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Preface

The Korteweg de Vries ( KdV) equation with small dispersion is a model for the formation and propa-
gation of dispersive shock waves in one dimension. Dispersive shock waves in KdV are characterized by
the appearance of zones of rapid oscillations in the solution of the Cauchy problem with smooth slowly
varying initial data. These rapid oscillations are approximately described by a g-gap solution of KdV
where the corresponding amplitude, frequencies and wave-numbers are slowly functions of time and
space. The modulation in time and space of the amplitudes, the frequencies and the wave-numbers of
these oscillations and their interactions is described by the g-phase Whitham equations. The g-phase
Whitham equations is 2g + 1 dimensional system of quasi-linear hyperbolic PDE’s. The collection of
all these system for g > 0 is called Whitham equations. According to a conjecture of Dubrovin and
Novikov, the structure of the asymptotic description of the dispersive shock waves essentially depends
only on the local behaviour of the solution of the Cauchy problem for KdV and not on the global
properties of the initial data. Hence the asymptotic structure of the dispersive shock waves can be
described by a solution of an appropriate initial value problem for the Whitham equations. We study
the initial value problem for the Whitham equation for monotone polynomial initial data. We show
that for such initial data the solution of the Whitham equations has a finite number of interacting
oscillatory phases. We also show that the solution of the Whitham equations with monotone polyno-
mial initial data has a universal one-phase self-similar asymptotics. As an example of these results
we study on the z — t plane the bifurcation diagram of the solution of the Whitham equations for a
one-parameter family of initial data. For analytic initial data with a smooth perturbation of compact
support we obtain the solution of the Cauchy problem for the Whitham equations.
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Chapter 1

Introduction

The Korteweg de Vries (KdV) equation

Ug + BUlg + EUgee =0, t,z e R
(1.1)

u(z,t = 0,¢€) = ug(z)

with a small parameter € and with initial data decreasing somewhere is a model for the formation and
propagation of dispersive shock waves in one dimension. We assume that the smooth initial data ug(z)
is such that, for sufficiently small € > 0, the solution of (1.1) exists and remains smooth for all ¢ > 0.
This assumption holds true for rapidly decreasing or periodic initial data. For € = 0 (1.1) becomes the
Cauchy problem for the Burgers equation u; + 6uu, = 0. The solution u(z,t) of the Burgers equation
is given in implicit form by the method of characteristics

u(z,t) = uo(§) V (1.2)
= 6tu0(£) +£.

If the initial data ug(z) is decreasing somewhere, the solution (1.2) has always a point (zo,tg) of
gradient catastrophe where an infinite derivative develops. The dispersive term Ugez, € > 0 in
equation (1.1) prevents the formation of the point of gradient catastrophe, but after the time of
gradient catastrophe of the Burgers equation, the solution u(z,t,€) of (1.1) develops an expanding
region filled with rapid oscillations as shown in Figure 1.1. These oscillations can be called dispersive
analogue of shock waves [1].

The idea and first example of the description of the dispersive shock waves were proposed by the
physicists Gurevich and Pitaevski [1]. These authors studied initial data with cubic inflection point
and they approximately described the dispersive shock waves by a modulated periodic wave:

Vit + zo)

'U,(ill,t,E) = gsgdnz (g"s')l/2'(m;é—“a § +7: (13}
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Figure 1.1: The dashed line represents the formal solution of the Burgers equation after the time of
gradient catastrophe ¢ = ¢5. The oscillations on the picture are close to a modulated periodic wave.

where dn(y,s) is the Jacobi elliptic function of modulus s € (0,1), the quantities a, s, < and

V= 2a2 — ¢
- 38

to the Whitham equations [2] (see below) which are necessary for the validity of the approximate

+ 'y} depend on z and t and z, is a suitable phase. These quantities evolve according

description (1.3). For constant values of the parameters a, s and v, wu(z,t,€) is an exact periodic
solution of KdV with amplitude a, wave number %k and frequency w given by the relations

T a k
@ = Umaz (T, 6, €) — Umin (2, t,€), k—m 5 W=

where K (s) is the elliptic integral of the first kind.
Whitham introduced the Riemann invariants u; > uz > us to write the equations for a, s and v in
diagonal form. These quantities are expressed in terms of u; > ua > us by the relations
U — U
a =1u; — us s=—2—3, v =us+Uus— U - (1.4)
Uy —us

The Whitham equations for the u;, 1 = 1,2, 3 read

ol d )

50 1) + Ailn, vz, u5) 5owi(e,1) =0, §=1,2,3 (1.5)
with

K
Ml 1) = 2+ 50 + 4 — )
B B sK(s)
Aa(ur,ug,us) = 2(ug +uz +us) +4(uz ul)E(s) —(1-38)K(s)
K
Ag(ur,uz,us) = 2(ur +ug + us) +4(uz —us) E(s) *(S;{(S) ,

where E(s) is the complete elliptic integral of the second kind. Whitham obtained these equations
using his method of averaging conservation laws applied to the cnoidal periodic traveling wave solution
of the KdV equation. The parameter us can vary from us to u;. The oscillation region is bounded



w(x,t)

u,(x,t)

\%

g=1 &

X7 (1) x* (1) X

g= -0

Figure 1.2: On the picture, u(z,t) is the solution of the Burgers equation, (u1(z,1), ua(z,t), us(z,t))
is the solution of the Whitham equations (1.5). This solution and the position of the
boundaries 77 (), z7(t) of the oscillatory zone are to be determined from the conditions
u(z™(t),t) = ui(z™(£),8), uz(z™(£),1) = uia(z™(£),1), ulz™(¢),t) = us(z™(8),t), us(zt(z),t) =
uze (z7(2),1).

on one side by the point z~(¢) where us(z,t) = us(z,t), and on the other side by the point z T (¢)
where us(z,t) = u1(z,t) (see Figure 1.1 and Figure 1.2). Outside the region (z~ (t), z7 (¢)) the solution
u(z,t,€) of (1.1) is well approximated by the solution u(z,t) of the Burgers equation. To determine
the position of the boundaries z~(¢) and z* (t) one has a sort of free-boundary problem as shown on
Figure 1.2. In [1] the equations (1.5) are solved numerically for the initial data z = —u3|s=¢ and it is
shown that the oscillation zone grows as t2. Potemin [3] obtained the analytic solution of the equations
(1.5) for the same initial data and he showed that z~(t) = —12/3t% and o7 (t) = 4/3./5/3 t2. Avilov
and Novikov [4] showed numerically that the solutions of the equations (1.5) for cubic initial data
exists for all £ > 0.

Lax and Levermore [5], and Venakides [6] described, for certain particular classes of initial data, the
dispersive shock waves in the frame of the zero-dispersion asymptotics for the solution of the inverse
scattering problem of KdV. According to their results, to the solution u(z, ¢, €) as € =+ 0 it corresponds
a decomposition of the (z,t) plane into a number of domains Dy, g = 0,1,.... In the domain D, the
principal term of the asymptotics is given by the g-phase solution of the KdV equation [7]

u(z,t,e) = ® (Sl(z’t) eens Sg(:’t); ui(z,t), ... ,uQQH(z,t)) , (1.6)

€

where the functions S;(z,t) satisfy the equations [8]

05 _ p(a 9% _ (@ =
833 '_kJ(’u’(x7t))’ at -—wg(u(a:,t)), .7""17"'797 (17)
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and the formula
u(z,t) = @ (kyz +wit + d1, .., kgT + wet + dg 5 U, .., Uzgr1)

for constant values of the parameters uy, ..., Usg+1, kj = k;j(%) and w; = w;(%) and for arbitrary ¢;,
j=1,...,g, gives the family of the so-called g-gap exact solutions of KdV for e =1 [7].
We recall that, in this formula, the wavenumbers k; = k; (%) and the frequencies w; = w; (i) are hyper-
elliptic integrals of genus g; the function ®(¢1,...,dg;u1,...,Uzg+1) is 2m-periodic w.r.t. ¢1,..., 0
and can be expressed via theta-functions (see, e.g., [9]).

The wave parameters in (1.7) depend on the functions uy(z,t) > --+ > uggq1(z,t) which satisfy
the system of equations

Ou; ' :
—af—}-)\i(ul,lbg,...,'lﬁgg_,_l)“a"m—:0, i=1,..,29g+1, ¢g>0. (18)

For a given g the system (1.8) is called g-phase Whitham equations. The Whitham equations is the

Bui

collection of all systems (1.8) for g > 0. The zero-phase Whitham equation coincides with the Burgers
equation, namely

uz + buu, = 0. : : (1.9)

For g > 0 the speeds A;(u1,us,...,Usg+1), ¢ = 1,2,...,29 4+ 1, depend on wuy,...,uzg+1 through
complete hyperelliptic integrals on the Riemann surface of genus g

Ty = {p?=(r—w)(r—u)...(r —usg1)} -

For this reason the g-phase system (1.8) will be also called the genus g-Whitham system. When g = 1,
equations (1.8) are identical to the Whitham’s modulation equations (1.5) and because of this (1.8)
are also referred to as Whitham equations. The algebraic geometric description of these equations for
g > 1, was first derived by Flaschka, Forest and McLaughlin [10] applying the Whitham averaging
procedure to the family of g-gap quasi-periodic solutions of KdV.

According to a conjecture in [11] the asymptotic structure of the dispersive shock waves essentially
depends only on the local behaviour of the solution of the initial value problem for KdV near the
breaking point and it is independent of the functional class of the initial data. Solvability of the
Cauchy problem within the given functional class is assumed.

According to the same conjecture, now proved for certain classes of solutions of the KdV initial value
problem [12], the asymptotic structure of the dispersive shock waves can be described by a solution
of an appropriate initial value problem for the Whitham equations.

Since the initial data is monotone decreasing near the point of formation of the dispersive shock
waves, we will study the initial value problem of the Whitham equations for monotone decreasing
initial data. First we need a definition. The initial value problem of the Whitham equations for a
monotone smooth initial data z = f(u) consists of the following:



1) for t > 0 the (z,t) plane is split into a number of domains D,, where g = 0,1,... . In each
domain D, we look for a solution uy(z,t) > ua(z,t) > -+ > uggt1(z,t) of the g-phase Whitham
equations (1.8). For any ¢ > 0 the functions ui(z,t) > ua(z,t), -+ > ugg41(z,t) can be plotted on
the (z,u) plane as branches of a multivalued function. The solutions of the Whitham equations for
different g must be glued together in order to produce a C*-smooth curve in the (z,u) plane evolving
smoothly with ¢.

2) At the time ¢ = 0 we have only the Dy domain for any z. The correspondent zero-phase solution
u(z, t) of equation (1.9) must satisfy the initial data z = f(u(z,0)).

We will say that a solution of the initial value problém globally exists and it the has genus at most
go if it is defined for any ¢ > 0 and the domain D, are empty for g > go.

g=0

x"(t,) x'(ty) *
Figure 1.3: Bifurcation diagram in the (z,t) plane

The genus g(z,t) is a plecewise constant (see Figure 1.3) in the (z,t) plane. For general initial data it
is not known if the genus g(z,t) is bounded for any z, .

The algebraic and geometric structure of equations (1.8) was elucidated in [11]. Dubrovin and
Novikov developed a geometric Hamiltonian theory for the Whitham equations. Based on this theory,
Tsarev [13] was able to prove that, for each g, equations (1.8) can be solved by a generalized method
of characteristic. This method was put into an algebro-geometric setting by Krichever [14]. In this
frame he gave an algebro-geometric construction of particular self-similar solutions of the Whitham
equations.

Tsarev’s result enabled F.R. Tian [15] to further transform the Cauchy problem for the Whitham
equations (1.8) into a Cauchy problem for a linear over-determined system of Euler-Poisson-Darboux
type. Based on this result Tian [16] was also able to find sufficient conditions for the global existence
of the solution of the Cauchy problem for the Whitham equations (see Theorem 2.4 below). He proved
that the genus of his solution cannot be bigger then one. A different approach to the Cauchy problem
for the Whitham equations has been given by Dubrovin for initial data asymptotically polynomial. In
[17] a variational principle for the Whitham equations is introduced. The minimization of a functional
formally solves the Cauchy problem for the Whitham equations.

In our investigation on the Cauchy problem for the Whitham equations we obtain the following
results:
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1) we show that the solution of the Whitham equations with polynomial initial data of degree
2N + 1 has a number of interacting oscillatory phases less or equal to N (see Sec. 2.2). The proof
of this result is obtained giving an upper bound to the number of real zeros of the meromorphic
differential which describes the solution of the Whitham equations.

2) For monotone decreasing polynomial initial data of degree 2V + 1 we show that the solution of
the Whitham equations is asymptotically close to the self-similar solution of the Whitham equations
with the initial data z = —u?V*1 (see Theorem 2.7). To prove this theorem we use the result in 1)
which assures that the solution of the Whitham equations exists for £ > 0. We also use a result of Tian
[18] where he proves that, under certain conditions on the initial data, the solutions of the Whitham
equations has genus g < 1 for all times bigger than a certain time.

3) We give a complete description of the bifurcation diagram of the solution of the Whitham
equations for a one-parameter family of initial data. Namely we study the Cauchy problem for the
Whitham equations for a one-parameter family of monotone fifth degree polynomial initial data (see
Chapter 3). For each value of the parameter we classify the topological type of bifurcation diagram of
the solution of the Whitham equations in the z — ¢ plane. The classification is ruled by the existence
of particular points in the x — ¢ plane which we call double leading edge, double trailing edge, leading-
trailing edge, point of gradient catastrophe of the zero-phase solution and point of gradient catastrophe
of the one-phase solution. The numerical computations confirm the results of 1) and 2), namely the
solution of the Whitham equations has genus at most two and it has genus less or equal to one for all
times bigger than a certain time.

4) in the algebro-geometric setting we build the solution of the Whitham equations for analytic ini-
tial data with a small smooth perturbation of compact support (see Chapter 4). Following a Krichever’s
idea, we build the solution of the Whitham equations for the smooth part of the initial data in terms
of a non analytic differential defined on the hyperelliptic Riemann surface I'y. This differential has a
prescribed jump on a contour of the Riemann surface and it is constructed solving a boundary value
problem on the surface.



Chapter 2 |

Self-similar asymptotic solutions

2.1 Preliminaries on the theory of the Whitham equations

The speeds \;(i), i = 1,...,2g + 1 of the g-phase Whitham equations (1.8) are constructed in the
following way.
On the Riemann surface

Tyi={p?=(r—w)(r—us)...(r —uggq1)} , w1 >ua>-->ugg, (2.1)

with cuts along the gaps (—c0, ugg+1], [Uag, Uzg—1], - - -, [U2,u1] , We define the two abelian differentials
of the second kind with poles at infinity of second and fourth order respectively [19]

P (r i
dp = g(zlr’ %) dr, Fy(r,@)=r%+ ag—l"'g_l +- - +ag, (2:2)
Qqy(r, ) - g+1 & g g-1
dg = *4 2 dr, Qq(r,@) =12r" =6 | > " up | 19+ Bgar? -+ fo, (2.3)
i=1

where the coefficients o; = a;(@), and B; = B;(%), 1 =0,1,...,9—1 are uniquely determined by the

normalization conditions:

Uk U2k
/ dp=0, / dg=0, k=12,...,9. (2.4)
U2k+1 U2k 41
In the literature the differential dp is called quasi-momentum and the differential dg quasi-energy [11].
The speeds \;(#@) of the g-phase Whitham equations (1.8) are given by the ratio [10]:
Qu(us, @) _ dg

Ai(W) = 57—

hat , i=1,2...29+1. (2.5)
Py (us, @) dp

r=u;

11
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In the case g = 0, (2.2) and (2.3) become Py(r) = 1 and Qo(r) = 12r — 6u respectively, so that the
zero-phase Whitham equation (1.8) coincides with the Burgers equation (1.9).
The Whitham equation have been locally integrated using the following result of Tsarev [13].

Theorem 2.1 (Tsarev) If w;(u1,us,...,u2g+1) solves the linear overdetermined system
awi .o . .
6_“,—,— = aij(u17u27"'1u29+1)[wi "—U.)]] ,] = 1721"'729+1: 7 75.7
J

O\ (2.6)
6Uj .. . .

aij(ul,lbz,...,U29+1) = Y — N 4hJ] = 1,2,...,29+1, 1 #.7
i ¥

then the solution uq(z,t), us(z,t), ... uzg+1(x,t) of the hodograph transformation
z=N@)t+w(@) i=1,...,29+1, (2.7)

solves the g-phase Whitham equations. Conversely, any solution (ui,us,...,Usg+1) of the g-phase
Whitham equations can be obtained in this way in a neighborhood of (zq,to) where the uig’s are not
vanishing.

Some solutions of system (2.6) can be obtained with the following procedure [13]. Let o be the abelian
differential on the Riemann surface T’y with a pole of order 2(k + 1) at infinity:

_ Sk('r: ﬁ)

Ok o dr, Sk(r,d) = rkte 4 'yk+g_1rk+g“1 4+ (2.8)

The constants v, = (%), 1 = 0,1,...,k 4+ g — 1, are uniquely determined by the normalization
conditions:
‘U.2J

/ Jk:O: j:1527"'7g: (29)
U271

and by imposing the asymptotic behaviour:

k-1
op = {T 5 4 O(r‘%)} dr, forlarge |r]| . (2.10)

Observe that o9 = dp and 01 = dg.
Then the quantities

Sk (ui, @) o

nl L i=1,2,...,29+1, k>3 2.11
By(u @)~ dp g (2.11)

r=u;

solve the over-determined system (2.6) [13].
For the monotone decreasing analytic initial data

r=fluw)=c+cut+ -+cut+... cxeR, (2.12)
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the solution of the g-phase Whitham equations is given by the expression [15]

=M@ t+w;(@) 1i=1,...,29g+1, (2.13)
ds

wi(h) = — , 1=1,...29+1 : 2.14

(=5 g (214)

T=Ui

where ds is the differential

M okgl
ds= 3 (2% — 1)L *Tk> (2.15)
k=0

and the o4’s have been defined in (2.8). The solution (2.13) can also be written in the algebro-geometric
form [15, 14]

(zdp — tdq + ds) |p=u, =0, i=1,2...,29+1. (2.16)

We need to consider what happens to the equations (2.13) or (2.16) when one of the u; coalesces
with either w;—1 or u;41. From [20] it can be checked that the abelian differentials of the second kind
oy = oy(r,i4,g), k > 0, defined on I'y satisfy the relation

O'k(?", ﬁ;Q)l[uz:uz.{_l:u] = O'k(‘l',’lf*,g - 1)7 l=1,...29, k>0, (217)

where @* = (u1,...,U—1, Y42, . ., U2g+1) and o (r,4*, g — 1) is the abelian differential defined on the
Riemann surface p? = (r — uy)... (7 — w—1)(r — wi42) ... (7 — ugg41) with a pole of order 2k + 1 at
infinity.

From (2.17) the speeds A; (@) satisfy the following equalities

Ai('ll:]_, ey UL, Uy Uy U425 - - - :u2g+l) = Ai(uly ey U1, UL42, - - - )u2g+1)

Qo1 (us, @) ., . (2.18)
= = 7 l,Zzl,...,Z +1,
Py_q (us,d*) 7 g

Al(ula ey U1, U, Uy U2, - 7“29+1) = Al—l—l (Ula ey U1, U, U, U2, - - - 1u2g+1)
Qg (u, @) 1 ) (2.19)
=Py DL g.

Analogous relation can be obtained for the w;(%), ¢ = 1,...,2¢ + 1. This shows that the g-phase
solution of the Whitham equations can be attached continuously to (¢ — 1)-phase solution. In the case

g =0 (2.16) becomes (with the notation u; = u)
- — - T 1
z — t(12r — 6u) — f(u) g — f(6)de dr]

which is equivalent to the equation

=0,

r=u

z =6tu+ f(u), (2.20)
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that solves (1.9) according to the method of characteristic.

The solution of the g-phase Whitham equations u; > us > -+ > uUgge is implicitly defined as a
function of z and ¢ by the equations (2.16) or (2.13). The solution is uniquely defined only for those
z and t such that the functions u;(z,t) are real and distinct and the partial derivatives d,u;(z,t),
1=1,...,2g + 1, are not vanishing,.

2.2 Bound to the number of oscillatory phases

Using (2.16), we give an upper estimate to the number g of interacting oscillatory phases in the
solution of the Whitham equations for monotone polynomial initial data

T = f(u) = (CQ +cau+---+ CzN'U,ZN -+ CQN+1U2N+1) , (2.21)

In other words, we prove that the solution ui(z,t),...,uz2g+1(2,t) of (2.16) exists for any z and ¢
assuming ¢ < N..
We rewrite the equations (2.16) for the polynomial initial data (2.21) in the equivalent form

[z Py(r, @) —tQqg(r, @) + S(r,d)]|,—,, =0, i=1,...29+1, (2.22)
where
2N+1 &
o 27kl .
S(’I‘, U) = kgzo mC}c Sk(r, u) .

The real coefficient polynomial Z(r, @) = z Py(r, @) — t Q¢(r, @) + S(r, @) has degree 2N + 1+ g. By
the normalization conditions (2.4) and (2.9), Z(r, @) has at least one real zero in each of the intervals
(qu.H, ’U,gk), k= 1, 2, vy g-

In order to satisfy (2.22), Z(r,4) must vanish at each of the branch points u,us,...,u2g+1. Thus
when (2.22) is satisfied, Z(r,%) must have at least 3g + 1 real zeros. This implies the inequality
3g+1<2N+g+lorg<N.

Hence the number of oscillatory phases in the solution of the Whitham equations is at most equal to
N for polynomial initial data of degree 2N + 1.

2.3 The one-phase solution

In this section we show that the solution of the Whitham equations with monotone polynomial initial
data has a universal one-phase self-similar asymptotic. For the purpose we first need to give more
details about the solution of the Whitham equations.

For the monotone decreasing initial data z = f(u), the solution of the zero-phase equation (1.9) is
obtained by the method of characteristics and it is given by the expression

z="6tu+ f(u). (2.23)
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This solution is globally well defined only for 0 < t < t. where ¢, = § minyer[—f'(u)] is the time of
gradient catastrophe of the solution. The breaking is caused by an inflection point in the initial data.
Without loss of generality we may assume the breaking point to be at the origin of the z,u,t plane.
" It immediately follows that f(0) = f'(0) = f”(0) = 0. For ¢ > ¢, = 0 the solution of the Whitham
equations is obtained gluing together Cl-smoothly solutions of different genera as shown in Fig. 2.1 in
the case g < 1. The functions u (z,t), u2(z, t), us(z, t) plotted on Fig. 2.1 match the Burgers solution

u u(x,t)

X

Figure 2.1: On the picture the evolution of ui(z,t) > us(z,t) > us(z,t) is ruled by the one-phase
Whitham equations, while u(z,t) satisfies the Burgers equation.

at the boundaries of the multi-valued region, namely:
a) trailing edge

u; = solution of the Burgers equation outside the multi-valued region (2.24)
U2 = Uus , .

b) leading edge
meon S | . (2.25)
uz = solution of the Burgers equation outside the multi-valued region.

The solution of the one-phase Whitham equations which satisfies the boundary conditions (2.24)
and (2.25) has been obtained by Tian for smooth monotone initial data. His strategy is based on
Theorem 2.1. He solves equations (2.6) in the case ¢ = 1 imposing the following boundary conditions
on the w;(uy, us, u3)’s which follow from (2.13) (2.20), (2.24) and (2.25):
a) trailing edge
wy (u1,us,us) = flur), walur,us,us) = wa(ui,us,us). (2.26)

b) leading edge

wy (Ul,ul,u3) = w2(U1,U1,U3), 1U3(U1,U1,U3) = f(us)- (2~27)
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The next theorem enables one to solve the one-phase Whitham equations for monotone decreasing
smooth initial data z = f(u).

Theorem 2.2 [16] For g = 1 the unique solution of system (2.6) with boundary conditions (2.26)
and (2.27) is given by the expression

1 0 ,
w;(uy, ug, uz) = (5)\Z — Uy — Usg _US)a_;Z_' +q, 1=1,2,3. (2.28)

The function ¢ = q(uy,us,u3) is the unique symmetric solution of the Cauchy problem

0%q Oq 0qg . .

s I - = =1,2 2.

2(’11,1 uj)a’u,iauj' 3’114,, a’u]‘ bJ 17 73 ( 29)
q(u,u,u) = f(u) (2.30)

and is given by the expression

: 1 tpiyv, o Mpel-v, o l-p
q(u1,u2,us) = 571—2—/ / A i 2z ° 2 ua)dudv. (2.31)
mJo1/-1

V(@ =) =v?)

The equations (2.29) were obtained in [21]. For analytic initial data f(u) = co+cru+---+cpu® +...

the function q(u;,uz2,us) can also be written in the form [15]

(o)
c
q(u, uz,u3) = Z &k (un, uz, us) (2.32)
= 2
(2k — )N _ ,
where Zp = ToRET and the n;’s are the coefficients of the expansion for 7 — oo of
1

=7 (o +mr 4 Fmrt ). (2:33)

V(=) (r —ug)(r — us)

The solution of the one-phase Whitham equations which satisfy the boundary condition (2.24) and
(2.25) in then given by the hodograph transformation

z = X (u1, ug, ug)t + wi(ug, ug,u3) i=1,2,3. (2.34)
where the w;’s have been defined in (2.28).

Lemma 2.3 If the monotone initial data f(u) € C*(IR), then the one phase solution (2.28)-(2.34) is
attached C'-smoothly to the zero-phase solution (2.20).

Proof: We use a standard result on the theory of Whitham equations namely [16]

-cz-(Aini) =0, ,7=1,2,3i#3] (2.35)
8’U,j
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on the solution of (2.34). Then on the trailing edge u1, is given by

5 .
(Opur)™t = %:(Alt + w1)lug=us-

We write the speeds A;(u3,us2,us) in the form (see chap. 3)

3

Ai(u1,u2,u3) = 2(ur + ug +us) + [[wi-w) i=12,3,
=1

Qg + U;
J#i

where ag defined in (2.2) reads

ap = —u1 — (u _u)_ﬁ_:_(f_). g t2 U3
0 1 40 o — s
The normalization constant aq satisfies the relation (see below (3.37))

1 (a0 +u)®
2 Hk#(ui - uk)

For 0 < s € 1 ap can be expanded in the form

aao

8ui

:_%+ ki=1,2,3.

K L]
= - e — 1 -
o) us + 2(U3 ul)( + 8),

while for 0 < 1 — ¢ « 1 the elliptic integrals satisfy the relations

16
1—5’

1
K(s) ~ ilog

E(s)~1+ %’(jl—s) [log 11_65 - 1} .

From (2.38) and (2.39) it can be easily checked that

2

1o} 0 0
E’IL—l-()\lt -+ wl)‘uzzu? =6t + 3-8—&—1-(](1“, us, U3) -+ 2(U1 — U3)5?—L—,i;q(u1,U3, Ug)

=6t + f'(ul) .

On the leading edge an analogous expression is obtained from (2.38) and (2.40) namely

0
(0:u) ™" = (ot + wa)lumua = 6+ f'(u3).

QED

17

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

The leading edge and trailing edge of the solution of the one-phase equations are determined in the

following way [15]. Eliminating z from system (2.34) we obtain

Fi(t,u1,uz,us) = [N(D)t + w; (T)] — [A2 (@)t + we(@)] =0 7=1,3.

(2.42)
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Substituting the explicit expression for A; and w; we simplify system (2.42) to the form system

= _ F1(t,u1,u2,u3)
F1<t1 Ul,'u,g,’LL3) - (Uz’ _ uz)(K(s))“ mod 3]
4 Uj — Uj 1 9q U — Uj 1 Oq
= - t+ = =4 i
BG)E 008 |5 5000 T 250 T us v a0 T 350,

i,j=1,3

)| i#G (243)

where 1 mod 3 = 1 and 3 mod 3 = 0. Clearly system (2.42) is equivalent to system (2.43) in the
region u; > ug > us. The reason to consider system (2.43) is obvious from the fact that system (2.42)
is degenerate at the trailing edge (uz = u3) and leading edge (u; = us), while system (2.43) is not.
System (2.43) at the trailing edge, where us = ug, i.e. s = 0, becomes

- 4] o)
Fi(t,uy,us,uz) = 6t + il + 2-~q— =0
B’Uq B'U,g
) 94 3 1 8g (2.44)
Fy(t =2(u —uz3) m——— — = [t+==—| =0
2( :u1:u3:u3) (ul u3)6u3auz D) |: + 9 ausjl
At the leading edge where u; = ug, i.e s = 1, system (2.43) reads

10
Fl(ul,ul,U3) =i+ “—q— =90

2 Bu1

1 8q (2.45)
Fg(ul,ul,U,g) =t+ 55;;3‘ =90

For any ¢ systems (2.44) and (2.45) determine the coordinates (uy,us,us) of the trailing and leading
edge respectively. For a given initial data it is not an obvious fact to show when these systems have just
one real solutions. The systems (2.43), (2.44) and (2.45) have been extensively studied by Tian while
showing that the hodograph transformation (2.34) has a real solution w;(z,t) > us(z,t) > us(z,t).
The following theorem gives conditions for the existence of a global solution of the Cauchy problem
for the Whitham equations with genus at most one.

Theorem 2.4 [16] Suppose that the monotone decreasing initial data z = f(u) has only one inflection
point at the origin of the z,u plane and satisfies the condition f"'(u) < 0  for all u 3 0. Then
the solution of the Whitham equations ezists for all t > 0. The solution is of genus one inside the
interval (t) < = < zt(t), where () < z(t) are two real functions satisfying the condition
z_(0) = z4.(0) = 0; it is of genus zero outside this interval. The solution satisfies the boundary
conditions (2.24) and (2.25).

When the initial data of the Whitham equations is of the form f(u) = —uf, k = 3,5,7,..., one
obtains the distinguished self-similar solutions [3],[14]. Their genus is at most equal to one. These
solutions have the form u;(z,t) = T Ui(t_%x), 1 =1,2,3. Indeed, the A;(u1,us,us)’s are homoge-
neous functions of uy,us and us of degree one while the w;(u1,u2, u3)’s are homogeneous of degree k.
Introducing the new variables

X =tFTg, wulzt)=t=1U,(t % 11), u(z,t) =tFTUE 1)), (2.46)



2.3. THE ONE-PHASE SOLUTION 19

the system (2.34) becomes time free. Indeed

X = Xi(U1,02,U3) + wi(Uy,Us,Us), i=1,2,3 (2.47)
and the characteristic equation (2.20) becomes

X =6U -U*. (2.48)
The w;’s in (2.47) are given by the expression

1

wi(U) = - 5/\2((7) U Uy —Us| 2 m(U) _ me(U)

BUi Zk Zk ’

(2.49)
where U = (U1,Us,Us) and 7 has been defined in (2.33).
The following result can be derived from Theorem 2.4 and Lemma 2.3.

Corollary 2.5 For z = —u*, k = 3,5,7,..., the Whitham equations have a global self-similar one-
phase solution uq > ug > us:

ui(z,t) =t U (" FTg), i=1,2,3 (2.50)

within a cusp in the z —t plane: z_ (k)tﬁ_l <z < :L‘+(k)t7£—f, where z_(k) < z(k) are two real
constants and t > 0. On the boundary of the cusp the one-phase solution is attached C*-smoothly to
the solution u(z,t) of the zero-phase equation.

The constants z— (k) and z.(k) are given by the following relations:

(k) = —6 k—;l(zz_(k) _1) [%(1 + 2k - 1)2_(k))] T k=357, (2.51)

where z_(k) > 1 is the unique real solution of F(—k +2,2,2;2) = 0. Here F(a,b,c; z) is the hyperge-
ometric series. The quantity T4 (k) is obtained from the expression

k-1

-
} . k=3,57,..., (2.52)

(224 () - 3) [2—(3 20k — 1)z (k)

where the number z4 (k) > 1 is the unique real solution of the equation F(—k +2,2,1;2) =0.

Proof: The quantity z_(k) and the points (U;,Us = Us) are the solution of the system obtained
from the characteristic equations (2.48) and system (2.44) after the rescaling (2.46), namely
(k) —_ 6U]_ U1

3

6—~U11 FE(-k+1,1, 50 1

(k+2,3,1— 7)) =0,

_Us
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where F'(a,b,c;z) is the hypergeometric series. From the above system (2.51) easily follows. In the
same way z+ (k) can be obtained. QED S
Below we give the first numerical values of z_(k) and z (k).

k' z_(k) =zy(k)
3 -—-20.784 1.721
5 -16.849 1.584
7 -16.215 1.606
9 -16.090 1.716

Remark For ¥ — oo the solution (2.46)-(2.49) goes to the step-like solution of [1]. The limiting
solution loses the smoothness.
The following result of [18] will be important for our considerations.

Theorem 2.6 [15] Let us assume that the solution of the Cauchy problem for the Whitham equations
with monotone decreasing initial data = = f(u) exists for any z,t > 0. Suppose that the function f(u)
defined on the whole real azis satisfies the conditions

limyy oo f'(u) = +00, F(u) <0 for u— +oco,
(2.54)
f"w) <0 for u>uy ond u<u_

where uy. > u_ are some real numbers. Then there is a time T > 0 such that for all t > T the solution
of the Whitham equations is of genus one inside the interval T (t) < z < 7 (t), where z~(t) < z*(t)
are two real functions of t. It is of genus zero outside this interval and satisfies the boundary conditions
(2.24) and (2.25).

2.4 Asymptotic self-similar solutions

Let us consider the Cauchy problem for the Whitham equations for the monotone decreasing polyno-
mial initial data

g = flu) = —u* + fi () (2.55)

where fi(u) = —(co + c1u + - - - + conu?).

According to the result in Sec. 2.2 the solution of the Whitham equations for such initial data exists
for all z and ¢ > 0 and it has a bounded number of interacting oscillatory phases.

The monotone decreasing polynomial initial data satisfy the hypothesis of Theorem 2.6. Hence
there exists a time T such that for all time ¢ > T the solution of the Whitham equations with
polynomial initial data has genus g < 1.
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We consider the solution of the Burgers equation (2.20) and of the one-phase equations (2.34) for
the polynomial initial data (2.55) when ¢t > T'. We introduce the new variables given in (2.46) with
k = 2N + 1. Then the solution of the Burgers equation (2.20) becomes

2N : :
X =6U - U+ =3 2Nk Uk, - (2.56)
k=0

where € = t~2~ . The solution (2.34) of the one-phase Whitham equations becomes

X = N0) +w(0) +wi (@), i=1,2,3 (2.57)
where the w;(/)’s have been defined in (2.49) and
2N aN—k+1 Ji
P € Ck 1 =+ Nk (U) —
: - — ———— — M\ —_ — — 2.
wi(U) ,;:0 7 [(2 NU) =Up —Us U3> 50, +n(U)] (2.58)

Theorem 2.7 The solution of the Whitham equations (1.8) with initial data (2.55) is asymptotically
close for t — oo to the self-similar solution (2.47)-(2.49) with initial date z = —u*N+1,

Proof: For the initial data (2.55) system (2.43) with the rescaling (2.46) reads
Fy(Uy,Us,Us, €) = FY(Ur,Us, Us) + Ff (U, Us, Us) = 0

~ _ ~ (2.59)
F3(Uv,Us,Us,€) = F9 (U1, Us, Us) + F5(Ur, Us, Us) = 0
where F? and Ff, i =1,3 read
- 4 U, - U; 1 Onana(0)
0 _ i
Fy (UlaUZ:US) "(K(S))[z mod 3] | U, + ag 1 2Z9N+1 aU; )
- (2.60)
Us = Uj 1 Omen+1(U) . o,
1- =1,3,
* Us + oo 2Zyny1 O0Us Y A
and
- 2N N —k+1 i . Ji Ui
~ € Ck U, — UJ 377];((]) U; — Uj Bnk(U) .. . .
£ = - = 1,3,
Fz (U17U2:U37€> 2;—:—0 Zk(K(S))[Z mod 3] U; + ap aUz + Us + ag 3U2 b (; 6#1;

The function (Uy,Us,Us,€) — Fy(U1,Us,Use), i = 1,3, is a Cl-smooth function of ¢ € IR and
Uy > Uy > Us. For Uy = Us the left and right limits coincide

aFi(U11U27U37E> . 8Fi(U1:U27U37E)

lim lim 1=1,3, 7=1,2,3. 2.62)
UL —UF oU; AN oU; (
An analogous relation holds true at the points where U; = Us. We will say that the function

(U1, Us, Us,€) = Fy(U1, Uy, Us,€), i = 1,3, is a C'-smooth function of € € IR and U; > Us > Us when
(2.62) is satisfied.
We have the following theorem of Tian [18]
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Theorem 2.8 System (2.59) can be solved for Uy and Us in terms of Uy and € namely

U = 11Uz, €) (2.63)
Us = 93(Us, €)
for0<e< % where T is defined in Theorem 2.6 and Uy (€) < Uy < U (e).

On the boundary Us = U2+

{W=W=WW@

Ut = s (UF€) (2.64)

For Ug - UZ—

{W=wwa

2.65
Us =Uy =¢3(Uy ,e). (2.65)

The functions 1; are decreasing function of Uy. The Jacobian matriz
o jeR
a(Fl 3 F3) - 6U1

oULUs) |, OF
U3

is diagonal and non singular in the region Uy > Uy > Us. Substituting (2.63) into (2.57)

(2.66)

X= )‘2("/}1 (U27€)7U27 ¢3(U2:6)) + w2 (¢1(U2: 5)7 U21w3(U276)) + wg('lpl(Uﬁa 6)1 U2,¢3(U2,5))
(2.67)

which determines X as an increasing function of Us over the interval [Uy (), U (€)]. It follows that for
fizede,0 < € < %, Us, and consequently Uy and Us are functions of X over the interval [X ~(e), X *(¢)]
where

X*E(e) = A (UfE(e), Ui (), U™ (€)) + w2 (U (€), Uz (€), Us™(€)) + w5 (U (), U3~ (€), U3 (e)) -
(2.68)

We proceed with the proof of Theorem 2.7.
The functions ;(Us,€), ¢ = 1,3 in (2.63) are C'-smooth functions of e € R and U; > Uy > Us
and they can be written in the form '

wi(UZ’E) = wz(U%O) + E":bil(Ume) 1=1,3, (269)

where

- -1 ~
. _3/6 iUy, €) __1/6 OF;\  OF
i (Uz,€) = — N e de = —~ .\ a7, e (2.70)
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The integrand in (2.70) i

57, is
F;

different from zero for € > 0 and Uz < Uz < U;. The numerator ?—-— is non singular for € > 0 and

Us < Uy < U; and the ratio is a bounded function of Uy U2 and Us. Consequently

¥ (Uz,6) = 0(1) i=1,3. (2.71)

On the boundary

Uf () = U3 (0) + v (U (6), ¢ -
Us (€) = Uy (0) + e93(Us (€), )

The corresponding endpoints X+ (¢) and X ~(e) satisfy the relations
X*¥(e) = X*(0) + w5 (UF(€), U™ (e), U3 (€)) ' (2.73)

ws (U (€), Us (€), U3 (e)) = o(e) -

The proof of the theorem is completed.

The above theorem holds true whenever to the polynomial initial data is added a small smooth
perturbation of compact support. It remains to prove that the solution of the Whitham equations
exists for all t > 0. This is a point of further investigations.
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Chapter 3

Bifurcation diagram of dispersive

Waves

In this section we study a perturbation of the Gurevich-Pitaevskii solution of the Whitham equation.
In the theory of singularity a function behaves quadratically in the neighborhood of its generic singular
point [22]. In a similar way, in the theory of dispersive shock waves the generic analytic monotone
decreasing initial data x = f (u|t=o) behaves (up to shifts and rescalings) like z = —u® in the neigh-
borhood of its generic breaking point. Thus the initial data considered by Gurevich and Pitaevski
describes the generic behaviour of the dispersive shock waves near the point of gradient catastrophe.

An important feature of this generic behaviour is the semi-cubic law —12v/3 < t?&;—z_ < %\/g for
the width of the oscillatory zone.
In this section we study the dispersive shock waves in which two or more oscillatory wave trains come
in interaction or the case in which the solution of the Whitham equations (1.5) comes itself to a
point of gradient catastrophe. We will see that such a phenomena necessarily occur in the simplest
non trivial deformation of the cubic law. Such deformation turns out to be a one-parameter family of
solutions of KdV. The initial data for such a family can be obtained considering higher order terms
of the Taylor series of z = f (ult=0) in the vicinity of a cubic inflection point £ where f"'(§) # O.
The first non trivial monotone decreasing truncation of the Taylor series near u = ¢ is the fifth order

polynomial:

z~—cs(u—&)° —cglu—* —cs(u—8)°, ¢3>0,¢5>0. (3.1)

Through the shift (z — z + 6t£,u — u + £) the above initial data becomes z ~ —c3u® — cqu* — csu®.
The parameter space (cs, c4,cs) can be reduced exploiting the invariance of the KdV equation under
the groups of transformations (z — k*z, t = k%¢, u = ku), k# 0 and (z = az, t =+ at), a # 0.

These transformations change, however, the value of the small parameter €. Taking k = y/c3/cs and

25
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a = c3, the initial data (3.1) can be reduced to the form

z=-ud—cut—ub, (3.2)

where the dimensionless parameter c is chosen in the form

s _ V5 V()
Veses 2 /FIEE)

The monotonicity condition requires ¢* < 15/4. From the above considerations the polynomial (3.2)

C =

represents the generic one-parameter deformation of a monotone decreasing initial data with cubic
inflection point.

‘We study the bifurcation diagram of the solution of the Whitham equation for the family of initial
data (3.2) applying the Dubrovin’s variational principle.
We use this variational principle to arrive at the main result of this chapter. This is a complete
description of the bifurcation diagram of a one-parameter family of initial value problems (1.1). In
this case the solution of the initial value problem turns out to be glued from solutions of the Whitham
equations of genera g =0, g=1and g =2.

3.1 Variational principle for the Whitham equations

The solution of the Whitham equations, for given initial data, can be written as the minimizer of a
functional defined on a certain infinite-dimensional space [17].

Let us first consider the zero-phase equation. The characteristic equation z = 6tu + f(u), where f(u)
is the monotone decreasing initial data

Flu) = —csu® — cqut — -+ — oy (3.3)

can be consider as the minimum of the function
G?m,t,a}(”) = gu — 3tu® — F(u) (3.4)

where é= (e3, ¢4, ...,con+1) and F'(u) = f(u). The minimization problem is well defined only when
2

the minimum of the function (3.4) is unique, that is when %G&,tﬂ(u) = —6t — f'(u) > 0. At
the point of gradient catastrophe (zg, to, uo) the solution of the Burgers equation develops an infinite
derivative (ugy)™' = 6t + f'(u) = 0. After the point of gradient catastrophe the function (3.4) fails to
have a unique minimum.
In [17] the function of type (3.4) is extended to a functional onto the moduli space of all hyperelliptic
Riemann surfaces in such a way that it has a unique C*-smooth minimum in this space. This minimum
gives the solution of the initial value problem of the Whitham equations (1.8).

First we define the restriction of this functional on the Riemann surfaces of genus g with branch

points u; > uy > -+ > uggs1. The restriction is a function depending on u; > uy > -+ > uggy1 and
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its stationary point solves the g-phase Whitham equations. This function is build as follows. Consider
the asymptotic expansion of the quasi-momentum dp in (2.2) (see e.g. [23]) defined on the Riemann
surface Ty 1= {p? = (r —u1)(r —ug) ... (r —ugg+1)}, ua > Uz > -+ > Uggy:

dp =

1 IZ%HAW 55)

2\/‘ 2\/‘ 22k+1rk+1
The coefficients I, = I (ul, Uz, ..., Uzg+1) are the so called KdV integrals and are smooth functions
of the parameter u; > ug > -+ - > Ugq1.

Theorem 3.1 [17] On the Riemann surface I'y consider the function G (u1,U2, o, Uggy1) de-
pending on the real variables uy > ug > -+ > Uggy1

2N+1

k!
sz,t’é.](Uh'LLg, .. .,U2g+1) —t —IZJI[) -+ 3tI1 - kX: kaIk s (36)
=3
where I, = Ik(ul,uQ,...,uQQ;l), k= 0,1,...,2N +1.
Then the equations
0 .

%sz,t,é'](ul’u%‘"’u29+1):O , 1=1,2...,29+1, (37)
are equivalent to the equations

(xdp—tdg +ds)|,—,, =0, 1=12...,29+1, (3.8)

where dp, dg and ds have been defined in (2.2), (2.8) and (2.15) respectively.
The proof is based on the following lemma, [24].

Lemma 3.2 Let ds' and ds? be normalized abelion differentiols of the second kind on the Riemann
surface T'y with a pole at infinity of order 2Ny and 2N, respectively and such that in their asymptotic

eTPansion
1—- Zrlﬂ-l’ for large ||,
ds* = Z,«Hl’ for large ||,
the constants ai and a2 do not depend on the curve I'y when k < 0. Then
dstds? d
Res 2% = %y 2, j=1,2,...,29+1, (3.9)
r=u; dr Ou;
where
1 2
.
= —te .10
V.dslds2 2% + 1 ) (3 )
£>0

1,702 d ld 2
and Res,—y; é?—;i stands for the residue in r = u; of the differential 5 a8 .
e
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Proof of Theorem 3.1.
From Lemma 3.2 it can be easily checked that for j =1,2,...,2g + 1:

o0ly dp dp
611,]' =2 rli':eusJ dr
oL 2 dp dq
au]‘ N 3 TE%S] dr (3'11)
Ol — —9(2k+1) Reg dp o . k>3,
Ou; r=u; dr
where oy has been defined in (2.8). From (3.11) Theorem 3.1 follows. O

To extend the function (3.6) defined on the hyperelliptic surfaces of genus g to a functional on the
infinite dimensional space M of all hyperelliptic Riemann surfaces I'y, g > 0, with real branch points
U1, Us, ..., Uzg+1 and their degeneration, we refer to [17].

Construct the space M inductively starting from

M():]R.

We denote u the coordinate in Mp.
Define now

My = MJUi_, My_,(j) Ui, Mgy (5)
where
Mg = {(ul,'U,z,.. . ,’ngg+1) € ]RZQ-H[ up > Uz > > u29+1}

and any of the spaces M gl’_21 (4) is isomorphic to M,_; assumed to be already constructed. The space
M;_,(4) is attached to the component of the boundary of M where

ugj —ugit1 20, j=12...,g;
the space M, _,(j) is attached to the component of the boundary of Mg where
U2j—1—U2j—)0, j=12,...,9.

Remark The inner part of M, parameterizes isospectral classes of g-gap potential u(z) [7] of the
Sturm-Liouville operator
52
L= 22 + u(z) . (3.12)
Any such potential is a certain quasi-periodic analytic function of z. Generically it has ¢ independent
periods. For a g-gap potential, the spectrum of the operator L consists of the segments

spectrum = (—00, Ugg41] U [ugg, ugg—1] U - - - U [ug, u1]
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which are called bands of the spectrum. The segments [ugg+1,u2g] U - - - U [us, up] are called gaps of
the spectrum.

The function Gfm,t,a](“b“% ... uggy1) defined on the space of hyperelliptic Riemann surfaces [
can be extended to a functional on the space M. In [17] the extension is build proving that the
Ii(u1,...,u2g+41),’s can be extended to smooth functionals on M. We state the following theorem

Theorem 3.3 The functional

aN+1 Bl
G[a:,t,é’] = —gly + 3t — Z mek]k (3.13)
k=3

is a C* smooth functional on M. Its minimizer is a C'-smooth multi-valued function of = depending
C-smoothly on the parameters t,cs,ca, , . .., Cant1. If the minimizer (u1(z,t),...,uz,+1(x,t)) belongs
to M g for certain values of the parameters, then this minimizer satisfies the g-phase Whitham equa-
tions.

For a proof and details see [17].
We add without proof the following lemma.

Lemma 3.4 If the minimizer (ui(z,t),...,u25+1(2,1)) of the functional (8.18) belongs to M, then
it is also a minimum of the function Gfm £,2] (U1y-..,U2g41)-

3.2  Study of the function g = g(z,?)

The genus g(z,t) of the solution of the Whitham equations for the one-parameter family of initial
data (3.2) can be at most equal to two (cfr. sec 2.2). In order to obtain the bifurcation diagram on the
z — t plane of the solution of the Whitham equations for the initial data (3.2) we describe the locus
of points of the (z,t) plane where the geﬁus g{z,t) increases from zero to one. For the classification
problem it is pointless to describe the locus of the points of the (z,t) plane where the genus g(z,t)
increases from one to two. It is sufficient to investigate where the solution of the one-phase Whitham
equations have a point of gradient catastrophe.

We start studying the functional (3.13) near the boundaries of the space M; where the genus
increases form zero to one. The space M7 has two boundary components M} and MZ. We call trailing
edge the boundary component M} (see Figure 3.1) that corresponds to the opening of a gap in the
spectrum of the Sturm-Liouville operator (3.12). We call leading edge the boundary component Mg
that corresponds to the opening of a band in the spectrum (see Figure 3.1).

We follow a procedure in [17]. In the inner part of M; the differential dp is given by the expression

T+ o _ E(s)
2\/(7‘ - ul)(r '“21'2)(7‘ - u3) ’ Qo = ~m(u3 - ul) — U, (3.14)

dp =
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Figure 3.1: The trailing edge and the leading edge.

where s = Z3 — Zz . From the expansion (2.39) of o it immediately follows that near M} one has -
3~ U1
dr dr r+v—2u 9
dp = dr + O(e*) , 3.15
P 2m+68(u—u)(r~v)2mT+ (<) (3:.15)
where
)2
wmu, p=t2ti _(-uw) (3.16)
2 4
It follows from (2.40) that near M one has
dr (v —u)dr 2
dp = 26 dr + 0(6%) , 3.17
P=3 r——u+ (r—v)mr+ (5%) (3-17)
where
-1
Uy + ug 4
= —t S = . -1
v 7 0 [log (w1 — uz)z} e (318

3.2.1 Trailing edge

Near the trailing edge, the expression of the functional (3.13) is obtained from (3.5) and (3.15) and
looks

—6t(2v—u)+z—qg—2(v—u)d,
Glata)(u,v) = Gl () + ¢ ( ) 0w _i) i) O(e?) (3.19)
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where G? 7)(u) has been defined in (3.4) and ¢ = q(u,v) is given by

[z,t,E
AL kg 190
o) == 3 e (3.20)
where the & (u,v)’s are the coeflicients of the expansion for 7 — oo of
1 1 SRS €x
=t T+ G 3.21
(’f‘ _ ’U)M T% (&) ) ( )

Near the minimizer z = 6tu + f(u) the expression (3.19) can be simplified to the form
Glzt,8)(u,v) = G?M’E] (u) + (=6t — Byq — Byq) + O(e?). (3.22)

The above equality is easily obtained observing that g(u,u) = f(u).

If, for fixed (u,t), the e-correction of (3.22) is positive for every v € IR, then the minimizer belongs
to My. If it is negative for some values of v, then the minimizer belongs to the inner part of M;. The
points v < u belong to the boundary M} if the triple (¢,u,v) is a zero and a minimum with respect
to v of the € correction of (3.22). From these considerations we obtain the following lemma.

Lemma 3.5 For given t > 0 the points v < u belong to the boundary M} iff (u,v) satisfy the system

6t + Oyg+ Oug =0
0y(8yq + Oug) =0 (3.23)
(av)z(avq + au']) <0.

Remark For analytic initial data (2.44) coincides with the two equations in (3.23).
The curve z = z(t) on the (z,t) plane where the genus increases from zero to one is determined solving
the above system together with the equation z = 6tu + f(u).

3.2.2 Leading edge

Near the leading edge, a band of width 2exp~1/2%

(3.5) and (3.17) we obtain the expression of the functional G ; 7) near ME:

opens in the spectrum (—oo,u] near v > u. From

Gla,t,e)(u,v) = G (2.t C](u) + 85(1} —u)(—2t(2v + u) + z — q(u,v)) + O(6?), (3.24)
where g(u,v) has been defined in (3.20). Near the minimizer z = 6tu + f(u) the above expression
becomes

Glat,e)(u,v) = G?z,t,a] (u) + 166(v — u)? (=2t — 8uq) + O(6?) (3.25)

From the § correction of (3.25) we have the following lemma
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Lemma 3.6 For given t > 0 the points v and u, v > u, belong to the boundary M iff (u,v) satisfy
the system

2t+0,4=10
0y0uq = 0 (3.26)
(Bv)zauq <0.

Remark 3.7 Both systems (3.28) and (3.26) in the limit v — u become

6t + f'(u) =0
ffw)=0 (3.27)
flll(u) < 0

where f(u) is the initial data (3.3). If (3.27) admits a real solution (u,t) such that

{ 2+ 0,g<0 Vv#u

3.28
6t +0,g+0,g<0 Vv#u, (3.28)

then u belongs to the boundary M3 N M§E of the space M. The corresponding point (z,t,u) is a point
of gradient catastrophe of the solution of the Burgers equations. Observe that the point of gradient
catastrophe is still a minimum of the function G‘[):z:,t,é‘] (u).

Example[3] We consider the initial data z = —u®. In this case ¢ defined in (3.20) reads
L

35
The system (3.23) defining the trailing edge becomes

g= (5u® 4 6uv + 8uv? + 160°%).

6t — 1/5(3u? + duv + 8%) =0
—4/5(u+4v) = 0 (3.29)
~16/35 < 0.

For t < 0 the above system does not have real solutions. For ¢t = 0 the only solution is 4 = v = 0 which
is the point of gradient catastrophe of the Burgers equations. For ¢ > 0 the solution is v = —1/ 2+/3t
and u = 2v/3t. From the minimizer z = 6tu — u3, we obtain z = —12/31%/2.

System (3.26) which define the leading edge becomes

2t — 1/35(15u? + 12uv + 8v?) =0
—4/35(3u+4v) =0 (3.30)
—16/35 < 0.

For t < 0 the above system does not have a real solution. For ¢ = 0 the only solution is u = v = 0.
For t > 0 the solution is v = 3/2+/5t/3 and u = —2./5t/3, t > 0. From the minimizer z = 6tu — u®
we recover ¢ = 4/3+/5/3¢%/2.

The genus g(z,t) = 0 for t < 0 and ¥z € R. For ¢t > 0 g(z,t) = 0 for z < —12/3¢3/2 and for
z > 4/3,/5/3t%/2, instead g(z,t) = 1 for —12v/3¢3/2 < z < 4/3,/5/31%/2.
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3.3 Point of gradient catastrophe of the one-phase solution

In the following, we write explicitly the equations determining the points of gradient catastrophe of
the solution of the one-phase Whitham equations for the functional (3.13). The quasi-momentum dp
restricted to the inner part of M; reads

_ T+ Qg

T2/ —un)(r —w)(r — us)
where op is given in (3.14). From (3.31) the restriction on the inner part of M; of the functional
Gz t,z) Teads

dp dr, w3 >uz>us, (3.31)

2N+1
F1 o ok+1p

2 kg ner(com: + M), (3.32)
k=3 =

G[lm,t,é'] (u1,uz,us) = 2z(aono +m) — 8t(com +m2) +

where the 7;’s are the coefficients of the expansion for r — oo of

1 1 m T2 N
=S+ E+2
N AT R A

Proposition 3.8 The critical points of (8.32) on the space of the elliptic curves are given by the

3

3 3
o). (3.33)

equations for uy > us > us,

r=Nt+w;, 1=123 (334)
where
[ (i — uy) [T (i — uy)
A =2 L kAN P Y AL 35
(uy +ug +uz) +4 a0 Ui , W oo + 0 O, 0+ 0 (3.35)
and
2N+1 k
27 k!
=~ —_— ) 3.36
1T L @k 1)1 kM (3.36)

Proof: Using the following formula obtained from Lemma 3.2

1 1 (ao+u)?

=m0 =123 3.37
Buiao 2 + ZH#i(ui—uj) ! ( )
and the identity obtained from expression (3.33)
9 Mk 0 :
=5 in Tk =1,2,3, 3.38
5’U,i Mh+1 2 tu 6%" Tk ’ 3 ( )
equations (3.34) and (3.35) are recovered straightforward. O

Equations (3.34) solve the 1-phase Whitham equations with initial data (2.21) (see [21],[16]) and
the solution ui(z,t) > ua(z,t) > us(z,t) is well defined up to the time of gradient catastrophe when
one of the d,u;, 1 = 1,2, 3, becomes infinite.

From Lemma 3.4 it follows that if the critical points (3.34) minimize the functional (3.13), then they
are also a minimum of the function (3.32).
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Lemma 3.9 The critical points (3.34) are a minimum of the function (8.82) if the following inequal-
ities hold on the solution of the one-phase equations:

0 o) é] '
— (A1 t —(Ag t — (A3t t .
Bul(l +w;) <0, Buz(2 +awg) >0, 8us(3 +ws3) <0 for t>0, (3.39)
‘ A point of gradient catastrophe appears in the solution of the one phase Whitham equations when
one of the
Oguy = L 1=1,2,3

8u, (/\l t+ wl) ’

becomes infinite.

Theorem 3.10 A point (z,t) is a point of gradient catastrophe of the solution of the one-phase
Whitham equations if for fized |, 1 <1 < 3, Oy, (Mt +wy) = 0, and if ui(z,t) > ua(z,t) > us(z,t)
minimize the functional (8.13) and satisfy the system

. é%a[lz,t,é'](ulyu2,U3) =-z+Mt+wr,=0 £=1,2,3
k
0° 7]
8—”126![:1:,15,8](”1’“2,“3) = —(%—l()\l t+w) =0, (3.40)
ok 52
L WG%m,t,E](ul;u21 UB) = —6——1;;2-()\l t+ ’Ll)l) =0 R

9 (Agt+wg) >0 fork #1,

. . 83 k
with the constraints (——)l—é—{b—?—(z\lt +w) >0,1<1<3 and (-) ‘5‘,;;

k=1,2,3.

System (3.40) is a system of five equations in the five unknowns z,t,u; > ug > ug. The next lemma
reduces system (3.40) to a more useful form.

Lemma 3.11 A point of gradient catastrophe of the solution of the one-phase Whitham egquations,
with fized Oyui(z,t), 1 <1< 3, going to infinity, satisfies the system of equations:

4

—z+Nt+w =0

2 1 1
Hi:l, kot (Wt — Uk) [(Zizl, kL - ) (t+ _2_8“1 q) + (8u,)?q| =0

Uy — U g+ Uy

6t + Ouy g + Ouy @ + Ouyg =0 (3.41)

611-1 (a’ulq + 6u2q + aan) =0

(aut)z(aulq + a‘uzq + ausq) = 01

\
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with the constraint (O, ) (Bu, q + Ouy @ + Ougq) < 0 for 1 = 1,2 and (8y,)? (Buy @ + Buyq + Duzq) > 0 for
5}
l =3 and (—)kéa——(Akt—i- wg) >0 fork #1, k=1,2,3. Here ¢ = q(uy,us,us) has been defined in
k
(3.36).

For a proof see appendix A.
Observe that the last two equations of system (3.41) are algebraic in u, us and ug, thus we can give
some algebraic conditions for the existence of a solution of (3.41).

Theorem 3.12 If the initial data (3.3) satisfies the condition f"'(u) < 0, then the solution of the
one-phase Whitham equations has no point of gradient catastrophe.

Proof: It is sufficient to prove that the equations
(8u1)2(8u1Q+8u2‘Z+6u3Q) =0, =123, (3'42)
have no real solutions. For the purpose we recall the expreséion of ¢ in (2.31) [16]:

o) = o [ [P L B+ Yt
G T-00-)

dtds (3.43)

where f(u) is the initial data (3.3). Taking triple derivative of q(u1,us,u3) with respect to u;,us and
u3 we obtain

8%q w fo F"(2) (2 —ua) i (y — z)k=3dz
au’iau‘%aulg - us (y —_— us)‘;‘ (Ul _— y)%u-] (y _ UQ)%_i Y,
1 asq

where i+j+k=3and C = . For f"(u) < 0 it holds < 0, hence equations

2m(ug — ug)t+i dul dul Ouk

(3.42) have no real solutions. O
Remark: Theorem 3.12 has been obtained for polynomial initial data but it can be easily extended

to analytic initial data.

In [16] Tian has proved that for smooth monotone decreasing initial data satisfying the condition

f"(u) < 0, the solution of the one phase Whitham equations exists for all £ > 0. Theorem 3.12 gives

another proof of Tian’s result for analytic initial data.

3.4 Bifurcation diagram of a one-parameter family of initial
data

We study the bifurcation diagram of the solution of the Whitham equations for the one parameter
family of initial data

flu) = - +cut +ud), < —11—5- (3.44)
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For such initial data, the functional (3.13) reads
1 1

G = - - —I3 - =— - —1I5. 45
[z,t,c] zly + 3th 2013 70 cly 252]5 (3.45)
The restriction of this functional on My (that is on the curve u? =r —u, u € R) has the form
ud  ub
“c(u)_—xu-—fitu -I--4—+05+~—6—, (3.46)
thus the minimizer given by
T = 6ut —u® — cu® —u® (3.47)

solves the Burgers equation until the time of gradient catastrophe to = 0. At later times the minimizer
of G[z 1,5) may belong to My, My or M.

The Burgers equation has another point of gradient catastrophe if (3.27) and (3.28) with the initial
data (3.44) are satisfied, that is

— 6t 4+ 3u? + deu® +5ut =0

6u + 12cu® +20u® =0

6 + 24cu + 60u? > 0 (3.48)
6t + O0yqc +O0ug. <0 Vv#u, veER,

26+ 0u,g. <0 Vv#u, vER,

where
1
qc(u,v)z—3—5—(5u3+6u2v+8uv2+16v3)—%(35u4+40u3v+48u2112
3 4 1 5 4 3,2 2,3 4 5 (3.49)
+ 64uv +128v)-—®§(63u +70utv 4+ 80u®v? + 96u?v® + 128 uv* + 2560°).

The solutions of (3.48) are obviously ug = 0, to = 0 and

uy = —3(c+4/2-1) fore>0,
u =—2(c—4/E 1) fore<0, (3.50)
i

= 1(3u? + deul + 5uf) > 0,

with the constraints
1 1 /1
—\/iE/QSCS—E\/5(13+5\/?), 5 ﬁ(75+21ﬁ5) <e<V15/2, (3.51)

which are obtained from the last two inequalities of (3.48). We put

v = —%«/5(13 + 5V7) ~ —1.90863 (3.52)

1
va = (75 + 21v/15) ~ 1.88494 (3.53)

because these numbers occur frequently in the following. The z; coordinate relative to (t1,u1) is
recovered from the equation (3.47). For ¢ positive z; > 0 and for ¢ negative z; < 0.
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3.4.1 Trailing edges

The equations determining the trailing edge are given by system (3.23) namely (3.44)

6t + 0vge + Ouge =0
B‘U (81}‘]6 + 8u‘]c) =0 (354)
(60)2(61}qc + au‘]c) <0,

where g.(u,v) has been defined in (3.49). For fixed ¢, u and ¢ system (3.54) determines the zeros
which are also a maxima with respect to v of the polynomial 6t + 8,q. + O.q.. Since 9,¢. + Iuqc
is a fourth degree polynomial in the variable v with negative leading coefficients, it can have no
more than two maxima. When system (3.54) admits two solutions (¢,u,c,v) and (t,u,c,w) with
t>0,v <uand w < u, we are in a situation of a double trailing edge (see Figures 3.2). For
given ¢ and ¢, the points (u,v,w) which satisfy (3.54) belong to the component M (1) N M{(2) of
the boundary of the space Ms. The correspondent degenerate Riemann surface is described by the
equation p? = (r — u)(r — v)2(r — w)%. For ¢ > 0 and fixed c, system (3.54) admits such two real

u,(X)

B X)=u(X)=w

uy(x)

spectrum

Figure 3.2: A case of double trailing edge

solutions (u,v) and (u,w) satisfying the constraints v < u, w < u, for ¢ in the intervals

—TSCSW, ry<c<

)

Y VB
4
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where vy has been defined in (3.52) and

1
_ 5 5 25 3 1 1 )
vy = ‘/5 +3 (1—8-> ((27 — 7V2I)E + (27 + 7\/21)3) ~ 1.78167 . (3.55)

For ¢ = v4 the two solutions (u,v) and (u,w) become coincident, namely v = w. The two trailing edges
coincide. The points (v = w,u) belong to the component M1 (1) N M{(2) N MZ(2) of the boundary of
M, and the corresponding degenerate Riemann surface describing this situation is p? = (r—u)(r—v)*.
For ¢ = v system (3.54) still admits two real solutions (u,v) and (u,w) where now w = u. The
point (v,w = u) belongs to the component M} (2) N M{(1) N M2(1) of the boundary of M; and
the corresponding degenerate Riemann surface is p? = (r — u)3(r — v)2. The solution of the Burgers
equation has in (z,t,w = u) a point of gradient catastrophe in correspondence of the trailing edge.
For ¢ in the interval v; < ¢ < v3 there exists just one real solution v(t,c) < u(t,c) of system (3.54) for
all ¢ > 0. In this case there exists just a single trailing edge for all ¢ > 0.

3.4.2 Leading edges
The leading edges are determined from system (3.26) namely

2t + Ouge(u,v) =0
0y0uge(u,v) =0 (3.56)
(au)zau‘h (’LL, U) <0

where q.(u,v) has been defined in (3.49).

First we consider the situation of a double leading edge. That is we study when system (3.56) has, for
fixed ¢ > 0 and ¢, two real solutions (u,w) and (u,v) satisfying the constraints v > u, w > u. These
solutions belong to the boundary component MZ(1) N ME(2) of the space M, (see Figure 3.3). The
corresponding degenerate Riemann surface is described by the equation p? = (r—u)(r—v)*(r—w)?. For
fixed ¢ and ¢ system (3.56) admits two real solutions (u,v) and (u,w) compatible with the conditions
v>u, w>uforc belonging to the intervals

V4<C<H H <C<1/2,

where v4 has been defined in (3.53) and

Vg = —\/g - 552— (%) (e% (—11 + 51\/5) P e (—11— 51\/5)5> ~ -1.85585.  (3.57)
For ¢ = vy, system (3.56) has two coincident solutions (u,v), (u,w) with v = w. In this case the two
leading edges coincide. The points (v = w,u) belong to the component M7 (1) N MZ(2) N M} (1) of the
boundary of M,. The corresponding degenerate Riemann surface is p? = (r — u)(r — v)*.
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Figure 3.3: Double leading edge

For ¢ = vy system (3.56) has the two real solutions (u,v), (u, w) where now w = u. The degenerate
Riemann surface describing this situation is u? = (r—u)3(r —v)2. The corresponding point (z,t,w = u)
is a point of gradient catastrophe of the Burgers equation.

When ¢ € (12, v4), there exists just one real solution v(t, c) > u(t, ¢) of system (3.54) for all £ > 0. In
this case there exists just a single leading edge for all ¢t > 0.

3.4.3 Leading-trailing edge

We call leading-trailing edge the situation in which a leading edge and a trailing edge have the same
(z,t) coordinates. A leading-trailing edge corresponds to the embedding of My as the component
MZE(1) N M}(2) of M> (see Figure 3.4). In this case a band and a gap open in the spectrum (—oo, u]
at the same time and in correspondence of the same z coordinate. If the gap opens near the point
v < u and the band opens near the point w > u, the points u,v,w on the boundary M?(1) N M7i(2)
are recovered from the system obtained from (3.54) and (3.56), namely:

,

+ 6t + 9yqc(u, v) + duge(u,v) =0
Oy (0 qc(u,v) + Ouge(u,v)) =0
(61:)2(8'0‘10(“7'”) + auQc(uvU)) <0,
+2t + Ougqu,w) =0

OuwOuqu,w) = 0.

\ (3w)26uQ(u,w) <0

(3.58)
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D0 s Dl, ; Dl % Do

Figure 3.4: M2(1) N M1(2)

It is not possible to check analytically for which values of ¢ and ¢ this system has real solutions. We first
consider the degenerate cases when w — u and v — u. The case w — u has already been considered
in sec.3.4.2. A real solution of system (3.58) exists just for the value ¢ = vy defined in (3.53).

The case v — u has also been already considered in sec. 3.4.2 and system (3.58) admits a real
solution only for the value of the parameter ¢ = v; defined in (3.52). In the general case v < u < w
we check numerically that for ¢ in the intervals

1
—\/%SC<V1, V4<CS\/Z5,

compatible real solutions of system (3.58) exist.

Remark. From the above analysis it is clear that for the values of the parameter ¢ for which there
exists an embedding of My as some component of M it also exists a solution of the 2-phase Whitham
equations. The (z,t) plane has a zero-phase domain, a 1-phase domain, and a 2-phase domain.

Tt is not clear if, for the values of the parameter ¢ for which there is not an embedding of My as
some component of the boundary of M,, there exists a solution of the 2-phase Whitham equations.
We investigate this point in the following subsection studying when the solution of the one-phase
Whitham equations has a point of gradient catastrophe.
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3.4.4 Point of gradient catastrophe of the one-phase solution

The solution of the one-phase Whitham equation with the initial data (3.44) has a point of gradient
catastrophe if the correspondent system (3.41) has a solution. From Theorem 3.12 it follows that for
¢® < 2, the solution of the one-phase Whitham equations with initial data (3.44) has no point of

gradient catastrophe.

Before solving numerically system (3.41) for the initial data (3.44) we consider its last two equations:

.
508 — 1209071 + 6—3—00 + ?—zcag — igcal + Qagul — 1201u+
10 5 5
< }i%guz + %L%c oo u + 1500u? + 27cu? + 35u) =0 (3.59)
308' — 401 + % + %—cao + 100gu; + 18cu; + 35ul2 =0,
\

with the constraint —og — 7u; — -g-c <0 forl =1,2 and —og — Tu; — %c > 0 for | = 3, where
oo =3 yujand o1 =[[,4u;, 5,0 =1,2,3, 0§ —4o1 > 0.
System (3.59) admits a real solution compatible with the above constraints for —/15/2 < ¢ < —v3
and v3 < ¢ < v/15/2 where v3 has been defined in (3.55).

We solve numerically system (3.41) for the initial data (3.44) restricting ¢ in the intervals —v/15/2 <
c< —vg and vz < ¢ < V/15/2. '

We find that there exists a point of gradient catastrophe for the solution of the one-phase Whitham
equations on the uj-branch for ¢ € [v1, v3), where vy ~ —1.90863 and v, ~ —1.85585 have been defined
in (3.52) and (3.57) respectively. On Table 3.1 we give some numerical values.

C U1 U Uus t T

2 0.73950 | -0.06549 | -0.06549 | 0.00807 | -0.01895
-1.89 | 0.71359 | -0.18625 | -0.18629 | 0.01284 | -0.00335
-1.88 | 0.69676 | 0.27203 | -0.26127 | 0.01490 | 0.002108
-1.87 | 0.67771 | 0.36482 | -0.28278 | 0.01680 | 0.00709
-1.86 | 0.65144 | 0.48879 | -0.29790 | 0.01835 | 0.010560
-1.855 | 0.62956 | 0.62064 | -0.30204 | 0.01884 | 0.079656

Table 3.1: Points of gradient catastrophe on the u;-branch.

There is a point of gradient catastrophe in the solution of the one-phase Whitham equations on the

V15 V15

ug-branch for ¢ in the intervals [-¥%2,15) and (v3, ¥32]. On Table 3.2 we give the numerical values.
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c Ug U us t T
1.782 | -0.46490 | 0.51273 | -0.46497 | 0.03973 | -0.17113
1.79 | -0.40713 | 0.50549 | -0.60261 | 0.03848 | -0.16234
1.8 -0.38028 | 0.49734 | -0.66876 | 0.03707 | -0.15294
1.81 | -0.36063 | 0.48943 | -0.71825 | 0.03573 | -0.14425
1.82 | -0.34444 | 0.48165 | -0.75970 | 0.03443 | -0.13612
1.83 | -0.33040 | 0.47394 | -0.79619 | 0.03316 | -0.12843
1.84 | -0.31784 | 0.46624 | -0.82925 | 0.03191 | -0.12112
1.85 | -0.30637 | 0.45853 | -0.85975 | 0.03067 | -0.11415
1.86 | -0.29575 | 0.45079 | -0.88826 | 0.02944 | -0.10749
1.87 | -0.28581 | 0.44298 | -0.91515 | 0.02823 | -0.10112
1.88 | -0.27642 | 0.43509 | -0.94072 | 0.02701 | -0.09502
1.89 | -0.26749 | 0.42711 | -0.96517 | 0.02582 | -0.08917
1.9 -0.25895 | 0.41900 | -0.98866 | 0.02460 | -0.08356
1.91 | -0.25075 | 0.41077 | -1.01132 | 0.02339 | -0.07819
1.92 | -0.24283 | 0.40238 | -1.03325 | 0.02219 | -0.07305
1.936 | -0.23029 | 0.38817 | -1.06802 | 0.02019 | -0.06505
-1.936 | 0.54431 | 1.16277 | -0.29342 | 0.02019 | -0.01767
-1.93 | 0.54607 | 1.14104 | -0.29316 | 0.01981 | -0.01342
-1.92 | 0.54925 | 1.10569 | -0.29295 | 0.01929 | -0.00755
-1.91 | 0.55305 | 1.06751 | -0.29300 | 0.01887 | -0.00250
-1.9 0.55770 | 1.02563 | -0.29336 | 0.01854 | 0.00173
-1.89 | 0.56349 | 0.97861 | -0.29411 | 0.01833 | 0.00517
-1.88 | 0.57098 | 0.92385 | -0.29533 | 0.01824 | 0.00785
-1.87 | 0.58138 | 0.85543 | -0.29720 | 0.01831 | 0.00977
-1.86 | 0.59920 | 0.75122 | -0.30013 | 0.01860 | 0.01101

Table 3.2: Points of gradient catastrophe on the ug-branch.

There is a point of gradient catastrophe in the solution of the one phase Whitham equations on the
uz branch for ¢ € (vs, v4], where v3 ~ 1.78167 and v4 ~ 1.88494 have been defined in (3.52) and (3.53)
respectively. On Table 3.2 we give some numerical values.

Remark For ¢ = vy and ¢ = vs it appears in the solution of the Whitham equations a singular
point on the leading edge and trailing edge respectively.
A point of gradient catastrophe appears in the solution of the one-phase Whitham equations whenever
the solution is changing genus. If the point of gradient catastrophe appears on the u; or us-branch,
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c us Ul Usg t ) T
1.79 | -0.52662 | 0.50358 | -0.32286 | 0.03818 | -0.15984
1.8 | -0.55806 | 0.49081 | -0.25073 | 0.03612 | -0.14480
1.81 | -0.58229 | 0.47621 | -0.19448 | 0.03390 | -0.12872
1.82 | -0.60306 | 0.45962 | -0.14531 | 0.03154 | -0.11188
1.83 | -0.62169 | 0.44071 | -0.09989 | 0.02906 | -0.09448
1.84 | -0.63885 | 0.41895 | -0.05640 | 0.02648 | -0.07671
1.85 | -0.65495 | 0.39343 | -0.01337 | 0.02380 | -0.05878
1.86 | -0.67021 | 0.36265 | 0.03076 | 0.02105 | -0.04094
1.87 | -0.68486 | 0.32338 | 0.07855 | 0.01823 | -0.02356

Table 3.3: Points of gradient catastrophe on the ug branch.

the corresponding solution will increase genus by one near this point.

If the point of gradient catastrophe appears in the one-phase solution on the us-branch it means that
the two-phase solution has just disappeared. The plots in fig. 3.5 elucidate this argument showing
that for each ¢ the time of gradient catastrophe on the ug-branch is always bigger than the time of
gradient catastrophe in the other cases.

3.4.5 Bifurcation diagrams in the z — ¢ plane

We draw in the (z,t) plane the various topological types of bifurcation diagrams of the solution of
the Whitham equations with initial data z = —u® —cu* —v®, ¢ < 2. We draw with a solid line
the points of the (z,t) plane where the genus increases from zero to one and with a dashed line the
points where the genus increases from one to two.

Dy <e< \/'14—? ; there are a second breakpoint for the Burgers equation in z; > 0, t; > 0 and a
point of gradient catastrophe on the ug-branch of the one-phase solution for ¢ > t;; there are a double
trailing edge, a leading-trailing edge and a double leading edge hence the bifurcation diagram of the
genus g(z,t) is
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3rd point of gradient catastrophe

g=1

N
'~
T~
v
1
'
t
'
1

double leading edge
double trailing edge

leading-trailing edge

2nd point of gradient catastrophe
g=0

_ g=0
X X

2) ¢ = v4; the Burgers equation has a second point of gradient catastrophe in correspondence of

the leading edge, there is a point of gradient catastrophe on the us-branch of the one-phase solution
and there is a double trailing edge.

) | 3rd point of gradient catastrophe

g=0

2nd point of gradient catastrophe

3) v3 < ¢ < vy; there are points of gradient catastrophe in the the one-phase solution on the
uz-branch and one on the ug-branch and there is a double trailing edge.
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4) vp < ¢ < vs; there is just the point (z = 0, = 0,u = 0) of gradient catastrophe in the solution

of the Burgers equation.
t

g:

1] X
For ¢ = vs the trailing solid line in picture 4) has point of vertical tangent for ¢ > 0. For ¢ = vy
the leading solid line in picture 4) has a point of vertical tangent for ¢ > 0.
5) 11 < ¢ < vg; there are points of gradient catastrophe in the one-phase solution on the u; branch
and wug branch for ¢ > 0 and there is double leading edge.
t

3rd point of gradient catastrophe

g=0
: , A\ .
2nd point of gradient double leading edge
catastrophe g=0
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6) ¢ = v1; the solution of the Burgers equation has a second point of gradient catastrophe in (z1,11)
in correspondence of the trailing edge, it exists a point of gradient catastrophe on the ug-branch of
the one-phase solution for ¢ > ¢; and there is a double leading edge.

t

g=1

X 0 X

7) =/ % < ¢ < vy; there is a second breakpoint in the solution of the Burgers equation for z; <0
and t; > 0; there is a point of gradient catastrophe in the one-phase solution on the us-branch for
t > t;; there are a double leading edge, a leading-trailing edge and a double trailing edge.

t

3.4.6 Conclusion

In this chapter we have studied the bifurcation diagram for a one-parameter family of initial data. We
have characterized the bifurcation diagram in terms of particular singular points which we have called
double leading edge, double trailing edge, leading-trailing edge and points of gradient catastrophe. We
have checked that the 2-phase oscillatory zone survive for a short time as follows from Theorem 2.6
and Theorem 2.7. For big time the solution is closed to the selfsimilar symptotic solution with scaling
coefficient 5/4. '
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Appendix: proof of Lemma 3.11

47

For simplicity we choose the point of gradient catastrophe of the solution of the one-phase Whitham

equation such that d,us(z,t) goes to infinity. This point is then determined by the system

P

—z+ Azt+w3 =0

(M —A)t+w —w3 =0
(Az—)\g)t'*—’wz“l% =0
aus()\;gt'l—’wg) =0
(8u3)2(/\3t+w3) =0

L (Bus )2 (Mat +w3) <0.

Using (3.35), (3.36) we define the following quantities:

aO""LLj )
3 Ta —uy i —AeJt = =1,2
! 4(u; —-ug)[( i~ As)t +wj —ws]
¥ 3 3 1
- B N ¢ oYU i Ou; Ousq,
(uj“'U'S Uj — U3 Oz0+u3>( +263q)+7r38363q
By = %8us(/\3t+w3)(ao+u3)
— 28, — T3 (t+13 ) + 73(d )2
- 3 g + Uus 2 us g 3\0u3 ) ¢,
Fy = $(0u;)*(Ast+ws)(ao +ug) =0
9 S2 253 1
- -‘_4_3— ¢ —8U - au 8 ’
(2 T3 +C¥0+u3)( +2 9) — 3(0us)°¢q
B = %(a‘ua)s(As t+ws)(ag +uz) >0
_ (1283 28 1 (25 _ S
T\ m  actus\4 m

where m; = [[,;(ui —u;) and S; = 37 (ui —uy) fori,j =1,2,3.

)) @+ 3ud) = (0w,

(3.1)

(3.2)

(3.4)




48

CHAPTER 3. BIFURCATION DIAGRAM OF DISPERSIVE WAVES

From (3.2), (3.3), (3.4) and (3.5), system (3.1) is equivalent to the system

,

—~z+ Azt +ws =0

B-F FB-F F-F ,(F"+2;S) (3.6)
_3U2—U1 U — U3 + Ug — U3 w3
U1 — uUg Uz — U3

=0

T3

Substituting the explicit formula of Fi, Fs, F3, Fy and Fs in the above system one obtains system
(3.41) for i = 3. For 4 = 1,2 analogous computations have to be done. O
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time t

0.030

0.020 & -g_ _ o

0.010

-6 -0 -¢--0-—0"

0.000 L
-1.94 -1.92

time t

0.040

0.030

0.020

0.010

0.000

1.70
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Figure 3.5: On the plots a) and b) the time of gradient catastrophe of the one-phase solution is
plotted as a function of ¢. The circles represent the points of gradient catastrophe on the uy branch,
the triangle are the points of gradient catastrophe on the ug branch and the square are the points of
gradient catastrophe on the u; branch. The solid lines represent the time of gradient catastrophe of

the zero-phase solution.
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Chapter 4

A method for generating

differentials

In this chapter we consider the Cauchy problem for the Whitham equations in the algebro-geometric
setting. For monotone analytic initial data, the solution of the Whitham equations is build in chap.1
in terms of some meromorphic differentials defined on hyperelliptic Riemann surfaces [14],[15]. In this
chapter we consider the Cauchy problem for the Whitham equations for monotone analytic initial
data with a small smooth perturbation of compact support. Following a Krichever’s idea, we build the
solution of the Whitham equations for the smooth part of the initial data, in terms of a non analytic
differential defined on some hyperelliptic Riemann surface. This differential has a prescribed jump on
some contour of the Riemann surface and it is constructed solving a boundary value problem on the

surface.

4.1 Riemann surfaces and Abelian differentials: notations and

definitions
Let
2g+1
Fg:= ,u,2= H(’I‘—-’U,j) , U1 > Ug >t > Uggtd, (4.1)
Jj=1

be the hyperelliptic Riemann surface of genus g > 0. We shall use standard representation of I'y as a
two-sheets covering of C P! with the cuts along the intervals

[’U,zk,’u,zk_l], k=0,...,9+1, Ugg42 = —O0.

51



52 CHAPTER 4. A METHOD FOR GENERATING DIFFERENTIALS

We choose the basis {a;,0;}7-; of the group Hi(I'y) so that §; lies fully on the upper sheet and
encircles clockwise the interval [ugj,u2j—1], 7 = 1,...,9, while a; emerges on the upper sheet at the
point usj41, passes to the point ug; and return to the initial point usj11 through the lower sheet.
The one-forms that are analytic on the closed Riemann surface Iy, except for a finite number of points,
are called Abelian differentials.

We consider on I'y the following differentials [25]:

1) The canonical basis of holomorphic one-forms or Abelian differentials of the first kind ¢1, ¢2 . . . ¢,:

e e At R e
dr,

w(r)

The constants fy;? are uniquely determined by the normalization conditions

oi(r) = k=1,...,9. , (4.2)

¢k:6jk7 i,j:l,...g. (4.3)
o
2) The set oy, k > 0, of abelian differentials of the second kind with a pole of order 2k + 2 at
infinity defined in (2.8).
3) The abelian differential of the third kind wy, 4, (r) with first order poles at the points 7 = g1, ¢2
with residues +1 respectively. Its periods are normalized by the relation

/ Wee(r)=0, ji=1,...,g. (4.4)
o;

The Riemann bilinear period relation is an important tool in the study of differentials. Let df and
dg be two closed differentials on the closed Riemann surface I'y, having a finite number of singularities
on T'y. Cutting the surface I'y along the cycles of the canonical homological basis {Q{]‘,ﬂj}?___l, we
obtain the 4g-sided polygon I'y with the sides o, 81, =1, 51, .., By If all the residues of df and
dg are equal to zero, the integrals f and g are single-value on fg. If the differentials df or dg have
nonzero residues, then the integrals f or g have corresponding logarithmic singularities. In order to
provide their single-valuedness, it is necessary to cut the polygon f‘g along some curves connecting
the singular points of the integral f or g. Denote the cut by s. Now consider the differential fdg. We
have the relation

/ fdg=2mi» Res fdg. (4.5)

Bl g+(st—s5—) Ty

Here s* are the sides of s and 01, is the boundary of ;. We define

L(f,g)=/fdg=§{Ljdg//3jdf—Ljdf[3jdg]- (4.6)

ary
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Then we obtain the relation

L(f,g) + /+ Afdg =2mi» Res fdg, (4.7)

Tq

where A f is the difference of values of f on both sides of the cut s. This formula is known as the first
Riemann bilinear period relation.
Assuming df = wyq, and dg = ¢ in (4.7) we obtain

q
/wqq0=27ri o, k=1,...,9. : (4.8)
B 0

Assuming df = wyq,(A) and dg = wpp, in (4.7) we obtain

p q
/ Wagp = / Wppq - (4.9)
Do qo

Differentiating with respect to p and ¢ the above expression we obtain the identity

ol ()] = ol 0 | (4.10

From the expression (4.9) it follows that wge, (A) is a many-value analytic function of the variable ¢
with simple pole at ¢ = A. The many-value character of wgq,(A) as a function of ¢ can be described
by the equations

/ dglwege ()] =0, /ﬁ dglwgge (1)) = 2mige(r), k=1,...,9, (4.11)

where d; denotes differentiation with respect to g.

4.2 Solution of the Whitham equations with smooth initial
data

We consider monotone decreasing initial data of the form

z = f(u)+ fi(u) (4.12)

where f(u) is analytic and given by the expression (2.21) and f;(u) is a smooth function of compact
support.

For the analytic part of the initial data the solution of the g-phase Whitham equations is given by
the hodographic transformation (2.13) or in the algebro-geometric form (2.16). We want to build an
analogous of such expressions for the smooth part of the initial data. We follow an idea of Krichever.
In [14] he suggests to build, for the smooth part of the initial data, a differential 2 with a given jump
on a contour £ of the Riemann surface I';. The jump must not depend on the moduli of the surface.
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Lemma 4.1 Let z(p) be a local coordinate on T'y and let 1(p) = h(z)dz be a one form defined on the

Lyapunov* contour £ C T'y. Suppose that h is H-continuous (Hélder continuous) on L, namely

|h(z) = h(z")| < H|z-2'|*, 0<a<l1l, H>O0.

Then there exists a unique differential Q on I'y which satisfies the conditions:
1) & is holomorphic outside L;

2) the limiting values OF on £ are H-continuous and satisfy the relation
Q-0 =9 (4.13)

3) Q is a normalized differential, namely
/ N=0, j=12,...,¢0 (4.14)
o5

The assertion in the Lemma is a standard one in the theory of boundary value problems [26].

The unique differential Q satisfying the properties 1),2) and 3) of the Lemma is given by the
Cauchy integral

27W/Ar z)h(z)dz (4.15)

where A(r, z)dr is a meromorphic analogues of the Cauchy kernel [26]. In general A(r, z)dr is a mero-
morphic function of z and a differential in 7. In order to satisfy the properties 1),2) and 3) of Lemma 4.1,
the kernel A(r, z)dr must be equal to the normalized abelian differential of the third kind w,(r) which
has simple poles at the points P%(z) = (2, £u(z)) with residue +1 respectively, and p® = T2 (r—wy)
define the hyperelliptic Riemann surface I'y. As r — z, it satisfies the relation

A(r,z)dr = [T_%_z + O(l)} dr (4.16)
which have the Cauchy and Sokhotskii formulas as consequence, namely
QF(s) = s)ds + ——-—/ A(s,z)h(z)dz, s€L. (4.17)

Here the integral is taken in the sense of principal value. The differential A(r, z)dr = w,(r) is explicitly
given by the expression

() = d:) Ha) Zm moe), @)= [ L%ffi (4.18)

1A Lyapunov contour is a contour whose tangent rotates Holder-continuously
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where ¢ (2), k = 1,...,g, is the normalized basis of holomorphic differentials. As a function of z w,(r)
is an abelian integral of the second kind with poles of the first order at the points (7, £u(r)). The
periods of this integral are obtained from (4.11)

/' dilw,(r)] =0, ;. dilw.(r)] =4mige(r), j=1,...9. ' - (4.19)

In order to build a solution of the g-phase Whitham equations for the smooth initial data z = f1(u)
of compact support, we make the following choice for defining the differential Q.
As a contour we take £ = ?:0 Bj, where each ,éj>() is the beta-cycle whose projection on the
complex r-plane coincides with the segment [ugj,uzj—1] described twice and S is the close cycle
whose projection on the r-plane coincides with the cut (—oco, ugg+1] described clockwise.

The “jump” differential is given by the real exact one form

dh(t):%[[w—%(g—)y—dy}dt:{/; fl() }dt teR (4.20)

where fi(y) is the smooth part initial data (4.12).
We define the differential Q = Q(r, @, g) by the expression

Q(r, 4, g) :Z% /L w,(r)dh(z)
_1 [ e .
" dmi [ﬂ( )/L'_T'- dh(z) ;%( )'/Lck(z)dh(z)}

where the Cj(z)’s have been defined in (4.18). In the following we sometimes omit the dependence of

(4.21)

Q2 on the branch points @ = (u1,us, ..., u24+1) and on the genus g.
Q(r) is holomorphic everywhere on Iy outside £. We underly that the above differential is well defined
even though w,(r) is a multivalued function of z. In fact as z —+ z + 3; we have that

/ w,(r)dh(z) AP /[wz (1) + 4mig;(r))dh(z) = / w;(r)dh(z)
c c c

because [, dh(z) =0

The following Plemelj-Sokhotskii formulae hold:

Q*(/\)::tidh(/\)Jrzl%/wm(/\)dh(x), NEL, Aduy, j=1,2,...29+1. (4.22)
L

For g = 0 we have p? = r —u and Q*(r) can be calculated explicitly

Q“(r)——-dh( 2;——( )“m/ \;@? ) re oo (4.23)

(fl(u) — \/u_——r‘/ru \;i_(é.)?ds> , TE(—o0,u), (4.24)

(4.25)

Q7 (r) =

dr
2/r—u
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The following theorem enables one to construct the solution of the Whitham equations for the initial
data (4.12). :

Theorem 4.2 Define

Q(r)
dp(r) | =,

Ui(Ul,UQ,...7U29+1)= y ’l,=1,2,,29+1 (426)

Then v;(uy, ug, ..., Uzg+1) satisfies the over-determined system

Bvi Vi — Uy (9’01‘

5—1;;—/\,'--/\]‘5’(1]‘,

i,7=1,2...,29+1, i#j.

Proof: Part 1)

The quantities v;(u1,us, - .., u2g+1), i = 1,...2g + 1, are well defined. Indeed we write {(r) in the
R(r, %)
form Q(r) = ———*dr where
)= 0t
R(r, @) = 1 / E(i)-dh(z) - }g:i%’crl / Cr(2)dh(2) (4.27)
’ 21 | Jpr—2 e c '
and vf and Cj have been defined in (4.2) and (4.18) respectively. Then
R Ui, a
Ui (U1, Uz, - - -y U2gy1) = —139((—‘1:{7—1%
1 9 &L,
= 128, h(z) — . dh . )

The differential

o odp

6’!1.]' J Buj
is identically zero. Indeed it is holomorphic: the differentials 8,; 2(\) and 8,;dp are abelian differentials
with a second order pole at A = u;; since the differential (2 — v; dp) has a first order zero at 7 = u;,

the differential [0y, (Q — v; dp) + dpBy;v;] is regular at r = u;. Furthermore by the normalization
conditions (2.4) and (4.14)

o:auj/ (Q——vjdp)z/ (80,2 —v;0u,dp), k=1,....0. (4.29)

Hence (9,,Q — v;0,,dp) is a holomorphic differential having all the a-periods equal to zero, conse-
quently it is identically zero (cfr [19]) and the following identity holds

(4.30)
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From (2.2), (4.21), (4.27) and (4.30) we obtain

OR 0P, 1R -v;F, .

-y = 38 =1,2,...,2g +1. 4.31

6,“] Ujauj 2 T—Uj ) J t Rt ag+ (3)
Part 2)

oui(il) 0 R(uind@) ., .
Bu;  bu; Py(us,d)’ el

_ By, R(ui, @) — 050, Py (us, ) o - U‘)aung (us, @)

Py (ug, @) 7Y Pylui, @)

=(”U]‘ _ ’Uz') 81,,1. Pg (Uziﬁ) _ ER(’U,Z', ’L-I:) b ’Ung (ut—: ’lf) <432)
Py(us, @) 2 (us — uy) Py(us, )
=(vj — vz)&}’g]zi(u;.; ) _ ‘;‘ :;i — Zj_
, g\ Ui, i~ Uj
which shows that
1 Ov; _auj Py (us, @) 11 (4.33)

'ui—vjé;u—;* P, (u;, %) 2u; — uy
In particular the above argument also applied for dg(r) and A; defined in (2.3) and (2.5) respectively,
therefore we also have
1 %__Bung(ui,ﬂ) _.}_ 1
/\7; —)\j 6’(1.]' - Pg(ui,ﬂ') 2ui — Uj
which when combined with (4.33) proves the Theorem 4.2.
Finally we combine Theorem 2.1 and Theorem 4.2 to construct the transform

z =M(0)t +wi(T) + v (@), i=1,...,29g+1
dg, ds_ Q
dp dp dp

(4.34)

=i
where dp, dg and ds have been defined in (2.2), (2.3) and (2.15) respectively. The above system
solves the g-phase Whitham equations for the initial data (4.12). The explicit expression of the v;(i)’s
coincides with the one obtained in [27].

We need to consider what happens to the equations (4.34) when one of the u; coalesces with either
wj—1 Or ¥j+1. From [20] it can be checked that

Qr, T, glu=ur, = Qr,@%,9-1), 1=1,...2g, (4.35)

where @* = (Ul, ey U1, U425 - 0 e ,’LL29+1).
For g = 0 we have

Qryu,9=0) =

dr / CVEu (4.36)

1
AT /T —u
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so that

Q(r,u,g =0)

| = he. (4.37)

Hence the zero-phase solution of (4.34) coincides with the characteristic equation
T =6tu+ f(u) + fi(u).

We have built the solution of the Cauchy problem for the Whitham equations for a monotone
initial data that is the sum of analytic function and a smooth function of compact support. The
above arguments apply also to smooth initial data rapidly dcreasing at infinty. A point of further
investigation is to consider smooth initial data with more general boundary conditions.



Chapter 5

Conclusions

In this thesis we have studied the Cauchy problem for the Whitham equations.

First we have studied the initial value problem for the Whitham equations for monotone polynomial
initial data of degree 2N + 1 proving that the number of interacting oscillatory phases is less or equal
than N. We have also shown that the solution of the Whitham equations for such initial data has
a one-phase self-similar universal asymptotics. We believe that such result holds true whenever to
the polynomial initial data is added a small smooth perturbation of compact support. In this case
it remains to prove that the solution of the Whitham equations exists for ¢ > 0. Namely we have
to prove that for small smooth perturbation of the polynomial initial data the number of interacting
oscillatory phases in the solution of the Whitham equations is bounded. We are working on this
problem considering also smooth perturbation of analytic initial data.

As an example of the above results, we have studied the bifurcation diagram of the solution of the
Whitham equations for fifth degree monotone polynomial initial data. In this case we have found
numerically that the genus of the solution is less or equal then two. We have also shown numerically
that the solution, after a certain time has genus less or equal than one.

In the last chapter we have obtained, in the algebro-geometric setting, the solution of the Whitham
equations for a smooth perturbation of compact support of the analytic initial data. The solution is
expressed through a non analytic differential on the hyperelliptic Riemann surfaces. We believe that
this differential is the tool to show that the solution of the Whitham equations has a bounded genus.
This is a point of further investigation.
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