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Introduction

The main aim of this thesis is to investigate theoretically geometric and probabilistic
aspects of higher dimensional (d > 3) simplicial quantum gravity. Due to the complexity of
the model, until now only a few theoretical developments have been obtained.

The main source of knowledge are numerical simulations. From numerical data we have
a rather detailed description of the phenomenology of the model in higher dimensions. It is
clear that two different phases are present. A crumpled phase characterized by an high value
of the Hausdorff dimension and a polymeric phase with the model collapsing to a branched
polymer structure. The nature of the transition between such two phases is not yet clear
even if numerical simulations are piling up evidence towards a first order nature. This is
a rather delicate and important point because on the nature of such a phase transition
depends the possibility of obtaining a continuum limit of the model.

Other investigations go in the direction of constructing simpler combinatorial models
that could simulate the statistical behavior of simplicial quantum gravity and eventually
providing some hints towards a deeper comprehension of the theory (see [11], [12], for
example).

Chapter 1 is a introductive and general chapter illustrating the groundings of path
integral quantization of gravity and its simplicial discretized version.

Chapter 2 is a short review of the principal results of reparametrization invariant random
manifolds theories of one and two dimensional extended objects. The role of discretizations
technics is underlined.

In chapter 3 we present some of the recent progress in higher dimensional simplicial
quantum gravity models. We show an entropy estimate of the number of inequivalent
triangulations [20], [5], that assure that partition function is finite for some values of the
parameters. At an early stage there was also an attempt [19], to analyze the nature of
the phase transition using these entropic arguments but the lack of knowledge of some
parameters prevented to reach the hoped goal. We deduce also the geometric consequences
of some theorems due to Walkup that will be important for the subsequent developments.
Finally, We introduce the notion of shelling of a simplicial complexes. This is one of the
main bridges between topology and combinatorics, shedding much light on the combinatorial
geometry underlying simplicial quantum gravity.

In chapter 4 we discuss the notion of local construction of a simplicial sphere in connec-
tion with the notion of shelling, we present some results that will appear in a forthcoming
paper [35]. We discuss the asymptotic behavior of canonical measure showing that its con-
centration on tree-like configurations gives rise to the polymeric phase [36]. Finally, we
discuss the crumpled phase in terms of singular structures and provide some arguments

which togheter with the entropy estimates allow us to get a good agreement with numerical
data [4].



Chaptef 1

Path Integral Quantization of
Gravity

1.1 Path Integral Quantization

The aim of this section is very far from being that of give a selfcontained introduction to
path integral quantization. I will only sketch the main ideas that will be met again in the
sequel in a geometric contest. Elementary treatments can be founded in almost every book
on quantum field theory and we limit ourself to suggest the classical book of Feynmann and
Hibbs [32], [37] for an advanced and mathematically rigorous treatment and [46], an entire
book dedicated to the topics in different contests with examples and applications.

Equations of classical mechanics derive from a variational principle: they minimize (in
general make stationary) the action S = [ L(q(s),q(s), s)ds; the scenario of path integral
quantization corresponds to add fluctuations. To trajectories solutions of Euler-Lagrange
type equations, you substitute propagators < q | e *#t | ¢’ > that have the formal expression

<q|e g >=/D[Q( )]t fo £ad(s12)d56(4(0) — q)d(q(t) — o) (1.1)

The symbol Dg(s)] is only formal; it is usually also written as [ [y,«, ¢(s) and obtained as
limit of finite dimensional Lebesgue measures T

H nlg{.lo {H dg(— i } (1.2)

0<5<t

Clearly D[g(s)] represents a nonexisting translational invariant measure on a functions space
(A =p(f+A VS, f+A={d|d =7F+g; g€ A}) analogous of Lebesgue measure
in finite dimension. In spite of its non-existence, its use is fruitful and insighting. The
interpretation of formula (1.1) is clear: every trajectory is allowed and has a weight €.
These ideas assume a rigorous mathematical interpretation at imaginary time after a Wick
rotation ¢ — —it: the so called euclidean region. With this procedure the weights of
each path become positive e™% and the theory inserts in a natural way in the contest of
probability theory. It is important also to stress that actions are usually bounded from




below in such a way that fluctuations are exponentially damped down and a probability
measure can be defined. Formula (1.1) transforms now into

<qle M| g >= / dWe™ Jo VWds sy, — o (1.3)

where dW indicate the Wiener measure.
Generalizations to quantum field theory are easily obtained by associating gaussian
stochastic field with covariance C solution of
(= A+m?)C = §(z — ') (1.4)
(Klein-Gordon at imaginary time) to free fields and trying to define a stochastic fields with
a measure with the formal expression
d -V
ay = e
[ duge

in the case of interacting fields (du¢ is the gaussian measure associated to the free field and
V is a potential).

(1.5)

This way of proceed is the euclidean version of a formula analogous of (1.1)
<0]0>= / D[gle’/ £(@Oud)d (1.6)

where | 0 > is the vacuum state.

Euclidean theories present as statistical mechanics theories and so natural objects to
compute are correlations functions (Schwinger functions)

S(z1, .y ZTn) Z/du¢(m1)...¢($n) (1.7)

THe final step of this type of strategy is the possibility of determine conditions (Osterwalder
and Schrader axioms) that allows analytic continuation of Schwinger functions to Minkowski
region. The corresponding time ordered Wightman functions

W (21, .y ) =< 0| T(¢(z1)...0(z5)) | 0 > (1.8)

and Wightman axioms allows to reconstruct the field theory.

We have stated in a few words which is the general structure of euclidean theories by
illustrating the simplest examples. This is the program that path integral quantization of
gravity is trying to mimic in a geometric contest. The goal is still far to be reached; as we
will see later many problems are still open.

1.2 General Relativity

As the previous section, the aim of this section is only of sketch the main ideas that will be
important for the future developments. Also in this case the possible reference are really a
lot and we limit to suggest the classical texts [43], [53].



General relativity is a well developed and well accepted theory describing the structure
of space and time at large scale. The model for space-time consists in a 4-dimensional
lorentzian manifold, that means a couple (S, g) where S is a differentiable manifold and ¢ is
a nondegenerate lorentzian metric (a metric of signature 2; signature= number of positive
eigenvalues - number of negative eigenvalue).

The metric g define a classification of tangent vectors at each point p of S and as a con-
sequence a causal structure on S. A nonzero vector v € Tp(S) is timelike if g(v,v) < 0,
spacelike if g(v,v) > 0 and null if g(v,v) = 0. The hypothesis on g imply that the null
vectors form a double cone in T}, (S) which separates the timelike from the spacelike vectors:
the light cone. The global causal structure can be constructed by defining two points p and
g of S at timelike (spacelike, null) distance if they can be joined by a timelike (spacelike,
null) curve; a curve whose tangent vector is always timelike (spacelike, null). If it is pos-
sible to define continuously a division of non spacelike vectors into two classes, the future
and past directed vectors, the space-time will be called time orientable (if S is not time
orientable, a double cover will be). If this is the case a natural structure of partial order can
be introduced in S by defining p > ¢ if p lies in the chronological future I (g) of ¢. I7(q)
is the open subset of S made of all the points which can be reached from ¢ by a future
directed timelike curve.

General relativity fixes postulates that determine which are the physical space-times
among the mathematical models. The basic requests are: local causality, that means no
causal relationship can exists between events at spacelike distance; local conservation of
energy and momentum, that is expressed in terms of conditions on the energy-momentum
tensor T' of matter fields; the equations for the gravitational fields that relate the metric to
the distribution of matter: the Einsteins equations '

1
Rop — iRgab + Agap = 87Ty (1.9)

where A is the cosmological constant.

Einsteins equations derive from a variational principle: they are Euler-Lagrange equations
for the Einstein-Hilbert functional

SE"H:A/\@dw_I—é%@ R\/§dz+/L\/§d:v (1.10)

where L is the lagrangian for matter fields.

We end this brief summary stressing the role of diffeomorphisms. The models of space-
time (8, g) are in fact divided into equivalence classes. Two models (S, g) and (5',g") will
be equivalent if there exists a diffeomorphism @ : S — S’ ( a one to one map with ® and
! differentiable) such that ®*(g’') = g (®* is the pull-back). Two such a model will be
only two different representation of the same space-time.

1.3 Path Integral Quantization of Gravity
What is a quantum model for space-time is still now not well established and is one of the

main aim of modern theoretical physics. The construction must come out as the final step
of the many investigations that try to study the possibility of combine general relativity and
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quantum mechanichs in a unified theory. This would allow to quantize the gravitational
field, the only one that, at the present days, is not inserted in the quantum contest. The
approaches to quantum gravity are several and involve a lot of different ideas. Sketches of
the different approaches with the relative basic bibliografy can be found in [63], [49].

Path integral approach has the characteristics of give geometrical insight and an intuitive
description of the quantization phenomenon. Another merit is to open a wide range of
interesting mathematical problems.

The basic ingredient is always the same: you assign to every configuration a weight e, In
this case the action will be the Einstein-Hilbert action (1.10), and configurations will be
lorentzian manifolds. We represent [42] [41] a transition amplitude between d-dimensional
manifolds (X1, ¢91), (Z2,92) as

< (S0 | (B2,g2) >= / DM, g]eiS5-11(:9) (1.11)

where M is a (d+1)-dimensional manifold whose boundary dM = ¥; U X3 and g Is.= 91,
g 1222 g2.

This is only a formal and intuitive formula, and we stress also the fact that already at this
level we are speaking about manifolds generically d-dimensional not focusing the attention
to the physical case. The intuitive meaning of (1.11) is a sum over equivalence classes of
manifolds (under diffoomorphisms) with the fixed boundary conditions. As in the simpler
cases, briefly exposed in section (1.1), it is difficult to give a mathematical rigorous meaning
to expressions like (1.11), going beyond the intuitive interpretation, without consider the
continuation of the theory at imaginary time.

In this case, problems arise also in determine what is the euclidean version of the theory.
In the case of field theory, euclidean theory comes out after a complexification of Minkowski
space-time: M? = (RY,g), with (z,g9y) = Z?;é Tiy; — Tqyq that extends naturally to
(C?, g) with the same expression for the metric. Points at imaginary time have coordinates

(21, ...,zq) With z;, i = 1,...d — 1 real and z4 purely imaginary. Using the new variables

{ o =z; 1=1,...,d-1

the scalar product transforms into the euclidean one and the imaginary time region is
the real part (R?, can). If we are dealing with a generic lorentzian manifold the procedure
should be to complexify the manifold and select a section with an induced Riemannian
metric. We will not speak about the problems involved and our point of view will be simply
to consider that Wick rotation transforms lorentzian geometries into riemannian ones. The
mathematical objects that appear naturally are correlations functions G((v1, 1), - (Yn, gn))
between n d-dimensional riemannian structures (v;, g;) represented as

g((’Yl)glL st ('Yn;gn)) = / D[Mv g]e_SE—H(M,g) (112)
OM=VU;7;

where you must remember the further boundary condition g |,,= g;.

One case of interest of (1.12) is when M = . You obtain the euclidean version of the



vacuum to vacuum amplitude that is called partition function
Z= / D[M, gle~5z-#(M.9) (1.13)

The origin of the name comes from statistical mechanics, since euclidean theories have a
natural probabilistic interpretation.

It remains to stress two further problems of this quantization procedure. The first one
is connected with the fact that Einstein-Hilbert action is not bounded from below [42]. As
we already stressed, a probabilistic interpretation of the theory is namely possible if the
partition function (1.13) is finite. In the previous cases the action was always bounded
from below and the factor e~% damped down fluctuations exponentially. In the case of
fluctuating manifolds, with the Einstein-Hilbert action, you can have configurations with
weights growing exponentially compromising the possibility of define a probability measure
on the space of riemannian structures.

The second problem is the possibility of reconstructing the original theory from the euclidean
one. This is really a delicate and almost completely open problem.

1.4 Random Riemannian Manifolds

As we have argued in the previous section, euclidean version of path integral quantization
of gravity reduces to a theory of random riemannian manifolds. Let us describe in more
details such a theory [7], [3], [8]; [54].

First of all we insert more structure in the really generic formula (1.13) specifying more
accurately the meaning of the measure D[M, g]: '

223 Jygp D0 (14
Top ¥ Diff(M)

In this formula we have explicitely separdted the contributions to integration coming from
the sum over different topologies and from the inequivalent riemannian structures on M.

The sum over topologies has a concrete meaning only in dimensions one or two. If we
consider only compact manifolds (without boundary), in 1-dimension there exists only S*
and no sum must be considered. In dimension 2, restricting only to orientable manifolds,
the sum is a sum over the genus g. In dimensions greater than two a classification of
manifolds up to homeomorphisms is not available and the symbol ZTOP is only formal. It
only remembers that fluctuations of metric can involve also changes in topology.

The symbol D[g] represent a measure on the moduli space %&—L}‘%—%. This is the space

of orbits of metrics under the action of the diffeomorphisms group. Two metrics g; and g
belong to the same equivalence class (=orbit) if and only if there exists a diffeomorphism
® : M — M such that go = ®*(g1). The quotient reflects the invariance under diffeomor-
phisms of general relativity and reduces the dimension of the integration space transforming
sometimes the functional integral into a finite dimensional integral.

To have a well defined measure on the moduli space in (1.14) we must also require some in-
variance properties of the Einstein-Hilbert action. In particular we must have Sg_g(M,g1) =




Sg_g(M,g0) if g1 an_d go belong to the same orbit. This is true and allows to consider Sg—g
as a functional on gﬁ?g%? instead of on Riem(M).

Following the customs of statistical mechanics we can define a partition function at fixed
volume or canonical partition function

ASEDY / D[gle(ters [ BVata)5( / Vadiz — V) (1.15)

The relationship with (1.14) that is usually called grand canonical partition function is
through Laplace transform

(o0}
Z(A) = / AV Z(V)dV (1.16)
0
and the inverse relation }
1 c+100 AV

Z(V) = ————/ e Z(A)dA (1.17)

271 c—100

The definitions of correlations functions (1.12) must be refined:
G((1:92)s s () = 3 [ DllemSeon (M504 (1.18)
=Uiv%

where B(M, g) generically represents some boundary terms. They depend on the induced
metric g; and the extrinsic curvature induced on ;. Boundary terms are introduced to
obtain that G satisfies the fundamental composition law

g((’)’1,g1),(’)’3,gg)) = Z g((’Ylagl)a(72392))g((727g2)1(73793)) (119)

(72,92)

where (72, go) in general will represent a multicomponent boundary. Relation (1.19) simply
means that we can compute transition amplitude from 7y, to -y3 by summing over all inter-
mediate states. This relation is true if and only if the action S = Sg_pg + B satisfies the
condition

S(g1 + g2) = S(g1) + S(g2) (1.20)
and this is possible only with the presence of a boundary term B.

A particular case of (1.18) will have in the sequel a major role. It is the case when
the boundaries are shrunk to points. The manifolds obtained are manifolds with marked
points. The name correlation functions will be reserved to partition functions with two
marked points at fixed distance r

() = 3, [ DigleSe-ntito ( I/ J&‘(?)\/g_@dd«sdds'adg(as')—r)) (1.21)

where dy(£,£') is the geodesic distance between ¢ and £’ with respect to g.

That this is a diffeomorphism invariant notion can be easily verified. Consider £ and feM

such that dg(£,£') = r and consider a diffeomorphism @ of M. Then derg(@71(E),271(¢) =
T.

You can also define correlations functions at fixed volume

6(r) =3, [ Dlgletwo S 7vA ( [ [ Vee Vi - r>) 5(V, ~ V)

(1.22)
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and you have relations analogous of (1.16), (1.17)

G(r, A) = / " AV G V)V (1.23)
0
1 c+ico
G(r,V) = ——-—/ eV G(r, A)dA (1.24)
211 Je—ioo

1.5 Simplicial Quantum Gravity

Concrete developments of the continuum theory, shortly summarized in the previous sec-
tion, are available only in dimensions one and two. In higher dimensions all the efforts to
describe moduli spaces and to define a measure on them has been not satisfactory. When
the continuous technics are unuseful or hard to handle with, a useful tool to break down
the stagnation is to discretize the theory [74]. You can benefit by approximate solutions,
computer simulations or computations of continuum limits. In our case, what we are in-
terested in is a discretization of moduli spaces. As usual discretizations are not uniquely
determined but in this case the complexity of the object to be discretized allows different
interesting ways and open problems about how good are the different approximations.

The recipe of simplicial quantum gravity [5], [7], [26], tells to select only discrete rie-
mannian manifolds obtained by gluing equilateral flat d dimensional simplices. The reader
not familiar with the basic notions of simplicial geometry can jump to chapter 3 before to
proceed, where a short introduction is given,

The combinatorially inequivalent simplicial manifolds forms a grid on the moduli spaces
that becomes finer and finer letting the length a of the sides of the simplices go to zero.
The intuitive picture is that the distribution of points could define in the limit a measure
determined by the density. If the distribution is uniform or not and which are the regions
that are covered it is interesting but not easy to determine. In any case interesting results
are expected from this discretization.

Einstein-Hilbert action has a simple combinatorial expression (see chapter 3 for further
discussions)

Sp—m = ka(a)Ng — ki—2(a) Na—2 (1.25)

following an universally used notation. N; Is the number of ¢ dimensional simplices and
k;(a) are some coupling constants related to the gravitational constant G and the cosmo-
logical constant A and containing an explicit dependence on a. For the moment we are not
interested in the continuum limit (e — 0) and for simplicity consider a constant and equal
to 1. In the two dimensional case, formula (1.25) is written as (x is the Euler characteristics)

Sg_g =ANy; —kx (1.26)

as a consequence of Gauss-Bonnet formula or from (1.25) via Euler relation and renaming
constants. We will always restrict to dimensions d < 4 and formula (1.25) is the most
general expression for a linear function on the f vector of the triangulation since Ng and
Ng4_o determine alone completely the f vector.

11



The discrete version of the grand canonical partition function (1.14) is

Z(kgo, kq) =Yy ebe-2Na-a—hala (1.27)
T

where the sum is over all the inequivalent closed simplicial manifolds (with equilateral
simplices). A more explicit expression is

2 ka2, ka) = Y (D (D ebmalemz)embely (1.28)

Top Ng Tg;:p

We have already explained the sum over topology and the symbol Tg;;p represents trian-
gulations with Ny simplices and a fixed topology T'op. We obtain a well defined statistical
system if (1.28) is finite. This fact allows to define a probability measure on the set of
triangulations

ehd—2Na—2(T)—ka Na(T)

Z(kd-27 kd)

Hioy_g,0eg (T) = (1.29)
If we allow fluctuations in the topology, a simple computation shows that the number
of inequivalent triangulations obtainable with N; simplices grows more than factorially
Tn, > Ng!. The exponential factor e~kaNa ig not able to compensate the factorial term and
the partition function diverges Z > 3 Nyle~%aNa We deduce that simply discretize the
theory is not enough to allow a treatment of fluctuations in topology. We can only proceed
by fixing topology and often it will be the spherical one.

Bk = 3 cheeaha
Tes
— Z( Z ekd~2Nd—-2)e_ded
Ny TNdESd .
= 3 Z5(kga, Ng)eFala (1.30)
Ny

wherde in analogy with the continuum case we call the partition funci(;iion at fixed vol-
ume Z°(kq—2, Ny) the canonical partition function. | Tf,j = Ny_s W3 (Nyg_q, Ng) And
WS (N4—2,Ng) (the number of spherical triangulations with Ny simplices and Ny_2 bones)
is usually called the microcanonical partition function.

Also in the case od fixed topology it is not evident that the partition function is conver-
gent. Convergence is assured from an exponential bound on the number of triangulations
| TAS,Z |< eMa (in the sequel we will avoid to specify the topology S¢). If this is the case
we will obtain a critical line k5(k4—2) such that if kg > kS then the partition function is
convergent and divergent otherwise. The exponential upper bound has been proved long

ago by Tutte [73] in the two dimensional case and only recently in the higher dimensional
cases [5].

Following the lines of continuum theory we pass to define correlations functions. A
natural definition of distance between simplices of a triangulation is obtained by consider

12



the dual graph: you associate a vertex to each simplex and join two vertices by a line if
and only if the two corresponding simplices share a (d — 1)-dimensional face. The distance
between two simplices is the distance between the corresponding vertices in the dual graph:
the length of the shortest path. The definition of correlation functions that comes out is

Glkgo, kayr) =y (Y ebe-2la-2)e=halla (1.31)

Ng T]%,d (r)

where T]%,d (r) are all the spherical (not explicitely written) triangulations with Ny simplices
and two marked simplices at distance 7;

G(kd_z,Nd,’f') = Z ekd—sz_z (132)
% ()

i1s the canonical correlation function.

1.6 Critical Behavior

Partition function of simplicial quantum gravity (1.30) has the classical form of partition
functions of systems of particles

ZB,p) = Y Z(P)e N
N .
_ Z(Ze—ﬁHN(GN))e~#N (1.33)

N on

on are the configurations of N particles, Hy is the energy, § is T{lT and p is the chemical
potential. From this it is clear that kg plays the role of the chemical potential and k4_o of
the inverse of the temperature.

Thermodynamic behavior of simplicial quantum gravity is described by the thermody-
namic potentials:

F(kq—2,ka) = log Z(k4-2, ka) (1.34)

and
F(k4-2, Ng) = log Z(k—2, Na) (1.35)
which is more handful studying the thermodynamic limit (N — co) in the intensive form
iz, Na) = T2 L Loy 70,4 (1.30)

The model is not exactly soluble in dimension higher than two and no explicit expressions
exist for the quantities introduced in this and in the previous section. Nevertheless we can
hypotise some universal scaling behaviors typical of any statistical system near a critical
point [51], [3], [7], [8].

As we saw there exists a critical line k§(k4—2) that determine the region kg > k§(ky—2) where
the quantities are well defined. We discover easily that the region near the critical line is

13




the most interesting one. Namely, far from the critical line the probability distribution
concentrates around the average value of the volume

<V >~ adZNde“CN“ < 00 (1.37)
Ny

If we are interested in the continuum limit (¢ — 0) we obtain an uninteresting object
collapsing to a point.

Canonical partition function is expected to behave like [3], [8]
Z ka2, Ng) ~ tala=2Ie £ (1) (1.38)
and f(Ng) could have a power like asymptotics
f(Ng) ~ NJ7° (1.39)

or a subexponential asymptotics
F(Ng) ~ eNa (1.40)

with 0 < @ < 1. The exponent -y is known as the entropy exponent.

Interesting informations can be obtained about correlations functions. Let us consider
two triangulated spheres with two marked simplices at distance r; on the first sphere and
ro on the second one. Let us remove one marked simplices on each sphere and glue them
through the boundaries. We obtain a triangulated sphere with two marked simplices at
distance r1 + o (if the distance is opportunely defined, 71 +r9 — 1 otherwise). The fact that
not all triangulated spheres with two marked simplices at distance r; 4+ rp are of this form
can be translated into inequality [3], [8]

g(kd—27 kd) 1+ T?) > ConStg(kd—27 kda Tl)g(kd—Z’ kd) 7‘2) (141)
In term of —log G(ky_2, kg, 7) this property is equivalent to a subbaditive property
—log G(kg—2, k4,1 +72) + C < —log G(kg—2,kq, 1) + C —log G(kg—2,k4,m2) + C (1.42)

A classical result often used to establish exponential decay of correlations functions says
that there exists the limit (3], [8]

B 1Og g(kd—Z, kda T)

Jim - = m(ka—2, kq) (1.43)
and that Sm(k P
m(kg—2,kq) >0 Omlka—z.ka) kg > kS(kg—s) (1.44)

0kq

m(kq_9,kq) stays for the mass, in analogy with field theoretical terminology. Likewise you
can use the correlation length &(kgz_q, kq) = m in analogy with statistical mechanics
terminology.

The asymptotic behavior expected for correlation functions is [3], [8]

._l_e_m(kd—27kd)r r>> %

g(kd—Qakd7T) ~ { [ 1

14



The second condition of (1.44) says that mass is decreasing going down towards the
critical line. We are interested in investigating the critical behavior of the system near
points of the parameters space where the mass goes to zero or likewise the correlation length
diverges. This is why at these points it is possible to construct a nontrivial continuum limit.

Let us namely call G*(r) the wished continuum limit. G*(r) must be obtained [30] from

G*(r) = lim 0(a)g (ka3 (a), kala), ) (1.45)
a—0 a

f(a) is a normalization factor, usually a power of a, and the parameters k are allowed to
vary or better they must vary to obtain the continuum limit. The appearance of the ratio
Z can be easily understood in terms of macroscopic and microscopic scales. The variable r,
argument of G*, is a macroscopic variable indicating the distance at which we are seeking for
correlations. The unit of length of the microscopic scale is instead of the order of the side of
the simplices. The lengths in the microscopic scale are measured by the number of simplices
of the geodesic. The ratio between macroscopic and microscopic length is established by a:

L~la (1.46)
Formula (1.45) can then be more clearly written as

G*(R) = lim 8(a)§ (ka-2(a), ka(a),7) (1.47)

a—0

where r is the microscopic length corresponding to the macroscopic fixed R. From relation
(1.46) it follows (1.45) (with R instead of r). Using the form of the asymptotic behavior of
G we obtain

G(r) = lim 0(a) %e%(% (1.48)

mga) = m* < oo, otherwise the
exponential decay will annihilate the limit. This is a simple argument showing that we must
move on the parameters space toward a point where the mass scales to zero.

The mass is expected to scale to zero like [3], [8]
m(kg-2,ka) ~ (ka — kg(ka—2))” (1.49)

for kg — k5(k4—2); v is called the mass exponent.

Scaling to zero of the mass is connected with divergence of suscettivity x. Suscettivity
[3], [8] is defined as

kd 27kd) Zg kd Q,kda (150)
It is clear that 2
— Z(kq-2, ka) N32eka-2Na-2)g=kalN ‘ 1.51
x~ gz kez =0 (1.51)
Ny TNd

The x comes indeed out from a sum over all triangulations with two marked simplices and
the NZ term take into account the marking. Suscettivity it is expected to behave like

x(ka-2,ka) ~ (1.52)

(kg — k§(ka—2))Y
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where ~ is still the entropy exponent (also called the suscettivity exponent). A simple
euristic argument can show this. From asymptotic behavior (1.39) we have Z(k4-2,kq) ~
Sy N3¢ with p = (kg — k§(kd—2)) and x ~ Xy N7=le=#N_ Let us show that
x(\u) ~ x7x(u) that imply x(u) ~ 2.

XOw) ~ Y NN
N

e
N

1 , ,

—_ y—1_—~uN

= 5o > NTle (1.53)
N/

and the argument concludes from 3"y, ~ + >y as is easier to note if ) is an integer.

The critical exponents so far introduced are not independent. They satisfy Fisher scaling
relation, a relation that is true in more general contests [51]

y=v(2-n) (1.54)

The general deduction goes as follows [3]:

1
X(M)N/|r|< . ;;[;mddiv (1.55)

m(u)

because the contribution from the region | r |> m——%#—) is negligible due to the exponential

decay.

1
X(/J') ~ n_ldT
Iri<stay T
~m(p)? o~ ) (1.56)

from which Fisher relation follows.

We remember also that the mass exponent v has a geometric interpretation: v = L

d
where dg is the Hausdorff dimension [3], [7]. i
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Chapter 2

Lower Dimensional Cases

2.1 One Dimensional Case

One dimensional random objects, so as entire probability theory, have played a primary role
for physics of XX century. The first and most famous example is brownian motion whose
mathematical theory was builded up by Einstein and Wiener. Starting from then, the
number of applications of brownian motion in physics is really huge. Also the mathematical
theory has quickly developed becoming an independent branch of probability theory: the
theory of stochastic processes. We focus our attention to usefulness of discretization technics
and the reparametrization invariant theory. We illustrate the ideas using also the help of
the simplest example: brownian motion. v

Brownian motion [66] is completely determined by transitions probabilities
1 @=u)?

pat(z,y) = ———5 exp” 24 (2.1)
(2rAL)

It can be thought as describing the motion of a particle and (2.1) intuitively represents the
probability that a particle in z will be in y after a time At.

The Wiener measure induced by (2.1) has a formal representation

dw, = c / TT als) exps foldteirtas

0<s<t
n—1
= lim da:l...dxn]__%p%(:ci,miﬂ) (2.2)
=

What is the reparametrization invariant form of theories like this?

Let us describe in detail the elementary structure of diffeomorphism group of the unit
interval I and its action on riemannian metrics Riem(I) = {g : [0,1] — R™} (we can
consider for example C* functions). It is easy to convince that Dif f*(I), the group of
diffeomorphisms conserving orientation, is

DiffH(I)=1{®:[0,1] = [0,1] | ®(0) =0, ®(1) =1, & > 0} (2.3)
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The action of Dif f(I) on Riem(I) is: g*(t) = [®*g](¢) = g(®(¢))®'(¢). It is more natural
to deal with /g whose natural interpretation is ,/gdt = length of the infinitesimal interval
dt. The action of Diff¥ is

V() = vg(2() ' (t) (2.4)

The length is an invariant under diffeomorphisms
1 1
o1 = [ Vo= [ Vamme
1
- [ Va@ie =1(.1) (25)

Given g and g* such that L(g,I) = L(g*,I) there exists a unique ® such that g* = ®*g

Vg(®)d® = +/g*(t)dt (2.6)
that integrated give G(®) = G*(¢) ( G and G* are the primitive functions) and imply
d=G71G* (1) (2.7)

We conclude that the action of Dif f*(I) on Riem(I) is free and the orbits are metrics
with fixed length. The situation is more complicated already in S 1 where fixed points does
exists.

A measure on the moduli space of the unit segment will be a one dimensional measure
dl on the space R of lengths. If you weight each configuration with an action, it must be a
reparametrization invariant function, namely a function of length (see [52] for a treatment
of fluctuating metrics in one dimensional manifolds).

We can add beyond fluctuations on the intrinsic geometry of the manifold also a fluctu-
ating embedding into R? (or different ambient spaces). After introduction of the embedding
¢ you can naturally speak about correlations functions or propagators between points of the
ambient space, analogous of (2.1) the transitions probabilities in the non reparametrization
invariant case.

Glz,y) = / Dg|[DeydleS (2.8)

where [Dy 4 ¢] is a functional measure on the embedding ¢ such that ¢(0) = z and ¢(1) =y
and the quotients are not explicitly written. S(g, ¢) must have the invariance property

S(g,¢) = 5(27g,2%¢) (2.9)

It is possible also to interpret in a natural way the d real functions ¢ as d real bosonic fields
on I.

We can now proceed in two different ways [7]. We can consider the intrinsic degrees of
freedom and the degrees of freedom of the embedding as dependent. A natural choice is to
impose that the metric induced on I by the embedding corresponds to the intrinsic one g.
We can use a simple notation for integrations of this type

Glz,y) = / Dy, (T))e~5@ (2.10)
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where T' means trajectory. The integration on [D; 4 (T')] is an integration on all trajectories
that start in = and ends in y. For trajectories we mean one dimensional subsets of R% (we
do not specify better, we can imagine them as continuous curves) and two trajectories are
different if they are different as subsets of R?.

This shows as reparametrization invariant theories have a natural geometric interpretation:
the actions are functions of the geometry and the integrations are over geometric objects.
On the contrary, non reparametrization invariant theories have a natural dynamic interpre-
tation. They contains a parameter, that is naturally and usually identified with time, and
can be used for example to describe motion of particles. Particles that run along the same
trajectory but with different velocities (different parametrizations) have a different motion
and are different points on the space of integration.

We can also proceed considering the internal degrees of freedom and the degrees of free-
dom of the embedding as independent. In this case we can write (2.8) using reparametriza-
tion invariant differentials as

Gmw=/mﬁaawwfmw (2.11)

Where dl is a measure on the space of lengths that could be not only just Lebesgue measure.

Let us now turn to illustrate how it is possible to recover a continuous theory as the
continuum limit of a discretized version. We start from the simplest example: brownian
motion. Let us consider a one dimensional random walk z(n) = ;- & with §; independent
identically distributed random variables with P(§; = 1) = 1 and P(§ = —1) = % Then

P =1 = (ol ) 32

If we scale macroscopic and microscopic scales in a diffusive way

X = Jex
T= en
and use Stirling formula for factorials then we obtain
. T X
Pr(X) = lmP(z(=)= ﬁ)
1 x2
= ——exD 27 2.12

5= ©XP (2.12)

This result is nothing else than central limit theorem interpreted as convergence to brownian
motion of the simple random walk. Result (2.12) is only the simplest form of more general
results of this type [66], [7]. It shows only convergence of the transition probabilities but
results with stronger convergence are available and also different constructions will give the
same result [66]. For example you can generalize (2.12) with generic random variables &;
iid. with E(&) =0 and E(&2) = 1.

We want to stress that this way of doing continuum limits is renormalization group
in action. Limits theorems of probability (and central limit theorem is only the most
elementary one) are the mathematical basis on which the ideas of renormalization group
are based [44] and we encounter indeed the same phenomenology like universal classes.
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Let us turn now to reparametrization invariant theories [7], [3]. We start discretizing
(2.10). We consider as action the Nambu-Goto action S(T') = fI(T') that we will meet
later in more general contests. We can discretize the ambient space’ R? by considering
Z% and paths considering only those formed by links between nearest neighbouring lattice
sites. With the aim to compute the continuum limit it is better to consider the family of
lattices aZ¢. With small letters we indicate microscopic coordinates that refer to points on
the lattice, are integers numbers and indicate the distance from the origin using as unit of
length a, the length of links. With capital letters we indicate macroscopic coordinates that
refer to points on R?. The relation between macroscopic and microscopic coordinates of a
point of R% is X = az. Correlation functions of discretized model are

gp(z,y) = Ze—ﬂn | Tg’y | (2.13)

n

where with | T3, | we indicate the number of paths starting in z and ending in y composed
of n links. Clearly if we do not impose constraints | 7™ |= (2d)"™. This shows that (2.13) is
well defined at least for 8 > log2d. What can be showed is that the exponential behavior
is conserved also if you constrain the end points, namely
| log(| T
lim ﬁﬂfﬁ — log(2d) (2.14)

n—00

Fourier transform of (2.13)

~ 1 - ip-(z—
gglp) = WZZG 'Ban;?,ylep(z v)
y i

1 —fBn ip- (30, o
— er B Zep(zz-1 ) (2.15)
n {oi}

where each o; can be +e;, j = 1,...d (e; are the unit base vectors) and the sum is over all
the possible configurations.

Bor) = g e (Y coslo- )"

1
= I 2.16
= 7) (219
with f(p) = 3, cos(p-a). Of f(p) we are interested only in f(p) = 2d+p?c+o(p?) because f
is a even function in p. Relation between microscopic and macroscopic momentum variables
is easily P = 2. Computation of continuum limit goes as

G(P) = lim6gp(aP)

' 1
- (11_)1%9(0/) 1— (ko + k1a + k2a? +...)(2d + ca?P? +...)
o 1 (2.17)

1 — ko2d — k12da — (kocP? + 2dks)a? + o(a?)

where the parameter 8 varies during the limit and e=P@) = ko +kya+koa+.... A condition

to avoid that the limit will be identically zero is kg = 2—1(1' If k1 # 0 then 8(a) = a and the

20



limit is a constant which imply G(X,Y) to be a delta function (if 6(a) = 1 you can have
always a delta function). If k; = 0 then 6(a) = a® and
= 1
(P = e
(P) kocP? + 2dk;
Condition kg = Zl_d says that parameter 3(a) must converge to the critical value By = log2d

when a — 0. This is clear because as before if § < fy then < n >< oo and the probability
of long paths, that are those who contribute to G(X,Y’), goes to zero.

If k1 # 0 we obtain

(2.18)

G(X,Y) = B($(X),$(Y)) = §(X —Y) - (2.19)

namely white noise. The difference with the previous case is that now [ scales to the critical
value [y. Correlations at different points disappears because [ scales to fy too slow. Very
long paths become probable but they are not enough long to reach a point Y starting from
X. Only contributions coming from loops do not disappear. One could expect that loops
will contribute also in the case that 3 does not scale to §y but this is not so. In that case
only finite loops are probable and the number is too small to survive in the continuum limit.

If k1 = 0 then B scales to By faster and correlations at different points survive. We obtain
propagator of the free bosonic field

(~A+m?)G = §(X-Y)
(P2 +m?G = 1
- 1

It is not surprising that you can obtain different continuum limits scaling in a different way
the parameters.

A simple example comes from i.i.d. random variables & with E(&) = 0 and E(£2) = 1.
Sp=3" & and 2 7 satisfies central limit theorem and converge to a gaussian distribution
while %2 satisfies law of large numbers and converge to a delta distribution. Applied to
the case of random walk you obtain that if you scale time and space in the same way you
obtain a particle moving with constant speed (case of asymmetric random walk) instead of
Brownian motion.

We can proceed directly discretizing (2.20) on Z¢. In general on a graph G you can
define the laplacian A as [13], [16], [25]

A=A-V (2.21)

where A is the adjacency matrix of the graph (Azy = 1 if the vertices = and y are joined
by a link and 0 otherwise) and V is a diagonal matrix with Vzz = deg(z) = >, Asy.
Laplacian acts on functions f : vert(G) — R. The massive propagator on a graph will be
(=A +m2I)~!. We can expand it with Neumann series

1
_ 2n-1  _
(=& +m’]) A+ V +mil
1
“(V+mwxmv+mnru4)
= (V+mi 12: (V +m?n)~1" (2.22)
n=0
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You must remember that V +m?I is a diagonal matrix and that (A™) zy has a very simple
interpretation namely it is the number of paths from z to y of length n. At the end you

obtain
(& +m’)5, ZZH(deg +m2> (2.23)

n=0z—y i=0

where the sum ) 7 _,y is the sum over paths from z to y of length n. In the case of z4
deg(z;) = 2d and

1 n
2n—-1 __ n
(“'A_l—m-[)m,y - ;<2d+m2> ]Tmy!
= Qlog(2d+m?) (:I}, y) (2'24)

we recover correlations functions (2.13).

Asymptotic behavior of massive propagators on a graph has an exponential decay when
| £ — y | co but the rate is not the mass m but a renormalized mass M (m) [33]

(—A+m2D); ) ~ e~ Mmla=yl (2.25)

For small values of m we have M(m) ~ m.

From (2.24) we have e b = -—""—“g and if k; = 0 and e ? — e7P0 ~ 42 we obtain that m

2d+m
scales to zero like m ~ a and the continuum limit corresponds to the scaling
M
lim M{m(a) =m" (2.26)
a—0 a

Let us now discretize (2.11). We consider as action Polyakov action. We will illustrate
the general form in the next section; in the one dimensional case reduces to

) |
=1 /0 ds | § | +pl (2.27)

We can easily perform a continuum calculation in this case considering dl as just Lebesgue
measure

GX)Y) = / dl / D(¢p)e et o dslél’

- /au/:D(qﬁ)e_“le“fcf‘i‘*["B‘2

/ dle ™ p (X,Y) (2.28)

We have used the formal expression of Wiener measure and p}’V (X,Y) is the transition prob-

ability of brownian motion. (2.28) Is the local time representation of massive propagator
[7], 130]

G(X,Y) = / dle e

_ /dle—(-A+u)z'

= (-A+up7 (2.29)
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In (2.29) we have used the well known fact that p" is the heat kernel.

Let us recover the same result moving from discretizations. Let us quantize the length [
by considering only multiples of a and discretize the embedding describing it with the n+1
values ¢(£) 4 =1,...,n where | = na. Discrete form of Polyakov action is

n D — bl — 9
Sp = mmézi(m (?52 1)
2 :

= pan+2 Y (86) - 9li - 1)) (2.30)

The rules for obtaining this expression are simple: the integral [ becomes a sum ., ds
becomes % and ¢ = —Afé; we write the integral as a riemann sum. The continuum limit of

correlation functions is
n-l 1 2
G(X,Y) = lim 3 ae™me [ T] dses Ziltmsic (2.31)
b0} =1

with ¢p = X and ¢, = Y. Proceeding euristically and not considering constants (infinite
constants) you can develop

n—l (¢i—di_1)?
G(X,Y) = lim D aemHan / qubiefzi“‘—f‘““a ' (2.32)
n =1

and the convergence to (2.29) is clear because all the sums have the structure of riemann
sums and the integrals are finite dimensional approximations of Wiener measure.

But we can proceed more in detail reasoning in terms of macroscopic and microscopic
variables and showing that also in this case there exists a critical value u. and the limit
must be done scaling u to p.. The previous way of doing was namely a little bit different
and correlations functions were not obtained as limit of microscopic correlations functions.
This fact comes out evident from the fact that lengths in the action are not measured in
microscopic units and contain the parameter o (differently of how we did always before).

We proceed computing canonical correlations functions fixing the length L. We subdi-
vide the interval [0, L] into n intervals of length a (this way of doing corresponds to the
constant metric, but you can obtain the same result starting from a metric g(¢) such that
fol V/9(€)d¢ = L and considering the intervals [¢;, &+1] such that [, é"‘“ \/g(€)d¢ = a. This
is namely a reparametrization invariant discretization) and describe the embedding with
the n 4+ 1 functions ¢;.

Polyakov action will be

Sp = /,Ln-i-lz—

= pn+ ) (p() — ¢(i — 1)) (2.33)




Microscopic correlations functions are

n-—1
gﬂ(l‘,y) = e_“n/Hd¢ie“Zi(¢i—¢i-1)2
i=1

n—1
e P /(H d(ﬁipgv(fﬁi—laﬁbi))P;V(%—l,¢n)

(2.34)
i=1 :
Chapman-Kolmogorov property of transition functions of Markov processes
pren:2) = [ dupa (@, 9)ps (01,2) (2.35)
allows to conclude immediately
13 1 (z— )2
Giloy) = emrT—gew
(mn)2
1 z—y)?
— e‘(ﬂ"/—‘c}” = e‘( ny) (236)
(mn)z
with g, = —%log .

We want now to compute the continuum limit @ — 0 at fixed macroscopic length L = na
L
GMX,Y) = lim0(a)gg, (=(X,a),y(Y;a))
d

= ﬁmg(a)e—(#(a)—uc)% az
a—0

_ (2(X,a)-y(Y.a))?a

—e L (2.37)
(rL)2

#(X,a) and y(Y; a) are the relations between microscopic and macroscopic embedding vari-

ables. From this expression it is clear that to compute the limit you must require y(a)
varying and scaling to p. in such a way that

lim (1(a) = pe)

*

Lim . =u (2.38)
and the macroscopic variables of the embedding X related to the microscopic one z in such
a way that z = a(a)X and lim,_, ¢?(a)a = % The computation is
é —_ 2C!2 a)a
GL(X,Y) = lim e (Ha)u)Z 2 g T
a—0 9% (71'L)§
_vy2
_ L 1 e (X—¥)
(2wL)2
as wished.

(2.39)

2.2 Two Dimensional Case

Random surfaces models are a natural generalization of the models of random paths. Their
mathematical structure and their phenomenology are rather more complex than the one
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dimensional case. Models of random surfaces arise mainly from condensed matter physics
and from quantum field theory. We will briefly illustrate generalizations of models of the
previous section as discrete approximations to string theories and two dimensional quantum
gravity [7], [30].

The motion of a string [1], [55], (a one dimensional loop) in Minkowski space-time M? is
described in terms of world sheets, that means in terms of an embedding of a two dimensional
manifold M into M¢%. From euclidean point of view we will consider embeddings into R4,

The classical motion is obtained minimizing an action S. The first action considered
was Nambu-Goto action

Sv_c =8 /M dt1déav/h (2.40)

where ho® = 9XX 0X"

T is the metric induced on M from the embedding X. The interpretation
of (2.40) is clear: it is the area of the world sheet.

A second model of evolution is based on Polyakov action

OXH oXH
Sp = /M dfldgz\/g(gab'gé;-%—g; + )\) (2.41)

where g is a metric on M independent from the embedding X.

It can be proved that classically the two actions are equivalent namely they give rise to the
same evolution. Sp is minimized when gg, = %%% the metric g and the metric induced
from embedding coincide. The new variable g can be thought as Lagrange multipliers that

simplify the dependence of the action on X.

Quantum versions of these theories are theories of fluctuating two dimensional mani-
folds. As in the general case (see section (1.4)) important objects of study will be partition
functions

7= / DgDXe 59X (2.42)

and correlations functions
Gty em) = | DgDXe=50:X) (2.43)
X(OM)=U;v;

In the case of Nambu-Goto action integration over Dg does not compare.

Fluctuations in topology are not allowed; a treatment of fluctuations of topology mathe-
matically satisfying is still not reached.

A natural discretization of quantization of Nambu-Goto action is the generalization of
the one dimensional case already fronted [7], [30]. You discretize the ambient space R4
into Z¢ and consider surfaces constituted by two dimensional plaquettes (elementary cells).
Partition function becomes a sum over surfaces constructed in this way and Nambu-Goto
action is the area, namely just the number of plaquettes. It is obvious that such a model
is ill defined if you do not restrict the class of surfaces. The most common ensembles of
surfaces are: self avoiding surfaces and connected orientable surfaces of genus zero (planar
surfaces). Partition function for the ensemble & is

AGED (2.44)

Seg
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You can repeat in this particular case all the arguments about critical behavior of simpli-
cial quantum gravity: you can define correlation functions and susceptibility and critical
exponents. Also the procedure of computation of continuum limit follows the steps already
exposed (you must consider the family of lattices aZ%).

We will not illustrate phenomenology of this type of random surfaces and we will only
illustrate results of mean field theory. Mean field theory is expected to be true when the
dimension d is high and predict that configurations dominating sum (2.44) are branched
polymers. Dominance is due to the fact that they are entropically prevailing. For branched
polymers we mean configurations that have a tree-like structure. They can be visualized as
a tree structure of filaments with a small surface area.

Let us turn now to quantization of Polyakov action [7], [30], [1], [55]. Symmetries of
Polyakov action are: Sp(X+¢,g) = Sp(X,g) Ve € R? the action is invariant for a translation
of embedding; Sp(®*X,®*g) = Sp(X,g) the action is invariant under diffeomorphisms;
Sp(X,eg) = Sp(X,g) the action is invariant for a conformal transformation of the metric
g. To verify the validity of these symmetries it is trivial. To obtain a well defined partition
function you must quotient out the symmetries to avoid infinity deriving from overcounting.
The integration must be performed over

(Emb(M) x Riem(M)/R% x Dif f(M) x Con f(M)) (2.45)

The dependence of Polyakov action from embedding is gaussian

o OXH DX
| desdeavita - agb)

=~ [ dadea/TX* (i )

7%
= - [ daideaaxen,xe
= - <MX“, DgXF > (2.46)
where <, > id the usual scalar product induced on functions from g and the argument is
nothing else than an integration by parts (you must proceed dividing M into domains M;

such that each M; is contained inside a chart and it is possible to work with coordinates;
boundary terms eliminate each other).

Integration over the embeddings degrees of freedom is a gaussian integration
d
det'(Dg)] 72
D —< X AgXE> g 2.47
/ (X)e vol(M) (247)

det' is the determinant disregarding zero eigenvalues. You can easily convince of (2.47), at
least formally, considering the basis of eigenvectors of A, and writing X as X = ), cie;
with Age; = Aje;. You obtain infinite gaussian integration 11, dei.

The elimination of the zero eigenvalues corresponds to take into account invariance for
translations and give rise also to normalization factor vol(M). Riem(M) is an infinite
dimensional manifold on which it is possible to put a riemannian metric

< 591,897 >,= fM(g“’Cgbdégébégid)\/szgldfg (2.48)

26



6g' and dg? are small perturbations of the metric g representing tangent vectors in g to
Riem(M); 8g', 692 € T,(Riem(M)). The symbol D(g) usually refers to the volume form
induced by scalar product (2.48).

To define a measure on the quotient space you can proceed by restricting the volume
form to slices transversal to the gauge orbits. Proceeding in this way you arrive to select
dimension d = 26 as the only dimension where this is possible univocally (taking into
account densities coming from action and integration over embedding) [59], [60].

Discretization of Polyakov strings is obtained by considering inequivalent triangulations
of the manifold M and functions from the vertices of the triangulation into R% [7], [30]."
Likewise you can consider functions from triangles to R%: it correspond to working with
the graph dual to triangulation.

Partition function of the discretized model is

Z(A) = Z e~ /deie—z(id>(zi_xj)2 (2.49)
T i=1

where (7, 7) are the links of the graph selected.

It is an easy computation to convince that this is the discrete form of Polyakov action.
You can see more easily this observing that

Z z; — mJ ZIZ i Tj (2.50)

(4,5)
with A the laplacian of the graph. Form (2.50) is the direct discretization of (2.46).

We can give an explicit expression of partition function (2.49). We can take into account
translations invariance fixing X;, = 0; then relabelling indices action becomes Z R ITAVH
where A’ is the matrix obtained deleting line and row 7y in A. A’ has no zero elgenvalues
and gaussian integration can be performed:

Z() =Y e {”]T'_l} ’ (2.51)
- det\! ’
T

After gaussian integration the dimension d appears only as a parameter and we can
speak without any problems also about real negative and complex values of d.

A classical result of graph theory [13], [16] says that detA’ = §{spanning trees of G}; G
is the graph whose laplacian is A (the dual of the triangulation from the exponent of 7 in
(2.51)).

Also for this model there exists a critical value A, and partition function is well defined for
A > A¢. You can also define correlations functions considering manifolds M with boundary
and mapping boundaries into fixed loops ; in R? and you can define and find the same
critical exponents exposed in the general case ( section (1.6)). It is important to note that
general arguments tell that critical value A, is independent from boundaries and also from
topology. This is true also in the previous model.

Fluctuations of topology can be inserted in the theory with a perturbative sum over the
genus h

(k)
G715 n) ZexG Gr(v1, M) (2.52)
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This expansion arise interpreting Polyakov action as interaction of gravity with matter and
corresponds to add to (2.41) the term

1 - X
el /MR\/'g"dﬁldfz =5 (2.53)

that is topological. There exists also more subtle treatments of fluctuations of topology like
double scaling limit [30], [7].

We come back to expression (2.51). The case d = 0 corresponds to pure gravity: the
integration over embeddings disappears and the model reduces to two dimensional simplicial
quantum gravity with Einstein-Hilbert action.

In the limit d = 400 the dominant triangulations will be those that minimize det/A\’. In the
limit the entropy factor becomes negligible and triangulations with the smallest number of
spanning trees dominate. This limit is the mean field limit and triangulations which have
a tree like structure are the minimizing one. We obtain branched polymers.

Also in the limit d — —oo the entropy factor become negligible and dominating triangula-
tions are those that maximize det/\’. These triangulations are expected to be more regular
triangulations.

It is possible to consider also more general embeddings; you can use as ambient space
Minkowski space-time M?® instead of R® or also generic riemannian or lorentzian mani-
folds. The drawback of these generalizations is that integration over embedding is no more
gaussian.

We can also couple to gravity models of statistical mechanics defined on lattices. We
can imagine as an example Ising model. Given a triangulation of M we associate to each
triangle a spin variable o; = +1 and consider the Ising hamiltonian on the graph dual to

triangulation
=-J Z oo +h Z o; (2.54)
(,7)
Coupling Ising model to gravity means to consider the model not on a fixed lattice but on
a dynamical random lattice determined by triangulations.

7 = Z e—HIT Z e~ BHYT (o1) (2.55)
T or
If f(T,or) is an observable its average value will be
Sp e M1, £(T, o7)e PHT o)
S eHTl S o e—BHT (1)

and is called annealed average. In models like this it is important also the notion of quenched
average that is defined as follows

< f>=

(2.56)

- f (T, o7)e PHI (o7)

T or) (2.57)

aT
with pr the probability of the trlangulatlon T
‘ﬂ|T| E ’ﬁHI (o7)

pr= (2.58)
S e MY, P o)
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You can read the effects of interaction from the point of view of the geometry of triangu-
lations: the action of every triangulation is modified from partition function of the Ising
model e’“mZ? and the probability of different triangulations is changed. You can also read
the effect of the interaction on the thermodynamics of the statistical model: the geometry -
of the underlying lattice influence deeply the statistical behavior of the model (you can just
think about Peierls arguments).

We end this section by only recalling the importance of random matrix models for
random surfaces [7], [30], [10]. They represent a natural tool for counting triangulations
and more in general polygonalizations. A euclidean matrix field theory is defined from the

measure
/ o~ Tr(30*+V(9)) H do(z) (2.59)

where ¢(z) is a N X N hermitian matrix and

d¢(a:)=Hd¢,~i [I dRe(gi;)dIm(¢s;) (2.60)

1<i<j<N

We can note that they are a natural tool to count triangulations considering a zero dimen-
sional field with a ¢? interaction

/d¢e—%TT(¢2)+%TT(¢3) (2.61)
Let us consider now its perturbative expansion
Xk: / d¢e“%TT(¢2)%(—§TT(¢3))k (2.62)
We have now gaussian integrals that can be performed with the help of Wick theorem
< byt >= O [ dpems Talbsl g6, = 6 C 26)

We can observe that we can associate to each term Tr(¢3) an oriented triangle and that
Wick rules (2.63) for correlations functions can be interpreted as a gluing of two oppositely
oriented links.
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Chapter 3

Simplicial Geometry

3.1 Simplicial complexes

A d-dimensional simplex s¢ [62], [67], is the convex hull of d+1 points zg, ..., 74 in B* (n > d)
that are in general position (the d vectors z; — zg 7 = 1, ..., d are linearly independent; this
property is easily proved to be independent from the order of the points)

d d
=3 Nz [0<N< Y =1} (3.1)
=0 i=1

For a point z € s% the values \;(z) are called the barycentric coordinates of z. Points on
the boundary 0s are those that have at least one of the barycentric coordinates equal to
zero. Points with some barycentric coordinates equal to zero can be imagined as forming
the convex hull of a subset of the points {z;}. The boundary 9s? is formed by k-dimensional
(k < d) faces: a k-dimensional face is a k-dimensional simplex determined by a subset of
{z;} formed by k + 1 points. The boundary 8s is the first example of a simplicial complex
[62], [67], [5]:

Definition 3.1.1 A (compact) simplicial complez is a finite collection K of simplezes such
that:

1) if s € K then all the faces of s belong also to K
2) if s1 and s € K and s1 N sy # 0, then sy N sy is a face of s1 and so.

We have already encountered examples of one and two dimensional simplices and sim-
plicial complexes: segments and triangles used to construct complexes discretizing one and
two dimensional manifolds. Definition (3.1.1) is too generic for our aims and we want to
select out only those complexes regular enough to be considered good approximations of
generic manifolds.

We define the dimension of a complex the maximal dimension of its simplices.

Definition (3.1.1) is usually referred as geometric realization of a simplicial complex. We
also have a notion of abstract simplicial complex stressing the combinatorial properties of
the object:

30



Definition 3.1.2 Given a finite set X = {z;}, an (abstract) simplicial complez is a subset
K of 2% (the set of all subsets of X) such that

H)IFXeK then2X CK

2) each {z;} € K

Each X € K represents a simplex that we can indicate with a standard notation [z, , ..., Zi,],
Ty € X. Requirement 1) is the equivalent of 1) of definition (3.1.1); point 2) of (3.1.1) is
automatlcally satisfied and requirement 2) of (3.1.2) says that the vertices of the complex
are all the {z;}.

A simplex is called maximal if it is not the face of another simplex or abstractly if the
corresponding set X is not contained in a X’ € K.

A complex is pure if all the maximal simplices have the same dimension that is the
dimension of the complex.

We continue with some elementary and standard definitions.
In the abstract language a cone of a complex K from a point vg € K is the complex
K' = vy - K whose simplices are [vg, Z1, ..., Tn] OT [Z1, ..., Tp] With [21, ..., z,] simplices of K.

More in general the join of two complexes K and K’ is a complex K = K - K' with
simplices [z}, ..., 2}, &1, ..., Try] With [z, ...,z] € K’ and [z1,...,7,] € K (0 has to be
considered as a simplex of both K and K'). A geometric realization in euclidean space is
given by the convex hulls § = conv(s U s') (if s and s’ are joinable).

The star of a simplex s, star(s), is the subcomplex made of all the simplexes of Wthh
s is a face.

The link of s, link(s), is the subcomplex made of all the faces s; of the simplexes in
star(s) such that sNsy =0.

The m-dimensional skeleton of K is the subcomplex K,, C K consisting of all simplexes
of K of dimension < m.

A pure d-dimensional complex K is strongly connected if every two maximal simplices
s and s’ can be linked together by a path of maximal complexes s = 31, 59, ., 8y = 8’ with
s;i N s;11 a (d — 1)-dimensional face of s; and s;41 Vi.

Definition 3.1.83 A pure strongly connected simplicial complez such that every (d — 1)-
dimensional simplez is contained in at most two d- dimensional simplices, is called a sim-
plicial pseudomanifold. (d — 1)-Dimensional faces contained in just one simplex form the
boundary

This is a first step in selecting regular structures from the huge definitions (3.1.1), (3.1.2).
The underlying polyhedron | K | of a complex K is the topological space

| K|={Js (3.2)

seK

The polyhedron | K | is said to be triangulated from the complex K. In general a triangula-
tion of a topological space T is a simplicial complex K and a homeomorphism @ :| K |— T
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When we speak of d-dimensional simplicial spheres or balls we mean complexes whose un-
derlying polyhedron is homeomorphic to the canonical n-dimensional sphere or ball.

The class of triangulations which we will be interested in are those that arise as trian- -
gulations of topological manifolds. The corresponding simplicial complex will be called a
simplicial manifold [72], [62]. A characteristic of topological manifolds is that every point
has a neighbour homeomorphic to B? a d-dimensional ball; this fact help us to convince of
the following

Theorem 3.1.1 A simplicial complez K is a simplicial manifold of dimension d if for all
n-simplices s® € K, link(s™) has the topology of S¢~™1.

The converse is also true in low dimensions (d < 5). This is the class of complexes with
which we work almost always.

Conditions of being a simplicial manifolds can be translated into constraints for the f
vector f = (Ng, ..., Ng) of the triangulation:

d
S (—1)NN(T) = x(T) (3.3)
=0
: i (1 +1)!
,-Z%J_l) (i — 2k + 2)!(2k — 1)!Ni(T) =0 (3.4)
ifdisevenandlgkg%.
d .
i (¢ + 1)! B
gzzk(_l) (i — 2k + 1)!(2k)! Ni(T) =0 (3.5)

Hdisoddand 1 <k < d—gl. These relations are called Dehn-Sommerville relations. (3.3) Is
just Euler-Poincare equation. (3.4) And (3.5) say that the Euler characteristic of the links
of every 2k — 1 simplex if d is odd and 2k if d is even, is zero; they must be odd dimensional
spheres.

A map f: Koy — Ky is a simplicial map if [f(vg), ..., f (vn)] is a simplex of K whenever
[vo, ..., vn] is a simplex of K. If f is bijective it will be called a simplicial isomorphism. Two
simplicial complexes will be called (combinatorially) equivalent if they are isomorphic in
this sense.

Two simplicial complexes will be called P-L equivalent if they have isomorphic refine-
ments [72], [62].

A refinement (or subdivision) of a simplicial complex K is a simplicial complex K’ such
that | K |=| K' | and every simplex of K’ is contained in a simplex of K (barycentric
subdivision for example is obtained by inserting as new vertices the barycentres of all the
simplices of K).

Obviously the polyhedrons | K | and | K’ | of two P-L equivalent complexes are homeo-
morphic (you can extend a simplicial isomorphism to a P-L map between underlying poly-
hedron mapping points to points with the same barycentric coordinates). The converse,
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namely if any two triangulations of a manifold admit isomorphic refinements, is the famous
hauptvermutung and it is in general not true (but it is true in dimensions d < 3) [72].

Simplicial manifolds are divided into equivalence classes by P-L equivalence: P-L man-
ifolds.

A useful construction that we will use often is the cellular subdivision of the polyhedron
| K | dual to a triangulation K [26]. We will be mainly interested in the combinatorial
structures and so we will illustrate a construction of the combinatorial structure of the
dual cellular complex that will stress the duality relations between faces of dimension n
of one complex and faces of dimension (d — n) of the dual one. The 0- skeleton of the
cellular complex is obtained by associating a vertex to each d-dimensional simplex. The
1-skeleton is obtained associating a link to every d — 1 dimensional face of the simplicial
complex connecting the vertices corresponding to the two simplex that share that face. The
2-skeleton is obtained associating a 2-dimensional cell to every bone ((d — 2)-dimensional
face), whose boundary is the only elementary path, in the 1-skeleton until now constructed,
going around the bone. You can proceed in this way until associate a d-dimensional cell
to every vertex whose boundary is the only (d — 1)-dimensional elementary sphere in the
(d — 1)-dimensional skeleton previously constructed. In this way the dual cellular complex
is completely constructed.

3.2 Regge Calculus

After this brief tour of topological properties we turn now to describe metric structures
on simplicial manifolds. This is necessary because our aim is to use simplicial manifolds
to discretize riemannian structures. Basically, the metric structure of a manifold obtained
by gluing together simplices can be determined from the lengths of the sides of simplices.
In this connection there are two elementary approaches in sampling inequivalent metric
structures on a given PL-manifold. The first one (usually called Regge calculus [40]; we
rather use the term in a more general way) consists in considering a fixed triangulation and
letting the lengths of the sides vary independently compatibly with triangles inequalities.
The second one (dynamical triangulations) considers only identical equilateral simplices and
catches the different metric structures by sampling all the inequivalent triangulations of the
manifold. We will concentrate on the dynamical triangulations method.

We consider the simplices as flat and this is why the metric structure of each of them
is determined only from the length of the sides. Two flat simplices with the same sides
are isometric: their metric structure is the metric structure that have as subsets of a R™.
If the linear isomorphism associated with gluing faces of neighbouring simplices is also an
isometry, then the complex K inherits a natural metric structure. This shows trivially that
the metric structure of K is determined only from the lengths of the sides and from incidence
sequence (just the combinatorial structure). The complex is now a metric space but the
metric structure can not be described by a C* (or regular) metric tensor g;;: singularities
appear.

One can easily figure out that singularities are indeed contained in the (d—2)-dimensional
skeleton. The gluing procedure is an isometry between faces of simplices that allows also to
identify tangent spaces, and the (d — 2)-dimensional skeleton is the place where more than
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one identification acts and singularities come out if some compatibility conditions are not
satisfied.

Consider for example a single bone B: there is a unique simplicial loop around it and a
corresponding chain of identifications act on B: a singularity comes out since in general (for
d > 3), there is no integer multiple of cos~!(1/d) fitting a 27 constraint. As a matter of fact;
by singularity we mean here a deviation from flat structure and appearance of curvature.
In order to formalize this remark, let us recall how we can define a Levi-Civita connection
on piecewise flat space [34]. Basically, one can trivially define parallel transport of vectors
along paths as long as avoid the (d — 2)-dimensional skeleton. When a path remains inside
a simplex, parallel transport is the usual one in the flat R™; when the path cross a (d — 1)-
dimensional face, one imbeds isometrically s and s’ (sharing the face) glued together in R™
and again adopts the usual notion of parallel transport in R".

You can choose a reference frame ’(orthogonal or not) in each simplex obtaining coordinates
for points and tensors. A connection is then described from transition matrices T'(s, s') with
s and s sharing a (d — 1)-dimensional face. Obviously T'(s,s’) = T(s',s)"!. Given a path
p(t) you can construct the simplicial path corresponding sq, ..., sp (3 times tg = 0,1, ..., s
such that ¢; <t < t;41 p(t) € s;) such that s; N sj+1 is a (d — 1)-dimensional face and the
parallel transport along p(t) is determined by

n—1

Tp(s0,5n) = [ ] (54 8i41) (3.6)
i=0

Let us study some of the properties of the Levi-Civita connection. For an equilateral
simplex the diedhral angle between two faces sharing a bone B is a = cos™! %. In order to
analyze parallel transport of a vector around the simplicial loop of a single bone it is useful
to choose suitably the reference frames. In each simplex you can choose d — 2 orthonormal
vectors spanning the subspace individuated from the bone (you can choose for each simplex
the same). In the orthogonal complement you can use unit vectors individuated from the
vertices of the link(B) (it is always an S! in any dimension). In each simplex you obtain
two unit vectors forming an angle a and each vector is common to two reference frames.
The parallel transport through a face is easily seen to conserve the coordinates along the
bone. On the orthogonal complement the coordinates of the vector transported beyond the
face are the coordinates of the same vector in a basis rotated of an angle « in the versus of
rotation of the path or equivalently are the coordinates of a vector rotated of an angle « in
the opposite direction. With these coordinates

T(s,s) = ( é R(ia )

where R, indicates a rotation of an angle . Now if you consider the parallel transport
along the loop, the coordinates of the vector will change according to

I 0
Tloop = ( 0 R" )
—

but now we are in the same reference frame of the starting vector; this means that the
vector has changed rotating around the bone of an angle no in the direction opposite to
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the rotation versus of the path. As we will see it is more natural to read R*, = R_,, as
Ror—no a rotation of an angle 2 — na in the versus of rotation of the path. This means
that if na # 27 the holonomy group contains not only the identity and this is a signal of
presence of curvature.

We can use a simple formula [9] that expresses the curvature operator R,(z,y) from
holonomy .
oY (1) -1

Rp(il?, y) = }}_1)%

(3.7)

where TpX ’Y(t) is the parallel transport around a loop based in p and constructed as a
parallelogram of flows lines of time ¢ of commuting vector fields [X,Y] = 0 extending
vectors z and y. When z and y belong to the orthogonal complement of the bone and
p is near enough to the bone, the loop goes around the bone and TpX ’Y(t) = Tjoop- This
means that limit (3.7) diverges when p € B (p converges to B) and it is zero elsewhere.
The most natural way to interpret this situation is to consider curvature as delta functions
concentrated on bones.

Deviation from flatness in each bone B can be measured with defects angle
§(B) =21 — na v (3.8)

(in general for non equilateral simplices §(B) = 2m — > . a;)

The principal aim of Regge calculus is to define on a simplicial manifold enough struc-
ture to construct approximations of euclidean gravity (quantum or not). The volume part
[ /gd%z of Einstein- Hilbert action has a natural counterpart in Ngvol(s?) (vol(s?) =

QZ-,————:/‘%T) where Ny is the number of simplices. To define the full action we need a definition

of scalar curvature R to compute [ R\/'g'dda:.
The proposal of Regge [61] was

R(z) =) _6(B)i(z — Bi) (3.9)
B;

with a notation which admittedly is a little bit ambiguous. The sum is over the bones
of triangulation; the first delta is the deficit angle and the second one is a delta function
concentrated on the bone. Volume integration give a contribution of 6(B;)vol(B;) from each
bone.

Models for the geometry around bones are € cones [61]. Let us consider R? with polar
coordinates (p,8). The euclidean plane is obtained by identifying points with coordinates ¢
differing by a multiple of 2. We obtain a manifold C, with the same intrinsic geometry of
a cone by replacing 27 with 27 — ¢. A model for the geometry around a bone with deficit
angle 6(B) = 2r — e is R*2 x C, with the metric ds? = Zf;f dz? + dp* + p?df®. It is an
euclidean space with the exception of the (d — 2)-dimensional subspace p = 0.

An highly non trivial and interesting problem is that of convergence [34], [23], [24]. A
simplicial manifold with a metric structure can be imagined as an approximation of a smooth
riemannian manifold M. You can ask what is the behavior for example of Einstein-Hilbert
action for a sequence of discrete manifolds converging to M.
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To discuss convergence of curvature it is better to consider a regularized version. The
analogous of volume integration is a sum over the quanta of volume, the maximal sim-
plices. You can consider also different subdivisions of volume: you can associate for exam-
ple to each bone the volume of the set of points that have that bone as the nearest bone
pw(B;) = E‘&%}T)” B;vol(s?). You can imagine curvature instead of concentrated on the bones
as smeared on such cells. On the cell associated to bone B there will be an average value of
curvature R(B;) = 6(B) ”Zég’),) . This is the right definition of an object that could converge
to a density of curvature R(z) of a smooth manifold. It has the right scaling laws. If you
change the scale multiplying by A the lengths of all the sides of simplices (that correspond
in the smooth case to multiply by the conformal factor A\? the metric tensor) you obtain

Ry (B) = A2R(B) (the defect angle does not change) as in the smooth case.

The integral of curvature can be read as

[ Rvadts = Y RBuB)
B;

= > 5(Bi)vol(B;) (3.10)
By

We note that, taken at face value, Gromov-Hausdorff convergence [38], [58], seems to
play not an important role in the study of convergence of (3.10) to a continuous counterpart.
The reason being that [ R\/gddcc is not a continuous function in Gromov-Hausdorff topol-
ogy. An elementary example of this lack of continuity is afforded by the case of surfaces
where [ R\/_g‘ddx is topological and one can construct sequences of riemannian manifolds
converging with respect to Gromov-Hausdorff distance to a manifold with different genus
(shrinking to zero an handle for example). For this reason, working with Gromov-Hausdorff
convergence requires a control on the geometry of the class of (PL) manifolds we are dealing
with, (typically we need bounds on curvatures, volume and diameter).

A rather complete and detailed result on the convergence properties of the Regge action
is illustrated in [23], [24]. Let us consider a riemannian manifold M and triangulate it
with simplices whose edges are geodesics in M. Then construct an abstract piecewise flat
simplicial complex Kjs with the same combinatorial structure and edge lengths. This is
possible if the mesh 7 (7 = inf;l;; I; are the lengths of the links) is small enough (if 7 is
small, the lengths /; satisfies also triangle inequalities for the flat case). Now you define
curvature on K, following the rules of Regge calculus. The continuum limit is obtained
by letting the mesh 1 go to zero. You must control the limit also imposing that the fatness
6 (8(s%) = (%i%% for a simplex s¢ and the infimum over the simplices for a complex K;
0(K) = inf; 0(s)) remains bounded far from zero § > 63 > 0. These conditions assure,
roughly speaking, that we are triangulating M in a uniform way.

We obtain a convergence in measure of Rgegge —+ Ras, namely
/ Ry/gd'z = lim > 6,(BF)vol(BF) (3.11)
U

n—c0
BreU

V subsets U. The proof involves showing that Rg.gg. plays a specific role for piecewise flat
spaces analogous to that played by scalar curvature in the smooth case. We stress also that
pointwise convergence is in general not true.
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We end this section deriving the combinatorial form of Einstein- Hilbert action of section
(1.5). We recall the continuum expression

Sg_g = ANdvoZ(sd)—

2(271' —np,a)vol(B;)

167G
1 _ avol(s
= ANgvol(s?) — -S-é-Nd_ZUOZ(sd B+ 16; 5 ZnB (3.13)

from the relation Y, np, = £d(d + 1) Ny we obtain at the end

_ 4 avol(s42) d(d +1) 3 d—2
Sg_g = (Avol(s )+ e 5 Ny 8Gvol(s YNg_o

= k4(a)Ng — kg—2(a)Na—2 (3.14)

3.3 Entropy Estimates

At the present level of knowledge the interest in higher dimensional simplicial quantum
gravity (d = 3,4) is concentrated in the exploration of phase space. In two dimensions
powerful combinatorial technics are available [73], [7], [10], and no analogous results exists in
the higher dimensional cases. The main objects of interest are the microcanonical partition
function W (Ng, Ng_o) and the study of geometrical characterization of triangulations with
Nd and Nd_2 fixed.

Computer simulations have extensively explored the statistical behavior of simplicial
quantum gravity and they suggest both for 3 and 4 dimensional cases the presence of two
different phases. A branched polymer phases (weak coupling phase) whose dominating
configurations have a tree-like structure and a crumpled phase (strong coupling phase) with
configurations characterized by large Hausdorff dimension. In both dimensions a central
point is the nature of phase transition.

First of all we stress that it is important to note that it will be useful to use different
parameters instead of (g4, Ng_2) to characterize the f vector of a triangulation. A useful
parameter will be the average incidence on bones [5]

EBi np; Ny
H{B:} 2d(d+ l)Nd 2

We will see that it remains always bounded byin < b < bprez and in the large volume limit
Ny — oo it becomes a continuous variable.

b= (3.15)

In fact curvature assignments npg; (so called because they determine curvature in each
bone) form number theoretic partitions of %d(d—i— 1)Ny4, namely Y, np, = 3d(d+1)Ng, and
this observation will be at the core of the following entropy estimates [5].
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What really matters, as far as the criticality properties are concerned, is the asymptotic
behavior of W[Ny_s, b] for large Ny. This makes the analysis of W[Ny_g, b] somewhat tech-
nically simpler, and according to [5] one can actually estimate its leading asymptotics with
the relevant sub-leading corrections. If we consider a d-dimensional (d > 2) PL-manifold M
of given fundamental group (M), then the distribution W[N4_q,b] of distinct dynamical
triangulations, with given Ny _o bones and average curvature b, factorizes according to

W{Ny_o,6 = P, < Card{T}eurs >, (3.16)

: : -~ : Na- :
where p§#7® , is the number of possible distinct curvature assignments {np}pZ;’ for trian-

gulations T' with Ny, bones and given average incidence b, viz.,
Ng- Ng- Ng_
{nB}pL # {”,B}def #{nB}ps # -, (3.17)

while < Card{T} ey > is the average (with respect to the distinct curvature assignments)
of the number of distinct triangulations sharing a common set of curvature assignments, (for
details, see section 5.2 of [5]). This factorization allows a rather straightforward asymptotic
analysis of W[N4_2,b], and in the limit of large Ny we get [5]

W [Ny, b] ~ % . glaabtad—2)Ny—s

\/(b —f+1)1-2d . [(b — A+ 12’b—ﬁ+1]Nd—2
(b — n)b—n :

Lem®N™ b D2 -2 (3.18)

The notation here is the following:

W, is a topology dependent parameter of no importance for our present purposes (see [5] for
its explicit expression), ag_o and a4 are two constants depending on the dimension d, (for
instance, for d = 4, ay = —arccos(1/d)|g=4, ®4—2 = 0); 7 is the minimum incidence order
over the bones (typically n = 3); D=dim[Hom(m1(M),G)] is the topological dimension
of the representation variety parameterizing the set of distinct dynamical triangulations
approximating locally homogeneous G-geometries, (G C SO(n)). Finally, m(b) > 0 and
7(b) > 0 are two parameters depending on b which, together with ng > 1, characterize the
sub-leading asymptotics of W [Ny, b]. In particular, note that

[~mNi/mHy b D2y, (D)
e d (d(d+1)Nd—2) Na—2™. (3.19)
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is the asymptotics associated with < Card{T}cur, >. The remaining part of (3.18) is the
leading exponential contribution coming from the large Nj behavior of the distribution
p%‘drj’z,b of the possible curvature assignments. This latter term provides the correct behav-
ior of the large volume limit of dynamically triangulated manifolds, an asymptotics that

matches nicely with the existing Monte Carlo simulations.

While the exponential asymptotics is basically under control, it must be stressed that
some of the most delicate aspects of the theory are actually contained in < Card{T }curs >.

The parameters m(b), 7(b), and ny are not yet explicitly provided by the analytical
results of [5]. By exploiting geometrical arguments, one can only prove[5] an existence
result to the effect that if d > 3, there is a critical value by, of the average incidence b such
that

m(b) =0, (3.20)
for b < by; whereas
m(b) > 0, (3.21)

for by > b. In other words, for b < by the sub-leading asymptotics in (3.18) is at most
polynomial, whereas for b > by this asymptotics becomes sub-exponential as Ny goes to
infinity, (note that in the 2-dimensional case (3.18) has always a sub-leading polynomial
asymptotics). /

This change in the sub-leading asymptotics qualitatively accounts for the jump from
the strong to the weak coupling phase observed in the real system during Monte Carlo
simulations. However, the lack of an explicit expression for m(b) hampers a deeper analysis
of the nature of this transition. In particular, one is interested in the way the parameter
m(b) approaches 0 as b — by, since adequate knowledge in this direction would provide the
order of the phase transition. It is clear that a first necessary step in order to discuss the
properties of m(b) is to provide a constructive geometrical characterization of the critical
average incidence by, and not just an existence result. As far as the other parameter 7(b) is
concerned, the situation is on more firm ground. 7(b) Characterizes the sub-leading polyno-
mial asymptotics in the weak coupling phase, and recently[36], an analysis of the geometry
of dynamical triangulations in this phase has provided convincing analytical evidence that
7(b) — (2d + 3)/2 + 3 = 1/2. As expected, this corresponds to a dominance, in the weak
coupling phase, of branched polymers structures.

3.4 The Geometry of Triangulated Spheres

Counting the number of constraints coming from Dehn-Sommerville relations, we obtain
that the f vector of a 2-sphere is completely determined from just one of the parameters
N;; in 3 and 4- dimensions the parameters become two.

Typically in two dimensions we use as a parameter Na, (i.e., a measure of the volume
of the sphere), and combinatorial asymptotic expressions of W (Ny) exists. You can also
in this case define an average incidence b = 3%02 =6 — ]{,—% that is fixed at fixed N2 and
limp, 00 b = 6. This is a consequence of Gauss-Bonnet theorem.
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In higher dimensions the most used parameters to describe f vector are Ng_p and Ny
but any other couple of N; could be good. We have already stressed that it is possible also
to use Ny (volume) and b that give informations about average (spatial average) value of
curvature. In higher dimensions there is not the topological constraint of Gauss-Bonnet
theorem and b can vary becoming effectively a good parameter for f vectors. This couple
of parameters is particularly useful in the study of large volume (Ng — oo) limit.

As we have seen we have also asymptotic expressions W (Ny_s, b) (or equivalently W (Ny, b))
of microcanonical partition function in 3 and 4-dimensions. But this is not enough because
we must impose also some geometrical constraints on b. Expression (3.18) can be computed
for every value of b but only some of them corresponds effectively to triangulated spheres.

Results that characterize the geometrical constraints on b are the following essentially
due to Walkup [76], [47] but see also [69], [70], [45], [50] :

Theorem 3.4.1 (3-d) There ezists a triangulation K of a 3-sphere S with Ny wvertices

and Ny edges if and only if Ng > 5 and

No(Nop — 1)
2

Moreover K is a triangulation of S° satisfying N1 = 4Ny — 10 if and only if K is a stacked
sphere.

ANy —10 < N; < (3.22)

Theorem 3.4.2 (4-d) If K is a triangulation of a 4-dimensional sphere S* then
‘ Ny > 5Ny —15 (3.23)
and Ny = 5Ny — 15 if and only if K is a stacked sphere.

A d-dimensional stacked sphere is a triangulation obtained from 9s%! applying only
(1,d+1) moves (see section (3.6)). Likewise you can define stacked spheres as the boundary
of a particular class of tree-like d+ 1-balls: balls whose dual graph is a tree. We will describe
more in detail in the future such a class of triangulations.

We can add also to the 4-dimensional case the constraints Ny > d+2 and N; < M—%‘-}—ﬂ.
The meaning is really trivial: d + 2 is the minimum number of vertices for a triangulation
of S¢ (is the number of vertices of the most elementary triangulation ds%*1); the second
inequality just says that the number of edges is less or equal to the number of all possible
couple of vertices.

Triangulations that satisfy equality condition Ny = ng‘)_—u

triangulations.

are called 2-neighborly

The situation of the 3-dimensional case is more developed; this is due to the fact that
theorem (3.4.1) is a necessary and sufficient condition. This assures, for example, the

existence of 2-neighborly spherical triangulations in 3-d while this is not true in general in
4-d. '

We can write inequalities that select the values of f vectors corresponding to spherical
triangulations in terms of N; and Ny_o. In 3-d they became

4
N < §N3 + }??- (3.24)

40



bmin

bmax

Figure 3.1: The values of b in 3-d
Ny > N3 +5 (3.25)
N? —3N; —2N;N3 + N3+ N2 >0 (3.26)

In 4-d we obtain 5

N; < —2—N4 +5 (3.27)
Ny >2Ns+38 (3.28)
9NZ — 18Ny — 12NNy + 24N, + 4N7 >0 (3.29)

We want to stress once time again that the meaning of inequalities in 3 and 4-dimensions
is different. In 3-d for every f vector satisfying conditions there exists at least a spherical
triangulation with that f vector (and the number is estimated when Ny is large by (3.18))
and there does not exists spherical triangulations with f vectors not satisfying that condi-
tions. In 4-d we only know that the f vector of a spherical triangulation must satisfy the
conditions exposed.

We analyze the effect of the constraints on the parameter b. We do it only in 3-d; an
“extension to 4-d is straightforward. You easily obtain

9 15
b> - — — 3.30
25— (330
30
<6 - — 3.31
b<6 N, (3.31)
108 6b
- 1264+ — 4 >0 3.32
36 , Y2 (3.32)
In the large volume limit remains only
9
5 <b<6 (3.33)

(condition (3.32) become (b — 6)2 > 0 always true).

You can easily convince of the following description of the allowed values of b. For each
rational number r, % < r < 6, there exists a 3-d spherical triangulation with b = r. There
9

exists also an infinite number of triangulations such that b < 5. Ve > 0 §{T' | b(T) <
% — €} < oo (they must have N; < %5—), this means that allowed values of b < 2 are a
sequence of points accumulating in %. An example of triangulations of this type are stacked

spheres, for which bs.s. < 2 and limpy, o0 bs.s. = 3.

You can guess that the situation is analogous in 4-d but you cannot provide equally
strong statements. In 4-d you obtain that the continuum allowed region of b is

4<b<5 (3.34)
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and you obtain also a sequence of points accumulating in 4 (stacked spheres for example).
In principle you can not say from theorem (3.23) that to every rational r, 4 < r < 5, there
corresponds at least a triangulation. But we can note that the-interval is not overestimated
because we can explicity construct triangulations T; with by, converging to 5 in the limit of
large Ny. We will do it in the sequel. '

3.5 Shelling

Shelling is a rather technical topics and is one of the main bridges between topology and
combinatorics. In spite of its technicality, the main ideas are simple and fascinating.

We start with the general definition [77], [78], that has the drawbacks of being recursive
and not insighting but has the advantage of being valid for general cellular complexes (not
only simplicial but for example also CW and polytopal)

Definition 3.5.1 A shelling of a pure complez K is a linear ordering (si,...,sn) of its
mazimal faces, which is arbitrary for dim(K) = 0, but for dim(K) > 0 has to satisfy the
following two conditions:

1) the boundary complexz sy has a shelling
2) for every i > 1 the boundary complex O0s; has a shelling (f1, ..., fn) such that

k

i1
Slﬂ(U 55) = U fm (3.35)
i=1

m=1

for some 1 < k < n, that is, the intersection of a mazimal cell with the union of the
previous mazimal cells is pure of dimension dim(K) —1, it is shellable, and the shelling can
be extended to a complete shelling of the boundary of the mazimal cell in question.

A complez is shellable if it has a shelling.

We say that sy was shelled first and s; saved until last. This general definition is redundant
in the case of simplicial complexes and reduces in that case to the following [14], [15] :

Definition.3.5.2 A shelling of a pure simplicial complez K is a linear ordering (s1,..., SN)
of its mazimal simplices such that
i-1
si((U s0) (3.36)
J=1

is a dim(K) — 1 pure simplicial sphere or ball.

A complez is shellable if it has a shelling.

The simplification is due to the fact that the boundary of a simplex is always shellable and
any order of the faces is a shelling.

We illustrate practically the shelling procedure for example in the 3-dimensional case,
viz., the first non trivial case conserving geometric intuition. The shellability of a complex
means that it can be constructed by adding subsequently simplices s; following the shelling
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order, starting from s; and ending with s,. The simplex s;1; can be glued to the complex
composed by the i previous simplices only through a common pure simplicial disk (1,2,3 or
4 faces). For example, you cannot glue it through a face and the opposite vertex or through
a face and one (or more) link not contained on the face or through two faces and the link
not contained in both or also only trough faces of dimension < 2.

In the case that the simplicial complex is a simplicial manifold then we obtain that

nl
Ky = si (3.37)
i=1 .

is a ball or a sphere if n’ = n and the intersection s, () Kp—1 is the sphere 0K,_; combina-
torially equivalent to dsy,. This means that if a simplicial manifold is shellable then it is a
ball or a sphere. Essentially a sphere is shellable if there exists a simplex removing which
you obtain a shellable ball.

You can read also shelling in the opposite order removing simplices starting with s, and
saving as last s;. It is immediately clear that only for s,, if K is a sphere, it is possible
that s, N UM 's; = S?; if this is not the case and 3 s; such that s; N Ug;llsi = 52 then
UZ;{' s; is S® with two balls removed. This is not possible because as we saw at each step of
construction of a shellable manifold you have always a ball.

When you remove a simplex s; the situation is the following: s; N B(ngls,-) is a pure
simplicial disk (1,2 or 3 faces of s;) and the complement on s; is also a pure simplicial disk
(the one appearing in the definition of shelling).

Simplices that can not be removed following the rules of shelling are those whose in-
tersection with 0K is not a pure dim(K) — 1 simplicial ball. In 3-dimensions for example
simplices that can not be removed are those that have a face and the opposite vertex on the
boundary or a face and one (or more) link not contained in the face or two faces and the
link not belonging to both faces. A simplex s (sNJK # @) that could be removed following
the rules of shelling is called a free simplex.

In the 2-dimensional case there is a simple theorem [14] that guarantees that every ball
(and then every sphere) is shellable. The proof is easy and insighting and we show it:

Theorem 3.5.1 Any triangulation of a 2-ball can be shelled so that any designed 2- simplez
can be chosed as s1.

Proof: The proof is by induction on the number of 2-simplexes. The theorem is trivial for
just one simplex. Suppose that the theorem is true for balls with a number of simplexes
< N and prove it for balls with N + 1 simplexes. We have a ball with N + 1 simplexes; if
this ball has a spanning link ( a link not in the boundary but with the two vertex on the
boundary), then it will divide the ball into 2 balls with a number of simplexes < N. For
this balls the theorem is true. So we can proceed shelling the ball that do not contain the
simplex chosed as s; and we can proceed in that shelling saving as last the unique simplex
that contain the spanning link. Then we can proceed shelling the second ball saving as last
the designed simplex. If the ball with N + 1 simplexes does not contain a spanning link
then we can proceed chosing as sy.41 any 2-simplex other than the designed s; with an edge
on the boundary (every s N 9K # 0 is free) and then apply the theorem for the ball with
N simplexes obtained. $

43



Figure 3.2: Knotted hole ball

The non extendibility of this theorem to higher dimensions is due to the existence,for
example, of (dim(K) — 1)-dimensional faces ¢ 0K with all the vertices on 0K and that
does not divide the ball into 2 different balls.

The situation in higher dimensions is actually that non shellable balls or spheres exist
[78], [14], [15]. If a ball is not shellable you can not find any order sy, ..., s, of the simplices
satisfying requirements of definition (3.5.2). This does not mean that you can not start
to shell the ball. You can try to find a shelling removing free simplices. If the ball is not
shellable, however you proceed you arrive at the end having a ball with no free simplices.
Such a ball is called a strongly not shellable ball. It is clear that every non shellable ball
contain at least a strongly not shellable ball (otherwise it will be shellable).

Let us now illustrate some examples of non shellable balls and spheres in 3-d. We will
avoid details that can be founded in the references cited.

Probably, the most famous example of a non shellable ball is the Rudin [64] non shellable
triangulation of a 3-dimensional tetrahedron. The construction is not trivial and it is also
not easy to visualize. The proof of non shellability is performed by observing that there are
no free simplices. Rudin ball is strongly not shellable.

An example that can be easily visualized is knotted hole ball (figure (3.2)).

Let us consider a cube in R?® and imagine it as composed of small cubes. We remove
cubes forming a knotted path from the bottom side to the top one; but we leave there the
last one. The object obtained is still homeomorphic to a ball. If you prefer to deal with
simplices instead of cubes you can triangulate the ball without adding new vertices. The
triangulated ball so constructed is a non shellable ball (in general it is not strongly not
shellable). The reason is why its 1-skeleton contains a knotted curve with all edges on the
boundary except for one edge that is internal and has the vertices on the boundary (an edge
of the top cubes not removed). You can easily convince that such a kind of curve can not
be eliminated with elementary shelling operations (removing free simplices) and the single
simplex s; does not have this curve. So a shelling of this ball does not exists.

Another example easy to explain (and that give insight on the structure of strongly not
shellable balls) is the house with two rooms ( figure (3.3)) [14]. The two rooms are the upper
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Figure 3.3: The house with two rooms

and the lower part of the cube; the entrance to the lower room is from the top through a
tunnel and the entrance to the upper room is from the bottom also through a tunnel. Some
panels are also builded to restore simply connectedness. Suppose now that the walls of the
house are made of cubical bricks. Also if difficult to see the boundary of this solid house is
52 and the house is a 3-ball. If you triangulate it opportunely without adding new vertices
you obtain a strongly not shellable ball (every simplex has a component in the boundary
in each of the two sides of the wall).

Also other examples of non shellable 3-d balls can be constructed as for example New-
man’s and Grunbaum'’s 3-ball or Danzer cube and also an only ten vertices ball; we refer
to [78] for details.

An example of a non shellable S3 can be constructed [48] by considering a knotted hole
ball Br and a ball formed as a cone vy - Bk. You glue them identifying the corresponding
simplices of the boundary and obtain an S3. What can be showed is that if the knot is
complicated enough then the sphere is not shellable.

3.6 Ergodic Moves

With the term move we mean an elementary and local deformation of the combinatorial
structure of a triangulation. The term ergodic is used with a slightly different meaning as
usual. It indicates that applying successively a set of moves we can reach in a finite number
of steps every point of the configurations space. Configurations space will be the set of
combinatorially inequivalent triangulations with fixed topology.

A discussion of ergodicity of elementary moves would be too much detailed for our aims.
Our point of view will be that all the configurations space we are interested in is spanned
by the moves considered (in 4-d this seems to be true only for smooth triangulations).

There are several examples of moves; the first example was described by Alexander [2]
(Alexander moves) and we recall also the stellar exchange [57]. We will not describe them
to avoid a too heavy treatment and we refer the reader to bibliography. We limit ourselves
to describe (k,!) moves that are the most used in the contest of simplicial quantum gravity.
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Figure 3.4: (1,3) and (3,1) moves in 2-d

Figure 3.5: (2,2) move in 2-d

(k,l) Moves [39] are elementary surgery operations: &k and [ are integers numbers such
that k +1 = d + 2. The moves consist in cutting out a subcomplex made up of k¥ simplices
substituting it with a complex of | simplices with the same boundary. In particular the &
complex is the star of a d — k + 1 simplex in 85%*! and the [ complex is the complement.
In this way, for example, all spherical triangulations can be constructed starting from the
basic 8s%! with a finite number of moves.

The figures illustrate in detail the moves in 2, 3 and 4-dimensions. In 4-dimensions, due
to the difficulty of drawing, we illustrate the effect of the moves only on the dual graph.

Ergodic moves and (k,l) moves in particular are extensively used in computer simula-
tions [7], [27]. The strategy is that of stochastic quantization: you introduce a fictitious
time (computer time) and a dynamic process whose equilibrium measure is the measure
Py ka_o(T) (1.29) on triangulations induced from Einstein-Hilbert action. The process is
an infinite states, discrete time Markov chain.

The possible states are inequivalent triangulations and the transitions between different
triangulations are obtained with (k,l) moves. Ergodicity of moves is crucial to usefulness
of such construction. The condition of stationarity of the measure pg, x, ,(T)

Bkaeas(T) =D kg gy (T)P(T',T) (3.38)
TI
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Figure 3.6: (1,4) and (4,1) moves in 3-d

B

Figure 3.7: (2,3) and (3,2) moves in 3-d

a a

Figure 3.8: (1,5) and (5,1) moves in 4-d (dual representation)
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Figure 3.9: (2,4) and (4,2) moves in 4-d (dual representation)

Figure 3.10: (3,3) move in 4-d (dual representation)
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(the transitions probabilities p(T”,T') are different from zero if and only if T is obtained
from T with just an elementary (k,!) move) is obtained by imposing the stronger condition
of detailed balance (reversibility)

fig s (TP, T) = piigy gy (T)p(T, T") (3.39)

this condition tell how must you choose the weights of the different moves to obtain the
equilibrium measure individuated by the paramenters (kq, kg—2).
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Chapter 4

Simplicial Quantum Gravity

4.1 Local Construction

A d-dimensional simplicial manifold has a local construction [29] [17] if there is a sequence
of simplicial manifold 77, ..., T, such that

1)T1 is a d-dimensional simplex

2) T;y1 is constructed from 7; either gluing a new simplex to T; along one of the faces in
the boundary 8T; of T; or by identifying a pair of nearest neighbour (d — 1)-dimensional
faces in 0T} , i.e. two faces sharing a (d — 2) face in 0T;

3) T, =M

It is important to stress that the manifold obtained does not depend on the order in which
gluings are performed. This means that we can proceed by first assembling all the simplexes
using only the first type of elementary operations described on the step 2) ( we will call
them S operations; S = stacking). This fact is really easy to understand: every time that it
is programmed an elementary operation of the second type ( we will call them G operations;
G = gluing) you simply do not do it and proceed with only S operations; at the end it is
possible to proceed with the G operations in the same chronological order in which they
were planned. The only fact that must be stressed is that all this identifications are still
now G operations (namely this new construction is still a local construction) and that
the final manifold obtained is always the same. The procedure of local construction can
at the end be summarized in the following way: you construct a tree-like ball by stacking
simplexes (the tree structure can be very easily visualized by constructing the 1-dimensional
skeleton of the dual of the triangulation, that is namely a tree) and then you proceed gluing
nearest neighbour faces of the boundary. In the 2-dimensional case gluing an even number
of simplexes following the previous procedure you obtain at every step a ball. The spherical
boundary contains two fewer links after each G operation until the boundary disappears
and the ball close up into a sphere. The situation in 3-dimension is well described by the
following theorem [29]:

Theorem 4.1.1 Let T, ... Ty, be a local construction of a simplicial 3-manifold M. Then
for all i =1,..., N T; is homeomorphic to S3 with a number of simplicial 3-balls removed.
The boundary OT; is a union of simplicial 2-spheres, Si,..., Sk, and S, and Ss have at most
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Figure 4.1: The effect of identification of two triangles on a sphere sharing a link and the
opposite vertex.

one point (vertez) in common forr # s, 1 <r,s <k;

The proof proceed with a straightforward inductive argument analyzing essentially the
consequences of G operations. In any case the two triangle with a link in common belong
to the same 2-sphere S, C 0T;. You can distinguish four cases: when the two triangle have
only one link in common, when they have one link and the opposite vertex P in common,
when they share two link with a common vertex P and when they have all the three edges
in common. In the first case the sphere S, shrinks to a new sphere containing two fewer
triangles; in the second case the sphere S, splits into two spheres with one point in common,
namely P (see figure (4.1)); in the third case the sphere S, shrinks to a new sphere with
two fewer triangles and the eventual spheres touching Sy at P are split off; in the forth case
S, consists of only 2 triangle and disappears after identification.

This analysis tell us that all the closed 3-manifolds that have a local construction are
spheres. The situation in 4 and more dimensions is more complicated but we can conclude
also that every closed manifold with a local construction is a sphere. We can deduce it
from the fact that every manifold with a local construction is simply connected and from
the fact that in dimension 4 or more the Poincare’ conjecture is true, namely every simply
connected closed manifold is a sphere [15], [72].

The fact that every locally constructed manifold is simply connected can be obtained
with an inductive argument. 71 Of a simplicial complex K is determined from its 2-skeleton
K, [67], [68], [18]. Paths are sequences of links ejes...e, such that e; = [vi—1,vi] (v; is a
sequence of vertices and e; is an oriented simplex, [vi,vi—1] = €] l). Elementary links
equivalences are defined e; ~ eges if e; = [v1,v2] and eg = [v1,v3], e3 = [v3,v2] and [v1, vy, v3]
is a 2-simplex of K. Two paths w = ejes...e, and W' = €} €)...el, are equivalent w ~ o' if '
can be obtained from w by a sequence of elementary links equivalences. Likewise you can
obtain 1 of the polyedron | K | from the dual cellular subdivision K. Also in this case 71 is
determined by only 2-skeleton K. Every tree-like ball is obviously simply connected, it has
also no loops on the dual graph. A presentation of 7; is obtained by associating generators
to links and relations to two dimensional faces. A G operation adds a new generator and
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at least a new relation (working on the dual complex). This is why identifying two (d — 1)-
faces on the boundary sharing a (d — 2)-face, you always close an elementary simplicial
loop around the (d — 2)-face and generate a new two dimensional face on the dual cellular
subdivision. A path in T;,1 could be not homotopically trivial if and only if it contains the
new link e corresponding to the gluing. Otherwise it could be considered as a path in T;
and shrunk to zero using only relations (two dimensional faces) of T; that are also relations
of T;+1 (the geometric interpretation is to construct a 2-dimensional embedded simplicial
disk whose boundary is the loop). If e belong to the path p = wew' then you can use the
elementary links equivalence associated to the new relation introduced p ~ wejes...enw’
with ejes...epe the elementary simplicial loop around the bone. Now wejes...e,w' can be
shrunk to zero by using only relations of T;.

A simple theorem [29] says that the number of closed manifolds with IV simplexes locally
constructed M., is exponentially bounded; in any dimension (If you do not restrict the
possible identifications the number of manifolds grows factorially [6]):

Theorem 4.1.2 There are constants Cy such that

#{ M. | Ny(M;.) = N} < CF (4.1)

The proof proceed first noting that the number of tree-like balls is exponentially bounded.
This can be obtained observing that the number of inequivalent trees is exponentially
bounded [56]. This is not enough because you can not reconstruct the complex from just
the dual graph. To every graph correspond more than one complex. In the case of tree-like
balls you have a one to one correspondence between complexes and d+ 1 edge colored trees
(this is not true in general [31]) and you can take into account colours with an exponential
factor ~ (d +1)V.

Then you must estimate the number of possible way in which it is possible to close such
a ball to a sphere with a local construction. Also this estimate gives an exponential bound.
We refer to [29] for the details of the 3-dimensional case. A more complex proof of the
theorem in 3-d is also contained in [17].

We obtained that all closed simplicial manifolds with a local construction are spheres.
It is natural to ask if all inequivalent spheres can be obtained with a local construction.
This is not the case in dimensions d > 5 because a proof of the local constructibility of
all d-dimensional sphere will imply as a consequence the existence of a good algorithm
for constructing all the d-dimensional spheres with a fixed number of simplexes. This
is not possible since S¢ is not algorithmically recognizable for d > 4 [75] (S® is instead
algorithmically recognizable [71]). The problem is open in the 3-d case and in principle also
in the 4-d.

A proof of the statement would imply as a consequence of theorem (4.1.2) also a proof
of the exponential bound of the number of inequivalent simplicial spheres. We can note a
resemblance of this geometric construction with the already available proof of the exponen-
tial bound based on the analysis of distribution of curvature assignments. A tree-like ball
has indeed all the bones on the boundary and every G operation corresponds to fix one (or
more) curvature assignments.
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Figure 4.2: An example of inductive step for (1,3) move

4.2 Local Construction of 2-Dimensional Spheres

A proof of the fact that every 2-dimensional sphere has a local construction can be easily
obtained with more or less standard arguments, since our knowledge of 2-dimensional ge-
ometry is much more deep than higher dimensional geometry. A proof is contained in [28].
We propose two different easy proofs of this fact. This new arguments give namely insight
into the construction and some of the arguments are extendible to the higher dimensional
cases.

4.2.1 Induction

A first proof can be obtained with an inductive argument driven by ergodic moves.

The starting point is the trivial fact that the basic spherical triangulation 0s3 has a
local construction. The inductive step consist in proving that: if a triangulation has a local
construction then also a new triangulation obtained from this with an elementary move (a
(k,l) move, for example) has also a local construction. The fact that every triangulation
can be obtained from 8s® with a finite number of elementary moves ends the proof.

The idea behind the proof of the elementary inductive step is that if a new triangula-
tion is obtained from an old one with only a small local deformation, then also the local
construction algorithm will be only slightly modified. This fact could be in principle not
true but it comes out to be true in 2-d. It is important to stress that this proof can not be
extended to higher dimensions: you can imagine a small deformation of the triangulation (a
(k,1) move) that could cause a large scale deformation of the local construction algorithm.

The technical procedure of the proof is long and consists in analyzing all the possible
combinations of local construction and ergodic moves and in constructing explicity the local
construction of the new triangulation starting from the old one. For example in figure (4.2)
we have an example with (1,3) move. If a simplicial sphere has a local construction we can
single out the original tree-like structure. This will be a spanning tree T' of the dual graph.
Entire lines represent links of the spanning tree. A new spanning tree is constructed and
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the first G move that must be performed is the one that creates the star of the vertex with 3
simplices incident. The remaining part of local construction follows exactly the steps of the
previous one. This does not end the (1,3) case because you must consider all the possible
local configurations of the spanning tree. As you can guess , the ertire proof will be very
long but without any particular difficulty and we will omit the details.

4.2.2 Duality

Let us consider a spanning tree T of the dual graph of the spherical triangulation. It will
individuate the starting tree-like ball. We can also individuate the cuts complex C that is
a subgraph of the 1-dimensional skeleton of the simplicial sphere formed by the boundary
faces of the original ball after identifications are made. C Is the complex where you must cut
the sphere to open it into the tree-like original ball. C Can be individuated by using duality
relations: a link belong to C if and only if the corresponding link of the dual construction
does not belong to the spanning tree considered. We will show that the duality relation
and the spherical topology impose to this graph to be a spanning tree of the 1-dimensional
skeleton of the sphere (Incidentally this simple construction furnishes an elegant proof that
the Euler characteristic of a sphere is two. The relation between the number of vertices V'
and the number of links L of a tree is namely V = L+1. By definition the number of vertices
of the spanning tree T is Tp = Ny and, for the C complex, Cy = Ny. The duality relation
impose T1 + G1 = N;. Summing the two relations Ty = 71 + 1 and Gy = G1 + 1 we obtain
Ny + Ny = Ni + 2 that means x = 2.). There is a duality relation between properties of
subgraphs A of a 1-dimensional skeleton and properties of the corresponding dual subgraph
A; in this case the situation is perfectly symmetric since both are 1-dimensional objects:

Ais a tree < A is connected and spanning.

If A is a tree it has not loops and this means that it can not bound any region and that
A has only one component. A is also spanning because every vertex must have at least a
link incident otherwise a simple loop would appear in A. If A is connected and spanning
then A must be a tree because otherwise if A had a loop for the Jordan-Brower theorem it
will divide the sphere into two disconnected regions and A could be not connected. Jordan-

Brower theorem [14] says that any S™~! in S™ separates it into two connected components
(two balls).

What is the consequence on the geometry of the cuts complex C of the existence of a local
construction? When you transform T; into T;+1 with a G operation the faces identified will
became a (d — 1)-face incident on the bone B that they shared in T; and whose elementary
simplicial loop has been closed with the G operation. Let us consider now faces of C in
the chronological order inherits from the order of the G operations. It is clear that if ¢;
is the face corresponding to the first G operation then there exists a bone B; such that
B; € 0CNcy. ¢; Has at least a bone By on the boundary of C. This is why identifying
the faces in ¢; you close the elementary simplicial loop around B; formed by simplices of
the tree-like ball. Let us now remove c¢; from C and consider the the new cuts complex so
obtained C!. This correspond to consider the link dual to c; as part of the dual graph of
Tir1. If you consider now the face ¢y of C! it is clear that there exists a By € 9C! N ¢y.
You can proceed in this way until you have removed all the simplices of C. You can easily
deduce that a simplicial sphere has a local construction if and only if there exists a spanning
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tree of the dual graph whose corresponding cuts complex C' can be completely eliminated
by removing simplices on the boundary as previous illustrated. We stress that this fact
is true also in higher dimensions. We stress also that this property of C is different from
being shellable because in this case you can remove also simplices ¢ such that there exists
a B € 0C N ¢ but not free.

In the 2-dimensional case the cuts complex is a graph and for graphs it is easy to note
that this property of C is true if and only if C is a tree (if there is a loop you can not
remove any of the links of the loop). As we saw this is always the case for S? (and only for
S?; you could also deduce the number of independent loops on C from the genus g for a
generic surface).

We note that we have proved a stronger version of the statement: not only every S? has
a local construction but there exists a local construction starting from every tree-like ball
individuated from every spanning tree of the dual graph of 52,

4.3 The Geometry of The Cuts Complex

As we saw also in higher dimensions, for a sphere, the property of being locally constructed
translates into a property of the cuts complex C dual to a spanning tree 7. Let us analyze
duality relations in higher dimensions. In dimension d duality relation is between one
dimensional links and (d — 1)-faces. In general the following relation is true:

T is a spanning tree = C is connected, spanning, does not contain closed hypersurfaces,

m1(C) = 0.

Suppose T is a spanning tree. Then C is spanning in the sense that every bone B is
contained in at least one (d — 1)-face of C; otherwise the elementary simplicial loop around
the bone B would be contained in T' that could be not a tree. ¢ Must be also connected
because if C' were composed by more than one component then it is easy to note that at
least one loop appear in T. Closed Hypersurfaces disconnect simply connected manifolds
and T' could be not connected. 71(C) = 0 is really easy to deduce in dimension d > 4. m;
of a complex is determined by only two skeleton and for d > 4 Cy = S‘Qi the 2-skeleton of C
coincides with the 2-skeleton of S¢ (every bone is contained in C). and 71 (C) = m1(S¢) = 0.
In dimension 3 a simple argument to deduce that 71 (C) = 71(S?) = 0 can be found in [65];
in this case you can also deduce x(C) =1 [65].

We could proceed also in the opposite direction; assuming the listed properties of C,
we try to deduce that T is a spanning tree. It is spanning (every vertex has at least a link
incident) because if there exists a vertex with no links incident and s? id the corresponding
simplex then the sphere 9s? is contained in C and this is not possible. T Is also connected
because if it had more than one component then the faces dual to links not belonging to T’
and connecting different components will form closed hypersurfaces belonging to C. Finally
T has no loops; this is easy to see in 3-d because 9s? (s? is a 2-simplex dual to one of the links
of the loop) would be a non contractible loop in C in contrast to the fact that 71 (C) = 0. In
higher dimensions I suppose that the proposition could became < substituting 71(C) = 0
with m4_2(C) = 0 and 95%~! would be the non contractible (d — 2)-sphere. But not explicit
check has been done.

We have only sketched elementary deductions that can be done from duality relations
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also because they will be not really important for our developments.

We want instead point out a property of C in the 2-dimensional case that will help us
also in the higher dimensional cases. Let us consider the spanning tree T' and remove one of
its links. The tree disconnects into two trees, 77 and T5. Let us now consider 1-dimensional
faces dual to links with one endpoint in 77 and the other in T3. You can easily convince
that they form an S embedded in S? and separating it into two balls By, and Br,. All
the links of this ST but the one dual to the removed link of T belong to C. This is true for
every link of T: to every link of T you can associate a subcomplex of C' that is an St with
one link removed.

This is not true in higher dimensions because you can easily imagine a link whose
associated subcomplex is less regular than a simplicial manifold or for example in 53 you
can imagine a link with associated a torus with a triangle removed (S as the union of two
solid tori [14]). In spite of this, our simple observation can help us to have insight into local
construction of simplicial spheres.

4.4 A Generalized Local Construction

We will leave the general formalism and will restrict to the 3-dimensional case that is the
most interesting one. Starting from an S we can try to construct a good cuts complex C
following the ideas of the previous section.

We consider a simplicial S? embedded into S®. For the Jordan-Brower theorem [14] it
will divide S3 into two disconnected components (two balls). Now we remove a triangle from
this S? (any). If we cut S® along such complex we obtain two balls glued together trough
a boundaries triangle. In each of this balls we can consider an embedded simplicial disk
separating the ball into two different balls. Now we remove one triangle (any) from each disk.
If we cut now along these new complexes we obtain a chain of 4 balls glued together along
boundaries triangles. In general, proceeding cutting balls along separating disks (saving
always a triangle) we will obtain a ball with a tree-like structure whose buildings blocks are
generically balls (not just simplices).

If you could proceed finding a separating disk for every ball until all the bones are on the
boundary you will obtain a tree-like ball whose buildings blocks are simplices (now all the
separating disks are made by just one triangle and selecting one of them and after removing
a triangle has no effect; you have reached the final configuration).

Let us note that if this is the case then the sphere has a local construction. We have
obtained indeed a tree-like ball T' whose cuts complex C is a good one. You can see in
figure (4.3) the typical structure of C in the 2-dimensional case. You can remove triangles
from the boundary of C starting from the last separating disk inserted going backwards.
Foer each disk this only means that you can expand an hole (the triangle where we do not
cut) to all the disk or in a sphere a hole to all the sphere. A fact that is trivially true (a
concrete procedure: you remove first the triangles that are at simplicial distance 1 from the
hole, in any order; then you remove triangles that are at simplicial distance 2, in any order,
and in this way until the end).

Let us now consider a shellable sphere with a shelling order si, s9, ..., s,. We can select
as starting S? Os, and we remove one triangle (any). Now we have two balls glued along
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Figure 4.3: Cuts complex of a 2-d sphere

this triangle; one is just s, and can not be subdivided further, the other one is the remaining
part of S3. From the definition of shelling we can obtain a disk separating this second ball:
it is sp—1 N (UXS2s;). As usual you remove a triangle. You can proceed in this way until
the end following the shelling order and considering as separating disks s; N (U{;ll ;). This
means that every shellable sphere has a local construction.

We can read this fact more directly following the increasing shelling order. If 5,1 is glued
to U{zlsi only trough a triangle then this is an S operation allowed by local construction.
If sjﬂ is glued trough two faces then it is easy to see that you can do such a gluing in two
steps: an S operation and then a G operation. Also in the case of a gluing trough 3 faces
you can proceed with an S operation and two G operations (one gluing two triangles having
one side in common and one gluing two triangles having two sides in common). s, Can be
glued with an S operation and 3 G operations (with respectively one,two and three sides in
common). At the end you construct a shellable sphere with only S and G operations and
you obtain a local construction.

We have observed that if you can not find a separating disk on a ball then it is strongly
not shellable. If the ball is not strongly not shellable you can indeed find a disk separating
a free simplex. This means that we can proceed cutting our starting sphere 53 along
separating disks until we encounter a strongly not shellable ball. We can deduce that in
general it is true a generalized local construction.

Every sphere can be obtained with only G operations starting from a tree-like ball whose
buildings blocks are simplices and strongly not shellable balls (more in general: balls that
not have an embedded simplicial disk separating them into two balls).

If you proceed in selecting disks following a partial shelling order of S® you can obtain
the version:

Every sphere can be obtained with only G operations from a tree-like ball with one
buildings block constituted by a strongly not shellable ball and all the others by elementary
simplices.

How could you get intuition or a new proof of the exponential bound of the number of
3-spheres from this construction? Strongly not shellable balls are objects rather hard to
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study and to my knowledge only a series of examples is available; but all the examples that
I know are ”thin” balls. In the sense that they have for example all the vertices on the
boundary (a definition of ”thin” balls could be balls whose volume is comparable with the
volume of the boundary). This could means that the combinatorial structure of strongly
not shellable balls is strongly influenced from the combinatorial structure of the boundary
sphere.

We end this section by quickly expose some further results. These results has been not
deeply checked and I prefer to not claim their truthfulness but only to sketch them. Local
construction is a more general procedure than shelling. Every shellable sphere or ball has a
local construction and with shelling you can obtain only balls and spheres. You can instead
also construct some S3 with some balls removed with local construction. There are however
some indications that says that, at least in 3-d, local construction and shelling could be
equivalent when you are speaking of spheres or balls. With local construction , so as with
shelling, you must do some operations following a given order. This does not mean that
you can not proceed equivalently with a different order (in general, given a shellable sphere
there are several possible shelling; for example if sq, ..., s, is a shelling then s,,...,s1 is also
a shelling). What seems to be possible to proof is that if a S? has a local construction then
it is possible to do the G operations in such a order that every T; of the sequence is a ball.
This means that you can always avoid of do G operations with triangles sharing a link and
the opposite vertex. This seems to be true also for balls: if a ball has a local construction
then it is possible to do G operations in such a way that every T; is a ball.

We have also further interesting indications: knotted hole ball has not a local construc-
tion. It was natural to try to check local constructibility of the most easy to handle non
shellable ball. It seems to be impossible to create the knotted curve with only S and G
operations. This does not means that a sphere containing a knotted hole ball has not a local
construction. The next natural step will be to try to check if the example of a non shellable
sphere contained in [48] has a local construction or not. All these results will appear in a
forthcoming paper [35].

It would be also interesting to analyze the counterexample of [29] in connection with
shelling and to study if balls with no separating disks are a smaller class than strongly not
shellable balls (this fact could imply that local construction is a weaker notion with respect
to shelling and the class of locally constructed spheres larger than the class of shellable
spheres).

4.5 The Effect on the Boundary

Ergodicity of (k,l) moves for spherical triangulations can be interpreted as a result of
shelling. Gluing a d-simplex trough a simplicial disk formed by %k faces to a ball B you
obtain on the boundary dB the same effect as a (k,l) move with k +1 = d + 1. We can
translate this observation into the theorem [57] :

Theorem 4.5.1 Every simplicial sphere (d < 4) is the boundary of a shellable ball.

We saw that every shellable ball has a local construction or equivalently that every shelling
step is equivalent to a S operation followed by some G operations. This means that you
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Figure 4.4: the boundary effect of a G operation in 2-d

can obtain the same effect of a (k,!) move with simple operations derived from the effect
on the boundary of S and G operations. For example in two dimensions the effect of S
operations is a (1,3) move (but not the reverse one). and the effect of a G operation on the
dual graph is illustrated in figure (4.4).

We can conclude that only this two moves are ergodic, being equivalent to (k,I) moves.
The effect of move (4.4) was studied in [17] [18] to deduce the exponential bound of 3-d
locally constructed spheres. Proceeding with these moves you can create in the dual graph
some closed loops not containing vertices: this corresponds to the internal structure and
can be ignored to obtain the structure of the boundary triangulation.

These observations can give some intuition on Walkups theorems. You can indeed see
that stacked spheres are triangulations boundary of minimal volume balls. Obviously you
can construct voluminous balls whose boundaries are stacked spheres, but if you associate
to every spherical triangulation the shellable ball with minimal volume corresponding, then
you obtain that the ratio

d+1(ps?

— vol ™+ (Bmm) (42)
vol?(S4)
is minimal for stacked spheres. This is why tree-like balls have the minimum number of
internal (d — 1)-faces (less than this you can have only disconnected objects). From this you
can get an intuition on the fact that stacked spheres are triangulations on the boundary
of allowed spherical triangulations (they minimize b). Every spherical triangulation can
be obtained as the boundary of a shellable ball; let us choose the one (or one of them)
that minimize the volume. Every such ball is obtained crumpling a tree-like ball with G
operations.

We end this section with a note about the fact that shelling seems to be not very well
known from researchers working in simplicial quantum gravity. In [39], ergodicity of (k,1)
moves is proved in dimensions 3 and 4. They use a property of triangulated St and S
(the link of an edge respectively in 3 and 4 dimensions) that they call local constructibility.
Hoping to avoid confusion this property is exactly shellability of S 1 and S2. They are able
to extend the proof also in higher dimensions supposing that every triangulated §4d>3
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is shellable; but this is not the case as we showed in section (3.5).

4.6 Geometrical Constraints and Ergodic Moves

After having discussed some topology using as reference dimension 3 we start now to deal
with statistical properties and we switch reference dimension to 4. All what we will say
can be repeated likewise in the 3-dimensional case. We can give a characterization of the
generic f vector by analyzing how (k,[) moves modify it:

(17 5) - A1,5f = (19 5,10, 10, 4) (43)
(2,4) — Dguf =1(0,1,4,5,2) (4.4)
(3,3) = Aszf=1(0,0,0,0,0) (4.5)

and obviously As1f = —A;5f and Agof = —Agaf. If ng; is the number of moves of the
type (k,1) the corresponding f vector will be

f = (64 21,15+ 5z1 + z2,20 + 10z + 4z2,
15 + 10z1 + 59,6 + 4z1 + 229) (4.6)

with 2y =n15 —ns5; and 29 = ng 4 — nq 2.

This characterization of the f vector is equivalent to the constraints of Dhen-Sommerville
relations. This is not enough to completely determine the possible f vectors since it is not
always possible to perform a (k,!) move. It is always possible apply a move of the type
(1,5) but to apply the reverse move we must start from a triangulation that has a vertex
with a star made of 5 simplices. It is often possible to apply a move of type (2,4) but in
order to apply the reverse move we must start from a triangulation that has an edge with
a star made of 4 simplices.

Results in this direction are Walkups theorems (3.4.1), (3.23). The inequalities of the
4-dimensional Walkups theorem becomes in terms of moves:

23>0, 7, >0, #2421 —225>0 (4.7)

The asymptotic conditions (3.33), (3.34), are consequences of Walkups theorem whose
proof is in fact quite not trivial. However, we can give a simple argument in terms of moves
providing an intuitive picture: as we have already stressed it is far more easy to perform a
(k,1) move with k < [ than the reverse one and such a move increases the volume of the
manifold while the reverse move decreases it; so we can conclude that, when the number
of simplices is large, almost all (in fact Walkups theorem say all (4.7)) triangulations are
obtained with a number of (k,[) moves greater than ([, k). So we can obtain the conditions
(3.34) as limiting values in the boundaries of the allowed region:

6 + 421 + 229

= lim b= li = 4.
ez = 0 0= i 00 100, + 4oy (48)
2
bin = lim b= lim 100" 2T (4.9)

T1—00 z1—oo 20 + 1021 + 4zo
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A funny dynamical interpretation of the constraints can be given in terms of equilibrium
points of the “moves operators”: starting from a triangulation with b = 10—11\% we have a
jump

Ny+4 Ny
Aqsb= - 4.10
1,5 10(N2 10 Nz) : (4.10)
The equilibrium condition is
A1,5b =0«+b=14 (411)

and this equilibrium point is stable in the sense that
Aisb>04b<d Apshb<0erb>4 (4.12)

Likewise for move (2,4)
Aosb=04b=5 (4.13)

and also this equilibrium point is stable in the sense (4.12). This simple analysis explain
why only the region (3.34) is spanned when constructing spherical triangulations with a
large number of simplexes: because points b that are outside this interval are attracted
towards it.

4.7 Asymptotic Behavior of Canonical Measure

The behavior of the system conditioned to fixed volume is described by canonical partition
function

Z(ka, Nu) = > _ "N = N W (Ny, Ny)eh22 (4.14)
TN4 Ny

We can study it by using the parameter { = -%% analogous of b [5]:

Z(k27N4) = ZW(EkN4,N4)ek2N4€k (415)
k
Since the number of triangulations with N4 simplexes is asymptotically exponentially bounded
(see [5] for a proof), the asymptotic behavior of W (N4, xN4) can be formalized in the form
W (Ny, €xNe) ~ f(Na, & )eMos) (4.16)

with f(Ng, £) that has typically a polynomial or subexponential asymptotic behavior in Ny.
The measure induced in this way in the space of triangulations is defined by the probabilities

c f(N4,§k)eN4(3(§k)—k2£k)
/‘Lkz,N‘; (gk) = Z(kQ’ N4)

(4.17)

The asymptotic behavior of probability measures defined in this way is a classical problem
of probability theory and under general conditions the result is

B N S Nimsoo 3 Hib(€ =€) (4.18)
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The points & are defined by the condition

s(&) — ko€ = sup  [s(§) — kaf] (4.19)
Emin <E<bmas

and the convergence (4.18) is very fast; namely considered a set A such that & ¢ A we have

o eNa(supee a[s(§)—kat])
Hiz v (A) ~ — e

~ e~ KN (4.20)

with K > 0; that says that the probability of deviant events A goes to zero exponentially
fast: this fact is usually referred as the deviations are large.

This general argument can be formalized in this particular case in terms of Laplaces
method: the form of the partition function

Zka, Ng) = S £(Ni, &) eNslel6e)+hate) (4.21)
k

has the structure of a Riemann sum

Z(ka, Ng) ~ Y Nuf(Ny, &)eM @Rt A(gy) (4.22)
k

namely &1 — & ~ N% and we have a sum of i@‘”ﬁgﬂiﬂ ~ Ny terms. So for large Ny (4.22)
is well approximated by the continuum version (see [5] for details and an explicit form of

s(¢) and F(Ny,¢€) )

€maz

Z(ka, Ni) ~ / F(N, €)eMelo(@ka) g (4.23)

&min
Laplaces theorem says that when Ny is large almost all the contribution to the value of the
integral (4.23) comes from the region near the point(s) £*; and this is a result of type (4.18).

4.8 Polymeric Phase

We are now interested in a theoretic interpretation of numerical results that give a strong
evidence of the appearance of a polymeric phase for ks large enough [8]. We will show that
this phenomena is a direct consequence of the concentration of the measure illustrated in
the previous chapter and we will analyze the geometrical characteristic of this phase.

When %y is large, triangulations with large £ are favorite; we translate this simple idea
into a mathematical language: the points of maximum in the exponent of the expression
(4.23) are determined by the condition

Sl(f) +k=0 (4.24)

from this it is immediately to deduce that if ks > —infy , <¢<ena. 5'(€) the expression
(4.24) is always greater than zero and the canonical measure concentrates on &4z:

lu’l?g,NI;(g) = Nj—00 6(5 - fma:c) (4.25)
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The corresponding value of b is by, = 4 and these triangulations are well described by the
lower bound result of Walkup and we can conclude that in this region of the parameter ko
the dominant configurations in the statistical sum (4.14) are essentially stacked spheres. A
more precise statement could be that for the dominant configurations the most important
phenomena is the stacking ((1,d+1) moves); a general characterization can in fact be given:
starting from y; = A"*—Zﬂz——— we obtain

5 Y2 5
-2 _J2 - 4.26
=5 N TW, (4.26)
We can easily conclude that triangulations with large Ny characterized by a { = &naz = %
are obtained with the condition

lim 2 =0 (4.27)

This condition is satisfied not only by stacked spheres, which are defined by the relation
yo = 0, but also by triangulations with yo = C' < oo that can be constructed, for example,
by stacking starting from a generic triangulation (defined by y» = C) and not from the
basic triangulation 9s®; and more in general the condition is satisfied also by triangulations
constructed with a number of moves y, that grows with a power in V4 smaller than one.

The practical consequence of this assertions is that we can study the statistical property
of simplicial quantum gravity for that region of k3 by studying a more simple model obtained
by restricting the space of configurations: the smaller statistical system that we will consider
is the system constituted by only stacked spheres. We have just showed that this in fact is
a further simplification but what happens is that this subsystem contains all the principal
features of interest. In general the following trivial relation is true

Z(ka, Ng) > Y €™V (4.28)
(S.5.)n,

but for k2 large enough this relation becomes

Z(ky,No) 2 Y, €™ (4.29)
(S S. )N4

where the abbreviation (S.5.) means obviously (Stacked Spheres) and the symbol 2 means
that the exact relation is > but the asymptotic behavior is the same ~.

The study of the partition function for the stacked spheres system (4.29) is an easier
problem: the condition for stacked spheres yo = 0 tells to us that Ny = 6 + 4y; and
Ny = 20 + 10y; and we obtain the relation Ny = -g—N4 + 5. This latter tells to us that
the number of bones is determined by the number of simplices. Consequently, the explicit
expression of the partition function is:

Zs.5.(kg, Nu) = W.s.(Ny) b2 GNe+9) (4.30)

The problem that remain to face is the calculation of the number of inequivalent stacked
spheres with N, simplices: we will do it in an approximate way stressing above all the
fact that the structure of the different configurations is typical of branched polymers with
a fundamental element (monomer) that builds up a tree configuration, and we will also
calculate the entropy exponent v and show that it is % as is typical of branched polymers.
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The tree structure that is behind stacked spheres can be easily reconstructed from the
following geometrical interpretation of (1,5) moves: starting from s® we construct the basic
spherical 4-d triangulation as ds%; a (1,5) move is obtained by substituting a 4-d simplex of
this triangulation with 5 simplices as discussed in section (4.6); but we can proceed also in
a different way by constructing a new triangulation of the 5-d ball gluing a second s° trough
a 4-d face to the beginning simplex. The spherical triangulation 0B where B is the new
triangulating ball obtained in this way is equivalent to the triangulation obtained with the
(1,5) move. This construction is general: we obtain every stacked sphere as the boundary
OBy, of triangulations of the 5-d ball obtained by gluing a s® to B,_1 through a 4-d face
of 8B,_1 and this correspondence is easily seen to be one to one [76]. It is also easily to
see that 9B, is a stacked sphere with 2 + 4n simplices. This construction is illuminating in
characterizing a polymeric phase in simplicial quantum gravity. The monomer with which
the polymer is builded is provided by the s° simplices and the polymer structure is obtained
by analyzing the only tree-like triangulations of 5-d ball whose boundary are stacked spheres.
A good insight in the structure of such polymers and also a tool for calculating Ws.s.(IVy)
is obtained by analyzing the 1-d skeleton of the dual of B,s. To every s° it is associated a
point and in each such points there are 6 lines incident that correspond to the 6 4-d faces;
when two s® are glued along a face the corresponding points are joined by a line. The graphs
obtained in this way are all the possible trees the incidence numbers of which are only 6 and
1: the vertices with incidence 6 represent the 5-d simplices glued together and the vertices
with incidence 1 represents the free 4-d faces of dB,. This construction is not enough to
reconstruct the ball B, and the corresponding stacked sphere. This reconstruction would
be possible only from the knowledge of the full dual structure, nonetheless the above partial
construction will be enough to calculate the right asymptotic behavior.

The problem of counting such trees is equivalent to a problem of counting isomers in
chemistry: a solution is given in the classical paper of Otter [56]. The asymptotic expression
of the number of not isomorphic trees with n vertex and ramification number not greater
than m is:

T ~ c(m)

(4.31)

This is easily seen to be also the solution of our counting problem: namely the following
relation holds

_ m(lm)
T7’L<m - T((m——?)n+2,n) (4‘32)

The notation of the left side was already explained and the symbol on the right side means
the number of trees with (m — 2)n + 2 vertices with number of incidence 1 and n vertices
with number of incidence m. The equality is verified by constructing explicitly a one to
one correspondence: starting from a tree in T(((ZZL_)Q) nt2,n) We delete all vertices with number
of incidence 1 and the corresponding lines and we obtain an element in T,™; the reverse
correspondence is obtained by joining new vertices with ramification number 1 to the old
vertices until all the old vertices reach the exact ramification number m.

In order to count the number of stacked spheres with /N4 simplexes we have to estimate
the number of inequivalent trees with & 44‘2 vertices with incidence 6 and Ny vertices with
incidence 1; we get

Wss.(Ng) 2 T&;?M):Tg{_z (4.33)
4
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With this rough but effective asymptotic estimate we get informations about the canon-
ical partition function by using relations (4.29), (4.30)

2k, Na) 2 Olhe)—ge i (itonmt ) (4.34)
N4

Thus, we have obtained an expression of the form
Fro (Na)elVekilk2) (4.35)

with a subleading asymptotics fx,(N4) of polynomial type. The subleading asymptotics is
particularly important because from it we can deduce the entropy exponent : the general
form is fi,(Ng) ~ Nz—B that in our case gives v — 3 = —3 and we obtain y = L asis
typical of branched polymers and as comes out from numerical simulations [8]. From the

knowledge of this exponent we can for example obtain the critical behavior of susceptibility
[8]
, d?
D Glrikaks) = —5Z(ks, k)
. 1
~ (ke = k)T = (ke — K72 (4.36)

From expression (4.34) we can also get an estimate of the critical line that we expect to
be quit good when the parameter ky is large enough:

1 5
k§(ke) 2 —loga + 5]&72 (4.37)
This turn out to be in fact compatible both with numerical and analytical [5] results.

The asymptotic behavior of canonical measure suggested in section (4.7) stresses the pe-
culiar character of simplicial quantum gravity as a critical system: the measure concentrates
on different regions of the space of configurations for different values of k. This character-
istics allows, for example, to compute the mean value of geometrical objects restricting on
a smaller region of the configuration space.

By () & Niooo Ese—e (k) () (4.38)

This is exactly the procedure followed to describe the structure of the polymeric phase
and more informations could be obtained with a detailed study of statistical mechanics of
stacked spheres (correlations functions, for example).

4.9 Crumpled Triangulations and Singular Structures

We obtained a good interpretation and description of polymeric phase by analyzing geo-
metrical structure of stacked spheres. Stacked spheres are triangulations minimizing b; it is
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natural to try to describe crumpled phase of simplicial quantum gravity studying triangu-
lations on the opposite extreme, maximizing . This comes out to be harder. The reason is
why Walkups theorems guarantee a necessary and sufficient condition for the lower bound
on b and the bound is obtained by an entire class of triangulations. For the upper bound
the situation is different.

In 3-d we have that 2-neighborly triangulations play the same role of stacked spheres in
the case of bprez. Now we do not know however how many they are. We know that if the
number of simplices is large enough every manifold has a 2-neighborly triangulation [76]. If
we have N3 (N3 > 5) simplices, then we can construct a 2-neighborly spherical triangulation
but we do not know how many they are. Inequivalent 2-neighborly spherical triangulations
could be only a few or also only one. It is difficult to say if they represent typical crumpled
triangulations.

In 4 dimensions the situation is more difficult because in general 2-neighborly spherical
triangulations does not exists [47], [4]. Nevertheless we can construct in a natural way 4
dimensional spherical triangulations that correspond to the maximal value bpsqq = 5.

Let us first analyze the b of 2-neighborly spherical triangulations in 3-d. The new
condition Ny = %—NO(NO — 1) reduces to one the number of independent parameters of the
f vector. Using Dehn-Sommerville relations and the condition of 2-neighborhood you can
easily arrive at b = 6%—? = 6%3:%. It is easy to note also that in the limit N3 — oo Ny can
not remain bounded ( N; = %NO(NO —1) and Ny = %1 growths linearly with N3). This
means that by_ yeign < 6 and limpy, 00 bo— Neigh = 6.

Let us turn now to the 4-dimensional case. We can construct almost 2-neighborly spher-
ical triangulations. Let us consider a 2-neighborly 3-dimensional spherical triangulation
53 wei on @nd consider two copies of the 4-dimensional ball obtained as a cone vg - S3_ Neigh
(vo & S5_nei on)- If we glue these two balls through the corresponding boundary faces we ob-
tain a 4-sphere Sﬁo%. It is easy to note that every couple of vertices but (vg,vg) (the vertices
of the cones) is connected by a link. We can compute the b value corresponding to such tri-
angulations bvo,% = 10% and we can note that with this simple construction we
have obtained triangulations reaching the byr,, of average incidence limpy, o0 bvo% =5. As
we have already stressed these triangulations can not be considered as typical triangulations
corresponding to the value bpso, = 5 because they could be only a few.

In general you can construct other triangulations Sf{[4 such that limpy, 00 bs;lv L= 5.
They will be important to describe the large volume limit corresponding to a parameter
k4o for which limpy, 00 pik,_, Ny = 6(b — baraz) as far as limpy, 00 #kd_2N4(S?v4) > 0.

The structure of the triangulations described confirm the hypothesis [21], [22], that
crumpled phase of simplicial quantum gravity growths up from existence of singular struc-
tures. A singular structure is a simplex of dimension less than the maximal one that is
contained in a number of maximal simplices comparable with the total number of simplices.

This furnishes also an explanation of the large value of the Hausdorff dimension of the
crumpled phase.

You can have singular structures with different orders: you can have for example a
singular structure s with the number of simplices incident growing linearly with the volume
of the sphere i; ~ Ny or you can have a power behavior ¢; ~ N with a power o < 1.
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Let us consider (d — 1)-simplices; they can not become singular structures because the
condition of being a simplicial manifold imposes that each (d — 1)-face has only not more
than two maximal simplices incident.

Let us consider (d — 2)-simplices. Now we can construct triangulations with singular
bones but entropic arguments [22] shows that they can not be dominant. This is why
simplices incident on a bone can be organized combinatorially in a unique way. Let us
consider as an example the 3-d case. d(star(B)) Of a bone B with N simplices is a sphere
obtained by gluing together two simplicial disks each formed by the star of a vertex with
N triangles incident. Now if the bone B is singular the number N must be O(Ng) (with
this generic symbol we mean that it must be comparable with Ng). Now the number of
spherical triangulations with such a singular bone is

#{B | vol(B) = Ny — O(Ny); 8B = d(star(B))} (4.39)

the number of simplicial balls B with Ny — O(N,) simplices whose boundary is a fixed
sphere (depending only on O(Ny) ) d(star(B)) (you can note that d(star(B)) is a sphere
whose combinatorial structure is determined by link(B) that is S*; this is true in general).
If for example O(Ny) ~ aNy then this is a problem of compute the number of thin balls:
vol(B) ~ (1 — )Ny vol(8B) = 2aN, with fixed boundaries combinatorial structure. The
fact that triangulations with singular bones are not dominant can be also roughly deduced
from the fact that the average value (spatial average) b of the incidence numbers remains
always bounded. A large value of one incidence number will imply that all the others are
low to obtain a finite average value; the result is that typical triangulations have finite
incidence numbers ~ b. '

We can deduce now that the maximal dimension at which singular structures can appear
is (d — 3) [22]. We continue to use entropic arguments. Let us consider a (d — 3)-simplex
s with N simplices incident, then d(star(s)) is a (d — 1) sphere whose combinatorial struc-
ture is determined from link(s) that is a S2. If we try to count the number of spherical
triangulations with Ny simplices and a (d — 3)-simplex with N maximal simplices incident
we obtain

> #{B | vol(B) = Ny — N; 0B = (85) - Ty} (4.40)
TyeS?

Now there is an entropy contribution from the number of inequivalent spherical trian-
gulations that roughly contribute with an exponential factor eV and gives an intuitive
explanation of why you can observe singular (d — 3)-dimensional structures.

Let us now explain how singular structures could play the role of an order parameter
in the transition from polymeric to crumpled phase. First of all we want to stress that
singular structures are present not only in crumpled triangulations, but you can for example
recognize them also in stacked spheres that as we saw are expected to be characteristic of
polymeric phase. We illustrate this with the simplest example: two dimensional stacked
spheres. The number of triangles after n (1,3) moves is 4 + 2n. If we apply (1,3) moves
always to triangles incident on a fixed vertex vy then after n moves the number of triangles
incident on vy will be 3 +n. In this way you create a stacked sphere with a singular vertex.
You can easily extend the argument to higher dimensions. A less trivial example come out
from the following construction [4]. Let us consider a 3-dimensional stacked sphere 5% and
consider two 4-dimensional balls whose boundary is S2. One is the corresponding tree-like
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k d-2

Figure 4.5: an example of a possible behavior of limpy, 00 < 51 >y yvy

ball, the other one is obtained as a cone vg - S3, vg & S2. If we glue this two balls trough
the corresponding boundary simplices we obtain an S*. Rather surprising this sphere is a
4-dimensional stacked sphere. You can indeed directly compute the f vector and conclude
that it is a stacked sphere from Walkups theorems (see [45] for a deduction from rigidity
arguments).

Once that you have decided when a structure (a simplex of dimension n < d — 3) is
singular (for example fixing the power «; in any case this is a free parameter that you can
change arbitrarily) you can define an integer valued function on triangulations that is

N(T) = the number of singular d-dimensional simplices of the triangulation T'.

It is useful to introduce a normalized function that we could call the d-dimensional
singularity ‘
_ N (T)

N4(T)

We can guess that the average value of singularity < Sy >y, could play the role of
an order parameter. When there are no singular structures then S; = 0, when all the
simplices are singular then S; = 1 (S; = 1 for 2-neighborly 3-dimensional triangulations,
for example).

Sa(T)

0<8;<1 (4.41)

Let us consider a value of ky_o such that Imp, 0 fiky_,, v, = 0(b — bmin) and let us
restrict to the 3-d case considering S; for simplicity of language. As we have seen also
stacked spheres can present singular vertices but we expect that singular stacked spheres
are only a few. This translates into the fact that in this case < 51 >, ,, is small and

converges to zero when Ny — oo (only in this limit you can have a phase transition).

Nldigloo <5 >”kd—2aNd: 0 (4.42)
When we vary the parameter k;_o we obtain that the canonical measure concentrates on
triangulations with different b. We expect that considering triangulations characterized by
an increasing b the presence of singular vertices will be always more frequent. We expect
that the value of limy, 00 < 51 > kg N is zero for k4—o < of a critical value k_, and
positive for ky_o >, saturating to one when k4o increases. A behavior typical of classical

orders parameters like magnetization or the probability of an infinite cluster in percolation
(see figure (4.5)).

This is only a proposal of an observable that could give informations about the geometric
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characteristics of the continuum limit of the theory. You can likewise choose different
observables; the fraction of maximal simplices belonging to singular structures for example.

You can have indications that a phase transition may occour from Walkups inequalities.
They underline indeed the fact that spherical triangulations can have different strucures.
One one side you have stacked spheres with a number of links N; (or likewise simplices N3)
growing linearly with the number of vertics Ny; N1 ~ Np. On the opposite side you have
2-neighborly triangulations with N1 ~ NZ. You can read this fact as

Ny 6

MI Ny ~6-b , (4.4)

that diverges when b — bprqz = 6.

What is nice is that combining these simple arguments with the entropy estimates of
section (3.3) it is possible to obtain an impressive concordance with numerical data [4].

69



Acknowledgemts:

I thank my supervisor Prof. Mauro Carfora for the help and collaboration. Gabriele Gionti
for several discussions and collaboration. Prof G.M. Ziegler for suggestions and many
bibliographical references. Gaspare Carbone and Luisa Paoluzzi for some discussions.

70



Bibliography

[1] S. Albeverio, J. Jost, S. Paycha, S. Scarlatti, A Mathematical Introduction to String
Theory Lecture Notes Series 225, London Mathematical Society.

[2] J.W. Alexander, The Combinatorial Theory of Complezes, Ann. of Math, 31, (1930),
292-320.

[3] J. Ambjgrn Quantization of Geometry, in Fluctuating Geometries in Statistical Me-
chanics and Field Theory, Les Houches 1994, Session LXII, (North-Holland, 1996).

[4] J. Ambjgrn, M. Carfora, D. Gabrielli, A. Marzuoli, Crumpled Triangulations and Criti-
cal Points in 4-D Simplicial Quantum Gravity, preprint NBI-HE 98-30, DFNT-T 06-98,
MPS-RR-98-10, (hep-lat 9806035).

[5] J. Ambjgrn, M. Carfora, A. Marzuoli The Geometry of Dynamical Triangulations,
Lecture Notes in Phys. 50, (Springer-Verlag 1997)

[6] J. Ambjgrn, B. Durhuus, T. Jonsson, Mod. Phys. Lett. A 6, (1991), 1133.

(7] J. Ambjgrn, B. Durhuus, T. Jénsson, Quantization of Geometry, Cambridge Mono-
graph in Math. Phys. (1997).

[8] J. Ambjgrn, J. Jurkiewiez Scaling in Four Dimensional Quantum Gravity, Nucl. Phys.
B 451 (1995) 643-676.

[9] A. Besse, Einstein Manifolds Springer-Verlag, New York, (1986).

[10] D. Bessis, C. Itzykson, J.B. Zuber, Quantum Field Theory Techniques in Graphical
Enumeration, Adv. Appl. Math. 1, (1980), 109.

[11] P. Bialas, Z. Burda, D.A. Johnston, Balls in Bozes and Quantum Gravity, Nucl. Phys.
Proc. Suppl. 63, (1998), 763-765.

[12] P. Bialas, Z. Burda, D.A. Johnston, Condensation in the Backgammon Model (cond-
mat 9609264).

[13] N. Biggs, Algebraic Graph Theory, Cambridge University Press, (1993)

[14] R.H. Bing, The Geometric Topology of 3-Manifolds, American Mathematical Society,
Colloquium Publications, Vol 40, (1983).

71




[15] R.H. Bing, Some Aspects of the Topology of 3-Manifolds Related to the Poincare Con-
jecture, in "Lectures on Modern Mathematics 117, (T.L. Saaty, ed.), Wiley, New York,
pp 93-128, (1964).

[16] B. Bollobas, Modern Graph Theory, Graduate Texts in Mathematics 184, Springer-
Verlag, (1998).

[17] D.V. Boulatov, On the Entropy of 3-Dimensional Simplicial Complezes Preprint NBI-
ITE-94-37, (1994), (hep-th/9408012 v2).

[18] D.V. Boulatov, Three-Dimensional Simplicial Gravity and Combinatorics of Group
Presentations, JHEP 07, (1998),010.

[19] M. Carfora, D. Gabrielli, G. Gionti, Recent Developments in 4-D Simplicial Quantum
Gravity Proceedings of 12th Italian Conference on General Relativity and Gravitational
Physics 111 World Scientific (1997).

[20] M. Carfora, A. Marzuoli, Holonomy and Entropy Estimates for Dynamical Triangulated
Manifolds, J. Math. Phys. 36, 1995), 6353-6376.

[21] S. Catterall, R. Renken, J. Kogut Singular Structure in 4D Simplicial Gravity, Phys.
Lett. B 416, (1998), 274-280.

[22] S. Catterall, G. Thorleifsson, J. Kogut, R. Renken, Singular Vertices and the Triangu-
lation Space of the D-Sphere, Nucl. Phys. B 468, (1996), 263-276.

[23] J. Cheeger, W. Miiller, R. Scrader, On the Curvature of Piecewise Flat Spaces, Comm.
Math. Phys. 92, 405-454 (1984)

[24] J. Cheeger, W. Miiller, R. Scrader, Lattice Gravity or Riemannian Structure on Piece-
wise Linear Spaces, in Unified Theories of Elementary Particles, Proceedings Munchen
(1981), Lecture Notes in Physics 160, Springer-Verlag.

[25] F.R.K. Chung, Spectral Graph Theory, CBMS (Regional Conference Series in Mathe-
matics), 92, (1997).

[26] F. David, Simplicial Quantum Gravity and Random Lattices, (hep-th 9303127), Lec-
tures given at Les Houches Summer School on Gravitation and Quantizations, Session
LVII, Les Houches, France, (1992).

[27] B.V. De Bakker, Simplicial Quantum Gravity, PhD Thesis, Universiteit van Amster-
dam Instituut voor Theoretische Fysica, Amsterdam Valckenierststraat 65 1018 XE,
August 1995, (hep-lat 9508006), 7 Aug, 1995.

[28] B. Durhuus, Critical Properties of Some Discrete Random Surface Models, In Con-
structive Quantum Field Theory II, Nato-ASI Series B, Physics Vol 234, Edited by G.
Velo and A.S. Wightman.

[29] B. Durhuus, T. Jonsson, Remarks on the Entropy of 3-Manifolds, Nucl. Phys. B, 445,
182-192, (1995).

72



[30] R Fernandez, J. Frohlich, A.D. Sokal, Random Walks, Critical Phenomena and Triv-
iality in Quantum Field Theory, Texts and Monographs in Physics, Springer-Verlag,
(1992). ;

[31] M. Ferri, C. Gagliardi, L. Grasselli, A Graph-Theoretical Representation of PL-
Manifolds. A Survey of Crystallizations, Aequationes Mathematice, 31, (1986), 121-
141.

[32] R.P. Feynman, A.R. Hibbs Quantum Mechanics and Path Integrals Mc Graw-Hill,
(1965).

[33] T. Filk, Fquivalence of Massive Propagator Distance and Mathematical Distance on
Graphs, Modern Physics Letters A, 7, No 28, (1992), 2637-2645.

[34] J. Frohlich, Regge Calculus and Discretized Gravitational Functional Integrals, Preprint
IHES (1981), reprinted in Non-Perturbative Quantum Field Theory - Mathematical
Aspects and Applications, Selected Papers of J. Fréhlich. Word Scientific, Singapore
(1992).

[35] D. Gabrielli, Local Construction and Shelling of Simplicial Spheres, in preparation.

[36] D. Gabrielli, Polymeric Phase of Simplicial Quantum Gravity, Phys. Lett. B 421,
(1998), 79-85.

[37] J. Glimm, A. Jaffe Quantum Physics (A Functional Integral Point of View) Springer-
Verlag, (1981).

[38] M. Gromov, Structures Metriques pour les Varietes Riemanniennes, Conception Edi-
tion Diffusion Information Communication Nathan, Paris (1981).

[39] M. Gross, D. Varsted, Elementary Moves and Ergodicity in D-Dimensional Simplicial
Quantum Gravity, Nucl. Phys. B 378.

[40] H.W. Hamber, Simplicial Quantum Gravity, In Critical Phenomena, Random Systems,
Gauge Theories. Les Houches 1984, Session XLIII, K. Osterwalder and R. Stora editors,
North-Holland, 375-439, (1986).

[41] J.B. Hartle, S.W. Hawking, Wawe Function of the Universe, Phys. Rev. D, 28, 2960,
(1983).

[42] S.W. Hawking, The Path-Integral Approach to Quantum Gravity, In General Relativity.
‘An Einstein Centenary Survey (1979), S.W. Hawking and W. Israel Eds, Cambridge
University Press, p 746.

[43] S.W. Hawking, G.F.R. Ellis The Large Scale Structure of Space-Time Cambridge Uni-
versity Press, (1973).

[44] G. Jona-Lasinio, The Renormalization Group: a Probabilistic View, Nuovo Cimento
B26, 99, (1975).

[45] G. Kalai, Rigidity and the Lower Bound Theorem I, Invent. Math. 88, (1987), 125-151.

73



[46] H. Kleinert Path integrals in Quantum Mechanics Statistics and Polymer Physics 2nd
edition, World Scientific, (1995).

[47] W. Kiinel, Triangulations of Manifolds with Few Vertz’ces; in Advances in differential
geometry and topology, Eds. 1.S.1.-F. Tricerri, (World Scientific, Singapore, 1990).

[48] W.B.R.Lickorish, Unshellable triangulations of spheres, Europ. J. Combinatorics 12
(1991), 527-530.

[49] R. Loll, Discrete Approaches to Quantum Gravity in Four Dimensions, Invited contri-
bution to Living Reviews in Relativity, (gr-qc 9805049).

[50] F.Luo, R. Stong, Combinatorics of Triangulations of 3-manifolds, Trans. Amer. Math.
Soc. 337, (1193), 891-906.

[51] S.K. Ma, Modern Theory of Critical Phenomena, Frontiers in Physics 46, W.A. Ben-
jamin Inc. (1976).

[52] R.Mendoza, P. Gomez, F. Moares, Fluctuating Metrics in One-Dimensional Manifolds
J. Math. Phys. 38, (1997), 5293. ’

[53] C.W. Misner, K.S. Thorne, J.A. Wheeler Gravitation W.H. Freeman and Company
ed., San Francisco, (1973).

[54] E. Mottola, Functional Integration over Geometries, J. Math. Phys. 36, 697, (1995).

[55] S.Nag, Mathematics in and out of String Theory, In Proceedings of the 37th Taniguchi
Symposium on Topology and Teichmuller Spaces, World Scientific 187-220, (1996).

[56] R. Otter, The Number of Trees, Ann. of Math. 49, (1948), 583-599.

[67] U. Pachner, PL Homeomorphic Manifolds are Equivalent by Elementary Shelling, Eu-
rop. J. Combinatorics 12, 129-145, (1991).

[68] P. Petersen, Riemannian Geometry, Graduate Texts in Mathematics 171, Springer-
Verlag, (1997).

[59] A.M. Polyakov, Quantum Geometry of Bosonic String, Phys. Lett. B103, 207, (1981).

[60] AM. Polyakov, Gauge Fields and Strings, Harwood Academic Publishers, Chur,
(1987).

[61] T. Regge, General Relativity Without Coordinates, Nuovo Cim. 19 (1961), 558-571.

[62] C.P. Rourke, B.J. Sanderson, Introduction to Piecewise-Linear Topology, Springer-
Verlag, New York (1982).

[63] C. Rovelli, Strings, Loops and Others: a Critical Survey of the Present Approaches
to Quantum Gravity, Plenary Lecture on Quantum Gravity at the GR15 Conference,
Pune, India, (gr-qc 9803024).

[64] M.E. Rudin, An Unshellable Triangulation of a Tetrahedron, Bull. Amer. Math. Soc.
64, (1958), 90-91.

74



[65] H. Seifert, W Threlfall, A Teztbook of Topology, Academic Press. Inc.
- [66] B. Simon, Functional Integration and Quantum Physics, Academic Press, (1979)

[67] .M. Singer, J.A. Thorpe, Lecture Notes on Elementary Topology and Geometry, Un-
dergraduate Texts in Mathematics, Springer-Verlag, (1967).

[68] J. Stillwell, Classical Topology and Combinatorial Group Theory, Springer-Verlag,
(1993).

[69] M. Tamura, The Average Edge Order of Triangulations of 3-Manifolds with Boundary,
Trans. Amer. Math. Soc. 350, Numb. 5, (1998), 2129-2140.

[70] M. Tamura, The Average Edge Order of Triangulations of 3-Manifolds, Osaka J. Math.
33, (1996), 761-773.

[71] A. Thompson, Algorithmic Recognition of 3-Manifolds, Bull. Amer. Math. Soc. (New
Series) 35, Number 1, (1998), 57-66.

[72] W.P. Thurston, Three-Dimensional Geometry and Topology, Lecture Notes, (December
1991 version), Math. Sci. Research Inst. (Berkeley).

(73] W.T. Tutte, A Census of Planar Triangulations, Can. J. Math. 14, 21, (1962).

[74] D. Weingarten, Fuclidean Quantum Gravity on a Lattice, Nucl. Phys. B, 210, 229,
(1982).

[75] L.A. Volodin, V.E. Kuznetsov, A.T. Fomenko, Russian Math. Surveys 29:5, (1974), 71.

[76] D. Walkup, The Lower Bound Conjecture for 3- and 4-Manifolds, Acta Math. 125,
75-107.

[77] G.M. Ziegler, Lectures on Polytopes, Graduate Texts in Mathematics 152, Springer-
Verlag, (1995).

[78] G.M. Ziegler, Shelling Polyhedral 3-Balls and 4-Polytopes, Discrete & Computational
Geometry 19, 159-174, (1998).

75







