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1 Introduction

One of the most fascinating subject in Statistical Mechanics in the last 30 years has been

the critical phenomena and their feature of scale invariance and universality.

Roughly speaking scale invariance is the property of systems at critical point to exhibit the
same characteristics at different space and time scales. Lot of these systems, despite of their
different nature, have the same scale invariance property, i.e they are characterized by the
same critical exponents. This feature is generally called universality, meaning independence
of the scaling behavior on the details of the interactions between effective degrees of freedom

of the system.

Scale invariance and universality are not a prerogative of critical phenomena. Many other
systems in Nature share the same features without the need to set any parameters on
critical values as happens for example in ferromagnetic materials with the temperature and

the magnetic field.

River basins are a beautiful example of systems in which the properties of scale invariance
have been neatly observed over several order of magnitude [1, 2, 3, 4]. Moreover these
properties demonstrated to be quantitatively unaffected by change in climate, lithology and

ubication, showing in this sense a strong universal behavior.

Aim of this work is to extend some ideas like finite size scaling, scaling relations and uni-
versality classes which demonstrates so powerful in the context of critical phenomena for

the study of river networks.

Fluvial systems are encountered in the most different environmental conditions, they have
sizes which goes from few to thousands kilometers, therein myriad of processes which act
in a wide range of spatial and temporal scales are involved, thus it would appear a difficult

task to describe the structure of river basin and its evolution.

In an early contribution toward the understanding of landscape evolution [5], Leopold et al.
argued that because the number of features affecting the landscape evolution is exceedingly
large, any realistic coupled model of hillslope, channel network and river basin needs to be

complex.
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Figure 1.1: Idealized fluvial system (after Schumm [1977))

Nevertheless in those years lot of similarities began to be observed in river networks, giving
the feeling that, despite of their complexity, some simple mechanism could be invoked to

explain the quantitative similarities between different river basins.

Before going ahead we need to betier specify what we intend for river basin.

1.1 River Basin

The whole picture of a river system may be divided in three loosely separated, nevertheless

distinct regions.

They are shown in figure (1.1) and zccording to their mean working purpose they are called,
following Schumm [6], the production zone, the transport or transfer zone and the delivery

or deposition zone.

The production zone is what we call river basin. This is the zone in which the river originates
collecting the most part of precipitztion and of sediments which are then transferred through

the plain to their final delivery to oceans.

This zone is described in terms of two deeply interrelated elements: the two-dimensional
structure of channel network, i.e. ke set of all rivulets through which water is drained and
that coalesce to give place to what is generally meant to be a river, and the underlying
three-dimensional structure of hillslope. The hillslope drives water like a constraint and at

the same time, by mean of erosior and of deposition of eroded material is modified and
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rearranged by water.

The mutual interaction between hillslope and channel network make this system extremely
hard to study from the experimental point of view. Two have been the main difficulties:
the first is that evolution takes place on time scales which are extremely long with re-
spect to human life, leaving only the possibility to consider basins of different ages but in
completely different environmental conditions; the second is that for a long time also the
three-dimensional structure of hillslope resulted inaccessible to accurate and extensive mea-
surements. That’s why the earlier works one can find in the literature, both experimental

and theoryc regard almost exclusively the bidimensional structure of channel networks.

The situation changed radically with the introduction of Digital Elevation Maps (DEM)

that we describe in the next Section.

1.2 Digital Elevation Maps

Digital Elevation Maps (DEM) are discretized reconstruction of the three dimensional struc-

ture of hillslope by mean of aerial topography [7, 8].

From a satellite several photographs are taken of a given landscape. The plan area under-
lying the landscape is ideally divided in square cells of about 30m side. To each cell is then

associated a variable h; equal to the mean height of the landscape in that cell.

In this way the observational data are simply translated into a field of elevations h; on a
lattice. Given that, the bidimensional drainage structure is reconstructed assuming that
water flows in the direction of the steepest descent, i.e. assigning to each site 7 an out-
coming link going from ¢ to its nearest neighbor with smallest height, see figure (1.2). In
figure (1.3) the set of drainage directions reconstructed from DEM is shown for a river in

northern Italy, the Fella river.

The set of all drainage directions is a coarse grained but faithful representation of the

bidimensional structure of a river network.

One point need to be clarified and it is the distinction between the drainage network and
the water streams or channels: the links in the drainage network represent the directions of
the path that water incoming in the system by precipitation follows to reach the outlet, but
not all of them represent channels, i.e. streams of real rivers. Channels may be identified
with the set of sites through which the flow is above a given threshold. In the following
drainage network and channel network will be used as synonymous, always referring to the
set of drainage directions defined above.

If no lakes are present in the landscape, i.e. points in which all nearest neighbors have
greater height, and it seems to be the case in the river production zone, the set of drainage
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Figure 1.2: A field of elevation and the corresponding map of drainage directions

directions will be an oriented spanning tree, in which all vertices are connected to a common
point (the outlet) through a unique oriented path. In this framework we say that site j Is

upstream with respect to site i if 7 is along the oriented path going from site j to the outlet.

Once the set of drainage directions is given, several quantities can be computed. We here
define, in the context of DEM. two of these that are most commonly considered to de-
scribe the geometrical features of channel networks. In the next Section we will discuss the

empirical evidences about them which emerge from DEM’s data.

In the framework of a lattice representation of river basins we define the drained (or cumu-
lated) area A; at site i as the number of sites in the lattice which are upstream with respect
to i. Variables A; can be regarded also as the quantity of water flowing into i if a unit of

precipitation is assumed at each site. Variables A; result to be related by

Ar=Ajuw;+1 (1.1)

where w; ; is 1 if and only if site i and site j are nearest neighbor and site j is upstream
respect to site i. Figure (1.1) shows a small map of drainage directions and the value of

variable A; in each site.
The main stream length [; at site 7 is defined as
[; = max d;; 1.2
= max dy (12)
where d;;is the distance between site i and site j along the spanning tree and index j runs

over all sites which are upstream respect to i. In figure (1.5) the values of the mainstream

length in a small map of drainage directions are shown.
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Figure 1.3: The set of drainage directions extract from DEM of Fella river in northern Italy
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Figure 1.5: A small map of drainage directions with the values of main stream length displayed.
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Note that if we choose as site i the outlet the drained area and the main stream length will

be respectively the total area of the basin and the longest stream in there.

1.3 Experimental evidences

The importance of DEM can be easily understood. They made available an enormous
amount of data recovered from basins in the most different environmental conditions and of
the most different sizes. Thanks to them has been possible to extensively test all the known
empirical laws and new ones have been discovered. Moreover they furnished a complete
and detailed description of the three dimensional structure of hillslope linking it to the
bidimensional structure of the channel network. All these informations have been lacking

since a long time.

One of the oldest and best known empirical law regarding river network is the Hack law [9].
In 1957 Hack reported the results of his studies made on some basins of Shenandoah Valley
and in adjacent mountains in Virginia showing that the longest stream and the drained area

of a basin are related by a simple power law relation, namely

[~ a" (1.3)

where the accepted value for h is A ~ 0.57 — 0.6. After that, by mean of DEM, Hack's
relation has been tested recovering data from a big number of basins. The same test has
been performed also within single basins, considering each point 7 as the outlet of the sub-
basin made of all the sites upstream with respect to 7. Results of some of these experiments

are shown in figure (1.6).

Two are the main suggestions coming from Hack’s law: from one side the quite surprising
universality of the exponent h that seem to be the same for all basin considered; the second
that some sort of fractal behavior should be considered to explain the Hack’s law. The same
Hack and then Mandelbrot [10] noted that , if geometrical similarity is to be preserved as
a drainage basin increase in size the exponent linking ! and a should be A = 0.5

Both these two issues have been confirmed by further analysis of the geometrical features
of channel networks. In order to characterize the geometry of channel networks, geologists
measured the distribution of drained area p(a) and of the main stream lengths 7(l). They
are respectively the fraction of sites in the lattice in which the drained area is equal to a and
the fraction of sites in which the mainstream length is equal to I. Results of these measure
for the Raccoon river (USA), together with its map of drainage directions are shown in
figure (1.7).

Two important features emerge [11, 12, 13]: both p(a) and (/) are characterized by a very
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well defined power law tails over several order of magnitude, i.e.

-7

p(a) ~a

w(l) ~ v, (14)

To some extent this experimental evidence could be expected. Power law behavior of pla)
and of 7(l) is the direct consequence of the self-similar character of channel network, that
, at least qualitatively, could be guessed just by looking at the map of drainage directions
obtained from DEM. We will see in the next Chapter that in effect distribution of drained

area and of main stream length for tree-like structures have often power law behavior.

Surprisingly both 7 and ¢ result to have almost the same values, irrespectively from the
peculiar characteristics of the basin they refer to. The accepted experimental values for 7

and 7 are

7~ 140-1.45

1.5
v+~ 1.80 — 1.85. (15)

This experimental evidence of universality gave strong support to the idea that a model
attempting to reproduce the geometrical features of river basin could neglect lot of envi-

ronmental ’details’.

We have to mention one more well established empirical evidence [4], which goes under the
name of slope-discharge relation and states that, see figure (1.8), if water is flowing from
site 7 to site 7, the drop in elevation between site 7 and site j is proportional to a power of

the quantity of water @; flowing in 7 :

Vh(i) = hi — hy ~ QT (1.6)

where j is the site immediately downstream of ¢, k; a constant of proportionality depending

on the site and the experimental value of 7 is around 0.5.

Note that (); can be written as

Qi= Y, (1.7)

j€up(7)

where r; is the precipitation at site j and where the sum runs over all sites upstream respect

to 4. If we assume uniform unitary rainfall (i.e. 7; = 1¥1) then

Qi = A; (1.8)
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The slope-discharge relation is a result of great importance because, in a sense, bridges

the structure of channel network to the hillslope.

Assuming the validity of the slope-discharge relation, the distributions of the drop in eleva-
tion along the stream can be straightforward computed from the distribution of the drained
area. Moreover, if the map of drainage directions is given, the elevation field can be exactly
reconstructed using (1.6). It turns out that a complete description of the river basin can be
given only in terms of the bidimensional features of the channel network. This is the reason
why the distributions of drained area and of mainstream length play a central role for the

description of river basin morphology.
In this work we will discuss the Optimal Channel Network (OCN) model [14, 15]

It is based on the idea that drainage network can be obtained by a principle of optimality.
In the specific case of river basins it is assumed that real channel networks minimize the

rate of energy dissipation.

The energy dissipated by an arbitrary channel network can be computed once the map
of drainage directions is given. Indeed, using the slope-discharge law, it can be expressed
in terms of the only drained areas and the OCN will be that spanning tree (i.e. map of

drainage directions) which realize the minimum of the functional ’dissipated energy’.

The energy dissipated by a channel network can be evaluated as follow. If one assume
that the velocity of water is the same in all the points of the basin, it turns out that all
the potential energy of water incoming in the system by precipitation is dissipated through
friction and erosion because there is no gain in kinetic energy. The energy E; dissipated in
link 4 is given by the mass of water flowing in there times the drop in elevation along the

stream

E; = Q:Vhi. (1.9)

If one further assume homogeneous precipitation and the slope-discharge relation finds for

the total dissipated energy FE
E =) kiA] (1.10)
t

where « is the parameter in the slope-discharge relation and its value is fixed by experiments
to be around 0.5. To overcome uncertainty due to experimental error we will consider v as
a parameter and v € [0.1]
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1.4 Plan of the work

In the next Chapter we will introduce [16] a finite size scaling for the distribution of drained
area and of mainstream length. In this framework the phenomenological behavior observed

for these distributions find a natural and simple explanation.

Assuming the finite size scaling behavior and by mean of quite simple arguments dictated
by the three-like structure of channel network and by some of the experimental evidences
previously discussed, we will work out two relations between the scaling exponent intro-
duced. The distributions computed by experimental data are found to be fitted quite well
in the finite size scaling form proposed and the measured exponents are in accord with

scaling relations.

In Section 2.2 we briefly discuss some early models of rivers. These models have the common
feature to deal exclusively with the bidimensional drainage structure of the river network.
In these models different rules are given, based on randomness or deterministic, to gener-
ate spanning tree over a lattice. Despite of their simplicity all these models capture some
features of real river networks, namely, they all give place to self similar structure char-
acterized by power law distributions of drained area and of mainstream length. In all the
case examined we will find the finite size scaling to be correct and the exponents verify our

scaling relations.

In the third Chapter we will describe the Optimal channel Network (OCN) introduced some

vears ago by Rinaldo and Iturbe.
This model is based on very simple rules and depends on one only parameter 7.

For different values of exponent v OCN model shows a lot of interesting features, recovering

for the extremal values classes of spanning trees already studied.

We will work out exactly the scaling behavior of OCN for a set of values of the parameter
which includes the extremal cases and the physical one. In the physical case we find a
sort of mean field behavior characterized by exponents substantially different from the
experimental ones. Thus we have addressed the study of various universality classes along

various directions.

What happens if disorder is added to the model ? There are two cases: the first simulating
randomness in the precipitation and the second with inhomogeneities in the soil properties.
Also in this two cases it is possible to find the exact scaling behavior. In the latter case we
mapped the problem in the well studied problem of a polymer in a random environment
with weak disorder.

At the end OCN will give three different universality classes, i.e different set of values for
the exponent of the drained area and of main stream length, all in accord with the scaling
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relations but none of them in agreement with real data.

In the last Chapter we discuss the numerical simulations we performed for OCN model and

the possibility to face the problem with a 'termodynamical’ approach.

The search of optimal configuration has been made with different algorithms. With a
very slow and accurate annealing we obtain results which are in perfect agreement with
our exact predictions of Chapter three. Quite surprisingly, if a less accurate algorithm
is used we recover a set of configurations substantially different from the ones above, but
nevertheless with a their own well defined identity characterized by exponents satisfying the
scaling relations and, within the statistical error, coincide with the experimental data. Is it
a pure coincidence, or there is some deep reason for the fact that configurations found with
a less clever algorithm are so close to the one which occurs in Nature ? This is the question

we will try to answer in conclusion and that arose the concept of Feasible Optimality..



2 Finite size scaling,

scaling relations and examples

A river basin is a complex system made of two strongly interrelated elements: the channel

network and the underlying structure of hillslope.

The channel network can be described by a set of drainage directions, i.e. by an oriented

spanning tree over a lattice.

Experimentally the sets of drainage directions can be constructed with great accuracy by
mean of DEM. They exhibit a very well defined self-similar structure. This experimental
evidence is confirmed by looking at the distributions of drained area and of main stream
length which are extracted by the maps of drainage directions and which exhibit a power

laws behavior over several decades.

Understanding the scaling behavior of these quantities is of great importance. The statistical
properties of the whole system (hillslope + channel network) can be in fact computed using

the slope discharge relation once the set of drainage directions is known.

Self-similarity [10] is the property of those object which show the same features, at least in
statistical sense, independently by the scale at which you are looking at. In other words if
a small part of a self similar object is enlarged by an arbitrary factor it will appear to be
the same as the whole object, no matter how large is the scale factor chosen. This property

reflects in power law distribution for the geometrical quantity which describe the object.

In real systems such a strong similarity between the whole and the part cannot be expected
if the part has been magnificated by a too large factor. This yields to corrections at the
power law behavior taking into account the finite size of the system. To consider such
corrections demonstrates very fruitful in a lot of problems where physical self similarity is
involved [17, 18, 19]. This happens for example in ferromagnetic systems very close to the
critical point, so close that the correlation length became comparable with the linear size

of the entire system.

Finite size corrections to scaling have been considered for the distributions of drained area

17
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and of main stream length of river basin by [16]. In this framework phenomenological

observations find a natural and simple explanation.

In the first Section we introduce the finite size scaling and derive relations between scaling
exponents. Using these relations the behavior of river basin under scale transformatios: can
be described by only two independent exponents which reduce to one if we further assume
that fractality of the single stream and self similarity of the plan shape of the basin cannot

coexist.

In Section two and three we discuss two early models of river network, proposed about thirty
years ago respectively by Leopold and Langbein [1] and Scheidegger [20]. Both these model
deal exclusively with the two dimensional structure of channel networks. Using simple rules

they generate different classes of random spanning trees.

Both these models exhibit self similarity and are characterized by power law behavior of

distributions of drained area and of main stream length.

The 7 exponent for the distribution of drained areas in the Scheiddeger model has been
exactly calculated by Takayasu et al. [21, 22] by mapping it on a model of random aggrega-
tion. We show that the distribution of mainstream length can be calculated in a similar way
and that the exponents 7 and 1 are in agreement with scaling relations derived in Section
2

In Section four we analyze the Peano basin. It is a deterministic fractal introduced [10, 23]
to study some geometrical features of stream aggregation. We calculate [24] the exact
scaling behavior and also in this case scaling relations turns out to be verified, furthermore

an exact renormalization group is introduced.

In the last Section we report results about geometrical properties of a random spanning tree.
The set of all spanning trees over a given lattice emerge in several problems of Statistical
Mechanics, but we will think at them as the most general structure that can arise from a
DEM.

The scaling exponents are known exactly from the work of Coniglio [25] and Manna et al.

[26] and they are in accord with scaling relations.

It should be stressed that the analysis of all these models is not purely academic. Lot of
ideas about scaling relations and OCN have been developed and tested considering these
models. The knowledge of the scaling behavior of Peano basin. in particular, will be a key

result for the analysis of OCN model, as we will see in the next Chapter.

Moreover, in the context of OCN Scheiddeger trees and the set of all spanning trees realize
the minimum of energy expenditure for particular values of the parameter 4 from which the

dissipated energy depends on.
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2.1 Scaling Relations

For a given tree, one may consider the probability distribution of the following quantities:
for a lattice of given linear size L we will call p(a, L) the probability density of accumulated
areas ¢ and 7(l, L) the probability density of the upstream lengths /. These represent the
fraction of sites with area a or stream length [ respectively. We will also consider the
integrated probability distributions P(a, L), the probability to find an accumulated area
bigger then a and TI(/, L), i.e. the probability to have a site with an upstream length bigger
than {.

Both these probability distributions, here defined in the simple case of the lattice model,
were originally introduced to describe real rivers and experimentally found to scale as power

laws leading to the formulation of a finite size scaling ansatz

paD)=af(2), (2.1)

ac

=(I,L)= r%(%) ) (2.2)

where f(z) and g(z) are scaling functions accounting for finite size effects and a¢ and I are
the characteristic area and length respectively. The functions f(z) and g(z) are postulated
to have the following properties: when z — oo they go to zero sufficiently fast to ensure
normalization; when z — 0 they tend to a constant, to yield simple power law behavior
of the probability distributions in the large size limit. This also implies that 7 and 9 are
bigger than one.

The characteristic area and length are postulated to scale as

ac ~ L2, (2.3)

lo ~ L%, (2.4)

In river basins, anisotropies are always present due to a non-zero average slope of the
landscape and the presence of gravity. Thus, one has to distinguish between a typical
longitudinal length L and a typical perpendicular one I 1 (these two length are measured

along the two principal axis of inertia), which scale as

Ly =I1", (2.5)
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giving ac ~ L'H ie. ® = 1+ H. H is known as the Hurst exponent and of course
0 < H < 1. In what follow, for the sake of simplicity, we consider basins of square shape;
the above relations then, refers to dimension of a generic sub-basin inside the bigger one,

whose dimensions are fixed from outside.

The & exponent thus corresponds to ® = 14+ H . The d; exponent, characterizing the
typical length, can be assumed to be the fractal dimension of a stream (for fractal river
networks, each rivulet going from any site to the outlet is a fractal with the same fractal
dimension) , and is such that 1 < d; < 14+ H. The bounds correspond to a straight line and
a space-filling behavior. For self-affine river basins we expect d; = 1 and H < 1, whereas,
when H =1 then d; > 1 in the self-similar case.

For the same quantities, the integrated probability distributions can be analogously written:

P(a,L)=a ‘TF(LI(j_H> (2.6)
T, L) = I ¢G<lel> (2.7)

which follow from (2.1) and (2.2) with

F(z)=2""! /:OO dy vy~ f(y), (2.8)

h—1 oo — 5 .
G(z)==z"" / dy y~™g(y), (2.9)
T
where sums over variable y have been replaced by integrals in large L limit.

From the above definitions and the properties of f it easily follows that

(@) ~ LOFH)=rH) (2.10)

for any n > 7—1, while (a™) ~ const. if n < 7—1. Note that both a and [ have a lower

cutoff which is one.

This equation, evaluated for n = 1 gives for the average area,

(a) ~ LOFEE=T), (2.11)

The mean accumulated area (a) can be easily shown to be equal to the distance from a site
to the outlet, averaged over all sites. In effect, in the sum over all the downstreams (the

rivulets going from each site to the outlet), the number of times each bond (of unit length)
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appears exactly equals the accumulated area of the associated site. Thus summing over all

A; is equivalent to a sum over all the downstream lengths:

(CL> = (ldownstream> . (212)

(ldowm”eam) can be evaluated replacing in the sum the distance of each point from the
outlet measured along the stream with the corresponding Euclidean distance d(z) to the

power d;:

1 1 )
(Zdownstream> = 'L_Q Z ldawnsirsam(x) = Z‘Q‘ Zd('v)dl ~ Ldl (213)

This fact is general and the argument we used does not need the knowledge of the down-
stream length distribution. This distribution however can be explicitly derived at least in
the case of directed networks. We call directed those networks such that each oriented link

has positive projection along the diagonal oriented towards the outlet.

The reason to introduce this class of networks is that river basins often have a quasi-directed
character, due to the fact that they are typically grown on a slope which gives a preferred
direction to the flow. Moreover directed trees are much more simple to handle analytically

than “undirected” ones.

For such trees consider the set of 2L diagonals orthogonal to the one passing through the
outlet: the downstream length is the same for all the points on the same diagonal. Thus
the number of points at a given distance to the outlet can be easily seen to be:

141 I=1,.1L

(2.14)
2L+1-1 I=L+1,.2L

number of point at distance [ = {

thus the probability density for the downstream lengths has the form of a power law with
exponent —1 times a scaling function of the argument //L:

, {
Tdownstream (l L) = lglfdownstream (E) (215)
with
fdownstream (m) = min(l72,2x - 5172) 0<z<2 (216)

The first moment of this distribution again gives eq. (2.13) with d; = 1 which is the expected
result for the fractal dimension of a directed tree. This result, together with (2.13) suggest
that downstream length distribution might have the scaling form:
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l ;
Tl'downstream(lv L) = l—lfdownstream (E) (2'17)

for the general case.

Equations (2.12) and (2.13) lead to the following expression for the average area:

(a) ~ L% (2.18)

From eq.(2.18) and eq.(2.11) we get the scaling relation

d _
14+ H=——. (2.19)

(2-7)

A well known hydrological law, Hack’s law [9], relates the length of the longest stream [ in

the drained area to the drained area a of the basin:

l~ah. (2.20)

The accepted value of A is h = 0.57 = 0.06 [27, 28, 29], whose difference from the Euclidean
value 0.5 lead to the first suggestion of the fractal nature of rivers [10].

From equations (2.3) and (2.4) it follows that

d;

= —. 2.21
1+ H ( )

Together with 7 and p one can define the conditional probability #(I | @) of finding 2 main
stream with length [ in a basin with accumulated area a. The simplest scenario is that
(2.20) still holds and [16, 30] #({ | a) is a sharply peaked function of [ with respect to a, i.e.
there exists a well-defined constraint between lengths and areas,

(1] a)=6(1—d"), (2.22)

or more generally [31],

#(l]a) = z—lg(&%) : (2.23)

For the probability density m, p and # the following consistency equation must hold:

L(1+H)

w(1,1) = /1 da #(1 | a)p(a, L) (2.24)
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that gives, in the large L limit

(v=1)d;=(r-1)(1+ H) (2.25)
relating the exponents in the distribution of lengths and in the distribution of accumulated
areas.

The scaling relations (2.19) and (2.25) can be expressed in a simpler form, observing that
both 7 and ¢ depend on d; and H only in the combination (—1%1?) = h, where h is the

parameter appearing in Hack’s law (2.20). Thus
—h, (2.26)
(2.27)

The exponents characterizing the distributions of accumulated areas and upstream length

are thus related by the simple expression:

(2.28)

|-

Since h > %, then 7 < %

2.2 An early model of river network

One of the first attempt to reproduce statistical feature of a channel network by mean of a
bidimensional model is due to Leopold and Langbein [1].

The model they proposed is very simple, nevertheless it is able to capture some significative
aspects of the geometry of real rivers. The idea on which it is based is that each single point
can drain to the outlet following a random walk since a previously generated path is met.

Inspired by the work of Leopold and Langbein, twenty years later, Meakin, Feder and
Jossang considered a very similar model and studied it extensively. We report about the
latter work [32].

Meakin et al. considered a square lattice of size L. The network of channel was constructed
as follow: from a random chosen site a Self Avoiding Walk (SAW) is started and prosecuted
until it reach the border of the lattice. The procedure is then iterated extracting a new site,
starting a SAW from there which ends when a border site or a previously generated path is
reached. When each point results to be connected to a border site (i.e. an outlet) iteration
is stopped.
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Two different rules are used to avoid self -intersections of a walker with its own steps.

In the first version, model SAWa, at each time step the walker consider its environment
and choose at random, if possible. a move that does not give place to self-intersections. If
it is not possible the walker goes one step back and a new move is selected at random but
neglecting the possibility to go back in the trapped configuration where he is coming from.
The procedure is iterated until the walker meet a border or a path generated by a previous

walker.

In the second version, model SAWb, when the model get in a trapped configuration a new

attempt is made to generate a SAW from the same starting site.

Once the network has been constructed with one of these two rules, they measure the
drained area and the main stream length for the sites on the border of the lattice (the
outlets). They found these two quantities related by a power law, with different exponent

in the two cases, but both quite close to the exponent measured by Hack on real basins:

I, ~ Ahe Ry ~ 0.6+ 0.05 (2.29)

Iy ~ AP Ry~ 0.6240.01 (2.30)

Also the distribution of drained area for border site has been measured, i.e. the fraction
p(A, L) of sites on the border with an accumulated area equal to A. They state that this
distribution is well fitted in the form:

pla, L) = a‘”fg(&%) (2.31)

here the § indicates that only sites on the border have been considered. In the two models
they measured:

s = 1.390 £ 0.005, @5 = 1.80 (2.32)

for model SAWa and

s = 1.373 £ 0.005, &5 =1.80 (2.33)

for model SAWD.

Note that the distribution of drained area considered by Meakin is similar to (2.1), but only

sites lying on the border are considered here. In this case a relation analogous to (2.19)



2.3. The Scheiddeger Model 25

between 7 and ® can be easily derived observing that the sum of all drained areas on the
border is exactly equal to the total area .4 = L? covered by the basin. Then:

A= =1 [ fi(5-)da. (2.34)
5

which leads to:

®5(2 —75) = 1. (2.35)

2.3 The Scheiddeger Model

In the same spirit of Leopold and Langbein in 1967 Scheiddeger proposed a model trying

to reproduce the structure of a channel network by mean of intersecting random walks [20].

He was interested in Alpine Valleys and so he considered necessary to give a preferential
direction to the random walkers in order to simulate the strong bias to the motion of water
given by the high gradients in the direction of the main Valley.

His model can be described as follow: consider a triangular lattice from which all horizontal
links (i.e. links parallel to the z axis) have been deleted, being y the preferred direction.

In each site with coordinate y = ¥ drainage direction can be chosen at random going from
the point to its nearest neighbor on the right or on the left with coordinate y = 7+ 1, with
equal probability.

Executing this procedure we end up with typical patterns as the one in figure (2.1).

We can consider the distribution of drained area and of main stream length for points with
y = L also in this model. In figure (2.1) the drained area A; and the main stream length I;
of point ¢ are respectively the number of sites inside the dashed lines and the length of the
darker path respectively.

Both the distributions of drained area and of main stream length exhibit a power law tail

and in the same notations of previous sections, a finite size scaling ansatz can be formulated:

ple. )= a*"f<%> , (2.36)
w(l,L)= lf¢g <7§> . (2.37)

Interestingly, Huber [33] has shown that Scheiddeger model is equivalent to a 1-dimensional
model of random aggregation studied by Takayasu and Takayasu [22] and Takayasu et al.
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py
>

X

AN

Figure 2.1: A typical pattern of Scheiddeger model. The drained area A; (sites inside dashed lines)

and the main stream [; (bold path) for site 7 are displayed

[21].

This model consists of a 1-dimensional lattice on which, at time 0, there is a particle of mass
m; = 1 on each site 7. At each time step each particle can decide with equal probability if
stay where it is or if jump to the right nearest neighbor. Whenever two particles met on
the same site they aggregate to give place to a particle whose mass is the sum of masses of
aggregating particles. Moreover, at each time step, a particle of unitary mass is injected in

each site.

The Scheiddeger and the Takayasu model can be easily seen to be equivalent representing
the time evolution of Takayasu model on the same lattice used by Scheiddeger and taking
the time axes parallel to the (-1,-1) direction, see figure (2.2).

The probability to have in a site a mass m = A after a time ¢ = L in the aggregation model

is then the same to have a drained area a = A in a site with y = L in Scheiddeger model.

The exponent 7 of the power law -tail of the distribution of the masses at time ¢ can be

calculated as follows.

Let A;(t) be the mass of the particle at site i and at time ¢. Then, A; at different times are
related by:

Ai(t+ 1) = Ai(t)es + ;’15__1(15)(1 —wi—1)+1 (2.38)

where the wg(t) are random variables such that:
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[
(0]

(@]
. (0]
W, (1=2)=1
O
(o] (@]

Figure 2.2: The motion of particle at site z and at time ¢ in Takayasu model corresponds to drainage

direction of at point (z,t) in Scheiddeger model

) 1 if particle at £ stay (2.39)
Wi - o
g 0 if particle at k¥ jump

and, see figure (2.2),

/ith probability 1/2 ‘
wk(t):{ b with probability 1/ (2.40)

0 with probability 1/2

We can define an r-point characteristic function for the random variable 4, (1) = Tt Ay

Z.(s,1) = (e~ i 20y, (2.41)

where the expectation value is made over all w(t') for ¢ € [0, — 1]. By expanding the sum
in equation (2.41) and using (2.38) yields:

Zp(s,t41) = (e AL g (141)), = e (¢S Ll A ()T Ol e slAr (e
(2.42)

taking expectations with respect to the w(t) which are independent from w(t) for t/ <t
and then from A(t) yields

Z(s,t+1) = ir[zzr(s,t) + 2o 1(5,8) + Zpaa(s,1)] (2.43)
In the limit ¢t — co we can argue:
75]im Z.(s,t) = t’]im Ze(s,t+1) = Z,(s). (2.44)

equation (2.43) becomes:
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Zo(8) + (2 -4 2 (s)+ Zr-1(8) =0 (2.45)

with the initial condition:

Zo(s) = 1. (2.46)
Equation (2.45) can be rewritten as:
Zr—l(s) . 1 ~
- = (46 T —2)— RS ('2.4()
Ze(s) =%
and using boundary condition (2.46)
1 1

= (477 = 2) = 57 (2.48)

Z1(s)

Equation (2.48) and equation (2.47) used recursively lead to the following expression:

1
21(s) = {55 - (2.49)
T4

259 1
€ 2 4335 0.,

If we are interested in the behavior of the distribution function for @ — co we can expand

the characteristic function around s = 0. Doing that term by term

1

2+8s— 2+1215—-~

This gives, using a similar expansion which holds for Bessel functions

Zi(s) =1+ cs*/> +o(s) (2.51)
From the behavior of the characteristic function Z;(s) for small s we can derive inverting
Laplace Transform the behavior of distribution of mass p(a, L = ) for large a giving:
4 -
pla,L=00)~a"2 (2.52)

i.e. 7 = 4/3. Using an argument analogous to the one which lead to (2.34), that also in
this case hold exactly, yields
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With a similar calculation we can derive the exponent v of the distribution of main stream
length. Note that the main stream length in a point in the Scheiddeger model corresponds
in Takayasu model to the age of oldest particle who takes part in a aggregate particle, see
figure (2.1). Following the previous calculation we can define a random variable ()
as the age of the oldest particle which is aggregated to one of the particles which are at
sites 1 = 1,2,---,r at time . These variables are related to the analogous variables at the

previous time step by

lom(t)+1  fw(t)=0and w(t)=1

It +1) = lor—1y(t) +1 if wo(t) =0 and w,(2) =0 (2.54)
S Ing@) +1  ifwe(t) =1and wy(t)=1
Ir-(t)+1 Hwo(t) =1and w, () =0
and, as before
) 1 if particle at k stay (2.55)
Wi = O
* if particle at k jump
and
0 1 with probability 1/2 (2.56)
Wi = .
* 0 with probability 1/2

Analogously at the case of masses we can consider an r—points characteristic function

L(s.1) = (e~*n), (2.57)

where the expectation is made over all w(#) for ¢’ € [0, — 1]. By using equation (2.54) and
‘ g

the fact that variables I.,] involving the same number of sites are equally distributed due

5y

to the translational invariance we find

-8

Lo(s,t+1)= %——(ﬁrﬂ(s,t) + 2L (8,8) + Lr1(s,1)). (2.58)

If we suppose that the limit ¢ — oo exists,

Jim Lr(s,t) = Jim Lr(s, 0+ 1) = Ly(s) (2.59)

equation (2.58) becomes

Lr1(s) + (2 = 4¢°)Lo(8) + L1 (s). (2.60)
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The initial condition will be

EO(S) =1 (261)
Equation (2.60) can be rewritten as
Er——l(s) 1 9 @<
—le -2 ——. (2.62)
£:(s) e

and using boundary condition (2.61) we have

1 1
- =46’ — 2 — . (2.63)
£1(e) g

Again, using equation (2.63) and formula (2.62) recursively we obtain the following contin-

ued fraction

1 .
Li(s) = {5 . (2.64)
€ 4e*—2— ]1
Pt R

In this case the continued fraction (2.64) can be explicitly calculated leading to

Li(s)=1+2e°(1-V1—-e9) (2.65)

and expanding around s = 0

Li(s)=1+ 9257 + o(s). (2.66)

Inverting the Laplace transform yields

7(l.L=o00)~ 1%, (2.67)

ie. 9 =3/2.

Resuming the exponents of area and length distributions for the Scheiddeger model can
be computed considering an equivalent model of mass aggregation and they relate according
the scaling relation (2.19) and (2.25). They are:

T=4/3, ®=3/2, v=3/2, d=1 (2.68)
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Also a mean field version of this model has been considered and solved by Takayasu. It
consists as before of a 1—-dimensional lattice of NV sites, but now particles at each time step
can stay or jump with equal probability in any site. Rules of aggregation and of injection

remain the same of the previous case. In this case he finds:

T=3/2, 3=2 ¢=2, d=1 (2.69)
Once again relations (2.19) and (2.25) holds.

2.4 The Peano Basin

Peano basin [10, 23, 24] is a deterministic space filling fractal with a tree like structure with

some resemblance with that of real rivers.

Peano basin is obtained as follows. At step 0 it is an oriented link. Step 1 is obtained by
replacing such link with four new links: two resulting from the subdivision in half of the
old link and preserving its orientation, other two having a common extreme in the middle
point of the old link and both oriented toward it (see figure (2.3)).

The basin at each successive step, is obtained iterating the construction, i.e. replacing each
link with four new oriented links in the same way. After T steps the fractal has Ny = 47
points (excluding the outlet) and it can be mapped on square lattice of size I = 27 with
bonds connecting first and second neighbors to form a spanning tree.

We can associate to each site i of a T step Peano basin an area A;(T') defined as in (1.1).
Let Vr denote the set of distinct values assumed by the variables {A;} at step T. How can
be easily checked by induction, V7 contains Vr_; and 271 new distinct values, appearing
for the first time. Thus Vr contains in all 27 distinct numbers. Let us call A = UT=o V1
and an the increasing sequence of numbers in A (the distinct values assumed by variables

Aj iterating the construction). For such sequence, we found the following rule:

i, =30 c(n)4)+1 n=0,1,... (2.70)
k
where the ci(n) are the coefficients of the binary expansion of n:

n=> cx(n)2~. (2.71)
k

Let MI be the number of sites i at step I" whose area A; assume a given admissible value
an. From the construction shown in figure (2.4) one can deduce that the following recursive




0=L

1=l

(=l

=1

32

§ 2. Finite size scaling,

e

me {1 \1 1

—

ey

T —
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Figure 2.4: With this construction the recursive relation can be easily understood. Peano basin at

time step 7"+ 1 is showed in terms of the one at time step 7.

relation holds:
MI=4-MT' -1 T > t(ay,)

MT =1 T = t(ay,) (2.72)
MI =0 T < t(ay)

where t(a,) denotes the a, “borning time”, i.e. the first step in which an area with value
a, appears.
This is easily seen to be given by

0 n=20 .
o) = { 1+ [logo(m)] 7> 0 (27)

where [ - ] is the integer part.
Solving (2.72) one gets

0 T < t(an)

T _ ’ n -,

M _{ o 1 pa g} (2.74)
'34 + 3 3 = t(a'n)

and thus all the a,,’s “born” at the same time step have the same probability

pr(as) = p(an,L=2T) = ME/NT (2.75)

Then the integrated distribution of areas P(4; > a,, L =27T) assume a very simple expression
for the an, of the form 4° (one can easily check from (2.70) that ay:_; = 4!), and is given by
eq. (2.6)

P(A;>a=4, [=9T) = al”'F(i—%> (2.76)
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with
T=3/2, =2 (2.77)

and

{ =

F(z)=2(1-2) ,0<z<l. (2.72)

W

and F(z) =0 when z >1.

Equation (2.76) can be obtained observing that P(4; > a =4, L = 2Ty = 272112: prlay)
depends on n only through #(a,), allowing the replacement of the sum over n with a sum
over the steps s; moreover, for each step s > 0 there are 2°~! areas with the same #(a,) = s,
thus
P(Ai>a:4t ’ LZQT) = }:Z:H—l (%4(1"—5) + '15) : 27;;‘ = (
2.79)
= 19-t(1 = 22(-T)y = 1g~% (1 - —L-f) :
which yields eqs. (2.76)-(2.78). Similarly, choosing ! of the form [ = 2* and observing that
at step T the sites with upstream length bigger or equal to 2° are the ones in which the

cumulative area exceeds 4', we easily find:

- l .
ni>2,r=27)==0 ¢G(ﬁ> (2.80)
which is of the form (2.7) with
v=2,6=1 (2.81)
and .
G(z) = 3(1-2%). (2.82)

Scaling exponents for the Peano basin can also be obtained by a renormalization group

argument. Let us consider for instance the scaling of cumulated areas.

The self-similar structure of the Peano basin suggests a natural “decimation” procedure
[34]; the idea is the following: consider the equations relating areas at time step T'; then,
eliminate variables related to sites that are not present at time step T' — 1. This leads to a

reduced equation describing the same physics on a tree scaled down by a factor 2.
For the sake of simplicity let us consider the Peano basin at the second step of iteration.

In figure (2.5) A?) denote the variables related to sites that are present at step 7' = 1 and
B,(Ig) denote the ones that will be eliminated by decimation. The upper label refers to the
step. In what follows it will be useful to write the equations in terms of A&T) = A&T) -1
and B,QT) = BSIT) — 1. The areas at step T = 2 are related each other by:
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E; B; E;
B, B

+

B,

T=2 T=1

Figure 2.5: Figure 3: The renormalization group argument for the Peano basin. B-sites die under

decimation.

Elimination of the B leads to v
AP =340 119 (2.84)

At time step T = 1 the relation between areas is straightforward:

AV =340 4 3. (2.85)

Equations (2.84) and (2.85) are the same if

AT+ = 4 4D (2.86)
ie.
(AT —1) = 44D — 1), (2.87)

Denoting with n(T*+1)(a) the number of sites with area greater then a at step 74 1, one can
easily observe that the number of decimated sites with 4 > a is half of the total number of
sites with 4 > a ‘

nT)(a) = 2. nT)(a/4), (2.88)

thus, being the total number of sites at step T, Ny = 47T, it follows for the integrated
probability P(Agﬂ) >a)= i;%ﬂ :

P(ATHY 5 0y = b P(AT) > Aa) (2.89)
with 41 . ,
1 nUFh(g)/4T+1  2/4TH1
A== d b= = = —-. 2.
g n(0)(a)/4T /4T T 32 (2.90)
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Equation (2.89) rewritten in terms of P(a) = P(loga) as

P(z)=bP(z+ ) (2.91)

where A = logA. The general solution is P(z) = exp((1 — 7)z]w(z), where w(z) is a
periodic function of period |A| and exp[(1 - 7)A] = A!™7 = b~%. Using eq. (2.90) 7 = g,
Then the solution of eq. (2.89) is

P(a) = a' " "w(loga) (2.92)

Thus an oscillatory term in loga superimposed to the power law a~7) might exist and in
effect it does.

The same argument can be repeated for the distribution of main stream lengths, recovering

the 1 exponent derived in eq. (2.81).

The possible existence of oscillatory terms was first noted by Nauenberg [35] and has been
discussed by Niemeijer and van Leeuwen in [36]. They report an argument due to Nel-
son claiming that oscillatory terms are unlikely to appear because of the fact that two
renormalization transformations with opportunely chosen scales factors would lead to in-
commensurate periods A;, Ay and thus to a constant w(z). In our case this argument does

not apply since we can have only b = 2% e A= —T—ll-klog 2.

In figure (2.6) the log-log plot of P(a) versus a as obtained using eq. (2.75) for the prob-
ability density, is shown for a system of linear size L = 2'*. The dashed line is the
power law a(!~7) times the scaling function F(a/L?) of eq.(2.78). In order to highlight
the periodicity of the function w(z) of eq.{2.92) in figure (2.7) we draw a log-log plot of
P(a)a™"1) = w(loga)F(a/L?) versus a. The dashed line is F(a/L?). The periodicity is
[A| = log 4.

The same plots have been done for the mainstream length distribution and are shown in
figure (2.8) and (2.9).

Note that the same renormalization group argument can be done in generic dimension d

giving 7 = 1 +1Ind/In(2d) and ¢ = 1 +In d/[21n(2d)].

We analyzed in detail the Peano basin. The scaling behavior has been worked out exactly.
Similar lattice models for rivers has been recently object of extensive studies [37] in which
various universaﬁty classes have been identified. In particular the mean field theory has
been solved through a mapping on the Takayasu random aggregation model [22]. Note that
scaling exponents for Peano basin in d=2 result to be the same of this mean field.

A remark needs to be done regarding the generalization in dimension d. One should expect
that in the limiting d — oo the exponents tend to the mean field ones. Actually this is not

the case, in fact one gets T7g—oc = 2, ¥'4—o. = 3/2. This is not surprising, and is due to the
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Figure 2.6: Log-log plot of the cumulated areas distribution P(a) versus a for a system of linear size

L = 2'*. The dashed line is a*=7) F(a/L?).
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Figure 2.7: Log-log plot of P(a)a("1) versus a. The dashed line is F(a/L?) in equation (2.78). The

periodicity is log4.
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Figure 2.9: The same as in figure (2.7) for
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Figure 2.8: The same as in figure 2.6 for the mainstream lengths distribution.
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case the period is |A| = 1/2.
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the mainstream lengths distribution. Note that in this
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fact that in the Takayasu model the tree is space filling only up to dimension d = 2 [22]
while in Peano basin we impose that by construction in all d.

2.5 Random Spanning Trees

Let’s now turn our attention to the set of all spanning trees over a lattice, i.e. the set of all

graphs such that any two points result to be connected and no loops are allowed.

This kind of structure emerge in a wide class of problem in Statistical Mechanics: it was
shown, for example, by Kirchoff [38] that the spanning tree problem is related to the problem
of determining the effective resistance between two nodes of a Resistor Network. It has also
been shown by Fortuyn and Kasteleyn [39] that this problem is related to the Potts model

in the limit of zero states.

Dhar and Majumdar [40] showed that a one to one correspondence exists between the set
of spanning trees over a square lattice and the set of recurrent states in an Abelian sand-pile

over the same lattice.

~ In the context of river networks, a spanning tree is the most general structure which can
arise from a field of elevations like DEM. Indeed, if a graph is constructed from an elevation
field without lakes considering in each point the oriented link in the direction of steepest
descent there will be only a path from each site to the outlet and no loops will be present.

We are now mainly interested in the geometric properties of such structures. We will see
how the exponents characterizing the power-law tails of the distributions of cumulated area
and of upstream length can be computed and that relations (2.19) and (2.25) also in this
case holds.

The fractal dimension has been found by Coniglio [25] to be d; = 2. The exponent r and
¥ can be deduced by the following renormalization argument due to Manna, Dhar and
Majumdar [41].

Let’s consider the decimation procedure that at time step ¢ + 1 deletes from the tree all
that sites that after time step ¢ have just one link touching them. With these procedure,
given a tree, we can associate to each site a ’burning time’ that is the step of the decimation
procedure at which the site is deleted from the tree. For any spanning tree configuration
T a decimated tree 7' can be constructed where the ’burning times’ are rescaled by an
integer factor b by deleting all sites whose "burning times’ are not exact multiples of 5. The
remaining sites are connected each other to form a spanning tree over the undecimated sites,
and site ¢ will result to be upstream with respect to j on 77 if and only if it is upstream
with respect to j on 7. Observing that the distribution of 'burning times’ has a power law
tail, the tree 7 and 7" are expected to be similar statistically for large b except for an over




40 § 2. Finite size scaling, scaling relations and examples

all scale factor.

Note that, in ’river language’ the upstream length for a site and its ’burning time’ are

Synonymous.

Let a be the linear rescaling factor corresponding to a rescaling of 'burning times’ by ¢.

There are then b links between two adjacent undecimated nodes.

As the fractal dimension of the chemical path between two nodes, i.e of the only path
(regardless of orientation of links) which join two nodes on a spanning tree is 2, the average
Euclidean distance between two undecimated nodes scales as b'g‘, or in other words, a ~ bs.
Let’s consider the set of sites whose burning time is greater or equal to b. It consists of the

undecimated sites and of the sites on the links between the undecimated sites.

Hence the the fraction of such sites is a=2b ~ b"%, or equivalently

3
Prob(l > lg) ~ I3 3 (2.93)

which means ¢ = 1+ % = %.

The probability that a site chosen at random has drained area s consider that it is equivalent
to consider the probability to disconnect a cluster of size s removing a link at random from
the tree. Since such cluster is compact (® = 2), it will have linear size ~ 5% and perimeter

. 1.5 s
which scales as (s2)¢ = s8.

To consider the probability to have a disconnected cluster of a given perimeter is useful to

introduce the dual tree 7* of the primitive tree T we are studying.

Suppose that the tree T is over an infinite square lattice whose sites have integer coordinates.
The dual lattice will be the set of all points with half integer coordinates. 7™ is the spanning
tree constructed by drawing all links connecting sites of the dual lattice which do not
intersect any link of primitive tree T. It exists a 1 — 1 correspondence between the set of
primitive trees and the set of their duals. The probability to have a disconnected cluster
of a given perimeter p by removing a link at random from the primitive tree T is the same
of having a loop of length p by adding in the dual tree 7= the link corresponding (i.e.
intersected) by the one removed in T,see figure (2.10). The probability of generating a loop
of length p by adding a link in 7= scales as the ’burning time’ (or the main stream length)
of the site in which the link is added. Since the distribution of 'burning times’ is the same

on the primitive tree and on its dual, one find

Prob(A > s) ~ Prob(l> s8) ~ (s8)7% ~ 578 (2.94)
which means 7 =1+ 2 = .

Summarizing the distributions of drained area and of upstream length are characterized by:
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Figure 2.10: A small portion of an infinite random spanning tree (continues line) and of its dual
(dashed line). The drained area in site 1 is the number of sites which become disconnected if the
bold link is removed. The perimeter of the disconnected cluster coincide with the the loop generated

by adding link (z,y) in the reciprocal tree, i.e. the reciprocal of the bold link in the direct tree.

T=11/8,%=8/5.8=2,d,=5/4,h=5/8, (2.95)

Note that the exponents above can be simply found by using our scaling relations and by
the knowledge of the fractal dimension d;. Moreover scaling relation (2.19) and (2.25) holds
for different class of spanning trees, while the argument exposed here is peculiar for the

case of all spanning trees because it is based on the self-duality of this set.
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3 Optimal Channel Network

DEM provided a powerful tool to describe and characterize the geometrical features of river
basins. Thanks to them has been possible to measure the distribution of drained area and
of upstream length for a large number of basins in the most different conditions from the

point of view of climate, ubication, soil characteristics and size of the basin.

One of the most striking feature shown by the huge amount of data coming from DEM is
that, despite of the great difference of geological conditions, river basins are very close one
to each other from the point of view of geometrical structure. The power-law tails of the
distributions of cumulated area and of main stream length, which are the signature of their

fractal behavior, have to a large extent the same value in all the cases considered.

The observation of this kind of *universal behavior’ made geologists confident that a simple
model can be formulated to explain also quantitatively the geometrical features of river
basins, without taking into account all that environmental details which are so different

from a basin to another,

The model for river network we analyze in the remaining part of this work is called Optimal
Channel Network (OCN) and has been introduced some vears ago by Rinaldo and Iturbe
[14, 15]. It is based on the principle that river basin evolve to realize a network in which

the energy dissipated is minimized.

The idea that drainage structure in Nature can arise from optimality principles is not new,
see for example [42]. Lot of example are therein contained, showing how several systems
in which drainage is involved (the blood flow in vessels, the air in leafs ) develop branched
structures whose characteristics can be recovered assuming a principle of minimal energy

expenditure.

The discussion of this principle goes bevond the aim of this work, and we will limit ourself,
before formulating OCN model, to discuss the example of Resistor Networks. These dissi-
pative systems show a close resemblance with the problem of water drainage in river basin
and their behavior can be completely recovered by mean of a principle of minimal energy
expenditure.

43
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In Section 3 we will derive exactly the scaling behavior of OCN model in the homogeneous
case, i.e. under the assumption that precipitation and soil properties are the same all over
the basin.

Different universality classes will arise depending on the parameter 7 in the expressic: of
the dissipated energy. In the physical case v = 1/2 we find the same exponents as in the

mean field case of Scheiddeger model and in the Peano basin case.

In Section 4 the presence of disorder is considered. We will see to which extent it is irrelevant
from the point of view of scaling behavior and when, instead, it leads to a new set of scaling

exponents.

3.1 Resistor Networks

A Resistor Network is a generic graph whose links are resistors and whose vertices are nodes,
i.e. points in which two or more resistors join. We will indicate with R;; the resistance of
resistor joining node i and node j, with V: the electric potential at node %, and with ¢;; the
intensity of current flowing from node i to node j when a difference of of electric potential

is established at two nodes of the resistor.

Using Kirchoff’s and Ohm’s law the current in each link and the potential in each node can

be calculated. once the potential is given at the two ends. These two laws state:

Kirchoff law: The sum of all currents incoming in a node is equal to 0, apart from the

nodes in which the current is injected from outside or it is ejected from the system.

D6 = @biio — @iy Vi (3.1)

J

where ¢g is the current ejected from the system at the node ip and ¢p is the current injected

from outside in the site 77, further ¢;; = —¢j.-

Ohm law: The current flowing in a link is proportional through its resistance to the

difference of potential between the two ends of the link.

Vij = Rijgi;  Vi.j (3.2)

Kirchoff law is a continuity equation for the electric charge, while Ohm’s law can be easily
recovered assuming that currents are such to minimize the energy dissipation in the whole
network and the constraint that in each site the incoming and the out-coming current in o
node must be the same.
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The energy dissipated by a resistor of resistance R is given by E = Rg? where ¢ is the

current flowing in the resistor. The whole net will then dissipate:

o~
o
%]

p——

1

177

Then the equations for the currents which minimize the dissipated energy and at the same

time satisfy constraint given by Kirchoff’s law will reads:

4

1
FPe) 2 RGa) + 3 M a) = 2Rijais + A = Ay =0, (3:4)
17 ]

i#] i

From relation above Ohm’s law follow identifying the Lagrangian multiplayer \; with electric
potential in site ¢. The stationary point given by equation (3.4) can be shown to be a
minimum for functional (3.3), see for example [43].

3.2 Optimal Channel Network

The Optimal Channel Network model is based on two assumptions founded on experimental

evidence and on the principal of minimal energy dissipation. It can be formulated as follow:

i) Constant velocity:
the velocity of water is constant in each point of the basin.
i) area-discharge law:

If we call h(z2) the height of the landscape at point z, the water flux §(z) is in
the direction of the steepest descent. i.e.

1

A/ /(S =g

).

In each point the modulus of the gradient is proportional to a power of the

quantity of water Q(x) flowing in the point.
IVh(z)] = k(2)|Q(2)"™* = Q(z)"?

where k(z) is the proportionality constant which depends on z and 1 — ~ has
an experimental value of about 0.5.

ut Principle of minimal energy expenditure:
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the network in its stationary state assume a configuration in which a minimum

of dissipated energy is reached.

Assumption ) implies that all the potential energy of water injected in the system by
precipitation is dissipated by friction, infact constant velocity along the flow means no gain
or loss in kinetic energy. Given the elevation field A(z), the flow @(z) can be computed by
assumption ) stating it is directed along the direction of steepest descent and from the

equation of continuity:

divQ(z) = r(z), (3.5)

where r(z) is the precipitation in z. The dissipated energy can be calculated as the potential

energy loose by water flowing downstream, and by mean of assumption %) it reads:

(@) = [Q@IThaliz = [ Q) ke)da (3.6)

In what follow we will deal with the discrete version of this model. Let £ be a lattice. If h;
is the eight of landscape at site 7, the set of draining directions {Q;} will be given as usual,
by the oriented links which join each point with its nearest neighbor with smallest height.

Once the set of draining directions is given, the quantity of water flowing in a point can be

computed as

= > (3.7)

j€up(i)

where the sum over j runs over all sites which are upstream respect to site . The dissipated

energy can also be computed from drainage directions as

E(T) =7 QiT)lhi - hjl (3.8)

€L
where j is the site toward water is ﬁowmd from 7 and T is the spanning tree determined by
the set of drainage directions {Q }. Assuming as in i7) that |h; — hj| = ki Q7 we find:

E(T) =Y kQuT)". (3.9)

i€l
In this discretized version, calling S the set of all spanning tree over the lattice L the

principal of minimal energy expenditure can be formulated as follow:

Principle of minimal energy dissipation: The network in its stable configuration is given

by the spanning tree T which realize a minimum for the functional
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E(T) = 3 kQi(T)". (3.10)

€L

Aim of the following Sections is to work out the scaling properties of the spanning trees
which realize the absolute minimum for the functional (3.10). Two set of parameters are
involved in this problem; namely the r; which represent the water injected at point ¢ and
the k; which take into account the inhomogeneities in the soil properties. To begin we
will consider both r; and k; as constants and then we will discuss what changes for the
distributions of drained area and of upstream length considering R; and k; uncorrelated
random variables. Moreover functional (3.10) depends on the parameter 7 relating the
slope and the quantity of water flowing in a point. Experimental observations give for 7
a value which is around 0.5. We will study the problem for v € [0, 1] to understand how

robust are the scaling properties of the “minimal tree” for different ~.

Before proceeding let’s stress the analogies between the problem of OCN and of Resistor

Networks.

If we neglect for a while the assumption that from each site water can flow in just one
direction, i.e. the direction of steepest descent, a close analogy can be established between
this generalized version of OCN and Resistor Networks: we can identify the current g;;
flowing in the link 7 — j with @;; (we call Q;; the water flowing in the link 7 — j if more than
one drainage direction is allowed), the electric potential V; with the eight of the landscape
h; and the erodability k;; with the resistance R;;.

In both cases we have a network and, for each site, an equation of continuity holds. In both
cases we are asked to find the set of currents which minimize the dissipated energy. The
fundamental difference in these two problems stands in the parameter v appearing??? in

the form of the functional to be minimized.

In the case of Resistor Network v = 2 in functional (3.10) together with the continuity
equations gives place to Ohm’s law which allows to completely solve the resistor; in other

words only a minimum is found for equations (3.1) and (3.4).

Also in the case of generalized [44, 45] OCN one can derive from continuity equation and
from the principle of minimal energy expenditure the area-discharge relation which relates
the flow and the differences in height and that is the analogous of Ohm’s law for OCN.

In the case of OCN the fact that power v in functional (3.10) is between 0 and 1 gives place
to a very complicated “energy landscape” extremely rich of local minima.

Recently Maritan et al [45] showed that in this generalized version of OCN (multiple flow
directions allowed in a point) local minima for the dissipated energy arise when water flows

out from a point just through a link, so that it’s not a restriction to consider only the case
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of flow in the direction of steepest descent, i.e only network spanning-tree like.

We conclude noting that in the case of OCN the principle of minimal energy expenditure
contains a stronger claim if compared with the analogous for Resistor Network: while in
the latter case only one minimum is found for the dissipated energy and it give the physical
solution of the problem, lot of local minima arise minimizing the dissipated energy for
OCN. These local minima are realized by configuration in which all the water incoming in
a site is drained through only one link and that’s why we can consider only spanning tree

configurations without loose in generality.

The claim of the optimality principle is, then, that only the local minima with the lowest

energy are realized in Nature.

3.3 Scaling properties of OCN: homogeneous case

We now proceed to an analysis of the characteristic of the global minimum of the functional
E for v in the range [0,1] for the homogeneous case, i.e we will assume, if not different
stated that r; = 1 and k; = 1. Note that with these assumption the quantity of water Q;
flowing in a point is proportional to the drained area A; in that point and that the energy

dissipated by a tree 7 is given by:

E(T) = ZA;’». (3.11)

Let us consider first the two limiting cases vy = 0 and v = 1. If we call /; the weighted length
of the stream connecting the i-th site to the outlet (calculated assigning to each bond a

length £;), it is straightforward to show that

ZkiAi:Zlf' (3.12)

In effect, denoting with DS(7) (U S(¢)) the set of points downstream (upstream) with respect
to the point ¢ and observing that A(7) equals the number of points in the set US(7) one
gets: D2l =3 Y jepse) ki = 25 Xjevsay ki = Likidi -

The minimization of the energy dissipation for v = 1 thus corresponds to the minimization

of the weighted path connecting every site to the outlet independent of each other.

The 7 = 0 case, on the other hand, corresponds to the minimization of the total weighted
length of the tree:

E=> k. (3.13)

i
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In the homogeneous case k; = 1, Vi, which leads to a high degeneracy for both v = 0 and 1.

Indeed for v = 0, each configuration has the same energy (each spanning tree on a [ X L
square lattice has L2 — 1 links). For v = 1, the minimum of the energy is realized on a large
subclass of spanning trees, namely all the directed trees, in which each link has a positive.

projection along the diagonal oriented towards the outlet.

For the values of v € (0,1) there is a competition between both mechanisms breaking the

degeneracy and making the search for the global minimum a less trivial problem.

The v = 1 case gives a minimum energy £ ~ L3. This can be derived observing that all
points on a diagonal orthogonal to the one passing through the outlet have the same distance
from the outlet. Then: F = Z{‘;ll k(k+ 1)+ Y2572 k(20 — 1 — k) = L*(L — 1) ~ L3 Thus
the value of the energy functional is the same for each directed network and corresponds
to the Scheiddeger model of river networks [20] — all directed trees are equally probable.
Such a model can be mapped into a model of mass aggregation with injection that has been

exactly solved by Takayasu et al. [22, 21]. The corresponding exponents are:

T=4/3,4=3/2,H=1/2,d=1,h=2/3. (3.14)

These exponents follow easily from the result H = 1/2 and from our scaling solution of sec.
2. The result H = 1/2 can be deduced with a simple argument: since all directed trees are
equally probable, each stream behaves like a single random walk in the direction perpen-
dicular to the diagonal through the outlet. This implies that its perpendicular wandering
is L1 ~ LY%. Comparing with equation (2.5) one gets H = 1/2.

The v = 0 case leads to the same energy E ~ L? for each network, thus reducing to the
problem of random two dimensional spanning trees, whose geometrical properties have been

calculated on a square lattice [26, 25]. The results, in our notation, are:

T=11/8,9=8/5,H=1,d =5/4,h=5/8. (3.15)

Both (3.14) and (3.15) are consistent with the scaling relations (2.26)), (2.27) and (2.28).

We now extend our analysis to the whole range v € [0,1]. We will rigorously show that, in
the thermodynamic limit, the global minimum in the space § of all the spanning trees of
the functional E(y,7T) = 3°; A;,(7)" scales as

H ar T ~o A T2 7l42v :
glelgf( 7, T) ~ max(L*, L' %) (3.16)

for all v € [0,1] .
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Figure 3.1: Each dashed line divides the lattice in two parts. 3 ;cp A; is at least equal at the

number of sites contained in the part of the lattice with border D and without the outlet.

Since E(+,7) is an increasing function of v and it is equal to L2 fory=0,fory > 0itis

obvious that

E(y,T)> L*. (3.17)
We now observe that the sum over all the sites can be performed in two steps:

2L-1

E(v,T)= Y, Y A(T) (3.13)

n=1 1€D,
where D, are the lines orthogonal to the diagonal passing through the outlet, that we will
enumerate starting from the corner farthest from the outlet, see figure (3.1). For directed

spanning trees one can observe that the sum of the areas in a given line D, is independent

of the particular tree, and is:

Sa(k)y= > A=

1€Dg

{ k(k+1)/2 k<L (3.19)

L~ S5;2L-1-k) L+1<k<2L-1

Let us observe that for k =0,...,(L—1) :

Sk, T)+ S(2L — 1 —k,T) > Sq(k) + Sa(2L — 1 — k) = L?, (3.20)
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making it convenient to perform the summation in (3.18) over “pairs” of lines. To get a

lower bound for E we need a further inequality: for every set T

DoAT> (oA, (3.21)
el el
that follows easily from Schwartz inequality, since A; > 1 and 0 < v < 1. Now, using (3.18),
(3.20) and (3.21) we can write:

2L-1 L-1 L-1
E(nT) = 3 X AT =3 3 A=Y Y A1)
n=1 1€Dp n=0{ gDnpuDn) n=0 i gDrudp)
L-1 L-1
= Y ST +S@L-1-n,T)]"> Y L¥ = [}, (3.22)
n=0 n=0

where D,, = D 2L—1-n)- Lhe equality in the last inequality holds for directed networks. We
(2L—1—n) q A

can thus write

E(r,T) > I¥%, (3.23)

Equation (3.23) together with the (3.17) gives the lower bound

E(5.T) > max(L?, L'*T?7), (3.24)

that holds for every 7 € S and thus also for the minimum over 7. Using the results of the
previous Section, we can exhibit a tree on which the bound is realized. In effect, the Peano
network can be mapped on a square lattice only considering links between first and second
nearest neighbors, but (3.24) can be analogously obtained for such a lattice on rearranging
in an opportune way the summation in equation (3.18). If we call 7p the spanning tree
given by the Peano basin we know that, except for logarithmic corrections for v = 1/2,
E(v,7p) ~ max(L? L'*%7). Infact the mean value of A} for a Peano basin of size [ = 2!
can be calculated as follow -

()= AT = 3 prlan)en. (3.25)

n=0

From the expression for a,,, it follows that

% -4tlen) < g, < 4t(en) (3.26)

(t(an) is the “birth-time” for a,). giving
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<%)ﬂa(L:2T)§ (A7) < a(L=27), (3.27)

where
T 2 T t) Qt ! ~i HQ"
a(L=27)= 3+ 34T+§:( 4T4 . (3.28)

Performing the summation one gets in the large size limit

(1 + 9”’7 1) ? v < 1/2
310g2 ]o L , v = 1/'2 (329)
=, > 1)2

From equation (3.27), one gets

const < 1/2
(A(LY)~{ logL 7 =1/2 (3.30)
L1 4 >1/2

which will be essential to obtain an energy bound for the lattice OCN model.

min E(v,7) < E(7,7p). (3.31)

and we get equation (3.16).
We now proceed to the calculation of the scaling exponents.

For a directed path, from equation (3.12),

(a) ~ L. (3.32)

For generical “undirected” networks, let us write as in (2.18)

(a) ~ L% (3.33)

Using eq. (2.10) with n = + and the above result on the scaling of energy: E = L*(a”) ~
L*%7 one gets

2v—1=(1+H)(y-7+1) ' (3.34)

holding for v > 7—1.
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Equations (3.34) together with the scaling relation (2.19) can be solved with respect to T
and H, and gives, for v > 1/2

201 =v)+d~1

_ di—
H = i

,.»
D
Ca
(@]

N’

{ F = 30=N+(d=1)(1+7)

(the constraint v > 7—1 become v > 1/2, independently of d;). Thus, if # < 1, for any
7 < 1d; =1, yielding

T=3/2, H=1,v%=2,d=1, h=1/2 (3.36)

for v € (1/2,1). The exponents are the same as in the mean field theory [22, 21] of the

Scheidegger model and the same as in the Peano case.

Note that equations (3.35) are meaningless for v = 1, in which case (3.36) does not hold,
consistent with the Scheiddeger results (3.14).

When 0 < v < 1/2, all we can say is that 7 > 1++. However if d; = 1 for any v € (0,1) (i.e.
the Optimal Channel is quasi — directed) then one might expect that H = 1 for all values
of 7 and thus eq. (3.36) holds in the whole range v € (0, 1). This prediction is confirmed

by results of numerical simulations.

3.4 Scaling properties of OCN: heterogeneous case

In this Section we focus our attention on the case in which some sort of quenched disorder

is present in the basin. Two cases have been analyzed:
i) random bonds, modeling heterogeneity in the local properties of the soil;
it) random injection, modeling non-uniformity in the rainfall,

In the first case, we will show that the energy can be bounded from above with the corre-
sponding one in the absence of disorder. This will give in the large L limit an upper bound
for the 7 exponent that we will see is realized for all the v € (1/2,1). In the case of random
rainfall, we will show that this kind of randomness does not affect the scaling behavior of
the dissipated energy in the large I limit. All the analytical results found in Section 3 for
the homogeneous case, being based on the energy estimate in the thermodynamic limit, can

thus be extended to that case,giving the same values for the exponents.

In the case of random bonds, we associate with each bond of the L x L square lattice
(2L(L~-1) bonds) a quenched random variable &, arbitrarily distributed such that (k) = 1.
The label b ranges over all the bonds of the lattice. The 2L(L — 1) variables are chosen
independent of each other and identically distributed.
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In what follows b (¢, 7)) will denote the label associated with the bond coming out from the
site 7 on the tree 7. Let 7=(~) denote one of the trees on which the minimum of the energy
E(7,7) is realized in the homogeneous case for a given value of 7, and S the set of all the

spanning trees:

E(y)=minB(y,T) = 2 A(T) = S AT () (3.37)

Denoting by Ep(7) the minimum of the energy in the heterogeneous case, averaged over

the quenched disorder, the following inequality holds:

Ep(y) = mmzkb(z’f)fl (7)) ZkbiT* AT (7))

= Zkb(m ) A (T*(/))”—ZA (T°(v))" = E(7) - (3.38)

The energy in the presence of this kind of disorder is thus bounded from above by the
energy in the absence of disorder for any value of the v parameter. In the large size limit

this result gives bounds on the scaling exponents. Equation (2. 10) evaluated for n = 7 gives

() ~ LOFHIDG=THD (3.39)

which holds for any v > 7p—1 = 1—hp, thus at least for any v > 1/2 since hp > 1/2. Here
and in what follows variables with the D index refer to the random bond case. Equation
(3.39), compared with equation (3.16) leads to

(1+Hp)y—-mp+1)+2<1+2y ,1/2<y <1 (3.40)

In the case of self-affine behavior, using eq. (2.19), equation (3.40) gives:

Hp>1 ,1/2<y <1. (3.41)

As before, for the ¥ = 1 case the above inequalities are useless. In the case of self similar

behavior, inequalities for the fractal dimension d; p can analogously be deduced:

dip<1 ,1/2<y<1 (3.42)

Because, in general 0 < H <1and 1 < d; <1+ H , equations (3.41) and (3.42) Together
yield for v € (1/2,1):
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Hp =1,d;p =1, ie. the mean field values.

In order to calculate the scaling exponents in the case v = 1 with disorder in the soil
properties, i.e. when to each bond is associated a random variable k;; we can proceed as

follow. First note that the functional to be minimized in this case reads:
E =3 kA (3.43)

where k; is the random variable associated to the link outgoing from 7 in the tree considered.

We already showed that it can be rewritten as:

E=>"1 (3.44)

where /; is the distance along the tree of site 7 from the outlet, and where

L= >k (3.45)

Jj€ds(7)
with index j running over all sites downstream of i.

One can expect that single streams, in the limit of large sizes of the basin have a direct char-
acter because tortuos paths are much more unlikely from energetic point of view. Therefore,
without loss of generality we can restrict the set in which we search the ‘minimal’ tree to the
direct ones. For such trees the length of each single path can be minimized independently
from the others.

The above statement can be understood by iteration. Consider the usual set D; of diagonals
orthogonal to the one going through the outlet as in figure (3.1). Start from the sites lying
on Dyr—3. They have just one possible choice to reach the outlet. Consider then the sites on
diagonal Dsy,_3 and connect each of them to the site (between the two that can be chosen
on diagonal Djj_5) with smaller {. Then iterate the above procedure just substituting
diagonal Dj;_o with diagonal Doy_j and diagonal Dyr_3 with Dap_x_;. In this wayv the
length of each path to the outlet can be optimized.

To calculate exponent H we note that the sub-basin of a generic site 1, i.e. the set of all
points upstream of ¢ is bounded by two paths obtained with the iterative method we just
described. Therefore the H exponent can be identified with the exponent which describes

the wondering of the optimal path around its mean position.

The scaling behavior of these optimal paths is a well known problem in Statistical Mechanics.
It is called problem of the Direct Polymer in Random Media (DPRM) and it is connected
to the problem of the interface in a bidimensional Ising model with small disorder in the
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interactions [46, 47, 48], as well as to the problem of the growth of a surface under random

particle deposition.

The wandering exponent for the DPRM has been exactly calculated , see references above

and it is H = %

Using the scaling relations (2.19) and (2.25) we found for OCN with v = 1 with disorder
[37]:

r=7/5.v=5/3, H=2/3,d =1,h=3/5. (3.46)

Disorder can be introduced in the system in another way, replacing the constant injection in
each site of the lattice with a random, quenched, local injection, i.e. a spatial inhomogeneity

in the rainfall 7; in eq. (1.1).

In order to do that, one can associate with each site 7 of the lattice a random variable r;.
The variables are chosen to be independent of each other, identically distributed and with

mean (r;)) =1.

The cumulated areas must then satisfy, as in (1.1)

A= wijAj+mi, (3.47)
J o

in such a way that

1 if i is connected to j

through upstream drainage directions

A= Z/\i’jrj ,  with A;; = (3.48)
Y

orifj=1,

0 otherwise.

The minimum of the energy averaged over the “random-rainfall” will be denoted by E-(7),

and for a given value of 5 is given by

Enr(r) = (min 3 Ail{rs}, TV, (3.49)

where S denotes the set of all spanning trees 7 and {r;} denotes the whole set of random
variables. As in (3.37) 7~ will be one of the trees for which the minimum of the energy is

realized in the absence of randomness in the rainfall and for a given value of . Then

E() = (min 3 Ad{rad T7) < (5 A{nd, T(0))
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(ST ) ) € AT e

1

S A(TT) = E(). (3.50)

Il

Thus

E.(v) < E(y) ~ min(L?, [1+%). (3.51)

In this case, it is possible to bound the energy also from below with an argument analogous

to that used in Section 3 for the homogeneous case.

Using the notation of Section 3 we denote by D,, the lines orthogonal to the diagonal passing
through the outlet, enumerated starting from the corner farthest from the outlet with 0. It
will be useful to associate each line D,, with n < [ — 1 with a D,

Drn = Diapo1-n) - (3.52)

In what follows we will choose the {r;} to be independent random variables with values in
the interval [0,2] and such that (r;) = 1. We then proceed to the first step of the proof as
in Section 3, observing that the sum over all the sites in equation (3.49) defining the energy

can be performed in two steps:

E(y) > mmz Ai({r:}, 7))

L ~
: %a_xe&ﬁf*WO>
’ nZL 1-n :
> z (zz nt 3 ) (3.53)

where in the last step the equality holds only for directed trees.
The last expression can be written in a more convenient form introducine

o

2 ieDy, withk<
m:{ 1€k, with ks n (3.54)

1 otherwise .

Then

2L—-1-—- .
Z 27 L2 D=1 X ep, Ml !)
212

n=0
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L-1 2L-1-n g i ‘
> Z .2*{L2.’,Ek:1 2Ll2€‘Dk H < > _ 27L1+2./ : (355)
n=0

where the last inequality follows on observing that
2L-1-n
> 2om=1I%

k=1 €Dy

Thus, for r; <.2, the argument between the brackets is less than or equal to one. Further-

more, for any z and v € [0,1], 27 > z.

Equation (3.53) together with equation (3.51) gives

2L < Er(y) < E(y) ~ IV (3.36)

and thus

Enp(y) ~ LM (3.57)

And then one can conclude that

Err(7) ~ min(L?, L'*27), (3.58)

and all the results of Section 3 hold.

We conclude the Chapter by resuming in the following table the universality classes which
arise for different values of the parameter v and in presence or absence of disorder in for

the OCN model, together with models which share the same geometrical features.
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TI1D V|4,

43 11 Scheiddeger OCN v=1
3122 ld- random aggregation (no disorder)
3] 2| 7| Peano basin OCN 112 <y<1
2 mean field Scheiddeger

11 2 _fg 3 | Random Spanning Trees

8 514 OCN Y=0
715 J ] Polymer in. OCN V=1
51313 random enviroment (with disorder)

Figure 3.2: The universality classes of OCN model, together with the models which share the same

exponents
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4 Numerical results

4.1 Global minima

Since Optimal Channel Network model has been introduced, extensive numerical simula-
tions have been carried out by different authors to investigate the geometric properties of
these structures. The aim was to understand to which extent the measured exponents for
the power law tails of the distribution of cumulated areas and upstream length are sensitive
of the topological feature imposed to the network, like for example the shape of the basin,
the possibility for multiple outlet, the presence or the absence of links between second neigh-
bors. Also the sensitivity to the different initial conditions from which the optimizations
algorithm were started from has been considered and the data obtained compared with the

ones coming from DEM of real rivers.

The most striking result of these works is that substantial differences arise in the values of
measured exponents when ‘crude’ or more sophisticated algorithm are used; and while data
coming from ’simpler’ algorithm are in very good agreement with data coming from real
rivers, the results obtained with sophisticated algorithm seems to be very close to the exact

result discussed in the previous chapter.

In order to understand what this "algorithm dependence’ is due to and how much numerical
results matches with our predictions, we performed a large number of simulations of OCN,

mainly along two avenues:
i) the search for the global minimum with a Metropolis algorithm for y = 1/2.

1) the statistics over local minima for v = 1/2; strikingly these yield consistent but
different values for the scaling exponents. By a local minimum, we mean a configuration
(a spanning tree) of the network such that no link can be changed without increasing the
energy. The global minimum is of course also a local minimum; but in the two cases we
found different statistics, that is suggestive of a very rich structure of the energy-landscape.
We will postpone the results concerning the latter subject to the next Section, focusing our

attention only on the scaling properties of the global minimum.
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In the computer simulations we considered a square lattice with all sites on one side allowed
to be an outlet for the network. Periodic boundary conditions were chosen in the other

direction.

Once the simulation has been performed over the whole lattice, the basin with the biggest
drained area is selected and only sites contained therein are used to calculate statistical
quantities. Multiple outlets are allowed in order to minimize finite-size effects. The rainfall
is assumed to be uniform over the whole lattice. The optimization method used is simulated
annealing, in which a parameter T analogous to the temperature is introduced and lowered
during the simulation. For each T value the system is relaxed in the following way: a new
allowed configuration “near” the initial one (“near” means one differing from the previous
one only in one link) is randomly chosen; the dissipation energy of the new configuration is
calculated and compared with the value of the old one. The new configuration is accepted
with probability 1 if AE is negative, and with probability exp[~%g] otherwise.

In short a sketch of the algorithm is:

i) Generation of a random initial configuration:
Starting from a given, fixed tree we obtain a random initial configuration running
steps ii) and iii) several times. In this way only changes preserving the spanning
loopless structure are accepted.

i1) Random changes of the configuration:

We select randomly one site i and then again randomly one of the “free” (not

yet belonging to the tree) links connected with ¢, if any.
i17) Geometrical controls:

The absence of a loop in the new configuration is checked. If a loop is present,

step i) is repeated.
iv) Energetic control:

The change, AE, in the dissipation energy dissipation is calculated. If it is neg-
ative we go on to step v). Otherwise, a random number p uniformly distributed
in the interval [0, 1] is generated and compared with exp[——ATE]: if exp[—%a] <p

we go on to step v) , otherwise the change is rejected and we go back to step 7).
v) Recalculation of changed quantities:

All variables involved in the change are updated.



4.1. Global minima 63

(e}

2

Figure 4.1: The distribution P(A > a) versus a for a basin of linear size L = 128. Such a distribution
has been obtained by mean of a Metropolis-like algorithm (attempting to seek the global minimum)

and averaged over ten samples. The slope displayed is 1 — 7 = —0.50.
vi) Lowering of the 7' parameter:

In each cycle, the T parameter is decreased with the following rule: at the n-th
cycle T' is given by T'(n) = o™T'(0), where « is a parameter very close to 1 (we
choose o = 0.986) and 7'(0) is a suitable chosen constant.

After step 1), steps ii)-v) are repeated many times, say N. Then we go to step vi) in which
the T' parameter is lowered and the entire algorithm (except step i) ) is repeated. The

annealing process stops when T reaches very low values (~ 107%).

The simulations have been repeated varying the initial configuration for a size L = 128.
The statistical quantities do not depend on the initial data. The integrated probability
distributions for the accumulated areas and mainstream lengths averaged over 10 trials are
shown in figure (4.1) and figure (4.2) and give 7 = 1.50 & 0.02 and Y = 2.00 £ 0.02 where

the error is estimated as the root mean square root over the ten trials.

These results are in perfect agreement with equation (2.28) and confirm that the analytical
results hold when v = 1/2.

In effect, comparing one of the stable tree obtained with algorithm described above with
a Peano basin we note that, apart differences at the smallest scales, they exhibit identical
structures. We state then that with a very slow annealing it is possible to approach a tree

which realize a value for the dissipated energy very close to the absolute minimum starting
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Figure 4.2: The distribution II(/ > X) versus lp for the same conditions as in Fig. 5. The slope
1—1=-1.00

from a generic configuration. These results can be compared with the ones obtained by
Meakin et al. They allowed each site of the border to be an outlet and considered the
distribution of accumulated areas of a site belonging to the border (and not for a generic
site of the basin as we have been doing in the present paper). They found a power law
behavior for such a distribution: Ps(a) ~ a~" with 75 numerically estimated to be >~ 1.51.

If finite size scaling is invoked for such a distribution [32],

Ps(a,L)=a""2f3 <I£;‘ﬁ>

then, as in (2.11), one finds:

(a)y ~ [ (1+H)(2-78) |
As noted in [32] the mean accumulated area for a border site in a basin is just the number
of sites in the bulk divided by the number of sites in the border. Denoting by D the fractal
dimension of the border,

(a>3LD ~ L(1+H) ’

Ty = 1+ﬁQH—. In the case of compact basins (H =1),79 = 1+ %, ( 75 = 3/2 for a square ).
Note that 75 is independent of the class of spanning tree chosen to drain the basin and it is
a priori different from the = we introduced to characterize the distribution of accumulated
areas in the bulk, which we found to be for H = 1,7 =2 - %L.
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20

10 14

Figure 4.3: P(A > a) versus a for three different sizes of the basin: L = 32, L = 64 and [ = 128.
Local minima are considered here, the distribution is obtained averaging over 40 samples. The slope

is1—7=—045
4.2 Local minima

We have performed the search for local minima with an algorithm equivalent toa 7T = 0
Metropolis scheme, i.e. one in which new configurations are accepted only if energetically
favorable. The simulation has been repeated 40 times, starting with different, randomly
chosen, initial data and varying the size L of the system: [ = 32,64,128.

The values obtained for the characteristic exponents of the probability distribution consid-
ered above, 7 and ¢ are in very good agreement with experimental data. The distributions
obtained starting from different initial condition do not substantially differ from one an-

other, all yielding the same value for the exponents.

The statistical quantities thus seem to be robust with respect to variations of initial condi-

tions, showing the self-averaging of the scaling parameters.

Results obtained averaging over 40 local minima are shown in figure (4.3) and in figure (4.4)
and give 7 = 1.45 £ 0.02 and % = 1.82 + 0.02.

The results are consistent with the scaling relations. A collapse test has been done to verify
the consistency of numerical values of the exponents with the finite size scaling hypothesis
(figure (4.5)).

We have performed the search for local minima with an algorithm equivalent toa 7 = 0
Metropolis scheme, i.e. one in which new configurations are accepted only if energetically
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Figure 4.4: The same as in Fig. 7 for the upstream length distribution. The slope is 1 — ¢ = —0.82
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Figure 4.5: The result of the collapse test for the accumulated area distribution in the case of the

local minima.
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favorable. The simulation has been repeated 40 times, starting with different, randomly

chosen, initial data and varying the size L of the system: [ = 32,64,128 .

The values obtained for the characteristic exponents of the probability distribution consid-
ered above, 7 and 1 are in very good agreement with experimental data. The distributions
obtained starting from different initial condition do not substantially differ from one an-

other, all yielding the same value for the exponents.

The statistical quantities thus seem to be robust with respect to variations of initial condi-

tions, showing the self-averaging of the scaling parameters.

Results obtained averaging over 40 local minima are shown in figures (4.3) and (4.4) and
give 7 = 1.45 £ 0.02 and ¢ = 1.82 & 0.02. The results are consistent with the scaling
relations. A collapse test has been done to verify the consistency of numerical values of the

exponents with the finite size scaling hypothesis, see figure (4.5).

It is the case to remark that these values are very close to the experimental ones and that
the tree which realize local minima are much more resemblant of the structure of DEM of

real rivers than those which realize global minima.

The relevance of local minima can be supported also by the experiment run by Rinaldo and
co-workers. They extracted from a DEM the shape of a real basin and searched for a local
minimum in a lattice of that shape, getting a surprisingly good agreement between DEM
and the OCN obtained.

The above discussion raise an important question: if, indeed, OCN model provide the
mechanism which leads pattern formation in river basin, why global minimum need a so
careful procedure to be approached and has got a structure so different from real rivers.
while local minima are so close to them ? A possible answer could be that the ‘energyv
landscape’ for OCN model is very rich and ‘rough’, and very easily a searching algorithm

(or Nature) can get trapped in a local minimum .

This qualitative observation can be supported by the following argument [49]: let’s call S
the set of all spanning trees over a given lattice of size L. For any configuration s € § we
define a Boltzmann-like probability of the tree s as:

P(s) « e~ H()/T (4.1)

where 771 is the Gibbs’ parameter mimicking the inverse of temperature of classic thermo-
dynamic systems . For a fixed 7, let H,(S) denote the finite set of all possible values that
may be taken on by H,(s) for trees s € S. Given an energy level, say E' € H,(S),let N(E)
be the degeneracy, i.e. the number of different spanning trees s for which H,(s) = E. One
therefore obtains




68 § 4. Numerical results’

P(Hy(s)=E)= Y, P(s)x N(E)ezp(—E/T). (4.2)
s:H~(s)=E

Defining the thermodynamic entropy as

o(E) = logN (E), (1.3)

one obtains:

P(H.,(s)= E) x e TENT (1.4)

where a formal free energy F(E) = E — To(E) has been introduced. Indeed, the most

probable states correspond to an energy E that minimizes F' (E).

The claim is that the entropy scales sub-dominantly with system size compared to the energyv
so that even for a non zero value of the Gibbs’ parameter the most probable spanning tree
configurations determined by minimizing the free energy can be equally well obtained by
minimizing the energy, provided that L is large enough. As a result, in the thermodynamic
limit the system described by the probability in Eq. (4.4) always tends to operate at zero

temperature, i.e. the total energy in Eq. (3.11) is minimized.

Our exact result is that for the set s of OCNs one has

= Min Ho(s) o« L2*° (1.3)

where 6§ = 2y — 1 and then § > 0 for v > 1/2.

The v = 1/2has § = 0, but with a logarithmic correction leading to an effective § of 0.1-0.2

as shown by detailed examination of data in computer studies of accessible local minima.

For spanning loopless trees the number N'(E) of configurations s with given energy E scales
at most as N(F) uE? | so that .S(E) scales at most as L?, where p is a real number
depending on lattice properties and the energy. This follows from noting that the total
number N of spanning trees is less then the number of possible ways of choosing L* -1
links (number of link s in a spanning tree) among all the 2L(L + 1) possible links. Thus

2L(L +1) 2
N<( L2_1>~22L (4.6)

Since the number of configurations with a given energy is less then or equal to N, N(E) <

22L% and the above scaling of entropy is satisfied.
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We conclude that for spanning trees (with 4 > 1/2), the entropy scales sub-dominantly to
the energy with system size and, in the thermodynamic limit I — oo, min F(E) « L*+?
because § > 0. Hence the configuration s that minimizes H., also minimizes F(E), whatever
the Gibbs’ parameter 77!, provided the system is large enough. Hence OCNs, which
correspond to the O-temperature assumption (i.e. the configuration yielding min F(E) is
that with min E only for T — 0), reproduce natural conditions at any temperature for large
L.

We suggest that this is the reason for the outstanding ability [15] ,[14] of OCNs to reproduce
observational evidence regardless of diversities in surface lithology, geology, vegetation or
climate. This also strongly suggests that size effects of samples of real networks may lead

to spurious results for small sizes [50].

These considerations lead to the formulation of the principle of Feasible Optimality [51]
according which Nature is unable to reach the true ground state when complex systems
are involved with optimization problems. Optimization just stops when a local minima is
reached; moreover these class of local minima can exhibit its ow peculiar characteristics

that are definitively different from those of global minima.

We conclude noting that a similar behavior has been recently observed in other physical
systems. In [51] has been studied numerically a 2-dimensional Ising system with a weak
disorder in the interaction and where border spins have been fixed to have opposite orienta-
tions on different sides. 7" = 0 dynamics was run from a generic initial configuration. When
a stable stationary configuration has been reached they studied the geometrical properties
of the interface between regions containing spins with different orientation. They found for
this interface a well defined self-similar behavior characterized however by scaling exponents

which resulted to be unambiguously different from the ones obtained with a T # 0 dynamic.
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