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Ma le citta visitate da Marco Polo erano sempre diverse da quelle pensate
dall’imperatore.

— Eppure 1o ho costruito nella mia mente un modello di cittd da cui dedurre
tutte le citta possibili, — disse Kublai. — Esso racchiude tutto quello che risponde
alla norma. Siccome le cittad che esistono si allontanano in vario grado dalla
norma, mi basta prevedere le eccezioni alla norma e calcolare le combinazioni
pitt probabili.

— Anch’io ho pensato un modello di cittd da cui deduco tutte le altre, —
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posso spingere la mia operazione oltre un certo limite: otterrei delle citta troppo
verosimili per essere vere.

Italo Calvino, Le cittd invistbili
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Introduction

This thesis deals with perturbation evolution in cosmologies characterized by differ-
ent mixture of dark matter components, aiming both to predict the expected Cosmic
Microwave Background (CMB) features and to analyze the linear theory of density
flictuations.

There can be scarce doubts that, in the last ten billions years, fluctuations in
the energy density of the Universe have attained a non-linear regime, up to scales of
several Mpcs. However, non-linearity can be a powerful eraser of initial conditions
and the great efforts put to simulate non-linear evolution, over an increasingly wide
dynamical range, still provides us with a limited set of model dependent predictions.
Large scale structure and CMB anisotropies can be studied already at a linear Tevel,
with a theory which is highly predictive and model discriminatory.

In this framework, our original contribution concerns the predicti‘ons for radiation
and matter power spectrum in a class of mixed dark matter models (volatile models)
and in some variants of warm dark matter models. In both cases, predictions have
also been compared with available data, in order to constrain the parameters of the
models.

The interest of this study resides in the fact that, in the past years, a number
of observations provided new information on the spatial distribution of matter on
large scale. At the same time, after COBE discovery of anisotropies in the microwave
background, many baloon-borne experiments provided the amplitude of anisotropies
on smaller scales. Therefore, the combination of detections of anisotropy in the
CMB and observations of the large—scale structure distribution of galaxies can now
probe the primordial density fluctuations on spatial scales varying by three orders
of magnitude, ranging from ~ 1 to 1000 Mpc with a superposition of the two kinds
of data on scales of ~ 100 Mpc.

Moreover, CMB became rtecently very attractive because of the future missions

MAP and Planck, which will certainly be very powerful in determining the basic
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cosmological parameters. However, even with the impressing spatial resolution and
spectral coverage of the Planck satellite, CMB data analysis alone can leave some
ambiguity in the determination of cosmological parameters, since the contemporary
variation of different parameters can have compensating effects on the predlcted
power spectrum. In this respect, a joint analysis of large scale structure and CMB

is desirable.

As long as the nature of dark matter is concerned, the angular power spectrum
of the radiation is affected by different kinds of dark matter already at angular scales
'~ 200. Typical differences with standard cold dark matter (CDM) are lower than
10% in the power spectrum, up to [ ~ 500. This precision will be definitely attained
with the future space missions. However, we shall see that in volatile models CMB
predictions differ much more significantly from CDM, so that present CMB data can

already be used to draw some conclusions on their parameter space.

As long as the matter power spectrum is concerned, different dark matter con-
tents lead to very different predictions, and therefore very different scenarios for

structure formation.

Moreover, the dark matter nature is related to high—energy physics. The possi-
bility that structure formation depends on the nature of hot or warm components
is to be explored also as a tool to provide high—energy physics data, which may be
complementary to the results attained with laboratory experiments.

In this thesis two different class of dark matter models are studied in detail: the

volatile dark matter model and the gravitino warm dark matter model.

Volatile models are characterized by a dark matter component coming from an
early decay of a heavy particle. The first motivation for this work came from particle
physics, because we were interested in studying the cosmological implications of a a.
model in which the neutralino, an already well known cold dark matter candidate,
decays into an axino and a photon. The decay-produced axino would behave more
like a hot dark matter component, and, together with a thermal relics of axinos

providing a cold component, would give rise to a mixed dark matter scenario.

The (axino) volatile model appeared appealing for several reasons. Firstly, it
allowed to obtain a cold and a hot component with the same particle, therefore
avoiding the problem of a fine-tuning between the abundance of particles with very
different nature providing the hot and the cold dark matter, Secondly, the power
spectra of volatile models have the characteristic of providing smaller power on
high scales if compared to CDM, just as cold + hot dark matter (CHDM) models,

also referred to as mized models, with stable massive neutrinos providing the hot
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component. Mixed models are actually among the best dark matter models in
reproducing the observed large scale structure. Soon after COBE results, it became
clear that the standard cold dark matter (CDM) scenario predicts too much power
on small scale when a normalization to large scales is performed. Adding a hot
component to the cold one is a way of subtracting power on small scale, while
leaving the large scale unaffected. Recent analyses that take into account also the
CMB data confirm the mixed models as preferable ones [1].

However, in CHDM models mentioned above, the abundance of the hot compo-
nent is univocally linked to the mass of the hot dark matter particle, and therefore
to the redshift at which the hot component typically become non-relativistic. Here,
owing to the production mechanism of the hot component, the abundance of the hot
component 2 and its derelativization redshift z,, can be varied almost indepen-
dently, giving rise to a wider set of possible power spectra. Scale invariant power
spectra were normalized to COBE results, compared to the available phenomeno-
logical ones and used to predict observable quantities like bulk velocities, number of
clusters and high redshift damped Lyman-o systems. Comparing predictions with
available data, we found a preferred subset in the parameter space for 1, ~ 0.2 and
Znr ™ 2 X 104\Qh.

Following a similar pattern, we extended our analysis to volatile models in which
the decay give rise to a hot dark matter particle and a sterile scalar. Firstly, we
analyzed the features of the power spectra of these models with respect to the stan-
dard neutrino CHDM ones, and then we compared model predictions with both large
scale structure and CMB data, allowing also the primordial spectral index n to vary.
In particular, owing to COBE determination of the spectral index, we considered
the consequencies of taking n > 1. Besides the independence of abundance and
derelativization redshift cited above, these models differ from usual CHDM models
with massive neutrinos mainly for two reasons: the hot dark matter component has
a different phase-space distribution and the background radiation is higher due to
the presence of the sterile scalar. We analyzed the impact of these two aspects on
both the radiation and matter power spectrum, and found that the latter causes
the main differencies with respect to the neutrino CHDM case. The presence of the
sterile component implies equivalencé to be shifted towards lower redshifts. As a
consequence, the matter power spectrum is further damped on small scales, when
the same normalization on big scales is performed. For the same reason, the first
doppler peak in the radiation power spectrum is higher than in CDM and CHDM

models. This feature goes in the direction of alleviating the problems that CDM
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and CHDM models have in matching the results of Saskatoon experiment.

A detailed analysis has been performed in order to restrict the space parameter
Qp—~24er, for different values of n. Considering large scale structure data only, we
found that the most stringent linear constraint arises from fitting the extra—power
parameter I'. Other significant constraints arise comparing the expected abundances
of galaxy clusters and high—z systems with observational data. If low values of I’
are permitted, mixed models with 1 < n < 1.4 can have up to ~ 45 % of non—cold
component, without violating any further linear constraint. Keeping to models with
I' > 0.13, a suitable part of the parameter space still allows up to ~ 30 % of hot
component. It is worth pointing out that the effect of a late equivalence on the matter
power spectrum is similar to the one obtained by tilting the initial power spectrum to
values n < 1. On the contrary, the effect on the radiation power spectrum is a higher
doppler peak, which mimes the effect of an n > 1. For this reason, while large scale
structure can be fitted by taking simultaneously a low derelativization redshift zge,
(down to ~ 600) and a high n, CMB data from baloon-borne experiment implies
a severe selection on this part of the parameter space. Therefore n 2 1.3 seems
excluded by baloon—-borne experiment outputs, while a good fit of almost all CMB
and large scale structure data is found for Q, values between 0.11 and 0.16,n ~ 1.1
and zge, ~2000-5000. A smaller n is allowed, but z4., should never be smaller than
~ 1200.

The impact of having a different distribution function for the hot component has
been investigated comparing volatile models with technical CHDM models in which
extra degrees of freedom have been added to the massless neutrinos to account for
the extra-radiation caused by the sterile scalar in volatile models. The difference is
of the order of a few percent at maximum on all scales both in the radiation powef
spectrum and in the matter one. While in the matter power spectrum this difference
is very.tiny, and not appreciable with experiments, such a precision may be attained

in the future CMB experiments.

A further model presented in this thesis considers a light gravitino as the con-
stituent of dark matter. The gravitino is the lightest' supersymmetric particle in
gauge-mediated supersymmetry breaking (GMSB) models. According to particle
physics predictions, its mass can vary a lot, from a fraction of eV to O(GeV), de-
pending on the SUSY breaking scale. However, when the relic number density of
gravitinos is computed, it is found that a gravitino with mass higher than ~ 1 keV
would overclose the Universe. On the other hand, a much too light gravitino would

contribute to the overall energy density for a tiny fraction, and therefore would be
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cosmologically irrelevant. For these reasons, we analyzed the formation of cosmic
structures in models where the gravitino have a mass of 100 eV — 1 keV. These
gravitinos were once in equilibrium with radiation and therefore their phase-space
distribution have a thermal origin. In this respect, they are similar to the standard
candidate of hot dark matter, i.e. the stable massive neutrino. After evaluatirg the
number of degrees of freedom at the gravitinos decoupling (g.), we computed the
transfer function for matter fluctuations and show that gravitinos behave like warm
dark matter (WDM) with free-streaming scale comparable to the galaxy mass scale.
It is already known that just replacing the cold component with a warm one in
the standard CDM scenario does not provide a viable scenario for the formation of
cosmic structures[2]. In fact, the effect of introducing the warm component is that
of suppressing fluctuations only at the galaxy mass scale, while leaving the power
spectrum unaffected on the cluster mass scales, where standard CDM fails.

Therefore, if we desire a GMSB scheme to provide the dominant DM content
of the Universe, we need some prescriptions to improve the WDM scenario. To
this purpose, we analyzed what happens if we followed the same pattern as for
improving CDM, namely either adding a hot neutrino component or lowering the
density parameter. Our analysis focused on the interesting class of GMSB schemes,
although many of our conclusions may equally well aﬁply to models with a generic
WDM other than the light gravitino.

The purpose of our analysis was twofold. On one hand, given the success of
suitable CHDM and low—density CDM models in accounting for several observa-
tional constraints (in particular providing a low level of density fluctuations at the
10h~1Mpc scale to avoid cluster overproduction, while having enough power at about
1h~*Mpc to form galaxies at an early enough epoch), we asked whether the agree-
ment can be kept when a warm gravitino component replaces the cold candidate.
On the other hand, from a more particle physics oriented point of view, we would
like to make use of the cosmological constraints related to the DM issue to infer
constraints on the GMSB models, in particular shedding some light on the range
of the allowed (or at least cosmologically favoured) scales of SUSY breaking in this

class of theories.

We conmdered different low—density variants of the WDM model, both with and
without cosmologlca,l constant, and compare the predictions on the abundances of
neutral hydrogen within high-redshift damped Ly-a systems and on the number
density of local galaxy clusters with the corresponding observational constraints.

We found that none of the models satisfies both constraints at the same time, un-
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less a rather small Qo value (S 0.4) and a rather large Hubble parameter (X 0.9) is
assumed. Furthermore, in a model with warm + hot dark matter, with hot compo-
nent provided by massive neutrinos, the strong suppression of fluctuation on scales of
~ 12~ 'Mpc precludes the formation of high-redshift objects, when the low—z cluster
abundance is required. We concluded that all different variants of a'light gravitino
DM dominated model show strong difficulties for what concerns cosmic structure
formation. This result gives a severe cosmological constraint on the gauge-mediated
SUSY breaking scheme. Given the difficulties that gravitinos present with respect to

structure formation, we didn’t consider necessary to analyze the CMB predictions.

This is the content of the thesis. However, this is only a fraction of the work that
I carried out during these years. A relevant portion of my time has been dedicated
to the Planck project. Namely, I performed the simulations of high-resolution CMB
all-sky maps that were used to simulate the future observations. A first result of this
work concerns the effects of beam distorsions on the anisotropies measurements, and
it is presented in ref. [3]. More recently, I have been studying the problem of the
deconvolution of different processes from the observed images. Multi-wavelength
information is a crucial point in this analysis, because different processes have a
different frequency dependence. Moreover, also statistical knowledges on the spatial
distribution of emitting sources and eventual correlations among them can be taken
into account. Thereforé, suitable techniques that make use of all these information
should be considered. Already developed techniques are the generalized Wiener
filtering and the maximum entropy method. These techniques however currently
apply to small portions of the sky and work in Fourier space. An all sky analysis is
desirable, which can eventually take into account the local characteristics of some
processes, both for frequency dependence and spatial distribution. I investigated
the possibility of using wavelet transform to this aim. This work is still in progress,
and is not presented here.

The thesis is organized as follows:

— Chapter one is dedicated to an introduction of notations, and to a general
presentation the dark matter candidates that are then investigated. Neutrinos are
reviewed, since they are by far the most famous dark matter candidates, especially
after the recent Super-Kamiokande results. Moreover, they are often used as a ref-
erence'scenario. Other dark matter candidates, like gravitinos and volatile particles,
are also presented. A section is dedicated to inflation, with particular care to the

predictions that it implies on the primordial spectral index n.

- Chapter two provides a derivation of the relevant equations that are needed to
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study the evolution of perturbations in linear theory. The derivation is performed
for the volatile models, and final equations are given for all the models presented.
~ Chapter three introduces the basic tools that are needed for the comparison
with the data at a linear stage. The spectra of the models are presented and dis-
cussed.
— Chapter four is dedicated to the comparison of the models to the observations.

A final summary and discussion of the results conclude this thesis.
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1 The Unperturbed Universe

1.1 Introduction

In this Chapter we summarize the fundamental assumptions and observational evi-
dences of the background cosmology and we introduce some notations that will be
useful in the following Chapters. We present a brief thermal history of the Universe,
which is a fundamental link between particle physics and cosmology. A special care
is dedicated to inflation, mainly because of its implications on fluctuation power
spectrum. The last part of the Chapter is dedicated to the dark matter candidates
in general, andvspeciﬁcaﬂy to the ones whose implications on structure formation

has been studied in detail (i.e. gravitinos, volatile particles and neutrinos).

1.2 The Einstein equations

The Universe is described in the four-dimensional space. Each event is labelled with
three spatial coordinates z' (i = 1,2,3) and the proper time ¢ measured by a clock

in the rest—frame of the point P of coordinates z*. The metric
ds® = gap 2%z (0,$=0,1,2,3) (1.1)

represents the distance in the four—dimensional space between two events whose
coordinates are & and z®+daz®. Under the assumption of isotropy and homogeneity,

the expression:

2
ds? = (cdt)? — dI? = (edt)? — a(1)? 1—_63%—3 + 72(d8% + sin0d¢?) (1.2)

Kr
represents the metric in its most general form. In the above expression, dl is the

distance measured at a time ¢, a(t) is the expansion parameter * and (7,8, ¢) are co-
?

1we recall here the definition of redshift 1 + z = %=, In the rest of this thesis the redshift z will
therefore be used as a synonym of expansion rate. The value of a, is conventionally taken equal to
1.
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moving coordinates, while K represents the curvature of the Universe (K =0,+1,-1
for a flat, closed and open Universe respectively).
General Relativity allows to relate the metric tensor Jop to the energy content

of the Universe. The link is provided by the Einstein equations:

1 8t .
Rop — 590,51{ —Agap = —CTTag (1.3)

where R, is the Ricci tensor (R = g*PR,5) , A is the cosmological constant, G is the
gravitational constant and c is the speed of light and Tup is the energy-momentum

tensor. For a perfect fluid the energy—momentum tensor is:

Tap = (p+ pc’)UalUp = pgap (1.4)

where p and pc? are pressure and energy demsity respectively, while U, is the four—
velocity of the fluid (U, = ga,,‘%”;).
From the above expression one can easily deduce the Friedman equations:

2
@+ K= ——SZGpa2 + é;—

d:—%g(p+3c%>a+% (1.6)
Eqns.(1.5) and (1.6) describe the evolution of a(t), once the equation of state
p(p) is given.
A general equation of state of the kind

(1.5)

p = wpc? (1.7)

is adequate to describe both the pressureless matter (p=w = 0) and a relativistic
fluid in thermal equilibrium (w = 1/3). ,

Two fundamental parameters for the description of the evolution of the Universe
are the Hubble parameter H(¢) and the matter content 2. The Hubble parameter
is defined as H(¢) = % and its actual value H(0) = H, is usually expressed by means
of the dimensionless parameter A = H,/(100 Km/s Mpc~1), whose determination
is still quite uncertain, allowing a range 0.5< A< 0.85 [4]. ©, is defined as

Po,m poﬂ-G .
QO = /)—cr - ﬁ? (18)

where
Pocr = 1.8788 x 1072°h%g cm 3 (1.9)
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is the critical energy density, and po, is the actual matter density. In the rest of
this thesis the abundance of different components (label 7) will be parametrized by

i = 52— In the case Q, = 1 (and zero cosmological constant), usually referred to

as Einstein—de Sitter Universe, eqns.(1.5) and (1.6) allow the simple solutions:
axt?®  (if w=0) (1.10)

and
a o t4/? (if w=1/3). (1.11)

Since the CMB is closed to a blackbody with a very high precision ([5, 6]) and

its temperature is well established, the actual radiation energy density is easily

computed:
Por = ‘-’%—’”— =2.0154 x 10730*g em ™3 (1.12)
or, equivalently:
Qop = f[f)ﬁfl — 2.4888 x 10~5h2¢* (1.13)

where we put by definition:
6=T/273 K. (1.14)

The Universe is now matter dominated, and the radiation doesn’t contribute signif-
icantly to the actual energy density. Because of the different rate of growth, going
back in time the radiation energy density overcomes the matter energy density. The
redshift at which matter—radiation equivalence is reached is

Zeg = 4.0180 x 10*(Q,h?)07* (1.15)
if only photons are considered in the radiation content, or
Zeq = 2.3898 x 10%(Q,h%)07* (1.16)

if 3 massless neutrinos are also taken into account. If other species than photons
and neutrinos contribute to the radiation, z., can be even lower. We shall see that

this is situation is realized in som volatile models.

1.3 The cosmological constant

The cosmological constant, introduced a long time ago by Einstein, is an additional

term in the equations for the expansion factor a(t).
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The presence of a cosmological constant in the Einstein equations has two main
consequences, namely on dynamics of the Universe and on structure formation (for
a nice review on the.cosmological constant see [7]). Although disregarded for a long
time by cosmologists, the cosmological constant is now receiving much attention
because many different observational evidencies suggest that it is different from
zero. Recent evidencies in favour of a cosmological constant come from the high—
redshift supernovae measurements [8], and similar experiments are now carried out
by two separate groups [9, 10]. These measurements aim to evaluate the deceleration
parameter ¢, = —(ai/a?),, that is related to Q, and Q4 by the relation ¢, =
%QO — Qa. In particular, [10] claim that if Q, + Q4 = 1, then Q, < 0 at 95 % C.L.,
with a best estimate Q, = —0.1 £ 0.5, if Q4 = 0. This result is quite impressive,
since {2, is clearly positive by definition. Other evidencies come from double radio
sources [11] and CMB measurements. The latter in particular are suited to measure
Q6+, and therefore may help to break the degeneracy in the Q, — Q, plane, when
considered together with supernovae results. The actual estimate of the cosmological
constant constant with CMB measurements is compatible with supernovae results
[12].

Another important issue related to the presence of a cosmological constant is the
measurements of the age of the Universe and of Hyp.

The dynamical effect of the cosmological constant is visible at low redshifts, be-
cause in the early Universe the density of radiation and matter is far more important
than the A term in Friedman equations. Therefore, let us consider for a moment a
dust dominated universe with pressure p = 0. The continuity equation then reduces

to (47/3)pa® = M = const. The Friedmann equation reads:

Ac?a?

Integrating the equation above, one can see that the effect of A on the age of the
Universe is to make it longer than in both cases (o = 1,A = 0) and (g < 1,A = 0),
for a given value of Hy. Therefore the presence of a cosmological constant may help
to reconcile the quite high recent estimates of the age of the Universe (> 12 Gyrs,
[13]) with h> 0.5, as Ho determinations seem to suggest.

In a flat Universe with cosmological constant, the expansion slows down at low
redshifts because the attraction of the matter and the repulsion represented by the
cosmological constant tend to balance. After this stage, the cosmological constant
dominates causing an accelerated expansion corresponding to an inﬂationary Uni-

verse. This happens when 1+ S (2Qpambda/Q,)'/3. To give an example, in a
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Universe with 2, = 0.3, the cosmological constant start to dominate at z ~ 0.6.
The existence of a period in which the expansion greatly slows down while the time
increase not only has the effect of causing a greater ¢, but also implies that there is
a higher probability of finding galaxies at the redshift interval when the expansion
slowed down, and consequently an increased opportunity for lensing of quasars by
these galaxies. The observed lensed quasars are quite compatible with an Qg = 1
Universe, and so they allow to put quite stringent limits on the value of A: Q4 < 0.70
at 90% C.L. [14], and Q4 < 0.66 at 95% C.L. if Q4 + Qo = 1 is imposed [15]. '

| Despite the number of evidencies in favour of a cosmological constant, we must
say that they are all very recent, and therefore may not be complitely settled down
and accepted by the cosmological comunity. In the work presented in this thesis,
both models with and without cosmological constant have been considered, in par-
ticular the presence of a cosmological constant have been envisaged for the gravitino
dark matter, as a hope of reconciling prediction with the data. When dealing with
volatile models, we kept A = 0, since our analysis already let many parameters to

vary, and the presence of a cosmological constant could make the analysis less clear.

1.4 Thermal history of the Universe

In the previous sections we described the dynamics of the Universe. There are
evident proofs that the Universe is expanding. Going back in time, the radiation
temperature increases, and therefore we expect other particles to be in thermal
equilibrium with it.

The thermal equilibrium is provided by the fact that the reaction rates of parti-
cles in the thermal bath is much greater than the expansion rate.

They can be either bosons or fermions, which are characterized by a different

phase-space distribution:

f(P) = lexp(B - p)/T: 1)
where F is the energy, u is the chemical potential of the species, while +1 and -1
correspond to Fermi-Dirac and Bose-Einstein species.

From the above expression, it is easy to compute the energy density and pressure
at a given temperature.
- Assuming that at a certain moment there are different relativistic species, the
total radiation and pressure density can be expressed by:
2

T
r = o~ *T4
P 309
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2
T 4
pr=pr/3= %Q*T4-

The parameter g.denotes the effective number of degrees of freedom :

4 4
9= 3 gi(%> +; > 9i<%>
i=bosons i=fermions

where g; denotes the internal degrees of freedom of the 7 species.

Note that bosons and fermion contribute to the overall energy density with

a different weight, because of their phase-space distribution.

Note also that g. is also a function of the T, since in the sum only relativistic
particles are included ( i.e. it must be m; < T').

If only photons and massless (or very light) neutrinos are considered as particles
that contribute to the radiation, then the value of g, is 3.36 (here also the difference
between the neutrino and photon temperature has been taken into account).

Going back in time, g. remains constant until electron-positron annihilation is
possible, at T" > 1 MeV. For 1MeV < T < 100 MeV, g. = 10.75, taking into
account the electron-positron annihilation, and that T, = T, at that energies. '

The maximum number of degrees of freedom within the standard model is at-
tained at temperatures T > 300 GeV, when all the species contribute to the radiation
density. At that time, we have g, = 106.75.

However, many efforts in particle physics are concentrated in building a physics
beyond the standard model. Supersymmetry (SUSY) is a possible extension, and
it has often received attention by cosmologist because some SUSY particles are
dark matter candidates. If a supersymmetric theory holds, at early times the value
of g, can be higher than 106.75, the maximum depending upon the number of
supersymmetric particles of the theory.

As long as interactions among particles occur frequently enough, the Universe
evolves through a series of thermal equilibrium states. This happens if the interaction
rate per particle, I' = no|v| (n being the number density of target particles, o
the cross section of the interaction and |v| the relative velocity), is greater of the
expansion rate: I' > H.

However, note that a massless non-interacting particle which has been once in
thermal equilibrium, will conserve the thermal phase-space distribution in time,

with a temperature T o o™ 1.

With the physics we know, we can’t describe the thermal history of the Universe

up to very early times, since a much developed quantum-relativistic theory whould
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.

be required. A limit is set by the Planck scales: mp; = 2.18 x 1075 g, or Tp; =
1.22 x 1019 GeV.

At such early times the Universe was a plasma made of quarks, leptons, gauge
bosons and Higgs bosons. As temperature went down, a number of successive sym-
metry breaking phase transitions took place.

At temperatures between 10'* and 10'® GeV the grand Unification phase tran-
sition took place (GUT), while electroweak phase transition occurred at lower tem-
peratures, around T ~ 300 GeV. During these phase transitions some of the gauge
bosons acquire mass via the Higgs mechanism, and the interactions that they me-
diate will be characterized by a coupling strength Gx. Particles that are sub-
ject only to this interactions will decuple from the thermal bath at a temperature
T~ G;/ Bm;ll/ % The Peccei-Quinn symmetry breaking eventually occurs when
1095 TS 1012 GeV

At much lower temperatures, between 100 and 300 MeV, quark-hadron tran-
sition occurs: after this time quark and antiquark are confined into baryons and
mesons. i

- Nucleosynthesis take place when the temperature T' ~ 10 — 0.1 MeV, while at
T ~ 0.1 eV the Universe recombines.

These two last stages are of crucial importance for modern cosmology, also be-
cause they can be directly tested with observations.

Nucleosynthesis imply specific ratios between light element abundances, and can
be tested looking at high-redshifts objects; the recombination epoch is tested via
CMB observations. '

1.5 Inflation

We refer to an inflationary era when the expansion factor has a positive acceleration,
i > 0. :

The hypothesis that the Universe underwent an inflationary era was introduced
a 1ong time ago [16], and many variants of the first concept have immediately been
proposed [17, 18]. The inflationary mechanism soon acquired importance because it
seemed it could give an explanation to the shortcomings of the Big Bang cosmology.
The basic idea of inflation is that there was an epoch when the vacuum energy of a
field ¢ (the inflaton field, with potential V(¢)) was dominating the energy density

of the Universe. The equation of motion of such a field is:

$+3HG+V'(¢) =0 (1.17)
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and its energy density and pressure are:

1, o
p=V 38 (1.18)
P_ _y il (1.19)
c? 2
and therefore if the field is evolving sufficiently slowly (¢? << V) we have that
2—229 < —p. Since 4 = ~i7§——g (p + %23) a, the above condition imph’eé an accelerated

expansion. From the Friedann equations we can derive that during inflation the
Hubble parameter H was (almost) constant, so that the expansion factor a was
growing quasi—exponentially. This feature of inflation gives a possible explanation
to the so called horizon problem, which poses the question of why the Universe is so
smooth today even on very large scales. If inflation occurred, even scales that are
now out of the horizon may have been in causal contact before the inflating era.

Another tempting feature of inflation is that it provides a mechanism for pro-
ducing small density fluctuations in the early Universe (see [19] for a comprehensive
review). In the inflationary paradigm, fluctuations in the matter-radiation fluid are
generated by fluctuations in quantum fields during the inflationary phase.

Another well known prediction of inflation is that the curvature today almost
vanishes. In fact, while during inflation the energy density was almost constant, the
curvature radius grew exponentially, so that its value today still exceeds the present
Hubble radius.

Finally, inflation may help in getting rid of heavy and stable relics (e.g. monopoles)
produced before inflation and that would by now overclose the Universe. In fact,
their number density scales as a~>, and therefore it decays exponentially during
inflation.

As long as structure formation is concerned, inflation is interesting because it
provides a way of producing inhomogeneities in the early Universe (as well as grav-
itational waves, eventually). Here we shall discuss in more detail the predictions on
the initial power spectrum for adiabatic density perturbations. After explaining the
arguments for a scale-invariant spectrum n = 1, we shall show how models with
n > 1 are feasible in the inflationary scenario. We present this case in detail because

an n > 1 was considered while treating volatile models.

1.5.1 Primordial spectral index from inflation

According to the inflationary scenario, density perturbations originated during in-

flation as quantum fluctuations, and they become classical as they left the horizon.
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Let us define 6y (k) as the amplitude of the perturbation on a scale & at horizon
(re)entry. It is normally assumed 6% (k) o< k™1, so that for n = 1 all scales have the
same amplitude when they enter the horizon. It is possible to link the primordial
spectral index n with the potentian'l of the inflaton field.

In particular, the following relation holds [20]:

32V,
63(k) = ——€.!
75m},

(1.20)

where the subscrit * denotes the epoch of horizon exit of a scale k (k = aff ). The

quantity € is related to the potential as follows:

2 " 2
_mp [V 51"
€= T <V> . (1.21)

In most inflationary models, the second term in the equation of motion (1.17) balance
the third one ( ¢ ~ LHV’) so that € is small and positive. Another condition that
is usually satisfied is that the absolute value of the quantity

g V" _

= — 1.22

7 mb, V ( )

is much smaller than one. From eq.(1.20) it is possible to deduce the following

expression for n:
n=1+2n— 6¢ (1.23)

that, under the slow-roll conditions || << 1 and € << 1, states that inflation
predicts a primordial spectral index close to 1. Since in one-field inflation € is
positive by definition, in is easier to get n < 1, but there are results in the literature
which show that a wide class of inflationary models predict n > 1 (see, e.g. [21]),
but 5 1.4.

In order to get a more physical intuition, let us reexpress n in a different way.
Keeping in mind that n — 1= %——‘fogg% and that eq.(1.20) holds, the spectral index n
can be related to the Hubble parameter H during inflation and to the speed ¢ of the
slow-rolling—down process, along the scalar field potential. The critical quantity is
the ratio W(k) = H?/¢, where H and ¢ are taken at the time when the scale 27 /k
leaves the event horizon. The value of the spectral index therefore is:

d(log W)

)

(1.24)

and, if W (slowly) decreases with time, we have the standard case of n (slightly)

below unity (it should be reminded that greater scales flow out of the horizon at
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earlier times). This decrease is due to an acceleration of the downhill motion of
¢ and an opposite behaviour occurs if ¢ decreases while approaching a minimum.
In this scenario, the very last stages of inflation should rather see a significant ¢—
- field acceleration, ending up into a regime of damped oscillations around the true
vacuum, when reheating occurs.

Another possibility is that reheating does not arise when an initially smooth
acceleration finally grows faster and faster, as the slope of the potential steepens;
on the contrary, reheating starts abruptly, thanks to a first order phase transition,
perhaps to be identified with the break of the GUT symmetry. Before such transition
and since the Planck time, most energy content naturally resided in potential terms,
so granting a vacuum-dominated expansion. This picture of the early stage of the
cosmic expansion is the so—called hybrid inflation, initially proposed by Linde [22].

A toy-model realizing such scenario [23, 24] is obtained from the potential
Vip,x) = (4® = Ax®)* + 29%0%* + m2p? (1.25)

depending on the two scalar fields ¢ and x, expected to be slowly and fastly evolving,
respectively. If the slowly evolving field is embedded in mass terms, the potential
reads

V(x)= M*+ 2x* + A? (1.26)

where _
At = pt + mPet and M? = 2(g%% — Ap?) . (1.27)

Eq. 1.26 shows that V' has a minimum at x = 0, provided that M2 > 0. If M2 < 0,
instead, the minimum is for Y= \/—M?/2], yielding u when o = 0.
Large ¢ values therefore require that x vanishes and then the potential

V(p,0) = p* + m?? (1.28)

allows a Planck-time inflation, as ¢ rolls downhill taking V from an initial value
~ tp; to ~ p*. This downhill motion is expected to decelerate when the second v
term at the 7.h.s. of eq.1.28 becomes negligible in respect to y?, which essentially
acts as a cosmological constant. This deceleration abruptly breaks down when the
critical value ¢, = v/Au/g is attained, for which M2 changes sign. At that point the
configuration x = 0 is unstable and the transition to the true vacuum configuration
X reheats (or heats) the Universe.

There are a number of constraints to the above picture, due to the requirements
that at least 60 e-foldings occur with ¢ > ¢. and that fluctuations have a fair
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amplitude. Such constraints are discussed in several papers (see, e.g., [25]; and
references therein) and cause the restriction n< 1.4.

- Let us however outline that hybrid inflation is not just one of the many possible
variations on the inflationary theme. In spite of the apparent complication of the
above scheme, it is an intrinsically simple picture and one of the few patterns which
can allow to recover a joint particle-astrophysical picture of the very early Universe,
as was naturally hoped before it became clear that the Higgs’ field of the GUT
transition could not be the inflaton [26, 27].

1.6 Dark Matter candidates

There are many astrophysical evidences for an £, > 0.2, with £; < 0.1.

This imply that the majority of the matter in the Universe is not made by atoms.

Two main possibilities are available: either the dark matter (DM) is constituted
by massive compact objects like primordial black holes, neutron stars, jupiters, or
dwarfs; or it is made of non-baryonic particles. The latter perspective is of interest
also for the particle physicists world, since the Universe can be an ideal environment
where to test theories that cannot be tested with actual laboratory experimex‘lt. In
this paragraph we will therefore focus on this issue, giving an overview of the most
attractive dark matter particle candidates. More attention will be devoted to some
specific candidate in the next sections, since they where studied more in detail in
the original work of this thesis.

The particle physics standard model is now a milestone since it passed several
experimental tests, for example the gauge bosons W and Z has been discovered
and the top quark has been found in the mass range expected by the electroweak
radiative corrections. It is therefore clear that any possible extension of the standard
model should reproduce it with great accuracy up to energies ~ 100 GeV'.

Nevertheless, many particle physicists are convinced that the standard model
in not the whole story. The main motivations are that the standard model does
not unify the elementary interactions (gravity, in particular, is left out), and it
leaves problems with the fermion masses and mixing. Very recently (May 1998) the
Super—-Kamiokande team claimed to have found 5 x 107* < Am? < 6 x 1073 V2
from v, — v, oscillations [28]. This news excited also the astrophysics world, because
the standard model predicts null mass for neutrinos and leaves no room for extra
relic massive particles besides (few) baryons, and therefore does not help in solving
the dark matter problem, since there is no way to account for Q, > 0.1. We can

envisage two main particle physics candidates for DM: massive neutrinos and the
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lightest supersymmetric particle (LSP).

The two best candidates we have to play the role of LSP are the lightest neu-
tralino (i.e. the lightest among the fermionic partners of the neutral gauge and
Higgs fields) and the gravitino (the fermionic partner of the graviton in the gravity
multiplet) [29]. Which of the two is the actual LSP strictly depends on the mecha-
nism one envisages for the SUSY breaking, or, more precisely, for the transmission
of the breaking of SUSY from some hidden sector to the observable sector of the
theory (ordinary particles and their superpartners belong to this latter sector). If
the “messengers” of the SUSY breaking are of gravitational nature (as it happens
in the more “orthodox” supergravity models), then the lightest neutralino is likely
to be the LSP. In these schemes the gravitino mass sets the scale of SUSY breaking
in the observable sector and, hence, it is expected to be in the 102 — 103 GeV range.
On the other hand, it has been vigorously emphasized recently (after ten years of
silence about this alternative) that gauge, instead of gravitational interactions may
be the vehicle for the transmission of the SUSY breaking information to the observ-
able sector [30]. In these scenarios the scale of SUSY breaking is much lower than
in the supergravity case and consequently, as we will see below, the gravitino mass
is much lower than 102 GeV. Hence in this class of gauge mediated SUSY breaking
(GMSB) models the gravitino is more likely to play the role of LSP with a mass
which can range a lot, depending on the specific scale of SUSY breaking, say from a
fraction of eV up to O(GeV). In gravity-mediated models with mz ~ 102-10% GeV,
we face the traditional gravitino cosmological problems [31, 32, 33, 34, 35]. Namely,
unless gravitinos are strongly diluted at inflation and they are not regenerated in the
reheating phase (7., < 108 GeV), they would spoil the canonical picture of big-bang
nucleosynthesis (BBN).

On the other hand, if the gravitino is lighter than the neutralino, the latter is
no longer stable, and decays to the gravitino. It was pointed out [36] that its decays
would also destroy the BBN if its life time is sufficiently large. A limit on the life
time depends on the abundances of the neutralinos before decay. We quote here a
conservative bound of 10° sec as an upper bound for the life time of the neutralino
from the BBN constraint.

Different dark matter candidates can lead to very different cosmological scenar-
ios, that we schematically describe as hot dark matter (HDM), warm dark mater
(WDM) and cold dark matter (CDM) scenarios .

Conventionally, hot dark matter refers to low—mass neutral particles that were

still in thermal equilibrium after quark—hadron transition took place, and therefore
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neutrinos, if massive, enters this category. Their number density is known and
quite close to photon’s one, therefore their mass is linked to their abundance by
the relation: 3" m, = 93.625Q,h%07% eV, while the number of light neutrinos has
been limited by particle accelerators experiment (LEP and CERN) to be N, =
2.993 +0.011 (10) [37] for m,, < m(Z°) ~ 46 GV, in well agreement with Big Bang
nucleosynthesis predictions (N, < 4 taken as a conservative limit, for m, < 1 MeV).
However, we will see in the next Chapters that HDM behaviour with respect to
density fluctuations can be obtained even with other particles than neutrinos, namely
SUSY particles coming from the decay of heavier ones. The characteristic of HDM
is to erase by fee—streaming any fluctuation below ~ 1015 Mg, Smaller structures,

therefore, form by fragmentation of larger lumps.

Warm dark matter particles normally interact more weakly than neutrinos, there-
fore they decouple earlier and they are not heated by subsequent annihilation of
hadronic species. Their number density is therefore lower (roughly an order or mag-
nitude less than HDM) and their mass higher. Gravitinos, the fermionic partners
of gravitons, can constitute the WDM component, provided that supersymmetry is
broken at low energies. Another possible candidate is a right-handed (or sterile)
neutrino. They both give rise to a scenario were the free—streaming scale is of the
order of 10! Mg,

Cold dark matter, instead, is made of particles that are already non-relativistic
when the smallest cosmologically relevant scale enters the horizon. Fluctuations
aren’t damped by free—streaming on any scale, and structures form in a bottom-up
scenario. There are mainly two candidates for CDM, namely the axion and the
neutralino. Axions are very light particles (m ~ 107° eV') associated to the Peccei-
Quinn symmetry, and they were never in thermal contact with radiation. The
neutralino X° is a representative of the lightest SUSY particle for high—energy bro-
ken supersymmetry. There are lower bonds on neutralino masses of myo > 20 GeV.
Neutralinos are kept in thermal equilibrium trough the electroweak interactions even
when the temperature is below their mass. As a consequence, their number density
is therefore greatly lowered by the exponehtial Boltzmann factor. Their contribution
to §, depends on their mass but also greatly on their decoupling temperature. For
instance, if the Xy results from a large mixing of the gaugino and higgsino com-
ponents, the annihilation is too efficient to contribute to Q, significantly. On the
contrary, if the neutralino is a pure gaugino or higgsino, then there is a possibility |
that a sufficient number of neutralinos survive and account for a reasonable value of

Q,. Requiring an ©, < 1 leads to the restriction in the parameter space still allowed
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by existing experimental constraints. This is a fruitful example of the interplay be-
tween particle physics and astrophysics, in the rest of this thesis we will focus on
other results of this kind. To conclude the possible cold dark matter candidates, let
us mention the recently proposed case of nonthermal supermassive (SUMO) dark
matter with mass possibly larger than the grand-unification scale, and certainly of
the electroweak scale [38]. SUMO dark matter resurrect the possibility is made of
charged or even strongly interacting particles.

In the following, we will present more in detail the features of dark matter
candidates that underlie the cosmological models extensively studied in the next

Chapters. We refer here to gravitinos, neutrinos and volatile dark matter.

1.6.1 Gravitinos

In a supersymmetric model [39], each ordinary particle is associated with a su-
perpartner. We assign R-parity even to the ordinary particles and odd to their
superpartners. In supergravity, that is a natural extension of the supersymmetric
standard models to the framework of local supersymmetry, we have another R-odd
particle, the gravitino, which is the superpartner of the graviton. The lightest of the
R-odd particles, namely the lightest superparticle, is absolutely stable, under the
assumption of the R-parity conservation, which was originally introduced in order
to avoid too fast proton decays. The LSP is thus a dark matter candidate, if its
expected relic abundances lie within a suitable range of values.

As a starting point, we review some properties of the gravitino. The gravitino
mass is related to the SUSY breaking scale Agysy as follows:

s = — ASusy (1.29)
7 V3 Mp o

where Mp; is the reduced Planck mass ~ 2.4 x 108 GeV. On the other hand, the
soft SUSY breaking masses for the superparticles are given as

Adysy :
Usy (1.30)

Msoft ~

where M effectively repiesents the mass scale of the interactions that transmit the
breakdown of SUSY in the hidden sector to the observable sector, the latter induding
particles of the SUSY standard model. We call M the messenger mass scale. In the
conventional scenario of the gravity-mediated SUSY breaking, the transmission is
due to gravitational interactions. In this case, the messenger mass scale is M ~ M Pl

so that the gravitino mass will be comparable to the other soft masses. In order to
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have the soft masses at the electro-weak scale the SUSY breaking scale should be at
an intermediate scale ~ +/mu Mp;. )

On the other hand, one can consider the case where the SUSY breaking is trans-
mitted by gauge interaction. The idea of the gauge mediation [40, 41, 42, 43, 44, 45]
is older than the gravity-mediation, and has recently been revived with fruitful re-
sults [30, 46, 47]. In this case the gauge interaction can set the messenger mass scale
much lower than the Planck mass. Since the soft masses are fixed at the electro-weak
scale, the SUSY breaking scale can be much smaller than the intermediate scale of
VmwMp,. Correspondingly the gravitino can be much lighter than the other su-
perparticles. Now a crucial question is: how light is the gravitino? The answer
should depend on the details of the messenger of the SUSY breaking. In most of the
gauge-mediated models, there are three independent sectors. They are the hidden
sector, the messenger sector and the observable sector. The interaction between the
last two sectors is the standard-model gauge interaction, so its strength is fixed.
But the interaction between the first two is model dependent, so is the messenger
mass scale. For example, in the original models of gauge-mediation [30, 46, 47] it
was shown [48] that Asysy cannot be smaller than 107 GeV, the corresponding
gravitino mass being ~ 10? keV. However, a lighter gravitino should be possible
from viewpoints of both model building and phenomenology. In the SUSY gauge-
mediated approach the soft masses arise at the loop level (to avoid the supertrace
constraint [49]). Hence a lower bound on Asysy is provided by the relation

S 1672 _
Asusy & —5=Msoft (1.31)
9
where g is some gauge coupling constant. For instance, recently Izawa et al. [50, 51]
have constructed a model where my, < 0.1g%/1672Asysy. In this case, Asysy

can be as small as 0(10°%) GeV for msp = O(10%) GeV. In view of the above
consideration, in our work we consider the following gravitino mass range

1eV S maS afew TeV. (1.32)

Suppose that the spin 1/2 components of gravitinos were in thermal equilibrium
at an early epoch.As temperature went down, the processes which kept the gravitinos
in equilibrium became ineffective and they decoupled from the thermal bath. After
that, the number of gravitinos per comoving volume was frozen out. This freeze-out
took place while the gravitinos were relativistic. Following a standard procedure

[52], one can calculate the relic density of the gravitinos [53]

Qzh? = 0.282eV7'mgYi
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100 m s~
= 1.17 < m > <103§V>, (1.33)

where Q5 is the contribution of the (thermal) gravitinos to the density parameter

and g. stands for the effective degrees of freedom of relativistic particles when the
freeze-out of the gravitinos takes place. Note that g. = 106.75 for the full set of
particle contents of the minimal standard model and g, = 228.75 for those of the
minimal supersymmetric standard model. Thus one expects that g, at the freeze-out
will fall somewhere in between the two numbers. The computation of g, is a crucial
point of our analysis and we will come back to it later on. For later convenience, we

introduce the yield, Y., of the gravitinos, defined by

Ym:(v_z_@_> _ 617 (1.34)
s/ 4

where ns is the number density of the gravitinos and s is the entropy density. The
subscript co means that the ratio is evaluated at a sufficiently late time (i.e., low
temperature) at which it is constant.

We will first briefly discuss the case when the relic abundance of the gravitinos
calculated in this way exceeds the closure limit, QxR 1. This corresponds to the
gravitino mass region ms< 1 keV (g./100)A2. In this case, as was discussed in refs.
(36, 48], entropy production is needed to dilute the gravitino abundance in order
not to overclose the Universe. To avoid an excessive reproduction of the gravitinos
after the entropy production, its reheating temperature must be low; its upper
bound varies from 10° to 10® GeV, depending on the gravitino mass. The lower the
gravitino mass is, the lower the reheating temperature should be. If the reheating
temperature happens to saturate the upper bound quoted above, the gravitinos will
dominate the energy density of the Universe, and play the role of DM.

On the other hand, the low reheating temperature required by the closure limit
leads to the question of how to generate the baryon asymmetry of the Universe.
Since the reheating temperature can be still higher than the electro-weak scale,
baryogenesis during the electro-weak phase transition may work for some region of
the parameter space [54]. Another possibility is to use the Afleck-Dine mechanisni,
which was explored in detail in ref.[48] in the framework of the gauge-mediated
SUSY breaking.

When the gravitino mass is smaller than (g./100)A? keV, the thermal relic den-
sity of the gravitinos Qg is smaller than one. This is the region that we have studied
in detail. As we discussed previously, models providing this range for the gravitino

mass can be devised. Tt is also interesting to mention that a possible explanation of
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the eeyy event [55] at CDF by the light gravitino scenario [56, 57, 58, 59, 60, 61, 62]
requires this range of gravitino mass; otherwise the neutralino would not decay into
a photon and a gravitino inside the detector. A particularly interesting parameter
region for cosmology is the region in which 0.1S QxS 1 is realized, and thus the
gravitino mass density constitutes a significant portion of the density of the whole
Universe. A DM particle with mass within the sub-keV to keV range may consti-
tute the warm dark matter [63, 64, 65, 66, 67]. We will discuss scenarios of cosmic
structure formation within a WDM dominated Universe in the following Chapters.
If, instead, the gravitino mass is as small as to give = < 0.1, then it becomes
cosmologically irrelevant and an alternative DM candidate is required.

1.6.1.1 Computation of g.

In this section we come back to the question of g., the effective degree of freedom
of relativistic particles at the freeze-out of gravitinos. Of particular interest is the
region where m@S 1 keV so that gravitinos of thermal origin dominate the energy
density of the Universe. The crucial relevance of g, lies in the fact that, for a
specified value of Qéh?, it fixes the corresponding gravitino mass and, therefore, the
free—streaming scale.

The production and destruction rates of the gravitinos due to scattering processes
are proportional to the fifth power of the temperature and, therefore, their abun-
dance rapidly drops down as the temperature decreases. Thus, decay and inverse
decay processes are more important for a light gravitino whose freeze-out occurs at
a rather low temperature [36].

In order to compute g., the following Boltzmann equation must be integrated:

R+ 3Hng = C, (1.35)

where n is the gravitino number density and H is the expansion rate of the Universe.
As a collision term (C), we considered contributions from two body decay (and
inverse decay) processes. A numerical integration of eq.(1.35) is necessary in order
to take into account the continuous variation of the ratio between the collision rate
and the expansion rate. Here we only present the results, addressing the reader
to ref. [68] and its Appendix for further details. Results are summarized in Table
1.1. We show the value g, for a range of model parameters. In this computation,
we assumed a typical sparticle mass spectrum in a simple class of gauge-mediated

models [69]. Explicitly, we take for the gauginos

5y Qg Qs e
_ Mo = —Z A Ma = —=A 1.36
Ml = 34 -AG’7 2 4 Gs 3 dn Gy ( )
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(a) mg (eV)
my, = M 10 50 100 200 500 1000
M,-(GeV) 50|87 93 101 110 122 136
100 |87 89 93 111 114 124
150 | 87 89 92 97 109 119
200 | 88 90 93 97 105 115

(b) me (oY)
my = 2M4 10 50 100 200 500 1000
My (GeV) 50 | 87 91 95 102 116 128
100 7 90 93 98 107 116
150 | 88 91 93 97 104 111
200 | 88 92 94 98 103 108

Table 1.1: Value of effective degrees of freedom of relativistic particles, at the gravitino
freeze-out, g., as a function of the gravitino mass mg and the U(1)y gaugino mass Mj. In

the case (a) the right-handed slepton mass is m;_ = M, and in (b) mi, = 2M;.

and for the sfermion masses

2 2 o 2 2

m? =9 lVCB (%—) +Cy (Z—;) + g (%) (i:%) } AZ, (1.37)
In the above expressions «; is a gauge coupling constant in the standard model, Y is
a hypercharge of Uy (1), while C3 = 4/3 for a SU(3)¢ triplet, Cy = 3/4fora SU(2)L
doublet, and 0 otherwise. Ag, Ag are introduced to parameterize the transmission
of SUSY breaking from the messenger sector to the observable sector.2 We provide
g« values for two cases: (a) the right-handed slepton mass mp. equals to the bino
mass My, t.e. my = M, and (b) mp, = 2M;. In both cases, we find that g. is
around 100 for a wide range of the parameter space. For a given Qs, a lower value
of g. implies a lighter gravitino, making structure formations at small scales more
difficult, as we will discuss in the following sections. The fact that g. tends to lie

in the lower side should be kept in mind, though we will explore a somewhat wider
range for g,.

*To avoid further complication, we set a light Higgs mass to be the Z° mass, and masses of
heavier Higgs and higgsinos to be the same as the left-handed slepton mass. Furthermore we did
not include D- or F-term contributions to the scalar masses. Also we ignored the mixing in the

mass matrix of the neutralino and the chargino sector.
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1.6.2 Neutrinos

Neutrinos are leptons and fermions. According to the standard model, they are
massless.

This feature,' however, is not dictated by an underlying principle, such as gauge
invariance: the standard model simply postulates that neutrinos are massless. This
is a minimal assumption, which derives from the fact that we simply don’t know the
scale responsible for neutrino mass, nor the underlying mechanism.

They were dynamically coupled to radiation down to a temperature T, 4, ~
900 keV. If their mass m < 1), 44, their number density, at any later time, is n, =
(3¢(3)/4r?)g, T3 (after electron annihilation T, = T, gglay,q./a(t)] = (j4/11’)1/3T7)

and their momentum distribution (normalized to unity) reads

2 (p*/T2)
3¢(3) explp/T,(t)] + 1

also when p € m. Hence, when T & m, their distribution is not thermal, although

@,(p,t) = (1.38)

its shape was originated in thermal equilibrium. Notice that, for high p, ®, is cut
off as exp(—p/T),).

In order to parametrize the models, we define d = z.q/z4er; here we defined z,, =
104( this would be the redshift when the photon density reaches the baryon+DM
density, if all DM is CDM and 8 = 1). The derelativization redshift zj.,, instead,
occurs when the average particle momentum (p) = m (particle mass).

Using the distribution (1.38) we can evaluate -
(p) = (77*/180¢(3))T, = 3.152T, . ’ (1.39)
Accordingly, (p) = m when T, = 0.317m . and, for massive v'’s,
d =5.2972-4h%*/(m/eV) , (1.40)

while
Qr = 2.1437-107%g,(m/eV)6? /41> (1.41)

Many experiments are dedicated to the detection of neutrino masses, here we

report the most stringent upper limits found:
my, <5eV my, < 170keV my,, <18 MeV

where the limit on v, comes from the tritium beta decay [37] , on v, from PSI

(90% .C.L.) [70], and on v, from high energy LEP experiments (a more conservative
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limit is given by [71] as m,, < 24 MeV at 95% C.L.). As mentioned in the previous
section, the most stringent limit on neutrino masses with mass lower than ~ 1 MeV
has a cosmological motivation. However such limit holds only if neutrinos are stable
on cosmological time scales. In models with spontaneous violation of total lepton
number neutrinos can decay into a lighter neutrino plus a majoron, or a photon.
When decay lifetimes are evaluated, it is found that there are many ways to make the
neutrinos sufficiently short-lived so that all mass values consistent with laboratory
experiments are cosmologically acceptable for the Qg limit.

Stronger limits on neutrino lifetimes arise from cosmological nucleosynthesis. If
a massive v, is stable on the nucleosynthesis time scale (i.e. v, lifetime longer than
~ 100sec), it can lead to an excessive amount of primordial helium due to its large
contribution to the total energy density. This bound can be expressed trough an
effective number of massless neutrino species N,. If N, < 3.4 — 3.6, v, masses
above 0.5 MeV can be ruled out However, this limit is substantially weakened if, for
example, a high (but still reasonable) value of the coupling constant g between tau
neutrino and the majoron is considered.

Astrophysics can constrain neutrino parameters as well, by supernova (SN) the-
ory and observations, SN dynamics and nucleosynthesis. The absence of photons
arriving in conjunction with the neutrinos from SN1987A implies that the radiative
lifetime of a v, with mass between 100 eV and 1 MeV must be > 2.5 x 107 sec
[72], observation of the energy spectrum of the SN1987A V. ’s may be used to pro-
vide very stringent constraints on the parameters characterizing resonant neutrino
conversions that could take place in the dense SN medium. SN1987A also allows to
put constraints on massless neutrino mixing, while there is no way of constraining

it in laboratory, since no vacuum neutrino oscillations are possible.

1.6.3 Volatile particles

By volatile particles we mean particles that originate in the decay of a heavy particle
X.

Let Nx 4y be the comoving number density of X's at their decoupling, taking
place at some early time t4,, well after they became non-relativistic, and let my be

their mass. At ? > ¢4, their comoving number density reads:
Nx(t) = Nxdgexp[~(t — tag)/7qy] (1.42)

with 17, < 74y (decay time). We shall assume a two-body decay process, as is more
likely for dynamical reasons:
X—=v+9¢ (1.43)
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The decay gives rise to a light (volatile) particle v, of mass m < my, and to a
massless particle ¢. It can be either a photon () or a sterile scalar, as is expected
to exist in theories where a global invariance is broken below a suitable energy scale
(examples of such particles are familons and majorons). Although both cases are
treated in this thesis, we shall show that the latter case (ster.ﬂe scalar) is potentially
more significant. Particle models leading to such DM component were discussed in
several papers, in some of them the volatile particle is a SUSY particle ([73],[74])
while in others it may be a neutrino [75]. In [73] for example, the volatile particle
is the axino, the fermionic partner of the axion. The axino can be produced by the
(radiative) decay of a neutralino, provided that a certain number of conditions are
satisfied. The theoretical framework is a SUSY extension of the standard model
where a Peccei-Quinn symmetry is introduced in order to solve the strong CP prob-
lem. In order to obtain a hot component as a product of the decay process, such
framework needs to be restricted in the following way: (a) the lightest neutralino
must be an (almost) pure gaugino; (b) the SUSY soft breaking scale is O(TeV); (c)
The Peccei~Quinn scale should be around 10'° GeV. In such a framework, requiring
that the ratio of the neutralino and axino masses is at least 10, the axino behave
like hot dark matter if the decay occurs at redshifts z4,> 10°. In this scenario, aside
of non—thermal axinos, it is possible to have thermal axinos decoupliﬁg when the
temperature was slightly below the Peccei~Quinn scale. The thermal axinos would
behave like cold dark matter, so that all the dark matter content would be accounted
for with only one kind of particle. The cosmological consenquences of such a scenario

are described in refs. [76, 77].

A similar scenario is presented in [74]. Here, in the context of a gauge-mediated
SUSY breaking, the dark matter candidate is the gravitino, that again can account
for all the dark matter content. In fact, two populations of gravitinos can be present:
a thermal population and an non—thermal one, the latter coming from the radiative
decay of a biino. Also here the dacay would take place at high redshifts ( gy = 10%)
and the non—thermally distributed gravitino would behave like hot dark matter, since
it would become non-relativistic at a redshift z,, ~ 6 x 10*. However, differently
from the case presented above, the thermally—distributed component would become
non-relativistic at z,, ~ 4 x 10°, therefore behaving more like warm dark matter
than like cold dark matter.

" Once the decay process is over, the volatile momentum distribution reads:

&,(p,t) = 2(Q/p)exp(—Q) where Q= p2/f)2 (1.44)
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and

p = (mx/2)[aqy/a(?)] (1.45)
provided that X’s, before they decay, never attain a density exceeding relativistic
components. This is avoided if the condition

Qrd < [1+2/(1+g,/88)]* for v decay (1.46)

is fulfilled. We assume here the same definition of zz., and d given in the previous
paragraph. This choice is teken for the sake of comparaison between volatile and
neutrino hot dark matter. Here g, refers to massless v’s; e.g., for g, = 6, eq. (3.11)
yields Qd < 0.46. If matter dominance occurs, the distribution (1.44) is distorted
at small p, i.e. for particles originating in early decays. In this case the distribu-
tion can still be evaluated numerically, but no simple analytical expression can be
given. Particles with large p, instead, were born in decays occurring when radia-
tion dominance was recovered and, therefore, the distribution is however cut off as
exp(—p?/p?). The cut—off is therefore sharper than in the neutrino case.

Using the distribution (1.44), it is easy to see that the average

() = (V7 /A)mxas, Ja(t) = FvF/2 (1.47)

according to eq. (1.45). v’s will therefore become non relativistic when § = 2m//7
3: henceforth

P = (2md//7)(z/10%). (1.48)

Eq. (1.48) can be conveniently used in the distribution (1.44), instead of eq. (1.45),
as involves model parameters (m and d), instead of early particle features (my and
T4y ), which should be further elaborated in order to work out ady = a(Tay).

Let us now discuss the decay patterns in more detail. First of all, if ¢ = v, the
decay should occur at a redshift z> 107, so to avoid distortions of CBR spectrum
[78]. Two further possibilities should then be considered.

If the decay takes place before big-bang nucleosynthesis, the energy density of v’s
is limited by the requirement that BBN yields are consistent with observed nuclide
abundances; henceforth the number of relativistic spin states ¢, < 7 [79]. Therefore,
the actual limit on the energy density of v’s depends on the number of relativistic
v’s at BBN. If some v has a mass exceeding ~ 1 MeV (particle data surely allow it
for v;) and decays before decoupling, v’s can occupy its place during BBN. As far as

®In the following chapter a different notation for the derelativization redshift may be used, in
correspondence to volatile radiative decay. We therefore introuce here z,, , the redshift at which

p=m. Accordingly, the following relation holds: z,, = V)2 2ger.
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cosmology is concerned, differences between such volatile DM and ordinary hot DM
would arise from the following 3 kinematic reasons: (i) the different phase-space
distribution of v’s in respect to massive v’s; (ii) the different energy dependence of
fluctuation amplitudes; (iii) the allowed continuous range of HDM derelativization
redshift; in the neutrino case, for a given HDM density, the derelativization redshifts
are “quantized” by the discreteness of g,. '

By evaluating the transfer function for volatile models, we shall see that the
points (i) and (ii) have a modest impact. Consequences of (iii) would be important
only if other cosmological parameters, like 2, and h, were very well known. Alto-
gether, therefore, the main differences induced by the above 3 points concern particle
aspects. For example, v’s number density can be significantly smaller than v’s and
their masses can be much greater. In spite of that, their density and derelativization
redshift zg., can be equal and LSS effects are quite similar.

Let then still be ¢ = v, but let us assume that the decay occurs after BBN; also
in this case, there are constraints related to BBN. In fact, decays produce an equal
amount of v’s and 4’s. The present CBR temperature normalizes v abundance after
the thermalization of decay photons. Accordingly, a large v density implies a small
v and massless v density before the decay. BBN would therefore take place almost
at the usual temperature, but earlier in time. Neutron decay would be therefore
allowed a smaller time to work and neutron abundance, at the opening of the so—
called Deuterium Bottleneck, would be greater. From this qualitative framework
quantitative limits to the final v abundance allowed by BBN can be derived. We
shall not further detail this point here and will only consider a softer limit, ensuing
from the obvious requirement that the final v density shall be smaller than 7 density,
as the latter one has a “contribution” from “primeval” 7’s. For a model with given
Q;, and d, at redshifts z > z4e,, the following relation holds:

prlpy = Shd . (1.49)
Therefore, in this case, it must be
Qrd < 1 (v decay) (1.50)

Therefore, according to eq.(1.46), this case never implies primeval temporary matter—
dominated expansion, at ¢ < T4,. It should be also outlined that these models can
have quite a low massless neutrino density, as X decay increases 7 temperature, but

does not act on v background. It can be shown that

T,/T, = (4/11)3(1 - Q,d) (v decay) (1.51)
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and a televant variation of the massless sterile component (SMLC hereafter) can
have a significant impact on the transfer function (see next Chapter).

On the contrary, if ¢’s are sterile scalars and the decay takes place well after
BBN, constraints are not so stringent. ¢’s will behave just as massless ’s and these
models can be characterized by a high SMLC density, which can also have a major
impact in shaping the present LSS.

Therefore, significant constraints on the models can arise from this effect, which,
however, cannot be discriminated a priori. Let us recall that, in the absence of X
decay, the ratio p,/p, = 0.68132(¢,/6) = w,. X decay modifies it, turning g, into
an effective value _

Guess = g+ (16/T)(11/4)**Qpd . (1.52)

In this case, no matter dominance occurs before Ty if

Qpd < (14 w,)/2 (for sterile decay) (1.53)

and ¢’s contribution to the relativistic component lowers the equivalence redshift.
When when d(1— Q) > 1+ w,, also v’s are still relativistic at equivalence. Accord-

ingly, the equivalence occurs at either

%0 T G T w, + nd

4h? 10* 4h? 10%(1 - Q)
or e = oa i o
g% 1+ Wy + 2Qd

n

(1.54)

in the former and latter case, respectively.

Mixed models involving a large volatile fraction, with late derelativization, are
therefore allowed only within this scenario. In what follows we shall systematically
analyze a large deal of mixed models, also with large €, and d, consistent with this

last picture, but we shall find that viable models with Q,d > 1 are not s frequent.



2 Anisotropies: Linear theory

2.1 Introduction

In this Chapter we will develop the analytic treatment for the evolution of density
perturbations for baryons, photons neutrinos and different kinds of dark matter.
Cold, hot and warm dark matter are classified with respect to the behaviour of the
particles when a specific comoving scale enters the horizon, but a common general
treatment is possible, once the phase—space distribution function of the particles is
specified. For a review on fluctuation evolution in linear theory with adiabatic initial
conditions see also ref.[80], and for a more complete treatment ref.[81, 82]. In this
Chapter we will restrict the analysis to flat Universes with no cosmological constant.
Only scalar modes of fluctuations with adiabatic initial conditions will be treated.
Extensive calculations will be performed for volatile models only, while for grav-

itinos (WDM) models we will only report final results.

2.2 The metric and Einstein equations

In presence of density fluctuations, the metric of space-time is modified. We will
perform the calculations in the synchronous gauge where fluctuations in the metric

can be expressed by:

g0 =1, goi=0, gir=—0a*[6ix — hix(z,1)] (1=1,..,3) . (2.1)

We will consider small perturbations only, so that |A;| < 1.

In Chapter 1 we showed how to deduce Friedmann equation, which give the
time dependence of the scale factor a(t) from the energy-momentum tensor Tugp
(e, 8 =0,..,3), from Einstein equation of order zero. At the next order, assuming

to have small density fluctuations which only depends upon the spatial coordinate

33
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z = z3 (and therefore small gravitational fields), the following relations hold :

L N Y (2.2)

2 a c? ’ '
19 4 881G o -
2923 (h - h33> = —5 Tos (2.3)

where A (27,, — T') is the difference between 27,, — T in presence of the density
perturbation, and the same quantity for the homogeneous and isotropic background
(see e.g. [83]). The Tps, instead, is null in the homogeneous limit.

Note that the restriction on the shape of the fluctuations isn’t a limitation of the
study of the relevant physical cases.

The expressions A (27,, — T') e T3 are among the elements that characterize a
specific model. In general, these expressions are evaluated by an integral on the
phase-space distribution. These integrations can be performed before the study of
the fluctuation evolution only when the gravitational effects of the particles don’t
depend upon their individual four-momentum. This is the case of a source which
is a fluid, or also a distribution of massless particles, or on the contrary, completely
non-relativistic. For massive particles, which may become non-relativistic during
the evolution of the fluctuation when cosmologically relevant scales enter the horizon,
the different momenta can contribute in a different way to the metric Auctuation.
The standard process consists in following the evolution of the fluctuations for a suf-
ficient number of momentum values suitably chosen, and then finding an appropriate
integration method to recover the overall perturbation from the computed fluctua-
tions. This procedure allows us to transform a set of integral-differential equations
in a set of pure differential ones. The number and the values of the momenta cho-
sen, as well as the integration method, depends upon the phase-space distribution

function, and the level of accuracy desired in the computation.

2.2.1° Gauge choice

The syncronous gauge is normally used in order to carry out calcualtions, but results
in the literature are often presented with respect to fluctuations in the conformal

Newtonian gauge. In the conformal Newtonian gauge, the time is measured by
tdt’ (2.4)
T = - L
0o a

and the line element is given by :

ds? = a(r) [-(1 + 2)dr? + (1 — 2¢)dz'dz;] . (2.5)
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The relation between ¢ — ¢ and h,; are reported in ref. [80]. The advantage to use
the conformal Neutonian gauge is mainly that the metric tensor gop is diagonal, and
analytic calculation are simplier. Moreover, in the Newtonian limit v plays the role
of gravitational potential, and therefore has a simple physical interpretation. The
potentials ¢ and 9 can be easily related to the gauge-invariant variables introduced
by [81]. No gauge modes are present, since all degrees of freedom are fixed a flat
Universe. Despite all the mentioned advantagies, calculations have always been
performed in the syncronous gauge, because in an expanding background it is always

mathematically well behaved with no spurious coordinate singularities.

2.3 Unperturbed distribution of Volatile Dark Matter

In this paragraph we compute the unperturbed spectral distribution of volatile par-
ticles, i.e. particles that become from the decay of a heavier particle x assumed at
rest.

We assume a two body decay:
x—v+¢ (2.6)

where ¢ can be a photon or a neutral scalar (SMLC).

In the reference frame of ¥ the following relation holds:

myc? = \/PRe? + mict + Pyc (2.7)

where P, and Ps are the modulus of the volatile particle and of the SMLC,
respectively.
Eq.(2.7) traduces the energy conservation during the decay process. Moreover,
since P, = P, (momentum conservation), the following relation holds:
m

1 2o .
P, = ;imxc(l - ng—) & Sy (2.8)

Let us consider now a volatile particle, created at a time ¢, with an initial mo-
mentum PO ~ m,c/2. The expansion of the Universe causes its momentum to
decrease, so that at a generic time ¢t > ¢, it will be P = P a(t,)/a(t). If the Uni-
verse is in the radiation-dominated epoch, this is equivalent to P = P™(t,/ )2,

Let N, be the comoving number density of volatile particles v; then the fraction

of volatile particles with momentum between P and P + dP will be:

_14n, )
#(P) = NP (2.9)

-'y
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Moreover, if Nx is the comoving number density of X ’s, it will be:

dN, dN,dt, dN

t |
= =2-L(_ X 2.1
dP " dt; dP P( 7 l=t) (2.10)

and, for ¢ > t44 (4 being the decoupling time of y)
t—1 .
Nx(t) = Nggexp <~—(—t~ﬂz> = alNgg exp (___) . (2.11)

In these relations ¢p, is the decay time of the y particle and Nggy is the comoving
density of x at a time ¢4,. The spectral distribution function of v for P < P(™ can

then be expressed as:

Nag t, 2 iy
- P Zexp | -2 2.12
o(F) = apr Ty P P ( iy (2.12)
per P < P If we define Q = tp/tDy, then the distribution in eq.(2.12 reads:
$(P) = 2a%‘3—% e @ . (2.13)

It is possible to relate the dlmensmnless quantity ¢ with the momentum P, in fact
t/tpy = (G/aDy) ety/t= (P/P(m)> ; and therefore:

5 .
_tp [ a P - o
Q=3r= <aDy ——P(m)) . (2.14)

Once ¢(P) is known, the unperturbed distribution function of the volatile par-
ticles ( fU )) can be easily computed. It reads:

‘PZ 4P / 4 9 = n, $(P) dP (2.15)
where n, is the numbe1 density (non—comoving) of the volatile particles, so that

nya® = N,. Since f is isotropic, we can compute:

h3 Zang
4r (a P

where §(z)(= 1 for z > 0, = 0 for 2 < 0) is the Heaviside function.

. (o] . . .
By means of the above expressions for fé ) and of Liouville equation, one can

f = Qe=2g( Pt _ p) (2.16)

compute the source term for the volatile particle in the non-— perturbed case. Since
fU only depends upon ¢ and P, Liouville equation S dfv /dt reads:

Sr(o) _ afigO) 4 .a_f_aféo)
v ot ot opP

(2.17)
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or equivalently, considering that P  a™*

7

: (0) (0)
(0) - _(ﬁ 8fv — 8f1.} > :
Sy - (a 52 P 55 | (2.18)
However fl(,a)(a) x a=3Q e @ and Q x a?, and therefore
af 1 () (1 4 ¢ 5 10"
= ——fP(1+20) . (2.19)

In a similar way, considering that FN(P) « P73Qe=26(P(™) — P) with Q x P? we
obtain: '

(0)
O = 291 +2Q) - (P - P) (220

where fgf = féo) and §( P — P) is the Dirac distribution function. By substitouting
eq.(2.19) and eq.(2.20) into eq.(2.18) we find:

50 = %P Fo6(PE™ — Py (2.21)

During the radiation dominated epoch a/a = 1/2t, while the §(Pli") — P) constrains
t = tp. Therefore we have:

o A 3 N e—‘Q zn
SPP1) = o g e (P - P)
2 ng e_ ip in . a A
= g?a’ a3 (P(in))QytDy §(PU™ — P). (2.22)

This source term goes into the perturbed equation that we shall soon consider.

2.4 Perturbed distribution function for Volatile par-

ticles

Let us consider now a distribution of v which differs from the homogeneous and
isotropic one for a small perturbation, and let the latter depend on the spatial
coordinates z; only. Let then be P; = n;P the three components of momentum. If

we define € = —?‘(—’%, then the perturbed distribution reads:

fult, Pyatont)y = £, P) [1 4 &(t, Poat,nd)] (2.23)

For this distribution the Liouville equation df,/dt = S, still holds. The difference
with respect to the case treated in the previous section consists in that ¢ depend

upon the spatial variables and upon the direction of P.
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By substituting the Liouville equation of order zero from the equation for the
perturbed f,, and keeping only terms at the first order in the fluctuations, it is
possible to find a partial differential equation for € which involves g—;, aa;, g—fg

From the partial differential equation for ¢ we will deduce a differential equation
that only involves derivatives with respect to the time. This result can be achieved
as follows: (i) performing the Fourier transform on the spatial variables, so that
9/0x; — ikj; (ii) using, instead of P, a comoving momentum P = Pla/a). ais a
reference redshift; neither P nor @ will be involved in the final results.

Let us then consider

folt, Pyzt,nt) = fO)(¢, P)[1 + &, P, 2", n)] (2.24)
where
), py_ 1 39 QB _ 5 o o
2t P) = EQanga 75 € g(P""™ — P) (2.25;)
(P = P /a), we then have:

dh _ 0%y 0510f,  OPOL i bf,
dt — ot + ot 9zt 6taP+ ot ont

(2.26)
The last term in eq.(2.26) is of the second order, because both 22° and % are

Bt Ant
of the first order in the fluctuations.

Moreover aa—f = niPc?/qa, with ¢ = /m2c* + P2¢? (energy of the particle) or
equivalently ‘
(9561 P 62 i -

where ¢ = {/2m2c* + P2¢2. On the other hand, for Q the following relation

holds:

—=p- 2 _p2 2R
dt et w a+adth (2.28)

Making use of the relation j—‘i = _62%2 (i‘- - 1h R ) and defining y = 2h,nin®
we finally find ~
dP 1 - ,
— = —ypP 2.29)
= 1Y (2.29)
We can note that % is of the first order in the fluctuations. Therefore, the term
dP 3, 4B 975%

o a5 Will simply reduced to 9T 55 so that g—; doesn’t appear any more in the
equations. Liouville equation then reads:

é‘fv )ae P 1 5047

(o)1 — _~L ZJv
SE(1+0s) = (14 822 + = Tni i 2yp

+fle (2.30)
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where og is the fluctuation of the source that is caused by an inhomogeneous X
distribution.

In eq.(2.30) partial derivatives with respect to z; are still present. They can be
eliminated by considering for € a specific spatial shape which consists in a plane
wave in the direction z = z3 with wavenumber k. Any wave in the direction z can
be expressed by a suitable superposition of such waves, and the restriction to waves
which depend upon one coordinate only is not essential, at least in the majority of
the problems. Therefore, the only relevant unit vector is n® = p.

In particular, we will have:
y = (1— p2)h— (1 - 3p*)has (2.31)
where & is the trace of hik. Eq.(2.30) then reads:

a £l
ot

Piet

q a

1 _af .
(0) - v .32
Ia M€+4yP 5P (2.32)

501+ 0g) = (1+9) +f5°>%§+i

We now define € = eB(P(i") — P), neglecting that the average velocity of x in the
fluctuations is not zero. However, it can be shown that this velocity is relevant only
at higher perturbation orders.

Assuming that volatile particles are produced in the radiation—dominated era,

one can obtain:.

. B . n(in) _ P
¢ =eo( Pl — P) + eP(m)ﬁP—é—t——l—D—) : (2.33)
Furthermore
oft? af op a{ 1 ) i ]
—_— = I = D W+ — my
9P 5P 5P~ a 11jfv (1+2Q) — fod(P P)
= _-j;fy)(l +20Q) - 6(PU — PYfy . (2.34)

By substituting the above terms in eq.(2.32) and subtracting the equation at order
zero, one can obtain:
ke? P

_ .. 1 — ) .
es{) £l | éd + esPUm = 4 5L es — ~y(1+2Q) 1P = 5@as. (235)
2% a g 4 4

However, considering also eq.(2.21), we have:

S©N(P,t) = fp=—6(PU™ — P), (2.36)

P
2,
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so that, in the fluctuation equation, fy can be factorized. Dividing eq.(2.35) by fs,

one has:
plin) P k2P 11 R CICD i
6 g |é —— —-= 2Q)6 = . (2.37
€ 2, 6+ [69—#66 - +1 - q_,u,eﬁ 43/[(1—}— Q)0 + Pé] %, 6os. (2.37)

In the following we will separate terms that contain 6 from terms that contain the
Dirac distribution 6. In order to do s0, let us remind that

9(2)8(x ~ a) = 2 [g(a+0) + g(a - )] (c - o) (2.38)

where g(a+0) and g(a—0) stand for the limit for which tends to g from the right
and from the left respectively.
After some algebra, one can easily find:

kP 1. pln) plin)
gleriie Ll L §|—=Py— — | =0. (239
[’HZ a §"¢ 4y(1+2Q)} + [ AR T 2, 0. (239

Eq.(2.39) must be verified for each P, and therefore the following relations must be
satisfied:
if P < plin),

9 =

. kc* P 1 . ~ S
i e = 2y(142Q) (2.40)

if P = plin), )
€=0g5+ Yt - (2.41)

Since p(in) () = P if and only if ¢ = ¢, the condition (2.41) is verified for any P,
provided that for each P it is evaluated when ¢ = tp.
Le us now consider the expansion

(=i)ou(k,t, P)P) . (2.42)

gk

e(k,t,Pu) =
]

Il
o

and substitute it in eq.(2.40). This particular expansion has been chosen because
the term (—4)! allows to solve eq.(2.39) in the real domain.
A similar choice will be performed for the expansion of the radiation fluctuation.
For Legendre polynomials, the following formula holds: '

.U‘PZ = ﬁﬂ_l + 5%%3"‘1 (l = 1,2), ILLPO = Pl

and therefore:

= . ! I+1
) BEYPL
we = oouFy + E (—=i)'oy [21-}— le_l + sz.HJ (2.43)

=1
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or equivalently:

! I+1
P
I Y

pe = ogPy —i= O’1P0 - —0‘2P1 + Z( z)l ! [

3 : > o1 B| (2.44)

while it is trivial to deduce from eq.(2.42):

= > (=i)au(k,t, P)Pi(p) (2.45)
=0 .
In the end, let us recall that Py =1, P, = 2(3u? — 1) and, considering also eq.(2.31)

one can find:
| ly=: Ffﬂ’ + (h 1MP] 2.46)
gV T g 3o T s T g (246
Substituting eqns.(2.44), (2.45) and (2.46) in eqns. (2.40) (2.41) we shall obtain:

Pkcz
(=i)'o, P, + =

18

]
1 g o
X [501130-%-1(00* '5“02)1)1 — 2, (—i) (21 T01-1 — 5%_1—301+1) Pz] =
1

1. 1, |

Il
=]

which is valid for P < P and:

> 1; . 1.
Z —i)o Py = o5 +t, | =hPy+ (hsz — =h)P;
=0 3 3
which is valid in the case P = P(in),

The differential equations for the coeflicients o; are deducible from eq. (2.47)

and they reads:
1P kc? 1

7g = — = — —— ; [=0
90 37 aal+6(1+2Q>h
Pk :
6'1— — < (O‘Q—EO'Q> [ =1
g a 5
Pkc 3 1 . 1.
: _ = - - = [=2
g9 = q p (30’1 7C"'g,) 2(1+2@) <h33 3h>
P kc? { l+1
5= —— - = [>2
=7 {21—1 711 21+3”’“} ”

The case P = P(i") described in eq.(2.4) leads to the following equations:

1 .
0‘0205+§tph [=0
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. 1.
09 = -—tp(h33— gh) [=2
=0 [ 40,2

As long as the differential equations are concerned, it is important to note that,
despite what appears at a first glance, they don’t depend on the value of @ chosen

as a reference. In fact, from the definition of P and g it follows that

(2.48)

-

Moreover, since @ is related to P, we can write the expression £ as a function of Q
2 v ? q v

only. In fact:

Pe_ P _ 2k (2.49)
q-,‘/PZ_*_m’UCQ_ an )
@+ (s7)
where
r= 2 (2.50)
My

with these substitutions the momentum appears in the equations only by means of
. The momentum of the volatile particles has been parametrized by the variable
) because the momentum of a particle generated at an instant ¢, decrease with
the expansion, while ) remains constant. Therefore a specific value of ) describes
a family of volatile particles which was produced at a certain time. The above
differential equation then become:

1% 3 1 .
og = —g;c Q 201+ g(l+2Q)h (2'51)
Vet (1)
Y@+ (s57)
. : ke /2 1 . 1.
09 = Q 2_.6_; <§a'1 — 70’3) - *-(1 -+ ZQ) (hgg - —h) (2 53)
Y@+ (a57)
1
2 ke ) +1 o=
[Zl ) 1—1 57 1 3 [+1:! [>2. (2.54)
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2.5 Thermally—distributed particles

In this section we present the set of equations for particles that were originally in
thermal equilibrium with radiation. As far as we are concerned, this is the case
for grawtmos (providing the WDM) and therefore we adopt the subscript G, but

the similar procedure is applicable, for instance, to massive neutrinos (\p1ov1d1ng the

HDM).
We therefore assume here a distribution function of the form:
- -1 I
fg=A(5 M e p1) (2.55)
~ We shell now take @ = a,, so that P = P, and we define p=KTg Oand
Qz = Pc/B.
Eq. (2.47) now reads:
Pke?
S (—ifoui+ ——C—><
1=0

X [§01PQ + 'i(O'O — -50'2)]31 —

Z(—‘l <—‘“ O1-1 — QZZ-:_13UI+1> Pz} =
exp[@]

Th 1,
I _Zh L Flwad
T2 [3hP° + (ks =3 )Pgl QGexp[Qg] +1

(2.56)

~and
Pe Qs TDQg

T o () (7)) ey

where KTy, = mxc® , D = Tref Go TO and T = T‘E’; by definition (7.5 is a

G Taer o
reference temperature).

- 'With these conventions, the evolution equations for thermal distribution read:

A DO~ 3 ~ . v _
& __ Lke rDlg o ~+EQ~%h (2.57)
0,G 3 a 2 LG 6 Cexpl@s]+1
1+ (TDQ&) G
. TDQ5 kc 2 .
0,5 = — (aoﬁ - 302’5) (2.58)

1+ (TDQa,)Q ¢
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> 2. (2.60)

O, ==

TDQ{; ke ) (+1
LG

—_— o ~— ~
2a [20-1 170G 2[4+ 371+1G
1+ (rDQz)

While studying gravitino models providing the warm dark matter, we also al-
lowed for massive neutrino hot dark matter component. When Warm + Hot dark
matter models are considered, a similar set of equations is used for neutrinos and

gravitinos. The D value adopted should be set according to the species considered.

2.6 Equations for radiation massless neutrinos, cold

and baryonic matter

Liuville equation is again the starting point in one wants to deduce the evolution
equations of the perturbations in the radiation field. The presence of a source term
here is caused by two effects: (i) Thomson scattering between baryons and photons
(ii) photons eventually produced at y decay. The latter point can be accounted
for just considering a higher photon temperature, provided that the decay occurred
early enough.

The perturbation in the radiation field can be expanded on the Legendre poly-
nomials, just like we did for the volatile particles perturbation. The only difference
is that now the perturbation integrated over the momentum will be expanded. Let

us consider the distribution:
fr(:b’,t,P,,LA) = fvgo)(P’ 1+ gT(m’taPH“)} (2.61)
in the case of the radiation field, it is convenient to refer to: .

_ [dPP? rfr
[dpp3s

Note that this choice is possible only because photons are massless particles. In the

(2.62)

case of massive particles previously considered, the ratio £¢ . indicates the relativistic
behaviour of the particle: it decrease with time when the particle become non-—
relativistic.

Let us then expand the Fourier transform of §:
8= (=0)'ah(u). (2.63)
The related equations therefore are:

bo = ‘__—él + = h (2.64)
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: k 2 , ,

61 - —’I’LEO'TC((Sl b 4’(1)) + ;C (50 — 552> (2()5)

: 9 2 . ke /2 3 : ;

62 = “'ﬁneUTCé2 + §h - 2h33 -+ ; <§51 - :{-53) (266)

. ke l [+1 o
51 = ~neUT661 + ; (-—21 — 161_1 - ———2Z n 3(51+1> [>2 (26()

For massless neutrinos a very similar approach can be taken, the only differ-
‘ence being that they don’t scatter with electrons. The final equations are therefore
identical to photon’s ones when o7 = 0 is taken.

- Equations for baryonic matter are:

. ke 1.

b = — L g 2 2.6

= —wt sh (2.68)
. a 1 . ‘
b= ——w + gneUTwa: (61 — 4w) (2.69)

where 6, is the fluctuation in the baryonic matter, n. is the number density of
electrons, o is the Thompson scattering cross—section and w is the fluid velocity
of matter. Note that baryons and radiation are coupled by Thompson scattering
in the velocity equations. The coupling term is most relevant at high redshifts,
when matter and radiation actually behave like a fluid. As the Universe expands,
electron density decreases, until when recombination occurs, and the electron num-
ber decreases drastically. After recombination, photons and baryons are decoupled.
The one-fluid approximation can therefore be used only until a certain time before
recombination.

Cold dark matter, instead, is non-relativistic during all the eﬁolution, and in-
teracts only by means of the gravitational field. Its behaviour is described by the
simple equation:

bo==h (2.70)

2.7 Equations for the gravitational field

Let us consider again eqns. (2.2) and (2.3), and let us specify them for the case of

volatile particles. Considering the source term, eq. (2.3) becomes:
—Tos (2.71)

- As long as baryons ( m index) and cold dark matter ( ¢ index) are concerned,
we have:
Too =T = pi(1 + 6;)c? , Toz = iapmciw
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While for radiation: (r index):
2 1 - 2
T=0 , Too=p(1+8)* , Toz= gzélprc‘fﬁ,r

Moreover, note that 6, = ﬁl dud = 6o.

Massless neutrinos ( v index) behave just like photons, and therefore:

1
T=0 , Typ= py(l —+ 5,,)62 s Toz = §'i<l,0w251,u

We will now give the expression for the volatile particles. The energy-momentum

tensor for collisionless particles can be written as:
1 P? 9 o1 3 Ok
T, = ﬁfdP?fqgo)/dQP#P,,co (1 + &+ Sh = Shin'n ) :
and therefore:
Too = —l—/dPquf(") [47r/d§2 (1 festh- §h~knink>}
00 h3 u i 2 2 7
However, being that
1 3 ;
— __h'i‘ 4 k>: 279
/dQ(Qh “hanint) =0 (2.72)
since fdQnink = %Féik, the 00 component reads:
Too = hi3 / dPAQP? 1) (1 + €) (2.73)

Tgo is the total energy density of the volatile particles. It shows an unperturbed

part and a perturbed one:

Too = puc®(1 4+ 6,) (2.74)

where A
puc? = 32 / dPP2¢flo) | (2.75)

By substituting the explicit expression for f£°) we obtain:

(a/apy)? 2
e = alds L 2 P a0 (#2012 @ (2.76)
X 0 a ;

ad 2

and defining

=1
=1

e = /O(a/apy)g dcg\/(fz-:i-’i)zcg LT2e9 (2.77
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we can write:
Ny, 1
2 dg 2 ‘
puC’ = a—-—myc ey .
v a3 2 X (

[\
-~
0

We now compute the trace of 7"
204 P2 '
T =Tg" = 25 /dP—&—fﬁo) / d1+e (2.79)

where the relation P% = m2c* and eq. (2.72) were used.
Also in the trace of T we can distinguish a part due to the unperturbed dis-
tribution function and another part related to the perturbation. Therefore the

contribution of volatile particles to A(2Tgo — 1) is:

mict
q

A(2To0 — Ty = %3- / dPP? (2q— ) £io) / Qe £2.80)

Since we now have to integrate over the solid angle Q, let us outline that if a

function g(Q) only depends upon u, then [dQg(Q) = 27 ffl dug(p). Eq. (2.80)
then becomes:

dr m2et ! ;

~T)y = — | dPP*q|{1- % (0>/ ¢ 2.81

A(2{2-‘00 T) h3 / Q( 2q2 )fv . Cl/.LE ( 8 )

If we now substitute féo) from eq. (2.16), consider that ﬁl dué = op and the usual

relation between P and @, we obtain:

2

A(2Too = T)s = 2 ZC es (2.82)

1

where e is taken from eq. (2.77) and

a/apy 2 2 1p2
e35/0(/ )dQ(aDy/a) Q+3T 2 (2.83)

(*24)" Q + 12

-

Now we are ready to write the expression of eq.(2.2) for our particular cosmological

model. Tt reads:

h = —2%ﬁ + 8r&F [6mpm + 260, pr + 27,00, pu + 6cpc + %i 6311 (2.84)
1

where n, is the number of equivalent massless neutrinos which may also include the
effect of the sterile scalar (n, = guers/2)-
If we want to give an explicit form for eq. (2.71) it is necessary to compute the

component Tp3 for the volatile particles. We recover eq. (2.7) to this aim, reminding
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that Py = P°, and P; = —Paen® with e = 1 — 1h;n'n*. Keeping only terms at the
first order in the fluctuations, and using eq. (2.72) again, we find:

Tos fdPPB e paou+ e
= —air fdPP3fv (302 dpe1+8) (2.85)
If we now substitute the expression for féo) , we have:
1 pye? flafany) 1
T = ~00, 2= [ 400t [ duue (2.86)
2 er Jo -1
If we recall that 2 [, dupé = —ioy, we find:
1 pye? flefany)” o |
Too = izap, 22~ [ dQQte 0, (2.87)
3 e1 Jo
By defining
(a/aDy:)a 1 -Q .
ey E/ d@Q2e" %oy (2.88)
0
and keeping in mind the expressions of T3 for the other components, we have:
ilgg = h - 16w Gfl [me + Sprél rt nupu51 vt “1“%’:-1154 (289)
1

When gravitinos or massive neutrinos are considered, the same procedure can
be applied.

If the distribution in eq.2.55 is considered, the relevant expressions are:

73
ch =Co— RYE (2.90)
T 4
Whele C, = 43;;‘} (IxTef) ( °OG> and
. 1+ (rDQg)?
= [TagLqy |G 91
e\ /0 QGQGJ 20 1 (2.91)
Similarly,
73 .
A(2Too — T)g = Coeg (2.92)
where )
o0 +(rDQx) 1 ‘
egﬁs/ Q5 Q% > < (2.93)

& it (rDQgrepQg +1°06
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" and )
1 pPac
T03’§ = Z§T"De_~e4,5 (2.94)
1,G
with
= /OO dQ ; 2.95
64,G_ 0 G Gex{pQ +1 lG (d“')

2.8 Final equations

We present here a summary of all the equations that are needed in order to study
the fluctuation evolution in all the different components. Some of them are identical
in any cosmological model considered, others will depend on the kind of dark matter
considered.

The expansion equation is the same, provided that the appropriate energy densi-
ties are included. Equations for massless neutrinos, photons, baryons and cold dark

matter are also the same:

Z p} (2.96)

by = ——w + =h (2.97
a 2
W = —Ew + ZnoopetL (61, — 4w) (2.98)
1. )

o= Sh (2.99)
. 1ke 2. ) .
bor = —=C6 4 2 2.100
0, 5500 + 3h ( )
ke 2 .
bur = —neorelbne = 4w) + o (o, — 262 (2.101)
. k , .
bo = —enereby, + 3h = Vhsa + ( br iéa,r) (2.102)
. ke { [+1 L
b1 = —neorch, + - (————21 — 151—1,r ~ 273 36l+1,r> [>2 ('2'-103)
. 1 ke 2. .
G0y = —=C5 4+ 2k 2.104
0, —35 % + - 3 ( )
b1 = 2 (G0 = 262 ) (2.105)

! a 5 7

. k ,
52’ - —§h 2h33 + “‘E (551 v §53,1/) (2106)

[} -
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. ke { [+1
I/: - —5— —_—5 v 2 2.1 7
O =g <21—1 P T o3 ‘“’) > (2.107)

When volatile dark matter is considered, we have:

1
- 3 1 . )
3a e )2 6
e+ (37 :
1
O"l = Q2 95;5 (O’O b -2—0'2) (2109)
Vo (@7)
1
oy = 9 2@ (201 - %%) - %(1 +2Q) (iLBS - é‘h> (2.110)
a a .
e+ (a5

, Qz ke { ! I+1 ] . .

a1 = T 101—1 T 301+1 [>2 (2.111)

et

and equations for the gravitational field yields:

h= ~2§~iz + 8r G [6mpm + 260,rpr + 20,000 + Oepe + %—’ 63] (2.112)
1
. 167G 1 1 lapy py } .
h3z = h — m W o ré r 5y 1/6 v -t 2.
33=nh e a[p u+3p 1,+3np 1,-}—2 o 6164 (2.113)
while with Gravitinos (or massive neutrinos):
1k D@~ 1 exp[@Q=] . 4 )
b o=t 95 o 5+ = ~—3[Q—G]—h (2.114)
0.G 3a 2 LG 6 CexplQa] +1 .
1+ (rDQg)
. TDQ 5 ke 2 ‘
o1 5= G =— (U()ﬁ - 502’5) (2.115)
1+ (7DQg)
) TDQ ke /2 3 1 expl) = . . ‘
o, = Qg _ EC (501 - ?73) —54955;[?———]@% <h33 - %h) (2.116)
\/1+(TDQ5) <PIY g
. TDQ5 kc [ [+1 . o
0, 5= =— [21_101_1’5— -—21+301+1,5J [>2. (2.117)
1+ (rDQ3)

h - _Zgh + 87 G [6mf)m + 26Dpr + 277'1/60,1//91/ + 6cpc + :—&;'63 5} (2118)
1.6
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. . 167rG 1 1 17,D px
h33 == PmW + ,07 61 + nupu(51 i 2 "P—Q‘e =~
ILC 3 2 a 61 a 4)G

(2.119)

When also neutrino hot dark matter is included in order to have a warm + hot
dark matter model, the gravitino term should be doubled (we only considered one
massive neutrino) and an appropriate D for neutrinos should be taken.

Note that the equations for the expansion parameter a, as well as for h and
hss are integral-differential equations. This comes as no surprise, since different
groups of volatile particles (or gravitinos) characterized by different @ (Q5) values,
contribute altogether to the expansion and to metric fluctuations. The integrals that

appear in the above equations are:

e1 = /O(a/aDy)z dQ\/(fL—a—yY Q+T12e ¢ (_:%.1‘20‘)

a/apy) 2Dy)? 112
€3 = /( D ) dQ ( a ?—i" 2r E_QUO (2'121)
a/a yiz L
= /( " aggiee, (2.122)
0

= 1+ (rDQg)? ‘
5= ~QL,| ——=G 5 19
61,G—A dQGQGJ o205 +1° (2.123)

” §+(DQz° 1 ,
G = 596 S 5 2.124
€3G /O Q05 \/WQXPQé T1%3G ( )
4G_/ QG Gexp@ +1 916 (2.125)

In the end, note that the equation for metric perturbation h is of second order.
Since we are not interested in the evaluation of h(t), we will consider u(t) = h as
the unknown variable. hss can be treated similarly. We have for them two algebraic

equations instead of two differential equations.

2.9 Initial conditions

2.9.1 Volatile dark matter

We start our computation when all cosmologically relevant scales are out of the
horizon. Under this hypothesis, eqns. (2.96)—(2.113) simplify a lot, being that
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-ff < 515 and therefore all terms with % are negligible. Besides volatile dark matter,
fluctuations in all the other components are:
1. - 1 2 2 :

h = =2=h + 167G bopiot - (2.127)

a .
where the adiabatic character of the fluctuations has been imposed in eq.(2.126) and
Piot,r accounts for all relativistic species. From eqns.(2.126) we can see that 577“ 5c,

50,r and h are all proportional. Keeping in mind that

3 1 :
= — 2.12s8
Protr = oo=mm o (2.128)
then eq. (2.127) can be written as:
. 1. 1 :
h+ t_ih — t_2h =0 . (2.129)

Eq. (2.129) is verified if h o t. We take 6,, = At as the reference variable. We will
then have:

bm = At o= 0 o = ‘335,% h= 257 (2.130)

Higher harmonics for the radiation can initially be set to zero: they acquire a valué

because of the hierarchical coupling of the equations. Matter velocity can be initially

set to zero as well, the scattering with radiation will cause it to have values different
from zero.

Let us now consider the initial conditions for volatile dark matter. For any ¢

1

value, they are given at a time ¢ = t,. Always assuming é < %, one finds:

by = éiz(l +2Q) (2.131)
1/, 1, .
6y =3 (h33 - gh) (14+2Q) . (2.132)
61 =0 1#0,2 (2.133)

Since we consider to be in a radiation—dominated era, we have:

. . {7
haz = h — 2——piot + 61

7r v b
; (2.134)

a
kc
while, at first perturbation order,

6= —by . (2.135)
a
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Considering eq.(2.130) we will have:

8k .
8 = 5—05 ¢ (2.136)
and substituting eqns. (2.128), (2.130) and (2.136) into eq.(2.135) we find:

. 14 6., 7. .
haz = —— = =h 2.137
B=57 9 (2.137)

We can now integrate the equations for og and o,. They reads:

1 o

4 .
oy = —§6m(1 +2Q)+ Cy (2.139)

Coefficients Cg and C3 can be found by imposing that the above expression for og
and oy must be valid at ¢t = ¢,. At that time, in fact, we know that:

1 . _

00 = 05 + gtph (2.140)
. 1.

g9 = —-tp(hgg — gh) (214:1)

The source term og is due to an inhomogeneus distribution of the x particles, which
are non-relativistic at the moment of the decay. Therefore we can consider og = ¢

and compute:

2
= 26m0 (aay> ~Q) (2.142)
Coy= —gémQ (“—{;) (1-2Q) (2.143)
and finally:

2
oo = éam [(1 +2Q) + <9-§—’i) 20(2 - Q)} (2.144)

2
ou=-dtn 4200+ (22) 000~ :z@)] (2.145)

These are the initial conditions for the integration of the equations (2.96)—(2.113).

2.9.2 Gravitinos

In the case of gravitinos and neutrinos, the initial conditions are:

1, exp[@f] e
0’0,5 g@ W (2146)
6, 5= 3—————8\1)[@ ] (2.147)

26~ TexplQg] +1
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2.10 Technical issues

On the basis of the equations treated in this Chapter, we built a Boltzmann code
that integrates them. Here we shall sketch some technical issues that were envisaged.

Our code integrates the set of equations for the fluctuation evolution in the syn-
chronous gauge. We sped it up by truncating the hierarchical set of equations of
free-streaming particles (photons after recombination, HDM, WDM and massless
v’s), according to the scheme suggested by Ma & Bertschinger [80], slightly modify-
ing it because we don’t use conformal time.

As far as volatile particles are concerned, we adopted the Gauss-Laguerre in-
tegration method with 10 integration points, and verified that this was enough to
obtain an adequate accuracy.

Results with the truncation strategy mentioned above were compared with re-
sults with a free number of harmonics and we found that a truncation at the 8th
harmonics is mostly sufficient. Results presented in the next Chapters are how-
ever obtained with truncation at the 24th harmonics. Models were evolved down to

= 0. We evaluated the transfer function for 24 scales ranging from L = 20000 Mpc
to L = 0.53054 Mpc. Results from the public code CMBFAST, yielding the trans-
fer function for mixed models (only with thermal hot component), were compared
with the results of our algorithm, for a number of models and for scales fixed by
CMBFAST.

Relative discrepancies between code outputs vary from less than 10~%, on scales
above ~ 100 Mpc, to slightly above 3% in the worst cases, which occur for the hot
component, when Q5 > 0.3 and for scales below 2— -3 Mpc. In such cases CMB-
FAST tends to give a transfer function slightly smaller than our code. The typical
discrepancy, however, keeps safely below 0.5 %.

Altogether the main source of error comes from the analytic fit to the transfer
functions, although the top discrepancy at a single point keeps < 1% in the worst
cases and its typical value is < 0.1 %.

As long as WDM models are concerned, we find that a higher degree of accuracy
is needed when dealing with WDM-dominated models if compared to the CDM-
dominated ones. The reason is that all the 6; are coupled by means of the potential;
whose evolution equation, in turn, depends upon all the different overdensities, each
of them contributing with a weight ;. If the overdensity of the most abundant
component is not well evaluated, the error propagates via the potential to all the
other components, and over time. In the case of standard MDM, CDM plays this

role, it stabilizes the value of the potential so that a lower accuracy in the integrals
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over the momenta of the hot component is allowéd.

In WDM and WHDM models, gravitinos (and massive neutrinos) are the most
abundant components, and their overdensities are evaluated by mean of integrals.
It is therefore necessary to choose the integration method that, at the same time, (1)
provides the best accuracy, and (4i) minimizes the number of values of the momen-
tum over which the integration is performed, so as to keep the number of differential
equations to be solved as small as possible.

Within the class of Gauss integration methods [84], we verified that, keeping fixed
the number of integration points in momentum space, Gauss—Legendre integration
performs better than Gauss—Laguerre for a thermal distribution, especially for high
values of k& confirming what outlined by [85]. Furthermore, we found that using

Gauss-Legendre integration, 20 integration points are adequate to obtain stable
results.
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3 Power Spectra

3.1 Introduction

In the previous Chapter we showed how fluctuations evolve in time. Here we are
more interested in understanding how structure form, given a specific cosmological
model. In order to do so, in this Chapter we introduce the power spectrum, which is
the fundamental tool that allows to make predictions about the formation of cosmo-
logical structures and the microwave background anisotropies, once the underlying
Friedmann background is fixed.

 We will discuss the effects of different dark matter component in modelling. both
matter and CMB power spectra, paying particular attention to the light—gravitinos
warm dark matter models and the volatile models, which constitute part of our
original work. CDM models, as well as HDM and CHDM models, will be often used
as a reference scenario. Most of the content presented here can be found in ref.
[76, 77, 68, 86, 87].

3.2 The matter power spectrum

The matter power spectrum is defined as:
P(k) =< |6(k)|* > (3.1)

where 6(k) is the total matter fluctuation, that takes into account all the massive
components in the Universe. The power spectrum has a different shape at different
redshift, according to the status of fluctuation evolution up to that z. In general
we are interested in the power spectrum when structure form, at very low redshifts
(say z = 0). At this stage it is useful to describe the power spectrum as a product
of an initial power spectrum Pin(k), which tells us how the power spectrum was

when all the cosmologically relevant scales were out of the horizon, and a transfer
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Junction T(k) that summarizes the effect of the evolution of density perturbations
on the power spectrum: ’
P(k) = Pin(k)T*(k) (32)

where *

N: .5,
T(k) — Z]z;[:l 9152,32 7 (33)
Zi:sl 9161 2=z

here Ny is the number of different massive species in the model, é; is the energy
overdensity of the ¢ — th component and z; a suitable initial redshift such that the
smallest considered scale is much larger than the horizon scale at z;. T(k) is normal-
ized to unity at scales so large that they enter the horizon after recombination. T(k)
conveies all the information about the evolution of a density fluctuation mode at
the wavenumber & through the matter—radiation equality and recombination epochs,
and therefore depends on both background quantities (like the matter and radia-
tion content) and the substance of the dark matter. The initial power spectrum is
commonly considered as a power law Pi(k) = Ak™, as is predicted by the most
common inflationary scenarios. The overall shape of the power spectrum will there-
fore depend on n and the shape of the transfer function T'(k). In the following we
will describe how T'(k) depends upon background quantities and the niatter content
of the model.

Let us now present first the CDM model. The typical shape of the corresponding
transfer function is plotted in fig.3.1. Tt is constant for low % and it decreases at high
k. On very large scales, no physical effects damp the fluctuation, and the transfer
function is therefore ~ 1.

In a CDM models, small scales are damped due to the Meszaros effect. If a
perturbation on a scale & enters the horizon at a redshift  while the Universe is still
radiation-dominated, the fluctuation in the cold component stop growing because
at that time the potential is mostly driven by radiation perturbation, and radiation
perturbations are oscillating with baryons, causing no increase in the potential. After
equivalence, radiation has a marginal effect in determining the potential evolution,
and fluctuations in the cold component start growing again. For the period of time
between the entrance of the scale & enters the horizon and the equivalence, the
amplitude of the fluctuations on the scale j is frozen, while fluctuations on bigger
scales ( which are still out of the horizon) are still growing with 6(z) x (14 2)72,
The amplitude §(k) of the fluctuation on the scale £ is therefore damped by a factor:

s = ()" = ()" e

6(k>>lwr,) k
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Figure 3.1: The shape of the transfer functions for WDM gravitino models. Left panel: the
effect of varying g. for Qo = 1 and h = 0.5; solid, dotted and dashed curves correspond to
the CDM case, to g, = 200 and g. = 100, respectively. Right panel: the effect of varying
the Friedmann background; heavy and light curves correspond to the CDM and WDM with

g« = 200 cases, respectively.
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where ke, is the wavenumber of a scale that enters the horizon at equivalence (keg =
27 [ Aeq = 21 [7.57(Q,h?) 7102 M pc~!). Perturbations on scales that enter the horizon
after equivalence do not suffer from Maszaros effect. We therefore note that the
knee in the transfer function is related to the equivalence scale. If for any reason the
radiation content is enriched or the matter content reduced, the transfer function
will keep qualitatively the same shape, but it will result shifted to the left (A, is
increased and k., decreased). This is in fact what happens to the transfer function
for open (low €,) or low h models. To some extent, this is what happens also with
volatile models. It is often useful to consider an analytic expression for T'(k), here

we quote the expression provided by [88]:

In(1 4 2.34¢)

—1/4
Tepm = 5344 ]

[1+3.89¢ + (16.1¢)? + (5.46¢)° + (6.71¢)* (3.5)
where ¢ = k&i/Z/(Qcthpc“l, here 6, = p../(1.68p,) is a measure of the ratio of
energy density in relativistic particles with respect to photons ( 8, = 1 correspond
to the standard case of photon + three massless neutrinos). .

Note that the shape of the transfer function is effectively Topar(k) o« k72,
which implies Popas(k) o< k=2 for a Harrison—Zeldovich spectrum n = 1. However,
Pepu(k) reaches this regime for very small scales, while even on galactic scales it
is still approximately Popas(k) oc k72,

In a CDM model, the Meszaros effect is all we need in order to understand the
shape of the power spectrum. Let us now consider a model in which some hot dark
matter is added to the cold one (CHDM models, see [89], see also [90, 91, 92, 93,
94, 95,96, 97, 98, 99]). In this case, also other effects must be taken into account.
In fact, hot dark matter particles free-stream and therefore erase the fluctuation if
the latter enter the horizon while the particles are still relativistic. As shown in
the previous chapter, the fluctuation in the hot component is studied for different
values of the momentum, and the overall fluctuation is found by integrating over the
momentum. This procedure is necessary because at a certain time some particles
may be already non-relativistic, and behave like CDM particles, while others can be
still relativistic, and free-stream. Given a fluctuation over a scale k,the higher is the
fraction of relativistic particles when that scale enters the horizon, the more visible
is the effect of free-streaming. Free-streaming will have two consequencies: first
(and most important) the fluctuation in the hot component itself will be damped
and therefore its contribution to T'(k) will be lower than it would be in absence of
free-streaming; moreover the potential over that scale will be reduced, causing a less

pronounced growth of fluctuations in all the other components. Both of these effects
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go in the direction of damping the transfer function on high k. However in CHDM
models there is a sort of feed back effect due to the presence of the cold component.
In fact, even if the hot dark matter particles are still relativistic when the scale of
the fluctuation enters the horizon, they might become non-relativistic soon after.
At that moment, the fluctuation in the hot component is partially damped, but if
also a cold component is present, the hot dark matter particles feel the potential
well of the cold component, their perturbation restart growing and its amplitude
can eventually reach the amplitude of the cold one. The result of all these effect is
that the transfer function in the CHDM models has less power on small scales than
the CDM one, the discrepancy greatly depending on the considered amount of the
hot component.

When all the dark matter is hot, then there is a significant damping in the
transfer function, which can be approximately described by an exponential cutoff.
Bardeen et al. [88] give an analytic expression for the transfer function in a Hot

Dark Matter model, if the hot dark matter is provided by a massive neutrino:
T, (k) = exp[~0.16(kRy,) — (kRs,)?/2][1 + 1.60 + (4.0¢)*% + (0.929)*]"  (3.6)

where ¢ = k/(Q,h?Mpc~1) and Ry, = 2.6(Q,h*)"t Mpc is the characteristic damp-
ing length for neutrinos. We note that for , ~ 0.30 we obtain Ry, = 8.66h“2_Mpc,
which is approximately the scale of equivalence. This is the reason why departure
of the HDM and CHDM transfer functions from the CDM one are already visible
at the knee of T'(k). '

3.2.1 Grayitino WDM

The situation is very similar if, instead of massive neutrinos, the dark matter is
provided by a particle that become non-relativistic at earlier epoch, but when the
horizon is already of a cosmologically relevant size. We are referring here to WDM
models. Qualitatively WDM models are just like HDM ones, but now the free—
streaming length is smaller. Since WDM particles become non-relativistic earlier,
when intermediate scale enter the horizon they are already non relativistic and
therefore behave like CDM particles with respect to fluctuations, i.e. they don’t

free—stream. Their transfer function, as quoted in Bardeen et al. [88] 1s:

kRss  (kRyss)? i
Twpm(k) = Tepm(k) exp (* 21‘ - 2f ) ) . (3.7)

The value of R s depends upon the mass of the particle which provide the warm
dark matter. In the case of gravitino (G)WDM, presented in Chaptl, we computed
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the transfer function as follows. We run the Boltzmann code assuming Qg = 1
and taking g. = 100 and 200; the first value is rather representative of realistic
cases, while the larger g, corresponds to a very cold G population. We numerically
computed the transfer function up to kpae = 1 Mpe™? (for o = 1 and h = 0.5),
with higher & values requiring too high an accuracy to be reached within a reasonable
computational time. However, we will show in the following that such a kg, value
1s larger than the free-streaming wavenumber, ks, = 27/ Ry;. Therefore, we expect
that the behaviour of the transfer function at k > ks has a margiﬁa] influence on
the hierarchical clustering regime at & < ky,, we are interested in (see next Chapter).

Then we computed the free-streaming scale for the Qg < 1 cases by resorting to

the scaling relation Rys mG1 x Qél (cf. eq.(1.33)) As a result, we find that

Ry, = 0.51(Qzh?)™ (-’1—-> Mpc (3.8)
100

always provides an accurate fitting of the exponential suppression of fluctuations on
small scales. We note that our value for Ry, is larger by a factor ~ 2.5 than that
given by Kawasaki et al. [100]. This difference mainly comes from the fact that our
value is directly obtained by fitting the exactly computed transfer function, while
their value comes from the usual relation between Ry, and z,, (see, e.g., eq.(9.88)
in the'Kolb & Turner book [52]), the redshift at which gravitinos becomes non
relativistic, that represents an approximation to the Rjs value. We also confirm
the warning by Bardeen et al. [88], who pointed out that the exponential cutoff
in eq.(3.7) marginally underestimates the transfer function on intermediate scales,
0.1 kS 0.5(Q0h%)™! Mpc™. However, we did not attempt to look for a more
accurate fitting expression, since (a) the effect is always quite small (< 5-10%) and
(b) we were interested in concentrating our analysis on the small scales relevant to
galaxy and galaxy cluster formation, as will be more clear in the next Chapter.

In fig.3.2 we can see different transfer functions for warm dark matter parametrized
by the mass of the particle m,. In correspondence to the lowest mass chosen
Twpm(k) is practically indistinguishable from Typar(k), while the higher is the
mass, the more Tywps(k) is similar to Topar(k), the biggest discrepancies being on
very small scales. Fig. 3.1 (left panel) show what happens in the case of gravitino
warm dark matter if the value of g, is changed: according to eq.(1.33) lowering g.
while keeping (2, = 1 and the same baryon abundance is just like requiring a lower
particle mass.

The situation is different for CHDM models (see fig.3.3). CHDM transfer func-
tion are always between CDM and HDM ones, the higher the hot dark matter
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abundance, the more similar to HDM. The difference with the WDM case is that
CHDM models do not present such a strong cutoff on small scales, and their slope
at high. £ is more shallow.

Aslong as light gravitinos are concerned, we also analyzed a model in which there
are both light gravitinos, behaving like WDM, and massive neutrinos, behaving
like HDM (hereafter WHDM models). The two populations are characterized by
a different free-streaming scale. Transfer functions for WHDM models have been
computed for Q, = 0.1,0.2,0.3,0.4 and 0.5 in the case of only one massive neutrino
(cf. ref.[101] for the effect of introducing more than one massive v), taking ¢, = 100
and 200 and always assuming €9 = 1. The analytical fitting is provided by eq.(3.7),
where the CDM transfer function is replaced by the CHDM one, as provided by
Pogosyan & Starobinski [102]. Taking Qs = 1—Q, ~Qp, we find that eq.(3.8) always
provides an accurate fitting to the exponential cutoff in the transfer function. The
shapes of Twrp(k) are plotted in Fig.3.4, showing both the effect of changing
g~ at fixed Q, (left panel) and the effect of changing Q, at fixed g, (right panel).
From the left panel, we can see that WHDM models present a sharper cutofl on
small scales if compared with CHDM, the discrepancies arising at high k values,
k ~ 1 hMpc™. On the other hand, the effect of adding a hot component to the
warm one is to reduce power already on intermediate scales (k ~ 0.1 hMpc™!), as

expected from what said in the previous section.

3.2.2  Volatile dark matter with radiative decay

We now discuss the power spectrum for volatile dark matter (VDM) models. Let us
first consider the case ¢ = v [76, 77], and denote the volatile particle X. We first
compare VDM with the standard CHDM model.

In conventional CHDM models, the hot component is assumed to be made
of neutrinos with a mass of a few eV originally in thermal equilibrium in the
early universe. In such a picture the redshift at which the neutrino becomes non—
relativistic is z,, ~ 1.4 x 10%(m,/10 eV) and the contribution of v’s to Q, is
Q, ~ 021g,(m,/10eV) (g, is the number of neutrino spin states with mass m,,
originally in thermal equilibrium). Accordingly z,, ~ 6.7 x 100, /g, and therefore
znr and Q, are not independent, as g, takes only suitable discrete values.

In the scenario we discuss here the VDM particles are produced by the decay
of a more massive particle and are consequently never in thermal equilibrium. This
means effectively that the parameters zg., and 0x, where X denotes the VDM

species, can be varied independently. This causes VDM to have a quite wide range
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Figure 3.4: The shape of the transfer function for the warm + hot DM models. Left panel:
the effect of varying g. at a fixed value of 2, = 0.25. Right panel: the effect of varying €2,
at a fixed g. = 200.

of spectra, in general much more flexible than CHDM ones. Examples of VDM
spectra are presented in fig.3.5 and compared with CDM. Here an initial Harrison—
Zeldovich spectrum is assumed.

In [77] several cases of volatile spectra are studied. In order to better display
the characteristic of VDM spectra, we consider only models with Q, = 1, Ho =
50 km s~! Mpc~!'. As for the baryonic contribution, we consider the two values
Q = 0.05 and Q = 0.08, which correspond to the central prediction of standard
nucleosynthesis and to the 95% upper limit allowed by this constraint [103] given
our chosen value of Hg. Our criterion to select models in the Qx—z,, parameter
space can be sketched as follows. Let g* be the number of helicity states which are
allowed by nucleosynthesis and g, that associated to neutrinos which are present at
the nucleosynthesis epoch. Then gx = ¢* — g, is the number of extra spin states to
be associated to VDM particles. If z, is the redshift at which VDM becomes non
relativistic, then the limit for Qx reads

Qx S 55 0% (3.9)

(see [76]). For each Qx, we choose three different z,, values, namely z,, = 2 X
10%Qx, 5 x 10*Qy, and 2 x 10°Qx.
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According to [104], standard stellar light element abundances, combined with
the results of nucleosynthesis calculations, allow up to g* = 7, a value which is also
quite close to the 20 upper bound provided by [105], therefore we adopted the limit
g™ = T. Note, however, that [106] recently gave the more stringent constraint ¢* < 5
at 95% C.L., which even conflicts with the usual 3 neutrino species.

The first value of z,, given above corresponds to gx = 5, if eq.(3.9) holds as
an equality. Accordingly, the number of allowed neutrino species is N, = ¢,/2 =
1. This implies that only one massless neutrino is present at nucleosynthesis; the
remaining two neutrinos are quite heavy and have been already decayed. Taking
Znr = 5x10*Qx instead allows gx = 3 with N, = 2, while the choice z,, = = 2x10°Qx
allows one helicity state for VDM particles with N, = 3.

Models with the first value of 2,, would thus be inconsistent with the [106] limits.
But note also that, contrary to what one might naively expect, the results we quote
below for higher values of z,, cannot be used str aightforwardly to accommodate
this more stringent constraint because the shape of the transfer function depends
e\phcﬁ;ly on the number of massless neutrino species. As for {0x, we choose values
in the interval 0.1 < Qx < 0.5, with step 0.1. For each value of Qx we allow for both
the above baryonic fractions. In Table 3.1 we list the parameters for the resulting
30 models, on which we base the discussion of this paper.

For each model, we follow the evolution of the fluctuations in the baryonic
(6p), cold (4.) and volatile (0x) components through equivalence and recombina-
tion epochs. An analytic fit to T'(k) is provided by the parametric expression:

4 -1
T(k) = (1+20jkj/2) : (3.10)

i=1

as suggested also by [93]. Note that the ¢; generally depend on the redshift, due to
the residual free—streaming of volatile particles. The values of the fitting parameters
at z = 0 are given in Table 3.1, with ¥ measured in Mpc™t. The limiting scale down
to which transfer functions are computed is 250 Kpc. In Table 3.1 the normalization
constant A is also given, allowing for an initial power spectrum P, = Ak. The
spectrum amplitude A is estimated by matching the quadrupole (I = 2) value of
@rms—ps = 20uK ([107); [108], with an approximate 10% uncertainty on this value
[109]).-

It is worth pointing out a couple of important trends in the T(k). Firstly, at
fixed z,, and N, the amount of small scale power relative to large decreases as Qx
is increased, due to the progressively larger effect of free-streaming. On the other

hand, at fixed N, and Qx, the power on small scales increases relative to large scales
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as z,, is increased, since a larger z,, corresponds to smaller velocities at the present
time, and a consequent reduction of the effects of free-streaming. Moreover, note
that in CHDM models the higher is the Q, the higher is z,,, so that spectra with a
pronounced damping on the high k tale, caused by a high Q,, generally don’t differ
too much from CDM on intermediate scale, because of the high z4, value. This is

not the case in volatile models.

3.2.3 Volatile dark matter with non—radiative decay

Lét us now consider the case of the decay of a heavy particle into a sterile scalar plus
a volatile particle [86]. The characteristic feature of these models consists in having
a sterile scalar that contributes to the radiation background, on top of radiation
and standard massless neutrinos. In practice, it is just like if extra helicity states of

neutrinos were added:
Guets = gv + (16/T)(11/4)**Qud (3.11)

where d = Zeq/ Zder and Qy, is the volatile particle abundance. The effect of a greater
g, is to shift the equivalence to lower redshift.

Also in this case we restricted the parameter space to Q, = 1, 2y = 0, H, =
50 km s~ Mpc~! and , = 0.1 Within the above restrictions, we tested models at
regular logarithmic interval for zge,, taking logy d = ~1,...,5 (7 values) and at regular
interval for hot—dark-matter density, taking Qp = 0.10, 0.12, ...., 0.44, and 0.45 (19
values). A non-systematic sampling of this parameter space allowed us to exclude
some models a priori, reducing the total exploration to 120 models. As mentioned
above, the parameter choices in the volatile case is much greater than in standard
neutrino hot dark matter, however there is a significant overlap between these values
of Q, and d and those allowed in mixed models with massive v’s. Omne of our
basic aims was then to obtain a quantitative estimate of the impact of the different
momentum distribution on transfer functions. To this aim we re-evaluated T'(k), for
a few mixed models with HDM made either by massive neutrinos or volatiles, but
with the same values of Qp, d and gyeff-

The results of this comparison for two model sets are shown in Table 3.2. where
one we can see that the amount of such shifts is modest. However, this does not
decrease the relevance of volatile models, as they allow parameter choices which,
otherwise, would be impossible with the standard 3 v—flavours. Furthermore, these
models require and allow a high level of radiation content.

In these models, we also allowed P(k) = AE™T?(k) with n > 1. For most models

considered, P(k) starts — at low k’s — with values similar to those of standard CDM.
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Figure 3.5: Comparison between observational and CVDM linear power—spectra in redshift
space. Open and filled triangles are the power-spectrum for two volume limited subsamples
of the combined CfA2+SSRS2 survey. FEach panel refers to a fixed value of the volatile
fraction {2, while the dotted, short—dashed and long~dashed curves correspond to different

zny. For reference, we also plot the CDM (solid curves). All the models are for Qp = 0.05.
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Figure 3.6: Mixed model spectra with volatile hot component (solid line), compared with
standard CDM (dotted line). The LCRS reconstructed spectrum is also reported (3 o

errorbars). This model is consistent with all constraints.

If n > 1, it soon abandons CDM behaviour, raising in a slightly steeper Way.‘Both
for n > 1 and n = 1, however, its bending at maximum is sharper. At the r.h.s.
of the maximum it returns below CDM. At large k’s (~ 1Mpc™!), its decrease,
sometimes, is (slightly) less steep than CDM.

~ Some examples of such behaviour are given in figs. 3.6 — 3.9 for volatile models
and in figs.3.10 — 3.12 for massive neutrino models; all cases we show have n > 1.
Models are compared with CDM (dotted curve) and with the spectrum reconstructed
by Lin et al. [110] from LCRS data (3¢ errorbars). Models are ordered with
increasing Q. For volatile models, various values of d are considered, including high
values; in particular, in fig. 3.8 we show a spectrum obtained with zze, = 625. The
spectra shown in figs. 3.10— 3.11 are for physical models without extra SMLC. The
spectrum in fig.3.12, instead, is obtained adding an amount of SMLC corresponding

to 3 massless v’s.
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CDM: Q=15.7uK,n=1,N,=43,(,=23,'=0.42

MDM: Q=16.0pK,n=1.2,0,=0.18,2,,,=1250
N,=2.3-4.4,DLAS=0.7,I'=0.15,0,=0.56
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Figure 3.7: Mixed model spectra with volatile hot component (solid line), compared with
standard CDM (dotted line). The LCRS reconstructed spectrum is also reported (3 o

errorbars). This model is consistent with all constraints.
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CDM: Q=15.7uK,n=1N_,=43,Q,=23,I'=0.42

MDM: Q=16.1uK,n=1.4,0,=0.22,2,,,=625
N,=1.3-3.8,DLAS=2.8,'=0.13,0,=0.54
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Figure 3.8: Mixed model spectra with volatile hot component (solid line), compared with
standard CDM (dotted line). The LCRS reconstructed spectrum is also reported (3 o

errorbars). This model is consistent with all constraints.
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CDM: Q=15.7uK.n=1,N,=43,0,=23,=0.42

MDM: Q=11.3uK,n=1.4,0,=0.30,z,,=2500
N,=8.2-5.7,DLAS=0.7,I'=0.11,0,=0.59
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Figure 3.9: This Model is outside the contours plotted in fig.4.6 and has a small . Models

like it would agree with data for a still greater n.
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log[P(k) h%/ Mpc?)

CDM: Q=15.7uK,n=1,N,=43,0,=23,/=0.42,0,=0.1

MDM: Q=12.3uK,n=1.1,0,=0.16,g,=6,0,=0.09
N,,=7-12,DLAS=3.7,I'=0.23,0,=0.65
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Figure 3.10: Mixed model spectra, with thermal hot component (solid line) compared with

standard CDM (dotted line) and LCRS reconstructed spectrum. This model agrees with all

constraints. Model ¢ is in marginal disagreement, in spite of adding extra SMLC amounting

to 3 massless v’s.
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CDM: Q=15.7uK,n=1,N,=43,0,=23,I'=0.42,0,=0.1

MDM: Q=12.6uK,n=1.2,0,=0.27,g,=6,0,=0.09
N,=6-10,DLAS=0.8,I'=0.16,0,=0.65
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Figure 3.11: Mixed model spectra, with thermal hot component (solid line) compared with
standard CDM (dotted line) and LCRS reconstructed spectrum. This model agrees with all

constraints.
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CDM: Q=15.7uK.n=1NN,=43,0,=23,I=0.42

MDM: Q=12.6uK,n=1.3,0,=0.33,g,=4 (+SMLC)
N_=17-23,DLAS=0.5,'=0.14,0,=0.80
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Figure 3.12: Mixed model spectra, with thermal hot component (solid line) compared with
standard CDM (dotted line) and LCRS reconstructed spectrum. This model is in marginal

disagreement, in spite of adding extra SMLC amounting to 3 massless v'’s.
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3.3 The radiation spectrum

.

The radiation temperature anisotropy (A = §'TI = ﬁép”f

for a given direction 7 can be considered as a superposition of plane—waves:

) at a given spacetime point

A(F f,7) = / PreFEAE, 7, ) (3.12)
= /d%e"’?'fZ(—z‘)’(:zH1)A,(E,T)P,(u), (3.13)
[=0

where y = k- and P, are the Legendre polynomials.
With no loss of generality, we can consider an observer at the origin. The ob-

served anisotropies AT/T in the sky can be decomposed in spherical harmonics:

o i

AT(R) =D > aim Yim(?) (3.14)

=0 m=~I

where Y) (%) = Y] (0, ¢) are:
. 20411 —-m)! m i .
}/l,m(07¢) = EZ_-I-—T)—'L%_'PI (COS 9)8 ¢ . (315)
The power spectrum is defined as:

Cr=<|aim|* > (3.16)

where the brackets denote the ensemble average. Provided that in our model the
anisotropies are a gaussian random field, the a;,, coefficients are randomly dis-
tributed variables with zero mean and variance given by the ;. A mode with
spherical harmonic index / probes an angular scale on the sky of § ~ /-1, Broadly
speaking, the C} spectrum typically shows three different regimes, in correspondence
to big, intermediate and small scales. On scales bigger than the horizon at recom-
bination (Aree ==~ 200h~! Mpc, or equivalently 8}, ~ 2°Q¢, witha =1/20r =0
for ©, < 1 and Q4 = 1 — Q, respectively ) the C; is quite flat; on intermediate
scales it shows an oscillatory behaviour and on small scales ( 45 100272 arcmin) os-
cillations are greatly damped, due to the width of the last scattering surface. Very
big scales were not in causal contact at recombination, therefore they can provide
direct information on primordial fluctuations. On the contrary, we shall see that
intermediate scales are the ones where the different dark matter content may be
tested. In any experiment, however, there is a theoretical unavoidable uncertainty

due to the fact that we can only observe a two—dimensional projection of a single
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realization of the statistical field. This uncertainty is called cosmic variance, and it
amounts to %} = \/;—% If the experiment is not full-sky, the uncertainty should
be multiplied by a factor % (sample variance), where A stands for the area covered
by the experiment. '

() is related to AZ(E, 7) by the following expression:
C = (47r)2/dk K2 Py (k)| Ark, 7)) (3.17)

where Py (k) is the initial power spectrum L

At the present time 7, and for a comoving scale given by the wavenumber k, we

can compute A; performing a time integral [111]

Ak, 7o) = /D drS(k, 7)il(ro — T)K] (3.18)

over the source function §, which depends upon inhomogeneity evolution inside the
last scattering band and from it to now. ji( z) are spherical Bessel functions.

The physics of microwave background anisotropies due to adiabatic perturbations
has been deeply investigated in the last few years (see, e.g., [112]). It has been shown
that the characteristics of the peaks in the C; spectrum are related to the physics
of acoustic oscillations of baryons and radiation between the entry of a scale in the
horizon and the last scattering band (primary anisotropies), and to the history of
photons from last scattering surface to us (secondary anisotropies).

Background features, like the overall matter and radiation density content, h
and A, have an influence both on the positions of the peaks and on their amplitude,
but the latter also depends greatly on the baryon content {, and more slightly on
the characteristic of the hot component.

" In the following we will sketch the most relevant physical effects that determine
the shape of the power spectrum, and outline in particular how the shape of the
power spectrum changes when different dark matter content are considered.

Under simple physical assumption, a fully analytic treatment of perturbations is
possible and allows to predict the spectrum with a precision of 5% — 10 % [113].
This approach is very simple and allows an easy comprehension of the most relevant
effects that influence the shape of the power spectrum. As described more in detail
in [114], the photon—baryon fluid at recombination can be described as a forced

harmonic oscillator, where the forcing function depends upon the photon—to—baryon

1Py (k) is defined by the following relations: AZ(E, r) = wi(E)Az(lc,r) and < du‘(}l—c‘l ')'z,b,’(l::g) >=
(Py(k)/T?)6p (1 + F2), where 6p is the Dirac delta function.
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energy ratio (R = 3py/4p,), as well as upon the potentials ¥ and & and their
derivatives. As a first approximation, R is considered time independent.

The sources of primary anisotropies are gravity, the Doppler effect and intrinsic
temperature variation:

A=(U—-4%-5+0), (3.19)

TEC

While dealing with adiabatic perturbation, it can be shown that in the limit R — 0:
UV+0= %T cos(ke,T) (3.20)

and

~

L
n-v = —

3
where ¢; = (3(1 + R))™%/? is the sound speed.
Frém the above expressions we can see that in the limit R — 0 we would expect

VU sin(ke,sT) (3.21)

no scale dependence of the fluctuation spectrum. In fact, the doppler term and the
temperature-potential term oscillate with opposite phase but equal amplitude, so
that when they are summed in quadrature they give:

A? « cos?(ke,r) + sin?(ke,). ' (3.22)

Considering R — 0 amounts to ignore the dynamical effects of baryons. When R #0
is allowed, the amplitude of the cosine oscillations is enhanced by a factor (1 + 3R),
while it reduces the amplitude of the oscillations for the doppler term. Furthermore,
the offset of the oscillation for the temperature-potential term is no longer zero but
—RV.

Since now the cosine oscillations have a bigger amplitude with respect to the
sine ones, we expect to see a series of peaks in the C; spectrum located at kCsTree =
m7. Furthermore, because of the offset, we expect the odd-numbered to be more
pronounced than the even—numbered ones. Moreover, since R x A2, the height of
the peaks will be sensitive to these parameters.

The previous discussion is relevant for scales that has already entered the horizon
at recombinations. On even larger scales, the doppler effect should not be considered,
while the sum of the two terms (potential and temperature) gives ¥ /3. This is the
Sachs-Wolfe effect [115], that causes the flat low—{ tail in the radiation spectrum
I+ 1)C.

3.4 Effects of dark matter content on the CMB

When a different kind of dark matter is considered, the radiation power spectrum

Is not greatly affected. When a mixture of cold and standard neutrino hot dark
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matter is considered ([80, 116, 117], the most relevant feature is that the second and
third doppler peaks are raised of about 10 % with respect to CDM. The first peak is
also affected, but at a lower level. Authors [80] and [116] states that this difference
is mainly due to an increase of the &.that appears in the forcing function. The
potential decay is mainly due to neutrino free-streaming, and it is most relevant on

scales that have already entered the horizon at recombination.

The presence of massive neutrinos has also the effect of slightly shifting the peaks
toward smaller [ values. This effect is caused by the different expansion law, which
implies a greater conformal time and sound horizon for redshifts 10S 2S 10°. A
greater conformal time causes the peaks of the oscillations to be located at smaller
Ek values, and therefore at smaller . Moreover, last scattering happens at later
conformal time in CHDM models if compared to CDM, and therefore a smaller
integrated Sachs—Wolfe effect is expected.

The power spectrum for some WDM models has been evaluated by [118]. This
author work out the power spectrum for two gravitino model with g. = 107 and
g« = 62, and finds that the the each WDM model differ from CDM at most for
6C;/Cy = 0.03 on all scales 1< 1400 , while the discrepancies between the two WDM
models are of the order of §C;/C; = 0.001 at most. Differently from CHDM, the
WDM spectra present lower doppler peaks if compared to CDM.

While considering decaying particles, a wide variety of spectra are obtained,
which are caused by the different nature of the particles involved in the decay, dif-
ferent masses, decay—times and decay-products. We will first review all the possible
scenarios for decaying neutrinos, and dedicate the last part of the paragraph to the

case of volatile particles, presented in [87].

The case of neutrino decay has been deeply investigated during the past few
years and tested against large scale structure [119, 120, 121]; its implications on the
CMB spectrum has been discussed in [122, 123, 124, 125], but comparisons with
recent CMB data start just now to be performed (126, 123, 127].

In the model considered by [123], the dark matter is constituted by a 30 eV
neutrino that decays with a lifetime 7, =~ 1—-2X 1023 sec into a lighter neutrino plus
a photon. The photon produced in the decay causes the intergalactic medium to
be gradually reionized and the complete reionization is attained at z ~ 30. As long
as the OMB is concerned, the main feature of this model is a great damping of the
doppler peak, with the damping decreasing as the neutrino lifetime increases. These
authors performed also a y? analysis aimed to quantify the agreement—disagreement

of this model with current data. The analysis tends to indicate a disagreement,
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mainly because the trend of present data seem to suggest the presence of a pro-
nounced doppler peak.

A similar case has been studied by [126], who analyzed the decay of a neutrino
into a lighter one plus a sterile particle. They considered a neutrino mass larger
than 10 eV, and a lifetime between 10 and 10" seconds (approximately 10 — 1010
years). In this case the main effect of this (quite) late decay is to increase the
radiative component at late times when the Universe is well in the matter dominated
era. This causes the potential to vary, and consequently large scale anisotropies are
boosted via the integrated Sachs—Wolfe effect. The longer is the lifetime of the
decaying particles, the lower are [ values where the effect is evident. FEven if there
is no reionization in these models, the predicted C; of this model shows similarities
with the previous case, in that there is not much difference in the amplitudes of
anisotropies between the plateau and the first peak. This fact leads the authors to
conclude that such a model fails to reproduce current CMB observations.

If larger masses and shorter lifetimes are considered [122, 125], late integrated
Sachs Wolfe is no longer present, but the delaied matter-radiation equivalence causes
a much higher first doppler peaks, and also the second and the third doppler peaks
- are shifted to the right. This is quite similar to what happens with volatile models,
therefore we postpone the detajled description of its consequences to the next session.

3.4.1 CMB spectra for volatile models

In this section we shall analyze in detail the angular spectrum of volatile models
with non-radiative decay, outlining its peculiarities with respect to standard CDM
and CHDM where neutrinos provide the thermal contribution of dark matter. In
order to do so, we needed to modify available public codes, like CMBFAST [111],
allowing them to deal with a hot component whose momentum distribution is the
one of the volatile dark matter.

As outlined in the previous Chapter, volatile and neutrino models, for given
and d, are expected to include a different amount of SMLC . In neutrino models
SMLC is less than in pure CDM and even vanishes if all ©’s are massive (unless
extra SMLC is added ad hoc). In volatile models, instead, SMLC is however more
than in pure CDM, as scalar ¢’s are added on top of standard massless v’s.

Some C) spectra of volatile models are presented in figs.4.7 — 4.11 of Chapter 4.
They show two main features, if compared with standard CDM: the first doppler
peak is higher and the second and third doppler peaks are slightly shifted to the
right. In principle, we expect volatile model spectra to differ from neutrino model
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Figure 3.13: density evolution of a volatile model in comparison with the corresponding

technical neutrino case.

spectra because of the momentum distribution of volatiles and the extra SMLC theyb
have to include. In the following, we shall try to disentangle these two effects.

To this aim we coupled each volatile models with a technical neutrino case with
identical Q; and d, but a greater number of neutrino degrees of freedom, so to
ensure equal high-redshift energy densities. In fig.3.13 we report the scalefactor
dependence of the energy densities p(a) of volatiles and a massive neutrinos in two
coupled models. In the case shown, the two energy densities never differ in ratio more
than 10~3; for different choice of the parameters the curve is just shifted to higher
or lower redshifts according to the value of zger. More in detail fig.3.13 states that
volatiles have a slower derelativization than neutrinos: the transition phase from the
relativistic to the non—relativistic regime starts earlier and goes on for a longer time.
This behaviour is related to the different shapes of the two distribution functions,
and to the fact that the volatile one is smoother around (p), which corresponds to
a value significantly smaller than its maximum, after which it is rapidly cutoff (see
eqs.1.43-1.44 in Chapter 1). ' .

Friedmann equations show that 7(a)+/p(a) is approximately constant. Hence,
once we know p(a), we can perform a comparison between the conformal times of
coupled volatile and technical neutrino cases. It shows a marginal discrepancy as

already the p(a) in the volatile and technical neutrino cases are very similar, and
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(T = Team)/ Team

Figure 3.14: comparison of conformal time in a CDM standard model and in a volatile

model. At high redshifts, volatile models typically show a smaller conformal time.

moreover the hot component always contributes as a small fraction of the total
energy density. On the contrary, if a similar comparison is performed between
standard CDM and volatile models, big discrepancies are found, especially at high
redshifts. In fact, in the volatile cases the relativistic background is greater due
to the contribution of the sterile component, and the conformal time is therefore
smaller than in the CDM case (see fig.3.14).

This implies visible effects on the position of the doppler peaks, which are due to
the oscillatory phase with which the photon-baryon fluid meets the last scattering
band. As already said before, in adiabatic fluctuations the photon—baryon fluid
oscillates as cos(kr,), where k is the comoving scale and 7, is the sound horizon
(rs = fOT(a) dres(a), cs(a) is the sound speed). Given the photon-baryon ratio, ,(a)
follow a similar trend as 7(a). Since in volatile models 7(a) is smaller than in
CDM, so will be 74(a), and the peaks of the spectrum will appear in correspondence
to higher & ( i.e. higher /) values. This is a specific features of these models, in
neutrino models the same effect plays a role, but shifting the peaks in the opposite
direction [116]. For a given primordial spectral index n, the height of the peaks is
fixed by (i) the ratio between baryon and photon densities, i.e. Qh?, and (ii) the
ratio between matter and radiation densities. At fixed Qp and A the main reason
for a higher doppler peak in volatile models (with respect to CDM) is the delayed
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Figure 3.15: differences in the radiation power spectrum between the volatile case and the
technical neutrino case. The model parameters are the following: 1) Qp = 0.16, d = 4.25;

2) Q =0.22, d=1.03;3)Q = 0.22, d=2.06;4)Q,=0.33, d=2.06.

matter—radiation equivalence, for which both SMLC and, possibly, volatiles can be
responsible. In neutrino models without ad-hoc SMLC, only the possible delay due
to late derelativizing v’s may exist. This is why volatile C; spectra and standard
neutrino ones look so different. However, there is a tiny further contribution in the
boost of the peak due to the free-streaming of the hot component. Several authors
(180], [116]) have shown that even in high zge, neutrino models the doppler peaks
are enhanced with respect to CDM, and in that case the free-streaming of the hot
component is to be considered responsible for the enhancement. Free-streaming, in
fact, causes a decay in the potential ® which contributes as a forcing factor (trough
@) in the equations whose solution are the sonic oscillations in the photon-baryon
fluid, displacing their zero—point and, henceforth, the phase by which they enter the
last scattering band. In the standard neutrino case, this effect causes a variation of
10% at most on the C;, and typically of 2% on the first doppler peak.

In principle one can expect that the different momentum distribution of volatiles
may alter the free-streaming behaviour. Such differences, if they exist, can be found
by comparing volatile spectra with the technical neutrino ones.

The differences between the two spectra are presented are shown in fig.3.15, and

amount to 2% at most. Although modest, this is another feature that characterizes
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Figure 3.16: a standard neutrino model with different n values. C curves from bottom to
top correspond ton =1,1.1,1.2,1,3. Bold data points refer to COBE, CAT, Saskatoon, see

Scott et al. (1995) for a summary of all the experiments.

volatile models with respect to neutrino one. In comparison with such finely tuned
predictions from theoretical models, currently available data are still affected by huge
errorbars. However, some feature seems already evident from them. A comparison of
model predictions with data shows that the doppler peak observed by the Saskatoon
experiment [128] exceeds the one expected in pure CDM once it is normalized to
COBE data [129]. While it is evident that volatile models show a higher doppler
peak, it is clear that a fit could be reached also changing other parameters, e.g., by
taking » > 1. In fig.3.16 we show what happens in neutrino models if the spectrum
is anti-tilted to n = 1.1 and to n = 1.2 Indeed, the first doppler peak is raised
(which. is desirable), but also the following peaks are raised, making difficult the
agreement with the results from the CAT experiment [130]. In the next chapter
similar considerations will be used in order to constrain the whole set of volatile

models.
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N, Ox an/lﬂ4 A (107) c1 Co c3 c4
Q, = 0.05
1 0.1 0.2 1.300 -0.6133E4+0 0.1494E+2  0.1220E43 0.6733E+2
1 0.1 0.5 1.306 -0.4284E+0 0.1212E+2  0.9742E+2 0.6607E+2
3 0.1 2.0 1.311  -0.3665E+0 0.1542E+2  0.7916E+2  0.8917E+2
1 0.2 0.4 1.318 0.5110E-1 -0.1016E+1 0.1924E+3 0.1559E+3
1 0.2 1.0 1.319 0.1032E-1 0.4255E+1  0.1113E+3  0.1629E+3
3 0.2 4.0 1.327 0.4886E-2 0.1624E4+2  0.3607E+2 0.1997E+3
bl 0.3 0.6 1.354 0.1263E+1 —0.2246E+2 0.2301E+3 0.3903E+3
1 0.3 1.5 1.303 -0.5240E+0 0.1509E+2  0.2086E+2 0.4061E+3
3 0.3 6.0 1.266 -0.1997E+1 0.5180E+2 -0.1305E43 6.4194E+3
1 0.4 0.8 1.325 0.1052E+0  0.8104E+4+1 -0.1939E+2 0.1053E+4
1 0.4 2.0 1.248  —0.2475E+1 0.5754E+2 -0.2466E43 0.9205E+3
3 0.4 8.0 1.168 —0.5488E+1  0.1240E+3  -0.4753E+43  0.8259E+3
1 0.5 1.0 1.249  -0.3115E+1 0.1033E+3 -0.7761E+4+3 0.2781E+4
1 0.5 2.5 1.107 -0.7916E+1 0.1846E-+3 -0.9825E+3 0.2091E+4
3 0.5 10.0 1.063  -0.9233E+4+1  0.1943E+3 -0.8273E+3 0.1325E+4
Qp = 0.08
1 0.1 0.2 1.323  —-0.1009E-1  0.8960E+1  0.1418E+3  0.6768E+2
1 0.1 0.5 1.319  —0.2039E-1  0.5736E+1  0.1202E4+3 0.6457E+2
3 0.1 2.0 1.318  -0.6469E-1 0.6622E+1  0.1021E43 0.8145E+2
1 0.2 0.4 1.308  —0.4181E-1 -0.9723E+1 0.2449E+3 0.1497E+3
1 0.2 1.0 1.348 0.9112E+0 -0.1115E+2 0.1681E+3 0.1530E+43
3 0.2 4.0 1.317  -0.1257E4+0  0.1017E+2  0.5465E4+2  0.1926E+3
1 0.3 0.6 1.443 0.3845E+1 —0.5984E+2 0.3617E+3  0.3668E+3
1 0.3 1.5 1.346 0.7783E+0 -0.3884E+1 0.8075E+2  0.3960E+3
3 0.3 6.0 1.203 —-0.3672E+1 0.6458E+2 -0.1643E+4+3 0.4436E+3
1 0.4 0.8 1.392 0.2294E+1 -0.3311E+2 0.1601E+3 0.1005E+4
1 0.4 2.0 1.244  -0.2619E+1 0.6079E+2 -0.2866E+3 0.1030E+4
3 0.4 8.0 1.159  -0.5641E+1 0.1198E+3 -0.4603E+3 0.8270E+3
1 0.5 1.0 1.279  -0.2064E+1 0.8336E+2 -0.6956E+3 0.2808E+4
1 0.5 2.5 1.148  -0.6521E+1 0.1636E+3 -0.1016E+4 0.2456E+4
3 0.5 10.0 0.925 —0.1341E+2 0.2297E+3 -0.9345E+3 0.1439E+4

Table 3.1: Model parameters and power spectra (numbered from 1 to 30). Column 1:

number of massless neutrino species; Column 2: volatile fractional density; Column 3: red-

shift at which the volatile component becomes non-relativistic (in units of 10%); Column 4:

Normalization coefficient Columns 4 to 8: fitting parameters of the transfer functions [see

eq.(3.10)].
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L/Mpc

cold

hot

baryons

total

0.2000E+05
0.5120E+03
0.2048E+03
0.8192E+02
0.3277E+02
0.1311E+02
0.5243E+01
0.2097E+01
0.8389E+00

1

1
0.9995E4-00
0.1001E+01
0.1003E+01
0.1003E+01
0.1005E+401
0.1007E+01
0.1006E+01

1

1
0.9996E+4-00
0.1002E401
0.1004E4-01
0.1004E4-01
0.1003E401
0.1012E4-01
0.1036E4-01

1
1
0.9995E4-00
0.1001E+01
0.1003E+01
0.1003E+01

0.1005E+01 "

0.1007E+01
0.1006E+01

1

1
0.9995E+00
0.1001E+401
0.1003E+01
0.1003E+01
0.1004E+01
0.1009E+01
0.1015E+01

0.2000E+05
0.5120E4-03
0.2048E+03
0.8192E4-02
0.3277E402
0.1311E4-02
0.5243E+01
0.2097E+01
0.8389E400

1

1
0.9995E4-00
0.1001E+01
0.1003E401
0.1003E401
0.1005E+01
0.1007E+01
0.1006E+01

1

1
0.9996E-+00
0.1001E+01
0.1002E+01
0.1002E-+01
0.1001E+01
0.1008E+01
0.1026E+01

1

1
0.9995E400
0.1001E+01
0.1003E+01
0.1003E+01
0.1005E4-01
0.1007E+01
0.1006E+01

1

1
0.9995E+00
0.1001E+01
0.1003E+01
0.1003E+01
0.1005E+01
0.1007E+01
0.1008E401

Table 3.2: Ratio between transfer functions in volatile and thermal models (7" (vol)/ T
(ther)) at various comoving scales for different components. The upper part refers to models
with Q5 = 0.3 and 3 massive neutrinos, the lower part to models with 0, = 0.1 and 1 massive

neutrino. In both cases @ =1, h = 0.5 and Q, = 0.1.



4 Comparison with Observa-

tions

4.1 Introduction

In this Chapter we will compare some predictions from the previously discussed
cosmological models with observations. We will restrict our analysis to quantities
that can be predicted using linear theory, disregarding all the issues related to non—

linear structure formation.

Linear theory is valid in the nearby Universe only for objects on very large scale,
while going back in time towards higher redshifts it can be applied to fluctuations
on smaller and smaller scales. CMB fluctuations are observed now as they were
at z ~ 1000, so they can be predicted with linear theory on all relevant scales.
Fluctuations on galactic scale can be considered linear only up to z ~ 3 — 4, while
the smallest objects we assume to be still in a linear stage today are galaxy clusters.
Even if in principle CMB fluctuations are predictable with high accuracy on all
scales, observations, that have only been performed on scales bigger than ~ 10
arcmin, still show big errorbars. Therefore, nowadays comparison of predictions
with the observations is performed normalizing the power spectrum to COBE (i.e.
to very large scale CMB fluctuations) and then computing the predicted quantities
concerning large scale structure (LSS). Very recent attempts of all present CMB
data to constrain cosmological parameters already allow to draw some conclusions,
even if still with great uncertainties. Future CMB experiments will provide very
accurate determination of the CMB power spectrum down to scales ~ 10 arcmin,
therefore ensuring a significant overlap with scales probed by LSS. It is therefore
evident that a joint analysis of CMB an LSS will become more and more necessary

in the future.
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4.2 The mass variance and the shape parameter

In the previous Chapter we introduced the matter power spectrum P(k). Here, in
order to provide a more quantitative description of the clustering, we eompute oy,
which is defined as the r.m.s. fluctuation amplitude:

o= /O dkk? P(k) W(kRay), (4.1)

where the length scale associate to the mass scale M, Ry = (475/3)"1MY/3, is
the radius of the top-hat sphere whose Fourier representation is given by W(z) =
3(sina — z cosz)/23 1. The mass variance is the quantity that most directly shows
which scales are getting non-linear first. In a CDM model, the mass variance is
always increasing with the wavenumber k, so that we expect fluctuations on small
scales to become non-linear first, and structures on bigger scales to form for assem-
blage of small lumps. This scenario is usually referred to as bottom-up structure
formation. The situation, however, may be different in models where the power
spectrum is highly dumped on small scales, as, for example, in WDM models. If
this is the case, the mass variance stops growing on scales where the contribution of
the power spectrum become negligible. In fig.4.1 the mass variance of a CDM case
and of a gravitino-WDM case is plotted. According to fig.4.1 , it turns out that the
effect of replacing the CDM component with light gravitinos is that of eliminating
the hierarchical clustering below some free-streaming mass scale. In order to provide
an estimate of the free-streaming mass scale for gravitino-WDM models, we
resort to the almost Gaussian cutoff at large &, to define it as

Mys = (2nR%,)%%p ~ 0.55 (1%*0) 4(Qéhg)*3510%14/12, (4.2)
where 5 is the average cosmic density and My, = 10"?Mg. Therefore, eq.(4.2)
provides the limiting mass for the development of hierarchical clustering: structures
of smaller masses form after structure of mass larger than M fs» as a product of their
fragmentation. As a consequence, we expect that a crucial constraint for the whole
class of WDM-dominated models will come from the abundance of high-redshift
cosmic structures.

A quantity strictly related to the mass variance is the shape parameter I'. The

shape parameter was introduced by [131], and is defined as:

T'=7.13x 1072 (0g/cy5)10/3 . . (4.3)

'In this Thesis the mass variance is equivalently referred to as Oup or or, where R = R,y For
example, og is the mass variance over a scale of 827! Mpc. ’
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Figure 4.1: The mass—scale dependence of the r.m.s. density fluctuations within a top-hat

sphere. Left and right panels are for the same models as reported in fig.3.1. Heavy and light

curves are for WDM and CDM cases. As for the WDM curves, the value of M at which

they become lighter corresponds to the value of the free-streaming mass.
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It is related to the ezcess power parameter

(025/08)

Ep = _\7%398)
(025/08)cDM

by the relation: T' ~ 0.5(EP)™%3. It has been argued that CDM transfer function
may well be parametrized by I. In fact, I is related to background quantities
I' > Q,h, while the more precise value I' = Q,h exp(—2 — V2h/Q,) accounts for
the presence of a non-negligible baryon fraction Q, [132]. Note, however, that this
is not generally the case for mixed models, since the presence of the hot component
may well affect the 827 Mpc scale. For the sake of comparison with observations,
we considered the result obtained from APM galaxies I' = 0.23 + (.04 [133]. In a
more recent work, Borgani et al. (1997) [134] give the interval 0.18-0.25 obtained
from the Abell/ACO sample.

4.2.1 Bulk Velocities

The rms bulk velocity, Viu(R), is defined as the rms matter velocity after smoothing
over a volume of size R. For 0, = 1 it is connected to the power—spectrum according
to

f%zﬁﬁ/om P(kYW?(kR)dk, (4.4)

where W(kR) is the window function specifying the shape of the smoothing volume,

Viuk(R) =

and f(Q,) is the linear growing factor f(Q,) ~ Q%¢. By comparing eqs.(4.1) and
(4.4), it is clear that Vpuw(R) gives more weight to long wavelength modes than op;.
Therefore, we expect bulk velocities on large scales to depend only on the Qpms—ps
~ normalization and not on the profile of the transfer function.

Since bulk flows refer to quite big scales, when theoretical models are compared
to the data the main information one can obtain is on the spectral index. As we will
see below, bulk flows are quite insensitive, for example, to the content of hot dark
matter of the model.

The first report of bulk velocities for ellipticals within spheres of ~ 60Ah~!Mpc
1s Vol = 599 £ 104 [135], but

it has been soon recognized that this value had been overestimated and that the
effective window should have been much smaller. A more recent estimate report
Vbulk = 360 £ 40 [136].

Reliable Vi data for top-hat spheres centered on the Local Group on scales of
few tens of Mpcs are provided by the POTENT reconstruction method (e.g. [137];
see also [138], and references therein).
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It should be mentioned, however, the attempt of recovering the power spectrum
from the smoothed mass density field reconstructed by POTENT [139]. These au-
thors estimated the power spectrum in the interval 0.04 < k£ < 0.2 AMpc™!, and
found a logaritmic slope of the power spectrum at & = 0.1 of —1.45 4+ 0.5. This
feature translates into the estimate 0s2%® ~ 0.7 — 0.8. These authors also claim
that a comparison of the mass power spectrum on scales ~ 100 A~! Mpc with the
large-scale fluctuations observed by COBE rules out low Q, values (Q, ~ 0.2), inde-
pendently of the A value. Standard CDM, as well, is rejected at the 20 level, while
each of the following modification provide a good fit: n < 1, , ~ 0.3, , < 1.
We computed bulk velocities for volatile models only. We didn’t compute the bulk
velocities for the gravitino-WDM model because we don’t expect WDM predictions
to differ much from CDM ones. )

4.2.1.1 Volatile particles and bulk flows

In fig.4.2 we comp;ire our model predictions with the latest POTENT data (courtesy
of A. Dekel).

In order to account for the velocity smoothing procedure in the reconstruction
method, we convolved the power—spectrum in eq.(4.4) with a Gaussian filter of radius
R; = 12h7'Mpc. As expected, any difference between models at large scales is
negligible and all of them are in remarkable agreement with data. On smaller scales
(S 40 A~1Mpc) the predicted Vi values tend to be larger than the observational
one. In this respect, models with Qx > 0.4 perform better, thanks to the steep P(k)
profile at large k, although this is unfortunately inconsistent with galaxy clustering
data. On the other hand, independent estimates of bulk flows (e.g. [140]) agree
with the POTENT one only on scales R ~ 50-60 A~*Mpc. Therefore, we do not
regard this marginal discrepancy as a serious problem for any of the models we have
considered.

4.3 Press—Schechter theory

The comparison we make between theory and observations, based on the spectrum
integrated with a top—hat filter, is well established in the literature.

However, there are exceptions, namely the calculations based on objects abun-
dances, which contain greater theoretical uncertainties than other measures. We
will therefore discuss this point more in detail.

The standard technique consists in using Press—Schechter theory [141], which is
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by now well tested against numerical simulations [142, 143]. In the followiiig we
shall use it to obtain prediction on the abundancies of Damped Ly-« systems and
galaxy clusters in different cosmological models.

When a smoothing window with a given radius is applied to a gaussian random
field, a smoothed density field is obtained. This field is also gaussian, provided that
its dispersion is smaller than one. It is then easy to compute the fraction of space
in the Universe occupied by regions where the linearly evolved smoothed density
contrast exceeds some given threshold value. Press and Schechter assumed that
for the correct threshold value this fraction could be identified with the fraction of
matter in the Universe which is part of gravitationally bound objects with a certain
minimum mass, the relation between the size of the regions and the minimum mass
of the bound objects depending on the smoothing window applied to the underlying
density field. The main problem of this approach is that in linear theory half of
the volume of the Universe is always composed of regions with a negative smoothed
density contrast, and therefore only half of the matter in the Universe is available
to form bound structures (which is clearly not the case in the real Universe). This
problem arises because one is not taking into account the matter in the regions
whose linearly evolved density contrast does not exceed the threshold value, and
thus are not considered to be bound according with the above criterion, but which
are part of bigger regions whose linearly evolved density contrast does exceed the
threshold value, and are therefore bound. Press and Schechter proposed a solution
to this problem allowing for the matter in those regions simply by assuming they
contain as much matter as the matter contained within the regions which are bound
according with the original criterion. The main motivation for this assumption is
that it is the simplest way of allowing all the matter of the Universe to be available

to form gravitationally bound structures.

4.3.1 Cluster abundance

According to the standard Press & Schechter approach, the number density of col-
lapsed structures arising from Gaussian initial fluctuations and having mass larger
than M is given by -
N(> M) = / n(M')dM' . (4.5)
M
Here n(M) dM is the number density of objects with mass in the range [M, M + dM]

and is related to the power—spectrum according to

1 6. [* 1R 62\ dR .
_ R _ e | 4k 4.6
(M) aM Vor flr or OF ( 20%) R*’ (+)
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where )

"R = Q—W—:}gg/k‘lp(k)%%. | (4.7)
In the above expressions, we assume that the mass scale M is related to the length
scale R according to M = PR3, with f the “form factor”, which is specified by
the shape of the filter W and p the average density. For the Gaussian window it is
f=(27)32, while f = 4r /3 for a top-hat window. The parameter 8. is the critical
density contrast, which represents the threshold value for a fluctuation to turn into
an observable object, if evolved to the present time by linear theory. For a top—hat
spherical collapse one has §, = 1.68, but the inclusion of non-linear effects, as well
as aspherical collapse, may lead to a lower value of 6. For example, Klypin & Rhee
| [144] ( KR94 hereafter) found that the cluster mass function in their CHDM N-body
simulations is well fit by eq.(4.6) by taking 6. = 1.5 for the Gaussian window.

4.3.2 High-redshift objects

A further constraint on power spectra comes from observations of high—redshift ob-
Jects. The most reliable such constraint concerns the abundance of damped Ly-a
systems (DLAS). These are observed as wide absorption troughs in quasar spectra,
due to a high HI column density (> 1020 cm~2). The fact that at z ~ 3 the frac-
tional density of HI gas associated with DLAS is comparable to that contributed by
visible matter in nearby galaxies, suggests that DLAS actually trace a population
of collapsed protogalactic objects (see [145] for a comprehensive review). In this
context, a crucial question is to understand whether the observed Qg provides a fair
representation of the collapsed gas fraction at a given redshift. Effects like gas con-
sumption into stars, amplification biases due to gravitational lensing of background
QS50s [146] and dust obscuration [147] could well alter final results. However, such
effects are believed to play a role at low redshift (2 ~ 1-2), while they are expected
to be less relevant at the highest redshifts at which DLAS data are available. For
this reason, we will consider as the most constraining datum the value of 1, reported
by Storrie-Lombardi et al. [148] at redshift z ~ 4.25 and will assume that all the
HI gas at that redshift is involved in the absorbers.

Several authors recognized DLASs as a powerful test for DM models using both
linear theory and numerical simulations (149, 150, 151, 152, 153, 154, 155]. The
recent availability of high-resolution spectra for several DLAS systems, allowed
Prochaska & Wolfe [156] to use the internal kinematics of such systems to severely
constrain a CDM model.
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Lanzetta et al. (1995) [157] and Wolfe et al. (1995) [158] presented data on
DLAS up to the redshift z ~ 3.5, while the compilation by Storrie-Lombardi et al.
(1995) [148] pushed this limit to z ~ 4.25. Based on these data, the latter authors
claimed the first detection of a turnover in the fractional density, {,, of neutral gas
belonging to the absorbing systems at high redshift.

- Based on a linear theory approach, several authors [151, 149, 150] concluded that
the standard CHDM scenario with 2, = 0.3 is not able to generate enough collapsed
structures at 22 3, due to the lack of power on galactic scales. However, either
lowering 2, to about 0.2 [152] or ‘bluering’ the primordial spectrum, P(k) o k"
to n ~ 1.2 [153] keeps CHDM into a better agreement with data. Katz et al.
(1995)[159] resorted to numerical simulations of DLAS and found that even the
CDM model with a normalization as low as og = 0.7 satisfies the DLAS constraint.

In order to connect model predictions from linear theory with observations, let

Qeon(M, z) = erfe (753%@) , (4.8)
be defined as the fractional density contributed at the redshift z by collapsed struc-
tures of mass larger than M. Accordingly, it is Q, = a;QsQcon, where a, is the
fraction of HI gas which is involved in the absorbers.

One expects the value of a,, to decrease well below unity at low redshift, due
to gas consumption into stars. Note that varying this number turns into a linear
rescaling of £2,. Since we assume here that a, = 1, we compare data and predictions
at the highest redshift allowed by the data, z = 4.25 [148]. We estimate o(M,z =
4.25) for a Gaussian window, by explicitly computing the transfer function at that
redshift, so as to take into account effects of residual free—streaming of the volatile
component.

As for the value of the critical density contrast 6., results based on N-body
approaches [160, 152] suggest that 1.35 6.5 1.5 for a Gaussian window, while other
authors [150] found indications for 6. ~ 1.7-1.8 for a top-hat window. In the
following we will report results for 6, = 1.5 and gaussian window; while the effect
of varying this parameter is discussed in more detail in ref. [153]. Lacey & Cole
(1994)[143] have realized a detailed test of the Press—Schechter theory against scale-
free N-body simulations, by checking the effects of varying the window and the halo
identification method. As a result, they found that . ~ 1.3 and 6. ~ 1.8 are
in general adequate to describe the halo mass function for Gaussian and top-hat
window, respectively. In any case, we verified that rather similar results are obtained

either using 6. = 1.5 with a Gaussian window, or 6. = 1.7 with a top—hat window.
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4.4 Volatile models with radiative decay

4.4.1 Cluster abundance

In order to account for the rather poor knowledge of 4., we prefer to compute
N(> M) for different values of this parameter in the range [1.4,1.7].

The results of this analysis are reported in fig.4.3, where we also compare them
with observational results. Values of N(> M) for 6, = 1.5 are also listed in table 4.1.
Following White et al. (1993) [161], we take M = 4.2 x 10**h~1 My for the limiting
mass at which to estimate the mass function. We prefer not to consider a larger value,
~ 10541 My, since this would correspond to the exponential tail of the cluster
mass function (e.g. Bahcall & Cen 1992[162],[163]) and, as a consequence, large
Val‘iatig)ns in the cluster abundance would be associated with uncertainties in the
cluster mass estimates. The dashed band in fig.4.3 corresponds to the range between
the observational result of White et al. ([161]; lower limit) based on X-ray data, and
that of Biviano et al. ([164]; upper limit) based on velocity dispersions. We note that
realistic observational uncertainties are probably larger than the difference between
such two results. They may be due to systematic effects, related to assumptions used
to connect X-ray temperature and DM potential profiles, or to biases in estimating
cluster masses from internal velocities under the virial assumption.

Even bearing such warnings in mind, it seems difficult to reconcile with the data
those models which overproduce clusters by one order of magnitude or more, for
any ¢, value. This is the case for Qx = 0.1 and, in general, for those models having
a large value of z,,. Even though taking the larger baryonic fraction decreases the
cluster abundance, its effect is nevertheless only marginal for those models which
have an exceedingly large N (> M). .

It is not clear whether such large discrepancies may be overcome on the ground
of observational biases. For instance, let us consider the model with Qx =0.2,z,, =
10* (model 5 in table 3.1) as a case providing a large N(> M). If we allow for an
underestimate of cluster masses by a factor 2 (i.e., M = 84 x lOMh‘lM’@; see,
however, Evrard, Metzler & Navarro 1996[165], for arguments in favour of precise
mass determinations from X-ray data) and take 6, = 1.5, it would give N(> M) ~
1.2 x 107°(A~"Mpc)~3, which is still quite far from the observational band.

On the other hand, we do not believe that the observational situation is clear
enough to rule out at a large confidence level models which are discrepant by a
factor 2-3 with respect to the reported abundances. Even adopting such a rather

conservative position, it is fair to say that only models with Qx > 0.2 and low z,,
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are not excluded by this constraint. In this respect, the availability of more and
more determinations of cluster masses based on the independent technique of weak

gravitational lensing (e.g. [166]) will be extremely welcome.

4.4.2 High-redshifts objects

The results of our analysis are reported in fig.4.4, where we plot the neutral gas
fraction associated to DLAS, Qg, for all the models with Q; = 0.05 and compare them
with the observational data. In the light of all the above-mentioned uncertainties
in realising such a comparison, we prefer here to adopt a conservative approach
and to consider in this comparison the result of Storrie-Lombardi et al. (1995[148];
Q, =22+0.5 at z=4.25 for Qg =1 and h = 0.5) as a lower bound. Consistently,
the dashed areas in fig.4.4 are delimited by the above 1o lower limit. Only model
falling below this limit are ruled out. The effect of varying the limiting mass of the
protogalaxy hosting DLAS by an order of magnitude may be judged by comparing
open and filled dots, which correspond to M = 5 x 10°" Mg and M = 5 X
10'°A~1 M, respectively. Numerical values of 2, for all the models are reported in
column 5 of Table 4.1, where also results for CDM and CHDM are given.

As expected, taking lower Qx and larger z,, make easier the agreement with
data. All the models with Qx < 0.2 are able to pass the DLAS test, while larger
volatile fractional densities are only allowed for large z,,, which however turns into

a wrong power—spectrum shape.

Although several models can clearly be ruled out already at this level on the
gfound of DLAS data, nevertheless it is clear that more precise conclusions can
only be reached with a better knowledge of the variables entering in the Press—
Schechter prediction for , (i.e. the mass M, and the parameters 6, and ay). A
more accurate definition of what is a DLAS in a given DM model can only be
achieved with numerical simulations involving hydrodynamics ([159]), which would
be able to trace the history of galaxy formation. As for observations, the possibility
that systematic biases may affect the final results have been recently suggested. For
instance, Bartelmann & Loeb (1996) [146]have pointed out that amplification biases
due to gravitational lensing of QSOs by DLAS could led to an overestimate of (g,
by an amount which however decreases with redshift. Fall & Pei (1996)[147] argued
that dust obscuration may act in the opposite direction so as to bias downwards
the estimated (,. Verifying the actual relevance of such effects surely requires a
substantial investment of observational and theoretical effort.
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Figure 4.3: The abundance of galaxy clusters with M > 4.2 x 101*A=1My. The shaded
area s delimited by the observational results by Biviano et al. (1993; upper limit) and by
White et al. (1993; lower limit). In each panel, corresponding to different Qx values, d(;tted,
short—d.ashed and long—dashed curves are for the three different values of Zn,. Each pair of

curves correspond to the two values of Q;, the lower one being for Q5 = 0.08 and the higher
one for 0 = 0.05.
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Figure 4.4: The fractional density of neutral gas involved in DLAS at redshift z = 4.25. The
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and M = 5 x 1019~ M, for the limiting mass of the protostructures hosting DLAS. We
assume a Gaussian window with §. = 1.5 and @, = 1 for the HI gas fraction involved in the

absorber.
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4.5 Volatile particles with non-radiative decay

In analyzing these models, we performed a selection based on both LSS and CMB
observations. More in detail, we considered the following prescriptions: (1) We set
the numerical constant A, in the power spectrum , so that Cy is consistent with
COBE 3¢ intervals for Qrms,ps (for different n’s). '

(ii) Once the normalization is fixed at small £, we test the large k behaviour,
first of all on the 8 A~1Mpc scale. The mass M, within a sphere of radius L =
AR~Mpe, is My = 5.96 - 10QA%M(A/8)% . Therefore, the cumulative cluster
density n(> M) = \/2/w(p/M) Jsojons QUM /M (u)] exp(—u®/2) for M = 4.25-1 .
10MM¢, is directly related to the value of og. We take M(u) defined so that the
mass variance (evaluated with a top-hat window function) satisfies the relation

G'M(u) = 6C/U

Let us then consider Ny = n(> M)(100A~*Mpc)? for the above M value. Optical
and X-ray observations give a value of N, which is still not so different from ~ 4, as
found by White at al. (1993) and Biviano et al. (1993). Both the observationa] value
and its theoretical prediction are however sub Ject to a number of uncertainties. For
instance, observations have some problems to fix cluster masses. From the theoretical
side, non-linearity effects and mechanism turning fluctuations into clusters cannot
be said to be completely under control. Tt is also wise recalling that N,; and og feel
the slope of the spectrum, around 8 4~1 Mpec, in a slightly different way. Henceforth,
we shall further comment on og values, after discussing the spectral slope.

The above arguments tell us that, in our systematic search, it is wise to keep
models with 1S N, < 10.

(iii) Models that could survive the previous test were then used to evaluate
the expected density parameters {J;. More specifically, using such expression, we
evaluated DLAS = Qg. x 103/, taking » = 4.25,6. = 1.69 and M = 5-10% 1 M.
According to Storrie-Lombardi 3¢ lower limit, we passed models only when DLAS >
0.5.

(iv) As long as T is concerned, we kept 0.27 as top acceptable value, which is
both the upper limit given for APM and the ~ 30 upper limit for Abell/ACO.
Owing to previous considerations, we took 0.13 as lower limit, assuming that an

underestimate of non-linear effects by ~ 6-8 % cannot be excluded.
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4.5.1 Relations between different constraints

As already mentioned, the constraint on I', together with a suitable constraint on og,

implies a constraint on N,. Checks of o5, N and I' are, therefore, strictly related.

For instance, an observational value for og can be deduced from X-ray data on
the gas temperature 7, in galaxy clusters. If clusters are substantially virialized and
the intracluster gas is isothermal, the mass M of a cluster can be obtained once the

ratio

_ galaxy kinetic energy /mass
"~ gas thermal energy /mass

is known; then, the temperature function can be converted into a mass function,
which can be fit to a Press & Schechter expression, yielding the normalization of

o(M) (variance as a function of the mass scale M) and hence o3.

An alternative possibility, of course, amounts to deducing masses from galaxy

velocities obtained from optical data. Both pattern imply some problem.

The value of 8 is currently obtained from numerical models. Henry & Arnaud
(1991)[168], assuming § = 1.2, estimated og = 0.59 & 0.02 from a complete X-ray
flux-limited sample of 25 clusters they compiled. Various authors followed analogous
patterns (see; e.g., White et al. 1993[161], Viana & Liddle 1996[169]). Eke et
al. (1996)[170], adding observational uncertainties and § error, claimed that og =
0.50+0.04. An essential issue to obtain such result is that Navarro et al. (1995)[171]

simulations allow to take § = 1 with an error < 6 %.

However, there seems to be a conflict between expected galaxy velocities, ob-
tained assuming 8 = 14:0.06 and optical data. In fact, the latter give a virial velocity
dispersion in clusters o, ~ 800 km/s, a value consistent with 8> 1.5 ([172],[173]).

It is possible that the critical assumption is that clusters are isothermal. In
many clusters, cooling flows may play an important role and a fit to a cooling—
flow cluster with a simple isothermal model may yield a mean emission—weighted
temperature significantly reduced in respect to the virial value (see, e.g., Allen &
Fabian 1998[174]). However, according to Eke et al. (1998[175]), cooling flows
would cause a z-trend in disagreement with available data. More data on high-z
clusters are however needed to strengthen this statement. Other authors (Frenk et
al. 1990[176], Borgani et al. 1997[134]) claimed that the conflict between predicted
and observed o, originates from contamination of optical data by groups accreting

onto the clusters.
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4.6 Constraining volatile models

4.6.1 Volatile particles with radiative decay

The results we have presented demonstrate that the CVDM hypothesis yields poten-
tially interesting models of structure formation. We have shown that rather slight
changes in the parameters of volatile dark matter can make a significant difference to
the transferred power spectrum. This contrasts with the case of a cold component,
where the physical properties of the candidate particle do not really matter at all,
in that the physical origin of the hot particles may leave a detectable imprint in
the clustering pattern. In this context it is important to verify up to which point
the shape of the distribution function causes differences compared to the standard

scenario based on relic thermal neutrinos.

The ability to change z,, almost independently of Qx is especially significant
in this.respect: the power spectra we have obtained display considerable variations
at a fixed value of Qx. Indeed, although the CVDM class of models involves one
more parameter than is the case for CHDM, we have shown that observational data
nevertheless allow us to put rather stringent constraints on the permitted values
of z,, and {lx, even at the level of linear-theory. The most stringent of these
constraints comes from the simultaneous requirement for a model to satisfy the
observed abundance of high-redshift DLAS and of galaxy clusters. As for DLAS,
the rather large value of the HI gas fraction involved in the absorbing systems, g,
implies a substantial amount of power on galaxy scales, so as to favour models with
Qx< 0.2. A larger volatile component would be allowed only resorting to a high
value of z,, ~ 2 x 105Qx (cf. fig.4d.4). On the other hand, models with small
Qx and/or large z,, behave too much like the standard CDM model, drastically
overproducing clusters (cf. fig.4.3). ‘

Therefore, the overall result would be that models with z,,2 5 x 10*Qx have a
hard time, quite independently of Qx. Among the models inspected, the only model
which passes all the tests, or at least which can not be confidently ruled out, is the
one with Qy = 0.2 and z,, = 4 x 103, It is worth recalling, however, that such a
model with low zn, Tequires that volatile particles occupy at least 5 helicity states
[cf. eq.(3.9)]. We recall that this can accommodated only if (a) g* = 7 is allowed by
standard nucleosynthesis and (b) two neutrino species are sufficiently massive that

they have already decayed at the nucleosynthesis epoch.

An alternative possibility, holding if the physics of the decay is quite different
from the axino model suggested in [76], is that the decay itself takes place after the
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nucleosynthesis epoch. This would make low z,, models compatible with all N,. It
must, however, be remembered that changing N, itself causes an alteration of the
transfer function, and a straightforward extrapolation of the above results to greater
. N, values is not allowed. Changing the relation between N, and z,, opens the way
to inspecting different models and, in this context, we should also bear in mind that
our analysis has been based on assuming a scale-free primordial spectrum, while
variations around this model are allowed by some classes of inflationary schemes.
For instance, taking P(k) oc k™ with n'< 1 [177, 178] decreases the amount of power
on the cluster mass scale, so as to alleviate the problem of cluster overproduction
displayed by “colder” models. However, the amount of this tilt can not be too
large, in order not to conflict with CMB [179] and large-scale peculiar motions
constraints [180]. On the other hand, the case of “antitilting”, with n ~ 1.2, has
been recently advocated to alleviate some of the problems of the CHDM scenario
(181, 182). However, the subsequent increase of power on small scales goes in the
undesired direction as far as the cluster abundance is concerned [183, 153].

As a final remark, we should remind that the analysis presented here is only
preliminary and is entirely based on linear calculations. In order to be more defini-
tive on we would like to study the non-linear evolution of some of these model by

performing numerical calculations using N-body and other procedures.

4.6.2 Volatile models with non-radiative decay

While in the previous case we always kept n = 1, here we allowed 1 < n < 1.4,
according with COBE predictions. We resume the criteria we chose in selecting the
models. Firstly, we normalized the spectrum so that Cj is consistent with COBE 3¢
intervals for @ ms ps. Then, we kept models with whose prediction on the cluster
abundance satisfied 1 < Ny < 10. We then considered the Damped Ly-a systems
(DLAS). According to [148], observations give DLAS = 2.2 + 0.6. Therefore, we
passed models only when DLAS > 0.5. It must be outlined that varying this limit
by a factor ~ 2 would cause only marginal changes for models accepted. Slight shifts
of Q, or d usually cause significant variation of DLAS and this constraint turns out
to be a fairly substantial one. Bulk velocities were also evaluated and compared
with POTENT reconstructions of velocity fields. They cause no constraint at the 2

o level.

As long as I' is concerned, we kept 0.27 as top acceptable value, which is both
the upper limit given for APM and the ~ 3 o upper limit for Abell/ACO. On the

contrary we took 0.13 as lower limit, assuming that an underestimate of non-linear
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effects by ~ 6-8 % cannot be excluded.

Considering the mass variance within 8h™'Mpc, we considered that models with
og In an interval 0.45-0.75 should be viable. As expected, models passing prevmus
tests keep comfortably inside such interval. The top og needed by models in fig.4.6
is 0.70 (for @ = 0.26,d =1, n = = 1.2) and the bottom g is 0.50 (for Qp = 0.18,
d =16, n = 1.2). If the constraint on T is dropped (fig. 4.5), just two models with
os = 0.70 (both yielding T < 0.10) and a model with og = 0.48 (Q =10.22, d = 186,
n=13,I=0.11) are added.

Some of the transferred spectra are plotted in figs. 3.6 — 3.9, together with
spectral data obtained from Las Campanas survey (LCRS) [110], kindly provided by
Lin. Tt is however worth outlining soon that such comparison, although suggestive,

is not so discriminatory.

A detailed description of LCRS is given by [184]. The survey encloses 3--3
“slices” 1°.5 x 80° wide, in the northern and southern emispheres. Data were taken
using two multifiber systems. Fields 1°.5 x 1°.5 wide were inspected above suitable
photometric limits, chosen so that there were more galaxies per field than avail-
able fibers. Then, target galaxies in each field were randomly selected and a “field
sampling factor” f was memorized, to be used in any further statistical analysis.
The average values of f are different for the two multifiber systems, which are able
to inspect 50 and 112 objects, and amount to 0.58 and 0. 70, respectively. The
nominal photometric limits are also different for the two systems, amounting to

16 <m <173 and 15 < m < 17.7, respectively. A further geometric effect is due
to the impossibility to inspect galames in a given field, if nearer than 55”.

The actual situation for power spectrum measurement from LCRS appears to fall
into two regimes. On scales I < 80-100 A~ "Mpc (k > 0.2h) a fair determination of
the spectrum is obtained. In this range, LCRS results strengthen results from other
surveys. Larger scales would be more discriminatory, but here errors are greater and

the sample variance might cause further shifts.

When compared with such observational spectra, a reasonable transferred spec-
trum should lie below observational errorbars, up to ~ 80-100 A~ Mpc; the gap
between theoretical and observational spectra is related to the amount of bias (con-
stant gap means a scale-independent bias level). For k values much beyond this
scale, requiring a detailed fit may be excessive. Although there are mixed models
which provide it, we see no reason to disregard models whose spectrum falls within
~ 3 o errorbars from the reconstructed spectrum. An example of such models are

ACDM models, with various A contents, which were shown also by [110], but not
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Figure 4.5: The curves enclose areas where models predict LSS linear features consistent
with observations. Each curve refers to the value of n written aside. Point—dashed lines
refer to models with HDM made of massive v’s. Restrictions can be applied to the latter
models only after addition of a suitable amount of SMLC. See the text for a more detailed
comparison of the LSS they predict with volatile models. The constraints taken into account

are: cluster abundance, og value, gas in damped Ly—o systems.

treated here.

Results on parameter constraints are summarized in figs.4.5— 4.6. As was already
known, a number of such models with {25 up to 0.30 pass the above tests. If n = 1,
volatile models allow little extra freedom, namely for high zge,. The situation is
already different for n ~ 1.1. Here models with zger ~ 600 are allowed for
up to 0.14 and greater {2 are allowed for values of zge, still much lower that those
allowed by neutrino models. The range of {2j, values allowed with zg.r ~ 600 extends
upwards as n increases and overcomes 0.20 for n = 1.4. The greatest value found
for Qy, is 0.30 for zger = 104 with n = 1.2. Thermal models with 2 or 3 massive
neutrinos and a suitably added SMLC arrive to ;, =~ 0.28, for n = 1.2 and n = 1.3,
respectively.

These values may not seem too large, in respect to {l values currently used
in the literature (with thermal models). It must be outlined, however, that our
acceptance criteria are more stringent than usual. With such criteria, no thermal
model with Qp > 0.16 is accepted for n < 1.
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Figure 4.6: As in fig.4.5, but here the value of the extra-power parameter T is also con-

strained.

Let us also draw the attention on the very low values of z,, that volatile models
with large n allow. As an example of low Zder, in fig. 3.8 we show the transferred
spectrum of a model with 22 % of HDM and Zder = 625, which, for a fairly high value
of COBE quadrupole, has excellent fits with all linear constraints. HDM particles
of this and similar models have a mean square velocity ~ 500 km/s today, still away
from potential wells. Such speed is likely to guarantee them not to cluster with
baryon or CDM on any scale. Dynamical mass estimates, in a world containing such
component, might lead to observe ~ 75-80 % of critical density.

It should be also mentioned that, if the constraint on T is dropped, greater Qs
seem allowed (see fig. 4.5). The top value we found is Qp = 0.45 with zg.,, =~
5000. With 3 or 2 massive neutrinos the highest 2 obtainable are 0.40 and 0.38,
respectively. As already outlined, in figs. 4.5 - 4.6 neutrino model curves are
overlapped to volatile model parameter space, but the allowed regions apply to
them only after adding suitable SMLC. ‘

Other authors [185], in a paper focused on n < 1 models, mentioned that a model
with @, =035, n = 1.2, h = 0.4 agreed with the linear constraints they imposed.
Using our linear constraints, Qp, is to be lowered to ~ 0.30. Volatile models do not
need to lower A so far, to agree with data, as they naturally have SMLC, which
induces fairly similar effects. Also thermal models can agree with data keeping to
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h = 0.5, rising m, with or without extra SMLC. Figs.3.10 — 3.12 illustrate some
spectra for such models.

Models with high HDM content and high average kinetic energy, could also ease
the problem of the apparent baryon excess in several galaxy clusters. It has been
known for several years ([186, 187, 188, 161])that the baryon mass fraction in galaxy
clusters is high, in respect to expectations in flat, pure CDM models. According to

[161], even neglecting baryons in galaxies, the observed baryon fraction yields
Q,h%/% = 0.05 £ 0.02 “(4.9)

for flat, pure CDM models. BBN limits of [189] required then that Qph? = 0.0125%
0.0025.

Much work was then performed to analyze individual clusters and lists of baryon
contents in cluster samples were presented by several authors [190]. The situation

is summarized in a recent paper by [191] who obtains the constraint
Q,h3? = 0.060 £ 0.003 (4.10)

This is to be taken with recent BBN limits on (. E.g., [192] give 0.007 < Qh? <
0.024 and therefore @ ~ 0.1 with A = 0.5 is marginally allowed. For h = 0.5,
as we assumed here, eq.(4.10) gives a central value Qp = 0.17 and a 3 ¢ minimum
Qp ~ 0.14.

If HDM does not cluster with CDM and baryons, a measure of would however
yield Qpapp = /(1 — Q). Within mixed models, therefore, agreement with data
requires §1p > 0.41 or > 0.29, respectively. We have shown in this work that the
latter value is coherent with LSS constraints, if 1.2 < n < 1.4; as n increases,
compatible models have zger values decreasing, down to ~ 2500.

Limits become more permissive if masses obtained from lensing are replaced to
those obtained from X-ray data (see, e.g., [174]). High baryon density, however,
seems a widespread feature. Perhaps the limits shown in eq.(4.10) are to be reset,
taking greater cluster masses, but, if Q, = 1, there seems to be a definite evidence
of a component which tends not to cluster with CDM. The debate is related to the
discussion on og limits in section 4.5.1.

In the literature, mixed models with n < 1 were often considered and allow
to predict acceptable values of a number of observable quantities, if low rates for
the HDM component are taken. Considering n > 1 is at least as legitimate as
taking n < 1 and leads to a range of mixed models allowing fair predictions on the

same quantities., We showed that models with n > 1 require and allow higher HDM



108 §4. Comparison with Observations

contents. They could therefore improve our understanding of why Q, measures seem
to give increasing values when greater scales are considered. This was one of the

basic motivations to introduce mixed models, more than a decade ago.

4.6.3 Volatile models compared to CMB experiments

In this section we give the CBR spectra of the hot—volatile models and compare
them with available data, ranging from [ = 2 to I< 500.

We evaluated the spectra for several parameter choices allowed by LSS con-
straints (see figs. 4.5 — 4.6). Significant example of spectra are shown in figs.4.7
— 4.11 while the corresponding LSS C

predictions are summarized in table 4.9.

Somie parameter sets are compatible with neutrino hot dark matter, while models
with a low zg4., and n R 1 are obtainable with volatile hot dark matter. Since
the height of the first doppler peak is very sensitive to the baryon abundance, we
considered two values of {2, namely 0.05 and 0.1. Spectra are normalized 10 Qrms,Ps
assuming no contribution of gravitational waves. As is known, their contribution
would raise the low-1 tail of the (1 spectrum, therefore reducing the gap between
the Sacks—Wolfe platean, and the top of the first doppler peak.

Madels with Q, = 0.1 systematically show a peak less pronounced than models
with 2y = 0.05. It is well known that models with a given A and hot component show
a lower doppler peak for smaller ; in top of that, here there is a further effect: LSS
constraints often are compatible with a part of the observational @ rms,ps interval,
and low 2, models tend to be consistent with low rms,ps values.

In figs. 4.7 - 4.11 we compare models with data from COBE [193] Saskatoon
[128] and CAT [130] experiments only.

Figs.4.7 - 4.11 show a systematic trend: for a given large 1 value, €} increases
with both n and d = 104 /Zder. On the contrary, for a given large k value, the matter
fluctuation spectrum P(k) increases with n but is damped for large d, so that these
two effects tend to compensate. .

This is one of the reasons why LSS constraints can be compatible with n as high
as 1.4. On the contrary, figs. 4.11 show that CBR spectra already disfavour n = 1.3
ifdR4 (24er S 2500) is considered, no matter the value of 2. Volatile models with
n > 1.2 are largely out of the errorbars, and should be considered ag scarcely viable.
Nevertheless, even for n — 1.2, volatile models allow a higher first doppler peak
without raising the following ones, and therefore fit the data better than neutrino
models, if no reionization is assumed. Just as large 7, also large d causes conflict
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Figure 4.7: volatile spectra are compared with the observational data from COBE, Saskatoon
and CAT experiments. The errorbars correspond to 1 o errors. Solid bold lines refer to
standard CDM (h = 0.5, n = 1, @ = 1) and a neutrino model with Q; = 0.3. Shaded areas
are the volatile spectra with parameters specified in the figure. Upward shading refers to
Q2 = 0.1 models while downward shading to Q = 0.05 Notice that zge, = 10*/d = 1250 (left
panel) and zg4e, = 3533 (right panel) .
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with data, by itself. For example, fig. 4.9 (left panel) show that models with d = 16
are disfavoured, even with low 0 and n = 1.1. '
. As pointed out in Chapter 1, volatile models require a sterile component whose
energy density is proportional to Qd. Its effective number of degrees of freedom is
linked to the equivalence redshift, which in turn affects both the shape parameter
I' and the height of the first doppler peak. Dodelson et al. (1994) [119] considered
the matter power spectrum in the case of a T—neutrino decay (7CDM model), and
found that even in that case the effective number of degrees of freedom g, .f; is
bigger that in standard CDM. They outlined that, in order to lower I' at least down
to 0.3 [133], in a A = 0.5 universe with n = 1, an equivalent number of massless
neutrinos (N, s = guefs/2) as high as 16 is needed. Other authors [125], who
also consider TCDM models but with a lighter neutrino, also pointed out that the
predicted I' of these models is lower due to the high g,.sf, and show that a lower
I' implies a higher first doppler peak. Their work, however, is only qualitative, and
they don’t infer any restriction in the parameter space using the data. Looking
at the data, we found out that if » = 1.1, CBR data models with an equivalent
number of neutrino species N, .¢¢ R 10 as in figs.4.9 (left panel), 4.10 (left panel)
and 4.11 (right panel) are disfavoured . Models like the one shown in fig. 4.8 (left
panel, Ny s = 7) seem to better fit the data, although even lower N, . (~ 5), as
provided by the model in fig. 4.8 (right panel), should not be disreguarded.
Keeping to n = 1, LSS already exclude very high Q, d values, so that a low
Nyeg5 is automatically ensured. The models shown in figs. 4.7 seem to well fit the

data, with a corresponding N, .ff = 5 — 7.

4.6.4 Summary on volatile models

Let us summarize, in the end, the conclusions on volatile models. )

We have analyzed mixed models from the point of view of both LSS and CMB
predictions. We considered different hot dark matter components: the standard
neutrino case and the volatile case in which particles come from the decay of heavier
ones.

First we tested the mixed models on available LSS data requiring fair predictions
for og, I', DLAS and N,;. This analysis shows that it must be Q35 0.3. This comes
as no surprise, as mixed models with greater 2 have not been considered since long.
The new result is that taking n up to 1.4 does not ease the problems previously found
for large Qp,.

On the contrary, volatile models together with n > 1 significantly widen the
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parameter space in the low zg., direction and viable models even with zg., ~ 600
can be found. In fact, as far as P(k) is concerned, we found a nearly degenerate
behaviour of the parameters n and zge,, as the damping on the high k values due to
low z4., can be compensated by high n.

CBR data, apparently, break the degeneracy. In section 4.6.3 we have shown
that the CBR spectrum of volatile models is significantly different from standard
CDM and also from neutrino models usually considered. In fact SMLC and late
Zger volatiles cause a late z, and, henceforth, a higher first doppler peak. Minor
effects are caused by the typical momentum distribution of volatiles. These effects
amounts to 2 % at most in the C; spectrum and only an accurate analysis of the

results of future satellites, as MAP and Planck, could allow to detect it.

CBR spectra of volatile models were then compared with available data from
different experiments, namely those from COBE, Saskatoon and CAT experiments.
Data on CBR spectrum at large [ imply that temperature fluctuations AT /T ~
1075/l are appreciated. Therefore, measures of the CBR spectrum, for high / val-
ues, still need to be treated with some reserve. It seems however clear that recent
observations tend to indicate a doppler peak higher than expected both for pure
CDM and for mixed models with early derelativization, such as most neutrino mod-
els. Taking n > 1 and/or late derelativization raises the doppler peak and affects
the CBR spectrum at high /. The first question we tried to answer is how far we

can and have to go from pure CDM and n = 1 to meet current large [ data.

- We found that volatile models could cure this discrepancy, while ensuring a viable

scenario for structure formation.

In turn, large / data imply restrictions in the parameter space, complementary
to the ones derived from LSS while a fit of such data requires only a slight departure
from pure CDM and n = 1. For example, figs. 4.8 show the C; behaviour for n = 1.1
and HDM ranging from 11 % to 16 %. Such models provide excellent fits to current
data and, as explained in [86], are also in agreement with LSS.

~ Other models, for larger n and §2p, or lower z4er, show only a marginal fit with
current observations. Hopefully, future data on high I’s will be more restrictive and
allow safer constraints. At present, such models cannot be ruled out, although they

are more discrepant from pure CDM and n = 1 than high / data require.

In our opinion, however, CBR data can already be said to exclude a number of
models which fitted LSS data. In general, models with n > 1.3 and zg., < 1000

seem out of the range of reasonable expectations.

Altogether, three kinds of departures from CDM and Zel’dovich were considered:

¥
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large 4, low z4e, and n > 1. Large (but allowed) ©, values, by themselves, do not
ease the agreement of models with high / data. Taking n > 1 eases the agreement of
models with data for [ ~ 200, as is expected, but seems to rise the angular spectrum
above data for greater I’s. Taking low zger, instead, raises the doppler peak, but
does not spoil the agreement with greater / data. Current data, therefore, seems
to support models with a limited amount of HDM or volatile materials, possibly in
association with n slightly above unity, to compensate some effects on LSS.

Note that the analysis of this work is carried out keeping b = 0.5, allowing for
no cosmological constant, and constraining the total density to be critical. E.g.,
raising h would probably allow and require a stronger deviation from pure CDM
andn=1. We plan to widen our analysis of the parameter space in the near future,
also in connection with the expected arrival of fresh observational data on the CBR

spectrum.

4.7 Light gravitinos warm dark matter

In analyzing warm dark matter models, our procedure was the following. The am-
plitude A of the power spectrum (P(k) = AT?(k)k"™r) is determined by following
the recipe by Bunn & White [194] to normalize both low—density flat and open mod-
els to the 4-year COBE data. Here we did not consider the case of non-negligible
contribution of tensor mode fluctuations to the CMB anisotropies. Indeed, such
an effect would lead to a smaller spectrum amplitude, with a subsequent delay of
the galaxy formation epoch that, as we will see, represents a major problem for
WDM-dominated models.

For each model, the corresponding free-streaming mass scale was computed and
from fig.4.1 it is apparent that such a scale is always at least of the order of a
large galaxy halo. The flattening of oas at small masses represents the imprint of
non-hierarchical clustering. On the other hand, it turns out that the behaviour on
the scales of galaxy clusters, ~ 104~ Mg, is rather similar to that of the CDM-
dominated case. In the following we will use the abundance of local galaxy clusters
and of high-redshift protogalaxies, through data about damped Ly-a systems, to
constrain the whole class of WDM-dominated models. Constraints on larger scales,
like bulk—flows data [138, 195], are much more similar to the CDM case.

The first constraint that we consider comes from the abundance of neutral hy-
drogen (HI) contained within damped Ly-a systems.

Even in this case, we considered the results reported by Storrie-Lombardi et al.
[148] at redshift z ~ 4.25 and assumed that all the HI gas at that redshift is involved
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in the absorbers.

In our analysis, we considered 6.(z) in eq.(4.8) as the critical density contrast
whose value predicted by the model for the collapse of a spherical top-hat fluctuation
in a critical density universe, §, = 1.69 independent of the redshift. This value
has been confirmed by N-body simulations [143]. We used the expressions for ¢.(z)
provided in ref.[196] for both low—density flat and open universes. We note, however,
that at the redshift z=4.25, that we are considering, the resulting 6. value is always
very close to 1.69.

We note that the Press & Schechter approach [141], on which eq. (4.8) is based,
holds only in the case of hierarchical clustering. In our case of WDM models,
hierarchical clustering only takes place on mass scales larger than My,. On smaller
scales, the lack of fluctuations causes the flattening of ops. Therefore, by estimating
oy at arbitrarily small masses, one obtains the r.m.s. fluctuations at the free-
streaming mass scale. In our approach, we will give up the dependence on mass
scale M, which amounts to assume that DLASs are hosted within protostructures
of mass of about Mj,; protostructures of smaller mass, instead, are produced later
by fragmentation of larger lumps.

" In the light of all the above uncertainties in directly relating €, to Qcou, we
prefer to maintain a conservative approach here and to consider a model as ruled
out if it predicts Q; to be less than the observational 1o lower limit. At this level
of comparison we do not consider as reliable to put constraints to model producing
too high a §, value.

Furthermore, we should also rescale appropriately the value by Storrie-LombBardi
to include the more general Qp < 1 cases. Therefore, the limiting value that we

consider is

Q, = 0.0009 27! f(Qo, U,z = 4.25), (4.11)
where
14 02\ /2
£(90, 2, 2) = (—1—10—) . -0
1 3 Q1172 .
F(Q0, 0, z) = (LF 210t ] Oa=1-0p (4.12)

(14 2)3/2 ;

As for the cluster abundance, it has been recognized to be a sensitive constraint
on the amplitude of the power spectrum [161]. Based on the Press & Schechter
approach [141], it is easy to recognize that the number density of clusters with mass
exceeding a given value is exponentially sensitive to the r.m.s. fluctuation on the

cluster mass scale. Fitting the local X-ray cluster temperature function with the
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0

Figure 4.12: Observational constraints for COBE-normalized WDM models, with g, = 150,
on the (Qo, k) parameter space, for flat low—density (AWDM) and open (OWDM) models.
The finely shaded area corresponds to the 95% c.l. region allowed by the clﬁster abundance,
as estimated by Viana & Liddle (see text). The heavy solid curve delimiting the coarsely
shaded area represents the limit of the region allowed by the data about the 2, in DLAS at
z = 4.25, as given by Storrie-Lombardi et al. (see text); models lying below such curves are
excluded. Horizontal dashed curves connect models having the same age of the Universe:

ty = 9,11,13,15,17 Gyrs from upper to lower curves.

Press—Schechter approach led several authors to obtain rather stringent relationships
between og, the r.m.s. fluctuation value within a top—hat sphere of 8 A~ Mpc radius,
and Qg [169, 170, 197]. In the following we will resort to the constraint by Viana
& Liddle, who provided the most conservative and, probably, realistic estimate of

errors, mostly contributed by cosmic variance effects on the local cluster population:

o550 = 0.6013:%2
o(Q) = 0.36+ 03125 — 0.280% ; 0, =0
o(Q) = 0.59—0.160Q9 +0.0602 ; Q4 =1-0g, (4.13)

with uncertainties corresponding to the 95% confidence level.
As for the purely WDM models, we plot in fig.4.12 the constraints on the (Qq, h)
plane, for g. = 150, from DLAS and cluster abundance. Only scale—free primordial

spectra (i.e., np, = 1) are considered here. Left and right panels correspond to

A
08 ™ /WDM —
h /////%%
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the low-density flat (AWDM) and open (OWDM) cases, respectively. The solid
line delimiting the coarsely shaded area indicates the limit for the region of the
parameter space which is allowed by the observed {2, in DLASs: model lying below
such curves should be considered as ruled out, since they produce a too small
value at z = 4.25. The cluster abundance constraint by eq.(4.13) is represented by
the finely shaded region. The dashed curves connect models having the same age of
the Universe: tg = 9,11,13,15 and 17 Gyrs from upper to lower curves.

As a main result, we note that there is almost no overlapping between the re-
gions allowed by the two observational constraints: for fixed values of the Hubble
parameter, cluster abundance tends to select relatively smaller {2 in order to satisfy
the low—normalization request of eq.(4.13). On the other hand, the DLAS constraint
favour higher density parameters, which has the effect of both decreasing the free-
streaming scale and to increase the small-scale power even in the absence of any
free-streaming. - Judging from this plot, one would conclude that the whole class
of gravitino-dominated WDM models would be ruled out by combining constraints
on the cluster and on the galaxy mass scale. A residual possibility seems to ex-
ist to reach a concordance for QoS 0.4 (205 0.5) and a high Hubble parameter,
h2 1 (hZ 0.9) for OWDM (AWDM) models. However, two main problems arise
in this case: (a) all the current determinations of the Hubble constant indicates
0.5 < h < 0.8 [198]; (b) the resulting age of the Universe would be definitely too
small, especially for OWDM models, even on the light of the new recalibration of

globular cluster ages, based on the recent data from the Hypparcos satellite [199].

We also checked the possibility of considering non-scale-free primordial spectra
(npr # 1), although results are not explicitly presented here. We verified that
assuming either blue (n,, > 1) or red (np < 1) spectra does not improve the
situation. In the first case, power is added on small scales, with the result that
smaller Qg are allowed by DLASs. However, the price to be paid is a rapid increase
of the cluster abundance, that also pushes toward smaller Qg the finely shaded area.
As for red spectra, the opposite situation occurs: the reduction of small-scale power
leads both constraints to favour relatively larger Qg values, with no overlapping with

the two allowed regions of the (£q, h) plane ever attained.

As a matter of fact, the situation becomes even worse when considering {2 = 1
WHDM models. Results for this class of models are reported in fig.4.13 on the
(Q,,7np,) plane. Left and right panels are for A = 0.5 and 0.6, respectively; smaller
I values are disfavoured by Hy determinations, while larger values are constrained

by the age of the Universe. In both cases the regions allowed by DLAS and cluster
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Figure 4.13: Observational constraints for COBE-normalized WHDM models, with
g« = 150, on the (Q,,n,,) plane, for A = 0.5 (left panel) and A = 0.6 (right panels).
A vanishing tensor mode contribution to CMB temperature anisotropies is assumed for

npr < k models. The two shaded areas have the same meaning as in fig.4.12.

abundance are largely disjoined, especially as higher Q, are considered. Indeed,
increasing the neutrino fraction has the effect of further reducing the power on

small scales, thus further suppressing the high-redshift galaxy formation.

Based on such results we should conclude that none of the variants of the WDM
gravitino—dominated scenario is able to account at the same time for the relatively
small abundance of clusters at low redshift and for the relatively high Q, in collapsed
structures at high redshift. It is worth reminding that this result has been obtained
with the rather conservative choice of g« = 150. As we have shown in the previous
section, more realistic value of g, should be even smaller, thus putting WDM-
dominated model in an even worse shape.

Which are the consequences of such results on the low—energy SUSY breaking
models that we described in Chapter 1?7 Of course, a first possibility is that grav-
itinos were so light as to be irrelevant from the point of view of cosmic structure
formation. For instance, the current understanding of high-energy physics phé—
nomen‘ology would surely allow for ms ~ 1 eV. In this case, 2z would be negligible.
Of course, since G represents the LSP, the source for a cold DM component should
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be found in this case outside the spectrum of SUSY particles (e.g., axions).?

On the other hand, if a scenario with m s ~ 100 eV will turn out to be preferred,
a non-negligible (1= can not be escaped. In this case, three possible alternative
scenarios can be devised. The first one is to allow for cold + warm DM. However,
since gravitinos have a much smaller free—streaming scale than neutrinos with m, ~
5 eV, this scenario would suffer from the same pitfalls of the standard CDM one,
unless one takes Qp < 1. The second possibility would be to have a substantially
larger g., so that gravitinos behave much like CDM. However, as we have seen in
Section 2.2, it is not clear how a substantially larger g. can be attained within
plausible SUSY models. The third possibility would be to abandon the assumption
of Gaussian fluctuations in favour of texture seeded galaxy formation [201], which
would ease the formation of high redshift objects. However, also this possibility
has been recently shown to suffer from serious troubles in producing a viable power
spectrum of ’density fluctuations [202], which make texture—based models as virtually
ruled out.

One may argue that the gravitino abundances will be diluted to a cosmologically
neghgible level by late-time entropy production. On the other hand, as the low
value of g, suggests, the reheat temperature after the entropy production should be
lower than the electro-weak scale to avoid the re-thermalization of the gravitinos,

which severely constraints possible ways to generate the baryon asymmetry of the
Universe.

2See however a recent proposal that a smeutrino in the messenger sector can be a CDM
candidate[200].
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Model o8 T N(> M) Qg
Observ. 0.904£0.05 0.25+0.05 (4-6) 22405
1 1.05 0.30 36 8.7
2 1.23 0.34 53 11
3 1.23 0.35 53 10
4 0.87 0.19 19 1.4
5 1.10 0.25 40 3.2
6 1.23 0.33 53 5.1

7 0.76 0.13 11 4E-02
8 1.02 0.21 33 0.6
9 1.22 0.36 52 2.3
10 0.68 0.10 6.1 4E-05
11 0.96 0.18 28 2E-03
12 1.29 0.53 60 0.8
13 0.62 0.08 3.4 1E-11
14 0.95 0.21 27 1E-04
15 1.27 0.59 58 0.3
CDM 1.33 0.47 62 30
CHDM 0.86 0.16 18 1E-02
16 1.03 0.28 34 6.0
17 1.20 0.31 50 8.8
18 1.26 0.33 55 8.9
19 0.81 0.16 14 0.4
20 1.05 - 0.21 36 1.9
21 1.26 0.30 55 4.3
22 0.74 0.10 9.1 3E-03
23 1.01 0.18 32 0.2
24 1.21 0.35 51 1.8
25 0.64 0.08 3.9 2E-07
26 0.95 0.17 27 4E-03
27 1.27 0.48 59 0.8
28 0.60 0.07 2.5 2E-15
29 0.93 0.14 24 2E-06
30 1.19 0.53 51 0.1
CDM 1.28 0.44 58 20
CHDM 0.82 0.15 15 6E-03

Table 4.1: Volatile models with radiative decay: statistical properties of large—scale struc-
ture. Col. 2: r.m.s. fluctuations within a top—hat sphere of 8 h"'Mpc radius. Observational
result refers to the APM galaxy distribution in real space. Col. 3: ‘extra power’ parameter;
observational result from Peacock & Dodds (1994). Col. 4: number density of clusters with
mass M > 4.2 x 10'%h~1 M (units of 1078 A=*Mpc)~2). Lower and upper values for the
observational result are from White,Efstathiou & Frenk (1993) and Biviano et al. (1993),
respectively. Col. 5: fractional denéity of neutral gas within collapsed structures of mass

5101%h~1 Mg at z = 4.25 (units of 1073); the Gaussian window with 6, = 1.5 is assumed,;
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Qh d n Nyyeff gs r N(> M)
Q% =0.05
0.11 8 1 6.9 0.53-0.68 0.23 1.8-9.8
0.11 8 1.1 6.9 0.63 0.27 6.9
0.16 2.83 1 5 0.60-0.68 0.20 4.0-9.3
0.16 2.83 1.1 5 0.67 0.24 8.9
011 16 1.1 10.7 0.52-0.64 0.24 1.6-7.3
0.19 8 1.1 9.7 0.55-0.66 0.16  2.0-7.7
0.19 8 1.2 9.7 0.55-0.67 0.19 2.1-8.1
0.20 4 1.2 6.5 0.67 0.20 8.3
0.24 4 1.3 7.2 0.64-0.69 0.17 6.4-9.4
023 8 1.3 8.9 0.57-0.68 0.17 2.7-9.3
) Q,=0.1

0.11 8 1 6.9 0.52-0.65 0.21 1.4-7.6
0.11 8 1.1 6.9 0.58-0.67 0.24 3.6-8.9
0.16 283 1 5 0.66-0.68 0.18 7.4-9.0
0.16 2.83 1.1 it 0.60-0.65 0.21 4.4-7.1
0.11 16 1.1 10.7 0.47-0.67 0.22 1.0-7.9
0.19 8 1.1 9.7 0.57-0.68 0.14 2.9-8.7
0.19 8 1.2 9.7 0.49-0.67 0.17 1.0-8.0
0.20 4 1.2 6.5 0.66-0.68 0.13 7.1-8.0
024 4 1.3 7.2 0.54-0.69 0.14 1.6-8.8
0.23 8 1.3 8.9 0.52-0.70 0.15 1.2-10

Table 4.2: Model parameters and power spectra.

Column 1: volatile fractional density;

Column 2: redshift at which the volatile component becomes non-relativistic (d = 10%/z4.,);

Column 3: total number of equivalent massless neutrinos (N, .;s = g,.¢55/2); Column 4: n

value considered; Columns 5-7: Large scale structure predictions.



Summary and Conclusions

This Thesis deals with the problem of structure formation and the dark matter
content of the Universe. The problem of finding a model for structure formation that
can account for all the observational tests is one of the most challenging problem
in modern cosmology. It is well known that two main theories can be advocated in

order to explain the observed dishomogeneities.

A first possibility consists in assuming that some topological defects act as seeds
for the perturbations in the energy density. The topological defects scenario nat-
urally leads to non—Gaussian perturbations, which some authors claim to be seen
in COBE data ([203], note however that this result is in contrast with other re-
sults, see e.g. [204]). Defect models also allow to resurrect the possibility of hot
and warm dark matter scenarios, in fact they provide a way to form structure on
small scales where hot and warm dark matter scenario fail. Standard scaling defects
models, however, seem to have big difficulties in matching both LSS and CMB data
[205, 201], so that some variants of the basic scheme must be advocated. This is

currently a subject of research.

The second possibility consists in assuming that the observed anisotropies origi-
nated by quantum fluctuations of the inflaton field in the early Universe. The basic
inflationary paradigm implies that fluctuations have a Gaussian distribution, and
predict a power—low initial power spectrum with spectral index close to one. Within
the inflationary scenario, many different models for structure formation can be re-
alized, just varying the matter content of the Universe and the nature of the dark
matter. Large scale structure and CMB data can already discriminate between dif-
ferent dark matter models; for example it has been shown that the standard CDM

model does not provide a viable scenario for structure formation.

The aim of this Thesis was to predict and test the structure formation in two
different classes of dark matter models, namely the light gravitino dark matter and

the volatile dark matter models. The motivations for these works relie on both

123
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particle-physics and astrophysics.

As long as the light gravitino model is concerned, our first aim was to test the
gauge-mediated SUSY breaking models, which predict the gravitino with a mass in
the range ~ 100 eV - 1 keV to be the lightest SUSY particle. Therefore we analyzed
the cosmological consequences of assuming the dark matter to be dominated by
such light gravitinos. We pointed out that gravitinos with such a mass behave like
warm dark matter (WDM), since their free-streaming mass scale is comparable to
the typical galaxy mass scale. Since it has already been shown that pure WDM
models with £, = 1 do not provide a viable scenario for structure formations, we
analyzed some of its variants, namely we considered low Q, models with and without
cosmological constant and Warm + Hot dark matter models (WHDM), with the hot
component provided by a massive neutrino. We decided to study this latter case
because, given the success of Cold + Hot dark matter models in reproducing the
large scale structure, we wanted to test if WHDM models as well gave good results.

Our procedure was the following: after estimating the number of degrees of free-
dom of relativistic species at the gravitino decoupling, g., we resorted to a Boltzmann
code to compute the appropriate WDM transfer functions. These were used as the
starting point to compare gravitino—dominated model predictions to observational
data about the abundance of HI within high-redshift damped Ly—« systems and
about the abundance of local galaxy clusters.

The main results of our analysis can be summarized as follows.

(a) Low-density WDM models with both flat (ACDM) and open (OCDM ) geometry
can not satisfy the two observational constraints at the same time, unless a
rather small Q, value (< 0.4) and a rather large Hubble parameter (2 0.9)
are assumed. However, such requests would conflict with measurements of the

Hubble constant and with current constraints about the age of the Universe.

(b) As for warm + hot (WHDM) models, we found that they have an even harder
time. The combined free-streaming of both neutrinos and gravitinos gener-
ates a strong suppression of fluctuations at ~ 1A !Mpc scale. This makes
extremely difficult to form high-redshift (2 ~ 4) protogalactic objects if we

require the model to match the low—z cluster abundance.

Based on such results we claim that no variant of a light gravitino DM dominated
model is viable from the point of view of cosmic structure formation. Therefore, in
the framework of GMSB models, this amounts to require the gravitino to be light
enough (mgs< 50 eV) so as to be cosmologically irrelevant. In this case, however,

one would lose the LSP candidate for implementing a CDM-dominated scenario.
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We then studied a class of mixed dark matter models in which the hot component
is not provided by the standard massive stable neutrino, but is made of a particle
produced in the decay of a heavier one (volatile models). Mixed models are at the
. moment among the best available theories for strﬁcture formation. In fact, their
matter power spectra, when normalized to COBE, show less power of CDM on the
galaxy cluster scale, which is desirable in order to not overproduce clusters, and
at the same time still assure enough power on galaxy scale to form objects at an
appropriate redshift. Volatile models mime the behaviour of standard mixed models,
and are therefore potentially very interesting. Particle physics can provide a suitable
framework for volatile models if extensions of the standard model are considered. We
studied the case of both radiative and non—radiative two—body decay, and considered

that the decay took place at very early times (2 107).

In the case of volatile models, the peculiar way hot dark matter particles are
produced causes them to have a different phase—space distribution if compared to
massive neutrinos whose original phase—space distribution is thermal. Omne of our
aims was to test the relevance of this difference on the radiation and matter power
spectra. We discussed the parameter space for the volatile case and compared the
transfer functions for thermal and volatile HDM, for values of both the hot compo-
nent abundance 5 and the derelativization redshift z4., which both models allow.
Power spectra differences between thermal and volatile models are then really sig-
nificant only as far as the sterile scalar eventually produced in non-radiative de*ca‘yes

is concerned.

A second important feature of volatile models is that, owing to the production
mechanism of the hot dark matter particle, the hot dark matter abundance
and the derelativization redshift zg., can be varied almost independently. As a
consequence, volatile models with radiative decay are already different from standard
CHDM models. Moreover, we poited out that such feature allows in principle to
realize models with a high Qj and a low zge,. Such a feature may help to alleviate
the problem of the high baryon abundance observed in galaxy clusters. Our second
aim was therefore to select the allowed region in the Q) — z4. plane, on the basis

of.large scale structure and CMB data.

Our procedure was the following: after evaluating the matter transfer function for
volatile models with radiative and non-radiative decay, with Q, = 1 and A = 0.5, we
obtained the expected values of several observable quantities, which can be estimated
using linear theory. In particular we worked out the expected cluster number density,

the abundance of Damped Lyman a clouds (DLAS), the mass variances at 25 and
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8 h~!Mpc. From them we also estimated the extra power parameter I

While analyzing volatile models with radiative decay, we found that the most
stringent constraint comes from the requirement for a model to satisfy the observed
abundance of high-redshift DLAS and of galaxy clusters at the same time. As
for DLAS, the rather large value of the HI gas fraction involved in the absorbing
systems, Q,, implies a substantial amount of power on galaxy scales, so as to favour
models with a volatile abundance Q,5 0.2. A larger volatile component would be
allowed only resorting to a high value of zger (2der =~ 2.25 x 10°Q). On the other
hand, models with small Qp and/or large z4., behave too much like the standard

CDM model, drastically overproducing clusters.

Therefore, the overall result would be that models with zz.,2 5.64 x 10*Q;, have
a hard time, quite independently of Q5. Among the models considered, the only
model which passes all the tests is the one with Q; = 0.2 and z4., ~ 4.5 x 103. This
model should be also considered as a reference for further investigations, involving
for example N-body simulations. Note, however, that our analysis has been based
on assuming a scale—free primordial spectrum, while variations around this model
are allowed by some classes of inflationary schemes. Taking P(k) k™, both n < 1
and n > 1 are viable variations. Allowing for n < 1 decreases the amount of power
on the cluster mass scale, so as to alleviate the problem of cluster overproduction
displayed by “colder” models. On the other hand, the case of “antitilting”, with
n =~ 1.2, has been condidered in order to alleviate some of the problems of the
CHDM scenario. However, the subsequent increase of power on small scales goes in

the undesired direction as far as the cluster abundance is concerned.

While considering the non—radiative decay, we performed a similar large scale

structure analysis, allowing also values of the spectral index n > 1.

Looking at large scale structure only, we found that the most stringent constraint
comes from the extra power parameter I'. Considering all constraints together, a
wide portion of the parameter space Qp—z4e, is allowed, also in conjunction with high
n values. This is mainly due to the fact that for a given large & value, the matter
fluctuation spectrum P(k) increases with n but is damped for low derelativization

redshifts zge-, so that these two effects tend to compensate.

However, when also CMB spectra are considered, a further restriction of the
parameter space occurs, expecially for high n and low zz.,.. In fact, () spectra
display the following trend: for a given large [ value, C; increases with both n
and d = 10*/z4.,. As a consequence, CBR spectra already disfavour n = 1.3 if
d> 4 (z4erS 2500) is considered. Volatile models with n > 1.2 are largely out
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of the errorbars, and should be considered as scarcely viable. Nevertheless, even
for n = 1.2, volatile models allow a higher first doppler peak without raising the
following ones. This feature goes in the direction of a good data fit in the range
200 <[ < 500. Just as large n, also large d causes conflict with data, by itself. For
example, models with d = 16 are disfavoured, even with low Qp and n = 1.1.

Therefore, the models that we would like to test with N-body simulations have
n slightly larger than one, a moderate Qp, (~ 0.2) and the highest d allowed by CMB
data (d =2 —4).

Note that our analysis was carried out keeping h = 0.5, allowing for no cosmo-
logical constant (for mixed models with cosmological constant see e.g. [206]), and
constraining the total density to be critical. For example, raising h would probably
allow and require a stronger deviation from pure CDM and n = 1. We plan to widen
our analysis of the parameter space in the near future, also in connection Wit'h the

e}{pected arrival of fresh observational data on the CBR spectrum.
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