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Introduction

Most of the present cosmological médels are based on the assumption that in the universe
two different kinds of matter are present: the baryonic matter, which is directly observed
and forms all of the bright objects, from stars to the hot gas present in X-ray clusters,
and a dark, collisionless component which accounts for most of the gravitational mass
in the Universe. A complete description of the behaviour of the two components can be
obtained only by using numerical simulations. In particular N-body techniques have proved
to be particularly effective in problems in which the dynamics is dominated by gravity.
as happens for the collisionless matter or for cosmological structures on very large scales
(more than 50~ 'Mpc). On smaller scales different phenomena can play a significant role
in the evolution of the structures. For example, pressure forces can become important on
scale less that 10h~*Mpc. These phenomena can be included in numerical simulations only
treating the baryonic component by a suitable hydrodynamic approach. This has the further
advantage that thermodynamic variables are self-consistently calculated and quantities like
the X-ray emission of the intracluster gas can be estimatéd and directly compared with
observational data.

The development of cosmological codes which could treat both the dark and the bary-
onic matter has been delayed for years since they require a great computational effort, both
in computer’s memory and in computational time. In the last years adequate computa-
tional resources have became available and several cosmological codes have been developed.

In this thesis we present a hydrodynamical code for cosmological simulations which uses
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the Piecewise Parabolic Method to follow the dynamics of gas component and an N-body
Particle-Mesh algorithm for the evolution of collisionless component. The gravitational in-
teraction between the two components is regulated by the Poisson equation which is solved
by a standard FFT procedure. In order to simulate cosmological flows we have introduced
several modifications to the original PPM scheme which we describe in detail. Various
tests of the code are presented, including adiabatic expamnsion, single and multiple pancake
formation and three-dimensional cosmological simulations with initial conditions based on
the cold dark matter scenario. The code has been used to simulate the evolution of the
structures in various cosmological models both in one and in three dimensions. The one
dimensional simulations allow to work with a dynamical range much larger than that achiev-
able in three dimensional calculations. These are in fact limited by their high computational
requirement. Then the one dimensional simulations can give useful information on how dif-
ferent scales influence the structure evolution and can be regarded as a guideline for any
three dimensional application.

The three dimensional simulations are dedicated to the study of the properties of X-ray
galaxy clusters in several cold dark matter models which differs for their content in baryonic
matter. We have studied four models in which the baryonic density can range from 5 to 20
per cent of the total mean matter density of the universe. By comparing the predictions
of the different models to a series of recent observational results, we have been able to
conclude that only models with low baryonic content agree with the data, while models
with larger baryon fraction are well outside the 1- error bar. Moreover we have found
that, independently of the cosmological scenario, all the considered quantities, associated
to galaxy clusters, present little redshift evolution.

The thesis is organized as follows. In chapter 1 we will give an overview of the cosmo-
logical framework, focusing on the theories of structures formation and on the the various
analytical techniques developed to study this problem. Chapter 2 is dedicated to an intro-
duction to the hydrodynamics involved here, focussing in particular on those aspects, like

characteristic equations, particularly relevant for the present work. Furthermore, the equa-
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tion that govern the behaviour of a fluid (both collisional and collisionless) are re-written
in an expanding background using the cosmic scale factor. In chapter 3 we will describe in
details the numerical method on which our code is based. We will first present the original
one dimensional Piecewise Parabolic Method. Then we will show how this method must
be modified in order to work in a cosmological framework and how it is extended to multi-
dimensional problems. Finally we will describe the N-body Particle Mesh scheme and the
modifications required in order to work together with the hydrodynamic code. In chapter
4 we will present the numerical tests by which we have verified the reliability and the ac-
curacy of the code. Chapter 5 is dedicated to describe how the code has been paralelized,
that is how it has been modified and structured in order to work on a multi—processors
parallel computer. The performances of the parallel code are presented at the end of the
chapter. In chapter 6 we will present a first application of our code studying the evolution
of structures in the baryonic and in the dark matter in one dimensional models. Chapter 7
is dedicated to give a general introduction on the properties of clusters of galaxies, which
will be the subject of the following chapter. In chapter 8 in fact, we will present a study of
the properties of galaxy clusters in different cosmological models. The models are based on
the standard Cold Dark Matter model, but the contribution of baryons to the total mean
density of the universe is allowed to vary. Finally we will draw the conclusions and the

possible future developments of this work.



1 Cosmological Overview

In this first chapter we want to give a brief description of the cosmological frame in which we
have developed our work. In particular we will first analyze the Standard Model, focusing on
the so—called Friedmann models. We will then talk about the theories of structure formation,
both in the linear and in the non linear regime, and we will introduce the concept of power
spectrum. This chapter is intended to be only an introduction to some aspects of cosmology.
For a more detailed discussion we refer to Peebles (1993), Padmanabhan (1993) and Coles
& Lucchin (1995).

1.1 The Standard Model

The cosmological Standard Model is based on the idea that the universe on large scales
can be approximated as being homogeneous and isotropic. Under these assumptions the
space—time metrics can be written in the Robertson—Walker form:

dz?

ds® = (cdt)? - a(t)? {m

+ z*(d#* + sin® qubz)} , (1.1)

where z, 6 and ¢ are the comoving spherical coordinates, ¢ is the proper time, c is the speed
of light, a(t) is the cosmic scale factor, describing the expansion of the universe and K is
the curvature parameter. The expansion factor is related to the proper distance » by the
relation r = a(t)z. Depending on K the geometry of the universe can be positive curved
(K = 1), flat (K = 0) or negatively curved (K = -1).

Solving the Einstein equations in absence of the cosmological constant in a Robertson—
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Walker universe for a perfect fluid, we obtain the Friedmann cosmological equations:

; 4rG p

a = ——‘3“’ (9-1—325)& (12)
Y 87 G

&>+ Kc? = 7; oa’ (1.3)

where G is the gravitational constant and p and p are the density and the pressure of the
perfect fluid.

Equation (1.3) we can be written as:

a? c?

Oc
where
3 a?
=1 1.5
e 87G a (1.5)

is the critical density and

H(t) = % ' (1.6)

is the Hubble constant. Its present value is estimated observationally to be:
Hy, = 100 x h Km s™'Mpc™", 04<h<1. (1.7)

Since both a(t) and H(t) are positive quantities also a(t) is positive. This means that any
pair of points in the universe move away from each other with a velocity that increases with

their distance, i.e.

vg(t) = % _ d{aé?z] - Zgga(t)z - H()r. (1.8)

This relation is known as Hubble law and describes the expansion of the universe.
From equation (1.4) follows that the universe is closed, flat or open if the density pa-

rameter:

O (1.9)

is greater, equal or less than one.
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We define the redshift z of a luminous source moving with the expansion of the universe,
the quantity
Ao — A,

z = T—, (1.10)

where Ao is the wavelength of radiation observed at time to, emitted from the source with
wavelength A, at some earlier time ¢,. The redshift is related to the expansion parameter
as

z = S1—(@—)—1, (1.11)

a(t.)

The Friedmann equations can be solved assuming a specific equation of state. The
resulting solution are known as Friedmann models. Particularly interesting for the following
discussion are the the flat (Q = 1) models with the equation of state given by p = wpoc?, ¢
being the speed of light and w being defined in the range 0 < w < 1. These are known as
Einstein-de Sitter models. In particular, the case w = 0 corresponds to a collisionless fluid,
while the case w = 1/3 corresponds to a relativistic fluid. Solving the Friedmann equations

for the Einstein—de Sitter models we find that

t 2/3(14w)

a(t) = alt) (Z’) , (1.12)

0

the mean density decreases as
-3(14w)
t
o = oto) (a( )> = o(to)(1 + 2)°0+) (1.13)
a(to)

and the time at which the Hubble constant has the value H, is

2
= SEATe) (1.14)

to

1.2 The Hot Big Bang Model

We indicate as Standard Hot Big Bang model the model of an homogeneous and isotropic
universe that evolves according to the Friedmann equations whose main constituents are
matter and radiation with the observed present time abundances and whose kinematic

properties (i.e. Hubble expansion) match those observed in the real universe. This model
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~

presents a singularity at the initial time ¢t = 0 where the proper distance between any two
points tends to zero and the energy density diverges. The singularity is known as Big Bang.

The present time total energy density of the universe can be expressed as
00 = 000 ~1.9x107*°QA% g em™?, (1.15)

where 9o . is the present value of the critical density. Observations and theoretical models
set the value of () somewhere in the range 0.01 < © < 2. This value accounts for the contri-
butions of radiation (r), baryons (BM ), collisionless matter (DM ) and possible relativistic
particles (v):

Q= O+ Qpp + Qpar + Q. (1.16)

At present most of the radiation energy density is associated with the microwave back-
ground, which permeates all the universe at an average temperature T, = 2.73 K. This

corresponds to a density oo, ~ 4.8 X 1073*g cm™®. The resulting contribution to Q is
Q, ~ 2.6x107°A7%. (1.17)

The standard model predicts the existence of a cosmological background of neutrinos. If
these are massless their density is close to that of radiation, that is 2, ~ §2,. Furthermore,
various arguments suggest that the energy density of any other possible relativistic particle
must be at present much lower than that of matter.

In accordance with the Big Bang nucleosinthesis model, the amount of baryonic matter
is constrained to be:

0.010 < Qpph® < 0.015. (1.18)

The contribution of the collisionless component depends on the particular model that one
is dealing with. Also the nature of collisionless particles is model dependent. Elementary
particle theory proposes several candidates for the collisionless matter. Any massive weakly
interacting neutral fermion provides a possible candidate. In fact, any such particle would
have existed in large number in the early universe. However, as the universe cools, the

number density of these particles change depending on the details of their interactions.
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Given a specific particle physics model the present time abundance of any such particle can
be computed. Knowing the particle mass the contribution to Q can be calculated. Only
the particles which contribute significantly to the density parameter are of primary interest.
The different properties of the various species of particles lead also to different cosmological
structures formation scenarios, further discriminating between the different possibilities.
¢ Equivalence epoch

The previous discussion shows that at present the energy density of the universe is
dominated by matter, while radiation gives a negligible contribution. Anyway, since in
Friedmann models each component presents a different evolutive behaviour (see for example
equation (1.13)) the relative “weight” of the different components changes with time. In
the first phases of the evolution of the Hot Big Bang universe radiation gives a dominant
contribution to the energy density of the universe. However, during the expansion of the
universe the mean radiation density decreases faster than the matter density. In fact, for

an Finstein-de Sitter model from equations (1.13) we obtain:

o, x a(t)™*, (1.19)
while

on x a(t)™?, (1.20)

where with the subscript M we indicate a generic matter component. We define the equiv-

alence epoch a., by the relation:

0:(aey) = on(ae) . (1.21)

From equations (1.13) and (1.21) we have

_ a(te) _ QM(tO)
14+ 2, = ) ~ () | (1.22)

In general, if there are several relativistic components, labelled i, each contributing a fraction

Q,; of the critical density, then the total relativistic contribution dominates for

Qur

> .
1+z > Z,‘Qm‘

(1.23)
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If in (1.23) we neglect all the contribution other than photons, we find z., ~ 4.3 x 10*Qh%.
e Decoupling

At present baryonic matter and radiation are practically completely decoupled from each
other as the characteristic timescale for collisions between photons and neutral hydrogen
atoms is much larger than the characteristic time for the expansion of the universe. In
fact, if we assume that the collision cross—section between photons and atoms is constant,
then the collision time 7. simply scales as the inverse of the number density of atoms and
therefore decreases with redshift much more rapidly than the characteristic time scale for

the expansion 7. For example, in a flat universe,

. x o0y x (1+2)7%, (1.24)
oy -t
S (ﬂ x (142)°%7. (1.25)

In this last equation we have assumed matter domination, but analogous results hold for a

radiation dominated universe. We define as decoupling time t; the time at which
T, = Ty . (1.26)

After t4, in absence of reheating processes, matter and radiation evolve separately. Assuming

adiabatic expansion of the matter, standard thermodynamics gives
T = Tauo(l+2). (1.27)

Then the present mean value of the matter temperature would be Tjso = 0.0018 K.
For the radiation using the relationship between the energy—density and the temperature

of a black body, we find that
T, = T.o(l+2). (1.28)

Before the decoupling matter and radiation are in equilibrium with each other at the same

temperature, which presents a dependence from z intermediate between (1.27) and (1.28)

T x (14 2)M) (1.29)
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with 0 < ¢(z) < 1.
¢ Recombination

At very high temperatures (high z), the matter is fully ionized. As T decreases, the
fraction of ionized atoms falls. Therefore, there exist a time t,,, before which the matter is
completely ionized and after which the ionization is very small. This transition is usually
called recombination. The recombination is not instantaneous process and actually continues
over a relatively large range of z. However a reliable choice of the redshift at which it takes
place is z,.. ~ 1500.
e The Standard Nucleosynthesis Model

A major success of the Hot Big Bang scenario is the prediction of the cosmological origin
of light elements (that is elements no more massive than "Li) with abundances which agree
with observational data. The abundance of a given element is defined as the ratio between
the mass of that element contained in a representative volume and the total mass in the
same volume.

When the universe is at a temperature of about 10°K light elements can be produced

by the chain of reactions:

nt+v, —pt+e , ntet =p+7, (1.30)
n+p —D+4y (1.31)

D+D — *He+n, °He+D +« *He+p (1.32)
D+D —~ *H+p, *H+D « *Hedn (1.33)
D+D —*He+~ (1.34)

where 7 is the photon, n is the neutron, p is the proton, e~ and et are the electron and
the positron, v, and 7, are the neutrino and the antineutrino of the electron, v is the
photon and D indicates the deuterium. The production of heavier elements is suppressed
by two factors. First direct reactions between two He nuclei or between He and H lead

to nuclei with atomic masses 8 or 5. Since there are not tightly bound isotopes with such
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masses , these reactions do not lead to any other synthesis. The three bodies interaction
*He +*He +*He —!? C is suppressed because of the low number density of *He nuclei. This
reaction helps further synthesis in stellar interiors, where much higher densities are reached.
Second, the interacting nuclei must overcome their Coulomb repulsion. This become higher
as the charge number increases, suppressing the reaction rate.

Small amounts of “Li are produced by the following reactions
*He+*H — "Li+n (1.35)

‘He +°He — " Be++, 'Be — Li+et +u, . (1.36)

In this last reaction a small amount of "Be is left as a residue.

The observed cosmic abundance for H is X ~ 0.76 and that for *He is Y ~ 0.24. The
average number density of He+D, "Li and "Be are respectively less than 107*, 107'° and
10-'! that of hydrogen. The Standard Nucleosynthesis model gives results which agrees

with observational estimates if

0.010 < Qpph® < 0.015. (1.37)

1.3 Problems of the Hot Big Bang Model

e The Big Bang

Standard Big Bang cosmology presents several unsolved problems. The first is that
of the existence of the Big Bang singularity. This is likely to be just a consequence of
extending a model based on the General Relativity into a situation where this theory is
no longer valid. New laws of physics are needed to describe the behaviour of matter close
to the Big Bang, when density and temperature are much higher than those achieved in
laboratory experiments and when quantum effects are important on cosmological scales.
e The Particle Horizon

Since the universe has a finite age and information travel at most at the speed of light,

there can exist a maximum distance between particles which have been able to interact at
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some time in the past. This distance is called particle horizon and is defined as
teds

ra(t) = a(t) /

o als) (1.38)
The presence of the horizon is hard to reconcile with the assumed isotropy of the universe,
as this requires that there is a correlation between regions outside the respective horizons
which have never got in touch with each other. This is for example what happens for the
cosmic microwave radiation. The observed high isotropy of the microwave radiation implies
a high degree of homogeneity and isotropy of the radiation at the time of recombination.
But if we calculate the horizon of two regions which are in opposite direction, we find out
that they never had the possibility of causal contact until tree-
¢ The Flatness Problem

The present value of the density parameter is of the order of the unity. It can be shown
that the quantity |Q — 1| tends to increase with time (unless © = 1, in which case it remains
always constant). In order to recover the estimated present value of this parameter we must
have that at very early time (close to the planck time, tp = 10™*3s after the Big Bang) the

density were extremely close to one
Qtp) = 1+ (Q—1)x107%, (1.39)

This create the so—called flatness problem, which consists in explaining why the density is
so close to the critical value.
¢ The Cosmological Constant Problem

All known symmetries of nature and principles of general relativity allow for the presence
of a term A in the Einstein equations which acts like matter with energy density g, « A
and pressure py, « —A. The quantity A is called cosmological constant.

Observational data suggest that at present time the cosmological constant should be
very small:

Al < 107%cm™? . (1.40)

The cosmological constant problem lies in the fact that the values of A and of all the

derived quantities are astonishingly and, apparently, “unnaturally” small. For example,
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we can define a mass associated to A as (|ophc)t/?, where h is the Plank constant, which

comes out to be less than 1073%eV, much lower than the upper limit of the photon mass
m, < 3 x 10%7eV.

However, the possible consequences of having a non-null cosmological constant can be
very interesting. In fact, although its present value should be too small to have relevant
effects on the evolution of the universe, it could have been in the past the dominant energy
density component. If we consider the Einstein equations with a cosmological constant we

obtain the Friedmann equation in the form

. 47 G P
a = ——3‘— <Q+322‘—2QA) a (1.41)
&4+ K = 81365(9 +on)a® . (1.42)

Therefore if, before a certain time, g4 is the dominant contribution to the energy density,
it can happen that @ > 0 and, therefore, the initial singularity can be avoided. In addition
during this A dominated period the expansion of the universe is accelerated and the size
of the horizon grows very rapidly. This event is called inflation. Solving the Friedmann
equations assuming for example w = —1 gives the so called standard inflationary model for
which

a(t) x exp(t) . (1.43)

The inflationary model solves the problems of the horizon and of the flatness. The former
is solved observing that, due to their fast expansion, scales that previously were in causal
contact, at some epoch exit the horizon, that is they become larger than the size of the
horizon. As long as these scales are outside the horizon they do not evolve causally. At the
end of inflation, they can enter again the horizon with the “memory” of the initial conditions.
Therefore regions that are disconnected can have the same properties. The flatness problem
is solved observing that during inflation, the curvature radius of the universe, measured on
a fixed physical scale, increases exponentially. Thus, a piece of space looks essentially flat

after inflation even if it had measurable curvature before.
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The present day interpretation of the cosmological constant is as follows: g, and p,
represent the density and the pressure of the quantuum vacuum, which is the ground state
of a quantum system, characterized by the equation of state pa = —oac?. Inflation is a
consequence of a phase transition in the early stages of the evolution of the universe. During
this phase the density of the vacuum state of the scalar field which drives the transition
became the dominant contribution to the energy density. Then the expansion factor grows

accelerated and inflation can take place.

1.4 The Evolution of Cosmic Structures — Linear Phase

The hot Big Bang scenario is based on the hypothesis that the universe can be approxi-
mated as being homogeneous and isotropic. This must be actual regarded in a “statistical”
sense, as it is clear that disomogeneities and anisotropies are present in the form of stars,
galaxies, clusters of galaxies and any other object. Therefore homogeneity and isotropy
must be sought in averaged properties of the universe where the average must be taken on
volumes large enough to represent a fair sample of the underlying structure. For cosmolog-
ical structures like galaxies and galaxy clusters this means samples of tens, if not hundreds,
of megaparsecs. The birth and the evolution of these structures is described by models
which are based on the assumption that the observable large scale structure of the universe
has developed through gravitational instability of small fluctuations in a smooth primordial
density field. In the following sections we will give an overview of the basic characteristics

and properties of this process.

1.4.1 Jeans Theory

The gravitational instability theory, or Jeans theory, demonstrates that, starting from a
static fluid which is, on average, homogeneous and isotropic, small fluctuations in the den-
sity and velocity fields, can evolve with time. In particular overdensities can grow due to
attractive gravitational forces as long as pressure forces are negligible and finally can col-

lapse to a gravitationally bound object. The simple criterion needed to decide whether a
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fluctuation will grow with time is that the typical lengthscale of a fluctuation has to be
greater than the Jeans length, A;, of the fluid. An approximate determination of A\; can
be obtained by the following simple considerations. At a given instant let us assume a
spherical overdensity of radius A in a medium of mean density go. The fluctuation grows if
the self-gravitational force per unit mass, F, overcomes the pressure force per unit mass,

F .

p*

3
G ook > F

F, ~ 22 o~ P e S

(1.44)

where ¢, is the sound speed. This relation implies that growth occurs for A > A; ~
¢;(Goo)~/%. When this relations is not satisfied, pressure forces are greater than the self-
gravity and the perturbation propagates like an acoustic wave with wavelength A at velocity

¢,. Associated to the A\; we can define the Jeans mass

4
M; = §7rgo}\§. (1.45)

A linear analysis of the evolution of the perturbations gives, for the fluctuations in the

density field,

§ = bo _ boexpli(k -r £ |wt)], (1.46)
Qo

for A < A, and

§ = — = §pexpli(k-r)]exp(£|w|t)], (1.47)

for A > A;. In these equations § is the density contrast, k is the wavevector and w is the
frequency. Equation (1.46) represents two sound waves that propagates in directions +k,
while equation (1.47) is a stationary wave of either increasing or decreasing amplitude.
Similar considerations holds also for a collisionless fluid, for which p = 0, provided the
sound speed is replaced by a characteristic velocity v, of order of the mean square velocity
of the collisionless particles that compose the fluid. In this case if A < A; the velocity
dispersion of the particles is too large for them to be held by self-gravity, and they undergo

free streaming, a process which smears out and dissipates the fluctuations.
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1.4.2 Jeans Theory in Friedmann Models

The original Jeans theory is formulated for a static universe; therefore it cannot be applied
to an expanding cosmological model. The theory is further complicated by the presence of
a multicomponent medium (radiation, collisionless and baryonic matter) and also general
relativistic correction should be taken into account.

In an expanding model the density diminishes with time due to the increasing size of
the universe. The linear analysis shows that we can still calculate a Jeans length A; of the
same form of of that defined in the static case. Fluctuation on scale less that \ 7 oscillate
like acoustic waves. Fluctuations with wavelength greater than A; are unstable but grow
at a reduced rate compared to the exponential form obtained in the previous section. In
fact the fluctuations must attract material which is moving away according to the general
expansion of the universe. The specific rate of expansion depends on which component

dominates the energy density. For example, for a flat matter dominated universe we have:
6, o 3, 6 o tTh, (1.48)

where §, and d_ are the growing and decaying modes respectively. For a flat universe

dominated by radiation, instead, we have:

6, x t, 6. ot (1.49)

1.4.3 Evolution of the Perturbations

The evolution of the cosmological perturbations depends on the properties of the medium
in which they develop. In a universe composed by radiation, baryonic and collisionless
matter we can distinguish between curvature and isocurvature perturbation modes. In
the first mode all the three components are perturbed (8, ~ 8gpr ~ 8par), while for the
second mode only a non dominating component is perturbed. A further distinction can be
made according to the characteristics of the dominating component of the universe. Several
important effects, strictly related to these properties, can influence the basic picture of

structure formations given by the gravitational instability model.
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¢ Evolution of the Jeans Length.

The Jeans length depends both on the sound speed and on the density of the medium.
Therefore it evolves with time. In general for baryonic matter, A; grows until the recombi-
nation and then it abruptly drops below scales of cosmological interest. Also for dark matter
it grows until the equivalence time and then drops. We indicate with A; s the maximum
value of the Jeans length in its evolution. A perturbation in the baryonic matter on a scale
A < Ayar grows until A < A;, then spends a certain time oscillating like an acoustic wave
and at last start growing again. A perturbation with A > A; s, instead, never becomes an
acoustic wave.

e Dissipation of Acoustic Waves.

Before recombination ionized baryonic matter and radiation are tightly coupled. The
interaction of the two components leads to the phenomenon of diffusion, which scatters
particles toward regions outside the perturbation. This cause the decrease of the amplitude
of a perturbation until it is completely erased. The characteristic scale below which pertur-
bations are erased is the dissipation scale Ap. Also Ap grows with time until recombination,
reaching a maximum value Ap 5;. Then it drops below scales of interest. It turns out that,
at any time, Ap < A;: all the acoustic waves below Ap jr are dissipated. Therefore, after
recombination, the only perturbation that have survived and that can still evolve according
to the gravitational instability scenario are those on scales above Ap .

e Free Streaming.

Collisionless particle cannot evolve as coherent acoustic waves. Below the Jeans scale,
gravity is not sufficient to control their behaviour and they move freely and randomly erasing
any fluctuation on scale A < Aj.
¢ The Mezaros effect.

A generic feature of models dominated by a relativistic component is the “stagnation”
or Mezaros effect. This effect influence the evolution of the perturbation in the matter until
the universe is radiation dominated, that is until the equivalence epoch. As long as the

universe is radiation dominated the growing mode perturbations remain “frozen” as the
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expansion of the universe is so fast that it prevents the gravitational collapse.
¢ Radiation Drag.

This effect is present only in models in which the baryonic component is perturbed while
the radiation is smoothly distributed. Perturbations on scales larger than the Jeans length
do not grow due to a kind of viscous friction force acting on particles which move through

the radiation background. This phenomenon is present until matter and radiation decouple.

1.5 The Spectrum of the Fluctuations

A generic perturbation in the density field can be represented as a superposition of plane

waves of the form
§(r) = /5k exp(tk - r)dk , (1.50)
K
where k is the wave vector and &y is the k (complex) Fourier coefficient. An estimate of

the dispersion of the fluctuations field is given by the variance o defined as

o? = _}_/ P(k)k*dk , (1.51)
0

272
where P(k) is the power spectrum that, due to the homogeneity and isotropy of the universe,

depends only from the norm of the wave vector k. The power spectrum is defined as
P(k) = (l&l*) , (1.52)

where (|6x|?), is the average of the square norm of the k Fourier coefficient calculated over
an ensemble of realizations of the same models. For each k, the quantity P(k) indicates the
“weight” of the k~th wave mode of the fluctuations field.

The variance ¢? contains no information about the relative contribution to the fluctu-
ations from the different modes. Furthermore it may also be formally infinite, if integral
(1.51) does not converge. Therefore it is convenient to define a statistical description of the
fluctuation field as a function of some resolution scale R. Let (M) be the average mass in

a spherical volume V of radius R

(M) = —m(o)R®. (1.53)
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We can define the mass variance inside the volume V to be the quantity ¢?(M) given by:

sap _ (1= (M) i

where the average is calculated over all spatial volumes V. In terms of the spectrum of the

fluctuations the mass variance is calculated as
oA (M) = 51_ / T P(W?(kR)KdE (1.55)
T Jo

where W(kR) is the window function which determines the weights of the various wave-
lengths A to the variance such that the dominant contribution is given by the components
with A > R.

The initial spectrum of fluctuations is indicated as the primordial power spectrum. It

is usual to assume that P(k) is given, at least for a certain range of k, by the power-law
P(k) = Ak™, (1.56)

where the exponent n is the spectral indez while A is the normalization. Thebparticular case
in which n = 1 is known as Harrison—Zel’dovich spectrum. It was first proposed in the 70’s
and taken to be the most natural form, according to various physical arguments. Further
motivations for this models arrived in 1982 with the inflationary models which predicts a
spectrum in scale—invariant form.

As far as the evolution of the perturbation spectrum is concerned, the theory depends
on the nature of the particles that dominate the universe at various epochs (radiation,
baryonic or dark matter) and on the nature of the fluctuations themselves (adiabatic or
isothermal, curvature or isocurvature). The combined effect of the various processes involved
in the evolution of the primordial spectrum can be summarized in a single quantity, the
transfer function T'(k) which relates the evolved power spectrum to its original form via the
transformation:

b(ts)

Pllvty) = [300 | T2, t) Pk 1) (1.57)

where t, is the time at which the primordial spectrum P(k,t,) formed and ¢; is the time

at which the considered modulating processes have stopped; since most of these processes
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stop at the recombination it is appropriate to take ¢; > t,,.. Finally, b(t) is the liner growth
factor for perturbations above the Jeans length (e.g. b(t) o« t*/® for an Einstein de Sitter

matter dominated universe).

1.5.1 The Origin of the Fluctuations

Theories which explain the origin of the primordial fluctuations have still a speculative
character. The most popular rely on a phase transition in the early universe which leads
to inflationary expansion of the universe or to the formation of topological defects. In an
inflationary scenario the density perturbations originate in quantum fluctuations and they
get blown up to the size of cosmological structures during the inflationary phase. The
produced spectrum is found to be nearly perfectly scale free in most of the inflationary
scenarios. In fact, the spectrum of quantum fluctuations is constant during the inflationary
stage and produces equal power on every scale. The perturbations in the density field can
be produced also by topological defects like cosmic strings. Very roughly cosmic strings can
be imagined as one~dimensional very massive, fast moving structures. Strings through their
motion produce fluctuations in the density field. Strings of different size perturb different

scales. The resulting spectrum of fluctuations does not have to be scale—free but it can be.

1.6 Some Models

The first cosmological models incorporating structure formation described in terms of grav-
itational instability theory were proposed in the 1970s. These were two—components models
containing baryons and radiation. The perturbations could involve both matter and radi-
ation which were coupled together so that g ~ §,, where §, indicates the fluctuation in
the radiation field. In this case we talk about adiabatic perturbations (corresponding to the
curvature modes). Alternatively we can have that only the baryonic component presents
fluctuation, the radiation field being unperturbed. This is the case of the isothermal per-
turbations (corresponding to isocurvature modes). Soon it was realized that both of these

models when compared to observations presented substantial incompatibility. At the same
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time the discovery of the existence in the universe of the dark matter led to three compo-
nents cosmological models. In the 80s, the most fashionable models become the Hot Dark
Matter (HDM) and Cold Dark Matter Models (CDM). The first are characterized by the as-
sumption that the universe is dominated by collisionless particles with a very large velocity
dispersion. In the second the universe is again dominated by collisionless particles but with
a small velocity dispersion. Due to the differences in the typical velocity of the particles the
two models give rise to completely different scenario of structure evolution. HDM particles
have a very high Jeans length (this quantity being proportional to the typical velocity of the
particles) with a A;r that corresponds to masses of about 10 — 10'° M, masses typical
of the largest clusters of galaxies. Then, since free streaming dissipates all the perturbation
below Aj,, the first structures to form are those on the scale of clusters. Structures on
smaller scales form by a successive process of fragmentation. These are known as top-down

scenarios. A typical form of the HDM transfer function (Bond & Szalay 1983)
T(k) = exp[-4.61(k/k,)*/*], (1.58)

where k, = 0.16 Mpc~'(m, /30eV) and m, is the mass of the HDM particle.

CDM particles present a much lower Jeans length, corresponding to M; ~ 10° —10°M1,
which is the typical size of globular clusters. Therefore in these models the first objects to
form are those on small scales (galaxies). Larger structures form by a process of hierarchical,
or bottom-up, clustering which follows from the gravitational collapse of larger and larger
scales. For CDM models the transfer function can be defined as (Bardeen et al. 1986):

In (1 + 3.34q)

T =
(a) 2.34q

X [1+3.89¢ + (16.1¢)* + (5.464)% + (6.71¢)*]"V/* , (1.59)

where ¢ = k/hT". The shape parameter I' takes into account the dependence on the Hubble

parameter h, on the total density 2y and on the baryon density Qg (Sugiyama 1995):
I' = Qohexp(—Qpa — (R/0.5) * x0.5Q5,/ Q) . (1.60)

Assuming a scale invariant primordial spectrum, the transfer function goes approximatively
as k=% for big k and as k™! for small k. The bending of the function is at a scale of about

12 (QA*)"'*Mpc.
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The HDM models were the first to show serious problems. These are related with
the epoch of galaxy formation. In order to have sufficient time to collapse, the first large
structures that form in HDM model appear at about z ~ 1. Since smaller structures form by
the fragmentation process, their birth should be at z < 1. On the other hand observations
find galaxies and quasars at z ~ 3 — 4. CDM scenarios do not suffer this problem, since
smaller fluctuations collapse much sooner. However also the CDM model is unable to fit the
observational data. This is largely because, when normalized to reproduce the microwave
anisotropies detected by the Cosmic Background Explorer (COBE) satellite (Bennet et al.
1996), the resulting power spectrum has too much short-scale power.

A number of alternative models have been proposed to solve the problems connected
with the standard CDM (hereafter SCDM) scenario.

The great initial success of the CDM theory, its simplicity and its predictive power, have
led to study in great detail models which are variants of the SCDM. The most promising
of these variants, in the sense that their predictions are in good (although not complete)
agreement with observations, are the ACDM and the HCDM models (see Primack 1997 and
references therein).

If we assume that the present value of the Hubble constant is A = 0.7, then only low—
0 models can be consistent with general relativity. If we want to retain a flat universe
hypothesis, a cosmological constant A must be introduced such that Qo+ Q4 = 1. Assuming
a Zel’dovich primordial spectrum, also this ACDM model, when normalized to COBE, can
fail in reproducing the observed clusters abundance. In particular if Qy > 0.3 the model
predicts more rich clusters than those observed. In this case, it is necessary to add some
“tilt”, i.e. to assume that primordial spectral index n is less than unity. The ACDM model
Is in agreement with the galaxy correlation data on large scales. In order to see if this
model predicts the correct galaxy distribution on smaller scales (< 10h~! Mpc), on which
the structure evolution is non linear, it is necessary to use numerical simulations. However,
at present these are not entirely reliable on these scales and the results cannot be considered

definitive.
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If h ~ 0.5-0.6, the models with , = 1 are allowed. In order to decrease the fluctuation
power on cluster scales (too high for COBE normalized SCDM models) it is necessary to
tilt the spectrum or to change the assumed dark matter composition. The first possibility
has the problem that if one tilts the spectrum sufficiently to remove the unwanted power,
then the resulting spectrum of the microwave background anisotropies is not consistent with
observations (White et al. 1995b, White 1996).

The dark matter composition can be changed including a fraction of hot dark matter
(HCDM models). This component in fact, cannot preserve fluctuations on small scales.
Then its effect is to decrease the amount of cluster scale power. A possible problem is that
both tilting and adding hot dark matter also decreases the amount of power on smaller
scales, which means that protogalaxies form at lower redshift. Therefore these models must
be checked against data indicating the amount of small-scale structure at z > 3. Acceptable
models must also fit the data on large and small scale galaxy distribution. HCDM models
can do this if the hot fraction is Q, ~ 0.2

Leaving the assumption of a flat universe, we can consider o < 1 open models, (see,
for example, Liddle et al. 1996a), with a COBE normalized primordial spectrum with
n = 1. Allowing arbitrary values of the Hubble parameter a good fit to observational ‘
data is available for any Q, > 0.35, although for (), close to the unity the required & is
lower than commonly accepted. Models with Q, < 0.35 seem unable to fit observations
while keeping the universe old enough (more than 10!° years). If one assume h > 0.6,
as suggested by recent observations, concordance with data is possible only in the narrow

range 0.35 < o < 0.55.

1.7 The Evolution of Cosmic Structures — Non Linear Phase

After recombination the density fluctuations § evolve according to the theory presented in
the previous sections as long as |§| < 1. Thus such theory is suitable for describing the first
phases of structures evolution, but it can not be used to follow this process into the strongly

non-linear regime where overdensities can exist with § > 1. This is a much harder problem
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than the linear case and exact solution are difficult to achieve. Numerical simulations
provide a powerful tool to follow the evolution of cosmological structures and chapter 3 is
dedicated to an introduction to these methods. Here, instead, we want to describe some
analytical approximated solutions which, even in their more restricted applicability, give
useful physical information which permit a deeper comprehension of the mechanisms which
control the formation of cosmological structures.

It is useful at this point to introduce the comoving form of Euler equation, which deter-
mines the peculiar velocity v of a particle that moves in an expanding background, subjected
to the peculiar gravitational potential ¢. For the definitions of the coinoving coordinates
and of the peculiar velocity we refer to section 2.4.1, while for the definition of the peculiar

gravitational potential we refer to section 2.4.3.

d ; \%
v, e, Yo (1.61)
t  a a
It is also convenient to re-write equation (1.61) in terms of the variable
dx v
= — = —. . (1.62
" da a ( )
Assuming a flat, matter dominated universe, from (1.61) and (1.62) we obtain
du 3 3V
4y 2y = = ) 1.63
da " 22" 2a ( )

where ¢ = (3/2)a¢.

1.7.1 Spherical Collapse

The simplest model to describe the growth of non-linear structures by gravitational insta-
bility is the homogeneous spherical collapse model. Let us consider a spherical perturbation
with constant density which, at the initial time ¢;, has amplitude §; > 0 and |6;] < 1. This
perturbation expand with the background universe such that its initial peculiar velocity at
its edge v; is zero. Due to the symmetry of this problem we can treat the perturbation just

like a separate sub—universe. Assuming that pressure gradients are negligible, the spherical
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perturbation evolves as a Friedmann model with an initial density parameter given by

o(t:)(1+6:)

QP(t‘i) = Qc(ti)

= Q)1+ 6), (1.64)

where the suffix p denotes the quantity relevant for the perturbation, while o(t) and Q(¢)
refer to the unperturbed background universe. The spherical perturbation collapses if
,(t;) > 1. It can be shown that this condition is true for any initial overdensity if Q(¢;) > 1
while the fluctuation must exceed the critical value (1 — Q)/Q(1 + z;) in a open universe,
where {2 is the value of the density parameter at present time.

In a flat background universe the time evolution of such perturbation is well known.
At early times the density is very close to that of the background universe and the density
contrast evolves as § « a(t). As § approaches unity the growth rate increase. When
the universe has expanded by a factor 1.06/6; the inhomogeneity reaches the maximum
expansion radius and starts to collapse. At this time the overdensity is 5.5 times the mean
background density. Ideally, the pressureless sphere collapses to a singularity with infinite
density when the universe has expanded by a factor 1.86/6;. For a realistic collapse with
any appreciable degree of inhomogeneity, the collapsing perturbation violently relaxes and
forms a virialized sphere with a virial radius equal to one half the radius at maximum
expansion. The density of the perturbation in this stable configuration is about 170 times
that of the background universe and about eight times the overdensity at the time of the
maximum expansion.

This result can be generalized to an open universe. In the limit & — 0, the perturbation
virialize at a density of about 80 times the average background value. In presence of baryonic
matter the effect of pressure can be no more negligible. When the gas is compressed, shocks
appear and move outward. The stable virialized configuration is then reached after shocks
have heated the gas converting some of the kinetic energy of the collapse into thermal

energy.
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1.7.2 Zel’dovich Approximation

The model discussed in the previous section suffers from some fundamental defects. First of
all, reasonable models of structure formation do not contain primordial fluctuation which are
organized into homogeneous spherical regions with zero peculiar velocity at their edge. Fur-
thermore even if the initial conditions have these properties, such configuration is strongly
unstable with respect to the growth of non radial motions and the collapse tend to occur
not to a point, but to a flattened structure usually called pancake. Finally, when bary-
onic matter is considered, pressure forces must be included and the dissipation can became
significant during the collapse.

Zel’dovich (1970a,b) has proposed an analytical approximation which describe the growth
of the perturbations in terms of the motion of a set of collisionless particles. The particles
are initially uniformly distributed in space and their comoving coordinates at the initial

time ¢, are indicated with q. The comoving position of a particle at time ¢ is calculated as
x(t,q) = q—b(t)Vq®o(q) , (1.65)

where b(t) describes the linear evolution of a perturbation and the quantity $,(q) is the

peculiar velocity potential. In fact, ®, is related to the peculiar velocity as:
v = —abV, &(q) . (1.66)

This means that the velocity field is irrotational. In the linear phase, The potential is

related to the density perturbation § by the relation
5 = bV3%(q). (1.67)

In practice, the Zel’dovich approximation is a linear approximation with respect to the
linear displacement rather than the density, as is the linear solution. Obviously, for small
displacement one recovers the usual linear regime. Equation (1.65) defines a unique mapping
between the coordinates q and r as long as trajectories do not cross. The epoch of the shell

crossing represents the limit of applicability of the Zel’dovich approximation. Before the
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shell crossing o(r,t)dr = (o(¢;))dq or

o(r,t) = —“_,gi(/t;i,[, (1.68)

where |8q/0r| is the determinant of the Jacobian of the mapping between q e r. Since

the flow is irrotational the Jacobian is symmetric and can therefore be locally diagonalized.

Thus

{e(2))
Hf:l(l + b()Ai(q)) ’ (1.69)

where 1 + b(t)A;, ¢ = 1,2,3 are the eigenvalues of the Jacobian.

g(r, t) =

Equation (1.68) shows that at some time ¢,., when b(t,.) = —1/);, a singularity appears
and the density diverges. This condition corresponds to the shell crossing and the region in
which this phenomenon occurs is called caustic. For a fluid element to be collapsing at least
one of the A; must be negative. If more than one is negative, then collapse occurs first along
the axis corresponding to the axis corresponding to the most negative eigenvalue. If there
is no special symmetry , one therefore expects collapse to be generically one dimensional,
i.e. to a sheet or pancake. Only if two or three negative eigenvalues are equal in magnitude
the collapse can occur to a filament or a point.

The Zel’dovich approximation matches very well the evolution of density perturbation in
N-body simulations until the first shell crossing. After this event, the approximation breaks
down completely. The particles continue to move according to equation (1.65) through the
caustic in the same direction as they did before and pass out to the other side. Therefore
the pancake appears instantaneously and is rapidly smeared out. Actually, the matter
in the caustic would be decelerated by the strong gravitational forces present there and in
general could not escape from the potential well. Since the Zel’dovich approximation is only
kinematic it does not account for the close-range forces and the behaviour in the strongly

non linear regime is very poorly described.

1.7.3 Other Approximations

¢ The Adhesion Model
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The adhesion model avoids the difficulties that arise from the phenomenon of the shell
crossing, introducing a term of artificial viscosity in the equation of motion of the particles.
Using the quantity u defined by equation (1.62) and in the hypothesis of irrotational motion,
we have

du

5 = vViu, (1.70)

where v is the viscosity coefficient (Burgers equation; Burgers, 1974). The artificial viscosity
mimic the action of short range gravitational interactions with the consequent formation of
stable structures, avoiding the singularity (Gurbatov, Saichev & Shandarin, 1985; Kofman
& Shandarin, 1988; Shandarin & Zel’dovich, 1989).
Defining the gravitational potential & such that v = V& and choosing, in particular,
the Hopf-Cole approximation:
® = —2vlnW, (1.71)

W being a proper scalar field, equation (1.70) becomes

oW

5 = vViW . (1.72)
a

Equation (1.72) can be solved exactly giving

Jda [(x— q)/r]exp| — §(x,q,7)/2v|

M) S T T dges = Sl .
where T = (a(t) — a(ty)) and
S(x,q,7) = @o(q) + l—x——;_ilz . (1.74)
The particles comoving position is calculated solving the integral equatio:.j
x(a,7) = q+ /0 dt u(x, 1) , (1.75)

while density is calculated using equation (1.68).
This model gives results comparable to those obtained with the Zel’dovich approximation
until the shell crossing. Then the viscosity prevents the density from diverging reaching more

advanced evolutionary phases. The adhesion technique describes efficiently the process of
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merging of structures while it is limited the possibility of treating phenomenon like the
fragmentation of pancake and filaments.
¢ The Frozen Flow and LEP Models

The frozen flow model (Matarrese et al. 1992) can be defined as a non-linear extension
of the solution of the linearized Euler equation in the hypothesis of irrotational motion
u(r,t) = up(r) = —Vo(q). In this way equation (1.63) become

Ou
— =0, 1.76
or ( )
which describes a stationary flux of matter.

The comoving position of the particles is calculated as

x(q,7) = q-/ordt Vepo(r(a, 1)) - (1.77)

Finally, the density can be computed using the mass conservation.

With this approximation the stream lines are “frozen” to their initial configuration.
Then shell crossing events cannot develop, unless they are already present in the initial
conditions. This model is particularly suitable in describing the process of accretion of
matter in cosmological structures. In fact, the particle velocity is null at the extrema
of the potential, where structures form. When a particle moves toward the extremum it
progressively slows down such that it can reach the extremum only asymptotically. The
result is the formation of objects which continuously accretes matter. On the other hand
this model cannot describe phenomena like merging and fragmentation of the structures.

Similar to the frozen flow model is the Linear Evolved Potential (LEP) approximation
(Brainerd, Scherrer & Villumsen 1992). The potential is again frozen to its initial value but
the velocity is calculated by the Euler equation assuming ¢ = ¢,. In this way the velocity
present a intrinsic time evolution end does not depend only on value of the gravitational
potential of the particle position. This method gives better results than the frozen flow
approximation but loses the extreme simplicity of the second.

e The Viscid Flow Model

The viscid flow model (Matarrese et al. 1992) is based on the frozen flow approximation,
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introducing an artificial viscosity term, such that of the adhesion model. Therefore equation

(1.76) is written as

Ju

E‘ = uvzu . (178)
In the same way the velocity potential is

o2 = vV3ip (1.79)

or

The velocity field is calculated as

u(r,7) = ( ! )3/2/ d3qx;q<§o(q)exp [—E‘“—qq . (1.80)

dryT

The comoving particle position is calculated integrating equation (1.80) while the density

is computed using the mass conservation.
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Figure 1.1: Slices with thickness 1000 km/s, at the same epoch, from simulations evolved from the
same initial conditions. The particle distributions are taken form a N-body (PM) simulation (top
panel), frozen flow approximation (central panel) and Zel’dovich approximation (botton panel). The

figure is taken from Matarrese et al.(1992) -



2 Hydrodynamics

In this chapter we will give a brief introduction to fluid dynamics. We define the basic
hydrodynamical quantities and presenting the dynamical equations which describe the be-
haviour of a fluid. We then consider the characteristic form of the equations and introduce
the Riemann problem. The hydrodynamical equations are then written in a form specific

to the cosmological framework.

2.1 Notions of Fluid Dynamics

Fluid dynamics concerns the study of the behaviour of fluids (liquids and gases). Since the
phenomena considered in fluid dynamics are macroscopic, a fluid is regarded as a continuous
medium. The description of the state of a moving fluid is completely determined calculating
the three components of its velocity, v, and any two thermodynamic quantities, like the
matter density, p, and the pressure, p. These variables are calculated as functions of time
t and position r solving a set of hydrodynamical conservation equations.

In order to obtain the hydrodynamical conservation equations we start from a micro-
scopical description of the fluid representing it as a set of IV particles (its molecules). Since
we are not interested in following the behaviour of each particle, but we want to determine
the global properties of the ensemble, we calculate the distribution function f(t,r,v,), so
defined that:

f(t,r,v,)drdv, ) (2.1)

is the number of particles which, at time ¢, have positions lying in a volume element dr

32
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around r and velocities lying within a velocity—space element dv, around v,. The distribu-

tion function is normalized such that:
/f (t,r,v,)drdv, = N . (2.2)

The volume elements dr are not to be taken literally as mathematically infinitesimal quan-
tities. They are finite vblu:mes which are large enough to contain a very large number of
particles and yet small enough so that compared to macroscopic dimensions they are essen-
tially points. Then f(¢,r,v,) can be regarded as a continuous function of its arguments and
the elementary volumes can be seen as fluid elements, recovering the continuous description
of the fluid.

The evolution of the distribution function is described (see, for example, Landau &

Lifshits, 1959 and Huang, 1987, for more details) by the Boltzmann equation

Of(t,r,v,) Of(t,r,v,) Of(t,r,v,) B <8f)
ot U or +F v, O\ 0t/ (2:3)

where F is the external force per unit mass and (8f/0t)..u is the interaction between
particles.

Starting from the Boltzmann equation we can obtain the equation of conservation of
the mass density, the momentum, and the energy density of the fluid. Multiplying by dv,

and integrating we obtain

of of / <3f )
- . + e = —_ d .
s + / B v, - dv, / B, Fdv, at) v, (2.4)
but
af on(t,r)
A = A7 2.5
ot Vp ot (2:5)
the quantity n(t,r) = [ fdv, being the particle number density. Furthermore
3f d[nv] 0
ar - / [y dvy = or '’ (2.6)

where v is the average velocity of the particles in the elementary volume (hence the velocity

of the fluid element) defined as:

v = L% 2% (2.7)

[ fdv,
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Assuming that the external force depends only on the position, we have:

0

8f Fdv —F/—dv 9, (2.8)
as f is zero at the boundaries of the integration volume. Finally, if we assume that the
particle number is conserved, the right-hand side of equation (2.4) is zero. Now multiplying

all the terms by the particle mass (assumed to be the same for all the particles), we obtain

the mass density conservation equation

do %)
Bt g (em) =0, (2.9)

where r; and v; are the j~th component of r and v and we implicitly sum (in (2.9) and in the
following two equations) over the index j, for j = 1,2, 3. Repeating the previous procedure
multiplying the Boltzmann equation by v,dv, and using the matter density conservation

equation, we obtain the momentum conservation equation:

3gvi (9
ey . . =0. 2.10
el o) (oviv; + pé; ;) + oF;, = 0 (2.10)

Finally, multiplying the Boltzmann equation by vidv,, v?? being the square norm of the

velocity and making use also of equations (2.9) and (2.10), we obtain the energy conservation

equation:
OF 0
—+ —[(F F; = 2.11
8t +3TJ[( +P) ]+QUJ 07 ( )
where F} is the j—th component of the force and E is the total energy density defined as:
1 2
E = e+ 20V (2.12)

in this equation e is the internal energy, related to the other hydrodynamical variables by

a suitable equation of state:
e = e(o;p) - (2.13)

Related to the hydrodynamical variables, we can define the temperature and the sound

speed. The temperature 7T is:

pmy p
T = = 2.14
Ky o’ (2.14)
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where p is the mean molecular weight of the fluid particles, Kp is Boltzmann’s constant

and m, is the proton mass. The velocity of an acoustic wave propagating in the fluid is

1/2
C, = (g—g) (215)

’
s=const

given by:

where s is the specific entropy.

2.2 Characteristic Equations

When we deal with a hyperbolic system of equations, like the system of hydrodynamical
conservation equations (2.9)-(2.11), it is often convenient to rewrite them in a characteristic
form (Courant & Friedrichs, 1948).

Considering for simplicity the one dimensional case, we can write the system of hydro-
dynamical conservation equations in the general form:

Qg-ﬂ-%—erG:O, (2.16)
where W is the n—components vector of the conserved variables, F is the flux vector and
the vector G accounts for inhomogeneous contributions associated, for example, to external
forces, like gravity. It can be proved that this (and more generally, its three dimensional
extension) is an hyperbolic system of equations. This means that the associated Jacobian
matrix J of elements J; ; = (0F;/0W;) has n real eigenvalues and a corresponding complete
set of eigenvectors. Related to each of the eigenvalues we can define a set characteristic lines,
that characterize the paths along which a small disturbance in the fluid propagates. Along
this paths hydrodynamical conservation equations assume the form of ordinary differential
equations in the fluid variables which describe the evolution of the disturbance. In this form
the equations are called characteristic equations.

In order to obtain the characteristic equations with respect to a set of dependent vari-
ables U, convenient for the physical problem treated, we can rewrite the system of equations
(2.16) in the form

ou 0u

2T LA = .
5 tAS +C =0, (2.17)
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where A is a proper n X n operator. The variables U can be different from the vector of

the conserved quantities W. The two system of variables are related by:

oW ou
— = P— 2.1
ot ot (2.18)
oF o0U
-— = Q— 2.
ar ar’ (2.19)
with
oW,
P = 2.20
¥ aUJ ( )
OF;
o= 2 2.21
Q 17 aU] ( )
where P;; and Q;; are the (4, ) components of the n x n operators P and Q, respectively,
and
A = PIQ (2.22)
C = PlG. (2.23)

Notice that the choice of U is not unique while the choice of the conserved variables is.
Now we indicate by 1; and r; the sets of left (row) and right (columns) eigenvectors of

A. They are defined as
LA = \L (2.24)

Ar,; = /\iri, (2.25)

where A; are the n real eigenvalues of A, We define the diagonal matrix A by the transfor-

mation:

SAS™! = A, (2.26)

where S is a matrix whose rows are the left eigenvectors and S™! is a matrix whose columns
are the right eigenvectors. The matrix A is diagonal with Ay = A

Multiplying equation (2.17) by S we obtain:

oU 08U i



2.3. The Riemann Problem 37

or
oU 8uU
L—r + AL +1C = 0, (2.28)

in component form. Equations (2.28) are the characteristic equations corresponding to the

original form of hydrodynamical equations. The curves defined by

dr

— = N 2.2
dt A (2.29)

are the characteristic curves. Along these paths the characteristic equations (2.28) become:
dV; = LdU+LCdt = 0. (2.30)

Equations (2.29) integrated from a certain point of coordinate r and from a certain initial
time, over a given time interval At define the domain of dependence for that point. This is
the region of space that can influence the status of the fluid at 7 position in the time interval
At. In other words the fluid or a perturbation propagating in the fluid can influence the
point r in At only if it comes from a region of space inside that defined by the domain of
influence.

The solution of hydrodynamical equations in characteristic form and the calculation of
the domain of influence are basic ingredient of the PPM method. The explicit calculation
of the characteristic form of the hydrodynamical conservation equations in a cosmological
framework and their introduction in the numerical algorithm are presented in detail in

section 3.2.1

2.3 The Riemann Problem

The Riemann problem plays a fundamental role in the development of high-resolution,
shock capturing hydrodynamical codes. It was introduced in computational fluid dynamics
by Godunov (1959) and then improved by many authors, like Sod (1977), Roe (1981),
Colella (1982), Colella and Woodward (1984)

The Riemann problem consists in calculating the gas flow resulting from the decay of a

discontinuity that separates two constant initial states L (left) and R (right). In general,
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the initial discontinuity is not stable and decays giving rise to several elementary nonlinear
waves. These can be shocks, rarefaction waves or contact discontinuities that move away
from the position of the initial discontinuity. The time evolution of a general Riemann

problem can be represented as:
LW_L.CR,W_R, (2.31)

where W denote a shock or a rarefaction wave that propagates toward left (_) or right (_)
with respect to the initial discontinuity, C' is the contact discontinuity and L. and R. are
the hydrodynamic states that appear behind the waves and that are separated by C. The
new states L. and R. are characterized by the same pressure and velocity but have different
density.

The nature of the different waves can be determined just looking at the values of the

pressure. In fact for a shock we have that:

Dy > Da (2.32)

where the subscripts a and b denote quantities ahead and behind the wave, while for a

rarefaction wave:

Py < Pa - (2.33)

Finally for a contact discontinuity we have:

Po = Pa; (2.34)

note that the fluid on the two sides of the contact discontinuity do not mix, as there is no
motion of fluid through a tangential discontinuity.
There are five possible kind of break—up of the initial discontinuity. Following the

previous representation and referring also to figure (2.1):
LS L.CR.S5.R, : (2.35)

LR, L.CR.S_.R, (2.36)
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[S%)
©

Figure 2.1: The five possible wave patterns in the solution of the Riemann problem, showing shocks
(S) and rarefaction waves (R), separated by a contact surface (C). The last one has a vacuum (V)

in the pattern center

LS_L.CR.R,_R, (2.37)
LR, L.CR.R,_R, (2.38)
LR,_ VR,_R, (2.39)

where 5 represents a shock, R, a rarefaction wave and V a vacuum region. The two
solutions (2.36) and (2.37) differs only in the sign of the difference p; — pg (positive in the
first case, negative in the second).

The solution of the Riemann problem consists essentially in computing pressure, density
and velocity in L., R., W_, W_ and the velocity at which the different waves propagate.
In all of the five cases the solution is completely determined on the base of the initial left

and right states (initial parameters).
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The conditions which determine the way the initial discontinuity breaks up can be
determined analytically as a function of the initial parameters. Following Landau and

Lifshits (1959) for a politropic gas we have that solution (2.35) is obtained for:

v — va > (p2—p1)[2/(0u((y = )py + (7 + 1)p2)]/?, (2.40)

where with the subscript 1 we indicate the side of minimal initial pressure and with the
subscript 2 the side of maximal initial pressure; 7 is the adiabatic index of the fluid.

The solutions (2.36) and (2.37) are obtained for:

72?1[1—(171/192)}(7"”/2’ < vp —wvr < (p2—p)[2/(0:((v = L)pr+ (v +1)p2)]?, (2.41)

We have the case (2.38) for:

2(C1 + Cg) 262

SRR _ _ 1— (r=1)/2v 2.49
(7-1) < vg vp < 7_1[ (P1/P2)] ( )
Finally for:
2(C1 + Cg)
_ S 2.43
v vp < (7 -1) s ( )

we have the case (2.39). In these equations ¢; and c, are the sound speed associated to the
two initial states of the fluid. Note that these limits depend only on the velocity difference
v, — vg: therefore they do not depend on the particular frame chosen.

Once we have determined which of the previous cases we have to deal with, we can solve
the corresponding Riemann problem. We start from the determination of the value of the
fluid variables on the two sides of the contact discontinuity. We indicate this values as DI
01, v; and py, 0k, vi- These unknowns can be obtained using the conservation of mass,
momentum and energy and the equation of state. These laws reduce to the well-known
Rankine-Hugoniot relations across shocks and to the isentropic characteristic equations
across rarefaction waves. These equations can be used to jump across the moving wave
from the known unperturbed state (ps, s, vs) to the unknown state (p%, 03, v5) (here the

subscript 5 represent either Left or Right). The conditions p~ = p; = py and v~ = v} = v}
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across the contact surface reduce the problem to the solution of a single nonlinear algebraic
equation in one unknown for any of the previous patterns. In the case of two rarefaction

waves separated by the contact discontinuity the solution is:

- = 12v/(y-1)
. v—1 1, — g

= 2.44
p pPr 2 cL(l—i—z) ( )
- vz + Vg .
= T+—z’ (243)

where

_ 2
v, = v+ ~1CL, Vp = vR—")/—]_CR (2 4:6)
and

y=1/2v
;= R (PL) . (2.47)

L P_R
In all the other cases the resulting equation is implicit and must be solved using an iterative
scheme like that proposed by Van Leer (1979) and presented in appendix A.
The values of the density p; and p% depend on the particular pattern. Behind a wave
the density g, is computed using proper relations once p,, g, and py (= p*) are given. For
a shock we use the so-called shock adiabatic relation that, for a polytropic gas, is:

o _ (+Up+(y—1pa
o (= Upe+(v+1)pa

(2.48)

Behind a rarefaction wave, instead, the polytropic equation of state can be used (as rar-

efaction is an adiabatic process):

o5 = 0a(Ps/Pa)” - (2.49)

Inside a rarefaction wave pressure and density can be determined as a function of the

velocity:

P = pal = (v = Dloles/2P0Y (2.50)

and

0 = ea[l— (v~ Dlolec/2]O7V, (2.51)
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where ¥ = v — v, is determined as the similarity solution:

2 T
0 = —— lco— — 2.52
ol = =5 (e-5) (25
where ¢ is the time and 7 = |r, — 7,|, with r, position of the head of the wave, and r,

position of the point examined. Note that the velocity must satisfy the inequality:

2e
5 < A 2.53
ol < | (2.59)

When the velocity reaches this limiting value the density and the pressure become zero and
a vacuum state is formed.
Finally we have to determine the velocity of the waves. For the shock, using the jump

conditions through the discontinuity, we obtain:

o Q:;Qav_a . (2.54)
0 — Oa
For the rarefaction wave we have:
v = v —¢ v, = v, —cp, (2.55)
if the wave moves toward the left, and
v = v +c¢ v, = vg+er, (2.56)

if the wave moves toward the right. In the previous equations ¢* = (yp*/¢*) while v, and v,
represent respectively the tail and the head of the wave, defined as the point of minimum
and maximum pressure of the wave front respectively. The contact discontinuity moves

with the fluid with velocity v. = v™. At this point the Riemann problem is solved.

2.4 Cosmological Equations

When we consider the cosmological framework we have to deal with two different species
of matter, the baryonic and the collisionless matter. These two components have different

properties, hence they have to be treated in different ways.
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Baryons are interacting particles which have a short mean free path. This means that
the mean collisional time between two molecules is much less than the dynamical time of
the system, which is the typical timescale on which macroscopic changes occur when the
system deviates seriously from mechanical equilibrium. Therefore baryons can be described
as a collisional fluzd. Dark matter particles instead interact only via gravitational forces
on a time scale comparable to the dynamical time of the system. Then they can be repre-
sented as a pressureless fluid and each fluid element can be treated as an individual entity
subjected only to gravitational forces. The dynamic of each element is calculated solving

the corresponding equations of motion.

2.4.1 Baryonic Matter

Since the baryonic component is described as a fluid, its behaviour is determined solving
equations (2.9)-(2.11). It is convenient to re-write hydrodynamical equations taking into
account the expansion of the universe. This is done introducing cartesian comoving spatial
coordinates, defined as x = r/a(t), where a(t) is cosmic the expansion factor. Then, we
define the peculiar velocity v as the difference between the total velocity (v) and its

component due to the Hubble flow (vy):

_dr da(t)x] dx _
vr o= o= S = a(t) o +a(t)H(t)x = v+vy. (2.57)

In this way we separate the component of the motion due to a peculiar behaviour from
that related to the global expansion of the universe. With this choice of coordinates and

velocities, the mass conservation equation become:

—a_t 32’j (ij) + 3(1—9 =0, (258)

In order to recover a form of the equation of conservation of mass close to the initial one,

it is convenient to introduce the comoving mass density

o = a(t)’o. (2.59)
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Then equation (2.58) assume the form:
96 0
9%, 0
ot 51‘]‘

Repeating the same procedure for the three commponents of the momentum and for the total

(3v;) =0. (2.60)

energy density and including the gravitational forces we obtain:

0gv; |1 0 1 99

5 56 )= _ 5 _ 1
5 T aa_a:j(gv"v" +pliz) = ——ow 2%5%, ’ (2.61)
O0E 1 8 - G- 1 8¢
T =SB+ Dv;] = =22 — —pvj—— 2.62
8t + aazj [( p)v,’l] CZE anJamj ( 6 )

where v; is the j—th component of the peculiar velocity, £ is the total energy per unit
comoving volume, $ is the comoving pressure. These two quantities are defined as the
product of the proper total energy density and the pressure with a®. The quantity ¢ is
the peculiar gravitational potential (defined in section 2.4.3). The closure of this set of
equations is oBtained by assuming an equation of state for the fluid and calculating the
gravitational potential as described in section 2.4.3.

Since baryons, in the standard hot big bang cosmological scenario, evolves from condi-
tions close to those idealized by a smooth, low—density gaseous flow, they can be described

as an ideal gas with adiabatic index vy = 5/3 for which:
-1
p=(y-1) (E’ - 5@#) . (2.63)
In the rest of the work, unless explicitly stated, we will always use comoving quantities.

Therefore, for simplicity, we will suppress the tilde that distinguish between comoving and

proper quantities.

2.4.2 Dark Matter

The dark matter is collisionless. The behaviour of each particle is described solving the
corresponding equation of motion. Using comoving coordinates and peculiar velocities the
dynamics of a pointlike element of the collisionless component is governed by the following
equations:

dx 1

i 2.64
dt av ( )
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2.4.3 Gravitational Potential

The gravitational potential & associated with a distribution of matter of density g is calcu-

lated solving the Poisson equation:
V1% = 4rGo,,, , (2.66)

In a cosmological framework it is convenient to define the peculiar gravitational potential.
This is calculated starting from the Lagrangian of a particle of mass m that moves in a
gravitational field ®:

1
L = ;mr2 - m®(r,t). (2.67)

¥

Using comoving coordinates we obtain
1 Co
L = im(ax + ax) — m®(r,t) . (2.68)

The canonical transformation

1

L — L -dvy/dt, P = Emadxz , (2.69)

reduces the lagrangian to

1
L = -2—ma21'c2 —mé¢, (2.70)
with
1

o = &+ 5&&5‘:2 , (2.71)

Using equation (2.71), equation (2.66) becomes:

ir@G
Vi¢ = T(gtoe - Qo) 3 (272)

where p,,, is the total comoving density (baryonic plus dark matter) and g, is the total

comoving mean density.



3 The PPM+4-PM Code

In chapter 1 we have shown that the evolution of the cosmological structures depends
on the nature and the properties of the constituents of the universe. In particular, after
recombination, this process is driven by the collisionless and the baryonic matter, which
dominate the energy density of the universe. The behaviour of this system can only be
described by following simultaneously the evolution of both components, looking at all of
their internal processes and considering their mutual interaction. This can only be achieved
by using numerical simulations which allow a general description of the non-linear evolution
of the structures. In particular N-body techniques (Hockney & Eastwood 1981) have proved
to be particularly effective for cosmological problems in which the dynamics is controlled
by gravitational forces as in the case of the dark matter and also for baryonic structures on
very large scales (more than 50~ Mpc). With these methods matter is described as a set
of collisionless particles whose dynamics is governed by the equations (2.64) and (2.65). An
introduction to N~body methods will be given in section (3.3).

The N-body approach, however, is not in general suitable for describing the behaviour
of the baryonic component which is also influenced by pressure forces, heating and cooling
processes. The inclusion of all these phenomena requires an enormous amount of com-
putational resources as they act on a very wide range of scales. The lack of adequate
computational resources has delayed the development of hydrodynamic cosmological codes
and only in recent years a number of numerical algorithms have been proposed for following

the evolution of baryonic matter.

46
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A first family of these techniques derives directly from the N-body methods. It is
called “Smoothed Particle Hydrodynamics” (SPH) and has been introduced independently
by Lucy (1977) and Gingold & Monaghan (1977) to study problems of stellar astrophysics.
The SPH methods represent fundamental fluid elements in terms of particles. This method
is intrinsically Lagrangian and, since it follows the fluid elements in their motion, it has high
spatial resolution and give an accurate description of high—density regions, where particles
tend to concentrate. On the other hand, with this approach, it is difficult to treat properly
low—density regions where few particles are present and mass resolution is poor. Several
cosmological codes have been developed using the SPH technique like those of Evrard (1988),
Hernquist & Katz (1989) and Steinmetz & Muller (1993). Due to the importance of the
method and its wide application in cosmology we will describe it briefly later in this section.
For a detailed introduction to SPH we refer to the works of Evrard and Hernquist & Katz.

Alternative Lagrangian methods which solve hydrodynamical equations on an adaptive
grid which “follows” the fluid in its motion can are hard to use in cosmological simulations
in which high supersonic flows produce strong distortion of the computational mesh.

Multi-dimensional hydrodynamic codes not based on SPH, usually adopt an Eulerian
approach and dynamical equations are solved on a fixed (or adaptive) grid. Mean values of
the fluid quantities are computed in each grid cell by solving the equations of conservation
of matter, momentum and energy density once the equation of state for the matter is given.
Eulerian methods have good mass resolution, and can describe low—density regions better
than SPH but they are spatially limited by the cell size. However, the Eulerian approach
seems to be preferable in the case of complicated three—dimensional structures (Woodward
& Colella 1984). An Eulerian approach has been adopted in several hydrodynamical codes
developed for studying large scale structures (Chiang, Ryu & Vishniac 1989; Cen 1992;
Ryu et al. 1993; Bryan et al.; Anninos, Norman & Clarke 1994; 1995; Gnedin 1995; Quilis,
Ibénez & Saez 1996; Sornborger et al. 1996). At the end of this section we present a brief
review of the various works that uses mesh based techniques.

In our work we have chosen an Eulerian approach to describe the evolution of the
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cosmological structures. The hydrodynamical problem has been solved using the Piecewise
Parabolic Method (PPM) introduced by Colella & Woodward (1984). This is a higher
order extension of Godunov’s shock capturing method (Godunov 1959; 1961). It is at least
second-order accurate in space (up to the fourth—order, in the case of smooth flows and
small time steps) and second-order accurate in time. The high accuracy of this method
allows minimization of errors due to the finite size of the cells of the grid and leads to a
spatial resolution close to the nominal one. In a cosmological framework, the basic PPM
technique has been modified to include the gravitational interaction and the expansion of
the universe. The PPM algorithm has already been used for building a cosmological code
by Bryan et al. (1995), however our approach differs in several respects from theirs. In
the Bryan et al. work, the one-dimensional time integration is done by first performing a
Lagrangian step and then remapping the results onto an Eulerian grid expressed in the usual
coordinates comoving with the mean Hubble flow. We instead adopt a single-step Eulerian
scheme. The construction of the effective left and right states for the Riemann problem
is then more complicated than in the Lagrangian case, since the number of characteristics
reaching the edge of a zone is not constant. On the other hand, this choice allows us to
include in the characteristic equations both the gravitational interaction and the expansion
of the universe and then the effect of all source terms is accounted for to second—order.

The hydrodynamical part has been coupled to a Particle Mesh (PM) N-body code that
describes the evolution of the dark component. The standard PM code has been modified to
work with a non-constant time step equal to that used in the hydrodynamical integration.
The coupling is obtained by calculating the gravitational field due to both the components
with an FFT procedure.
e Smoothed Particle Hydrodynamics

The Smoothed Particle Hydrodynamics method describes a fluid as a set of particles,
which represent the elementary fluid elements. These particles experience local forces ex-
erted by pressure gradients and by viscosity in the shocks and long range forces like the

gravitational one. In cosmological applications the behaviour of the gas particles is con-
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trolled, in comoving coordinates, by the dynamical equations

dx
dv 1Vp 1
— = -2Hv—- —— - —V 2
dt 2 a® ¢ (3.2)

de  pdo  oA(e)

dt p*dt  (umy)*’

where m,, is the mass of a particle and A is a proper function which accounts for cooling

(3.3)

and heating processes.

The main problem of the SPH is how to define, starting from a discrete distribution of
particles, the continuous fluid quantities, like the matter density and the pressure gradients.
The technique adopted in SPH is known as kernel estimation. The process is equivalent
to convolving a field f(x) with a smoothing, or filter, function W (r — x, k) to produce a

smoothed estimate of the field f,(r)

f.(x) = / dx f(x)W(r - x,h) (3.4)

where both x and r represent comoving coordinates. A possible choice for the kernel W is
a Gaussian function

W(u,h) =

exp(—u’/h?) . (3.5)

T3/2}3
The quantity A is called smoothing length and gives the actual spatial resolution of the
method.

If we take f(x) to be the density field due to a discrete distribution of particles
f(x) — o(x) = m, Z §(xi —x;) , (3.6)
J

where ¢ is the Kronecker function and z; is the position of the j~th particle, the smoothed

form of the density field is
0.(x) = m, S W(ix - x;1,h) . (3.7)
j

In these estimate we have assumed that the smoothing length is constant all over the

space. This is not necessary and severely limits the ability to resolve the multiple levels
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of substructure present in cosmological simulations. Furthermore a too small value of h
can lead to problems in underdense regions, where very few particles are present, and then
where the smoothed estimate of hydrodynamical quantities can be very inaccurate, if not
actually wrong. It is much better to adapt the resolution to the local conditions. Then a
specific smoothing length h; is associated to each particle. The smoothing length can be

dynamically adapted with time according to the relation
— = 5 (3.8)

where §p; is the change in density in the position of the particle j over one time step. This
ensures a roughly constant number of neighbours within a sphere of radius h; around each
particle at all times. The smoothing length may vary also in each coordinate direction,
giving rise the a smoothing tensor h, ;. However this extension is quite complicate and has
been introduced only in very recent works.

The update of the hydrodynamical variables is obtained using a Leap—Frog scheme. This
scheme consists in two steps. In the first step the velocity of the j—th particle is calculated
at half time step as

v;z+1/2 = R (g2 (3.9)

where a;™ is the acceleration felt by the particle (gravity plus pressure forces). The position

of the particle is calculated at ¢**! using the time centered value of the velocity

x;‘“ = X} + ("t — 15")v?+1/2 . (3.10)

The internal energy equation (3.3) is advanced along together with the positions.
¢ Grid-based Codes

The first Eulerian three dimensional cosmological codes have been those proposed by
Chiang, Ryu & Vishniac (1989) and Cen (1992). The former solved the dynamical equa-
tions employing a combination of first—order finite difference equations and a beam scheme
method (Sanders & Prendergast, 1974). The hydrodynamical part of the Cen’s code is
based on the first~order modified Lax method (Roache 1982). The dark matter is instead
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treated by a particle mesh N-body code. These methods are based on rather simple nu-
merical algorithms in which it is relatively easy to introduce any kind of source term (like
the cooling and heating functions of Chiang, Ryu & Vishniac ) or account for the spe'ciﬁc
expressions that describe the evolution of the various chemical species and the possible non-
equilibrium processes which contribute to cooling, heating and diffusion in the gas (like for
Cen). On the other hand the spatial resolution of the method is intrinsically of several cells
of the computational mesh and it is further degraded by the action of numerical diffusion,
which must be artificially introduced in order to handle shock waves and other possible
physical discontinuities in the flow. These phenomena in fact, developing below the size of
a cell, cannot be described properly by these algorithm and lead to the rise of numerical
ripples which make the results meaningless. This problem is overcame by the inclusion of a
numerical viscosity that smears the discontinuity over a certain number of cells. For typical
first order methods the actual spatial resolution is at last between five and eight cells. This
is a severe limit in cosmological simulations for which the largest possible dynamical range
is required. Moreover the numerical diffusion affects the dynamics of the system. Its effects
can not be easily estimated and controlled and could strongly influence the results of the
simulations.

This first generation of cosmological hydrodynamical codes has been followed by a new
release of codes based on numerical techniques in which the previous problems are avoided.
These codes are characterized by a spatial resolution close to the nominal one and no need
of artificial diffusion. These are known as shock capturing methods and are usually based on
the inclusion of a Riemann solver into the hydrodynamical equation integration procedure.
Such methods are accurate both in describing smooth flows and in treating sharp gradients
or even physical discontinuities in the fluid. An example is given by the “Total Variation
Diminishing” scheme, originally developed by Harten (1983), and used for cosmological
simulations by Ryu et al. (1993). Close to TVD is the technique used by Quilis, Ibanes &
Saez (1994), also based on a characteristics approach. A different possibility is the PPM

scheme, used also for our code, that has been implemented by Bryan et al.(1995) and
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Sornborger et al.(1996), and that will be widely discussed in the following sections. The
drawback of these techniques is their complexity that leads to a much higher computational
resources requirement and the difficulty of introducing any external source term retaining
at the same time the accuracy of the method.

A completely different approach is that followed by Kates et al.(1995) who used a Flux
Corrected Transport (Boris & Book, 1973; Zalesak, 1979) method for their cosmological
code. With this method the fluxes of the conserved quantities are computed using both a
low-order and a high—order accurate difference scheme. A linear combination of these fluxes
is calculated using weight factors which are nonlinear functions of the local conditions of the
flow. This method gives good results for smooth flows and, due to the diffusive effect of the
low—order scheme, it does not require the inclusion of an artificial viscosity. However the
accuracy reached in describing sharp gradients is not comparable to that of shock capturing
methods.

At present, the main effort is dedicated to improve the resolution of the codes in order to
further extend the dynamical range of the simulations. Anninos, Norman & Clarke (1994)
have proposed a two level Eulerian grid. On the coarser grid the gross properties of the
system are calculated. The details are computed on a sub—box nested in the total mesh
which has a resolution that is some fraction of the coarse cell size.

A more sophisticate approach is that of Gnedin (1995; see also Gnedin & Bertschinger
1996). Gnedin has presented a new approach to cosmological hydrodynamics called SLH
(softened Lagrangian hydrodynamics) which uses a high-resolution Lagrangian code com-
bined with a low-resolution Eulerian solver to deal with severe mesh distortion. Most of
the computational volume is treated with the Lagrangian approach and only where this
would fail, due to mesh distortions, the Eulerian part of the code steps in. The resolution
of this method should be intermediate between that achievable by the Eulerian and the

Lagrangian approaches.
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3.1 The Basic PPM Scheme

The PPM algorithm, developed by Colella & Woodward (1984), is a higher order extension
of Godunov’s conservative shock capturing method. This method has two basic properties.
First the solution is built up piecing together discontinuous solutions approximated by a
parabolic interpolation function. These discontinuous solutions become smooth where this
is appropriate, but they have the great advantage of approximating the true solution reason-
ably well even when the solution is not smooth. Second, the accuracy of the representation
is improved by building into the numerical scheme the analytical solution of the Riemann
problem, which describes the propagation and interaction of non—linear waves. In particu-
lar, such procedure leads to an accurate and well behaved treatment of shock discontinuities.
The basic PPM scheme has been developed and will be illustrated in one dimension. Its
extension to multi dimensional calculation in obtained by the direction splitting procedure
described in section 3.2.4. We will also neglect any source term and the expansion of the
universe as this will be introduced and discussed in detail in section 3.2. ‘

The PPM method is implemented according to the following procedure. We start from
the knowledge of a set of zone-averaged values of hydrodynamical quantities. To update
these averages we solve hydrodynamical conservation equations: this requires the estimate of
the fluxes of the conserved quantities at the zone interfaces. First, we construct a piecewise
parabolic (third-order) one-dimensional interpolation function for each of the hydrodynam-
ical variables. This leads to a more accurate representation of smooth spatial gradients as
well as a sharper description of discontinuities. A detailed description of this reconstruction
procedure is given in section 3.1.1. The interpolated distributions can then be used to esti-
mate properly the averaged values of the variables to the left and right of each zone edge.
This is performed in two further steps. In the first step, one determines the characteristic
domain of dependence with respect to a zone edge, that is the regions of space to the left
and to the right of the edge that contain all of the information that can reach the zone edge
during the current time step. Then, using the interpolated distributions, the mean values

of hydrodynamic variables are computed over the domains of dependence on each side of
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the edge. In the second step, one solves the Riemann problem using as initial left and right
states the mean values of hydrodynamical variables computed previously on each side of
the zone edge. The solution of the Riemann problem gives the time averaged values of the
variables at the zone edge which are used to compute inter—cell fluxes and then the fluid

variables at the new time. These steps are described in detail in sections 3.1.2 and 3.1.3.

3.1.1 Piecewise Parabolic Interpolation

The basic limit of Eulerian methods is the discrete description of hydrodynamical quantities,
which are estimated on the cells of a fixed mesh. The value over each cell is defined as a

spatial average:

w? _ 1 /mj+1/;- w(g,tn)dg ’ (3.11)

—A—Z Ti-1/2

where w; is the mean value of the generic hydrodynamical variable w(z, t) (density, pressure
or velocity) over the j—th zone at the time ", T;11/, are the positions of the zone interfaces
and Az = ;.15 —2;_1/3. Due to the discrete representation any information about the be-
haviour of the quantities inside the cell got lost. The PPM method tries to approximate the
correct behaviour inside the cell reconstructing the profiles of the hydrodynamical variables
by a piecewise parabolic interpolation polynomial (see Figure 3.1).

The polynomial is built starting from the knowledge of the zone-averaged values of the
hydrodynamical variables w] according to some basic rules. The interpolation polynomial

inside each zone is a parabola of the form:

w(l) = a€® +bE+ec, (3.12)
with
a = —wej, We; = G{w?——lé(wl,’j-[—w&j) (3.13)
b = Aw; + ws;, Aw; = wg; —wg;, (3.14)
¢ = wy,, (3.15)

and £ = (z — z;_1/;)/Az. The quantities wy, ; and wg ; are the interpolation parameter of

the parabola that can be read as the values of w(¢) respectively at the left and right edge
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Figure 3.1: The profile of an hydrodynamical quantity at the beginning of the PPM integration

procedure (dashed line), and after the piecewise parabolic interpolation (solid line)

of the j—th zone. They are defined such that the averaged value of the resulting polynomial

over the cell is equal to the starting value of the hydrodynamical quantity wi

1 [i+iss
i /z,._,,, w(é)de = wl . » (3.16)

The two parameters are calculated by estimating Wj41/2, that is an approximation of
the value of w at the zone edge §i+1/2- The proceduré adopted to calculate w; ./, ensures
that it does not fall out of the range of values given by w; and w;,; which are the averaged
values of the hydrodynamical quantity in the j and j + 1 cells, respectively. The quantity

Wj41/7 is calculated as:

Wi = W) Sy~ w]) — <y — begya) (3.17)

where:
bmw; = min([6w;yal, [w; — wj_ql, [wjpr — w;l, )sgn(dw; 1) (3.18)
i (wj = wjog)(wipr —wy) >0 (3.19)

bmw; = 0 otherwise (3.20)
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and

1
51.0]‘ = §(wj+1 - ’lUJ'__l) . (321)

The value w;.;,, is assigned to both wy, ;-1 and wg; for most values of j. In these cases
w(¢) is continuous even across the corresponding zone edges. There are some cases, however,
where this would lead to an interpolation function which presents values not between wr
and wg ;, and this would introduce new unphysical extrema. Two cases are possible. First,
if w? is a local minimum or maximum; the second case is where w} is between wy ;4; and
WR,j»

but sufficiently close to one of the values so that the interpolated parabola takes values

outside this range. In these cases the expressions for the two parameters are given by:

wL,j = ’LU;-‘, wR,j = w;‘ if (wR'j — w;‘)(wL,j - w;‘) _>_ 0 (322)
n ; (wr; — wr,;)? 9

'LULJ' = 3'UJJ~ - 2wR,J-,1f (‘wR,j - wL,j)ws’j > "‘_6"’—_ (32.))
= 3™ : (wr,; — wr,;)° 3.94
wR,j = wj - QwL,j,lf ('LURJ' — wLJ‘)’UJe,j < ————6—-——— . ( . )

This complete the description of the calculation of the interpolation polynomial.

3.1.2 Zone-Edge Mean Values

The following step is that of determining the characteristic domain of dependence with
respect to a zone edge, that is to identify the regions of space to the left and to the right
of the edge that encompass all the information that can reach the zone edge during the
current time step (see Figure 3.2) Then, using interpolated distributions, mean values of
each hydrodynamic variable are computed over the left and right domains. This gives
the initial states w;.i/2 1 w;y1/2r that will be used to solve the corresponding Riemann
problem.

We define the averages of the interpolation functions as:

1 féi+/a ’ '
r1/2,0(y) = ;/6 w(§)dE (3.25)

i+1/37Y
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Ut
~1

w 1 péi+r/aty
fer(y) = “/ w(&)de (3.26)

) §iv1/2

where y is assumed to be positive. The correct averaged values are calculated constructing
a first guess to the left and right states using the largest and smallest values of the char-
acteristic speeds. These determine the maximum distances aside the zone edge from which
an information propagating in the fluid can reach the edge during one time step At. The

first guesses are calculated as:

Wi1/2,0 = F710 (20172 = Zi41)2,0) (3.27)
Wit1/2,8 = fizia,r(Tit12,R = Tir1y2) (3.28)
where
Tit1/2,L = ZTjr1/2 — m&X(O, At(’U? + C;)) (329)
27j+1/2,R = 1:]'_*_1/2 - maX(O, “‘At(v‘?_}_l + C?+l)) . (330)

In general, not all the information contained in this region can reach the edge of the zone
In At and influence its status. Hence the first guess must be properly corrected. This is

achieved using the linearized characteristic equations, which give:

Wjiti/2,5s = w:’+1/2,5+Fw(ﬂfu/z,s’ﬁ?ﬂ/z,s’ﬁj_+1/z,s): (3.31)

where § = L, R and F¥ is a proper linear combination of the quantities ﬂ;’ﬂ/z's, '6_?-}-1/2,5
and lBj_+1/2,5’ functions of the hydrodynamical variables. For the detailed description of the
calculation of these quantities and of the correction to the first guess we refer to section

3.2.1, where a general form of these quantities is derived including also the gravitational

forces and the expansion of the universe.

3.1.3 The Riemann Problem and the Finite Differences Equations

The interaction between the left (L) and right (R) states is described by solving the cor-
responding Riemann problem, described in detail in section 2.3 (see Figure 3.2). The left

and right estimates of the hydrodynamical quantities are first used to determine which of
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Figure 3.2: Computation of the fluxes with PPM in the case of null bulk velocity of the fluid
(v = v7y; = 0). (a) The left and right domains of dependence for a zone interface during the
time step are determined. (b) The detailed interpolated distribution of each variable (in this case
the pressure is shown) within each domain of dependence is replz-iced by its spatial average. This
replacement facilitates the computation of the nonlinear interaction of the two domains. (c) The
interaction of the two averaged states adjacent to the interface is described by the solution to the

corresponding Riemann problem.
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the five possible patterns (2.35)-(2.39) is the one in which our initial discontinuity breaks
down. Then the corresponding Riemann problem can be solved. At this point, since we
know the velocity at which the various waves moves with respect to initial discontinuity
(the zone edge), we can determine which is the status of the fluid at the zone boundary at
half time step. For example, a situation in which the bulk velocity of the fluid with respect
to the zone edge is null and the pressure gradient is negative, corresponds to the case (2.36).
Therefore the fluid at the zone edge is characterized by the post—shock values for pressure
and velocity, while the density has the value behind the contact discontinuity. In the other
extreme, we can have an initial situation with a “very” high bulk velocity toward right. In
this case whatever is the resulting Riemann pattern, all the waves at half time step have
been already convected away with the bulk flow, and the zone edge status is unperturbed
R one.

The solutions of the Riemann problem are the time centered values of the variables at
the zone edges §;11/2, U;+1/2 and P;11/2, Which are used to compute inter—cell fluxes and to

solve the hydrodynamical equations by the conservative finite differences scheme:

n n g'—l 2Uj_1/2 — §'+1 25'+1 2
gj+1=9j+At<J (a2~ By /) (5.52)

1 Bi—1/20;_1)3 + Pi-1/2 — Bjt1/20; — Pj
ot = L 9}‘m+At“+l/2( v | I CE)
o; z

(%Q_j—l/zﬁf—lfz + 7—2“1‘15]'_1/2) T—)j._]_/2 e (%é—]-}-l/Z'D‘Jz_l_l/z _i— ;%’1']3_7'{—1/2) 77j+1/2

EP* = E7+At Ao

(3.34)

3.2 The Cosmological PPM Scheme

For cosmological applications several important modifications must be introduced into the
basic PPM scheme. The inclusion of gravitational forces and cosmic expansion changes
the form of the usual hydrodynamical equations. The expansion of the universe enters the

hydrodynamical equations in two different ways. First, all of the fluxes and the source
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terms are multiplied by the factor 1/a(t). Second, two further terms, (¢/a)ov; and (a/a)E,
appear in the equations for the conservation of momentum and energy, respectively (in
the following we will refer to these terms as expansion terms). This leads to important
changes both in the Riemann solver and in the final integration. Also gravitational forces
are included in the Riemann solver and in the final integration step. In order to obtain a
proper estimate of the force felt by a fluid element, its averaged value over the entire zone

is calculated. For the detailed description of this procedure we refer to section 3.2.2

3.2.1 Characteristic Equations

The solution of the Riemann problem, which is the central feature of the Godunov approach,
requires the knowledge of the characteristic form of hydrodynamic equations. Indicating by
z the relevant space direction during the one-dimensional sweep, by v the velocity in the
direction of the one—dimensional sweep and by u the velocity orthogonal to v, equations

(2.9)-(2.11) can be rewritten in the form:

ou ou
— 4+ A —+C = 3.35
5 TASS T 0, (3.35)
where
0 v 0 0 o 0
v 0 » 0 1/p vaja—g
U = . A= . C = . (3.36)
u 210 0 v 0 ud/a
2 0 vp 0 v 2pa/a

In order to find the characteristic form of this system, we first solve the corresponding

eigenvalue equation:

det (A — AI) = 0, (3.37)

where I is the identity of elements 4;,; = 1 if ¢ = j and 4;; = 0 otherwise. We obtain as

eigenvalues:

o= =, A= ;A = : (3.38)
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where Aq is a double solution and c is the sound speed. The eigenvalues are used to compute
the domain of dependence of a given fluid element. Notice that in expanding coordinates
the domain must be rescaled by the factor a(t) with respect to that in proper coordinates.

The corresponding left eigenvectors 1; are:

101 - (0,0,1,0) (339)
lo. = (1,0,0,-1/c?) (3.40)
L= (0,-%50, 3 (3.41)
- ) 27 72 M
L = (0,90, 3 (3.42
- 3 2’ ')2 - N “)

The characteristic form of hydrodynamical equations is (see section 2.2):

oU ou ;
— A— dt = 4
Ix En +lkA3:c+lkC t 0, (3.43)
oU ouU
1’“5{ + Aklk-éz +5L,Cdt = 0, (3.44)
that is:
dz
lkdU + lkC dt = O, along -E‘,_ = Ak . (345)

Then, for our fluid, the characteristic equations are:

?dp — dp — 2%}7 dt = 0 (3.46)
a
du——udt = 0 (3.47)
a
along dz/dt = v/a, and
a a
dp £ pc dv+ [2517 + pc (gv - g)} dt =0 (3.48)

along dz/dt = (v £ ¢)/a.
Characteristic equations can now be used both for calculating the domain of dependence

of a zone edge and for constructing the Riemann solver.
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First of all the approximate guess to the initial states for the Riemann problem expressed

by equation (3.27) and (3.28) are modified taking into account of the expansion of the

universe
Wir1/2,0 = Fihiaye,o(Tisrz — Tjr1/2.0) (3.49)
Biy12,r = fivror(®ir/ar — 2i4172) , (3.50)

where, in this case:
At(v? + ) ;
:13]‘_}_1/27[/ = 93j+1/2 — max (0, ‘—Ja‘—] (301)
At(v*, +

Zijr1/2,R = Tjy1/2 -+ Mmax (0, - ( ]+1a JH)) . (3.52)

Then we calculate the mean value of the hydrodynamic variables in the domains defined

by each of the characteristic lines coming from the left and the right of the zone boundary

J+1/2:

wfﬁ-l/z,L = fir1/2,0(2j41/2 — ‘c;‘c+1/2,L) ’ (3.53)
w;'c+1/2,R = fisiar(=2j112 + zf+l/2,R) ) (3.54)

where £ = +,0, — and
$§+1/2,L = Cl?j,*_]_/g b At)\j’k, w;_}_l/z,R = 13j+1/2 -+ AtAj+1’k . (355)

Finally we correct the initial guess considering only those information which can reach the

zone edge during the current time step. Using the characteristic equations we have:
Pjt+1/2,s = 131’4-1/2,5 + J?+1/2,5(ﬁf+1/z,5 + ﬁj—+1/z,s) > (3-56)

Viryz,s = Uitz + Ciaas(Biiyyns — Biayns) » (3.57)

-1
1
Qj+1/2,5 = ( - Z :B]I'c+1/2,s) . (3'58)

Qj+1/2,5 k=+,0,~

Here C’f+1/2’5 = (YD;j+1/20;41/2) and § = L or R. Finally we have that

Uisr/an = Uipian, Biijan =0 i X <0, (3.59)
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UisiaR = Bipiynry Bjpape =0 H Ajpe <0 (3.60)
Otherwise
ﬂ:t - 1 - _ + )_’_J: ﬁj+x/2,s—Pji+1/2v5 (3 61
j+1/2,8 — :Féj+1/z.s (UJ+1/2,5 vj+1/2,.s' —__*_é,-ﬂ/z,s . )
+
At a Piyi/a, a,* +
—éj—(»l/z,s (2;51‘_:-1/2,5; + “vj+1/2'5 T gj+1/2’5> (362)
Z3'+1/95—PQ 5 1 1 ('119#:

Birijs = ( e — - 2__#3;1/2’5) (3.63)

j+1/2,8 Oj+1/2,5  &j41/2,5 a C’_1'+1/2,5
Ujt1/2,5 = u?+1/2,5 . (3.64)

The time averaged estimates of the solution at z;,,/, are determined solving the Riemann
problem with initial states determined by equations (3.56)-(3.58) following the procedure

described in section 2.3.

3.2.2 Gravitational Step

The peculiar gravitational potential ¢™ is computed at the full time step by the Poisson
equation (2.72), which is solved using a standard FFT technique. We preferred to avoid
computing directly the gravitational acceleration by the FFT’s as this would require four
Fourier transform instead of two and a higher requirement in computational time and
memory.

At each time step we also need to compute the time-centered value of the potential
¢™*+1/2. This is done using a linear extrapolation from the previous two time steps:

At a1 A
a1 9 T

¢n+1/2 — én(1+

As the gravitational potential varies little during a time step, the extrapolation (3.65) is
sufficiently accurate during the whole evolution.

The value of the potential at the beginning of the step is used to compute the gravita-
tional acceleration needed to solve properly the Riemann problem. Instead ¢"*'/? is used
to calculate the time-centered value of the acceleration for the final integration step of the

PPM scheme. In both the cases the acceleration required is the one felt by the whole zone
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and not just from its center. We evaluate the mass weighted average acceleration over the
zone following the same procedure used by Bryan et al.(1995); we expand the density and

acceleration fields and retaining all terms up to second order in Az:

1 , 1
gi = T ¢j+1 — 051 + ‘1‘2‘(¢j+1 - 2¢j + ¢j—1)

50;
2a(t)Az j

o (3.66)

In order to avoid the introduction of new unphysical extrema we calculate the slope §p as:

60; = min(loj11 — 0;-1],2]0; — 0;-1], 2]0j+1 — 0;])sgn(0; 41 — 0j-1) (3.67)
if(0j41 — 05)(05 — 0j-1) < 0 (3.68)
bo; = 0 otherwise. (3.69)

Because of its smoothness, the gravitational potential does not require the same monotonic-

ity constraint.

3.2.3 Correction to the Energy

In order for overall energy to be accurately conserved it is important to use the total energy
density E directly as a dependent variable (equation (2.11)) rather than calculate it as the
sum of the kinetic and internal energy densities (%gv2 and e, respectively). The value of
e is however required in order to calculate the thermodynamic quantities such as pressure
and temperature and the original PPM code calculates e as the difference between E and
2ov®. However, this procedure is not always applicable in cosmological simulations where
highly supersonic flows are often present. In these situations, the ratio between the kinetic
and internal energies can reach values as high as 10® so that the errors in calculating e by
the standard PPM procedure become much larger than the quantity itself.

In our code, we solved this problem by calculating both the total and internal energy
per unit comoving volume. In comoving coordinates the equation for the internal energy

density e = p/(y — 1) is the following:

(96 1 (9 a 1 (9’()]‘
2o 2 (en) - 22— 2pTY 3.70
Ot aaa:j(evj) 2ae apazj ’ ( )
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where the sum over the index j is implied. Hence, at each time step, both the total
and internal energy equations are solved and the results combined according to the local
conditions in the fluid. The value obtained from equation (3.70) has to be only used when
the internal energy cannot be calculated accurately as the difference between total and
kinetic energy. This is usually the case in expanding or weakly compressing (comoving)

regions, that is in regions in which one of the following conditions holds:
1 -
Vew >0, EIVPIS M - (3.71)

If neither of these conditions is verified, the internal energy is computed according to the

following criterion:

E — Lpv? if E—L1ovi/E>q
. :{ 2 3 ? (3.72)

e otherwise ,
where 7; and 7, are suitable parameters smaller than unity, fixed on the bases of numerical

experimentation. Various tests have suggested the use of the following values: n; = 0.3 and

2 = 0.005.

3.2.4 Extension to Three Dimensions

The PPM scheme described in the previous sections concern the integration in one dimen-
sion, even though the cbmponents of the velocity orthogonal to the integration direction
are considered and properly treated. The extension to more dimensions is achieved using a
direction splitting technique (Strang 1968). This family of methods is based on integrating
the dynamical equations that govern the system in one direction at a time, using for each
direction the data just updated in the previous direction. In other words, if we indicate
with L£* the PPM integration in the k~th direction for a time step At, the updated value

for the generic hydrodynamical variable u is calculated as:
u™ = LMLYLY . (3.73)

In order to preserve second—order accuracy in space and avoid the introduction of preferen-

tial directions, in successive time steps the order of directional integration is permuted as
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follows:

L.LyL,, L.L,L., L.L.L,, L L.L,, L,L,L,, L,L,L, , (3.74)

where for simplicity we have dropped the A¢ superscript. Other directional splitting schemes
are possible, however our tests have proved that the accuracy of their results is comparable
with that obtained by the described method while, in general, they are more complicated

and computationally more expensive.

3.2.5 Expansion Step

After the hydrodynamical quantities have been updated by the PPM step, they must be

corrected for including the effect of the expansion terms. These terms in fact, being propor-

tional to the integrated quantity itself, cannot be treated in the basic procedure and must
n+1 n-+1 n+41

be integrated in a separate step. If we indicate by Ok Vi, and py - the hydrodynamical

quantities obtained from the PPM integration part,we can use the following semi-implicit

procedure:
g}‘*l = g};"‘}l (3.75)
n+1 n+1 . n n
it 2ugy — At 2(4/a) +1/2vj (3.76)
J 2+ Atn+1/2(d/a)n+1/2 :
En—fl _ Atn+1/2 ala n-{-l/ZEf.t
E}z-}-l — H,5 ( / ) j (3.{.,‘.)

1+ Atn+1/2(d/a)n+1/2
The accuracy in the results tends to improve imposing slow variation of the expansion factor,

which corresponds to introduce an appropriate time step constraint on the term Aa/a.

3.3 N-body Methods

The non-linear dynamics of the dark component is in general computed by N-body tech-
niques (Hockney & Eastwood 1981). The basic idea is to follow the evolution of a set of NV
massive particles which interact only gravitationally. The position and the velocity of the
particles are computed through equations (2.64) and (2.65), which define the position and

the velocity of the particles at each time level. The fundamental step of this calculation
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is the evaluation of gravitational forces. This problem has been solved in several different
ways. The first N-body codes directly computed the force on each particle summing the

contribution of all other particles:

N

SR 1)
where 7 and j indicates the i-th and j-th particle respectively, x;; = x; — x; and m; and
m; are the particles’ masses. This method, called Particle-Particle method (PP), is very
accurate but the computational time required in the computation scales as O(N?) and
for more than a few thousands particles it becomes prohibitively expensive. This limits
strongly both the dynamical range and the resolution affortable with numerical simulation
and therefore its possible applications to the cosmological context.

The limit on particle number of PP methods was later circumvented by approximating
the gravitational potential by some different methods. A first possibility consists in cal-
culating the gravitational field on a mesh of fixed resolution. Efficient solution methods
for Poisson’s equation on regular mesh, such as the FFT convolution, allows an algorithm
with computational time which scales as ~ O(N1logN), although the force resolution is
limited to roughly two grid separations. These types of method are called Particle-Mesh
(PM) algorithms. The PP and PM methods have been subsequently linked together in the
P®M methods. This method splits the gravitational force into two components, long and
short-range. The PM algorithm is used to compute the long range component. On scales
smaller than about two grid spacings the mesh force is corrected by a direct PP sum over
near neighbours to include the short range component of the force. This technique produces
a scheme with better resolution than the PM method and, in general, lower computational
requirement than the PP method. The main difficulty occurs when the amount of clus-
tering becomes high and the number of neighbours in the PP sum increases. Under these
conditions the computational time tends to increase very rapidly, again as O(N?). More
recently codes have been developed which represent the gravitational field via a multipole

expansion. The two main variants of this approach are the various tree codes (Barnes &

Hut 1986), and the true multipole expansion methods (Greengard & Rockhlin 1987). These
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methods have the advantage over grid based codes that their resolution is not limited by
the grid scale, while retaining a computational time that scales as Nlog N. In addition,
this kind of schemes, making no use of the grid, are more easily associated with particles
based hydrodynamical codes, like SPH, rather than Eulerian codes.

Finally, we have to mention multigrid methods (Brandt 1982) that solve Poisson’s equa-
tion using a multilevel grid together with some kind of relaxation procedure. The latter
solve the equation minimizing the errors on the various grid scales. It is successively ap-
plied over grids of various coarseness reducing the error on the corresponding scales. Its
computational time scales approximatively as a PM method, but it has the great advantage
to allow the use of non—uniform grids and hence the introduction of local refinements where

higher resolution is needed.

3.4 The PM Code

With the Particle Mesh method gravitational forces are calculated first smoothing the mass
distribution on a uniform grid and then calculating the corresponding potential by solving
the Poisson’s equation with a Fast Fourier Transform (FFT) convolution method. The
mass density is determined distributing the mass of each particle between the grid cells. In

general:
1 X

Z m W (%, — Xijik) 5 (3.79)

Azd ~—
p=1

Q(Xi,j,k) =

where x; ;; is the position of the (7,7, k) cell, x, and m, are the position and the mass
of the p-th particle respectively, Az® is the cell volume and W is a suitable interpolation
function. A common choice of the interpolation function is that given by the Cloud In Cell

method (CIC):

if |z; —z,| < Az, ' (3.80)

w; = 0, otherwise ; (3.81)
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where ¢ indicates the i~th coordinate of the cell and z, is the corresponding coordinate of
the particle. Then:
W = wiijk B (382)

Another possibility is given by the more accurate but expensive Triangular Shaped Method:

‘zi‘“mplz lzi — 2,

;o= — 1 < .83
w; 3/4 Az " if e = 1 (3.83)
‘Ii_zpl ’ e lzi_zpl
w; = (1/2) 3/2—"”&“* ; if1/2 < ——+ <3/2 (3.84)
z
w; = 0, otherwise ; (3.85)
also in this case:

The CIC method has proved to be sufficiently accurate for our demands. Furthermore it
requires a much lower computational effort than TSC thus it has been used for our code.

At this point we calculate the total density field as the sum of the collisionless and of
the baryonic contributions and we transform the result to the Fourier space using a FFT
method. In the Fourier space the Poisson equation is a simple algebraic equation of the
form:

¢k == Gkék, (387)

where ¢y and 0y are the Fourier transform of the gravitational potential and of the density
contrast respectively, while G(k) is the Green function of the Laplacian, commonly defined
as:

(3.88)
Using an inverse FFT, ¢y is calculated in the physical space. Differencing the potential by

some finite differences method we obtain the forces at each grid point. For example the z

component of the gravitational force on the cell 7, 7, k can be calculated as

Frijr = —¢"“""’°2;j"‘1""’°. (3.89)
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Alternatively, one can think of calculating the force directly in the Fourier space using the

relation

1
F, zkm; (3.90)

where F, and k, are the Fourier transform of the force and the wave vector in the s direction.
An inverse Fourier transform gives the s-component of the force in the physical space. This
is an accurate method to calculate the force, however it has the drawback that it requires
four Fourier transform to calculate all the components of the force, then more computational
time, and higher memory requirement.

Finally, the force on each particle is calculated averaging forces on nearby grid points.
To ensure the conservation of energy and momentum the average must be calculated using
the same interpolation scheme adopted to compute the density.

In order to solve numerically equations (2.64) and (2.65), N-body techniques generally
use the Leap-Frog method, which has second—order time accuracy and complete the inte-
gration in one step, minimizing computational time and memory requirement. However the
Leap-Frog scheme requires constant time steps to work properly. The hydrodynamical part
of the code imposes instead variable time intervals, determined by the Courant condition.
In order to use these variable time intervals, the leapfrog integrator has been replaced by a
second—order Lax-Wendroff scheme (Roache, 1982). This scheme works with non constant
time steps and guarantees second order time accuracy. It is based on the following two
steps procedure. In the first step the position and the velocity of the particles is updated

to half the present time step by a first order one—side scheme:

. Agn+l/2
2a
. Afnt1/2
xj+1/z _ X?-i-V}‘W , (3.92)

where x; and v; are the position and the velocity of the j—th particle and g7 is the gravi-

tational force on the j—th particle. In the second step the positions and the velocities are

updated to the new time by a time centered scheme, making use of the results of the first



3.5. Time Step 71

step:
Atn+1/2
n+l n -nt1/2_ n+1/2 n+1/2
viTh = vi— (a v + g >_an+1/2 (3.93)
n41/2
n4l n n'{‘l/ZAt
S e (3.94)

The drawback of this method is the increase in computational time due to the two steps
procedure. However this has proved to be a minor problem as most of the time is spent in

the hydrodynamical part of the code and in the calculation of the gravitational forces.

3.5 Time Step

For determining the new time step at the end of the time step integration we impose several
constraints. First of all, we require that the maximum variation of the expansion factor a
during a time step is less than 2%. We impose also that dark matter particles move no more
than half a cell in a single step and that the gas dynamics satisfies the Courant condition:

C. a(t)Az

At < min [C.era,x(lvml,Ivyl"sz]

: (3.95)

where C. is the Courant number and the minimum is computed over all cells. We set
C. = 0.5. Finally, we require that in a single step the time step increases by no more than
20% from its previous value.

Our tests indicate that the expansion condition is important only in the first part of the
simulation, when the amplitude of the fluctuations is still small. At later times the Courant

condition becomes the dominant one.

3.6 Structure of the Code

In this section we make a summary of the main steps in the integration of the dynamical
equations presented in the previous sections. The same grid of constant mesh size Az is
used for solving the hydrodynamical equations and for computing the total gravitational

potential. We recall that the subscript j indicates zone centered values of grid quantities,
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while subscript (7 4 1/2) refers to values computed at the boundary between the j—th and
(7 + 1)-th zones. Finally, in the dynamical equations for the dark matter the subscript
j refers to the j—th particle. Superscripts indicate the time level at which variables are
calculated. The same time interval A¢"*1/? = ¢"+1 _¢" {5 used for integrating the dynamical
equations of both components.

The main steps in the integration of the dynamical equations are the following:

1 - At the time t™ we have o7 M, VBar,; and p7 for the baryonic matter. For the dark
matter we have x3,, . and v}, ;. First we calculate the dark matter density o7 M,; using
a cloud-in—cell mass assignment scheme. Then we compute the total peculiar gravitational
potential ¢7 on the grid by solving the Poisson equation using a standard FFT technique.

We also extrapolate the gravitational potential to **'/? using the values at t* and ¢*~!

AFL/2 Agnti/2
n+1/2 — n + = ] - n-1_"" B 3.96
¢ ¢ (1 2At”—1/2) Y (3.96)

2 — We start the hydrodynamical one-dimensional sweep. For a given direction we indicate
by v the component of the velocity along the direction of integration and by u the compo-
nent orthogonal to v. We then calculate the time averaged values of the hydrodynamical
quantities at the zone interfaces g;11/2, Bj+1/2, Uj11/2 and @, 41/, using the PPM scheme, as
described in Section 3.1, 3.2 and in Appendix A. )

3 — We use the time averaged estimates calculated in point 2 to solve the one—dimensional
hydrodynamical equations without the inclusion of the expansion terms (for simplicity in

the following equations we have dropped the BM subscript):

At T2 5T — Diy1/20;
ntl _ n Q5-1/2Vj-1/2 — Qj4+1/2Vj+1/2
Or,j = &5 + an+1/2 ( Az ) (3-97)
ntl _ non o ATV G 1002 o+ Bii1ya = 8541200412 — Dit1)2 +
Vs = Q?,}l 0;v; + ar+1/2 Az
Atn—i—l/Z 07}"]'1 + 01}
ntl ’ 5 ! gj (3.98)
O, .

Agnti/z (%éj_l/zﬁf_l/z + 7%11’7}_1/2) Uj_1/2 — (§§j+1/2ﬁf+1/z + 71“117141/2) Ujt1/2

agntl/2 Az

By = B+
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n+1 n+1
" 0; +ov
+ A2 5 Y g; (3.99)
at1 1L aon AR5 0Ty ail1ya = Bi1/2041/28 412 3.100
Up; = i o5U; T T Az - (3.100)

The quantity g; is the time-centered value of the gravitational force averaged on the j-th
cell calculated by equation (3.66). Points 2 and 3 are repeated for the other two orthogonal

directions completing the three-dimensional hydrodynamical calculation.

4 — Energy is corrected to account for highly supersonic flows. The internal energy equation

is solved first including the energy flux term by the standard PPM integration procedure:

Agntl/2 ("ﬁj_l/z’l_}j..l/2 - Pj+1/217j+1/2>
a(tn-i-l/z) (’Y — 1)Am ’

~n+l __ n
€m; = ¢ +

(3.101)

Then this value is corrected including the pressure forces as:

1 Attt

n (’7j—1/2 - "_’j+1/2) ) (3.102)

n+1 ~n 41 +
at™+1/2 Az o7

€Hj T €m;

where p; A

= (Pj-1j2 + Pj+1/2)/2. Finally, we consider also the expansion term in the
internal energy equation:

n~:-1 Atn+1/2(a/a)n+1/2 n

n+l __
€; - 1 + Atn+1/2(a/a)n+1/° (3.103)
This expression for internal energy is used if the following conditions hold:
1/2
0 1 Op;
> By Ly <_Pi)2) <m  j=1,3. (3.104)
i=1 3 bi |is1s dz;
If neither of these conditions are verified, internal energy is computed as follows
E; — Lov? if B; — 1p;v?/ max(E;_1, E;, E;11) > 1y
e,»:{ e I I (3.105)
e; otherwise .

Notice that, as we are dealing with errors that can be advected with the total energy
calculation, we have to consider not just the j-th cell but also its neighbourhood (in one

dimension this means the two zones j £ 1).

5 — The hydrodynamical quantities are corrected by considering the expansion terms:

o7t = oft! (3.106)
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vl = zvyj’l _ Atnﬂ/z(d/a)”l/z"; (3.107)
T 24 AtrH(g/a)nt)2 '

E;}:{;l _ Atn+1/2(d/a)n+1/2E}L
1+ Atr+1/2(g/a)n+1/2

n+l
E]' —

(3.108)

6 — Position and velocity of the N-body particles are updated by the two—step Lax—Wendroff

scheme:
step 1
n41/2 ) Agnt1/2
Vomy = Vb~ <anVZM,j + g”) e (3.109)
Atn-f-l/z
n41/2 n
XDM,/]’ = XDpm,j +V§5M,j—2j;n— . (3.110)
step 2
1 ng1/2, nt1/2 nt1/2 Atrtl/2
Vs = Vbars — (@RS + &) = (3.111)
n+1/2
n _ n +1/2At
Xba; = Xbarj + Vbars Az " (3.112)

Here we indicate by g7 the gravitational force on the j—th particle, computed by interpo-
lating the values of the corresponding components at the eight neighbouring cells using the

cloud—in—cell scheme.



4 Tests of the Code

In order to determine the accuracy, the reliability and the performances of the PPM+PM
code, it has been subjected to a series of numerical tests. In the first sections we will focus
on the PPM based part of the code, presenting tests which range from the purely hydrody-
namical to the cosmological ones, in one and more dimensions. Then we will concentrate
on the results of the N-body code.

In all the tests the conservation of energy has been checked. For the cosmological tests
this check has been performed by using the cosmic energy equation which for an ideal gas
in an expanding frame is (Peebles 1980):

%(E+W)+%(2E+W) =0, (4.1)

where FE is the total (internal plus kinetic) comoving energy and W is the gravitational
energy of the gas.

Equation (4.1) can be rewritten as:
dilt[a(E +W)+aE = 0 (4.2)
and integrated with respect to the expansion factor giving:
02 B(as) — ar Eay) + /E da = —[a,W(as) — aW(ay)] , (4.3)

where a, and a, are the values of the expansion factor at two different times.

We checked energy conservation computing the quantity:

a;E(a;) — a1 E(ay) + f:: E da

B = —[a; W(ay) — a; W(ay)]

(4.4)

75



76 §4. Tests of the Code

For perfect energy conservation R should remain equal to unity.
We start testing the PPM part of the code by some pure hydrodynamical one dimensional
simulation in which source terms and the expansion of the universe are neglected. The

results are compared with the corresponding exact analytical solutions.

4.1 Convection Test

In this test we follow the evolution of a perturbation in the density of an incompressible
and non diffusive fluid which moves with constant velocity v. In this case the fluid is said

to be convected and the equations of hydrodynamics reduce to:

do Do -
E = —’an. (40)

For a more complete description of the convection problem we refer to Oran & Boris (1987).
The test problems are:
1) the square wave. Initially p=2 over the first 20 cells and p=0.5 on the rest of a grid

composed by 250 cells. The perturbation is convected at a velocity which gives:

vAL
= — = . . 4:-6
C. ~ 0.2 (4.6)

In Figure 4.1 we show, compared to the exact solution, the calculated profile after 800 steps.
2) Gaussian profile. The profile is defined as:

o(z) = 0.1+ 1.5exp[—2z>/(20?)] (4.7)

where z is in units of Az and the half width c=2Az. The maximum value of the density is
1.6 and the minimum is 0.1. The perturbation is convected at a Courant number C,=0.1.
In figure we show the solution after 600 steps.
3) The dome profile. The initial perturbation is defined over the first 31 cells as a parabolic
profile

o(z) = —0.0068z% + 0.21z + 0.1 (4.8)

The density ranges from 0.1 to 1.6; the Courant number is C.=0.1. The solution after 600

steps is presented in Figure 4.1
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These tests are important for several reason: the first shows the effect of numerical
diffusion on a discontinuity. The results show that for our code this effect is low and the
discontinuity is spread over at most two cells. The second shows the effect of clipping, that
is the numerical tendency of underestimating the density of narrow peaks. Also this effect
has proved to be quite low. The third shows the effect of terracing, that is the flattening of
the solution in the most curved parts of the density profile, as happens in two cases in the

right part of the simulated profile.

4.2 One—Dimensional Shock Tube Test

The following test is the standard shock tube test (Oran & Boris 1987). Also in this case we
solve the hydrodynamical equations (2.9)—(2.11) without the source terms and with a = 1.
Initially the gas is at rest (v = 0) and density and pressure present a central jump from
0, =1,p=1top =0.1,p, = 0.1. The shock tube test is a typical Riemann problem and
its exact solution can be calculated following the procedure described in section 2.3. The
solution is of the kind (2.36), and consists in a rarefaction wave that propagates towards
right and a contact discontinuity and a shock wave that move towards left. This test is
particularly interesting as it verifies the accuracy of the code in simulating smooth flows, like
the rarefaction wave, as well as discontinuities, like the shock or the contact discontinuity.
The calculation is performed using a grid of 128 zones, the initial time is ¢; = 1 and the final
time, shown in the figure, is , = 20. The numerical results (open circles) are presented
in Figure 4.2: they are in very good agreement with the analytical solution (solid lines).
In particular, shocks are typically resolved within one cell and contact discontinuities are
represented in four or five zones. In order to reduce the diffusion of contacts we have used, for
the density field, the discontinuity detection algorithm of Colella & Woodward (1984). We
have not introduced artificial diffusion and/or numerical flattening since numerical ripples
around steep gradients are either absent or very small and do not affect the solution during

the whole evolution.
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Figure 4.1: Convection test for a square wave (4.1a), a gaussian (4.1b) and a dome (4.1c). The solid

line represent the exact solution while the circles are the corresponding numerical solution
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Figure 4.2: The velocity v, the pressure p and the density g for the one-dimensional shock tube test
at the final time f; = 20. The numerical result obtained with a grid of 128 zones (open circles) is

compared to the analytical solution (solid line).
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4.3 Adiabatic Expansion

The following tests describe physical situations that are expected in cosmological simu-
lations. We have assumed an Einstein—de Sitter pure baryonic universe with vanishing
cosmological constant and we have fixed the Hubble constant to Hy = 50 km s~ *Mpc~1.
The comoving size of the computational box is I = 64 h~'Mpc. For this model our basic
units of normalization are:

8HE 1
87G ® 7 (6xGp, )2’

Ty = L o2, = (4.9)

where G is the gravitational constant. The expansion factor depends on the cosmological
time as

a(t) < t** (4.10)

We have simulated the adiabatic expansion of an unperturbed universe, starting at
time ¢; = 0.01 from a homogenous distribution of matter with velocity v; = 100 km s~*
and temperature 7; = 4.6 K. In this situation equations (2.10)—(2.11) are easily integrated
giving:

v = v(a;/a), T = Ti(a;/a)?, (4.11)

where a, v and T are the expansion factor, the velocity and the temperature respectively,
at time ¢. At the final time ¢, = 1 numerical and analytical solutions are compared and the

errors calculated as:

AT =

Tnum - Tan num ~ Yan
L__T___] Av = l?v—v_l_, (4.12)

where the subscripts num and an indicate, respectively, the numerical and analytical values
of the variables. We have indicated with Aa the maximum fractional variation of the
expansion factor in a timestep. Using Aa = 0.1 we have obtained AT = 6 x 10~ and
Av = 3 x 107°. The errors decrease to AT = 8 x 107° and Av = 4 x 10~% for Aa = 0.01.
The value of the parameter Aa used in the simulations is fixed to 0.02 by the balance

between accuracy and computational time requirements.
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4.4 Zel’dovich Pancake

In this test we describe the formation of a one—dimensional pancake. The test is particularly
important for cosmological studies as all of the related physics (hydrodynamics, expansion,
gravity) is included. In addition, it represents the evolution of an initial sinusoidal wave
and so can be seen as a single-mode analysis of the fully three-dimensional problem.

At the initial time, corresponding to a; = 0.01, a sinusoidal velocity field has been
imposed on the computational grid. The amplitude of the initial perturbation has been
chosen such that the caustic forms at a. = 0.5. At a; the density and temperature fields
are uniform. We set ¢ = 1 and T = 100 K. The final time corresponds to ag = 1. The
same test has been repeated using eight different numbers of zones ranging from N, = 8 to
N, = 1024.

During the first part of the evolution, we are in the linear phase and the numerical results
can be directly compared with the analytical solution which holds for a non-collisional
fluid since the effect of the pressure is negligible in this phase. This comparison gives a
first estimate of the accuracy of the code. Moreover, using results obtained with different
numbers of zones we can study the convergence of the numerical solution. The error is

computed as:

1 () — ee(w)]
Ap = J-V—g; oz , (4.13)

where p, is the exact solution. We found that at a ~ 0.1, when shocks are not present, the
error is below 1% already with only 16 zones.

The non-linear phase of the evolution is the most interesting. The strong shocks and
large gradients that form are in fact a severe test for any Eulerian numerical code. The
results at ap = 1 obtained using grids of 256 and 1024 zones are compared in Figure 4.3. The
only important difference between the two solutions is the height of the central density peak,
but this was expected as a consequence of the different resolutions in the two cases. All
of the other features the solution are in very good agreement between the two simulations
showing the convergence of the numerical solution. Shocks are resolved in one zone and

there are no numerical postshock ripples.
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In Figure 4.4 we present the results of the energy conservation test. We have calculated
at the final time the conservation parameter R (defined in equation (4.4)) and the total
gravitational (W), kinetic (Ex;y) and thermal (Ery) energy of the fluid when a various
number of cells V. are adopted. The energy is plotted in the code units. The error in the
energy conservation is of about 5% for N. = 32 and decreases to 0.1% for N, = 1024. The
behaviour of the three energy terms shows that at least 32 zones are needed for starting
to see the convergence of the solution. The poor resolution of the 8 and 16 zone cases, in
fact, makes it impossible to describe correctly the narrow central peak, which remains too
diffused. The shallower central potential wells induce a smaller acceleration in the infalling
matter. The compression is low and the transformation from kinetic to internal energy is
inefficient and so produces a pressure which is too low to support the infall of the matter.
However the collapse of the peak is prevented by the artificial effect of the coarseness of the

grid.

4.5 Multiple Pancake Formation.

The last one-dimensional test which we have performed consists of simulating the evolution
of a random initial density field. In this test different wavelengths evolve together; hence
we can verify the ability of the code for describing shock interactions and the merging of
small structures.

The initial conditions are set by perturbing the density field according to a Gaussian

random distribution characterized by a power—law spectrum of the general form
P(k) = Pok"exp(—k*R3) , (4.14)

where P, is the normalization constant and n is the spectral index. The short wavelength
cut—off at the scale R; = 2 grid—points ensures that the results are not affected by the
sampling of modes whose size is close to that of the resolution of the simulation.

The normalization constant is fixed requiring that the one-dimensional variance o>

at the final time t, (corresponding to the expansion factor a; = 1) for linearly evolved
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Figure 4.3: The velocity v, the temperature T and the density g for the one—dimensional Zel’dovich
pancake test at the final time ag = 1. The results obtained with grids of 256 (open circles) and 1024

zones (solid line) are compared.
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Figure 4.4: The energy conservation parameter R (top left), the gravitational energy W (top
right), the kinetic energy Ex;ny (down left) and the thermal energy Erg (down right) for the

one—dimensional Zel’dovich pancake test are plotted as function of the number of cells N,.
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perturbations is equal to unity on the scale R, = 107'L so that:

o*(R.) = l/mP(k)W(kR*)dk -1, (4.15)

T
where the function W(kR.) is a one-dimensional top-hat filter:

sin(kR.)

W(kR.) = ——

(4.16)

The initial time ¢; is chosen by imposing that, at ¢;, the largest density fluctuation is equal
to 0.5.

As an example, we show in Figure 4.5 the results at the final time t, for a simulation with
spectral index n = 1 when N, = 256 is used, i.e. with the same number of cells used in the
simulation of the single pancake. Shocked regions, characterized by the presence of typical
double peaked maxima in the temperature field and by the smoothing of steep negative
gradients in the velocity field, are at temperatures ranging from 10* to 10°K. Underdense
regions are instead at much lower temperature. Collapsing regions surrounding density
peaks are, at the beginning, at low temperature, but heat up as soon as propagating shocks
reach them. The errors in energy conservation are around 3%, slightly higher than the value

obtained for the Zel’dovich pancake test.

4.6 Cold Dark Matter Test

As a final test we have simulated the evolution of a purely baryonic Einstein—de Sitter
Universe with an initial cold dark matter (CDM) power spectrum. As in the previous
tests, we fixed the Hubble constant to be Hy = 50 km s™! Mpc™! and the comoving size
of the computational box to be L = 64 A~'Mpc. In this way our numerical results can be
compared with those obtained by Kang et al.(1994b), even if a different random realization
of the initial conditions has been used. Perturbations are initially Gaussian distributed and

the primordial density power spectrum can be written in the form:

P(k) = Pok™T*(k), (4.17)
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Figure 4.5: The velocity v, the temperature 7' and the density o for the one-dimensional multiple
pancake test at the final time ap = 1. A primordial power-law power spectrum with spectral index

n = 1 is simulated using a grid of 256 zones.
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where T'(k) is the CDM transfer function given by the Davis et al.(1985) fitting formula:
T(k) = (1+ 6.8k + 72.08%? 4 16.0k%)7* . (4.18)

In the standard CDM model, the primordial spectral index has the Zel’dovich value n = 1.
The normalization constant P, is fixed such that the linear mass variance at the present
time is unity in a sharp—edged sphere of radius Rs = 8h~! Mpec:

)

272

o*(Rs) = /Ow k2T (YW, (kRs) dk = 1 . (4.19)

In the above equation, Wrg(kR) = (3/kR)7;(kR) is a top-hat window function and j,
denotes the /th—order spherical Bessel function. The velocity field at the initial time ¢; has
been calculated in the linear perturbation approximation (Peebles 1980) as:

2Ve

VT SH)a(t) (4.20)

We are interested in checking the convergence properties of our code, so we evolved the
same initial conditions on three different grids with 32, 64® and 128°% cells, respectively.
The initial conditions are set up according to the previous prescriptions on the coarsest
grid. The initial time, fixed by the condition that the maximum density fluctuation is
unity, corresponds to a redshift z ~ 20.

We have first analyzed some integral properties of the results at the final time. We have
calculated the mean temperature (T'), the average mean temperature (T), = (T9)/(0), the
average temperature weighted by the density squared (T'),» = (T'0%)/(0*) and the variance
of the density fluctuation field 0® = ((0*)/(g)*~1). As in Kang et al.(1994b), the calculation
has been performed for the data rebinned to a 16° grid. The results are presented in Table
4.1.

The average temperature for the rebinned data seems to have converged already in the
64° simulation. However, the behaviour of the rms density fluctuation suggests that a higher
resolution is needed for the convergence of the density field. The variation of the density

weighted temperatures between the 64° and 128° grids depends essentially on variations of
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Table 4.1: The simulations. Column 1: the number of zones in each dimension N.; Column 2: the
mean temperature (7). Column 3: the average mean temperature (T)o. Column 4: the average
temperature weighted by the density squared (T'),2. Column 5: the r.m.s. of the density fluctuation
field o.

N (T) (T), (T)p o
32 1.48 6.02 19.49 2.17
64 2.02 10.61 28.63 2.48

128 2.02 11.91 32.95 2.77

density distribution. As already noticed by Kang et al.(1994b) for all the Eulerian codes
considered in that paper, the values of o appear to converge from below.

In Figure 4.6 we show a cell-by—cell comparison of density and temperature for the
rebinned data of the three simulations. We always observe a good correlation between the
values of the densities obtained from simulations with different resolutions; the spread of
the points is reduced as we compare simulations with the highest resolution. The same
holds for the high temperature cells. The distribution at lower temperatures is due to the
formation of substructures as we increase the grid resolution. The large number of points
which accumulate in the lower part of the panel represents cells that in the lower resolu-
tion simulation are cooling according to the expansion of the Universe while in the higher
resolution run are site of some structure. Also this effect decreases when the resolution is
higher.

In the left and right columns of Figure 4.7 we show the volume and mass weighted density
histograms, f(IN) and f(M) respectively, for the 16° rebinned data. The tendency to form
higher density peaks as we increase the resolution clearly appears in these histograms. As

we go from 32° to 128° the amount of mass contained in the high density regions increases.
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Figure 4.6: A cell-by—cell comparison of density ¢ (upper row) and temperature 7' (lower row) for
the 162 rebinned data at z = 0 for three simulations with the same initial conditions but different

numbers of zones, as indicated by the subscripts.
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However, in relation to the convergence of the numerical results, it is encouraging to see
that the density distribution both in volume and in mass is very similar for the 64% and
1282 runs.

The corresponding histograms for the temperature are shown in Figure 4.8. Comparing
the rebinned data from different runs we can observe higher gas temperatures when the
resolution of the simulation is increased. We notice both an increase in volume fraction
and in mass fraction of the gas at high temperature. The f(N) peak at low temperature
is almost absent in the 128° simulation, but this is only due to the averaging procedure in
constructing the rebinned data. Small scale structures are present in the high resolution
run which could not appear in the simulations with a smaller number of cells and they have
the effect of raising the average temperature in the rebinned data.

The same effect is evident if we look at Figure 4.9 which presents the same histograms
for the original data of the 128% simulation: a large fraction of the volume is still at low
temperature. However, the mass fraction distribution confirms that about 70% of the mass
is at temperatures higher than 10° K.

In Figure 4.10 we show two different slices of the simulation with 0.5 ~~* Mpc thickness
(1 cell). For each slice contour plots are presented for the density contrast § = o/{e) —1
and the temperature. Structures appear well resolved and strong temperature gradients
indicate shock positions. High density peaks are surrounded by high temperature regions
which have been heated by the shock propagation.

Finally in Figure 4.11 the contour plots of the volume (left) and mass (right) fraction
with given temperature and density are shown. We observe that most of gas is at high
density and temperature. On the other hand most of the volume is at low density with

either high or low temperatures depending on whether it has been crossed by shocks or not.

4.7 N-body Tests

The PM method is a well-known and highly tested N-body technique used in many ap-

plications. Our implementation differs from that presented in Moscardini (1990) only for
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(right column) histograms at z = 0 for the density g at z = 0 for the 16 rebinned data. The results
obtained with different numbers of cells are shown: N. = 32 (upper row), N, = 64 (central row)

and N, = 128 (lower row).
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slices of 0.5 A~! Mpc thickness in the 128° run are shown. Density is normalized to the mean density
while the temperature is in units of 10® K. The density contour levels correspond to 10(:=3)/% while

the temperature levels are 5'/2 (solid lines) and 5% (dashed lines), where 1= 1,2, ...
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the use of the Lax~Wendroff instead of the Leap-Frog scheme to integrate dynamical equa-
tions. Therefore we present only some tests which verify essentially the reliability and the
accuracy of the Lax—Wendroff scheme. In these tests we compare the results obtained by
our implementation of the PM method when used to solve several cosmological problems,
with those obtained for the same problems by the PM code presented by Moscardini. In
particular we have simulated the evolution of the cosmological structures in a Standard
CDM model on a box of 64h~*Mpc using different versions of the PM N-body code. The
starting redshift of the simulation is ~ 18 and the number of cells of the computational
mesh is 322, equal to the number of particles.

We have run a first simulation using the original Leap-Frog PM code. The run is
completed in 500 constant time steps. The same model has been simulated using our Lax—
Wendroff PM code, first adopting the same constant time step used with the Leap~Frog and
then allowing the time step to vary. In this case the time step is calculated requiring that
the maximum variation of the expansion factor in a single step is less than 2% (the same
condition imposed to the whole PPM plus N-body code). This simulation is completed in
150 steps. We indicate the three simulations as RUN1, RUN2 and RUNS3 respectively.

In Figure 4.12 we show the redshift dependence of the variance and of the maximum
mass density for the three simulations. For both the quantities the three curves are very
close and the differences are at most of some percent. A more severe test is the direct
comparison of the position and the velocity of the particles at different redshift for the
three simulations. At z = 0 the position of the particles in RUN1 differs on average of the
0.4% from the particles position in RUN2. The similarity of the results is confirmed by
Figure 4.13, which shows the distribution of the particles projected along the z and z axis.
The comparison of the velocities gives a mean djﬁ'érence of the 3%. Actually we have found
that some particles present differences either in position or in velocity of more than 10%.
However their number is low and they never affect the results of the simulation.

The differences in the particles position and velocity tend to be smaller with increasing

the redshift. For example, at z = 1, they reduce to 0.2% for the position and 2.5% for
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Figure 4.13: Particles distribution for RUN1 and RUN2 at z = 0x projected along the z direction

(upper row) and z direction (lower row)
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the velocity. The distribution of the particles at z = 1 is presented in Figure 4.14. The
comparison between RUN1 and RUN3 leads to the same conclusions of that between RUN1
and RUN2. When we compare RUN2 and RUN3 we find average differences of 0.004% for
the position and of 0.08% for the velocity. In Figure 4.15 we show the distribution of the
particles for RUN3 compared to that of RUN1 at z =0

Similar results are obtained repeating the test with different generations of initial data
or different cosmological models. We can then conclude that the Lax—Wendroff scheme can

be safely used for the integration of the N-body dynamical equations.
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5 The Parallel Code

A major difficulty of numerical simulations is represented by the extremely large dynam-
ical range involved in cosmological structure formation process. One would ideally like
to simulate volumes comparable to the size of the universe (~ 10*Mpc), but resolve star
forming regions in galaxies (~ 1 pc). Therefore, the spatial dynamical range required per
dimension is ~ 10°, well beyond the ~ 10® that any kind of code can currently achieve.
Even to reach this maximum dynamical range it is necessary to leave scalar computers and
use parallel supercomputers, which can account for hundreds of processors that can work
together on “common” sets of data. Besides having much larger memories, these machines
can share work among the processors, strongly reducing the computational time. On the
other hand, parallel supercomputers require programming languages and “strategies” dif-
ferent from those usual for scalar computers and so a redesigning of codes with respect to
their scalar version. In the following sections we will present the parallel implementation
of our PPM+PM code and the major algorithmic changes required to work on a parallel
system. The parallel version of the code has run on the Cineca’s Cray T3D (Cineca is the
SuperComputing Center of Casalecchio di Reno - Italy), a 128 processor machine. Each
node has a 150 MHz DEC Alpha EV4 and 64 MBytes memory. The processors are linked
with a 3D toroidal network (see Figure 5.1). The memory is physically distributed, but log-
ically shared by means of a global address space. The Cray proprietary software CRAFT

allows to use this feature.

102
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Figure 5.1: CRAY T3D configuration

5.1 Parallel Programming Models

Any kind of numerical computation uses two basic devices: the computer memory, in which
the values of all the variables are stored, and the processor (from now on PE - Processor
Element), which perform all the tasks requested for the computation. Traditional scalar
computers have a single PE which operates on a single memory. Parallel super-computers
are multi-processor systems; each PE can have its own associated memory, that anyway can
be accessed by any other processor, or can operate on a single memory, common to all the
PEs. In the first case we talk about distributed memory systems and in the second about
shared memory systems. The CRAY T3D is a distributed system whose memory is logically
shared. This means that some variables (the shared variables) have a unique memory address

that can be accessed directly from any PE, independently from its “physical” position.
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5.1.1 Parallel Programming Paradigms

For general distributed memory systems the most popular programming paradigm is the
message passing. The messages (data) are sent by a PE specifying the task to which the
message is to be sent, a message tag labeling the message and the data, and are received by
a different PE which specifies the task from which the message is expected, the expected
message tag and where to store the data. Therefore the communication is controlled ex-
plicitly by the programmer. The great advantage of this method is its portability as it
can be used on any kind of parallel machine. Its limits are the time wasted in passing the
information and the high risk of errors due to the explicit nature of the message exchange.
The common standard for message passing is the Parallel Virtual Machine (PVM) language,
which is a library of primitives that can be used indifferently by Fortran or C compilers on
any network of heterogeneous systems.

On systems with physically distributed but logically shared memory the message passing
paradigm is being substituted by the data parallel paradigm, in which there are some shared
data that have a global address directly accessible from all the PEs without an explicit
control by the programmer. We may say that the communication become “transparent” to
the programmer. For example with message passing a two—dimensional array A(N, M) can

be distributed as:

A(,7) it =1,N; j=1,M/Npg, (5.1)

where Npg is the number of processors used for the computation. Each PE sees directly
only its own N X M/Npg part of the array, while it must ask the other PEs for all the
other data contained in A. With data parallel instead all the array is directly accessible
from any PE. Obviously a PE can access faster data defined in its own memory (local
data) than to those defined on a remote memory, as this is done via the interconnection
network that slows down the procedure. Data parallel methods have developed more slowly
than message passing as they are much more linked to the features of the hardware, hence
their portability can be very limited. For example CRAY has developed the Cray Research

Adaptive ForTran programming model (CRAFT) which is an extension of Fortran 77 to
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be used specifically on the T3D parallel system. At present there is an important effort to
introduce a data parallel standard language with the High Performance Fortran (HPF) and
its extension to CRAFT based commands, HPF/CRAFT. Both CRAFT and HPF/CRAFT
have been developed to work with a Singol Program Multiple Data (SPMD) philosophy.
With SPMD each PE owns and run the same copy of the program on a given fraction of
the whole set of data. The amount of data assigned to a given PE depends on the total
number of PEs used and on the way the programmer decides to distribute data between

the processors.

5.1.2 Data Sharing

The CRAFT language (and the same holds for HPF/CRAFT) has all the staternents of
Fortran 77 (Fortran 90 for HPF/CRAFT). In addition there is a set of specific commands
which permit to decide how to distribute data and work between the PEs. In other words
it allows data and work sharing. Furthermore it allows to control the synchronization of
the process. —

The data sharing is to be done such that as many PEs as possible perform ope‘rations
on their own local data rather than going off to another PE’s memory to get the n:ecessary
information. Operation on local data are in fact faster than those on remote data. Therefore
it is useful to have the possibility to decide how to distribute the data between the PEs
in order to optimize the data sharing. Typical distributions of the array A are block,
degenerate or cyclic. The block distribution method divides arrays into blocks of size equal
to the array size divided by Npp along each dimension; the degenerate distribution forces
an entire dimension to be allocated on the same PE while the cyclic distribution allocates
one element at a time on successive PEs. The CRAFT directive that set the distribution

of data between the PEs is
CDIRS SHARED A(geom); (5.2)
The same directive in HPF is

'HPF$ DISTRIBUTE A(geom) (5.3)
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REAL A(8,4)
CDIRS SHARED A(:BLOCK(2),:)
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Figure 5.2: Block distribution of the two dimensional array A between four processors.

These directives are built such that they are interpreted as comments by a common Fortran
compiler. In fact all the “paralle]” commands are written starting from the first column
and beginning with C' for CRAFT and ! for HPF. These are the comments tag for standard
Fortran 77 and Fortran 90 respectively. In this way the same code can be run (if properly
written) both on a scalar and on a parallel machine. In (5.2) and (5.3) geomn is the selected
geometry by which the data are distributed between the PEs. For example (see also Figure

5.2) the directive:

CDIRS SHARED A(:, BLOCK(2),:) (5.4)

with A(8,4) and Npg = 4, gives a distribution in which the elements A(1, 1) to A(2,4) are
on the first PE (identified by the logical number 0), the elements A(3,1) to A(4,4) are on
the second PE (logical number 1) and so on.

The data sharing directives and the geometry definitions must be written at the begin-

ning of the code, just after the definition of the variables.
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5.1.3 Work Sharing

The work sharing method distributes the statements of the program among the computer’s
PEs with the goal of executing them in parallel. In particular the iterations of a DO loop
can be divided among the processors. In order to achieve the highest performances possible
with the hardware used, each PE should have the same load of work (load balancing) and

make its iteration only on local data. A shared loop is defined by the statement:
CDIR$ DO SHARED (i1,...,ix) ON A1, ..y in) (5.5)
for CRAFT, and by:
'HPF$ INDEPENDENT (i1,...,ix) ON A(i1,...ytx) (5.6)

for HPF. Here (4y,...,%y) indicates the indices of the shared loop and “ON A(iy,...,ix)"
indicates that the iteration defined by the indices %, ..., iy is performed by the PE for which
the corresponding element of the array A is local.
In the following example we show how we have applied the work sharing procedure in a
particular part of our code:
CDIR$ DO SHARED (k) on p3d(1,1,k)
do k=1,ngrid
do j=1,ngrid
do 1=1,ngrid
pres(i)=p3d(i,5,k)
enddo
enddo
enddo
Here the first statement indicates that the following do loop in the k index (and only that
one, since the DO SHARED statement must be repeated for each loop) will be performed
with work sharing. In particular the calculations which involve the index k£ will be made
by the processor that in its own local memory has the component (%, 7, k) of the vector p3d,

for any value of ¢ and j.
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Finally, the process could need to be from time to time synchronized. In fact parallel
procedures do not guarantee the order in which they proceed. At a certain moment some
PEs could have finished a given procedure, while other are still working. If the following
step requires that all the data have been updated, then we must stop the faster PEs and wait
for all the processors to finish their work. This is obtained by the BARRIER statement
both in CRAFT and in HPF. Obviously, excessive, not strictly necessary synchronization

can cause poor performances.

5.2 Parallelization of the Code

The parallel version of our code has been originally implemented using the CRAFT model,
as its original target was a CRAY T3D system. This version has been now updated using

HPF/CRAFT in order to make it portable on a CRAY T3E machine.

5.2.1 Hydrodynamic Part

The parallelization of the hydrodynamic part of the code is extremely efficient. This is
due to essentially two fundamental characteristics of the integration scheme. First, all
the hydrodynamical quantities are calculated solving hydrodynamical equations on a fixed
mesh. This allows to divide equally the work between processors, obtaining an optimal
load balance. Second, the PPM integration is intrinsically one dimensional, the extension
to more dimensions being obtained by a direction splitting procedure. This means that if
we select a line along any coordinate direction this contains all the information required to
complete the update of the hydrodynamical variables along that line. In the same way any
plan orthogonal to a coordinate direction, say a # — y plan, contains all the data required
to perform the integration along the z and y directions for any fixed value of z. Therefore
we can divide the computational box in slices of dimension N, X N, x Ny/Npg along the
z-axis direction (see Figure 5.3) by a CDIR$ SHARED(:,:,: BLOCK) directive.

Then all the shared hydrodynamical variables are divided with the same geometry. In
this way each slice contains all the data needed by the L, and L, operators. The work is
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Figure 5.3: Distribution of the three dimensional computational mesh between processors

divided between the processors by a DO SHARED loop on the k index, representing the z
direction, and is performed by the processor that owns the element (1,1,k) of any shared
hydrodynamic variable (e.g. the pressure). The L, operator instead has to collect data
from all the other processors. Also in this case the work is distributed by a DO SHARED
loop on k. However the processor cannot be identified by the element (1,1,k) otherwise
only one processor, that which owns the first slice, would perform the whole work (see
Figure 5.3). In this case the condition is that the processor owns the element (i,1,1), the
index 7 representing the z direction. Also for the integration in the z direction the method
has important advantages. First, each processor loads the necessary data only once in a
step, at the beginning of the procedure, and writes the results again just once in a step, at
the end of the PPM integration. Therefore, the subsequent calculation is completely local.
Second, every processor does the same amount of work both in terms of computation and of

communication. Finally, each processor update a different set of data (a “line” at a time in
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the z direction), hence there is no possibility of using incorrect data (for example quantities
already updated by another processor) and there is no need to stop any process waiting for
other processors to finish their calculation. The only need for such a stop is at the end of

each one dimensional calculation, hence just three times per time step.

9.2.2 N-body Part and Gravity

The parallel implementation for the steps of PM consists of the following steps (Carretti et
al., 1995a; Carretti et al., 1995b).

Density assignment. To implement this part we have divided the cubic grid in the
same way it has been done for the hydrodynamic part, hence in parallel slices of the same
size which are assigned to the PEs with a one to one correspondence.

The particles are assigned to the PE to which their slice is assigned and each processor
computes the density contributions of all its particles to its grid points. In this way the
particles that contribute to the same grid point are treated by the same PE.

A problem is given by the particles that are near the slice bound. These particles
contribute both to the grid points of their slice and to the grid points of the near slice.

To treat these contributions we use an auxiliary grid point plane. In this plane are stored
the contributions of boundary particles to the near slice. At the end of density assignment
the PE of the near slice gets the values of the auxiliary plane and adds them to the proper
grid points. In this way no contribution is lost.

Potential and force computing. To compute the potential and force fields we use the
real-to-complex and complex-to-real 3D Fast Fourier Transform (FFT) of the scilib library
of Cray T3D.

Force interpolation. For the force interpolation we use the same impiementation of
density assignment because it is the inverse operation.

Particle Motion. We update the particle positions and velocities distributing the
particles to the PEs such that each PE has the same number of particles.

The main advantages of this implementation are a total local computing and little remote
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loading and storing. Furthermore the update of the position and the velocity of the particles
is load balanced, as each processor perform exactly the same work. The main drawback is a
possible load unbalancing in the calculation of the density, in correspondence to situation of
strong clustering. In this case many particles are treated by the same processor. This leads
to an overload of work of some PEs which slow down the speed of the whole process. Also
the interpolation of the gravitational forces can slow down. In fact, particles that belongs
to a PE, say PE1, can concentrate in a slice which is assigned to a different PE. Then PE1
must operate on many remote data. Furthermore, due to the high concentration of particles
in the same slice, more processors need to access the same set of data. Since the data can
only be accessed by one PE at a time, the procedure slows down.

As we will show in section 5.3, these are not major problems in the tests that we have
performed, since in each considered case the time spent in calculating the density and the
forces is much less than the time required from the PPM step. However, in situations where
higher concentrations are present the slow down can become important (see Figures 5.5 and
5.6) and the algorithm must be better load balanced.

This can be obtained for the calculation of the density using a dynamic load balancing
(at present in a preliminary test phase, Carretti & Messina, 1997). This method should
guarantee a very good load balancing in all cosmological situations from the large scale
structure study to the galaxy cluster formation.

As in the first implementation, the particle arrays are divided in Npg subarrays and
assigned to the Npg processors. The grid arrays instead are divided with respect to the third
dimension in Npp sheets of N, x N, X N./Npg cells. Further the sheets are divided respect
to the second dimension in N, columns of N, X N./N.4 X N./Npg cells. Each particle
is inside a column. To link the particles to their column we use a linked-list (Hockney
& Eastwood, 1981). Since the particles move through the grid and can cross to another
column, we perform the linked-list each time step. Moreover for the particle mobility the
processor assigned to a particle and the processor assigned to its column can be different.

To have a good load balancing it is necessary that the processors perform their calcula-
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tions on the same number of particles: N,/Npg. If the particle distribution were uniform,
each column should be linked to N,/(N.; X Npg) particles, and to have a good balancing,
each processor should treat N., columns. However the particle distribution can be clus-
tered and a few columns can be linked to great number of particle. Hence it is necessary a
dynamic load balancing.

This is performed as follows. We construct a column lock-array. As the density is
computed, each processor scrolls it until finds an unlocked column, locks it and takes it.
In this way no one else can take the same column. Then the processor distributes all
particles linked to the column and stores their contributions in an auxiliary column. Since
each particle assigns its mass to many grid points, the auxiliary array adds an edge to the
column of density array. For example in the CIC scheme it need to add one element either
to the second and third dimension.

After the density computation, the density array is updated with the values in the
auxiliary column. However the edge belongs to another column. Therefore more processors
can update the same column simultaneously. If this happens some cells could lose some
contributions giving a wrong final result. To avoid this, we use the lock procedure. If a
processor must update a column, it locks the column, updates it and finally unlocks it. If
another processor must update the same column and find it locked, it must wait for it to
be unlocked.

In the following step the processor scrolls again the column list and repeats the previous
operations until all columns are treated. In this way we obtain a dynamic load balancing.
If a processor takes a column with many linked particles, it spends a lot of time to treat
it, and operates on few columns. Instead if a processor takes columns with few particles,
it calculates many columns. If the number of columns per processor N, is high, each
processor treats a number of particles near to the mean (N,/Npg), obtaining a good load

balancing.

5.3 Performances of the Code
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Table 5.1: Time in seconds spent in the basic part of the codes for each timestep for different number

of PEs Column 1: Npp=8 Column 2: Npg=16 Column 3: Npg=32 Column 4: Npp=64

NpE———S NpE:16 NPE:32 NpE:64

Total 67.23 33.82 17.80 9.55

Gravity  1.82 0.93 0.49 0.26
PPM 56.75 28.46 15.01 8.08
N-body  6.97 3.57 1.86 0.97

The memory requirement for a simulation of N, cells and N, particle is about:
M ~ 14X N. + 6 XN, w, (5.7)

where w indicates the word unit: 1 x w = 8 bytes. In fact the hydrodynamical problem
requires the storage of twelve three dimensional vectors, the calculation of the gravitational
field needs two three dimensional vectors and, finally, the N-body code requires six fgh.ree
dimensional vectors. A simulation with N, = N, = 128° requires about 29 Mw (235 Mbytes)
of memory. This is the largest run possible on our scalar machine, an ALPHA 2000 with
two processors of 64 Mw of memory each, which work independently. On the CRAY T3D
instead it is possible to perform simulations a factor two larger. The vectors are distributed
such that each PE stores the same amount of variables and hence uses the same quantity
of memory.

We have run a series of simulations of the same cosmological model, fixing N. = N, =
64°, and varying the number Npy of processors. The model used is that indicated in section
8.1 as BM15. We have analyzed at each number of PEs the total time required to complete
a single step, the fractions of the total time spent to perform the basic calculations, the
scalabilty and the load balancing.

e Time estimates

In Table 5.1 and 5.2 we present the time in seconds and in fractions of the total time
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Table 5.2: As table t1 but in fractions of the total time

NPEZS NPE-_—lﬁ NpE=32 NPE—_—64

Gravity  0.03 0.03 0.03 0.03
PPM 0.84 0.84 0.84 0.85
N-body  0.10 0.11 0.10 0.10

spent to complete the basic parts of a timestep. These estimates have been calculated as
averaged values over 10 timesteps.

We indicate with Gravity the part of the code dedicated to the calculation of the density
of the particles by the CIC scheme and of the gravitational field, using, essentially, two FFT.
With PPM we indicate the procedure of integration of the hydrodynamical equations, while
N-body consists in the interpolation of the gravitational force acting on each particle by
the CIC scheme and in the update of its position and velocity. The PPM part is definitely
the most expensive, accounting for about the 84% of the total time, while the time spent
for the calculation of the gravitational forces is practically negligible. Table 5.2 shows that
the different weight of the various parts of the code is independent from the number of
PEs, even though these result could change depending on the degree of clustering of the
simulation (see the part on the load balancing).

Since our simulation requires about 200 timesteps to be completed we have that the
scalar code needs about 8900 seconds to complete a run, while the 64 PEs simulation
finishes in about 2000 seconds.
¢ Scalabilty

Ideally, the speed of the code should scale linearly with the number of PEs. However,
due to the increasing communication overhead, the speed degrades with the number of
processors. Table 5.3 presents the speed—up of the code when doubling the number of PEs
(for linear scaling this should be equal to two).
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Table 5.3: Speed—up of the code with increasing the number of PEs

8/16 16/32° 32/64

Total 1.99 1.90 1.88
Gravity 1.96 1.90 1.88
PPM 1.99 1.90 1.86
N-body 1.95 1.92 1.92

Figure 5.4 shows the comparison of the real speed—up of the code and the ideal linear
speed—up with increasing the number of PEs. The figure shows that the code is highly
scalable in all of its parts. Notice that, as expected, the scalabilty improves as the number
of PEs decreases (as the communication is less important). In any case the loss of speed is
at most of the 6% for the whole code, of the 7% for the PPM step, of the 4% for the N-body
part and finally of the 6% for the Gravity step. All the maximum slow down correspond to
the step from 32 to 64 PEs. In the case of 64 PEs there in fact, is the maximum distribution
of data, one plane at a processor. Therefore also the communication is maximum and the
speed—up is less than in the other cases.
¢ Load Balancing

In Figure 5.5 we show the time required to complete the various steps of the code as a
function of the redshift, and so of the degree of clustering, of a simulation of a BM15 models
with N. = N, = 256° on 128 PEs. In Figure 5.6 we have plotted the fractional variation of
this time, defined as

t(z) —t;

At = = (5.8)

where £(z) is the time required to complete a certain procedure at redshift z (averaged over
the three timesteps around z) and ¢; is the same quantity at the beginning of the simulation.
Due to the optimal load balancing between the processors the computational time for

the PPM part depends little from the degree of clustering. The maximum A¢, is, in fact,
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of about the 5%. The load balancing instead is not so good for the Gravity and for the
N-body parts. The calculation of the density on the computational mesh depend on the
degree of clustering. In Figure 5.6 we see that the time spent to calculate the density at the
end of the simulation becomes more than two times that at the beginning. This is due to
the fact that in overdense regions more and more particles contribute to the density of the
same cells. Therefore the PE which has to calculate the density of the cells in overdense
regions has to work more than on average and much more than a PE which operates in an
underdense zone.

Also the N-body calculation tend to slow down with the degree of clustering. This trend
is less strong than for the Gravity part and is due to the forces interpolation step.

In any case, in our tests the N-body and the Gravity computational times are always
much less than the PPM time and so also much less than the total time required to complete
a single step, as shown in the first panel of Figure 5.5. For this reason at the moment we
have not included further optimization to the parallel implementation of this parts, leaving

this task to a further version of the code.
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6 One Dimensional Scale Free Mod-

els

As a first application of our cosmological code we have chosen to perform some high-
resolution one dimensional simulations. A one dimensional analysis, in fact, is the only
possibility of strongly increasing (a factor of ten or more) the resolution of numerical simu-
lations. As we have already observed, the limited resolution reachable in three—dimensional
codes is a major problem of cosmological simulations. In fact, if one wants to consider
all the phenomena that can influence the structures evolution, it would be necessary to
have the capability of spanning an enormous dynamical range. This would require at least
10° computational cells per dimension, while present day codes can work at most with
10® cells. Therefore part of the physical processes that could affect the evolution of the
cosmological structures cannot be accurately treated or even included in the simulations.
With the following series of one—dimensional simulations we want to explore the differences
in the statistical properties of the one-dimensional clustering of baryonic and dark matter
components in an expanding background when a large dynamical range is achievable. We
analyze, in particular, the effect of pressure forces and adiabatic heating in the dynamics of
the gas. This can be used as guideline for any following three dimensional lower-resolution
development.

Since the simulations are one—dimensional it is meaningless to directly relate their
scales with cosmological physical scales associated with some particular cosmological model.

Therefore the only possible choice is that of scale—free models. This means that the back-

120
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ground cosmology should have no characteristic length or time scales. Therefore we consider
a flat universe, with zero cosmological constant. Furthermore, in order to avoid the intro-
duction of some characteristic length scales, the initial spectrum of perturbation must have

a power law form:

P(k) = Ak™. (6.1)

In these models the evolution of the collisionless component is expected to be self-similar.
It is clear that the requirements for self-similar gravitational clustering are idealizations
which cannot apply rigorously to the real universe. All the cosmological models present
fluctuation spectra with some specific scales. For example the evolved power spectrum
for a CDM model changes slope at a scale ~ 12(QAh)"*Mpc. Nevertheless a power law
approximation to the local slope of the spectrum is a reasonable approximation for many
cosmological models. In addition scale free models allows to understand how the formation
of cosmological structures depends on the basic physical processes considered and on the

initial spectral index.

6.1 Numerical Simulations

We consider a grid of comoving length L, whose physical size grows according to the ex-
pansion parameter a. We divide our grid into 2'® nodes and adopt periodic boundary
conditions. The number of particles used in the N-body part of the code is 21*. We assume
‘a flat universe (2 = 1) in which the BM component accounts for 10% of the total mass
(5, = 0.1) and the rest is in the form of DM (Q,,, = 0.9). The evolution of the system
is simulated using a one-dimensional version of our PPM-+PM code. The initial conditions
are generated following the same procedure described in section 4.5

In the first stages of the evolution we assume that both the DM and the BM can be
treated as collisionless particles. Then we use only the N-body code for following the
behaviour of both components. When a = 1072, i.e. just after the recombination epoch,
we start to evolve separately the two components. At this time the gas quantities are fixed

according the following prescriptions. The temperature of the BM is simply computed by
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using the polytropic equation of state under the assumption of an adiabatic evolution up to
this time. This is a reasonable assumption since the amplitude of fluctuations in the first
part of the simulation is too small to produce shocks and we neglect other possible heating
and cooling processes. The gas velocity is computed from the gravitational potential by
using linear theory.

As already pointed out, our simulations are completely scale—free: the final amplitude
of the fluctuations depends only on the scale R, relative to which the initial normalization
is fixed. In order to make more clear the implications of these results at the cosmological
scales, we have fixed the present time value of R, equal to 8 A~! Mpc, corresponding to the
scale where observationally the variance is found to be unity. The length of the whole box

has been chosen such that R, is L/50. Consequently L = 400 ~~! Mpc.

6.2 Results

We consider three different models with primordial spectral index n = —1, 1, 3: in three
dimensions, these would correspond to n = —3, —1, 1 (the so—called Harrison—-Zel’dovich
spectrum) respectively, covering in this way the range of values usually adopted for cos-
mological models. For each model we run three simulations with different realizations of
the initial conditions in order to obtain more accurate estimates of the relevant quantities.
Here we consider various statistical tests, such as the distribution of density perturbations,
the number of peaks and the evolution of the density power—spectrum. We also discuss

thermodynamical quantities and their correlations.

6.3 Distribution of Density Perturbations

In Figures 6.1, 6.2 and 6.3 we show the behaviour of §,,, and §,,, at final time a = 1
in a realization for each model n = —1,1, 3, respectively. The results refer to a quarter of
the whole grid. Different runs of the same model show a very similar qualitative behaviour.

The density fluctuations are computed with respect to the mean value of the corresponding
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Figure 6.1: The density fluctuation distribution at the final time a = 1 for the model » = —1. The
upper and lower panels refer to the baryonic and dark matter components, respectively. Only about

a quarter of the whole grid is displayed.
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component. As expected, increasing the spectral index n, we have less power on large
scales and, consequently, density peaks are more frequent, but they have a smaller density
contrast, while underdense regions are less extended.

In all cases there is a correspondence between the distribution of DM and BM. However,
the baryonic component appears in general more clumped than the dark counterpart which
stays more spread with small substructures. This behaviour is enhanced as we decrease
the spectral index. In particular, in the model with n = —1, the collisionless matter is
distributed over a region which can be several times larger than that corresponding to the
BM peak. In these regions, the baryonic contribution to the local gravitational field starts
to be comparable to that of the dark component.

The analysis of results at different epochs (not shown) points out the tendency to a
continuous merging of substructures which produces higher peaks and larger voids. This
behaviour is more evident in simulations with more power on large scales. The phenomenon
is less pronounced for DM: this is due to the absence of dissipation for the collisionless com-
ponent. On the contrary the conversion of kinetic into thermal energy for the baryonic
counterpart leads to the production of more concentrated structures, even if cooling pro-
cesses are not included.

A quantitative estimate of the spatial correspondence between the BM and DM density
distributions can be obtained studying the cross—correlation coefficient (see e.g. Coles,

Melott & Shandarin 1993)

(B)

where ¢, (R) and §,,,(R) are respectively the density contrasts in the BM and DM compo-
nents, smoothed with a Gaussian window of radius R and o; = (§2)'/? are the corresponding
r.m.s.. The mean is computed over all grid-points. Definition (6.2) implies | § |< 1. The
limit § = +1 corresponds to é,,, = Cé,,,, where C is a constant: in this case there is a
perfect agreement in the positions of the structures in the two components. In Figure 6.4,
the cross—correlation coefficient S is plotted as a function of the Gaussian filtering radius

R for the three models when a = 0.5 (dotted lines) and a = 1 (solid lines). The error
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bars, shown for clarity only at the final time, represent the scatter r.m.s. between the three
different realizations of each model. At earlier times these errors are found to be always
smaller. As expected, decreasing the filtering radius and/or allowing for a longer evolution,
the differences between the two components increase and, consequently, the coefficient §
decreases. This is particularly true for the model with n = —1, where, for R < 1073L,
the cross—correlation is even less than 0.5. On the contrary, a value of § close to unity is
obtained in the simulations with n = 3, even when a small filtering radius is adopted.

The study of high—density regions in BM is particularly interesting because they are
expected to be related to the positions where galaxy formation occurs. We define as peaks
all the grid—points having § > 0 which are local maxima of the density fluctuation field. In
Figure 6.5 we show, at two different times, the number of peaks N,; having a height greater
than a given threshold §, both for BM (dotted lines) and DM (solid lines) components. The
comparison between the models with different spectral indices shows a similar behaviour.
The number of high peaks in BM is always larger than that of DM at both considered times.
The time evolution produces a slight flattening of all the curves denoting the tendency to
merge of the smaller peaks into larger structures. Note that the height of the largest
baryonic peaks at the final time is slightly smaller than at @ = 0.5: the formation of shocks

can change in fact the direction of the velocity leading to a matter outflow from the peak.

6.4 Thermodynamical Quantities

In Figures 6.6 and 6.7 we show the behaviour of the baryonic quantities v, 7' and o,,, for
the intermediate case n = 1 at a = 0.5 and a = 1, respectively. The results refer to the
same realization shown in Figures 6.1-6.3. In absence of heating from external sources and
cooling processes, we notice the presence of regions where the temperature is as high as 107
K already at a = 0.5: they are in proximity of the highest baryonic peaks. In the figure it is
easy to pick out the positions of the shocks produced during the collapse and characterized
by very steep gradients in the velocity and the temperature. Comparing the results at the

two different times, it is possible to notice the enlargement of high temperature regions, due



n

128 § 6. One Dimensional Scale Free Models

_\ T 7T ] T 177 ’ T T 1 1T [——I T T 7T , T 1T T T T 1T I'll T l_._l T 1T 71 I T 1 1T 1 I T 1 7T l T T I_

1 - - L
0.8 [ 1 ]
o6 L T T .
04l T T .
0.2 - n=—1 1T n=1 T n=3 ]
O —l 111 ] L 11 ’ 1t 1.1 ] 11 l_‘—l i1 [ | I T | I § | l i L1 !__l 111 l 111 1 I It 1 1 | L1 l-
-4 -3 -2 -1 0 -3 -2 -1 0 -3 -2 -1 0

log R/L log R/L log R/L

Figure 6.4: The cross—correlation coefficient S as a function of the Gaussian filtering radius R (in
units of the whole grid L) at the time a = 0.5 (dotted line) and a = 1 (solid line) for the different
models: n = —1 (left), n = 1 (centre) and n = 3 (right). Error bars (displayed for clarity only at

a = 1) represent the r.m.s. scatter between the different simulations.
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to the propagation of the shock from high density peaks.

The behaviour of the baryonic quantities for the model n = —1 is shown in Figure
6.8 only for @ = 1. Due to the presence of more power on large scales, the structures
are surrounded by large underdense cold regions. The highest temperatures in the plotted
region are of the same order as in the case n = 1 but values as high as 10° K can be reached.
In the lower panel it is possible to notice some overdensities at very low temperatures: they
correspond to regions which are still adiabatically collapsing.

Figure 6.9 shows the corresponding results for the model with n = 3, again at the final
time a = 1. The highest temperatures obtained in this case are at least one order smaller
than in the previous cases. This is an effect of the initial large power at small scales.
The structures are in fact produced earlier than in the other two models and, due to the
shallower potential wells, shocks are weaker and the final temperatures are lower.

The temperature distribution in the different models is better illustrated by the cumu-
lative volume filling factor and mass fraction F' as a function of the temperature T'. Figure
6.10 shows the behaviour of these quantities at @ = 1 as obtained by summing over the
contribution of all three realizations for each model. We notice that the fraction of matter
at high temperature (e.g. T > 10° K) increases as we decrease the spectral index: it is
approximately 56% and 47% for n = —1 and n = 1, respectively, while less than 1% of
grid—points has such a high temperature in the n = 3 model. The comparison of the cu-
mulative volume filling factor (solid lines) with the mass fraction (dotted lines) strengthens
our previous comments. In particular, in the case n = —1, due to the dominance of empty
regions, more than 90% of the volume has 7' < 10~2? K. On the contrary, the two cumula-
tive functions are more similar in the model with n = 3, where structures are smaller and
more uniformly distributed. These results confirm that, even in absence of other dissipative
or heating effects (viscosity, thermal conduction, starbursts, etc.), it is possible to obtain
in one—dimensional cosmological simulations temperatures as high as those seen in X-ray
observations.

Figure 6.11 shows contour plots for the number of cells characterized by a given tempe-
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rature and baryonic density. In the case n = 1 and n = 3 we can recognize three distinct
regimes: high temperature overdense regions, shocked regions with lower density and cold
underdense regions. The result for n = —1 shows that at @ = 1 there is a large amount of
matter which is still in the adiabatic collapse phase and consequently has a large overden-
sity but low temperature. Note also that, due to the small number of shocks and their late

formation, low density shocked matter is almost absent in this model.

6.5 Power—spectrum and Bias

In order to study the time evolution of clustering at different scales, we have computed
the power—spectrum P(k). If the density fluctuations remain linear, P(k) is expected to
grow as a®. In Figure 6.12 we show the behaviour of the power—spectrum both for BM and
DM for the three models at different times. The units of the wavenumbers k are such that
k = 1 corresponds to the fundamental wavelength of the computational grid. We notice
that the time evolution for the power—spectra of both DM and BM components is similar.
We see that at small wavenumbers (i.e. at large scales) the growth of the perturbations is
in good agreement with linear theory. At larger wavenumbers deviations from linear theory
are found, as expected. In particular for the baryonic component we can notice that at the
final time the small-scale power decreases with respect to the previous times. Moreover
the amplitude of P(k) for the BM is slightly smaller than that for the DM. Once more
this is due to the shock action which reduces the height of peaks (as seen in Figure 6.5)
and smooths out the smallest overdensities. This effect is in fact not present in the DM
component where shocks do not form.

In addition, we notice that there is a faster evolution for the models with n = —1: the
non-linear growth produces the coupling of high— and low—k modes. In the model with
n = 3, where initially the large-scale power is small, this effect does not appear. The case
n =1 is intermediate. Then, our simulations, even if starting with a power-law spectrum,
seem to exclude the possibility of having self-similar evolution when large scale power is

present. Only the model with n = 3 presents a self-similar evolution in the DM at least for
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logk < 2.
An interesting way to measure the relative growth of the perturbations is the bias factor
b, defined as

() = 22, (6.9)

where o2(R) is the variance of the density fluctuation field in the i—component, smoothed
using a Gaussian window of radius R. Figure 6.13 shows the behaviour of b for the three
models at a = 0.5 (dotted lines) and a = 1 (solid lines). The scatter r.m.s. between
the different realizations of each model is also plotted only at the final time. The BM
appears more clustered than the DM at small scales while at larger scales they have the
same clustering properties. The largest bias factor is found in the model n = —1 with
values higher than 1.4 at scales smaller than 1072 L. It is interesting to compare the time
evolution of the bias factor at small (10~*L) and intermediate scales (10~2L). The formation
of shocks halts the collapse of baryonic peaks and this produces a decrease at small scales
in the values of b in the n = 1 and n = 3 models. On the contrary, in the n = —1 model,
b increases at all scales. This different behaviour is due to the presence of deeper potential
wells than in the other models so that pressure forces are not able to stop completely the

matter infall. In this case case shocks only reduce the growth of b at small scales.

6.6 Discussion

As a general consideration which applies to all models we can say that baryonic matter is
more clumped than dark matter and a single baryonic peak is usually embedded in many
DM peaks. This property is well described by the values of the bias factor b = oym/TDN
which are always larger than unity. The formation and expansion of shocks from high
density peaks tends to limit or even reduce (for n = 1, 3) the time growth of b but it never
produces an antibias. We expect that cooling, if included, would enhance the concentrations
of baryons with respect to dark matter.

In the BM component the formation of shocks has important consequences on the time

evolution of density fluctuations: the pressure can become high enough to stop the grav-
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itationally driven infall of matter. In some cases this can even produce a diffusion of the
central peak. Moreover shock propagation smears out small fluctuations.

The various models characterized by different initial power—spectra show many differ-
ences in the evolution and in the final distribution of the relevant physical quantities. When
the small wavelengths dominate the spectra, collapse of structures occurs earlier and the
distribution of the two components is more similar. Shocks are weaker than in the other
models, but they have more time for expanding and at the end a large fraction of the volume
is reheated. In this case, however, it is more difficult to reach temperatures as high as those
seen in X-ray clusters.

Temperatures higher than 10® K are reached for the spectrum with n = —1. This is
the model where the largest density contrasts are produced and, as a consequence, strong
shocks can form. However structures originate later than in the other models and at the
final time about 40% of the mass is still collapsing adiabatically. The existence of these cold
peaks together with the presence of large underdense regions implies that, in this model,
most of the volume is at very low temperature.

The different initial conditions lead also to a different evolution of the power—spectrum.
In the » = —1 model it grows rapidly on all the scales until the non—linear phase is reached
(a(t) ~ 0.5). In the other models the growth is much slower, in particular on small scales,
where non-linearity is reéched since very early evolutionary stages. In all cases we notice
that, at the final time, because of the expansion of shocks, the baryonic small-scale power
decreases with respect to a = 0.5. Moreover a self-similar evolution of the power—spectrum
seems to be excluded for both components, with the only exception of the DM in the case

n = 3 and at large scales (k < 100).
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7 Cluster of Galaxies

Galaxy clusters are the most extended gravitationally bound systems of the Universe. In
spite of their size, they are simple objects: their dynamics is governed essentially by the bal-
ance between gravitational and pressure forces, controlled by shock heating and adiabatic
compression. Other processes, like radiative cooling in cluster cores or population III stars
heating, may play a significant role only in some aspects of their history. The evolution
and present day properties of clusters are very sensitive to the fundamental cosmological
parameters and to the initial power spectrum. Therefore they provide an ideal tool to study
the formation of the structures of the universe. Analytic techniques, as the Press-Schechter
(1974) formalism, and numerical simulations, based on the Zel’dovich (1970) approximation
or on more accurate N-body codes, have been extensively used to put strong constraints on
the cosmological scenarios by comparing the model predictions to the observed abundances
and clustering properties (see e.g. Borgani et al. 1997 and references therein). Further
constraints can be obtained by the X-ray observations of galaxy clusters, which have been
recently greatly improved, and their comparison with the results of hydrodynamical numer-
ical simulations.

This chapter is intended to give an overview of the fundamental properties of galaxy
clusters, introductive to the analysis that will be developed in chapter 8. For an exhaustive

review of these subjects we refer to Sarazin (1988).
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7.1 Optical Properties of Galaxy Clusters

Optically, galaxy clusters appear as large concentration of galaxies in a small volume of
radius of about 1 Mpc. A first classification of clusters is based on their richness that is a
measure of the number of galaxies associated to the cluster. Abell (1958) has defined the
richness as the number of galaxies within two magnitudes of the third brightest galaxy in
the cluster which are contained within a cylinder of radius R4 = 1.5h™! Mpc centered on the
cluster itself. Clusters are also classified according to their morphological characteristic and
goes from regular to irregular systems. The former present a smooth galaxy distribution
with a concentrated core and appear to be dynamically more evolved and relaxed than the
latter.

The velocity distribution of cluster galaxies is conventionally described by the dispersion

o, of radial velocities about the mean
o = ((v, — (vr>)2>1/2 s (1.1)

where v, is the radial velocity, which is the component of galaxy velocity along the line
of sight. The dispersion completely characterize the radial velocity distribution if this is
Gaussian

flv.)dv, x exp(—(v, — (v,))?/20%)dv, , (7.2)

where f(v,)dv, is the probability that a galaxy has radial velocity between v, and v, +
dv,. The Gaussian distribution is obtained for a system of objects in thermodynamical
equilibrium and is a consistent fit to the observed distribution function for a number of
clusters. However, in many clusters the velocity dispersion generally decreases with the
distance from the centre. Furthermore, the velocity dispersion can vary substantially in the
different clumps of an irregular cluster. These results suggest that galaxy clusters are at
least partially relaxed system but not fully relaxed to thermodynamic equilibrium.

Several models have been proposed to describe the spatial distribution of galaxies in a
cluster. Among the simplest there are the isothermal models, for which a Gaussian radial

velocity distribution can be assumed. If we also assume that the velocity distribution is
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isotropic and independent from position, that the galaxy distribution is stationary and that

the galaxy positions are uncorrelated, the galaxy phase space density f(r,v) becomes:

flr,v) = n(r)(27rc?) % exp [—l <—1—}—>2} , (7.3)

2 \ o,
where n(r) is the spatial number density of galaxies at a distance r from the cluster centre.
King (1962) has shown that the following function is a reasonable approximation to the

inner portions of an isothermal distribution:
n(r) o [1+(r/Re)’]7%? (7.4)

where R, ~ 0.50h~! Mpc is the typical core radius.

7.2 X-ray Properties of Galaxy Clusters

Clusters are strong X-ray emitters. The emission is mainly due to hot and diffuse intra—
cluster gas whose mass accounts for several time that of the stars (My,, ~ 5 — TM,tar). The
gas is at a temperature T'x ~ 107-10% K, has a typical central density of nx(0) ~ 1073cm ™3,
and radiates by thermal bremsstrahlung emission.

For very hot gas the X—ray spectrum of galaxy clusters is dominated by the continuum
and the only detected strong feature is the emission line due to highly ionized iron. This
is actually a blend of lines from Fet?* and Fet?5 and weaker lines from nickel ions. These
lines are mainly at photon energy between 6.5 and 7 keV and show that the intracluster
medium contains at least a significant portion of processed gas. This fact is also confirmed
by the detection at lower temperatures of some heavy elements emission lines (O, Si, S, Ar,
Ca). The heavy elements have been processed in the cluster galaxies and ejected into the
intercluster medium through supernova driven winds or outflows.

In the approximation that the hot emitting gas has primordial cémposition, X =0.76,
Y = 0.24, and assuming complete ionization, the emissivity due to thermal bremsstrahlung

is (Spitzer 1978; Rybicky & Lightman 1979):

€, = 6.83x107%2%n,n,T? x
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g, T,7) e /¥ erg 7' cm™ Hz ™', (7.5)

where g(v,T,Z) is the Gaunt factor which corrects for quantum mechanical and distant
collisions effects and is a slowly varying function of frequency and temperature (Karzas &
Latter 1981; Kellog 1975), Z is the charge number, n; and n, are the ion and the electron
density, respectively. If the intracluster gas is all at a single temperature, then equation
(7.5) indicates that the X-ray spectrum should be close to an exponential of the frequency.
The observed X-ray spectra are generally fitted fairly well by this equation (Sarazin 1988),
with gas temperatures between 2 x 107 and 10%K.

Assuming that the gas, responding to the same gravitational potential as the cluster
galaxies, has a temperature such that the typical atomic velocity is close to the velocity of

galaxies, we have that

KgT
N (7.6)
g
Thus
7 g ?
T ~ 7x107{————) K 7
0 <1000km/s> ’ (7.7)

which is in good agreement with the spectral determination.

The bolometric emissivity of the intracluster gas, using a unit Gaunt factor, is equal to

co
€bol = / dve,
0

= 1.42x 107*"Z%n;n, T *erg s™* cm™2 . (7.8)

Then the energy radiated within a given energy band E; - E, can be expressed as

€band = fband(T)ebola (79)
where
B2 /ET
Jrana :/ dng(n)e™". (7.10)
By/kT

The band limited X-ray emission L, from a given volume is computed integrating the

previous expression over the relevant volume V.

L,=125%x10"%"m>? 0’ Tl/szand T) dV erg s™h. 7.11
b v BM
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7.3 Cluster Mass

The mass of a cluster of galaxies and its distribution inside it, give many fundamental
information about the properties of this system. Several techniques have been developed in
order to estimate these quantities. The most straightforward assumes that all the matter
is luminous and condensed in the cluster galaxies. Thus the total mass of the cluster is
calculated by simply summing the contribution of each element.

A more general technique is based on the assumption that clusters are bound self-
gravitating systems. This assumption is reasonable since, if they were not gravitationally
bound, they would disperse rather quickly (~ 10° years). A first limit on the cluster mass
can be obtained by the binding condition:

E=T+W <0 (7.12)

where E, T and W are the total, kinetic and gravitational energy of the cluster respectively:

T = %Zmﬂf, (7.13)
1 Gm;m;
W= o3 (7.14)
1j

i#]
where the sum is over all the particles in a cluster, m; are the particles mass, v; their velocity

and r;; is the separation between the particles 7 and j. A more stringent mass limit results

assuming a stationary configuration. In this case the Virial theorem gives:
W = -2T. (7.15)
The total cluster mass is M;,: = 5 m;. Defining the mass weighted velocity dispersion

2
2 2 My,
= =1 7.16
(v ) M. ( )

and the gravitational radius

AV
igj Y

-1
Re = 2M2, (Z M) : (7.17)
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the virial theorem gives
Rg<v2>
o

If now we assume that mass and galaxies have the same spatial distribution we can estimate

Mtot -

(7.18)

Rg and (v?) from the galaxies data. In the further assumption that the positions and the
orientation of the velocity vectors of the galaxies are uncorrelated we have that (v?) = 302,

where o, is the mass weighted radial velocity dispersion, and

~1
Re = nMZ, (Z %ﬁ) : (7.19)

i M
where b;; is the projected separation of two galaxies 7 and j. Typical determinations of
these parameters for rich clusters give o? ~ 1000 Km/s and Rg ~ 1 Mpec.

The resulting cluster mass estimate is

. R
My, = 7.0 10“M®( 7 G

2
~ 10"®M, . 2
~ \ 1000 km/s> (Mpc) 07 Mo (7.20)

The mass calculation obtained by the virial theorem give masses much larger than those
determined by summing the contributions of the various galaxies. This is clear when these
estimates are compared with the corresponding total visual luminosity. Usually this com-
parison is quantified calculating the mass to light ratio of a system in solar units. We
typically obtain that AM/L ~ 300hM;/L,. The mass to light ratio found for luminous
portions of galaxies corresponds to M/L ~ (1 — 12)AM/Ly. Therefore, at most the 10%
of the mass in clusters can be accounted for by material within the luminous portion of
galaxies. Even considering the intracluster gas, this is not sufficient to explain these mass
estimates. Then a large part of the cluster mass must be “dark”. This is the so called
missing mass problem and has been one of the first and strongest evidences of the presence
in the universe of a dark collisionless component, which could dominate the total energy
density.

The virial theorem mass estimates are based on the critical assumption that mass and
galaxies have the same distribution and the same kinematical properties. This in general

might not be true and the estimates could be seriously affected by this bias. Furthermore
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the estimates can be contaminated by several other problems related to the presence of
substructure inside the cluster, to the effects of projections, to contamination by background
and foreground galaxies and to anisotropies in velocity distribution of galaxies.

A different mass estimate method is based on the observations of the intracluster X-ray
emitting gas. In general the elastic collision times for ions and electrons in the intracluster
gas are much shorter than the time scale for heating and cooling or for any dynamical
process and the gas can be treated as a fluid. Furthermore the time required for a sound
wave to cross the cluster, ~ 6 » 10® years, is short with respect to the age of the cluster

(10*°) years. Thus the gas can be considered in hydrostatic equilibrium, that is
Vp - —ggV@ , (721)

where p and g, are the pressure and the density of the gas. If we approximate the cluster

as being spherically symmetric, equation (7.21) can be written as

1 dP d®
- - 7.22
0y dr dr ( )
From equation (7.22) we obtain
M(r) = _ KTy(r) [dlogo,(r) + dlogTy(r) ’ (7.23)

Gum, dlogr dlogr

where Ty(r) and p,(r) are the gas radial density profiles. This method of estimating the
cluster mass has several advantages with respect to the virial theorem determination (or
any other method which uses galaxies as reference objects). First, the gas is a collisional
fluid and the particle velociti:s are isotropically distributed. Cluster galaxies, instead,
are collisionless and uncertainties in the velocity anisotropy can significantly affect mass
determinations. Second, this method gives the mass as a function of the radius, rather than
the total mass alone. Third, the statistical accuracy of this method is not limited by the
number of galaxies in the cluster. Finally, there is no contamination problem. On the other
hand this method requires the knowledge of the radial profiles of density and temperature,

which are very difficult to determine observationally and must be properly modeled.
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The simplest distribution of gas temperature is the isothermal distribution with constant
temperature T;. The gas can be isothermal if thermal conduction is sufficiently rapid or if
the gas is introduced in the cluster with a uniform temperature and this remains unchanged

since that time. In this case equation (7.22) can be written as:

dlng, _ pm, d®

- . 7.2
dr K5T, dr (7.24)

Assuming a gravitational potential described by the King’s isothermal spherical model, the

resulting density distribution is (Cavaliere & Fusco Femiano, 1976)

04(7) = 0g(0)[1 + (r/R.)*] %2 (7.25)

where R, is the core radius and

olum, o T
= =2 — 076 . = 7.2
b= %, (103km/s> (108K) (7.26)

where p = 0.63 is fixed assuming solar abundances. The parameter 8 measures the ratio

between the specific kinetic energy of galaxies and the specific thermal energy of particles
in the gas.

This model has the advantage of giving an analytic gas distribution and analytic distri-
bution functions of associated quantities which can be directly compared to the observations.
For example we can derive the X-ray surface brightness as a function of the projected radius

b as

S(r) = So[1+ (b/R.)}-%+1/2 (7.27)

The average value of § determined by fits of X-ray surface brightness of a large number of

clusters was found to be (Jones & Forman 1982):
(Bie) ~ 0.65. (7.28)

Thus the gas density varies on average as

0q(r) o< [L+(r/Rc)’]™ (7.29)
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According to this estimate of 3, the gas density fall off less rapidly with radius than galaxy
density: thus, the gas distribution is expected to be more extended than that of galaxies
which are concentrated in the inner parts of the cluster.

The value of § can be calculated also by equation (7.26), using the X-ray spectral
temperatures and the galaxy velocity dispersions of clusters. This kind of estimates give on

average
(ﬂspec> ~ 1'2 ~ 2<ﬁf1.t> . (730)

A number of suggestions have been made as the origin of this 8 discrepancy. First the gas
may not be isothermal. However it has been shown (Mushotzky 1984) that the same prob-
lem occurs also for other thermal distributions. Second, it may be that o, does not represent
accurately the energy per unit mass of the galaxies. This could be due to anisotropies in the
galaxy velocity distribution. Detailed studies (see Kent & Sargent 1983) have shown that a
more accurate description of the velocity field reduces the discrepancy, even though it still
remains significant. Third, there could be contamination effects of background galaxies,
which could affect the cluster galaxy velocity dispersion. This could be affected also by
subclustering or non-virialization of the cluster. All of these effects could lead to overesti-
mate the actual velocity dispersion and thus to overestimate §,,..;. Finally, as pointed out
by Navarro Frenk & White (1995), also complex non linear events, like the merging process
between different structures, can lead to a high determination of the value of f,,.:.

If the gas distribution cannot be considered isothermal, but the gas is well-mixed, then
the entropy per atom in the gas is constant. In this case the pressure and the density are
related by the equation p x o7, where ¥ = 5/3 for a monoatomic ideal gas. While this
value holds for a gas strictly adiabatic, the previous equation is usually used to parametrize
the thermal distribution of the intracluster gas, with v being a proper fitting parameter.
These kind of models are called polytropic. If ¥ > 5/3 the system is convectively unstable.
Thus hydrostatic polytropic models must have 1 < 4 < 5/3, the lower limit representing

the isothermal distribution. The temperature and the density are then related by

T 1/y-1
& _ (_9) , (7.31)
QgO TgO
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where gy and T,o are the central values of the density and temperature respectively. Ob-

serving that

v K
yYrp _ 7 2B VT, , (7.32)
04 v —1pum,

then the hydrostatic equilibrium condition (7.22) can be rewritten as

K
T _TByr, = ~V¢ (7.33)
v —1pm,
so that
I, [ ¢(r)]
= 1+ (a—-1)|1 - —= 7.34
R SICEEN (B (7.34)

where ¢q is the central value of the gravitational potential. In equation 5.34 Ty and ¢, are

related by

(v =1) pmyéo -
TQO - 5 KB(]. — Ot) ) (7.30)

a being an appropriate constant.

The gravitational potential, assuming spherical symmetry, can be again modeled by the
King’s approximation and the density and the temperature can be obtained as analytic
functions of the radius. However in this case the two functions are complex enough that no
other derived quantities are analytic, as instead happens for the isothermal model.

More general and complex methods to determine cluster masses based on the X-ray
properties of the intracluster gas have been developed by various authors. For an wide
review we refer to Sarazin (1988).

The last mass estimate method that we here describe is based on gravitational lensing.
This method present many advantages over the X-ray mass estimate, first that it does not
require any assumption on the mass distribution or on the dynamical state of the cluster.
The lensing effect can be divided into two main regimes depending on the lens configuration.
The strong lensing regime corresponds to a large magnification and strong distortion of the
light coming from distant galaxies by foreground clusters. The weak lensingregime produces
only one image which experiences only a weak distortion of its shape. The intermediate

case is known as arclet regime. The strong lensing regime constrains the mass enclosed
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within the “Einstein radius” 75 defined by equation (7.36), while weak lensing determines
the distribution of mass in the outer regions.

The simplest example of gravitational lensing mass estimate is that in which we have
strong lensing due to a spherical symmetric lensing cluster, with the system observer—lens—

source aligned along the line of sight. In this case the lens mass is given by

M = i3, , (7.36)
where
¢t d
_ ; 7.37
© T mGdd,’ (7-37)

d,, d; and d;, being the distance to the source, the distance to the lens and the distance
between the lens and the source, respectively.

The main drawback of the lensing method is that it requires an accurate determination
of the redshift of distant objects which is generally difficult to obtain. This can introduce
large uncertainties in the mass estimate.

The comparison between the determinations of clusters mass obtained with different
methods shows a systematic discrepancy between the gravitational lenses and the X-ray
estimates (Fahlman et al., 1994; Miralda-Escudé & Babul, 1995), the latter being generally
lower than the former. The gravitational lenses estimates are instead in good agreement
with the virial calculations.

A common result of all the different methods of calculating the cluster mass is that a
major fraction of it is in the form of dark collisionless matter. Numerical simulations like
those of Evrard (1990) and Navarro, Frenk & White (1995) have allowed the comparison
between the intracluster gas and the dark matter distributions. In both works the cos-
mological framework is that of a flat, CDM dominated universe with a baryonic fraction
Qg = 0.1. The results show that the dark matter and the gas density profiles are very
similar. However the intracluster gas is more extended than the dark matter and inside
the cluster radius the gas fraction is always less than its cosmological average value. This
segregation between dark matter and gas is due to the different behaviour of the two com-

ponents in the merging process. Shocks prevent colliding gas to interpenetrate, with a net
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transfer of energy and angular momentum from the dark matter to the gas. Dark matter
can then reach a more concentrated stable configuration. As a result, the gas density in the
core is found to be only about 0.07 times that of the dark matter, whereas a value of 0.11
would be expected if the two distributions were identical.

David, Jones & Forman (1995) have performed an analysis of the distribution of the
various components of galaxy clusters based on the ROSAT data. The X-ray emitting gas
comes out to be the most extended mass component in clusters, the galaxies are the most
centrally concentrated and the dark matter is intermediate between the two. However the
estimated gas mass fractions is much higher than that found with numerical simulations:
about 15-30% of the total mass. This determination is in agreement with several other
studies (White et al., 1993; Briel, Henry & Boehringer, 1992; White & Fabian, 1995; Elbaz,
Arnaud & Boehringer 1995; Markevitch et al. 1996) which suggest that the baryon fraction
could be much higher than the standard value predicted by the cosmological nucleosynthesis
model. If we assume that dark matter is distributed similarly to the X-ray gas and take the

estimate of the cluster mean baryonic fraction obtained by the collection of data of White ;

& Fabian (1995), we have

Q
2 = 0145993(/0.5), (7.38)

which, for a Q = 1, A = 0.5 model, is incompatible with the nucleosynthesis estimates.
This is known as the baryon catastrophe.

There are various ways out of this problem. The most obvious are either that Qg is
less than one (as in a open model or in flat A model), or that A < 0.4, but such value
of the Hubble constant is lower than that commonly accepted. Another possibility is that
the X-ray gas is more concentrated than the dark matter, but the mechanisms that could
drive this process is not obvious. White et al. (1993) have shown that gravitational and
dissipative effects cannot account for such baryon overdensity. On the other hand, cooling
flows, which could lead to high baryon condensations, act only in the most inner parts
of the clusters. A different solution is that the gas density has been overestimated. This

could be reasonable if the gas were highly clumped as the X-ray luminosity per unit mass
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would then increase. However no model has been proposed yet to explain such a clumpy
configuration of the gas. A further possibility is that the total mass of the cluster has been
underestimated. This solution seems to be strengthened from the recent estimates of the
cluster masses via gravitational lensing (Miralda Escudé & Babul, 1995; Wu & Fang, 1996)
which are systematically higher than the corresponding estimates obtained by the X-ray
analysis.

A final solution is that the estimates of the standard nucleosynthesis model are not

correct. This possibility will be discussed in the next chapter.

7.4 X-ray Luminosity and Temperature Functions

The properties of galaxy clusters give many information about the nature of the mechanisms
responsible for the formation of the large-scale structure of the universe. Particularly
significant is the study of the abundance, i.e. the comoving number density of clusters as
a function of their X-ray luminosity and temperature. Furthermore, it is interesting to
analyze the clusters X-ray luminosity-temperature function, which describes the relation
between these two quantities.

The abundances are extremely sensitive to the fundamental cosmological parameters.
In fact, according to the gravitational instability scenario, galaxy clusters form where the
density contrast § is sufficiently large that the related matter separates from the Hubble
expansion and collapse. Therefore the abundance of collapsed objects depends on the
amplitude of the density perturbations, that is statistically related to the power spectrum
P(k). Since the amplitude decreases with increasing scale, the bdensity contrast required
to form large objects, such as galaxy clusters, is a rare event on the tail of the statistical
distribution. Then small changes in P(k) leads to large differences in the cluster abundances.
Furthermore the rate of cluster evolution is governed by the density parameter {2 and the
X-ray luminosity depends strongly on the baryon fraction Qpyys.

Schechter (1976) proposed the following analytic approximation for the differential lu-
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minosity function

n(L)dL = n, (I{I

>—a e tEd(L)L.) , (7.39)

*

where n(L) is the comoving number density of clusters with luminosity between L and
L + dL. There are various works concerning the estimate of the luminosity function based
on various sample of observational data.

We can mention those of Edge et al.(1990) and Henry & Arnaud (1991), based essentially
on the data of the Einstein Observatory and of EXOSAT. The same catalogues has been used
also by David et al. (1993). It is interesting to notice that both of Edge et al. and David
et al. find evidences of a negative evolution of the luminosity function in the considered
redshift ranges, which are 0 < z < 0.181 for the former, 0 < z < 0.28 for the latter. This
means that the comoving number of bright X-ray clusters tend to decrease as we go toward
larger z.

More recent works are based on the ROSAT survey. Burns et al. (1996) have presented
a luminosity function for an optically selected sample of 49 poor clusters in the range
0.01 < z < 0.03 and a sample of 67 rich clusters with z < 0.15 in the energy band 0.5-2
keV. The X-ray luminosity range covered by their luminosity function is extended by a
factor of 10 with respect to previous determination. The data set of De Grandi (1996)
is composed of clusters of galaxies in the southern galactic cap region in the band 0.5-2
keV. Its 111 objects have redshifts 0.02 < z < 0.2. Finally we have fhe work of Ebeling
et al. (1997), who discuss the luminosity function of the ROSAT Brightest Cluster Sample
(BCS), an X-ray sample of clusters in the northern hemisphere. The sample accounts for
the 199 X-ray brightest clusters in the northern hemisphere. The clusters are selected only
for their X-ray (and not optical) properties. The luminosity function is estimated in five
energy bands ranging from 0.1 to 10 keV. The redshift of the clusters are within z = 0.3.
Notice that Ebeling et al. do not find any significant variation of the luminosity function
with redshift. This last work proposes the values for the parameters of the luminosity
function in several energy bands. These estimates are shown in Table 7.1. In the table

A =noL¢™" is in units of 10~"Mpc ~3(10%*erg s~1)*~}, L, is in units of 10%*%erg s=*, ny and
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Table 7.1: Best fit values of the Schechter X-ray luminosity function by Ebeling et al(1997)

Energy band A L. a
0.1-2.4keV  5.067352 9.107%3% 1.8575:3%

0.5-2.0 keV  3.32%3:33 5.70743% 1.85%0:209
0.3-3.5keV  4.95%338 107731 1.82+5:58
2-10keV 235751 12.677 1.54%50%

Bolometric  6.417370 37.2+1%% 1.8473-29

the errors are at 1o confidence level.
The comoving number of objects in the temperature interval between 7' and 7'+ dT has

been fitted by a power—law of the form
n(T)dT = AT “Mpc ’keV™'. (7.40)

Observational estimates of the temperature function has been calculated by Edge et al
(1990) and Henry & Arnaud (1991). The data are those used to calculate also the luminosity
function. Edge et al. found 4 = 10739%%2¢ and o = 4.93 & 0.37, while Henry & Arnaud
estimated A = 10727°%01% and o = 4.7 4 0.5.

The luminosity—temperature (hereafter L-T) relation gives basic information about the
link between the physics of the baryon component and the dynamical properties of the dark
matter condensations. In fact the X-ray temperature of a cluster of galaxies is a measure of
the depth of the potential well as determined by the total mass distribution of the cluster.
On the other hand the X-ray luminosity is very sensitive to the density of the hot emitting
baryonic gas.

The L-T relation is usually fitted by a power-law KpT = 10°L},, where Ly, is the
bolometric X-ray luminosity in units of 10*#erg s=*. Henry & Arnaud (1991) have obtained
for the two parameters the values b = 0.62 £ 0.09 and n = 0.265 + 0.035, while David et
al.(1993) have found b = 0.7240.02 and n = 0.297£0.004. The most recent analysis is that
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of Mushotzky & Sharf (1997) who have collected data of 38 clusters from the ASCA archive
in the redshift range 0.14 < z < 0.55. The L-T relation obtained from these data has been
compared with that calculated using the low-redshift sample of David et al. finding no
evidence for evolution. Therefore, at least for z < 0.5 the observational estimates of the

L~T relation give
T x L0.28——-0.37 . (7.41)



8 CDM Models with High Baryon
Content

For a long period the CDM scenario has been the reference model for the interpretation
of the observational data on the large scale structure of the universe. Its standard version
(SCDM) assumes a flat universe with a density parameter Q, = 1, a Hubble constant
h = 0.5, a baryon contribution to the density Qg fixed by the standard theory of Big Bang
nucleosynthesis, and primordial fluctuations with Gaussian distribution and power spectrum
P(k) x k™, with n = 1. However, the normalization implied by the COBE detection of
the microwave anisotropies (Smoot et al. 1992; see also Bennett et al. 1996) changed the
situation, giving a spectrum with too much power on scales smaller than 10 A~' Mpec. As
a consequence, the SCDM model is not able to reproduce both the clustering properties of
galaxies and the distribution and abundances of clusters.

In order to solve the problems, many alternatives have been proposed and discussed: the
short—scale power can be reduced by assuming that a component of the dark matter, about
the 20% of the total density, is hot (Shafi & Stecker 1984; Bonometto & Valdarnini 1984;
Davis, Summers & Schlegel 1992; Taylor & Rowan-Robinson 1992; Jing et al 1994), and
allowing a modest tilt in the power spectrum (Liddle & Lyth 1993; Schaefer & Shafi 1994;
Pogosyan & Starobinsky 1995; Liddle et al. 1996b). This gives a satisfactory solution, but
loses the simplicity of having only cold dark matter. A different possibility is given by CDM
dominated universes but leaving critical density models, going to low matter density. Viable

models of this type are possible both in open universes (Ratra & Peebles, 1994; Gérski et al.
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1995; Liddle et al. 1996a; Yamamoto & Bunn 1996) and in universes with a non-vanishing
cosmological constant fixed such as its contribution to the density is 2, = 1 — Qo (Peebles
1984; Turner et al. 1984; Kofman & Starobinsky 1985; Efstathiou, Sutherlan & Maddox
1990; Suginohara & Suto 1991; Efstathiou, Bond & White 1992; Kofman, Gnedin & Bahcall
1993; Krauss & Turner 1995; Ostriker & Steinhardt 1995; Stompor, Gérski & Banday 1995;
Liddle et al. 1996¢c)

If one wants to retain the CDM hypothesis, some modifications to the standard model
are required. Two have received particular attention. The first is to reduce the value of
the Hubble parameter (Bartlett et al. 1995). This leads to a power spectrum with less
power on the cluster scales, hence to a lower cluster number density. However, in order to
get the correct cluster abundance it seems necessary to reduce h to about 0.35 (Liddle et
al. 1996b), which is lower than the currently accepted estimates of the Hubble parameter.
The second is to filt the initial spectrum, that is to choose a spectral index less than unity.
This has the problem that if one tilts the spectrum sufficiently to remove the unwanted
short—scale power, then the resulting spectrum of the microwave background anisotropies is
not compatible with observations (White et al. 1995b, White 1996). These, in fact, implies
the existence of a peak in the microwave spectrum at sub—degree scales. The required tilt
would suppress this spectral feature. The situation improve somewhat if one combines a
smaller tilt with a more modest reduction in A, but again this seems not to be enough to
obtain the “correct” results.

White et al.(1996) have suggested that also an increase of the baryon content Qp,,
can produce critical-density CDM models which fit the observational data in a reasonable
way. In the past, the mean baryon density has been considered as a fixed quantity for
most of cosmological models, in agreement with the predictions of the standard theory of
cosmological nucleosinthesis based on local estimates of light elements abundances.

The standard Big Bang nucleosinthesis model predicts the production of four light iso-
topes, deuterium, *He, *He and “Li. The abundances of these isotopes depends on the mean

baryonic density of the universe. In particular, deuterium can provide strong constraint on
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the value of Qp, since its production decreases rapidly with density. Later, stars can
only destroy it, modifying its primordial abundance. Because of this depletion in stars the
measurement of present day deuterium abundance represents a lower limit on the primeval
value. Since (g, decreases as deuterium abundance grows, this correspond to an upper
limit on the baryonic abundance. The primordial abundance of deuterium can be recovered
in high redshift hydrogen clouds where stellar depletion is not a concern (Adams, 1976).
The deuterium Lyman—a line from clouds backlit by distant quasar lead to a measurement
of the baryon density to an accuracy of about the 15 %. Songalia et al.(1994) and Carswell
et al.(1994), Rugers & Hogan (1996a,b) and Songaila, Wampler & Cowie (1997) have de-
tected high values of deuterium abundance which indicates values of the baryon density of
(1.3£0.3) x 107®" which leads to a density parameter close to the range admitted from the
standard nucleosynthesis model 0.010 < Qpurh® < 0.015. However, Tytler, Fan & Burles
(1996) have recently proposed a series of Lyman—a estimates of deuterium abundance which
imply a much higher value of the baryon density of (4.4 & 0.6) x 10~%'g cm™~2. This would
lead to Qpprh® = 0.024 £ 0.002 + 0.002 + 0.001, with the 1o uncertainties being statistical,
systematic and theoretical, respectively. These last results are also consistent with the lower
limits obtained by Rauch et al.(1996) by comparing the observed flux decrement distribu-
tion function from a sample of seven high resolution QSO spectra to simulations of the Lya
forest. Similar conclusions have been reached also by Weinberg et al.(1997) by computing
the amount of neutral hydrogen present in the high-redshift intergalactic medium necessary
to produce the Lya absorption in the QSO spectra.

Within the conventional picture, the low deuterium abundance estimates can only be
made consistent with the standard nucleosinthesis model if the primordial helium abundance
has been underestimate. The value Qz32% = 0.025—0.035 correspond to 25 per cent helium,
rather than the usual 23-24 per cent. However, this seems to be entirely within the bound
of possibilities (e.g. Olive & Steigman 1995; Burles & Tytler 1995) given several possible
systematic uncertainties that could affect the standard determination of the primordial

abundances as recently stressed by various authors (Wilson & Rood, 1994; Sasselov &
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Goldwirth, 1995; Skillman, Terlevich & Garnet, 1995; Scully et al.1996). These uncertainties
have broadened the range of possible values for g%, particularly towards the upper end.
Recent quoted ranges, at 95% of confidence, include 0.010 < Qparh® < 0.022 by Copi,
Shramm & Turner (1995a,b), with similar results by Turner et al.(1996). Kernan & Sarkar
quoted an upper limit Qpph® < 0.032, while an analysis by Krauss & Kernan (1995) has
also suggested high baryon density, although without quoting a specific range. Therefore
both observational results and theoretical predictions suggest that the estimate of {25,/ is
much more uncertain than previously thought and high value of this parameter can no more
be excluded.

The other salient observational issue is related to the mass estimates of cluster of galax-
ies (see chapter 7). These give values of the baryon fraction hard to reconcile with a
critical-density universe, unless {lg,s is higher than the standard value obtained by the
nucleosynthesis model.

By using a semi-analytical approach, White et al. have carried out a general exploration
of CDM models with high Qpg,r, allowing also the Hubble parameter k and the spectral index
n to vary. The predictions of these scenarios have been compared with the observations of
the clustering properties of galaxies, the cluster abundances, the statistics of the peculiar
velocities, the formation of high-redshift objects (i.e. damped Lya systems, Lyman break
galaxies, quasars and clusters) and the cosmic microwave background anisotropies. Their
final suggestion is that the models with 2z, in the range [0.1-0.2], a Hubble parameter
h = 0.5 and a small tilt in the primordial spectrum (n = 0.8), are in good agreement with
all these data. A high baryonic fraction in fact helps “naturally” to suppress the short-scale
power, as baryon collapse is stopped until decoupling, and, at the same time, amplifies the
first peak of the CMB spectrum, compensating for the loss of height introduced by the
tilt (needed to avoid too low values of A, excluded by the observational data). At the end
of their analysis they conclude that these models can represent at the moment a viable
alternative in the framework of critical-density CDM models.

These conclusions have led us to focus on the same CDM high-baryon models of White
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et al. studying the results of a series of numerical simulations obtained using our PPM+PM
code. In particular we have concentrated on the X-ray properties of clusters of galaxies.
The clusters have been identified by selecting the peaks in the X-ray luminosity field and the
resulting catalogues have been analyzed by computing the clusters mass function, luminosity
function, temperature function and the luminosity-temperature relation. The prediction of
the different models are compared to recent observational data and the results are presented

in the following sections.

8.1 The Models

We have considered a series of CDM models with an initial spectrum of perturbations given
by equations 1.59 and 1.60 fixing A = 0.5 and n = 0.8 and allowing the baryon content to
vary. We consider four different values for Qpys: the usual value determined by the standard
theory of BBN (Qps = 0.05); a baryon abundance consistent with the low deuterium
measurements and with the more recent BBN calculations (255 = 0.1); a value close to
the estimate resulting from the cluster baryon fraction in the case of critical-density universe
(2Bap = 0.15); a more extreme case representing the upper limit of the range of observed
cluster baryon fraction (Qzs = 0.2). In the following we will label these four models as
BMO05, BM10, BM15 and BM20, respectively. The normalization of the spectrum, usually
parameterized by og, the matter rms fluctuation in a top-hat sphere of radius 8 A~! Mpc, is
defined by the four-year COBE data (Bunn & White 1997). The cosmological parameters
used for the different models are summarized in Table 8.1 while the initial power spectra are
presented in Figure 8.1. As expected from the previous discussion, the figure shows that the
power at small scales (i.e. for large k) increases when Qpjs decreases. Consequently we can
expect a faster evolution in the models with low baryon content, with a higher production
of large overdensities.

For each cosmological model we run one simulation with the initial conditions given by
the same random sequence. The initial redshift, fixed in such a way that the maximum

initial density fluctuation is less than unity, is approximately z ~ 20 for all models. The
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Table 8.1: The parameters of the cosmological models. Column 2: the density parameter {lo;
Column 3: the baryon density Qpar; Column 4: the primordial spectral index n; Column 5: the

Hubble parameter h; Column 6: the shape parameter I'; Column 7: the spectrum normalization os.

Model Qo QBM n h Tr g

BMO05 1.0 0.05 0.8 0.5 0.44 0.77
BM10 1.0 0.10 0.8 0.5 0.41 0.72
BM15 1.0 0.15 0.8 0.5 0.39 0.66
BM20 1.0 0.20 0.8 0.5 0.36 0.61

box-size has been fixed to 64 h~' Mpc and the number of computational cells is 128°.
Consequently the nominal spatial resolution, which our numerical tests have shown to be
very close to the effective one, is 0.5 h~! Mpc. In the analysis of the results we have to be
careful to properly evaluate the spurious effects that the limited box-size and the finite grid
resolution can produce on the results. In fact the grid resolution prevents us from following
the behaviour of matter inside a cell element. This can lead to underestimation of quantities
like density and temperature, with a direct influence on the evolutionary history of the X-
ray clusters. On the other hand, the limited size of the box has the effect of suppressing
the large-scale power, reducing the possibility of forming very bright X-ray clusters with
luminosity larger than 10*° erg s~*. This kind of object is also likely to be partially missed in
our simulations because it is rare: observational data (e.g. Henry & Arnaud 1991; Ebeling

et al. 1997) show that in a box of 64 ™' Mpc one expects to find at most one such object.

8.2 Cluster Identification

The first step of the data analysis consists of the identification of the X-ray clusters. We
first calculate the emissivity of each cell due to thermal bremsstrahlung in a fully ionized

plasma (X = 0.76, Y = 0.24) with temperature T using equation (7.11). The band limited
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Figure 8.1: The power spectra for the four models considered in this work: BMO05 (solid line), BM10
(dotted line), BM15 (short-dashed line) and BM20 (long-dashed line). All the models are normalized

to the four-year COBE data. See table 1 for the adopted parameters.
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X-ray emission L, from a given volume is computed integrating the previous expression
over the relevant volume. Using the discretization of the simulation, the X-ray luminosity
is
Ly =125 X 107"mz? 3" 02 T2 fypna(T) erg 577 (8.1)

where the sum runs over cells within the v;lmne.

At this point, in order to identify the clusters, we select the cells with

L, > 10 erg s™' which are also local maxima in the X-luminosity field (i.e. their
X-luminosity is greater than that of the 26 neighboring cells). These identify the cluster
centre. A cluster is defined as the sum of the centre plus the 26 surrounding cells. In this
way the total volume of a cluster equals the volume of a sphere of comoving radius 0.93 A~!
Mpc, as appropriate for present observed X-ray clusters. In order to avoid double counting
of the cells, the distance between cores is checked: if two cores are closer than 2 k™! Mpc
the fainter cluster is rejected from the catalogue. Finally, the cluster luminosity and the
mass are calculated as the sum of the luminosity and density of each of its cells, respectively,

while the temperature is defined as the average over the whole cluster volume.

8.3 Global Properties of the Results

In Figure 8.2-8.5, we show a snapshot of the results in a slice of 64 x 64 x 0.5 h=2 Mpc® at
z = 0 for each of the four models. The baryonic matter density field o, ,,, the dark matter
density field g,,,,, the gas temperature T and the X-ray emission L, are presented in Figures
8.2, 8.3, 8.4, 8.5, respectively. Since the initial spectrum of fluctuations of all simulations
has been generated by using the same random number sequence, the positions of the final
structures are quite similar and the densities of each component scale approximatively
according to their mean cosmic values. Matter concentrates on filamentary structures and
clusters form at the intersection of several filaments.

In the low-Q 5 models, because of the larger power on small scales in the initial spec-
trum and the lower background pressure, shocks form earlier and are stronger than in the

high-{2p5r models. In the latter case, on the other hand, we can observe a stronger X-ray
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Figure 8.2: The contour plots for the baryonic density g, in a slice of 64 x 64 x 0.5 h=2 Mpc?®
at z = 0 for the four different models: BMO5 (top left), BM10 (top right), BM15 (bottom left),
BM20 (bottom right). The baryonic density is normalized to its mean density and the contour levels

correspond to 100:=3)/% where i = 1,2, ...
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Figure 8.3: The same as Figure 8.2 but for the dark matter density o,,, which is normalized to its

mean density. The contour levels correspond to 100¢-3)/¢ where i = 1,2, ...
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Figure 8.4: The same as Figure 8.2 but for the temperature 7" which is in units of Kelvin degrees.

The contour levels correspond to 10%%/3, where i = 1, 2, ...
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Figure 8.5: The same as Figure 8.2 but for the X-ray luminosity L, which is in units of 10%¢ erg

s~1. The contour levels correspond to 10%/3, where i = 1,2,...
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emission due to the higher baryon content of these models.

A close-up at four different redshifts of the most luminous X-ray cluster found in the
BMO05 simulation is presented in Figure 8.6. The slice is 20 x 20 X 0.5 A=2 Mpc®. It is evident
the ongoing process of merging and the final virialized state characterized by an extended
central isothermal region at high temperature. The cluster tends to a spherical geometry
and deviations from sphericity are due to the cluster memory of its merging history (see e.g.
Tormen 1997). These satellites, however, being faint X-ray sources, may not be observed
in a X-ray map. Similar comments can be repeated for the other models (not shown here).

Dark matter structures appear typically less concentrated than the baryonic counterpart
both in clusters and in filaments. In Table 8.2 we present the rms of the DM and BM density
fields (o, and o, respectively) computed on the cell-size scale (0.5 h~'Mpc) and the mean
temperature < T' > (in Kelvin degrees) at redshifts z = 1 and z = 0. The density contrasts
of the two components are normalized to the corresponding mean cosmological values. A
detailed analysis of the time evolution of the rms shows that at very high redshifts, due to
absence of pressure forces, DM collapses faster than the baryonic counterpart. However, in
all of our models, starting from about z ~ 3, baryons tend to concentrate more than the dark
component. The absence of dissipative phenomena produces a spreading of DM around the
minima of the gravitational potential, while BM, which tends to thermalize, concentrates
there. As time goes by, also dark particles fall toward the centre of the potential well and
at the final time the rms of the two components is quite similar (see Table 8.2).

Comparing the different models, we observe that both o,,, and o, decrease with the
increasing of the baryon fraction both at z = 1 and z = 0. This behaviour is mainly
related to the characteristics of the initial spectrum in the different models (see Figure 8.1).
Furthermore structures virialize earlier in low-{)p) models and shocks are stronger and
the final temperatures higher than in the high-Qp, models, because of the lower pressure
and higher densities present initially in these models. Between z = 1 and z = 0 there is
a slightly faster evolution of structures in the case of a high baryon content and this is

probably favoured by the lower temperatures produced in this case.
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Figure 8.6: The contour plots for the baryonic density g,,, (first column), the dark matter density

05 (second column), the temperature 7' (third column) and the X-ray luminosity L, (last column)

in a slice of 20 x 20 x 0.5 A3 Mpc?® around the most luminous cluster in the BMO05 simulation. The

different rows show the redshift evolution: z = 1, z = 0.5, z = 0.2 and z = 0 from the top to the

bottom. The density of each component is normalized to its mean density while the temperature

and the luminosity are in units of Kelvin degrees and 10%® erg s—!, respectively. The density contour

levels correspond to 10(:=3)/¢ while the temperature and the luminosity levels are 10%*/3  where

1=1,2, ...
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Table 8.2: The global properties of the model simulations. The rms of the dark matter, o the

DM
rms of the baryonic matter, o,,,, and the mean temperature < T > (in Kelvin degrees), computed
on the cell scale, are shown at redshift z = 1 (Columns 2, 3 and 4) and at z = 0 (Columns 5, 6 and

7.

Models o o <T>K o o <T>K

DM BM DM BM

z=1 z=0

BMO05 3.27 3.40 4.86 x 10° 7.31 7.34 1.04 x 10°
BM10 2.80 3.14 3.86x 10° 6.97 7.00 9.24 x 10°
BM15 2.44 2.73 2.97 x 10° 6.05 6.27 7.68 x 10°
BM20 1.94 2.20 2.20 x 10° 5.33 5.45 6.35x 10°

8.4 X-ray Cluster Mass

Clusters in our simulations are identified through their X-ray emission and their charac-
teristic properties, like the total mass, the total luminosity and the mean temperature, are
computed by integrating or averaging over a fixed number of cells, as explained in Section
8.2. The values of these quantities could then be affected by the choice of the number of
cells used for the calculation. Several tests have shown that our procedure provides good
estimates for the temperature and the luminosity of the cluster. In fact the temperature is
almost uniform over regions greater than those over which we do our averaging. Moreover
the luminosity is proportional to the square of the baryonic density and then its value de-
pends essentially on the cells with highest density which represents the centre of the cluster
and which are consequently always included in our integration. The inclusion or missing of
some low-density cells does not affect sensibly our estimates for the temperature and the
luminosity, but could affect the calculation of the cluster total mass. In summing over a
fixed number of cells we tend to overestimate the mass of objects which are not as extended

as our reference volume (27 cells) and which are also usually characterized by density lower
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that the mean cluster values. The opposite is true for large clusters, although in this case
we have verified that, for our choice of the reference volume, the error introduced in the esti-
mation of the mass is less severe and it is at most a factor two. Therefore we have restricted
our analysis to clusters with mass greater than 10**M, (for A = 0.5). This lower limit has
been fixed in order to avoid the inclusion of too low-mass objects which can be affected by
a large error in the mass estimate and whose properties differ considerably from those of a
typical galaxy cluster (e.g., their mean density is sensibly lower than that determined from
observations). Furthermore their spatial distribution could be affected by the X-luminosity
selection criterion used to build our cluster catalogue.

In Figure 8.7 we present, for the four models, the number N;; of clusters with mass
greater than 10'*M, found in the whole simulation box at various redshifts. The number of
clusters decreases with increasing Qs at any redshift. This is a consequence of the amount
of power on small scales, which decreases as we increase the baryonic fraction. In the high-
Qg cases the collapse of massive objects occurs later and, then, if we select clusters by
their mass, the models with high baryonic fraction presents less clusters than low-Qg,,
models. The behaviour of the mass function depends on the distribution of the total (dark
plus baryonic) density and then it is not the preferred quantity for discriminating between
our models. Other quantities, like the X-ray luminosity, that depends directly on the BM
density, appear to be a more useful quantity for the problem studied here.

Notice that the estimated Nj; roughly agrees with the observational data for all the
models. This is an expected result, because of the spectra normalizations. In fact it is
known that the present abundance of galaxy clusters requires, in the framework of the
critical-density models and almost independently of the shape of the primordial spectrum,
a normalization g =~ 0.6, with a quite large uncertainty (e.g. White, Efstathiou & Frenk
1993; Viana & Liddle 1996; Eke, Cole & Frenk 1996).

8.5 X-ray Cluster Luminosity



174 §8. CDM Models with High Baryon Content

40

20 -

H
o
™
o
(o))
©
NN
o
™
o

Figure 8.7: The number of clusters Njs with mass > 10'*M as a function of the redshift z for
the different models: BMO05 (solid line), BM10 (dotted line), BM15 (short-dashed line) and BM20
(long-dashed line).
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In Figure 8.8 we present the number of clusters with luminosity greater than L, = 10*? and
10** erg s™' (N,; and Ny, respectively). This luminosity-based selection criterion leads
to results opposite to those obtained by selecting clusters by their masses. In fact at any
epoch the number of clusters increases with increasing {lppr. Furthermore the evolution
of N4, and Ny with redshift is not monotonic: the number of clusters tends to grow until
a turn-around redshift after which it starts to decrease. This behaviour is common to
all the models and for both of the adopted minimum luminosities. The only exception is
N4z in the case of BMO05, which grows continuously with time, but, because of the small
number, this might be not statistically significant. The turn-around is due to the balance
between the mechanisms driving the cluster evolution, and it is probably an indication
of the epoch when the merging processes of different structures start to dominate over
the gravitational collapse of each single object. In fact the merging leads to larger but
smoother structures. Since the X-ray emission is proportional to the square of the baryonic
density, lower luminosities are expected. The effect of the merging processes is also shown
by the simultaneous decrease in the number of fainter clusters (not reported in the figure).
The turn-around redshift becomes lower with increasing the baryon fraction ranging from
z = 0.7 for BMO05 to z = 0.2 — 0.5 for BM20. This is due to the delayed evolution of the
structures in high-Q s models.

This behaviour is confirmed by the X-ray emissivity per unit comoving volume due to
both the gas in its entirety, j,q., and the clusters, j.; (see Table 8.3). For each model the two
quantities evolve in a parallel way, indicating that clusters emit roughly a constant large
fraction of the total X-ray radiation. Similar results have been obtained, for the standard
CDM model, also by Kang et al.(1994a) and Bryan et al.(1994a).

The fundamental differences between the cluster abundances in mass (Nj) and in X-
ray luminosity (N4, and Ng3) must be kept in mind when the results are compared to the
observations. In Figure 8.9 we present the luminosity function for the four models computed
at five different redshifts, integrated over the whole range of frequencies. Very bright clusters

with luminosity greater than 10%* erg s™! are missing in our simulations. The lack of
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Table 8.3: The X-ray emissivity (in units of 10%° ergs s=! h® Mpc~2) for the gas (jzq,) and for the

clusters (j.;) at various redshifts for the different models.

BMO05 BM10 BM15 BM20

Joas Jet Jgas  Jai Jgas  Jer Jgas  Ja
z=1 017 0.12 0.49 0.39 0.66 0.49 0.73 0.55
z=10.7 0.21 0.16 0.54 0.43 0.79 0.62 0.98 0.79
z=0.5 0.20 0.15 0.63 0.46 0.88 0.73 1.53 0.86
z=10.2 0.19 0.14 0.51 0.39 0.87 0.73 1.29 1.12

z=0 0.16 0.13 0.59 0.50 0.96 0.81 1.05 0.85

such clusters can be related to two different effects. Firstly, the size of our computational
box limits the amount of large-scale power which we can follow in the simulation, and
consequently the maximum temperature that can be produced. Secondly, the grid resolution

is likely to underestimate the highest density peaks where brightest clusters are expected

to form.

The luminosity functions have been fitted by using a two-parameter function:
n(L)dL = noL~%dL, (8.2)

where n(L)dL is the comoving density of clusters with luminosity between L and L + dL,
no is in units of 107° A*Mpc~® and L is in units of 10** erg s~!. The results of the fits are
presented in Table 8.4. Notice that for our data a two-parameter fit is more appropriate
than the usual Schechter function, as in our results the expected bend at high L is not
present, for the reasons given above.

The values of the slope a cannot discriminate between the four models, as the differences
are in general within the 1-o errorbars. The parameter o shows for all the models a slight
negative evolution with redshift from z = 0.5 to z = 0; this behaviour is thought to be the

effect of the ongoing processes of gravitational collapse, that produces more concentrated



178

§8. CDM Models with High Baryon Content

Table 8.4: The parameters of the fits of the X-ray cluster bolometric luminosity function

n(L) = no L~ at various redshifts for the different models.

BMO05

BM10 BM15

BM20

z (63 Tio

[0

Mg (64 Mo

a

Tig

1 1.82+0.09 6.73+0.06
0.7 1.73£0.15 9.72+0.18
0.5 1.74£0.20 8.42+0.20
0.2 1.61£0.07 12.5040.12
0 1.414+0.11 23.114+0.48

1.72+0.08
1.7240.09
1.75+0.16
1.68+£0.04
1.67+0.11

18.95+0.23 1.59+0.07 31.6640.38
21.55£0.30 1.714+0.05 26.60+0.24
19.464+0.47 1.764+0.09 25.66+0.36
20.97+£0.12 1.6940.05 29.12+0.24
18.68+0.31 1.62+0.05 31.69+0.25

1.74+0.06
1.73-£0.07
1.69+0.08
1.69+0.11
1.66+0.03

18.56=0.15
28.4440.33
33.20+£0.46
35.59=0.72
33.95+0.15

and bright structures, and merging, that leads to the formation of larger and more massive
objects at the expense of the smaller ones. For the normalizations ny, which is the comoving
number density of objects with luminosity equal to 10** erg s~!, we can make considerations
similar to those previously made for Ny, and Ngs.

The hatched region in the figure shows the observational data (with 1-o errorbars) of
Ebeling et al.(1997) which refer to the ROSAT Brightest Cluster sample containing 199
objects with redshift z < 0.3. The observational curves have been fitted by the authors by

using a three-parameter function:
n(L) = Aexp(-L/L")L™%, (8.3)

where A is in units of 10~ "Mpc~3(10*erg s™')*~! and L* is in units of 10*erg s~'. The
values of the fitting parameters are 4 = 6.417370, I* = 37.273%* and o = 1.8479%%,

We can compare these data with the results of the simulations at low redshifts. The
models with high baryonic content (BM15 and BM20) have a luminosity function which is
significantly too high with respect to the observations. On the contrary the BM05 model
and (much more marginally) BM10 are in better agreement with the data.

Similar conclusion can be obtained if we consider the luminosities in the energy band
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[0.5-2] keV. The fitting parameters for our simulations are reported in Table 8.5, while
the comparison with two different observational datasets is shown in Figure 8.10. The
vertically hatched region refers again to the Ebeling et al.(1997) sample, whose luminosity
function has been fitted by a three-parameter relation with 4 = 3.3273:3%, L* = 5.7071:29
and a = 1.8575:0%. The horizontally hatched region shows instead the results obtained by
De Grandi (1996) using a complete flux-limited ROSAT sample selected from the ESOKP
redshift survey: in this case the fitting parameters are A = 4.51, L* = 2.63%0%] and
a = 1.3273 3. These two determinations of the luminosity functions are in good agreement
for luminosities larger than ~ 2 x 10*® erg s™', while for smaller L, the De Grandi (1996)
results are approximately a factor 3 smaller than the Ebeling et al.(1997) ones, increasing
the discrepancies between the observations and the model predictions of the models with
high Qp.

In this energy band there is a further luminosity function determined by Burns et
al.1996), always by using images from the ROSAT all-sky survey. Because of the large
errorbars, it completely overlaps both the previous results and for clarity we prefer do not
show it in Figure 8.10. However, since in this dataset also nearby poor clusters have been
considered, this result allows to extend the previous considerations also to smaller X-ray

luminosities (less than 10*? erg s™'), not included in the other datasets.

8.6 X-ray Cluster Temperatures

In Figure 8.11 we show the redshift evolution of the distribution of the cluster mean tem-
perature for the four models. The temperatures have been calculated as emission-weighted
averages because this is the quantity which is also usually estimated from the observations.
The absence of clusters with temperatures above 4 keV is mainly related to the limited size
of the box and their rareness. These model predictions can be compared with the observa-

tions. In the figure the hatched region refers to the temperature distribution obtained by
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Figure 8.9: The cluster bolometric luminosity function for the different models: BMO05 (top left),

BM10 (top right), BM15 (bottom left) and BM20 (bottom right). The different curves refer to

various redshift:

= 0 (solid line), z = 0.2 (dotted line), z = 0.5 (short-dashed line), z = 0.7

(long-dashed line), z = 1 (dotted-dashed line). The hatched region shows the observational results

(with 1-o errorbars) obtained by Ebeling et al.(1997).
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Figure 8.10: The same as Figure 8.9 but in the [0.5-2] keV energy band. The vertically hatched
region shows the observational results (with 1-c errorbars) obtained by Ebeling et al(1997), while

the horizontally hatched one refers to the De Grandi (1996) results.
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Table 8.5: The parameters of the fits of the X-ray cluster luminosity function n(L) = noL™=

computed in the [0.5-2] keV band at various redshifts for the different models.

BMO05 BM10 BM15 BM20

z a g a T e Mg o o

1 1.47£0.11 11.73£0.17 1.434+0.07 19.26+0.24 1.39+0.10 19.19+0.31 1.404+0.11 10.17+0.13
0.7 1.568+£0.40 8.40+0.49 1.55+0.11 15.73+0.26 1.58-+0.11 12.90+0.20 1.454+0.12 18.2540.32
0.5 1.81£0.16 5.52+0.04 1.58+0.12 15.09+0.28 1.52+0.07 22.51+0.30 1.57+0.10 28.56+0.48
0.2 1.44+£0.11 13.71+0.27 1.55+0.06 15.87+0.17 1.67+0.08 13.63+0.15 1.554+0.11 21.3140.52
0 1.36+0.17 18.05+0.60 1.63+0.17 11.756+0.28 1.61+0.06 11.75+0.28 1.574+0.09 19.28+0.28

Henry & Arnaud (1991) from a set of local (z &~ 0) clusters:
n(T) = (1.875% x 107% h® Mpc™® keV ™) T—*7%05, (8.4)

where the uncertainties are 1-o errorbars and 7' is expressed in keV.

All the models are in quite good agreement with observations in the overlapping range.
Temperature is in fact less sensitive than luminosity to the details of the density distribution
and it is related to the maximum wavelength A of non-linear waves. In fact the post-shock
temperature is of the order of T x (HA)?, where H is the Hubble constant. Low-Qpgyy
models have a higher normalization of the primordial spectrum and longer wavelengths can
reach the non-linear regime at the final time producing higher values of the temperature.
This phenomenon is likely to be strengthened by the different mean background pressure of
the various realizations, which is lower in low-Q g models. Both effects could explain the
higher number of objects with temperature larger than about 1 keV found with decreasing
Qpar-

We have also analysed the redshift evolution of the temperature distributions in our
simulations. We found that between z = 1 and z = 0 such distributions are almost constant

for BM05 and BM10 models, with a slow increase in the number of high-temperature objects.
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In these models, by z ~ 1 the regions heated up by shocks at almost a uniform temperature
are larger than the integration volume of our cluster identification method. In general, from
that moment, the temperature of these regions increases because of adiabatic compression
and merging processes and this explains the rise in the number of high-temperature clusters
towards z = 0. The models BM15 and BM20, instead, evolve rapidly between z = 1 and z =
0.5, showing in particular a strong growth in the number density of objects with temperature
greater than about 0.5 keV. This corresponds to the later formation and propagation of the
shocks in these models. In fact after z = 0.5 the situation becomes similar to that of the

low-Q g models, and the temperature distributions show little further evolution.

8.7 Luminosity-Temperature Relation

In Figure 8.12 we present the distribution of emission-weighted temperature of the clusters
as a function of the X-ray bolometric luminosity at three different redshifts: z = 1 (crosses),
z = 0.5 (open circles) and z = 0 (filled circles). For all the models there is a similar trend in
the luminosity-temperature relation, even though the total number of objects grows with the
baryon fraction. We observe that a given temperature corresponds to higher luminosities
in high-Q2pr models. This is related to the higher baryonic densities present in these cases.

The luminosity-temperature distributions have been fitted by using a power-law relation
of the form T = 10°L7, where T is in keV and L, is in units of 10%%rg s=. The results,
reported in Table 8.6, show that for all the models there is a little evolution with time,
especially between z = 0.5 and z = 0, where present-day observational data are available.
In particular the parameter 7 is always inside the 1-¢ errorbar range, even if the models with
smaller baryonic content tend to have a steeper slope. The normalization b, instead, slightly
decreases with increasing redshift and/or Qpp. This result is in qualitative agreement
with the more recent observational analysis, which found no evolution of the temperature-
luminosity distribution, at least for z < 0.5 (Mushotzky & Scharf 1997).

Our results can be directly compared to the observational data. The hatched region

in Figure 8.12 shows the L,-T relation (always with 1-o errorbars) obtained by Henry &
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Figure 8.11: The cluster temperature function for the different models: BMO05 (top left), BM10 (top
right), BM15 (bottom left) and BM20 (bottom right). The different curves refer to various redshift:
z = 0 (solid line), z = 0.2 (dotted line), z = 0.5 (short-dashed line), z = 0.7 (long-dashed line),
z = 1 (dotted-dashed line). The hatched region shows the observational results (with 1-o errorbars)

obtained by Henry & Arnaud (1991).
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Figure 8.12: Scatter plots of the bolometric X-ray luminosity L, and the emission-weighted tempe-
rature T of the clusters for the different models: BMO05 (top left), BM10 (top right), BM15 (bottom
left) and BM20 (bottom right). Different redshifts are displayed by different symbols: z = 1 (crosses),
z = 0.5 (open circles) and z = 0 (filled circles). The hatched region shows the observational results
(with 1-o errorbars) obtained by Henry & Arnaud (1991); the dotted line refers to the fit obtained
from the combined sample of David et al.(1993). In this last case the errorbars are not explicitly

reported, but they are of the same order of magnitude of the previous ones.
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Table 8.6: The parameters of the fits of the Luminosity-Temperature relation T = 10°L7, computed

at various redshifts for the different models.

BMO05 BM10 BM15 BM20
7 b n b n b n b
z=1 0.41£0.04 -1.22£0.09 0.34+0.03 -1.314+0.07 0.30+0.04 -1.38+0.10 0.31+0.04 -1.52+0.11
z=0.7 0.404+0.03 -1.10£0.07 0.33+0.03 -1.2040.09 0.31+0.04 -1.32£0.09 0.30£0.03 -1.42+0.08
z=10.5 0.42£0.03 -1.06£0.07 0.35£0.03 -1.17£0.09 0.33+£0.03 -1.28£0.07 0.30+0.03 -1.35%£0.07
z=10.2 0.42+0.02 -0.99+0.06 0.36+0.02 -1.11+0.06 0.33+£0.02 -1.174+0.06 0.31+0.03 -1.254+0.08
z=0 0.4040.02 -0.90£0.06 0.37£0.02 -1.05+£0.05 0.35+0.02 -1.14+0.05 0.32+0.02 -1.20+0.06

Arnaud (1991) for clusters with luminosity larger than 10** erg s=!. Even if the statistics
are poor, the most luminous clusters for all the models are in good agreement with these
data. The dotted line, instead, shows the fit from the combined sample of David et al.
(1993), which contains clusters with lower luminosities (L, > 10*? erg s™'). In this case
the dispersion of the data around the fit (not explicitly reported in the original paper) is
of the same order of that shown for the Henry & Arnaud (1991) results. The models with
high baryonic fraction, even if they reproduce well the slope of the relation, have a lower
normalization: at the same luminosity, the temperature is at least a factor 3 smaller than
for the observations. The agreement is better for BM05 and BM10 models which have a
steeper (but still consistent) slope.

Notice that it is not possible to present a comparison with the relation obtained by
Mushotzky & Scharf (1997) because it refers to clusters with luminosities higher than those

reached in our simulations.
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8.8 Conclusions

In this chapter we have presented the results of the study of the evolution and the proper-
ties of X-ray clusters of galaxies in four different critical-density CDM models, in which the
baryon fraction has been varied from Qg3 = 0.05 to Q5 = 0.20. Models with a baryonic
content larger than the predictions of the standard nucleosynthesis have been firstly con-
sidered by White et al.(1996) who found that they are in good agreement with a large set
of observational data when coupled with a small tilt in the primordial spectrum (n =~ 0.8).
Our results have proved to be useful in order to discriminate between the various models
and to decide which of these models, if any, is compatible with observations.

The mass function, the luminosity function, and the luminosity-temperature relation
are the quantities that gave the most important hints on the properties of the models. The
behaviour of these quantities is determined by the dynamical evolution of the clusters. This
is driven from the balance of two phenomena: the gravitational collapse of single objects
and the merging of different structures. In the early stages of the evolution, the first effect
tends to dominate, and the X-ray emission grows rapidly. The collapse of the baryonic
matter is stopped by the formation of the shock. This rises strongly the pressure of the
matter that finally is able to counteract the gravitational infall. Then the smaller virialized
objects start to merge together, forming larger structures characterized by smoother density
fields and hence by lower X-ray emission.

The mass function presents the expected behaviour, with the cluster number density
that, at z = 0 decreases with increasing baryon fraction. This is mainly due to the different
amount of power on small scales in the initial spectra of the density fluctuations. This result
is obtained by identifying clusters only by their mass, without considering their luminosity.
On the other hand, when clusters are selected by their total X-ray luminosity, the opposite
trend is found: high-Q g models have the higher number density of X-ray clusters. This is
due mainly to the presence of more baryons and so to the growth of higher baryonic density
peaks that at last leads to much higher X-luminosity, this quantity depending on the square

of the baryonic density itself. The X-ray emission depends also on the cluster temperatures
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but these are roughly the same for all the models.

Another difference is shown by the time evolution: while the number of clusters with
large mass is a growing function of time for all the models, the abundance of luminous X-ray
clusters starts to decrease at some redshift, which is dependent on the cosmological model,
being lower for high-Q ;s models.

We compare the predictions of the four different cosmological models to a series of
observational results, mainly referring to local (z = 0) datasets. By analyzing the luminosity
function and (more marginally) the luminosity-temperature relation we can conclude that
the models with low baryonic content (QppS 0.05) are in better agreement with the data,
while models with 15 or 20 per cent are well outside the 1-o errorbars. On the contrary the
study of the cluster temperature distribution cannot distinguish between the various models.
Our result is even more stringent if we observe that our resolution tends to underestimate
the luminosities; consequently the differences of the high-Qp, models with observations
would be even higher. Therefore the X-ray properties seem to exclude that the increase of
the baryonic content can help to reconcile the cold dark matter scenario in the framework
of critical-density models with the observations.

Finally, we found that the luminosity function, the temperature distribution and the
luminosity-temperature relation for the simulated clusters present the interesting feature of
showing a very little redshift evolution, particularly between z = 0.5 and z = 0, in good

agreement with that which seems to emerge also from very recent observational data.



9 Conclusions and Future Develop-

ments

In this thesis we have presented a new numerical code developed for studying the formation
and evolution of cosmological structures in both baryonic and collisionless components.
Collisional matter is treated as a fluid and the corresponding hydrodynamic equations are
solved using the PPM scheme on a fixed Eulerian grid. We have described the changes to
the basic method required by the cosmological applications. Particular care has been taken
in including expansion and gravity in the Riemann solver and in the final integration step.
This has required the calculation of the characteristic form of the hydrodynamic equations
in expanding coordinates. A double formulation of the energy equation has allowed a
proper treatment of the highly supersonic flows common in cosmological simulations. The
behaviour of the dark matter is described using a standard Particle Mesh N-body technique,
modified to allow the use of a variable timestep, as desirable for hydrodynamics. The two
components are coupled through the gravitational interaction and the gravitational field is
calculated from the Poisson equation using an FFT procedure.

We have presented a series of tests selected for their relevance in cosmological appli-
cations, paying attention both to the accuracy of the highest resolution results and to the
convergence of the method when lower resolutions are used. The one~dimensional tests
show that the code can reproduce properly the expected solutions, even when very low
resolution is adopted. In particular we present the results of the shock tube test and of
single and multiple pancake formation. The CDM test results can be compared with those

189
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presented by Ryu et al. (1994), Kang et al. (1994) and Gnedin (1995) showing a good
agreement. We have then verified that the Lax-Wendroff scheme can safely replace the
standard Leap-Frog method for the integration of the N-body dynamical equations. All of
these tests have demonstrated that our code can be considered a reliable and useful tool for
cosmological studies.

The code has been used to simulate the evolution of cosmological structures in various
models, both in one and in three dimensions. We have presented the results of a series
of one-dimensional simulations which have been used for testing the different clustering
properties of baryonic and dark matter in an expanding background. Initial Gaussian
random density perturbations with a power—law spectrum P(k) o k™ have been assumed.
We have analyzed the distribution of density fluctuations and thermodynamical quantities
for different spectral indices n and discussed the statistical properties of clustering in the
corresponding simulations. At large scales the final distribution of the two components is
very similar while at small scales the dark matter presents a lumpiness which is not found
in the baryonic matter. The amplitude of density fluctuations in each component depends
on the spectral index n but that of the baryonic matter is always larger than the one in the
dark component. This result is also confirmed by the behaviour of the bias factor, which
is larger than unity in all the models which we have considered. The final temperatures
depend on the initial spectral index: the highest values (10° K) are obtained for n = —1
and are in proximity of high density regions. In the other models, the typical post-shock
temperature are smaller (10°-107 K).

We have then studied the properties of X-ray galaxy clusters in four cold dark matter
models with different baryon fraction Qg ranging from 5 to 20 per cent. We have run
simulations on a box with size 64 ~~! Mpc and we have identified the clusters by selecting
the peaks in the X-ray luminosity field. We have analyzed these catalogues by computing the
mass function, the luminosity function, the temperature distribution and the luminosity-
temperature relation. By comparing the predictions of the different models to a series

of recent observational results, we have found that only the models with low baryonic
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content agree with the data, while models with larger baryon fraction are well outside
the 1-o errorbars. In particular, the analysis of the luminosity functions, both bolometric
and in the energy band [0.5-2] keV, requires Q5,,< 0.05. Moreover we have found that,
independently of the cosmological scenario, all the considered quantities have a very little
redshift evolution, particularly between z = 0.5 and z = 0.

Further application of our code can lead to interesting results on other problems related
to the process of cosmological structures formation. However our present major effort is
dedicated to improve the performances of the codes in order to extend the dynamical range
that can be included in the simulations as much as possible. Work is in progress in two
different directions.

The first is to introduce local refinements of the computational mesh where overdense
structures are forming. The PPM scheme is particularly suitable to this variable-meshed so-
lution. In fact the basic PPM method is developed for a general one dimensional Lagrangian
approach, and can already account for possible variations of the cell size. Then only minor
modifications are required to obtain an hydrodynamical variable-meshed code. Particular
care must be taken only in the transition between high and low resolution regions, where
the change in the cell size can produce numerical errors which appears in the solution in
the form of spurious ripples that propagates affecting the result. In Figure 9.1 we show the
solution of the one dimensional shock tube test, using a grid with two different resolutions.
In the central part of the grid (where the initial discontinuity is placed) the cell size is Az.
Elsewhere the cell size is 4Az. The solution is comparable to that obtained in section 4.2
(notice that all the waves - the shock, the rarefaction and the contact discontinuity - have
already crossed the boundary between zones of different resolution), although a spurious
wave forms at the boundary between the two resolutions and then propagates slowly dif-
fusing. This effect can be reduced if we define a boundary zone which connect smoothly
the two different resolution (adaptive boundary). In Figure 9.2 we show the case in which
the adaptive boundary zone is composed of four cells with width Az, 2Az, 3Az and 4Az

respectively.
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Figure 9.1: Multigrid solution of the shock tube test with no adaptive boundary
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The variable-meshed extension is not so simple for the gravitational part of the code. In
particular FFT can not work on mesh of variable cell size, therefore the use of a multigrid
gravitational solver is required. Also the N-body code must be carefully adapted as the
change in spatial resolution must be associated also to a change in the mass resolution and
so in the weight of the particles between high and low resolution regions.

The second possible direction is take advantage of the properties both of Lagrangian
and of Eulerian methods. In particular, we can think of using a Lagrangian method to
describe regions in which matter concentrates and which requires high spatial resolution
and an Eulerian method to describe lower density regions where high mass resolution is

necessary, while high spatial resolution is not so important.



Appendix A

The solution of the Riemann problem, described in detail in section 2.3 (to which we refer
for the definition of the quantities used in this appendix), involves an iterative procedure
for calculating the values of p* and v™. These are the values of the pressure and the velocity
of the fluid at the contact discontinuity, which forms in the region between the two waves
moving in opposite directions.

A number of Riemann solvers have been developed over the years and different solvers
employ different iterative solution techniques with different initial guesses. We have used the
method proposed by Van Leer (1979), which ensures good efficiency, a limited computatioﬁal
effort and a good convergency rate.

The Van Leer method is an extension of the Godunov technique (1959, 1961) which
relates implicitly p* to the mass fluxes passing through the left and right waves (4, and
Ag) by the expression

p" = [Arpr + Arpr + ApAr(vi — vr)]/ (AL + 4r) (A1)
where
1/2 Y+ 1p 7‘11/2 N
As = (vosps) —_—+ = for p* > ps (A.2)
27 ps 2y
and
_ 7-1 1/2 1—p"/ps -
AS - 27 (795?5) 1 _ (p*/ps)('y‘l)/z’Y fOI‘ p < pS s (A.3)
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where § = L or R. The two different fluxes are associated to a shock or a rarefaction wave
which moves in the S direction.

Van Leer proposed to iterate with respect to the pressure of the states on each side of the
contact surface (p*) and make the flow velocity difference v — v} equal to zero. Therefore,
new values of p* can be obtained using Newton’s method in the form

vi,(p;) — vr(p;)
oi (1) v (z;) (8-4)

Py = P —

where the subscript 7 indicates the i-th iteration and

() = v = P (A.5)
vr(p") = m%}’ﬂ. (A.6)

The expressions for v and vy are derived from the wave jump conditions. the quantities

< ! . - P » - "
vz and vy are the derivatives of v; and v; with respect to p* and are

vy = +(A% + C2)/(243) for p* > ps (A.T)
and
vy = +C5! sz—] for p* < ps , (A.8)
s

where the plus sign holds for § = R and the minus for § = L and Cs = (ypsos)/>
The initial guess pj to start with the iterative procedure is obtained from the weak

waves theory

po = ‘;‘[(PL + pr) + k(vg + vr)], (A.9)

where
k= [r(ps +pr)(es+ or)/4]"" . (A.10)

This guess can become inaccurate when strong shocks are involved. We have found that in

this case a better guess is given by the condition

po = max(pr,Pr) - (A.11)
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The iterative procedure is stopped when successive values of the pressure differ by some

(small) tolerance. At this point the velocity v* is calculated using the jump conditions, as

v" = (pr—pr+ Apvr + Arvr)/(AL + Ag) (A.12)
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