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Introduction

Ab-initio methods based on Density-Functional Theory (DFT) are by now com-
mon and well established tools for studying structural and vibrational properties of
materials on very realistic grounds. The plane-wave pseudopotential method and
the Local-Density Approximation (LDA) to DFT have provided a simple frame-
work whose accuracy and predictive power have been convincingly demonstrated
in a large variety of systems.!] The calculation of reliable phonon spectra in semi-
conductors is well within the reach of DFT. Recently, a very efficient perturbative
approach has been developed: the Density Functional Perturbation Theory [2:]
(DFPT). This approach allows to obtain dynamical matrices at arbitrary wavevec-
tors with a computational effort comparable to that of a self-consistent calculation
for the unperturbed bulk. It is by now possible to obtain accurate phonon disper-
sions on a fine grid of wavevectors covering the entire Brillouin zone (BZ),* which
compare directly with neutron diffraction data, and from which several physical
properties of the system (such as heat capacities, thermal expansion coefficients,
temperature dependence of the band gap, and so on) can be calculated.

Bulk phonon dispersion spectra are interesting not only for their relevance to
the properties of pure materials, but also as ingredients of approximate calculations
for complex systems such as semiconductor alloys, superlattices, and other quan-
tum microstructures. Much attention is presently being paid to the vibrational

properties of such systems, both because of their fundamental interest, and as a



2 INTRODUCTION

promising tool for the structural characterization of these new materials. (> Most
of the existing theoretical studies heavily rely on information about the force con-
stants of the pure materials. ¢! Even when first-principles calculations for the su-
perlattice are available, bulk phonon dispersions of the constituents are very useful
for interpreting the calculated spectra, and comparing them with experiments. ("] A
detailed account of disorder effects in semiconductor microstructures may require
the consideration of (many) systems with a rather high number of atoms per unit
cell (=~ 100, or more). A direct first-principles calculation of the phonon spectra
for such systems may be very demanding computationally, even with the highly
efficient linear-response techniques presently available. On the other hand, calcu-
lations based on empirical models such as the shell model, the bond-charge model
or others, have a limited predictive power. In fact, the parameters entering these
models are fitted to experiments. In the case of AlAs, for instance, experimental
information is very poor, and existing semiempirical calculations based on force
constants fitted to the phonon spectrum of bulk GaAs produce a longitudinal-optic
(LO) band along the I'X direction which is much wider than calculated from first
principles. "] It is therefore desirable to devise a method to treat both perfect bulk
semiconductors and their alloys and microstructures with an affordable amount of
computer resources, retaining an accuracy similar to that of direct first-principles

calculations.

In this thesis we present the modern methods for calculating the vibrational
properties of extended systems and we apply them to pure bulk semiconductors.
Furthermore, we develop an approach to describe more complex systems such as
superlattices and alloys. To this end, we first give a detailed theoretical description

of the DFPT and of the computational techniques necessary to implement it.



We then demonstrate the predictive power of these methods in the case of
semiconducting pure crystals, where a wealth of well established experimental
results exists. We present the first ab-initio calculation of full phonon dispersions
of three group IV elements, C, Si and Ge, and four compound semiconductors,
GaAs, AlAs, GaSb, and AlSb. In the case of AlAs—whose vibrational properties
are poorly known because of the lack of neutron-scattering data—the accuracy
of our predictions is confirmed by the excellent agreement between the phonon
dispersions calculated for the closely related compound AlSb, and recent neutron-
scattering data. [®!

A complete description of harmonic lattice dynamics requires the knowledge
of both eigenvalues and eigenvectors of the dynamical matrix. To this purpose we
also calculate the eigendisplacements along some high-symmetry lines in diamond
and some elemental (Si, Ge) and compound (GaAs, AlAs) semiconductors. The
peculiar behaviour of the eigenvectors in the case of diamond is analyzed and
discussed in terms of the competition between angular (bond-bending) and radial
(bond-stretching) force constants. As a byproduct we calculate the internal strain
parameter for these materials.

As a further application, thermal expansion of semiconductors can be calcu-
lated within the so-called Quasi Harmonic Approximation. While most of the ma-
terials expand upon heating, many tetrahedral semiconductors (e.g. Si, Ge, GaAs)
exhibit negative thermal expansions at low temperatures. ®1% For long time these
features have been investigated theoretically only within semi-empirical models.
Only recently, the first attempts of realistic calculations have been carried out on
silicon [11:12:13] and diamond.*3] We improve the previous ab-initio calculation [*2!
of the thermal expansion coefficient of Si, and extend the application to some other

semiconductors (Ge, GaAs, AlAs).




4 INTRODUCTION

Finally, we focus our interest on mixed semiconductors (superlattices and
alloys), particularly on the possibility of using for these systems the informations
gained from calculations on pure materials. To this aim, we examine to which
extent the interatomic force constants of pure bulk semiconductors are similar to
each other, in view of using them to study the vibrational properties of mixed
systems, such as alloys, superlattices (both ordered and partially disordered), or
other quantum structures. In the case of III-V compounds, we find that the force
constants of materials which differ by their cations are rather similar to each other,
while this is less so when the materials differ by their anions. The situation is
intermediate in the case of elemental semiconductors. Phonon frequencies of thin
(AlAs),(GaAs), (001) superlattices (SL’s) are evaluated using the force constants
of the corresponding virtual crystal. The values obtained in such an approximation
compare very well with those of full ab-initio calculations of the same systems.

The detailed features of the Raman spectra in these systems are still far from
being completely understood. A simple approximation has been recently proposed
for the Raman intensity in AlAs/GaAs systems, (¥ in which the differences of the
atomic polarizabilities between the two cationic species are neglected. Though
adequate for many qualitative purposes, this approximation fails to reproduce
the observed relative intensity of the various peaks. In order to improve the
quantitative understanding of Raman spectra in AlAs/GaAs systems, we present
a model based on a perturbative expansion of the dielectric susceptibility of the
crystal upon composition. In this model the Raman tensor is expressed in terms of
a restrict number of parameters which are obtained by a fitting procedure applied
to the results of ab-initio calculations of Raman intensities of some short-period
SL’s. The method which we have developed can then be used to obtain Raman

spectra of any AlAs/GaAs mixed structure.



Chapter 1

Ab-Initio Lattice Dynamics

in Semiconductors

Many important achievement have been obtained by modern solid state physics
in the description of the vibrational properties of solids. Model theories of lattice
dynamics 1% reached the state in which experimental values can be reproduced
with great accuracy by fitting the parameters of the model to experiments. How-
ever, these last years have seen increased demand for “parameter-free” approaches,
both for the intrinsic theoretical interest and for the fundamental role played when

the experimental information is lacking or debated.

In this chapter we first introduce the problem of lattice dynamics of infinite
crystals. We show then the details of a method that allows the “first principles”
evaluation of the lattice dynamical properties of semiconductors in the framework

of the Density Functional Perturbation Theory.

1.1 Lattice dynamics and force constants

Let us consider an extended three-dimensional crystal made by N cells with n

atoms in the unit cell. We indicate the position of the i-th atom of the generic
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cell, in the undistorted crystal, as:
Ry, =Rp+m; 1=1,2,..,n, (1.1)
where the lattice vector R can be expressed in terms of the basis vectors {ai} as:
Ry =nia; +noay + nzag L ={ny,na,n3}, (1.2)

the {n;} are integer numbers, and the position of the i-th atom in the unit cell is
given by: |

T =zia; +chay + zia, 0<z<1. (1.3)

In the harmonic approximation small displacements from the equilibrium po-

sition are assumed. Therefore the total effective potential energy of the crystal

can be expressed in terms of the displacements defined by
Rr;— Rr:+ui(Ryg), : (1.4)
as a Taylor expansion up to the second order:

1
AP Z wi(Rp) Coj(Re,Re) - wj(Ro) + O(w?) . (L5)

The coefficients Cy; g;(Rr, Rz ) appearing in Eq. (1.5) are called interatomic force

constants and are given by

5%¢E
Coini(ReRe) = 5 R Voun (B |,

(1.6)

where the second derivatives are calculated at the equilibrium. To lighten the

notation, in the following we will drop the index L for Bravais lattice vectors when
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no possibility of confusion may arise. Differentiation with respect to uqi(R) of

Eq. (1.5) allows us to write the force acting on an atom at site R;:

o€
bui(R)

F(R) = =~ Cij(R,R)) - u;(R) + O(v?) . (1.7)

R',j

The atomic force constants defined in Eq. (1.6) are not independent quantities,
but they are connected to each other by relations due to the symmetry properties
of the crystal. In particular, because of the translational invariance of the crystal,
the force constants only depend on the difference R — R’; furthermore they satisfy

the relation:

> Cij(R-R)=0. (1.8)
R,j

Eq. (1.8) expresses the fact that the potential energy remains unchanged for a
uniform translation of the whole crystal. This property is related to the vanish-
ing frequence of the acoustic modes at the Brillouin zone center. According to
Eq. (1.7) the classic equations of motion read:
Mii(R) = - Cij(R—R)-u;(R'). (1.9)
R',j
Translational invariance requires that the solution of the infinite set of coupled

equations (1.9) can be put in the Bloch-wave form:

1 : o
uz(R) = —l—‘/f’ui elq'R—Mt . (110)

The allowed values of q are chosen according to the Born-Von Karmaén periodic
boundary conditions. By substitution of Eq. (1.10) in Eq. (1.9) we obtain the

equation:

wzui = Zbi’j(q) *Uj o, (1.11)
J
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where we have introduced the discrete Fourier transform:

D:

1
ij(q) = AT ER: C;i(R)

e (R) (1.12)

The matrix f)i,j(q) defined by Eq. (1.12) is called the dynamical matriz of the

crystal. It is a 3n X 3n hermitian matrix, and has the well-known properties: [1¢]
~ - AT
Dy (a) = (Ds(a)") (1.13)
D; j(—q) = Dij(q)" . (1.14)

The eigenvalue problem in Eq. (1.11) has 3n solutions for w? at each point in
the Brillouin zone, q; these will be denoted by w?2,(q), where m = 1,2, ...,n, and
can be interpreted as the branches of a multivalued function w?(q). The relations
expressed by the equations w = wn,(q) are known as dispersion relations.

Due to the hermiticity of lsiyj(q) the eigenvectors u;", can be chosen in such

a way to satisfy the orthonormality and the closure relations

(1.15)

1.2 Linear response and lattice dynamics

Since the works of De Cicco and Johnson ['7! and of Pick, Cohen, and Martin, (*8]
it is well known that the harmonic force constants of crystals are determined by
their static linear electronic response. In fact, within the adiabatic approximation,
the lattice distortion associated with a phonon can be seen as a static perturba-

tion acting on the electrons. It is a simple application of the Hellmann-Feynman
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theorem (19 to show that the linear variation of the electron density upon appli-
cation of an external, static, perturbation determines the energy variation up to
second order in the perturbation (up to third order, indeed, as shown in Ref. 20).

Suppose that the bare external potential acting on the electrons, Vs (Which
we assume for simplicity to be local) is a continuous function of some parameters
A = {\;}. The Hellmann-Feynman theorem states that the “force” associated with
the variation of the external parameters X is given by the ground-state expectation

value of the derivative of Vy:

0y oVy(r)
Dy _/n)\(r) B, dr, (1.16)

where £y is the electron ground-state energy relative to given values of the A pa-
rameters, and ny is the corresponding electron density distribution. Total energy
variations are obtained from Eq. (1.16)k by integration. In order to have ener-
gy variations correct up to second order in A, it is necessary that the r.h.s. of

Eq. (1.16) be correct to linear order:

BEN _ /(nu(r) OVA(r) | S, Onx(x) OVA(r) |

A\; O)\; ax; O\
3V (
+no(r 2/\] a,\)éA ) dr + O(\?), (1.17)

all the derivatives being calculated at A = 0. Integration of Eq. (1.17) gives:

oV
Ex =&+ Zki/no(r)—é‘)‘%ﬁ dr+

T-;—Z)\i/\j/ (an}\(r) IValr) +n-(r)a2V>‘( )) dr. (1.18)

8); O\ ERVED

Suppose now that the A parameters represent ion displacements, uqi(R), then the

second derivatives of the energy £ are simply related to the matrix of the force
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constants:
0*E
Ouqi(R)0ug;(R') ,
The first term in the r.h.s. of Eq. (1.19) is the ionic contribution to the force

= Caigi(R—R') = C¥% (R - R+ C (R - R)). (1.19)

at,Bj ai,3j

constants, which is essentially the second derivative of the ion-ion contribution to

the total energy of the system:

fon (R _ R/} = ~ 0. Gonion (1.20)
o = Bum(R)0ug; (R’ |
where
eZZiZj
gion—ion - Z Z ’R‘JT‘ T — R’ — Tj, ’ (121)

t,j R,R/
and eZ; is the valence charge of the i-th ion in the cell. For finite systems no
problems arise in the evaluation of &on_jon. However, in an infinite crystal the
sums in Eq. (1.21) do not converge. Similar divergences arise in the expression of
the electron-ion and electron-electron terms of the total energy. However, due to
the charge neutrality of the crystal all these divergences cancel out. The resulting
nonsingular expression of &on_jon, evaluated with the Ewald method, is given in

Appendix A. The electronic contribution to the force constants, C¢'*¢ is given by:

elec AN 5n(1‘) 61/}0”(1') nalr azmon(r) r
Coijj(R-R) = / <5uai(R) Fug, (R) of )Buai(R)aum(R’)> dr, (1.22)

where Vio,(r) is the bare ionic (pseudo)potential acting on the electrons:
Vion(r) = Zvi(r~R—Ti), (1.23)
R,:
and On(r)/0uq;(R) is the electron density response to the displacement in the a-
th direction of the i-th ion in the unit cell at R. The matrix of the force constants
is conveniently calculated in reciprocal space:

Coipi(R) = > R Coigi(a), (1.24)

q
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where N is the number of unit cells in the crystal. For the ionic contribution, one

finds:
~ion 471'62 e—-(q—}—G)z/%U i(¢ i
aipi(q) = - Q Z WZiZje (ST =T (ga + Ga)(ap + Gp)
G,q+G#0 q
el —G? /47 ,
— 7;; Z : G2 {ZiZZze’G'(T"_T’)GaGB+C-C- bij,  (1.25)
G#0 !

where 77 is a parameter which is chosen to be large enough to allow the neglect of
the real-space term in the Ewald energy (see Appendix A).
The electronic contribution to C(q) is given by

Celspsta) = | (6”(”)*‘9””(” e 63y [ ) OWion(r) 4. (1.26)

8u°‘iq 8“5.7'01 auoziqzoauﬂiqzo

where OVion(r)/0uaiq is the linear variation of the external ionic pseudopotential

upon a lattice distortion of the form:
Uni(R) = Upiq e TR, (1.27)

and On/0uqiq the corresponding variation of the electron density.

Eq. (1.26) shows that the knowledge of the electron density response to a
lattice distortion of the form (1.27) enables one to calculate the harmonic force
constants of the crystal. Phonon frequencies are then obtained as shown in Sec-

tion 1.1 by diagonalization of the dynamical matrix:

D;j(q) = Qf‘l (1.28)

/M M;

where the M’s are ionic masses.
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1.3 Density-functional perturbation theory

The considerations made in the previous section are exact. In practice we need a
method to evaluate the electron density from the external potential. In principle,
this can be achieved by solving the Schrédinger equation (SE) of the system. In
practice, however, the solution of the SE for many-electron systems is not possible
due to the very large number of degrees of freedom. Density-Functional Theory
(DFT) provides a theoretical framework to calculate ground state properties with-
out solving any SE. The practical implementation of DFT requires in turn some
approximations (namely the Local Density Approximation) whose ability to cope
with many problems in condensed matter physics is by now well assessed.

Here we give first a brief review of the main aspects of DFT, then we will
present a method to linearize the DFT with respect to perturbations of arbitrary

wavelength.

1.3.1 Density functional theory

In the Born-Oppenheimer approximation, the ground state (GS) properties of a
system of interacting electrons in an external potential are given by the Schrodinger

equation:

R e? 1
H‘I’(rl,rz,...,rl\,): “Z%V?+Z%xt(ri)+52m ¥ =FU.
i Ay Ut J

t

(1.29)
where the r; denote both particle coordinates and spins. The Schrédinger equation
implies that all the GS properties of the system are functionals of the external

potential Voyi(r). In particular Viyi(r) determines the GS electron density n(r).
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The Hohenberg-Kohn (HK) theorem 2!l states the invertibility (up to a trivial
constant) of the correspondence between the external potential Vey; and the density
n(r) in the ground state. As a consequence, we can express any physical property
of the system in the ground state as a functional of the electronic density. In
particular this holds for the total ground state energy that can be written in the
following way:

Bin] = min (Fln] + [ Ves(en(o)ae ) (1.30)

where the minimum search is constrained by the condition that the total number
of electron is fixed, [n(r)dr = N, and F[n] is a universal functional (i.e. it is
independent on Vey;) whose form is in general unknown. It is useful to separate
in the expression of F[n] the Hartree term, due to the classical electrostatic inter-
action between the electrons, and a term, Ty[n], defined as the kinetic energy of a

noninteracting electron system with density n(r). We have then:

2

Fln] = Tyln] + = / 2O Gde! + Byl (1.31)

2 Ir —r'|

In fact, Eq. (1.31) defines the ezchange-correlation energy Ex.[n] as the difference
between the unknown functional F'[n] and the known terms in its r.h.s.
Following this approach, a set of self-consistent single particle equations can

be obtained [??] from the variational principle for the total ground state energy

Eln]: ,
_éh—ﬂ;vz + Vscp(r)} ¢i(r) = Eﬂbi(r) ) (1'32)

where the self-consistent (SCF) DFT potential, Vscr, for a system of electrons
moving in the external potential of the ions is given by:

n(r')

Vscr(r) = Vion(r) + e’ v — /|

dr’ +vye(r) (1.33)
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. with
. 6E [TL]

n(r) = z I'Gbi(r)Iz ) vyie(r) = "m , (1.34)
i
where the sums are extended only to the first NV lowest eigenstates of the single
particle equation (1.32). The above equations are known as the Kohn-Sham self-
consistent equations.

Due to the unknown exchange-correlation potential the Kohn-Sham equations
are of no practical use, unless an approximation for vy, is specified. In practical
calculations the most used approximation is the so-called Local Density Approz-
imation (LDA). In this approximation the exchange-correlation energy is taken
“locally” equal to the one of the homogeneous electron gas at density equal to the

local density, n(r):
ELDA[] = f e e (n(r)) n(r)dr , (1.35)

where eyc(n) is the exchange-correlation energy per particle of the electron gas
with uniform density n. In this way the potential vy appearing in Eq. (1.34) is

given by

ve(r) = pixe (n(r)) pec(n) = —neve(m)]| . (136)

1.3.2 Linear response in DFT

Suppose one has solved the Kohn-Sham equations for a crystal characterized by
a (periodic) ionic potential Vi, (r). Let us superimpose to Vi, (r) a perturbation

AV2

yare Of given periodicity q. The self-consistent potential will change accordingly:

Vser = Vser + AVl .. If AVl is supposed to be known, the linear variation in
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the electron density An is obtained by first-order perturbation theory:

AR (q+G QZZ k|e Ha+G)r !¢rk+q><¢r‘k+qlAVscft¢r >7 (137)

€u,k — €ck+q

where An(q + G) is the Fourier transform of An(r), {2 is the volume of the unit
cell, v and ¢ indicate valence and conduction bands respectively, and the sum over
k covers the first Brillouin zone. It is here assumed that the crystal has doubly
occupied valence bands and empty conduction bands separated by a gap. On the
other hand, if An is known, AVscr can be obtained by linearizing Eq. (1.33):

dvye

= } L (1.38)

where ny is the unperturbed electron density. Egs. (1.37) and (1.38) form a system

1
AVE A(r) = AVS, (r) + € / Anlr) 4 4+ An(r)

r—r|

which can be solved iteratively. It should be remarked that the linear response to
a perturbation of given ¢ only contains Fourier components of wavevector q + G:
different q’s do not mix at this order of perturbation theory.

For computational convenience, it is desirable to avoid the sum over conduc-

tion bands of Eq. (1.37). This can be achieved by rewriting Eq. (1.37) in the

following way:
An(q + G) NQ Z Z (Poxle T PG (e, 1) PAAVE Llbui),  (1.39)

where P, is the projector over the conduction-state manifold, G(€) = 1/(e— Hscr)
is the one-electron Green’s function of the unperturbed system, and the super-
script in AVg-p has been introduced to stress that AVg.—when acting on a
wavefunction of wavevector k—transforms it into a function of wavevector k + q.
Note that no special difficulties arise in evaluating Eq. (1.39) when AVi.. is a

nonlocal operator. To evaluate Eq. (1.39), we further rewrite it as:

AR(q+G) = = Z Z ($y1le TP IAD, 11 q), (1.40)
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where A, k4q is solution of the linear system:

[fv,k - HSCF} IA¢v,k+q> = PCAVS,C‘CF"‘/’v,k)' (1’41)

The linear system (1.41) has an infinite number of solutions because the deter-
minant of [,k — Hscp] vanishes, and the vector on the l.h.s. is orthogonal to
the null space of [e, x — HSCF]. In practice, Aty kiq is defined within a multi-
ple of ¥, k. As A, xyq enters Eq. (1.40) only through its projection onto the
conduction-state manifold, such an indeterminacy does not affect the final result.
Depending on the size of the basis set, Eq. (1.41) can be solved either by factoriza-
tion techniques, or by iterative methods. If factorization techniques are used, the
best choice is to tridiagonalize first Hscr, and solve then the system in the basis
where it is tridiagonal. The advantage is that this allows one to perform just one
factorization for all the systems corresponding to different values of €, k. In both
cases, the calculation of all the needed functions A, x1q requires a numerical
labor comparable to that needed for a single SCF iteration for the unperturbed
system. The method we have so far described is of general validity and applies to

any perturbation.

1.3.3 The plane wave pseudopotentials method

In a practical calculation the numerical solution of the self-consistent equations of
the previous section is usually done by truncating the Hilbert space of electronic
states to a finite subspace spanned by some appropriate finite basis set. When
using periodic boundary conditions one of the most used basis sets is that of the

plane waves

1 .
(rlk + G) = —= /(TG T (1.42)

IV
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where k belongs to the Brillouin zone of the crystal, G is a reciprocal lattice vector
and V = N is the volume of the crystal. The dimension of the basis set is in this

case determined by the so called kinetic energy cutoff E.y; through the condition:

2

h
—(k+G)? < Eey; . (1.43)

2m

This choice presents the advantage of being independent of the structure of the
particular solid which has been considered. Furthermore the accuracy of the ex-
pansion can be systematically checked and improved simply by increasing the value
of the cutoff energy E.y;.

Plane wave basis sets are convenient only if not too many of them are needed
to represent the Kohn-Sham eigenfunctions 1;(r) to some target accuracy. This
is surely not the case of the core eigenfunctions, namely those corresponding to
the lowest lying atomic-like eigenstates, which have strong oscillations near the
nuclei. Nevertheless, the core electrons do not contribute in general to the bonding
properties of the solid and may be considered as frozen in the atomic configuration
around the nucleus. On the contrary, the chemically active walence electrons,
corresponding to the higher filled states and well separated energetically from
the core states, are described by functions which are quite smooth at distances
from the nucleus larger than a certain radius r.. Inside this radius the valence
eigenfunctions oscillate rapidly due to their orthogonaﬁty to the core states. The
description of such oscillations would also require too large a basis set to be of
practical use.

Many attempts have been made in order to overcome this problem and make
feasible the study of general electronic and structural properties of multiatomic
systems. Among the others, one of the most used methods is to transform the

all-electron Schrédinger equation into an effective equation more suitable for the
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practical applications. In this case an effective pseudopotential is used to simu-
late the interaction between the valence electrons and the cores (nuclei plus core
electrons) such that no core wavefunctions have to be included explicitly and the
valence wavefunction no longer have strong oscillations in the core region.

Many schemes for pseudopotential generation have been generated starting
from ab-initio calculations on atoms.[?32%2%, These schemes basically requires
that, for a particular reference configuration, energy levels and wavefunctions be-
yond the core radius match their all-electron counterpart. The condition that
all-electron and pseudo wavefunctions are equal outside the core radius is called
norm conservation and it ensures transferability of the pseudopotentials to the

different chemical environments. It has been demonstrated (28]

numerically that
these norm-conserving pseudopotentials faithfully simulate the all-electron results
in typical semiconductors.

The usual form adopted for the pseudopotential is semilocal:

vi(r,T') = v 10c(r)b(r — r') + Z v;(r, '), | (1.44)
l

where
2l +1
47

vi,l(r,r’) = vi,l(r) P](i‘f‘,)é(r —T/), (1.45)

and P, is the Legendre polynomial of degree I. The expressions of the matrix
elements of various terms which involve the pseudopotentials in Eq. (1.44) are

reported in Appendix B.

1.3.4 Use of nonlocal potentials for the electron-ion interaction

If the electron-ion interaction is described by a nonlocal potential, Egs. (1.16) and
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(1.18) do not hold and one must use the more general expressions:

2 zz@vk

> , (1.46)

and
8%Ey,
X0, Z Z (<¢ VN BA >

My | OV,
+< E3% 5—/\1- Yo x )+ vk

The first term of Eq. (1.47) is a “diagonal” term, which can be calculated without

OV | 0y x
——3)\]' e >) (1.47)

any knowledge of the response of the system; as for the last two terms, one only
needs to know the linear response of the system.

In g-space, the two contributions have the form:

~ 8 Vi , /
Caz <¢b ion 'ﬁbv, > e——zq'(R—-R )
2l RZR ZZ * | Buai(R)Bug; (R)) | 7
0*Vion

> (1.48)

8uaiq=08uﬁiq=\)

= 6ij'ﬁ zk: zv: <?/1v,k

and:
~ 4 Oy x av; —iq:(R—-R/
0(2) " _ 4 < X on @bv >e iqg-(R—-R')
«i0il9) = RR/ Ek:zl: Uai(R) | Bug;(R)| 70K
4 6¢u,k 81/'1'011
— W Zk: ZL: <Buaiq a’LLﬁjq 11/)1),k> . (149)

A factor 2 comes from spin summation. The first term does not depend on q so

it only needs to be calculated once.
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1.4 Polar semiconductors

In polar semiconductors, the long-range character of the Coulomb forces gives
rise to macroscopic electric fields for LO phonons in the limit g — 0. For finite q,
polar semiconductors are dealt with in the same way as non polar ones. In the long
wavelength limit, however, the macroscopic electric field, E, which accompanies the
lattice distortion must be treated with care because the corresponding electronic
potential, ®(r) = —E - r, is not lattice-periodic. Within linear response theory,
electric fields can be dealt with during the self-consistent process performed to
determine the density response to ionic displacements.(?! A more convenient way
of dealing with long wavelength vibrations in polar semiconductors is to exploit
the known analytic properties of the dynamical matrix. In the long wavelength
limit, the matrix of the force constants can be written as the sum of analytic and

non analytic contributions: [27:28]

Coigj = Cllg; +C8 55, (1.50)

where the analytic part, C®" is the matrix obtained from the response to a zone-
center phonon, calculated with electric boundary conditions (EBC) corresponding
to zero macroscopic electric field (zero EBC). Zero EBC are implicitly assumed
in any electronic-structure calculations with periodic boundary conditions for the

electronic wavefunctions. The non analytic part has the general form: (2]

Ana 4rre? Z'y Zi*,‘yaq’YZr/ Z;,yﬁqv . 4re? (q : Z*i)a (q : Z*])g
ai,fj 7 0 Z%V q+€35 9y Q q-€*-q

. (1.51)

where €3 is the high-frequency static dielectric tensor (i.e. the electronic con-
tribution to the static dielectric tensor), and Z; 4 is the Born effective charge

tensor for the i-th atom in the unit cell. Eq. (1.51) shows that all the information
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necessary to deal with the non analytic part of the dynamical matrix is contained
in the macroscopic dielectric constant of the system, and in the Born effective
charges Z*, whereas the analytic contribution can be calculated just ignoring any
macroscopic polarization associated with the phonon. All these quantities can be

easily obtained within our framework.

1.4.1 Calculation of the dielectric tensor

The dielectric tensor relates the screened electric field (with clamped nuclei) E
to the bare electric field Ey: Ey = € - E. The matrix elements of the bare
electrostatic potential, ®,(r) = —Ey - r, are ill-defined in an infinite solid with

periodic boundary conditions. They can be cast in a boundary-insensitive form

by using the following relation: (2°]
v H Y c
<¢v,k!rl¢c,k> = <¢ L H 5CF r]“b ‘k>, (152)
€v,k — €ck
where
— 5k
[HSCF)I.] - :np + [Won7r]7 (153)

p is the momentum operator, and m is the electron mass. For a finite system,
Eq. (1.52) is an identity. When periodic boundary conditions are used, however,
the L.h.s. is no longer well defined, whereas the r.h.s is still so and does not give
any problem when passing to the thermodynamic limit. Note that commutator
[Vion,r] does not vanish if the electron-ion interaction is described by a nonlocal
potential, in fact the matrix elements of the nonlocal pseudopotential contribution

to [H,r| between plane waves are

1 . o
(ky|[vi,rallks) = ) /e“'k“r vi(r, ') (1), — 7o) e™ ™ drdr’
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- (axia " ali) %/e—“‘”vi,l(r, r') e drdr
R
= <6k1a 8k2a) % 1(ks, k). (1.54)

For practical purposes, we calculate once and for all and store the auxiliary func-

tions:

c H T v,
!qﬁg,k) — Pcra|¢vk Zl"/’a "/) kl ”'Qb k> —

c,k 7 €vk
~P.Go(€sx) P[H,ma]|hv ). (1.55)

When an external electric field is applied, the bare perturbing potential has only
a “macroscopic” (G = 0) component, whereas the screened potential has both
“macroscopic” and “microscopic” (G # 0) components. The latter are given as
usual by Egs. (1.38) and (1.39). The former is proportional to the electronic

contribution to the macroscopic polarization per unit volume P: (30}

oP e on(r)
5B, N ) ' oE,

dr, (1.56)

which can be recast into the form: 3?31

ZZ "ybv kirchk <¢c kl(ﬁ‘vscr/aE )!¢v,k>'

1.57
€v,k — €c)k ( )

This result can be equivalently obtained by considering the density response to a
perturbation of finite wavevector, q: An(r) = e 9T 4 Cg(q)e'® ™. It is easy to
see that—for small g— one has: Cg=¢(q) = —iq - P, and obtain from this Eq.
(1.57). Eq. (1.57) is well-defined and boundary-insensitive, [*% provided that the
matrix elements of r are dealt with as prescribed by Eq. (1.52).

Eq. (1.57) can be used to obtain the screened electric field E = E, — 47P at

each iteration of the self-consistent process. However, for computational purposes,
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it is more convenient to keep the value of the screened electric field fixed during self-
consistency, and let only the microscopic components of the potential vary. The
macroscopic polarization is then calculated from Eq. (1.57), once self-consistency
is achieved. Physically, this amounts to calculating the polarization response to a
given screened electric field, E, instead of to the bare electric field E,.

Let us introduce the following notation for the response of the wavefunction

|y k) to an applied screened electric field:

_%,k_ — WVscr
} BEs > = PGolevs) Peg =), (1.58)

where OVyqre(r)/0Es = —rg. The induced polarization is obtained through E-

q. (1.57) and the dielectric tensor € is finally given by:

oo 16me? o |0y x
€% = bos + g ;Z< " 55, > (1.59)

1.4.2 Calculation of the Born effective charges

The calculation of the Born effective charges proceeds along similar lines. The Born
effective charges are simply related to the total (iomic + electronic) macroscopic

polarization, P®*, induced by a zone-center phonon with zero EB(C: [31:32]

Q opiet

* —
Zi,aﬁ - —_a )
€ OUgiq=0

(1.60)

where ugiq=0 is the amplitude of the zone-center phonon, as defined by Eq. (1.27).
The ionic contribution to the polarization is trivial, whereas the electronic contri-
bution is obtained from the linear response to a zone-center phonon as in Eq. (1.57).
In our notations one has:

Z;aﬂ:Zi+'4N‘ZZ< vk
k v

8u5iq:0

..?.M._> , (1.61)
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where Z; is the ionic (pseudo)charge for the i-th ion, and 8¢/0u is the linear

variation of the electronic wavefunction, upon lattice distortion.



Chapter 2

Phonons in Pure Bulk

Semiconductors

In the previous chapter we have developed the theoretical tools necessary to cal-
culate the linear response of semiconductor crystals to external perturbations. In
this chapter we present the application of this method to some group-IV crystal:
C, Si, Ge, and to some binary compound semiconductors (groups ITI-V: AlAs,

GaAs, AlSb, GaSb).

Our calculations are performed in the framework of the local-density approx-
imation (LDA) using the plane-wave pseudopotential method. The exchange-
correlation energy and potential are taken from Ref. [33]. We have generated
norm-conserving pseudopotentials using a scheme proposed by von Barth and
Car.[?%] This scheme consists essentially in a fitting minimization of the squared
differences between the atomic all-electron and pseudo eigenvalues and eigenfunc-
tions (beyond a given core radius 7.), as functions of a few parameters upon which
the pseudopotential depends. Particular attention must be paid to the choice of
the reference configuration for atomic d states, which were found to be rather
important for assuring the correct lattice mismatch among the different semicon-

ductors.

The equilibrium structure of a crystal is determined by minimizing the total
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energy of the system as a function of the lattice parameters. In doing that, one
has to decide how the dimension of the plane wave (PW) basis set depends on the
volume of the unit cell. The most common choice*¥ is to fix the kinetic energy
cutoff E.,, defined in Section 1.3.3. In this case the dimension of the PW basis set
will depend on the volume, but the real space resolution, related to the modulus of
the maximum wavevector included in the basis, remains the same for the different
values of the lattice parameters. Due to the finite dimension of the basis sets, this
choice can cause discontinuities in the total energy. This problem can be avoided
by fitting the dependence of the total energy upon the volume with an appropriate

equation of state.

We use plane-wave basis sets up to a kinetic-energy cutoff of 16 Ry. These ba-
sis sets are complete enough to guarantee a convergence on the calculated phonon
frequencies to better than 5 cm™* for all the materials we have studied except di-
amond. In this case, due to the relative larger “hardness” of the pseudopotential
of carbon one needs a cutoff of 55 Ry to achieve the same accuracy as in the other

materials.

The sums over electronic eigenstates in the reciprocal space have been per-
formed using an uniform grid of 256 points in the Brillouin Zone (BZ). Using the
point symmetry of the lattice, only points belonging to the so called irreducible
wedge need to be sampled. In the present case, they reduce to the set of ten

Chadi-Cohen k-points. [*°!

2.1 Equilibrium properties

All the systems we have studied crystallize in the diamond or zincblende structures,
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which have two atoms per unit cell. The two atoms have coordinates = = (0,0, 0)

and 7 = a(i, }I, f:) The equilibrium lattice parameter has been determined by
minimizing the crystal total energy calculated for different values of the lattice

parameter. The values so obtained have been fitted to Murnaghan’s equation of

state 30]; .
P:ﬁ—z (%) 0~1], (2.1)
o Bl-1 :

where By is the bulk modulus, Bj is the derivative of the bulk modulus with
respect to the pressure, and ), is the equilibrium crystal volume. A particular
attention has been payed to ensure that the parameters resulting from the fit are
well converged with respect to both the kinetic energy cutoff and the number
of k-points in the BZ. Following the equation of state approach it is possible to
achieve the equilibrium condition of the crystal with an accuracy of 1 + 2 %.
This accuracy is comparable with the errors introduced by the use of the LDA
and of the pseudopotentials. Within the whole range of crystal volumes we have
considered, the root-mean-square deviation of ‘;he fit to the equation of state is
less than 2 x 1073 Ry.

Results for the equilibrium parameters at convergence are shown in Table 1.
From the comparison with the experimental values we can see that the agreement

is generally good both for the lattice parameter and for the bulk modulus.
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TABLE I. Equilibrium lattice parameter (a, [a.u.]) used in the present calculations, and
calculated Born effective charges (Z"), and static dielectric constants (¢ ). Parentheses
denote experimental data.

C Si Ge GaAs AlAs  GaSb  AlSb

a  6.67 1020 10.60  10.60; 10.60; 11.40 11.51
(6.74) (10.26) (10.68) (10.68) (10.69) (11.49) (11.58)

B, 4544 957 774 17T 767 519 603
(4420) (978)  (758)  (769)  (773)  (580)  (582)

7z 2.07 217 173 1.91
(2.07) (2718) (1.88) (218)

e 57 136 187 123 9.2 181 122
(5.7) (12.1) (16.5) (10.9) (8.2) (144) (10.2)

2.2 Lattice dynamical properties

In order to span the entire BZ, we have calculated dynamical matrices onto uniform

grids in the reciprocal space defined by the q points:

l
qzm,n=ZG1+T—G2+%G3 0<I<L-1,0<m<L-1,0<n<L-1,

L

(2.3)
G1,G», Gy being a basis of the reciprocal-space of an FCC lattice, which is a

body-centered cubic grid. |
In particular, we have calculated the dynamical matrices at all the points q
belonging to the (L = 4) grid. Phonon frequencies along low-symmetry lines have
been obtained interpolating the dynamical matrices using the force constants ob-
tained with the method of Fourier deconvolution described in Section 4.1. Along

the high-symmetry lines A (I'-X) and A (I'-L) we have calculated the dynamical
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matrices at additional points (all those belonging to the (L = 8) FCC mesh). One-
dimensional Fourier analysis of the dynamical matrices yields the interplanar force
constants. Interpolation of the dynamical matrices using these interplanar force
constants gives the same phonon dispersion which would be obtained from a full
3D calculation onto an (L = 8) FCC mesh. Optical branches are found to be insen-
sitive to the choice between the two meshes, whereas the (L = 8) mesh turns out
to improve somewhat the agreement of our calculated dispersions with experimen-
t, in the acoustic region. For polar materials, the long-range interaction—which
was implicitly eliminated by the real-space force constants by subtracting the non
analytic part of 5(q), before Fourier analysis—was restored using an Ewald sum

similar to that used to evaluate 5“’", (see Section 1.2), where the ionic charges Z;

have to be replaced by Z}/+/e>).

2.2.1 Phonon dispersions

In Table I we also report the calculated values of the effective charges and dielectric
constants, which have been used for treating long-wavelength modes. Similar
values for these quantities had been previously obtained *) by the same technique,
but using different pseudopotentials. The reported values of the effective charges
are obtained by imposing the Acoustic Sum Rule (ASR):

> Zias=0 (2.4)
In approximate calculations, the ASR is violated. The magnitude of such a viola-
tion strongly depends on the mesh of k-points used for the sum over the BZ: it is
large if few k-points are used, and it tends to zero as the size of the mesh increases.

Notwithstanding—if the ASR is imposed by subtracting to each effective charge
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one half of their sum—good results are obtained with few k-points, and the data
reported in Table I should be considered converged to the figures quoted. The
values of the dielectric constants are overestimated with respect to experiments by
29a]

~ 10%. This is a well-known drawback of LDA known since a certain time,!

and discussed in some detail in Ref. [37].

Our results for the bulk phonon dispersions along several symmetry lines
together with the corresponding density of states are displayed in Figs. 2.1 and
2.2, for non polar and polar materials respectively. Some numerical values at the
high-symmetry points I', X, and L are also reported in Table II. The phonon
dispersions of the two elemental semiconductors, Si and Ge, are very similar apart
from the obvious scaling of the frequencies due to the mass difference between Si
and Ge. It is remarkable to notice that even very delicate features of the spectra
which have long escaped a proper theoretical understanding—as the flatness of the
transverse acoustic (TA) modes near the BZ boundaries—are well reproduced by
our calculations. This behaviour of TA branches essentially depends on the long
range of the force constants along the bonds (+0.41) "and it is the origin of the strong

structures of the density of states found in the acoustical frequencies region.

The case of diamond is quite different: the TA branches are no longer flat
near zone border, thus determining the lack of sharp features in the corresponding
region of the phonon density of states. Another very interesting peculiarity has
been found in the phonon spectrum of diamond. In fact, the maximum of the opti-
cal branches is not at zone-center as it is the case of silicon and germanium. Along
the different high-symmetry lines of diamond we have investigated, a maximum
at q # 0 has been found. This originates the sharp peak in the phonon density of

states above the I'-point optical frequence. Experimental evidence of this sharp
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Figure 2.1. Calculated phonon dispersions and density of states of group IV elements, C, Si and
Ge. Experimental data are denoted by diamonds (from Refs. [43], [42] and [44]).

peak has been found in the second order Raman spectrum of diamond [*8].

42,8,43—-38]

Many neutron-diffraction and Raman scattering datal are available

for all the materials considered here, with the exception of AlAs, for which only a



32 PHONONS IN PURE BULK SEMICONDUCTORS

400 :
|
£~ 300 :
g . ﬁ%w
- 200 F i \,./
a !
o |
S 100
; 1 P
= |
0
T K X r L X W L DOS
500
la ]
s :
- 250 | -
) i
2 i
(]
& |
0 |
T K X r L X W L DOS
300
TE 200 .
S
>
@]
g 100 i
=]
g |
& |
0 {
T K X T L X W L DOS
400 :
Tes | +
WM -
~ 300 el DT s = < W |
= |
< |
= 200 | .
g . Tt
3,100 + 2% ne .
E ; - ooo%
0 |
T K X T L X W L. DOS

Figure 2.2. Calculated phonon dispersions and density of states for binary semiconductors, Gaas,
AlAs, GaSb, and AlSb. Experimental data are denoted by diamonds (from Refs. [45], [46], [47], and

(8])-
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TABLE ITa. Phonon frequencies calculated at the high-symmetry points I', X', and L, for six semicon-
ductors among those studied in this thesis [cm™']. Experimental data are in parenthesis. Data tagged

with an asterisk are from Ref. [38]

Si* GeP GaAs® AlAsd GaSb® AlSb!
ro 517 (517) 306 (304) 271 (271) 363 (361) 230 (224)* 316 (323)
I'yo 517 (517) 306 (304) 291 (293) 400 (402) 237 (233)* 334 (344)"
X,, 146 (150) 80 (80) 82 (82) 95 (109) 57 (57) 64 (70)
X, 414 (410) 243 (241) 223 (225) 216 (219) 162 (166) 153 (155)
X,, 466 (463) 275 (276) 254 (257) 337 (333) 210 (212) 290 (296)
X, 414 (410) 243 (241) 240 (240) 393 (399) 211 (212) 343 (341)
L,, 111 (114) 62 (63) 63 (63) 71 (-) 45 (46) 49 (56)
L,, 378 (378) 224 (222) 210 (207) 212 ( — ) 157 (153) 149 (148)
L,, 494 (487) 291 (290) 263 (264) 352 ( — ) 203 (205) 306 (308)
L., 419 (417) 245 (245) 238 (242) 372 ( - ) 221 (216) 327 (320)
%Experimental data from Ref. [43]
PExperimental data from Ref. [44]
“Experimental data from Ref. [45]
Experimental data from Ref. [46]

eExperimental data from Ref.

f]-E:q)erirnenta,l data from Ref.

TABLE IIb. Phonon frequencies at the high-symmetry points I', X, and L, for Carbon [cm™!].
Experimental data are from Ref. [42]

I‘o XTA XTO ‘YL LTA LLA LTO LLO
Th. 1324 800 1094 1228 561 1080 1231 1275
Exp. 1331 803 1077 1194 552 1035 1210 1242
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few Raman experiments exist.[*®) The agreement between calculations and avail-
able experiments is excellent. This fact is of particular importance in view of the
fact that this is the first time that phonon dispersions of some real materials have
been calculated completely from first principles, throughout the entire Brillouin
zone. In the case of AlAs, where a direct comparison with experiments is not pos-
sible, our calculation is the first reliable prediction of the phonon dispersions. Pre-
vious calculations were in fact either limited to very few high-symmetry points, [+9]
or based on semiempirical models which were fitted to the phonon dispersions of
GaAs. The present calculations predict that the AlAs LO branch along the A
direction is much flatter than hitherto suspected. This fact—which is relevant for
understanding the physics of phonons in GaAs/AlAs superlattices [l —seems to be
confirmed by the agreement between our calculations and the available experimen-
tal data at the X point.[%b] The reliability of those experimental data are however
somewhat questionable, and the agreement perhaps fortuitous. More meaningful
is that the present predictions for AlAs are indirectly confirmed by the good a-
greement between our calculations and recent experiments for the closely related
compound AlSb.[® Even in the case of GaAs, for which phonon dispersions along
the high-symmetry A and A lines had already been calculated using interplanar
force constants,®%! the present calculations represent an important step forward
both because they have been performed for much more (low-symmetry) directions,
and also because they are considerably more accurate, resulting in a much better
agreement with experiments. This is particularly true for effective charges and

LO-TO splittings, and the flatness of the TA branch near the X point.

The main features of our method which have made possible these improve-

ments are the following. First of all, our Green’s function techniqﬁe avoids the
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use of supercells, thus allowing us to calculate force constants of longer range,
not limited to the high-symmetry directions; still, accurate, norm-conserving (non
local, instead of local) pseudopotentials can be used without special difficulties;
last but not least the overall numerical efficiency of our method allows to use a
high number of special points and large plane-wave basis sets, thus permitting us

to obtain fully-converged results.

2.2.2 Vibrational eigenvectors

A complete description of lattice dynamics of crystals cannot be given by just
the phonon frequencies. On the other hand, recent inelastic neutron scattering
experiments have been able to measure the phonon eigenvectors along some high-

(51,52 The ab-initio calculation of phonon eigenvectors

symmetry lines in the BZ
is important not only for its intrinsic interest (for example, matrix elements for
phonon-assisted electronic, or other, transitions requires their knowledge), but also
as a benchmark of the soundness of different phenomenological models.

In the zincblende or in the diamond structure we have two atoms in the unit
cell. Along high symmetry lines such as the (111) or (100) direction vibrational
modes may be divided into purely transverse or longitudinal ones. In such cases
the eigenvector of the dynamical matrix at q belonging to the j-th branch may be
written iﬁ the following form:
ui(q) = ¢i(q,J)e;

(2.5)

ué(q) - EZ(th)e]‘ )

where the &5 (s = 1,2) are complex numbers and e; is a real longitudinal (j = L)

or transverse (j = I') unit vector: ej-e; = 1. Due to the normalization conditions



36 PHONONS IN PURE BULK SEMICONDUCTORS

in Eq. (1.15) we have:
2
PACTEEN (2.6)
s=1

Then with an appropriate choice of the overall phase factor we can put:

El(q7]): lal(q7])|:cl(q7.7) (2 7)
&2(q,5) = |é2(q, )| explig;(a)] = c2(q,7) explid;(q)] , |

where both c,(q,7),(s = 1,2) and the phase function ¢;(q) are real. In the

diamond structure the two atoms in the unit cell are equal, so that one has:

. . 1
c1<qa.7) = CQ(Q.)]) = E . (28)

Thus we obtain the eigenvectors in the following form:
(2.9)

where the phase function is defined in such a way as to vanish at q = 0, so
that the plus sign holds for acoustic modes, the minus for optical ones. In the
zincblende structure the atoms in the unit cell are not equal; hence the relation
(2.8) is no longer valid, but the phase function may still be defined following the
same lines. In Figs. 2.3 and 2.4 we report the phase functions of carbon and some
semiconductors along the A (111) and A (100) directions, and we compare the
theoretical results with the available experimental data.

Also in this case the behaviour of the phase function in the diamond is different
from the other semiconductors. In particular, the main difference concerns the
longitudinal eigenvectors along the A direction. At the L point the phase is equal

to m leading to an opposite sign in the atomic displacements in the unit cell.
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GaAs

Figure 2.3. Theoretical eigenvector phase
function ¢;(q) for longitudinal (dotted
line) and transverse (solid line) modes with
wavevector along the (111) direction. Ex-
perimental points for silicon are from Re-
1. [52]
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This may be erroneously considered in disagreement with the acoustic or optical
character of the eigenmodes. In fact, a real distinction between acoustic and optical
modes holds only at the I'-point. Due to symmetry reasons the eigenvectors at the
L-point are real, so that both the values 0 and 7 are allowed for the phase factor.
Actually, the unit cell associated with a phonon at the L-point is twice as large as
the unit cell of the unperturbed crystal and the eigenvectors have opposite phases
in the two cells. Thus, the difference between the two longitudinal modes is that
the ¢ = 7 mode involves the stretching of the (111) bond whereas the other bonds
remain unchanged (bond-stretching mode); on the contrary in the ¢ = 0 mode
the length of the (111) bond remains unchanged and the angles between the other
three bonds are changed (bond-bending mode). The situation is schematically
depicted in Fig. 2.5. In diamond the bond-bending mode has higher frequency
than the bond-stretching one. The converse holds for the other semiconductors.
This particular behaviour shows that in diamond the ratio ky/ks between the
force constants respectively associated to the bond-bending and bond-stretching
mode, is significantly larger than in the other cases. This interpretation agrees
with results extracted from the force constants fitted to experimental data in the
Keating model. (53

At the Brillouin-zone center and boundary (X or L) the knowledge of the
phase functions ¢;(q) completely determines the eigenvectors in the diamond
structure. For zincblende systems, on the contrary, there is one more degree of

freedom, thus the longitudinal optical eigenvectors are obtained as:

u; (q) = er(a)e,
(2.10)
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Figure 2.5. Schematic longitudinal eigendisplacements at the L-point. a) ¢=0. b) ¢p=m.

where 1 = cation, 2 = anion. For acoustic modes one has:

u) (q) = me‘* | (2.11)

A

u, (q) = er(a)e, ,

analogous expressions hold for transverse modes. In Table III we show the cal-
culated eigenvectors for the zincblende structure semiconductors that we have
studied. It is worth noting that, in the case of GaAs, the predicted vibrational

eigendisplacements at the X and L points are in good agreement with experiments

[50,54]

and with previous ab-initio calculations, but at variance with some results

of empirical models. [*3]
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TABLE III. Vibrational eigenvectors at the X and L points of the Brillouin zone
for III-V semiconductors. e is the cationic component of the optic mode. The
indexes L and T indicate longitudinal and transverse modes, respectively. The

experimental data reported in parenthesis are from Ref. [45].

GaAs AlAs  GaSb  AISb
er(X) 0.66 0.85 0.91 0.77
er(L) 0.70 0.86 0.91 0.79
er(X) 1 (1) 1 1 1
er(L)  0.74 (0.56 or 0.81)  0.99 0.97 1.00

2.2.3 Internal strain parameter

Under the action of a uniform strain 7, the position of a small but macroscopic

portion of a crystal, originally located at R, transforms according to:
R'=(1+nR. (2.12)

The microscopic positions of the atoms in the unit cell {7}, instead, do not trans-
form according to Eq. (2.12) unless this is required by symmetry. In the general

case the 7’s transform according to:
' =(1+n)m+d@) . (2.13)

To leading order, the sublattice displacements d are linear in the strain:

da(i) = Z')’aﬁu(i) Nav - (214)

Bv

In the case of the diamond and of the zincblende structure symmetry requires that

~ has only one independent component:

a
Tagl1) = ~Tagl2) = —C § leasu | (2.15)
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where ( is the so called internal-strain parameter and e,gs is the fully antisym-
metric Levi-Civita tensor.

The parameter {, which was first introduced by Kleinman, (%% has a simple
physical interpretation. If we consider a uniform strain (7zy = 77z = My: = 7)
along the (111) direction, the bond in that direction will be no longer equivalent to
the other three bonds. Under the action of this strain the position of the nearest

neighbour along (111) becomes:

nz- (m,m,m) - (2.16)

' =1 +(1-()
In particular, one has ¢ = 0 if the the atoms follows the macroscopic strain, and
¢ = 1if the crystal deforms keeping the nearest neighbour bond length rigid.
A useful formal expression for the internal strain tensor is obtained by the
expression of the crystal energy up to second order in the (periodic) ionic displace-
ments, u;, and strain tensor n:

W WU+'" Z Ui aﬂu]ﬂ"' Z 77055 Aaﬁ urnyr Q Z ’U,la T ’171,' ,

i,7,a,83 o,B,v,7 1,0,U,T

(2.17)
where the @ZB = Y g Cia,js(R) describe the restoring harmonic forces on the
atoms, A’ is a third-rank tensor which describes the stress generated by an unit
displacement of the atom 7 or the force acting on it due to an unit strain, and A s
the tensor of the electronic contributions to the elastic constants when the atomic
displacements follow rigidly the macroscopic strain according to Eq. (2.12). When
only macroscopic perturbations act on the system, the u’s are not independent
variables. Their value is instead determined by the condition that the force acting

on each atom 7 vanishes:

F= =2 :~Z¢ suis + QY AL =0. (2.18)
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Imposing this condition, the energy as a function of the macroscopic strain only

reads:
2 A 2.1
W:W()—Fg Z Nag Aaf,vr Mvr ( . 9)
o,B,v, T
where
A=x—aS (a) a5t ad, (2.20)
i,J

are the (renormalized) elastic constants of the crystal. The macroscopic stress is

defined by the relations:

1 oW i
T = G = > ANorapas + DAL Uia . (2.21)
vT o8 i

Thus, from the equality of the second derivatives of the energy W:

A= <8Fi“> =0 (a"”> . (2.22)
' 8771/7' =0 auicx 7=0

For the crystal structures that we are considering we obtain from the transforma-

tion (2.20):
)‘1'327??? A(';:z:,:t::z:
Y
Azzyy = Mgz yy (2.23)
. A? 2
)\ry,zy _ /\U 0 ( a:,yz)

zy,zy pw? (T)
where  is the reduced mass and w,,(I') the transverse optical frequency at I

The internal strain constant is hence obtained from the relation:

AZ
(=a® —2¥2_ (2.24
pw? (T) )

Therefore, due to Eq. (2.22) we obtain two equivalent ways to calculate (: from

the derivative of the force acting on the atom 7 with respect to the strain at zero
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u, and from the derivative of the stress with respect to the atomic displacement
at zero strain.

An alternative expression of the internal strain parameter can be obtained
from the dependence of the phase function ¢, introduced in the previous para-
graph, upon q for q — 0.5% Let q = (27/a)(¢,&,€) be a wavevector along the
(111) direction. The set of displacements corresponding to a longitudinal acoustic

phonon with wavevector q and eigenvectors in the form of Eq. (2.9) can be written

Us(¢,R) = jw Uy (¢) e (TR (2.25)
where
Uy(€) = us(€) 79T (2.26)

These latter quantities can be expanded up to the first-order in the parameter &:
U, (€) = u, + £, +0(€2). (2:27)

In the diamond structure the zeroth-order eigenvectors do not depend on s, then:
) =vVMw, (2.28)

where M is the mass of the atoms; the first-order term reads:

- gw> . (2.29)

Within a region small compared with a/&, the lattice will be essentially in a state

~1
u; =0

a;:z\/ﬂ(%

of homogeneous strain. Thus, within such a region, the particle displacements in
Eq. (2.25) due to the zeroth-order term in the expansion (2.27) can be seen as

being due to the homogeneous deformation:

U(¢,x) = w e | (2.30)
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which can be described to the first-order by the strain tensor

oU, 2 ; 2
Ngy = 8:{5 = i—az’wgf e'd ¥ ~ i%wgf . (231)

To the leading order in £ the sublattice displacement will be given in this case by:

- —3—7r) w . (2.32)

By inserting Eqgs. (2.15), (2.31) and (2.32) into Eq. (2.14) finally we arrive at the

following result:

1 8g(¢)

T (2.33)

3
C=§*

0

In the zincblende structure the two atoms are no longer equal; in this case following

the same procedure we find a real correction to the sublattice displacements:

1 Bea(6)| 1 Be(8)
VM, 66 |, M, 0¢

However, by noting that to first-order the strain in Eq. (2.31) is purely imaginary

Ad(2) = [

J £q . (2.34)

we conclude that Ad(s) identically vanishes and that the relation (2.33) still holds
in this case.

We have calculated the internal stain parameter of carbon and some semicon-
ductors with all of the three methods we have described. A first estimate was made
starting from the phase function in the (111) direction evaluated in the previous
section. The eigenvectors of the dynamical matrix have been calculated using the
same interplanar force constant used to interpolate the phonon dispersions.

Then we calculated the stress tensor with the crystal in the undistorted struc-
ture (i.e. at zero macroscopic strain), with one of the two atoms in the unit cell

displaced in the direction (111) by the vectors:

u=+2x10"%a(1,1,1)
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TABLE IV. Internal strain parameter for some semiconductors. (a) values de-
rived from the slope of the phase function at q=0. (b) values obtained from the
linearization of the stress vs. the displacement. (c¢) values obtained from the lin-

earization of the force vs. the strain. The experimental data reported are from

Refs. (56, 57].
C Si Ge GaAs AlAs
(a) 0.09 0.54 0.51 0.55 0.61
(b) 0.10 053  0.50 0.52 0.60
(c) 0.09 0.55 0.54 0.54 0.62
Exp. 0.13 0.54 0.54 0.76

Such a displacement was found to be an appropriate compromise to guarantee
linearity without affecting the results with numerical noise.
Finally the force acting on the atoms at the equilibrium in a strained structure

along the A direction have been calculated. Strain components
Myz =Tez = Mye = (1 +4) x 107°

have been used, the lowest value referring to the case of carbon, the higher to
the other semiconductors. Furthermore, we have checked the convergence of our
results for the latter two methods. For elemental and compound semiconductors
we have found that the same kinetic energy cutoff used in the calculation of phonon
dispersion was large enough to guarantee convergence of { to within 5%. To achieve
the same accuracy in the case of diamond, whose pseudopotential is harder than
the ones of the other elements, we needed a kinetic energy cutoff of 75 Ry.

The obtained results for the three methods are shown in Table IV in compar-

ison with the available experimental data.



Chapter 3

Thermal Expansion

So far we have described how the harmonic properties of semiconductors can be
predicted from first principles. However, real crystals are not completely harmonic,
and anharmonic effects are in fact responsible for very important phenomena such
as e.g. thermal conductivity and the dependence of the crystal volume and elastic
constants upon temperature.

Crystal volume normally increases with temperature, and so behave tetra-

hedral semiconductors at room temperatures.!®®) At low temperatures, however,
tetrahedral semiconductors display a megative thermal expansion coefficient, as il-

lustrated in Fig. 3.1 in the case of silicon. Very few attempts have been made to

explain this behaviour on realistic grounds. 11213l

4 - K3
S~ L 4 4
I 3+ ¢ .
'?M i ¢
o 2t . |
—
N i L 4
—~~ 1+ 7]
= L 28

S i
0 t"*¢*0
___1 . ! : ! L
0 200 400 600

Temperature (K)

Figure 3.1. Experimental data for the linear thermal expansion coefficient in silicon as a function

of temperature. (]
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In this chapter we will show how thermodynamical properties related to anhar-
monic effects can be derived and accurately predicted within the so called Quas:
Harmonic Approzimation (QHA) by employing the same first principles numerical

techniques developed in the previous part of this thesis.

3.1 The quasi-harmonic approximation

At T = 0 the atomic equilibrium positions in a crystal are defined by the minimum
of the potential energy U(T = 0,V). At finite temperature and in the absence
of an applied pressure the equilibrium condition requires the minimization of the

appropriate thermodynamical potential, in this case the Helmholtz free energy

defined as:

F(T7V) = U(T7V) - TS(T7V) ) ’ (31)

where S(T,V) is the entropy of the crystal. In the harmonic approximation the
crystal can be considered as a collection of independent harmonic oscillators, so
that the Helmholtz free energy can be expressed in terms of vibrational quantities
only:

Foax(T, V) = F'(V) + Fun (T, V) . (3.2)

The term F(V) in Eq. (3.2) corresponds to the free energy at 7' = 0 and can be

written in the following way:
Fy(V) = E(V)+ U (V) , (3.3)

where £(V') is the internal energy of the static lattice at volume V, i.e. the so-called

total energy which can be evaluated with the methods described in Chapter 1, and



THE QUASI-HARMONIC APPROXIMATION 49

Y. (V) is the zero-point vibrational energy. On the other hand, the vibrational

contribution in the harmonic approximation is given by:

Fun(T) =k, T In {1 — exp (-—h—‘]:;i(%))] (3.4)

n’q

where the w,(q) are the normal-mode frequencies at 7' = 0.

In the harmonic approximation phonon-phonon interactions are completely
neglected. The relevant consequences of this fact are that the normal-mode fre-
quencies at 7' = 0 do not depend on the crystal volume, and that the equilibrium
volume do not depend on the temperature. In this case the linear thermal expan-

sion coeflicient, which for cubic systems is defined as:

aT) = 3% (%) : (3.5)

obviously vanishes. However, the equilibrium volume of real crystals depends on
temperature as a consequence of the phonon-phonon interaction. A simple ap-
proach to thermal expansion consists in simulating anharmonic effects by allowing
for the dependence of the normal-mode frequencies upon the volume, and retaining

for the vibrational part of the free energy the same functional form as in Eq. (3.4):
Fwn(q, V)
F\»ib(T, V) = kBT ; In [1 — €Xp <—“'——kBT>ji . (36)

This approximation is known as the Quasi-Harmonic Approzimation. Hence, the

thermal expansion of the system can be obtained from the equation of state:

(L) o~ vevey. e
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To evaluate Eq. (3.7) we expand the Helmholtz free energy around the equilibrium

volume at T = 0:

Ry =R+ () vevyes (THER) e

’ (3.8)

where the coefficients in the expansion are:

<@5€Z—Kl> T,%% - (8%9/—)> Vo " (w>nw

3.9
OPF(T,V) _ [(O*Fy(V) . 2 Fuin(T,V) (3.9)
av? T,V B ov? o ov? T '
Due to the equilibrium condition, one has:
OFy(V)\  _
( 5y )ro =0. (3.10)

In the QHA the coeflicients in Eq. (3.9) involve the evaluation of the derivatives of
the frequencies up to the second order in the volume. Assuming that the phonon
dispersions depend smoothly on the volume, we can consider in Eq (3.9) only
those terms in which the derivatives of the frequencies appear up to the first

order. Hence we can write:

82 F(T,V) 82 Fy(V) B,
(o), = (), = w12

where By is the Bulk modulus of the crystal at equilibrium:

. [ OP
1o

Following Eq. (3.7) we arrive at the equation of state:

V(T) = V) - 22 (aF"igg’V)L‘_ , (3.13)
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including the vibrational free energy in the QHA we get the final expression for
the thermal expansion coefficient:
Vo cvn(q7T) Bwn(q,V)
T)=— E , 3.14
A1) = =38, 2 wnla, Vi) \ 0V )., (3:.14)

q,n

where the c,,(q,T) are the mode contributions to the specific heat at constant

volume:

hwn(q,Vy) d hwn(q, Vo) -1
= e I - ]- . .
cvn(q,T) Vo T [exp ( BT (3.15)

3.2 Mode Grineisen parameters

Equation (3.14) can be recast in a simpler form by introducing the mode Griineisen

parameters defined as:

Vo 8wn(q7 V)
wn(q, Vo) ov

, (3.16)
"‘:“'0

nld) = —

which describe how each single phonon mode varies with the volume of the system.

Inserting Eq. (3.16) in Eq. (3.15) we obtain the following result:

o(T) =~ Y (@) emn(a T) (3.17)

3.2.1 Mode Grineisen parameters at q =0

Approaching the T point (g = 0) both the acoustic frequencies and their derivatives
with respect to the volume vanish. In fact, mode Gruneisen parameters are non
analytic at q = 0 and the value they assume in the limit q — 0 depends on

the direction of the vector q. Thus to properly account for the behaviour of the
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Griineisen parameter near I' it is necessary to find an appropriate expansion of
both frequencies and their derivatives to the correct order. Let us expand the
acoustic frequence w(q, () (where {2 is the unit cell volume and for the sake of

simplicity we have suppressed the band index) up to linear order in q:

w(a,0) = v () [q] - (3.18)

where the sound velocity in the direction g = q/|q] is:

. Ow(q,))
w.(2) = Im ————=-9q. 3.19
()= lim 22 g (3.19)
Hence the derivatives of the frequencies with respect to the volume read:
Bw(q,)  9v4(R) d|q|
@) _ T8 g+ @) 93 (g | (3.20)
Finally the expression for the Griineisen parameter at I' is:
. g C%’CI(Q) d|q]
(') = lim + v (Qy) ==
701( ) la|—0 {va(ﬂg)[q! { o0 0o lal q( 0) df? |g_q,
- (3.21)
Q, 0 ok 1 dlq|
= wy im ¢ — ——— .
v (W) 09 "lal—o | lal dQ |q_q,

We are mainly interested in crystals with the diamond and zincblende structures;
in this case we can write explicitly the dependence on the equilibrium lattice
parameter ay:

1 4 2T

Qo = 1% q= —(;a: , (3.22)

where z is a dimensionless number. We finally obtain:

ap d’l)a(a,)

7a(r) -3 [1 B v.(ay) da

] : | (3.23)
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TABLE V. Convergence test of the Griineisen parameter of Si for increasing values
of the cutoff energy. Energies are expressed in Rydberg.

Eeut 12 16 20 24
~(T,) 0.90 1.01 0.98 0.97
(X, ) -2.42 -1.95 -2.19 -2.09
(X, ) 0.90 1.02 0.99 0.97
Y(Xp0) 1.36 1.54 1.51 1.47

3.3 Results for Si, Ge, GaAs, AlAs

Dynamical matrices at any point in the Brillouin Zone (BZ) can be efficiently
obtained using the density functional perturbation theory derived in Chapter 1.
In particular, using the interpolation procedure described in Section 4.1 it is s-
traightforward to perform sums in reciprocal space, such as in Eq. (3.17), over
a practically unlimited number of points in the BZ. The technical details of the

calculation are the same which are reported in the introduction to Chapter 2.

Phonon frequencies have been evaluated by diagonalizing the dynamical ma-
trix f)“l(q, ) near the equilibrium volume ) = aj/4, and derivatives have been
calculated numerically using quadratic interpolation.

In Table V we report an example of a convergence test for the v(q) at some
high-symmetry point in the case of Si. Analogously to the case of the phonon
frequencies, we have evaluated the complete dispersions of the mode Griineisen
parameters along several symmetry lines. The results we have obtained for sev-
eral semiconductors are shown and compared with available experimental data in

Fig. 3.2. Most of the branches in the dispersions of Griineisen parameters are
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Figure 3.2. Calculated dispersions of the mode Griineisen parameters. Experimental data are
denoted by diamonds (from Refs. [59], [60], and [61]).
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contained within a small strip of values around v = 1. On the other hand, the
lowest branches, corresponding to transverse acoustic (TA) modes, are spread over
a larger region, ranging from positive values at T’ and to negative values at the
BZ boundaries. The negative values of the 7, (q) at the edges of the BZ can
be related to competition effects between the contributions to the force acting on
the atoms. This restoring force can be described as a sum of a contribution from
central forces and a noncentral angular part coming from the directional covalent
bonds. At the zone boundaries these terms originate respectively a negative and
a positive contribution to the Griineisen parameters of the TA modes. In the case
of silicon and of the other tetrahedral semiconductors we have considered, the

negative central-force contributions are dominant. [*3]

Thermal expansion coefficients have then been evaluated following Eq. (3.6).
The sum over phonon modes has been performed using 182 points in the irre-
ducible wedge of the Brillouin Zone; further increasing the number of k-points
does not change significantly our results. The dependence upon temperature of
the coefficient a(T) for some diamond (Si, Ge) and zincblende (GaAs, AlAs) struc-
ture semiconductors is displayed in Figs. 3.3 and 3.4. Our result correctly predict
a negative thermal expansion at low temperatures. The insert shows the details
at very low temperatures, where positive thermal expansion coefficients have been
found except for AlAs. Also in this case experiments are predicted with remark-
able accuracy by our calculations. No experimental data is, to date, available for
AlAs. The anomalies in the thermal expansion at low temperatures of tetrahedral
semiconductors are due to the behaviour of the TA mode Griineisen parameters
at the zone boundaries. Our results support this interpretation. At low temper-

atures strongly negative values of 7, (q &~ 0) near the edges of the BZ originate
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Figure 3.3. Thermal expansion coefficient as a function of temperature for elemental semiconduc-
tors. The insert shows the details at very low temperatures. Experimental data are denoted by full

circles (from Refs. [9], and [10]).

the dominant contribution to Eq. (3.6) in relation to the large density of states in

the corresponding region of frequencies.
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Figure 3.4. Thermal expansion coefficient as a function of temperature for compound semicon-
ductors. The insert shows the details at very low temperatures. Experimental data are denoted by

full circles (from Ref. [10]).

The behaviour of the thermal expansion coefficient as a function of temperature

can be simply interpreted in the following way. At very low temperatures only
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acoustic phonons in a small region in proximity of the I'-point are excited. The
sign of the thermal expansion coefficient near 7' = 0 depends on the values of
the mode Griineisen parameters of the acoustic branches very close to I': when
all the v, ,(q) at q ~ 0 are positive the a(T = 0) is also positive. According to
this interpretation, most of the semiconductors we have studied show a positive
aT) for T very close to zero. This is is not the case of AlAs, where the thermal
expansion coefficient is always negative. Unlike the other semiconductors we have
considered, AlAs can have negative v, ,(q) when approaching I' along some direc-
tion (e.g. the (111) direction), this fact originates competition effects in the sum in
Eq. (3.6) which can explain the obtained behaviour. Far from the zone-center the
v,,(q) become negative, thus in the range of temperatures where only acoustic
phonons are excited there exists a value at which the coefficient a(T") changes its
sign. With increasing temperature the positive contributions dominate expression
(3.17) and the crystal expands relatively to the 7' = 0 volume. In the QHA at
temperatures of the order of the Debye temperature all the phonon modes in the
crystal are excited and the a(T') displays a tendency to saturate to a constant
value. The residual dependence of a upon T is due to the dependence of the v’s

upon volume which is determined by higher-order anharmonic effects.



Chapter 4

From Pure Bulk Semiconductors

to Superlattices and Alloys

In the previous chapters we have seen that accurate lattice dynamical properties,
such as bulk phonon dispersions spectra and thermal expansion coeflicients, can
be obtained in simple semiconductors with a modest investment of supercomputer
time. More complex semiconductor structures, such as alloys, superlattices, and
other quantum microstructures, could in principle be dealt with in the same way as
simple semiconductors, by studying appropriate “supercells”. Some calculations
for GaAs/AlAs ultrathin superlattices have been actually done in this way, [ but
the required amount of supercomputer time is no longer modest. Already the
simplest among such structures—ideal superlattices—are described by supercells
containing several atoms in the unit cell. As the computer time required by first-
principles DFPT phonon calculations grows as the fourth power of the number
of atoms in the unit cell, systems larger than 10-20 atoms cannot be presently
treated in a straightforward “brute-force” approach. It is evident that such small

supercells will not lead to clearcut answers in complex systems.
In this chapter we show how an accurate description of lattice dynamics in

mixed semiconductors can be achieved using the information gained from ab-initio

calculations on pure materials. Such an apparently unreachable goal can in fact
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be achieved, at least for those systems which differ from a perfect crystal for the

(partial) substitution of one of its atomic species with another chemically very

similar. This is the case of GaAs/AlAs.

Phonon frequencies in mixed systems can be obtained from real-space inter-
atomic force constants of pure materials within the so-called Mass Approzimation
(MA). The MA consists in neglecting the dependence of the interatomic force con-
stants, Eq. (1.19), upon composition. Within the MA, therefore, the interatomic
force constants can be calculated once for all in the pure materials, and used then
for mixed systems. In practice, real-space interatomic force constants are calculat-
ed by Fourier analysing the dynamical matrices obtained for the pure crystals on a
fine grid in reciprocal space, as explained below. In GaAs/AlAs systems, the mass
approximation is shown to be very accurate, thus giving the possibility of studying
with high accuracy and low computational effort the vibrational properties of very
large SL or alloy samples.

As a further development, in the second part of this chapter we present a
perturbative approach to first-order Raman scattering in AlAs/GaAs systems in
which the dielectric susceptibility is expanded in terms of “chemical variables”
defined on each cationic site of the lattice and specifying the presence at that site

of an Al or Ga atom.

4.1 Phonon frequencies from real-space interatomic

force constants

In non polar materials (such as elemental semiconductors), the range of the inter-

atomic forces constants (Eq. (1.19)) is short, typically some shells of neighbours.



PHONON FREQUENCIES FROM REAL-SPACE INTERATOMIC FORCE CONSTANTS 61

For this reason, interatomic force constants offer a convenient way of storing the
information contained in the dynamical matrices Bai_ﬂj(q) at any q, into a few
(typically some tens) independent parameters. Real-space force constants are con-
veniently obtained by discrete Fourier analysis of their reciprocal-space counter-
part, Eq. (1.24), calculated onto a finite uniform grid in the BZ. This yields a finite
set of interatomic force constants in real space up to a maximum range essentially
given by 2w/Agq, where Aq is the spacing between neighbouring points in the BZ.
Mathematically, the number of force constants so obtained is equal to the number
of q points in the finite grid. The discrete BZ sampling is equivalent to solving
the problem directly with a supercell whose linear dimensions are of the order of
2mw/Ag, thus containing a number of atoms proportional to the number of g-points.
Such equivalence is ezact if all the q points in the mesh can be obtained as dif-
ferences of the k points used for the BZ sampling of the electronic wavefunctions
necessary to calculate Eq. (1.37); otherwise, it is only approximate. In any case,
the error made in the discretization is negligible, provided that the g-space grid is
dense enough to yield force constants in real space up to their typical range. For
typical semiconductors, this can be achieved by calculating the dynamical matrix
in >~ 100 points, which is computationally feasible. The advantage of this approach
with respect to a supercell approach is evident: the computational workload scales
linearly with the number of g-points in our approach, as opposed to as the third
power of the number of atoms when using supercells.

Once real-space constants have been obtained in this way, reciprocal-space
dynamical matrices can be calculated by inverse Fourier transform at any point of
the BZ (i.e. even at a point not contained in the original grid). For this reason,
real-space force constants are a powerful tool for interpolating dynamical matrices

throughout the BZ. We remark that the discrete Fourier analysis can be performed
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in an extremely efficient way using Fast-Fourier-Transform algorithms.

In polar materials (such as compound semiconductors), the range of the in-
teratomic force constants is not short, due to dipolar interactions associated with
non vanishing effective charges. Mathematically, the long-range character of the
force constants is the origin of the non analytic behavior of 5(q), as q — 0. As the
non analytic part of 5((:1) can be expressed in terms of the ionic effective charges
and dielectric tensor of the system through Eq. (1.51), the former is easily sepa-
rated out of 5(q), once €5, and the Z*’s have been calculated. Once this is done,
the remaining analytic term can be treated as in non polar materials. Note that
subtracting Eq. (1.51) from the matrix of the force constants, C(q), and express-
ing the resulting difference in terms of real-space force constants, effectively maps
the lattice-dynamical problem onto a rigid-ion model whose interaction constants,

however, are not necessarily restricted to a small number of neighbours.

As has been already mentioned in Section 2.2, we have calculated the dynami-
cal matrices at all the points q belonging to the (L = 4) grid. Fourier deconvolution
on this mesh yields real-space interatomic force constants up to the 9-th shell of
neighbors. This procedure is equivalent to calculating real-space force constants
using an FCC supercell whose linear dimensions are four times larger than the

primitive zincblende cell, thus containing 128 atoms.

The qualitative behavior of the obtained real-space force constants for Si
and Ge is similar to that previously obtained by dielectric matrices and local
pseudopotentials. (2] In particular, we have found that the force constants decay
slowly in the direction of the bond chains, (110). A similar behavior has been
observed also in III-V compounds, once the long-range tails of the force constants

are removed.
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4.2 Transferability of the force constants

We wish now to assess to which extent the force constants calculated for one
material are able to describe the lattice dynamics of another material or a mixture
of the two (such as an alloy or a microstructure). To this end, we have calculated
the phonon dispersions of several materials using the force constants obtained for
different materials which differ from the former for the cationic or anionic species.
Our results are displayed in Fig. 4.1, where the notation [A]—B indicates that
phonons of material B have been obtained with the force constants appropriate to
material A, just replacing the relevant masses (mass approzimation). In the case of
GaAs and AlAs—which differ for the cationic species and have practically the same
lattice parameter—the mass approximation gives phonon dispersions practically
indistinguishable from the real ones in the acoustical and transverse optic regions,
while they differ by less than 10 cm™! in the LO region. Such an accuracy is
achieved without any empirical adjustment of the effective charges. In fact, the
small discrepancies are almost entirely due to the small difference between the

effective charges of the two materials.

It turns out that ab-initio force constants calculated for GaAs are indeed
capable of describing rather accurately phonon dispersions in AlAs, while semiem-
pirical dynamical matrices (such as those from the bond-charge or other models),
fitted to the GaAs dispersions, give an AlAs LO band width along I'X which is
much larger that calculated from first principles. This indicates that the agreemen-
t between the calculated frequencies and experiments is by no means a suficient
criterion for judging the quality of a model. A similar accuracy is obtained also for
Sb compounds, where the lattice mismatch is larger. These results clearly indicate

that the use of the mass approximation for systems which differ for the cationic
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Figure 4.1. Comparison between the phonon dis-
persions calculated with (dashed line) and without
(full line) the mass approximation. The notation
[A]—B indicates that phonon dispersions of mate-
rial B have been obtained with the force constants
appropriate to material A, just replacing the rele-
vant masses. The diamonds indicate the frequen-
cies obtained calculating the dynamical matrices of
material A at the lattice parameter é.ppropriate for
material B.
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species is well justified, provided accurate force constants are used.

In the case of GaAs and GaSb (which differ for the anionic species and have a
rather large lattice mismatch) the mass approximation gives poorer results, with
errors larger than 30 cm™!. This fact had been already noted and attributed to
the larger polarizability of the anions. (131 One could think that the main source
of inaccuracy lies in the large lattice mismatch. To verify this issue, we have
also calculated some representative phonon frequencies for system B, using the
force constants of system A, calculated at the lattice parameter of system B. The
results are indicated by diamonds at the X, I', and L points in Fig. 4.1. We
see that even worse results are obtained in this case. Similar results have beeﬁ
obtained for Al compounds as well. We conclude that the mass approximation
is much less accurate when the systems differ by their anions, than when they
differ by their cations.!*®! Finally, in the case of Si and Ge, the accuracy of the
mass approximation is somewhat intermediate between the above two cases, as

expected.

The use of the mass approximation in GaAs/AlAs systems is not new, 19
nor even recent. However—in the lack of any reliable information on the phonon
dispersions of AlAs—its validity has always been assumed, rather than demon-
strated. Qur results definitely show that the interatomic force constants in GaAs
and in AlAs are very similar. The use of equal interatomic force constants for
AlAs and GaAs, however, may lead to sizeable errors, when GaAs force constants
are obtained from semiempirical models, rather that from first principles. The
BCM, for instance, provides a very good fit to phonon dispersions of GaAs—quite

close to our resﬁlts, in fact. The same BCM force constants for GaAs, when ap-

plied to AlAs with the mass approximation, yield much worse results. The reason



66 FroM PURE BULK SEMICONDUCTORS TCO SUPERLATTICES AND ALLOYS

for this apparent contradiction is that semiempirical models are almost invariably
obtained from a fit to experimental phonon dispersions; ‘good’ force constants,
however, should reproduce both the eigenvalues (the dispersions) and the eigen-
vectors (the displacement pattern) of the dynamical matrix. As the latter are
usually poorly known from experiments, ab-initio calculation appear to be the
only reliable source of information for the interatomic force constants.

We used the mass approximation and the force constants calculated for the
virtual crystal (Gagp.sAlyp.5)As to calculate the phonon frequencies at q = 0 of
(AlAs),(GaAs), (n = 1,2) superlattices grown along the (001) direction. The
obtained frequencies are displayed and compared with results from full ab-initio

calculations in Table VI. The overall agreement is very good.

4.3 First-order Raman scattering

First-order (one-phonon) Raman scattering due to a normal mode v can occur
when the macroscopic crystal electric polarizability, ¢, exhibits a linear depen-
dence on the normal coordinate &,.18%] Therefore, if we expand x to the linear

order in ¢, we obtain:
X=X+ Y, Ax, & +O(€%), (4.1)

where x, is the ground state susceptibility, and Ax, is modulated by the mode
v at the frequency w,. When the crystal is exposed to a monochromatic light
beam of frequency w (usually in the visible region of the spectrum) the associated
electric field E sets up an electric moment per unit cell M,, equal to Ay, - E.
Since Ay, and E are modulated at the frequencies w, and w respectively, the

resulting dipole moment per unit cell oscillates at the frequency ws = w — w,, or
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TABLE VI. Calculated ab-initio phonon frequencies at q=0 for (1-1) and (2-2) Sl’s in
comparison with values obtained within the mass approximation from the force con-
stants of the virtual crystal. The symmetry of each longitudinal mode is also reported:
modes Al are invariant relative to the 2-fold rotation axis perpendicular to the growth

. . . . . . . -1
direction, modes B2 are antisymmetric relative to the same axis. Units are cm™ .

SL 1-1 Wab—initio Wmass app. symmetry
Ty 88 87
Ly 222 222 Al
T 253 261
Ly 265 269 B2
T 358 352
Ls 397 394 B2
SL 2-2 Wab—initio Wmass app. symmetry
Ty T4 73
T 7 7
15 90 91
Ly 141 142 Al
Ly 143 145 B2
L3 221 222 B2
Ty 251 257
T 259 263
L, 261 264 Al
Ls 284 288 B2
Te 344 341
1% 359 355
Lg 396 393 Al

L 399 396 B2

67
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w4 = w+w,. This means that the crystal radiates (scatters) these two frequencies
which fall close to w (since w, << w). They are commonly known as the “Stokes”
and “anti-Stokes” components respectively of first-order Raman scattering by the
mode v. From a microscopical point of view one can also regard the Stokes process
as a sequence of elementary processes involving the emission and the absorption
of photons and phonons: (i) absorption of a photon w through an electro-photon
interaction, (ii) creation of a phonon w, through an electron-phonon interaction,
and (iil) emission of a photon ws = w —w, through an electron-photon interaction.
An analogous sequence of elementary processes may be invoked to describe an anti-
Stokes scattering.

Off resonance the Raman cross section related to first-order scattering is given
essentially by the derivative of the macroscopic crystal polarizability of the system
with respect to the vibrational normal coordinates:

i (W) ZE(wz —w?)

Q?C_.g
o¢, !

o~
€p

(4.2)

where € are the polarization vectors of the incoming and scattered photons, and
w, is the frequency corresponding to the normal mode v. The derivative of the
polarizability can be written in terms of the atomic displacements u? (L), of the

s-th atoms in the L-th unit cell, from equilibrium:

BXCYB ou? (L)
v 7)3 Y 43
afv Z afy 56,, ) ( )
L;s,y
where we define the third-rank tensor
s BXaﬁ

aly = 6’11..%(L) ’ (44)

as the Raman tensor of the crystal, which is independent of the index L due to

the periodicity of the crystal. In the case of pure tetrahedral semiconductors the
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independent components of the Raman tensor reduce to only one due to symmetry
reasons:

agy = P (=) leapq] . (4.5)
The Raman tensor for elemental and binary semiconductors can be easily calcu-

lated from first-principles. To this end, we calculate the electronic polarizability

tensor for the crystal as a function of phononlike distorsions of the form
v’ = tua(1,1,1), (4.6)

where a is the lattice constant. The derivatives of the polarizability tensor have
been calculated numerically. Due to the tetrahedral symmetry the expansion of

the susceptibility in terms of u reads:

x 0 0 0 x4
xw)=1 0 x® 0 J+u|x® 0 x®
0 0 WO ) 0
(4.7)
X(2) 0 0
+ u? 0 x® 0 | +0@).
0 0 X(2)

A typical value of the amplitude u, providing good linearity and still giving no
cancellation problems, is v = 2 x 10™*. Then, the value of P can be evaluated
from the linear term of Eq. (4.7):
Pz x (4.8)
8
In order to have a correct description of the relative intensities of the peaks in

the Raman spectrum of mixed systems, we are not interested in the absolute
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TABLE VII. Calculated Raman tensor for pure bulk semiconductors. The re-
ported values are expressed in units 1072 a?, where a is the corresponding lattice

parameter.

Si Ge GaAs AlAs
P 77.4 219.0 59.4 19.5

values of the Raman intensities but in the relative ones. To this purpose, a kinetic
energy cutoff of 12 Ry was large enough to guarantee a convergence of the relative
intensities to an accuracy of 5%, even if the the accuracy for the absolute values
is not yet as good. The results we have obtained for Si, Ge, GaAs and AlAs are
shown in Table VII.

4.4 Raman intensities in complex systems from a

perturbative approach

When one has to deal with systems, such as superlattices, with many atoms in
the unit cell, the calculation of the Raman tensor from first-principles is no longer
feasible: the computational effort may become a very hard and, in most cases,
impossible task. Thus, one has to device alternative approaches. We present
in the following a microscopic modelw of the first-order Raman spectroscopy in
AlAs/GaAs mixed systems. As stated in the previous sections, the force constants
in AlAs and GaAs are very similar, furthermore the two bulk constituents are
nearly lattice matched; this allows us to neglect lattice relaxation. Thus, we expect
that in AlAs/GaAs a perturbative expansion of the Raman activity in terms of
chemical composition to be rapidly convergent. Therefore, a model is developed

by expanding the dielectric susceptibility in terms of the difference between the
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actual structure for a given composition and that of the “virtual” crystal, where
only fictitious cations X = (Al 5Gay.5) are present.

The various situations corresponding to SL’s or to any other possible config-
uration of the system may be described by specifying the atomic species which
occupies each given cationic site. Each configuration is described by a set of Ising-
like variables {0z} associated to the cationic sites of the L-th unit cell of the
corresponding virtual crystal. The oy are defined in such a way that ¢ = 0 cor-
responds to the “virtual” cation (Gay ;Aly5) and the values o7 =1 and o7 = —1
correspond to the Ga and the Al atom respectively. The bare pseudopotential of

the cation sitting on lattice position Ry is given by:

VE(r,or) =V (r —Rr)+ oL AV(r —Ry), (4.9)
where 1
Vi(r =Rp) = 5 (Vou(r — Re) + Vau(r — Ry))
. (4.10)
AV(I’——RL) = E(VGG(I‘——RL) ~V_41(r—RL)) .

Hence, for a given underlying structure the dielectric susceptibility may be consid-

ered a function of the set of atomic displacements and of the composition variables:

x = x({u3(L)}:{or}) . (4.11)

As we have shown in the previous section, in first-order Raman scattering the

relevant quantity is the linear variation of x with the displacements us(L):

(1) OXas
Axop = ul(L) . (4.12)
o 8uf,(L)

The derivatives with respect to the atomic displacements may be expanded in

terms of the composition variables o :

BXQH — S
Bus(L) P

+ Y T2 (Ro,Rp)op + O(c?) . (4.13)
LI
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where ’ﬁgﬁ,y is the Raman tensor of the virtual crystal, and

62onﬁ
Bus(L)dor: | _,

The indexes L and L' label the unit cells of the virtual crystal: due to the period-

Taﬁq(RLaRL’) = (414)

icity of the lattice in this case, one obtains:
Taﬁw(RL7R’L’) = Taﬁ‘y(RL — Ry, 0) = Taﬁ’Y(Ri - RLI) . (4.15)

The above equations allow us to rewrite Eq. (4.12) to first-order in ¢ in the fol-

lowing form:

- S PB+ X | T TnlByw()| 00, (416

L,s,~ L'\ vk Renk(L')

where n*(L') is the set of all the neighbours of the cation in R of order k. In fact,
the perturbative approach so far described is useful to practical purposes if only
the linear order in o has to be retained in the expansion in Eq. (4.16) to achieve
the desired accuracy. Such assumption of linearity should be checked for the
systems we are considering. Furthermore, the same considerations suggest that the
applicability of the methods relies on the possibility of truncating the sum over the
shells of neighbours in Eq. (4.16) to some limit value kmqz, or alternatively of fitting
to a known analytic expression, which should depend on very few parameters, the
terms with & > knaz-

The dielectric susceptibility of a crystal remains obviously unchanged if all
the atoms are displaced by the same amount. This must be true at any order in
the o variables. As a consequence of that we obtain relations which reduce the
number of independent components of ’}3; g and Top-(R). To the zeroth-order in

o the following relation must hold:

ZPQM (4.17)
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The relation we obtain for the first-order is:

Yo | Y. Tass(R)| =0, (4.18)
L'k

Renk (L)
this condition must be true for any choice of the {o'}, therefore

Z > Tap(R)=0. (4.19)

k=0 Renk*(0)

The independent components of the tensors P and T may be deduced using s-
tandard group theoretical methods.[®% The quantities fPaBA/ transform as a
third-rank tensor (symmetric in the indexes «, ) in the point group of the
zincblende, (7). Then it follows!®® that the general reducible representation
D(P) = D(x) ® D(u) can be decomposed within the group Ty in the following
form:

D(P)=(Df + Df)® Dy =Ty + T3 + 2T, +3T; . (4.20)

where (DJ + D) and Dy are representations in the group of rotations in the
three-dimensional space of a symmetric second-rank tensor, (), and of a polar
vector, (u), respectively. The number of independent cdmponents of the tensor
P is equal to the number of times that the identity representation I'; occurs
in the reduction of representation D(',E) (64] Thus, we have in this case only one
independent component. Without entering into further details the final expression

we achieve is:

agr =P (=) leap| . (4.21)
The same symmetry arguments we have exposed here have been used to derive

Eq. (4.5). Analogous symmetry properties hold for the tensor T,4,(R = 0) =
TC .

afy
7. 5y = Cleapy| - (4.22)

[s1
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The symmetry analysis of the tensor Tog4(R) in the other cases is more compli-
cated, but formal results may still be obtained with the above procedure. As an

illustrative and important example we report in Table VIIT the explicit form of

the tensor T2

sh~(1), where i labels the nearest-neighbour anions to the cation at

R = 0. In this particular case only 4 independent components, c (k=1,...,4),

have been found.

(1

a) of order o, which contains

Let us now examine the contribution to Ax
derivatives of the susceptibility to perturbations localized at two sites R and
R of the lattice:

s Bzxa
Tagfy(RL - RLI) = 5—1;—(‘5—5‘;—[’7 B (4:23)
2l

In the case of AlGaAs, the electronic response of the virtual crystal to a iomic
substitution is almost entirely contained in the Wigner-Seitz cell. (66] On the oth-
er hand, due to long range Coulomb interactions, the perturbation caused by a
displacement of an atom in a polar system, such as that we are interested in,
is surely not short range. However, for non polar systems contriB}ﬁtions as in
Eq. (4.23) should quickly decrease with increasing distance R7, — Ry,

The extent to which such terms cannot be considered negligible in non polar
systems has been checked via the ab-initio calculation of the derivatives of the
susceptibility in fictitious SL’s formed by virtual atoms (Sip.5Geps). We have
considered (001) SL's with 4 (2-2 SL’s) and 8 (4-4 SL’s) atoms in the unit cell.
The lattice parameter of the underlying diamond structure has been taken as that
of the (Si-Ge) virtual crystal: aviry = 10.40 (a.u.). In order to extract linear and
quadratic contribution in ¢ to the Raman tensor, we calculated the derivatives of
the polarizability with respect to atomic displacements in SL’s in which we have

placed at the origin a Si atom (0 = —1) or a Ge atom (o = 1). The results
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TABLE VIII. Explicit form of the temsor T4 (r) for r belonging to the nearest neighbours of
the site at R=0.

T4(-1, 1, 1)
(afz) (eBy) (efz)
C1 Cq Cyq —Ca —Cyq Cs —Co C3a —Cyq
C2 €3 —C1 Cq —C2 C4
Co —C3 —C1
T4(-1,-1,-1)
(eBz) (By) (aBz)
C1 —Cy —C4 Ca —Cy C3 Co C3 —Cyq
Co C3 €1 —C4 €z —Ci
€2 C2 C1
T4( 1, 1,-1)
(efz) (eBy) (eBz)
—C1 Cy —C4 —C2 Cy C3 C2 C3 Cy
—Cy C3 —C1  —C4 C2 C4
—C2 —C2 C1
T4 1,-1, 1)
(afz) (eBy) (efz)
—C1 —Cyq Cy Co Cy C3 —C9 C3 Cy
—C2 C3 C1 Cyq —C2 —C4

—cy Ca -
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of this calculation are shown in Table VIII. They confirm the linearity in o for
such structures. Furthermore, it can be seen that “effective” interactions in the
direction (001) extend their range up to the third neighbours.

A check of the linearity in o for polar structures has also been done
in (Al%uw)(}a%“_a))As(AI%U_U)Ga%(H,))As superlattices along the 001 direc-
tion, which are grown in the zincblende structure with lattice parameter a, =
10.605 (a.u.). The calculated values of Ox.,/0u.(X), where the atom X is
(Al%(w,)Ga%(l_a)), have been reported in Fig. 4.2. Also in this case quadratic
contributions are fairly small. Thus, we may argue that the assumption of linear-
ity in these systems is well verified.

In polar materials, due to dipolar interactions associated with non vanishing
effective charges, the To4,(R) defined in Eq. (4.23) are not short range. However,
the other contribution to 7,3(R) vanishes more quickly than the dipolar ones
with increasing |R|. Therefore, the asymptotic expression of Top+(R; —Rp) at

long distances (i.e. for large |R; — Ry |) can be explicitly written as:

, | (4.24)

0*X o xung OEL(L
Topn(Ri - Rp) = 2222 _ 3~ OXes (L)

8’&};80'[, 8E7-(90'L Bug
where E{(L) is the electric field generated by the dipole p; = Z7u' calculated at
the site L:

E(pi7 L) - TR'_D: [3(pz ' ﬁz) Ri - R2 pi} 3 (425)

with R; = R; — Ry.
Thus, in polar materials we can separate the long range “Coulomb” contribu-
tions from “effective” short range interactions, in a way which is similar to that

used for the force constants in Section 4.1:

Topn(R) = TETUR) + TT5(R) (4.26)

afy afdy
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TABLE IX. Calculated values of Oxgzy/8u.(X;), where (i=0,n) for 2-2 (n=2)
and 4-4 (n=4) SL’s. Atom Xp is Si or Ge as specified, atoms X; (i=1,n) are

“virtual” atoms (Sig 5Geq.5). The linear and the quadratic components in o are

2

also reported. The reported values are expressed in units 10~° L,

SL 2-2 X() = Sl Xo = Ge (o CJ'2
0 113.1 127.2 7.1 -0.4
1 -111.6 -129.3 -8.9 0.1
2 110.2 131.8 10.8 0.5
SL 4-4 Xy = Si Xy = Ge ol o?
0 113.0 126.3 6.7 -0.9
1 -113.5 -125.9 -6.2 0.8
2 1144 125.0 5.3 -0.8
3 -116.2 -122.5 -3.2 1.2
4 119.2 120.1 0.9 -0.9
&
32 r -
2
3 30r -
© 1+
\ L
g
X 28 F .
o]
26 + # -
0O 2 4 6 8 1
g
Figure 4.2. Test of linearity of the calculated values of Oxazy/8u,(X), where X=

(Al%“_w)Ga_%(l_a)) in superlattices (Al%(H-U)Ga%u—cr))AS(Alg(hy)Ga%(L-}-a))«‘\5 along the

2

(001) direction. The reported values are expressed in units 1072 ag-
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where the term 7%

ag+ (R) is entirely due to electric field effects. From a chemical

point of view, GaAs and AlAs are much more similar than Si and Ge, as we
have seen in the previous section for the transferability of the force constants.
Assuming that in AlAs/GaAs systems T;g?ft(R) extends its range only up to

the first neighbours, and including the Coulomb part for R up to the nearest

neighbours of the site at R = 0 in the short range term, we have:

Tshort(R) for R € nF(0) with & <1

afy
Taﬂ’y(R) = 1 (4'27)
T 58(R) otherwise .

afy
An explicit expression for 7, ong(R) together with a general explicit analysis of the
various effects of electric fields in polar material will be described in the following

subsection.

4.4.1 Role of electric fields in polar systems

As has been already pointed out, in a polar system the displacement of an atom
creates an electric dipole proportional to the displacement. The presence of such
long range interactions has to be taken into account both for the macroscopic and
microscopic (or “local”) effects they have.

In fact, in polar materials the dielectric susceptibility depends on the macro-

scopic electric field E generated by the displacements:

= x ({u3(D)}, {oc}, E ({u3(D)})) - (4.28)

In such a case the term of the polarizability which is linear in the displacements

should be rewritten:

BXEB BXOE,B
Buy = uy | T 2B B (4.29)
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where we have introduced the “hyperpolarizability”:

2. E
8 8X0‘/3

. B - e ——————— 41
afByr aEraufy ( 30)

E=0
As has already been mentioned, electric boundary conditions (EBC) determine the

macroscopic electric field. In any supercell ab-initio calculations periodic boundary
conditions are imposed. In this case, which implicitly corresponds to zero EBC,
we have E = 0. As we have seen in Chapter 1, only transverse phonons may be
completely described in this case. Thus, a supercell geometry does not allow the

calculation of the hyperpolarizability B 4., which should be analyzed and fitted

or
separately to the available experimental data. However, our present purpose is to
obtain and test a model based on first-principles calculations. Therefore, in the
following we always assume the condition of vanishing macroscopic electric field.

Local electric fields, which are not negligible even at E = 0, are responsible for
the long range interactions in Eq. (4.24). If they are explicitly taken into account,
the long range part of the linear term in the expansion of Axqp is given by:

BE:(L
2. 2 ‘521(”‘)

o=0 | 5 jgA(L)

ul | . (4.31)
o=0

o 62X 3
A (B) x
Xop %{’L 9E. boy

where N (L) = n(L) Un'(L). It may be easily recognized that the expression
in square brackets in Eq. (4.31) coincides with the component 7 of the “local”
electric field E°¢(L) generated by an array of dipoles localized on all the sites of

the lattice except those which fall into the range of the nearest neighbours of the
site . Usual methods of electrostatics allow us to calculate the local field (671,

4
EY¢(L) = E°%(L) + E + 3P (4.32)

where P is the polarization density:

1 S
P—_—h—— Z P, (4.33)

AL
sellM
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U,, being the set of the M atoms in unit cell of the structure we are considering
and 2,, the corresponding volume. E is the macroscopic electric field which is
identically zero if, as in our case, periodic boundary conditions (PBC) are imposed.
Finally, El°¢(L) is the microscopic local field appropriate to a spheric’al region S(L)
whose center is taken to be on the site L on which the field acts. Obviously, in
our case sites within the nearest neighbours distance are not contained in S(L).

The final expression for the local field reads:

E°° = Y W(L)p’, (4.34)

sellM

where the tensor W* is defined by:

4 7 1~ =~
s = _ N = [BRiaRip — Ribnp) , 4.
ag(L) 39\15 sty T [BRiaRig — R;bap] (4.35)

! ieS(s,L
S(s, L) being the set of the equivalent sites of type s which belong to S(L). Finally,

we obtain the following expression for the long range contribution to the variation

of the susceptibility.

DIDNLAES (436)
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L,r

OE-00 |,y selly, 7
where
P, = 73 z; = 27 (-, (4.37)
with
n(s) _ { 1 for § = anion (4 38)
2 for s = cation . ’

The symmetry analysis of the derivatives appearing in Eq. (4.36) gives us:

82Xa[3

Z*
v 6E7-60’0

fmemd q |€04,3’Y| . (439)

o=0
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4.5 Applications to some (AlAs),(GaAs), superlattices

We applied the model described in the previous section to (001) (AlAs),(GaAs),
superlattices with n = 1,2. A schematic representation of these two SL’s is re-

ported in Fig 4.3.

Al As Ga As

Al As Al As Ga As Ga As
h) —o—e—o0—6—s—e——0—

15 2 6 3 7 4 38

Figure 4.3. Schematic representation of the SL’s we have studied. a) SL (1-1); b) SL (2-2). Notice
that atoms in real structures are not aligned.

We have then calculated the variation of the polarizability x with respect to the
displacement of one of the atoms in the unit cell of the superlattice. The magnitude
of the displacements has been chosen to be equal to u = +2 x 107* @, where a =
10.605 (a.u.) is the lattice parameter of the corresponding zincblende structure.
The obtained values of the component of the first-order Raman tensor are shown

in Table X.

For an (n-n) superlattice Eq. (4.36) may be expressed in the form:

q K8 8 8
AxEy = 5;;52 leass| Y (=) V2 ul (4.40)
Y

SEU_,\,
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TABLE X. Calculated ab-initio values of the components of the first-order Raman
tensor. Atoms are labelled as in Fig. 4+.3. The reported values are expressed in

units 10~ %a?.
SL 1-1 (zy,2) (z2,y) (y2,9)
Al(1) 25.98 25.14
Ga(2) 40.16 45.90
As(3) -33.07 -35.52 -20.32
SL 2-2 (zy, ) (z2,9) (y2,9)
Al(1) 20.22 27.20
Ga(3) AT.67 41.69
As(5) -18.60 -30.32
As(6) -31.49 -35.00 -22.27
As(7) -54.19 -37.46

where we have defined:

Vi =Y aiWi() (4.41)

ieuncl
where the sum is limited to the cations in the unit cell. By symmetry reasons the

only independent components V>, we have found for (1-1) SL’s are:
V= —a V2, =-28, (4.42)

and for (2-2) SL’s:

Vi =—v V2 =6 Vo, =—X, (4.43)

rTr

the upper index labels atoms as in Fig. 4.3. Let us define the quantity A;;, as

the variation of Axﬁ due to displacements along the k-axis. The independent
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components of the tensor A;j ; we have obtained in the case of (1-1) SL’s are:

Y,z —

q
20
q
Aysy 50 % [uz — u;] (4.44)
-9
Tz,z 20

and for (2-2) SL’s:

q 5

DNpzy = 10 {7 [ufj + 'u,z - u,; — uf/] + 6 ['u,y - u;]} (4.45)
q

Ayz,y = 4—{'1' A [’LLS — ui]

Retaining short range interaction in Eq. (4.23) up to the first neighbours only, we

obtain a model which is described by the following list of parameters:

—~

P c,cy,c9,c3,C1,q. (4.46)
On the other hand, due to the condition (4.19) we have

—4dez =c. (4.47)

Therefore, only 6 parameters (ﬁ,c,cl,cz,C4,q) appears in our model. The
parametrized expression of the components of the Raman tensor is given in Ta-
ble XI. The Raman cross section in Eq. (4.2) can be expressed in terms of the
so-called Raman activity, defined by

A = ng . (4.48)

where £, is the normal coordinate of the mode v. Hence, we apply our model to

the calculation of A,y in the case of the Ga- and Al-like B2 modes in (2-2) SL’s.
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TABLE XI. Parametrization of the first-order Raman tensor for (1-1) and (2-2)

superlattices. Atoms are labelled as in Fig. 4.3.

SL 1-1 (zy, z) (zz,y) (y2,9)
Al(1) P — ¢+ 20q P—c—oaq
Ga(2) P +c—2aq P+c+ag
As(3) -pP _P —4cy
As(4) -P ~P dey
SL 2-2 (zy, 2) (zz,y) (y2,9)
Al(1) P—c+2yq P—c—ng
Al(2) P —c+2vq P—c—vg
Ga(3) P+c—2vq P+c+g
Ga(4) ﬁ—{—c—}yq 15+c+7q
As(5) —P+c—28q —P+c+6q
As(6) -P s —dey + A\q
As(7) —P —c+2§qg _P—c—4q
As(8) -P -pP dey — Mg

In this particular case only 4 parameters (IS, ¢,cy,q) are involved in the calculation
of Ay A fitting procedure of the expression in Table XI has been used to extract,
from the ab-initio calculation of Table X, the values of the parameters reported
in Table XII. The corresponding values of the component of the Raman tensor
are shown in Table XIII. Finally, the obtained results for the Raman activity are

displayed in Table XIV and compared with those of full ab-initio calculations. The
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TABLE XII. (a) Values of the calculated independent components of V7 .

(b)

Parameters obtained from the fit of the ab-initio values in Table X, the units are

the same as in Table X.

a 8.68
. 3.39
v 12.85
5 16.68
A 7.93

(b)

P 34.68
c 9.52
cy 5.03
g -0.16

agreement is good also in this case.

85
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. TABLE XIII. Components of the first-order Raman tensor derived from the expres-
“ sion in Table XI using the parameters reported in Table XII. Atoms are labelled

as in Fig. 4.3. The reported values are expressed in units 107 %a?,
SL 1-1 (zy,2) (z2,9) (y2,9)
Al(1) 22.38 26.55
Ga(2) 46.98 42.81
As(3) -34.68 -34.68 -20.12
SL 2-2 (zy,2) (z2,y) (yz,9)
Al(1) 21.05 27.22
Ga(3) 48.31 42.14
As(5) -19.82 -27.83
As(6) -34.68 -34.68 -18.85
As(7) -49.53 -41.53

TABLE XIV. Comparison between the Raman activity of the Ga- and Al-like B2
modes in (2-2) SL’s, calculated from first principles and from our model.

Ag:z;/b—initia) % 10~2 A(xj;iﬂﬁd) x 1072
Ga-like -23.4 -24.7

Al-like 35.6 35.3




Conclusions

In this thesis we have shown that the accurate calculation of lattice dynamical
properties of semiconductors is by now well within the scope of computational
methods based on density-functional theory.

The phonon dispersions of diamond and several pure bulk semiconductors
have been calculated within the framework of the Density Functional Perturbation
Theory. The results so obtained compare very favorably with experiments. In
fact, when experimental informations are missing or are not reliable, ab-initio
calculations represent the only realistic approach. The predictive power of first-
principles methods in describing harmonic lattice dynamics has been also tested in
determining the eigenvectors of the dynamical matrix as well as the internal strain
parameters in diamond and some pure bulk semiconductors. The agreement with
the available experiments is always remarkable.

Accurate thermal expansion coefficients in pure semiconductors have been
also calculated. Our results are able to reproduce even fine details of several sets
of experimental data.

Thus, we can conclude that theoretical calculations are able to provide an
unbiased and very reliable picture of the vibrational properties of semiconductors,
provided that they are carried out by accurate first-principles techniques. When

such techniques are no longer applicable, namely if the system becomes very large,
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one has to devise methods which provide an accuracy similar to the one of ab-initio
calculations.

In this context the concept of interatomic force constants is very useful not
only for interpolating vibrational properties throughout the Brillouin zone, but al-
so for using the information gained in simple systems (such as elemental or binary
semiconductors) in rather complex ones, such as alloys and quantum structures:
this is feasible in a straightforward way in the case of pseudobinary systems p-
resenting different cationic species, and, to a minor extent, for Si/Ge. The case
of pseudobinary systems with different anions may require some semiempirical
adjustment of the force constants, in order to achieve a comparable accuracy.

Applications of these ideas to GaAs/AlAs systems have been presented. We
have shown that within the so-called mass approzimations phonon frequencies can
be obtained in such systems within an accuracy comparable to that of full ab-initio
calculation. Furthermore, we devised a model for Raman spectroscopy which,
allowing to take into account the difference in the atomic polarizabilities of each
cationic species, can reasonably predict relative Raman intensities in GaAs/AlAs

mixed semiconductors.



Appendix A

FEwald energy

The ion-ion term in the expression of the total energy of a system of electrons and
ions may be easily calculated in the form:

2 2 2
4N €? e G /4 e 1
= Zie' ST — A
EEwald a3 ( E o El e o El ! +

Ne? YAV
+ 5 Zm Z E——Y (1 —erf(\ /)T — T — R|)>

where eZ; indicates the bare ionic (pseudo)charges for the i-th ion in the cell, and
n is a parameter whose arbitrary value can be chosen large enough to allow the

neglect of the real space term.



Appendix B

Matrix elements of nonlocal

pseudopotentials

The plane-wave matrix elements of the nonlocal pseudopotentials defined in E-

q. (1.44) are given by:
(k + Gluilk + G') =7, 10e(G — G') + > _Tiu(k + G,k +G')
{

where:

~ 1 G
Ui loc(G) = ﬁ/vi,loc(r)e Grar,

and

1 - L
vii(ki, ko) = a /e_““'r v; (v, r') e drdr’

4 o >, :
= 6(21 + 1)P{(k1 . kg)/ r? ]l(klr)]l(sz)'Ui,l("') dr .
0

The matrix elements of the the linear variation of the external ionic pseudopoten-

tial (1.23) upon a lattice distortion of the form:

uai(R) = Uqiq eiq~R )

are

aI/'—L.OTL

Uaiq

<k+q+G

k + G’> = —i(qa + Go — G'o[)e_i(q“LG"G,)'Tf X

X <5i,loc(q +G - Gl) + Zgi,l(k +q-+ G,k + G,)> .
l
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The screening contribution to 0Vscr/0uwiq, which is a local potential in DFT, can
be advantageously evaluated in real space and transformed back to reciprocal space
using the Fast-Fourier Transform. The matrix elements of the second derivative
of the electron-ion interaction potential are given by

a2.{/"!.0'@

auaiqzt)auﬁiqzu

(k+a

k+ G’> — (Ga— GGy — Gl em(@-ET:

x (si(c; — G+ Tk + G,k + G’)) :
l
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