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Abstract

The general problem addressed in this thesis is that of understanding the
origin of the primordial inhomogeneities of the energy density which gave
rise to the observed large scale structure of the universe. My purpose has
been to work out the link between the perturbations arising in different
inflationary models and the initial conditions assumed in phenomenological
models for structure formation. In particular, I have considered inflationary
models when more than one scalar field is present during inflation, and I have
studied the possibility that the resulting energy density fluctuations are of
the isocurvature type or have a non-Gaussian distribution.

In the first part of the thesis some topics relevant for the origin of the
structures in the inflationary cosmology are reviewed. In chapter 1, the main
tools for the description of the density inhomogeneities are discussed. In
particular, the different possible primordial initial conditions on the pertur-
bations are characterized and the possibility that they arise in the frame
of inflation is analysed. We also discuss the most usual scenarios for the
formation of structure and their viability. Finally, some relevant issues for
the evolution of the density perturbations are presented. In chapter 2, the
inflationary scenario is reviewed, the motivations for it are presented and
the main models proposed in which it can be realised are introduced. We
discuss how density fluctuations are originated from quantum fluctuations
of the scalar field which drives inflation, and how they evolve from the time
when the associated wavelengths leave the Hubble radius during inflation up
to when they cross it again in the radiation or matter dominated era. In
the last section, we present the stochastic approach to inflation and discuss
its advantages and applications. In the last two subsections, a part of some
original work in progress in collaboration with M. Miji¢ about the structure
of space-time arising in stochastic inflation is reported.

The second part of the thesis contains the bulk of my original contribution
which essentially deals with perturbations originated in inflationary models
when more than one scalar field is present. In chapter 3 the possibility
that the initial conditions required in phenomenological isocurvature models
are realised in the different two field models proposed in the literature is
analysed. This involves, firstly, the determination of the perturbations in
the classical variables, such as the energy density and velocity associated to
each field, originated by the quantum fluctuations of both fields. Further,
it requires the study of the subsequent evolution of the fluctuations and the



comparison with the initial perturbations needed in the phenomenological
models during the radiation dominated era, when these initial conditions are
generally imposed. We find that the modelin which the additional scalar field
decays into thermal radiation after baryogenesis, giving rise to fluctuations
in the initially smooth entropy per baryon ratio, does not provide these
isocurvature initial conditions as was expected. It turns out that in the case
in which the second weakly interacting scalar field remains as a dark matter
component up to the present epoch, in the case in which axions are considered
and in the spontaneous baryogenesis model the isocurvature initial conditions
can be originated.

In chapter 4 the two-field models are analysed in the stochastic inflation
frame. This research has been developed in collaboration with S. Matarrese,
A. Ortolan and F. Lucchin. The stochastic approach is first extended to deal
with more than one scalar field. The Langevin and Fokker-Planck equations
for the joint probability are derived for a general two-field model. We then
analyse in detail the case of a massless non-dominating field in a power-law
inflation driven by an inflaton with an exponential potential. We study the
statistics of the distribution of the non-dominating field. We obtain that in
spite of being a free field, it shows highly non- gaussian behaviour on scales
much larger than the present horizon; on observable scales it gives rise to
isocurvature perturbations which are both essentially Gaussian and have a
scale invariant spectrum.
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Introduction

A major goal in cosmology is that of understanding how the structures we
observe in the universe have been originated. There is a general belief that
gravity played a fundamental role, accreting the matter around some initially
very small inhomogeneities in the energy density. The problem of how these
primordial perturbations were produced is not yet solved. In the frame of the
standard hot Big Bang theory it is rather difficult to understand the origin of
the initial fluctuations from which galaxies, clusters, superclusters, filaments
and voids have arisen by gravitational collapse. The problem is that the
matter which conforms a typical galaxy, for example, first came into causal
contact about a year after the Big Bang. It has proven to be very hard to
find a physical process which could have formed galaxy size fluctuations after
that, and it is even harder to imagine how they could have formed earlier.

In the past few years, particle physics models have provided a possible
explanation for the origin of the fluctuations in the energy density in the very
early universe. They would have been produced by quantum fluctuations of
a scalar field in inflationary universe models. Within this theory, it has been
possible for the first time to compute the primordial spectrum of density
fluctuations from first principles . According to the inflationary scenario, the
universe underwent a very fast expansion phase at the very early times, when
its energy density was dominated by the potential energy of a scalar field.
Such an expansion gives a possible solution for the monopole, isotropy and
flatness problems. After its invention, it was realized that an inflationary
period can also give rise to primordial energy density perturbations. During
inflation, all the physical lengths become exponentially stretched due to the
universe expansion. Quantum fluctuations of the scalar field which drives
inflation, the inflaton, become frozen when the associated wavelengths be-
come larger than the Hubble radius, giving rise to classical fluctuations in the
energy density. If the inflaton is a very weakly interacting field, the resulting
fluctuations can have the right amplitude to originate galaxies.

In the simplest model considered, in which only the inflaton fluctuations
are taken into account and a very smooth and flat potential is assumed for it,
the resulting fluctuations are adiabatic, with a scale-invariant spectrum and
Gaussian distributed. The perturbations result to be adiabatic because when
the inflaton decays, reheating the universe, the fluctuations in all the decay
components follow the original inflaton fluctuations. Baryogenesis occurs
after this, thus the resulting entropy per baryon is constant in space. Hence,
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the ratio of the number density of any pair of components does not depend
on the space point, which is the characteristic that defines the adiabatic
fluctuations. The scale-invariance of the spectrum and the Gaussian statistics
are consequences of the flatness of the potential. As these are the initial
conditions assumed in one of the presently most popular scenario for the
structure formation, the Cold Dark Matter (CDM) adiabatic model, this has
been considered a big success of inflationary models.

However, this is probably not the whole story. Although the CDM model
is quite successful as a theory of galaxy and cluster formation, it predicts less
structure on very large scales than is observed. Some physical mechanisms
have been proposed to add more large scale power to the CDM fluctuation
spectrum in order to have a better agreement with the observed galaxy and
cluster angular correlations, bulk motions, and very large scale structures
such as voids, filaments and “great walls”, but it is very difficult to reconcile
them with the cosmic microwave background anisotropy limits. On the other
hand, also from the theoretical point of view it is interesting to investigate
the consequences of considering more general models.

A very natural generalization is to consider the case in which more than
one scalar field is present. In fact, many types of scalar fields appear in el-
ementary particle theories and some of them interact very weakly with the
rest of the particles. If some of these fields were present during inflation
(contributing much less than the inflaton to the total energy density), since
after the reheating their energy density decreases more slowly than that of
the radiation produced by the inflaton decay, they can give an important
contribution to the total density at present. Quantum fluctuations of these
scalar fields lead to fluctuations in their energy density. However, the fact
that the contribution of these fields to the total energy density is small dur-
ing inflation ensures that their fluctuations do not perturb the total energy
density too much (the major contribution to the total p perturbations is
given by the inflaton fluctuations). But it can be seen that in many cases
the fluctuations in the entropy density are dominated by one of the other
second scalar fields and are typically larger than the fluctuations in the to-
tal energy density. Thus, these models can give rise to fluctuations which
are of the isocurvature type when they leave the Hubble radius during the
inflationary era. This point has first been noticed for the case of the ax-
ions (pseudo-Golstone bosons introduced to solve the CP violation problem
in strong interactions) and has been then extended to other weakly inter-
acting massive particles. Afterwards, it was noticed that if the additional
scalar field decays into radiation after baryogenesis, the density fluctuations
associated to it give rise to fluctuations in the otherwise smooth baryons to
entropy ratio. Another model proposed for the origin of baryon isocurvature
perturbations is the so-called spontaneous baryogenesis, in which the baryon
number per entropy originated is a function of the space point.

An interesting problem to investigate is if these models can break some
of the three standard predictions for the perturbations obtained in the sim-
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plest inflationary model. A first question to address is if two-field models
can provide the initial conditions needed in the phenomenological isocurva-
ture models, which means that the growing adiabatic mode is not excited
during the radiation dominated era. This is the topic of chapter 3, which
contains essentially the work published in Ref. [102] and [103]. We com-
puted the classical perturbations of the energy density and velocity of the
different components of the universe originated by the quantum fluctuations
of both fields during inflation and determined the following evolution when
the associated wavelength is larger than the Hubble radius. The resulting
perturbations are finally compared with the fluctuations assumed as initial
conditions in the phenomenological models. The result is that in the model
with an extra weakly interacting field present during inflation, in the case in
which it decays into radiation after inflation, the original entropy perturba-
tions induce a large adiabatic mode by the radiation dominated period (when
initial conditions are set in phenomenological models). This fact prevents the
model from being a good candidate for the origin of baryon isocurvature per-
turbations, contrary to what was expected. It turns out that the case in
which the extra scalar field remains as a dark matter component up to the
present epoch, the case of the axions and the model of spontaneous baryo-
genesis are possible candidates to originate fluctuations of the isocurvature

type.

Another interesting point to investigate is if in two-field models fluctu-
ations can be non-Gaussian distributed and if the scale invariance of the
spectrum can be broken at cosmologically relevant scales. A powerful tool to
investigate these issues is provided by the stochastic approach to inflation.
This approach gives us the clearest description of the way how classical forces
and quantum fluctuations act over the scalar field configurations to deter-
mine the distribution of the fields (and the energy density) in the universe.
The way to extend this approach to the two-field case is presented in chapter
4, which has been developed in collaboration with S. Matarrese, A. Ortolan
and F. Lucchin (it includes essentially the work reported in Ref. [109]). We
obtain the couple of Langevin equations for the fields and the Fokker-Planck
equation for the joint probability in the general two-field model. We solve
this last one for the particular case of one massless field whose contribution
to the total energy density during inflation is negligible and an inflaton field
with an exponential potential. We analyse the effects over the distribution
of the non-dominating field produced by the fact that it lives in a universe
whose metric fluctuates according to the inflaton fluctuations. The dynamics
of such a field can be described as a Brownian motion in a random medium.
We discuss the main statistical properties of the distribution at the different
scales of interest. The joint probability for the two fields is always found
to are non-Gaussian; however, in order that the non-Gaussian features be
quantitatively relevant it is necessary that the system starts its stochastic
evolution from a state with energy density comparable to the Planck one.
As a consequence, the distribution of the fluctuations in scales much larger

3



than our observable universe is highly non-Gaussian; on the contrary, fluc-
tuations inside our observable universe can be accurately approximated by a
Gaussian random field with scale-invariant power-spectrum.



Chapter 1

The large scale structure

1.1 Introduction

A main goal of cosmology today is that of understanding the origin of the
large scale structures of the universe. The universe looks very inhomogeneous
as it is evidenced by the structures we observe: galaxies, clusters, superclus-
ters, voids, sheets, etc. However, when we observe it at very large scales
(> 100 Mpc) it looks quite smooth, as it is evidenced by the isotropy of
the cosmic microwave background radiation. This radiation is observed to
be homogeneous to a very high accuracy (§7/T < 107*) on all scales from
1’ to 180°. This fact constrains the amplitude of the fluctuations in the en-
ergy density at the decoupling time, when the radiation last scattered from
matter, (6p/p)gec < 1072 — 1072, This also means that the universe was very
homogeneous at the decoupling time and is very inhomogeneous now. It is
generally believed that gravitational instability plays the fundamental role in
making the small initial inhomogeneties grow into the large observed ones.
This growth can begin when the universe becomes matter dominated. It is
essential then to know the initial conditions at that time, from which we
can evolve the perturbations up to the present and compare with observa-
tions. The determination of these initial conditions requires the knowledge
of the total energy density of the universe and the distribution among the
different components, the perturbations in each component, their spectrum
and statistical distribution. In this chapter we briefly review the main tools
used to describe the energy density fluctuations. We discuss the different
initial conditions for them and the possibility that they arise in the frame of
the inflationary scenario. The most current models proposed to explain the
structure formation are presented. Finally, we introduce the main issues in
the evolution of energy fluctuations.




1.2 General description and properties

The fundamental quantity to describe the inhomogeneities in the universe is

the energy density function p(z,t). Its deviation from the mean value (p)(2)
is defined by

5(x,8) = 22 = L1 (1.1)

which has vanishing mean value (§) = 0.

Note that this definition is not unique, it depends on the set of spacelike
hypersurfaces chosen in which energy density fluctuations are measured. This
is the well known gauge problem, that we will address in the last part of this
chapter.

One convenient measure of the irregularities in the space distribution is
the dimensionless autocorrelation function ¢

§(r) = (6(x)6(x +r)) (1.2)
It is usual to express density fluctuations in terms of a Fourier expansion
5(6,1) = ovg [ Pkb(t)e . (1.3)

T (@2

The physical wavelength and wavenumber associated to each mode are
related to the comoving wavelength and wavenumber, A and k, by

2w k
Aph = —k;—a(t) = /\a(t), kph = E‘(—t—)‘,

where a(t) is the scale factor describing the expansion of a Friedmann Robert-
son Walker universe.
It is helpful to think &y in terms of the modulus and argument

8k = |6x| exp(iex),

since simplifying assumptions about the statistics of the modulus |6y| are
currently done.
A significative quantity used to describe the perturbations is the variance
of |éx| at a given k
P(K) = (|6[?). (1.4)

which is called the “power spectrum” of the fluctuation process §(x,1).
An important relation between the power spectrum and the autocorrela-
tion function {(r) is that one is the Fourier transformed of the other

Pk) = / Ere(r)esT,

1

) = oy

/ &EEP(k)e kT, (1.5)



The power spectrum contains the information about the amplitude of the
fluctuations. The specification of the fluctuation process requires also to do
some assumption about the phases ¢x. A usual one is to suppose that at
early times the phases are random numbers, uniformly distributed on the
interval [0,7]. This corresponds to take for § a “Gaussian field”; in this case
the power spectrum completely specifies the field. However, although they
are generally less studied, the non-Gaussian initial fluctuations can also be
relevant for the structure formation problem.

The relation between the wavelength and the wavenumber A = 27 /k
enables us to translate from the notion of power spectrum in the Fourier
space to the distribution of mass fluctuations in the real space. A density
fluctuation in a patch of universe of scale R is made up of contributions
from all the Fourier components which frequency exceeds 2r/R. The mass
associated with this patch is simply

M:%mm. (1.6)

A simple assumption is to consider that the power spectrum follows a

power law

P(k) o k™. (1.7)

We can compute the statistics of the fluctuations § M of the mass contained
within spheres of a given radius R

Mo _ [ 2 2
(7)) = [ (6w (RR)E, (1.8)
where the window function is given by

ISR dsxe—ik.x
fSR 3z

with Sp a sphere of radius R about the origin. Since W(Rk) ~ 1(0) if
Rk < 1(Rk > 1), we obtain

W(Rk) = (1.9)

() = (8l )° o k. (1.10)

A quantity of astrophysical interest is (§M/M)(k,tz(k)) which is the
average relative rest mass excess on a comoving length scale k~! = R when
this scale enters the horizon in the radiation or matter dominated phase at
the time tg (k).

1.2.1 Adiabatic and isocurvature perturbations

In a many component universe the fluctuations in the energy density can be
described in terms of the fluctuations of each component separately. How-
ever, it turns out that this is not the more convenient decomposition for
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perturbations. There exist a more physically meaningful one, which is gen-
erally used.
The two fundamental types of fluctuations considered are:

o Adiabatic fluctuations, which are fluctuations arising when all the com-
ponents are compressed in some regions, producing net fluctuations in
the total energy density é # 0. As this can also be thought as having
fluctuations in the spatial curvature of spacetime, they are also called
curvature perturbations. They have the property that the ratio of the
number density of any pair of components is independent of the spatial
position. This means that

- 5n5 5nx . 5_8

= — = — =

ng nx S

?

where s is the entropy density, B stands for baryons and X refers
to any other component. Thus, temperature fluctuations are propor-
tional to density fluctuations, i.e. §T/T = (1/3)ép/p . In particular,
the ratio of the number of photons and baryons in a small volume re-
mains everywhere the same. Since this ratio is in fact the entropy per
baryon, adiabatic fluctuations leave the entropy per baryon constant
everywhere, while the density may change from point to point.

e Isocurvature fluctuations, which can be realized by spatially varying
the equation of state on some initial spatial surface in a universe which
was hitherto absolutely homogeneous. This process does not perturb
the energy locally and hence any excess in one component is balanced
by a deficit in the others. It is the comstancy of spatial curvature in
this initial hypersurface that gives the name to this kind of fluctua-
tions. They are also many times referred as isothermal fluctuations,
even if they are not exactly the same thing. For example, in a universe
composed by baryons and photons, an initial fluctuation in the local
number of baryons, énpg, corresponds to a perturbation in the baryon
energy density, §pp. In order that the total energy density be con-
stant, there must be compensating fluctuations in the energy density
of photons, ép,. They correspond to fluctuations in the temperature

45_T_ 1ppénp

T 4p, ng
If the initial hypersurface is taken during the radiation dominated
era, much earlier than the equality time, as is usually the case, since
py > pp the fluctuation in temperature is negligible compared to the
fluctuation in the baryons, and hence the name isothermal. In this case
the fluctuations correspond to an inhomogeneous cosmic entropy per
baryon
§(np/s n 6T :
(nz/s) = B—3—#0.
(ng/s) ng T




In the most simple inflationary scenario, the energy density fluctuations
originated are of the adiabatic type. In this case, a single scalar field is con-
sidered (the inflaton field) which drives inflation. As the main contribution
to the energy density of the universe during inflation is given by the poten-
tial energy density of the scalar field, V (), fluctuations in this field originate
perturbations in the total energy density and when the inflaton decays into
light particles, these transform in fluctuations of density (and temperature)
of the created particles. So, they are purely adiabatic.

However, in realistic elementary particle theories there exist many differ-
ent scalar fields, and during inflation fluctuations in all of them were gener-
ated. In the inflationary period, their mean energy density was smaller than
that of the inflaton, otherwise they would have driven inflation, but their
fluctuations can be large. If some of them interact very weakly with the rest
of the fields, their energy density would decrease more slowly than that of the
inflaton field and its decay products during the expansion of the universe.
Hence, the perturbation in the energy density associated with these fields
may become dominating. As they essentially do not modify the total energy
density, they can be called isocurvature. The existence of these fields, very
weakly interacting with the other fields is a typical feature in many theories
of elementary particles. One case is that of the axion, which has been intro-
duced to solve the strong CP problem. In many cases they are also candidates
for the dark matter, and hence their contribution to the present density of
the universe can be more important than that of the matter produced by the
inflaton decay.

The generation of isothermal fluctuations during inflation has been stud-
ied by many authors in the case of the axion field [1,2,3], but some other
possibilities have also been considered by Linde [2] and by Kofman and Linde
[4]. Furthermore, it has been pointed out by Peebles [5] that if one of these
scalar fields decays into radiation after baryogenesis, the fluctuations of this
scalar field will give rise to baryon isocurvature fluctuations. The viability
of this model is the subject of chapter 3. ’

1.2.2 Spectrum of the primordial perturbations

A usual convention is to define the spectrum of perturbations specifying the
amplitude of each mode as it crosses inside the Hubble radius (a(tg)H(tx) =
k). This has the advantage that it gives the magnitude of the perturbations
before any microphysical process can act over them. On the other hand, the
amplitude of the density perturbations at Hubble radius crossing corresponds
to the amplitude of the perturbations in the gravitational potential. In this
convention the amplitude of different modes are determined at different times.
However, it is not difficult to relate the amplitudes of the modes at a fixed
time to those at Hubble radius crossing.

A very simple hypothesis for the shape of the power spectrum was pro-
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posed by Harrison [6] and Zeldovich [7], that is

oM

(——Mm)(k,tg(k)) = const, (1.11)

As long as perturbations are outside the Hubble radius § grows as the
square of the scale factor a?. The relative amplitudes at Hubble radius
crossing of two modes characterized by wavenumbers k; and k; are then
(k2/k1)""(az/a1)* = (k2/k1)""'. Thus we see that this corresponds to a
spectral index n = 1 in the power spectrum (1.7).

A scale invariant spectrum was originally postulated because it fits the
experimental constraints fairly well and it is the only power law spectrum
that does so. The experimental constraints are twofold. First, the absence of
anisotropies in the cosmic background radiation [5] impose an upper bound
on the amplitude of primordial perturbations on large scales [6], for example
on the scale of the present horizon

§M
(57 (ks tm(k)) <107 for M ~ 10 M, (1.12)
(scales are labeled by the rest mass in a sphere of comoving radius k7).
On the other hand, clusters of galaxies can only form via nonlinear pro-
cesses. Linear perturbation theory breaks down when relative perturbations
become of order unity. Thus, the formation of galaxies imposes that

(%[—) ~ (k,tg(k)) ~ 107+ for M ~ 10" M. (1.13)

This bound depends on the details of the cosmological model. In partic-
ular, the properties of the particles forming the dark matter of the universe
will determine the length of the period during which perturbations on scales
of interest grow, and those will influence the lower bound.

We see that equations (1.12) and (1.13) make a scale invariant spectrum
an obvious candidate and restrict its amplitude to O(10~(4+1)),

The previous discussion applies for adiabatic perturbations, which are
characterized by the fluctuation in the total energy density §. We will gen-
eralize now the analysis to the isocurvature perturbations. In this case the
fundamental quantity which characterizes the perturbations is the entropy
perturbation, S, (see eq. (1.27)). Initial fluctuations in Sqy act as source for
fluctuations in the total energy density and eventually originate curvature
fluctuations when they reenter the Hubble radius.

The spectral index for isocurvature fluctuations is defined as

|Sk|? o k™

As it can be seen from eq. (3.48), the total density fluctuation originated
by the entropy perturbation is proportional to (k/aH)?Sa. Thus, a scale
invariant Zeldovich spectrum corresponds in this case to have n = —3.
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In the most simple inflationary models, the spectrum predicted is the scale
invariant one. This result is exactly true in a de Sitter exponential expansion
phase, and holds up to small logarithmic corrections in the case of a simple
potential scalar field dominated phase. In this case, more power at large
scales is expected since the amplitude of the modes generated, H/27, drops
as the scalar field rolls down to the minimum of the potential (and noting that
the smaller scale modes are produced later). However, it is rather difficult
to get significant modifications keeping the amplitude of the fluctuations
small. The most simple possibility to modify the scale invariant spectrum
is to consider power law inflationary models [8,9], arising from scalar fields
with exponential potentials; flatter power law spectra are originated, but the
cosmic microwave anisotropies strongly constrain the allowed flattening [10].

However, in more complicated models, as when more than one scalar field
is present or when the shape of the scalar field potential has features, as hills
or wells, spectra quite different from the scale invariant one are possible. For
example, a mountain of extra power on top of an underlying scale invariant
spectrum arises when there is a hill on the scalar field potential [11], the shape
and the amplitude of the mountain spectrum depending on the shape of the
potential hill. Another possibility is, in multiple scalar field models, to have
a number of successive stages of inflation driven by different scalar fields o;
with different potentials V(p;) without interaction between the fields. This
model gives rise to a spectrum of different scale invariant patches with larger
amplitudes for larger wavelengths [12,13,14,15]. Another possibility arises
when two interacting scalar fields are considered [4,16]. In this case also a
mountain in the spectrum can arise for particular choices of the coupling
constants.

A problem of these models is that in order that the mountain or the
break in the power spectrum appears in scales of astrophysical interest, it
is necessary to impose rather precise conditions on the inflationary model.
For example, in the double inflation model the second scalar field must begin
to dominate the evolution at a precisely tuned value. Due to the stochastic
evolution of the second field during the inflationary stage dominated by the
first field, it has been shown [110] that it is very unlikely that the second field
has the right initial value when it becomes dominant. On the other hand,
tuning the location of the mountain implies assuming very precise values for
the potential parameters.

1.2.3 Statistics of the primordial fluctuations

Most times primordial energy density fluctuations are assumed to be Gaus-
sian random fields. In this case, a single function |6y| fully specifies the
perturbation field. The power spectrum P(k) gives the contribution of (sta-
tistically independent) modes of comoving wavenumber k to the density fluc-
tuation 6. For isotropic and homogeneous Gaussian random fields, the power
spectrum is only a function of |k|. Gaussian fields arise whenever one has a
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variable which is a linear superposition of a large number of independent ran-
dom variables which have the same distribution, as it is demonstrated by the
central limit theorem. In particular, if a field is written as a spatial Fourier
decomposition, and its Fourier coefficients are statistically independent, all
of them having the same form of distribution, then the joint probability of
the density evaluated at a finite number of points will be Gaussian. The
most simple inflationary models predict Gaussian perturbations as a conse-
quence of the flatness of the inflaton potential. This is required in order that
the density fluctuations originated are of the right amplitude to form the
structures. It has as a consequence that the inflaton must be a very weakly
interacting field and thus the coupling between different modes can be ne-
glected. However, initially non-Gaussian perturbations may arise in more
general models, as for example when more complicated potentials or several
scalar fields are considered.

Non-Gaussian primordial fluctuations can give rise to very different pre-
dictions for the large scale distribution of the observed luminous objects than
Gaussian ones. Thus, a main purpose of cosmic structure research is to de-
termine whether the perturbations were initially Gaussian distributed, and,
if so, to determine the two-point correlation function, which in the Gaussian
case is enough to specify all the statistical properties. Although the form of
the statistics is maintained in the linear regime, as the universe evolves into
the non-linear regime the coupling of modes cause high order correlations
to develop, distorting the initial state of the perturbations. This makes the
initial statistics of the perturbations a yet not elucidated point. In this sense
for example, clustering properties on large scales in the Cold Dark Matter
model have recently been studied [18].

An inflationary model which can give rise to non-Gaussian fluctuations
is the two interacting scalar fields model mentioned in the last section. In
this case, if the quantum fluctuations of the second scalar field dominate the
dynamics during a lapse and determine the evolution in place of the longwave
“classical” component of the field, this makes density perturbations nonlinear
in the field perturbations, and thus originates couplings between the different
modes which make fluctuations non-Gaussian [117]. A similar effect occurs
in the model with the hill in the scalar field potential [118].

Another possible way to generate non-Gaussian perturbations has been
proposed in the case of the axion field. Adding higher derivatives of the
axion field to the lagrangian also leads to non-Gaussian fluctuations [19].
Finally, non-Gaussian primordial fluctuations are the standard prediction of
the cosmic strings model.

A powerful tool to investigate the statistics of the fluctuations produced
in inflationary models is given by the stochastic approach to inflation [86]
as it has been proposed in [21,22,23]. This approach will be discussed in
the next chapter and used in the last one to study the distribution of the
isocurvature fluctuations originated by subdominant scalar fields.
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1.3 Evolution of the perturbations

The structures we observe today are the result of the gravitational amplifica-
tion of very small initial perturbations. When the physical wavelength of the
perturbations are larger than the Hubble radius, only gravitational effects are
important and the evolution of the perturbations is fully described by the
relativistic theory of perturbations of the Friedmann models [24]. When the
wavelength of the perturbations becomes smaller, various microphysical phe-
nomena should be taken into account. There are some physically important
length scales describing the domain of influence of the different phenomena.
The Jeans length .
2
A=, ['@7%] (1.14)
determines the preponderance of the gravitation or pressure effects on the
evolution of the density perturbations. For perturbation wavelengths larger
than A;, the gravitational effect dominates and the amplitude of the pertur-
bation grows as a power law. Instead, for perturbation wavelengths smaller
than A; the pressure effect dominates and the amplitude of the perturbation
oscillates as an acoustic wave. Associated to the Jeans length there is a mass
scale

4 AJ 3
= —p | —1 . 1.1
M; 3 [ 5 } (1.15)

During the matter dominated era and before recombination, matter was cou-
pled to radiation via Compton scattering and p = p, /3, the square of sound
velocity was ¢2 = (c?/3)[1 + (3/4)pm/p.] and My ~ 10" My. After recombi-
nation, the radiation pressure is of no importance and p = nkT', M7 drops to
about 10°Mg and decrease thereafter as the temperature diminishes. This
abrupt decrease is crucial for galaxy formation, as matter fluctuations on
sub-horizon scales can begin to grow only after recombination. Before that,
matter cannot freely move through the photon plasma to collapse.

Adiabatic fluctuations are also influenced by dissipative phenomena. Pho-
ton diffusion can damp an adiabatic perturbation (Silk damping) if its char-
acteristic wavelength is sufficiently small, so that the time necessary for pho-
tons to diffuse out of the perturbation region is smaller than one expansion
time [25]. The Silk damping length is given by

d, = /Hc Iy, (1.16)

where I7 is the photon mean free path, It = (o7n.)"?, with o7 the Thompson
cross section and n. the electron density.

If the initial adiabatic perturbation has wavelength smaller than d,, in
one expansion time H ™! it will be transformed in an isothermal perturbation
whose amplitude is much smaller than that of the adiabatic perturbation it
comes from. The mass scale associated to this attenuation is given by [26]

Ms ~ 1.3 -10"*(QAh%)"7 M. (1.17)
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Typical masses are of the order of 10'® — 10'* Mg or larger, which corre-
spond to clusters of galaxies. Thus, galaxies (10'* — 10'2Mg) can form only
after the collapse of large scale perturbations. These would preferentially
collapse first in one dimension (pancake collapse).

1.4 Models for structure formation

In the gravitational collapse model, structure form when perturbations § =
§p/p grow to non linearity (§ > 1), they cease to expand with the Hubble
flow and subsequently collapse and virialize. The problem is to understand
how fluctuations of galactic and cluster size can grow to nonlinearity by
the present without violating the observational bounds on the anisotropy of
cosmic microwave background radiation (CMBR).

The scenario depends strongly on the matter content assumed for the
universe. Most part of the matter in the universe is dark but it is not yet
known what it is made of. The current hypothesis are that it is: baryonic
matter, hot dark matter (HDM) or cold dark matter (CDM) (the “favourite”
one). Let us briefly discuss some points of the structure formation scenario
with adiabatic primordial fluctuations in each one of these models.

e Baryonic dark matter: One of the main features of this scenario is that
the short wavelength perturbations are dissipated by photon diffusion.
This leads to pancake structure formation, large scale structures form
first and the smaller scales ones, as galaxies, form by fragmentation
of the larger ones [27]. The main problem of this model is that the
amplitude of primeval density perturbations needed to form galaxies
violates the bounds from the isotropy of the CMBR by more than one
order of magnitude (see for example [28]). This put this model (popular
in the seventieth) in disfavor.

When non baryonic dark matter is considered, the picture of structure
formation is rather different. It depends on the type of dark matter consid-
ered.

e Hot dark matter: It refers to particles that were still relativistic at
their decoupling. The typical example are massive light neutrinos. If
neutrinos have a rest mass m, > 10 eV, their contribution to the total
energy density would exceed the baryon one [29]. For m, ~ 30 eV,
they close the universe.

The most salient feature of hot dark matter is the erasure of small scale
fluctuations by free streaming [30]. Neutrinos of mass m, stream rel-
ativistically from decoupling until the temperature drops to m,, trav-
elling a distance d, ~ mpmj2. Thus, to survive free streaming the
wavelength of the fluctuation A, must be larger than d,. So, neutri-

nos exhibit an effective Jeans length. Correspondingly, the mass in
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neutrinos needed for a fluctuation to survive free streaming is

—2
M;(v) = 1.77-mim;? = 3.2.10%° (%) Mo, (1.18)

which is the mass scale of superclusters.

Therefore, hot dark matter with a primordial scale-free adiabatic fluc-
tuation spectrum gives rise to perturbations which have a cutoff in the
short wavelength region due to free streaming, is peaked at A ~ d, and
decreases for larger wavelengths because fluctuations with larger wave-
lengths have less time to grow. This spectrum leads to pancake struc-
ture formation, with superclusters the first structures being formed.

Numerical simulations of dissipationless gravitational clustering origi-
nated by this spectrum predict regions of high density forming a net-
work of filaments, with the highest density occurring at the intersec-
tions and with voids between them [31,32]. The similarity of this pic-
ture with observations is cited as evidence in favour of this model.
The limits on small angle §7/T fluctuations are also compatible with
this picture [28]. However, there exist many problems associated with
the neutrino dominated galaxy formation scenario. Studies of nonlin-
ear clustering indicate that supercluster collapse must have occurred
recently, for z < 2. However, the best limits on galaxy ages indi-
cate that galaxy formation took place before z = 3. Another problem
is associated with the large scale (quadrupole) anisotropy of the cos-
mic microwave background radiation. Observations constrain it to be
(6T/T)q < 3-107° [33]. Theoretical predictions for the neutrino domi-
nated universe are at the verge of contradictions with the observational

limits [34].

Cold dark matter: Some of the problems associated to the neutrino pic-
ture can be alleviated by supposing that the universe is dominated by
particles with much smaller internal velocity dispersion (thus reducing
the free streaming damping mass, Mp < 108Mg). There exist different
kinds of candidates as axions, wimps (weakly interactive massive parti-
cles) or primordial black holes. The spectrum predicted for the energy
density fluctuations when one considers primordial adiabatic scale free
perturbations as in the hot dark matter case is quite different in this
model. During the radiation dominated era, fluctuations grow as § ~ a?
on scales larger than the horizon. When the fluctuation enters the hori-
zon, the photons and charged particles oscillate as an acoustic wave and
the non interacting neutrinos freely stream away. They are relativistic
since in the cold dark matter case their mass m, < 30eV. As a result,
perturbations have a small growth before matter domination. Hence,
the amplitude of density fluctuations increases slowly as one goes to
smaller scales. Numerical computations of the cold dark matter fluctu-
ation spectrum show that it is relatively flat for M < 10°Mg and then
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decreases for larger wavelengths. Therefore, smaller mass fluctuations
will become non linear and begin to collapse earlier than large mass fluc-
tuations. Small mass systems are subsequently clustered within larger
mass systems which become non linear at a later time. This hierarchi-
cal clustering begins at the baryons Jeans mass scale (Ms(b) ~ 10° Mg
at recombination) and continues until the present.

The formation of structure in a CDM universe has been studied in
numerical simulations by Davis, Efstathiou, Frenk and White [35], who
have given good evidence for the ability of the model to account for
the properties and distribution of galaxies without serious conflicts with
the observed limits on CMBR anisotropies. This has made this model
the most largely preferred one. However, not everything is completely
satisfactory in this theory. The main problems is that the fluctuations
in the mass distribution are anticorrelated on scales larger than ~ 50 —
100 Mpc, which seems to be inconsistent with observations of the large
scale velocity fields [36], angular correlation of galaxies [37],cluster-
cluster correlation functions [39], structures in the galaxy distribution
[38] and that the epoch of galaxy formation seems to occur too late.
These problems are alleviated if the hypothesis that galaxies formed
only at the highest peaks of the initial density distribution is done,
which is called the “biased” clustering, but they are not consistently
solved.

The other possibility to be taken into account is that primordial pertur-
bations not be adiabatic. The most studied possibilities are: isocurvature
baryonic and CDM perturbations and cosmic strings induced galaxy forma-
tion.

e Isocurvature perturbations: Let us first consider the baryonic isocurva-
ture model. Within it the only important components are baryons and
radiation and inhomogeneities are introduced by assuming that the ra-
tio of photons to baryons is a function of space point. This hypothesis
is not in agreement with the standard baryogenesis scenario. In the
usual model, baryogenesis occurs after the reheating due to the decay
of a heavy boson, but it is also possible to produce the baryon asym-
metry during the process of decay of another scalar field. In both cases
the ratio of the resulting baryon asymmetry to entropy is only depen-
dent on microphysical parameters, such as coupling constants and the
temperature at which B violating interactions go out of equilibrium,
and it is not expected to show any spatial variation. However, there
are alternative models in which spatial inhomogeneities of the ratio of
photons to baryons can be achieved, which will be discussed in chapter

3.

The interest in this model has increased recently as it provides a quite
successful picture of structure formation [40,41]. On scales larger than
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the matter-radiation Jeans length (A; ~ 50Q~1h~?Mpc), where the ra-
diation pressure force can be neglected, the total energy density tends
to stay homogeneous. On smaller scales, fluctuations are frozen until
the time when radiation drag can be neglected, after decoupling. Af-
ter that, fluctuations begin to grow, which can lead to early galaxy
formation (z = 10). There is a peak in the transfer function at wave-
lengths A ~ A [42,43], which is useful to account for the large scale
velocity fields. The most stringent bounds on these models come from
the CMBR anisotropy limits. For small scale anisotropies to be con-
sistent with observations, reionization after recombination needs to be
invoked. The free parameters of the theory are the total density of
baryons, characterized by (p, and the spectral index n. The most
satisfactory possibility being Q5 ~ 0.2 and n ~ —1 models [43,45].

Finally, we consider the isocurvature CDM model, with axions (or some
other weakly interacting massive particle) forming the dark matter. In
inflationary models with more than one scalar field present this kind of
perturbations can naturally arise (we will address them in chapter 3 and
4). This model is also strongly constrained by the CMBR anisotropy
limits. Large scale anisotropies are the problematic ones in this case:
anisotropies are increased by a factor of six with respect to the adiabatic
ones for the same amplitude of density fluctuation [46]. This is due
to the additional contribution of the radiation density fluctuation at
the last scattering surface. Also here steeper spectrum than the scale
invariant one (n > —3) and large bias factor are preferred [47].

Cosmic strings [48,49,50]: These are one dimensional false vacuum de-
fects which have been formed at a symmetry breaking phase transition
at the epoch of grand unification. The string tension v (mass /length)
is the only parameter required to specify the theory. In this model,
structure formation is due to the accretion of matter around loops
starting after pressure becomes negligible at t., (when the universe be-
comes matter dominated). In the earlier versions of the model, the idea
was that the smaller loops develop into galaxies and the larger ones into
clusters. Long segments of strings can also seed large scale structure by
forming wakes (perturbations in the velocity of the surrounding matter)
as they move [52]. However, this picture is very simplified as galaxies
and clusters can also form by the fragmentation of the larger structures.
Within the simplified theory, two point galaxy-galaxy and cluster- clus-
ter correlation functions are correctly explained [51]. However, there is
some controversy as another set of cosmic strings simulations (see e. g.
[53,76] )predict a much smaller number of loops formed and favor the
role of wakes with respect to loops for structure formation.

17



1.5 Gauge invariant perturbations in a mul-
ticomponent system

The theory of general relativistic perturbations in Friedmann models has
been developed by Lifshitz in 1946 [24]. However, his approach has problems
originated by the freedom of making gauge transformations. Because of this,
the notion of density perturbations, for example, looses its physical direct
meaning. Distorting the background spatial hypersurfaces it is possible to
assign any amplitude to the density fluctuations, the rest of the fluctuations
appearing as fluctuations in the metric components. In the earlier works
on this subject a particular gauge was chosen and some scheme was pro-
posed to treat the gauge modes (spurious modes representing only coordinate
changes). A different approach was given by Bardeen [55], who developed
a gauge invariant framework for studying the evolution of the matter and
the metric perturbations in which only variables that are invariant under the
change of gauge are dealt with. The method was initially developed for the
case of a fluid being the matter content of the universe, and has then been
extended by Kodama and Sasaki [56] for the many components case. Since
for studying the isocurvature fluctuations this extension is necessary, we will
briefly review it here. ‘

Perturbations in various quantities can be classified according to how
they transform under spatial coordinate transformations as scalar, vector
and tensor. We will concentrate only on scalar perturbations as this is the
only mode which is excited when dealing with scalar fields. Perturbations in
all the variables are expanded in terms of a complete set of scalar harmonics
Y(z) (a label k indicating the associated wavenumber will be everywhere

understood). The metric perturbations are described by four functions of
time, A, B, Hr, Hr, defined by

ds® = —(1 + 2AY)dt* — aBY;dtda’ + o*(6;; + 2H65Y + 2HYy;)de'dz?,
where Y; = k7'V,Y and ¥;; = k=2V;V;Y + %&-J-Y (latin indices denote spatial

labels running from 1 to 3). We can define the gauge invariant variables

_ HT aH a
®=Hp+— + (B — ¢ Hr),
v=a+28+2p_ Liay. (1.19)

k k k?
The matter perturbations must be studied more carefully because when deal-
ing with a many components system, the stress tensor of each one is not con-
served individually; we define T, = Q. The source terms are constrained
by the total energy momentum conservation T,,” =0, 3, @F = 0.

Each component is described by a perfect fluid stress-energy tensor. De-
noting by p. and p, the background energy and pressure density, perturba-
tions are defined by

T = —pa(l + 8aY),
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T%7 = (pa + pa)(va — B)Y;
Tag = _(pa + pa)van’
T = pa(6; + 1abdi + 7. Y7). (1.20)

If the component « is given by a scalar field, which can be decomposed as
P(x,t) = $(t) + §4Y (x), the perturbed energy-momentum tensor is

T4 = 38— U+ (AF ~ $8 — U, i)Y
qu? = Zc.qﬁ&by_'”
a

T¢ = ~(BF + “gsp)v,
T¥ = [347 U — (Ad" — 5} + Uy )71 (1.21)

Writing the source term in the background as Q% = (—aQ%,0), the unper-
turbed continuity equation for a given component is given by

,ba = "'3Hh'a + Qa,

where hy = py + Pa-

In addition, it is necessary to consider perturbations associated to the
energy- momentum source term. They are characterized by two new variables
€« and f, given by

Q% = —aQ*[1 + (4 — &)Y],

Q? = a’[Qa(v - B) + Hhozfa]y.:ia (1'22)

where v corresponds to the total fluid velocity perturbation.
Gauge invariant variables can be defined from the gauge dependent ones

as a .
Va = Vg ™ EHT7
. Q° >Ha
Ao = 6o +3(1 + wa) (1 - 5) Tlva — B,
c2
7o = I — 25, (1.23)

and II7, is gauge invariant by itself.
Analogously, for the energy-momentum source perturbations

. aH Q“

Ea = €q — Ta&-('va - .B),
_ Q*

Fo = fo= g (Ve = V).
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A, corresponds to the perturbation in the energy density of the compo-
nent o with respect to its own rest frame. It is useful, when comparing the -
fluctuations in different components, to use, instead of A,, the perturbation
relative to the total matter rest frame A.,, which is given by

Aw:-—_sa+3(1+wa)(1—3§;a) Ha B (29

These variables are related to the total fluid perturbation variables, A, V, Il
and I, by

PA = ZPaAcaa
RV = haVa,
PHL = ZpaHLa7

plr =) pallra. (1.25)

The equations of motion for the perturbation variables A, and V., ne-
glecting the anisotropic stress perturbations Ilz, and in a flat universe, are

dA, , A.  3aH hg Vag 1 QuFEq F,
e = g ) g T () T )
dv, V., 3aH A k A We F,
R L S e e T O [ e = (126
da a 2 k a+aH(1+'w.,a 1+ wy a )+ ( )

where V,5 = V,—Vj. Another variable of interest is the entropy perturbation

S _ Aca Acﬁ
FT 1 bw, 14wg

(1.27)

The interpretation of this variable is quite clear when the component «
describes matter and the component 3 radiation, then S,g reduces to
Spm  3bp. & 6 8
Sup= o 38e _n_Bs_ Hnfs) (1.28)
pm  4pr  m s (nfs)
where n is baryon number density and s the entropy density of radiation. A
useful relation is

A, A hs Hahg
— a 1.2
1+ we 1+w+hS e (1.29)

If the fluids are uncoupled, Q, = F, = E, = 0.
The equations of motion for S,s and V,g for a two-component system
when the interactions between components can be neglected are given by

dSap _ K Vap o Wa Ma _Ws T8
dae  aH a 1+w, a 1+wg a

aﬂ+3
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a2 h a aH 14w ;+
- —ho +hg\ S k1w w
P2 2\ LR o o BYPap , K L afle  WgTI3
2aH (cm—i—c‘,ﬁ +2 aH(c’a c"ﬂ) ( h ) a aHa (1 +w, 1+ wﬁ) )
‘ (1.30)

dVa ’ Va _ha h Va k fa—“ f A
~i+@—3&+&ﬂvﬁ3dfdﬂ( +_ﬂ 2 k(G = o)

For the interacting case, see [56]
We will assume that 7, = 0 except when the component « is a scalar
field. In this case, it can be seen that

pans = (1 — c2y)pelg, (1.31)

On the other hand, the equations for the total fluid perturbations are
given by

dA A EV
2 Swo =+ w)——,
v Vv 3aH A E 1
da P e T T e Tl o 2P el As). (1.32)

5

This couple of equations is equivalent to the second order equation for
the Bardeen variable 5 (that we have called here &), related to A by & =
2(aH/k)?A. In the one-component case, this equation has a first integral for
wavelengths larger than the Hubble radius [57,58,59,60], this can be easily
seen by writing (1.32) in terms of ® and I' = (a H/k)V

& & 3 T

da + a 2(1 +w)a’ ( )
i 3 I & aH(,h1 1 ,
a0, = o X (4500 -4 D o+ ).

(1.34)
When there is only one component, the second term on the right hand
side of (1.34) vanishes and the third one is much smaller than the first for
wavelengths larger than the Hubble radius, so there is an approximate con-
stant of motion given by R = & — I. The physical meaning of this quantity
can be understood by noting that
@_P:HL+%?+“~£I—(1)—B). (1.35)
Then, in the comoving gauge (v = B) what is conserved is the spatial
curvature of hypersurfaces orthogonal to the total fluid flow (it can be seen
that §(*°R) = 4(k/a)*RY, with R = Hy + Hy/3).
This constant of motion proves to be very useful to relate the amplitude of
curvature perturbations in different epochs of the evolution of the fluctuations
outside the Hubble radius. The constant of motion can be written as

2 1 de
¢4 —— —_— = t. 1.
+31+w(¢+ada) cons (1.36)
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This first order differential equation for ® becomes specially simple during
periods in which w is constant, as for example

w 0 (matter dominated)
w 3 (radiation dominated)
w =~ —1 (inflation)

In this cases, equation (1.36) has a constant solution

2 1 \7!
d = (1-}— 37 +w) const
plus a decaying mode, which will become negligible a few Hubble times after
the beginning of the era in question. This fact makes it possible to compare
the values of ® in different eras of constant w in a simple way, without ne-
cessity of making assumptions of what happened in the intermediate periods
except that the behaviour should not be such as to cause the decaying mode
to dominate.
Specifically, we obtain that

5 3 2 1
‘é@(matter) = 5@(rad.iation) = —M@(inﬂation)' (137)

31+ w

This result is valid for large scale perturbations (k > aH).

However, when dealing with a multicomponent system, this conservation
law need not necessarily hold. In the first place, the second term in the right
hand side of eq. (1.34) only vanishes in the case that all the components
have the same sound velocity or when the perturbations in the velocity of
all the components are equal. And secondly, the third term can only be
neglected in the case that the perturbations in the energy density of the
individual components are comparable to (or smaller than) the perturbation
in the total energy density. This is actually true for adiabatic perturbations,
but not for isocurvature ones. Thus, in general, the spatial curvature of
hypersurfaces orthogonal to the total fluid flow is not a constant of motion
outside the Hubble radius.
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Chapter 2

The inflationary scenario and
the origin of density
fluctuations

2.1 Overview

The inflationary scenario is a modification of the standard Big Bang model,
born with the scope of solving the so called “horizon problem”, “flatness
problem” and “monopole problem”, which arise when one extrapolates the
model back to the initial time [61]. (For a review on inflation see [62].)

The horizon problem is related to the fact that the homogeneity and
isotropy of the cosmic microwave background radiation indicates that the
regions where photons coming from different regions in the sky last scattered
at the recombination time were at the same temperature. This cannot be ex-
plained in the standard Big Bang model because of causality, as that regions
were not causally connected at recombination time.

The flatness problem corresponds to the fact that the parameter defined
by & = p/p, where p. = 3H?m% /8 is the critical density necessary for
the universe to be flat, is measured to be of order one. It is easy to see
that |1 — 97| increases as a? when the universe expands, so that to have
1 ~ O(1) today requires to fine tune its value extremely close to one as
initial condition.

The monopole problem is connected to the fact that in the context of
grand unified theories, the standard Big Bang model predicts a large over-
production of monopoles, which are topologically stable knots in the Higgs
field vacuum expectation value. This is in contradiction with observations,
s0 an incompatibility between grand unified theories and the standard Big
Bang model arises.

The idea underlying the solution of these problems in the inflationary
model is to assume a period of very fast expansion of the scale factor a(t) in
the very early universe.
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From the Einstein equation

47
3m§;

(p +3p)a, (2.1)

a=-—
we see that in order that @ > 0, it is necessary that

p < -—}ép. (2.2)

Within the classical description of matter, the pressureis always positive,

so this inflationary expansion does not occur. But this is not the case when

matter is described in terms of quantum fields. Consider a simple example
consisting in a scalar field . Its energy density and pressure are given by

plp) = ;so + 5 (Vso)2+V(sa),

p(p) = 56"~ =(Ve) ~ V(). (23)
Assuming that at some time the potential energy term is the dominant one,
the contribution of the scalar field to the equation of state is p(¢) = —p(p).
If at some early epoch a scalar field like this provided the largest contribution
to the energy density of the universe, the total pressure results negative and
the constraint (2.2) is satisfied. Let us first consider the case in which the
scalar potential energy is constant. From the Einstein equation

H = (9-)2 38” ook S (24)

b
a m2 a?

it results that H ~ const and a(t) ~ a, e/(t~%) (the curvature term k/a® can
be neglected after some time because it decreases exponentially with respect
to the energy one). This is the usual mechanism for inflation. We review now
the models which have been proposed in which this mechanism can work.

2.2 Inflationary models

Old inflation: The first inflationary model was proposed by Guth [61], it is
based on a scalar field theory which undergoes a first order phase transition.
A potential with a local (metastable) minimum at ¢ = 0 and a global (true)
minimum at some other value ¢ = o with a barrier between them is assumed.
In order to avoid a large cosmological constant at present, V(o) must vanish.
At high temperatures, the equilibrium configuration of the field corresponds
to the minimum of the effective potential, which takes into account quantum
and thermal effects [63,64].

At sufficiently high temperature it has only one minimum at ¢ = 0 and
thus the scalar field configuration will be ¢(x,t) = 0. There is a critical
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temperature T. for which the minimum ¢ = 0 becomes unstable and for
T < T, the global minimum is at ¢ = 0.

Thus, at high temperatures, thermal forces constrain the scalar field to
be at ¢ = 0, with a constant potential energy density. Hence it gives rise
to an exponential expansion. As the temperature decreases, the scalar field
configuration ¢ = 0 becomes a metastable state and eventually decays to the
global minimum by quantum tunnelling the potential barrier. Bubbles of the
true vacuum state nucleate and expand in a sea of false vacuum.

It was soon realized that this scenario has a serious problem [61,65]: the
typical radius of a bubble today would be much smaller than our observable
horizon. Thus, unless bubbles percolate, the model predicts extremely large
inhomogeneities inside the Hubble radius, in contradiction with the observed
isotropy of the CMBR. They percolate if a sufficiently large number of them
is produced, so that they collide and homogenize a region larger than the
present Hubble radius.

However, with exponential expansion, the volume between the bubbles
expands exponentially, whereas the volume inside the bubbles expands with
a low power, and this prevents percolation.

New inflation: A new inflationary scenario was proposed by Linde [66)
and Albretch and Steinhardt [67] which does not present the problems of the
previous one. It is based on a scalar field theory with a double well potential,
which undergoes a second order phase transition. V() is symmetric, with
two minima at +o and ¢ = 0 is a local maximum. Also here it is argued
that finite temperature effects constrain ¢ to be near ¢ = 0 at high temper-
atures. However, as temperature decreases the scalar field makes the phase
transition to the global minimum by classical rolling. The idea is that the ef-
fective potential is rather flat near ¢ = 0, so that the phase transition occurs
gradually and significant inflation can take place, producing huge regions of
homogeneous space, and we would be living today deep inside one of these
regions.

In the usually accepted picture, just after the Big Bang the temperature
is very large and the stress tensor is dominated by the radiation component.
The scale factor grow as a(t) ~ ¢*/2. Thermal effects confine p(x, t) to be zero.
Meanwhile, temperature is decreasing and at some point the potential energy
of the scalar field becomes the dominating term in T},,. So, the equation of
state changes to p o~ —p, the universe begins to expand exponentially, and
the temperature of radiation drops exponentially, T' ~ e~#t, The scalar field
configuration remains near ¢ ~ 0 in the flat part of the potential. This epoch
is called the de Sitter phase and it can last for many Hubble expansion times
(H1).

During the de Sitter phase, the temperature confining effect for ¢ is re-
duced as the temperature decreases. Therefore ©(x,t) begins to roll down
the potential, making a transition to the new global minimum of the effec-
tive potential. During it, the potential energy of ¢ is released as radiation.
This process is called reheating. It produces a hot gas of particles which is

25



the initial state postulated by the standard hot Big Bang model. After the
reheating, the stress tensor is dominated by radiation and the evolution joins
the Standard Big Bang model.

The evolution of the scalar field and radiation is studied using the energy
momentum conservation equation which leads to

olp +3Hp + V,] = —p(rad) — 4Hp(rad).

This equation can be split in two coupled equations describing the evolu-
tion of ¢ and p(rad) respectively

p(rad) + 4Hp(rad) = T'¢?,

¢+ 3Hp +Tp = —V,. (2.5)

In the last equation, the second term in the left hand side is a friction
term due to the expansion of the universe, while the third one is due to the
creation of radiation.

During the first part of the evolution of ¢ going apart from the ¢ = 0
configuration, the terms ¢ and I'¢ in (2.5) can be neglected

¢, Ty < 3H$,V,. (2.6)

This period is called the slow rolling regime. For power law potentials, the
condition for neglecting ¢ is '

|Voo| < 9H?.

In this regime p ~ V() and it stays approximately constant, giving rise
to an exponential expansion. When the friction term becomes negligible, the
scalar field begins to oscillate around the global minimum and the potential
energy associated to the coherent state is converted into a bath of ¢ particles
which can decay in lighter particles. This process is phenomenologically
taken into account in (2.5) by the term proportional to I'.

The evolution of the temperature is as follows: During the inflationary
expansion the temperature of the original thermal state decreases exponen-
tially. Then, when the phase transition of the scalar field is produced, the
vacuum energy is converted into thermal energy. During this reheating pro-
cess, the temperature increases rapidly. The temperature after reheating is
of the same order of magnitude as the temperature before inflation.

This model gives a solution to the horizon and flatness problems provided
that the period of inflation is sufficiently long, namely that ef2f > 8,
which imposes restrictions on the shape of the potential [68]. It also solves
the monopole problem, as all our observable universe is inside one of the
homogeneous scalar field regions, there are no topological defects inside it.

As it has been pointed out before, the inflationary scenario provides also
an explanation for the origin of the density fluctuations which give rise to
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the observed structure. However, as we will see in the next section, in order
to reconcile the predicted spectrum with the observational limits, severe re-
strictions on the magnitude of the potential coupling constant arise. This is
why the scalar field responsible for the spontaneous symmetry breaking in
the minimal SU(5) grand unified theory with a Coleman—Weimberg potential
was discarded as a possible candidate for the inflaton [57,58].

Chaotic inflation: Another inflationary scenario, which can occur for
a much more general type of scalar field potentials, has been proposed by
Linde [69,70]. The starting point of chaotic inflation is the observation that
the assumption that the universe initially was in the state corresponding to a
minimum of the effective potential V; #(¢,T), in which the new inflationary
scenario is based, can be troublesome. At a first sight it seems absolutely
natural, since any non equilibrium configuration of the field will eventually
evolve to the minimum of the effective potential. However, in order that it
works, the inflaton needs to be in thermal equilibrium with the rest of the
matter. It can be seen that in fact this is not the case, and hence there
will be no thermal force which localizes ¢ near ¢ = 0. The reason is that
the coupling constants of the inflaton are constrained to be small in order
that the resulting energy density fluctuations be of acceptable magnitude.
This makes also the temperature corrections to the effective potential very
flat, leading to a very slow rolling of ¢ to the minimum. As a consequernce
of the universe expansion in this phase, the temperature decreases and the
thermal effects disappear before the scalar field can roll to ¢ = 0. This means
that in the theories in which V,;4(y) can take initially a large value and with
sufficiently small coupling constants, the inflationary scenario cannot proceed
in the new inflation proposed way, based on the theory of high temperature
phase transitions. But in those cases another scenario, the chaotic inflation,
is possible.

To understand the main idea of the new scenario we will see how the
classical field ¢(x,1) could be distributed in the early universe. The value of
the effective potential at the Planck time tp = mp', at which the classical
description of spacetime becomes possible, is defined with an accuracy of
O(m%) due to the uncertainty principle. Therefore, one may expect that in
the hot universe at ¢ ~ ¢p any value of the field ¢ such that Vers(p) < mb
and (0,¢)* < m} can appear in a point x with an almost ¢ independent
probability.

Let us study the evolution of such an initial distribution of the field ®in
the simple model V() = Ap*/4 with A < 1. We will be specially interested
in the evolution of the domains of the universe in which the field was initially
sufficiently homogeneous (on a scale > H~1), (8u)? < V(¢), and sufficiently
large, © > mp.

The equation of motion for ¢ inside one of such domains is

G+3Hp = —U, = —\p°. (2.7)

The contribution to the energy density is essentially p = V(¢), which in
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this case is not necessarily constant. Thus, the “Hubble constant”, which is
given by

1 1
8m 2 2 12 p?
H ~ 1% = [~——)\] _, 2.8
1s no more constant.
Equation (2.7) can be written as

o?
¢+ v67r)\;1—¢ = —Acp3. (2.9)

P

In the cases that one can neglect ¢ against 3H ¢, the solution is

)
P = P, exp (- ~~-mpt) , (2.10)
6T
where ¢, = (¢t = 0).

This condition is valid for

2

o? > mp. (2.11)
6w

Meanwhile, the domain expands with a scale factor
t
a(t) = ap exp [/ H(t") dt'] ~ ag exp [—72;(90?, - 902)] . (2.12)
0 mp

The expansion will be quasi-exponential in the case that H? > H. In
fact, the condition for this to be valid is essentially the same condition (2.11)
that we have imposed on the initial value of ¢. Hence, the result is that if
© > mp, the space inside the domain will expand quasi-exponentially.

During the time of quasi-exponential expansion, the domain will expand
approximately exp(wp?/m%) times. If ¢, > 5mp, the universe expands more
than €™ times, the value needed to solve the horizon and flatness problems.

As stated before, the only constraint in the initial value of ¢ is the condi-
tion V(p) = Ap*/4 < m%. The value ¢, = 5mp is quite possible if A < 1072,
which can be satisfied in many reasonable theories.

From this point of view, inflation is not a peculiar desirable phenomenon
in those theories, but is a natural consequence of the chaotic initial conditions
in the very early universe which will arise in some domains of the universe.

When ¢ rolls down to the region ¢ < mp/3, it begins to oscillate around
the minimum of V,;¢(¢) and the potential energy is converted into radiation.
The reheating temperature may be as large as O(A:'mp) or smaller. It does
not depend on the value of ¢,. Only the ratio of the scale factor before and
after inflation depends on ¢,.

In the chaotic inflationary scenario, as in the new inflationary one, the
most severe restrictions on the strength of the scalar field interactions come
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from the spectrum of density fluctuations predicted by the model. Also in
the case of chaotic inflation, it is necessary that the scalar field have very
weak interactions, as we will see in the next section.

In realistic theories of elementary particles, there exist many scalars fields
i, with different values of the coupling constants. For the fields having
larger values of the coupling constant, the corresponding effective potentials
are more curved than those with smaller coupling constant. Therefore, they
roll down to the minimum of the effective potential more rapidly, and the
last stages of inflation are driven by the field ¢ which has a more flat ef-
fective potential. Thus, the chaotic inflationary scenario can proceed if the
conditions necessary for inflation are satisfied by at least one of the scalar
fields.

Extended inflation: Recently, another model has been suggested by La
and Steinhardt [71], the extended inflationary scenario, which turns back to
the spirit of the old inflation. The main difference being that a metric theory
of gravity different from that of Einstein is considered. The simplest case is
the Brans Dicke (BD) theory, the action is given by

R + w (8u9)?
167 167 4

S = / diey/=G (_¢ + cm) , (2.13)
where ¢ is the BD scalar field (which gives rise to space and time variations of
the gravitational coupling constant), w is the BD parameter and £,, include
the inflaton, which undergoes a first order phase transition at high temper-
atures by nucleation of bubbles of true vacuum in a surrounding sea of false
vacuum. The key difference with old inflation is that the equation of state
p = —p in this theory gives rise to a power law expansion of the universe

rather than an exponential one. The equations of motion for the scale factor
a(t) and the BD scalar ¢ are (for a flat universe) [72)]

H2-§£ f".(f’é) __Hé

36 6\¢ ¢
L sn(p—3p)
Hp = ———=, 2.14
¢+ 3H¢ 3+ 2w (2.14)
The solution when the inflaton in the false vacuum state (p = —p ) is the

dominant component is

¢ =mp(1 - xt/a)’

a=(1+xt/a)*+/? (2.15)
where x = 8mp/3m%, o = (3 4 2w)(5 + 6w)/12 and m} is a constant equal
to the square of the Planck mass at the beginning of inflation (¢ = 0). The

Planck mass today is \/#(ttoday). Since the universe in the false vacuum
expands as a power law of ¢, the bubbles of true vacuum are able to percolate

71).
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When the bubbles are first nucleated, most of the false vacuum energy
is concentrated in the bubble walls. When the walls collide, it is converted
into thermal energy and begins to stream back into the bubble interior. Es-
sentially, the subsequent evolution is like an ordinary Friedmann Robertson
Walker universe. The only difference with the standard Big Bang cosmology
is that gravity is not Einsteinian; however, for large w values the difference
is negligible (present observations constrain w > 500 [73]).

The most severe constraint to this model comes from the CMBR anisotropies
produced. If too much bubbles of size larger than the Hubble radius at de-
coupling are produced, the density inhomogeneities between the bubble wall
and center regions will still be too large. This fact makes the simplest model
just discussed unworkable, as the limits in CMBR requires w < 20 [74], which
is incompatible with time—delay experiment limits.

In order to overcome this problem, variants of this model have been pro-
posed. These are: to consider for the BD scalar field a non—vanishing poten-
tial V(¢) [74] and to take a more general action where not only linear coupling
between the BD scalar field with curvature is taken, but a polynomial f(¢)
times R (hyperextended inflation) [75,76]. Finally, another possibility has
been proposed by Linde [77], the so—called “chaotic extended inflation” in
which the inflaton does not undergo a first order phase transition from a false
vacuum to the true one, but it slowly rolls down in a more general potential.

In order to study the energy density fluctuations produced in the ex-
tended inflationary scenario, it is useful to make a conformal transformation
to a frame where the gravitational part of the action takes the usual Einstein-
Hilbert form [78]. This frame is known as the Einstein conformal frame. The
rescaling to this frame is accomplished by the following conformal transfor-
mation

guu = Q—z(t)gm/a szmi“/¢7
U = Uyln(¢p/m}),

where ¢ = (2w +3)m%/167. In the Einstein frame the action takes the form

R
167Gy

‘5':/d4m\/:§[

g+ Ty 2
+ -5—3,1‘]?3,,\11 + exp <~\I'—> §""0,00,0 — exp <—\Il_

0

where M* denotes the potential energy of the inflaton field ¢ in the false
vacuum state. The overlined quantities correspond to the Einstein frame and
Gy = mp’ denotes the present gravitational constant. When the inflaton
is in the false vacuum, its kinetic energy is negligible and we see that the
Brans Dicke field ¥ can be viewed as a minimally coupled scalar field with a
potential energy M*exp(—2¥/¥,). It can be seen that its evolution is like
that of a slow rolling field 3H¥ = §V/0¥. Thus, extended inflation in the
Einstein frame looks like slow rolling inflation with the rescaled BD field ¥
playing the role of an inflaton with exponential potential.
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2.3 Origin of density inhomogeneities

2.3.1 Generation of density inhomogeneities from Quan-
tum Fluctuations

One of the major successes of the inflationary universe scenario is that it
provides a possible solution to the problem of the origin of density inhomo-
geneities. The same mechanism that solves the horizon problem, an expo-
nential expansion of the universe for a finite period, naturally explains that
perturbations on cosmologically interesting scales originate inside the Hub-
ble radius at some point in the inflationary expansion phase. This possibility
has been widely studied in the literature [79,80,66,81,57,82].

The analysis of the evolution of perturbations of the energy density can
be done in the linearized theory for each Fourier mode of the gauge invari-
ant quantity A independently. Its evolution separates into two qualitatively
different regimes, depending on whether the associated wavelength Aph 1s
larger or smaller than the Hubble radius. When App < H™!, microphysical
processes such as pressure support, free streaming of particles or quantum
mechanical effects can affect its evolution. Instead, when A, > H™!, these
processes do not affect the evolution of the perturbations.

In the standard cosmology A,, and H~! cross only once, and for early
times Ay, is always larger than H~!. For this reason, it is not possible to
create density perturbations by processes acting at early times. Instead in
the inflationary cosmology, A, and H™! cross twice, Apx is initially smaller
than H™!, then it becomes larger than H ™! during the inflationary era and
again it becomes smaller than H~! during the radiation or matter dominated
era. This implies that microphysical processes occurring at early times can
originate perturbations of astrophysical interesting size.

The idea is that quantum fluctuations of the inflaton field during the
inflationary era give rise to the density fluctuations in which we are interested.

Let us discuss briefly the nature of the quantum fluctuations and their
main characteristics in the case of an inflationary scenario, as these will be
the seeds for galaxy formation. According to quantum field theory, empty
space is not entirely empty. It is filled with quantum fluctuations of all types
of physical fields. These fluctuations can be regarded as waves of physical
fields with all possible wavelength, moving in all possible directions. If the
values of these fields, averaged over some macroscopically large time vanish,
then the space filled with these fields seems to us empty, and is called the
vacuum. Another usual way to visualize quantum fluctuations is in terms of
particles which quantum fluctuate between being and disappearing. They can
come into existence for a small fraction of time before they annihilate each
other, leaving nothing behind. The corresponding changes on the strength
of the fields microscopically take random directions and average to zero.
Nevertheless, these fluctuations still carry energy and for a brief interval

of time they can create material particles, which disappear rapidly as the
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fluctuation dies.

In the exponentially expanding universe, the vacuum structure have some
particular characteristics. The wavelength of all vacuum fluctuations of the
inflaton field ¢ grow exponentially with the expansion of the universe. When
the wavelength of a particular fluctuation becomes greater than H !, this
fluctuation stops propagating, and its amplitude freezes at some non zero
value 6p(x) because of the large friction term 3H¢ in the equation of mo-
tion of the field ¢. Then, the amplitude of this fluctuation remains nearly
unchanged, meanwhile its wavelength grows exponentially. Therefore the
appearance of such a frozen fluctuation is equivalent to the appearance of a
classical field §¢(x) that does not vanish after averaging over macroscopic
intervals of space and time. As the vacuum contains fluctuations of all the
wavelengths, inflation leads to a continuum creation of perturbations, as more
and more wavelengths become larger than H™'.

Quantum fluctuations of the inflaton field can be estimated by the vacuum
fluctuations of a free field (the couplings of the inflaton needs to be very
small) in a de Sitter space [83,84]. Consider a scalar field, which evolution is
governed by the lagrangian

L= (247 — S (V) - V() (2.16)

in a de Sitter background
ds® = dt* — exp(2Ht)[dz® + dy® + dz7]

For simplicity we consider a massive free field V(¢) = m?p?/2. The
equation of motion is given by ‘

G+3H ¢ — e V2 = —m?p. (2.17)
To quantize the system let us introduce the canonical momentum density
oL
7(x) = ith— = ihe®Ht¢
and impose the canonical equal time commutation relations

[‘P(xat)ﬂr(YJ)] = 53(X - Y)'

We can use a Fourier decomposition in order to obtain decoupled degrees
of freedom

(O +alpi(e ], (218)

1
e(x,t) = (27r)1

where a{: and ay are the usual creation and annihilation Bose operators.

The equation of motion for the Fourier components is

(02 + 3H, + k2e™2H(tt) _ mPp(t) = 0. (2.19)

32



Defining

which has the form of a Bessel equation. Its solutions can be written as
Pu(t) o< 27 HEM)(2),

where H(") and H(? denote the Hankel functions. The general solution will
be a linear combination of both of them with coefficients ¢; and ¢, satisfying

ICllz — |Cz|2 = 1.

Different choices of the constants ¢; and ¢, lead to different choices of the
positive and negative frequency modes and can be interpreted as different
choices of the vacuum state of the quantum field theory.

The choice of the initial quantum state of the field is based on the follow-
ing considerations of the behaviour of the quantum field for early times. The
mode (%) describes the evolution of a perturbation of physical wavelength
(2m/k)e™t, and thus, for sufficiently early times the wavelength is very small
compared to H~! and at such short distance scales, the de Sitter space is
indistinguishable from the Minkowsky space. This short wavelength limit
- corresponds to large values of z. The behaviour of the Hankel functions for
large z gives that

H,f(z)(z) . e—-(+)ikAt’

The choice of the initial state which corresponds to positive frequency
modes in the flat space limit corresponds to ¢; — 1, ¢, — 0.
The normalization of the solutions follows from requiring that

O 0ok .. _am
— i — 1k
P ot Pl ot ve ’
from which we obtain
1 /7 _swp,
pi(t) = g\l‘ﬁ“e“;H(t WD HD(2). (2.20)

The spectrum of fluctuations of the scalar field is given by
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[6p(x — ¥)I* =< Bo|io(x, 1) (y, D)o > -
Replacing (2.20) we obtain that

1 R _smp-t) [ B3y ik(x=y)| 7(1)(,\2
ey /d ke I 221

For large times (z < 1) it reduces to

lbp(x —y)I* =

1 kK . T%(v) (ke Ht\ ™
)2~ o Y —3H(t-t0) / 31, k(x-y)2 W) [(F€ (2.92
Belx =yl = 5o ge @k e n? ( °H (2.22)
In the limit m? <« H?,
3 m?
Y= 37 3H?
3 T
2 ~Y 2 —_) = —
) =T(35) = g

Thus, the scalar field fluctuation takes the form for x =y

2111.2

h 2m? HeH(1mto) k\ 5
2 _ 1 g _ _ = -
|6p|® = 471_2H exp ( Vi (¢ to)> /H d Ink (H)

_ .8_%%: [1 — exp (— z"; (t— to))] : (2.23)

The upper integration limit is fixed by the last wavelength which crosses
the Hubble radius at time t. The lower integration limit, being different from
zero, takes into account that inflation starts at time ¢,; and so it must corre-
spond to the first wavelength which crossed the Hubble radius when inflation
began. From (2.23) we see that the contribution to || from fluctuations in
the logarithmic interval of k, Alnk = 1, is given by

So(k) = f—w (-}}) o exp [—%(t - t,,)] . (2.24)

In the limit m? < H? it reduces to §p(k) ~ H/2x.

2.3.2 Evolution of fluctuations in inflationary models

The evolution of curvature fluctuations from the time at which they appear
outside the Hubble radius during the inflationary era up to the time they
reenter it during the radiation or matter dominated era can be computed
using the constant of motion discussed at the end of Chapter 1, eq. (1.37).
Using that during inflation 1 + w = ¢*/p, we obtain that

p
P mat(rad) = C;g;q’inf, - (2.25)
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where C' is constant which value is 2/5 if the fluctuation reenter the Hubble
radius in the matter dominated era and 4/9 in the radiation dominated era.
Noting that the energy density fluctuation A and the variable & are re-
lated through & = (3/2)(aH/k)?A, the same relation (2.25) holds for the
amplitude of A at Hubble radius crossing, Ax. Thus, we only need to com-
pute Ag(inf).
As it has been defined in Chapter 1,

A= 5+3(1+w)5‘-§-(v—3), (2.26)

and using the expressions for § and v coming from the scalar field perturbed
stress tensor (1.21), we get that

pA = Ap® + $8p — 8. (2.27)

The whole quantity is gauge invariant, but we must compute the quanti-
ties appearing in the right hand side in some particular gauge. As we want
to estimate the amplitude of the scalar field fluctuations §¢ by the magni-
tude of the quantum fluctuations of a scalar field in a de Sitter background
(computed in the last section), we need to go to a gauge in which metric
perturbations be suppressed with respect to the scalar field ones in order
that the estimation holds. This is for example the case in the synchronous
gauge (A=B=0). It can be seen from the evolution equation for §p that near
the Hubble radius crossing time (aH = k), 6o ~ —Héy. Using this in (2.27)
we obtain

Hepé
Aging = ——222, (2.28)
P
where §¢ can be estimated by §¢ ~ H/2w. Thus,
Hé
AHmat(rad) = T(P_' (229)

Let us apply this method to compute the magnitude of the density per-
turbations originated in the chaotic inflation. Consider a scalar field with a
potential \

4
Vip) = 7¢"

In the chaotic scenario, H is no more constant during inflation, but is

given by
8
3mi

H' = V().

On the other hand, from the slow rolling condition we have

1 1

At Hubble radius crossing
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a(f ;= Hitn) = 2mA ¢ (tm)

3 mp
A typical wavenumber associated with a galactic scale corresponds to

Trha'rh 1
T, k’

Ao =

where the subscript rh refers to the values after reheating.
Thus, the value of the scalar field corresponding to the time at which
galactic scales cross the Hubble radius is given by

2
©*(tm) T, 5 Ton [3 1 1
—_— — PR Ay G — 2.31
mp €Xp m})((p (tfh) 14 (tH)) T V27 X, \/}W ( 3 )

with A, ~ 10%ly, T}, = 10**GeV,T, = 3-107*3GeV, .1 ~ mp/3
Now we can apply equation (2.29) to evaluate the magnitude of the energy
density fluctuations predicted, with the help of eq. (2.30)

8(p3(tH) 21w A
A‘Hmat(rad) ~( m;];) 3

(2.32)

In order that the predicted amplitude be compatible with observations,
the expression in eq. (2.32) must take a value of order O(10™*). This condi-
tion and equation (2.31) form a system of coupled equations for the variables
©(tr) and the coupling constant A. By solving it ,we obtain that

(p(tH) >~ 4.4mp

and

A~4-10712 (2.33)

So, we see that the requirement of having sufficiently small density fluc-
tuations restrict the coupling constant of the scalar field to be very small.

2.4 Stochastic Inflation

2.4.1 General description

When discussing the dynamics of inflation, the usual method has been to
consider the behaviour of an homogeneous scalar field satisfying the clas-
sical Klein Gordon equation of motion. Quantum fluctuations give rise to
small inhomogeneities of the scalar field, which behave like classical pertur-
bations when the characteristic wavelengths become larger than the Hubble
radius. This approach has proved to be very successful in explaining several
cosmological problems. However, it gives only a first approximation to the
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understanding of the full dynamics of the inflationary phase. The quantum
nature of the scalar field plays a very important role in the determination
of the main features of spacetime arising during the inflationary era. The
investigation of this fascinating topic has began in the last years in the con-
text of the stochastic inflation. The idea was first proposed by Vilenkin [85]
and developed by Starobinskii [86], who derived the basic stochastic equa-
tion. Further discussions can be found in [87]. The approach describes the
dynamics of the long wavelength part of a scalar field which drives the in-
flationary expansion of spacetime. The scalar field is split in the momentum
space into short and long wavelength modes. Starting from the Heisenberg
operator equation of motion for the scalar field, the evolution of the long
wavelength part is found to satisfy a classical, but stochastic equation of
motion; the quantum effects entering in the form of a noise effect due to the
short wavelength modes.
We consider a scalar field ¢, satisfying the operator equation of motion

1%
VAV o + =— = 0.

Op
The scalar field can be represented in the form
1 : .
0 = pr(t,x)+ W / d*k0(k — eaH)(ar or(t)e”E* 4+ a};go:(t)e’k'x), (2.34)

where 6 denotes the step function, a}; and a; are the usual creation and
annihilation Bose operators, € is a constant much smaller than one and ¢
contains only modes with £ < aH.

The metric is assumed to have the form

t
ds? = —dt* + alexp (2/t Hdt') dx’. (2.35)
0

The short wavelength modes ¢;, satisfy the free massless scalar field Klein
Gordon equation V*V,p = 0, as the potential derivative term is much
smaller than the field spatial derivative term for these modes during inflation.
They can be taken as

H (1 i\ ajen
= (g L) e, 2.36
PR 2k (aH+k>e | (2:36)

The equation of motion for the long wavelength “coarse-grained” field
can now be obtained. In the slow rolling approximation,

. 1 0V
¢r(t,x) = T3H 91 + f(t,x), (2.37)
where
(%) = / k6 (k — ko (arpre™* + alppe™ ),  (2.38)
’ (zw)s/z :
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where we have denoted by k, the inverse of the coarse—grain domain radius,
ks = eaH. In eq. (2.37) the spatial gradient term has been neglected as it is
subdominant due the fact that only k¥ < aH contributes to 7.

The evolution of ¢ is determined by the classical force 0V /d¢ and also by
a stochastic force f, which represents the flow of initially small scale quantum
fluctuations across the Hubble radius during the process of expansion. The
spatial derivative term in (2.37) can be neglected because only k¥ < aH
modes contribute to ¢z, (in what follows the subindex L will be omitted).
Thus, the evolution of the coarse—grained field can be followed in each domain
independently. The reason why ¢ can be treated as a classical field in (2.37)
is that a; and a}; appear in only one combination for each possible k in
(2.38), which implies that all the terms in ¢ and f commute. However, they
are stochastic quantities because it is impossible to associate any specific
magnitude to the force f. The calculation of the correlation function for f
can be done directly from (2.38), it has the white noise form

(607 5) = g - v), (2.39)

The global picture arising can be seen as follows. The universe is described
by the value that the coarse—grained field takes in domains of comoving size
A = (eaH)™. Due to the expansion of the universe, each domain becomes
split in many new ones as the time goes on. The temporal evolution of
¢ is slow as compared to H~! (if the slow rolling condition holds), so we
can describe the evolution in a succession of time steps of order H~!., If
we consider at time #; a domain of size (ea1 Hy)™', where the coarse-grained
field takes the value y; at time #, ~ #; + H' it becomes split in O(e?)
domains of size (eazH,)™'. The magnitude of the field in these domains is
determined by the action of the classical and stochastic forces. The classical
force pushes the field to the minimum of the potential with the same strength
in all the domains (p; — @, ~ o, — 0,V/3H?). The stochastic force instead
acts with different strengths and even opposite directions in different points.
It acts coherently in distances shorter than the coarse—grained domain size
(Ax < (eaH)™?) and the value it takes in different domains is practically not
correlated. The mean value is zero, hence it pushes the field up the potential
in half of the domains and down in the other half. The typical magnitude of
the change produced in the field in one Hubble expansion time is given by
the variance \/(Ap?) = H/2r. Thus, in the new domains the coarse—grained
field takes typically different values. In the next Hubble time, again each
domain becomes split and the stochastic force makes the field take different
values in each of them.

This mechanism gives rise to the local structure of the observable part
of the universe and it also naturally leads to the eternal inflation picture
proposed by Linde [88,89] as it has been discussed in [90]. The result is that
depending on the magnitude of both the classical and stochastic forces the
field can go up or down the potential in different domajns. When the classical
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force is the dominant one,

o,V H

> 5

3H? = 2w
in a given domain, the field goes down the potential in all the domains in
which it becomes split. Once condition (2.40) is satisfied for a value of |¢|,
it also holds for every smaller value. Hence, when a given domain takes a
value of ¢ in which condition (2.40) is fulfilled, in essentially all the domains
which will be formed from it the field will always roll down the potential
and inflation will end giving rise to regions of the universe as our own. The
fact that at the end of inflation it was composed of many coarse-grained
domains with slightly different field values, gives rise to the energy density
perturbations which originate the observed structures.

Instead, for the domains where condition (2.40) does not hold, in approx-
imately one half of the domains in which it is split after a Hubble time the
scalar field goes up the potential and in the other half it goes down. Thus,
there are domains in which the field is always increasing the potential energy.
As that domains are expanding much faster than the other ones, most part of
the universe becomes filled with these inflating domains, even if at each time
more and more domains end inflation. This is the eternal inflation picture.

(2.40)

2.4.2 The probability distribution of the scalar field

To describe the system it is also useful to use the probability distribution of
the stochastic variable . From (2.37), the Fokker-Planck equation governing
its evolution can be computed

8 (8,V_ H¥ 9

or _ 9 B e
5 =5 (3HP+ el P)). (2.41)

The distribution P(ip,t) characterizes the stochastic evolution of one par-
ticular domain with fixed comoving coordinate x. It corresponds to a tem-
poral ensemble. It is normalized

/_w P(p,t)dp =1.

In order to solve it, it is necessary to fix the initial condition on the
distribution P at some initial time 5. The usual condition is to adopt
P(p,t0) = 8(¢ — o). This corresponds to study the distribution of the
values of ¢ which arise when we start at time o in a coarse-grained domain
with a nearly homogeneous value of the field ¢o. Equation (2.41) is valid
only during the period in which the domain is inflating, which corresponds
to V() < m% and before the end of inflation ( ¢ = mp for polynomial
inflaton potentials). Boundary conditions on P in these extrema have been
discussed in [91].

The main properties of the distribution P, solution of (2.41), have been
obtained in [22] for a variety of models leading to chaotic or power law
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inflation. At early times the diffusion term (quantum fluctuations) makes the
initial delta function to spread around the maximum, which starts moving
towards the minimum of the potential due to the convective term (classical
force). As time goes on, due to the fact that the convective force has a
larger strength for values of ¢ farther from the potential minimum and that
the diffusion coefficient becomes smaller as ¢ approaches the minimum, the
distribution P shrinks again and gets picked at the classical configuration
@a(t). An exact solution has been found in the case that the scalar field has
a potential V(p) = Ap*/4 [22] (see also [92]).

The stochastic approach has proved to be very useful to study the statis-
tics of the inflaton distribution [22,92]. Up to now the discussion has been
based in the Langevin equation (2.37) written in the metric (2.35). This
corresponds to use a synchronous gauge to describe the system, in which the
perturbed scale factor is given by

a(x,) = ag exp ( /tt H(go(x,t’))dt') .

However, it has been proposed that a more useful variable to use instead of
the proper time ¢ is o = In(a/ao) [86] (see also [93,94]). This involves not only
a change in the background time variable, but due to the dependence of ¢ in
X, it also involves a gauge transformation. It can be seen that fluctuations
behave in this gauge very similarly as in the synchronous gauge and it is a
good approximation to describe the system as a fluctuating scalar field in
a nearly smooth background. In terms of this new variable, the Langevin
equation (2.37) becomes

_(?f _ _6¢V
Ba  3H?

+ f(a,x), (2.42)

with -
(Flex) (e X)) = sl = ).

An interesting case which can be solved exactly in this frame corresponds
to the power law inflation with an exponential potential (9]

V(p) = M* exp(—Ap/0),

where ¢ = mp/+/87 and we have normalized ¢ so that vy =0 at the end of
inflation, M* = V(). The Langevin eq. (2.42) can be written in this case
as

Oy M?
et
Oa 7t 2437

with (n(a)n(a’)) = §(e — ). Changing variable to

e /% p(a), (2.43)

A
¥ = exp 50—(30 — o — Aoa)l, (2.44)
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where ¢ = p(a = 0), we obtain a Langevin equation without classical force
and with a stochastic force independent of ¥

ov AM? A '
—_— = ——— _—— A . 24
8o = 1s/3ner <P [ 5, (P0 + w)] n(e) (2.45)
It is convenient to use instead of a the variable
1 — exp(—A%a
0= )\g ) (2.46)

which leads to a Fokker—Planck equation with constant diffusion coefficient

2 4 2
oP _ MM <_§f2> i (2.47)

80 ~ 96720t °xp 20 ] 02’

As the change of variable (2.44) maps ¢ — —oo to ¥ = 0, we impose at
¥ = 0 a reflecting boundary condition which preserves the overall normaliza-
tion of the probability. This corresponds to a vanishing probability flux at
¥ = 0, that is Oy P|y_, = 0. The solution of eq. (2.47) with this boundary
condition, normalized by [;° P(¥,0)d¥ =1 is given by

P(¥,0) = ﬁ;ﬁ [exp (—%g-)f) +exp (—%g)i)} (2.48)

where D = (A?M*/967%0*) exp(—Apo/o). It corresponds to a Gaussian pro-
cess with a reflecting barrier at ¥ = 0. However, due to the non-linear
relation between ¥ and the physical field variable ¢, the probability distri-
bution for ¢ is non—Gaussian.

Noting that the mean dispersion of ¥ around its mean value ¥ = 1 is
‘given by

4 V() ~V(a)

7
3 mp

(T —1)*) ~2Df ~ (2.49)
where V(ap) is the potential energy associated to the initial field configura-
tion o and V() is that corresponding to the value that the field ¢ would
have at the time « in the absence of the stochastic force, Y = Po — Ao«
(it corresponds very closely to the mean value of ¢ at that moment). From
eq. (2.49), we see that the magnitude of the dispersion of ¥ around its mean
is very sensitive to the lapse of time between the moment when the initial
conditions are fixed and the time of interest because it is given by the ra-
tio of the difference of the initial and final energy density and the Planck
energy density. For example, if we are interested in the distribution of the
field in scales inside our observable universe, that is the relevant one for
structure formation, all this region was inside the same coarse—grained do-
main when this scale left the Hubble radius during inflation, and thus the
initial condition must be imposed at that time. The energy density at that
time was much smaller than the Planck energy, and thus also the difference
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V(ag)—V(a) € m} at any time before the end of inflation. Hence, ¥ is very
picked around one. In this limit, the relation between ¥ and ¢, eq. (2.44),
can be linearized and we obtain

A
-1 (o — ) (2.50)

This means that in this regime the distribution of ¢ is very approximately

Gaussian, peaked at the classical trajectory ¢, and with mean dispersion

V(o) — V()
3rA2mb:

(¢ = pa)’) = (2.51)

Instead if we look at scales much larger than our horizon, we can take
initial conditions near the Planck time, the initial energy density can be of
the order of the Planck energy and hence the dispersion of ¥ can be of the
same order of its mean, and the linearization does not hold. This gives rise
to a highly non—Gaussian distribution of ¢ on the very large scales.

2.4.3 Spatial correlation of the field

In the discussion of the previous section only the correlation of the field at
different times, but at the same point, were considered. This can be extended
to take into account also spatial correlations. In fact, the Langevin equation
(2.37) or (2.42) holds at any given point x. From the definition of the noise
(2.38), we can compute also the correlation for spatially separated points

(flaz, %1)F(az,%2)) = -271;2 7 RRarS(k — k(s 2)5(k — ku(xz, )

dk, dk, . sin(kAx '
Eg(xnal)'d—a"(xz,az)%k(al)%k(az)j‘c‘(l‘m“)- (2.52)

Using this we can compute the spatial correlation of the field fluctuations
bp(x,a) = p(x,a) — pa(a). From eq. (2.42), we see that

Sp(x,a) = /Oa f(x,a')da'.
Thus
(Fp(x1, )6p(x3, @) = [ don [ * don{f(on,x1)f(anx2)).  (253)

The two integrations in a can easily be performed because of the delta func-
tions in eq. (2.52)

1} 2 X
(5@(}(1,&)6‘10(}(27 o )) et é-;r; a(o) k dk(Plk(Oll)(sz(az) k’Ax] 3

(2.54)

1 /min(k,(al Yika(e2)) sin(kAx)
k
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where we have defined «y, as the value of & when k& = eaH. From the short
wavelength modes expression (2.36), we can approximate

_iH(p(en) .
‘Pk(ak) - \/’2“]93/2 "

Finally, the correlation of §p results

1 ks(min(ay,o2)) dk sin(kAx)
5 Ny = — — ) —
(6p(x1, a)bp(x2, ) 472 /1;,(0) k H((pxl (ak))H((’oxz (k) k| Ax]|
(2.55)

It is function of the value of the Hubble parameter at the moment when
each given k equals the inverse of the coarse-grain radius at each of the
points. This is a stochastic function in general as the condition & = eaH can
be fulfilled for infinite pairs of values a and H depending on the particular
trajectory of the coarse—grained field at that point [94]. However, the main

properties of the spectrum of the field fluctuations can be obtained from
eq. (2.55). As we have seen in the last section, if we are interested in the
fluctuations only in scales smaller than our observable horizon, the distri-
bution of values of ¢ at a given point is highly peaked around the classical
trajectory ¢q(a). Thus, for these scales it is a good approximation to take
for H(px(ar)) the value corresponding to the classical value of . Using
that H(pa(a)) = Hoexp(—A2a/2) and that k = eagHo exp[(1 — A?/2)ax], eq.
(2.55) reduces to

(8p(x1,@)8p(x2, ') = =

H2 phmin(eaea)) dk (k707 gin(kAx)
—"/k,m) & (k,(@)) klAx|
(2.56)

We see from eq. (2.56) that in the limit A — 0, we obtain the scale
invariant spectrum of fluctuations with amplitude Hy/27 corresponding to a
de Sitter space. However, for an arbitrary value of ), 0 < A < v/2, the large
scale fluctuations have more power than the smaller ones, as is expected in
power—law inflation.

On the other hand, the fact that the condition k& = eaH does not de-
termine uniquely a value of H(y), amplitude of the perturbation mode with
wavenumber k, but infinite pairs of values of ¢ and H (or a and ¢), can
have interesting consequences on the distribution of the perturbations. The
different values of ¢ (or H) satisfying the condition are realized with some
probability Px(¢), or equivalently Wi(a), for this event to take place. Let
us note that the size of the Hubble radius fluctuates, but by definition of
inflationary phase, @ must grow, thus there is still a monotonic stretching of
modes with larger and larger values of the wavenumber k& (but with fluctu-
ating rate). Thus, the amplitude of the k-mode produced is not constant in
space. The distribution of the amplitudes may be computed in a way similar
to the distribution for the duration of the inflationary phase [86]. We pick
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some arbitrary value ¢ and ask for the probability W,(a) that the coarse-
grained domain expands exactly e* times before that value of ¢ is realized.
Substituting for ¢ the crossing value ¢4, we obtain the desired distribution
Wi(a). A way to compute W,(a) is the following. Consider the stochastic
evolution of the coarse-grained field ¢ on the interval [¢r,¢r]. The proba-
bility that the coarse-grained domain expands for a factor e* before it leaves
that interval is

WLR(Q) = J(‘PR,C!) - j(ﬁoLaa))

where J is the probability current built from the solution of the Fokker-
Planck equation [86]

T(,0) = FoPo(@) + 59000(3:Po(2)

with f, = 6,V/3H? and g, = H/2.

For chaotic inflationary models we choose pr = ¢p, such that V(ep) =
mp (¢p can also be taken to be infinity), with a reflecting boundary condition
there

j((pp) - 0, Va.

For the other boundary, we take the floating value pr = ¢, with the ab-
sorbing boundary condition

77(<,ok) = 0, Va.

Thus, if after the domain has expanded e* times, the field is still in the
interval [k, pp] it has never left it before, and the k-mode with amplitude
H () has not been produced yet.

From these boundary conditions, we obtain that

1
Wi(a) = -2-g¢(9¢(g¢'P¢(a))
p=0r
This gives us the probability distribution of the amplitude of a given k-
mode fluctuations. The importance of this effect on the statistics of the
perturbations and the specific predictions for some particular models are
currently under study [94].
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Chapter 3

Inflation and the origin of
isocurvature perturbations

3.1 Introduction

In this chapter we will analyse the different models proposed in the litera-
ture for the origin of the initial conditions needed in the phenomenological
isocurvature model. As it has been pointed out in Chapter 1, the energy
fluctuations produced in the simplest models of inflation are of the adiabatic
type [80,79,66,81,57,82,59]. The reason is that when the inflaton decays, re-
heating the universe, the fluctuations in all the decay components follow the
original inflaton fluctuations. Baryogenesis occurs after this, thus the result-
ing entropy per baryon is constant in space. However, it has been argued
that this is not the only possibility. Isocurvature perturbations can also be
produced provided that there is another scalar field present during inflation
besides the inflaton. This idea has first been proposed in relation to the
axion field [1,2,3], but has then been generalized to other weakly interacting
scalar fields [95,96,4]. Further, it has been noticed by Peebles [97] that if
the second scalar field decays into radiation after baryogenesis, the density
fluctuations associated to it give rise to fluctuations in the previously smooth
entropy per baryon ratio. Another model for the origin of baryon isocurva-
ture perturbations has been proposed recently [98], based on a new model
for baryogenesis, the so called spontaneous baryogenesis [99], in which the
baryon number per entropy originated is a function of the space point.

On the other hand, isocurvature perturbations in phenomenological mod-
els have attracted much attention recently, mainly due to the controversial
points arisen in the standard cold dark matter adiabatic perturbation model
pointed out in Chapter 1. It has been argued that some of these points
can be better explained in the context of the baryon isocurvature model
[42,43,44,97]. In the phenomenological models it is taken as initial condi-
tions that the total energy density is spatially homogeneous but entropy is
spatially inhomogeneous (which means that the ratio of the densities corre-
sponding to the different components is perturbed). These initial conditions
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are imposed during the radiation dominated era and the following evolution
is then computed in the multicomponent universe (100,101,46].

Here, we analyse in detail the fluctuations produced in models with an
additional scalar field that is present during inflation [102,103]. Quantum
fluctuations of this scalar field lead to fluctuations in its energy density.
However, the fact that its contribution to the total energy density is small
during inflation ensures that its fluctuations do not perturb the total energy
density too much (the major contribution to the total p perturbations is
given by the inflaton ¢ fluctuations). But as we will see, the fluctuations in
the entropy density, given by

b b
-l—l—wa 1+w3’

Sus (3.1)

where 6, = 6po/po and w, = Pa/pa, in terms of the energy density p and the
pressure p, are dominated by the second scalar field X and are typically larger
than the fluctuations in the total energy density. (We denote with greek
indices the different components contributing to the total energy density.)
Thus, this model gives rise to fluctuations which are of the isocurvature type
when they leave the Hubble radius during the inflationary era.

The case in which the additional scalar field decays into radiation after the
end of inflation [102] and that in which it stays as a dark matter component
up to the present [103] are considered. The two main steps to study the
perturbations originated in these models are: the calculation of the spectrum
of quantum fluctuations during the inflationary era (this will give the initial
conditions for the classical fluctuations), and to follow the evolution of the
fluctuations outside the Hubble radius, for which it is necessary to know
the evolution of the background unperturbed variables. This will allow us
to know the amplitude of the density fluctuations when they reenter the
Hubble radius, and to estimate if they are predominantly of the adiabatic or
the isocurvature type. The subsequent evolution of the fluctuations has been
studied before in the context of phenomenological models, which assume the
isocurvature as an initial condition in the radiation dominated era.

In order to study the evolution of the fluctuations from the time they leave
the Hubble radius during the inflationary era up to the time they reenter the
Hubble radius in the radiation or matter dominated era and then inside the
Hubble radius, it is necessary to follow the evolution of the fluctuations in the
multicomponent system composed by the inflaton, the products of its decay,
the other scalar field and eventually the products of its decay (for example
in the Peebles model analysed here, the scalar field decays into radiation).
This study is simplified if we consider one component as composed by the
inflaton ¢, and the radiation and baryons in which it decays (¢ + rad, +
bar,) and another component by the other scalar field and its decay products
(x + rad,). With this choice, we can reduce the problem to the study of the
evolution of the fluctuations in a system of two uncoupled fluids at least up
to the time at which y decays in radiation. Up to this time, we can assume
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that the stress tensor of each component is individually conserved T'*,,’” = 0
(we will use the greek indices a and 3 for the fluid components and use p, v
for the tensorial labels, running from 0 to 3). After x decays in radiation, it
is necessary to consider the momentum transfer from one component to the
other through electron scattering.

The evolution of the perturbations in the multicomponent system can be
studied using the formalism developed by Kodama and Sasaki [56] reviewed
at the end of Chapter 1. We will consider only the case of a spatially flat
spacetime background. :

Besides being interested in the evolution of the gauge invariant fluctua-
tions of the energy density and velocity of each component A, and V,, and
of the total fluid ones A and V, we are also interested in the entropy fluc-
tuations, S.s. Sap is gauge invariant and measures the relative fluctuations
between components.

In general fluctuations will not be exclusively of the adiabatic or isocur-
vature type. In order to see which is the dominant mode in a particular
problem, the magnitude of the entropy perturbation S,s and the total en-
ergy perturbation A must be compared. If |S,5| > |A|, this means that
the fluctuations in the individual components compensate one with another
giving a small total energy density fluctuation, and in this case we can say
that the fluctuations are predominantly of the isocurvature type.

On the other hand, entropy and energy density perturbations are not
decoupled, even outside the Hubble radius. In particular, as it has been
pointed out in ref. [107,55], entropy perturbations act as source for density
fluctuations. We follow in the different models considered the evolution of en-
tropy and energy density perturbations outside the Hubble radius. The main
result obtained is that the model with an extra scalar field present during
inflation which decays into radiation after baryogenesis [97] does not actu-
ally provide the initial conditions needed in the baryon isocurvature model
as was expected. The reason is that, even if the relative fluctuations in the
energy density can be much smaller for the inflaton than for the other scalar
field, which means that the fluctuations are initially of the isocurvature type
(entropy fluctuation much larger than total energy fluctuation), the entropy
perturbations act as source for the total density perturbations. This source
induces large curvature fluctuations, even in an initially nearly homogeneous
universe, by the time the perturbations reenter the Hubble radius during the
radiation or matter dominated era. The model in which the second scalar
field remains as a dark matter component up to the present, the axion model
and the spontaneous baryogenesis one provide instead good initial conditions
for phenomenological isocurvature perturbations.

The physical process responsible for the growth of curvature fluctuations
in a two-component universe can be understood as follows. Initially, the
total energy of the universe can be made homogeneous by ensuring that en-
ergy density fluctuations of the components compensate each other. But
the homogeneity condition is not a stable condition in the evolution of a
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two-component system. This is because, if the total energy density is made
homogeneous, the pressure density cannot be homogeneous when the two
components have different equations of state. An inhomogeneous pressure
makes the total density decrease at different rates in different points, which
gives rise to inhomogeneities in the total density (curvature perturbations).
This process may make a large adiabatic mode grow even when the fluctua-
tions are outside the Hubble radius.

In the usual model in which only the inflaton field is considered, the evo-
lution of the perturbations outside the Hubble radius can be followed in a
simple way, as has been discussed at the end of Chapter 1, using the fact
that there is a quantity (related to the intrinsic curvature) which is an ap-
proximate constant of motion [57,58,60,59]. This allows one to compute in
a simple way the amplitude of the energy density perturbations when they
reenter the Hubble radius in terms of their amplitude at the exit time. How-
ever, this conservation law for the total fluid energy fluctuations only holds
for adiabatic perturbations. In fact, it is a crucial point for its derivation
that the pressure perturbations be proportional to the energy density per-
turbations (6p = c2ép) in order to neglect them when the wavelengths are
larger than the Hubble radius. In the case of isocurvature perturbations, the
situation is completely different: fluctuations of the energy density are very
small, but pressure fluctuations can be large due to the fact that the entropy
perturbations make a significant contribution to the pressure perturbations
when the sound velocity of the components are different. In general, the total
pressure perturbation can be written as

hoh
§p = c26p + —h—"(cfa — ¢25)Sup + Palla + PN, (3.2)

where pane = 6pa — €¢*.8pay ha = pa + Pa and ¢, = po/ps. Thus, in
addition to the usual adiabatic term, there are two other contributions, one
proportional to the entropy perturbation S,s, and another one given by the
non-adiabatic pressure perturbations of the individual components (this term
is present, for example, when one of the components corresponds to a scalar
field, because both the energy and the pressure perturbations are determined
by the scalar field fluctuations and there is no extra freedom to fix some
relation between them). Thus, when dealing with isocurvature fluctuations,
the effect of pressure perturbations is no longer negligible outside the Hubble
radius, but must be carefully taken into account because it can generate a
large adiabatic mode. The quantitative importance of this effect can be
computed solving the evolution equation for S,g and replacing this solution
in the source term of the evolution equation for the gauge invariant energy
density fluctuation A (related to the Bardeen potential @y [55] by &y =
(3/2)(k/aH)*A). This is given by

&2A /3 15 o\ 1dA 3, 9, L{Ek\\a
daﬁ(r?“’”%);zﬁ gt lwtowitallyg) @
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Note that not only S,s contributes to the source term, but also 7, does,
thus when a scalar field is considered, it is necessary to include it and it
is convenient to replace it into eq. (3.3) in terms of A and S.g. In this
way, it is possible to follow the evolution of the perturbations A and Sup
outside the Hubble radius during the different periods. The presence of Sqp
can make a perturbation A grow even if the adiabatic modes are initially
set to zero. When a change in the background equation of state occurs, the
initial amplitude of the perturbations in the new period are obtained from
the final values in the previous one. Hence, the modes may get mixed and
in a following period the adiabatic modes can become excited.

The Chapter is organized as follows. In section 3.2, we study the per-
turbations in the energy density and velocity of a two component system
originated by quantum fluctuations of the two scalar fields during inflation.
In section 3.3, we analyse the model proposed by Peebles for the origin of
baryonic isocurvature perturbations. In section 3.4, the model in which the
additional field stays as a dark matter component up to now, the axion and
the spontaneous baryogenesis models are considered. In section 3.5 we dis-
cuss the results. '

In this chapter, units are taken so that ¢ = 8n/mb =k = 1.

3.2 Quantum fluctuations of two uncoupled
scalar fields

Let ¢ be the inflaton field and y the other scalar field which contributes to
the energy density much less than ¢ during inflation: p, < p,. Both fields
will have quantum fluctuations during inflation, §¢*(z,t) = (¢(z,1)¢(0,1))
and éx%(z,t) = (x(z,1)x(0,1)).
We define the Fourier transform of these quantities as
1
(2m)2

5oz, 1) = / &k &% §02(k, 1), (3.4)
and similarly for y. These fluctuations will be computed in the context of
generalized inflationary cosmologies [8,9], making it possible to apply this
analysis to a variety of inflationary models, and as a particular case to the
usual exponential inflation. The scale factor takes the form

H, ?
a(t) = a. (1 + —(t— t,,)) ,
P
where a,, H, and ¢, are constants and p = 2/3(1 + w). For p > 1, it corre-

sponds to “power-law” or “sub-inflation”, for p — oo it describes exponential
inflation and for negative p “pole-law” or “super-inflation”. Solving the Klein
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Gordon equation for a massless scalar field in the expanding background and
replacing it in the definition of §p?(z,t), the expression obtained for the

Fourier transformed is
k
a (k2
aHp-—1

where H = a/a is the Hubble constant, H, are the Hankel functions and
v = (1-3p)/2(1 —p). For wavelengths well outside the Hubble radius, it can
be approximated by

1 P 2
6902(k7t) = Z

aHp—1

?

—2v

k_»
aH2(p—1)

1 p ()P

bip%(kyt) = drp—1 a3H

(3.5)

Note that for p — oo, v — 3/2 and we recover the quantum fluctuations of
a scalar field in a de Sitter space

Hz
5‘/’!2: - —2Z§7

which corresponds to a scale invariant spectrum of density fluctuations. How-
ever, the spectral index is modified if other values of p are considered, as can
be seen from eq. (3.5).

The gauge invariant fluctuations in the energy density and velocity pro-
duced by the fluctuations of the scalar fields can be computed as follows (see
section 1.5)

H
Palda = pabe + 3pa(l +wa) 7= (va — B). (3.6)

Comparing the perturbed stress tensor of a scalar field, given by eq. (1.21),
with that of a fluid, given by eq. (1.20), we can identify

Ptp‘s‘p = _Asbz + &+ Uy &,
) k.
po(l +wy)v, = Bp’+ 27 &p,

where U denotes the potential energy of the scalar field and U, = 6U/d¢.
Thus,

polhp = —AG + 665 — §6p. (3.7)
It is possible to associate a gauge invariant variable to §¢ by [104]
a a_. ..
Dp = bp + (B — - Hr)#, (3.8)

in terms of which the gauge invariant perturbation to the stress tensor of the
scalar field can be expressed as

- k
SOV‘P = :1: Dy,
Pely = P+ ‘P(DP) — ¢ Dp, (3.9)
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where @ is a gauge invariant quantity which characterizes the perturbations
in the geometry and is defined in Chapter 1 (it corresponds to the Bardeen
potential ®5). Similar equations hold for the fluctuations corresponding to
the scalar field y.

We are interested in computing the magnitude of the fluctuations in the
individual components and total energy density and velocity at Hubble radius
crossing (k/aH = 1) in terms of the fluctuation in the scalar field Dp. Noting
that

2
a
® = ﬁ(PwAsa + pxAyx)

can be computed from eq. (3.9) and its equivalent for x as
k? 2, 2 . C . . -
@25 - (X" +¢)| = é(Dp) - ¢ Dp +x(Dx) — X Dx, (3.10)

we see that at Hubble radius crossing the total density perturbation is |

A| = o (#(De) - ¢ Do+ 2(Dx) — 3 Dx) (3.11)

1
3H? "
where the contribution of the kinetic energy to the total energy during infla-
tion has been neglected (x%, ¢? < H?).

In the same way, the total velocity fluctuation can be computed from
(3.9) and its equivalent for x

- ~2 "2 - 52 b2 :
P+ X a P 4+ X

At Hubble radius crossing

Vl - geletxlx) (3.13)
H er4+x? |\

In eq. (3.11), A. is given as a function of (Dy) and (D), so we need
H

their expressions in terms of Dp and Dy. They can be computed by solving
approximately the equations of motion for Dy and Dy near the Hubble radius
crossing time (k/a ~ H). Dy satisfies [104]

2
(Do) + 310 + (S 4+ 00) D= —agbome, (1)
where U,, = §?U/0p.

Using eq. (3.10), ® and & can be replaced in terms of Dy and its deriva-
tives. The complicated resulting equation for Dy can be largely simplified
in a period of inflationary expansion (using the slow rolling approximation,
¢* < U(p) and ¢ < 3H$,U,,) and near the Hubble radius crossing time.
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Changing finally the derivative variable from time to the scale factor a, eq.
(3.14) results

d*Dp 4dDyp k?

- ~0 3.15
da? +a da +H2a4DP ’ (3.15)
which has the form of a Bessel equation. Solving it, it can be seen that for

k/a~H .
(Dp) ~ —H Dy.

Replacing this in eq. (3.11), we obtain that

Al ~-2i4Dp+ 1Dy, (3.16)
H 3H

The quantum fluctuations of the scalar fields given in eq. (3.5) have been
computed in the unperturbed metric, so they correspond to the fluctuations
§p and éx in any gauge in which the fluctuations in the geometry are small.

In the case in which m2, m2 <« H?, we have Dp ~ Dx and, as can be
seen from eq. (3.16), the major contribution to the total density fluctuation
will be given by the scalar field which has larger kinetic energy when a given
wavelength leaves the Hubble radius, which corresponds to having the larger
potential energy derivative (U, or Uy).

The initial condition for the fluctuations in each particular component
can also be computed to be

pobds| ~ —¢HDp|
H H
PxDx ~ —xHDx| , (3.17)
H H
and
H
v,| ~ HL¢|
H ¢ |m
H
v ~ ———QX—I . (3.18)
H X lm

These give the initial conditions for the evolution of the classical pertur-
bations outside the Hubble radius.

3.3 Peebles isocurvature baryon model

The first model to be considered is the model proposed by Peebles [97] to
originate baryon isocurvature perturbations. In first place we will specify in
detail the model an follow the evolution of the background variables. Then,
we will analyse the evolution of the perturbations in the different periods
from the time they leave the Hubble radius during inflation up to the time
they reenter it, taking as initial conditions those computed in the last section.
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3.3.1 Background evolution

Let us specify in more detail the evolution of the background model: during
inflation, besides the inflaton field ¢, we will consider another scalar field
X, whose contribution to the total energy density is much smaller than that
of the inflaton, but whose interactions with the rest of the matter are much
weaker, so that the mean life of the associated particles is larger. At the
reheating time, ¢ decays into radiation and matter, and baryogenesis takes
place as usual. The universe becomes radiation dominated and its energy
density decays as ¢™*. As in this period the interactions of the field ¥ can be
neglected, it behaves as a free massive field, so its energy density decreases as
a™® and after some time it becomes the dominant contribution to the total
energy density. After this epoch, the decay of x into radiation begins to
be important and finally this radiation becomes the dominant component.
This corresponds to the radiation dominated epoch of the standard model.
Meanwhile, the energy density of the matter produced by the inflaton decay
is decreasing as a™® and when it becomes dominant we enter the matter
dominated era.

We will study now the evolution of the background variables, that will be
needed in the next section to solve the fluctuation evolution equations. We
consider a component o formed by the inflaton and its decay products, and
a component 3 formed by x and the radiation in which it decays. During
inflation « = ¢, § = x, and the main contribution to the total energy density
is given by the potential energy of ¢. In a flat Friedmann universe

ds® = dt* — a*(t)(dz? + dy® + dz?),

the Einstein equation is

Ule)
B (t) =2~ 22
t)=35=—
The equation of motion for y is
X +3Hx+ U, =0. (3.19)
It is useful to change the variable of derivation from ¢ to the scale factor a
d .d
i -~ ‘4 ,
& ,d . dad
a2~ “da* " “dada
It can be seen that & q
a

where w = p/p, and in the last term the kinetic energy has been neglected
with respect to the total energy (|1 + w| < 1). Then, eq. (3.19) can be
written as \ -, '
d*x dy m ,
2 X
4 A LV — 2
Y T Tmx =0 (3:20)
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where y has been taken as a massive non-interacting field. Changing the
variable to X = a’y

&2x 1 m2
a2 “25(2—117)*"—0-

In the case that m2 < H?, it gives the following behaviour for x
x = A+ Ba™?,

where A and B are constants. It has a constant mode and a decaying mode.
After a few expansion times, the constant mode will be the dominant one
and this shows that, in this regime, the energy density of the component 3
stays nearly constant: p, ~ -mxX2 During this period the evolution of the
“inflaton is not affected by x and so p, ~ U(p).

For times larger than the reheating time, the energy density of the inflaton
field has been converted into radiation energy and the universe expands as
a ~ t'/2, the energy density decreases as

a \ —4
P~ Pe ™ Prh ( ) ) (3'21)
Qrh
where p,, and a,, refer to their values at the end of inflation.
The evolution equation for x in this case can be written as
,d’x dx m? '
where the relation da/da = —H has been used. Replacing H? in terms of a
and changing variables to Y = ax we obtain
d?Y  3m?2 4?

X
—Y =
da? prh Gy 0,

which has the form of a Bessel equation. The solution for the field x is
o2
X = a—1/2 (CJ1/4( ) +DJ_ 1/4( 2C )) (323)

where ¢ = 4/p,1/3 a%;, and C and D are constants which must be fixed from
the initial conditions for x at the end of the inflationary era. The expression
for x can be approximated using the asymptotic form of Bessel functions for
small (m < H) and large (m > H) arguments.

Ifm < H/2 = /4p.1/3 (a.r/a)?, then

17w (%) " o (&) i (324
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As x is negligible at the last stages of inflation, the initial condition is that
D must be very small. Then, in this regime x stays approximately constant,
and consequently also p,.

When H becomes smaller than m,

‘ 4 23 a?
X~ a=3/? /.T.n.C; (C"cos(n;zl - —81) + Dcos(%—c— - -g)) , (3.25)

which corresponds to an oscillating function of time with frequency w = m
and a global dumping term. The total energy density associated with x is
given by

1 1,
Py = §m;x2 + §x2- (3.26)

Differentiating eq. (3.25), x can be computed and it can be seen from eq.
(3.26) that the potential and kinetic energy contributions are comparable in
amplitude and that they oscillate with opposite phases, i.e. the energy is
transformed from potential to kinetic with an overall dumping

x = Py -\, 3.27
Px=p ( QC/m) (3.27)

where p¥ denotes the value of p, at a = 1/2(/m. The x density decreases
more slowly than the radiation energy and after some time it becomes the

dominant component,
1

H2 >~ §PX
This case has been studied in the regime that the oscillation period is
much smaller than the expansion time (m > H)(see e.g. [105]). Under this
assumption, averaging the kinetic term over one oscillation period, it can be

seen that
a

o= palte) (2) (3.28)

and < p >=0.
When the dumping of the oscillations due to the decay of x into light
particles (radiation) is taken into account, the evolution is modified to

a -3
et (2) " e
Qo

For times larger than I'"! (mean life of the x particles), the scalar field en-
ergy has mainly been converted into radiation. After this time the evolution
is identical to that in the standard model.

The general behaviour of the energy density of the components o and
B can be followed in Figure 3.1. When the scale factor equals a; and ay,

Po = Pp-
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Figure 3.1: Evolution of the background model. The dashed line corresponds
to p, and the continuous one to pg. a, corresponds to the scale factor at the
end of the inflation, a, to that when the x field becomes dominant, a3 to
that when x decays into radiation and a4 to that when the universe becomes

matter dominated.

56



3.3.2 FEvolution of the fluctuations

In this section the evolution of the fluctuations in the two-component system
is studied. The formalism used [56] is reviewed in section 1.5. The fluc-
tuations are characterized by the gauge invariant variables A,, Ag and A
corresponding to the energy density fluctuations of each component and the
total energy, V., Vg and V corresponding to the velocity fluctuation of each
component and the total fluid velocity one, the entropy fluctuation S.s given
by eq. (3.1) and the relative velocity fluctuation between components Vg,
defined in section 1.5. Their equations of motion are given by eqs. (1.26),
(1.30) and (1.32). We will refer with o to the component corresponding to
the inflaton and its decay products and with 8 to the x field and its decay
products.

The evolution is divided into different periods according to the changes
in the equation of state of the components. The equations of motion are
solved in each period with w, and wg approximately constant. The initial
conditions are taken from section 3.2 and the matching between different
periods is made by imposing continuity of all the fluctuation variables. Up to
the time in which y decays into radiation, the two components are decoupled,

so Qo = Ey = F, =0 (and also for ).

Inflationary period

The first period to be studied is the inflationary one. In this period @ = ¢ and
B = x and the energy density of both fields is dominated by the potential
term (|1 + we] € 1 and |1 + wg| <€ 1). We study both fields making an
analogy with two fluids, so we need also to determine the associated sound
velocity to solve the equation of evolution for the fluctuations. It is defined
by ¢2, = pu/pa- In the case of a scalar field 1, differentiating the associated
pressure and energy density we obtain

&, = Y+ 20y (3.29)
3Hvy

In the slow rolling approximation, we have 331/; ~ —Uy. We see from eq.
(3.29) that with this hypothesis, |¢}, + 1| < 1. We will take ¢2, ~ —1 and
cfx o~ —1. Another point to be taken into account is that, when dealing with
scalar fields, the individual entropy perturbations 7, cannot be neglected,
they are given by eq. (1.31). In this case, wan. = 2A, and wgng = 244.

We define a;, as the value of the scale factor at the time at which the
wavelength associated with k leaves the Hubble radius (e H/k = 1), and a
new variable { = a/ay.

In order to solve the system of coupled equations in this period, it is
convenient to begin by solving the equations for the entropy S,s and the

relative velocity V,g (1.30), as they form a system decoupled from the rest
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of the variables.

dS.s aH E\?
§gg T0%s = 5 Vas (18+(;§) )
dVes k

é d€ —2Vaﬂ _ aH aﬂ.

They can be combined to give a second order equation for V,3, and noting
that, for constant w, k/aH = ¢ 1t3(1+%)/2 we obtain

d*Vas
d¢?

Vog _

¢

For wavelengths much larger than the Hubble radius (k/aH < 1), eq.
(3.30) admits power law solutions, V,5 o £". Taking into account that
|1 +w| < 1, it follows that

¢

+ [6 - g(l + w)] dVZ"

e+ [4+3(1+w)+((‘1‘%“)2] 0. (3.30)

Vaﬁ = A§“1"3(1+“’)/2 + B£—4+3(1+w),
Sag = —[3+ %(1 + w)] A4 6 — 3(1 4 w)]|BEHHAHI2 1 (3.31)

where A and B are constants.

The equations of motion for the total fluid velocity and energy density
fluctuations are also simplified in this case. The system of eq. (1.32) can be
written as

dA A k V
vV _ 3aHA k1 A
d¢ ¢ 2k & aH(1+w)¢’

Then, in this particular case, the global variables behave as the velocity
and energy fluctuations of a single fluid, without feeling the individual com-
ponent fluctuations; and it can be seen that there is a constant of motion for
wavelengths larger than the Hubble radius, as is discussed at the end of the
section 1.5. The solutions are

A = G§—2+3(1+w) + D£—3+3(1+w)/2,
¢ —143(1+w)/2 3 -2

= - v D¢, 3.32

- From these solutions for A, V, S.3 and V.5, we can construct the re-
maining quantities in which we are interested (A4, Ag, V, and V). The
four constants A, B,C and D can be computed by evaluating eq. (3.31) and
(3.32) at the Hubble radius crossing time and equating them to the values
given by the quantum fluctuations of the fields during inflation. So, let us
specify the fluctuations computed in section 3.2 for our model. The fluctu-
ations in the total energy density and velocity are given by eq. (3.16) and
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(3.13) in terms of the quantum fluctuations of the fields. We see that the
dominant contribution corresponds to the field with larger time derivative.
Typically, this will be the inflaton [4]. Then '

é Dy
Al o~ _ED?
IH 3H |g’
V| ~ 5-2"1[ . (3.33)
H "2 H

We also need the initial conditions for Vap and Sog. They can be com-
puted from egs. (3.17) and (3.18)

H
Vaﬁ ~ "'"_.DX—' 9
H x lu |
Sus| o~ 222X| (3.34)
H X g

Note that these expressions imply that the fluctuations are initially of the
isocurvature type, as Sagl > Al (during inflation ¢, x < H).
H H .
The constants A and B in eq. (3.31) can be computed from eq. (3.34)

Ao SHDxp g 1HDd
9 x Im 9 x =
and C and D in eq. (3.32) can be computed from eq. (3.33)

_pLy

D~0 ~ .
’ ¢ 3H g

From these initial conditions and the evolution laws during inflation, the
amplitude of the perturbations at the end of inflation (which correspond to
a value a; for the scale factor in figure 1) can be calculated

A $Do| (a ) 2=8(tw)
. 3H g (ak ,
v H -D)O ] (al )-—1-—3(1—{»-11})/2
1 ¢ g \a ’
s 8 H I)X (111 ) -3(1+w)
of 1 3 X g \ag ’
S H DX a; —-1-3(14+w)/2
V= BEDM| (o) 1
8|, 9 % lx\a (3.35)

First radiation dominated period

After the decay of the inflaton, the component a is mainly made of radiation,
so we = 1/3 and ¢?, ~ 1/3. The component S is still given by the field ¥,
which soon begins to oscillate around the minimum of the potential. In
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this regime, < pg >= 0 and this component behaves essentially as dust
(wg ~ c25 ~ 0). However, the fact that it is a scalar field does not allow us
to neglect the entropy perturbation 7g, that satisfies wgns = Ag. For the
component a we can take n, = 0. This hypothesis holds up to the decay of x.
In this regime there are two periods to be considered, first when the universe
is dominated by radiation (component ) and then when it is dominated by
X (component ). For both of them, the system of equations to be solved is

gdggﬁ = %%(Saﬂ —2A,), (3.36)
—zz-ﬂzH?T——)—m— = 20

Let us first analyse the period dominated by the radiation, which cor-
responds to the scale factor evolving from a; to a;. In this period it is
convenient to normalize the variable ¢ with a1, £ = (a/a;) and it is easy
to see that aH/k = (a1 Hy/k) €7 and pg/pa = (a1/az) €. With these ex-
pressions and the help of eq. (1.26) for Ag, egs. (3.36) can be combined to
give

Vi o V! V. k"2 1
" B af aB 1
4 — 10 = (— V- —V) . 3.37
T e T (alﬂl) 3773 (337
where d/d¢ has been denoted by a prime. This equation holds for wavelengths
much larger than the Hubble radius. On the other hand, from egs. (3.36)

and (1.26), we obtain (for k/aH < 1)
v V! |4 3a; 3 Vas
VIII 2 _ 4__ —_—— =t V" _ @ .

Py et 4a2(°‘ﬂ e
Egs. (3.37) and (3.38) form a system of coupled equations for V and
Vop. As initially the amplitude of the relative velocity is much larger than
the total velocity, we will solve the system, neglecting the right hand side of
(3.37), solving first for V.4 and inserting this solution into the source term
on the right hand side of (3.38). This corresponds to studying the effect of
the entropy perturbations as a source for curvature perturbations, which can
be important in this problem, and not vice versa. The result is

Vag = Esin(+v/51n¢) + Feos(vV5In¢) + GE2,

vV = ﬂ( mzfi+13E581n(\/_ln£)
K

¢’
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(3.38)

—2+/5E +13F
28

¢cos(v/51n £)

asz

Tl G§3) LI+ TE+ = (3.39)



where F,F,G,I,J and K are constants. The remaining perturbation vari-
ables can be computed with the help of these expressions. In particular

Sap = ——— ((\/_F + 2E)s1n(\/_ln§) +( VBE 4 2F)cos(v/51n ¢) — 18G¢ ) )
A = _Ijq__ [__ (M%ﬂ in(\/glné) + :%Mgcos(\/gln €) — %Gfs)
2K
-z g ..._.J§ ¥ (3.40)

Since we have differentiated eq. (3.36) to derive (3.37) and (3.38), we must
check whether these solutions satisfy (3.36). The result is that there are two
spurious modes and we must take G = I = 0. The remaining constants can
be evaluated by matching these solutions with the fluctuation amplitudes at
the end of inflation (3.35). The result is

p = SHED] a
9 x lga’

p . 8 HDx
9\/_ X ray’
lag HDp| 2a1HDX'

J - E— e y
3(11 3&2

K - lag 2H Dy 16 a; H Dx

- 3(1.1 > 210,2 X H )

With these values and (3.39) and (8.3.2) it is possible to compute the
amplitude of the perturbations at the end of this period, just before the
component 8 becomes dominant

SHDX
Sa ~ — | —=
8 \ 9 o M (\/5_51117 -+ 3cos7>
V. BHDX ( co )
o ~ —=siny — cos
g 2 9 x lgas \/5 7 7

a/ a 9a;, ¢ g 9\3 7 75

H
Vi = l%g_‘?_ﬂ - (2 — }—QCOS’Y + 2 siny 1)X| ) . (3.41)
2 3a; ¢ g \3 21 215 X |z

2
Al = <?_’1> a_z(_éﬁz_fi__?lf +§(E_ZCOS,,_ 4 Sm) __DX[ )
X \H

where v = v/51n(as/a,).

x dominated period

The next period begins when the field x becomes dominant (ps > p,) and
ends when x decays in radiation (at a;). The evolution equations for the
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fluctuations are also given by egs. (3.36). We now normalize the variable ¢
with a,, £ = a/a; and we use that aH/k = (a;Hy/k)¢™Y? and po/ps = €71,
Combining egs. (3.36) and using eq. (1.29), we obtain for k¥ < aH the couple
of equations

" + §+_4_ S‘,"ﬁ_l__G_S .-3_A__,+?_..A__
BT \2T3) e TP T T

2¢ 289

As in the previous period, we solve the system neglecting the right hand

side of eq. (3.42), solving for S,s, then computing V,s from eq. (3.36)

and inserting it into the source term on the right hand side of eq. (3.42)

(which corresponds to considering the curvature perturbation generated by
the entropy perturbation and not vice versa). The result is

aH

v, 30 3A 8(k\'Sus, , Kk Vap
A"+ & +4a,H & (3.42)

Saﬁ o~ L€—3/4J3/2(2\/'6‘€-—1/2)+M§-3/4J_3/2(2\/6€—1/2),

3/4 -1/2 2 1/2 -1/2
Vop = ““;——E—/ {L (J3/2(2\/f_55 Y7y — \6/6 J12(2V/6¢ /))
261/2

+M (J_3/2(2\/(§§—1/2) + -—-\/—E—J-l/z(?\/f_ié‘l”))] , (3.43)

where J,, are the Bessel functions and L and M are constants that can be
computed from the initial conditions at aj.

L = M (—11(13sin7 — 5.6cosy),
X |Ha
H
M = —-—D—X gl—(l.ﬁsirr}' + 9cosy).
X HG :

Solving for ¥V and A is more involved because the source term has a
complicated expression. The solutions of the homogeneous equations are

Viem = OEY* 4 PE2

_ k 1/2
Ahom - _GH (Of -

3P5-2) , (3.44)

3
where O and P are constants.

A particular solution of eq. (3.42) was obtained, but its expression is too
lengthy to be quoted here. The asymptotic behaviour for a >> a, is

V, ~ —13.102%2 1
a3
apa 2
- - 2
A, ~ 1.1-10 2( p ) M. (3.45)
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However, to compute the constants O and P it is necessary to fit the
initial conditions at a; using the exact solutions. There results

0 = i%akgzﬂw, akHDXl (—0.4 4 143siny — 53cosy),
ay
1 H
P = _Eakgzﬂﬂpl s DXI (—0.22 + 356siny — 45cos7).
a

The amplitude of the perturbations at the end of this period can be
obtained from these results

Sap] ~ —= H Dx ——-(0 12siny — 0.6cosy),
3 X |may
Vap| =~ % E}-M —(0.5siny — 0.7cos7),
X 1Ha2Y as

Al ~ kY3 6 ara HDP‘ 2k HDX’ (—0.4 + 143siny — 53cosy) | ,

3 a? \15 a,f
Vi ~ /% 6 axa, HD’O, akHDXl (—0.4 + 143siny — 53cosy) | -

3 as 15 a%

(3.46)

From x decay to Hubble radius crossing

The last period to be studied before the wavelengths reenter the Hubble ra-
dius corresponds to the epoch after the decay of x in radiation. The situation
is quite different in this period as the hypothesis of uncoupled fluids does not
hold anymore. The universe is composed by radiation and baryons tightly
coupled through electron scattering. Then, the momentum transfer between
components must be taken into account. This means that the source term

fo which appears in eq. (1.26) can not be neglected anymore, but is given
by [56]

fr = Rc(vm_vr)y

4p,
Fo = 3;ch(v,—~vm), (3.47)

where v, and v,, are the radiation and matter velocity fluctuation defined in
eq. (1.20) and R, is the ratio of the Hubble radius to the mean free path for
photons colliding with electrons. The effect of this interaction corresponds
to the introduction of an extra source term in the right hand side of (1.30)
given by Fos = fo — fg = —7YapVap Wwhere 7,5 is proportional to R., and
is much larger than unity before decoupling. As has been pointed out in
ref. [100], S.s stays nearly constant i in this regime and the relative velocity
between components goes to zero.
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On the other hand, after the decay of x we can neglect both 7, and 7.
In this case, the couple of equations (1.32) for the total fluid perturbations
A and V can be combined to give a second order equation as follows

3 15 A’ 3 9 k z A

E N’ hahs, 5 5 \Sap .
— (a—_H—) ph (C‘a*—'csﬁ)—é}—. (348)

The homogeneous equation in a radiation dominated universe has the
solution Apom = Q€% + RE™? for wavelengths much larger than the Hubble
radius, with Q and R constants (we normalize here ¢ with the scale factor at
the radiation and matter equivalence time, a4). When the component « is
mainly made of baryons and 3 of radiation, the entropy perturbation, acting
as a source, gives rise to an extra growing mode given by

1 E O\’ a\?3
Ang(a4ﬂ4> sag( 4) . (3.49)

The corresponding velocity fluctuation is given by

3 (14H4 \/— k 2
VA (Q¢ —2R¢™ )—“——— " (3.50)

CL4H
The constants @ and R can be computed fitting the initial conditions at
the beginning of this period.
In the matter dominated era (¢ > 1) the behaviour of A and V is given
by

15 H

. G4H4 1 1/2 _ _?: —2)_2‘/2— k 1/2
Vo= k \/‘(ng — o 15 and, ¢

In order to see if the resulting perturbations are of the isocurvature type,
the amplitude of the perturbations A and S,s must be compared. For wave-
lengths that reenter the Hubble radius during the radiation and matter dom-
inated era, the magnitude of A are respectively

a = Sopemeny (—’“—) St

(3.51)

4~/2 H '
Al —-—ua—l (if}_:{}r_& + __IBX_‘ (—0.4 + 143siny — 53(:057)) ,
H(rad) V9 15a; ¢ I X lm
6+4v2a; (6 ay H Dp H Dy ,
A AL i S ——-—-,——l + ——-———l (—0.4 4 143siny — 53cosy)
H(mat) 10 15 ay H

(3.52)
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Comparison of these amplitudes with S,g from eq. (3.46) shows that the
perturbations are no longer of the isocurvature type, since the perturbation
in the total energy density has grown larger than the entropy perturbation
(note that the term proportional to Dy in eq. (3.52) is by itself larger than
the amplitude of S,s given in eq. (3.46)). This result does not depend
on how small the initial perturbation of A during inflation is (given by the
fluctuation in ), as the perturbation in the total energy density originated
by the original entropy perturbation (given by the fluctuation in x) has
grown larger than S,s. This means that, in this kind of model, initially
isocurvature perturbations develop a large adiabatic mode, and consequently
do not provide a good model for the phenomenologically proposed baryon
isocurvature perturbations.

Thus, the perturbations are no longer of the isocurvature type by this time
and they do not provide the initial conditions required by the phenomenolog-
ical baryon isocurvature model. The reason is that in the phenomenological
model the isocurvature initial condition (A = 0, S, # 0) is imposed at the
radiation dominated epoch before baryons become the dominant component,
instead in the model proposed in ref. [97] the adiabatic model responsible
for the large density fluctuation at H(rad/mat) (eq. (3.52)) has become sig-
nificant much earlier, at the epoch when the universe was dominated by the
oscillating x field.

Another criterion has been proposed in ref. [100] to define isocurvature
perturbations, which has been used to impose the initial conditions in ref.
[106]. It can be seen that the conclusion obtained is the same in this frame.
(The term Q€% in A corresponds to a growing adiabatic mode in [106], which
is not small compared to the “isocurvature” mode given here by A,.)

3.4 Cold dark matter isocurvature and ilion
fluctuations

The other models proposed for the origin of isocurvature perturbations during
inflation can be studied in close analogy with that developed in the last
section.

3.4.1 Stable y field

Lets consider first the model in which the second scalar field does not decay
into radiation, contributing now to the dark matter. The evolution of the
perturbations in this case is the same through the inflationary period, the
period dominated by the radiation produced by the inflaton decay, and that
dominated by the oscillations of the y field. The only difference is that this
period extends up to the present and perturbations of cosmological interest
reenter the Hubble radius during the radiation and x dominated period. The
result is that the growth of curvature fluctuations outside the Hubble radius
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is quantitatively important also here. However, this is a good model for phe-
nomenological isocurvature perturbations. The point is that the isocurvature
initial conditions are imposed in the radiation dominated era which follows
the decay of the inflaton, and this holds as a very good approximation in
the model considered. The growth of the total density perturbation becomes
significant only when the x contribution to the total density begins to be
important, which happens later. Thus, the resulting curvature perturbations
are correctly described within the phenomenological models. Furthermore,
much interest have been concentrated in these models because of the pos-
sibility of getting a spectrum of fluctuations quite different from the scale
invariant one [4,11,16].

3.4.2 Axion Perturbations

The other kind of model proposed for the origin of isocurvature perturbations
consists of a pseudo-Goldstone boson which is non-massive during inflation
and acquires a mass in a later period..In these models the entropy pertur-
bations are generated after the end of inflation and thus the isocurvature
condition is valid during the radiation dominated epoch. Thus these mod-
els also give appropriate initial conditions for phenomenological isocurvature
perturbations. The best known example is the axion. At very large tem-
peratures, the axion potential is essentially flat and it acquires a small mass
through QCD non-perturbative effects at approximately 7' ~ 1GeV. As the
axion interacts very weakly with the rest of the matter, it oscillates around
the minimum of the potential during the following evolution of the universe,
behaving like non-relativistic particles (cold dark matter). The origin of the
density fluctuations in this model has been widely studied [1,2,3]. The idea
is that quantum fluctuations of the massless axion during inflation give rise
to spatial inhomogeneities of the axion distribution and when the potential
of the axion becomes non-trivial due to QCD instanton effects, these inho-
mogeneities are translated into fluctuations of the axion energy density.

bpa 2869
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where J denotes the axion angle. The initial missalignment angle §7 is
given by the amplitude of the quantum fluctuations of a massless scalar
field in the expanding background. Thus the spectrum of energy density
fluctuations produced is scale invariant provided that H is approximately
constant during inflation. The process of creation of the axion energy density
fluctuations does not alter the total energy density too much, hence the
resulting fluctuations are of the isocurvature type. As this condition holds
during the radiation dominated era, the adiabatic modes are not exited in this
period, they only appear later, when the universe becomes axion dominated.
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3.4.3 Spontaneous baryogenesis

Finally, let us consider the spontaneous baryogenesis model. The baryon
asymmetry in this model is not produced as usual, during the decay of a
heavy gauge boson of a Grand Unified Theory, but in a quite different way,
which makes it possible to obtain spatial fluctuations in the baryon per pho-
ton number np/s. In this scenario, the baryon number B is spontaneously
broken at a scale f as well as explicitly violated. This gives rise to a pseudo-
Goldstone boson, called the ilion. After the symmetry breaking, the ilion
takes a value 6y(z), and then relaxes to the ground state value. If the phase
transition occurs before or during inflation, the initial value of the ilion will
be quite uniform over our observable horizon. The baryon asymmetry is
produced after the phase transition and the inflation, when the ilion field is
relaxing to its minimum # = 0. The main point of this model is that C' (charge
conjugation) and C'P ( charge conjugation plus parity) are exact symmetries,
and that the baryon asymmetry is produced while baryon violating processes
are in thermal equilibrium. Thus, in this model the basic ingredients postu-
lated by Sakharov [108] for the baryon asymmetry generation (violation of
B,C and CP, and non- equilibrium conditions) are not necessary. This is
possible due to a temporary, dynamical violation of C PT invariance. (This
appears as a term in the Lagrangian £ « (1/f)8,.075 ~ (1/f)8(ns — ng),
where jp is the baryon number current and n; and ng are the baryon and
antibaryon number densities.) This shifts the energy of a baryon with re-
spect to that of an antibaryon, thus in thermal equilibrium there are different
numbers of them. The baryon number to entropy ratio at equilibrium re-
sults proportional to §. Hence, it changes during the 6 evolution and if it
eventually sits in the equilibrium configuration (9 = 0), ng = np — ng would
vanish. However, the value of ng/s will follow the § evolution as long as B
non-conserving interactions are in equilibrium. Once they become ineffec-
tive (their rate become smaller than the rate of expansion of the universe),
np freezes out in a non-zero value, leaving the universe with a permanent
baryon asymmetry. It can be seen that the resulting baryon asymmetry is
proportional to the initial misalignment 5. The amplitude of its fluctuations
are also given by that of the quantum fluctuations of a massless field during
inflation.

The process of relaxation of the ilion to its minimum does not alter the
total energy density but just the distribution of baryon to photons. Hence,
perturbations are of the isocurvature type. The generation of the baryon
asymmetry takes place after the end of inflation, thus the isocurvature con-
dition (A = 0 and S,s # 0) holds during the radiation dominated era and, as
in the axion case, the adiabatic modes are not excited in this period. This fact
makes the resulting fluctuations a possible model for the phenomenological
baryon isocurvature fluctuations.

67



3.5 Conclusions

The perturbations in the energy density arising from quantum fluctuations
during inflation in a model in which there is a second scalar field present be-
sides the inflaton have been studied in detail. We have considered the case in
which this scalar field decays into radiation after baryogenesis producing spa-
tial fluctuations in the baryon number per photon, the case in which it stays
as dark matter component up to the present epoch, and the case in which
axions or ilions are considered. In particular, we have studied if they can
provide the initial conditions needed for the phenomenological isocurvature
model, which means that the growing adiabatic mode is not excited in the
radiation dominated era. The perturbations in the energy density and veloc-
ity of the individual components and of the total system, originated from the
quantum fluctuations of the fields at the Hubble radius crossing has been de-
termined in the case of generalized inflationary models. We then followed the
evolution of the perturbations in the composite system from the time that a
given wavelength leaves the Hubble radius up to the time it reenters it. First
we have analysed the model in which the extra scalar field decays into radia-
tion. Since it has been proposed as a way for generating isocurvature baryon
perturbations, we have analysed in detail the evolution of the total energy
perturbation A and the entropy one S,g. In particular, the fact that an
entropy perturbation acts as a source for density perturbations, even outside
the Hubble radius, has been carefully considered. The main result is that
this effect is very important indeed, and is responsible for originating, from
an initially isocurvature model (S, < A), a large curvature perturbation
during the evolution of the wavelengths outside the Hubble radius, so that
the total energy density perturbation grows to be proportional but approxi-
mately two orders of magnitude larger than the entropy perturbation at the
Hubble radius crossing. This result is not in agreement with a previous claim
that the evolution should tend to maintain the initially homogeneous mass
distribution on scales larger than the matter-radiation Jeans length [97]. The
point here is that the Jeans length does not correspond in this problem to the
scale over which pressure gradient effects can be neglected. The reason being
that when we deal with a non-adiabatic pressure perturbation (i.e. a pressure
perturbation not given by §p = c2p), as in the case considered here, there
is an extra source term for the energy density perturbations which makes
fluctuations grow from an initially homogeneous universe, as has been shown
in [107,55]. This source corresponds to the entropy perturbation defined as
n = ng, — (¢?/w)d [55]. In the case of a two component fluid, it is given by
N = (PaNa + Pa1p)/P + hahp(cl, — ¢25)Sap/hp. So, there are two kinds of
contributions, corresponding to a non-adiabatic pressure perturbation of the
individual components (as it happens for example when one of them is given
by a scalar field) and to the relative fluctuation between components. In
the model analysed here, both need to be taken into account. As has been
stressed before, the effect is significant and in the model with an extra weakly
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interacting field present during inflation, in the case in which it decays into
radiation after inflation, the original entropy perturbations induce a large
adiabatic mode by the radiation dominated period (when initial conditions
are set in phenomenological models) which prevents the model for being a
good candidate for the origin of baryon isocurvature fluctuations.

It turns out that the case in which the extra scalar field remains as a
dark matter component up to the present epoch, case in which axions are
considered and the model of spontaneous baryogenesis are possible candidates
to originate this kind of fluctuations.
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Chapter 4

Stochastic inflation in a simple
two-field model

4.1 | Introduction

In this chapter we analyse the two scalar fields models in the frame of the
stochastic approach. As it has been stressed before, these models are inter-
esting because it is possible to modify some of the standard predictions of
the simplest inflationary models. In particular, we will deal here with the
possibility that the density perturbations associated to the non-dominating
field be non-gaussian distributed [109].

On the other hand, stochastic inflation has proven to be the clearest way
to study the dynamics of the inflationary stage [86,87]. This makes it inter-
esting to analyse two-field models within the stochastic approach. There are
a number of questions which can be better addressed in this context. For
example, the probability for double inflation to happen in a two-field model
has been estimated by Hodges [110]. We analyse here the effects over the
distribution of the non-dominating field produced by the fact that it lives
in a universe whose metric fluctuates according to the inflaton fluctuations.
The dynamics of such a field can be described as a Brownian motion in a
random medium [111]. Kofman and Pogosyan [16] suggested that, for a sys-
tem of two interacting fields, interesting effects could come from the influence
of the field fluctuations on their classical trajectories, giving rise to non-flat
and non-Gaussian density perturbations. We obtain analytical results for the
statistics of the coarse-grained variable associated to a free massless field in
the case where the inflaton has an exponential potential, therefore leading
to power-law inflation. This model can be taken to describe the dynam-
ics of the axion and of the Jordan-Brans-Dicke field in extended inflation
[71,74,75,76,78]. In spite of being simple, this model displays a number of
interesting features, such as the multiplicative effects produced by the infla-
ton fluctuations on the motion of the massless field, which are expected to
occur also in more complicated multiple-field models. We discuss the main
statistical properties of the distribution at the different scales of interest.
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The joint probability for the two fields is always found to be non-Gaussian;
however, in order that the non-Gaussian features are quantitatively relevant
it is necessary that the system starts its stochastic evolution from a state
with energy density comparable to the Planck one. As a consequence, the
distribution for the ensemble of universes to which ours belongs is highly non-
Gaussian; on the contrary, fluctuations inside our observable universe can be
accurately approximated by a Gaussian random field with scale-invariant
power-spectrum.

In Section 2 we derive the equations which govern the dynamics of a two
scalar fields system during inflation in the stochastic approach. In Section
3 we specialize our analysis to the axion dynamics in a power-law inflation
caused by the slow-rolling of an inflaton with exponential potential. We de-
rive the set of parameters which makes the model cosmologically viable and
we discuss its interpretation in the context of extended inflation. We then
solve the Fokker-Planck equation which governs the evolution of the joint
probability distribution for our two-field system and obtain the individual
probability for the axion field. We also deal with the statistics of the isocur-
vature perturbation mode arising from the axion fluctuation. In Section 4
we integrate numerically the system of the Langevin equations and we eval-
uate the joint probability distribution for the fields as an average over the
realizations: this allows to study the statistical properties of the model for
different initial conditions. In Section 5 we show how the spatial correlation
properties of the fields are recovered in the stochastic approach. Section VI
contains a summary and discussion of the main results.

4.2 The Langevin and Fokker-Planck equa—
tions

As has been discussed in Section 2.4, in the stochastic approach the evolution
of a scalar field, either the inflaton or any other scalar field in the theory, is
described by a Langevin-type equation for a coarse-grained variable obtained
by suitable smoothing over a scale larger than the Hubble radius size. For
the two-fleld case with potential V (i, x), using as time variable the proper
time i, we have for the stochastic evolution inside a single coarse-grained
domain, the system of equations '

dp 0,V H?’/2

(4.1)
dx 8 vV H3?
dt = 3H o Wx(t)

where H? = (SW/SmP)V(go,X) with mp = 1/v/G the Planck mass; 7,, and 7,
are Gaussian noises with zero mean and correlation function (m,(t)m,(t )) =
(mx(t)nx(t")) = 8(t — t'). In the approximation leading to these stochastic
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equations the fine-grained components of the fields are treated as free, even
when ¢ and x interact; thus we assume (1,(t)7,(t')) = 0. The two Langevin
equations (4.1) are said to be of multiplicative type since the coefficients of
the noise terms depend on the random variable itself.

Using instead « as time variable, the system of Eqgs. (4.1) is replaced by

do 8,V H

da - 3.H2 + %n‘ﬂ(a) ’

(4.2)
dx v H
-d—&- - 3H2 + '2_7r77x(a) ?

where (n,(a)n,(a')) = (nx(e)ny(a’)) = 6(a — o).

The stochastic dynamics of the system can also be studied using the asso-
ciated Fokker-Planck equation for the probability distribution of the coarse-
grained field variables. In our case, we must deal with the joint probability
dP, = Poylp, x;7)dedx that ¢ and x take simultaneously values in the
infinitesimal intervals ¢, ¢ + dp and x,x + dx, where T denotes generically
the independent variable ¢ or «. The Langevin equations (4.1) or (4.2) can
be rewritten as

g_f = —fo(#:X) + 9o(, X)M(7)
(4.3)
%Té = —£(2:%) + g2, X)nx(7)

where f,, f, denote the classical force terms and g,, g, the amplitude of the
stochastic noise, they are given in Eqgs. (4.1) or (4.2) respectively for 7 = ¢
or a.

The associated Fokker-Planck equation for the joint probability P,, can
be obtained from them. In the so-called Stratonovich approach [112] this is
given by

0Py 0 9o 0 bl

gx O
“or 5‘(; foPox + 5 ‘a‘;‘(gvax)] ’|’a [fxpwx + ’é&é—i(gxpvx) - (44)

Note that there are no cross-derivative terms because the noise terms for ¢
and  are statistically independent.
It is easy to show that Eq. (4.4) admits the stationary solution

s —w 3m4
Py, < V™ exp ( 8VP) ) (4.5)

with w = 3/4 or 1/2, depending on whether 7 = ¢ or « respectively. This
solution, corresponding to vanishing probability flux, is non-normalizable for
general potentials V (g, x).
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The individual probabilities for ¢ or x can be obtained from P, inte-
grating it with respect to x or ¢ respectively. For example, for P (1) =
J S0 dXPyy (1) we obtain the diffusion equation

P, a[

fw AX fo(5 X)Pex + }"/: dxgqp(so,x)-;;(g@(%x)%x) ,(4.6)

67' 25; -0 2

which does not necessarily take the standard Fokker-Planck form.

In general, the Fokker-Planck equation for the joint probability Eq. (4.4)
is very difficult to solve for an arbitrary potential V(p,x). However it con-
siderably simplifies in particular cases. For example, we can take y to be a
massless field whose contribution to the total energy density is negligible; in
such a case

8

= 3mi

Vie).

This simple case is cosmologically interesting as massless fields, such as
axions, ilions [99,98], etc., are present in many models. In this case the
classical force term for yx, f, in the Langevin equations (4.3), vanishes and
the remaining factors become only functions of ¢: f,(¢), 9,(¢), gx(®). Thus,
the Langevin equation for ¢ becomes x independent. On the contrary, the
diffusion coefficient for x is a function of ¢. The Fokker-Planck equation for
the joint probability then simplifies to

0Py 08 1 8 1 ,0%Pyy
8r 3(,0 prwx+§9¢5;(gsap¢x) +29X—6‘X_; . (4-7)

It is immediate to check that this equation does not admit the solution
Pyx = PyPy, unless 8g, /0p = 0 which is not our case: the two coarse-grained
variables are not statistically independent. It can also be seen from Eq. (4.6)
that the individual probability for ¢ obeys the same Fokker-Planck equation
as in the absence of x. Integrating Eq. (4.7) over ¢, the y distribution is
obtained: '

JP. 1 8% f '
o = 55 | 4 956) Por. s

The latter equation can be given a more suggestive form by using the
conditional probability P, for ¢ given y. In fact P,, = PoixPx, by Bayes
theorem, and we have

oPy _ 10"
ar  20x?

[gz(X§T)Px] ) (4.9)
where G?(x;7) stands for the conditional expectation of 92(¢p) given x:

G x; ) = /_Z dp g2 ()Pl (T)-

In the latter form the diffusion equation indicates that, induced by the ¢
dependence of the diffusion coefficient, x becomes a multiplicative random
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process like ¢ itself: this fact will be at the origin of the non-Gaussian be-
haviour of ¥ on super-horizon scales. On the other hand it is clear that Eq.
(4.9) cannot be solved without a knowledge of the whole joint probability.
So, knowing the joint probability, one can obtain by integration the individ-
ual probabilities as well as the conditional probability for one variable given
the other one.

4.3 Inflaton with an exponential potential and
a massless field

4.3.1 Two-field model

We will analyse now the case in which the inflaton ¢ has an exponential
potential

V(p) = M*exp(-Ap/0), (4.10)

where ¢ = mp/+/87 and we have defined ¢ so that ¢; = 0 at the end of
inflation and M* = V(¢y).

As originally derived in Ref. [9], this kind of potential leads to power-law
inflation. Recently the exponential potential has received much attention
both because it allows an exact solution of the Einstein equations [113] and
because of its relation with the extended inflation theory. We shall use the
variable a = In a/ag, which has the advantage that the problem is exactly
solvable in terms of it. An approximated scaling form for the ¢ probability
distribution was derived in Ref. [22], where the corresponding Langevin and
Fokker-Planck equations were written in terms of the proper time ¢. Using
the o variable, an exact probability for ¢ has been obtained in Section 2.4.

The second field y is taken to be a massless field during inflation. This
model exactly describes the dynamics of the axion in a power-law inflation.
So, let us discuss first the constraints that the isocurvature axion perturba-
tion model imposes on the parameters of the theory. Massless axions are the
pseudo-Goldstone bosons of the Peccei-Quinn symmetry. They appear when
this symmetry is spontaneously broken at a scale f,. QCD instanton effects
give the axion a small mass at temperatures T' < 1 GeV. In order that the
axions give the dominant contribution to the dark matter in the universe,
the Peccei-Quinn scale f, and the initial misalignment angle © of the axion
should be related by [114]

f -0.59
@ ~1.3 (m) s (411)

where N is the number of degenerate minima of the axion potential. For
the Peccei-Quinn symmetry not to be restored after inflation (assuming that
reheating after inflation is good) it is necessary that the inflaton energy
density at the end of inflation satisfies the constraint M < 2.3f,.
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On the other hand, there are further constraints coming from the ampli-
tude of the density perturbations. In this case, we have two different sources
of density fluctuations. One is the quantum fluctuations of the inflaton field,
giving rise to adiabatic density fluctuations whose amplitude at Hubble ra-
dius crossing is [57]

4 VvV
€od = ———=—+— 4.12
T 15 /rmbe (412)
where € is a gauge-invariant quantity that reduces to § p/p in the comoving
gauge (this is the variable ¢, of Bardeen [55]). The second source is the
quantum fluctuations of the axion field, giving rise to isocurvature density
fluctuations with amplitude [115)

2\/5 Vl/z mp
€iso = .
15mv/3 m} Of,

(4.13)

It can be seen from Eqs. (4.12) and (4.13) that, for the isocurvature
fluctuations to be the dominant ones, it is necessary that

> 3var e (4.14)

mp

The most stringent bound on the amplitude of isocurvature CDM per-
turbations comes from the cosmic background radiation anisotropy limits. It
has been shown that large-scale anisotropies in the isocurvature model are
increased by a factor of six compared to the adiabatic one, for the same am-
plitude of density fluctuations [46]. This enlargement is due to the additional
effect of the radiation density fluctuations at the last scattering surface. Con-
sidering, for instance, the Melchiorri et al. [116] experiment which yields an
upper bound AT/T < 5.5 x 1075 on a 6° scale, it can be seen that

€iso < 4.8 x 1078, (4.15)

Assuming N =1 and a small value for }, so that the spectrum of pertur-
bations is not too steep (A < 0.2 is sufficient in order that the amplitude of
perturbations changes by less than 10% from galactic scales to the 6° scale),
we obtain with the help of Eq. (4.11) the upper bound © = 0.11. This corre-
sponds to M < 5.7 x 10~%mp, i.e. to a reheating temperature 7' < 2.9 x 103
GeV, high enough to allow baryogenesis to take place. Also, the constraint of
Eq. (4.14) is easily satisfied. Thus, we have determined the set of parameters
which makes this model cosmologically interesting. The low amplitude of the
isocurvature mode allowed by AT/T limits implies that galaxy formation in
isocurvature CDM models is only possible with a high level of “biasing” (see,
e.g., Ref. [47]).

75




4.3.2 Stochastic dynamics

The Langevin equations for our model read

d()o M4 1/2 _ o
do = Ao+ (12#202) e/ Ne(a) ,

(4.16)

do 127202 (@) -

1/2
‘_11 = ( M* )/G—NP/%

It can also be useful to define the classical configurations, i.e. those
obtained when the noise terms are set to zero,

wala) = o+ Adca = Ao(a —ay),

(4.17)
Xcl(a) = Xo -
The change of variable
4ro?/6 Ao Na

reduces the first Eq. (4.16) to an equation with vanishing force and non-
multiplicative diffusion term

dd Ao
Zx— =2 €xXp (—T) nq,(a). (419)
We are therefore able to solve the Langevin equation for the inflaton:
: 20
(@) = pa(e) + —1n |1 +9(a)l, (4.20)

where ¥(a) = ®(a)/®o — 1 is a Gaussian field with zero mean and dispersion

4V, 2
(@) =g (1<), (4.21)
with Vo = V(po). The strength of the non-Gaussian features of ¢ clearly
depends on the amplitude of the v dispersion, which in turn depends on
the initial conditions (as discussed in the following). As soon as (%?) be-
comes of order unity, the inflaton coarse-grained variable gets non-Gaussian
distributed and its fluctuations are able to influence the x motion in such
a way that the axion variable becomes non-Gaussian too. Also, each time
¥(a) = —1, during its random walk, ¢ — —oco then pushing the axion dif-
fusion constant to infinity. This will cause the divergence of the statistical
moments of x, as we shall see in the following.
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In order to solve the diffusion equation it is convenient to use, instead of
@, the time variable § = [1 — exp(—A%a)]/A? and introduce the dimensionless
variable £ = Ax/20. The Fokker-Planck equation reduces to

O0Ps: _ 0* P _1__8273455

89 — 992 ' 2 92 ”

The general solution of this equation is given by a linear superposition

of modes of the type Pg; ~ e ’k(f t)e=#0 F (), where Fru(P) satisfies the

(4.22)

equation
O Fru(® k?
6};2( L+ (“ @2) Pou =0 (429

whose solution is F,,(®) oc ®/2C,(u®), having denoted by C, any set of solu-
tions of the Bessel equation and v = +,/k2 + 7. From this set of solutions, we
must choose those which satisfy the correct boundary conditions. Equation
(4.18) maps ¢ — —oo into & = 0, thus we must impose a reflecting bound-
ary condition (vanishing probability flux) at ® = 0 to preserve the overall
normalization of the probability. Such a reflecting boundary has exactly the
same role as the absolute value taken in Eq. (4.20). This corresponds to
03Ps¢|a=0 = 0, which is satisfied only by the Bessel functions J L(p®), with
v > 1/2 or v = —1/2. The coefficients of the linear superposition are fixed
using the initial condition Ps¢(6 = 0) = §(® — &,)6(€ — &). We obtam for
the joint probability distribution

= d 2 o ;
Ps¢ =/ 2_“";“ "/ @20 {/ dkeﬂk(f—f")f]uk(#@o)t]uk(#‘f’)
o 2m —oo
1
0] [Jl/z(#%)fl/z(ﬂ@)—J-l/z(#@o)-f-l/z(#@)]} : (4-24)
where 6(0) formally stands for the infinite factor (1/27) [ d¢ and v =
v/k% + 3. The integration over p can be performed

IR T . 58,
- dke~ e, ( )
Pae = g e 49 {/ 26

iyl (5) - () o

where I, denote the modified Bessel functions.
It can be seen, by integrating Eq. (4 25) with respect to ¢, that the
individual probability for ® is :

which corresponds to a Gaussian process with reflecting boundary condition
at & = 0, as expected. Of course, due to the non-linear transformation from
@ back to the original field variable, the ¢ distribution is non-Gaussian.-
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4.3.3 Axion distribution

If we are interested in the distribution for X, we must integrate the joint
probability of Eq. (4.25) with respect to ®. We get

1,1
1 fe . P2 2\ 1T (2 4L
Pe = _/ dke—ak(f—fo)exp _Zo 0 (4 + 2Vk)
27 J-o 40

40 T'(1 + vx)
3 1 B2 1 &,
M2+ 2o 20) L erfe [ =2 4.27
M(4+2Vk’1+yyk’40>+27r6(0) erc<2\/§> , (4.27)

where M denotes the Kummer function and erfc the complementary error
function defined by erfc(z) = (2/4/7) 57 e~ dt. The last term in eq. (4.27)
corresponds to a uniform probability contribution of infinitesimal amplitude
which arises as a result of having imposed a reflecting boundary condition
at & = 0. As a consequence, all the even moments of x are infinite (the odd
ones vanish by x — —x symmetry), which is not a new feature in stochastic
inflation [22]. Nevertheless, we can build up physically meaningful finite
quantities by considering the dimensionless ratios

gg :iz:;:r):)* B 2n?ii— 1 [“fc (2%)]1—11 ) (4.28)

for any o > 0. If the n-th order moments in this equation were replaced
by their connected parts, the resulting expressions would still be non-zero
and finite. Altogether these results imply that the axion distribution is non-
Gaussian at any time o > 0 and for any set of initial conditions. At late
times, a >> 1/)?, the ratios in Eq. (4.28) reach time-independent values, a
signal that the distribution has become scale-invariant (see Ref. [22]). It is
also interesting that, as & — oo, § — 1/A? and the axion distribution of Eq.
(4.27) settles down into a stationary state.

Even though distributions with infinite moments are perfectly well de-
fined (the typical example being the Cauchy distribution) one might wonder
whether these infinities can be somehow regularized. There can be at least
two reasons to avoid them. The first one is that the diverging behaviour
is linked to the Planck regime, as it comes from the fact that the Hubble
constant somewhere goes to infinity: one could well imagine that a correct
treatment of quantum gravity effects would cancel these divergences. The
second one is that one does not expect to “observe” the local Hubble con-
stant to be infinite. The problem can be put as follows: if the bulk of the
joint distribution is far from the reflecting barrier, as it will be shown to
be the case for the cosmologically relevant scales, there will be very negligi-
ble chance to observe events with ¢ — —co inside our observable patch of
the inflated universe. So, the axion statistical moments will be regular in
most finite volume realizations of the stochastic process. A formal way to
reproduce this fact is to impose absorbing boundary conditions at ® = 0, i.e.
Ps¢|s=0 = 0, which acts as an effective regularization of the joint probability.
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This change amounts to drop in Eqgs. (4.24), (4.25) and (4.27) the terms
containing 1/§(0). We shall call P(#) the probability obtained this way.
Regularized moments of x can be then obtained from the first term in

Eq. (4.27) as
((x - X0)")

il

(20/ AN [ (6 = o) PEMdg
anﬁk
Ok

where V' = [2_d¢ P(ab’) 1 — erfc(®0/2v/8) (the absorbmg boundary does
not conserve the probablhty) and

B, = /;°° dgeik(5~€o)'pf(ab-’). (4.30)

= (20/A)*"N7H(—=i)" (4.29)

The relevant argument in Eq. (4.27), ®2/46, corresponds to

& _3_ mp

48 8Vp— Vu(a)’
where V(o) = V(pa(e)). Its magnitude is given by the ratio of the Planck
energy to the difference between the initial inflaton energy density and that
at the time of interest, which is larger than or equal to one. For example,
if we are interested in the distribution of x inside our observable universe,
which is the relevant one for the problem of structure formation, all this
region was inside the same coarse-grained domain when this scale left the
Hubble radius during inflation, thus it is a good approximation to take a
homogeneous initial condition, Pge(0 = 0) = §(@ — $0)8(¢ — &), at that
time. This corresponds to an energy den51ty Vo = M*exp(—Apo/c) much
smaller than the Planck energy density m% P, even smaller being the difference
Vo — Vu(a) at any time before the end of inflation; thus $2/46 >> 1. In this
limit, we can asymptotically expand the Kummer function in Eq. (4.27) and
compute the first moments of the x distribution using Eq. (4.29).

(4.31)

: S E0-5) HG-56-%
P~ 1_@2/49 (92/46)2  (8%/46)3
’s—-<-§-———>(5 Gl

All the odd moments vanish while the first even ones read

(x = x0)2) ~ (20/A)? 2.52—-1-6((;2) 4.

(4.33)

(x —x0)) ~ (20/X)* |12 (;2)2+104(£2>3+..

((x = x0)%) ~ (ZU/A)e 120 (52)34-2040 (§2>4+...
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From these it can be seen that the connected moments of the distribu-
tion do not vanish, which means that y is non-Gaussian distributed around
Xo. However, we can measure the magnitude of the deviation from a Gaus-
sian distribution looking at the dimensionless ratios of the higher connected
moments to suitable powers of the variance. As it is clear from Egs. (4.33)

2n
(0 =xen (1) w30
((x = x0)*)" @3

Thus, for the scales inside our observable universe, the distribution looks
pretty Gaussian.

On the other hand, on much larger scales the value of ®; can be chosen
in such a way that the initial energy density associated to the inflaton in the
coarse-grained domain is as large as the Planck energy density, which makes
the factor ®2/6 of order unity, giving rise again to a truly non-Gaussian
behaviour.

The case of an inflaton with exponential potential just analysed is also
particularly interesting, as it has been recently shown [78] that it describes
the simplest model of extended inflation in the so-called Einstein conformal
frame, where the Newton constant is indeed constant. In this frame, the
Jordan-Brans-Dicke field becomes a minimally coupled scalar field with ex-
ponential potential, playing the role of a slow-rolling inflaton (although the
name “inflaton” in these models is reserved to a further field undergoing a
first-order phase-transition). The “slope” X of the exponential potential is

related to the Brans-Dicke parameter w by the relation A = 2/4/w 4 3/2. As
stressed by Kolb, Salopek and Turner [78], the Einstein frame would not be
the most appropriate one to study fluctuations in other fields, as the con-
formal transformation from the so-called Jordan frame, where the Newton
constant changes with time, to the Einstein frame rescales in a different way
the potential and the kinetic terms. However, for the particular case we have
studied, where the y potential energy vanishes, this choice is appropriate.
Thus, the results obtained here hold for the distribution of any massless field
in extended inflation (at least in its simplest form).

4.3.4 Energy density distribution

In the axion case just discussed the generation of density fluctuations pro-
ceeds as follows. Quantum fluctuations of the massless axion during inflation
give rise to spatial inhomogeneities in the axion configuration; these are Gaus-
sian distributed on scales that are inside our horizon. When the potential of
the axion becomes non-trivial due to QCD instanton effects, these inhomo-
geneities are translated into fluctuations of the axion energy density. As this
process does not disturb the total energy density too much, perturbations
are of the isocurvature type. In the linear approximation, the axion energy
density fluctuations are proportional to the field fluctuations and thus are
Gaussian distributed too.
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We can wonder what happens in more general models when the non-
dominating field has a non-vanishing potential during inflation. Also in these
models, the non-dominating field fluctuations can give rise to isocurvature
perturbations and be responsible for the structure formation. Hence, it is
interesting to see whether the resulting fluctuations in the energy density
inside the Hubble-radius can be non-Gaussian distributed. In order that this
happens, it is necessary that, at the time when the scales of interest leave the
inflationary horizon, the evolution of yx is dominated by quantum fluctuations
(stochastic force) rather than by the classical force [117,118] which means
that the noise term is the dominant one in the Langevin equation (4.2),

% H '
o = Ao = —. 4.35
Ba =g <Bhe=5 (4.35)
Thus, this criterion requires in the slow-rolling regime that
Aq HH
~—=——>1 4.36
Aa " xam T (4:36)

where a dot denotes differentiation with respect to the proper time ¢. This
ratio also measures the amplitude of the energy density fluctuations in the
isocurvature mode 6p/p ~ Héx/x. Therefore, in the slow-rolling regime,
non-Gaussian isocurvature fluctuations are only associated to fluctuations of
large amplitude. This result is equivalent to that for adiabatic fluctuations
produced in a single scalar field model [117].

4.4 Numerical analysis

To obtain a statistical description beyond the perturbation expansion of Eq.
(4.33) we shall solve numerically the couple of Langevin equations (4.16)
for many realizations of 7, and 7, which will allow to obtain the joint dis-
tribution for ¢ and x at various times as an ensemble average. A similar
technique has been recently employed in the chaotic inflation context, to
study the global structure of the universe [119]. To this aim it is convenient
to make the equations dimensionless by the following change of variables:

e —¢ = (Mp/o)—2In(M?/2m/30?),
X=X = Ax—xo)/o, | (4.37)

a— & = Na.

In terms of these variables the Langevin equations read

dp gj2a 4
= 1re@),

(4.38)
dx sjaa «
da - € wzﬂx(a),
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with (7,(&)7,(&")) = (fx(6)hx(&)) = §(& — &').
The initial conditions, set at & = 0, read

Go = —é&;—2In(M?/27V/30%),
(4.39)
Xo = 0.
The Eqs. (4.38) are approximated as finite difference equations
Pn— Pn-1 = A&+ e*(’a"—‘/zwff_)l ,
(4.40)

- - = Gn/2, ()

Xn— Xn-1 — € Fut/ Wn'1
where w(®) and w(¥) are independent Wiener processes with zero mean and
correlation functions '

Pl = Pl = 550 (440

In deriving Eqs. (4.40) we used the approximation (neglecting the labels
¢ and x) ’

&

/an da e~¢(a)/2ﬁ(a) ~ e"“;(&"“‘)/Z/: " da ﬁ(a)

An-—-1 n—1

(4.42)

= e—‘;n—l /2

Wn-1

which, for A& < 1, is justified by the fast variation of the noise compared
to ¢. We solve these equations for uniform time steps A& = &, — &n-1.
A more refined approach to the integration of the Langevin equation with
multiplicative noise can be found, for instance, in Ref. [120].

At each step we choose at random 5 x 10® values of each Wiener variable
by means of a Montecarlo generator; we then use them to obtain ¢, and
Xn from which the joint probability distribution can be obtained as a two-
dimensional histogram. The end of the inflationary regime should be dealt
with by adding suitable boundary conditions at ¢ = 0 [91]. In practice,
however, for the range of times and field configurations considered here, we do
not need such a modification. In our particular model we could have used the
exact solution of Eq. (4.20) to produce, at any time and for any realization
of the noise, a value of ¢ to be replaced in the x equation. Alternatively we
could have generated, by standard rejection methods, values of ¢ satisfying
Eq. (4.26). We preferred, however, to use the present method which can be
applied to more complicated models.

The only way our choice of parameters enters the dimensionless equations
Eq. (4.38) is through the ¢ initial condition. We consider two types of initial
conditions. In both cases we take a typical value A = 0.2 and M/mp =
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5.7 x 107%. As x is massless during inflation, any initial condition for it is
equivalent.

i) The first set corresponds to a domain of the inflationary universe which
started from a homogeneous conﬁguration with energy density comparable to
the Planck one: V(po) = m}p. In such a case gy = (40/))In(M/mp), there-
fore 3o = 2In(+/3/4). The classical trajectory takes oy = (4/A2)In(mp/M)
e-foldings to reach the final configuration ¢; = 0 so that this domain con-
tains a huge number of regions (~ 10'*%) as large as the present observable
universe.

ii) The second set corresponds to our observable universe: the initial con-
dition is obtained by considering the minimum number of e-foldings necessary
to solve the horizon problem,

;A (—1% [1 - é%ln (%’i)} , (4.43)

which, with our choice of parameters, yields a; ~ 56 and @y ~ 44.39. In
such a case the field configurations are taken to be initially homogeneous on
the scale of the present Hubble radius to model the fact that the fluctuations
we observe are all inside this region. This is an approximation since the
coarse-grained fields are actually space-dependent; however, as we shall see
in the next section, their spatial correlation is modulated by a zero order
spherical Bessel function such that they are strongly correlated inside the
same coarse-grained domain while their correlation drops very quickly at
larger scales. This makes the homogeneity approximation quite good for our
purposes because, at the time our observable horizon left the Hubble radius
during inflation, all the scales we are interested in were much smaller than
the coarse-graining radius.

The results for casei) are obtained considering time steps A& = 1.7x107%,
these being small enough that the variation in exp(—$/2) during each step
can be largely neglected. The joint probability distribution is then summed
up over the inflaton variable to get the axion probability. In Fig. 4.1 we
show a plot of P, at various times; after a time a ~ A"21n4 the distribution
starts to be roughly stationary, as noted in the previous section.

The non-Gaussian behaviour is shown by the evolution of the ezcess kur-
tosis of the distribution & = ((x — x0)*)/{(x — Xx0)?)? — 3, which is reported
in Fig. 4.2. The moments in these numerical simulations were regularized
by putting an absorbing boundary at ¢ = —5, which is far enough from the
initial delta function.

The second set of initial conditions has been evolved with time steps
A& = 2.24 x 1073, The scales of interest for the formation of structures
leave the inflationary horizon during the first ~ 8 e-foldings after the time
a = 0, when the scale of the present Hubble radius crosses the inflationary
horizon. Therefore only the interval 0 < o < 8 is relevant. During this time
interval the joint probability is very well fitted by the product of two Gaussian
functions for ¢ and x, centered on their respective mean values. Considering
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Figure 4.1: The axion distribution P = P, /) versus ¥ = A(x — x0)/, on
super-horizon scales, at different times. From left to right: & = A%« = 0.008,
0.15,1.4, 1.7.
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Figure 4.2: Evolution of the excess kurtosis x of the axion distribution on
super-horizon scales; the line represents a best fit of the simulated data, the

relative error being of order 10%.
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v and y inside our universe as two independent Gaussian variables represents
a good approximation; in this regime, only very rare fluctuations of the fields
would perceive the intrinsic non-Gaussian nature of the process.

4.5 The perturbation spectrum

As we have seen in the previous section the joint probability for ¢ and x is
well approximated by the product of two Gaussian distributions for all scales
inside our observable universe, except for extremely large fluctuations of ¢.
This means that we are effectively solving two uncoupled linear Langevin
equations for ¢ and x. Considering, for instance, the x field we have

ox(T, H,(a .
Xga @) _ 2’5{ ) m(E, ), (4.44)

where we have now taken into account the space dependence of the variables.
The function H,(«) is the Hubble constant evaluated along the classical tra-
jectory: in a power-law inflation Hy = Hoexp(—A?c/2). Equation (4.44)
could be derived from first principles (see, e.g., Ref. [21,121], for a deriva-
tion in the frame of power-law inflation), noting that the Laplacian term in
the field equation of motion becomes negligible during inflation. The same
equation holds, in this regime, for the fluctuation ¢ = ¢ — ¢a(a). The
fine-grained noise has auto-correlation function [86]

(1(Z, @)y (', &) = Jo(ks|& — &) 6(a — &), (4.45)

where g is the zero order spherical Bessel function and ks = eaH = eaoHo exp[(1—
A?/2)a] is the coarse-grained domain size, with € a number smaller than unity

[86]. Since, in the present approximation, the x(&, ) field behaves like a spa-
tially homogeneous and isotropic (and Markovian in time) Gaussian random
field, the only quantity we need for a complete statistical information is its
two-point correlation function. From Eqs. (4.44) and (4.45) we get

1 k (C‘mx’n)

(5(3, @)ox(F + 7,0) ~ 55 /k T dk B P(R)jo(kr),  (4.46)
™ 0

where §x = x —Xo, ko = €aoHo, ttmin = min(a, ') and the x power-spectrum

reads

P, (k) ~

2 —X2/(1-X2/2)
gy (’“ ) . (4.47)

2k \ ko

Both the adiabatic mode €,q and the isocurvature one ¢;,, are easily seen,
from Eq. (4.12) and Eq. (4.13), to have the same spectral dependence as 8.
For A — 0 Eq. (4.47) gives the standard scale-invariant spectrum P, o k7.
In general, i.e. for finite values of A < v/2, the spectrum of §x contains more
power at small wavenumbers than the scale-invariant one, as it is the rule
in a power-law inflation [9]. Thus, the stochastic approach, once the space-
dependence of the noise correlation function is taken into account, provides
the right spectral dependence of the perturbations.
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4.6 Summary

Inflationary models where two scalar fields are present, the inflaton and a
second non-dominating one, have been analysed in the frame of stochastic
inflation. The dynamics of the system is described by a couple of Langevin
equations for the two coarse-grained fields and a Fokker-Planck equation
for the joint probability distribution of both fields. We obtained analytical
solutions in the simple case of a free massless field and an inflaton with ex-
ponential potential. The distribution of the massless field is approximately
Gaussian for all scales inside our presently observable universe. However, it
is highly non-Gaussian on much larger scales, which can be relevant for the
global structure of the inflationary universe. There still remains the open
problem of whether realistic two-field models could generate primordial non-
Gaussian perturbations on cosmologically observable scales. Although this is
known to be possible in models leading to double inflation, the problem there
is how much likely is that a field configuration for which this effect is relevant
is realized in the region of the universe where we live. The actual challenge is
to build up realistic models where non-Gaussian and scale-invariant pertur-
bations are a natural outcome. The stochastic approach to inflation remains
the best method to afford these issue. It would be interesting, in this re-
spect, to analyse the origin of perturbation in the frame of chaotic models of
extended inflation [77] or in soft inflation [122] where two interacting scalar
fields play simultaneously a dynamical réle in determining the inflationary
expansion.
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Conclusions

Inflationary models provide one of the most appealing explanations for the
origin of the primordial energy density fluctuations. The resulting fluctua-
tions are typically of the adiabatic type, with scale-invariant spectrum and
Gaussian distributed. However, this is not the only possibility. Models with
more than one scalar field present are able to produce fluctuations that do
not have that characteristics. In this thesis, we have explored the energy
density fluctuations arising in two scalar fields models. The two main points
that have been investigated are if they can produce the initial conditions
assumed in phenomenological isocurvature models and the statistics of the
fluctuations.

In relation with the first point, we have analysed different models pro-
posed in the literature. Namely, the presence of a second scalar field in the
case in which it decays into radiation after baryogenesis, producing spatial
fluctuations in the baryon number per photon, and in the case in which it
stays as a dark matter component up to the present epoch, the presence
of axions as constituents of the dark matter and the spontaneous baryoge-
nesis model. The condition necessary to provide the right initial condition
for phenomenological isocurvature models is that the total energy density
perturbations be negligible with respect to the entropy perturbation during
the radiation dominated era. In the models in which there is an extra non-
dominating field present, the isocurvature condition is typically valid during
the inflationary era, when energy density perturbations of the fields are pro-
duced. However, we have shown that in the case in which the additional
field decays into radiation, a large adiabatic mode becomes excited by the
radiation dominated era, preventing the model from being a good candidate
for the origin of isocurvature baryonic fluctuations, contrary to what was
expected. Instead, in the case that the second field does not decay, and con-
stitutes now the dark matter, the isocurvature conditions hold during the
radiation dominated period. Hence, this is a good model for the origin of
CDM isocurvature perturbations.

In the other two models considered there is a pseudo-Goldstone boson
which appears as consequence of a symmetry breaking during inflation. One
case is that of the axions, which potential becomes non-degenerate after the
reheating. At that time, axion energy density perturbations are originated.
This process does not alter the total energy density very much because ax-
ions are non-dominating at that time. As this happens during the radiation
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dominated period, this model also gives the initial conditions required in
the CDM isocurvature model. The last model considered is the spontaneous
baryogenesis. In this case, a baryon asymmetry is produced while a pseudo-
Goldstone boson, the ilion, is relaxing to the minimum of it potential after
the end of inflation. This process does not perturb the total energy density,
but just the ratio of photons to baryons. As this occurs during the radiation
dominated era, this is a good model for the origin of isocurvature baryonic
perturbations.

The other point analysed in this thesis is the statistics of the fluctuations
produced. This has been carried out in the frame of the stochastic approach
to inflation. This approach has proven to very useful to describe the dynam-
ics of the inflationary phase and to be the best tool to study the statistics
of the field fluctuations. Solving the Fokker-Planck equation for the field
probability, we can know the field distribution in one coarse-grained domain.
The Langevin equation provides us still more information as it preserves the
space point dependence. We have shown how some fundamental properties,
as the spectral distribution of the field, can be recovered computing the two-
point correlation function of the field from the Langevin equation. However,
a complete and detailed description of the density perturbations in the spirit
of the stochastic approach has not yet been developed. A clear and definite
description of the space time structure in this approach is also missing.

In the last chapter, we have extended the stochastic approach to study
the two-field case. We obtained the couple of Langevin equations describing
the evolution of both coarse-grained fields and the Fokker- Planck equation
for the joint probability in the general two-field model. We have then ap-
plied it to analyse in detail the case in which one of the fields is always
non-dominating during inflation. We obtained an analytical solution in the
model of a massless field and an inflaton with an exponential potential. Al-
though this model is simple, it is cosmologically interesting as several scalar
fields that are massless during inflation, as the axions and the ilions discussed
above, can play a fundamental role in the determination of energy density
perturbations. The result obtained is that the distribution of the massless
field is approximately Gaussian for all scales inside our observable universe.
However, it is highly non-Gaussian on much larger scales, what can be rel-
evant for the global structure of the inflationary universe. This model is
just the simplest two-field model that can be considered, as the expansion
is determined only by the inflaton field. The next step is to study within
this approach models where both fields are relevant to determine the dynam-
ics of inflation. In this case we can expect that non-Gaussian perturbations
arise in astrophysically interesting scales. Particularly promising appear the
models of chaotic extended inflation briefly discussed in Chapter 2 and a
recently proposed model, the soft inflation, where two interacting fields with
a potential given by the product of an exponential potential for one of them
and a polynomial one for the other is considered. The nice feature of these
models is that the constraint on the magnitude of the coupling constant of
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the fields imposed by the smallness of the energy density perturbations are
significantly weakened.

90



Bibliography

[
[

[

[
[
1
[
[
[

[1] Axenides M., Brandenberger R. H. and Turner M. S. , Phys. Lett. B
126 (1983) 178.

[2] Linde A., Phys. Lett. B158 (1985) 375.

[3] Seckel D. and Turner M. S., Phys. Rev. D32 (1985) 3178.
4] Kofman L. and Linde A., Nucl. Phys. B282 (1987) 555.
[

5] Peebles P.J.E., preprint, presented at the Landau Memorial Conference
(1988).

[6] Harrison E., Phys. Rev. 1 (1970) 2726.

[7] Zel’dovich Ya. B., Mont. Not. R. ast. Soc.160 (1972) 1.

[8] Abbott L. F. and Wise M. B., Nucl. Phys. B 244 (1984) 541.
[9]

9] Lucchin F. and Matarrese S., Phys. Rev. D 32 (1985) 1316, Phys. Lett.
B 164 (1985) 282.

10] Vittorio N., Matarrese S. and Lucchin F., Astrophys. J. 328 (1988) 69.

11] Salopek D. S., Bond J. R. and Bardeen J. M., Phys. Rev. D 40 (1989)
1753.

12] Starobinskii A. A., Pis'ma Zh. Eksp. Teor. Fiz. 42 (1985) 124 [JETP
Lett. 42 (1985) 152].

13] Kofman L. A., Linde A. and Starobinskii A. A., Phys. Lett. B157 (1985)
361.

14] Silk J. and Turner M. S., Phys. Rev. D35 (1987) 419.

15] Amendola L., Occhionero F. and Saez D., Astrophys. J. 349 (1990) 399.

16] Kofman L. and Pogosyan D. Yu., Phys. Lett. B 214 (1988) 508.

17] Hodges H., Phys. Rev. Lett. 64 (1990) 1080.
]

18] Moscardini L., Matarrese S., Lucchin F. and Messina A. , Mont. Not.
R. ast. S0c.(1990) (in press).

91



[19] Allen T. J., Grinstein B. and Wise M.B., Phys. Lett. B197 (1987) 166.

[20] Starobinskii A. A., in Current topics in field theory, quantum gravity
and strings, Lecture Notes in Physics, ed. H. de Vega and N. Sanchez,
vol.246, Springer, Heidelberg (1986).

[21] Ortolan A., Lucchin F. and Matarrese S., Phys. Rev. D38 (1988) 465.
[22] Matarrese S., Ortolan A. and Lucchin F., Phys. Rev. D40 (1989) 290.

[23] Matarrese S., Lucchin F. and Ortolan A., in Proc. Workshop on Large
Scale Structures and Peculiar Motions in the Universe, Rio de Janeiro,
May 1989, Latham D.W., and da Costa L.N. eds. (in press).

[24] Lifshitz E., J. Phys. USSR 10 (1946) 116, Lifschitz E. and Khalatnikov
I., Adv. Phys. 12 (1963) 185.

[25] Silk J., Astrophys. J. 151 (1968) 459.
[26] Efstathiou G. and Silk. J., Fund. of Cosmic Phys. 9 (1983).
[27] Zel’dovich Ya. B., Astrofizika 6 (1970) 319.

[28] Primack J., Proc. of the Int. School of Phys. ”E. Fermi”, Varenna (1984)
137, ed. Cabibbo N..

[29] Szalay A. and Marx G., Astron. Astrophys. 49 (1976) 476.

[30] Bond J., Efstathiou G. and Silk. J., Phys. Rev. Lett. 45 (1980) 1980.
[31] Frenk C., White S. and Davies M., Astrophys. J. 271 (1983) 417.

[32] Zel'dovich Ya. B., Einasto J. and Shandarin S., Nature 300 (1982) 407.
[33] Fixen D., Cheng E. and Wilkinson D., Phys. Rev. Lett. 50 (1983) 620.
[34] Starobinskii A. A., Sov. Astron. Lett. 9 (1983) 302.

[35] Davies M., Efstathiou G., Frenk C. and White S., Astrophys. J. 292
(1985) 371.

[36] Dressler A., Faber S. M., Burnstein D., Davies R. L., Lynden-Bell D.,
Terlevich R. J. and Wagner G., Astrophys. J. Lett. 313 (1986) L37.

[37] Maddox S. J., Efstathiou G., Sutherland W. J. and Loveday J., Mont.
Not. R. ast. Soc.242 (1990) 43P.

[38] De Lapparent V., Geller M. J. and Huchra J. P., Astrophys. J. 302
(1986) L1; Bradhurst T. J., Ellis R. S., Koo D. C. and Szalay A. S.,
preprint (1989).

[39] Bahcall N. and Soneira R., Astrophys. J. 270 (1983) 70.

92



[40] Peebles P. J. E., in The origin and evolution of galazies (1983) 155, eds.
B. J. T. Jones and J. E. Jones.

[41] Peebles P. J. E., in The Early Universe (1988) 203, eds. W. G. Unruh
and G. W. Semenoff.

[42] Hogan C. J. and Kaiser N., Astrophys. J. 274 (1983) 7.

[43] Peebles P. J. E., Astrophys. J. 315 (1987) L73 .

[44] Peebles P. J. E., Nature 327 (1987) 210.

[45] Efstathiou G. and Bond J. R., Mont. Not. R. ast. Soc.L27 (1987) 33p.
[46] Efstathiou G. and Bond J. R., Mont. Not. R. ast. Soc.218 (1986) 103.

[47] Bond J. R., Frontiers in Physics - From Colliders to Cosmology. Pro-
ceedings of Lake Louise Winter Institute (1989), ed. by B. Campbell
and F. Khanna (Singapore: World Scientific, in press)

[48] Kibble T., Phys. Rep. 67 (1980) 183.

[49] Vilenkin A., Phys. Rep. 121 (1985) 273.
[50] Turok N., Nucl. Phys. B242 (1984) 520.
[51) Turok N., Phys. Rev. Lett. 55 (1985) 1801.

[52] Silk J. and Vilenkin A., Phys. Rev. Lett. 53 (1984) 1700; Stebbins A.,
Veeraragharan S., Brandenberger R., Silk J. and Turok N., Astrophys.
J. 322 (1987) 1. :

(53] Bennet D. and Bouchet F., Phys. Rev. Lett. 60 (1988) 257.

[54] Allen B. and Shellard P. S., Phys. Rev. Lett. 64 (1990) 119.

[55] Bardeen J., Phys. Rev. D22 (1980) 1882.

[56] Kodama H. and Sasaki M., Prog. of Th. Phys. Supp. 78 (1984).

[57] Bardeen J., Steinhardt P. and Turner M. S., Phys. Rev. D28 (1983) 679.
[58] Brandenberger R. H. and Kahn R., Phys. Rev. D29 (1984) 2172.

(58] Mukhanov V. F., JETP Lett, 41 (1985) 493.

[60] Lyth D., Phys. Rev. D31 (1985) 1792.

[61] Guth A., Phys. Rev. D23 (1981) 347.

93



[62] Linde A., Rep. Prog. Phys. 47 (1984) 925; Brandenberger R., Rev. of
Mod. Phys.57 (1985) 1. ; Blau S. and Guth A., in J00 Years of Grav-

itation, eds. S. Hawking and W. Israel, Cambridge University Press,
Cambridge (1987); Olive K., Phys. Rep. 190 (1990) 307.

(63] Dolan L. and Jackiw R., Phys. Rev. D9 (1974) 3320.

[64] Linde A., Rep. Prog. Phys. 42 (1979) 389.

[65] Guth A. and Weinberg E., Nucl. Phys. B212 (1983) 321.

[66] Linde A. Phys. Lett. B116 (1982) 335.

(67] Albrecht A. and Steinhardt P., Phys. Rev. Lett. 48 (1082) 1220.

[68] Steinhardt P. and Turner M. S., Phys. Rev. D29 (1984) 2162.

[69] Linde ‘A., Phys. Lett. B162 (1985) 281.

[70] Linde A., Prog. of Th. Phys. Supp. 85 (1985) 279.

[71] La D. and Steinhardt P., Phys. Rev. Lett.62 (1989) 376.

[72] Weinberg S., in Gravitation and Cosmology, Wiley, New York (1972).
[73] Reisenberg R. D. et al., Astrophys. J. 234 (1979) L219.

[74] La D., Steinhardt P. and Bertschinger E., Phys. Lett. B231 (1989) 231.
[75] Steinhardt P. and Accetta F., Phys. Rev. Lett. 64 (1990) 2740.

[76] Accetta F. and Steinhardt P.,preprint IASSNS-HEP-90/36.

[77] Linde A., Phys. Lett. B238 (1990) 160; CERN-TH 5806/90 (1990).

[78] Kolb E., Salopek D. and Turner M. S., Fermilab preprint 90-116/A
(1990).

[79] Guth A. and Pi S.-Y., Phys. Rev. Lett. 49 (1982) 1110.

[80] Hawking S., Phys. Lett. B115 (1982) 295.

[81] Starobinskii A.A., Phys. Lett. B117 (1982) 175.

[82] Guth A. and Pi S.-Y., Phys. Rev. D32 (1985) 1899.

[83] Gibbons G. and Hawking S., Phys. Rev. D15 (1977) 2738.

[84] Bunch T. and Davies P., Proc. R. Soc. Lon. A 360 (1978) 117.

[85] Vilenkin A., Phys. Rev. 27 (1983) 2848.

94



[86]

(87]

[88]
[89]
[90]

[91]
[92]
[93]
[94]
[95]
[96]
[97]

(98]

[99]

Starobinskii A.A., in Field Theory, Quantum Gravity and Strin.
H.J. de Vega and N. Sanchez (Lecture Notes in Physics, 246) (St
Verlag, Berlin, 1986).

Bardeen J.M. and Bublik G.J., Class. Quantum Grav. 4, 573 (1987);

Rey S.-Y., Nucl. Phys. B284 (1987) 706; Pollock M.D., Nucl. Phys.
B298 (1988) 673; ibidemm 306 (1988) 931; Sasaki M., Nambu Y. and
Nakao K., Nucl. Phys. B308 (1988) 868, Phys. Lett. B209 (1988) 197;
Nambu Y., and Sasaki M., Phys. Lett. B205 (1988) 441; tbidem 219
(1989) 240.

Linde A., Mod. Phys. Lett. A 1 (1986) 8.
Linde A., Phys. Lett. B175 (1986) 395.

Goncharov A.S., Linde A.D. and Mukhanov V.F., Int. J. Mod. Phys.
A2 (1987) 561.

Miji¢ M., Phys. Rev. D(1990) in press.

Hodges H., Phys. Rev. DD39 (1989) 3568.

Salopek D. S. and Bond J. R., Fermilab-Pub-90/131-A.
Miji¢ M. and Mollerach S., in preparation.

Linde A., JETP Lett. 40 (1984) 1333.

Kofman L., Phys. Lett. B173 (1986) 400.

Peebles P.J.E., “Inflation and the baryon isocurvature model™ in Large
scales structures and motions in the universe, ed. by Mezzetti, Giuricin,
Mardirossian and Ramella, Kluwer Academic Plublishers, Dordrecht

(1989).

Turner M. S., Cohen A. G. and Kaplan D. B., Phys. Lett. B 216 (1989)
20.

Cohen A. G. and Kaplan D. B., Nucl. Phys. B 308 (1988) 913.

[100] Kodama H. and Sasaki M., Int. J. of Mod. Phys. A1 (1986) 265.

[101] Kodama H. and Sasaki M., Int. J. Mod. Phys. A2 (1987) 491.

[102] Mollerach S., Phys. Lett. B242 (1990) 158.

[103] Mollerach S., Phys. Rev. D42 (1990) 313.

[104] Sasaki M., Prog. of Th. Phys. 70 (1983) 394.

[105] Turner M. S., Phys. Rev. D 28 (1983) 1243.

95




Press W. H. and Vishniac E. T\, Astrophys. J. 239 (1980) 1.
Sakharov A. D., JETP Lett. 5 (1967) 24.

[
[107]
[108]
[109] Mollerach S., Matarrese S., Ortolan A. and Lucchin F., preprint (1990).
[110] Hodges H., Phys. Rev. Lett. 64 (1990) 1080.

[111]

See e.g. Zel'dovich Ya. B., Molchanov S. A., Ruzmaichin A. A. and
~ Sokolov D. D., Zh. Eksp. Teor. Fiz. 89 (1985) 2061 [Sov. Phys. JETP
62 (1985) 1188].

[112] See, e.g., H. Risken, The Fokker-Planck Equation (Springer, NY, 1984);
using the It6 calculus instead of the Stratonovich one would only imply
a change in the early-time evolution of the probability, as discussed in:

[22].

[113] Halliwell J. J., Phys. Lett. B185 (1987) 341; Barrow J. D., Phys. Lett.
B187 (1987) 12; Burd A. B. and Barrow J. D., Nucl. Phys. B308 (1988)
929; Maeda K., Phys. Rev. D37 (1988) 858; Yokoyama J. and Maeda
K., Phys. Lett. B207 (1988) 31; Ratra B. and Peebles P. J. E., Phys.
Rev. D37, (1988) 3406; Liddle, Phys. Lett. B220 (1989) 502.

[114] See, e.g., Kolb E. W. and Turner M. S., The Early Universe (Addison-
Wesley Pub. Co., Redwood City, CA, 1990).

[115] Lyth D. H. and Stewart E. D., Astrophys. J. 361 (1990) 343.

[116] Melchiorri F., Melchiorri B. O., Ceccarelli C. and Pietranera L., Astro-
phys. J. Lett. 250 (1981) L1.

[117] Kofman L. A., Blumenthal G. R., Hodges H. and Primack J. R., in
Proceeding of the Workshop on Large Scale Structures and Peculiar
Motions in the Universe, Rio de Janeiro 1989, edited by D. W. Latham
and L. N. da Costa (ASP Conference Series, in press).

[118] Hodges H. M., Blumenthal G. R., Kofman L. A., and Primack J. R.,
Nucl. Phys. B335 (1990) 197.

[119] Biller P. and Petruccione F., THEP 9/90 (1990).

[120] Mannella R., in Noise in non-linear dynamical systems, vol. 3, edited by
F. Moss and P. V. E. McClintock (Cambridge Univ. Press, Cambridge,
1989).

(121] Kandrup H., Phys. Rev. D39 (1989) 2245.

[122] Berkin A. L., Maeda K. and Yokoyama J., Phys. Rev. Lett. 65 (1990)
141.

96









