2 The Hilbert space and irreducible representations

We will present the irreducible representations in an ”abstract” form without giving
an explicit realization. This allows us to establish the structure of the Hilbert space
in a very clear form and to investigate its basic properties, such as modular invariance
and gauge invariance, in a rather simple way. When we couple the pure Chern-Simons
theory to matter these properties will actually continue to hold, but in the language (i.e.
the coherent state representation), which is necessary (17 and very appropri?,te (14,57} ¢4
describe this coupling, the investigation of those properties is rather complicated from a
technical point of view. The abstract treatment of the present chapter, besides clarifying
very much things, will serve us almost directly to understand relevant features in the
next chapter. In this context one should also remark that the usual (g, p) representation
of the algebra (3.9) is not appropriate in this case in that states are not normalizable
(see section 3.4).

Let us state at the beginning the relation which determines crucially the structure
of the Hilbert space. This is the commutation relation between the two operators which

generate the gauge transformations with non trivial windings along the two handles.

One has in fact

Ui(p) Ua(q) = e >™ P4 Uy(q) Ur(p) (3.15)

For the reasons said in the preceding section we take a rational coupling constant
r
k= - (3.16)
s

where we define r and s to be relative prime positive integer numbers. Eq. (3.15) tells us
then that in general, for arbitrary rational k, except the case s = 1, the operators which
implement the large gauge transformations along the two handles of the torus do not
commute among them. This means that, at the quantum level, the U(1) gauge group
on the torus is plagued by a type of global anomaly if k is not an integer. This does not
imply that we have to force k to be integer to save the consistency of the theory, it implies
that the states of the Hilbert space can not be invariant under all gauge transformations.

The Hilbert space has rather to represent the algebra (3.15) together with the algebra of
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the Wilson lines. The space which we find in this way appears actually as an "enlarged”
Hilbert space, where the enlarging happened in order to accommodate a representation
of (3.15)[1%1%, The ”physical” Hilbert space will be obtained by imposing a suitable
superselection rule on this ”large” space, which corresponds to a gauge fixing of the
theory. At the end one can show that all physical observables are actually independent
of the particular gauge fixing one chooses and this, in turn, insures the gauge invariance
of the theory. Let us now illustrate this construction in some detail. The results for
integer k can of course easily be obtained as a particular case of the present procedure
by setting s = 1.

We start by observing that the representations of the algebra of the operators
W; and U;, given above, can be classified by the eigenvalues of the following Casimir

operators
Ci(p) =Us(s-p) =e'"P0
. (3.17)
Cz(q) = UQ(S . q) — e+ZT‘qU:1
These unitary operators commute with the Wilson lines, being products of U;—operators,
and commute with the U; due to (3.15). Clearly C; commutes also with Cy. Therefore,

in each irreducible representation of the algebra at hand, these operators have to be

c-number constant phases:

Cl (p) — e27rz'prsg::1

3.18
Ca(g) = emiass: 15

where the ¢; are now real fixed numbers which play the role of vacuum angles labeling
the representations: different phases will give rise to inequivalent representations.

To find the structure of the Hilbert space it is convenient to diagonalize simulta-
neously the operators Ci,Cs,U;, W; which commute among them (clearly any other
complete set does the same job). First we impose the eigenvalue equation for U; and
Wi

U1(p)’ > _ eZﬂ'ipv/\, >
W](p)‘ >2627rip0'l >

where A and o are phases, and observe that we have the operatorial identities U;(p)® =

(3.19)

Wi(p)" = Ci1(p) = e*™P7¥1, This relation allows us to determine the possible eigenval-
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ues of W1,Usy:
A =1 — nl
s (3.20)

s
o= 8sp1 —m-—
r

where m and 7 are integers in the interval 1 <n < s, 1 <m < r. The additional powers
of r and s in the numerators of the second terms at the r.h.s. of (3.20) are introduced
only for a convenient labeling, » and s being coprime and A and o being defined modulo
integers. Let us call the corresponding eigenvectors |m,n). Due to the commutation
relations (3.14) and (3.15) it is clear that W3 and Uy act as shift operators on the indices
m and n respectively: Us(q) |m,n) « |m,n +q), Wa(g)lm,n > |m + ¢,n). If we fix
the phases of the states such that |m + Mr,n 4+ Ns) = |m,n) for all integers M, N, the
operatorial identity Usz(q)® = Wa(g)" = Ca(g) = €2™97"%2 allows one to determine the
proportionality phases. Then we can summarize the action of the operators Wj, U; on
the ”large” Hilbert space (whose dimension is r - 5), spanned by the states |m,n), as

follows: '
Wl(P)lm’n> = 2mp(8 #1%) lm, n>

Wz(q)lm,n> 2nzqs¢2'm+q’ >

(3.21)
Ul(p)l > 27rzp(r,91—~nk)‘m TL>
Uz(g)|m,n) = ™17 %2 |m,n + q)
The corresponding eigenvalues of a, are given by
aglm,n> = 2: (ms +nr —rse;) [m n). (3.22)

The preceding relations describe completely the irreducible representations of the al-
gebra at hand and we see that each representation is characterized by a pair of real
vacuum phases @1 3.

Let us now comment on the duality properties of these representations which, are
cloosely related to the modular invariance properties discussed in the next section.
Notice, to this purpose, that we could also have chosen to diagonalize W, and U»
instead of Wi and Us; this would correspond to a different choice of basis in the same
representation, which is, in fact, the Dual basis, given by a discrete Fourier Transform:

9.8 = \/g Z Z ~ri(Ematen) m, ) (3.23)

m=]1 n=1
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The normalization is chosen in the usual way such that p (7,1]7,1), = 1 if, as a conven-
tion, (m,n|m,n) = 1. ’It is easy to check that on the dual basis |7,!) , the operators W,
and U, are diagonal while W, and U; act as raising/lowering operators, and one gets
relations which are completely analogous to (3.21). Here we report the eigenvalues of
a:

2w
T

ailj, 1), = —(gs + Ir +rs 2)]4,0) (3.24)

where 1 <j7<r,1<[<s.

Referring to the basis given in (3.21), we see that the index m spans the "ob-
servable” space on which the gauge invariant Wilson lines act non trivially, while the
index n spans the ”internal” gauge space on which the large gauge transformations act:
as a consequence of (3.13), which is the baéic statement of gauge invariance, the two
spaces do not mix. This allows us to identify states with different values of n as a
unique physical ray and the "physical” Hilbert space H,; becomes then r—dimensional.
Formally one can impose a gauge-fixing restricting the large Hilbert space to a set of

representative vectors
8

Im>(0) = Z cszo)lm,n> (3.25)

n=1

where the set of constants cSLO), with > Ic%o)lz = 1, define the particular gauge choice.
The space H,), is then spanned by the set ]m>(0). It is clear from (3.21) that the Wilson
lines operators act on the states |m>(0) in the same way they act on ’m, n> (upon ignoring
the index n) and that therefore the matrix elements of the gaugé invariant observables
are independent on the gauge choice {cg’)}, these constants being unobservable. This is
our statement of gauge invariance.

To summarize, the inequivalent irreducible Hilbert spaces are labeled by the (ob-
servable) vacuum angles @1, and by the gauge fixing constants {chU)}, and are r—
dimensional.

Let us briefly comment on the interesting particular case (see chapter five) of integer
k,ie. s =1. In this case the relation (3.15) tells us that the generators of global gauge

transformations commute and that therefore states can be gauge invariant up to phases.

The irreducible representations are k—dimensional and there is no need to introduce an
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internal gauge space to represent the algebra of the U;, which are actually Casimir
operators themselves. Inequivalent representations are again labeled by two vacuum
angles.

Up to now the vacuum angles were arbitrary. In the next section we will see that

modular invariance determines their values uniquely.

3.3 Modular invariance

Up to now we worked explicitly in the (a;,az) basis, corresponding to a— and
b—loops around the handles. Actually, any other basis is also appropriate and should
yield the same results. We can take as a general basis all = aay + fas, a; = ~vaj + baz
where the coeficients o, ..., have to be such that the knowledge of a; » modulo 27
determines uniquely a1112 modulo 27 and viceversa. This is the case if a,...,6 are all

integers such that a§ — fy = 1, meaning that the matrix

(5 %)

defines a modular transformation. The new variables satisfy the same commutation
relations [all , a;] = g%i’ and thus modular transformations are canonical transformations
that, quantum mechanically, should be implemented through unitary operators in the
Hilbert space.

As is well known the whole group of modular transformations can be generated by

two particular transformations, and it turns out that a convenient choice is given by the

two (unitary) generators

ik,
A = e 471'
i, (3.26)
B = e 4
which act on the Wilson lines as
Ae—{-imalA—-l — e-}—imal
Ae—ima244—1 — e—im(al—{—az)
(3.27)

Be+imalB_1 - e-l—im(al—ag)
Be——zmazB——-l — e—-zmag‘
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A and B constitute therefore a basis for the group of modular transformations. Notice

that these operators do not correspond to the usual choice of generators on the Fuchsian

torus, which send 7 — -% and 7 — 7 4+ 1, they correspond rather to 7 — —7 and

T — T 4 1 respectively.

Let us now discuss modular invariance, which, as discussed at the beginning of
this section, should constitute a physical symmetry of the theory. The question can
be stated in the following terms: the Hilbert spaces, found in the previous section, are
modular invariant, if they carry a representation of the operators 4 and B. To this
order it is necessary (and sufficient) to check whether or not 4 and B commute with
the Casimir operators defined in (3.18). A straightforward calculation gives:

Ci(p) AC1(p)™ = A[Ca(p)e™77°"]
Ca(q) B C2(g) ™ = B [Ca(g) e 27°7]

the remaining commutators being trivial. Modular invariance is therefore insured only

(3.28)

in those representations in which the quantities between square brackets at the right

hand side of (3.28) are equal to one. This fixes the vacuum angles to

1
p1=3 = (3.29)

and the resulting irreducible representation is unique. From now on we work in this
representation. In summary, the (unitary) implementation of modular invariance as a
physical symmetry fixes the vacuum angles (1,2 uniquely. |

Up to now the discussion was relative to the ”large” Hilbert spaces which we know,
from the preceding section, to contain states which correspond to the same physical ray.
The physical Hilbert space H, is obtained after a suitable gauge fixing. We want now
to implement modular invariance also in the physical space Hyp. To this order we need
ﬂto make the action of the operators A, B on the "large” Hilbert space more explicit.
From (3.22), (3.24) and (3.29) we get immediately:

T8

. 2
13,

. T (

——-Z_..

Alj )y =e 7
. TS —IT .,

=e de k ](]—f_r)e—iﬂ-kl(l—i—s)’j,oD

(3.30)

LT ( n n T3
—t— (sm +1rn + —
B‘m,n) =e TS 2

)
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while to compute the action of say B on |j,1) we have to work a little bit more. We
apply B to eq. (3.23), and compute B |m,n) through to (3.30). At the end we use again
eq. (3.23), inverting the Fourier transform, to express everything in terms of |7,1)

The computation can be carried out explicitly and gives:
o 1Bl 1), = e F (78 it (1) (3.31)

where A is a normalization constant which is independent on j,1, j’,l'. This equation
gives directly B |7,1) , expressed in terms of |j,{) . The unitarity of the matrix given in
(3.31) can be easily inferred directly via an explicit computation, and, most importantly
one observes that this matrix factorizes in a product of two unitary matrices, B h .B¢ T
one which represents the modular transformation in the physical space and one which
represents it in the internal gauge space. The same happens obviously for the action
of A, see (3.30). Due to the fact that the operators 4, B generate the whole modular

group, we can conclude that for an arbitrary modular transformation M we have

M i, 1) = Z ZMff M), (3.32)
fl=11=1
where the unitary matrices MP* and M© represent the action of the modular group
independently. If we consider now our physical Hilbert space H,h, spanned by the
vectors given in (3.25) (actually, by their duals) we see that the transformation of eq.
(3.32) acts observably on the physical index j, while the action in the internal space
(index [) amounts to a change of the gauge-fixing constants i which, on the other
hand, are not observable. So we can define the action of a modular transformation in

H,p by:
HY = }: MP (3.33)

j=1
This relation comncretizes our statement that the physical Hilbert space is modular in-
variant. In the next chapter we will see that the definition of the projected Hilbert
space and of the modular transformation defined in eq. (3.33) can be applied also if we
couple the Chern-Simons field to matter. The importance of this physical symmetry is

due to the fact that the resulting Hamiltonian will be modular covariant, transforming,
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in fact, in a very simple way; this will allow us, for example, to construct new energy
eigenstates starting from given ones. Also, the analysis of currents can be constrained
to currents in one direction only, while currents in the other direction can be obtained
by a modular transformation.

Let us finally make a comment on the case of integer & which has been widely
discussed in the literaturel!*17:18:19,3738] Tp this case (s = 1) the Casimir operators C;
coincide with the generators of global gauge transformations and modular invariance
means that the gauge transformations have to commute with the modular operators,
see egs. (3.28). From that equation one sees also the importance of the introduction
of the vacuum angles 1 » when imposing modular invariance. In refs. [14,57], which
deal with a generic compact surface of arbitrary genus g, it was claimed that modular
invariance forces k to be an even integer and the phases ¢ 3 to be zero. Here we proved
that, at least in the case of the torus (g = 1), this conclusion can be evaded, and there
exists for any integer k, even or odd, a modular invariant choice of the vacuum angles.
It is not clear to us, however, in which sense the relation between the Chern—Simons
theory and conformal blocks, found for even kl'*1737 can be extended to the case of

odd k.

3.4 (Q,P) — and coherent state representation

The algebra we are considering in this chapter is based on the canonical commuta-
tion relations, given in (3.9), about which almost everything is known. At first sight the
most convenient (explicit) representation would be the (@, P) — or configuration space
— representation. In this representation one introduces a wave function which depends
on one of the real variables, for example a; = z, and the other variable, in this case as,
becomes a derivative operator

27w O

which acts on the wave function f(z). In this representation the relevant operators
—27Tp

become Cy(p) = e 2™P55, Ca(q) = &%, Wi(p) = e # 3%, Uy(p) = e 235, The
Hilbert space is made out of all those functions f(z) which satisfy the relations (3.18)

33



identically (we keep here the phases i ; arbitrary):

f(m — 2msp) = ™70 f(z)
(3.35)

eirqa:f(:c) — eZn'iqrs Lpgf(m)

The first equation has the general solution

+oo
flz)=eT®m= Y f,elt7 (3.36)

U= 00

where the sum is over integers and the f, are arbitrary coeflicients. The second equation

in (3.35) implies then on the f, the relation
fu-—r.s.q pn erriq’r‘S 2 fu (337)

This means that the linearly independent solutions of the eqs. (3.35) are precisely 7 - s,

as expected, and a convenient basis for them can be given by

fl(m) — e—icplr:c Z ei(l——rs-u)—”’_g—e——zﬂi(l——rs-u)pg (338)
where [ is defined modulo rs, i.e. fi(z) = fitrs(z). Moreover, parametrizing the index

lasl=m-s5+n-r, where m (n) is defined modulo 7 (s), (3.38) translates into

Fron(z) = e~¥172 Zei(m—l—kn—ru)ze—Znis(m—i-kn-—ru)gog (3.39)

The identities frtrn(z) = fmn+s(@) = fm,n(z) hold, and one can also check that

the relations of eqs. (3.21) are satisfied, so that the identification fm n(z) = |m,n) is
completely justified.

This explicit and rather simple realization of the Hilbert space has actually an im-

portant drawback. This is due to the fact that the most natural choice of the scalar

2ms

product in this space would be (f,g) = [, f*(z)g(z)dz. This gives the true orthogo-

nality relations between different elements of the basis, but the norm of a state f, ,, is

ill-defined:
frn) = 27s Z 6y’

'
u,u

(fm,n
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This is clearly a consequence of the bad convergence properties of the definition (3.39)
of fm n itself.

In the pure Chern—Simons theory one could actually introduce a scalar product
"by hand” (the Hilbert space is finite dimensional), but in the coupling to matter
the topological components of the gauge field will play a role which admits a spatial
interpretation, they are in fact correlated with the center—of~mass motion. It is therefore
convenient to work in a realization in which the scalar product is defined by an integral;
in our case the right choice turns out to be the coherent state representation ®™1* which
is also appropriate for the complex language which we will adopt. In this language the
torus is described by a complex parameter 7, with v = Im7 > 0, and with the periodicity
relation z o~ z +m -+ n7. v corresponds here to the area of the torus. The introduction
of the parameter 7 may seem a little bit un—-natural at this point, but it permits us to

keep track of modular invariance in the usual convenient way.

The canonical commutation relations (3.9) become then [a;,a,] = 2 2%, Then one
introduces a complex topological component of the gauge field via
v . '
a=—(a; —iaz) (3.40)
2
with the commutation relations:
v
[@,a] = —. (3.41)
km

Due to the fact that the coordinate on the torus is now defined modulo m +nr the large

gauge transformations amount in this language to the shift
a— a+p-+ qT. (3.42)

The wave function becomes an analytic function, ¥(a), of the complex variable a alone.

The operator @ becomes the derivative with respect to a:
==
wk Oa

To insure that this operator is indeed the hermitian conjugate of a, one has to introduce

a

a gaussian measure, du(a,a) = exp (— kf da) dada, in the scalar product of the Hilbert

space:
ka

(0]3) = /d%e“TM T(a) 3(a). (3.43)
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The operators U; » in (3.12) have now to implement large gauge transformations with
non trivial windings around the 1 and T—cycles respectively, according to (3.42). In the

coherent state representation the operators in (3.12) become:

Us(p) = 9 _mk _ mk (1, +a 9
1\p) =exp (P 9a . a = exp L 2p ap €xp Paa
kE[1
Us(g) = exp <q <‘T‘—6— - Ek—m')) = exp <—I~ (—612|7'|2 + aqv’)) exp (q’T‘—(—a—>
Jda v v \ 2 a
(3.44)
Notice the appearance of terms quadratic in g and p at the right hand side of these

equations. These are precisely the ones which account for the non trivial transformation

of the gaussian measure under the shifts in (3.42). One can, in fact, check that

e

:]?“

% T, (p)®(a) Uz (p)¥(a) = e~ 5 (FPNa*0) (a1 p)¥(a + p) (3.45)

with an analogous relation for Us. The Hilbert space can now be determined by the

usual relation (note that C; and C, commute):

Cu(p) Ca(q) (a) = 2717 3(PP1 + 292) w(q) (3.46)

which reads as:

TST + g7|? a .
(Ip zq E 4 —(p+ q7)> +imrs(pg + 2p1p + 2029)
V(a+s-(pt+gf))=e” ° ¥(a)
(3.47)
To find the solutions of this equation one uses the scaled variable
b=
s
and sets
TS
b) = exp (" ) A(b :
() = exp (55" ) A(D) (3.48)
Then (3.47) becomes:
A(b+ p+ q7) = exp (iwrs (q27”' + 2bg + 2¢01p + 2cpgq>) A(b) (3.49)
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This means that A is a quasi periodic function on the torus®% of weight » - s whose
solutions, = - s in number, can be given in terms of #~functions(?%. Substituting back

in (3.48) one gets finally that the linearly independent solutions are given by

k L
¥U;(a) = exp <g;a2> 8{’:3 .(;021} (ralrsT) (3.50)
where [ = 1,...,7 - 5. Setting, as before, [ = s -m + r - n one gets the canonical basis

of (3.21). Also in this formalism one can see that modular invariance forces the phases
to w12 = 3: only in this case the modular transformed of solutions of (3.47) are again
solutions of (3.47). We will see this in some detail in the next chapﬁer when we discuss
the modular invariance of the Chern-Simons theory coupled to non relativistic matter.

The scalar product defined in eq. (3.43) (the infegral being extended over the s-
57]

torus) turns out to be the standard inner product for #—functions®™ and one gets the

right orthonormality relations

(T[T, ) = ‘351,1’

where c is a constant. The scalar product defined in (3.43) can be naturally extended
to the case when also matter is present (see next chapter).

Higher genus. For g > 1[18] the phase space variables of the theory can be chosen
to be the holonomies, a;,b;, of the gauge field around the elements of the canonical
cohomology basis, the a~ and b—cycles, which satisfy the commutation relations [a;, b;] =
%55,-]', all other commutators being zero. For an arbitrary set of vacuum angles (one
for each handle) to each couple of handles now there corresponds an 7 - s dimensional
Hilbert space and the dimension of the total Hilbert space is (rs)Y. However, if one
imposes modular invariance, in ref. [58] it is found that for even 7 there exists a unique
choice of vacuum angles which insures modular invariance, while for odd » no such choice
exists, and in order to represent the modular transformations one has to enlarge the
dimensionality of the Hilbert space by a factor of 229. With this respect the torus plays
an exceptional role in that modular invariance is insured for every rational value of k
in the irreducible representation of large gauge transformations and Wilson-lines. The
main distinctive feature of the torus with respect to other Riemann surfaces is, however,

its translation invariance. This property will permit us to define a conserved momentum
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operator and to analize therefore currents and eventually supercurrents. This is one of
the main reasons why we work on the torus, see however ref. [8] for treatments on the

sphere.
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4. Coupling to non relativistic matter

As we saw in the preceding chapter the pure abelian Chern-Simons theory does not
describe any propagating degrees of freedom. In this sense the interest in this theory is
due more to its topological properties, which are related to the concepts of links, nodes
and Jones polynomials!?®14:57:58] which we did not touch in the previous chapter. From
the dynamical point of view, a gauge invariant minimal coupling of the Chern-Simons
action to a conserved current is the most interesting and natural procedure to investigate
the effects of an "anomalous” kinetic term for a gauge field in a system of interacting
charges. It turns out that, on the plane, the gauge field can be eliminated from the
equations of motion to give rise to an effective non-local self interaction between point
like charges, which can be interpreted saying that to each particle an infinitesimally thin
flux tube is attached and that the other particles move in the field of those flux tubes.
Actually, we will see that on the torus there are additional degrees of freedom, the
topological components of the gauge field, identified in the previous chapter as Wilson
line integrals, which can not be eliminated and which constitute independent degrees of

freedom.

To promote the gauge field to a true dynamical degree of freedom, in which there
exist photons, in addition to the Chern-Simons term one would have to introduc;a the
usual kinetic Maxwell term(*9:51:38,60,61] in the actionk, I%FWFW- Therefore, from a
”phenofnenological” point of view, a theory, in which a matter field is minimally coupled
to a Chern-Simons potential, corresponds to a low energy approximation of this more
general theory, where the lower—derivative Chern-Simons term dominates the higher-

derivative Maxwell term.

The most important motivation for considering only the Chern-Simons action as
kinetic term for the gauge field, as explained in chapter two, is of course the statistics
flip induced automatically by this interaction: on the plane, a singular gauge transfor-
mation transforms the (complicated) Hamiltonian in the free one and the wave function
with ordinary statistics in a function with fractional statistics, as explained in chapter

two. Especially on the torus it is very convenient to work in the representation in which
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the wave function has ordinary statistics and, in this sense, there are no phase ambigu-
ities. In this representation there are two complications left. First, the wave function
transforms non trivially under large gauge transformations. Second, going from omne
coordinate patch to an other (due to the non trivial topology of the torus this patch-
ing is unavoidable) the wave function has to satisfy an appropriate quasi—periodicity
condition due to the presence of an (eﬂ'ectivé) monopole inside the surface. It is impor-
tant to notice that these two complications have not to be confused with the fractional
statistics inherent in the problem, which, in this representation is actually encoded in
the Hamiltonian: under interchange of two particles the wave function is well defined,

picking up either a plus or a minus sign.

4.1 On the quantization of the abelian Chern-Simons coupling constant

The particular value of the Chern-Simons coupling constant %, in a theory which
lives on a space—time manifold with trivial topology, does not affect the principal prop-
erties of the theory itself. If, on the other hand, the underlying surface has a non trivial
topology, the particular value of k determines heavily the structure of the theory.

To see this let us consider an action ianhich the Chern-Simons field is minimally
coupled to a matter field ¥, relativistic or non relativistic, or, more generally, to a

conserved current

S[A4,J] = Scs + Smat[4, J] (4.1)

where we recall that Scs is given by (3.2). It is known that the coupling constant of the
non abelian Chern-Simons action (pure or not) has to be quantized as an integer, in order
that the quantum theory, defined by the functional integral of the phase exponential of

the action

I = / {DA} exp (iSn.b.) (4.2)

be well defined and non vanishing (61,62] (here Sy qb. is the non abelian analog of (3.2)).
This is due to the presence of a term in the gauge transformation of S1.ap. Which is non

homogenous in the gauge potential 4, and which depends only on the winding number
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of the large gauge transformation, being actually proportional to it. The functional
integral sums over all gauge transformations and becomes actually ill-defined unless k&
is integer.

The situation is different in the abelian case as it has been pointed out by Poly-

chronakos in ref. [19]. The quantum theory is again defined by the path integral
T = / (DAY exp (5[4, J]) (4.3)

If we assume that the matter part of the action Smai[A,J] is gauge invariant, under a

gauge transformation (see (3.3)) the action in equation (4.1) changes by
K ~1
AS[4,7) =i [ gdg™'F (4.4)

where the field strength is given by F = dA. We see that this transformation depends
on [, meaning that the integrality of AS depends on the particular gauge field config-
urations which are coupled to the matter field, i.e. on those which appear really in the
theory. For concreteness, take the three-dimensional space-time manifold to be 72 x §?,
compactifying the time coordinate on a circle, and consider a gauge transformation g

which winds N times around S*, where N is an integer:
1 / gdg™! = 27N

Moreover, take the gauge field to be in a configuration which corresponds to an iﬁteger
monopole number M (Dirac quantization condition) with associated flux

F=2rM. (4.5)

T2

Then the integral in (4.4) could be calculated by formally factorizing it, were it not for
a subtlety with a factor of two(%%. The point is that the gauge potential one—form 4
can not be globally defined on T x S, if we admit monopole configurations, as we do;
it can only be defined by an appropriate patching. Therefore also the integral defining
the Chern-Simons action in (3.2) is meaningless as it stands; it has to be defined by
a rather complicated procedure!®*! taking properly into account the contributions of

the intersections of the coordinate patches (it is not sufficient to subtract simply the

41



contributions of the double/triple intersections). The appropriate treatment of ref. [63]

reveals, with respect to our "naive” counting, the presence of an additional factor of
two. In conclusion we get:

AS[A,T]=2- (%) (2rN)(2rM) = 2rkM N (4.6)

™

If one wants this to be a multiple of 2 for all M then clearly k has to be an integer. The
same conclusion can be reached by defining the Chern-Simons action as an integral of
the square of the first Chern class over a four dimensional manifold, My, which bounds

the corresponding three dimensional manifold [13,65]

F 2
Scs = Wk/ (—-)
Ay 27r

The ambiguity in this definition is given by mk times the integral over a closed manifold
of the square of the first Chern class, which is in general an integer. However, for a three
dimensional orientable manifold this integer is always even (%3] and the same conclusion
is reached.

However, and this is the key observation of ref. [19], even if k is not an integer the
path integral in (4.3) does not vanish and continues to make sense in general: the global
gauge anomaly in (4.6) is harmless. What happens is that the path integral decomposes
in sectors of different integer fluxes M. For sectors, for which (4.6) is not a multiple of
27 the path integral will indeed vanish, upon summation over all N. If & is irrational
only the zero flux sector contributes, if k is integer the theory contains states of all
fluxes, while for rational k, k = T, the theory contains only states for which the flux is
an integer multiple of 27 - s. If the charges one wants to couple to the Chern-Simons
field are all equal, as it is appropriate to induce the statistics flip, the total flux of F'
has to be different from zero, as we will see in the following. This determines k to be
rational. We choose therefore

k= (4.7)

T
S

where we define r and s to be positive coprime integers. In what we are interested in
throughout this thesis is a quantum mechanical theory of a Chern-Simons field coupled

to non relativistic matter on a torus. In the construction of this theory we will indeed
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encounter in many points the need of a rational coupling constant in order to get a well
defined theory: the consistency of our quantum mechanical theory, as we will see, relies

actually crucially on (4.7) and on the Dirac quantization condition eq. (4.5).

4.2 Hamiltonian formulation on the plane

The minimal coupling of a Chern—Simons field to a non relativistic matter field

¥(z), commuting or anticommuting, can be described by the following action!t1:23:61,66];
k 1 3 o
§= Pz e A4,0,4,5 + /d% (iqﬁmf + 507 (D2 +D?2) \IJ) (4.8)

The covariant derivative is defined as usual by D, = 8, — 14, where y goes from zero
to two. We have absorbed the (fictitious) electric charge ¢ in the definition of the vector
potential so that the new coupling constant should actually be EI%’ which we continue to
call k for simplicity. Notice, however, that what we said in the previous section about
the quantization of £ can be regarded also as a quantization condition for the fictitious
charge q. As long as we couple the gauge field to a matter system with only a single
~ type of charges what is quantized is the ratio E’%.

Our goal is to set up a quantum mechanical treatment of the system described by
this action on a two dimensional surface with periodic boundary conditions, i.e. on a
torus. To this order we derive first the equations of motion and the Hamiltonian staying
on the plane, and specialize 'in the next section to the torus. Quantum mechanics is
obtained by projecting the second quantized theory on a subspace with a fixed number

of particles, i.e. of anyons. In this section we follow mainly ref. [23].

Varying (4.8) with respect to 4, we obtain (F,, = 0,4, — 0, 4,)

4
e AF, ) = ~~£—J“ (4.9)

where the charge density is p = J' = UT¥, and the current density is given by

1
Jn—

T 29mi

((Paw)tw - @*Dnty) . (4.10)

On one hand, due to the Bianchi identity for the Chern—Simons field strength, eq.

(4.9) implies immediately current conservation and, on the other hand, it implies that
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classically the field strength F),, is confined to the particle’s worldlines. This implies
also that there are no classical Lorentz forces between the particles. This can also be
seen more directly by observing that the Lorentz force is proportional to F,,J”, which
is zero due to (4.9). Nevertheless, a non trivial dynamics will arise at the quantum
mechanical level due to the need of introducing a vector potential describing the field
strength, in analogy to the Aharonov—Bohm effect 23],

The zero-th component of eq. (4.9) gives the constraint
2 .
Frn = O An — OnAm = —Emn % akv (4.11)

where €13 = +1 = —e13. Eq. (4.11) determines the space components A; of the gauge

potential as a function of the density (we leave the time-dependence implicit):
1 .
Am() = €mn o / d?y 0,G(z — y) T (y)T(y) (4.12)

This is the solution of eq. (4.11) in the Coulomb gauge O, A, = 0. G is the Green
function for the Laplacian on the plane, satisfying V2G(z) = 4w6*(z), which is given
by

G(z —y) = In|Z — 7)* (4.13)

On the torus eq. (4.12) will be modified due to the presence of topological components
of the gauge field, as we saw in the previous chapter, as well as for the presence of zero

modes of the Laplacian operator. The spatial part of (4.9) gives the equation

2
Fon = Oy An — 0,4y = —Esnmjm (4.14)

which, due to current conservation, permits to compute 4y in terms of the spatial

60,06] oiven in equation (4.10): the gauge potential A, becomes therefore a
g q gaug I

current [
dependent degree of freedom.

Variation with respect to UT gives the equation of motion for the matter field

(i% + A0> U=-—D-DU. (4.15)

On the other hand, noting that the momentum conjugate to ¥ is Iy = iU, one can

deduce the Hamiltonian of the system, which assumes the simple form
1 .
H= %/d%ng(m)nn(m) (4.16)
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where

Tp(2) = (O — idm(2)) T(z) (4.17)

and A, is given in (4.12).

In deriving this equation we used the fact that the pure Chern-Simons action, being
intrinsically independent of the metric tensor, does not contribute to the Hamiltonian,
and we took advantage of the constraint (4.11). This Hamiltonian may seem somewhat
puzzling at first sight, in that it seems the Hamiltonian for a charged particle interacting
with an electromagnetic field, in a gauge where 4, = 0, and one could ask what happens
with gauge invariance. Also, it does not seem to reproduce correctly the equations of
motion for ¥, obtained by taking the Poisson bracket of the Hamiltonian with respect
to W', To explain these apparent problems it is sufficient to observe that there is a
(hidden) contribution to the Poisson bracket between H and ¥', coming from (4.12),
which equals precisely the expression for 4, which is objcained[%} by solving eq. (4.14)
for Ay. The final result is indeed the gauge covariant equation of motion (4.15).

The second quantized version of the theory is obtained by imposing the canonical

commutation relations (we choose here bosonic ones)
[\Il(ml), ‘I’T(mg )] = 52(331 — iBg)
(@ (1), ¥(z2)] =0 = [¥7(21), TT(z2)]

with a suitable normal ordering prescription for the operators II given in (4.17). One

(4.18)

has in fact

[0(y), Am(2)] = ;-emn 00 Gz — 1) (y) (4.19)

EmnOnG(z —vy) is ill-defined at the origin; following ref. [23] we define it to vanish there
to preserve the antisymmetry of €,,,0,G(z — y) under space-reflection. Therefore no

ordering ambiguity afflicts II and IIT.

Following Jackiw and Pil%%2%] one can also consider a more general Hamiltonian,

obtained by adding to (4.16) a local attractive quartic interaction of strength g:
H, = _-/d%rﬂ I, (z) — -g-/d% (O (2)T(2))” (4.20)

In view of (4.11) this interaction can also be regarded as a magnetic field—charge density

interaction. The interesting peculiarity of this Hamiltonian is that classically it describes
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a self-dual system [2%], in the sense that the equations governing their ground states are
self~dual equations, provided one chooses for g the particular value

27

7 km

(4.21)
Also, for this value of g the system turns out to be related to the two—dimensional Pauli
interaction. For more details about this Hamiltonian, and for classical self-dual soliton
solutions of (4.20) see refs. [23,66]. For further comparison with our formulation of the
first quantization on the torus we consider now H, as our Hamiltonian. It is also clear
that this Hamiltonian can be obtained by modifying correspondingly the action (4.8).
The first quantized Hamiltonian is now straightforwardly obtained observing that
the number operator
Q= /dz:z: p(z) (4.22)
commutes with the Hamiltonian, and that one can diagonalize simultaneously ¢ and

H,.
Hg |E7—N.-1> = E]EvN—i)

Q|E,N.)=Nu|E,Ny)
We project these equations on states with a fixed number, N 4, of anyons in the config-

uration space representation:
|7:) = ¥(21)--- ¥z, ) [0) (4.24)

The wave function is defined as ¥(z1,...,zn, ) = (€i|E, N.4) and the projection of (4.23)

on the states in (4.24) gives
(Ti|Hg|E, N4) = (0[[¥(z1) - U(zn, ), Hgl| E,Ny) = E ¥(z, e TN, ) (4.25)

The commutators are easily evaluated, no divergences are encountered, and one gets
the first quantized Hamiltonian

N4

Hr¥(zy,...,zn,) = ——1——2(51——1@1) —925 i =) ¥(zy,...,zNn,) (4.26)

I=1 1<J

where

1
E*I; len}:cl——mJ (4.27)
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((\:/x Jm = EmnOn). Let us make a few comments about this result. First we observe that
the one-particle problem is free, i.e. there are no self-interactions, the corresponding
Hamiltonian being the free one —3--V?. Second, the expression (4.27) for the vector
potential in the Hamiltonian H could also have been obtained by substituting for the
density operator in (4.12) its first quantized counterpart

Ny

— Z §%(y — z;) (4.28)

and by evaluating the so obtained ff(:n) in the point z = z;. In doing so, on the right
hand side of (4.12) the term (€,0, G)(0) appears, which has to be set to zero according
to our normal ordering prescription, and one gets back eq. (4.27). Third, we should
remark that, at the second quantized level, the eq. (4.15) acquires an additional con-
tribution coming from re—ordering[?¥], in that one has to compute i0(z) = [¥(z), H].
This additional contribution in the commutator is actually needed in the evaluation of
(4.25) to restore the full covariant Laplacians in (4.26). The wave function of eq. (4.26)
is symmetric in the coordinates, but it is clear that the same expression is obtained
for the Hamiltonian if we consider the ¥’s as anticommuting fields, the wave function
becoming antisymmetric: due to the fact that we are in the non relativistic regime both
choices are allowed.
In the complex language, z = = + iy, the Hamiltonian becomes

I\T

HI:~—Z (DiD; + DiDi) — g »_ 8 (2 — 2;)
< (4.29)
2 &
_—_———ZDD —|—<————g> >0 8%z — 25)
i=1 1<j
where the covariant derivatives are
1

D=0+ ﬁ-az ; G(z — zj)
) ’ (4.30)

Di=0~ 50 2 G(z — z;)

E:

In equation (4.29) we note a §—function ambiguity in the definition of the Hamiltonian

H itself, due to the fact that in the absence of the gauge field one has V? = 450 = 489,
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while the same is not true for the covariant derivatives. In the following we will decide
to consider a "normal ordered” Hamiltonian?%, H; = -—;i— Zi_ﬁiDi, where we do not
consider the é—function contributions at all.

Alternatively we can also say that we choose for g the particular value g = f{;— to
get this Hamiltonian. Notice that this is precisely the value of eq. (4.21), for which the
classical system becomes self-dual and for which in ref. [66] explicit classical ground
state solutions have been found. It is therefore not to surprising that we will be able to
find all the ground state solutions of the corresponding quantum mechanical system. It

is, however, obvious, by direct inspection, that the quantum mechanical ground state

solutions, i.e. the solutions of

(Z f,;Di> T =0

are not normalizable on the plane. This is one more reason for abandoning now the
plane and to switch to the torus in the next section.
On wave functions which vanish for z; — z; the é—function contributions are in any

case irrelevant.

4.3 Hamiltonian formulation on the torus

The most convenient description of the torus is given by the Fuchsian representa-
tion, determined by a complex modular parameter 7, which we will use in the rest of
this thesis. At the beginning of this section, however, we start with a real torus, with
dimensions L; and L respectively, and with area v = Ly - Ly, to make contact with the
results of the previous section.

20,21]

We begin reconsidering the constraint (4.11) on the torus! . Remembering that

we defined the number operator Q = [ d?z¥(z)¥(z), integration over the torus yields

1 Q
| R, ==
2 y k

Now the eigenvalues of the number operator Q are integers, and the Dirac quantization

condition tells us that the left hand side is an integer number too. This permits us to
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conclude that k£ has to be rational, as anticipated in section 4.1. We will derive the
Dirac quantization condition in the quantum mechanical treatment below.

We know from the previous chapter that at the torus the constraint (4.11) leaves
the constant topological components of the gauge fleld undetermined. We can solve it

writing

A T 1
Am(z) = T + I—/—Eemna:nQ + gy Emn / d*y 8, P(z — y) T (y)¥(y). (4.31)

Here P(z — y) is the Greens function for the Laplacian on the torus, which, due to the

presence of a zero mode, satisfies
2 2 1
V P(z —y) =4r <5 (:B——y)———>
v

and is a single valued and modular invariant function on the torus. The explicit ex-
pression for P will be given below. Eq. (4.31) is the solution in the Coulomb gauge
Om A = 0, where the gauge potential transforms by a constant as z,,, — T + L Non.

The Hamiltonian is again given by (4.16) and (4.17) (or (4.20)), but there is now an
additional normal ordering ambiguity in the Hamiltonian due to the fact that instead

of (4.19) one has now

[B(9), A (@) = 5-Emn 00 P(® = Y)U() + —mnza¥(y) (4.32)

Even if we define now £.,, 6, P(0) to vanish, as on the plane, there is a ﬁnitc ordering
ambiguity in the definition of II(z), due to the last term in this equation, which is
finite as ¢ — y. As a short cut, to find the first quantized Hamiltonian, in which we

are interested in, we proceed according to (4.28). Before doing that we switch now

definitively to the complex formulation. The derivatives become 0 = —Qz- = %(ax —
i8,), 0 = —% = %(5,; +18,) and the complex components of the vector potential are

A=1(4,—i4,), A =%(A; +14,). The covariant derivatives are D = 0 — 14, ~Df =
D = 6 —iA. The complex topological components of the gauge field are conveniently

normalized as
T

44-top = —-Z;CL (433)
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according to (3.40). ‘We recall that z is defined modulo m + nT and that the area of the

torus is v = Im7. Eq. (4.31) becomes then

—iA(z) = _3;- o+ %E 20+ é% a/d-’-w Pz —w)TT(w)T(w)

and A is the complex conjugate. The Greens function P of the Laplacian, satisfying

i.vzp(z) = 80P(z) = <52(z) - E)

v

is given by
2
T

2

8[1/51(2)

REARAIG

)2 (4.34)

81

P(z) = (z —

This is nothing else then the scalar propagator in string theory, expressed in terms of
the standard #—functions with characteristics. To derive the first quantized theory we
fix the number of particles to be N4 and enforce the substitution (4.28) (Q becomes
Ny)

Ny
™

—iA(z):—~-—a—|—2 z]\h—}———Z@P

The vector potential A;, analogous to (4.27), is obtained by setting in this equation
z = z; and by defining, as before, dP(0) to be zero:

Vi3 ™
—’LA[“—‘;‘CL—{—?‘;];‘N.LA[-}—2kZ:I(9[P(Zl—~])
- - . " (4.35)
—-ZAl:—V—&—————]—c- 12 -2—15251}7&1——2])
J

We turn now to the topological components of the gauge field, i.e. to the Wilson
lines. In the Schrédinger representation, which we are adopting here they are time
independent dual quantum variables, as we saw already in the previous chapter. Indeed,

substituting (4.33) in (4.8) we get a contribution to the action of the form

km d
—1— [ a—adt .
el il (4.36)
and canonical quantization gives
(@, = — (4.37)
a,al = — .
’ wk :



in agreement with eq. (3.41) of chapter three. There we saw already everything about
the coherent state representation of this algebra, which turned out to be very convenient,

and which we will adopt also here. We recall that @ becomes the derivative operator

with respect to a, @ = al = __];_éél and that the wave function depends on a (not on a).

Therefore we get on the torus the following Hamiltonian

A/

HT:--—Z (DiD; +DiDi) — gy 6°(zi — 2j)
. < (4.38)
2
:——ZDD+<—“—9> 262 —"Z]
1<
where the covariant derivatives are given by
D; = 0; —-—CL—l—‘)——];N.; 1+-—ZBPZ]
s . = (4.39)
—-’DT O + — = — — i = 0; P(i
=0t e 2;?; (1:9)

with P(i,7) = P(z; — z;). Note that formally (4.38) coincides with the corresponding
expression on the plahe (4.29), the covariant derivatives being different in the two cases.
What is actually surprising is that the §—function contributions proportional to %T—L
turn out to be the same in both cases. Those contributions come from the commutators
[D;,D;] at the same i, which turn out to be equal. That this happens is due to a
contribution in the commutator coming from the topological components, which cancels
a corresponding contribution from the z—derivatives. This tells us that we are on the
right way. This interplay between the large components of the gauge field and the
space-variables will appear in many points of the theory, and in a crucial way in the
implementation of translation invariance. Thus also in this case we can choose for the

27

(22] the value g = = to

coupling constant g of the attractive hard core interaction
"normal order” our Hamiltonian. Choosing the anyon’s mass m equal to 2 we will, in

fact, consider in the following the Hamiltonian

Ny

H=> DID; (4.40)
1=1
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This Hamiltonian acts on wave functions which depend on all the coordinates of the

anyons z;, 1 = 1,..., N4, as well as analytically on the complex variable a, as said above:
U= 0(a,21,. .. ZN 121,y EN 1)

The scalar product in this Hilbert space is given by

Ny
(\yl,\llg) = /Hdzzl/dzaexp (——;&a) ‘I’1 ‘1]2 (441)
=1

(see chapter three for the occurrence of the coherent state measure). The z;—variables
in (4.41) have to be integrated over the fundamental domain of the torus, while the
integration domain for a will be specified in section 4.5.

Not all functions of a and z; belong to the Hilbert space, the set of functions which
stay in it is actually heavily constrained by the symmetries of the theory. Thus the
next section is devoted to an analysis of these symmetries and to the derivation of the

conditions on the physical states, implied by them.

4.4 The basic symmetries

Among the symmetries which we treat in this section there is a dynamical symme-
try, which we begin with: translation invariance. This is actually an intrinsic property
of the torus, not shared with Riemann surfaces of different genus, and a theory which
lives on the torus should exhibit this symmetry. To see that this is indeed the case in

our theory we rewrite the covariant derivatives of (4.39) as follows:

j#i
s T _
Ay =0; — e + AL (4.42)

f(7’7.7) = '2% (Ei - 5J') + —27;811)(17.7)
Notice that the f(4,7) are functions which depend only on the differences z; — z; and

that f(4,7) = —f(4,7). Moreover
(A AT =0=[A;,4;] for all ,5. (4.43)
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The (complex) total momentum operator is given by

P=) Di=> A

. o (4.44)
Ph=>"Dl =% Al
and taking into account (4.42) one gets easily
[H,P] = 0=[H,PT]. (4.45)

This means that both components of the total momentum are conserved operators and
that the theory is translation invariant. But there is even more: as a direct consequence

of (4.43) one has also
[P,P]=0 (4.46)

These commutation relations hold actually also in the corresponding theory on the plane

(see section 4.2), which is translation invariant too. Here, however, we note the peculiar

role, played by the large components of the gauge field, to restore these commutation
relations. It is finally due to their presence, if in the next chapter we will be able to
formulate a translation invariant Mean Field Approximation of the theory.

These commutation relations imply also that we can diagonalize simultaneéusly
the two components of the momentum operator and the Hamiltonian. Before we can
do that we have to determine the Hilbert space, H, in which those operators act. The
essential ingredients for this purpose are the following two:

1) Covariance under large gauge transformations, i.e. under one~valued mappings from
the torus into U(1) with non trivial windings around the handles.

II) The quasi—periodicity condition of the wave function under shifts of z; — z; +m +
ntT. The cocycle property for the corresponding transition function will imply a
quantization condition on the total flux, the Dirac quantization condition.

We deal first with the large gauge transformations. They are given by the U(1)-
mappings

9p,q(2) = exp (g(p(i —z)+q(7Z — fz))) (4.47)
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which induce on the gauge potential one—form A = Adz + Adz the transformation
A— A+igp, dgp‘)}l, where d is the differential. Comparison with (4.33) shows then

that large gauge transformations correspond to discrete shifts of the variables a:
a—a-+p+qT (4.48)

where p and ¢ are integers, as already seen in section 3.4. We can now proceed in
complete analogy to that section and construct operators Ui (p) and Us(q) on M, which
implement transformations with non trivial windings along the 1 and 7 directions re-
spectively. We derived these operators already for the pure Chern—Simons theory in eq.
(3.44); it remains to multiply them by the operator which generates the shift for the

matter, given in (4.47):

ot (37 +)) ()

L /1 5 (4.49)
— , TR (202142 F
U2(q) = lz[go,q(zl)eXp ( > <2q " + aqT)) exp (Waa)
The following commutation relations hold:
[U;, D;] = 0 = [U;, D]}, (4.50)

which insure the invariance of the Hamiltonian under large gauge transformations. Also,

the fundamental relation (3.15) continues to hold:
Us(p) Ualg) = e~ 2™ R PU,(q) Us(p), (4.51)

whose interpretation and representations have already been discussed in section 3.2.

The operators

Ci(p) = Ui(s - p)
Ca(g) = Ua(s - q)

are again seen to be Casimir operators which then in any irreducible representation have

(4.52)

to be constants, i.e. phases. Each vector ¥(a, z;, z;) which belongs to the Hilbert space
‘H has then to satisfy the relation

C1(p)Ca(q)¥(a) = 2™ 7 3(pP1 + 322) g (q) (4.53)
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for a fixed pair of real phases v1,2. We know already from our discussion in section 3.3
that modular co-variance imposes ¢; = w2 = 1/2. Actually, in the present complex
formulation of our model this fact is related with a curious integer number theoretic
problem, as we will see in a moment.
Eq. (4.53) can then be rewritten as
rST (]p + g7|?
(a+s-(p+a7)) =g, ,(2)e ¥ 2

+

(p+ qT)> +imrs(pg + p + g)
s ¥(a)
(4.54)
where z is the center—of-mass coordinate, z = wa___“l zi, and summarizes our requirement
of invariance under large gauge transformations: every state ¥ € H has to fulfill (4.54).

We address now the issue of modular invariance in the coupled system — in the pure
Chern-Simons theory it has already been discussed extensively in section 3.3 - and turn
afterwards to point II (the quasi periodicity condition of the wave function under shifts
around a handle of the torus).

The group of modular transformations corresponds to the equivalent ways of

parametrizing the non trivial cohomology cycles on the torus. In the complex language

it amounts to send

w ar+f
T =77 =
YT + 6
yosM= Y HE
y7 + 4] (4.55)
M z
z— 2z =
T+ 6
a— o' = e
vT 4+ 8
where a, .., § are integers such that
abd — By =1. (4.56)

If we think of the torus as a donut immersed in R?, as we do, these transformations
do actually not admit an immediate physical interpretation; we observe, however, that
our Hamiltonian and momentum operators are indeed covariant under this group, more

precisely they change by an overall factor

H(zf'w,aM,TM) = |[y7 + 5]2 H(z;,a,7)

MM My _ (4.57)
Pz, 0™, T )—(7T+5)P(ZZ,Q,T).

1
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This implies that if ¥(z;,a,7) is a simultaneous eigenfunction of H and P with eigen-
values E(7) and P(r) rispectively, the modular transformed state

TM(z;,a,7) = \If(zM,aM,TM) (4.58)

1

would be a simultaneous eigenfunction too,

E(TM)
R
P(rM)
e

HIM(z,a,7) = TM(2;,a,7)

(4.59)

’P\I’M(zi,a,'r) = \I’M(zi,a,'r),

provided it belongs to H. To ensure this property we have to require the modular co—
variance of (4.54), that is, we have to require that, if a state ¥ satisfles (4.54) for all
integers p, g, then the state ¥ should satisfy the same relation (4.54) for all p,q. That
this is actually the case is easily verified by direct inspection. The unique non trivial

point is the invariance of the last phase exponential

eiWTS(pq+p+q) N eivrm[(ap-h@q)(‘Yp+5q)+ap+/3q+w+6q)]

(4.60)
— eivrrs[pq+(a+‘y+a‘y)p+(ﬁ+5+ﬂ5)4]

We used (4.56) and the fact that for all integers M, N exp(irtMN?) = exp(inMN).
Moreover, due again to (4.56), the quantities between round brackets in the last row
can be seen to be always odd. This can be checked, for example, by considering the two
generators of the modular group 7 — 7+ 1, 7 — —%. Thus one gets back the original
phase imr3(pa+P+9) for all modular transformations. It is then also clear that any other
choice for the phases ¢ » would break modular invariance!

Before giving the general solution of (4.54) we state now the restriction on ¥ coming
from the quasi-periodicity of the wave function on the torus (point II)). After translation
along one of the two homology cycles, z; — z; + m; + M7, the wave function should
return to its original value up to a gauge transformation, according to the transformation
property of the covariant derivative in (4.39):

™

i — D;
Di— + 2vk

N4 (m; + n;7)
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The most general transformation law, compatible with the group property, is given by

(Q = N.l/k)

—?m;(f,*—z;)—‘Zn‘iQm;alem;(8;—1—5,’)\Il — T

Vi(m)¥ = ]:Ie‘z
L , . (4.61)
VQ(TL)‘II = He—ﬂ‘—n;(r:f-—Tz,-)—eran;a;en;(rag—rrag)lP .

where the a;» are fixed phases. Notice that [V;,D;] = 0 = [Vi, Dj], implying that the
Hamiltonian is a well defined operator in the Hilbert space, and that [V;,U;] = 0, as is
required by invariance under large gauge transformations. The cocycle property of the

transition functions on the torus can be stated in the form
[Vi(m), Va(n)] = 0

and implies the flux quantization (Dirac quantization condition):

N
Q= —ki = integer. (4.62)
Notice that eq. (4.62) implies the rationality of k, as anticipated several times: k = L.
Actually, due to the fact that r and s are relative prime integers, N4 has to be an

integer multiple of r:

Ny=r-u, Q=su (4.63).

. . . 1 .
If we rely again on modular invariance we have to put a; = a» = 5, and the conditions

(4.61) can then be brought in the form

U(z; +m; + niT) = He’;;'-(mf(éf—z,-)+n;(,—z,._fz;))+i7rQ(rn;n;+m;+n;)\p(zz.) = Lo, 0, ()
l (4.64)

In summary, the Hilbert space 7 is made out of all those functions U(z;,%;,a)
which satisfy the conditions (4.54) and (4.64), and carries a representation of the group
of modular transformations: so this group corresponds to a physical symmetry of our
model. In the next section we will determine the general solutions of these two equations,

to find an explicit basis for H, and we will also show in which sense modular invariance

is saved when we project the so determined ”large” Hilbert space to the physical Hilbert

57



space, i.e. when we introduce a gauge fixing for the large gauge transformations. The
procedure and its consistency have already been shown in sections 3.2 and 3.3, in the
next section we have only to generalize slightly this procedure due to the presence of

matter.

4.5 The Hilbert space

We give first the general solutions of (4.54). Recalling that z = >, zi we use the

ST

variable

and define the function

T(b) = exp (T;sz +s T—bz> A(b).

0 -
Then (4.54) becomes
b 3+ 47) = exp (i (67 4 00 4+ ) A

But this functional equation has already been solved in section 3.4, see egs. (3.49) and

(3.50). Substituting back everything we get the r - s independent solutions

bmn(a,2) = exp (g (o- i-) 2+ g (o- )2 + ’;‘;l‘:) 9[% T ﬂ (s(ka — 2)|rsT)
: (4.65)

2|

These functions are generalizations to the coupling with matter of the ones given in
(3.50) for the pure Chern—Simons theory, which determine the allowed a—dependence of
the states in the Hilbert space. Notice that the coordinate dependence is only through
the center-of-mass coordinate z. We included some additional z—dependence for later
convenience.

Again m and n are defined ﬁlodulo r and s respectively, and therefore we can restrict
them to 1 <m <7 and 1 <n < s. The action of the large gauge transformations Ui 9,
which are given in (4.49), on this basis turns out to be

Ul(p) Qbm,n —_ e-—27ripnk+i7rpr ¢m,n

, (4.66)
Uz(q) ¢m’n — e+mqr ¢m’n+q
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These is formally identical to (3.21) and permits us again to conclude that the index
n of ¢m, » spans an internal space, on which the large gauge transformations act, while
the index m spans the physical space which is not touched by those transformations.
In the following we will see that this is in fact the appropriate interpretation. It is also
clear from (4.54) and (4.66) that, in order to implement the operators U; unitarily, the
integration region for a in the scalar product defined in (4.41) has to be the s-torus (If
we write a = u + v7 the integration region is 0 < u,v < s). It can then be shown that

one has

kw v
/dzaexp (—Taa> Gy oy Prging = 4] == * Smymz * Onyino (4.67)

27s

The generic state in H can now be written as

v = Z Z Srmyn (71, 71) (4.68)

m=1n=1
where the ¥, , depend only on the anyon’s coordinates, but not on a. Due to (4.67)

the scalar product turns then out to be

Ny r K]
(T,T) 4/2713 /Hd2z1 > ;@m,n W (4.69)

It remains to find a conveniént basis for the ¥, ,, which span the complete Hilbert space
in agreement with (4.64). This basis is obviously not unique and we have to decide the
operators which we want to diagonalize. It is convenient to analyse the Hilbert space

in terms of the total momentum which we know to be a conserved operator:
PU¥p =PUp
‘ _ (4.70)
P'¥p=PUp
The Hilbert space H will then become a direct sum of Hilbert spaces at fixed momentum
P:
H=> @&Hp. (4.71)

The eigenfunctions can be written as

p
Up = exp <"N—Z - "“—Z> Z ¢m nftmn zz; ) (4‘72)
4
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and with the help of the orthogonality relations (4.67) and of the identities Pey,, n, =
'ﬁgﬁm,n = 0, the eigenvalue equations (4.70) become (3 .0;) hmn = (Zla) P n = 0.
This means that the hmynls are translation invariant and depend thus only on the

differences of the coordinates:
hm,n = hm,n(2ij, Zij)

where z;; = z; — z;, with the condition Am4rn = hmnts = Amn. From now on we work
at fixed momentum P.
To impose now the constraint (4.64) we need the identity
¢’m n(Zi + m; 4 TLiT) :Lm~ i H Ciﬂzg;i-i-ﬁ_:_‘c(zij (mij+nij 7) =2 (mij+ni 7))
i<j (4.73)
e-—fri(Q+s)(Zi mf+2; Tl{)GZTFi% z m;gbm—z ni’n(zi)
where we remember that @ is the integer defined by @ = N_/k. If we take this identity

into account and write the complex momentum as
T
v

where the P; are real, (4.64) becomes

P

A L. ) ) — —in THIE (2 (my g 7) = Zi (maj 4nag T))
m,n("z +m; + TL,,T) - € v
i<j ~ ’ (4.75)
. . Pa . L P .
e27rz Z ™mi N —2mt Z n; F.Te-zm% Z m;h

m—z n;,n(zi)
Here we defined

~ u(u -+ 1)

P,=P +rs 5 (4.76)

and u is the integer defined in (4.62). As a consequence of the translation invariance
of the A, , this relation implies immediately that the P;, and therefore the P;, have
to be integer, as can be seen by setting in eq. (4.75) m; = M, n; = N for all 7. This
is of course the expected quantization condition for the total momentum on a compact
space. One can check that the so obtained spectrum of P is modular invariant. From
(4.59) we read the modular transformed eigenvalue

M _ 1 ) T
1+ 6 vM

(P + Pr™) = Z((6Py + BP2) + (vP1 + aPo)7
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which is again of the form (4.74) where also the new P, ; are integers.

A set of functions h,, ,, which depend only on the differences of the coordinates
z;j, and fulfill the set of relations (4.75) identically, identify a state in our Hilbert space.
Actually we can make the important observation that the transformation property (4.75)
operates only in the physical space, labeled by the index m, while in the internal gauge
space, labeled by n, it acts as the identity operator. This is the reason for why also in
the coupled case we can make a consistent projection of the Hilbert space, as we did for
the pure Chern-Simons theory in section 3.2. In other words, the relations (4.66) and

(4.75) allow us to restrict the Hilbert space consistently to the states

0 P P 5 - z
\II‘(p) = exp (mz — Ez 72—:_:1 ¢579) hm(zij’ Zij) (477)
where
d)sg) = Z C&LO) ¢m,n (478)

n

and the constants c%o), with >° _, |c$z°)|2 = 1, define the gauge fixing constants, as in
section 3.2. The physics is contained in the r (translation invariant) functions A, , which,
under shifts of the coordinates, have to transform cyclically among themselves according
to (4.75) (the index n in that equation can be ignored in this context). It is important
to notice that, due to the fact that all our observables are gauge invariant, and therefore
do not see the internal index n, the matrix elements of the observables are independent
of our gauge choice {csio)}, see also ref. [19]. The analogy with the unobservability of
the gauge fixing parameter £ in QCD may be appropriate. To conclude, our theory is
invariant under global gauge transformations in the sense that a gauge transformation,
see eqs. (4.66), does not change the form of the state (4.77), sending unobservabley the
gauge fixing constants from c%”) {o cln(o) = unmcg,g) where u,,,, 1s a unitary matrix.

Let us now discuss what happens about modular invariance for what concerns the
projected Hilbert space, spanned by (4.77). Remember that the large Hilbert space,
given by (4.68), is modular invariant, as a consequence of the modular invariance of the
defining equations (4.54) and (4.64). This means that if a state U(z;, a,t) satisfies those

equations the state U™ given in (4.58) satisfies those equations too. To compute the
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action of a generic modular transformation (4.55) on ¥ we consider the two generating

transformations + - 7+ 1 and 7 — —%. For 7 — T 4+ 1 one has[67]

—ir rs\2
g =T (motnrt E) g (4.79)

while for 7 — — one gets

T s N !
gt =N >N e—2m< ek )qsm,,n, (4.80)
m'=1n'=1
where A is a constant which does not depend on m and n. Notice that the last relation
is nothing else then the discrete Fourier transform of ¢, »; this is, of course, what one
expects due to the fact that the corresponding modular transformation exchanges the
two cohomology cycles. The transformed basis of eq. (4.80) corresponds to the dual
basis of eq. (3.23). We note the remarkable fact that, as in the pure Chern—-Simons
theory, the two modular transformations given in egs. (4.79) and (4.80) factorize in a
tensor product of two matrices, one for the internal space (index n) and one for the
physical space (index m). For a generic modular transformation M we have therefore,
see (4.68):
M= N MPE MG T2 T (4.81)

m,n,m’ n'
where the matrices MF? and ME represent the modular group separately in the phys-
ical and gauge spaces respectively. We know already that this state, being the modular
transformed of a physical state, stays in the Hilbert space. However, due to (4.73), in
which the index n does not enter at all, the state in (4.81) stays also in the Hilbert
space, if the indices n and n are not summed over but kept fixed, and if the matrix
MG is suppressed. This allows us to define a representation of the modular group also

in the projected space, spanned by (4.77):

gom _ (P PM S MEE G b (2 E ) (4.82)
P - p N.; N4 mm' m’ mALij 2 2if o )

t
m,m

This state has the right transformation properties and constitutes obviously a repre-

sentation of the modular group. Notice that the momentum eigenvalue has also been
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changed according to (4.59): modular transformations mix the currents flowing along

the two handles. In summary, the physical projected Hilbert space,
HO =S eny (4.83),

spanned by the vectors (4.77), where the h,, have to satisfy (4.75), carries a represen-
tation of the modular group and is gauge invariant in the sense specified above.

As a last achievement of this section we would like to give an explicit basis for the
spaces 'Hg)) by finding all the solutions of (4.75).

The identity gﬁ(muler = ¢(mo) implies the restriction Ampm+arr = hm, and so it is

necessary to find an Ay such that:

Mg = -
ho(z; +m; + niT) H —im T — E (a (ma g 7) = 24 (mij +nig )
z<J

exp <2mz mz—— — 271 an > ho(z;)

for all m; and for all sets n; such that Y, n; = Nr for some integer N. Let us suppose

(4.84)

to have found such an hy. Then we can determine all the other components of h,, in
terms of hy via

P T o mer ..
hm(z:) = exp ( 27rzm——1—> He”m””(””r““” ho(z: —nir) (4.85)

N
A ) i<

where the set {n;} has to be such that },,n; = m (mod r). The property (484)
insures then, first, that the r.h.s. of (4.85) is independent of the particular set {n;} one
chooses, and second, that the vector h,, defined in (4.85) satisfies in turn eq. (4.75)
for arbitrary (m;,n;). So we are now completely reduced to the problem of finding the

general solutions of (4.84). It is convenient to parametrize them in the form
hy = W (25, 2;) [ [ em 71006 (4.86)
i<j
where the first factor W is a single valued function on the torus and G, from (4.84) and

(4.86), has to satisfy

. P . p xiT 2, 27
G(Zi-l-mi-l—ni’r) :eZmZm;,vi——EMZniﬁHe (nij) 2+ 2Einy; 2y G(Zl) (4_87)

i<j
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[20] are parametrized in terms

for 3 .n; = Nr. The general solutions of this equation
of an arbitrary function C of the imaginary parts of z;; and of a given Nj—tuple of
integers r;, 2 = 1,..., N4, such that
= B,
i

In terms of these data they are given by

Gl =% i‘S (NT - Zm) He‘ﬁF("ﬁ‘%)?"%ﬁ("ﬁ*%)Eﬁ.

{n;} N=1 i<j (4:88)

— _ ‘ -~
2P T o <zi]‘ — Z;j + 2w (ni]’ — —5))

The sets {r;} are defined modulo the equivalence relation
r; ~ 7 + §(N —un;), Z n; =7rN

in the sense that r; and »; + s(N — un;) give the same solution at fixed C. That these
expressions are solutions of (4.84) can be easily verified by explicit computation; in the
next chapter we will give a proof of this formula (sect. 5.2) and an interpretation of the
sets {r;} as well as of the functions C in the context of the mean—field approximation.
There it will also become clear that in general the parametrization we gave above is an
over—parametrization of the Hilbert sub-space H}?), but it will turn out to be suitable
for our purposes.

This concludes the kinematical part of our analysis, i.e. the determination of the
Hilbert space, and we turn now in the next section of this chapter to the dynamics, i.e.
to the diagonalization of the Hamiltonian, as far as it is possible.

Let us make finally a comment on the one-particle problem, i.e. the case Ny =1,

p=1

>, @ = s. Setting z; = z the Hamiltonian becomes

H, =ATA
WhereAza—ga—l—z—%E:Pand

[AT,A] =0
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The Hilbert space is given simply by the functions (see (4.77))
\Ilg)) = exp (Pz — 152) qﬁgo)

since there is only one h,, (r = 1) which has to be constant. These functions are already

eigenstates of the Hamiltonian
Hl‘l'gg) = |PJ® ‘I’ES)

and constitute a kind of plane wave basis. Therefore the one-body problem is free,
exactly as on the plane, as it should be of course. With respect to this result we note

again the crucial role played by the topological components of the gauge field.

4.6 Exact ground states

What we determined in section five are the eigenspaces ’ng) of the momentum
operator P, and we try now to find eigenstates of the (normal ordered) Hamiltonian,
given in (4.40), in each of the ’Hg}). For some solutions on the plane see ref. [22].

To this purpose we note the identity

P! P _p P \P|?
H= Di—— ) (Di—=— ] -P—+—P— 4.
Zi ( N__l) ( NA) PJVA + IVA,P Ny ( 89)
which on ’HSDO) becomes
P! P |P|?
B = |3 (D) (Di— o )+ | o 4.
P i NA N_-& -+ N_.l P ( 90)

If we insert for \ng) the general expression (4.77), the eigenvalue equation H\Ifgg) =

E‘Ifgj) becomes

(Z Djp,-) P, = < - %) hm (4.91)

for m = 1,...,7, where we defined the reduced derivatives
T _ 1 .
J T
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together with the reduced Hamiltonian Hp = ZiDiTDi. In deriving (4.91) we used
the identity D;¢pm n = ¢m,nD;. Actually, the defining relation (4.85) insures that it is

necessary and sufficient to solve (4.91) for Ay only. So we are reduced to
Hphy = (E - ————) hg. (4.93)

Let us now search for the ground states of our Hamiltonian in 'HSS), i.e. for the states

2

with minimal energy at fixed momentum P. The smallest possible energy is £ = L’I%T
and the corresponding eigenvectors, if they exist, have to satisfy

Dihy =0 (4.94)

for i =1,...,N4. The equations (4.94) make sense in that the covariant derivatives D;

commute among them:

[D;,D;] =0 for all ¢ and j.

Recalling the parametrization (4.86) of Hﬁi’), with the choice

W= [ e 2 P0d) (4.95)
1<j
(4.94) becomes
;G =0

for all 7, meaning that G has to be an antiholomorphic function of the coordinates, and
so the function C in (4.88) has simply to be a constant. We conclude that a basis for

2
the ground states, with ground state energy £ = ]—f\%—, is given by

plrid = He——;,;P(i,j) I1 emr (i —l=i %),

i<j i<j
v . L (4.96)
5 36 (e T b Tl 0 0
where we remember that the sets {r;}, with > .r; = __}32’ are defined modulo the
equivalence relation r; ~ r; + s(N — un;) if > .n; = rN, in the sense that r; and

ri +s(N —un;) give the same solution, a part from a constant. So we get the important
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result that the degeneracy of the multi—particle ground state is finite. An analysis of

the above mentioned equivalence relation reveals, in particular, that this degeneracy is

N N,y—-2
Q=s- (—k-*-) : (4.97)

given by

It is important to mention that the normalizability of the elements of the basis given in
(4.96) requires that
E>1

since

P(i,7) —1In|z — z;|? as z; — Zzj.

We conclude that states with the minimal energy £ = [—gl—;— exist if £ > 1. We will see
in a moment, however, that also for £ < 1 there exist particular linear combinations of
the states given in (4.96) which are normalizable too.

Up to now, in fact, we did not specify the intrinsic statistics of the anyons, and we
come now to the more specific, and also more interesting, issue of the derivation of the
ground state(s) under the condition that the anyons are either bosons or fermions. We

succeed in the following three cases:

I. Case. If we take ¥ > 1 and we consider the anyons to be bosons we get all
the solutions by symmetrizing the states of (4.96) in the z; 5. It is clear that these
ground states exhibit a very large degeneracy, {lp, whose precise expression, depending
also on the momenta P;, can not be computed easily. In the limit of large N one gets

however [2V]

1 +N4y—2 1
fp - - (Q ) e (4.98)

where ¢ is given by ¢ = (r + s)In(r +s) —rlnr — sln s.

I1. Case. We consider the anyons as fermions and take & < 1 and such that the
integer part of + is odd. Then we can write s = (2J+1)r+1 where 0 < ! <r, and J is an
integer. Observe that now the ground state wave functions (4.96) exhibit a singularity
|———12—J1—+-1—3r—; for z; — z; and so the normalizability of the wave function requires that G

24

in (4.86) should behave as (2;;)2/7!. We have therefore to factorize from G a product
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of 6—functions:
2J41

Lpg; s (52 1/2 '
h’U = He—ﬁp(l,]) Hezuk “i lzul ) Ha[ljz] ZLjIT) G (4:.99)

i<j <] i<j

Eq. (4.87) imposes on G' the transformation rule

’ 1

i P
1 2w ‘__’2____2 ; PR
G(zi+m;+nT)=e mi Y miny 2w} iy He Y

i<j

Fna) ARG 3 Gl ) (4.100)

with

/ 1 N N
k —:-Zl.'a PiEPi+T3u(u+ )+ ANV +1)

2 2

The solutions of (4.100) can be read off from (4.87), (4.88) (C = 1), with & — k
and P; — P;, and to get completely antisymmetric wave functions we have to take
symmetrized solutions of (4.88). Again, these wave functions exhibit a degeneracy
which grows exponentially with N, but much slower than (4.98). Notice, however,

that if [ =0, 1.e k= ET—H and 7 = 1, (4.100) becomes

Py !
G (2 +mi +nir) = &7 LRGP ML G () (4.101)

Remembering that G' has to be antiholomorphic this equation admits a solution only

for the exceptional values of the momenta
P; =p;- Ny, with p; integer (4.102)

» 3 . . L] ! . 0 .
and then this solution is also unique, in fact, G = const., which is of course symmetric.

Therefore, for k& =

7I+1’ there exists a unique antisymmetric ground state for the

exceptional momenta given in (4.102). If one of the P; is not a multiple of N, we

Pl

- by a certain

have to excite the system and the energy would be larger than £ =
amount of energy. The states with those particular momenta are therefore protected by
an energy gap and particularly stable against external disturbances. We will see that
this kind of superconductivity mechanism constitutes a general feature of our theory
which is not confined to the particular values of k considered here, but shows up in

many circumstances (see also chapter five).
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ITI. Case. In analogy to the previous case we consider the anyons as bosons and
k < 1 and such that the integer part of % is even. Then we can write s = 2Jr + [
and repeat the same procedure as before to get the solutions, which are easily obtained
from (4.99) with the substitutions 2J + 1 — 2J, P, — P; + pstutl) ”+1) Also here if k is
of the form k = 57, we get a unique symmetric solution if the momenta P; are integer
multiples of N4, and also in this case, these particular momentum and energy eigen
states are protected by the above mentioned mechanism.

In general, if we except the case k = 1, it is a difficult task to determine explicitly
which linear combinations of the states, given in (4.96), are the states we derived above.
But it is also clear that for & > 1 there exist no antisymmetric linear combinations of
those states. In fact, for £ > 1 we have Q = —\,—hi < N4 and so we can not accommodate
all the particles in the ground state by the Pauli principle (remember that roughly
speaking 1 < r; < @). In this case one has to analyze also excited states and this will

be done by means of the Mean Field approximation in the next chapter.

4.7 Anyons in the anyon gauge

On the plane there are two ways of formulating the problem of Chern—Simons
induced anyons. Either the wave function has ordinary statistics, and the (complicated)
Hamiltonian is given by H = > ’DjDi where D; = §; + 5%61- Z#ilnlzi — z;|* and one
has the eigenvalue problem

HU =FE7,

or one can invoke a (unitary) singular gauge transformation

1

- H( __ZJ>FF-\I’mEU-\If‘m

1<

to transform the Hamiltonian in the free one

(Z ajai) T = By
and to remain with a wave function with exotic statistics, which behaves as
g o~ (Ei]‘)-l/k (4.103)
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under the interchange of z; and z;. Here we disregard the 6—function ambiguities dis-
cussed in chapter four, which are irrelevant with this respect. Let us explain in which
sense an analogous statement, even if not quit identical, can be made on the torus.
Here the Hamiltonian is given by egs. (4.39), (4.47) and the wave function ¥ with
ordinary statistics depends also on a according to (4.68). For definiteness let us consider

its gauge fixed version

¥ =Y ¢0u, (4.104)
i=1

where we have absorbed the momentum carrying exponential in ¥, see (4.77). We

consider again the eigenvalue equation
HY =E¥ (4.105)

It turns out that in this case the appropriate singular gauge transformation is given by

L

2k

B
exp <-2—U (25 — z?,-)) (4.106)

§ zij)
U= H )
i< /

which gives

g =pytow =)y d0em (4.107)

m=1

Eq.(4.105) becomes then
<Z A}Az) g = FO™ (4.108)

where A; is defined in (4.42). Notice that
(A, AT =0=[A4 4]

for all 7,7, meaning that eq. (4.108) is the torus version of the free Hamiltonian on
the plane. This remaining "interaction” can actually not be eliminated by a unitary
transformation, although it can be reduced to the free N j—particle problem. In fact, if

we plug eq. (4.107) into (4.108) we obtain a set of m free eigenvalue equations

(Z o] ai> v = EY,

1
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which can be further reduced, as we know from our previous discussion, to a unique
equation, say the one for ¥™. The components of the vector U are related among

them by the relation (Q = N.y/k)

‘I’an(zi Lo+ TLiT) — e+"i(Q+‘9)(Zi m;+zf n;) e 2R Z miq,:;_zn‘(zi) (4.109)

m I

with the condition U v = U2 for all integers N.

So we see that on the torus, even if formally one can reduce the anyon’s problem to
a system of N4 non interacting particles, one remains with a wave function which has
r components. This is actually consistent with the results of the general braid group
analysis on the torus(?* which show that fractional statistics on a torus is consistent
only with multi-component wave functions. The same formal result has been obtained
in a lattice version on the torus!(®8l,

It is interesting to see what in this gauge the ground state solutions at fixed mo-

mentum, F = Iszf" become, which we found in the previous section (eq. (4.96)):

Ty an —_ Vif3 1 2 *l/k
R e = gty in) :He[ /J (zi5)-

i< 1/2
. (4.110)
z Z 5 (N'r- 'n,z-)eZﬂ.iPl%Y'Heﬁiﬁi(nﬁ—%)z—-%—i(nﬁ—%)sﬁ
{n;} N=1 i i<

These solutions behave locally as (4.103) under interchange of two coordinates, as ex-
pected. The formula (4.110) has to be compared with eq. (4.96) — the second rows are
actually identical — which exhibits ordinary statistics.

The expressions we wrote in this sectién, like (4.109) and (4.110), are somewhat
formal, not only because of the fractional statistics ambiguity, but also because of their
ill-defined transformation properties under the shifts z — z+m+n7. To get (4.109), for
example, we had to choose a convention for the transformation properties of the rational
powers of #—functions appearing in (4.106). This is one more reason for continuing to
work in the gauge we adopted in this chapter: in that frame both of those ambiguities
are absent.

To conclude, on the torus there exists a singular unitary gauge transformation

which transforms the wave function with ordinary statistics into one with fractional
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statistics and the Hamiltonian into the one which describes the iree motion of the
particles, although not being formally the free Hamiltonian, see (4.108). This system
can be further reduced to a true free system in which the wave function with fractional
statistics however, has 7 components, in agreement with general results about fractional

statistics on closed, multiply connected, orientable manifolds 24,



5. Mean Field Theory and Superconductivity

5.1 Translation invariant Mean Field Approximation

There are strong reasons to think that a system of anyons, as the one under inves-
tigation in the previous chapter, at integer Chern-Simons coupling constant k& behaves
like a superconductor(®1%11#3] The motivation for this believe relies essentially on the
following occurrence: in the mean field or random phase approximation (RPA) [9.11] the
single particle spectrum becomes that of the Landau levels of a particle in a fictitious
constant magnetic field, orthogonal to the surface, the number of particles being such
that in the fermionic many-body ground state the lowest £ Landau levels are exactly
filled. The energy to create a separated particle-hole pair corresponds just to the en-
ergy necessary to excite an anyon into the lowest empty Landau level band. So there
is a finite energy gap which protects the ground state and may lead to the existence of
supercurrents.

These considerations are made in a "static” system, i.e. in a system in which the
states do not carry momentum, while superconducting properties are inferred indirectly,
proving for example, the existence of a gap. Actually, the mean field approximation on
the plane breaks translation invariance and it is not possible at all to define a "good”
momentum operator. To be more precise, what breaks down is the commutativity

between the two components of the momentum operator [11]:
[Pz, Py] #0.

In this section we formulate a translation invariant mean field approximation, which
arises actually automatically in our theory on the torus, in which P, and P, are con-
served and commute among them. This allows us to analize dynamical states with
non vanishing total momentum in both directions and to derive a translation invariant
version of the theory of Landau levels. It turns out that the notion of a degenerate
one-particle Landau level is replaced by a many-body degeneracy which, due to full

translation invariance, can not be reduced to a tensor product of one—particle states.
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Nevertheless it happens that the fermionic many—-body ground state reflects, for integer
k, the structure of k exactly filled Landau levels, although with some important dif-
ferences with respect to what happens on the plane. For example, the just mentioned
ground state will exist, and be superconducting, only for macroscopically quantized

values of the momentum.

We attribute to the anyons an intrinsic fermionic [11] statistics with total statistical

o (1-2) o)

with respect to the coordinate Z according to the conventions followed in the previous

angle

chapter. This means that, with respect to other authors, we exchanged the roles of z

and z, which is of course only a matter of conventions.

In the next chapter the mean field problem enters the discussion of a system of
anyons in a constant external magnetic field, so for the moment we take k to be an
arbitrary rational number and consider in section 5.3 integer values in the context of

the superconducting system.

The mean field approximation constitutes a suitable approximation scheme for
large values of k, as we saw 1n chapter two. It corresponds to replace the point-like
fluxes, generated by each particle, by their integrated mean value over the surface.
This picture is expected to be more and more sensible as Ny — oo. Looking at the
covariant derivatives given in (4.39) we see that the potential A; is already decomposed
in a term linear in Zj, 5,5 NA4Zi, to which a constant magnetic flux is associated and
which carries the main effect, and terms proportional to 8P(i,7) which describe the
fAuctuations and whose related total flux is, in fact, zero. Therefore in our theory the
mean field approximation corresponds to drop in the covariant derivatives (4.39) the
terms proportional to 0P(i,j). Notice that those terms, which are derivatives of the
Green’s function of the Laplacian on the torus, are well defined functions on the torus
and, moreover, modular invariant. This means that the transformation properties of
the wave function as z — z +m + n7 remain the same as in the exact case, and that

all what we said about modular invariance holds through also in the mean field theory.
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The mean field Hamiltonian is given by
Hyp = Z viv; (5.2)

where the mean field covariant derivatives are given by

iy iy _ ™ _ _
Visbi-Jat o) Gtg ) (m-)
(5.3)

Due to the fact that the commutator V;, V;] is a constant, in this case there are no
6—function ambiguities, and the Hamiltonian is well defined up to an additive constant.

The total momentum is still given by
P=>_ Vi
)

and turns actually out to be the same as the one in the exact theory. It is straightforward
to check that again ‘
[P, Harr] =0 = [P7, Harp] ;
' (5.4)
[P7,PTJ =0,

meaning that the mean field approximation is translation invariant and that we can
diagonalize simultaneously the Hamiltonian and the two components of the momentum
operator. In this theory this can actually be done exactly (see the next section). The
Hilbert space can also here be written as a direct sum of Hilbert spaces at fixed total

momentum: H(") = ¥, EB'HES). The states of the spaces ,ngu) can be written as in (4.77)

P
70 = exp <——z - N—:z) Z o b, (5.5)

and the eigenvalue problem

Pey =pol)
Pt = pogl¥ (5.6)

is mapped in the system
Hphpy = <E — ——) hom (5.7)



with the condition that the h,, depend only on the differences of the coordinates z;j, Z;;-

The reduced Hamiltonian is given by
Hp = Z alo; (5.8)

where

™ _
ai58i+§'1fl§zzij

j

t = 5o y
a; = -*81‘|" ok Zzw

J

(5.9)

Again one can define the Ap in terms of hy through eq. (4.85) and then also here 1t
can be immediately checked that it is sufficient to solve (5.7) for Ay only. To complete
the statement of the problem we have to remember the transformation properties of
hy given in (4.84). This transformation property, which defines the (reduced) Hilbert

space of hy, can be conveniently rewritten if we define the following operators:

™ =
ﬁizai—ﬂzzz'j
j

t o5 N
fi =0 2uk; v

Notice the appearance of a minus sign with respect to eq. (5.9). Then (4.84) becomes

(5.10)

m; (8;—8])

P
A(m;)hy = ezj i’ hy = exp 27r7,1\—é ij ho
j

n;(rB;—78! P
B(ni)huzezf i(78; ﬂ,)hoze:{p *Qmﬁi—zj:nj hy for Zni.-:Omcdr.

(5.11)
Notice that the operators B(n;) are only defined for ), n; = 0 mal 7. Here we see the
importance of this condition in that it implies that A commutes with B. In fact, one

has the algebra
T all

[ai,aj] =0 = [o i

18:,8;) = 0= 8], 8]

[ai,aj] = ;T%C‘(N.ﬁij —1) (5.12)
[ﬁi,ﬁ;] = —;%(N_Jij —1)

[aiaﬁj] =0= [ahﬁ;]
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which implies
[4(m;),B(n;)] =0 (5.13)

This is a compatibility condition for the egs. (5.11) which can, in fact, be read as a
simultaneous eigenvector problem. The algebra (5.12) implies also that the covariant
derivatives o and «f, and hence also the Hamiltonian, commute with 4 and B and are
thus well defined operators in the reduced Hilbert space. Based on (5.12) and on the
condition for the Hilbert space (5.11) we will solve in the next section completely the

spectral problem for Hp.

5.2 Spectrum and degeneracy of the many—body system

Let us summarize the problem: we reduced our original dynamical mean field
theory to the problem of diagonalizing the reduced Hamiltonian in eq. (5.8) which lives
in the reduced Hilbert space V defined by (5.11). The overall momentum has already
been separated using the true translation invariance of the system and so we work at
fixed momentum. Traces of the particular momenta chosen survive, however, through
eq. (5.11). This dependence will actually influence heavily the structure and properties
of the ground state at integer k, as we will see in the next section. The problem at
hand looks actually very similar to the problem of N4 particles in a constant external
magnetic field, in the symmetric gauge, on a torus, whose spectrum we know to be
given by Landau-levels, each of which exhibits a degeneracy which is the total flux of
the magnetic field divided by 2. There is however the crucial difference that our model
is translation invariant and so we were allowed to factorize the overall momentum. Asa
consequence the remaining many-body Hilbert space is actually somehow smaller then
the one corresponding to the Landau levels. In particular, the many-body wave function
will not be a product of single particle wave functions and the many-body degeneracy
will in general be smaller then the one resulting from ordinary Landau levels. This is
essentially due to the particular dependence of the wave function on the center—of-mass
coordinate implied by (5.5). Nevertheless for particular values of the total momenta the

many-body ground state fits in the picture of ordinary Landau levels.
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Let us first recall that the states of V are translation invariant by definition, and

so the operators a and 3, defined only on V, satisfy:

Z o;=0= Zﬁi. (5.14)

The eigenvalues of Hp can be found observing that the algebra of the a-operators
corresponds essentially to an algebra of off-diagonal harmonic oscillators, which can be
easily diagonalized. We look for an orthogonal transformation v; = Z]- M;;a; such that

[vi,7v;] = Eibij, where the E; are the eigenvalues of the matrix
T
o= (N6 — 1
C J l/k( ACj )

The eigenvalue problem is easily solved and one gets the eigenvalue E; = 0 with eigen-

vector
7= \7—%—:;&{:0 on V,
and
r IV
By

for 7 > 1, which is (V.4 — 1) times degenerate. The corresponding eigenvectors 7; span

a basis for the differences a; — ;. The Hamiltonian becomes then
Ny

Hp = Z’Y?’ﬁ
=2

where [vi,7;] = L%NA‘S'ijv which is a sum of Ny — 1 free harmonic oscillators. The
Hilbert space is then obtained by the usual procedure. We determine the ground states
via

7i\*>:0 fori=2,...,N4,

while the excited states, and hence the entire Hilbert space, are given by

1T () 1= (5.15)



Due to (5.14), however, the problem can be stated in the equivalent form

Cei‘ *>:O fOl‘iZl,...,N__L
Ny

{mi}, ) = 1] (aj) " | ) (5.16)

=1

Haftmah ) = (2 SO [

It is clear that also the states [{m;},*) span the Hilbert space; the difference w.r.t. eq.
(5.15) is that the states given there form an orthogonal basis in each eigenspace of Hg,
while the states of eq. (5.16) do not. It is however more convenient to work in the
"symmetric” basis spanned by the latter states. Notice that if the state |*) stays in V
i.e. satisfies (5.11), then, due to (5.12), also the states [{m;},*) stay in V.

To conclude, the spectrum of the Hamiltonian is given in (5.16) and what remains
1s to determine the degeneracy of each energy eigenvalue, and to find the ground states
|¥). It is clear that there is a trivial degeneracy due to the invariance of the energy
eigenvalues in eq. (5.16) under interchange of the m;. But there is an additional intrinsic
degeneracy of each eigenvalue, due to the fact that the ground states [*) are not unique:
this Landau-level-like degeneracy, which, as we will see in a moment is due to a ome—
body discrete translation invariance which arises in the mean field approximation and is
absent in the exact problem, is carried by all energy eigenvalues and is the same for all
of them. To determine this degeneracy we need the unitary operators which implement
this symmetry. To find them we observe that the operators g; and ﬁj commute indeed
with Hp, and constitute thus dynamical symmetries; more precisely, they generate
translations of the i—th anyon in the two directions of the torus. They take us, however,
out of the Hilbert space in that they do no~t commute with the defining operators 4 and
B given in (5.11). But the corresponding Weyl operators, when appropriately weighted,
commute with 4 and B. They are given by:

Ul(s;) = Hexp FQ]‘ <Tﬁj - 7—,@})} Zsi = 0mad N,

! | ' (5.17)
ff(qi)ZHexp [% (ﬁj~ﬂ}>} ZQi:OWKd u
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where the s; and g¢; are integers. These operators are dynamical symmetries of the mean
field theory, in the sense that they commute also with Hp. Moreover, the complete set

of physical phase space variables is now given by
a;, af, Uls:), Ulg) (5.18)

The generators of discrete translations satisfy the following algebra (s;; = s; — 3; ete.):

0(e) 0ar) = [[ v ( — qijSiJ-) T g) U(s2). (5.19)

Each eigenspace of the Hamiltonian has then to represent this algebra and to carry, in
particular, an irreducible representation of it in that we expect that no other dynamical
symmetries are present (a part from the trivial permutation symmetry we mentioned
above). To find the degeneracy of the eigenspaces it is then sufficient to search for
irreducible representations of (5.18) and (5.19).

We adopt a standard technique and observe that the relevant Casimir operators,
which commute with the entire phase space in (5.19), coincide actually with the opera-

tors A and B:

b \
B(n;) = U(Q - n;) =exp <-—27rij—\?1— an) for Zni =0 mod T
A s
‘ ‘ (5.20)

- 2
Alm;) = U(Q - m;) = exp (2#1——2— m )
N4

The algebra in (5.19) is formally very similar to the one of large gauge transformations
in chapter three, see eq. (3.15). Also here we can diagonalize only one of the two
U-operators, say U(g;), and then the U(s;) connect different eigenvectors of Ul(q:)

according to (5.19). Due to (5.14) we can write the eigenvalue equations as
0(al(r3) = [[exo cyzosma ) 1) (5.21)

i<j

where the real 7; determine the eigenvalues and are defined modulo an overall additive

constant because only their differences r;; appear in (5.21). Comparing with the second

relation of (5.20) we get

; A | . . Py Z m
eZm(Zj miTi =R, Z], mj Zi r;) — 27r1 gy ;T
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which has to hold for all integers m; and permits us to conclude that the r; have to be

integers such that

T, = -—Pg. (522)

Moreover (5.19) and (5.20) imply the relation

U(Qni)’{ri}> = ]{ri +s(N —un;)}) = e—zwi% 2 ""’{ri}> (5.23)

where N is the integer such that > ;mi =rN. This relation means that the irreducible
representations of the algebra at hand (at fixed momentum there is actually only one

of them) are spanned by the set of vectors

{r:}),

where the integers r; have to fulfill (5.22), and are determined modulo the equivalence

relation

[{ri}> & ‘{Ti + s(N — unz)}> for Zni =rN (5.24)

where the difference between these two states is actually only a phase according to
(5.23). Taking this equivalence relation into account onme can count the number of

linearly independent states

Q=s5.-QN72 (5.25)

and this is then also the dimension of the irreducible representation, and hence of the
degeneracy of each energy eigenvalue. Notice that the corresponding degeneracy of a
system of Ny particles in a constant external magnetic field with the same total flux
27 (), and therefore with a one—particle Landau level degeneracy equal to Q, would have

produced an N j-body degeneracy
D = Q'N‘”‘ > 0.

This could in principle spoil the degeneracy counting which, for integer k, leads on
the plane to a ground state with an integer number of filled Landau levels and to the

superconductivity effect (if the anyons have an intrinsic fermionic statistics). In the
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next section we will see that for particular values of the momenta P; there will exist a
completely antisymmetric ground state which remembers the structure of k filled Landau
levels, although in the present model the notion of one—particle Landau levels does not
even make sense. All what we need to make this analysis has already been derived
in this section on a purely algebraic basis, and there would be no need to determine
explicitly the states |«) = [{r;}). We determine them here for completeness and also to
show that they are not direct products of one particle states. As a by—product we will
also be able to determine an explicit basis for the Hilbert space of the exact theory and
hence prove eq. (4.88), as promised in chapter four.

We search for the ground-states

ailx) =0 (5.26)
which satisfy (5.11). We set, as in the previous chapter,

™ - — - o

1+ ) = exp (ﬂ(zfj — WF)) Gzij, Zif) (5.27)
i<j

and eq. (5.26) tells us then that G has to depend only on Z;;, i.e to be an antiholomorphic
translation invariant function of the z;. The relations (5.11) imply then that G has to
satisfy the equation (4.87) of chapter four. To solve (4.87) we observe that for n; = 0 it
becomes

. Py .
(5 + mi) = 7 Fx 2™ G %)

which is solved by a Fourier series:

2w , lj—’rl—ﬁ—Q— Z;
G(z)=> e Z,( ) “oay). (5.28)
{i;}
To insure that G depends only on the differences zi; = z; — Z; only those coeflicients

C(l;) have to be different from zero for which >l = —P,. Now we impose eq. (4.87)
with m; = 0 on (5.28) (remember }_; ni = Nr):

Z & Zi 2,-(!,~+§—§—)-27ri2), n"% H eLF(""")QC(lj + (N —unj)) =

{1;} N

' . Py . P n; T
Z 82m E,’ Zj(lj‘}"]‘\v‘;()‘*“zﬂ'l Z}. (l:+;\'i) JTC’(lj)'
{5}



Equating the Fourier—coefficients we get:
[Rkd i \? in? iy? 291 ,
Oty (N =) [T F 08 = o [T (o () ) i Dy 5.9
i<j i<j

which means that the independent solutions are determined by a basic set of integers

r; = 1Y such that D= —P,. The solutions can then be written as
T
i3 =Eexp(2 3~ lzl?))
- 2 . (5.30)
I (O e B o E
{"‘J} N=1 i<

and one can verify explicitly that all the algebraic relations we wrote in this section, and
in particular the equivalence relation (5.23), are indeed satisfied. The excited states are

now given by
Ny

[{mi} {ri}) = ]| (ai) ") (5.31).

1=1
Eq. (5.30) shows also that the many-body ground states are not factorized into siﬁgle
particle states. One can wonder what form assume the excited states given in (5.7‘31).

Due to (5.14), to obtain the first excited states it is sufficient to compute

(ok ~af) ot =TT ewp (555 — leal®)) -

1<j

ri;

> Za(wr_znz) 2eify T = (s ) 81— )

{n;} N=1 1<

T . 7
O <Zkl — Zp + 2w (nkz - %))

So we see that the first excited states are obtained by introducing in the Fourier series

30

i (5.32)

essentially a periodized power of #ij — Zij. This is much similar to what happens in the

ordinary Landau levels on the plane, where the first excited Landau level corresponds to

add a power of z to the gaussian exponential 27, It is not difficult to convince one self

that the higher excited states, obtained by applying more creation operators to {r:}),
kl

give in general rise to the insertion of a polynomial of <zk1 — Zp + 2iv (nkl - 77)) in

(5.32). The so obtained states span the complete Hilbert space V, i.e. they are a basis
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of all the solutions of the boundary conditions in eq. (5.11). Due to the fact that the
boundary conditions for the physical states in the exact theory and in the mean field
theory are the same, this proves also that the Hilbert space in the exact theory can be

represented by the egs. (4.86) and (4.88).

5.3 The fermionic ground state for integer &

In this section we specialize to the case of integer & and analize the superconducting

properties of such a system 201,

The main qualitative difference to the general case is that now the global gauge trans-

formations along the two cohomology cycles commute among them (see (4.51))

U1(p) U2(q) = U2(q) U1(p)

and that therefore states can be gauge invariant. There is no internal gauge space and
there is no need of a gauge fixing for this internal space. The wave functions at fixed

total momentum are given by
P P \<¢
Up = exp (———z — —E) Z Om hm (5.33)
: ) m

where the ¢, are obtained from the formula (4.65) by settingn =0 and s = 1. Modular
invariance is in this case realized directly by enforcing the substitutions (4.55) and the
resulting new wave function stays again in the Hilbert space spanned by (5.33).

We consider again the reduced dynamical problem, i.e. the one for hy. In this case
the Hilbert space is spanned by the states |{m;}, {r;}), given in (5.31) and (5.30), with

the equivalence relation

l{mi},{ri+(N—Qni)}> = exp (—27?7:% an> }{mi},{ri}> for Zni = kN (5.34)

and with the constraint

S ori=—P. (5.35)



We want to determine the many-body ground state at fixed momentum assuming that
the anyons have an intrinsic fermionic statistics. This means that we have to determine
the completely antisymmetric eigenstate of the Hamiltonian with the lowest energy.
That is, we have to find sets {m;} and {r;} such that the completely antisymmetrized

state

T ik, ) (5.36)

minimizes the energy given in (5.16). The antisymmetrization operation is on the co.
ordinates (z;, 2;), but looking at (5.31) and (5.30) we see that interchanging z; with z;
corresponds to make the simultaneous interchange m; « mj and r; <> r;. The m; are
completely independent positive integers, while the r; are subject to the equivalence
relation (5.34) and to the constraint (5.35). The relation (5.34) tells us that the r; are
defined modulo @ and modulo an overall constant shift. Therefore we can restrict any
7; to
I1<rm <@

where it is understood that one of the Ti, We can take by convention rx,, has in general
to ly outside of that interval, because of (5.35). Then there is a residual equivalence

related to an overall shift which tells that
ri~ri+ N mad Q. (5.37)

So every quantum number 7; can assume at most ) values, and it is therefore obvious
that we have to excite at least k energy levels putting @ anyons in the ground state,
() anyons in the second level, and so on up to fll up the k-th level with Q anyons too.
The proposed sets {m{}, {r?}, which should produce this ground state upon antisym-

metrization, are then given by:

t= L@ Q+41,...,2Q ... (k—=1)Q+1,...,N, =kQ
N e M
mi{= 0,...,0 1,........ 1 [ k—1 (5.38)

TN, = — - Py= P+ (E(Q+1) +1)Q (5.39)
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in order to satisfy (5.35). The question is if the corresponding state is antisymmetrizable

U

or not, i.e. if under interchange of two arbitrary couples, (m{,r}) < (mY, 7}

1? ])7 we get

really a different state. This is obvious, by construction, if we interchange couples
belonging to different @-tuples in (5.38). On the other hand, if Py # 0 mad Q, say
P, =M mod Q with 1 < M < Q, then in the last Q—tuple of the 7Y there are actually
two entries, the M-th one and the last one, which are equal modulo Q. Therefore the

interchange of the corresponding couples

8] 0 0 0
(m(k—l)Q+1\[’T(k—1)Q+1\1) i (mNAarz\’,.\)

would produce the same state; actually, due to (5.34), one gets even the same phase.
As a consequence, under antisymmetrization the corresponding state goes then clearly
to zero. This implies that a necessary condition for the antisymmetrizability of (5.38)
is that P, is a multiple of Q:

Py =py - Q. (5.40)

This is actually not sufficient to insure that (5.36), with r; — 7{, is different from zero.
We have in fact still to investigate those permutations which correspond to an overall
shift according to (5.37) and leave therefore, apart from a phase, the state invariant.
Let us compute this phase. The relevant permutations, Py, are cyclic permutations of
the same order N in each of the @-tuples of (5.38). The sign of these permutations,
appearing in (5.36), is given by

(_)'PN — (__)N-k(Q—l) — eiwkN(Q—l). (5‘41)

Furthermore there is a phase arising from'(5.34) which is

. Py oA L Py oAr R
e——27rz—Q—‘1\l — e——2m—Q—‘./\'——7rzk.l\’(Q+1)

CPy s
—2wit N

(see (4.76) with s = 1,u = Q, k = 7). The total phase becomes therefore e @

which in (5.36) sums up to

Q .
S 2T = 0. §(Pymad Q).

N=1
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This is different from zero only if also Py is a multiple of Q. We can conclude that the
state f{mo} {r?}) gives rise to a completely antisymmetric ground state only if both

components of the momenta assume the exceptional values
Pi=p;-Q fori=1,2, (5.42)

and the fermionic ground state is then given by

NU Z (ﬁ (af) " H?‘H)) ’p (5.43)

We could have reached the same conclusion already from (5.40) alone, due to modular
invariance. In fact, the modular transformed state of (5.43) under + — ———, gives the
completely antisymmetric ground state with Py — Py, P, — —P,. This implies already
that also P; hasto be a multiple of Q). Notice that the spectrum of exceptional momenta
(5.42) closes under an arbitrary modular transformation.

Eq. (5.43), with the m?,r? specified in (5.38), is the state of minimal energy with

fixed momentum

P = -VTE Q- (p1 + po7) (5.44)

the energy being (see (5.7))

k
_]P[z T Ny
B= vk QZJ 1)

.
[y

(5.45)

and the ground state is unique.

As an example we construct explicitly the corresponding state for the case k —=
2, @ =2 (Ny=4). The exceptional momenta are then P, = 2ps, P; = 2p;. In this
case r; = 1,2 and the set r} is given by (1,2,1,2) mad 2, while the m{ are (0,0,1,1).
We denote the corresponding ground state by [1212) and according to (5.31) we have to
antisymmetrize the state a3 cz4 11212). In the process of antisymmetrization we produce
states |---) which are different from [1212), but it is easy to see that due to (5.34) the

resulting expression contains the three independent states:
1212) = [2121)  |2112) = [1221) |1122) = |2211).
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The completely antisymmetric state is then

L) (adolfp212)) =(ed - ab(ed — ad)1212)F
P
(o — al)(ef — af)[2112)+
(ozir —al)(al - al)\1122>

Ifinstead the momenta P; are not exceptional ones, i.e they are not integer multiples
of Q, then one has to excite one of the anyons once more applying an additional creation
operator to the state \{m?},{r?}> in eq. (5.43). If we have, for example, Po = M #
0 mad Q and P; = 0 and take for the r{ the same set as in (5.38), then we have to

increase the power of aj\u by one unit to get a completely antisymmetric state:

Na

-ﬁlj ;(-)” (a I1 (ai)m? l{r?}>>

i P

The energy of this state is

P m ke

v,
N N4 v 2k k

T
CNZ2 - — .
AT
which is much higher then the corresponding minimal energy at exceptional momentum
(5.45). In this case it is also clear that the ground state is not unique in that the anyon
which has to be excited in the k—th level can essentially stay in @ different states.
To summarize, for generic fixed integer momenta Py, the minimal energy eigenvalue

for the many-body system is

1 = g2 wNy
Enin(P) = . —;(Pl + P7)| — o 6p, p10 " 6Py prq + comst. (5.46)

We see that for the particular values P = ZQ(pr + p27) the ground state energy is
particularly low and the corresponding ground states are therefore "protected” with

respect to external perturbations by the macroscopic gap

AE = ~N..
vk

If the system stays in these states, then any change of the total momentum to nearby

values would require a cost in energy equal to this gap, and therefore an excitation
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which changes the momentum is highly unfavored from an energetic point of view. The
resulting quantum motion exhibits thus superconducting properties due to the flow of
collective persistent currents. To jump from one of these protected states with excep-
tional momenta to another protected state the total momentum should indeed change
by an integer multiple of -% + V.4, which means that the momentum of each anyon has
to change by a multiple of 1/k (in unit of the cycle’s length of the torus). This shows
also a certain rigidity and coherence of the system in that it is very difficult to change
the momentum of only one anyon, which would correspond to excite the system from a
protected state to a non protected state across the gap; the anyon fluid is rather moving
as a whole in which all the anyons move together. This superconductivity mechanism
should be compared with the superfluidity mechanism [°4, induced by phononic elemen-
tary excitations, and with the BCS theory (53], based on an energy gap in the elementary

excitation spectrum: it stays in some sense in betweern.

5.4 The magnetic field in the quantum state

In this section we consider the semiclassical coupling of the anyons with the true
electromagnetic field, calling e the anyon’s electric charge (we will still neglect the
Coulomb interaction, as it is appropriate to a Mean Field treatment).

We expect that the motion along a handle (for instance in the z-direction, taking
for simplicity 7, = 0, corresponding to P; = 0 ) will generate a magnetic field in the
3-dimensional cavity inside the torus, like in a solenoid. We introduce the coupling with

the e.m. field by replacing the covariant derivative D, with the one including 45 :
Dz —_— Dx _ 7:8.4;.”1“

We compute the e.m. current in an eigenstate with total momentum P = ——P—ZLF by
integrating over d?a and over all the anyons’ positions but one. It follows from the

translation properties of the state that the current is constant over the surface

N P
J;.m. — €IV 4 <27T'J‘V.‘E‘ _ eA:m> )

v A
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In three dimensions the torus surface is seen as the external "skin” of a donut with radii
R, along the z-direction, and vR along the y-direction. We imagine the torus (for large
v) as a cylinder in the y-direction, with identified ends. We call m the anyon’s mass.

From the three-dimensional point of view the e.m. current is:

ep Pz
E.m.:___ . Aﬁ.m. 6 __R
7 (*““RNA cA? ) (r - R)

m
where 7 is the distance from the cylinder axis, and p is the anyon density

— N‘-&
p= v(2wR)?

From the Maxwell equation
1 €.77. E.17%,
—Br;BTTA,; = Jz:

we find

1 T R? ep Py
e.m. T (e - — 4(r — R 2
AZ™(r) T eoE <29(R r)+ 560 )> mN.R

Zm
and the magnetic fleld is By = 20.rAg™ .

We conclude that the anyon system (in the case of Fermions) exhibits quantum
states, which are protected with respect to external perturbations as discussed in the
previous section, giving rise to quantized values of the magnetic field, that is for 1 =0

and P, =nN.4/k
1 ep

B = . .
y = 1+%PE@ mRk

for r < R, and zero outside the donut (in units h=c=1.)

Since A%™ is constant over the torus surface and the Hamiltonian including the
electromagnetic field is obtained by replacing (see (5.3))
€ .
V; = V;— ZiAi'm'

we get in particular in the mean field approximation that the reduced eigenvalue equa-

|P'|?
Hph,=1|E — hm
R ( NA

90

tion (5.7) becomes




where the shifted total momentum is given by
! . e
P =P - '3 Ny A

Therefore the eigenstates are the same as those discussed in the previous section, the
corresponding energy eigenvalues (5.45) being simply modified by a shift in the total
momentum.

We conclude this section with an interesting observation. We can evaluate the flux
of the magnetic field By given above across the section of the donut:

1 epm R
1_{_%@ mk

D =n

Notice that in the thermodynamical limit, R — oo, p fixed, this becomes

2

€

P =n.

x| =

which is thus an integer multiple of the elementary flux excitations appearing in the
ground state of ref. [11]. These excitations behave as if their charge would be % - e,
corresponding to bosonic droplets of k particles with charge e, in analogy to Laughlin’s

pairing of holons(®,
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6. Anyons in the Fractional Quantum Hall Effect

6.1 Anyons in an external Magnetic Field

The ground state of the fractional Quantum Hall Effect at a simple fractional filling
f = -T%, where m is an odd integer, is well described by Laughlin’s wave function 71,
The excitations of this state, which Laughlin gave already in that paper, appear to
have fractional charge and statistics (6,71, Tf the filling is a composed fractional number
the ground state turns out to be decomposed in a component which stays at a simple
fractional filling with respect to the external magnetic field, and in an excited anyonic
component which carries in addition to the external magnetic flux a fictitious statistical
flux: the two fAuxes sum up to produce for the anyons an effective total filling which
turns out to be simple; with respect to this total flux the anyonic component can then
stay in a Laughlin-like wave function too. In general there can be more then one anyonic
components, each of which represents the excitations of the underlying component, and
they give rise to the so called fractional Hall effect hierarchy (5,81,
Thus we are led to consider in this chapter a system of anyons which feel, in addition
to their statistical flux, a constant external magnetic field orthogonal to the surface, i.e.
we study the Hall effect of one of the just mentioned anyonic components on the torus
(see refs. [69,70] for treatments and ground state solutions on the plane). The statistical
interaction between the anyons is again conveniently induced by a Chern—Simons field,
but in addition to this we will also introdﬁce a dynamica]ly dependent electric fleld,
tangent to the surface, to complete the description of the Hall effect, where a uniform
motion of the charged particles occurs in a direction orthogonal to both the electric and
the magnetic field, which are in turn orthogonal to each other. Classically, this motion
occurs for a particular value of the electric field, related to the current and the magnetic
field by:
f\—fi-eEi:Bo-aiij (6.1)

v

Here E; is the electric field (in the z, y—directions), e the electric charge of the anyons, By

the external magnetic field taken to be antiparallel to the z—direction , V.4 the number
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of anyons and therefore, in our units, N /v their superficial density. We assume By > 0.
Notice that the relation (6.1) corresponds to impose the vanishing of the total Lorentz
force.

Because of the Dirac quantization condition the flux of the magnetic field out of

the surface must be equal to (27) times an integer over e, and therefore we can write

Bov o 4 (6.2)
NA r

(=

where p and g are coprime integers, and Ny must be an integer multiple of p. The ratio
g is called the "filling” because it is the number of particles divided by the degeneracy
of a Landau level.

We will not discuss possible microscopic origins of the so constrained Hall electric
field, we will rather impose (6.1) as a constraint in an effective Lagrangian (see also [71]).
This Lagrangian describes the behavior of a system of N 4 non relativistic particles, the
anyons, interacting with the statistical Chern-Simons field A%? and the electromagnetic
field A5™. Tt is useful to work in the gauge where A5™ = 0 . The anyons are also here
described in first quantization by means of a wave function.

Our discussion contains therefore as a particular case the more standard problem
of the (static) Landau levels on a torus, which has been previously discussed for the
case of particles of ordinary statistics, see refs. [40,72]. The picture of the (static)
Landau levels of anyons on a torus can be‘formaﬂy obtained from our results omitting
the electric field: of course then one can no longer study the Hall currents.

We assume here that the anyons are fermions interacting with the Chern-Simons
field at a rational coupling k = r/s, see chapter four. So the total statistical angle 4 is

given by

6= (1- %) (6.3)

T
and the wave function in the anyon gauge, see section 4.7, behaves locally, i.e. for
z; —z; — 0 as

T~ (25)7 Py(ar, ) (6.4)

where P,(z;,%;) has to be odd under the interchange z; < z;. To pass to our standard

gauge, in which the wave function is well defined, we have to multiply (6.4) with the
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phase factor (Eij/zij)s/zr to get the local behavior
U~ 245077 - Po(2i, %) (6.5)

This holds actually for for e > 0, the case of e <0 will be discussed below.

We noticed already that eq. (6.1) amounts to impose the vanishing of the Lorentz
force. On the other hand we know that the Chern-Simons action implies precisely the
vanishing of this force. It is therefore natural to impose this constraint through the
introduction of an electromagnetic Chern-Simons term in the Lagrangian. This leads

us to consider the following (effective) action:

1 1 y .
S = =T | e e"vr AP, A — ~ P /d%} €T AT AT+
4T s K 47 q J
1 (6.6)
+ / Pz <\1:T (8 + AF) ¥ + 4 vt (D2 + D?) w)
Here U is the matter field, and the spatial covariant derivatives are
D, =0, —1AS —ie AT, (6.7)

The anyon mass has been set equal to two. Notice that the coeflicient of the electromag-
netic Chern—Simons action has been chosen such that variation of (6.6) with respect to
AS™ gives precisely the constraint of eq.(6.1). Let us also observe that gauge invariance
is safe in that formally one can complete the e.m. Chern—Simons action in (6.6), intro-
ducing a scalar electric potential Ag™(t), which depends only on the time coordinate as

we still neglect the Coulomb interaction, and adding also the term
e/d%\ymgm(t)w.

Variation of the resulting action with respect to AE™(t) gives then (we are considering

a constant magnetic field F7 " = const.)

em N.
(azA;m - aUA:c ) = _——fa (68)

e
2

R ]

which is clearly nothing else then (6.2). This equation determines only the ”small”

components of the electromagnetic gauge potential, leaving its large components a®™",
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which are constant over the surface, undetermined. So we have, in complex notation,

the decomposition
—iedm = _Tem + T N,z
v 2vp
and an analogous expression for 4°™,

Nothing changes with respect to the treatment of the Chern-Simons field, we get
for it the expressions in (4.35) and change only the name of its topological components,
which we call a®® to distinguish them from their electromagnetic counterparts a®™.

By canonical quantization of the above action we find that in the Schroedinger rep-
resentation the variables a®® and &°* like ¢®™ and ge™ are time independent canonically
conjugated variables obeying

[C_Lcs,a:cs — _I/_f [aem,aem — Zg

T T p (6.9)
[a®®,a®™] =0 = (@, a®™]
As in chapter four we use the coherent state formalism where the wave function depends
on a®® and on a®™ besides the anyons coordinates: ¥ — U(a®s, at™, 21,...,2N, ) and the
scalar product is defined by

1‘\"“\

(\Pl,\l’z) :/Hd2z]'/d#csd/.bem@1q_’2 (610)

=1
where dp®® = da®*da“*exp (—g%&csa”) and du®™ = da*™da*™exp <—§ “&emaem>, see
section 3.4. The action of & on the wave function is represented by

- 5,
e=a = 7k Ba (6'11)

where k = r/s for a®®, and k = p/q for a*™. The Hamiltonian is then (see section 4.3

for details on the derivation)

H=) DD, (6.12)

where




We defined

—1]; = (6.14)

and we remind that P(z,7) is the standard scalar propagator on the torus (4.34).

q

R

Notice that possible normal ordering contact terms to be added to the Hamiltonian
(6.12) are in our case irrelevant because of our assumption that the anyons are described
as fermions interacting through the Chern-Simons field and therefore we have to look
for a completely antisymmetric wave function, vanishing for z;; = z; — 2j = 0.

We notice also that defining in analogy with eqs. (4.42),(4.44)

T T
Aizai—- cs em o =.
u(a +a) + § ;ZJ

2vf -
A 5 s B ¢ 0 - (6.15)
= =0~ a " p e T 2wf 27
due to (6.9) we have
and that defining the total momentum
P=> Di=p A
A (6.17)
pi=3 "Dl =) Al
we have
P,Pl =[P, H =[P H =0 (6.18)

Therefore the system is translation invariant and we can look for simultaneous eigen-

states of P,PT and H:
PUp=PUp PUp=PUp HUp=EP)Ip (6.19)

The determination of the Hilbert space results from a generalization of the con-
struction we performed in chapter four. Under shifts of the s topological components
the wave function has to transform as in (4.54), while under shifts of the em topological

components

a™ — a4 q-(M+ NT)
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the wave function has to transform in an analogous manner, which is obtained from
(4.54) through the substitutions s — ¢; m — p. The solutions of these equations are

both of the form (4.65) and the general state in the theory is a linear combination of

VAR )iA (6.20)

where the qﬁﬁ‘}th depend only on a®®, while the q’)ﬁ’g’NZ depend only on a¢™ according
to (4.65). Moreover, we have the restrictions: I1<M <r, 1<N; <s,1< M, <
P, 1 < Ny < q. Also here we invoke a gauge fixing in the two internal gauge spaces,
labeled by N », while the indices M > span the physical space, and we can factorize
from the wave function a momentum carrying exponential. The states in the physical

Hilbert space become then

P c8 cm
vr=e (e ) 3D e 621

Ay =12L=1
The first two equations of (6.19) imply that the hay, 37, depend only on the differences
of the coordinates.
Under shifts of the coordinates, z; — z; + m; + n;T, the covariant derivatives in
(6.13) transform as (remember that P(i,7) is single valued on the surface)

D; — D; + 5-—][]\/—_1 (mi—f-ni/;),

meaning that their transformation properties are uniquely determined by the quantity
'\}4 In the mean field approximation, where one neglects the terms in P(i,7) on the
r.h.s. of (6.13), f represents actually the number of particles divided by the degeneracy
of the mean field Landau level: therefore we call [ the 7effective filling”.

Accordingly the wave function has to transform under z; — z; + m; + n;7 as in
(4.64) where now the total flux, i.e. the real external flux plus the mean fictitious one,
is given by

2rQ =27 J—\}i (6.22)

Also here one could compute the transformations properties of (6.20) under shifts of z

and deduce then the resulting transformation properties of the har, a1, to get a basis of
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the Hilbert space. This would however give a rather massy representation of the Hilbert
space, which is not so illuminating, depending also heavily on the particular values of p
and 7. For example, if p and r are coprime integers, due to the fact that

(0)em.

9’55\01)1”('31' Fmid i) hp,  (z Tt ni) = K(mi,ni) - ¢E\OI)1,C-SZZ ni _¢5‘0[);mz o (6.23)
where K(m;,n;)is a suitable prefactor (see (4.73)), all the functions har, ar,, and there-
fore the state in the Hilbert space, are determined by say hg o only. If r and p, however,
are arbitrary integers which are not coprime, then the situation is more complicated
and the structure of the Hilbert space is much more involved [73.

In the next section, on the other hand, we will determine the Laughlin-like ground
state solutions of the Hamiltonian at fillings corresponding to the fractional Hall hierar-
chy, which implies in particular 7 = p, and verify that it fulfills the right transformation

properties, but only for exceptional values of the momenta.

6.2 Laughlin—like solutions and hierarchy of fractional Hall states

We can exactly solve for the fermionic ground state(s) at fixed momentum provided

that the effective filling f satisfies
0<f<1. (6.24)

This corresponds to a magnetic field

eBy = 2 (% - -i—> J—V;i (6.25)

To find the eigenstates of minimal energy at fixed momentum P we adopt the
procedure outlined in section 4.6. In particular also in this case the minimal energy at

fixed momentum is
P
=N,

Tmposing the eigenvalue equations (6.19) on (6.21) with this energy eigenvalue, we get

E(P) (6.26)

the ground state conditions (compare with eqgs. (4.92),(4.94))

T B 1 s .. -
Dzhﬂfl,l\[2—:— 81+'2-17J?221]+-2—-;281P(7,,]) hi\[nf\[z :0 (6_2{)

J7Fi
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In deriving this equation from (6.19) we used the identities
0)es (V)em Mcs 0)em
(451(\1)1 ¢M)z > <¢1\ 451(\12 > D;
T O)cs O)em (0)es (0)em 7
D; ( Prr, 95%[2 ) = <¢ﬂ[1 '¢M;,_ )DLT
Eq. (6.27) is solved by

har ar, = HeXP (-;;P(Z}]')) HeXP (2 f(f — |zi;|? )) Gar a5 (Z5)

i<j i<j

where the Gar, a1, are antiholomorphic translation invariant functions. As said before,
the boundary conditions for this set of functions are in general technically involved; the
solutions are also here labeled essentially by integers 1 < r; < @, 7 =1,..,Ny, with
an equivalence relation analogous to (5. 34), where Q is defined in (6. 22). Due to (6.24)
there exist actually in general a lot of antisymmetric ground states, which can all be
explicitly determined in this way (73], Eq. (6.24) says, in fact, that there is enough
degeneracy to accommodate all the particles in the ground state.

We will not further pursue the analysis of the general model, but discuss now
the explicit solution for a particularly interesting case, which we mentioned at the
beginning of this chapter, and which makes contact with the so called ”fractional Hall
effect hierarchy”. The anyonic components of the fractional Hall effect ground state
feel, in fact, a total (=fictitious + external) flux, such that their total filling is prec1sely
the inverse of an integer odd number. In our theory this corresponds to the particular

choice
1

57T J integer. (6.29)

f=
Notice that this implies
p=r, s+qg=r(2J+1), Ny=u-r

From the egs. (6.21) and (6.23) we deduce that the Hilbert space decomposes in this case
into a direct sum of » Hilbert spaces, H = Zglo:l ®Hnr,, where each of the components

Har, is spanned by the states

Up =exp <—V]i-z - —]\%Z> HGXP (‘%P(%J))

I
1 i<

[Tewo (2% =) )qu(‘”“- B, - G

1<j Al=1

(6.30)
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This is a general parametrization of the Hilbert space, but we are interested in the
ground states which are obtained for antiholomorphic functions Gar, as we saw above.
Proceeding in the usual way, we recover that these functions have in any case to satisfy

the transformation properties (for a given My)

Gar(zi +mi +niT) e 2miMof ) mi 2T 3 mi w2 ) i

. R 6.31
He(2J+l)(zrrr(rL;j) +2m nu~1])G_7\[_Z n‘.(zi)- ( )
i<j
where (notice that g + s has the same parity as 7)
- , 1
b= P41 EL—(-"-L—;—F——} (6.32)

and Garer = Gar. The momenta P;, and therefore also the P; have still to be integer.

In the determination of the ground state of this system at the plane the Coulomb
interaction, which we are not taking into account explicitly, plays a crucial role. The
solution which minimizes the Coulomb repulsion is in fact known to be locally of the
Laughlin form [57]

lim [ p| ~ 257"

The wave function Up in eq. (6.30) carries already a factor of |z;;|7*/" through the
P(i,7) terms; this means that the G5; (we remember that they have to be antiholomor-

phic in the ground state) should behave locally as
G.M —~ (Eij)zj+1-

Due to (anti)holomorphicity, the largest power of zij, compatible with the transforma-
tion rule (6.31), is indeed 2J + 1. Therefore, to minimize the Coulomb interaction on

the torus we set

— N 2041
=] (9[1/2}(21-,-1,»)) ' . (6.33)
: 172" ! »

i<
Let us now see if this is consistent with the transformation rule (6.31). The gar should

transform as
) . P2 oo Py
gDI(Zi +m; + niT) _ e—ZTm\[o% Z mi eZm Z mi gy 2T E n; 1\14 g‘M"Z n,-(zi) (6.34)

100



with gary, = gar, where

r+1)

_351. =P+ ’LLIL;—— (635)

For analiticity reasons eq. (6.34) is consistent only with a z;~independent i.e. constant

set of gas and reads then simply
P P
gar = exp (—2mMO?-L) exp | 2L — 2miN <L | ga, o n
P Ny Ny

for all integers L, N. This recursive relation admits solutions only if the momenta P;

are integer multiples of u:

. N
Pz =1u- iﬁi = == ﬁz
r
with, in particular
Py =u-(qMy mad 7). (6.36)

Conversely, it is clear that for all P, which are multiples of u it exists an M, such that

(6.36) is true. The ga; are then simply given by:

. P . P P41
gar = exp (——27rz M]—V%) = exp (—27rz M (Nl‘ +— )) (6.37)

Noting now that P; and P; differ by an integer multiple of u, we can conclude that the

Laughlin-like ground state exists only for the exceptional momenta

N
P=""20 4oy | (6.38)

v.r

where n1,2 are integers. It is important to notice that this spectrum closes under modular
transformations, which shows once more that our gauge-fixed physical Hilbert space is
indeed modular invariant. In ref, [21] we gave the explicit solution for the particular
case in which n; 5 are multiples of » (for 7 odd). Then, from egs. (6.36), (6.37) one gets
simply gar = 1 for all M, and M, = 0, and we get back the result of [21]. In general the
complete ground state wave function, which for every exceptional momentum (6.38) is
unique, becomes
P P 2, O\
5 . -
Up :Hexp (_i);P(Z’])) - exp (:]—v?;z - mz) H (9 [1/2J (MJIT))
1< j i<
(6.39)

. P o) (0)em
Hexp <2I/f (zu Izijl2)> Z exp (——QWZMFE-) Pas " PArLAL,

1< Al=1
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When the particles have ordinary statistics one has to put s = 0, remove (f)g()l)c'g and
restrict the sum to M = 1 in the above formula. In this case g = 2J +1and r = 1.
In this way one gets a translation invariant version of the Laughlin wave function on
the torus. In the case of the (static) Landau levels on a torus, previously discussed in
the literature[*":7%, the variable a®™ ‘s not introduced and therefore the 2J + 1 wave
functions obtained by taking &37T -1 n, of section 4.5, formula (4.65), N1 =1,.., 2J +1,
evaluated for a¢™ = 0, are not each other related by a gauge transformation and give
rise to a (2J + 1)-fold degeneracy in agreement with ref. [40]. In our formulation this
degeneracy is absent: the state (6.39) is unique.

Since a solution of the Laughlin form is possible only for the momenta of eq.
(6.38), the corresponding quantum state is protected against small disturbances which
would alter the momentum by a few units (in units of the inverse of the homology
cycles’ length), since the energy must then jump above the gap due to the Coulomb
interaction, which separates the state of the Laughlin form from other configurations.
The corresponding motion is then expected to be superfluid, i.e. to have zero "diagonal”
resistance.

The solution ¥ p behaves locally for z; — z; as 2?]J+1

|24~ 7. To compare with
the anyon gauge (section 4.7), which is often used on the plane, multiply locally the

wave function by the phase factor (zij/ %)% to get the behavior

~ g (6.40)
Let us finally show how the fractional Hall effect hierarchy can be established on
the torus. Following Halperin, ref. [5], we may imagine that the anyons are excitations

of an underlying system of particles of charge eo (which eventually could also be anyons

of a previous hierarchical level), and write the statistical angle of eq. (6.3) as

g o : s o

i te. —=1+— (6.41)
is Ji%) T Ho

where py is in general fractional (to be recursively determined) and a = £1 according

to whether we consider ”particle” or "hole” excitations. This is the case for excitations

of an underlying system whose wave function behaves locally on the plane for w; — w;
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ca]h'n wip the Complex coordinates Of the underl iIl particles as
g ying
~ (@;;)". (6.42)

Comparing with (6.40) we can say that the anyons also behave according to a wave
function of the form (6.42) with an exponent i given by
p=2J -2 (6.43)
Ho
Notice that for puy > 1 and J > 1, the case to be discussed in the following, then also
¢ 2 1 and therefore, in particular, the wave function vanishes for z;; — 0. Note also
that from (6.41) s/r > 0.
The charge e of the anyon is related to ey by

[0

e = — g 6.44
Ze (6.44)

When e < 0 then eq. (6.2) gives ¢/p < 0. In'this case it is convenient to put

s/r:—~<1+i><0

Ho

so that also f~1 = —(2J + 1) < 0. We then Interchange the role of D and D, and we
get the same wave function with z; « Zj;, and a®*™ — —g° ™ Ip particular the local

behavior in the anyon gauge will be now instead of (6.4)
T~ (2i)"7 Py(2i,2) (6.45)

where P, is odd, and for our ground state solution we get

\I’ -~ (zij)s/r+2.]+1 )

Like before g = _7?5'

So, modulo a complex conjugation, we can use the previous results both for e >0

and for e < 0 and in particular we have from eq. (6.25)

1 BUV

Ny =lel=. 6.46
4 IEI# o (6.46)
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It is interesting to note that to get this equation we do not need to introduce a "classical
plasma” like it is done on the plane [7]. Since eq. (6.42) corresponds to a filling 1/po we

have for the density of the underlying system

N 1 By
T e— =
v

po 2T

We can then compute the total charge of the total system, i.e. the underlying one plus

the anyons excitations one,

egNT = eoNY +eNy (6.47)

from which we get for the total particle number density

Nr N B
Nr _N° clelBo (6.48)

v v egpt 27

Of course, the picture of the anyons as excitations of an underlying system makes sense
only in the limit of a very large torus and very large By and N (finite density). On a
large but finite torus the picture is only approximate and strictly speaking it requires
values of By such that Ny and N4 are integers. In the following we assume that this is
true at each step of the hierarchy and we will only concentrate on the filling.

One can then proceed one step further and consider the excitations of the anyons
system, and so on. One can then relate the step (s +1) to the step (s) by iterating egs.
(6.43), (6.44) and (6.48) in the following way

Qg1
pst1 = 2Js41 —
8
Qg1
€s+1 = €s
Hs

€s+1|€s+1l Byv

(s+1) ()
N. =N
T T + Hs+1€0 27

By defining the total filling by

2

F = N T
T lCU‘BuV

we get that at the (s +1)-th hierarchical level we are describing a filling

X1 i_ 63\65‘

F(s+1) — F(.s) +
Phst1 B Eu\€0|
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(the notation is slightly changed with respect to ref. [5], in particular for what concerns
the notation for the charge).

As examples, we get, like in ref. (5], that if one starts with ey = py = @; = 1 and
F) = 0, one has at the first step of the hierarchy e; = 1 and p; = 2J; — 1 which

corresponds to electrons with filling
F =1,1/3,1/5,... for J; =1,2,3,...

Then at the next step one can have excitations with €y = %—f— with statistics py = 2J5 —%TQ

corresponding to fillings
F@ = 2/3,4/5,... for pu; =1 and ay=-—1
F®) =2/7.4/13,... for p =3 and ay—=—1
F2) = 2/5,4/11,... for p =3 and ay=-+1
Let us now discuss the total momentum of our system. We use a reasoning similar

to the one followed for computing the total number, see egs. (6.47) and (6.48). We first

compute the total e.m. current
Jr = egNyv = ey NOvy + eNv,r (6.49)

where vz, is the velocity of the excitations as seen in the Lab. reference frame, i.e.
vir = vy + v, where v, is the velocity of the excitations relative to the underlying

system. The total momentum is then

e N4 e M, :
Pr=MyNrv=PF |1+ ——= Py—— 6.50
T=MyNrv =P < + e NU) * s M (6.50)

where M is the mass of the particles of the underlying system, M 4 is the mass of the
anyon excitations and Py = M N v, is the momentum of the anyon system relative
to the underlying one. Since we do not know how to compute precisely M, /M 4, let us
consider in particular the case P4 = 0, where the anyons are at rest with respect to the

underlying system, at each level of the hierarchy. The iteration of eq. (6.50) gives then

(s+1)
ple+1) _ Np . pls)
T = (s) T
N

T
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Since at the first level we have ordinary electrons and therefore r = 1 in eq. (6.38), we

have Pp}l) = an(pl) (in units of 2 times the inverse of the cycles’ length). We see then

that the exceptional momenta are
P}s—f—l) _ nNéf'H)

i.e. integer multiples of the total npumber of electrons in units of 27 times the inverse of
the cycles’ length. It is only for these values, in the case of zero relative velocity, that
the wave functions of the anyon systems at each level of the hierarchy can be in the

ground state with respect to the Coulomb fepulsion.
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