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This thesis is submitted for the degree of Doctor Phylosopiein Biophysics.
The content of the thesis is mainly devoted to the study of phenomena occurring
or characterizing fractal surfaces. Under many points of view these topics can be
considered part of statistical mechanics and phase transition fields. At some ez-
tent, however, the study of fractal surfaces and fractal properties has many contact
points also with the structural and dynamical properties of biological and biophys-
tcal systems.

I started to be involved in the study of fractal concepts and in their application
to the interpretation of real phenomena, in connection with the study of a specific
biophysical problem for proteins. In fact, during the preparation of the Master
Thesis, in this School in 1988, I worked, also from the ezperimental point of view,
at a study in which fractal dynamics were used in order to relate the low frequency
vibrational properties of some proteins with their geometrical self-similar structure.
After that, it was then natural to continue the work on fractals and to extend my

interest also to the physical phenomena considered in this thests.
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INTRODUCTION

In recent years the fr.actal paradigm [l has became an important theoretical
tool for the understanding of many physical issues involving complex and irreg-
ular structures. Applications of fractal concepts concern many different fields,
like polymer statistics, [ irreversible growth phenomena, ! dynamical systems, [4]
biophysics, ] and others.

Fractal structures are characterized by dilation symmetries, or self-similarity,
as opposed to more traditional symmetries, like translation invariance. From a
theoretical point of view, this implies that many standard schemes have to be
replaced by new approaches. So, e.g., in a solid state physics of fractal lattices,
the renormalization group should somehow play the role of Bloch’s theorem.

Structures in nature always posses self-similarity in a statistical sense and for
a more or less wide range of length scales. The application of fractal models to
physical phenomena is thus always subject to limitations, which should be carefully
established in each case.

Fractal geometry can also be interpreted as a sort of hierarchical organization
in the configuration space. In this respect the success of fractal ideas in physics
could be seen as closely connected to the recent development of more general
hierarchical ideas in fields like the statistical mechanics of spin glasses. (6]

In the present thesis we deal with a fractality which does not pertain to the
bulk of the structures of interest, but just to their surface. Indeed we study
physical phenomena occurring in the presence of self-similar surfaces delimiting
otherwise regular and compact bulk regions (fat fractals). This kind of fractality, as

a role, is more elusive and difficult to detect experimentally, than that involving
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also the bulk of the structures. Nevertheless, fractal surfaces of the type just
mentioned are expected to give rise to interesting phenomena, which could often
differ substantially from the corresponding ones in more standard geometries. An
understanding of these phenomena, besides being of much value in itself, could

help in finding new ways of characterization of the geometry of the surfaces.

The phenomena we are dealing with in this thesis are adsorption and wetting,

in Part One, and diffusion and spectral properties, in Part Two.

Compared to our present knowledge of wetting and adsorption in the case of
flat substrates, [l our understanding of the same processes on rough surfaces is
extremely poor. This is a particularly unlucky situation, if we, e.g., consider that
adsorption has been repeatedly proposed as one of the most natural and promising

probes of fractality in rough substrates.(® 11

In Part One of the thesis we report a contribution, which is intended to fill, to
a limited extent, the gap of our knowledge in this field. In particular, we present
the first statistical mechanical treatment of a lattice—gas model, which, albeit
qualitatively, should contain all the main physical ingredients for the explanation
of adsorption on fractal surfaces. The (mean field) solution of this model gives a
full thermodynamic description of the phenomenon, and allows to discuss critically
previous conjectures 1211 about the scalings involved in it. We believe that with
some additional efforts and extensions, the type of model analysis carried out here
could be of substantial help in clarifying controversial issues like the interpretation

of recent experiments on multilayer adsorption. [1°]

In Part Two we address another extensive model calculation. This time we
deal with the spectral properties of fractal surfaces, as revealed by the diffusion

processes occurring on them.

Since the pioneering works of Alexander and Orbach (22] and Rammal and
Toulouse (3] an extensive literature has developed about the dynamics of fractal
structures. On the other hand, to our knowledge, a calculation, like that under-

taken in this thesis for a model fractal surface, was never performed before.

The spectral dimension of a fractal surface can be experimentally determined,
e.g., by means of neutron scattering techniques.**) On the other hand, we think

that further important motivations for a study like our one, are given by the
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interesting connections one can establish between spectral properties and issues,
like the conformational statistics of hierarchical polymeric networks, random and
self-avoiding chains and Flory approximations on fractal structures, which are all
discussed in Part Two.

The thesis is organized as follows.

In Chapter 1 of Part One we give some introduction to wetting phenomena in
standard geometries and to their lattice-gas model description.

An elementary introduction to some basic concepts of fractal geometry and
fractal dynamics is given in Chapter 2. In this chapter a review of heuristic and
phenomenological approaches to wetting and adsorption on fractal and self-affine
substrates is presented.

Chapter 3 is devoted to a presentation of our lattice-gas model for adsorption
on fractal substrates and to its mean field solution.

Chapter 4 in Part Two discusses the spectral and diffusion dimensions of a

model of fractal surface (hydrant) and of the related issues mentioned above.
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CHAPTER 1

ADSORPTION AND WETTING
PHENOMENA

The formation of liquid drops on a surface is a rather common phenomenon.
The interest of physiéists for this phenomenon is related to the connections ex-
isting between the macroscopic shape of the drop and the three surface tensions
associated with the three interfaces meeting at the contact line between the drop
and the substrate. The contact angle © (see Fig. 1.1) gives the possibility to
make an easy classification for the wettability of the substrate by an adsorbate:
a wet substrate will be obtained when © = 0, a non—wet substrate when © <
and finally a dry substrate when © = 7. Because of the dependence of © on the
various surface tensions, it is obvious that its value changes, e.g., with a change in

chemical composition of the liquid drop, or with temperature, etc. ..

In this thesis we are not interested to examine all the cases of the contact
angle ©. We shall restrict ourselves to consider wet substrates (© = 0) in the case
of non standard geometries. In this chapter we want to give first a summary of
the concepts and the theoretical methods for the study of adsorption and wetting

phenomena on flat and in general smooth surfaces.

1.1 GENERAL ASPECTS

The formation of a liquid layer near a wall is the phenomenon on which we
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Fig. 1.1 Wet (©=0), non-wet (0<©<7), and dry (©=m) substrates. In the

non-wet case a microscopic liquid layer covers that part of the substrate that is

not beneath the drop. Note that this thin layer is missing for a dry substrate.
want to concentrate our attention here. The knowledge of the dependence of the
liquid density p on coordinates and on the relevant thermodynamic parameters
would give a complete insight into the physics of this phenomenon. However, for
many issues one does not need a detailed description of p. Often the knowledge
of the excess density or coverage p; is sufficient. This quantity is related to the

7

density p by the following equation: ("]

po= [ deloli) = ploo)], (L1)

which can be further simplified in the case of T not too close to T,. In fact, because
of the sudden decrease of the density around z = [, (see Fig. 1.2) p, is proportional

to [
ps = (p1— pg)l (1.2)

Thus the study of wetting of substrates concerns the dependence of p; on p
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Fig. 1.2 Generic phase diagram in pressure-temperature variables for a
one—component system with solid, liquid and gas phases. The melting— and
sublimation-lines meet the gas-liquid coexistence line at the triple point Ts.
The gas-liquid coexistence line ends at the critical point T.. @ denotes a typical
equilibrium situation leading to a density profile p(z) as in'b). b) The density
profile p(z) of a gas close to a substrate; p, denotes the coverage of the sub-
strate. For simplicity, density oscillations close to the substrate, occurring owing
to packing effects, are suppressed. The system is assumed to be homogeneous

parallel to the surface, so that p depends only on =z.

and T (chemical potential and temperature, respectively), as well as on adparticle-
adparticle interactions and substrate potential.

In order to set up a vocabulary for wetting phenomena, let us first consider the
phase diagram of Fig. 1.2 and suppose to be in the neighbourhood of the gas-liquid
coexistence line, By letting . — pg (uo being the value of the chemical potential
at coexistence) we could observe that, for T' < T, ps(pg ) remains finite, while for
any T > Ty, ps(py ) diverges. In this case the phenomenon occurring above T},
is called complete wetting and Ty, wetting temperature. This change in behaviour
when temperature is lower or higher than T}, has to be considered as a transition,
i.e. wetting transition. To establish the order of this transition we can consider
a path, in the phase diagram of Fig. 1.2, at p = py . If ps diverges smoothly
when T — T, we can talk of a second order wetting transition or equivalently
critical wetting; otherwise, if the coverage jumps from a finite value at T, to an
infinite value at T}, we can talk of a first order wetting transition. In general the
order of the wetting transition depends on the balance between the interaction

between adparticles and the substrate potential. A slight modification, e.g., in the
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substrate potential, can change the order of the wetting transition.

With reference to Fig. 1.2, let us now imagine to be in the neighbourhood of
the sublimation line (gas-solid coexistence line). In this conditions it is usual to
observe that a solid-like film condenses on the substrate. A common feature of this
phenomenon is the so called layering; one can distinguish whether a monolayer,
or two layers, etc., are formed. Usually, completion of each layer is accompanied
by a first order transition revealed by a discontinuous jump in coverage. The:
lines where this singularities occur end at critical points. The critical points of
the layer transition from layer n to n + 1, T¢ », accumulate at Tr, the roughening
temperature. [15:16] This is the temperature at which the amplitude of the fluctua-
tions in the adsorbed layers become predominant with respect to the growing up

of the film and the transitions between the layers are washed out.

A4 (b)
/
T Ho B
1 (d)
. T
T ® Tw

Fig. 1.3 Wetting phenomena along the sublimation curve. (a) A system with
T.»=0 and a corresponding adsorption isotherm, (b). (¢) A system that is non-
wet at T=0 with the roughening temperature Tr below the wetting temperature.
(d) A sketch of the coverage for a path at pg in (c). Further details are given in

the main text.
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1.2 LATTICE-GAS MODELS
AN

The study of wetting problems has been approached essentially in two different
ways. One is the analysis of lattice-gas models or density- functional theories
in a semi-infinite geometry in which a substrate potential acts on the particles.
The other consists in using an effective interface potential and in studying the
depinning of this interface in terms of a Landau-type continuum theory. Here we
are interested in giving a summary of the lattice-gas models and their features
in view of the original developments to be reported in Chapter 3 for the case of
substrates with fractal surface.

Lattice-gas models are based on the idea of substituting the three—dimensional
world with a regular lattice. The pérticles of the Asy'stem can occupy only the
lattice sites and to each site an occupation number n; = 0,1 remains associated .
In order to apply the lattice-gas model to the study of wetting phenomena, some
other ingredients have to be included. For wetting of a flat substrate, it is common
to consider a lattice filling the half-space z > 0. This portion of space is under the
influence of a potential due to the solid substrate in the z < 0 region. In general,

we can write the Hamiltonian of this system as follows
1
H = ; Vin; + —2- ZLJ: Wi (1.3)

Here, V is the substrate potential while w is the interaction potential between the
gas particles. The sums are done over all the lattice sites.

Starting from this Hamiltonian, one can use different methods to solve the
problem of wetting. One of the most widely used is the mean field (MF) approx-
imation. To this purpose is better to write the free energy of the system in the
grand canonical ensemble. In the MF approximation the occupation numbers n;
have to be substituted by their average values p; which enter in the free energy

functional:
1
F= Z{ksT[m Inpi + (1 = pi)In(1 = ps)] + (Vi = p)pi} + 5 Zwijpipj (1.4)
T 'LJ

The solution of the problem, i.e., the determination of the free energy at given p

and T, consists in finding the global minimum of (1.4) for those p and T'. The
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stationary conditions 8F/8pk = 0 leads to the mean—field equations,
P = [1 + e(Vk‘l'Z'. wkiPi"l—‘)/kBT] -1 (1.5)

These equations can be solved by iteration with appropriate boundary conditions.
The coverage p, at a given p and T can be obtained now as

po(i,T) = > [p¥ (1, T) — oo, T)] ” (1.6)

where py(p,T) is bulk value of the low density phase and the p*’s constitute the
solution of (1.5).

1.2.1 LATTICE-GAS MODELS WITH SHORT-RANGE INTERACTIONS

With few exceptions, lattice-gas models for the description of wetting phe-
nomena, for simplicity include only nearest-neighbour adparticle~adparticle in-
teractions. In spite of their schematic characterization, such models display the
whole variety of surface phase diagrams as discussed in the previous section. E.g.,
Pandit et al. studied explicitly within the MF approximation a lattice-gas model
characterized by nearest-neighbour adparticle-adparticle interaction of strength
v.17] The substrate exerts potential of strength w on adsorbate particles in the
layer just next to the substrate. For (u/v) > 1, the substrate is so strong that it
is already wet at T = 0 (T = 0). One finds a wetting transition (7%, > 0) for
0.7 < (u/v) < 0.9; in this case the transition is of the first order. For lower values
of (u/v) (0.5 < (u/v) < 0.7) one has critical wetting. For 0 < (u/v) < 0.5 the
corresponding drying transition occurs. In the parameter region 0.9 < (u/v) <1
one finds both wetting transition and (as for (v/v) > 1) layering transitions. This
fact needs some comments. Layering transitions should occur only along the sub-
limation line (as mentioned in the previous section) or along the melting curve.
However, this lattice—gas model describes the liquid-gas transition; its coexistence
line ends at a critical point T, and not at a triple-point T3 (the three-phase coexis-
tence point). As a consequence, these layering transitions have to be regarded as a
shortcoming of the lattice—gas model, because it describes gas-liquid coexistence.
Nevertheless, they look strikingly similar to what is observed experimentally along

the sublimation line.
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Other lattice—gas models based on short range interactions were used *®! to
argue that, in spite of the missing triple-point T3, the surface behaviour along
the sublimation and gas-liquid coexistence lines, as long as T, is not to close to
T3, 1s correctly described. More sofisticated versions of lattice-gas models include
that discussed by Ebner (see ref. [19]), based on the six-state Potts model with
vacancies. In this model one can identify three different phases meeting at a triple—
point. By the analysis of this model Ebner found interesting wetting phenomena
which later were also found experimentally. [2°]

Lattice—gas models have several advantages with respect to other theoretical
schematizations. They allow the study of effects on an atomic scale. Moreover,

they constitute a natural framework for the investigation of fluctuation effects via

Monte Carlo techniques.

1.2.2 LATTICE-GAS MODELS WITH LONG-RANGE INTERACTIONS

As said above, models with short-range interactions display a rich variety
of wetting behaviours. However, it is well established that for real liquids the
interaction potential between particles at distance r is van der Waals-like, i.e.
w(r) o< v~ for large 7. On the other hand, the substrate potential has a similar
nature and, taking into account the contribute of all the substrate atoms, it is of
the type V(z) « z73, if z is the distance from the substrate.

The van der Waals tail of the liquid-liquid interaction is almost irrelevant
for the critical behaviour of many liquids; this is essentially the reason why they
have the same critical behaviour as the three~dimensional Ising model. However,
because wetting transition occur below T, one cannot expect that the rules valid
in the bulk phase remain valid also in the case of surface critical phenomena. It
is interesting, on the other hand, to notice that near 7, wetting phenomena, as,
e.g., complete Wetting at T¢, long-range adparticle—adparticle interactions become
irrelevant. The tail of the substrate potential is essential, in any case, to reproduce
the asymptotic behaviour of the adsorption isotherms found also experimentally.

In the literature are several examples of lattice-gas models in which long-range
interactions have been included. De Oliveira and Griffiths (see ref. [21]) and Ebner

(see ref. [22]) have studied lattice-gas models in which nearest-neighbour liquid—
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liquid interaction and long-range substrate potential (V(z) o 27%) were consid-
ered. These models together with others[22~2%] were always solved numerically by
MF approximation. In spite of the fact that for models with both short-range and
long-range interaction , one finds similar features (presence of wetting transition,
critical temperatures, layering, etc...), the correct asymptotic scaling of the rele-
vant quantities in wetting is found only in the latter case. For example, models
with long-range interactions, at least for the substrate potential, correctly repro-
duce the asymptotic behaviour of the adsorption isotherms. The coverage, follows
the relation:

pa o< (o — )/ (1.7)

which is essentially a consequence of the scaling of the substrate potential V with

distance.

1.3 WETTING IN NON STANDARD GEOMETRIES

The systems discussed in the previous sections have always the feature of
having flat or smooth substrate surfaces. There are, however, other interesting
situations in which the geometry is more confined or in which the interfaces are
curved. Examples of these are porous media,?"] rough surfaces, colloidal suspen-
sions, etc....

Let us consider a simple situation which differs only slightly from the flat
case treated so far. A gas is confined between two planar plates at distance L
from each other. As L — oo one recovers the discussed flat case. Because of
the confined situation, it is expected that the chemical potential uy(L), at which
complete filling of the space between the two plates takes place, should be shifted
at lower values with respect to po. At up(L), in the capillary, the gas undergoes a
first—order condensation into a liquid-like before the bulk coexistence is reached.
This phenomenon is called capillary condensation. The relation between py(L)

and po, using the Kelvin equation, can be written as: [23—3°]

po(L) = po — 20g,1(p1 — pg) L7 (1.8)
A wetting layer grows with a thickness | = [2a/(p; — pg)]*/® (o — 1) ~*/3, [ in the
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case of an infinite wall separation (L — oo). For finite L the above [ grows up
to a finite value, linqq, after which suddenly the liquid fills the space between the
planes. By eq.(1.8), it is possible to see that this quantity behaves like:

Imaz = (a/ag,l)1/3L1/3 (19)

Capillary condensation is not only a phenomenon arising in confined geome-
tries. When the geometry is not planar capillary condensation influences wetting
and competes with it. E.g., in a system in which pores are present on a flat sub-
strate, effects similar to those summarized above are observed. In this case, the
occurrence of capillary condensation does not change the asymptotic behaviour
of the wetting phenomenon; however, at the pore level, a filling process will take
place with features qualitatively analogous to those mentioned above. The shape
of the pore will, of course, influence the capillary condensation, determining the
rapidity of the “pore—filling” phenomenon.

Wetting of curved substrates also displays interesting features. Since for them
an increase of the thickness of the adsorbed layer changes the area of the interface,
the free energy of the system will depend also on the curvature of the surface it
self. Let us consider, e.g., cylindrical or spherical surfaces. The curvature effects
increase the thickness of the wetted layer at the inner surfaces. Anyway, for a
cylinder (sphere) of radius R, because of the finite-size effects, the system exhibits
no phase transition. However, for large R the corresponding sudden rise region of,
e.g., the coverage, becomes very narrow and a (pseudo)-transition point can be
defined.

On the contrary, for wetting at the outer surfaces, the curvature effects prevent
the build—up of a thick layer, even at coexistence between gas and liquid. In this
case, there exists an upper limit for the thickness of the film after that the growth
of the film is no more possible.

From these last considerations one can suspect that curvature effects should
be particularly important in porous media and in rough surfaces. For many years,
there have been many attempts to estimate the inner surface area of porous

(89 by means

materials 27?1 and, more recently of rough and fractal surfaces
of adsorption techniques. However, up to now only rough estimates have been

obtained.
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CHAPTER 2

SURFACE ROUGHNESS AND
ADSORPTION PHENOMENA

Wetting of solid surfaces by liquids has many practical applications and has
been an important area of both basic and applied research for many years. How-
ever, many of the most complicated “real” wetting and adsorption processes are
still, at best, only partially understood. In particular, we have a relatively poor
understanding of wetting in the vicinity of a rough substrate. The reason for this
is the fact that, in general, theoretical schemes for the understanding of wetting
on flat substrates, completely fail when applied to rough surfaces.

From the geometrical point of view, rough surfaces can be characterized in
different ways, depending on the nature of the material. In particular, as men-
tioned in the Introduction of this thesis, fractal geometry and self-similarity have
often shown to be suitable for their description. It is remarkable that, e.g., solid
surfaces of carbonaceous materials reveal fractality by means of several different
experimental techniques (e.g., adsorption studies, analysis of small angle X-ray
and neutron scattering data, porosimetry, etc...) (see Ref. [32] and references
therein). On the other hand, also for some biological systems a description in
terms of fractal geometry seems to be appropriate. In particular, it was shown [33]
that the surface of some proteins, as revealed by X-ray diffraction determination
of the atom coordinates, displays clear fractal features. In view of such evidences,

it is extremely interesting to study the properties of wetting phenomena taking

place in fractal environments.
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It is legitimate to think that these phenomena should have peculiar features
that could be radically different from those in usual environments. Another source
of interest comes from the fact that, surprisingly enough, in the recent literature
years adsorption experiments were extensively used to get information on the
fractality of material surfaces.

Here, we would like to give a short review of the experimental facts about ad-
sorption on rough surfaces and of some of the main theoretical arguments proposed
recently to interpret the experimental data.

Since in the discussion we will make extensive use of concepts like self-
similarity and fractality, we start by giving an elementary introduction to these

concepts.

2.1 FRACTAL STRUCTURES

Fractal concepts were originally developed by mathematicians about a century
ago, under the influence of a crisis in mathematics. The divulgation among physi-
cists of these geometrical ideas, and the term “fractals”, is due to B. Mandelbrot (1,
To introduce the main ideas concerning fractal objects it is instructive to give first
an example from the physics of critical phenomena. It is well known that a fluid
near its critical point, because of strong fluctuations, is a mixture of gas and liquid
droplets. In fact, looking more carefully, one could observe that, as the critical
point is approached more closely, each liquid droplet contains small vapor droplets
which again contain smaller liquid droplets, etc... We can say that the system does
not show a characteristic length scale and we can find parts of the system that look
very similar to larger parts of the whole system, provided an appropriate rescal-
ing is performed. This property is called self-similarity and constitutes a general
feature of fractal objects. Looking at a fractal structure, we can find, at different
length scales portions of the structure itself, which, upon proper rescaling, look

almost identical.
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Fig. 2.1 Measure of the length of a fractal curve (Koch curve in the figure) by
using yardsticks of different lengths. The curve have clearly a fractal dimension
d=In4/1n 3.

2.1.1 GEOMETRY OF FRACTAL STRUCTURES

Fractal objects are characterized by dimensions. If we, e.g., consider the
volume V effectively occupied (or the mass M) by the portion of a fractal structure

inside a sphere of radius R, we obtain that
V « RY, (2.1)

Where d is the so called fractal or capacity dimension. This dimension charac-
terizes the scaling of the volume (mass) of the fractal structure with the size of
the region one considers. Eq. (2.1) can also be considered as the generalization of
the relation V o« R? valid for compact and homogeneous objects. For fractals d
assumes generally non-integer values.

Another way to clarify the meaning of fractality of a given structure, is the
following. Let us consider the situation in Fig. 2.1. Here we are trying to measure
the “length” L of a fractal curve using yardsticks of different lengths. In this case,

the measured length will be given by the number of yardsticks of a certain length,
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needed to cover the curve, times the yardstick length {. For a fractal curve (as in
Fig. 2.1) the length will scale as
Lo l? (2.2)

where d is also in this case the fractal dimension of the structure. Similarly, in the
case of a fractal surface, one could define the surface fractal dimension d as the
scaling exponent of the measured surface area, as a function of the linear size of,

e.g., disquettes used to cover the surface.

Fig. 2.2 Sierpinski Gasket (d=In3/1n 2).

Geometrically fractal structures can be constructed by the application of re-
cursive laws. As sketched in Fig. 2.2, one obtains a deterministic fractal, i.e., a
Sierpinski Gasket, recursively, by applying a transformation law to a simple start-
ing geometrical object. In this case, the self-similarity of the resulting object,
provided that an infinite system is obtained, holds by construction. In Fig. 2.3 is
reported another example of deterministic fractal.

In nature, one finds often systems with fractal properties. Self-similarity
and fractality, in these cases, are only properties holding on a statistical base.
This means that, e.g., a definition of the fractal dimension d is possible only by
considering some kind of ensemble averages. Notable examples are the inéipient
infinite percolation cluster, the droplets of the Ising model, the random walk, linear
polymers, etc. .. For a random walk (RW) of N steps in d-dimensional space, the

average end-to-end distance is given by

(R) « NY/2 = N/dw (2.3)
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with d, = 2 when d > 2. Since (R) represents the average extension of the
ensemble of points of a RW of N steps, we can conclude that dy, is the RW fractal
dimension (N o (R)%w). When RWs on a fractal structure are considered, the
value of dy, can be considerably different from 2. We will discuss an example of
this in Chapter 4.

Another example of random fractal model, which reproduces very well the
conformational properties of real linear polymers in “good” solvents, is the self-

avoiding walk (SAW). In this case only walks without overlaps or intersections are

allowed. For SAWSs one finds
(R) « N¥ = NY/dsaw (2.4)

where on regular lattices, dsaw is a function of dimensionality d, and dsaw(d) < 2

(34]

for d < 4. In a two-dimensional space dsaw is found to be 4/3,1°%, while in three

dimensions, a value of dsaw close to 5/3 has been found.

e

Fig. 2.3 A deterministic fractal with d=In3/In2.

2.1.2 DYNAMICS OF FRACTAL STRUCTURES

The dynamical properties of fractal structures are of much interest for several
physical problems. De Gennes was the first to address the study of a dynamical
process on a fractal structure (the ant in the labyrinth). [35] More recently problems
of this kind were considered also in connection with the ambitious program of
understanding anomalous relaxation properties of biopolymers by Stapleton and

co-workers and by Alexander and Orbach. [5:12]
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Elastic vibrations of a structure can be schematically studied in terms of an

equation of the following type
d?u;
mi—&‘t—z— = ZKij(uj — u;) (2'5)
j

where u; is the displacement from the equilibrium position of the i-th particle
of the structure, m; is its mass and K;; is the elastic constant of the “spring”
connecting particles i and j. Solution of this equation give rise to the normal
modes picture of the elastic vibrations. For homogeneous structures, from such an
analysis one obtains the well known result, that the density of vibrational modes,

p(w), scales, in the limit of low frequency, as
plw) o ! (w —0) (2.6)

where d is the euclidean dimension of the system. For a fractal structure it was
realized that a straightforward generalization of eq. (2.6), with d replacing d, does
not hold. Indeed, the law replacing (2.6) for a fractal involves a new dimension.
To introduce this important quantity, it is better to consider an alternative
way method to gain information on the vibrational modes of a structure. This
consists in solving first the diffusion problem on the structure. One substitutes
the elastic spring connecting two points of the structure with a jumping rate, for
a diffusing particle, of strength proportional to the corresponding K. In such
way one obtains a relation between the probability functions, solutions of the
diffusion problem, and the density of the vibrational states. Indeed, if Po(?) is the
probability of finding a diffusing particle at the starting point, 0, at time ¢, one
easily finds (12l
o(w) = %T‘fifmu%(_wz +40%),) (2.7)
where an average over all possible starting points has been considered. In eq. (2.7)
Py(e) is the Laplace transform of Po(t):
Py(e) = /Oo dte ' Py(t) (2.8)
0

For a fractal structure, Py(t) is expected to scale as the inverse of the number

of distinct points visited on the structure in time ¢, S(t), thus
Po(t) x S71(#) x R ot~ (1 — o) (2.9)
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The Laplace transform of this equation gives

-~ o

Py(e) x etw ™t (e — 0) (2.10)
and finally from eq. (2.7)
p(w) x w LW = Tl = T (2.11)

d = 2d/d,,, first introduced by Alexander and Orbach (see ref. [12]), is the so
called spectral or fracton dimension. Eq. (2.11) shows that, as far as the density of
vibrational states in the low frequency limit is concerned, fractal structures exhibit
a p(w) scaling in a way similar to that of the homogeneous systems. However, the
spectral dimension d is not only a parameter depending on geometrical features of
the structure, but contains also dynamical ingredients. In general, modifications of
the range and connectivity of the forces between different points of the system can

strongly influence the value of the corresponding cz, without implying any change

of d. (3¢

2.2 STUDY OF SURFACE GEOMETRY BY ADSORPTION TECH-
NIQUES

There are several experimental facts justifying interest in adsorption on rough
surfaces. In fact, isotherms can provide a double insight: a) these should char-
acterize the wetting phenomena taking place in the vicinity of a rough substrate;
b) the analysis of the data could be used to infer the possible geometrical scaling
properties of the substrate surfaces.

Indeed, monolayer adsorption of many different gases on material surfaces was
proposed ¥ as a method for the determination of their surface fractal dimension.
This is based on the fact that in the case of a self-similar surface, the number, N,
of molecules required to cover the surface with a monolayer scales with molecule

size, a, as (see also previous section)

Np, o< a™® (2.12)
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This is a peculiar property of self-similar surfaces (d should have values in the
range 2 < d < 3). For a variety of rock surfaces, the analysis of monolayer
adsorption data referring to molecules of different sizes has shown that often N,

scales in a way apparently consistent with that of eq.(2.12), with d in the expected

range. [°]
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Fig. 2.4 Adsorption data for N, on two rough Ag substrates at 77 K. The
substrate consists of electron—-beam evaporated silver on quartz. In the figure is
reported the quantity adsorbed in units of ng/cm2 and the reference area is the
macroscopic surface area of the electrode, i.e., the area of a hypothetical planar
deposit. The dashed line shows the isotherm calculated for a flat surface. (From
ref. [10])

More recently Pfeifer et al.['® reported some experimental data about ad-
sorption of N3 on two rough Ag substrates at 77 K(see Fig. 2.4). On the basis
of phenomenological considerations (see sect. 2.3.2) they suggested that also the
multilayer adsorption (i.e. adsorption isotherms in the high coverage regime) could
give informations on the surface fractality of the surfaces. However, the same set of
experimental data was also interpreted in terms of a different theoretical approach
(see sect. 2.4) in which adsorption is considered to take place on a self-affine

surface. [*7 Tt is also important to note, however, that the behaviour of the ad-
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sorption isotherms reported in Fig. 2.4 is not obtained with the majority of the
samples. Indeed, with Ag rough substrates obtained in ways very similar to those
mentioned above, often the isotherms display different behaviours in such a way
that, also in the high coverage regime, a power law is no more legitimated. (38!
This circumstance can probably be related to the strong hysteresis found in those
experiments.

From what reported above, it should be clear that there is not yet a general
agreement on the interpretation of experimental data of adsorption on rough sur-
faces. Indeed at present, a satisfactory description of how fractality, self-affinity
and, in general, surface roughness influence and determine the features of adsorp-

tion and wetting phenomenon does not exist yet.

2.3 A SURVEY OF HEURISTIC ARGUMENTS FOR ADSORP-
TION ON FRACTALLY ROUGH SUBSTRATES

There have been many attempts, in the last years, to build-up models for
wetting and adsorption on rough substrates. In particular, for those substrates
displaying fractal properties there are phenomenological approaches to be reported
below. All these approaches are based on schematic and often oversimplified mod-
ellizations of the substrate surface and, because of the continuum nature of the
description they provide, can be applied only to the multilayer regime. By these
models one can estimate the scaling properties of quantities as coverage and film

thickness.

2.3.1 DE GENNES’ APPROACH!®]

De Gennes was the first to approach the problem of wetting on fractal surfaces.
He considered substrates with a surface, which, in a range {3 < [ < [ (typical
values for I; and I, could be'l; = 1004 and I, = 100um), has the property that
the volume occupied (in a grain of size l;) by void space at a minimal distance

< 7 from the surface scales as

Qr) x lg réd (2.13)
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This equation, with 3 replaced by d, in fact express a property of all surfaces with
fractal dimension d delimiting bulk regions with the dimension,d, of the embedding

space.

Jurin level

Fig. 2.5 Imbibition of a vertical capillary by a wetting fluid

De Gennes considered as a starting point the case in which a macroscopic

see Fig.2.5). Using Young-Laplace law,

~—~

capillary is filled up by a wetting fluid
one obtains that the capillary will be filled up to a level h satisfying the equation

p = pgh = 2v/r (2.14)

where - is the surface tension of the fluid and r is the radius of curvature of the
meniscus of the liquid in the capillary. This equation defines the function r(p)
which is essential for what follows.

If one considers now a pore whose shape differs from that of the cylindrical
capillary of Fig. 2.5, eq. (2.14) should be slightly refined. However, de Gennes
notes that the volume of wetting liquid should have a behaviour similar to that
mentioned above should. In this, case the wetting fluid will fill partly the pore in
such a way that the radius of curvature of the film surface will be equal to r(p),
as expressed by eq. (2.14). In general, the volume of the fluid in a pore will scale

as

Q; = VF(R/r) (2.15)
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where V is the volume of the pore and R its characteristic length scale (see for
example Fig. 2.6). f(u) is of the order of unity for u = 0, and vanishes for v = 1.

This function controls the filling up of the pore.

Fig. 2.6 Partial filling of a single hemispherical pore

Let us consider now two examples of systems with a fractal surface (see Fig.
2.7). In the case of iterative pits (Fig. 2.7a), if d is the fractal dimension of the
surface, from eq. (2.13), the total volume of all pits of radius < R (inside a volume
I3 of porous material) is Q(R) o lgRs"E. So the volume of liquid in these pits,

at a certain pressure p, is

7(p) d

Q(p) = [ GRARIE/E) (216)

By changing variables from R to w = R/r one easily obtains
Q(r) « 137"3—z (2.17)

and the ratio between the volume of the wetting liquid, ¢, and that of the pores,
¢, is given by
¢1/¢ ~ (r/l2)* (2.18)

This equation is the central result of de Gennes’ approach. With similar
arguments it is possible to show that also in the case of “iterative flocs” (Fig.2.7b)

one has the same scaling relation between the volume of the wetting liquid and
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Fig. 2.7 The two models for fractal surfaces: a) iterative pits; b) iterative flocs.

7(p). The problem of determining quantities like  is thus reduced to that of

finding the correct r(p) in the problem.

2.3.2 MULTILAYER ADSORPTION ON A FRACTAL SURFACE[0:3]

After the scaling argument of de Gennes, Pfeifer et al.['® proposed a new
phenomenological model for adsorption on fractal surfaces. The starting point

of their approach is the Frenkel-Halsey—Hill (FHH) theory of adsorption on a
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flat surface.(*9=%2] The adsorbate is treated as a continuum whose density and
energy are only weakly perturbed by the substrate. In this theory the difference in
chemical potential between a film of thickness z and the bulk liquid is given by the
difference in the van der Waals dispersion energies, p — yo = —Az~° (here X takes
into account both the adsorbate-substrate and adsorbate—adsorbate interactions,
assuming the latter to be the same as in the bulk liquid). By equating the film
(bulk) chemical potential to that of its coexisting vapor at pressure p (po), the

film thickness z is given by the pressure-dependent length,

Cp = [mr/s (2.19)

To treat the non planar case, the authors imagine that at the interface between
liquid film and vapor the principle of local thermodynamics is valid. This implies
the equilibrium condition

= i) + () (2.20)
where tin; is the chemical potential of a uniform system at the local (7 dependent)
thermodynamic conditions and v() is the external potential due to the substrate.
Eq.(2.20) is valid if v(7) is slowly varying, which is the case for sufficiently large
distances from the surfaces. Neglecting surface tension effects and assuming small
curvature for the equipotential (v) surfaces, the interface has to lie on an equipo-
tential surface (these approximations lead to pins = o). This leads to the result
that the liquid condenses in those volumes where the potential v is less than or
equal to kT In(p/po)-

With the assumption thaf the potential v depends only on the distance z from
the surface and is given by —az~° as in the flat-surface case, the authors obtained
that the film volume is £(¢,) equal to the volume of the space points lying at a
minimal distance < z from the surface (see Fig.2.8) and (, is given by eq.(2.19).
From eq.(2.13) we have already seen that this quantity scales as 234, Thus the

number of particles of size a in the film will scale as

N = Q(¢p)/a® oca™® (%’)M % Nom (%’-)3_3 (2.21)

where N, « a~? is the monolayer coverage for molecules of size a. (8] In spite of

the similarity between eq. (2.21) and eq. (2.17), it is important to remark that

29



Fig. 2.8 Equipotential surface generated by a fractal substrate. It represents
the film—vapor interface in the absence of surface tension. In the model, it consists

of all points with the same (minimum) distance z from the substrate

this is only apparent. While in eq. (2.21) ¢, represents the thickness of the wetting
film, in eq. (2.17) r represents its curvature which in de Gennes’picture should
have a precise dependence on the pressure p.

The authors have shown that eq. (2.21) holds also if the fractal surface is
seen as a collection of pores, e.g., spherical pores (see Fig. 2.9), like in de Gennes’
approach [®] (see previous section). The wetting of the surface is studied consider-
ing each pore as isolated and not connected to the others. Under these assump-
tions, a single pore is seen, e.g., as a spherical cavity of radius R in an infinite
solid. Inside the pore cavity the potential energy v at distance z from the wall

follow the expression 1%

R \° .
v(z) = -8« (W) (2.22)
Within FHH theory, the film thickness z at pressure p (this means kT In(p/po) =
v(z)), is given by

A(p,R) = { ﬁ(;ﬁzﬁzii’f)m’ Z3 s (2.23)
This equation reduces to the planar limit z = {, when (, < R. To calcule;te the
total film volume, the authors used the fact that the number of pores with radius

between R and R + dR, for a fractal, scales as R~?1dR. Thus the total volume

of a film of thickness z' is

R‘I",(LIL‘ —
N « / w(z',R)R™%"'dR, (2.24)
0
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where w(z', R) is the volume of the layer in a pore of radius R with thickness z’
(w(z',R) = (47 /3)R® if R < 2’ and w(z',R) = (47/3)[R* — (R —2z')*| if R > 2').
Ronae is the upper cut—off of fractality. At pressure p, N is obtained by setting z’
in eq. (2.24) equal to the equilibrium thickness of eq. (2.23)

R'"Llllt -_—
N / w(z(p,R),R)R™*"1dR (2.25)
0

The calculation of this integral gives for N an expression differing from that of
eq. (2.21) only by a multiplicative constant, which is, on the other hand, of order

unity.

Fig. 2.9 Replacement of the fractal surface by a set of spherical pores of variable
radius R

2.3.3 SURFACE TENSION EFFECTS11]

Within the model discussed above, one can include in eq.(2.20) another term
taking into account surface tension effects due to curvature. This equation becomes

now 11

v(7) + 27/[pR(T)] = Dp (2.26)

where Ap = p — po, v is the liquid—vapor surface tension, R. is the radius of
curvature of the surface film at 7 and p is the density of the liquid. If the fractal
surface is still considered as a collection of, e.g., spherical pores, eq. (2.26) has
to be written for the points in the pore. With the potential (2.22) this equation
becomes

R3 v

—8a -2

=A 2.27
(2Rzloc - leoc)g P(R - zloc) H ( {)
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Here zj,. is the local thickness of the film inside the pore and —(R — zioc) is the
corresponding radius of curvature of its surface.(*) So, the total coverage over all
the pores can be obtained similarly to eq. (2.24). Integration over the distribution

of the pores gives
R'"l(’.m —
N / (47/3)[R® — (R — z10c(p, R))*]R™ %" dR. (2.28)
0

The quantity zj,c has to be evaluated for any value of R as a solution of eq.2.27.
Looking at eq.(2.26) in the case of the interface of the liquid film of thickness r on a
fractal surface, we see that at sufficiently high values of v the surface tension term
will dominate. The assumptions that the first term scale as a/r® (as in previous
section), and that the average radius of curvature of the interface at distance r
from the interface is of the order r, led Pfeifer et al.['ll to an estimate of the

critical thickness after which the surface tension term wins. This is given by

o 1/2
et = (2£) (229)

Y

The numerical solution of eq. (2.27) and the integration of eq. (2.28) give for

the total coverage the following limit scaling behaviours:

3-—3 f < crt
e {Cz(s_a 1 bp < Fe (2.30)
p if Cp > Zerit

Here (, is always given by eq. (2.19).

2.4 ADSORPTION ON SELF-AFFINE SURFACES

Fractal surfaces are not the only possible model of rough surfaces. As already
mentioned in sect. 2.2, also self-affine surfaces have been proposed to simulate
rough substrates.®”] As remarked in ref. [10], when, e.g., the surface geometry
is probed by scanning tunneling microscopy (STM), it is not possible to make a

clear—cut distinction between fractal and self-affine surfaces.

(*) The radius of curvature is negative if the center of the tangent circle lies on the vapor side of the

interface.
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Self-affine surfaces, at variance with fractal surfaces, do not strictly display
self-similar properties. The former ones can be described in terms of a single—
valued function, hs(x), where x spansa D =d —1 dimensional space. This kind
of description is possible in connection with the fact that overhangs are irrelevant
for self-affine surfaces. The roughness of a self-affine surface is characterized by
the exponent ¢, which controls the scaling behaviour of the mean height fluctuation

across the length scale |x|. One has
{[ho(x0) = ho(x0 + x)I) o [x[ (2.31)

where the average {...) is over all points Xy and, in the case of a random self-affine
surface, also over different realizations of the surface.

Kardar and Indekeu®"l developed an interface approaéh for wetting on self-
affine surfaces. In the limit of thick adsorbed layers, this approach lead the authors
to write for the interface at a distance z from the substrate the following effective

potential

Cs
Ud(z) = U(z) + CU (2) (71(?0 , (2.32)

where U is the potential energy due to the interaction with the substrate, C is
a constant and « is the surface tension. U(z) is essentially proportional to z
times the substrate potential, V(z), for a point at a distance z from the substrate.
The second term of (2.32) represents the cost of deforming the interface by the
substrate, because of surface tension.

Since long-range adsorbate-substrate interactions lead to a potential
energy #® U(z) = u/2°7! +v/2° + ..., (we usually assumed ¢ = 3, so far) the

leading correction due to the surface tension, scales as
5U(Z) ~ ,},Cq ul_Cs Z-(I_Cs)(a+1) (2.33)

The consistency requirement of a correction term weaker than the original poten-
tial, led Kardar and Indekeu to distinguish two cases as done also by Lipowsky and
Fisher:*3 a) “Mean field” regime, ¢, < ¢* = 2/(o + 1), in which the asymptotic
behaviour is dominated by the original potential U(z). b) “Strong—fluctuation”
regime, (; > (*, in which the surface tension cost dominates the original poten-

tial. In this second case the effective potential is obtained self-consistently from
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Ul(2) ~ 7S U. (2)1=% and gives
Ue(z) o /23370 ¢ (2.34)

In the case of complete wetting the thickness of the wetting layer is expected
to diverge. To obtain the critical exponents, one has to include in the effective
potential of eq. (2.33) also the thermal fluctuations effects. This gives rise, in the
linearized scheme of Kardar and Indekeu, to a further term in (2.33) of the type
U (2))9) %, ¢ =1 — D/2 being the roughness exponent of a free interface. 4?!
So, the predominance of a U(z) or of a surface tension character in the asymptotic
behaviour of U.(z) is determined by the larger of the two exponents ¢, and (.

The amount of adsorbed material on the surface is obtained by evaluating
the volume of the space between the substrate and the interface. For a thickness
z of the adsorbed layer, this volume is proportional to the coverage N(z) which

satisfies the following equation
N(z) = Az + B2* (2.35)

Here A and B are constants. The above results for the éca]ing of the correction
term of the effective potential give[?7l ¢ = (s(c+1)—0 in the “mean field” regime,
while ¢ = (3¢ — 2)/¢ in the “strong-fluctuation” regime, with ¢ = max((o, {s).
Eq. (2.35) shows that in a self-affine substrate, asymptotically, N(z) o =z.
However, z diverges as (uo — p)"¥. The Kardar and Indekeu scheme give the
following results: in the case of van der Waals interactions (e.g., ¢ = 3 as previously
assumed) ¥ = 1/3 in the “mean field” case, and ¥ = (,/(2 — (,) in the “strong-

fluctuation” regime.

2.5 CONCLUDING REMARKS

In this chapter we have reported some of the theoretical approaches to ad-
sorption and wetting on self-similar and self-affine surfaces. The picture which
can be extracted from the results of these approaches is somewhat confusing.

The similarity of the coverage scaling behaviours given by schemes in sects.

2.3.1 and 2.3.2 or 2.3.3 is only apparent. While in eqs. (2.17) and (2.18) the main
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variable is the radius of curvature of the interface of the adsorbed film, in egs.
(2.21) and (2.30) ¢, represents the thickness of the adsorbed layer. It should be
stressed that in the above schemes the connection between these two quantities
is not clear. Moreover, it is at least somewhat ambiguous the meaning of the
adsorbed layer thickness mentioned in 2.3.3, because in the presence of pore—
filling effects no clear definition of layer thickness is possible, as we will see in the
next chapter.

The ambiguities and drastic approximations of the above approaches, con-
vinced us that more microscopically minded and realistic modellizations should be
considered in order to get a clear picture of adsorption and wetting phenomena on
rough substrates. A model which could hopefully open new perspectives in this

direction is discussed in the next chapter.
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CHAPTER 3

A LATTICE-GAS MODEL FOR WETTING
ON SELF-SIMILAR SURFACES

Wetting in the presence of rough substrates is of particular interest because,
as indicated by the simplified model considerations and scaling arguments of the
previous chapter, its study could give information on the geometrical properties
of the surfaces. In addition to this, the thermodynamic aspects of the adsorption
process on rough substrates are worth studying in themselves. However, in spite
of the many phenomenological approaches proposed in the literature, we are still
far from a satisfactory understanding of this issue.

The survey we presented in Chapter 2 should already have suggested us that
wetting on rough substrates needs more detailed modellizations. Satisfactory mod-
els should be able both to take into proper account the geometrical scaling prop-
erties of the surfaces, and to include all the ingredients for a correct physical

description of wetting.

3.1 A LATTICE-GAS MODEL FOR ADSORPTION ON A FRAC-
TAL SUBSTRATE [#4]

In this section we present results of extensive calculations performed on a
lattice-gas model for adsorption on a deterministic fractal surface. The advan-

tages with respect to previous approaches are many. The model embodies a real
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fractal surface, which is described in its full complexity, without resorting to ap-
proximations like that of treating it as a collection of independent pores, with
power—law distributed sizes. (10,9,11] The lattice—gas description takes into account
microscopically the effects of both adsorbate-substrate and adsorbate—adsorbate
interactions. Futhermore, the statistical mechanical treatment allows a discussion
of the effects of temperature and a full characterization of the thermodynamics of

adsorption isotherms.

3.1.1 THE MODEL

The model, as mentioned above, is based on a lattice-gas description. The
calculations are performed in the mean field (MF) approximation. In a certain
way, the model generalizes previous theoretical investigations of adsorption on
flat surfaces.21:22] The generalization we have accomplished here is highly non-
trivial. To obtain a sensible description of a system in which one has no more
translational, but scale invariance, one has to include self-similarity over many
length scales. Because of these facts, one can easily see that the number of distinct
order parameters to be handled for a sensible calculation increases enormously. In
view with these complications and in order to reduce computational problems, we

worked with a two—dimensional system.

The system is constituted by a finite box in square lattice (Fig. 3.1). A
contour (heavy line) marks the separation between the solid substrate and the
region accessible to the adsorbed fluid. All lattice sites belonging to the lower part
of the lattice, including the contour, are occupied by centers of atoms of the solid
substrate (crosses). The remaining sites (heavy and light dots) are accessible to

gas molecules.

Now, the lattice—gas model can be build-up in the following way: to each site
i of the upper part of the lattice we associate the occupation number n; = 0,1
that correspond to the presence, or the absence, of a gas molecule respectively.
Hard—core repulsions between molecules are thus taken into account as usual in
a lattice—gas description. On the other hand, long-range attractive interactions

have to be explicitly included in the Hamiltonian that will assume the following
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3.1 Sketch of the box used in the calculations.
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Waals interaction energy between a gas molecule and a solid atom a distance a
apart.

As seen in Fig. 3.1, our contour has the feature of being fractal (, the fractal
dimension of the contour is d = 3/2 in our example), i.e., self similar, !l on a range
of scales between the lattice spacing and an upper cut—off (64 lattice spacings in
Fig. 3.1). A sketch of the fractal contour used in our model is reported in Fig. 1.2
Because of the self-similarity of the contour the potential Vs has to be calculated
numerically as just written in eq. (3.2), without the possibility of resorting to

some analytical approximation.

11

I

Fig. 8.2 The fractal contour used in our model. The curve is obtained by
making use of the construction scheme sketched in the figure. I, II and III are
the first three steps of the construction. From this scheme it is clear that the

fractal dimension of the curve is d=In 8/In4=1.5.

The two—dimensional character of the system is not a crucial limitation, since
our model should have mostly a qualitative value. On the other hand, one can also

look at it as at one describing peculiar situations in the real, three—dimensional
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world. Indeed, Fig. 3.1 can be seen as the transversal section of a real surface,
having translational invariance in direction perpendicular to the figure, and fractal
dimension d + 1 = 2.5. Of course, potentials like Vg;, should be reinterpreted, in
this case, as representing the interaction of a given gas molecule with a full row of
atoms in the solid. A 1/r® molecule-row potential, e.g., would result from a 1/r7
molecule-atom interaction. Also V;; should be modified consistently.

Let us now describe the system in the grand canonical ensemble. The pressure
p of the gas is replaced by the chemical potential p. It is well known that treating

the vapor as an ideal gas, pressure p and u are related by the following relation

p/po = exp((p — po)/kBT) (3.3)

where py and pg are pressure and chemical potential at coexistence, respectively.
In the MF approximation the occupation numbers n; are replaced by their average

values p; = 7;. The free energy of the system is given by the minimal value of
1
F=ksT Y [pilnpi + (1 - pi)In(1 — pi)] + D (Vi — wpi + 5 > Viipips (3.4)
i i ij

for given p and T'.
The extremalization of F can be obtained by imposing the following set of

conditions

oF

97 _ 3.5
or (3.5)

which can be written as:

(3.6)

pr = !

1+ exp [(Vks + 22, Veips — u)/kBT}
Since we are obliged to use a finite box (Fig. 3.1), we choose the flat lateral
portions of the boundary sufficiently long (see below), and the boundary conditions
on the vertical sides of the box periodic. In this way we approximate very well the
situation of a finite fractal boundary interrupting an infinite flat one. The upper
side of the box is chosen far enough from the tips of the fractal boundary. On this

side we impose

1
i = Poo =
P 1+ exp [(poo 2oz Vik — 1)/ kBT
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where poo is the density of the bulk vapor phase.

3.1.2 STRATEGY FOLLOWED IN THE CALCULATIONS

Most of our calculations were performed on a 104 x 102 box, with an upper
cut—off for fractality of 64 lattice units. Other results were obtained on a 336 X 272
box, with cut—off 256. Of course in the latter case it is possible to test substantially
higher coverages before experiencing a cross—over from fractal to flat adsorption.

Because of the fact that Vg has to be calculated numerically, some cares has
been considered. For any site of the lattice available to the gas molecules, Vs
has been evaluated including in sum (3.2) all the solid atoms at a distance from
the site large enough to have a relative error in Vg smaller than 0.5%. The error
was evaluated by comparing the Vs obtained for distances of solid atoms up to a
certain, e.g., R™*%, with that in the case in which for distances larger than R™**
the substrate is replaced by an infinite lattice. Both the width of lateral parts
of the boundary, and the cut—off in the sum (3.2) were always chosen in such a
way to guarantee an accurate evaluation of Vs in all the region occupied by the
adsorbed film. Most of the calculations of the present work were performed on a
CRAY Y-MP 432.

One of the most important quantities to which one is interested studying
wetting is the coverage, that is the amount of material adsorbed on the surface.
To evaluate this quantity, in our case, we have to calculate the excess density of
the gas in the vicinity of the substrate. Following what reported in Chapter 2 (see

eq.(1.1)), we defined the following coverage parameter:
1
0=+— > (pi = poo) (3.8)

where the sites over the lateral flat boundaries are not included in the sum, and
N, represents the number of sites building up a geometrical monolayer on the
fractal portion of the boundary. These are the sites at unit minimal distance from
the boundary itself. The normalization is of course not strictly necessary, and only
chosen for convenience.

Solutions of (3.6) have to be found by numerical iteration. A non-trivial

problem consists in singling out the solution which correspond to an absolute
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minimum of (3.4), at given T and u. Indeed, especially at low T, it turns out
that the free energy can have many unstable minima, which can be reached with
different initial p;’s in the iterations. The fractal nature of our boundary can be

expected to cause a rich structure of minima; this structure reflects the strong

hysteresis effects found, e.g., in the wetting of real porous materials. (27]
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Fig. 3.3 Hystogram of the number of lattice sites as a function of dey(Vs).

We performed an exploration of the minima structure by trying, at each (7, u),
a considerable number (up to thousands) of randomly chosen initial conditions.
The procedure, combined with suitable variations of the temperature during iter-

ation, turned out to be reasonably efficient for our purposes.
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3.1.3 THE SUBSTRATE POTENTIAL AND THE NATURE OF THE
ISOTHERMS

For planar substrates it is well known 21 that the isotherms, at low T and
not to high ¢/a, present almost flat plateaus at coverages § = 1,2,3... (see also
Chapter 2). The regions between subsequent plateaus are characterized by a faster
and generally discontinuous increase of § as a function of u. The discontinuities
associated to the vertical steps in the isotherms amount to first order transitions,
each one corresponding to addition of an extra layer to the adsorbed film.

Whether in the fractal case such kind of plateaus and transitions should
be expected, or not, is far from clear, a priori. Iso—Vs curves are not uni-
formly spaced and closed curves also occur.[*’] The non-uniform spacing im-
plies that, if we plot on a hystogram the number of lattice sites as a function
of dess(Vs) = (g—g a/V51)1/4, the situation is very different from that of a flat
substrate.(*) In the latter case the plot consists of a sequence of equally spaced,
6-like and equal strength peaks, each one located at the d.s value corresponding
to the thickness of a given layer of adsorbed molecules. On the other hand, for
our fractal surface, if the range of the adsorbate—substrate interactions is infinite,
6-like distributions of points in the hystogram can not occur, strictly. However, at
reasonably low d.fs, there are still some peaks (Fig. 3.3), as a consequence of the
fact that thermodynamically significant fractions of the points accessible to the
adsorbate turn out to have very close values of Vs. For higher values of d.sf the
situation rapidly changes: both the strength of peaks, and the spacing between
them becomes smaller and smaller.

It has been proposed that the distribution of sites should decrease to zero for
increasing defs as de_ﬁ_g).[%] This is essentially based on the fact that in spite
of the fractality of the surface, the bulk substrate constitutes a three-dimensional
object (two—dimensional in our case). So, because of the fact that for a three-
dimensional substrate the potential scales with the distance as ¥V o 1/7°, and the
number of sites in the vicinity of fractal substrate having a potential < V scale as

r3=d (see also eq. (2.1)), one sees that the mentioned behaviour is obtained (;the

(*) deff(Vs) can be seen as an effective distance from the fractal boundary, suggested by the fact

that, in the flat case, Vs_—%’i"-cx/d*, for a point at distance d.
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distribution is proportional to the derivative of the quantity we obtained here). In
the range of distances tested by our calculations the convergence of the potential
Vs to a 1/r* (, the exponent 4 instead 3 is due to the two—dimensional character
of our system,) is not very fast. We found that for a range of distances of about
10 lattice spacing Vs a power law is not followed strictly.

For a flat substrate, each first order transition, corresponding to addition of an
extra layer of molecules, is determined by the combined effect of the adsorbate—
adsorbate interaction, and of the occurrence of a §-like peak in the above hys-
togram. Since in the fractal case we can still identify a few, relatively sharp peaks
at rather low dess, we can expect to find, in correspondence to them, transitions
governed by mechanisms similar to those of the flat case. On the other hand,
transitions corresponding to inclusion in the layer of sites not contributing to the
peaks, must be governed by different mechanisms. It should also be remarked that,
since the fractal has non-zero curvatures, surface tension effects should influence

film formation and coverage transitions.

A\
condensed phase
T, T,
K, @ @ —B>
I T
gas phase

Fig. 3.4 Schematic phase diagram of our system. T is the critical temperature.
The arrow in the gas phase region indicates the path one has to follow to get
an isotherm in our model. If T>T,, the wetting temperature, the path leads
to observation of the phenomenon of complete wetting, upon approaching the T

axes. In the cases considered here T,,=0.

3.1.4 THE ADSORPTION ISOTHERMS: LOW COVERAGE REGIME

Most of the informations on wetting of a surface can be obtained by the
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analysis of adsorption isotherms. In fact, these isotherms are also relatively easy

to be recorded by experimental techniques as already reported in Chapter 1.

In a real system, to deal with adsorption isotherms means to approach the
sublimation curve (i.e. solid-gas coexistence line) from the gas phase region (see
Figs. 2.3(a) and 2.3(¢)). On the contrary, approaching again from the gas phase
region the liquid-gas coexistence line one has the opportunity to monitor the
known wetting phenomena as pre-wetting, critical wetting and complete wetting
described in Chapter 2. In our model there is not the possibility to have all the
three phases one finds in nature. From eq.(3.7) one could see that for the bulk only
two phases can be distinguished. At temperatures lower than T, (for our model
T. = ¢/kp, in the MF approximation) one observes a first order transition between
them. We will call these two phases: gas phase and vapor phase respectively. This
situation is summarized in Fig.3.4 where a schematic phase diagram for our system

is reported.

We report here isotherms in the low coverage range for two different values
of both T and ¢ in Figs. 3.3a,b. Here we chose as natural variable desr(Ap) =
(39‘3—-725|a/A,u])1/4 with Ag = p — po. This dess is the thickness of a layer growing at
T =0, and ¢ << «, on a flat substrate. From Figs. 3.5a, b, It is clear that first
order transitions take place in all cases. It can also be seen that a few of them are
in correspondence with the peaks of Fig. 3.3. A strict coincidence of the values
of desy in the two figures could only occur for very low ¢/ and T. Anyway, the
correspondence is restricted to a very low d.ss range, becoming even narrower as €
is increased. From this fact, we can conclude that these transitions are essentially
controlled by Vs in much the same way as in the case of flat substrate. On the
other hand, the transitions occurring at higher desf(Ap) do not correspond to
peaks of Fig. 3.3. We conclude in this case that they are primarily determined by
surface tension effects. At variance with the flat case, it is remarkable that plateaus
occur at generally non-integer #’s and f—jumps at the transitions are not close to
integers. Moreover, variations of € turn out to affect sensibly the structure of the
isotherms. This fact is clearly due to surface tension effects becoming increasingly

important at higher values of ¢.

There were claims, recently, that performing adsorption measurements, e.g.,
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Fig. 3.5 Example of isotherms for the low coverage regime: a) corresponds to
e/a=0.1 (full line kp7T/e=0.02, dashed line kT /e=0.2), while in b) ¢/a=0.5
(full line kpT/e=0.01, dashed line kg7 /e=0.4). Major interruptions of the lines
mark first order discontinuities.
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with two different kinds of molecules, of linear sizes a and a', respectively, should
lead to a very simple result for d.[®! Indeed, if one is guaranteed that proper (i.e.,
geometrical) monolayer adsorption (§ = 1) occurs and can be detected in both

cases, one expects

-G @

=

with N,, and ]_V_’m representing the measured numbers of molecules forming the
monolayers in the two cases. The isotherms we report in Figs.3.3a,b seem to put
some shadow on this possibility. If we take into account our model plateaus are
present for fractional and strongly e—~dependent values of § and then the application
of eq.(3.9) becomes quite ambiguous. Already with very small ¢, plateaus occur
also at non-integer §. Even the occurrence of § ~ 1 in our model corresponds to
the formation of “monolayers”, which are in fact disconnected and have nothing
in common with a geometrical monolayer.

An example of this fact is shown in Fig. 3.6. Here we can see how for two
different values of the ratio ¢/ in spite of the close values of # the shape of the
film can be significantly different. As displayed in Fig. 3.6 this phenomenon have
important consequences not only in the high coverage regime, but also in the
very low coverage regime. The occurrence of such phenomenon, due, of course, to
surface tension effects, suggest us that the concept of monolayer in such a system is
not so clearly defined. This should be carefully taken into account in the evaluation

of monolayer coverage from experimental data.

3.1.5 THE PHASE DIAGRAM

Fig. 3.7 gives the (8,T) phase diagram for ¢ and « equal to the values taken
in the case of Fig. 3.5b. Each bell-shaped curve in this figure, points at the same
temperature correspond to the f#-values of coexisting phases. The p values at
coexistence turned out to be almost independent of T' for each coexistence curve.
Only in one case (see arrow in Fig. 3.7) we could detect a sensible dependence of
the coexistence p on T'.

The phase diagram shows a rather complex structure. This also reflects the

fact that two different transition mechanisms coexist in this low—coverage range, as
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Fig. 3.6 Two examples of adsorbed films with =1 relative to two different
values of the ratio ¢/, The small squares represent the sites where p; >0.8. Both
the films were obtained setting d.;y=0.82, while in a)e/a=0.1 and in b)e/a=0.5.

discussed above. Within the accuracy of the numerical exploration, all first order
discontinuities, except one, turn out to go to zero at critical temperatures for which
the transitions become second order. The relatively limited range of § considered,
and the rather irregular appearance of the coexistence regions do not allow any
speculation concerning possible general trends, e.g., for the critical temperatures,
T. n, as a function of coverage. Like in the case of a planar substrate, [21:22:46] i
would be very interesting to address this problem, and we plan to do it in a future

publication. [47]

3.1.6 ISOTHERMS IN THE MULTILAYER REGIME

The multilayer adsorption regime (6 > 1) is also one from which one hopes to

extract information on d for a fractal surface. Pfeifer and coworkers!*?l (see also
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Fig. 3.7 Low coverage (6,T) phase diagram for ¢ and « fixed at the values
taken in Fig. 3.50.

sect. 2.3.2) addressed this problem, predicting a power law of the form

0 ~ iAM——(B——d)/s

Ap—0~

(3.10)

The idea at the basis of this result is to consider the fractal as a collection of
independent, e.g., spherical, pores, distributed in such a way that dn ~ R™4-14R
gives the number of pores with size R in the range R H R + dR. A slightly
different model based on similar ideas were proposed also by de Gennes[®l. On the
basis, of a refined version of this model in which also surface tension were taken
into account, Pfeifer et al.l'Y) pointed out the possibility of a cross—over from the
behaviour (3.10), essentially determined by Vs, to the new one: |

0~ |ApmCmd

Ao (3.11)

for Ap greater than some Apu.. In the asymptotic regime (3.11) surface tension

dominates with respect to Vs. At Ap ~ Ap. the “thickness” of the multilayer

50



can be expected 5:37] to be in the range 10 + 204 in the situations considered in
recent experiments (10] While experimental evidence, up to now, seems to support,
to some extent, the behaviour (3.10), no clear signals of a cross—over to (3.11)

could be perceived from the results.

Recently this also led other authors to question the validity of a fractal as-
sumption for the substrates examined, and to propose an alternative explanation
in terms of self-affinity. 37#8 These authors indeed assumed self-affinity for the
rough surfaces of the samples in ref. [10]. By then applying the results of their
approach, reported in sect. 2.4, they concluded that the data could be interpreted
on the basis of this assumption with a (, exponent equal to ~ 0.37, implying a

“strong fluctuation” regime.

10 o TTT T T
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-100 -10 -1 -.
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Fig. 3.8 High coverage (§>1) isotherms for ¢/a=0.1 and kpT/e=0.4 (circles),
and ¢/a=0.5 and kpT/=0.6 (squares). The full and dashed lines represent the
slopes corresponding to egs. (3.10) and (3.11), respectively. These results were
obtained with a 336 X272 box size.
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Our model allows to get insight into this controversial issue. We performed
extensive calculations of  as a function of Ay, at o and T' fixed, with two different

values of €. The results are reported in the log-log plot of Fig. 3.8.

Fig. 3.9 Examples of adsorbed films in the high coverage regime. Here
e/alpha=0.5 and kg T /e=0.6. a) correspond to Ap/e=—0.06 while in b)Apu/e=
—0.002. As previously the squares in the figure represent the sites where p; >0.8.

Due to the two—dimensional character of our model, the exponents in egs.
(3.10) and (3.11) should become —(2 — d)/4 and —(2 — d), respectively. The
results clearly show that it is very hard, if not impossible, to recognize in the plots

shapes even roughly consistent with either one of these exponents. Surface tension
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has the important effect to cause rather sudden coverage jumps in correspondence
to the filling of pores of the surface. These jumps seem to replace, somehow, a
definite cross—over to a new power law dependence, which is not observed in the
explored range. In a model with continuously distributed pores one can not obtain
such jumps. On the other hand, we believe that the presence of discrete typical
pore sizes, as realized in our case, should be seen as a rather realistic feature. *"]

From Fig. 3.8 one can see that the jumps do not constitute single discontinu-
ities in the isotherms. A more careful analysis show that they are characterized
by a fine structure of smaller jumps corresponding to intermediate values of the
coverage. This phenomenon is consistent with the fact that, in spite of the occur-
rence of pore filling, the lattice nature of the model determine a competition with
the natural layering process typical of lattice models.

It should be noticed that, due to the rapid pore fillings on the surface, one
reaches quite soon (# ~ 8) film shapes, beyond which it is not legitimate anymore
to disregard finite size effects.

In Fig. 3.9 are reported two examples of adsorbed films in the high coverage
regime. From the figure one see clearly that because of the surface tension effects
there is no more the possibility of define a specific thickness for the films, in
particular as much as Ay approaches zero. On the other hand, it has to be noted
the marked effects caused to dewetting phenomena in the vicinity of the tips of
the fractal surfaces. This fact determine that also at high coverage the thickness

of the film in the tips remain small.

3.2 CONCLUSIONS

Summarizing, we presented here the first statistical model calculation of gas
adsorption on a fractal surface. Besides showing a very rich and unsuspected struc-
ture for the adsorption isotherms, the results clearly indicate that both monolayer
adsorption with different gases, and multilayer adsorption, are not very suitable for
determining d. Fractality in a proper geometrical sense, combined with adsorbate—
adsorbate interactions leads to behaviours which do not seem fully consistent with

the results of the schematic models and simple scaling arguments reported in
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Chapter 2.

In the case of monolayer adsorption ideas for the determination of d, we can
say that the assumptions on which they are based are not easily verified in most
real situations. A necessary condition for assuring the validity of the proposals of
ref. [8] is that the adsorbate—substrate interactions are really much stronger than
the adsorbate—adsorbate ones. Another possibility for the geometrical monolayer
picture to be still meaningful, is perhaps given when the fractal dimension of the

surface turns out to be very close to 2.

As to multilayer adsorption and wetting, we believe that the cross—over to
the asymptotic regime of eq. (3.11) should be finally observed in a calculation
producing more asymptotic coverages. The steep rises which can be observed in
the isotherms of Fig. 3.8 are due, as already mentioned, to pore-filling effects
and thus to surface tension. On the basis of model considerations of the type of
those developed in sect. 2.3, we can expect that the isotherms in our model should
asymptotically acquire a sort of staircase structure, each stair corresponding to the
filling of a class of pores. The staircase character is due to the fact that our model
surface contains only pores whose sizes are discrete multiples of a given elementary
size (a,4a,4%a,...,4ma,...). At the same time, the number of the pores of size
4™q is proportional to (4”0,)—‘1_. One can thus see that such staircase should be
asymptotically made of equal horizontal and equal vertical steps in the scales of

Fig. 3.8. The resulting average slope would be that predicted in eq. (3.11).

Anyway we remark that the instauration of this behaviour is very slow, as
observed in our detailed model calculation. Thus we doubt that, e.g., in the
experiments of ref. [10] the asymptotic surface tension dominated regime was

tested.

We believe that the methods developed in this chapter allow investigation
of other interesting issues, which could not be addressed here because of time
limitations. Among this, we would like to mention the possibility of studying in
our model further aspects related to the wetting phenomenology, e.g., the case of

interaction potential (¢/a > 1) which imply a nonzero T,.

Another interesting problem, would be that of determining the trend of our

T.rn in the limit of high coverage. In the case of flat substrates, it is known
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Ten T . .
that ’ _) B where Th is the roughening temperature. (48] It would be

n—oo
interesting to establish a similar conclusion for the case of our fractal substrate.
A problem which we plan to undertake very soon is the application of our
methods to the case of self-affine surfaces. This application requires a simple
modification of the model. In this way we could possibly test the validity of the
conclusions drawn in refs. [37] and [48] about the wetting of self-affine substrates

in the high coverage regime.
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CHAPTER 4

FRACTAL SURFACES, RANDOM WALKS
AND SELF-AVOIDING WALKS

In the part one of this thesis we have shown how fractal geometry can be
relevant for the description of phenomena like adsorption and wetting on rough
substrates.

This does not exhaust the list of physical problems involving fractéﬂy rough
surfaces. In this part of the thesis we address the problem of determining the
spectral properties of a deterministic model of fractal surface. Such spectral prop-
erties are connected to those of diffusion on the same surface (see sect. 2.1). The
interest of such calculations is at least twofold, in our opinion.

First of all, to our knowledge, the spectral and random walk dimensions of a
fractal surface were never studied so far in a concrete model. The knowledge of the
spectral dimension of a fractal surface allows also to solve a directly related problem
in the conformational statistics of hierarchical polymeric networks, a subject which
also attracted much attention recently.

Two subjects related to random walk (RW) diffusion, namely the random
chain and the self-avoiding walk (SAW) problems, are also addressed in this part.
Both this problems reveal interesting properties of the fractal structure st'udied,

which could possibly be relevant in more general contexts.
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4.1 SPECTRAL PROPERTIES OF FRACTAL SURFACES[*’]

In many circumstances the description of processes occurring on fractal struc-
tures requires the knowledge of the spectral dimension, d,[12] besides the geomet-
rical fractal dimension, d. This is, e.g., the case of chemical reactions occurring on
a self-similar surface, if particle diffusion is the controlling mechanism. [50] 4 (see
also sect. 2.1) is an intrinsic parameter characterizing the connectivity of a fractal
structure, and is related by the equation d = 2d/d,, *2*% to the fractal dimension
d. In this relation d,, is the dimension characterizing the long time behaviour of
the average distance, (R?(t))!/2, travelled by a particle diffusing on the structure

()~

t—r o0

(4.1)

Furthermore d characterizes the small frequency scaling behaviour of the density of
harmonic (scalar) eigenmodes of the structure. A possible strategy for measuring
d for a fractal surface could be, e.g., inelastic neutron scattering. [14]

From a theoretical point of view the determination of d for non—trivial fractal
surfaces is an extremely hard task, especially if the structures are random. Even for
deterministic fractals the only way to face this problem is numerical computation,
unless particular ad hoc connectivities are assumed. [13] Here we address for the

first time a numerical determination of d for a non—trivial, deterministic model of

a fractal surface.

4.1.1 THE PROBLEM

Fig. 4.1a) gives a sketch of the surface, on which we performed our Monte
Carlo calculation, with its recursive construction rule. Since the number of ele-
mentary plaquettes increases by a factor 13 when the linear size is multiplied by
3, the fractal dimension is d = In13/In3 = 2.3347.... We studied diffusion of
a particle hopping between nearest neighbour sites on the network representing

the surface.(*) At each time ¢ (¢ = 0,1,2,...) the particle resides on a site z and

(*) Since the surface has points which are overlapping we conventionally assume that these points

are distinct and disconnected on the network, so that no jumps can occur between them.
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Fig. 4.1 “Hydrant” fractal surface. The surface is obtained by making use of

the iterative construction scheme sketched in a). I, II and III are the first three

steps of the construction. b) represents the basal plane of the hydrant at the

third step: the dashed regions correspond to the bases of the buildings.
chooses, with equal probability, which of the n.n. sites will be occupied at time
t + 1 (miopic ant). By computing (R?(¢)) one can obtain an estimate for du,

and thus d. Alternatively one can look at the asymptotic behaviour of Py(t), the
probability that the particle is back at the starting point, 0, at time t.(**) This

quantity is expected to scale like (12,13]
1/[(*222(75))]&/2 ~ t_J/z (d— <2)
Py(t) ~ - 4.2
(1) {t—l (d >2) (4.2)

(**) When computing Po(t) or {(R*(t)) we always perform averages with respect to many different

starting points on the network.
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for long times.

4.1.2 COMPUTATIONAL TOOLS

From a computational point of view, the main difficulty in a Monte Carlo
analysis of RWs on a surface is the necessity of storing a large number of site
positions and of connections of the sites with their neighbours. Indeed, one needs
to make long walks on the structure in order to extract the asymptotic behaviour
of the connected quantities.

To avoid the problems related to the use of a large amount of stored data,
we devised an algorithm optimally exploiting the hierarchical properties of the
surface. The algorithm, written in C language, is based on a recursive scheme.
It calculates the positions of the surface points and of those connected to them
while the walks are performed. In principle, the algorithm allows the construction
of walks of any length. Due to its recursive nature, in fact, one can operate in
any part of the surface without the necessity to store the positions of the sites
previously explored by the walk. This feature completely avoids any limitation on
the walks with the consequent finite size effects.

The calculations were done with a VAX Station 2000. The algorithm was
particularly efficient especially for the calculation of quantities like Py(¢). E.g., in
the case of RWs on the between plaquette centers of the hydrant (see Fig. 4.1),
performance of 10° RWs each 1000 steps long takes about 4000 secs CPU time.
The calculation of (R?(¢)) in the same case, or in the case of walks between the

network sites (see Fig. 4.1) is more time consuming.

4.1.3 RESULTS AND DISCUSSION

Fig. 4.2 and 4.3 report our numerical results for (R?(¢)) and Py(t), respec-
tively, for walks of up to thousand steps. A best log-log fit for (R?(t)) yields
dy = 2.353 £ 0.027 when one considers diffusion between n.n. network sites (see
Fig. 4.1a)), while d,, = 2.332 & 0.032 for diffusion between the centers of n.n.
plaquettes (i.e. plaquettes having a common edge in Fig. 4.1a)). The evaluation

of Py(t) for diffusion between plaquette centers gives d = 2.005 + 0.031 (see Fig.
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Fig. 4.2 Log-log plot of ((Rz(t)))l/2 versus ¢ for RWs on the hydrant surface.

Full circles represent the average end—to—end distance for diffusion between n.n.

sites of the network representing the surface (see Fig. 4.1a)). Full squares rep-

resent the same quantity (multiplied by 2 for convenience) for diffusion between

the centers of n.n. plaquettes. Averages were calculated over 2%10% walks.
4.3).

Another quantity we computed is S(t), the average number of distinct sites
visited by a walk of # steps. This quantity is expected to scale asymptotically like
Py (t)™1.112:33] Numerical results were consistent with this scaling, but manifested
a slower convergence to the asymptotic behaviour, than in the case of Py(t). This

slower convergence is due to stronger scaling correction.

The fact that, within the errors, d = 2, shows that the hierarchical connec-
tivity of the sites in Fig. 4.1a) is not able to modify the asymptotic scaling of the

spectral properties with respect to the case of a regular, two—dimensional network.
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Even if the surface in Fig. 4.1a) is topologically two—dimensional, the network rep-
resenting it is hierarchical and irregular, and has even non—uniform coordination.
This last feature is not present if we consider the network of diffusion sites when
diffusion itself takes place between the plaquette centers. In this latter case the
network is uniformly coordinated, but still hierarchical.

The above results and the considerations of the following section lead us to
expect d = 2 also for surfaces having a d lower than that in Fig. 4.1a), and obtained
with similar recursion schemes (e.g., one could consider a scheme in which each
elementary plaquette grows into a square of 5 x 5 plaquettes, with the central one
replaced by the lateral and upper sides of an elementary cube sitting on it, etc...).
Such surfaces, as indicated by their d, represent less pronounced deviations from
the regular, flat plane situation. Within this construction scheme the example we
considered is the one leading to the maximal d, if one wants to avoid unphysical
overlaps of different portions of the structure.

Of course, by making use, e.g., of triangular rather than square plaquettes,
one could easily realize similar iterative constructions, leading to surfaces with
even higher values of d. Also on the basis of the arguments given below, we expect
for all these generalizations d = 2.

The models we considered here can be conceived as well representative of
situations in which the surfaces are moderately corrugated and clearly delimit
two bulk regions both having the ordinary Euclidean dimension of the embedding

space (“fat fractals”).[5!]

414 A SCALING ARGUMENT

Even if it is not possible to establish exactly that d = 2 for our surfaces, it is
instructive to reinterpret our numerical results in the light of some scaling ideas
which recently revealed very useful in problems of diffusion in inhomogeneous,
hierarchical environments. Consider, e.g., a particle diffusing on a planar lattice.
Let us assume that at each site z of the plane the particle can have a waiting time,
i.e., it can take on average a certain time, 7, for the particle to actually perform a
step (we can say 7, = 1 in the models considered so far). If the 7’s are distributed

according to some fractal law in the plane, we should have 7(L) ~ > ) 72 ~ Lé-,
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Fig. 4.3 Log-log plot of Py(t) versus ¢ for diffusion between the centers of n.n.
plaquettes of the hydrant surface. The data reported in the figure were evaluated

for a set of 10° walks.

if A is a square region of size L x L. d, is thus a fractal dimension associated to
the waiting time distribution. Experience with exactly solvable diffusion problems
shows that, in general, given a certain d., the corresponding d,, of the diffusion

with waiting times on a plane is correctly obtained by imposing [52,53]

2
~ (R? 4.3
] O
In other words, if the time unit is taken as the average waiting time per site in
the visited region, the law of diffusion becomes normal. Taking into account the
scaling of 7, and the fact that ¢t ~ (R?)%w/? (see eq. (4.1)), we obtain from eq.

(4.3)
dy = d» (4.4)



in this example. This is a particular case of a general scaling relation holding for
diffusion with waiting times on a fractal structure (52,53]

Going back to our hydrant surface, the problem is thus to see what plays the
role of 7(L) and what is d.. We can consider, as a sort of reference plane, the
basal plane obtained at the n—th iteration of the construction procedure. On this
plane the situation will look like that sketched in Fig. 4.1b), where the dashed
regions corresponds to the bases of the “buildings” of different sizes obtained in
the hydrant construction. We now imagine to describe the diffusion on the surface
with reference to the basal plane, by saying that the particle is on a point in the
white region when it is actually on the plane, or in a point of the dashed region,
when it is wandering in the corresponding building. It is thus tempting to look at
the dashed regions on the plane as to regions where a waiting time, proportional
to the number of network points in the corresponding building, is shared. Since
this number, for an L x L dashed square is proportional to L%, we conclude that,
according to the above picture, d, = d.

By applying the result of eq.(4.4) to this sort of projected diffusion with wait-
ing times, we finally get d, = d, which is what one finds numerically. It is
important to notice that for analogous deterministic fractal models of branched
polymers, e.g., the T—fractals,[®¥] arguments similar to those above lead to the
exact result. Of course, in spite of its success, this relatively simple argument calls
our attention on the need of a better theoretical understanding of the whole issue.
In particular, a more rigorous meaning should be given to the intuitive idea of the

“projected” motion.

4.2 IMPLICATIONS FOR THE STATISTICS OF POLYMERIC
NETWORKS

The result for d obtained in the previous section is somewhat unexpected.
Our surfaces are networks with fully self-similar, hierarchical connectivity. For
structures of this kind one could have expected d # 2.[°%%¢ On the other hand,
the spectral properties of a network like the one studied here (see Fig. 4.1a)), are

connected with the conformational statistics, in d dimensional Euclidean space, of
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a phantom polymeric network with the same connectivity, as studied, e.g., in refs.
[55], [56] and [57].

Indeed imagine, e.g., that the points i,7,... belong-to a d = 2 network with
regular (triangular) connectivity. Each point k of the network is then mapped into
a point x; € R%. The problem is then to compute the conformational statistical

properties of the image network in R?, subject to an Hamiltonian of the form

H=K Z(xi —x;)? (4.5)
(i5)
where (...) denotes nearest-neighbors on the network.

Due to the Gaussian nature of the Hamiltonian, it is possible to establish a
connection between the above conformational problem and the conduction prop-
erties of a resistor network with the same structure as that considered above, and
with bond resistances o 1/K. E.g., the probability density that x; — x; = R is
given by [*%]

I, d%meb(xs — %5 — R)e PH
- [T, [ dizye=PH (4.6)
= (8(x; — xj — R)) = Ae™®' /%

P;;(R)

where 8 = 1/kgT, Q;; is the resistance between points z and 7. This last equation
implies that
(i —%)%) ~ Qij. (4.7)

In the case of the triangular network of the example, we clearly have

§2:5 ~ In|i — 7],

limj|—ro0 (4.8)
which implies that the radius of gyration scales also logarithmically
2 = ——1—— V‘ . i ] 2 ~ 1 L. .
5 2L £4iy) <(X X‘]) > oo a (49)

If we now consider the case of a network with the connectivity of our hydrant
surface (see Fig. 4.1), to determin 2, and this £%, we can exploit the connection
between DC conduction problem and diffusion on the network. This link is pro-

vided by the Einstein relation. [59] Tf we indicate by ( the resistance exponent (the
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resistance between two points on the network at distance L scales as L¢), in a

fractal structure one has[59]

(=dy,—d (4.10)

where dy, is the RW dimension in the network and d is the network fractal di-
mension. In our present example, of course, d,, = d = 2. On the other hand, the
results for d,, obtained in our hierarchical surface imply that a network with the
hierarchical connectivity of our surface (Fig. 4.1), when mapped in R?, becomes
a polymeric network again with

¢ ~ InL

L—oo

(4.11)

In other words, the hierarchical character of the connectivity is not sufficient to
change the logarithmic behaviour (v = 0) into a power law one, as speculated in
ref. [55] Apparently the only way to get deviations from the result v = 0 is that
proposed in ref. [58], where a hierarchy in strength of the bonds in the network

was considered.

4.3 THE RANDOM CHAIN

Another interesting issue which can be fruitfully addressed with our model
calculation is that of the possible difference between the scaling properties of the
diffusion problem and those of what could be defined as random chain problem. [60]
By the latter we mean the statistics of the conformations of a random chain made
of n.n. links of the network. Clearly, if the coordination number of the sites in
the structure is not homogeneous, the statistics of RWs and random chain do not
coincide. Even if the possible configurations of a diffusion path in time ¢, and of a
random chain with ¢ segments, are the same, they are not weighted equally. For
the random chain the weight of each configuration is the same, while, for diffusion,
the weight (or probability) of a given path depends on the coordinations of the
visited points. A given diffusion path has a statistical weight equal to J],(1/2z),
where z, is the coordination of site z and the product extends to the ¢ initial sites

of the walk steps. If z, depends on z, like in our case, the weight depends on the

walk considered, at variance with the random chain case.
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To test whether such a different weight also implies a difference in the ex-
ponents describing the end-to—end distance in the two problems is an interesting
question (for the random chain problem the end-to-end distance exponent, de,
corresponds to d,, and is the reciprocal of the v exponent in polymer statistics
language).

When dealing with fractals with inhomogeneous coordinations one can find
that random chain and RW diffusion problems have very different behaviours. [60,61]
For some deterministic fractal networks one has even found that d,, is finite, while
d. = oo (logarithmic behavior of (R?)*/? as a function of chain length). [69]

We performed with our methods an extensive simulation of the random chain
problem. Our results, surprisingly enough, indicated a possible coincidence of
d. with d,,, at variance with the above mentioned cases. Indeed we found d. =
2.345+0.034 which is very close to the estimate for d,,. This finding calls attention
on the need of a deeper understanding of the physical mechanisms possibly leading
to d. # d, in a specific problem.

As to the possible practical implications of the result for d., it is worth noticing
that an interesting interpretation of the random chain problem is in terms of
diffusion in the presence of traps which possibly annihilate the walking particle.
These traps are located at each site =z with coordination 2; < zmaz, where Zmaz
is the maximal coordination in the network (5 in the case of the hydrant surface).
On these sites the probability of trapping for the particle is (zmaz — 2z)/Zmaz, 50
that the probability of a walk of ¢t steps has the form

11 (4;;) (;> - (z,;z)t’ (4.12)

z2/Zmas being the probability that the particle is not trapped at site z. Our

d. is thus characterizing the asymptotic time dependence of the average distance
travelled by particles which are not annihilated by the traps up to time .

To test whether in fractal structures d. = dy,, or not, is of much importance,
e.g., for establishing Flory approximations to the problem of SAWs on these struc-
tures. Indeed all Flory formulas proposed so far for SAWs on fractal structures
are based on a dynamical picture of the walks in both the non-interacting and
interacting regimes. Thanks to this dynamical description, these formulas connect

the fractal dimension of the SAWSs to the d and the d,, (or d) of the structure.
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Since the SAW problem is in principle a static problem (conformations of a
self-repelling chain), it is not obvious, a priori, that this dynamical interpretation
is legitimate. It is indeed somewhat surprising that so little attention was paid to
this problem in the recent literature.

A possible way out for the validity of the above Flory approaches opens when
dynamical diffusion has the same dimension as the static random chain problem on
the structure. This is certainly always the case when dealing with fractal structures
with homogeﬁeous coordination (like for the Sierpinski Gasket, see sect. 2.1), but
is not necessarily true in general.

It is remarkable that in our hydrant surface, which has no uniform coordina-
tion, d. = dy,. This fact makes us confident that a Flory approach to the SAW
problem, based on a dynamical picture, could be meaningful and successful for the

case of our surface. We show that this is indeed the case in the next section.

4.4 SELF-AVOIDING WALKS

The results reported in the previous sections strongly support the validity, for
a fractal surface, of the two relations: d=2 (ie., dy = d) and d. = d,. These
facts, also in the light of the last considerations in the previous section, led us to
consider also the problem of SAWs on our surface. This calculation can also be
relevant in connection with possible applications to the study of conformations of
polymers adsorbed on self-similar surfaces.

We performed a Monte Carlo calculation of the end—to—end distance of SAWs
by two different methods. SAWs were generated by a simple-sampling (SS) as
well as a biased [*2] (BS) method. Best log-log fits for the (R% 4y (t)) obtained in
the two cases (see Fig. 4.4) gave respectively the following values for the SAW
fractal dimension: d . = 1.5243 + 0.035 and d\yy = 1.5216 £ 0.025. Within
the numerical errors, the two estimates of dsaw are clearly compatible.

Since d. = d,, in our case, it legitimate to use Flory arguments for the de-
termination of dsaw. A possible Flory approach to the calculation of the fractal
dimension of SAWs (%3] is based on the minimization of the total free energy func-

tion constituted by a repulsive energy term (due to self-avoidance) and an entropic

70



100 - T T T T T e k T » | ———
- SAW on a Fractal Surface (ss): <R> (t) after 6*10 walks ]
50 .
20 —  day = 15243+ 0.035 —
N
z _
A 10 — B
= C -
< ]
5l |
) _// |
r
a)
1 ' i 1 Lo | | 1 | |y
1 2 5 10 20 50 100
: t
100 T T T T o] T T T 7]
~ SAW on a Fractal Surface (ww): <R°>"*(t) after 110" walks .
50 — .
. 7
20—  dew = 15216+ 0.025 —

10

(<R*>(1))"*

Fig. 4.4 Log-log plot of ((R"'gfn‘,(t)))l/2 versus t for the SAWs on the hydrant
surface. a) simple sampling method; ) biased sampling method.

term. In a fractal structure it is natural to accept that the repulsive energy term
should be estimated as ~ Nz/R‘gAW, where N is the number of steps, Rsaw
the elongation of the SAW, and d the fractal dimension of the structure where

SAWs are performed. Less obvious is the choice of the entropic term. The crucial



question is whether one can assume a purely Gaussian distribution for the end-to-
end elongation of a RW on a fractal structure, or not. In spite of the fact that, a
stretched Gaussian rather that a Gaussian distribution should be expected for RWs
on fractals, Flory results obtained by the former distribution are often not very
satisfactory. (64 Dekeyser et al.,[®®! proposed that the entropic term should should
scale as ~ R%AW/Lz/d"" as implied by a Gaussian distribution. A justification for
such an apparently inconsistent choice, can be found both in the soundness of the
results, (8355 and in the fact that Flory approximations are in general expected
to realize a balance between presumably big errors in both energy and entropy

estimates. So the Flory free energy will have the form

2 2

F=ua ‘;V +bR§;‘dW. (4.13)
RGaw N3

The extremalization of this expression gives (6%l

i
Rsaw ~ N2+, (4.14)

i.e. 3

2+

d = — 4.15
SAW = 30Ty (4.15)

Recent investigations have shown that eq. (4.15) qualifies as an optimal approx-
imation among several others which have been proposed for deterministic and
random fractal structures. (6]

Taking into account the results reported in the previous sections, we would
thus expect that, on the basis of (4.15) dsaw = (2 +d)/2(1 +d~ ') = 1.5174...
(remember that d = In13/1n 3 for our fractal surface). Remarkably enough, this
value of dsaw agrees, within the numerical errors, with the values obtained by
our simulations.

Of course, the success of eq. (4.15) in this example could be just fortuitous.
Also the coincidence of d. and d,, as a rule, is not at all guarantee of striking
success for Flory approximations of the type discussed above. We mentioned
here the results mostly in order to call attention on the general problem, of the
foundation of the Flory approach to SAWs on fractals. Any derivations of Flory
formulas in this context should preliminarly address the issue of whether it is

legitimate, or not, to consider the problem as a dynamical one.
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4.5 CONCLUSIONS

Summarizing, in this chapter we have presented a model calculation clearly
indicating that diffusion on some deterministic fractal surfaces can be characterized
by dw = d and thus d = 2. It is conceivable that such result could hold also
in the case of random fractal surface models, much less accessible to numerical
investigations. This d is consistent with an interpretation in terms of scaling laws

governing diffusion with a fractal distribution of waiting times.

While on the basis of our model results we can expect d, = d in a wide class
of surface problems, characterized by the fact that the surface itself delimits fat
fractal regions, the problem of establishing more precisely the limits of validity of

d = 2 remains open.

The fact that d = 2 for a fractal surface has interesting implications for the
statistics of polymeric networks. Indeed, at least in the example discussed here,
we were able to conclude that a hierarchical connectivity is not able to alter the
scaling properties of a polymeric network, with respect to those of the regular

network case.

On the basis of this last result, it is also conceivable, that the introduction of
self—avoidance for the networks would not lead to different exponents in the regular

and hierarchical cases. This, e.g., would be guaranteed within a Flory approach

like that developed in refs. [57] and [58].

We also verified that for our model surface, within the uncertainties, d. = du,
unlike in other fractal structures. This circumstance is an important requisite for
the application of dynamically based Flory arguments. We gave an example of how

such an argument can work well in the study of SAWSs on our hydrant surface.

We are well aware that interesting issues concerning walks in the presence of

fractal surfaces were not covered by this thesis.

Among them we would like to cite the problem of surface entropic exponents
for SAWSs, when the surface is fractal and bulk is three dimensional. The entropic
surface exponent v; characterizes the asymptotic behaviour of the number of SAWs

starting from a point near a boundary, and never trespassing it. This number is
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given by
Cp o N TIKTN, (4.16)

K. being the critical step fugacity.

Studies of v, for fractal boundaries in two dimensional bulk have revealed
extremely remarkable universalities for the surface magnetic exponent with differ-
ent boundaries. 98] An extension of such investigations to the d = 3 case would
certainly be very welcome. We did not address this issue here, because of time
limitations, and because it would require a considerable further investment of com-
putational power. However, the algorithms used for the calculations in this chapter

are certainly a very promising starting point for an attack of this problem.
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