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Introduction

String theory is, at present, the only promising proposal for a consistent quantum
theory of gravity (for a general review of the subject see for example [1],[2]). The
fundamental objects in this construction are relativistic strings, with tension param-
eterized by T = —27107, and typical length v/, evolving in a D-dimensional spacetime.
Elementary particles arise as the infinite tower of string vibrational modes with in-
creasing spin and masses quantized in units of 1/v/o/. The massless sector of this
spectrum contains in particular, besides the standard gauge particles and matter, a
spin two particle: the graviton, mediating the gravitational interactions. The cor-
rect strength of these interactions are reproduced by fixing Vol ~ 1073¢m. Massive
string states will have therefore energies of the order of (10™%3cm)~! ~ 10*GeV (far
beyond our present experimental reach). In the low energy o/ — 0 limit they can be
integrated out leaving an effective supergravity theory in terms of the massless spec-
trum of physical states. The interactions are described by joining and splitting of
strings during their evolution in the spacetime. This introduces an arbitrary dimen-
sionless constant known as the string coupling constant g. A generic string scattering
process is then given by a sum over all possible Riemann surfaces swept out by the
string evolution weighted by g‘”x, where x is the Euler number of this surface. Unlike
in standard quantum field theories, there is no well defined point in this Riemman
surface where the string interaction occurs. This non-locality smoothes at least for
closed strings the usual ultraviolet UV field theory divergences, opening a hope for
a consistent quantization of gravity. For open strings different consistency condi-
tions lead to the same conclusions. Indeed, consistent string theory constructions
are believed to be UV finite at any order in the perturbation expansion. Another
remarkable difference with standard quantum field theories is the dynamical nature
of the string coupling constant, which can be reabsorved in the expectation value of
a scalar field: the dilaton. This peculiarity makes clear that a pertubative expansion,
which treats asymmetrically the dilaton from other scalars in the theory, is a rather
unnatural limit in which many intrinsic facets of string theory can be at first sight



hidden.

In the eighties, the interest in string theory was stimulated by the construction
of the first phenomenologically interesting string models. Many chiral models in
four dimensions with matter content very close to supersymmetric extensions of the
standard electroweak theory were derived from the low energy effective actions arising
in string compactifications. The observed world is clearly not supersymmetric. The
understanding of the mechanisms of supersymmetry breaking stands as one of the
most important open problem for the present string generation. For this goal, a

deeper understanding of non-perturbative string phenomena is needed.

In the last few years, there has been a considerable improvement in the under-
standing of the non-perturbative structure of string theories. The key to these de-
velopments is the discovery of S-duality symmetries [3]-[15] which relate strong and
weak coupling regimes of apparently very different string theories (for a general re-
view see for example [16]). Our picture of “fundamentals” in string theory has, in
this way, drastically changed and an increasing evidence for the existence of an un-
derlying theory, denoted by M-theory [17, 3], has emerged. The non-perturbative
techniques we have at present are still primitive to give a complete proof of any of
these strong-weak duality conjectures. We can however reverse the arguments, and
once enough evidence for the existence of a given duality relation is provided, take
it as a fact, in order to learn about the strong coupling regime of the theory under
study. The consistency of the final picture can be considered as a further support to
the initial duality conjecture.

In this thesis we study string theories with sixteen supercharges. We will denote
in the following by V' = 1(number of supercharges), the number of four dimensional
supersymmetries and by N the number supersymmetries in ten dimensions. The
understanding of the non-perturbative physics of these string vacua is a first step to-
ward the study of the phenomenologically most interesting (and more difficult) N = 1
case. A common fact to all theories with N > 1 supersymmetries is the existence of
bounds in the mass spectra: the so called BPS bounds [24]. The spectrum of states
saturating these bounds are called BPS states. They span short supermultiplets of
the supersymmetry algebra and, for enough number of supersymmetries, they are
stable under any deformation of the theory. This property allows us to follow them
to regimes of strong coupling providing striking tests of the different duality conjec-
tures. The first part of this thesis is devoted to the study of this important sector of
the spectrum of states in string theories with 16 real supercharges. The models con-
sidered arise from toroidal compactifications of heterotic/type I string theories and



as asymmetric orbifolds of IIB theory. We restrict our attention to nine and eight
dimensional toroidal compactifications, where the relevant BPS states come, as we
will see, from Kaluza-Klein and winding modes of fundamental strings or as excita-
tions in a system describing a collection of D-strings. D-strings are one-dimensional
BPS solitonic solutions of the low energy supergravity action that carry a charge with
respect to the so called RR fields. They are special in the sense that they admit a
very simple conformal description [18] as we will discuss below. We will see how ten
dimensional type I/heterotic and IIB self- dualities implies the existence of an infinite
tower of D-string bound states for lower dimensional compactifications. The electric
spectra of these bound states will be studied in the effective gauge theories describ-
ing collections of nearby D-strings and will be shown to agree with the prediction of
duality regarding the charges, masses and multiplicities of such BPS excitations [19].
In a second part we study string amplitudes which are essentially determined by the
BPS spectrum of states. As a first example we consider the moduli dependence of
D-instanton contributions to F'* couplings in the eight dimensional low energy effec-
tive actions for the type II dual pair of string vacua. The results can be alternatively
read from a perturbative computation in terms of worldsheet instantons of the dual
fundamental string. The agreement between these two pictures through the IIB dual-
ity relations is shown [20]. Finally we discuss correlation functions which encode the
leading order spin interactions for slowly moving D-branes [21], [22]. The amplitudes
degenerate effectively at long(short) distances to a tree level (one-loop) spin effects in
eleven dimensional supergravity (SYM). Once more, only contribution of BPS states
are relevant and the truncation on each channel agrees as required by the M(atrix)
model proposal for a non-perturbative description of M-theory. More general D-brane
configurations are also discussed

The exposition is organized as follows: In a first chapter we briefly review some
features of ten dimensional string dualities, BPS bounds and D-brane physics which
will set the background and notations for the later discussions. In chapter 2 we
study the spectrum of D-string bound states in the context of type I/heterotic and
IIB self- dualities. Chapter 3 is devoted to the computation of “BPS saturated”
threshold corrections in type IIB (4,0) string vacua (four refers to the number of
four-dimensional supersymmetries). Finally in chapter 4 the SYM/SUGRA corre-
spondence is discussed for a class of D-brane configurations describing spin effects
and nontrivial fluxes/background data. Finally some conclusions and discussion are
included.



Chapter 1

Low energy effective actions

1.1 Perturbative string theories

String theory is a quantum theory of relativistic strings. During its evolution, a
string spans a two-dimensional surface in spacetime, known as the worldsheet. The
quantization is implemented by the sum over all possible worldsheets ~ connecting
the initial and final location of the string, weighted by the superstring action

_ 1
T 4wl
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For the bosonic string we simply omit the fermionic terms in (1.1). The XM’s,
@ = 0---D — 1, represent the spacetime coordinates and z/;“,@“ ten left and right
moving Majorana-Weyl fermions respectively. The action (1.1) is invariant under the
reparametrization of the worldsheet coordinates o, = o, 7 and under the Weyl rescal-
ing has — €'hop of the worldsheet metric. In order to consistently fix these gauge
invariances we should impose the cancellation of the two dimensional supercurrent
and stress energy tensor associated to (1.1). Once this is done the bosonic part of
this action reduces to the area of the string worldsheet. A careful study of these con-
straint equations at a quantum level reveals in general the existence of a conformal
anomaly T2 # 0, with T, the stress energy tensor. The cancellation of this confor-
mal anomaly is a strong constraint in the spacetime dimensions allowed for a sensible
string theory construction, leaving only D = 26 and D = 10 for the bosonic and
fermionic strings respectively. Further constraints are provided by modular invari-
ance and tadpole cancellations for closed and open strings respectively. The modular
invariance is just the statement that equivalent Riemman surfaces describing loops of

closed strings, should give the same string answer. For example, for one-loop, when
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the string worldsheet is a torus, equivalent tori are described by complex structures
7,7 related by an SL(2, Z) transformation

at + b
ct +d

T = (1.2)
with a, b, ¢, d integers satisfying ad — bc = 1. For open strings on the other hand the
cancellation of tadpoles in the one-loop partition function, which ensures the vacuum
stability, plays a similar constraining role. Tachyons in the spectrum of states are
removed by demanding supersymmetry. We are left with five consistent possibilities,
known as type ITIA, type IIB, type I, Fg x Ejg heterotic and Spin(32)/Z, heterotic
string theories. Let us briefly review the worldsheet content and massless spectrum
of these theories

Type II strings: The worldsheet content of type IIA and IIB strings are built
from ten scalar fields, ten left and ten right-moving Majorana-Weyl fermions with
the same and opposite chiralities respectively in (1.1). All the fields are in the vector
representation of the Lorenz SO(1,9) group. On the compact ¢ direction, fermions
can have either periodic R (Ramond) or antiperiodic NS (Neveu-Schwarz) boundary
conditions. Once both sectors are included, modular invariance (1.2) requires a suit-
able projection (GSO) on the spectrum of states, leading to a sum over all possible
boundary conditions for the fermions in both ¢ and 7 directions. The projection is
carried out independently for the left and right moving sectors, removing in each of
them the tachionic NS-vacuum and one of the two spacetime SO(1,9) Lorenz spinors
realized by the Ramond ground states. On the massive tower of string excitations
the projection leaves states transforming in tensor and spinor representations of the
Lorenz group for the Neveu-Schwarz and Ramond sectors respectively. The resulting
spectrum of physical states is invariant under a ten dimensional N = 2 supersymme-
try which exchanges bosons, arising from NSNS and RR sectors, with fermions from
the RNS and NSR ones. In particular, at the massless level, we have an N = 2 super-
gravity multiplet spanned by the NSNS metric Gy, antisymmetric tensor By and
dilaton ®, the RR antisymmetric forms, and their fermionic superpartners. The RR
antisymmetric forms come from the expansion of a SO(1,9) bispinor with the same
and opposite chiralities depending of whether we are deal with type IIB or type ITA
theories and give rise therefore to even and odd potential forms respectively. These
massless contents determine completely the low energy effective action in the limit
o — 0, where as discussed above massive modes can be integrated out. The resulting
field theories are known as IIA and IIB ten dimensional supergravities.



- Heterotic string theories: Heterotic string theories are the heterosis of a left
moving bosonic and a right moving fermionic string. Heterotic worldsheet contents
-can be realized by ten scalars and ten right moving Majorana-Weyl fermions, trans-
forming both in the vector representation of the S O(1,9) Lorenz group plus sixteen
complex left moving Majorana-Weyl internal fermions. The worldsheet action can
then be written as

1 o o . @ 2A o ~
S = M/z:d oV'h [8 XH0o Xy — ip*p®0uthy —ix"p BC!XA] ) (1.3)

with A = 1---16 running through the Cartan directions of the gauge group. The
gauge groups arise from the Kac-Moody algebras represented by the internal fermions
and are highly constrained by modular invariance. Indeed, only the Spin(32)/Z5 and
Eg x Eg choice for the gauge group are allowed, corresponding to choose the boundary
conditions for two groups of sixteen fermions with the same and opposite periodicity
respectively. Supersymmetry arises from the left moving sector once one implement
the GSO projection as before. In addition, an analog of this projection should be
implemented for the internal fermions, ensuring the invariance under the modular
group (1.2). The spectrum of physical states is now invariant under the N = 1 ten
dimensional supersymmetry algebra with bosons and fermions arising now from the
NS and R sector respectively. At the massless level in particular, we are left with two
ten dimensional supermultiplets: the N = 1 supergravity multiplet which contains
the metric Gy, the antisymmetric tensor By, the dilaton ® and their fermionic
superpartners; and the Yang-Mills supermutiplet containing the gauge vector and its
fermionic superpartners. Again the low energy effective actions are determined by the
number of supersymmetries and the choice for the gauge group. They are known as
the S0(32) and Eg x Eg supergravities and corresponds to the only existing anomaly
free ten dimensional super Yang-Mills theories coupled to gravity.

Type I theory: Finally we have the type I theory of open and closed unorientable
strings. A novelty in the type I string perturbative expansion is the appearance of
boundaries and non-orientable worldsheets. For example, at genus x = —1 a type
I computation involve a sum over the disk and the projective plane contributions
while at genus x = 0 we should include besides the torus; the Klein bottle, annulus
and mobius strip contributions. Type I theory can be thought as the quotient of
type IIB theory by the worldsheet parity operation © [23]. The projection keep
only left-right symmetric states in the type IIB spectrum, while open strings appears
as the twisted sectors of this operation. In particular, at the massless level the
antisymmetric NSNS tensor, the zero and four RR form potentials are removed by



this projection, leaving a content similar to the NSNS sector (common to all the
previously discussed string theories), where now the antisymmetric tensor arises from
the Ramond-Ramond sector. The ends of the open strings are taken to be free
(Neumann boundary conditions) and carry a non-dynamical gauge index in some
representation R of the gauge group. So in addition to the usual Fock space labels
an open string state is described by a pair of indices (4, j), each one running in R.
Starting from R the fundamental representation of U(N) two possible definitions for
the 2 action on these Chan Paton indices are allowed. They lead to a surviving
massless vector in the adjoint representation of the orthogonal SO(N) or simplectic
USp(N) gauge groups. The N = 1 ten dimensional vector multiplet is completed
by its fermionic superpartners coming from the R-sector. The tadpole cancellation
requirement at one-loop leaves however the SO(32) gauge group as the only consistent
choice. At low energies the theory is described again by the SO(32) ten dimensional
supergravity, which as we will discuss below can be related to the one arising for
the SO(32) heterotic string by a simple change of variables. Although both theories
share this low energy supergravity description, we should recall that they look as
string theories very different and the statement of a strong-weak duality which relate
then is, as we will see, far from straight.

1.2 Supersymmetry algebras and their central ex-

tensions

A common feature to all N = 1,2 supergravities, describing low energy limits of
the above discussed string theories, is the possibility of include “central” extensions
in their associated superalgebras [24]. Aim of this section is to discuss how these
extensions lead to bounds in the mass spectrum of physical states. States saturating
BPS bounds provide short representations of the extended superalgebra and are then
naively stable under any deformation of the theory. This property will be extensively
exploited along the duality tests reported in this thesis. We will call these extensions
“central” although they don’t commute with Lorenz rotations. More rigorously, they
are central extensions of the supertranslational algebra. Our discussion will follow

mainly [25] and reference therein.

Let us start with the NV = 1 ten dimensional superpoincare algebra. We can con-
centrate in the algebra of supertranslational invariance, since commmutators between
Lorenz generators are determined as usual by the Lorenz indices. The supertrans-
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lational algebra is generated by translations Pj; and a Majorana-Weyl supercharge
Q. Translational invariance implies that P and @ commute, while for the {Q, Q}
anticommutator, we can write in general

{Qm Qﬁ} = (pFMC)aﬂPNI + (PPMC)Q/BZM + ('PPMNPQRC)aﬁZItINPQR- (1-4)

where I'™ are the 32 x 32 SO(1,9) gamma matrices, P = (1 + I';1) the chirality
operator and C the charge conjugation matrix, which in the Majorana basis is iden-
tified with To. The Zp/’s and Zj;ypog’'s commute with all the supertranslational
generators, and are known as central extensions. They correspond to the existence of
a string and a self-dual fivebrane solution of the free supergravity equation of motions

( for a review and references see for example [26]). Indeed
Drtyott, = y,p/E dXp A AdXy, (1.5)
P

can be identified in general with the charge of a p-dimensional object (wrapped on a
p-cycle 2,) under the corresponding p+1 form. The masses of each of these extended
objects will be proportional to the volume of the cycle X,. Once such a cycle exists
in the ten dimensional space, an object carrying this topological charge provide a
representation of the extended algebra (1.4). The simplest examples for finite energy
configurations carrying these charges are given by the Kaluza-Klein and winding
string modes. Suppose our space contain a compact X° direction of radius R. The
unique-valuedness of the wave function e implies in this case the quantization
of the Kaluza-Klein momentum P?° in units of 1/R. In addition one such compact
direction exist we can wind it n times a string around it leading to a configuration
with mass proportional to R. From the nine dimensional point of view we see that
the Kaluza-Klein momentum P° and winding Zy are central extensions corresponding
to a charge under the gauge fields G9 and By, respectively. The Z3;ypor in (1.4),
on the other hand, represent the fivebrane winding charges of the known symmetric
fivebrane solution of N = 1 ten dimensional supergravity. The string and fivebrane
solutions are electric-magnetic duals in ten dimensions [27]. In general a (D —p — 4)-
dimensional object carries a magnetic dual charge in D-dimensions respect to the p+1
form potential.

After these preliminaries we would like to study some particular representations of
this V = 1 algebra, which as we will see, behave more like the massless representations
of the “standard” supersymmetry algebras. Let us first recall the structure of super-
symmetry representations in the absence of central extensions Zy = Zy;ypor = 0.
In this case we can distinguish two kind of representations: the massless (2'6/* = 16)-

dimensional representation, and the massive (216/2 = 256)-dimensional one. In order
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to see this, we write (1.4) in the rest frame Py = (M,0,---0) for the massive case
and in a frame such that Py = (E,+FE,---0) otherwise. The algebra (1.4) reduces
then to

Massive {Qq,Qs} = PougM (1.6)
Massless {Qa,Qs} P1ET) 6 E (1.7)

In the massive case, (1.6) corresponds to a 16-dimensional Clifford algebra (recalling
that 16 of the initial 32 components of the ten dimensional Majorana spinors are
projected out by P). A 2!6/2 = 256 dimensional representation is realized as usual
acting with the 8 creation fermionic operators on a vacuum highest state. For the
massless case (1.7) on the other hand, the further projection (1£T°!) leave only 8 non

trivial eigenvalues which give rise to a short 28/ = 16 dimensional supermultiplet.

For a central extension the story is somehow similar. The positivity of the Q?
operator in the LHS is, however, no longer ensured as before from P? > 0. Indeed,
noticing that the matrices involved in (1.4) have only eigenvalues +1, and taken into
account that we can always reverse the sign of Zy, ..y, changing the orientation of
the p-brane, we have a bound in the mass M > |Zy,..5,| for a p-brane solution
oriented in the M; - -- M, directions. For a massive state above this bound the non-
degenerate matrix 1 + Zpy..u, [MiMp implies that we are dealing again with a
16-dimensional Clifford algebra and therefore a “long” supermultiplet is realized. For
a state saturating this bound this is not the case, and an algebra similar to (1.7)
with E replaced by M and (1 £ ') replaced by (1 & ') is found. Again,
as in the massless case, we are left with just 4 creation-anhililation pairs spanning
a 2* = 16 short representation, now of the extended algebra (1.4). We notice that
these extreme states break 8, out of the initial 16 supercharges, while the remaining
ones are realized trivially. In general a state preserving some linear combination @~
of the supercharges is called a BPS state

> Q|BPSstate) = 0, (1.8)

and the bound saturating by it, is called a BPS bound.

More complicate BPS configurations can be constructed by turning on various
charges in (1.4) at the same time. Let us consider a compactification of the X8, X°
directions on a torus of radius Rg, Ry respectively. In this case we can turn on,
for example, a Kaluza-Klein momentum P; and a winding charge Zg in the 8 and
9 directions respectively. The matrices I'® and I'® anticommute and therefore the

12



eigenvalues of PsI'% + Z,I'% are given by &/ P2 + ZZ. In order to get zero eigenvalues
g y 8 9 )

for the RHS matrix of (1.4) we should then saturate the bound M = /P§ + Z5. We
can notice that the mass of this state is lower than sum of the masses of the Kaluza-
Klein and the winding constituents. When this is the case, we will call the state a
non threshold bound state. Conversely if both winding and Kaluza-Klein modes are
parallel the BPS bound is just M = | Py|+|Z9| and we call it a threshold bound state. In
both the cases the BPS states preserve, as before, 1/2 of the original supersymmetry

and span 16-dimensional multiplets.

Finally let us discuss less supersymmetric BPS configurations. Let us consider for
example a bound state of a string and a fivebrane wrapped on a fivedimensional torus
oriented in the 12345 directions. In this case (as it will be always the case for parallel
p-p+4, p-p+8, etc. brane configurations) the matrices 't and I'°%3%5 commute and
can be simultaneously diagonalized. The eigenvalues are just £1 and then we have
bounds in the mass given by M > (|Z;| + | Z12345]). For states saturating this bound
we will have 1/4 out of the initial 16 supercharges realized trivially. Acting with the
remaining 12/2 creation operators we span a 2° = 64 dimensional BPS supermultiplet.
This is another example of a threshold bound state since the mass is equal to the sum

of the BPS masses of the string and the symmetric fivebrane.

We can apply now a similar analysis to the N = 2 ten dimensional superalgebras
realized by the low energy effective actions for type II strings. The starting point, for
the type ITA case, is now the supertranslational anticommutators:
type IIA:

{QwQs} = (TMC)apPu + (T11C)apZ + (TulMC)apZu + TV C)apZun +
(TMNPOT | O apZunpg + (TMNFCEC) o5 Z1inpor. (1.9)

where (), combines in a non-chiral fermion the two Majorana-Weyl supersymme-
tries of opposite chiralities. The central extensions include now, besides the NSNS
charges associated to the fundamental string and the fivebrane, a set of extended
even-dimensional objects, which corresponds to p-brane solutions charged under the
corresponding RR potentials. These solutions will be identified in the next section as
the DO, D2 branes and their magnetic duals the D6, D4 branes respectively. Similarly
for type 1IB theory the supertranslational anticommutators are given by

type IIB:

{QL, @4} = 69(PT™MC)apPy + (PTMC)apZiy + € (PTMNFC) apZsnp
+5ij(PFMNPQRC)aﬁZJ\+JNPQR + (PPMNPQRC)aﬁZJZe[NPQR (1.10)

13



where now the RR charged brane solutions are odd-dimensional as should be in order
to couple minimally to the even RR forms of type IIB. They correspond, as we will
see, to the D1, D5 branes electric-magnetic pair and the self dual D3 brane.

Again we can detect bounds in the mass spectrum of states, and the existence of
small representations of these extended algebras for states preserving some fraction
of the initial supersymmetries, i.e. the BPS states.

At this point it is worth to stress a crucial fact. Although the similar definitions
(1.5) for all these central extensions, the dilaton dependence of the masses M and
charges Z’s of these solutions are drastically different. For example, if we normalize
to one the mass of the fundamental strings, their magnetic duals: the solitonic NS
fivebranes in (1.4), (1.9) and (1.10), will carry masses going like 1/g%, g being the
string coupling constant. The masses of the RR sources, on the other hand, can
be read from the explicit p-brane supergravity solutions [26] to go like 1/g. This
dependence will become clear in the next section, where a very simple conformal
description of these peculiar RR solitons will be given.

Finally we would like to say some words about the threshold bound states defined
above. Many of the duality relations we will discuss in the following predict the
existence of these bound states but a straight check of these predictions is rather
tricky. The problem relies in the fact that there is no energy barrier which forbids
the decomposition of such state in their constituents. The spectrum of states is then
a continuous, in which the distinction of a one-particle from multiparticle state is non
trivial. In ref. [28] an explicit and involved computation showed the existence of a
unique bound state for N = 2 number of D0 branes in theories with 32 supercharges
and no one for theories with less number of supersymmetries as required by string
dualities. The arguments of [29] support the generalizations of these results for V > 2
zero branes. In the next chapter we present our contribution to this problem studying
D-string bound states at threshold in the context of type I/heterotic and type IIB
self- dualities.

1.3 D-branes and RR charges

There are wonderful reviews of the D-brane physics in the recent literature [30]. In
this section we limit ourself to quote some basics results in the subject, which will
be relevant in the future discussion of string dualities and D-brane spin dynamics.
At the end of the previous section we have seen how p-extended solutions, charged

14



under the Ramond-Ramond p+1-form potentials, are allowed by the supersymmetry
algebra of type II supergravities. It is easy to see however, that no elementary state
with this charge appear within the type II perturbation theory. Indeed the trilinear
coupling

(closed|V &+ |closed) (1.11)

vanishes automatically on any closed Riemann surface since the RR vertex involves
an odd number of left and right moving fermion emission vertices. The independent
conservation of the left and right moving fermionic numbers is clearly a symmetry of
(1.1). This is not the case if we allow boundaries in the string worldsheet. In this
case only total fermionic number is conserved and the previous forbidding argument
no longer holds. A boundary in the worldsheet of a string should be supplemented

by either Neumann or Dirichlet boundary conditions

BGXM = 0 Neumann /_[,:O)u-p

for the open string coordinate X#. These boundary conditions defined a p-dimensional
surface, we will call a Dp brane, where and open string can end. Alternatively, they
can be thought as a point in which a closed string state, encoding the boundary
condition data (1.12) !, dissapears. They can therefore be represented by a suitable
closed string operator creating this state from the vacuum. This formalism is called
the boundary state formalism [31] and is particularly useful when we study string
processes involving worldsheet boundaries, from the closed string point of view.

Our aim now is to illustrate how a Dp-brane, defined by (1.12) carries a charge
under the Ramond-Ramond p+1 form potential. We will work in the G-S formulation
of the type II strings which makes manifestly the supersymmetry of the theory. We
follow closely the notation of [32]. Consider type II theory in the light-cone gauge
X+ =gzt +ptr. X~ is completely determined in terms of the transverse X*’s, in the
8., and the left and right spinors S and S%, in the 85 of the SO(8) transverse rotation
~group 2. In this frame, the two light-cone directions + = 0 & 9 satisfy automatically
Dirichlet boundary conditions while the transverse directions i = 1,...,8 can have
either Neumann or Dirichlet boundary conditions. Since the time satisfies Dirichlet

1In terms of the closed string variables the boundary conditions can be written by simply change
o and 7 in (1.12)
*In the following we display only the Type IIB expressions, for which the notation is somewhat

friendlier; the Type IIA formulas can be easily obtained by switching dotted and undotted indices
in the right-moving fermions.
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boundary conditions, we are actually dealing with Euclidean branes; however we can
identify the “time” with one of the transverse directions, say X*. The usual metric
is then recovered through a double analytic continuation 0 — i1, 1 — 0 in the
final result. We can therefore include in our analysis only branes with p = -1, ..., 7.
The coordinate transverse to the =+ directions satisfy the Neumann-Dirichlet bosonic
boundary conditions

(0xT — M15X7)|B), =0 (1.13)
with s 0
M= (— P ) . (1.14)
0 I,

The boundary conditions on the fermions are then fixed by supersymmetry, that is,
by the condition that the boundary state preserve some linear combination of the
spacetime supercharges.

Q%|B) = (Q“+zMabQ)1> 0

-l

HB) = —= (@ +iMuQ") |B) = (1.15)

Sl

with .
Q* = \/2p+7(d05" , QY = —=~L, fda@XiS“
N/
and similar expressions for the right moving supercharges. These conditions are solved
by the boundary state '

—epo( Mol &7, — iM.,S°, 5 )|B0> (1.16)

n>0
with M7 given by (1.14),

Moy = (Y92 P ) ap s My = (7192 P 5 (1.17)
and |Bp) being the zero mode part
|Bo) = Mys|T)|J) — iMy; ) |b) (1.18)

The coupling of the D-brane to a generic closed string state |¥) can be read from the
corresponding one-point function on a disk with boundary conditions given by (1.12).
In this language one point functions are simply given by the overlapping (B|¥). In
particular, masses and RR charges can be read from the overlapping with the massless
string states:

[WNSNSY = ¢ lm)n) = 5mn~¢5mn+gmn+bm
W = Cyla)l) = Cu~ T Gl

k even
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The NSNS insertion
(Bo|Ug M%) = &; My, (1.19)

describes then the coupling of the Dp-brane to an specific combination of the dilaton
¢ and the diagonal graviton components gi1...gp+1,p+1-
For the RR one point function we have on the other hand

(BolTg™) = >

k even

1

- C(Z}C)ZkTrS [,),il-nik M] (1.20)

The gamma-trace vanishes unless £ = p + 1, showing the RR charge of the Dp-brane
under the (p + 1)-form C;if”“. At this point we cannot compute the absolute value
of the masses and charges given by (1.19) and (1.20) since the boundary state (1.18)
is determined up to an overall constant. The relative coefficient between the absolute
value of mass and charge is however fixed to one as required by the BPS condition
(1.15). Moreover we can determine their dilaton dependence. Indeed since the vacuum
expectation value of the dilaton is identified with the string loop parameter the masses
and charges should go like 1/g (x = —1 for the disk). We conclude that a Dp-brane
is a RR charged BPS state with mass of the order of 1/g. They are the string
realizations of the p-brane supergravity solutions carrying the RR. charges in (1.9)
and (1.10). Finally we should say that although we have discussed RR D-branes only
for the type II strings, they appear also in the type I theory. Recalling the origin of
this as an €2 projection of the type IIB theory which removes the NSNS antisymmetric
tensor, the string and fivebrane charges in (1.4) are carried by the D1 and D5 branes.
We will discuss in detail this case later on.

It is instructive to recover the same results about the masses and charges of D-
solitons from the computation of the static force felt between two such objects. A
consequence of the saturation of a BPS bound is a semmiclassical no-force condition.
At large distances, two identical static D-branes interact through the exchanges of the
massless fields in (1.18). The BPS no force condition implies then that the attractive
forces mediated by the graviton and dilaton exchanges should be compensated by a
repulsive RR interaction. We go now through this simple computation which illustrate
the power of this boundary state techniques and set the basis for a more detailed study
of the D-soliton dynamics later in this thesis.

The configuration space boundary state is given by

B,3) = (2na)i | (;;Zi €77 |B) ® [{) (1.21)
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where
(lg") = Vpyr (2m)°P6C P (g - ¢)
and Vp4; is the space-time volume spanned by the p-brane.

With these normalizations, the static force between two parallel branes is given
by the cylinder amplitude

1 foo (e
A== [Tar(B, g T (12)

where

_ 1
P 2p+[p)2 Z(a_na +a' &k +nsSt, S“-{—nS“ 52)
is the Hamiltonian in the light-cone gauge. The term 10, represents the subtraction
of p~ (remember that in this gauge the effective Hamiltonian is H — p~) and when
applied to the boundary state, it reproduces simply the covariant p?. The factor 1/16

is needed to normalize correctly the D-brane charge; indeed, from eq.(1.22) we obtain

1 . PG ira gomie's (1—e7mn)’
A= 16 p+1(47T o)t p/ dt/( eq( De ! (8_8)111;.[1(1_ g—2min)8
(1.23)

where the factor (8 — 8) is due to the trace performed on the zero mode part of the
boundary state, eq.(1.18). Performing the momenta and modulus integrations, one
finds [18]

A=2Vy1 Gop(E — ) (T2 — 1) (1.24

with T, = |pp| = /7 (4n2a/)B~P)/2 interpreted as the tension and charge density of a
p-brane in units of the ten-dimensional Planck constant k? of Type II supergravity
[18], and G4(Z) the massless propagator of a scalar particle in d-dimensions

1 T(5%)

Ardl? |gld=2

Ga(Z) =

We recognize in (1.23) the BPS no force condition as we have anticipated. We notice
also that no o corrections to this cylinder computation are present, since the con-
tributions of massive modes cancel in (1.23) between boson and fermions. The exact
result (1.24) (at this order in the string coupling constant) is therefore completely
determined by the exchange of the massless graviton, dilaton and RR fields of type
ITA supergravity. Alternatively we can think in the cylinder as a one-loop of an open
string stretching between the two D-branes. In this picture (1.24) arises from the
contribution of the lowest energy mode of the stretched string. This implies that we
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have an equivalent description of the D-soliton static force in terms of an effective
theory of open strings. '

Before going on, it is worthwhile to say some words about this dual picture, where
a D-brane is seen as an end point of an open string rather than as a source of closed
string states. This description is particularly helpful for nearby strings, regime in
which the stretched open strings become light and constitute the relevant degrees of
freedom. The effective theory describing the dynamic of N-nearby D-branes is defined
by the quantization of the low energy modes of the strings stretching between them.
We introduce, as in the case of type I open strings (which can be considered as strings
ending on 32 D9 branes) Chan-Paton indices ¢ = 1,--- N. The lowest energy bosonic
modes are given then by the A;;0. X* vectors and \;;0, X I scalars corresponding to the
quantization of the longitudinal and transverse directions to the p-brane. The masses
of these modes are proportional to the distances between the (i,j) branes, becoming
massless when they are on top of each other. In particular, when M D-branes coincide
we are left with a U(M) x U(1)"~M enhancement of the initial U(1)" gauge group.
Including the fermions we are left with a U(M) x U(1)"~M™ gauge theory, which is
just the reduction of N = 1 ten dimensional SYM theory to p+1 dimensions. In
the case of unorientable strings, we should include, as before for type I theory, an 2
projection in the Chan-Paton indices leaving effective O(N/2) gauge theories.

In the rest of this thesis we will alternate both pictures of D-solitons. The simplic-
ity of these conformal descriptions will be extensively appreciated along the precision
tests and D-brane dynamics analysis performed later.

1.4 String duality conjectures

In this section we will discuss the duality relations between ten dimensional string
theories, from the point of view of their low energy effective actions. At the two-
derivative level these actions are completely determined by their supersymmetry and
the massless spectrum of the theory. From the string point of view they can be
derived from the requirement of conformal invariance for the sigma model describing
the motion of the string in the background of these massless fields. We will work in
the string frame, where a factor e=2¢ appears in front of the Einstein kinetic term,
recalling the o-origin of this term from the propagator on the sphere (y = —2). If a
duality transformation is a symmetry of a string theory should be a symmetry of the
corresponding effective action. The study of the effective actions will then define the

19



duality maps which will be promoted later to a symmetry of the full string theories.
Evidences for these identifications, at the string level, will occupy the next chapters
of this presentation.

1.4.1 Type I-heterotic duality

We start by describing the type I/heterotic duality conjecture [3]-[6]. The tree level
(sphere) two derivative effective action of the SO(32) heterotic string is given by

ghet _ /dlox\/@e—2¢ {RJF 4(V¢)? — %FQ — %HZ] : (1.25)

with H the field strength of the antisymmetric tensor B,,, F,, the SO(32) field
strength, G, and ¢ the metric and dilaton respectively.

The duality map is defined by the change of variables

on=—¢1, Gh, =€ "G, A=Al B =Bl (1.26)

uv

Indeed, writing (1.25) in terms of the indexed "”I"” variables we are left with
: 1 -
Sl = / dzv/G [e—% (R+4(Ve)?) - %e_‘f’F? - EHQ] . (1.27)

which is just the type I low energy effective action. We notice the no dilaton depen-
dence of the H kinetic term since it comes from the RR sector. The dilaton and gauge
kinetic terms are, on the other hand, weighted by e~2% and e~ since they comes from
the sphere (x = —2) and the disk (x = —1) respectively.

The relations (1.26) suggest that the strong coupling regimes of the type I theory
might be described by the weak coupling of the SO(32) heterotic string theory and
vice versa. This is the content of the type I/heterotic duality conjecture. If this is the
case we can elucidate many of the non-perturbative properties of one theory from the
knowledge of the perturbative regime of the other one. As we have discussed in the
introduction a direct proof of this strong-weak duality is far from our present reach,
but an increasing evidence for it, is collected in the recent literature. In this thesis
we present some precision tests concerning the spectrum of physical states.

In general we don’t expect a complete matching of both spectra, since a pertur-
bative state on one side might becomes unstable and dissapears from the spectrum.
This is not the case for states saturating a BPS bound as we have discussed previ-
ously. By a simple inspection of the N = 1 algebra (1.4) we see that the simplest
finite energy BPS configurations we can constructed arise in a circle compactification
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to nine dimensions. In this case we can turn on Kaluza-Klein and winding modes of
the elementary heterotic strings which should be mapped through (1.26) to Kaluza-
Klein and RR charges under Bfw respectively. In the next chapter we will make more
precise this identification, providing a precision test to this string duality conjecture

1.4.2 1IB self-duality

As we described in the introduction the bosonic massless content of type IIB theory
contains beside the universal NSNS sector, a zero, two and four RR form potentials.
The RR four-form is self-dual, implying that the corresponding field strength is equal
to its dual. It turns out that there is no simple covariant action describing this
constraint, and we can write at most covariant equation of motions. The important
point is that these field equations are invariant under the SL(2, R) transformations

[12]-[15]:
o+ b BY, i —c\ (B,
ar+ob 1.2
A2 STd (Bf,,)_%—b a)(BfV" (1.28)

where a, b, c, d are real with ad — bc = 1. These transformations mix the NSNS Bﬁfj
and RR Bff antisymmetric tensors, acts fractionally on the complex scalar

A= x+ie® (1.29)

with ¢, x the dilaton and RR scalar respectively, and leave invariant the metric and
RR four-form. It is easy to see that only a maximal SL(2,Z) subgroup of these
transformations can be a symmetry of the full string theory. The B, charge carried
by a string state must be quantized in units of the elementary string charge, which
can be normalized to one. Acting with a SL(2, R) on a state with integer By, charge
we are left in general with a forbidden fractional charge state. The matrices (1.28),
with a, b, ¢, d restrict to be integers, are precisely the maximal set of transformations
(up to a redefinition of B, ) which leave an integer valued spectrum of charges. This
SL(2,7) subgroup is precisely the conjectured self-duality symmetry of type IIB
string theory [7].

An elementary string (denoted by (1,0)) carries an unit of charge under the NSNS
antisymmetric tensor Bﬁ,’,. Acting with the SL(2, Z) transformation:

S = <(1) —01) (1.30)

we get a string state carrying an unit of charge respect to the RR antisymmetric tensor

BR

.y which we will denote by (0,1). In a previous section we identify a physical state
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carrying this charge: the D-string. The complete SL(2, Z) orbit produces then (p,q)
strings with p(q) units of charge under the NSNS(RR) antisymmetric tensor. The
content of SL(2, Z) duality conjecture is that all those (p,q) strings provide equivalent
descriptions of the full type IIB string theory. In the next chapter we will give some
precision tests of this conjecture.

Before going on, it is useful to discuss some perturbative symmetries of the type
IIB string theory which will be exploited in future discussions. As we mentioned,

type IIB theory is invariant under the worldsheet parity transformation §2. On the

N
g

the other fields invariant. There is still an additional perturbative symmetry we
denote by (—)Fr. This operation changes the sign of all the states in the left moving
Ramond sector. It is easy to see that both symmetry actions are related by the
SL(2,7) transformation

massless bosonic fields, Q2 changes the sign of B}, x and the four form D,, s, leaving

SQS™t=(—)" (1.31)
with S given by (1.30). Type I theory is constructed from the orientifolding of type 1IB
with the Q parity. The relation (1.31), combined with the type IIB S-duality, implies
that a dual model can be constructed from the orbifolding of type IIB by (—)ft. This

wil be the starting point for the construction of some dual pairs discussed in the next
chapter.

1.4.3 The M(atrix) model conjecture

Type IIA supergravity is the dimensional reduction of N = 1 supergravity in eleven
dimensions [33]. The eleven dimensional theory is defined by the bosonic action [34]

! ! !GQ] + 1 _argné (1.32)

LD:ll -
2k2 2-4 2rk(144)2

2-

where G is the field strength of the three-form potential C. The fermionic action

is determined from (1.32) by the N = 1 eleven dimensional supersymmetry. The

reduction of the eleven dimensional metric on a circle of radius R = e

G + € ALA, €A,

Gu = ) - 1.33

H ( 20 A# e27 ( )

give rises to the ten dimensional metric g,,, gauge field A,, and dilaton ¢ = %a of the

type IIA supergravity. The three-form C on the other hand gives rise to a three-form
and a two-form in ten dimensions defined by

Cuwp = Cuvp = (CoprrAyu +cyclic) , By = Chunr - (1.34)

22



In terms of these fields (after going to the string frame g,, — ¢77g,,), (1.32) reduces
to the IIA supergravity bosonic action

& 1 10 —2¢>< '2__}_ 2)_ 1 ‘2_1 2
Sia = 5 [d%yG [ (R AV - SHY) = 55 CF = 3P| +
1
W/B/\GAG (1.35)

where H denotes the field strength of the antisymmetric tensor By, G and F' the ones
corresponding to the RR A, and C,,, forms. We notice that no dilaton dependence
for the kinematic RR terms appear, as expected.

The identification between the compactification radius and the string coupling
constant R = g§ involved in this reduction is remarkable. We can take it seriously
and claim that type IIA theory at the strong coupling limit ¢ — co becomes some
eleven dimensional theory whose low energy regime is described by eleven dimensional
supergravity [33], [3]. This conjectured theory is called M-theory. From its super-
gravity limit we know that M-theory should contain membrane and fivebrane states
which couple to the eleven dimensional three-form C in (1.32) [35]. Upon compactifi-
cation on a circle the membrane gives rise to a ten dimensional membrane or a string
depending of whether we wrapped it or not around the eleventh direction. Using the
identifications (1.33,1.34), it is possible to match the masses of these objects with the
ones for the fundamental string and D2 brane of type IIA theory. Similarly the eleven
dimensional fivebrane gives rise to a fivebrane and a fourbrane which are identified
with the NS fivebrane and D4 brane present in type IIA theory. By further compact-
ifying both theories, several evidences for this type IIA/M-theory duality conjecture
has been accumulated in the recent literature, although not direct formulation of this
theory has been formulated. Matrix theory pretends to be a parton definition of this
mysterious eleven dimensional theory [36]. It is based in the observation that at the
strong coupling limit g — oo, the DO branes of type IIA theory become the light-
est states of the theory and should determine the dynamics of it. The kinematical
region that this proposal describes is the infinite momentum frame in the eleventh
direction. Being the U(1) type IIA photon identified with the g,11 component of the
eleven dimensional metric, KK momentum modes along the eleventh direction maps
to bound states in the D0 brane system. In particular a P;; = £N/R KK momentum
mode should be represented by a bound state of N DO or anti DO branes. Since in
the infinite momentum frame all systems are constituted by partons with positive
momentum we should deal only with D0 branes. Supergravity processes should then
be mapped to correlations in the effective theory describing the interactions between

clusters of DO branes. The effective theory describing the interactions between N
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nearby DO branes (N being the total number of DO branes involved), was discussed
at the end of section 1.3. This is given by the U(N) quantum mechanics

1 .2
_ I 2 T
S—[dtmzRTr(X + [X1, X2 + 67 D0) (1.36)

which is just the reduction of N = 1 ten dimensional SYM theory to 0+1 dimensions.
The M(atrix) model conjecture then states that M-theory in the infinite momentum
frame is exactly described by the N — oo limit of (1.36). The first sign of a hope for
such a conjecture is the existence of membrane-like solutions of the static equations
of motion

XL [x7, XM =0 (1.37)

arising from (1.36). Indeed the configuration

X8 - RgP
Xg = RQQ
with
[Q, P] = 2mi - (1.38)

and all others X7 = 0 is a membrane-like solution oriented in the (89) direction. We
notice that P and () should be infinite by infinite matrices in order to satisfy (1.38)
and have a non-vanishing trace, but this is precisely the N — co regime of validity
of the conjecture.

A further evidence can be extracted from the study of matrix model interactions.
We will present these results in a slightly different Way from the original exposition in
[36]. We will use the boundary state formalism described in the previous section. Our
aim is to computed the tree level potential between two slowly moving D0 branes with
impact parameter b. Recall that we identify the “time” with X*, the boundary state
of a brane moving with velocity v* is obtained from the static one (1.16) by applying
the boost operator @ = €™ [37], with J“ the generator of an SO(8) rotation in
the (17) plane. The potential between two D-branes moving with a relative velocity
v can therefore be read from the insertion of the boost operator O in the static
potential (1.22). As we have seen for the static case, this cylinder amplitude can
be seen alternatively as a one-loop of the open string stretching between the branes.
Once more, as in the static case, we will see that the leading order in the velocity
expansion of this potential will collapse to a purely zero mode contribution, supporting
equivalent descriptions in terms of the Yang-Mills (massless open string modes) or
supergravity (massless closed string modes) degrees of freedom. Being interested
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only in the leading behavior in the velocity expansion of the D-brane potential we
can consider the insertion of the boost operator O as a bunch of insertions of the
vertex operator

Vg = uJ% = v 7( do (X“@UX“ + %S 7“5) (1.39)
=0

T

where we have used the boundary conditions (1.12), in order to write (1.39) in terms
only of the left moving spinor S. The same operator (1.39) could also have been
derived from that of photons in Type I theory with a constant field strength back-
ground after a T-duality transformation [38]. Before going on, it is important to point
out that in computing leading orders of velocity-dependent potentials through corre-
lation functions, we can actually directly extract potentials from the corresponding
phase-shifts by simply dropping the overall time factor. This can be easily under-
stood remembering that considering the velocity as insertions in the static cylinder
amplitude instead of as a v-twisting in the boundary conditions, the extra bosonic
zero mode integration will give simply the volume 7' of the time direction. The phase
shift is define now by 6 = VT with V a time independent potential.

Given these preliminaries, we can evaluate correlation functions involving n ve-

locity insertions Vp’s by compute

1 o = —27ta’ ——48/0z Ve)" — X
An:?é/() dt (B, & = Ole 2mta/pt(P~~i8/8 +)£—n§!—)—!Bp’y:b> (1.40)

where the n! comes from the expansion of the boost operator. There is an evident
analogy between eq.(1.40) and 1-loop amplitudes of massless states, in Type I string
theory in the G-S formalism. In particular, the zero mode trace is vanishing unless
all the eight zero modes Sy are inserted [1], i.e.

(Bo|RY|By) = Try[RY] — Trs[RY] =0, for N <4

where RY = %Sofyij So and the trace and matrix multiplication in both terms are over
the vectorial and spinorial indices. Since the Vg (1.39) insertions provides at most
two fermionic zero modes, a total of 4 velocity insertions is needed in order to get a
non-zero result. The first non-vanishing trace is

11008 — 9112 D34 DIisle DITL8

. __tdi..dg _ T | gi1%4 Si213 $i5i8 Sled
- 261 8 2[51 ) 567+pell‘m.}
+5 [52”3514‘55“"757‘3“ + perm.} (1.41)
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where “perm.” means permutations of the pairs (ig,_1%2,) plus antisymmetrization
within all the pairs.

The resulting potential then reads

W(EZ)E lo]* G (B) (1.42)

V=

We notice that only the zero mode part of the vertex (1.39) gives a non trivial contri-
bution to this result. Massive modes enter then only through the partition function
and canceled out then between boson and fermions as in the static case. This ensures
the result we have anticipated. On one side (1.42) defined the long range potential be-
tween two gravitons moving with a relative velocity v; equivalently we can read (1.42)
from the one-loop effective action for the Yang-Mills quantum mechanics in terms of
the massless open string modes. We can conclude that the one-loop matrix model
effective action coming from (1.36), reproduces the long-range graviton-graviton po-
tential.

In the last chapter we will see how spin-effects can be also correctly included in
this frame, as far as more complicated supergravity configurations, providing further
support to the matrix model conjecture for a non-perturbative description of M-
theory.
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Chapter 2

BPS spectra for string vacua with

sixteen supercharges

In this chapter we study BPS spectra of physical states in string theories with sixteen
real supercharges. The relevant supersymmetry algebra and its central extensions is
given by (1.4). These extensions represent winding modes of string- and fivebrane-like
objects, besides the standard Kaluza-Klein momenta. For toroidal compactifications
to D > 5, fivebrane-like objects will be always infinitely heavy and finite energy BPS
configurations can be constructed only from winding and Kaluza-Klein string excita-
tions. However, string theories realize in different manners these central charges. The
heterotic string, for example, contains both winding and Kaluza-Klein charges in its
perturbative spectrum. This is not the case for type I theory, where the antisymmet-
ric tensor arises from the RR sector, and therefore the winding charge is carried by a
non-perturbative state: the D-string. These two theories are conjectured to be dual to

each other under the duality map (1.26). These transformations map, in particular,

I
pv?

fundamental heterotic string with D-string winding modes. If such a duality is true,

the heterotic antisymmetric tensor Bﬁy to the type I B; ,, exchanging winding of the
both spectra of BPS states should match. More precisely, the complete spectrum of
charges, masses and degeneracies of the N-winding sector of fundamental heterotic
strings should be isomorphic to the spectrum of bound states of N type I D-strings
each one wrapped once on a circle of radius R; = %f{ﬁ. Similarly a strong-weak dual
pair can be constructed starting from the self-dual type IIB theory and orbifolding it
on one side by (—)®2oy (ov an order two shift in the torus) and in other side by its
S-image (oy,. Again the string-like central charges are carried in the former by fun-
damental string windings and by D-string windings in the later. Aim of this chapter
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is to show the precise match of the BPS spectra for these two dual pairs, providing a
precision test of the type I/heterotic and type IIB self- duality conjectures.

The organization of the chapter is as follows: In the first two subsections, we study
the infrared limit of the O(N) gauge theory, describing N nearby type I D-strings.
We show how this is described by an orbifold conformal field theory corresponding
to N copies of the dual heterotic string, modded out by the permutation group Sy.
For simplicity, we illustrate this arguments in the type I D-system. Identical lines
of reasoning leads to the same conclusions for the second example: type IIB on
T?/Qoy. The subsection 3.1.3 is devoted to the computation of the elliptic genus.
The computation is performed for a generic worldsheet content in order to include
both examples. Finally, we identify the sector corresponding to real one-particle
bound states and compare the results with the predictions of type I/heterotic and
type IIB self- dualities.

2.1 Bound states of type I D-strings

We begin by recalling the form of the world volume action which describes the low
lying modes of a system of N D-strings in the type I theory:

s = T [ds ——1—F2+(DX1)2+ (X1, X,])?
+AJDA+S;DS+ZXAJDX + gATI[X, 8] Z Y44 (21)

The fields transform in various representations of the gauge group O(N). X and S
transform as second rank symmetric tensors, while A and x transform in the adjoint
and fundamental representations respectively. There is an SO(8)z, R symmetry
group, under which X, S, A and x transform as an 8y (this is the I label), an 8g,
an 8, and a singlet, respectively. The y transforms under the SO(32) in the vector
representation with x* and y“ denoting the positive and negative weights. The A and
y are negative chiral (left-moving) world sheet fermions while the S are positive chiral
(right-moving) fermions. Finally Y# are the background holonomies (i.e. Wilson lines
on the 9-branes) in the Cartan subalgebra of SO(32). The Yang-Mills coupling g is
related to the type I string coupling via g> = A;/a’. The vev’s of the X fields,
appearing in the action above, measure the distances between the D-strings in units
of v/a’A;. This fact will be important later, when we compare the spectrum with
that of the heterotic theory.
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Geometrically the fields appear in the following fashion [6, 39]. The above action
arises as the Z, projection of the corresponding theory in the type II case. Recall
that in the type II situation a system of N branes has a U(N) symmetry. Write
the hermitian matrices as a sum of real symmetric matrices and imaginary anti-
symmetric matrices. The Z projection, for type I D-strings, assigns to the world
volume components of the gauge field the anti-symmetric matrices, that is, it projects
out the real symmetric part and so reduces the gauge group to O(N). On the other
hand, the components of the gauge field in the transverse directions, X, have their
imaginary part projected out and so are symmetric matrices transforming as second
rank symmetric tensors under the O(N). The diagonal components of the X give the
positions for the NV branes. The trace part represents the center of mass motion.

The x carry the SO(32) vector label, as they are the lowest modes of the strings
which are stretched between the 9-branes and the D-strings.

We are interested in the counting of BPS bound states in the two dimensional
system (2.1) with the o-direction identified with the compact coordinate. A BPS
bound state correspond to a vacuum in this gauge theory and therefore the informa-
tion about multiplicities and masses of these states is encoded in the Witten index
or more generally in the elliptic genus of (2.1).

Since the elliptic genus do not depend on the coupling constant, we can take
the limit which is most convenient for our present purposes. We will consider the
infra-red limit of the theory, as it has been conjectured in [40], that in this limit the
theory flows to an (8, 0) orbifold superconformal field theory. This is in analogy with
a similar conjecture for a system of type IIB D-strings [41]. In the following we give
some support to this conjecture by, first, gauge fixing (2.1) and then performing a
formal scaling which yields the orbifold theory directly.

2.1.1 Type Il and the IR Limit

Before discussing the type I theory we make a digression on the type II theory that will
prove useful later. Our aim here is to show that with a prudent choice of gauge one
can simplify matters considerably. This prepares the way for taking the large coupling
limit in a fashion that is, to a large extent, controllable. The starting point is then
the U(N) Yang-Mills theory defined by the dimensional reduction from D = 10 to
d+1 = 2 dimensions. D dimensional vector labels are denoted by M, N ,..., those in
d+ 1 dimensions are denoted by p,v, ... and those in the remaining D — d (reduced)
dimensions by I,.J,.... To make contact with the type II D-string world volume
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theories one sets D =10 and d = 1.

In any dimension the corresponding D dimensional Yang-Mills theory has a po-

tential of the form )

—tr %[AI,AJ]Q, (2.2)

with flat directions along the Cartan subalgebra. Decompose the Lie- algebra, g, of
the gauge group as g = t @ k, where t is the Cartan subalgebra and £ its ortho-
complement. It makes good sense, therefore, to perform a non-canonical split,

Ay = AL, + AL (2.3)

where the superscripts indicate the part of the Lie-algebra that the fields live in.
Before proceeding we need to gauge fix. Given the splitting of the algebra, it behaves
us to choose the background field gauge

DM (AN A% =0, (2.4)
which preserves the maximal Torus gauge invariance. The ghosts come in as
trC" Dy (ANYDM(A)CF + tr ¢°C*[[AL,, CH)F, AMF). (2.5)

We choose a Feynman type gauge with a coeflicient chosen to give the most straight-
forward analysis, namely we add

1 2 '
tr— (D™ (4% A% (2.6)
to the action. With this choice the potential becomes
i
—tr E[Aﬁ,A?]z + ..., (2.7)
where the ellipses indicate higher order terms in A% and which, directly, will be seen

to be irrelevant.

We now perform the following sequence of scalings on the fields appearing in a

N =1 super Yang-Mills theory in D dimensions
1 — 1~
Ak, EAﬁ,[, W gk TF o Lok

N g?

On a torus 7T¢, with periodic boundary conditions on all the fields appearing, this

(2.8)

scaling has unit Jacobian. We can now take the g — oo limit. The action, in this
limit reduces to:

S = tr [ diz = TB (A 4t - LAy AL
YT M AL, 4] + [CF, A4 ][CF, A8, (2.9)
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All the fields in the k part of the Lie-algebra can be integrated out and clearly give
an overall contribution of unity to the path integral. Thus, we are left with a free,
supersymmetric, system of Cartan valued fields. By invoking the Weyl symmetry
that is left over, one finds that the target space of the theory is (R(P=9" x T) /¥,
where 7 is the rank of the group and W is the Weyl group. Specifying D =10, d =1,
we are left with a 1+1 sigma model corresponding to N copies of a type IIB string
moving in (R®)¥/Sy, with Sy the permutation group [41].

2.1.2 Type I and the IR Limit

The flat directions of the potential in this case require mutually commuting matrices
once more. We denote those X’s, with a slight abuse of notation, by X* (for example
one may choose these to be diagonal). A convenient way to proceed is to start with
the (complexified) SU(N) Lie algebra and to split it into a Cartan subalgebra ¢ and
into positive and negative roots, k. and k_, respectively, that is, k = k, @k_. The Z,
projection means that, in this basis, the world volume gauge fields are proportional
to the anti-symmetric (imaginary part of k) generators, m_ = k;. —k_, while the X’s
are proportional to the symmetric generators, ¢ and (real part of k) my = ki + k—.
With these identifications the bosonic parts of the type I and type II theories coincide.
We choose the same gauge fixing as in the type II theory, now restricted to the m_

directions,
AT 4+ g[X, X™] =0 (2.10)
and we scale the fields in a similar way, that is
1 m 1 1
Apm = AT, Xp T =X AT — —A™,
g 9 NG
1 —mn_ 1 _
Sy —gm O 5 =C. (2.11)

V9 9
The remaining fields X*, St, C™ and x are unchanged. As before the Jacobian of
these scalings is unity if we take periodic boundary conditions for the fermions S and
A. There is no such requirement on the x. Consequently the g — oo limit may be
safely taken.
The action now takes the form
1

1 2 1 m m
S = tr / d's — 5 |0uXi| + S8t — SIXE AT — SXE X7
16 B 16
+A™TIXG, 5™+ O, XHIC™, X[ + 30 Px* + 2 XX
A=1 A=1
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Formally, since the x fields are chiral, only the right moving part of the gauge field
is coupled to them and one can perform the integral over the left moving part of the
gauge field which sets the left moving part to zero. Hence, on integrating out the
massive modes, one would be left with a completely free theory of the massless modes
X' S* and x. The determinant factors would then, at least formally, cancel between
the fields of various statistics.

However, the above cancellation of the determinant factors is a bit quick. If
correct, it would imply that even if we had started with an anomalous theory we would
end up, in the limit, with a well defined superconformal field theory. For example, this
would seem to be the case if we simply ignored the x fields altogether. The point is
that each fermionic determinant appearing is anomalous. These determinants, when
defined in a vector gauge invariant way, involve extra quadratic terms in the gauge
field. The presence of these would mean that the functional determinants would
not cancel, since the gauge field contribution would not be Det(X*)2. Happily, the
condition that the theory be anomaly free means that the total sum of these extra
pieces is zero and this is exactly what is required to make our formal argument above
work.

On including the center of mass one gets N of the X’s and S’s, each transforming
as a 8y and 8g of SO(8) respectively and N x’s each transforming as a fundamental
of SO(32). The field content is like that of N copies of the heterotic string (1.3) in
the light-cone gauge with an effective inverse tension

Qeg = &' AL (2.12)

The condition (2.10) does not completely fix the gauge, there are still discrete trans-
formations which leave the action invariant. There is the permutation group Sy which
permutes the NV copies of (X, S, x) and which has the interpretation of permuting the
N D-strings. There are also O(N) transformations which leave invariant X and S
but which act non-trivially on the x’s by reflection giving rise to a Z{'. The full
orbifold group is therefore the semidirect product SyxZ% .

2.1.3 Elliptic Genera and Symmetric Spaces

The arguments of the previous section implies that we can read the spectrum of N type
I D-string bound states from the elliptic genus of the conformal theory describing N
copies of heterotic strings moving on (R®)Y /Sy x ZY¥. Similar arguments leads to the
conclusion that the spectrum of D-string bound states for a T%/Qoy compactification
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of type IIB theory can be read from the elliptic genus of the conformal orbifold
theory defined by N copies of the dual type IIB string on 7¢/(—) 2oy, modded out
by the Weyl symmetry group Sy. In this subsection we define the elliptic genera
corresponding to these kind of orbifold conformal field theories, and work it out the
generalities of their computations.

Given a two-dimensional CFT, the relevant elliptic genus for our present discus-

sion, is the character-valued partition function in the right moving Ramond sector:
X(Q) — TTH(_)FRqLo——c/Mqu—-c/M — TTH(_)FR6—2WT2H+27T’iRT1Pg’ (2'13)

where g = €2™" and 7 is the genus-one worldsheet modulus. R is a constant introduced
for later convenience and H and P, are the Hamiltonian and momentum along the o
direction respectively. That (2.13) is an index can be seen easily from the fact that
the right moving Ramond trace Tr(—)f® get contributions only from ground states.
Indeed, massive states come always in supersymmetric pairs which clearly cancel out
in this trace. The elliptic genus (2.13) counts then effectively the number of BPS
states (ground states of the right moving supersymmetric sector), or more precisely

the difference between fermionic and bosonic ground states for the system described
by H.

In the following, we will be interested in computing this elliptic genera for two
dimensional CFT’s obtained by modding out the Hilbert space for N copies of a given
world-sheet theory (usually a quotient Hilbert space H/Zx) by the permutation group
Sy

Hy z, = Sn(H/Z) = HY /Sy x Z7. (2.14)

7y is an action on a Hilbert space H, which preserves some number of supersym-
metries, let us say A. The relevant conformal field theories involved in our future
discussions are more like Green-Schwarz strings, where the supersymmetry is realized
through the zero modes for some periodic fermion in H/Z, which we denote in the
following by S. The Z; action acts trivially on these modes.

Let us briefly review how the orbifold elliptic genus is computed [42]. The Hilbert
space for a non-Abelian orbifold conformal field theory is built from the different
twisted sectors labeled by the conjugacy classes of the orbifold group G. In each
sector we project by the centralizer Cj in G, g being the twist element. The trace
(2.13) in then given by

. .
- — h
Z kNI[Zg]: 0 (2.15)
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where [g]= [(g, €)] denote the conjugacy class of a g group element in G = Sy x Z}F,
(9 € Sy, € € ZI¥). The elliptic genus for this CFT is zero, viz. (2V71 —2V=1) =
0, due to the trace on the fermionic zero modes associated to the center of mass
combination S§ 4+ S3 + -+ SY¥. That this combination is invariant under the orbifold
group is clear, since S{ are invariant under Z;, and get permutated under Sy. Indeed,
these zero modes generate the 2V~ bosonic and 2V~ fermionic components of the
short BPS supermultiplet, and being interested in computing the degeneracies of such
supermultiplets only sectors with no additional fermionic zero modes will be relevant.

Let us start by identifying these sectors. In order to achieve this goal it is sufficient
to consider the action of Sy, since as already stated Z}' does not act on the S fields.
A general conjugacy class [g] in Sy is characterized by partitions N, of N satisfying
S nN, = N, where N, denotes the multiplicity of the cyclic permutation (n) in the
decomposition

[g] = ()™ (2)" - (s)™. (2.16)
The centralizer for an element in this conjugacy class takes the form
Cy =[] Sw, x 2}, (2.17)
n=1

We can now see that if [g] involves cycles of different lengths, say (n)® and (m)°
with n £ m, then the corresponding twisted sector does not contribute to the elliptic -
genus. To see this, we note that there are now at least two sets of zero modes for
S, which can be expressed, by a suitable ordering of indices, as (S; + Sz + -+ - Sna)
and (Spat1 + -+ - Spatms), Where the two factors (n)® and (m)® act on the two sets of
indices in the obvious way. These zero modes survive the group projection because
the centralizer of g does not contain any element that mixes these two sets of indices
with each other, thereby giving zero contribution to the elliptic genus. Thus we need
only to consider those sectors with [g] = (L) where N = LM. -

The centralizer in the case where [g] = (L)M is C;, = Sy x Z}. From the
boundary condition along o it is clear that there are L combinations of S’s that are
periodic in . By suitable ordering, they can be expressed as S* = ZZL:(T,;BI S; for
k=0,...,M — 1. These zero modes have to be projected by the elements A in the
centralizer Cy. In particular, when h is the generator of Zs C Sy C C,, it acts on
the zero modes S* by cyclic permutation. It is clear, therefore, that only the center
of mass combination Yp 5! S* is periodic along the ¢ direction. Hence, this sector
contributes to the elliptic genus. More generally any h = (e, f) € C, = Sy x Z¥ will
satisfy the above criteria provided e = (M) € Sy and f is some element of Z}. The
number of such elements A is (M — 1)! x LM,
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The full orbifold group G is specified by an element of Sy (discussed above) to-
gether with an element of Z}. Let us consider a general element (g, €). We denote by
62“% the eigenvalue of a given field ¢ in H under the Z; action. Now Sy acts as an au-
tomorphism in Z¥ by permuting the various Zj factors. We denote this action by g(e).
Then the semi-direct product is defined in the usual way: (g,¢).(¢',€) = (99, €g(€')).
Twisted sectors will now be labeled by a conjugacy class in G. The relevant sectors,
for the elliptic genus computation, as discussed above, are the conjugacy classes [g]
in Sy of the form [g] = (L)M with N = LM. One can easily verify that the various
classes in G are labeled by ([g], €) with € = €1.€2 . .. €ps Where each ¢; is in the quotient
subgroup of ZF by a Zj, subgroup. Combining this with the condition that we have
found for h we may conclude that all the ¢;’s must be equal (i.e. all ;s must have
the same eigenvalue under ZF) in order for such h to exist in the centralizer of ([g], €)
in G. Different sectors are characterized then by a o-twisted representative

g=(g;6) = (I)";er.€2- - - ens) (2.18)
with e = -+ ey = (82”35139‘, 1,1,---1),¢=0,1,---k—1. A sector twisted by a group

element (2.18) should be projected by the centralizer
h=(ha)=(Zyx Z¥; 0100 an)) (2.19)

where a € Z} satisfies eh(€) = ag(a). The number of independent such o’s is &M and
therefore the order of the centralizer of ([g],¢) is ML k™. The number of elements
h in (2.19) that give rise to non-zero trace is (M — 1)!ILM kM and therefore these are
the relevant elements for the computation of elliptic genus. However, not all the A’s
of this form give different traces. Indeed, if A and A’ are in the same conjugacy class
in Cy, they will give the same trace. We can choose again a representative element
h. In a diagonal form, the actions (2.18),(2.19) for a given representative then read

g = eQwi(%%—l—-}:)
h = 2miedirtiirtin) (2.20)

with { =0,---L—1,7 =0, --M — 1 denoting the N = M - L copies of a generic
field p € Hand s =0, ---L —1and t,,t, =0,---k — 1 the orders of the Z; elements
in ¢ and 7 directions respectively. It is easy to verify that the number of elements in
the centralizer C}, in Cy, for a relevant h, is kML = kN. As a result, the number of
elements in the conjugacy class of such h in C, is |C,|/|Ch| = (M — 1)ILM-1EM-1,
The distinct conjugacy classes, that give non-zero traces, are labeled by the three
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integers s, t,,ts. Each of these classes appear with a prefactor, which is given by the
number of elements in the class divided by the order of Cy, and is equal to 1/(kN).

We are now ready to compute the elliptic genus of the theory characterized by the
Hilbert space (2.14) starting from the original ones for H

X = Hx[%] (2.21)
s P |
where -
Xi:ad’] — H(]- 4 e27r72[5’¢qn——1/2—a¢)e¢ (222)
IB¢ n=1
is the oscillator modes contributions for a generic, say right-moving, ¢, = —1(1)

bosonic (fermionic) field ¢ with boundary condition data described by oy, 5. We
will omit in the following the non trivial zero mode contributions which are included
at the end of the computation.

We can now write the contribution to the elliptic genus of a given g, h sector with
eigenvalues given by (2.20) as '

M-1L-1 o '
S & T, - -
ngﬁth{ ‘ﬂ (@)= IT IT I[(1+Zsqrrioestvyes (2.23)
Be r=0 [=0 n=0
with
tt {
a¢(l) = a¢+k—z+z

Bsll) = o+ — +t

Performing the products over r and | we are left with

@ - ; M onisM\n—1/2—a\e
XLt [ﬂﬂ(Q)= [1 @+ e (grePmon)n1/2me)s (2.24)

m=1
in terms of the modified spin structure data

1 t, 1
a (a¢+2)+tk+2
1 1 th+ sty 1

_ : z cht o9 - 2.2
¢ M(ﬂ¢+2)+s(a¢+2)+t T +2 (2.25)

Finally the zero-mode contributions to the elliptic genus depend on the bosonic

or fermionic nature of the state under consideration. For fermions one finds:

M-1 :
(2V-1 — o1y T1 (1 — e2rig/myan = (V-1 — N =Ly, (2.26)

i=1
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For bosonic states there is a further distinction depending on the compactness of the
bosonic coordinate. For d compact bosons one has

Ld Z (q%EZWi%)pz (q—%eQWi‘%>ﬁ2. (227)
(pP)Eld,a

For D non-compact bosons one gets
LP7y P2 (2.28)

We can now collect the results for the two cases of interest:

Type I D-strings in S;: The relevant worldsheet fields are given by H = X7, Ss, x*
in (2.14). The Z, operation corresponds to the Z, action x4 — —xA (ty = Litx =
ts = 0) which leads to the four spin structures realizing the SO(32) lattice. The
original fields are all in the odd spin structure ay = Gy = :,12- The number of super-
symmetries is A/ = 4. Collecting then (2.24), (2.25) and (2.28) we are left with

' to+3 1o M oris.g
838 1 &l Oy | (g T it
1 —4 3L
Xn(g) = > M D) s (2.29)
TS Y, 2N 24 fZon (g Ee?mit)

where an overall factor % have been included for later convenience.

Type IIB D-strings in S;/Qoy: In this case the relevant worldsheet content is
given by H = X, 5,,5;, where the X;’s and S,’s are in the odd spin structure
ap = By = % while S; represent an antiperiodic fermion oy = 0, 8, = % We antici-
pate this result, which will be rigorously derived in section 2.3. There is no Z; action
in this case, we set then t, = ¢, = 0. The number of supersymmetries is N’ = 4 as
before. Collecting (2.24), (2.25) and (2.28) we are left now with

(2.30)

where the same overall normalization 75 have been included as before.

2.1.4 Longest string versus intermediate or short strings

The boundary conditions (2.18) represent a string starting in the first D-string, ending

in the second one and so on, coming back to the first D-string after L steps. It can be
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thought then as M strings of length L. The longest string corresponds then to the twist
element [g] = (IV), the shortest to the identity [g] = (1)" and intermediate strings to
generic [g] = (L)M with 1 < M < N. Even though the computation of the elliptic
genus receives contributions from both the longest string sector and the intermediate
or short string sectors, it is only the longest string sector that corresponds to a real
threshold bound states of N D-strings. Consider for example the shortest string
sector. It receives contributions only from the sector tr h(—1)F where [h] = (N).
In this sector only the states having zero relative transverse momenta survive. In
position space, therefore, the wave function of each of the NV strings is constant along
the relative separations. As a result such states are not normalizable. The same
argument also applies to the intermediate strings. In this case there are M groups
of strings of length I each and the wave function is constant as a function of the
relative separations between these M groups. This state therefore represents a state
of M strings, each of which is a threshold bound state of L strings. The analogue of a
single particle state appears only in the longest string sector with M =1 and L = N.
This interpretation is also clear intuitively from the orbifold conformal field theory
description, since the twisted states in this sector correspond to wave functions which
are localized at the fixed point.

To see this more clearly, we can compactify one of the transverse directions, say
Xs, on a circle of radius r and give the system a total momentum 1/r along this
direction. Note that this is the minimal unit of quantized momentum. We will now

show that only the longest string sector can carry this momentum.

The zero modes for X (i = 1,...,N) for a general twisted sector of relevance
labeled by (L, M) reads, after suitable ordering of indices, as:
. . kr2mt lr o
Xi=ad"+——+ —— 2.31
where a® satisfy
; . 2mkr
+L 1
a = a + Vi
: 2l
Y = o & 7;7", j=1,...,L—1, (2.32)

and k and £ are arbitrary integers. Note that the integers k£ and £ are independent of
1 because only the center of mass Xz is a zero mode under the combined actions of
the twists along the ¢ and o directions. £ here denotes the winding number along Xj
direction. These zero modes contribute to the action as

AS = [ (70 + Nra(£ ) (2.33)




The total momentum is 2m}1, [do ¥, 0, X} = -5 We can now perform a Poisson
eff

Mm‘gaeﬁ
resummation in order to go to the Hamiltonian formulation, with the result that the

total momentum p along the Xy direction is:

p= Mk (2.34)

T

with k£ some integer and the partition function is
_Ph
Zq““ o g N\/FQZ(L M), (2.35)

where pp, = M (-o—‘il’fff +4r)and pg = M (ﬁl’fﬁ —£r). This shows that the smallest unit of
momentum, p = 1/r, gets contributions only from the M =1 (i.e. the longest string).
From the above partition function we see that this state carries an extra energy given
by olgp?/2NR; which, as we shall see below, is exactly what is expected from the
dual side.

2.2 Type I/heterotic duality in D=9

We start by describing the electric spectrum of heterotic string states for compacti-
fications to D = 9 on a circle of radius Ry with generic Wilson lines Y turned on.
The spectrum of physical states is defined by the Mass formula and level matching

condition
s 1 1, 2
My = §PL + = (NL -1)= 5PR + J(NR —c) (2.36)

with ¢ = 0,1/2 the zero point energy for the NS and R sector respectively. The left
and right moving momenta [43]

k+YP+NY?/2 N NRy

Pr = ;
RH (07
2 k+YP+ NY?
pr = (‘7(P+NY), T L NRH) (2.37)
(0% RH o

define a vector p = (pr,pr) in the I'q17) lattice of charges corresponding to the
winding NV, the Kaluza-Klein momentum

1

D9 = B

1
(k+YP+ ~Y2N) ‘ (2.38)
and the I'(o 16y vector P, associated to the SO(32) charges.
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For the spectrum of BPS states, we should in addition to set the right moving
oscillator number to its ground state Ng = c¢. The physical condition (2.36) reduces
then to

kN = —;—PQ +Np—1 (2.39)

The degeneracies d(IN,) of these states can be found by expanding the left moving
heterotic partition function in the absence of Wilson lines

Z}wt 24 Z Zd(NL)qNLW1a (240)
N

PcT'is

since a continuous Wilson line cannot change these multiplicities. Furthermore, the

mass m in the string frame is given by

M =

D9 + (2.41)

NRHI

On the other hand, the Type I theory is related to the heterotic string theory
through the relations (1.26). This imply that a heterotic state labeled by N, k and
P is mapped to a type I state with Kaluza-Klein momentum pg and mass m, in the
string frame, given by:

py = (k +Y.P+ YQN) (2.42)
R; 2
NR; |
M = :
Pot | (2.43)

where R; is the type I radius along the X° direction. Moreover the multiplicities
should be given by the same d(Np)’s as in (2.40).

As we have mentioned the information about charges, masses and multiplicities of
bound states of N type I D-strings wrapped around the circle can be extracted from
the elliptic genus of the O(N) gauge theory (2.1). This index was computed in the
previous section to be given by (2.29). The longest contribution (L = N, M = 1) can
be written as

(8—-8)1 2
VX TEE I

3077(

X (a) =

e T 5 ok (PENY)? (2.44)

Zlv—'

T

LSRN

Ak

where the factor (8 — 8) represents the 8 bosons and 8 fermions of the small /' = 4
vector multiplet. We can now compare this result with the predictions (2.40), (2.42)
and (2.43) of type I/heterotic duality for the multiplicities, charges and masses of
D-string bound states. The heterotic winding mode N is mapped to the D-string
number. The Kaluza-Klein momentum pg, on the other hand, is the longitudinal
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momentum P, of the D-string system along the ¢ direction. Given the fact that P,
is the difference of the left and right Virasoro generators Lo — Ly, its charge is just
given by the coefficient of 27iR;7; in the partition function. From (2.44) and taking
into account the projection implied by the sum over s, we conclude that

P, = —(k+Y.P+ YZN)
Ry
11,
F = SGPP+Na-1) €z, (2.45)

where (Np—1)/N appears from the expansion of 7(g¥ ). Note that the multiplicity
of these states is the same as the coefficient of ¢™*~! in the expansion of n(q)~2%. The
value of k is bounded below by (—=1) for N =1 and by 0 for N > 1, while the value
of P, is bounded by —1/NR;. These two equations are exactly the ones appearing
in (2.42) for the Kaluza-Klein momentum and the level matching condition (2.39) for
the BPS states. It is also clear that the two multiplicities match, as both are given

Np—1 —24

by the coefficient of ¢ in the expansion of 7(q)

 Furthermore, the mass of the bound state is the original mass of N D-strings
wrapped around the circle, plus the energy carried by the excitation, which is given
by the coefficient of T' = R;7, in (2.44). Since the partition function depends only
on g the latter is equal to P,. Thus the total energy is gr,ff + P,. This is exactly
the mass given in (2.43) predicted by the duality up to a sign. As mentioned earlier
P, > —1/NR;. Therefore, for R? > o'A\;/N? the quantity - @L + P, is positive

definite and hence it coincides with the absolute value appearing in (2.43). However,

for R? < o/\;/N? this quantity is negative, for a suitable choice of the Wilson line
Y, and the result would not make sense. But this is exactly the region in which the
type I perturbation theory breaks down, as argued in [6].

Finally, we consider the situation discussed in the last section where a transverse
direction is compactified on a circle of radius r; and the system carries a momentum
k/rr. This does not alter the level matching condition and therefore the multiplicity of
the state. Recalling that ale = o'A;, we find that the extra energy is k>a/A\; /2N R;r2.
On the heterotic side the mass for a state with Winding number N along the X
direction and carrying momentum k/rg along the Xz direction is given by

—\/N2R2 ka') (2.46)

By using the duality relations (1.26) and expanding the square root to the leading
order in A; we find that the extra mass is exactly k%a/A;/2NR;r?, in agreement with
the prediction of duality.
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2.3 Type IIB on Si/(—)Zoy vs. Type IIB on
Td/QO'V

We now consider a (4,0) model, which is obtained by compactifying type IIB theory
on the asymmetric orbifold S;/(—)oy. Fy is the spacetime left-moving fermion
number while oy is a shift of order two in the I';; lattice of momenta. As a result
of the orbifold projection, the left moving supercharges are projected out in the
untwisted sector, while, due to the shift in the momentum lattice, no supercharge
appears in the twisted sector. The orbifold projection removes all R-R states and
therefore this model is effectively a type II vacuum without D-branes. The spectrum
of BPS states is therefore completely perturbative much in the same way as in the
previously consider heterotic case.

The BPS perturbative spectrum is defined as before by setting the right moving
oscillators to their ground state Ng = cg. We are left with the following contributions
from the different orbifold sectors [44]:

(8, — 8) ¥a(9)* 27iV-P  p%/2 =52

Z,._ = eV P g R 2 2.47)
! 5 (P pezpm (

(8, — 85) ¥4(g)* 2/2 _52/2

Z_, = ¢ @ (2.48)
3 n(g)*? perzl;w |
e — 4 - !
7 = _emVV (8’” . 85) Us (q32 Z 627mV-Pqp2/2(7p2/2 (249)
T2 77((1) Pel1 14V

In the above expressions the first subscript & refers to the twists in the ¢ direction
whereas the second to the twist in the 7 direction. The factor 8, — 8, comes from the
right-moving fermionic zero modes and counts as before the 8 bosons and 8 fermions
of the small N = 4 supermultiplet, V is the shift vector corresponding to oy. Finally
P = (p,p) are left- and right- moving momenta in the compact direction.

The only gauge fields in these models are those coming from the KK reduction
of the ten dimensional metric Gy and NS-NS antisymmetric tensor B3, since, as
discussed above, there are no gauge fields arising from the Ramond-Ramond sector.
The corresponding charges belong to the (shifted) lattice appearing in eqs.(2.47)
to (2.49). These are giving by the winding number N and KK momentum k/R
corresponding to the 9-dimensional gauge fields BJ¢® and Go. We will take the
“geometric” shift to be V = (v,7) = (1/2R,1/2R). The level matching condition
reduces then to ‘

EN = Ny — ¢y, (2.50)
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where k is integer (half-integer) in the untwisted (twisted) sector and c; denotes, the
left moving zero point energy due to the Z5 twists. The multiplicity of these BPS
states for a given k, N is defined by the coefficient of ¢/ in the expansion of egs.
(2.47-2.49), with Ny, given by (2.50).

The conjectured dual pair for the type II orbifold under consideration is a type
I theory without open strings [44], obtained by modding out type IIB theory with
Qoy. The S-duality of ten-dimensional type IIB string theory, which exchanges the
NS-NS and R-R antisymmetric tensors, maps, in particular winding modes of the
fundamental string into D-string winding modes. We can conclude then that in the
system of N “type I” D-strings, each one wrapped once around the circle, there should
exist bound states carrying a given KK momentum & , with mass and degeneracy given
by the above relations through the duality map (1.28). As before, in the context of
type I - heterotic duality, these data about the bound states are encoded in the
elliptic genus of the effective gauge theory describing the dynamics of N such nearby
D-strings.

We come now to the determination of the effective gauge theory governing the D-
string dynamics in the present situation. From eq (1.31) we see that S-duality maps
the (=) action to the world-sheet parity operation Q. In D = 10 the two quotient
theories are vastly different. On the one hand, projecting the type IIB theory by (—)#*
gives the type IIA theory since the twisted sector of the orbifold provides the extra
(opposite-chirality) supercharges to restore (non-chiral) maximal supersymmetry. On
the other hand, projecting the type IIB theory by ) gives the type I theory as we
have seen before.

Nevertheless accompanying the Zj-projection by a shift in the compactification
torus results in a dual pair in lower dimensions [45]. The relevant gauge theory
describing the corresponding D-string system will be obtained by projecting the usual
U(N) gauge theory of type IIB D-strings [46] onto Qoy invariant fields. The KK
momentum of the fundamental string corresponds to the P, momentum in the D-
string system, and therefore, oy, which is +1 or —1 depending on whether the KK
momentum is even or odd, corresponds to periodicity (anti-periodicity) along the o-
direction on the D-string world-sheet. Recalling that in the action of Q on the U(N)
Chan-Paton factors there is a relative sign between the transverse and longitudinal
degrees of freedom, it is easy to obtain the field content resulting from the Qoy
projection. Let us denote by A,, X;, S, and S; the gauge field, the transverse
scalars, the left- and right-moving fermions respectively, of the U(N) type IIB D-
string system. The indices I, a,a refer to the 8y, 8, and 8, representations of the
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SO(8)r R-symmetry group as before. The result of the Q2o projection is then:

Xi,85, 8, A, for P, even
X;,S7,S5 A for P, odd (2.51)

where + and — denote the symmetric and adjoint representations of O(NV) respec-
tively.

Given these preliminary observations, one can, as before, compute the elliptic
genus of this gauge theory in the infrared limit where the theory flows to a super-
conformal orbifold field theory. Indeed, the charged fields get massive and can be
integrated out leaving a free field theory in terms of the diagonal fields X, S! and
St (t=1---N) in (2.51). Finally, modding out by the remaining Weyl symmetry
group, we are left with an orbifold theory with target space (R®)"/Sy.

Let us analyze first the free N = 1 case. It is convenient to define new 7, = 20,
variables, in terms of which the field content (2.51) reduce to 8 g-periodic bosons X;
and chiral fermions S; and 8 F-antiperiodic fermions S, with all possible values of
P; momenta. The partition function (or elliptic genus, since we are in the odd spin
structure for the S, fields) is then given by

1 93(d) 2/929% /2 |
(8, — 85) =~ F g 2.52)
&G 2 (

where right-moving oscillators cancel out between the X; and S, supersymmetric
fields, (8, — 8;) represents, as before, the realization of the BPS supermultiplet and
d = ™. The partition function (2.52) reproduces then the correct masses, charges
and degeneracies coming from (2.48) ( plus the 7 — 7 + 1 amplitude (2.49) which
implements the level matching condition (2.50) for N = 1), once we identify the radius
of compactification of the dual theory R with twice the radius R of the original one.

We now proceed to study the N > 1 case, which as was previously stated corre-
sponds to N copies of the N = 1 field content modded out by the permutation group
Sy. We can now use the results (2.30) for the elliptic genus of this symmetric space.
The contribution of the relevant sector (M =1, L = N) is given by

1 1N 119[%_'_%]4(@71\70}3) '

- 241 P _ 2 2:‘2/2
— (8, — 8) = 273 S oW fg (2.53)
Té N ; le(q#ws) Pelyq

with w = e* . The sum over s projects on the modes

1P2
= —(— + N, Z 2.54
k= (5 +Na) € (2.54)
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which is just the level matching condition (2.50). The multiplicities can be found upon
expanding (2.53) in powers of ¢ ¥. In particular for N odd they come from the expan-
sion of 94(§~) and ¥s(§~) reproducing the degeneracies arising from (2.48)+(2.49)
once we apply the level matching condition (2.54). For N even, additional fermionic
zero modes appears for the S, field for even values of s, giving a vanishing contribu-
tion to the sum (2.30). In this case we are left with a sum over odd s of ¥, (GVw?®),
which reproduces the degeneracies, masses and charges coming from (2.47).
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Chapter 3

Threshold corrections in type 11

string vacua

In the previous chapter we provided some evidences for the equivalences between var-
ious ten dimensional string theories by studying the BPS spectrum of physical states
in lower dimensional compactifications. We proofed in particular the isomorphisms
between the BPS spectra of states for the nine dimensional theories arising as com-
pactifications of type I/heterotic string theories on a circle and for type IIB strings
on S1/(=)toy-S1/Qoy. We would like now to apply these results in the study of the
low energy effective actions describing these string vacua. In particular we study the
moduli dependence for the special (“BPS saturated”) F* terms in the D = 8 dimen-
sional low energy effective action for the conjecture pair of type II strings. We follow
closely a sequence of works [47], where a similar analysis for the threshold corrections
in the contex’p of type I/heterotic duality has been performed.

The interest in the study of these terms relies on the fact that they are believed
to receive only one-loop corrections for toroidal heterotic compactifications to D > 4
dimensions. Supersymmetry protects this term from higher loops perturbative correc-
tions while the only identifiable source of non-perturbative corrections (the fivebrane
instanton) is always infinitely heavy for compactifications to D > 4 dimensions. This
seems to be also the case for the present type II model. The (—)ft oy action removes
the RR-fields leaving an effective type II theory without D-branes [52]. The only
non-perturbative source we can think of is again the fivebrane instanton which can-
not enter in the correction of a D > 4 dimensional effective action. On the “type
I” side (type I without open strings or type IIB on T?/Qay [44]) however, D-string
instantons are expected to correct the effective actions for D < 8 dimensions. Indeed,
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using the conformal description of the infrared limit for the N D-instantons ! system
we will be able to compute these non-perturbative corrections, showing the agreement

with the exact formula found in the dual computation.

3.1 Threshold corrections in type IIB on 7?/(—)oy

For simplicity we will restrict our attention to the F* couplings in the low energy
effective action. We will assume that, as it is the case for similar terms in toroidal
heterotic compactifications to D > 4 dimensions, the moduli dependence for these
terms in type IIB on 7 /(—) oy receive only one-loop corrections. Let us recall how
the arguments leading to this conclusion for the SO(32) heterotic F* gauge fields,
work. The kind of term we will study are really closer to the O(2,2) gauge fields
G i, By arising from the KK reduction of the heterotic metric and antisymmetric
tensor, but all these gauge fields are treated symmetrically by the T-duality group
0(2,18,7 and therefore is reasonably to believe that the same arguments work in
both cases. For SO(32) gauge fields, the F* terms (as it is also the case for the
R* and F?R? terms) can be obtained by dimensional reduction of ten dimensional
superinvariants, whose bosonic part reads [48]

‘ 1
.[1 = tgt?”]:‘l - ZeloBtT’.,FAl
1
IQ = tg(tsz)z - ZGwB(t’T']:Q)Q (31)

They are special because they contain CP-odd pieces related to the cancellation of
gravitational and gauge anomalies in ten dimensions. Indeed in ten dimensions, the
coefficients of these couplings are completely determined by supersymmetry and the
anomaly cancelling mechanism. This is no longer true for lower dimensional compact-
ifications, where supersymmetry relates, but not completely fixes, their dependence
on the compactification moduli. The moduli dependence for the CP-odd pieces in
(3.1) was studied in [49] for heterotic compactifications . As it was shown in that refer-
ence, they receive only one-loop perturbative corrections. Moreover non-perturbative
corrections for compactifications to D > 4 dimensions are ruled out as we argued
before. It is then plausible to assume that no higher corrections are present for their
F* superpartners.

'D-instantons in this context refer to instanton from the point of view of the eigth dimensional
effective action. The D-recall the origin of these contributions from D-strings wrapped on the 7

torus
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A similar analysis for the type II model under study here, has not been done, but
it looks more like the same. We will assume that this is the case, i.e. we assume that
the one-loop formula we will obtain in this section for the moduli dependence of F*
terms in type IIB on T?/(—)ftoy is exact. The non-perturbative results for similar
terms in the dual low energy effective action will support this assumption.

We will consider a compactification in a target space torus characterized by the
complex moduli

1
T = Ty+iTy = -O?(ngﬂ'\/‘é)
U = U+ iU, = (Ggo +ivVG)/Gss , (3.2)

where G;; and Bg are the o-model metric and NSNS antisymmetric tensor.

We recall that projecting type IIB with (=)~ oy, we remove all RR massless fields.
The only eight dimensional gauge bosons are then given by the G5, G 9 and BJg, Bl
components of the metric and NSNS antisymmetric tensor. The corresponding vertex

operators in the Green-Schwarz formalism can be written as
R 2 i1 v\ (H L &0 &) ginX
VR = [ d2(Gu = Bu)(0X' — 1p.57")(X* — 1p, 57 8)e"  (3.3)
7 /dQZ(Gm' + Byi) (0X* — zll‘pus’)/”ys) (0X" - %Ppg’Yipg)eipX (3.4)

with 7 = 8,9. The V. are the vertices for the graviphotons, i.e. the gauge fields
sitting in the supergravity multiplet. It is easy to see that they cannot contribute
to one-loop corrections to an F* term. Indeed, soaking the eight right moving zero
modes Sy in the torus with the fermionic piece p,Sv™S in (3.3) we bring already the
correct power of momenta. At this order in the momenta, only the bosonic piece in the
left moving part of the vertices can enter, but these leads always to total derivatives
(0X*(2,)0X*(2,)) which cancel out after the z-integrations. Corrections to the F*
terms for the G; and B,,; gauge fields coincide then and are given by the correlations

Au= (R = BRI [ a0 T1 [dadXi () (39

where tg is the tensor (1.41) arising from the right moving zero mode fermionic trace.
It is convenient to define a generating function for all of these terms such that

2 n 4—n
A, = tgFRFE™ / a7 Uaray, 4" d Z(Xi;7) (3.6)

(=)
F 12 Ty dAEdNT
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with F' the fundamental domain for the T torus, and Z (A;, 7) the partition function
in terms of a perturbed Polyakov action with bosonic part

oy \8x7). (3.7)

Sh, / L0 (/GGG X X"+ 1B 0 X 03X

and 0 = ;12(802 — 70,,). This partition function involves a sum over all possible
worldsheet instantons

o) =2 ()= ) () 59

with worldsheet and target space coordinates oy, 0y and X8, X? respectively taking
values in the interval (0,1]. The entries my,n; are integer or half integers depending
on the specific orbifold sector, while mq, ny are always integers. We denote the three
relevant sectors: n; half-integers, m; half-integers and both half integers by ¢ =
+—, —+, —— respectively. Clearly the untwisted sector ¢ = +-+ will not contribute
since it has too many zero modes to be soaked by the four vertex insertions at this
order in the momenta.

In the following we use the normalizations (XM X V) ~ GM¥  with GM¥ the ten

dimensional metric defined by

Q!ITQ 1 U]_
Gy = —= 3.9
T (Ul |U|2> (39)

in the compact space and the flat metric G, = 7, in R®. For the worldsheet metric

g = (MQ “Tl> . (3.10)

Ty \ —T1 1

we choose

The generating function can then be written as

d*r V8 d*r
2T 20, / .
/. 7 2007) = 55 [ 7 Tl (3.11)
with :
T55(A) = L2 3 2riTdetM o Rl (- 1)I - I e re)m( 1)) (3.12)
M.
and A, the anti-holomorphic BPS partition functions (2.47-2.49)
195(q)* 194(q)* 195(q)*
A, =-— A_ — = 3.13
== 3@ S e 20(0)” (319)

Following Dixon, Kaplunovsky and Louis [50] we can express the sum over the M.

matrices in (3.12) as a sum over SL(2, Z) representative integrated in an unfolded
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domain. Notice that the complete generating function Z(\, 7) has no definite modular
transformation properties. This is not the case for the interesting term, the fourth \-
derivative of it appearing in (3.5) which is, indeed, modular invariant. In the following
we keep in mind that we will consider at the end only this term, using (without point
it out) modular manipulations which have sense only for the final result. In this sense
the generating function (3.11) is invariant under the combined SL(2, Z) actions

ar +b

T
ct+d’

and M. — M, (d b) (3.14)
c a
Different e-elements in the sum (3.12) get mixed in general by these transformations,
but the sum is clearly invariant. An orbit is defined by the set of matrices M, which
can be related by some SL(2,Z) element V; to a given representive M, through
M = M,V;. By a change of variables in the 7 integration we can reduce the sum
over matrices M in a given orbit to a single integration over an unfolded domain
obtained as the union of V; images of the fundamental domain through the modular
transformations (3.14). These unfolded domain can be either the strip or the whole
upper half plane depending on whether the matrix M is degenerate (det M = 0) or
non-degenerate (det M # 0).

Let us consider first the degenerate case. Using the modular transformation prop-
erties of (3.12) and (3.13) we can write the contributions from the different orbifold -
sectors in (3.11) as

d2 d2
[T A (1) + T35 Ae () + Tz A () = [ ST A (r) (315)
F Ty ’ ? ’ Fa Ty ’
with 7/ = —% and 7" = 7' + 1. The new fundamental domain F; is the quotient of

the upper half plane by a I'; subgroup of SL(2, Z) transformations defined as the set
of elements V' which keep the form of an M, _ matrix (m; € Z,n, € Z+3). A generic

V= (;C Z) (3.16)

with ad — 2bc = 1. It is easy to see that acting with a V' in this I'; subgroup we can

element of I'y can be written as

always bring a matrix M, _ with zero determinant to the form
0 ji—2
M:( o 2). | (3.17)
0 J2
The sum over M,_ matrices in (3.15) can be written then as a sum over the rep-

resentatives (3.17) labeled by (71, 72). The 7 integration runs now over an unfolded
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domain defined by the union of all images of the F; fundamental domains under the
I'; actions (3.16). We should notice however that not all I'; matrices define different
M's. Indeed, a representative (3.17) is invariant under the action

1 b
Vz(o 1) ie. T—=>T+b (3.18)

The unfolded domain is then the upper half plane modded out by these transfor-
mations , i.e. the strip |7 < %,75 > 0. Substituing (3.17) in (3.15) we are left
with

_mTa(M G- %H—z\znz)

2
/ EZ_I Z e TQUZ‘J]- 2+J2Ul BT A+_(7=)_ (319)
19

strip T4 . .
2 (41,42)#(0,0)

The 7 integration picks up the ¢° power in the expansion
A() =3 AT (3.20)

which is just 2°. After taking the \; derivatives and integrate in 7, we are left with
the final result

((F8)* (Fo)* ™) deg =

\Z % dr; R S
Sowmren [T 5 (- e Fbobeel g
2 (41.52)#(0,0) .

Let us consider now the contributions from the non-degenerate orbits. In this case
acting with an SL(2, Z) transformation we can, at most, bring a matrix M to the

M= (ml ”1> (3.22)

0 Tio

form

where my,n, are in Z or Z+§1 as before depending on the orbifold sector. The 7 — 74b
action (3.18) on this matrix shifts ny — ny +bm;. We can therefore bring always n,
to a fundamental region n; = 0(3),1(2),---,0(3) + m1 — 1. The representatives for

non-degenerate matrices M are then given by the matrices (3.22) with

€ = —+ my €%Z;, n —1§ 2m, — 1
- 1 ) 1—2:27 ) 9
1
€E = —-+ m1€Z+—2—;n1:O,1, -my; — 1
1 13 2my—1
= - Z o PEGY 3 23
€ + my € +2n1 29 5 (3 )



The unfolded domain is now the whole upper half complex plane since all SL(2, Z)
actions are allowed, i.e. distinct elements in a non-degenerate orbit are in one-to-
one correspondence with the copies of the fundamental domain of 7 in the upper
half plane. We should notice however that different replicas of the fundamental
domain in the upper half plane come from different orbifold sectors since SL(2, Z)
transformations which allow us to bring a given matrix M to a representative in (3.23)
mixed the M, with different €’s Therefore only the unfolding of the sum over €’s in
(3.11) have sense.

We can now perform the 7 integrations. Expanding the antiholomorphic modular
functions (3.13) as in (3.20) we are left with the integral
d*r —lzz—lmyr—nl—anlz

In — T2627riTm1n2 / 2 e Tl

. foz[(mlT —~n1)Ag— nzkg]e—Qim’n (3.24)
ct Ty

which after the 7 integrations can be written as

I = (U2T2)% —2mT1m1n2627rm(—Li£&) i (2~ )/ dry %—’m
n - my 3/2
1 o
— (U2T2)2 e—?ﬂ'iTlmﬂsz62Wi”(P‘L%%£1‘2‘)eﬂi/\l('n%1"%?) zr_e—Z\/ﬁ—’; (325)
my /6
with
T: M2
ﬂ = T 2(n2U2 + )\2719 >\1U1TI»2 - —‘)
U, 4
ﬂ'Tg TLUQ 9
= £ 3.26
v T, (Mt (3.26)

In order to extract the F* term we should still act with four A-derivatives acting
on (3.25) and set finally the sources A’s to zero. In the following we will restrict
ourself to the leading behaviour in a %2 expansion of this result. The interest in this
particular expansion will become clear later. In this limit the four derivatives should

hit one of the A-linear terms in the exponential of (3.25) leaving the final expression

<(F8)G(F9)4—a>nondeg =

Ve —27rzn(w—l—lﬂ) o2 T & de dte EZ%L(AIU—)\Z)
tsF An TIM1N U2
T 21076 878 Zm;n D=’
Vs u® o= 2miTm | ni + Uny
—° s F¢F, —pe il mnel (=~ = 3.27
210 67878 Ze:ml,nzlng m1|n2| UZ ( ma ) ( )

where we have used the expansions (3.20) to recontruct the modular forms (3.13)

evaluated now in an induced modulus m—%—[{—”—?
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3.2 Threshold corrections in type I without open

strings

We move on now to the study of F* threshold corrections in the conjecture dual
pair (type IIB on 7?/Qov) of the previously studied type II orbifold model. If the
one-loop formulas obtained for the moduli dependence of F* terms in type IIB on
T?/(=)ftoy are exact, as argued before, they should contain both the perturbative
and non-perturbative corrections in the dual side. Aim of this section is to proof that
this is the case. The results are in complete agreement with the predictions of the
type IIB self-duality conjecture.

~ Let us begin by translating the exact results (3.21) and (3.27) in terms of the
“type I” variables. The duality relations (1.28) implies the scaling of the lengths (in

the o model variables) as
LI’

vV AI’
where the subscripts “F, I”’ denote the lengths in the orbifold (T%/(—)toy) and
orientifold (7%/Qoy) compactifications of type IIB theory respectively. This implies

Lg =

(3.28)

in particular that the volume T scale as T = T4 /Ay and therefore the expansion
in 1/75 of the exact result found in the previous section can be identified with the
genus expansion in the “type I” side. Taking into account also the scaling of the
gauge fleld AF = GI = GL;/\; = AL/), we find that the relevant F* terms in the
eight dimensional effective action scales like

1T 1
F(TE ) [ do[Gr Fh = 7G5 [ /G F. (3.29)

In the previous section we argue that the only non-trivial moduli dependence for
these terms in the orbifold side are given by the one-loop (A% order in the expansion
of f(Tf,\r)) expressions (3.21) and (3.27). By plugging these results in (3.29) we
can see that the contributions from degenerate orbits (f(7§) ~ (Tf')~*) correspond
to one-loop effects (order A?) in the type I side; while the ones from non-degenerate
matrices (f(TF) ~ e~2"T ™" (1 + O(1/TF)) should arise as D-instanton corrections
with instanton number N = myn,. We will now show how these corrections can be
reproduced by a direct computation in the “type I” theory.
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3.2.1 One loop threshold corrections

The one-loop effective actions for a “type I” theory without open strings involve a sum
over the torus and Klein bottle contributions. We are interested in the corrections to
F* terms. There is as before four eight dimensional gauge fields G,; and B", but
only the former ones couple to elementary string states (the Kaluza-Klein modes) in

the spectrum. The relevant vertex operators are defined as before by
1 = .1 .
Vi = Gui(0X* — Zpl,Sfy””S) (0X* — prSv“’S)e”’X, (3.30)

since Qoy is simply the worldsheet parity 2 when acting on a massless state. The
sixteen fermionic zero modes in the torus, if soaked, would bring eigth power of
momenta, and therefore the only relevant contributions comes from the Klein bottle.
The Klein bottle partition function is defined by [51]

]C R ﬁTr Qeﬂ"‘ks 6—7I‘t(kaMG'MN+M2)

2
. ——nnG’
= oG9 [ Fre (331

where the factor (8 —8) comes as before from the zero mode fermionic trace and the t%
from the momentum integration in the uncompact directions. The second expression
in (3.31) is given only by a sum over the classical configurations (Kaluza-Klein) since
quantum bosonic and fermionic contributions cancel out by supersymmetry. The emiks
defines the action oy on a given state of Kaluza-Klein momentum kg running in the
loop. We have performed a poisson ressumation on the integers kg, kg expresing this
projection as a %—shift in the Lagrangian mode ng. The Kaluza-Klein momenta of
states running in the loop is then labeled by the half-integer ng and the integer ng.
The metric G¥ is given by (3.9). Due to this shift in the momentum no massless
closed string state flow in the transverse channel. This implies in particular that the
09 orientifold plane do not carry a RR charge and therefore there is no room for the
introduction of D9 branes and as a result open string string sectors do not appear
[52].

The insertion of four vertex operatos (3.30) in (3.31) will soak the eight left-
right symmetric fermionic zero modes reproducing the right momentum structure
ts F¢Fy~®. For the remaining part of the vertices only the zero mode bosonic pieces
are relevant, leading to four Kaluza-Klein insertions in (3.31). Putting altogether we
are left with the final expression

((Fs)a(F9)4_a>one—loop =
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Va o dt ,
2786758FGF4 “Ty . 7 >

_ _ l)&jg—ae“%ljl—%‘*‘ﬁ[]lz (3.32)
t (jl)j?)?é(o’a)

2
which reproduce precisely the contribution (3.21) from the degenerate orbits in the
dual type IIB model on T2/(-) oy

3.2.2 D-Instanton contributions

Let us consider now non-perturbative corrections in the “type I” side. In eight di-
mensions the only identifiable source for these corrections in the present model are
the contributions from D-instantons, arising from the wrapping of the D-string world-
sheet on the target torus. Since the insertions of four gauge vertices can soak at most
eight fermionic zero modes only the %-BPS D-instantons can contribute. We can use
now the results of the previous chapter. There we study the partition function for
the N-wrapped D-string excitations, by going to the infrared limit where the theory
is described by an orbifold conformal theory. Indeed we can read directly the BPS N
D-instanton partition function from (2.30) once the one-loop 7- parameter is identi-
fied with the complex structure of the target torus U. This summarizes the quantum
contributions to the partition function in the D-instanton background. On top of this
we should include the classical contribution arising from the N D-instanton action for
this model. The bosonic part of this action coincides with the one for the N type IIB
D-strings and can be written as

Sp—inst = ~—Z / d*a(\/g g“" G,w+zB,we D X¥Dg XY (3.33)

where D, represent the supersymmetric covariant derivatives, which in the complex

basis can be written as
1
DX{ = 90X} — ZPUSIW’WSI
_ _ 1 - -
DXt = oXx} - ZPVSI’YWSI

and I label the N Cartan directions of the unbroken U(1)" gauge group. The X’s
are always in the static gauge X = o}, X7 = 0%, where the 7 parameter is identified
with the target complex structure U. Plugging this in (3.33) for a trivial background
in the remaining fields besides the G;; and B;; components, we are left simply with
Sp_inst = 2n NT with T the “dual” complex parameter

VG

1
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In order to study F* couplings with F one of the G,; components of the metric,
we can turn on a background J; for this field and extract the coupling from the fourth
derivative in the appropiate A’s. Notice that only the classical part of the D-instanton
partition function will be modified by these insertions since quantum correlators are

always given by total derivatives which drop out after the z-integrations. We can
identify in (3.33) the relevant coupling as

N _
S = 27TN + a%[(Gﬁg + UG8) DX  + (Gus — UGs)DsXP] + -+ (3.35)
2

where z = o1 + Uoy is the complex worldsheet coordinate. Each G; insertion should
soak two right moving fermionic zero modes. These fermionic modes enter only in
D,. Therefore the fourth derivatives in A hit always this term in (3.35) bringing a

power of NU/U, for each G s insertion and a power of N/U, for the insertions of
G 9. Collecting the different pieces:

e The classical contribution: eIV

e The quantum contributions from (2.30) omiting the (8-8) factor and replacing
T by U

e The fermionic zero mode trace: tgFg Fy "

e An NU/Us, factor for each G g insertion and an N/U, for each G 9

we are left with the final result for the D-instanton contributions

((F)*(F3)* ) p—inst =

543, 2mis 4

Ve e o B[22 (g M)
— tFaF4—a L4 2miTN _— 273 3.36
90,6 8859 T NgM ¢ st:% ni2(gE it (3.36)

which reproduces precisely the contributions from non-degenerate orbits (3.27) after
trivial identifications.
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Chapter 4

D-branes dynamics

4.1 Supersymmetry and higher spin BPS states

As we have seen, Dp-branes correspond to solitonic BPS saturated solutions of Type
ITA(B) supergravity, which preserve one half of the supersymmetries. The remaining
half is realized on a short-multiplet containing 256 p-brane configurations lying in the
44+84+128 representations of the little group SO(9) for massive states. The vari-
ous components of the short-multiplet are related by supersymmetry transformations
generated by the 16 broken supercharges.

Different components of the supermultiplet spanned by these sources, are obtained
by applying supersymmetry transformations to the scalar boundary state |B) through

the operator
16 1

U:‘—t’ieQ_:Z;n-“‘

m=0 )
We have used the SO(9) notation € = (n2,7%) and Q= = (Q¢,Q%). Different com-
ponents of the supermultiplet, corresponding to the possible independent €’s, can be

(eQ)™ (4.1)

thought as the semiclassical multipole expansion of the source. In particular, terms
in U|B) with an even (odd) number of @~ describe couplings to bosonic (fermionic)
closed string states Ug (Ug). We shall restrict ourselves to terms with an even num-
ber of supercharges, the relevant for the study of semiclassical D-brane dynamics in
the eikonal approximation. For instance, the usual boundary (1.16) state corresponds
to the universal part of the source, whereas applying two charges one obtains the part
of the source due to angular momentum, and so on. As we are going to see in the
following, the field theory counterpart of this source expansion is a power series in

the transfered momentum, each momentum corresponding to the insertion of a pair
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of supercharges.

Among the different terms in expansion (4.1) we will always work out the ones with
an equal number of dotted-undotted SO(8) components (1,Q%7:Q%)". All the other
terms simply combine to reconstruct the covariant answer. We consider then bound-
ary states of the form:
|B)ny = V' B) (4.2)
with
Vo = 1.Q*7Q7° (4.3)
The first interesting information we can extract from these higher spin boundary
states is about their couplings to the massless bulk fields. This analysis for the
D-instanton case was performed in the covariant NS-R formalism in ref.[53]. The

formulae displayed in this section are “T-dual” versions of the ones reported in that
reference.

\

n, Q™
1,Q74
n,Q :

,Q7"

\

Fig. 2

In the following, we consider only terms with up to eight supercharges, n = 0, 4,
in eq.(4.2). This covers all the physical information relevant to our considerations.
The one-point functions of the massless bosonic states of NSNS and RR sectors (in
R-NS terminology) are obtained as before from the overlapping

U(n) = (Y| Bo)(n) (4.4)

with |¥) given by the NSNS and RR massless states (1.19), (1.20) and |By) s indicates
the massless content of (4.2)

|Bo)(n) = Vi Bo) = g, - g Wit () R R | By) (4.5)

i1...92n
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where
wgll’}g; (77) = 77[(117]1 ﬁaz o 77@271—1 fyjnﬁa.gn]v;llzzz e 7;221;__].12;2” (46)
and have used the Fierz identity

T
_VaJI)ROJ7

1
asb: __60.17
SO 0 2 +4

the anticommutation relations of Sy* and the boundary conditions (1.12), in order
to express (4.5) in terms only of the left moving SO(8) generators RY .

~ In this way, we can use standard results for Type I theory. The Réj generators are
represented in the 8, and 8. representations by
RS””IZ) — ((5m5mj . 5mi5nj)}j>

RE™a) = 2o (47)

After some simple algebra we can write (4.5) as

|Bo)my = M1} |7) — M7 |a)[B)

with
MGy = 2%, gl ()M
M = 27, gyl () (YRt ) (4.8)

"The 1-point functions can then be written as (up to numerical and o factors)

U™ = &MY = &gy - qruwliTn L M (4.9)
\Ilgf)% = TI‘S[CM(n)]
1 .. o o
= X SOl gl Trsly ke et ] (4.10)
k even "

Eqgs.(4.9) and (4.10) contain all the non-minimal couplings of D-branes with the mass-
less bosonic states of the corresponding supergravity theory. In particular, for even
n the boundary state couples potentially to the NSNS components ¢, 9uv, gr; and
bur (4,v and I,J denoting Neumann and Dirichlet directions respectively), and to 7
the remaining NSNS fields for odd n, as can be seen using the symmetry proper-

]l]n
21...22n "

arise from the non-vanishing gamma-traces in eq.(4.10), corresponding to forms with

ties of w As a source of RR fields, we can see that non-minimal couplings

k=p+1-2n,.,p+1+2n. The specific form of these couplings depends on the

59



polarization details encoded in w. In particular the n = 0 case represent the spin in-
dependent part of the source content and is given by (1.19) and (1.20). The covariant
form of these expresions can be written as

VY M, U= $ SO Trsltea) (41)

M1 [k
k even

where I" are SO(1,9) gamma-matrices, M"# is the covariant extension of eq.(1.14),
with diagonal entries only, -1 and +1 in Neumann and Dirichlet directions respec-
tively, and M = T0...T?.

The first non-minimal NSNS coupling is given by

UTYS = &y My = & My /™' (4.12)
where we have used the fact that ¢;&; = ¢:§;; = 0 and ¢z Mj; = g; (there is a non-
vanishing momentum transfer only along the Dirichlet directions). As anticipated,
eq.(4.12) represents a non-minimal coupling of the brane with the antisymmetric ten-
sor and graviton polarizations b, b;; and g,;. The covariant expression of eq.(4.12)
is simply .
UITYS = £, MJ qpTHPep (4.13)

where 1 is the Majorana-Weyl fermionic parameter associated to the broken super-
symmetry. In a chiral representation, it is simply % = (§), where € = (n%,7%). The
corresponding RR coupling is

1 11...2 810l o 07 15l =
U= > 0w M Trs(v T M) gy (4.14)
k even
where still the completely antisymmetric part in the fermion bilinear is the only non-
vanishing contribution, since qilC'E}g) " = (. The covariant form of eq.(4.14) is

(1) Z k'C’(k) TTS(F“I""‘kFupM)qul_)F“p”w (415)

M1k
k even

The next coupling is Wi55"?, that is

\ngNS = ‘EZJ MIWZM%” = fzj Waj .. a4’)/127.111a271112 ]V[ZN (416)

a3a4

After some algebra eq.(4.16) can be rewritten, neglecting ¢* contact terms which are
irrelevant for our semiclassical analysis, as

jmk =

\I,NSNS gij Imn (U'yinkﬁ ny

i — v ") (4.17)
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where g"ij = L My; + ExMyi. Notice that the combination of spinors in eq.(4.17) is
the right one reproducing the covariant expression [53]

VNS = € qagp YT YT 1 (4.18)
The RR coupling is

kz kxcélt) e ( i1 ..ik,),jljzf),jaj‘;M)wjlH.j4 (4'19)
Using again the gauge condition til z}c)“‘ = 0 and after some manipulations, similar

to those so far performed, it is not difficult to put eq.(4.19) into the covariant form

(2) Z le/Sl: ;%TrS<P#1"'”kFU1V2FV3V4M) Qaqﬁ(@zryluzawq/—)rysy‘iﬂ@b) (4.20)

k even

Following the same procedure, it is possible to write down all the other terms.

4.2 Spin effects for the p-p brane system

In this section we compute the spin dependence of the brane potentials for two parallel
slowly moving Dp-branes. The computation follows the lines of the one in section
2.4.3, where the universal potential (spin-independent) for two D0 branes have been
worked it out. Spin effects can be included by the insertion of the supercharges
vertices V;, (4.3) in universal potential (1.40). The cylinder correlation functions will
then involve in general n velocity Vg's and m supercharge V;’s vertex insertions. The

corresponding amplitudes are given by

A = % /0 it (B, F = 0|e—2m’p+<1"-i6/3x+>%3—,)ﬁ(vn)m|Bp, 7=0b)  (4.21)
Since V; as Vp provide each at most two zero modes (4.21) will give a vanishing
result untill n + m = 4 vertices are inserted. Moreover, for a fixed m, the lead-
ing order potential going like v*~™, will display a similar decoupling of the massive
mode contributions as was the case in (1.42). These amplitudes are therefore scale
invariant, in the sense that their dependence on the distance b is exact, keeping the
same functional form at any finite distance. In the following, expressions similar to
eq.(4.21) will be denoted simply by A, = (VE V,'™"), in order to light the notation.
We wrote in eq.(4.21) all the supercharges applied to the same boundary state; being
fixed simply by a zero modes analysis, the computation will not depend on the choice
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of the boundary, whereas the physical interpretation as polarization effects will be
different. The polarizations of the two D-branes are indeed given by the supersym-

metric parameters n¢,n¢ and n¢,n¢ associated to the two boundaries, as shown in

figure 3.

n{Qa
Mt Qz

-

Fig. 3: example of a spin-dependent term at v? order, m =n = 2.

The m = 0 case is the one we have considered in 2.4.3 for DO branes. For parallel
Dp-branes this universal potential reads

V. .
A4 = -—-gjl_—lTPQ I’U!4 Gg_p(b) (422)

As before, possible contributions to a static force or to v?-potentials are absent due
to a compensation between the gravitational and dilatonic fields (attractive) and the
RR A, field, that for two Dp-branes is repulsive, of course. In this formalism, it is
immediately clear that supersymmetry implies a contribution starting only like vt

The first spin effect is given by A3 = (V3 V); going through the same steps and
after some simple algebra, one obtains

V. [ dQ-Pq i (i) —2mtal o i i
Az = pTHIUP (4m2a/)* p/o dt/Weq(w y)-2mie’q Wasaz (77, 9) '7;1@ v’
Vi i = lij A
—i2 T [l 7777 8;Gop (B) (423)

that represents a spin-orbit like coupling between branes. From eqs.(4.9) and (4.10)
we can derive the NSNS and RR polarizations of the exchanged states, responsible
of these non-minimal couplings. In order to perform the analytic continuation of
eq.(4.23) to Minkowskian coordinates, it is convenient to write covariantly the term
fivtiin, whose SO(1,9) expression is YI''#“1). Performing the rotation we obtain
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ipT%4)_ and sending v* — 7v* leads finally to
V

= T 9,6,y (F) % (4.24)
where 4, =1,...,9 and J## = 9pI'*4) The next spin effect is Ay = (V3 V;%); in this
case we have to distinguish two possible configurations, depending on which boundary

AM ink.

state we apply the supercharges:
A = (VB AP = (Vi VA Vi)

These two contributions can be written as
Ve

-

AP = SHTQ wil iy (1) T 0000,0,G_y (b) (4.25)
vV o o,
.AéQ) = pS+1 T2 1122 (771) Wigig (772) t“mulku Ukvlaiang"p( ) (4-26)
Noting that
fhialkll VRUp = V2 (451’&'2 Sliagiria _ 51’12’351’2%’4) — Qyyiiyte §iais (427)

and working out the spinor algebra, it can be shown that eq.(4.25) reconstructs the
covariant amplitude, that after analytic continuation, takes the following form:

AW = Vi"“T2 V(2T — TP 4T T 65109) 00, Gep (D) (4.28)

2192 02 Pa : o '

Latin letters ¢, j, k, ... . label SO(9) indices running from 1 to 9, in contrast to SO(1, 9)
indices, denoted with Greek letters. In the same way, one can reconstruct the explicit
covariant form of eq.(4.26) and all the remaining spin effects that will follow. We do
not report the explicit relations for all the cases, being quite lengthy, as well as the
analytic continuation. The remaining spin effects are

Agl) _ <VB ‘/7-73> ‘/P"{‘]. T2 ’Uk‘ (77) til..‘iﬁll ’Uzaza]akGQ—p(5> ) (4.29)

4 ’ll 16
-

Vv . S
AP = (Ve V2) = TT2 wh s, (m)wik 4 (m) €51 0,8;0;04 Go—p (b)
and the static force

V . .
AD = (v = T2 ()10 6,8,0,0,Goy (5)

n 4 7'1 -8

v, i 7
AP = (Vo V) = TR ()l () 5 Bi6,001Gy 5)

4 13...28
—

Vi Z 1.1
TITE W s (m)wiy i, () £ 8,0;0,0Ga_p(b) (4.30)

In all these cases the one-point functions considered in last section allows to see

AP = (VEV2) =

which are, in each configuration, the massless string excitations responsible of all

these polarization effects.
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4.3 More general brane configurations

We consider now more general D-brane configurations whose potentials display a
similar SYM/SUGRA correspondence as the ones for the p-p system. From the
supergravity point of view they represent non-trivial backgrounds, while in the SYM
context they are described by fluxes in the worldvolume theory. We start considering
spin potentials for parallel p-p+4 brane configurations. Like more general p-q systems
with mixed Neumann-Dirichlet boundary conditions in four directions, these BPS
configurations preserves 1/4 of the initial supersymmetries, rather than the 1 /2 of
the p-p system. This residual supersymmetry protects as before the leading order
term in the velocity expansion from higher massive modes contributions; however,
unlike in the p-p system, the reduced amount of supersymmetry allows now a non-
trivial metric in the Dp moduli space. In particular the D0-D4 system, studied in
[54], was proposed in [55] as a matrix description for the scattering of an eleven
dimensional supergraviton off the background of a longitudinal fivebrane.

The leading spin dependence of the potential felt by slowly moving p-branes in
the p+4 background is defined by a similar cylinder amplitude as (4.21) with one of
the boundary state now representing a p+4 brane . The relevant zero mode traces
are now of the form

(By|O|Bpas) = Trs,[ON] = Try[ON] — Trs[ON] (4.31)

where O is a product of Réj arising from the zero mode part of the Vz and V;, vertex
insertions and

Lyp 00
NI = (MJMp)? =] 0 =1 0
0 0 I,

Ny = (MEMPM)M-}:(7P+2,,,7P+5)d5 (4.32)

By simple inspection of eq.(4.31), using the matrices (4.32) and the representatibn
of the operators (4.7), we get vanishing traces for O = 1, RY. The first non trivial
result is

i1..04  — 1192 1314
t = TI'SO RO RO

9 it iap+2..p+5
12 (§rtagup S g grts 4 N25ES 4 perm. ) (4.33)

where by “perm.” we mean as before an antisymmetrization within each pair (i1, 72),

(i3,44) and symmetrization under the exchange of each of these pairs.
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The relevant amplitudes describing leading spin-effects are then
’ 1 0 ! - V " - P
An - / dt (Bp7 7= Ole——27rta pH(P —23/6w+)§_B>_(M7)2—n|Bp+4" Y= b) (434)
16 Jo n!
where the total number of vertex insertions now is two providing the four zero modes

required to get the first non-trivial result from eq.(4.33). The rest of the computation
follow the lines of last section. We are left with the universal term

V —,
Ay = _pfi Ty Tp+a [v]> Gs—p(b) (4.35)
and the leading spin potentials
A _ ‘/;H‘l TT 7 17412 8 G A

L= 7 tetens Wy, (M) T v; 8;G5-p(D)

Vi ij i1 B

AP = -—%ﬂTprH Wiy iy (M) £ 0:0;Gsp (D)

|7 i ' Q1. A

A(()2) = Tl TpTprawiygy (m)why;, (n2) £ 0;0;G5_p (D) (4.36)

The appearance of T,,4 and Gs_, instead of the T, and Ggy_, for the p-p system is
due to the lack of four Dirichlet-Dirichlet transfered momentum integrations.

We recall that egs.(4.35) and (4.36) are exact to any order in the brane separation
g, supporting again a Super-Yang Mills description of the corresponding supergravity
potentials. Of course this is again a peculiar property only of these leading order
terms and of the supersymmetric p-p, p-p+4 configurations. Higher order terms or
non supersymmetric brane configurations will involve contributions from the oscillator
part of the vertices (1.39), (4.3) described by modular functions with non-trivial
transformation properties which in general distinguish the large and short distance

behaviors.

We should say however that this property is shared by an amount of other in-
teresting brane systems. Indeed, there several examples [56]-[61] where a similar
SYM/SUGRA correspondence of the leading D-brane interactions have been ob-
served. These brane configurations fall in general into two main groups: supersym-
metric brane configurations, which include besides the examples studied above, the
p-p+8 systems, bound states between p-p+2, p-p+2-p+4, p-p+4, ... D-branes, and
any S or T-dual combinations of these systems; and brane configurations which are
supersymmetric only in certain limits of their moduli space.

Bound states can be considered in general as fluxes for the gauge field living on the
boundary of the biggest D-brane, modifying therefore its boundary conditions. The

corresponding light-cone boundary state for a generic condensate was constructed in
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[32]. The cylinder amplitude defined by two of these boundary states, in the case that
some of the supersymmetries are preserved (take for example two indentical p-p+2
bound states or the S-dual analog of two D-strings with equal electric fluxes turned on
[62]) , will lead to similar vanishing traces as in eq.(4.31), unless N/4 velocity inser-
tions soak the N/2 left zero modes, N being the number of supercharges left unbroken
by the system. Again the spin-dependent dynamics can be studied by iriéerting super-
charges on the cylinder, and once more an equivalent matrix-supergravity description
for the slowly moving regime is guaranteed.

The second interesting class of configurations (and less straight) for which an
analysis along the lines of this paper can be followed, is inspired from the brane
systems studied in [58], which although not supersymmetric, become so in a given
limit of the moduli space. In the analysis of these systems one can follow a strategy
parallel to the one previously applied to the case of moving branes. In that case
supersymmetry is broken for finite velocity v, but the existence of a supersymmetric
limit v = 0, allow us to study leading orders by a simple analysis of the zero mode
structure of amplitudes involving the insertion of vertex operators corresponding to
the deformation (in that case v) from the supersymmetric point. Similarly, now we
look at the neighborhood of a specific choice of flux for which some supersymmetry
is restored. The fermionic part of the operators corresponding to deformations about
this supersymmetric point coincide with the vertex (1.39), once we substitute the
plane (1i) defining the boost operation with the condensate euclidean plane (mn),
and therefore the results can be read directly from the ones quoted above for the

moving brane systems. We can illustrate this with the simple example of a Dp-brane,

_N
2T Rm Rn

state for this specific condensate can be read from the more general one found in [32]
to be defined by eqs.(1.16) and (1.18) through the matrices

wrapped around a 72 with a magnetic flux f; = turned on. The boundary

P 0 0
0 cosa —sina 0
My = 1+ f
? L7 0 sina  cosc 0
0 0 0 I,
My = (2 + )yt (4.37)
where cosa = —i—;’_—%. Notice that eqgs.(4.37) reduce, in the large f limit, to the

matrices (1.14),(1.17) defining the D(p-2) brane, up to an overall f factor and the
missing of two momentum modes corresponding to the Neumann-Dirichlet directions.
As we discussed before, we can study the leading interactions of this bound state with
a D(p-2) ordinary brane by simply perturbing the system by a small ¢ = 1 /f quantity
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from the supersymmetric ¢ = 0 point. The spin independent potential is then defined
by correlators involving insertions of Ri'v* and RJ™mc in the D(p-2)-D(p-2) cylinder,
and as before we have vanishing traces unless at least four of these insertions soak
the eight zero modes, leaving

1V,

(Bp—2|Bp, ¢, v) = ;r—g—Bi—Tpr_g(v‘l + 2v%(me)? + (me)H) Gr_p (7). (4.38)

The overall 1/c factor can be interpreted as the number of D(p-2) branes arising
from the Dp-brane in the ¢ — 0 limit, the two missing powers in r represents the
reduced transverse space to the system, and the relative coefficients are fixed by the
kinematical tensor (1.41) . Given, as before, by an exact string computation at the
relevant order in the v, ¢ expansion, this potential is valid at any transverse distance r
and in particular admits equivalent Super Yang-Mills and supergravity descriptions.
The p=2 case is the relevant one for the analysis performed in [58]. In that refer-
ence the authors study the graviton-membrane, static membrane-antimembrane and
orthogonal moving membranes scattering. In each case the infinite boost (N — oo or
equivalently ¢ — 0) represents a point where the 16 supercharges are recovered (for
v = ¢ =0). The leading orders in v, c are given by eq.(4.38), and the scale invariance
of these terms is guaranteed by our previous analysis, and checked explicitly in that
reference. The case of orthogonal membranes is particular in the sense that contains
two line of deformations ¢ = ¢; +¢; = 0 and ¢’ = ¢; — ¢, = 0 (this is the case studied
in [59]), ¢1, ¢, being defined by the fluxes in each membrane, along which half the
supersymmetries of the D0-DO0 system are preserved. Along these lines, the potential
starts then with v? as for the previously discussed p-p-+4 system. The leading scale
invariant interactions are in general given by

! iTsz(vz + (me)?)(v* + (7)) G5 (r). (4.39)

(2, Byal By, o1, v) = m2cicp 32

The absence of the static ¢* and ¢’* terms reflects the surviving of half-supersymmetries
along the aforementioned lines. In [59, 60] an exhaustive list of brane configurations
was shown to present again agreement between the one-loop SYM and semi-classical
supergravity descriptions of their potentials. Once more, homogenous polynomials
of order four in the fluxes and velocities as in (4.38),(4.39) were found; an iteration
of the analysis for the above discussed example provides a unified understanding of
those results. We believe that this example can give a flavor of the generality of the
analysis performed here, which extends to any supersymmetric (at least in a point

LA flip in the sign of the v? comes from the analytic continuation to the Minkowski plane.
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of the moduli space) brane configuration and covers all (to our knowledge) one-loop
scattering tests of a given matrix description. We should say that scale invariance is
however stronger than what a correct matrix description of supergravity interactions
really requires. In fact higher loop potentials will not display a simple decoupling of
their massive modes as in the examples studied here and only a matching between
the two open-closed massless truncated computations can be at most expected.

4.4 Field theory interpretation and DO-brane

gyromagnetic ratio

In the present section we discuss the field theory interpretation of our results. We will
show in particular that the knowledge of all the one-point functions of the massless
fields of Type ITA /B supergravity allows to infer the complete and generic asymptotic
form of the corresponding p-brane solution. Moreover, the spin-effects in scattering
amplitudes that we have computed in section 4 and the supersymmetric cancellation
of some of their leading orders proves to constitute an extremely efficient way to fix
unambiguously the various coefficients entering the solution, and in particular the
relative strength of the NSNS attraction and the RR repulsion (the fact that nor-
malizations are better encoded in scattering amplitude than in one-point functions,
especially through the vanishing of leading order, was already appreciated in Polchin-
ski’s computation of the Dp-brane charge [18]). As we will see, this approach yields a
powerful technique to extract informations about a generic component of the p-brane
multiplet. The analogous cbmputation in supergravity would consist in performing
supersymmetry transformations to the usual p-brane solution, to determine all the
spinning superpartners; this requires looking up to eight variations, a program that,
as can be appreciated from previous works [63, 64|, is rather technical within the
component fields formalism.

We will work it out the DO-brane case, for which the boundary state is defined
through the matrices M{ = —1, M} = &; and M = I'%; the other cases can be treated
in the same way. Recall that in the NSNS sector, a generic field &,, is decomposed
into trace, symmetric and antisymmetric parts ¢, h,, and b,, as

1
6&"9 = Z(T]/W — quly — wly) fﬁffz) = () » 65?3 = &[]

where [# is a vector satisfying ¢ -1 = 1, 12 = 0. Collecting the covariant one-point
functions (4.11), (4.13), (4.15), (4.18) and (4.20), for up to four supercharge insertions,
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- the NSNS and RR asymptotic fields for a generic component of the Dp-brane multiplet
can be written as the multipole expansion in the coordinate space

¢ = —/cZMG' (r) + %nzc,]mpu”pqamancg(r) +
hoo = K MGy (r) + *CT ™" 0mBnGo(r) +

{ hij = ik MGy (r) + k*CJ™; 2T 0mOnGo(r) + ...
hoi = 262 Ady,™0mGo(T) +
by = K2 AT ™0 (1) +

(4.40)
bos = 262C "G, "2 0m 0, G (r) +
in the NSNS sector, and
Co = 26°QGy(r) + K*DJ ™7 J" 0pn0,Gs(r) +
C; = 26*BJy, ™0 Go(T) +
Coij = EZBJZ--mamGg(T‘) + (4.41)

Ciji = 267 DI, T80 G (1) +

in the RR sector. Dots stand for higher derivative terms associated to further super-
charges insertions. We have restore the dependence on the ten dimensional Planck
constant ||2. The constants M, @, A, B, C, D describe the first three terms in the mul-
tipole expansion of the DO brane solution and can be determined directly from the
one-point function worked it out before carefully normalized. In order to avoid the
technical complications of fixing absolute normalizations, we take a slightly different
approach to determine these constants, or more precisely some relevant ratii of them.

Comparing egs.(4.40) and (4.41) with the usual O-brane solution [65] and the
general result valid in D dimensions derived in [66], we conclude that M is the mass
and () the electric charge, whereas 24.Jy;; = J;; is the angular momentum and BJy;; =
i the magnetic moment, so that the gyromagnetic ratio, defined by the relation
p9 = (9Q)/(2M)J¥ is given by g = (M B)/(QA). Also, the electric and gravitational
dipole moments vanish, since they would correspond to one-derivative terms in Cy and
hoo, hi; respectively. On the contrary, the presence of non-vanishing two-derivative
terms in the gravitational and gauge fields, show the presence of quadrupole moments
for D-particles. Analogously to the gyromagnetic ratio g, we can define the ratio of
the gauge and gravitational quadrupole moments by g = 4(M D)/(QC).

It is now straightforward to show how the semiclassical anal‘ysis of the phase-shift

between two of these configurations can be used to determine in a simple way the

69



value of the gyromagnetic ratio g and its quadrupole analogue § associated to DO-
branes. According to [67, 64], massive Kaluza-Klein states present a common value
g = 1, contrarily to the usual and “natural” [68] value g = 2.shared by all the known
elementary particles (neglecting radiative corrections, of course). This particular
signature of Kaluza-Klein states can be useful to establish the 11-dimensional nature
of DO-branes, implying g = 1. This consistency check has been recently performed in
[64] considering DO-branes as extended extremal 0-brane solution of ITA supergravity.
We present now an alternative and independent argument that relies on the “stringy”
nature of DO-branes as points on which open strings can end; in particular, we show
that g = 1 is the only possible value compatible with the cancellation of the linear term
in velocity in the first spin effect, eq.(4.24). Similarly, we will show that our stringy
analysis predicts for the quadrupole analog the value § = 1 from the cancellation of
the static contribution to the second spin effect, eq.(4.25).

Consider first the scattering of a scalar 0-brane, taken as a probe, off a spinning
0-brane, acting as source. The effective action for the probe is (in the string frame)

S=-M / dre*y/— g XuX — Q / drC, X" (4.42)

For a trajectory with constant velocity v = tanh e, we can choose X () = 7 cosh e,
Xi(r) = 7 0*sinhme. Expanding for small velocities and weak fields (x — 0), one
finds, dropping a constant term, § = [d7 3,50 v" L, With

1
Eo - M¢+ iMhOO e QCO
; ; 1 . 1
L1 = Mht* — QCi?*, Lo = §M(hoo + hijt'0") — 5QCo
. . 1 .
,63 = Mho-g’az - %QC«L’{); 3 £4 = §M(h00 + hijﬁz’l}‘?) e -:—QCO (443)

We know from the amplitudes computed in section 4 that the leading non-vanishing
contributions to the scattering amplitude behave like v™/r™*", all lower orders in ve-
locity cancelling by supersymmetry. Substituting the relevant asymptotic fields of the
spinning 0-brane from egs.(4.40) and (4.41), one then finds the following conditions:

Lolg=0 = M=Q, Lopg=0= MC=4QD
Lil, =0 = MA=QB (4.44)
‘C2IG:O = M:’—Q

Altogether, this yields
RQ=M, g=1, g=1 (4.45)
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The ratii ¢ = 1 and § = 1 can be thought as the supersymmetric analog of the
BPS saturation condition @ = M. We notice from (4.40) and (4.41) that they
determine also the ratii of the strengths between the NSNS antisymmetric b, and
RR threeform C,,, multipole sources providing a complete spin description of the
supergravity solution at this order in the multipole expansion.
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Conclusions

In this thesis we studied some aspects of the non-perturbative structure of string
theory in the context of different S- duality conjectures. We trace an important sector
of the physical spectrum of states (the BPS spectrum), whose stability properties
allow us to follow to regime of strong coupling. The "quasi” topological character of
the quantities under study allow us always to go to some corners in the moduli space
where the theory admits a rather tractable description of its strong coupling physics.

In the first part of the thesis we concentrated in the study of the complete (per-
turbative and non-perturbative) BPS spectrum of states for string vacua with sixteen
supercharges (A = 4 in four dimensions). The more familiar string vacua with this
amount of supersymmetry arises from toroidal compactifications of heterotic and type
I string theories as well as from K3 x T¢ compactifications of type II strings. More
sophisticate examples can be constructed from asymmetric orbifold and orientifolds
of type IIB theory. These string vacua combines the perturbative (—)f% and  sym-
metries of type IIB theory with a given shift in the I'y4 lattice of momenta for a
T9 compactification. The interest in these string vacua relies on the fact that, the
(=)= and Q actions being related by the S-duality of type IIB theory, modding out
by these operations we yield to very simple dual pairs where our ideas of dualities
can be tested.

" In chapter two we study the BPS spectrum for a nine dimensional pair constructed
in this way. The generalizations for an arbitrary toroidal compactification with D > 4
is straight. We have seen that the self duality conjecture of type IIB theory requires
the existence of an infinite tower of D-string bound states with specific charges, masses
and degeneracies. This is also the case for toroidal compactifications of type I and
SO(32) heterotic string. In this case winding of heterotic elementary strings are
mapped to the D-string number in the type I side. In both cases the information
about masses and multiplicities of these non-perturbative states are encoded in the
elliptic genus of the relevant O(N) effective gauge theory describing the excitations
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of the bound state system. We have computed this index using the conjectured
description of the infrared limit of this two-dimensional gauge theory as an orbifold
conformal fixed point. A subtlety in this computation is the existence of bound
states at thresholds, which make difficult to distinguish the one particle states from
multiparticle ones. Multiparticle states are characterized by non normalizable wave
functions. We were able to distinguish those states between the different twisted
sectors in the orbifold theory. The results for one-particle states identified as the
"longest string sector” are in perfect agreement with the duality predictions.

The second part of the thesis is devoted to the non-perturbative study of certain
higher derivative couplings in low energy effective actions for theories with sixteen
and thirty-two supercharges. The considered examples although in very different
contexts are quite close in spirit. In each case the considered string amplitudes
receive contributions only from the BPS spectrum of states. They are extreme in
this sense, and can be considered always as the leading order in a expansion of the

effective action in terms of a perturbation from a given supersymmetric point.

We study first the threshold corrections to F* terms in the low energy effective
actions for the type II dual pair discussed before. The exact formula for these cor-
rections can be extracted from a simple one-loop computation in type IIB theory
compactified on T%/(—)¥z. The result is given in terms of an infinite double sum rep-
resenting the winding and Kaluza-Klein BPS string excitations running in the loop
(torus). On the other side we have both perturbative and non-perturbative correc-
tions. Perturbative corrections are given by a single sum in terms of the Kaluza-Klein
string states running into the loop (now represented by the Klein bottle). On top of
this we have an infinite sum of N D-instantons corrections which combines with the
perturbative contributions to reproduce the exact formula found in the dual theory.
The results not only gives evidence for the equivalence of the low energy effective
actions but once the duality is admitted can be used as a definition of precise rules
for the D-instanton calculus [47].

In the last chapter we study different D-brane configurations which support equiv-
alent SYM/SUGRA descriptions. We consider string amplitudes which can be con-
sidered as a description of the potentials between moving D-objects in a supergravity
theory or as the one-loop effect for an open string moving in a corresponding back-
ground. We start always from a supersymmetric configurations and perturbe its from
its supersymmetric point. Examples of these deformations from supersymmetry can
be given by a relative velocity v, a magnetic worldvolume flux ¢ or a spin charac-

terized by a spinor 7. We study several examples combining these deformations. In
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each case we show that the leading order in the v,c,n expansions collapsed to the
contribution of a finite number of degrees of freedom which can be interpreted as
coming from the exchange of the massless closed string states(supergravity) or as a
loop of massless open (super Yang-Mill) string excitations. A simple analysis of the
fermionic zero mode structure of the relevant string amplitudes show that they are
given by homogeneous polynomials in v, ¢, 77 of order 4(2) for the p-p(p-p+4) D-brane
systems. In this way we cover all (to us known) one-loop tests of the matrix model
conjecture in an unified picture. An interesting application of these results results
was the determination of the giromagnetic and quadrupole moments for D-particles.

We have shown that they are completely determined by the supersymmetry and the
BPS condition @ = M.

We would like finally to comment some unexplored directions in the present work.
An interesting direction could be to extend the present analysis for less supersym-
metric string vacua 2. Some preliminary results concerning the matching of the BPS
spectra of physical states for type II dual models with eight supercharges (type IIB
on (K3 x 81)/(=)"toy — (K3 x S1)/Q0y) are reported in [20]. A non-perturbative
analysis of the threshold corrections in type I/heterotic NV = 2 string vacua have been
recently performed in [71] (for a perturbative study see for example [72]). Even with
sixteen supercharges it would be interesting to study compactifications to four dimen-
sional models. The main complication for an extension in this direction is the lack of
a precise control of the NS fivebrane physics, but we hope that further investigations
can improve this impasse.

2In this case the analysis can be more subtle since the arguments which lead to the stability of
the BPS spectrum of states are no longer valid. Indeed, for some explici‘gly solved N' = 2 super
Yang-Mills models [69] it has been found curves of marginal instability where a BPS state crossing
it can decay [70].
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