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INTRODUCTION

In this thesis we study the problem of the description of the continuum limit of
discrete systems with possible long-range interactions defined on a cubic lattice
as the lattice parameters tend to 0. This subject intervenes both in applied set-
tings and as a theoretical justification of continuum theory. Indeed the study of
crystalline structure has been long developed since the beginning of the century -
by many authors in order to derive, from a microscopic analysis, the behaviour
at a macroscopic level and get a continuum theory for homogeneous media. More
precisely, according to the classical classification of crystal lattices, we deal with
ionic (and Van der Waals) crystals: one feature of these structures is the possi-
bility to compute the total energy of the lattice by a superposition of pairwise
interactions (see, for instance, [17]). Moreover, for an homogeneous medium, this
interaction is described by a Lennard-Jones-type potential. Our models differ
from the classical ones in two ways. First of all we take into account interactions
of all orders, while in the classical treatments mainly nearest-neighbourhood in-
teractions have been investigated. Secondly, suitable rescalings of the potential
functions, underlying a separation of scales, allow us to obtain in the limit a func-
tional that take into account the possibility of fracture. Indeed the limits consist
of a bulk term, the elastic energy outside the crack, and a surface term, the
fracture initiation energy according to Griffith’s theory (see [51]). This last term
accounts also of the possible interaction between the two sides of the fracture
according to Barenblatt’s model of “cohesive zone” (see [13]). This work is con-
nected to the description of finite-difference approximation of free-discontinuity
problems by Gobbino [49] (see also [50] and [35]), where only a special class of
interaction potentials was taken into account. The idea of a passage from a dis-
crete to a continuous setting using implicitly a variant of I'-convergence is also
present in the earlier work by Truskinovsky [62].

Before proceeding further into our analysis let us set more precisely the model.
Consider a domain © in RY, which will parameterize the limit continuum region,
and the portion Z, of the lattice A, ZV of step size A, contained in . Let u
be a function defined in Zn. If u: Zn — RN then we may interpret u(z) as the
displacement of a particle parameterized by = € Z,. The interaction between
each pair of points z,y in Zn will be described by an energy ¥, depending on
u(z) and u(y), and on the mutual position of the points in the lattice. T he total
energy of the interactions among points of this discrete system described by u is
then given by the sum of these pairwise interactions, which we can write in the

form

Holw) = 3 Ta(u(e) — u()z— ). (0.1)

m,yEZm CU#.U
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Fi1a. 0.1. interactions on the lattice Z,

In order to describe the continuum limit of these energies we identify the discrete
displacements u with functions defined on Q which are constant on each cube
of side length A, with vertices on the lattice X\, Z". We denote by A, () the
set of these functions, and we regard the functional %,, to be defined as above
on A, () interpreted as a subset of L'(Q; RY). We can thus apply the tech-
‘niques of I'-convergence for energies defined on L'(Q; RV ). We recall that the
I'-convergence of a sequence of functionals is in a sense equivalent to the study of
the convergence of all minimum problems involving these functionals and their
continuous perturbations (see Section 1.4 and, for an extensive treatment of the
subject, [39], [28] Part II).

One of the main results of this work (contained originally in [30]) is show-
ing that, under some qualitative hypotheses on the dependence of the energy
densities ¥, on u(z) —u(y) and under some quantitative hypotheses on their de-
pendence on z —y, the limit of the energies 7, gives a local energy H defined on
functions which may have a discontinuity along a hypersurface. These energies
contain a bulk term and a surface term accounting for fracture.

We will first treat the case of scalar-valued u (Chapters 2 and 3), as in this
case the hypotheses on ¥, are quite general. Some of our techniques carry on
to vector-valued u; for example if ¥, (z,w) depends on z only through |z|. The
typical shape of a function z — ¥, (z, w) which satisfies our hypotheses is convex
in an interval [T} (w), 77 (w)], and concave on the two remaining half-lines. Our
hypotheses on the dependence of ¥, on w amount essentially to supposing that
the effect of ¥, (-, w) decreases with w in such a way as to avoid non-local effects
on the limiting energy, and are satisfied, for example, when we consider only a
finite number of interactions. We will also assume the technical hypothesis that
for all w we have T}} (w) —+ +co and T;; (w) — —o0 as n — +oo, to ensure that
no interaction occurs in # between the bulk and the surface parts, so as to avoid
further complications in the description of #. The description of the effect of the
interaction between bulk and surface energies in % when 777 remains bounded



Introduction 3
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n

Fig. 0.2. the typical shape of ¥, (-, w)

can be found in Section 2.4. Under these hypotheses we show that the domain
of the functional # is the space GSBV(Q) of generalized special functions of
bounded variation, where it can be written in the form

Mw:wamw+Lg@p@MM¥

The space GSBYV () has been introduced by De Giorgi and Ambrosio [40] to give
a variational framework for energies in fracture mechanics and computer vision
(see the book by Ambrosio, Fusco and Pallara [10] for a complete introduction
to GSBV and free-discontinuity problems). A brief description of the properties
of GSBV can be found in Section 1.6. We recall that the set Sy is the (¥ — 1)-
dimensional set of discontinuity points for u, with normal vy, while Vu denotes
the (approximate) gradient of u, which is defined on \ S, and hence a.e. on
Q, and [u] is the jump of u across Su. We recall that in the terminology of
fracture mechanics S, can be interpreted as the fracture site, while u describes
the displacement on the uncracked region, so that F is a bulk energy density,
while G is a fracture-initiation energy density (see [8]).

In our hypotheses the integrands F and G can be recovered by examining
the convex and concave parts of ¥, separately. With fixed w &€ 7N\ {0}, denote
by F, the pointwise limit of ¥y (-, Aqw) and with Gy the limit of the scaled
functions

Gun(s) = oo (175 o).

Note that it is not restrictive. by a compactness argument to suppose that both
limits exist thanks to the convexity/concavity hypotheses on ¥,. The functions
F,, and Gy, describe the macroscopic effect of the convex and concave part of the
interaction of discrete points in the lattice 7N at distance Apw. The functions
F and G are then obtained by summing all the contributions when w varies in

the lattice ZV, as
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Fz)= > kw)F, (z . l%l)

weZN\{0}

G(z,v) = Z ch%ul—)-Gw(zsgn (z-w))|v- w[,~
weZN\{0}

where k(w) € N denotes. the ratio between w and the minimal vector in ZV
with the same direction. Note that F may easily turn out to be isotropic (e.g.,
when F, is quadratic), while G in general is not. However, the explicit formula
giving G allows easily to construct finite-difference schemes with interactions up
to M-order-neighbours such that the anisotropy of G is arbitrarily reduced.

Boundary-value problems can also be treated in this scheme; we propose two
ways of dealing with them. In the first one we consider discrete functions as
defined on the whole A\, Z% and equal to a fixed function outside the domain ;
in this case the interactions ‘across the boundary of ()’ give rise to an additional
boundary term in the limit energy. The second method consists in considering
the functions as fixed only on 0Q; in this case, the boundary term gives a dif-
ferent contribution, corresponding to a boundary-layer effect. We finally remark
that our method easily extends to deal with lattices of different shapes, such as
hexagonal or slanted ones. _

A key step in the subject is the description of the limit in the case n = 1
since many properties of systems in R are recovered by studying 1-dimensional
sections. Moreover, the peculiarity of the 1-dimensional discrete systems let us
extend our analysis to more general hypotheses than those considered for the
N-dimensional case. So in Chapter 2 we present different results on the possible
limiting behaviour of discrete systems (the results of Sections 2.1 and 2.2 are
contained in [31] and [30], respectively). For the sake of notation we prefer to
rewrite energies in (0.1) in the form

> pe(z—y) eyl (M) | (0.2)
a:,y#EsZ r-y

(in (0.2) € is the discretization parameter and the potential is assumed to de-
pend on the relative distance between two particles also through the functions
pe). In Section 2.1 we deal with the case when the energy ¥* does not have
a concave-convex behaviour. In particular we treat the case of the so called
“nearest-neighbourhood” interaction, that is p.(¢) = I, 0 otherwise so that only

e := Ul is taken into account. Our only assumption is that we can find p > 1, a
constant C' > 0 and an interval I, = [T, 7] (possibly degenerating to a point
or a half line) such that . (z) > C(|z|P — 1) if z € I and v.(2) > —f— ifz¢gI..In
this case a ‘homogenization’ process takes place in parallel with the passage from
a discrete to a continuum theory. As a consequence, periodic microstructure may
appear in minimizers, underlined by a convexification of v, (z) for ‘small’ values
of z, as well as a fragmentation of fracture, mathematically translated into a ‘sub-
additive envelope’ on v, (z) for ‘large’ values of z. This ‘regularization’ produces
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convex functions f. and subadditive functions g. whose asymptotic behaviour as
¢ — 0 describes the limit energy densities f and g of the limit functional

£(u) = f@,m\su a3 o) (0.3)

respectively. The precise statement of this convergence result can be found in
Theorem 2.3 (see [31]). We underline that, contrary to the case of a convex-

'T.g

Fia. 0.3. ‘regularization of . .

concave behaviour, a sequence of minimizers for E. may not converge in L0, L)
to minimizers of the continuum limit, but only in measure, due to the possible
fragmentation of fracture. Moreover, the limit g is not described anymore by
simply taking the pointwise limit of g, but by a more complex limit procedure.
In order to simplify the presentation we treat the case when T* — oo only.
In this case the representation of the limit energy by a functional £ as in (0.3)
is complete. When one or both T* remain bounded the domain of the limit
functional is not a space of piecewise Sobolev functions, but that of functions
of bounded variation on (0, L), and the representation must take the possible
interaction between f and g into account. This case has been treated by Braides,
Dal Maso and Garroni and is presented in Section 2.4 (see also [27]).

In Section 2.2, as already mentioned at the beginning, we perform a study for
energies accounting for interactions of all orders that will be used as a first step in
the treatment of the N-dimensional case. In particular, in the case pe(z) = p()
and ¥, (z) = min{ez?,1} we have that the limit of this energies is of the form

er [[1iP de+ ca(5.), (0.4

where ¢ = ), p(k) and c3 = 2 k=0 kp(k) can be explicitly computed from p.
Note that (0.3)is not the general form of a limit of discrete energies of the form
(0.2) if f. do not decay suitably. Take for example p.(¢) = pe(e[1/€]) = 1 and
pe = 0 elsewhere ([t] stands for the integer part of ¢). Then, it is easily seen that
the limit of the energies in (0.2) with this choice of p. is
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f|u|2dt+#(su) + /(u(t +1) — u(t)? dt. (0.5)

Hence, we may have a non local term added to the energy in (0.3). For the
sake of completeness, in Section 2.3 we present a result by Braides that gives a
complete characterization of all the possible limits of the model energies (0.2)
with ¥ = min{ez?, 1} for all k, for arbitrary choice of p. (see [24]). It is shown
that, under the only hypotheses that inf. pc (€) > 0 (equi-coerciveness of nearest-
neighbour interactions) and that p. are positive and locally uniformly summable,
and upon passing to a subsequence, the limit is an energy defined on piecewise-
W12 functions of the form

c1 | |u)?dt+ ([ﬁ + u(t+s) —u QdAsvd. 0.6
Jri i St //((-g) WF a0

The Radon measure A and the constant ¢; are determined by the (local) weak

limit of the measures :
Ae =3 pe(2)6; (0.7)
Z€eZ

(6, is the Dirac mass at z), while the function ¢ is completely characterized by
a non-local discrete phase-transition formula, which is reminiscent of a non-local
continuous formula by Braides and Garroni [29] (see also [26]). Note that due to
the generality of (p.) we may obtain that ¢ is not constant even in the ‘local’
case X = 0. Note moreover that (0.6) gives an interesting extension of a Dirichlet
form (see e.g. [46], [67]) to discontinuous functions, and the form of the additional
non-local term agrees with that of the energies that can be deduced from the
non local formulation of elasticity theory (see e.g. [60]) and with that proposed
"by De Giorgi to approximate some free-discontinuity problems (see [49], [23]).
Finally, in Chapter 4 (whose results are part of the paper [2]) we treat a
particular case of vector-valued deformations. For such a model our goal is to
obtain as limit functionals representing the linearized elasticity accounting for
fracture, i.e. functionals of the form )

p / Cu(e)2ds + 2 / (divu(e)|? do + / T a1 (0.8)
K 2 Ja\k Ju . '

where u still represents the displacement field of the body,  is the reference
configuration and g, A are the Lamé constants. The elastic part of the energy is
- expressed by suitable energy densities £u and divu. The proper space where to set
the problem is the space SBD(Q2) of integrable functions u whose symmetrized
distributional derivative Eu is a bounded Radon measure with density £u with
respect to the Lebesgue measure and with singular part concentrated on an (N —
1)-dimensional set J,, (the site of the fracture). This kind of functionals models
most of the phenomena in Fracture Mechanics for brittle linearly-elastic materials
(see [56]). Our approximation is related to the basic problem of computation
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of the elastic constants from models of atomic interactions. We recall that the
elastic constants are the second derivatives of the total elastic energy of the body
under homogeneous deformations u = }: - jiz; With respect to oy j. This
task has been widely studied by many authors (see for instance [17] and [55]).
It is known that for lattice energies related to central forces (i.e. where particles
interacts with potential energy as a function of the square of their distance) the
coefficient of the elasticity tensor are linked by the so-called “Cauchy relations”.
It is also a classical result that, unless considering an infinite lattice in which
every point is a centre of symmetry, these relations do not hold for general ionic
crystals. In Theorem 4.8 we verify the limitation of treating additive two-body
interactions also in our variational approach by showing that functionals of the

type

STpe) S eV (elDfu(e)?) (0.9)

£eZN  ageZWN

where Dfu (o) denotes the “symmetrized” difference quotient 1( (o + €€) —

u(a), €) and f(z) = min{¢,1} that the limits consist of a proper subclass of
energies of type (0.8). This formulation is not essentially different from those
of the previous chapter: it suffices to rewrite W, (z,w) = f (222). Actually, one
can generalize (0.9), by replacing min{t,1} by any increasing function f with
F(0) =0, f/(0) =a >0 and f(c0) =b < +o0.

The most interesting part of Chapter 4 is that we bypass this difficulty by
taking into account non-central interactions. The idea underlymg this work is to
introduce a suitable discretization of the divergence, call it divéu, and considering
functionals of the form

Z Z sN—1f<6 (IDSu(a)Iz+9|div§u(a)|2)) p(€)

£€ZN ageZN

with 8 a strictly positive parameter (for more precise definitions see Section 4.2).
We prove that with suitable choices of f, p and 8 we can approximate functionals
of type (0.8) in dimension 2 and -3 with arbitrary p, A and ¥ satisfying some
symmetry properties due to the geometry of the lattice. The precise statement of
the result in dimension 2 can be found in Theorem 4.3. One of the main technical
issue of this result is that in the proof we cannot reduce to the 1- dimensional
case by an integral-geometric approach as in Chapter 3, due to the presence of
the divergence term. Therefore we separately treat each interaction in direction
£EeZ? (that now takes into account interactions in the two directions £ and €%,

‘as we are in the non-central case) and use afterwards a superposition argument.

The contents of Sections 2.1, 2.2 and of Chapter 3 have been obtained by the
author in collaboration with A. Braides, and originally appeared in the papers
[30] and [31]; Chapter 4 is part of the paper [2],in collaboration with R. Alicandro
and M. Focardi. ' ‘






1.
PRELIMINARIES

1.1 An overview of basic measure theory

In order to make both the notation and the comprehension of the next chapters
clearer in this section we recall some classical definitions and results of measure
theory. ’

In the following Q will be an open set of RY, B(Q) will denote the Borel
sets of Q and B.(Q) will denote the Borel sets with compact closure in . We
will write A(2) to denote the family of the open sets of Q and P(Q2) to denote
the family of all subsets of Q. If z,y € RY we denote by (z,y) and |z|,|y|
their scalar product and their euclidean norm, respectively. S¥~! will denote
the boundary of the unit ball of RY. Finally, for p > 0 and z € RV we set

By(z) :={y e RY : [z —y| < p}.
Definition 1.1 A function p: B(Q) — RY is a (vector) measure on Q if it is
countably additive; i.e.,

 B=|JB:, BinBi=0ifi#j =  uB)=) pbB).
iEN i€N

The set of such measures will be denoted by M(Q; RY). :

We say that a measure is a scalar measure if N = 1, and that it is a posi-
tive measure if it takes its values in [0,+c0). The sets of scalar and of positive
measures will be denoted by M(Q) and M (Q), respectively.

A function p : B.(Q) — R" is a Radon measure on § if B|B(qr) 1S @ measure
on Q' for all ' CC Q. As above, we will speak of scalar and of positive Radon
measures. '

Remark 1.2 If pis a positivé Radon measure then we define

u(B) =limu(BNy) € [0, +oo]

for all B € B(Q2), where Qx CC §2 converges increasingly to Q. -

Definition 1.3 Let u : P(Q) — RY be a set function. We define then the
restriction ul_B of u to B C Q by

pLB(4) = p(B N A)

for all A € P(Q). We use the same notation if p € M(Q;RY), in which case
also pl_B(A) is defined on B(Q) and pl_B € M(;RY).
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Definition 1.4 If p € M(Q; RY) for all B € B(R) we define the variation of
on B by

ul(B) = sup{ 3 Iu(B)| : B = UBZ,BHB~—@1J’Z¢J}

€N

The set function |p| is a positive measure on Q.

Definition 1.5 The support of p.€ M(Q; RY) zs defined as
spt p = {a: eN: Ipl(Bp(zi)) >0 for all B,(z) C Q}
Theorem 1.8 Every measure p € M1(Q) is regular in the sense that

u(B) = inf{g(A) :BCA, A open}, | (1.1)

p(B) = sup{p(C’) :CCB, C closed} - (12)

for all B € B(Q2).

Remark 1.7 By approximating closed sets with compact sets we also have
w(B) = sup{p(K) K CB, K compact}.

Definition 1.8 Let p € M (Q) and A € M(Q;RN). We say that A is abso-
lutely continuous with respect to p (and we write A << p) zf/\(B) =0 for every
B € B(Q2) with ,LL(B) 0.

We say that X is singular with respect to p if there e:msts a set E € B(Q)
such that p(E) = 0 and A(B) = 0 for all B € B(Q) with BNE = {} (m this case
we say that A is concentrated on E).

Theorem 1.9. (Radon—leodym) If A€ M(;RY), and p € M4 (Q), then
there exists a function f € L*(Q, ; RY) and a measure \*, singular with respect
to u, such that

A= fu+ A,
© This will be called the Radon-Nikodym decomposition of A with respect to p.

Remark 1.10 From the theorem above we get:

(a) If A << p then A = fpu for some f € LY, p; RYY;

(b) Since A << |A| there exists v € L*(Q, |A|; RY) such that A = v!)\] As
IA] = |v|A]| = |v]|A] we get that [v| =1 p-a.e. on Q;

(c) If u € M(Q), we can write p = pF — p~ Where puE = vEpl € My(Q)
(v* denotes the positive/negative part of v).
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Theorem 1.11. (Besicovitch Derivation Theorem) Let u, A and f be as in
Theorem 1.9. Then for p-almost all © € spt u there exists the limit

dA . | A(B,(z))

an = A8 (B, @)

dA
and f(z) = &——(a:) for p-almost all z € spt p.
i
From the regula,nty properties of positive measures we easily obtain the following
proposition.

Proposition 1.12 Let p : A(Q) — [0,400) be an open-set function super-

additive on open sets with disjoint compact closures (i.e., p(AUB) > p(A)+p(B)

for all A,B € A(Q) with ANB =0, AUB CC Q), let A € M4(Q), let ¥; be

positive Borel functions such that p(A) > [, ¥idA for all A € A(Q) and let
(.’E)"‘Sllpz'l,b,( ). Then p(A) > [, dX for all A € A(Q).

Measures can be 1dent1ﬁed as elements of the dual of the space of continuous
functions vanishing on 8Q. Hence, they inherit a notion of weak convergence
which will be used largely in the sequel.

Definition 1.13 We define the set Co(Q; RY) as the closure of C°(Q; RY) in
the uniform topology. It is a sepamble Banach space if equipped with the || - ||co
norm.

Theorem 1.14. (Rlesz s Theorem) The map p +— L, defined in

:/QQSCZ#.::;/Q@CZM | - (13)

is a bijection between M(Q;RY) and (Co(Q;RY)).
Remark 1.15 We have ||L,|| = |#|/(Q). In fact,

ol =sup{ [ édu: 6 € Col@sRY), lo]< 1}
= sup{ [ (#,0)dlul: b€ Co(@RY), 9] <1}
= [ G)diul = lul(@),

~ since using Lusin’s Theorem we can approximate v by functions in Co(Q; R).

Definition 1.16 We say that a sequence (p;) C M(Q; RN) converges weakly
to p (and we write p; — ,u) if Ly; —* L, in the weak® topology of (Co(S; RY))/;
i.e.,
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J'—£+oo/n¢ #J. -/ﬂq,') H

for all ¢ € Co(Q; RN).
Remark 1.17 By the Banach-Steinhaus Theorem we have that if 4; — u then
sup; |p;1(Q) < 4oo. Note, moreover, that by the lower semicontinuity of the
dual norm with respect to weak* convergence we have that p + |p|(€) is weakly
lower semicontinuous; i.e., |¢(Q) < liminf; |p;|(Q) if pj — p.
Theorem 1.18. (Weak Compactness) Let (u;) be a sequence in M(£;RY)
with sup; |p1;|(Q2) < +oo. Then there ezists a subsequence of (y1;) weakly converg-
ing to some p € M(Q; RY). A '

If © is unbounded then it is convenient to give also a notion of local conver-
gence for Radon measures.

Definition 1.19 We say that a sequence (y;) of Radon measures locally con-
verges weakly to p (and we write p; — p locally) if

li “ddu; =
J,_;g{loo/n(ﬁ#g /Qsﬁdu

for all ¢ € C2(;RN).

Remark 1.20 In this case we have that if 4; — p locally then, for every Q' CC
Q, sup; |p5](Q') < +oo. Moreover, if (1) is a sequence of Radon measures such
that sup; |u;](Q') < +oo, for every ' CC €, then there exists a subsequence of
() weakly converging to some Radon measure pi. Indeed, fixed a sequence of
open sets 2 € B.(Q) converging increasingly to , by Theorem 1.18, p; L_Qy is
precompact in M (Q,; RY). Thus it suffices to use a diagonalization argument.

Finally, we recall the definition of Hausdorff measures.

Definition 1.21 Let @ > 0 and § > 0. For all E C RN we define the pre-
HausdorfT measure H§ of F as
HE(E) = 22 inf{ Y "(diam E;)* : diamE; <6, EC | ) E;
5()_2am ;)% diam E; < 6, __U it
ieN_ ieN

where wy = 7*/2/T(a/2+1), and T'(a) = f0+°° s®~Yes ds is the Fuler function,

~ which coincides with the Lebesgue measure of the unit ball in R* if o is integer.
Note that H§(E) 1s decreasing in 6.

The a-dimensional Hausdorff measure of E s defined by

HE(E) =supH§(E) = im HE(E) .
5>0 §d—0

By using Carathéodory’s construction it can be seen that #® is countably
additive on B(Q). Besides, it can be proved also that if @ = N then #Y = LV (in
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RN). If @ < N then #* is not a measure, since #*(Q) = +co for all non-empty
open sets Q. If #%(B) < +oo for some B € B(Q) then HeL.B € M(Q2). We
will always use measures of this form. . ,

For a deeper insight on the properties of Hausdorfl measures we refer to [44],

[43] or [10].

1.2 The space BV ;
In this section we introduce the space of scalar functions of bounded variation
and we state its main properties. : .
In all the section © will be a bounded open set of RY. The Lebesgue measure
and the k-dimensional Hausdorff measure in RY are denoted by LN and HEF,
respectively.- Notice that #° is the counting measure that sometimes will be
denoted also by #, while | - | will substitute sometimes the measure LN,
If A € A(RY), we use standard notation for the Lebesgue and Sobolev spaces
LP(A) and W17 (4). ' :
Definition 1.22 Let u € L'(Q). We say that u is a function of bounded vari-
ation on Q if its distributional derivative is a measure; .i.e., there erists p €

M(Q; RN) such that
/ungda::——/qu,u
Q Q

for all ¢ € GY(). The measure p will be denoted by Du. The space of all
functions of bounded variation on Q will be denoted by BV (). '

We say that a sequence (uj) converges weakly in BV (Q), and we write uj — u
in BV(Q), if it converges in L*(Q) and sup; | Du;|(Q) < +o0.
Remark 1.23 (a) If u € WH(Q) then u € BV(Q) and |[Du|(Q) = Jo |Vuldz.

(b) If u; — u in BV(Q) then u € BV (), and Du; — Du as measures. In
fact, let p; = Duj; from the condition sup; |p;](©2) < 4oo0 we deduce that, up to
subsequences, u; — p. Now it suffices to remark that JquiDédz = — Jo @ dy;
passes to the limit, so that p = Du.

(¢) If u; — win L'(Q) then | Du|(Q?) < lim inf; | Du; |(Q). It suffices to remark
that it is not restrictive to suppose u; — u in BV (Q), and apply the weak lower
semicontinuity of the variation. :

An approximation by convolution argument proves the following proposition.
Proposition 1.24 If u € BV(Q) then there exzists a sequence (uj) of C*-
functions such that u; — u in L*(Q) and |Du;|(Q) = [Du|(Q). V

Theorem 1.25 The following statements are equivalent:
(i) v € BV();
(i) u € L'(Q) and the total variation of u on §

sup{/ﬂu divgde : g € CHOQ;RY), |g] < 1} (1.4)

15 finite;
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(iii) there exists a sequence (uj) of C* functions such that u; — u in L*(Q)
and limsup; [, |[Vu;]de < +co. ) |
Remark 1.26 It can be shown that |Du|(£2) coincides with the total variation
of u on . From Proposition 1.24 and Remark 1.23(c) we have also a variational
characterization:

| Dul(Q) = inf{liminfj /n [Vujlde © u; = uin LHQ), u; € C% (Q)}

‘Theorem 1.27. (compactness) Let (u;) C BV (Q) be such that sup; (||u;]|z(q)
 +|Du;|(Q)) < 400 then there exists a subsequence converging in.L(Q) to some
u e BV(S). |

Before going on with a deeper analysis of the properties of the space BV we
introduce some notation. In order to provide definitions also for Section 1.6 we
prefer to consider vector valued functions.

If u e L}(Q : R™), we denote by Sy the complement of the Lebesgue set of
u; ie. z € Sy, if and only if

lim g™ [ fuly) - sldy =0
B, () .

p—0

for some z € R™. If z exists then it is unique and we denote it by %4(z). The set
Sy is Lebesgue-negligible and # is a Borel function equal to u a.e.

Definition 1.28 We say that z € () is a jump point of u, and we denote by J,
the set of all such points for u, if there ezist a,b € R™ and v € SV~ such that
a#band

. -N _ - i =N _ _
Jim L:(x’y |u(y) —aldy=0, limp /BP_(“ lu(y) blfl‘y-O, (1.5)
where B (v,v) :={y € By(z) : +(y—=z,v(z)) > 0}.

The triplet (a,b,v), uniquely determined by (1.5) up to a permutation of
(a,b) and a change of sign of v, will be denoted by (ut(z), v (z), vu(z)). Notice
that Jy, is a Borel subset of Sy. :

Definition 1.29 We say that u is approximately differentiable at a Lebesgue
point z if there exists L € RYX™ such that

p—+0

lim p~ V- 1/}3 ( )lu(y)——ii(a:)—L(y~—x)]dy:0. (1.6)

If u is approzimately differentiable at a Lebesgue point z, then L, uniquely de-
termined by (1.6), will be denoted by Vu(z) and will be called the approximate

gradient of u at z.
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Definition 1.30 Given a Borel set J C RN | we say that J is HN =1 -rectifiable
if
J=RU|JK;
i>1
where HY 1 (R) = 0 and each K; is a compact subset of a C* (N—1)-dimensional
manifold. ‘
Thus, for a HN~!-rectifiable set J it is possible to define #V~! a.e. a unitary

normal vector field v.
Now we have set all the tools to describe the structure of the distributional

derivative Du of a BV function.

Definition 1.31 Let u € BV(Q). Using the Radon-Nikodym Theorem we set
Du = D% + D*u where D*u is the absolutely continuous part of Du and D*u
is the singular part of Du with respect to the Lebesgue measure. We may further
decompose the singular part D°u as D*u = DIu-+ D°u where Diy=Dul_S, is
the jump part of Du, and D°u= D°ul_(Q2\ S,) is the Cantor part of Du. We
can then write )

Du=D%u+ DIu+ D?u
The following theorem characterizes the structure of D%u, Diy and D°u.

Theorem 1.32 Ifu € BV (Q) then :

1) for almost all x € 2 there exists the approzimate gradient of u, and it is
* equal to d D%u/dLY;
2) Sy is rectifiable, HY ~1(Su \ Ju) = 0 and we have

Diu= (vt —u ), HN-1LS,, | (1.7)
where vy, is defined by Du = vy|Dul| |Dul-a.e. and coincides with that of defini-
tion 1.28 on Jy, HY"'-a.e. on Sy, i.e.,

Diu(B) :/ (ut —u™)u, a1,
BnS :

3) for any Borel set B with HN~1(B) < 400, we have that | Déul|(B) = 0.

In the sequel we will consider also functions whose distributional derivative
is a Radon measure.

Definition 1.33 Let u € L*(Q). We say that u € BVioo(Q) if u € BV (Q') for
every ' CC Q.

1.2.1 BV functions of one variable

Let (a,b) be a bounded open interval of R and let u € BV(a b). Then it can
be proved that for any t € (a,b) there exist

h—+0+

t+h
u(t+) = lim 71—/-1- (1.8)
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u(t—) = lim - u(s) ds. (1.9)

Actually it is possible to define also u(a+) and u(b—), so that we can consider
the following left-continuous representative of u ’

a(t) := u(a+) + Du({a,t)).

Moreover, by splitting the measure Du in its positive and negative parts we can
write % as the difference of two non-decreasing functions

i(t) = u(a+) + Dut ((a,1)) —-ADu‘; ((a,t)). (1.1'0)

Note that Sy = {t € (a,b) : |Du|({t}) # 0}, that is, Sy is the set of atoms of
|Du|. Note also that it is possible to define a right-continuous representative of
U as

a(t) = u(a+) + Du((a,]).

- From (1.10) it is easy to deduce that, given representatives & and @, u(t=), u(t+)
coincide with the left and right limits of % and i at ¢.

For the sake of notation in the sequel we will write w’ for the distributional
derivative Du, @ for the approximate gradient Vu, uj for the singular part of
Du and u, for the Cantor part D°u. If we denote [u](t) := u(t+) — u(t—), then
it holds

v = ude + Z [u](t)d: + ul.

teS.

In this case v, = =1 and, taking definition 1.28 into definition, we have [u] =
(ut —u”)sgnvy.

1.3 The spaces SBV and GSBV

Definition 1.34 We say that a function u € BV () is a special function of
bounded variation if D°u =0, or, equivalently, if

Du=Vull + (ut —u )y, HY LS,

vbWe denote the space of the special functions of bounded variation by SBV(Q).

One of the main properties of the space SBV (Q) is the following compactness
theorem. ‘

Theorem 1.35 Let (u,) C SBV (Q) be a sequence of special functions of bound-
ed variation in Q, and assume that -

(i) the sequence (un) is uniformly bounded in the BV norm (i.e., it is rela-
tively compact with respect to the weak topology of BV (£2));

(ii) the approzimate gradients (Vuy) are equi-integrable (i.e., they are rela-
tively compact with respect to the weak topology of L*(Q, RM));
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(i) there erists a function 6 : [0,00) — [0,00] such that 8(t)/t — +co as
t— 0, and
sup/ O(Juf —u;)dH" ' <o  VneN. (1.11)

n JS,,

Then we may extract a subsequence (not relabelled) (u,) which converges in
LY () to some u € SBV (2). Moreover, the Lebesque part and the jump part
of the derivatives converge separately; i.e., D%u, — D% and Diy, — Diy
weakly in the sense of measures. :

Since we often deal with functionals on SBV (Q2) that take into account the
L'-norm of the approximate gradient and the #~ ~l-measure of the jump set it
is useful to consider also the following space.

Definition 1.36 A function v € L'(2) is a generalized special function of
bounded variation if for each T' > 0 the truncated function uy = (=7) V (T'A u)
belongs to SBV (). The space of these functions will be denoted by GSBV (Q).

The generalized special functions of bounded variation inherit most of the
main features of SBV functions. Namely, if v € GSBV(Q), then u is ap-
proximately differentiable a.e. in  and S, turns out to be countably HV—1-
rectifiable. Note that Vupy = Vu ae. on {u = ur} and Vur = 0 a.e. on
{u # ur} = {|u| > T}. Moreover, Sy = |JSu, and u¥ coincide with the limit of
the corresponding quantities for up as T — co.

The following theorem ensures, separately, lower semicontinuity in the volume
term and in the surface term along sequences GSBV uniformly bounded in the
sense of (1.13) (see also Proposition 1.61 of Section 1.5).

Theorem 1.37 Let ¢ : [0,+c0) = [0,+4c0], 8 : (0,400) — (0,+00] be lower
semicontinuous non-decreasing functions and assume that

lim i)
t

t—-4o0

=400, lim o) = +co. (1.12)
t—0 ¢ :

Let (up) C GSBV(Q) and u € L*(Q) be such that u, —+ u in measure and
sup {/ d(|Vual) dz +/ B(luf —uz)) d%”‘l} < +o0. (1.13)
n (Ja Sun

Then u € GS‘BV(Q), Vu, weakly converges to Vu in Ll(Q; RN) and

i nf | 6((Vua]) do > / (vl d (1.14)
n~—-+00
if is conver and
liminf/ o(jut — uy|) dHY 1>/ B(jut — u|) a1 (1.15)
n—-4o0 Sun

if 8 is concave.
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It is useful to underline that, in general, we can have lower semicontinuity
results of the kind (1.14) and (1.15) even without compactness hypotheses. To
highlight this point we give here a lower semicontinuity and closure result that
will be needed in Sections 2.2 and 2.3. For the proof we refer to the proof of
Theorem 2.3.

Proposition 1.38 Let (un) C SBV (a,b) and u € L*(Q) be such that

1) wp — u in measure;

2) 1y, 1s equi-integrable;

3) supn#Su, < ¢
Then v € SBV (a,b) and

(a) i — U weakly in L' (a,b); ,

(b) ST [ua] = [](@t)  Jor everyt € Sy, < Fdist (4, Su \ {t}).

(t—e,t+e)nSy,

Remark 1.39 To point out the difference between Proposition 1.38 and Theo-
rem 1.35, notice that, if u, is not equibounded in BV (a, b), then it may happen
that conditions (a) and (b) above hold but Diu, does not converge weakly
to DJu. For example, consider the sequence (u,) C SBV(—1,1) defined as
Un(z) 1= nX( n-2). ’

For any p > 1 we will consider also the auxiliary space
SBV?(Q) :={ue SBV(Q): |Vule IP(%RY), #V71(8,) < 400}, (1.16)

which replaces the Sobolev space W?(Q2) in the framework of special functions
of bounded variation.

In analogy with the strong density results of smooth functions in WP (Q),
* functions in SBV?(f) can be approximated in a “strong sense” by functions
which have a “regular” jump set and are smooth outside. This can be formally
expressed as follows.

Definition 1.40 We call W(Q) the space of all functions w € SBV (Q) satisfy-
ing the following properties:

(i) S, is the intersection of Q with the union of a finite number of (N — 1)-
dimensional simplezes;

(iil) w € Wk (Q\S’Z) for every k € N.

The following density result of W(2) in SBV?(Q) is due to Cortesani and Toader
[38] (see also [25]).

Theorem 1.41 Let Q be an open subset of RY with Lipschitz boundary. Let

w € SBVP(Q) N L (). Then there exists a sequence (w;) in W(Q) such that
w; —u  strongly in L*(Q), A (1.17)
Vw; — Vu  strongly in L () (1.18)
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lim sup||lwjl|z= < [Juflre (1.19)
J—++oc .

and

lim sup qﬁ(wj'-",awj—, Vu;) dHN—l < plut, u, vy) diN Tt (1.20)
Sy

Jr+o0 JSy;

for every upper semicontinuous function ¢ : R x R x SN~1 [0, +00) such that
¢(a,b,v) = ¢(b,a,—v) for every a,b € R and v € SVN-1,

A standard tecnique to deal with N-dimensional problems in BV is to reduce
to 1-dimensional ones. To this end we introduce some notation and a ‘slicing’
result.

Let £ € SV~ and let TI¢ := {y € RV : (y, €) = 0} be the linear hyperplane
orthogonal to £ and P¢ : RY — TI¢ the orthogonal projection on IT¢. If y € TI¢
and E C RN we set

ESY = {tER:y+t§E'E}. (1.21)

Moreover, if u : E — R we define the function u&¥ : F&V — R by
ub () = u(y + t€). (1.22)

Theorem 1.42 (a) Let u € GSBV(Q) Then, for all ¢ € SN~ the function
ub¥ belongs to GSBV (Q5¥) for HV "l-a.e. y € HE Moreover for such y we have

W) = (Vu(y+16),6) for ac.t e Q8
Spey = {t ER:y+téc Sy},

uf'y(t:!:)A =uF(y+1€) or ubV(tt) = oF (y+ ff),

according to the cases (vy,&) > 0 or (vy,€) < 0 [the case (vy,€) = 0 being
negligible) and for all Borel functions g

./He Z d%N 1 (y) = fgg(m)|<yu,€>ldHN_l.

teS . _ u

(b) C’ohversely, if u € L'(Q) and for all £ € {eq,...,en} and for HN-1.
a.e. y € ¢ ué¥ € SBV(Q8Y) and

/H& (/ns,y Idf’gl + #(5u¢~,y)> a1 (y) < +o0,

then u € GSBV(Q).
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1.4 T-convergence

In this section we introduce the notion of De Giorgi’s T-convergence (see [41]).
Let (X,d) be a metric space. We say that a sequence Fj, : X — [—o0,+09]

T-converges to F : X — [—00,+00] (as n — +00) at u € X if the following two
conditions hold: ‘ ' '

(1) (liminf inequality) for every sequence (un) converging to u

F(u) < lim inf Fy (un);

(i) (existence of a recovery sequence) there exists a sequence (un) converging to

u such that
F(u) > limsup Fp, (un)-

We say that F, T-converges to F if F(u) = I-limn F,(u) at all points u e X
and that F is the [-limit of Fy,. It is useful also to define the lower and upper
I'-limits by

F"(u) =T- lim sup Fp, (u) = inf{lim sup Fp () : un — u},
n n

F'(u) =1TI- lin}liann(u) = inf{lin;l%iann(un) C U, u},

respectively, so that the conditions (i) and (ii) are equivalent to F/(u) = F"'(u) =
F(u). Note that the functions F' and F" are lower semicontinuous.

The importance of I-convergence in the Calculus of Variations comes from
the fact that it ensures and describes the convergence of equicoercive minimum

problems, as the following theorem explains.

Theorem 1.43 Let F = I-lim, F,, and let a compact set K C X exrist such
that infx F, = infx Fp for all n. Then

Jmin F = liminf F,. (1.23)
X n X

Moreover, if (uy) is a converging sequence such that lim, F,(u,) = lim; infx Fu
then its limit is a minimum point for F.

It is convenient also to introduce the notion of I-convergence for families
depending on a real parameter. We say that a sequence F. : X — [—o0,+c0]
T-converges to F' : X — [—00,+oo] as e — 0% if for every choice of positive (e5)
converging to 0 the sequence (Fe,) T-converges to F. Equivalently, we require
that for all u € X we have

(i) (liminf inequality) for every sequence of positive (g,) converging to 0 and
for every sequence (u,) converging to u

F(u) < li%iansn(un) ; (1.24)
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(ii) (ex1stence of a recovery sequence) for every n > 0 there exists a family
(ue) convergmg to u as € — 07 such that

F(u) > limsup Fe (ue) — 7. , (1.25)

, e—0+
When needed we will write I'(d)-lim inf, I'(d)-lim sup and I'(d)-lim to empha-
size the metric with respect to the convergence is taken.

In the following remark we state some simple results on I'-convergence that
will be useful in the sequel. For an exposition of the mam properties of T'-

convergence we refer to [39] (see also [28]).

Remark 1.44 Let F, : X — [0, +0c0] be a sequence of functionals on X.
(a) Let d and d’ be two metrics on X such that d(zn,z) — 0 = d’(wn, z) =0

for every z,,z € X. Then, for every z € X,

T'(d)-lim inf Fi (z)

<
I'(d)-limsup Fp(z) <

I'(d")-liminf F, (z)
T'(d')-lim sup Fy, (z).

(b) Let G : X — [0,+c0] be continuous and let (F,) I'-converge. Then the
sequence (Fy, + G) I-converges and I'-lim, (F, + G) = I'lim,, F, + G.

(c) Let (X, d) be a separable metric space. Then there exists a subsequence (Fy,)
that I'-converges. '

For the sake of notation in the following we will denote by I'(meas)-liminf,
T'(meas)-lim sup and I'(Z*)-liminf, I'(L')-lim sup, the lower and upper I-limits
on the space L' endowed with the metric of the convergence in measure and the
L-strong convergence, respectively.

1.5 Relaxation and lower semicontinuity results

In this section we give some lower semicontinuity and relaxatlon results that Wﬂl
be used in the following chapters. :

Definition 1.45 Let X be a topological space and let f : X — R be a func-
tion. Its lower semicontinuous envelope f is the greatest lower semicontinuous

. functions not greater than f, that is
Fi=sup{g:9<f, glsec).

7 is called also the relaxation of f.

Remark 1.46 If (X, d) is a metric space, f can Be rewritten as follows
f(z) = inf{liminf; f(2;) : lim;d(z;, z) = 0} o (1.26)
for any z € X. |

From this formula we easﬂy deduce that, if we consider the constant sequence
fj = f, then I-lim; f; =
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The reason for introducing this notion can be found in the following well-
known theorem. :

Theorem 1.47. (Weierstrass) Let (X, d) be a metric space and let f : X — R
be such that there exists a compact set K C X with infx f(z) = infx f(z). Then
there ezists the minimum value miny f(z) and it equals the infimum infx flz).
Moreover, the minimum points for f are ezactly all the limits of converging
sequences (z;) such that lim; f(z;) = infx f.

In the following we will treat functionals defined on the space BV, thus
we will be concerned in lower semicontinuity and relaxation results for such
_ functionals, in particular for 1-dimensional spaces BV'. A complete treatment of
" this problem is not known yet, although many partial results have been given
(see [14], [22] and, for isotropic functionals see [18]). Actually, 1-dimensional
functionals can be dealt with by using the lower semicontinuity and relaxations
results by Bouchitté and Buttazzo for functionals defined on the space of bounded
measures M (Q; R™).

In the sequel we will report the most significant relaxation results for functionals .
defined on the space of measures and we will infer analogous results for func-
tionals defined on the 1-dimensional space BV. ‘

In order to give sufficient and necessary condition for the lower semicontinuity
in the spaces M (Q; R™) and BV we need to introduce first the notions of convex
and subadditive lower semicontinuous envelopes, recession functions and inf-
convolutions.

Definition 1.48 Let 8 : R™ — [0, +o0] be a Borel function. We say that 6 1s
subadditive if '
8(z +y) <6(z) +0(y) for every z,y € R™.

Remark 1.49 Note that every function § : R — [0, 4oc0) with 6(0) = 0, con-
cave, respectively, on (—oc0,0) and (0,+c0), is subadditive. Moreover, if § is
subadditive, §(kz) < kf(z) for k=1,2,...and z € R. ,

Definition 1.50 Let h : R™ — [0,4c0] be a Borel function. We define the
convex and lower semicontinuous envelope of h as the greatest conver and lower
semicontinuous function not greater than h, that 1s

h** :=sup{¢:¢ < h, ¢ Ls.c. and conver }. .

We define the subadditive and lower semicontinuous envelope of h as the greatest
subadditive and lower semicontinuous function not greater than h, that is’

sub"h:=sup{¢:4 <h, ¢ Ls.c. and subadditive }.

In the following we will treat functionals of the form

. 1
£(w) =/U f@)di+ 3 o) we SBV(,) (1.27)

teSy :
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with f,¢ : R — [0,+00]; for such functionals it can be easily checked that
necessary conditions for the lower semicontinuity are that f is lower semicontin-
uous and convex and g is lower semicontinuous and subadditive. The latter can
be interpreted as a condition penalizing jump (fracture) segmentation, whereas
convexity penalizes oscillations. Thus, in a natural way, we are led to consider
the two envelopes above and to assume convexity and subadditivity on (the den-
sity of) the bulk part and on the surface part, respectively, in the relaxation
theorems. ‘
The following remark is useful to compute the functions h** and sub™h.

Remark 1.51 Let h: R — [0, +o0], then we have

h**(z) = sup{liminf; (t;h(z}) + (1 —1t;)R(z)) : (1.28)
i i€ (0, 1), limj(tjz; + (1 - tj)zjz) = z};

. . Nj N
sub™h(z) = inf{liminf; Y h(z}) : lim; Y 24 = 2},
i=1 i=1

for z € R. -
If h is convex then sub™h(z) = inf{kh (-};) k=1,2,.. }

Lower semicontinuity sufficient conditions for general functionals defined on
the space SBV (or, respectively, in the space M(Q; R™)) take a more complex
form, due to the possible interaction of the Lebesgue part and the jump part.
To describe this interaction we introduce the following functions.

Definition 1.52 Let f : R™ — [0,400] be conver. We define the recession
function of f as the function f* defined as

f°(z) ;== lim f(ta)

t—+co

for every z € R™.

Let g : R™ — [0, +co] be a Borel function. We define the recession function of g
as the function g° defined as

¢°(z) := limsup 9(tz)

for every z € R™.
t—o4+ t ‘

Note that from the convexity of f it is possible to prove that the limit of f (tz)/t
as t tends to 4-co exists so that f*° is well defined.
Proposition 1.53 (a) Let f : R™ — [0, 4c0] be conver, l.s.c. and proper (i.e.
f & 400). Then §* is conves, Ls.c., proper and positively I-homogeneous.

(b) Let g : R™ — [0, +00] be subadditive and Ls.c. with g(0) = 0. Then g° is
conver, l.s.c. and positively 1-homogeneous and

gtz
¢°(z) = sup (iz)
t>0 1
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Moreover g° > g.
Remark 1.54 Note that in the case m = 1 the functions f* and g° are deter-
mined in R\ {0} by the values f°(£1) and g%(£1), respectively.

Definition 1.55 Let g,h : R™ — [0,400] be Borel functions. We define the
inf-convolution of g and h as the function gVh defined as

gVh(z) == inf{g(z1) + h(z2) : 21 + 29 = 2}

for z € R™.

Remark 1.56 If h is convex and g is subadditive, then hVg® = (h A g°)** and
h*°Vg = sub™ (h* A g).

Now we are able to state a lower semicontinuity and a relaxation result on
functionals defined on measures by Bouchitté and Buttazzo (for the proofs and
for a complete treatment of the subject we refer to [19], [20] and [21]).

Let 2 be a bounded open set of R and let A € M(Q;R™). We denote by
A(X) the set of all atoms of A, that is A(A) := {z € Q : A({z}) # 0}.

Theorem 1.57 Let f,g: R™ — [0, 400] be Borel functions such that
1) f is convez, l.s.c. and proper;
2) g is subadditive and l.s.c.;
3) & =g°
Then the functional F : M(2; R™) — [0, +o0] defined as

. 0 :=_/nf(%> dm+/n\,4w o (;ﬁ‘:& d|As[+A(A)g(A(m))d# (1.29)

is sequentially lower semicontinuous on M(Q; R™) with respect to the weak con-
vergence.

Theorem 1.58 Let f,g : R™ — [0,-+0c0) be Borel functions such that f(0) =
g(0) =0 and
1) f convez, Ls.c., f # oo and there exist o, >0

flz) > alz] - F for every z € R™, (1.30)

2) g subadditive, l.s.c. and
7°(z) > alz]| for every z € R™. (1.31)
Consider the functional F : M(; R™) — [0, +o0] defined as

dx oo
. /ﬂf(zl;> dx+[4(A)g(A(m))d# =00 \AN

+00 A otherwise,
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then the lower semicontinuous envelope of F with respect to the weak topology
on M(Q;R™) is

’f(}\) - ]n fl (%) dz + /Q\A(,\)% (%}%) diATf+ /,q(x)gl(}\(m)) d#, (1.33)

where fi = fVg°, o1 = f°Vg° and g1 = f*Vyg.

We give also a I'-convergence result for functionals defined on measures, by
Amar and Braides, that will be used in Section 2.4.2.

Theorem 1.59 For-any n € N let fa,gn : R™ = [0, +00) be such that
1) fn conver, fn (0) :‘O and there ezist a, o’ > 0 such that
a(lz] = 1) < fa(2) £ &l7] for every z € R™,
2) gn subadditive, gn(0) = 0 and |
| alz| < galz) L 0'lzl - for everyz € R

Let Fp : M(Q;R™) — [0, +00) be defined by

. dA dAs .
= fal — d :;o s n .
Fa() fnf ( dm) i /n\A(A) ¢ (dWJ A=+ /A(A) 9n(A) a3

Let us assume that there exist functfohs f,g : R™ — [0, +co) such that fn — i
and g, — g pointwise in R™. Then F, T-converge with respect to the weak
topology of M(£; R™) to the functional F : M(Q; R™) — [0, +c0) defined by

ry o= [F(5) et [T () 1 [, 70

where f := fVg° and 7 := f*Vy.
Remark 1.60 Note that, fixed f and g as in Theorem 1.58 with the additional
estimates

f(2) < |7 for every z € R™,
g(2) < d'l7] for every z € R™,

from Theorem 1.59 applied to the constant sequence

dA dX?
= —_— d(B o0 s
Fal) /nf< d$> * /n\A(A) d <dl>\3|) i+ /A(A) g 4,

we reobtain the relaxation result of Bouchitté and Buttazzo.
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Let us turn our attention to the 1-dimensional BV case. Let (0,() be a fixed
interval in R and let u € BV(0,1). Then v’ € M((0,1); R) and the atomic part
of u turns out to be the jump part of the distributional derivative DJu, the set
of atoms is the jump set Sy and if 2 € Sy, Du({z}) = [u](z). Since up, — u
weakly in BV (0,!) implies that Du, — Du in the weak sense of the measures,
from Theorem 1.57 we easily get a lower semicontinuity result for functionals
defined on BV(0,1). '

Propositioh.l.ﬁl Let f and g be as in Theorem 1.57 and define the functional
H . BV(0,1) = [0,400] as H(u) := F(Du) with F as in (1.29). Then H is
weakly lower semicontinuous on BV (0,1).

Now we can state the 1-dimensional relaxation result on BV under weaker
hypotheses of those considered in Theorem 1.58 on the integrands fig.

Theorem 1.62 Let f,g: R — [0,+0c0] be such that
1) f convesz, Ls.c., proper and f(0) =0
2) g subadditive, L.s.c. and-g(0) = 0
and let H : BV () — [0, +o0] be defined as

[ st do+ Y g(lw]) ifue SBV(Q)
Sy
+co otherwise.

Then the lower semicontinuous envelope of 7 in the weak topology of BV () is
the functional H : BV (Q) — [0, +o0] defined as

/fl da:—i—Zgl )+ crud Q)—}-c_lu (), (1.34)

where f1 1= Vg%, g1:=f®Vg, c1 = ffO(l) and ¢y := ff°(-1).

Proof Since 7 (u) denotes the relaxation of #(u), in order to make no confusion
arise, we will denote H1(u) the functional on the right hand side of (1.34). Let
us assume first that f and g satisfy also (1.30) and (1.31), respectively. Let F be
defined as in (1.32) with f and g as above. Then #(u) = F(Du) if u € BV(0,!)
and H(u) = F(Du). Since u, — u weak in BV(0,1) implies Du, — Du weakly
in M((0,1); R), taking into account (1.26), we easily get 7 (u) > F(Du).

It remains to prove the other inequality, that is, fixed w € BV(0,!) such
that F(Du) < +oo, we have to find a recovery sequence in SBV (0,1) for H(w).
Since F is the relaxation of F on M(Q; R), again by (1.26), we have that there
exists (A,) C M(Q;R) such that A, — A weakly in the sense of measures and
lim, F(An) = F(Du). Let zo be a Lebesgue point for u and define

wn (2) ::u(mg)+An((m,mg)):u(mg)—l-/ d Do giy T A

(,z0) & teA(AR)
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where here we simply denote by (z, zo) the open interval between z and z¢. From
“the weak convergence of A, we have that [A,|(0,!) < C so that u, € SBV(0,1)
and u,, is equibounded in L°°(0,1). Moreover, u, — u pointwise in (0,!). Hence,
by Lebesgue Theorem, un — u in LY(0,0). In particular, u, — u Weakly in
BV(0,1), F(Du,) = H(un) and lim, H(u,) = F(Du) = Hi(u).

Let us go back to the general case. Let u € BV(0,1) be fixed and let f, and
"gn be defined as

f(z) | i Fe(x1) £0,7€R
folr) = 4 F@ + 5z i 72(1) =0,220

flz)— 2z if f*(=1)=0,2<0

9(2) if °(+1) #0,z€R
1, ,

gn(2) = g(2)+ %z ifg°(1)=0,2>0
g(z) = Fz if¢°(-1)=0,2<0.

f., and g, satisfy the hypotheses of Theorem 1.58 and F, (Du) > 7{( ), where
F, are given by (1.32) with f, and gn as above. Hence, 7 n(Du)__Z H(u). A sunple
computation of angn, Vgl and f°Vg, shows that hmn o(Du) =

so we get Hi(u) > 7 (u).
For the converse inequality it suffices to notice that, by applying Theorem
1.61, #;(u) is lower semicontinuous with respect to the weak convergence in

BV(0,1) and #1(u) < H(u). . 0
Finally we state the analog of Theorem 1.59 on BV (0,1).

Proposition 1.63 Let f, and gn be as in Theorem 1.59 and let Hy, BV(0,1) —
[0, +o0] be defined as

!
= [ L de + £2 (Luf 0,1) + 12 (~1uz (0,1) + 3 g ([ul)
0 Su

Let f,g : R — [0, +o0) be such that fn — f and gn — g pointwise in R. Then
H,, T-converge with respect to the weak topology of BV (0,1) to the functional
H : BV(0,1) — [0, +o0) defined by

= [ F@de+ Tt 0.0+ T (-1 0.1 - ol

‘where f := fVg°® and 7 := f*Vyg.
Proof It suffices to proceed as in the proof of Theorem 1.62.
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1.6 The spaces BD and SBD

We recall some definitions and basic results on functions with bounded deforma-
tion. For a general treatment of this subject we refer to [9] (see also [16],[61]).

Definition 1.64 Let u € L'(Q;RY). We say that u is a function of bounded
deformation on § if its symmetric distributional derivative Eu = %— (Du + Dtu),
is a N x N matriz-valued measure on Q. The space of all functions of bounded
deformation will be denoted by BD(S2).

For every § € R, let D, be the distributional derivative in the direction ¢
defined by Dev = (Dv,£). For every function u : @ — RY let us define the
function yE :Q = R by u(z) = (u(z),§). |

Theorem 1.65 Ifu € BD(Q), then Deut € M(Q) and
| Deu = (But, ).

Conversely, let &1,...,En be a basis of RN and let w € L} (Q;RY); then u €
BD(Q) if Deuf € M(Q) for every & of the form & +&;, withi,j=1,...,N.

If u € BD(R), then u is approximately differentiable a.e. in £ and J, turns
out to be countably #~l-rectifiable, but it is not known whether HY~1(S, \

Ju) = 0 or not.
As in the BV case, we can decompose Eu as

Fu=E% + Efy+ E¢qu,

where E%u is the absolutely continuous part of Eu with respect to LY with
density

l N
Eu = 3 (Vu+ Vtu) ;

EJu and E°u are respectively the jump part and the Cantor part of Eu and are

defined by '
Elu:=FEul Jy, E°u:=EFEul (Q\Ju),

where E’u is the ‘singular part of Eu with respect to £V. Moreover, we can
.characterize E7u as

Eiy = (u+ - u") OuHYN L Jy,
where © is the symmetric tensor product defined by a db =1(a®@b+b®a),
being a ® b the matrix whose entries are a;b;.

Definition 1.66 We say that v € BD(Q) is a special‘ function of bounded
deformation in Q, and we write u € SBD(Q), 1if E°u = 0.

In analégy with the theory of BV functions, we may characterize the spaces
BD() and SBD(Q) by means of suitable one-dimensional sections, for which
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we introduce an appropriate notation. Given y,§ € RN, €40, ECRY, let
T, BE¢¥ be defined as before Theorem 1.42. If u @ B — RY, we define the
function ufj : E&Y 5 R by

uf(t) = (u (y +1€) ,€). (135)
Moreover, if u € BD(Q) we set.
56 1= (o € o (w () — ™ (2),€) # 0}

Note that, since HY =1 ({€ € S¥=1: (ut(z) —u™(2), &) = 0}) = 0 for every .« €
Ju, by Fubini Theorem we have .

HV=1 (T, \TE) =0 for HYtae. £ SV (1.36)
Theorem 1.67 (a) Letu € BD(Q) and let§ € RN, £ #0. Thenuf € BV (Q8Y)
for HN"1.a.e. y € I8, .

[ 1135 63477 5) = 1D |(5) (1.8)

for every B € B(Q), and
WY () = (Eu(y +t€) €, )

Ju = (75"

for HN=1.a.e. y € II¢ and for a.e. 1 € Q&Y.
(b) Conversely, let v € LY (Q;RYN) and let {€1,...,En} be a basis of RN. If
for every & of the form & +&;,

ug € BV (Q8Y)  for HV-1ge. yeTIf,

[ 1D (@54) dHV ) < oo,
11¢

then u € BD(Q). '
Moreover, if u € BD(Q), then u € SBD(Q) if and only if ug, € SBV (QY)
for every £ of the form & +&; and for HV 1-a.e. y € TIE.

The following compactness result in SBD(() is due to Bellettini, Coscia
and Dal Maso (see [16]) and its proof is based on slicing techniques and on the

characterization of SBD(Q) provided by Theorem 1.67.
Theorem 1.68 Let (un) C SBD(Q) be such that

sup (/ |Eun|? dz +HY " (Ju,) + ”un”Lw> < +oo.
n \Ja
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Then there exist a subsequence (not relabelled) (uy) converging in Il (Q;RN)

loc
to a function u € SBD(Q). Moreover Eu, weakly converges to Eu in L*(Q; RNZ)
and '
minfHY Y (Ju,) > HY 71 ().

n—++oo

We state now a lower semicontinuity result in SBD that can be proved by
following the same ideas and strategy of the proof of Theorem 1.68.

Theorem 1.69 Let uj,u € SBD(Q) be such that u; — u in L*(Q;RY) and
| sup [ [EwE O det [ 1, 000" < oo (139
for & € RV \ {0}. Then (Eu;(2)&,£) = (€u(z)é, &) weakly in L (Q) and
/Js (v, )] Y1 < limin; /J (s € V1

In particular, if (1.38) holds for every & € {£1,...,En} orthogonal basis in RV,
then divu; — div u weakly in L3(Q).

Finally, we introduce the following subspace of SBD(()
SBD*(Q) := {u € SBD(Q) : / |Eu(z)|? dz +HV " (Ju) < —l—oo} .
Q

The space SBD? will be the natural domain of the linearized elasticity func-
tionals (0.8).



9
ONE-DIMENSIONAL DISCRETE SYSTEMS

In this chapter we treat the 1-dimensional limits of energies defined on discrete
systems. The general N-dimensional results will be obtained in the next chapter
following a general approach which allows to reduce to the 1- chmensmnal case
by slicing and approximation techniques.

Before starting we need to identify the functions defined on a lattice with
a subset of measurable functions. This task can be achieved in many different
ways. In particular, with given a discrete set of real (or vector) values (ut);, 4
varying in a fixed portion of a regular lattice R (Z or ZV), and fixed a cell of
the lattice, one may assign to each point 2 of the cell a convex combination of
the values u’ at the nodes of the cell itself, defining

u(z) = Z ai(m)ui

iel(z,R)

with I(z, R) the set of the nodes of the cell, 7, a;(z) = 1 and o; € [0,1].
Following this approach, in the one—chmensmnal case, if R = Z, it is natural to
define a “p1ecew1se—consta.nt interpolation” of (uf), that corresponds to setting
a,(a:) = 1 if [2] = i, 0 otherwise, or a “piecewise-affine interpolation”, that
is, choosing a;(2) == i+ 11—z if [2] = 4, ayq1(z) =2~ 1, 0 otherwise. An
analogous construction can be performed in the case of a rescaled lattice R = AZ.
Thus, fixed a sequence of “discretization step lenght” A, tendmg to 0, one may
deﬁne the convergence of a sequence of “discrete functions” ((u%)ier,z)neN in
terms of the convergence (in measure, a.e., in L'-strong) of the corresponding
piecewise-constant or p1ecew1se-afﬁne mterpolatxons It can be seen that, for the
convergence in measure and in L', the convergence of the piecewise-constant
interpolations of ((u!);)n ensures the convergence of any other interpolation of
the form above, independently of the choice of ((af);)n, and, in particular, of
the piecewise-affine ones. Actually, the converse is also true as the following
proposition shows.

Proposition 2.1 Lete be a positive parameter tending to 0 and let'ﬂ = UzeN Tz
be a family of N- simplices in RY such that intT¢ NintT¢y = 0 if i # J,
U; T. = RY and assume also that sup; diamT? — 0 as e — 0. Let u. € L*(RY)
be a sequence of continuous functions affine on each simplex T¢. We define the
two functions u,, U € L' (RY) as

e s - 7
Y, 1= MiNUe U = MAXU 0N Tz

L e
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Then the following relations hold:
1) ue = u in LYRY) = u., 8 — uin LY(RY);
2) ue = uin IL (RY) = u,, 8 — v in LL_(RVN);
3) ue — u locally in measure in RY = u, % —u locally in measure in R,

Proof We begin by proving 1). With fixed € and i € N let y;,y5; € RV be
such that u(y; ;) = ming; ue and ue(y:,-) = maxy; u. and define 7} := y:i — Y.
(if u is constant on 77, Yeis y:i are any two different vertices of Te’) Let Ai and
B! the two N-simplices homothetic to T? of ratio 1 with one vertex in y_; and
in 2y7; + 7, respectively; ie.,

AL = {Zay(w-y;',i) LY EeTH Y oy = %}

; ‘ 21 - 1
B(-: = {Z‘ly(y”ys,i)f :g;ye,i+ gy:i ‘Y ET;; Zay = '3'}
y ¥y

We will proceed as follows: first we construct a piecewise-affine function v, on
B. := Usen BY; for such a sequence we will prove that its distance from u in the
L'-norm of B. tends to 0. Afterwards we will estimate two particular convex
combinations of u, and %, that will allow us to estimate the oscillation T, — u,.
Let v, be defined in z € B as u. (z ~ %r;) We have that

i > [ ve—ulde=o0.
Indeed, -
;Li,lvs(mj—u(m)ldm:;fi ﬁs(x)_u@%ﬂ.)
SZ/A Iue(m)~u(x)[d:n+12/i u(m)_u<x+%T:)

We note that, by the choice of 7%, being 7¢ the direction of the maximum slope
on T¢, we have that

dz

dz — 0.

9 _ 1 ' )
Ve < gUe (vei) + gUe (y:,z') < Ue on B;.
~ Hence
2 _ 1 +
g“s(ye,:‘) + 5“5(95,1‘) - u| < max{|ue — ul, [v: — ul},

and
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2
i [ e+ 5%.(0) — u(z)| dz = 0
By a similar argument, we may prove also that
I .]_' ) + 2’“‘ dr =
tim [ |gule) + 37() - u(e) ds = 0.
Thus,
lim ]ﬂs——gg|dx:3Nlim/ [T —u.|dz =0
e—+0 RN . € B,

and, finally, by using the following inequalities,
ue — ul < e = ue| + Jue — ul <y, —Te|+ Jue — ul,

we get that u, — v in LY(RY) and analogously for ..

Ifue — win L (RY) or locally in measure, it suffices to repeat the construc-
tions and reasonings above, localizing each integral. For the local convergence
in measure, one has also to replace the L' distance with the distance of the

convergence in measure on a bounded set. O

Remark 2.2 Note that the functions u., u. do not coincide with the piecewise-
constant ones considered previously. Nevertheless, from the proposition above,
one can easily deduce that the convergence (locally in measure or L') of piecewise-
affine functions implies the convergence of the piecewise-constant ones. ‘

In the following models we will alternatively choose to identify discrete func-
tions with piecewise constant or piecewise affine interpolations of the values (u’).
We remark here that, being the two convergences equivalent , there is no differ-
ence in the two approaches in the variational results.

2.1 Nearest-neighbourhood interaction

In this section we introduce the one-dimensional setting of the discrete problem
(its structural characteristics) and state the main results of the so called “nearest-
neighbourhood interaction”.

2.1.1 The main result

For future reference, we state and prove the convergence result allowing for a
general dependence on the underlying lattice, at the expense of a slightly more
complex notation. .

Consider an open interval (a, b) of R and two sequences (\,), (an) of positive
real numbers with a, € [a,a+An) and A, = 0. Forn e Nleta <zl <...<
zN» < b be the partition of (a,b) induced by the intersection of (a,b) with the
set ap, + A\, Z. We define A, (a,b) the set of the restrictions to (a, b) of functions
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constant on each [a+ kAn,a+ (k+ 1)An), k € Z. A function u € An(a,b) will
be identified by N, + 1 real numbers 3, ..., cN» such that

ch ;fme[m;;,m;'#),z': ooy Ny —1
u(z)=q cd ifz € (q,al) (2
cNn ifz € [zl,b)

For n € N let ¥, : R — [0,40c0] be a given Borel function and define
En: L*a,b) = [0, +c0] as

an_l)\ 'l,b (u(miz-*_l) - u(x:z)> €A ( b)
: z a,b) .
Baw)=9 = T\ A i (2.2)
+00 ~ otherwise in L!(a, b).
We will prove the following I'-convergence result.
Theorem 2.3 For alln € N let T € R. exist with
ImTE = 400,  LmATE =0, (2.3)
T n
and such that, if we define Fy,Gn : R — [0, +00] as
Yalz) Ty <z2<TF
Fa(2) = (24)
+oo  z€R\I[T;,TH
z .
b el Tslgnz) 0
Gal(z) = " <x\n " i (2.5)
0 ifz=10
the following conditions are satisfied: there exists p > 1 such that
Fo(z) > |2]P VzeR (2.6)
sup ;éllt_; Fo(z) < +o0 (2.7)
Gn(z) 2> 0 Vz#0 A (2.8)
and, moreover, there exist F, G : R — [0, +-00] such that '
I‘-liTEnF:* =F . , (2.9)
I-limsub™ G, = G. (2.10)

Then, (Ep)n, T'-converges to E with respect to the convergence in measure on
L'(a,b), where
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b
E(u) = /a Fa)dt + Y G(ul(t)) u€SBV(a,b)

teS,
+o0 otherwise in L'(a,b).

Remark 2.4 Note that the hypotheses (2.9), (2.10) are not restrictive up to
passing to a subsequence by a compactness argument.

Before proving Theorem 2.3 we need the following simple 1-dimensional I'-
convergence result.
Proposition 2.5 For any n € N let hp,h : R — [0, 4o0] be conver and lower

_semicontinuous functions such that hn T-converge to h(z) in R. Then for all
¢n, ¢ € LP(a,b) such that ¢, — ¢ weakly in LP(a,b), we have

b b
lim inf / ha(n) dt > / h(¢) dt.

Proof Let (Bj)ier be a Borel partition of (a,b). Then, for ¢,,d as above, by
convexity we have : :

| /bhn(gbn)dtZZ[Bi[hn (f ¢ndt>.
a ’ T B;

Hence, _ _ .

, 5o :

liminf] hn(@n) dt > Z |B,-]1in‘#linfhn (][ on dt> = Z | B;|h (][ (;Sdt) .
on a T » B; 7 B;

Let wp be defined as was(z) = ¥ (fBiUd?J)XBi (z). It suffices to consider a
sequence of Borel partitions (B,) such that ws, — u pointwise a.e. and use
Fatou’s Lemma. ‘ O

Corollary 2.6 For any n € N let hy : R — [0,+c0] be conver and lower
semicontinuous functions such that the limit lim, hn(z) =: h(z) ezists for all
z € R. Assume in addition that h is lower semicontinuous and int ({z : h(z) #
+00}) # B. Then the thesis of Proposition 2.5 still holds.

Proof It suffices to notice that, under the assumptions above, h, I'-converge
to h(z) in R.

Remark 2.7 Notice that in Theorem 2.3 we can rephrase the I'-convergence
hypothesis on F, with the pointwise one if the pointwise limit is finite in a non
trivial closed interval of R (indeed, pointwise convergence is easier to handle
than I'-convergence). In particular, this is always satisfied if F' is real valued.

Proof of Theorem 2.3 For simplicity of notation we deal with the case T\ =
—T7 =:T,, the general case following by simple modifications.
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Let us fix u € L*(a,b) and a sequence (un) C A,(a,b) such that u, — u
in measure and sup, En(un) < +0o. Up to a subsequence, we can suppose in
addition that u, converges to u pointwise a.e. We now construct for each n € N
a function v, € SBV(a,b) and a free-discontinuity energy such that v, still
converges to u and we can use that energy to give a lower estimate for Ep(un).
Set

‘ i+1y i ‘
I, = {ie{l,...,Nn—l}:.u”(“’“ 2\ Un(Zn) >Tn} (2.11)
and
. (e =) . o :
A I R (Y N z € [2}, 2t I
va(z) =4 ©  An (v =) (o, @), 8 1 (2.12)
un(z) = elsewhere in (a, b).

We have that, for € > 0 ﬁxed,

{2 : |va(2) — un(e)| > €} S {z € [ah, 1), i ¢ I, Jun(eitt) — un(ah)] > €}
‘ . ' (2.13)
Since, for i ¢ I, we have |ua(z5t) —un (2})| < AnTh, then {z : |va(z) —un(z)| >
€} = 0 if n is large enough. Hence, the sequence (v,), converges to u in measure
and pointwise a.e. Moreover, by (2.8)

c#l, < Ep(un) < M, ' (2.14)

with M = sup, En(un). By the equiboundedness of #1I,,, we can suppose that
Sy, = {zi*t1};¢r, tends to a finite set. For the local nature of the arguments in
the following reasoning, we can also assume that S consists of only one point
zg € (a,b). _ ‘

Now, consider the sequence (wy), defined by

v () + Un (1) di ifzr <z
(a,z) '

un<a)+/(”)on<t>dt+ S @) ife> o

tES(va)

wp () = (2.15)

Note that wn(a) = vn(a), Wn = ¥n, Sw, = {zo} and [wy](z0) = 245, [val(?).
Such a sequence still converges to u a.e. Indeed, since z, is the limit point of the
sets S, _, for any n > 0 fixed we can find ng(n) € N such that for any n > ng(n)
and for any i € I, |zo — | < 1. Hence, by construction, for any n > no(n)
and for any z € (a,b)\ [zo—1, 2o+ 7], wa(z) = v, (), that is, the two sequences
(vn) and (wy) have the same pointwise limit. Since 1y, = 9, on (a, b), by (2.6) we
have that ||wn||ze(ap) < M. Then, using Poincare’s inequality on each interval,
it can be easily seen that (wy), is equibounded in WP ((a,d) \ {zo}). Since it
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also converges to u pointwise a.e., by using a compactness argument, we get that
u € WP ((a,b)\ {zo}) and, up to subsequences,

Wy, — & weakly in LP(a,b).

Moreover, since for any two points a < 23 < zp < 23 < b we have

wnfez) = wn(er) + [ e+ [un](ao)

wles) = (e + [ ddok bl(eo)

taking points z;,z, in which w, converges to u and passmg to the limit as
n — 400, we have

[wa](zo) — [u](z0). (2.16)

We can now rewrite our functionals in terms of v,:

Bn(un) = Y Aatha(én) + D, Gallva](zit) — sgn([va](2it)) AnTn)

igln i€l
/Fwnm+§jG ([5a12) — sgn([o)() AT
teS(vn)

From (2.14) we also have

b I M
Bn(un) 2 [ Falin)dt +505°Ga( 32 () = sgnls) D)Th)

te€S(va)

b
> / F2* (abn) dt + sub™ Gy ([wn] (20) + o(1))

as n — +co. Passing to the liminf as n — +o0, using (2.16) and Proposition 2.5,
we have

b
lim inf By, (un) > lin}zinf/ Fr () dt + lin}zinfsub"Gn([wn](mo) +0(1))
. . b a
> [ Pi)at+ G([(eo)
as desired.

We now turn our attention to the construction of recovery sequences for the
I-limsup. We may assume in what follows that inf,er Fr(z) = Fr(0).
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Step 1 We first prove the limsup inequality for u affine on (a,b). Set £ = u;
then, taking into account (1.28), for each nin N we can find £}, &2 € R, 1, € [0,1]
such that

' 2 VAn
[tal + (1 —ta)é2 — €] < o)

taFa(€)) + (1= ta) Fa(€}) < FI7(€) +o(1) (2.17)
I€al < ¢ = c(€).

Note that in the last inequality the choice of the constant ¢ can be chosen
independent of n thanks to (2.6) and (2.7). It can be easily seen that it is not
restrictive to make the following assumptions on &}

E>¢ Fal&h) <Fa(€), (E+ 16DV <1 (2.18)
We define a piecewise-affine function v, € L'(a,b) with the following properties:

vn(z) = u(z) on (a,mn],

vn[[z1 z-l-l) R ’U € {'E TZL}’

and v}, is defined recursively by

weg
vfz if 3@; < wnlan) + Z
. . 7= 2.19
vitt = i~ u(e) < VL (2:19)
L £L 4+ €2 — v} otherwise.

Since 0 < v, —u < v/A, by definition, (v, )n converges to u uniformly, and hence
in measure and, moreover,

Bli=#{i€{0,...,Na}: v} =€} > talNn. (2.20)
Indeed, from (2.17), (2.18) and (2.19) we deduce

Mo (1€ — )+ (1= 1) € = ©) < Y2 < (o) — u(al)

= 6L (6 — E)An + (Mo = B2) (€7 — E)An,

so that
(:Bn ”iﬂNﬂ)(én én) >0

Now, consider the sequence (un) C An(a,b) defined by

un(m;):vn(m;) fori=1,..., Ny,
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un(a) = va(a) and un (b) = va(b).

Since (2.13) still holds with un,vn as above, it can be easily checked that (un)n
converges to u in measure. Hence, recalling (2.17), (2.18) and (2.20),

En(un) = )\nFn(f}z)ﬁ}z + (Nn — ﬂrlz)’\nFn(Erzz)
< tadn N Fn(€2) 4+ (1 = tn) Nu A Fr (€2)
< N (FRF(€) 4+ 0o(1)) < (b—a)Fr™(€) +o(1).

Taking the limsup as n — +oo we get

limsup Ep(un) < F(€)(b—a) = E(u)

n

The same construction as above works also in the case of a piecewise-affine
function: let [a,b] = Ulaj, b;] with a1 = a, b; = a;41 and u constant on each
(aj,b;), then it suffices to repeat the procedure above on each (aj,b;) to provide
functions v% in A, (aj,b;) such that

vl —u in measure
" | (a5,5)
(1) = v

lims;up ST dat (“i . "(mi)>g /:jF(u)dm.

T fi: oi€(ag,05)} '

J

With j fixed define v := max{z}, € (aj,b;)}. Then, the recovery sequence
U, is defined in (aj, b;) as ,

un(2) = i (2) = D (WEFL (W + An) — VA (32)).
£<L3

Since u(z) + —————"2/\” < vl (z) < u(z) + v/ An by construction, and lu(ys + An) —
u(yt)] € cAn, we have that up, — u in measure and

od (2i+1) — o (28 '
B =Y Y e (L =) + e

7 g whe(asni)

By a density argument we can extend the result to functions in WP (a,b).
Step 2 Let u be of the form 2x(z,,5) With G(z) < +oo and let z, be a recovery

sequence for G(z) = T-lim, sub™ Gn(u). The sequence sub” Gn(zn) is bounded,

hence, by (2.8), since G (0) = 0, there exists an integer N not depending on n

such that
‘ . |
. } |

E ' — zp

1=1 |

N v
sub” Gn(zn) = supinf {Z Gn(zh) :

1=1
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Hence, for all n we can find N points {z},..., 2"} such that
N ' N
lignZz; =z and li};ﬂZ Grl(zy) = G(z). (2.21)
i=1 i=1

Let i, € {1,...,Np} be the index such that zo € [zip, ziat!) and, for n large,
define wy, as in (2.1) with

0 | if i < i,

. 23 +sgn(z AT, 'f'<'.<' N
c;=ﬁj5(iz—:in)(” B T) i <t (2.22)
N )
> (2 +sgn(2]) A Tn) i3> i + N
{ F=1

Clearly (wy)n — u in measure and

N

e | | |
Bue) = 3 Mt (;— ¥ sgn(z;)Tn) =3 Galzh) + (b a)Fn(0);

=1

the estimate follows from (2.21) by passing to the limit as n — +o0.
Step 3 Let u € SBV (a,b) be such that E(u) < +oo, then

' T m
u=v+w with v(z) = / udt+c and w(z) = ZZjX[xj,b).
a i=1 _

Forj=1,...mlet v} be defined as in Step 2 with jumps in Uj{m;““’}fvz’l and
let v, be a recovery sequence for v such that it is constant on each [zn™?, T +

m
AnN;). The sequence. un = Un -+ ) w}, converges in measure o u and
. Jj=1 .

limsup B, (un) = lim sup(En (vn) + ZEAw%)) < E(v) + E(w) = E(u),
" " i+t

as desired. 0

Corollary 2.8 Let ¢, : R — [0,+0c0] satisfy the hypotheses of Theorem 2.3.
Assume that, in addition, for alln € N, Fy 1s lower semicontinuous and convez
and Gn ‘is lower semicontinuous and subadditive. Then, for any u € L(a,b),
En(u) T-converges to E(u) with respect to the strong topology of L*(a,b).

Proof It suffices to produce a recovery sequence converging strongly in L(a,b).
Note that in Step 1, by the convexity of Fy,, we can choose €} = £ = &» in (2.17).
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Then v, = u and u, turns out to be the piecewise-constant interpolation of u at
points {z%}. It is easy to check that up — u strongly in L'(e,b). It remains to
show that also for functions of the form zx[z, ») it is possible to exhibit a sequence
that converges strongly in L(a,b). To this end it suffices to note that in Step 2,
since G,, = sub~ Gy, we can find a sequence (#n) such that (2.21) is replaced by
lim,, 2z, = z and lim, Gn(2zn) = G(2). Hence, the sequence wn defined by (2.22)
converges to u strongly in L'(a,b) and it is a recovery sequence. O

2.1.2  Ezamples

- Example 2.9 (i) The typical example of a seqﬁence of functions which satisfy
the hypotheses of Theorem 2.3 (and indeed of Corollary 2.8) is given (fixed (An)
converging to 0 and C > 0) by

|~

¥a(2) = + ((Aaz?) A C),

S

with p = 2, Th = 1/3/C/n,
F(2) = {z2 2| < \/C/n Gal) = {C 2] # 0

+60  otherwise, 0 z=0,
so that \
Blu) = / (2 dt + C#(S.)
on SBV (a,b).

(ii) In many cases, we can Prove a CONVergence result without the hypothesis
that lim, )\nTni = 0 by using Theorem 2.3 and a comparison argument.

Ty,

X

~12 ~1/2
. xn a

Fic. 2.1. the potentials ¥, in Example 2.9 (i) and (ii).
“As an eéxample, let

7\1—71-(()\,12*2) AC) ifz>0
Pn(z) =

22 if 2 <0.
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In this case the I-limit (with respect to both the convergence in measure and
L! convergence) is given by

b
By = / |42 dt + C£(S,) ifu € SBV(a,b) and u™ > u~ on Sy

oo otherwise.

In fact, clearly, the construction of a recovery sequence can be achieved in the
same way, while the opposite inequality can be obtained by applying Theorem

2.3 to X ) )
/\—n((/\nz JAC) ifz>0

ZIOEREN
= ((az?)Ag) itz <0,

noting that ¥, > %4 for all n and j, and using the arbitrariness of j.

We now give an example which illustrates the effect of the operation of the
subadditive envelope.

Example 2.10 If we take
1
a(2) = 22 A (;\— + (2VA, - 1)?)
(3
with A, converging to 0, then we obtain F(z) = 2% and

L2
G(z) = sub™(1+2%) = min{k—i— _zf k= 1,2,...}.

Az -1z
“Ap A

Fig. 2.2. the functions ¢, and G in Example 2.10.

We now give an example which shows that the I'-convergence result stated
in Theorem 2.3 is sharp, in the sense that it cannot be improved to a result
also with respect to the strong convergence in L'(a,b), unless by adding further
hypotheses as in Corollary 2.8.
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Example 9.11 Consider a lattice of step size A, = 515 and the functions ¥, :

R — [0,+00) defined as

2?2 ifle|<n B
Yn(z) =< 8n? ifn <|z|<n+n’r
n? if|lz| > n+n?r,

where (ry)n is a fixed sequence of positive real numbers. The funétions 1y, satisfy
the hypotheses of Proposition 2.3 with T, = n, F(z) = z? and G = 2 on R\ {0},
independently of (r,). Denote

B(u) = / @*di+24(Su) ifu€SBV(a,b)

+o0 otherwise in L!(a, b),

b
) / 42 dt+ 34(Sy) if u € SBV(a,b)

+o0 otherwise in L!(a,b), |

and with E (), E” (u) the I-liminf and the I-limsup of B, with respect to the
strong topology of L*(a, b), respectively. We will see that the sequence E, has
different T-limits in L*(a,b) depending on the choice of r,. :
Case 1 If r, = n, then E(u)=E "(u) = E(u). In particular the T-limit in L!
coincides with the I'-limit in measure. : ’

Proof Since the strong convergence in L*(a, b) implies the convergence in mea-
sure, we easily get E'(u) > E(u). We now prove that E(u) > E'(u) for a
u € SBV (a,b) with 4 € L*(a, b), u(a+) = 0 and only a positive jump z in Zo.
If i, is the index such that zo € [zir, zir+1), we define u, € An(a,d) as

;o pitl
/"udt i< in
axi+1
un(a;:;)=</“udt+n+1+z if § = iy (2.23)
ar;+1
k/a udt-u if 1> 1,.

‘We have

b
lim/ |un — ul dit
n a :

s+ o o .
:HT{nZ/' - / (i ds di + (0 + 1) (@it — z0) + (n+ 1+ 2)(z0 — i7)
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< lime~ = 0.
non

Hence, up, — u strongly in L'(a,b) and, moreover,

| o
Balun) € 37 [ 4di+ Galn+ 2+ e0) + Gulon = ca) < Blw)

i

itin, Y Tn
where ¢, is definitively positive. ' 0
Case 2 If r, = n?, then E (u) = E (u) = E*(u). In particular the I-limits in
measure and in the L' convergence are different.

Proof Note that in this case the sequence u, defined in (2.23) is a recovery
sequence for E'(u). Indeed, definitively, cn + 2z < n?, hence E(u) < En(un) =
E'(u) + o(1). Note also that the sequence v, defined by

, R
u dt ifi<in

a

Un (‘”:1) = /
a
gitl

/ udt+ z ifi>1d,.
\ Ja ) )

i1
Ta

tdt+z+14n? ifi=i,

is such that F,(vs) = E(u) + o(1) but it converges to u only in measure, that
is, (vn)n is a recovery sequence for the convergence in measure but not for the
strong convergence in L*(a,b) . '

It remains only to prove the liminf inequality. With fixed a function u €
L'(a,b) and a sequence (un)n C An(a,b) such that u, — u strongly in L'(a,b)
and sup,, By (un) < +00. Proceeding as in the proof of Proposition 2.3 we get
that u € SBV (a,b) with a finite set of jumps that we assume to be non-empty
(otherwise there is nothing to prove). For any t € S, let I,(t) be the set of
points of I, whose limit point is ¢ (this set is definitively non-empty). Taking
notations (2.1) and (2.11) into account, we claim that there exists at least an
index i € I,(t) such that |cit! — c¢i| < n? Indeed, for any z € [zf, ziF?), we
have '

G — g | < | — u(e 4 )|+ Ju(z + An) — ulz)] + Ju(z) - .

(]

Integrating on [z?, zit!) and summing on i € I,,(t), we get

b b—XAn
;}5 > lc’,}“—cifS?/ lun(x)—u(m)ldm+/ [u(z + An) — u(z)| dz.

i€ () :

If |citl — ¢i | > n? for each @ € I5(t), the left hand side term remains bounded
from below. Indeed,
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1 . ,
1<) < 5 D It =l

i€l (¢)

Since the right term goes to 0 as n goes to +co, we get a contradiction. Hence,
there exists at least one point (1) € I.(t) such that n < i(t) < n+ n*. Now, it
can be easily checked that En(un) > E(u). 0

C'gse 3 Ifr, = n for n even and r, = n? for n odd, then E'(u) = E'(u),

E'(u) = E(u). Hence, the I-limit with respect to the L!-convergence may not
exist.

2.2 Long-range interaction
In this section we will extend the convergence result to functionals taking into
account interactions of all orders.

2.2.1 The main result

With fixed n € N and for k= 1,..., Ny, let £ : R — [0,+c0) be given
functions.
We will investigate the limiting behaviour of the following energies defined

on L*(a,b):

i+(5+1)k it+ik ,
kA n¢n (U(.’B ki (l'n, )) ifue An(a,b)

400 ' otherwise.é

We begin by proving the following result.

Proposition 2.12 Suppose that for every n € N and k € {1,...,Np} there
exist points T T"+ such that the following conditions are satzsﬁed

7n,—?

limT} _ = —oo, 1i£nT,’:,+ =+co,  lmMTii =0, (2.25)

wn] T, “is conver and lower semicontinuous, (2.26)

@bﬁl( ok ] and 1/)n] b ooy OTE concave and lower semicontinuous, (2.27)
T g a4

for some p > 1
Yi(z) > |=fP T, _<e<Th, (2.28)
Mtp(z) 2c>0 ifeg¢[T, n-,Tm (2.29)
there exist F* G* : R — [0, 400) such 'that

11;111/),’2(93) =F*(z) foreveryz €R (2.30)
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llmk)\ntl) (k/\ ) =G*(z) for everyz € R, (2.31)
and G* is superlinear in 0, i.e., taking into account that G*(0) = 0 by (2.31),
. GE(z) E
lim = = oo, | (2.32)

If £'(u) denotes the T'- T inf, &, (u) with respect to the convergence in measure
then &'(u) > E(u), where £(u) is defined by

F(u)dt G(lul(?)) ifueSBV{a,b
/a @i+ 3 0(0) Fuesny (e 53

+0c0 | ' otherwise in L'(a, b),
with
400
= kF¥(z) and G(s Z kG (z (2.34)
._1 v

The proof of the proposition will make use of the followmg lemma.

Lemma 2.13 Let ¥, : [0,+0c0) — [0, +o0) be non decreﬁsz'ng functions and let
T, be positive real numbers such that

ImATn = 0,limT, = +oo (2.35)
1/),1{(0 7. is convez ' (2.36)
d;nl oo )zs concave. (2.37)

Assume in addition that there ezist F,G : [0,400) — [O,-{—oo) such that G is
superlinear in 0 and

F(z) =limga(z),  G(z) =lim\tn (%) (2.38)

n n n
for every z > 0. Then, for every sequence (T7) such that lim, A,T), = 0 and
T, > T, for all n there exist non-decreasing ¢, : [0,400) — [0,+00) with

¢n < n, satisfying

”I(O,T') s conver (2.39)
w"‘l(T’,+ )zs concave, (2.40)

and such that
limga(z) = F() ond  limhg, (%) = G(z) (2.41)

for every ¢ > 0.
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Proof We denote Gn(z) = M¥n((z — AnTn)/An), which is a concave function
on (0, +o0). The sequence (G,) converges uniformly to G on all compact subsets
of (0, +co0). Since G is superlinear in 0, we claim that for all M > 0 there exists
e > 0 and nyr € N such that Gp(2) > Mz on [0,¢] for all n > ny. Suppose
otherwise and choose € > 0 such that G(¢) > Me; if, up to subsequences, we
have Gn(z,) < Mz, for some z, <¢g, then, as G, is positive and concave,we
have also G (g) < Me, which gives a contradiction letting n tend to +oo. '

Let,
R fﬁn(m)}
- T —z

T, = max{m €[0,Tn] ¢ Wn(z—)
(z,, = 0 if the set on the right hand side is empty). We set

¥ (z) ifz <z,

¢n(z) = ¢ ¥(zn) + ¢”(Té_‘/) : :l;bn(mn) (z—zn) ifz, <z <Ty

P (z) if £ > T,

Clearly ¢, is convex on (0,7}) and concave on (T}, +00). Moreover, it can be
“immediately checked that ¢, < ¥, and that ¢, is non-decreasing. The only thing
left to prpvé is that lim, #, = +0co. To check this, note that

Tl)n(TfIl) - wn(“’) _ Gn((Th = Tn)An) = An¥n (93)

T — A (T8 = z)

.

For what proven above and since An (T, — T,) — 0 for all fixed z we have

lim L. (T;:z — f” CIN

On the other hand for all fixed ¢ > 0 we have limsup,, ¢},(z—) < 400, so that
z < z, for n large enough. O

Proof of Proposition 2.12 First, we rewrite our functionals as follows

Ealw) =3 3 R (w), (2.42)
k=11=1
where EF is defined by
| [#=5]-1 i+(i+1)k itk
k,i — )\, k u(mn ) — u(xn ) ] 9.43
BW= 3, ¢n< o (2.43)

Let u,,u € L'(a,b) be such that un — u in measure and suppose that
lim inf, &, (us) < +oo. Up to subsequences, we also can assume that up, — u
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pointwise and liminf, &, (un) = limp, &, (us). By (2.28) and (2.29) we can apply
Proposition 2.3 to ELY. As liminfn, B} (un) < lim, &, (u,) < 400, we get that
u € SBV?(a,b) and

b
hn}linfE};l(un)z/ Fla)dt+ Y GY([u]). - (244)
‘ ¢ Sy

Fix an integer k > 2 and ¢ € {1,...,k}. We will prove that although %*
satisfies weaker hypotheses than v, we still have

lim. inf B5 (up,) > | / ’ FR@)dt+ > G*([u)). (2.45)

u

Once this inequality is proved, the thesis follows immediately: with fixed m € N
we have from Fatou’s Lemma

m k . V
hmmff) (un) > hmmfZZEﬁ” Un) > Zm:k(/b () dt—}«ZGk([u])),
Su

k=11i=1 ’ k=1

so that we have £'(u) > £(u) by letting m — +o0.

The proof of (2.44) is divided into two steps. For the sake of simplicity we
assume TF , = —T% _, T, . = ~T;; _ and we denote these points by 7;; and T,
respectlvely The necessary changes for the general case will be clear from the
proof.

" Step 1 Assume that T2 < T for every n € N Define

, N, —i o o
IF = {j € {O,..., [ Z z} } up (2EFEFVRY g, (255 > Tr’fk/\n}.

Note that #I1! is equibounded by (2.29). Moreover, it can be easily checked
that if j € I®% then there exists [ € {i 4 jk,...,i+ (j + 1)k — 1} such that
lelbt Hence, we get that #I5F < #I01 <. :

Define uf# on [zi75, H'(H-l)k) as follows

un (z517F) if j e I8

uy, (x:'1+(j+1)k) —u, (mz‘lﬁ-jk)

L (2 — a%) - (5H9%) if 5 @ T0

We have that for every k and i fixed, (uf?), converges to u in measure or,
equivalently, uf? — u, converges to 0 in measure. Indeed, fixed € > 0, let s be
an index such that

(25, 5571 N {o 15 (2) — un(z)] > €} # 0 (2.46)
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and let j be such that s € {i + jk,...,i+ (J + Dk—1}.Ifz € [2s, z5T) N
e ubi(z) - ua(z)] > e}, since uf’(z) is a convex combination of the values
ub (zhHIF), uﬁ'i(:c:f(ﬁl)k), we have

e < |ubi(ze) —ualz)l
< Mub (25HF) — ualzn) + (1 - )| (5T UFE) — un(27)]

i+ (i+1)k—1
< Z ‘“n(mizﬂ) ~ un(2)]
I=itjk
max lun (25) = un(zh) k.

<
T l=idik,e (i FL)kE—1

Then, for each index s such that (2.46) holds, we can find an index s’ with
|s—s'| < kand Jun (25, T1) —un (23.)] > £. Note that s’ € IL1 for n large, so that

{z : [ub(z) — un(2)] > €} < # L kAn

We claim that #f® is equi-integrable. Indeed, fixed an index j ¢ IFi if {i +
ik, .4+ (G DE=130 I3 = §, a simple convexity argument shows that

$i+(i+1)k pitl+1)k
n . n .
| P dt < / |t |P dt.
itik gk
zﬁﬂ Tt v

Since there are at most #7111 indices such that {z'—}—jk,'. .. >i+(j+l)k—1}ﬂ.f%»1 +
0, for every measurable set A we have

b P :
| / ik dt < |A]7 ( / 111};111’&) + ckALTE,
A a

which proves that the sequenée is equi—integra_ble.
Now, by applying Proposition 1.38 to (uf?), we obtain

bt > g weakly in L(a,b), Z  [ubf) - [u(2) (2.47)

Sui,,’ﬂ(t—-s,t+e)

where 1 is a point in Sy and & > 0 is any small-enough real number. By using
the subadditivity of ¥k on (—oo, Ty U (T,‘f{, +c0), we have

Zsuk,i n(t—s,t-}-e)[uﬁ’i}

. b i
ERi(up) Z-/a pg(agn)dwr Z kAn s ( W ) .

teESu

Using (2.26), (2.47), (2-30) and (2.31), we get
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b
lin}linfEﬁ”'(un)z / R e ()
a . Su |

by Proposition 2.5

Step 2 Suppose that T} > T* for infinitely many n. For the sake of simplicity
suppose that it holds for all n. Note that hypotheses (2.25), (2.26), (2.27), (2.29)
and the finiteness of Fj imply that there exists a minimum point ¢% € [-T%, T#]
for 1. Suppose first that ¢k € (=T%,T*). We can apply Lemma 2.13 twice, to
the functions ¢, (2) = ¥y, 4 (2) = ¥5 (ck £z), with T, = T¢+£c* and Th = Tikck,
to obtain functions ¢} ;. We define then '

n-(ch—=z) ifz<ck

¢ (z) = { ,
| (e —ck) ifz>ck

If ¢& = TF then we just choose as ¢% on [T# T2] the affine function satisfying
G5 (TE) = £ (TF) and ¢E(T}) = ¢ (T1). Similarly, we deal with the case ck =

e .

",

The new sequence qﬁﬁ satisfies all the hypotheses of Proposition 2.12 relative
to the index k. In addition, each ¢} is convex in [T, T2!] and ¢k < %, We can
apply-Step 1 to the functionals £} defined as in (2.43) with y* replaced by ¢k,
noting that by Lemma 2.13 the limit functions F* and G* remain unchanged.

We then obtain (2.44) since Ef(uy,) > Eﬁ"'(un) for all n. O
In the following proposition we deal with the upper inequality for the I-limit.

Proposition 2.14 Let ¢f : R — [0, +00] satisfy hypotheses (2.25)-(2.31) of
Proposition 2.12 and assume in addition that there erist F,G : R — [0, +oo]
gwen by (2.34) such that :

. Na
F(a) =lim) k¥j(z) foreveryzeR (2.48)
' k=1 . )
e T
G(z) = lirxlnk};1 ESWRYL (W) for every z € R.. (2.49)

Then, for every u € L'(a,b), Ilimsup, &, (u) < &(u) where the T-limsup is
taken with respect to the strong convergence in L' (a,b).

Proof The case F = +oo is trivial. We therefore assume that {z : F(z) £
400} # @, and consider u € L'(a,b) such that E(u) < 4oo. Note that u €
SBV?(a,b) by (2.28) and (2.29), since F > F! and ¢ > G1.

We will first prove the I'-limsup inequality assuming in addition that 4 €
L% (a,b) and ess-inf %, ess-sup 4 € {z : F(z) # +co}. We claim that a recovery
sequence for such a function is simply the piecewise-constant interpolation func-
tion u, € An(a,b) of u defined to be identically u(z% +) on the interval [z}, 2i¥?),
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foralli € {1,. —1} and equal to u(a+) and u(b—) on (a zl) and [zl'=,b),
respectively. It can be easily checked that u, — u strong]y in L'(a,b). Indeed
for any interval [zi, ziF!), we have
citt ettt z
[T @ —ueid < [ ([ awiar 3 e
x:r. Tn Ta S ﬂ(z‘ ’xl—}'l]

il

xﬂ
< [ Ma(lilem + X l1ll) do
Tz} ' S, .
Summing over i we get
b
[ i —ulde < o= ) (il + 3 1)
a Su
For any € > 0 fixed, we claim that there exists- m = m(e) € N such that
Z Z ER(uy,) » (2.50)
k=m 1=1 . )
for n large enough, from which we deduce immediately that for such m

m k
hmsupé'n Up) lim sup BX* (uy,) + €. 2.51
n
k=11i=1 n

n

We divide the proof of (2.50) in three steps.

Step 1 As remarked in the proof of Proposition 2.12 each function Yk is
non-increasing up to a point ¢k and non-decreasing afterwards. From this mono-
~ tonicity property we get, for all m € N, -

N. k N, &k
S S B () € 3 3 ((b— @) (0 (essint i) + i (ess-sup i)
k=m i=1 k=m i=1
i
+ 3 Gk(/." adt+ Y [4)),
jegki Sun(ydvit']
where we set z
Gh(e) = ki () (2:52)

v = zitik for j=0,..., MF? and

Ji = (G e{0,.., My} Sun (4, u ] # 0}
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Singe, for every m € N,

NnA +00

llr.’fn Z k(?ﬁﬁ (eSs—inf u) + ’(,b,’; (ess—sup u)) = Z k('l/)k (ess_inf u) + ¢k (GSS-SHP u))

k=m k=m

and, by our assumptions,

+o0 ‘
Z k(1F (ess-inf ) + 9 (ess-sup 1)) < +o0,
k=1

with fixed & > 0 there exists m = m(e) € N such thai

+o0
Z k(4 (ess-inf 4) + ¢ (ess-sup u)) < ¢

¢ ' k=m

and there exists ng = no(e, m) € N such that, for any n > ny,

Z k(4F (ess-inf ) +1/1n(ess sup u) Z k(" (ess-inf 1) 4 1 (ess-sup 4)) +e.

k=m

Step 2 It remains to estimate

If G = +o00 on R\ {0} there is nothing to prove. Assume that G is everywhere
finite. It then suffices to notice that

i1

ess-inf u(b — a) Z|u —u” |</n udt + Z [u]

S“ (yn)yi:l-l]
<ess-sup u(b —a) + Z lut — |
Sy
and, once again by the monoton1c1ty properties of zbn, which translate into anal-

ogous properties of GF,

Jt+1

Gi:(/y adi+ Y [u])

" Sun(yd yit

< Gk (ess-mfﬁ b—a) Z fut — )
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+GE (ess—sup u(b—a) + Z lut —u” l)

Sy

Since #J5% < #£S,, we can repeat the reasoning of Step 1, applied to

Zka(ess—lnfub a) Zlu —u |)+ka(ess—sup u(b—a) +Z|u —uT}),
k=m Su

to find m/, n’ € N such that for n > n’, we have

i1

Z Z Z Gk(/,-n adi+ ) [u]) <e. (2.53)

k=m'i=1 je 5t Sun(yl,yith]

* Step 3 There is only left the case G = +c0 on a half-line. Assume for instance
that G = +oo on (—0,0), and § is finite on [0, +co). This assumption implies
that [u](t) > 0 for every ¢ € Sy. Hence,

41

(ess-inf W)kA, < /yn udt + Z [u] < ess-sup u(b— a) + z lut —
va Sun(yd it Su
So, for any m € N, we get
Non k yitt ’
Sy L[ wer ¥ w)
k=m i=1je gk Sun (yn,y%+1]
N | .
< z k(#;ES'uG”f1 (ess—sup (b —a)+ Z lut — u'[)
k=m Su

+(b — a)3k (ess-inf u)) .
Since

Nn .
lim E kGE (ess-sup u(b — a) + E lut —u~]) < +oo,
I :

=1 Su

we can procéed as in Step 1 to obtain inequality (2.53) for some m’,n' € N.

We conclude the proof of the proposition in the following additional three
steps.
Step 4 We now check that for any k and ¢

hmsupE / FE (4 dt—}-}:G’“ (2.54)
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We have

J+1

B (un) < ZkAnzb’“(][j udt)-i—ZGﬁ(/jn adt+ Y ).

jgIEt jegks Yn Sun(yi, it

Let n be large enough so that Tk;_ < ess-inf u < ess-sup u < Tff’_*_.'For every

. .t .t
t € S, there exists j2{0,..., M} such that S, N (y’;",gﬂfﬂ] = {t}. Then, by
convexity,

EEi(y /4,” a) dt + Z G,’i(/jylizdt—#[u](t)).

Jj=jk, t€Sy

Since F¥,GE tend to 7, k GF, respectively, umformly on compact sets of R and
R\ {0}, respectlvely, and, for every j, lim, f v dt = 0, passing to the limsup
we get (2.54).

Step 5 By substituting (2.54) in (2.51) and letting ¢ — 0+, we get the
I-limsup inequality.

Step 6 We finally extend the result to a general u such that £(u) < +oo.
Let ¢; = inf{z € R : F(z) < 400}, ca = sup{z € R : F(z) < +o0}. We
may assume c; 7 ¢z otherwise there is nothing left to prove. For k € N, define

1 . 1
— e eR : — = if R
mk:{cl+k ey Mk:{@ P e €
—k ife; = —c0 k if ¢g = +o0. |

If u € SBVP(a,b) is such that £(u) < +co, uy is defined as

uk(;z:):u(a—[-)—l-.‘/ax(?lek)/\Mk dt + Z [u](y)

yESu, y<z

It is easily checked that wg — u in LP(a,b) and limg &(ux) = E(u). We get
I-limsup, &, (u) < £(u) by using the lower semicontinuity of the I-limsup, O

We can now state the main result of the section for 1-dimensional long-range
interactions (for a more extensive discussion of the model see the N-dimensional
case in Chapter 3).

Theorem 2.15 Let ¥ : R — [0, +o0] satisfy hypotheses (2.25)-(2.31) of Propo-
sition 2.12 and (2.48)-(2.49) of Proposition 2.14. Then &, T'-converges to & de-
fined by (2.33) with respect to both the strong convergence and the convergence
in measure in L*(a,b).
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2.9.9 A remark on second-neighbour interactions

In the previous section the effect of long-range interaction in discrete systems
has been investigated. In particular, Theorem 2.15 can be applied to second-
neighbour interactions, by considering functionals of the form

Falw) = 3 Antth (u(w%“z\; uza)) PRRIN (“,(wffz)g u(z2)) (2.55)

If both sequences of functions (¥%)n satisfy conditions of Corollary 2.8 and some
additional growth conditions from above, then the conclusions of Theorem 2.3

hold with
F(z) = lim((2) + 202(2)),

and 2 B
G(2) = lima (%0 (Z) + 4y (5?\2»

This means that E, can be decomposed as the sum of three ‘nearest-neighbour
type’ functionals, with underlying lattices A, Z, 2X,Z and X, (2Z + 1), respec-
tively, whose I-convergence can be studied separately. We now show that a sim-
ilar conclusion does not hold if we remove the convexity/concavity hypothesis

on .
Example 2.16 Let (A\,;) be a sequence of positive numbers converging to 0, and
let M > 2 be fixed. Let E, be given by (2.55) with

{z2 | if 2] < VEA

k —_
Vi (z) = G (Mhaz = vVEX,) i fe] > VRN

(k=1,2), where

Gl(z):{‘M if |z2] < 8 Gz(z):{l if |2] <1

1 iflz]>8 M if|z| > 1.

Neither G is subadditive and we have

— 2 iflz| <8 - 1 ifjz| <1
sub Gl(z)={1 if%z}ZS sub Gz(z):{2 if{z}gl.

We can view E, as the sum of a first-neighbour interaction functional and two

second-neighbour interaction functionals, to whom we can apply separately The-
orem 2.3, obtaining the limit functionals

b
El(u)=/ Iﬂlzdt-i-Zsub'Gl([u])
a 5.
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for the first, and

E*(u) = / |42 dt -+ Zsub_Gz([u])
a s,

for each of the second ones. We will show that the I-limit of Ey, is strictly greater
than E*(u) + 2E?(u) at some u € SBV (a,b). , .

Let u be given simply by v = X(t0,b) with tg € (a,b). In this case Eru) +
2E?(u) = 4. Suppose that there exist u, € An(a,b) converging to u and such
that limsup, En(un) < 4. In this case it can be easily seen that for n large
enough there must exist i, such that

un (&) —ua (27 > 4, un(@ ) —un(a™) <4,

but
lun(z1) —un (@< 1, Jua(E?) —un (@) < L

This implies that
Un (z*) — un(2**72) > 3, Up (27 F?) — up (zi°) < =3,

so that limsup, En(un) 2> 2M, which gives a contradiction.

2.3 Non-local variational limits of discrete systems

The following example shows that the hypothesis of convergence of the two series
(2.48) and (2.49) are essential to represent the I-limit as in (2.33).

Example 2.17 and let Pk : R — [0, +0c0] be defined as
0 ifk£1,N,
Ao (Anz? V1) it k=1

Nodn tOnz2 V1) ifk = N,.

¥ satisfy all the hypotheses of Proposition 2.15 except for (2.48) and (2.49).
It can be proved that the functionals &, corresponding to PF T-converge to the

functional b

) b
[ 1P s+ [ e+ 1) - u) e

The previous example shows that the class of limits of discrete energies under
the qualitative hypotheses of the previous section is wider than that represented
by the functionals of the form (2.33). In particular, a non local term may arise.
In this section we present a result by Braides showing that a class of discrete
energies defined on 1-dimensional lattices of step size & when € —+ 0 define a
continuum energy with a local and a non-local term with domain a subspace of
the special functions of bounded variation.
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9.3.1 Statement of the main result

For all £ > 0 let pe : €Z — [0,+00). With fixed a bounded open interval (a, b),
consider the discrete energles ’

ST ple—y) T (M> (2.56)
z,yEsﬁn(a,b) -y
TFY

defined for v : €Z — R, where

¥, (z) = min{ez?, 1}.
Note that we may assume that p. is an even function, upon replacing pe(z) by
ﬁe( ) = (1/2)(pe (2) + pe (—2)). We will tacitly malke this simplifying assumption
in the sequel. ,
We will consider the following hypotheses on p;:
(H1) (equi-coerciveness of nearest-neighbour interactions) infe p (e) > 0;
(H2) (local uniform summability of pe) for all T'> 0 we have

sup Z pe () < +oo.

¢ zeeZn(0,T)

Remark 2.18 Note that (H2) can be rephrased as a local uniform integrability
property for ep, on R?: for all T'> 0

sup Z epe (z — y) < +o00.
-4

T, YyEeZ
sy, |z|ly|<T

As a consequence, if (H2) holds then, up to a subsequence, we can assume that
the Radon measures

pe= ), epe(z =)y

z,y€eZ, oAy

(6, denotes the Dirac mass at z) locally converge weakly in R? to a Radon
measure po, and that the Radon measures

Ae = Z Pz(z)‘sz

z€ed

locally converge weakly in R. to a Radon measure Ag. These two limit measures
are linked by the relation '

1o(A) = / 14,|d0 () (2.57)
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where |A,| is the Lebesgue measure of the set
A, ={teR: (3(6.1 —e3) +t(er +e2))/V2€ A}
If (H1) holds then we have the orthogonal decomposition
Ao = A1+ ¢1o, (2.58)
for some ¢; > 0'and a Radon measure A; on R. We also denote
b= pol (R?\ A) (2.50)

(the restriction of o to R?\ A), where A = {(z,z) : z € R}. By the decompo-
sition above, we have

Lo = [+ -—\}—561'}[1}_1&,

where H! stands for the 1-dimensional Hausdorff measure.

Each function u : €Z —+ R will be identified, upon slightly abusing notation,
with its extension to a function u € Ll _(R) which is continuous on R and
affine on each interval (ig, (1 + 1)€). We denote by AZ the set of such functions.
The energy (2.56) is extended to an equivalent functional defined on L'(a,b) by

setting

Y ae-gu (UMY e
F (u) = N z,y€eZn(ab), oFy - Y (2.60)

+c0 otherwise.

We will investigate the variational limit of F; as ¢ — 0 in the sense of De Giorgi’s
T'-convergence. '

The main result of the section is the following.

Theorem 2.19 If conditions (H1) and (H2) hold, then there exist a subsequence
(not relabelled) of {e} converging to 0, a Radon measure p on R?, a constant
¢1 > 0 and an even subadditive and lower semicontinuous function ¢ : R —
[0, +00] such that the energies Fe T'-converge to the energy F' defined on Li(a,b)

by ,
o u(e) — ul®)?,
e [, Fel+ | (RS ) du(a,v)
Flu) = if u € SBV?(a,b) (2.61)
+00 otherwise.

The measure p and c¢; are given by (2.59) and (2.58), respectively, and the func-
tion ¢ is given by the discrete phase-transition energy density formula
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©(z) = liminf .mf lim mm{ Z pe(e(G — k)T <u(j)‘— u(k)>

M=o Jw<2| =0 inez ek (i —%)
—-2/me<j,k<2/me
Wi TR, ul) =0ifj < ——) u(i) = wif j > 1} (2.62)
' ) J)= J me’ J) = J me .

for z € R.

Remark 2.20 (i) Since ¢ is subadditive, and it is also non decreasing on [0, +o0)
and even, we have that either it is finite everywhere or ¢(z) = 4oco for all z # 0
(see [23] Chapter 2). In the latter case jumps are prohibited and the domain of
F is indeed W'?(a, b).

(ii) We will show in Section 2.3.3 that the function ¢ may be not constant,
in contrast with the case when p. (z) = p(z/¢) for a fixed p (which is a particular
case of the discrete functionals treated in Section 2.2).

(iii) Note that, by taking (2.57) into account, we can also write (2.61) in the
form (0.6) with A = +/2s2A; and Ay given by (2.58).

2.3.2  Proof of the result
With fixed m € N and & > 0 the minimum value in (2.62) defines an even func-
tion of w which is non-decreasing on [0, +c0); hence, by Helly’s Theorem there
exists a sequence {e;} of positive numbers converging to 0 such that these mini-
mum values converge for all w and for all m. Hence, we can assume, upon passing
to this subsequence {e;}, that the function ¢ is well defined. Upon passing to a
further subsequence we may also assume that the measures p. in Remark 2.13
converge to po. Then, p and ¢ given by (2.59) and (2.58) are well defined as well.
Hence, it suffices to prove the representation for the I'-limit along this sequence,
since the subadditivity and lower semicontinuity of ¢ are necessary conditions
for the lower semicontinuity of F' (see Proposition 1.61 and Theorem 1.62).

We begin by proving the liminf inequality. Let ue — u in L!(a,bd) be such
that sup, Fe(u.) < +oo. By hypothesis (H1), if we set

S = {:Z: € e?: [u(ﬂ?-l—&)“‘ U(il?)|2 > 1/6}7

then #S5° is equ1bounded and, upon extracting a subsequence, we can suppose
that S° = {5 : j = 1,. ,N} with N independent of ¢ 2§ < z§ < ... <
2% and z§ — t; for all 7. Set § = {t;} C [a,8]. If {z5.,}, -, {3y, } are the
sequences converging to ¢t € S then u.(z%,,) = u(t—) and uz(mM —!—6) — u(t+).
Furthermore, the sequence u. converges locally weakly in W 2((a b)\ S) (see
the proof of Theorem 2.3 for details).

For all p > 0 let S, = {t € R: dist (¢, 5) < n}; set also Ay ={(z,y) ER?:
|z — y| > n}. Note that the convergence

we(@) —uly) _ ule) = uly)

r—Yy -y

as € — 0 is uniform on (a,5)%\ (S2 U A,).
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With fixed m € N, we have the inequality

Fe(ue)‘ > E pe(z —y) ¥, (Ee_(fl:fis_@)

z—y
z,y€eZn(a,b)NSs/m
le—yl<4/m, z#y

oy ) pe(m_y)q,s(ue(r) —ua(y))

r—y
m,yEsZn(a,b)\S,,/m
lz"y!54/m; T#yY

+ >, plz—yT (—#——us(m) e (y)>

-y
z,y€eZn(a,b)
lz—y|>4/m

=: Ial(ug) + I2(ue) + I?(ue) (2.63)

We now estimate these three terms separately.
We first note that

» ) U (T ) — Ue Y
TRES YD VA A G
. teSy x,yeezr\[z—(i;/m),t-l-('z/m)] ,

Ty

We use the notation introduced above for the sets S° and S: let ¢; € S, with
corresponding sequences {zs, }, - -, {5, } converging to t;. We can suppose, up
to a translation and reflection argument, that [u](t;) > 0, that

max{uc(z): = €€, ‘tj —(2/m) <z <y} =0
and that
min{uc(z): ¢ €€2, zy, +eSe <t + (2/m)} = z,

with z. — [u](t;). We then have

pe(z — y)T. (————————us(xi = uf(y))
: -y
m,yEeZn[tj—(2¢/m),tj+(2/m)] ‘
Ty

. V\T) —V
> mln{ Z pe(z — y)¥, (_(_)____(_y)_> .
, r—y
@, y€eZnlt;—(2/m).ti+(2/m)]
T#Y

o(@hy,) = e (@5s,), V(Ehe, +€) = ve(oh, +2)

> min{ ) b~ . (L=

T—Y
w,yEeZn[tj—(Z/nz),tj+(2/m)]
£y
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v(z) = 0if 2 < 2y, v(z) = 2 Tz > 2hy, +5}

. ' : ) —v .
> mm{ E pe(z — y) T, <(_:Z_—_EJ_(?3Q) .
z,y€eZn[t;—(2/m)tj+(2/m)] ’
TH#Y
1 2
Szt

2 1 .
v(m):Oiftj——ngngtj—%—,v(m):zeiftj—]~ -

- mi“{ > pele(j — k))Te (2_(.5/()_"_’;()1~l> :
jkeZn[-2/(me),2/(me)] el —

2k ~
2 1 1 2

N 0 — e €< () =z if — < f < .
v(j) = 0 if —<Js ms,v(j) Zlfmsgj“ms} (2.65)

Note that we have used the fact that ¥, in non decreasing on (0, +00) so that our
functionals decrease by truncation (namely, when we substitute v by (vV0)Az).
By taking (2.62) into account and summing up for ¢; € S,, we obtain

limint 12 (ue) 2 3 ([ut)) + (1) (2.66)
tESL

as m — +co.
As for the second term, there exist positive a. converging to 0 as € — 0 such

that

[eee/e] 1
lim2 > pe(ek) > 1 — —.
€ k=1 m

Let (a/,¥') C (a,b) \ Saym. For all N € N and ¢ small enough we then have

>, ple-u)¥e (3‘5_(%;_‘__’_;__(_@.’2)
i
= Z ps(x_y)g(m_(y_)_>2

L=y
z,yeezn(a’,b’)
|lz—y|Lae, Y

N [ee/e] 9
SUDIDIILICIC

i=1 k=1 2y€cZn(yi-1,¥i)
lz—yl=ck

N lae/d " g ) U N — wlus
>0y e (M= tliay o

as € — 0, where we have set
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y=d (- d),
: N

we have used the fact that u. — u uniformly and the convexity of z — z%. The
same reasoning applied to a set I C (a,b)\ S4/m which can be written as a finite
union of open intervals shows that .

lim inf 12 (ue) > (cl - —1—) / |a]? dt.
£ m I

From this inequality and the arbitrariness of I, we easily obtain that.

1
lim inf I2 (u.) > (cl - —) / |4)? dt.
£ m (axb)\si/m

As for the third term, it suffices to remark that for all n > 0

1 (ue(m) —ua(y)) _ (U(m) —U(y))"’

lim -,
e £ r—y -y

uniformly on (a,b)?\ (S2 U 4,) as € = 0, so that, by the weak convergence of
Le we have

(u(x) - U(y)>2d#(m’ y).

lim inf I3 (us) > /
€ T—Y

(8,5)\(52/ U 4/ m)

By sumnming up all these inequalities and letting m — +-co we eventually get

limeianE(uE) > 01/

(al

+/(a‘b)2(t"($) _u(y)>2d:u(z,y).

T—-Y

FEED ()
b) 5.

We now prove the limsup inequality. It suffices to show it for piecewise-affine
functions, since this set is strongly dense in the space of piecewise-Wh 2 functions.
We explicitly treat the case (a,b) = (=1,1) and ’

fat ift<0
u(t)—{ﬁt-l-z if1>0

only, as the general case easily follows by repeating the construction we propose
locally in the neighbourhood of each point in Sy. It is not restrictive to suppose
that z > 0, by a reflection argument, and that p(z) < 400, otherwise there is
nothing to prove. :
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Let p > 0, let m € N with 0 < 1/m < n and let z — (1/m) < zm < z be such
that

- o P ) — ulk
o(2) > lim min{ S pe (e(j —k))%(%) :
'2,y€%,~2/ (me) <4,k <2/ (me) J
. o . o1
w:Z =R, u(j) =01 j < u(f) = zm if j > _rr—zg}—n' (2.67)

Then there exist functions v™ : €Z —+ R such that v™(z) = 0 for 2 < —1/m,
v (z) =z for 2 > T, 0 < v < 2m and

| g () )

imo Y ale ) w () < el
T, y€eZ

—(2/m)<zy<(2/m)

We set
u(t+ (2/m)) ift<-2/m

ug'(t) = { vl (1) if =2/m <t<2/m
u(t — (2/m)) ift>2/m.

Note that u™ — u™ in L*((=1,1) \ [=1/m,1/m]) as € — 0, where
u{t + (2/m)) ift<—2/m"

o Joo it —2/m < —1/m
u™(t) = z ifl/m<t<2/m
u(t — (2/m)) ift>2/m.

We can then easily estimate

lim sup F; (uf")
I3
v (z) — v
< lim sup z e (z—y) ¥ (i—(—;c)—:-—iiy—)—)
¢ z,y€eZ,cFY v

-2/m<z,y<2/m

1 m .M
+hmsup/ pe (m _ y) -—\IIE ('U.e (ﬂ}') ue (y))d“&_
€ (a,0)\Az/m € -y

u™(z) —ul
+ lim sup : Z pe(z —y) \IIE< Al i_ (y))
¢ syeezZn(ab), zy<—1/m, |lz—y|<2/m ’ Y
. ' u™(z) — ul*
+ lim sup Z Ps(m—y)‘l’g( (i—y (y))

z,y€eZn(a,b), z,y>1/m, |z-y|<2/m

_<_30(Z)+77+/ b)g(um(m)—um(y))2du+m/

(a -y (a,b

[u|? dt + o(1)
)
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as m — +oo. Note that we have used the fact that by (2.57) the limit measure
ut does not charge 8(a, b)2. By choosing m = m(e) with m(g) — +oo as e = 0,
and setting u, = u™) we obtain the desired inequality. ' O

2.3.3 Remarks and ezamples

Example 2.21 If p.(z) = p(z/€) with p summable then we have =0, ¢; =
2 peq p(k) and ¢(2) = ca =2 S 21 kp(k). In particular, the limit is local, and
it is of the form of the one-dimensional Mumford Shah functional (see Theorem
2.15).

In the following examples we drop the hypothesis that p. is even.

Example 2.22 The function ¢ is not always constant. As an example, take

) 1 ifz=¢ -
p(z) = § Ve ifz=¢[l/ /]
0 otherwise.

Then it can be easily seen that the minimum for the problem defining ¢ is
achieved on the function v = zX(0,4c0), Which gives

¢(z) = min{l + 22,2},

Note that in this case the T-limit is
[t e,
(a1b) Su

which is local, but not of the Mumford Shah type.
Example 2.23 If we take

1 lf Z =€
pe(z) = {4\/5 if z = ¢€[1/+/€]
0 otherwise

then by using the (dicretization of) v = 2X(0,4c0) 28 a test function we deduce
the estimate
' ¢(z) < min{l+ 427 5}.

* Since the right hand side is not subadditive, which is a necessary condition
for lower semicontinuity, we deduce that the minimum in the definition of ¢ is
obtained by using more than one ‘discontinuity’.

Remark 2.24 By the density of the sums of Dirac deltas in the space of Radon
measures on the real line, in the limit functional we may obtain any measure p
satisfying the invariance property

p(A) = p(A+t(er +e2))

for all Borel set A and t € R.
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Remark 2.25 In the formula defining ¢ we cannot substitute the limit of min-
imum problems on [-2/(me),2/(me)] by a transition problem on the whole dis-
crete line. In fact, if we take, as in example 2.17,

1 ifz=c¢
pe(z) ={1 if z =¢[l/e]

0 otherwise,

then the two results are different.

Example 2.26 By again taking pe as in the previous remark, we check that in
this case g = (1/vV2)H L (r1Ur-1), where ry = {z —y = i}.

Remark 2.27 If we replace U, (z) simply by £2? then the domain of the limit
functional is W'?(a, b) and Theorem 2.19 describes the non-local limit of a class
of discrete quadratic forms. In this case the compactness result is related to the
study of asymptotic Dirichlet forms (see [57]).

2.4 Discrete systerﬁs with limit in BV

In this section we give a result by Braides, Dal Maso and Garroni on the vari-
ational convergence of a discrete scheme of interacting particles that justifies a
continuum model for the softening phenomena in fracture mechanics (see [33],
[53], [54]). It differs from the cases studied until now in the fact that the concavity
thresholds 7}, remain bounded. ‘

92.4.1 Discrete models for softening phenomena

Starting from the macroscopic behaviour of a bar of homogeneous material sub-
ject to tension tests we model the interactions at a microscopic level. We consider
a bar of length [ > 0 as a system of n + 1 masses located at the points zh =i,
i=0,...,n, equally spaced in the interval [0,]], with mutual distance A, = I/n
(we treat only the problem of longitudinal displacements). According to experi-
mental data we model the behaviour of this system of n + 1 material points as
depending on an array of n non-linear springs connecting neighbouring points.
The tension o due to each spring is supposed to depend on its relative elonga-
tion z following a constitutive relation o = 9 (z), where ¥5: R — [~00, +00) is
continuous and satisfies
Hm 1,(2) = —oco.
Z—r—0Q

Moreover, there exist three constants Tin Tult and Tree ) with —oo < Tmin <
0 < Tult < Tirac < 4oo, such that ¢n(z) = —oco for z < Tmin - (impenetrabil-
ity), v¥n is increasing on (Tin, T (elastic behaviour), 1, (0) = 0 (stress-free
reference configuration), ¥, is positive and decreasing on [T, T;7>°) (softening
regime), and 9, (z) = 0 for z > Tirac (fracture). The constant T2 is the ultimate
strain (i.e., the maximum strain in the elastic regime), while Tfrac is the fracture
strain. The constant o2l := 9, (TH'*) = max, is ultimate tensile stress (i.e.,
the. maximum possible tension of the springs).
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Let ¥,: R — [0, 4+co] be defined by
z
Wo(a) i= [ (o) as,
0

so that ¥/, (z) = ¥n(2) in (T,‘f‘i“,-l—O_O) = {¢n # —oo}. If u}, denotes the longi-
tudinal displacement of the point zj,, then the internal energy of the system 18
given by

En({up}) =) An¥n(dh),
i=1

where @, = (uf, — ui71)/A, is the relative elongation of the i*" spring, connecting
zi~1 to zi,. Note that @, coincides with the constant derivative of the affine
interpolation between ui ' and u}, on the interval (zi71 k).

2.4.2 The main result

Let us turn our attention to the limiting behaviour of the discrete energies for
the setting above. As usual, in order to apply I'-convergence to our asymptotic
analysis, we have to consider the discrete energies £, as defined on L(0,1). For
this purpose, for every n we consider the space Aj, (0,1) of all continuous functions
u on [0,!] which are affine on [zi-1, z¢] for all i. For every function u, € A%(0,!)
we set vl = u(z?) and @, = (u}, — ui"1)/An, so that 4}, is the constant value of
the derivative of u, in (zi7!, z;,). We consider the energy functional £, defined
on L1(0,1) by ' :

I n .
Ealim) = [ Walio)do = 3 NTaih) = B () (269
i=1

for u, € A%(0,1), and by &n(un) = +oo for u, ¢ A5 (0,1). It is clear that all
minimum problems for &, with prescribed boundary conditions are equivalent
to the corresponding minimum problems for F,, in the sense that they have the
same minimum values and the minimum points of £, are the affine interpolations

of the minimum points of E,,.
We will perform our analysis under weaker hypotheses of those considered in

the previous subsection. We do not require v, to be continuous; we assume only
that 9, (0) = 0 and that there exists T, > 0 such that

sup Ty, =: T* < 400

1, is non-decreasing on (—oo,T,] and

non-negative, non-increasing on [7,, +co)

These weaker assumptions include also the case of plastic behaviour, which cor-
responds to intervals where ¥, is constant. Moreover we assume that

lim 1y (z) = —co uniformly with respect to n € N
Z—F—00
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sup ¥n (Tn) = sup max ¢, 1= M" < +o0
T n

These hypotheses imply that there exists a non-decreasing continuous function
1, R — R such that

"pn (z) S "p* (Z)

Az dele) = —oo.

Therefore, transposing all the assumption above in terms of the potentials ¥,
we have the following coercitivity estimates

Uo(z) > Uu(z)  forevery 2 <0, (2.69)
U,
o 26 (2.70)
z—co  |z|

where U, is the primitive of . vanishing at 0.

M

T, T
Y "

FiG. 2.3. the stress functions %, and the corresponding potentials.

We are now in a position to state the main theorems of this section.

Theorem 2.28 Let ¥, satisfy the conditions above and assume that there exist
F:R —[0,+0c0) and g : [0,400) = [0, +o0) such that
1) ¥n(z) V ¥n(Tn) converges to f(z) for every z € R,
T

2) ¥n 3 + T, ) converges to g(z) for every x € [0,+00). |
Then (En)n T-converges to € in L*(0,1) where

!

_ f Fa) de + Cul(0,1) + Y G([ul), if u € BViac(0,1) and v} > 0,

)= Jo -
400 otherwise,

(2.71)

K4

with G(z) = / g(s)ds, C:=g(0+) and F(z) = /DZ f(s)nCds.

0
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Theorem 2.29 For any sequence of energies (£,) as above there erists a sub-
sequence, still denoted by (&), which I'-converges to a functional F: LY0,1) —
[0, +00] such that

/l & (1) dz + Cug(0,1) + Z G([u]) if u € BVioc(0,1) and
F(u) = | > ul > 0 in (0,1) (2.72)

+oo ' otherwise in L1(0,1).

" The function ®: R — [0, +00] is conver and lower semiconiinuous, the function
G: [0, +00) —+ [0, +00) is concave and continuous and ®(0) = G(0) = 0. We also
have : :
— I * o —
C=G0+) M7, z}:{noo@(z)/lz] = 400,
®(z) < +oo for z 20, ®'(2) = C forz > T*.

Moreover, every functional of the form (2.72) can be obtained as I'-limit of (&)
for a suitable choice of (Pn)-

Remark 2.30 Note that, if C > 0, then the domain of the functional F is the
space BV (0, 1). Indeed, from the fact that lim 2() = Cand lim 2() — 4o

z—+oo0 # Z—r—00 |21 ’
we get that there exist two constants A> 0 and B > 0 such that

o(z) > Alz| - B forevery z € R.
Thus, if F(u) < +oo, then

aeLY0,l), [ui)(0,))<+oo and »_ G([u]) < +oo.
Su ,

As G is non-decreasing and G'(04) = C > 0, we have G(1) > 0, so that there is
only a finite number of points z with [u](z) > 1. As G is concave and G(0) = 0, we
have G([u](z)) > G(1)[u](z) for every z such that 0 < [u](z) < I Consequently
Zsu[u] < +co.

Remark 2.31 If C = 0, then G(w) = 0 for every w > 0 and ®(z) = ®(z A 0).
Therefore the functional F becomes '

l
f(u).:/ B4 A 0) de,
0
if u € BVioc(0,!) and us > 0, while F(u) = +c0 otherwise. This is the one- -

dimensional case of the energy functional for masonry-like structures studied in
[59], [47], [11], and [12]. '
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To prove Theorem 2.28 we will need the following relaxation result on LY0,1).

Proposition 2.32 Let f,g be as above and let S:Ll(O,l) — [0,+oc0] be the
functional defined by

l .
£(u) = /D F(u) dm+%u:G([u]), ifu € SBV(0,1) and [u] >0,

+0o0 otherwise,

 with F(z) = / F(s) ds. Assume that G'(0+) > 0. Then the lower semicontinu-
0

ous envelope of & with respect to the strong topology in L*(0,1) is the functional
&€ defined in (2.71).

Proof With the notation of Section 1.5, taking into account that f(z) =
g(04) = C for z > T* and F(z) 2 VU, (z) for z < 0, we have

G (w) =
4o fw<0

F*(z) >

{Cz ifz>0 {Cw ifw>0

+oo ifz<0
z
and an easy computation shows that FVG(z) = / f(s) ACds,
' 0

- (Gw) fw>0
FRVG(w) = {

+oo i w<0.

By applying Theorem 1.62 we get that Z is the lower semicontinuous envelope of
£ with respect to the weak topology on BV (0,1). Let us consider now a sequence
u, tending to u in L1(0,1) such that sup, (un) < 4o0. By reasoning as in
Remark 2.30 it can be shown that u, is uniformly bounded in BV (0,1), so that,
up to passing to subsequences, we may assume that it converges weakly* to u in
BV (0,1). It follows that £ is also the lower semicontinuous envelope of £ with
respect to the strong topology in L(0,1). : 0

To prove Theorem 2.28 we will proceed as in Sections 2.1 and 2.2, by consid-
ering separately the behaviour of ¥p in the half-lines (—oo, Ty, and [Tn,+00).
To this aim for every n we introduce the additional functions Fy,: R — [0, +c0],
Gr: [0, +00) — [0, +c0) defined as

R = [ Fole)ds, Gulw) = [ gnle)ds.

where

[ halz) H2<Tn | . w
falz) = {«pn(Tn) itz > Tn gnlw) = ‘/’”(?\Z”LT")'
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In this way we can rewrite ¥, as

Fo(z) if z < Ty,

Un(z) = 1
Fo(Tn) + X—Gn()\n(z —T,)) ifz>T,.

Note that, up to the translation term Fy, (Ty,), we are splitting ¥y, into its convex
and concave parts, according to the procedure of Section 2.2.

Since fn(z) < ¥«(z) for z < 0 and since this relation is preserved by the
pointwise convergence, we have f(z) < t.(z) for z <0, so that

F(z2) = F(2) > U, (z) for 2 <0. (2.73)

Proof of Theorem 2.28. We begin by proving the lower semicontinuity in-
equality. Let (un) be a sequence which converges to u in L*(0,1). We want to
show that liminf, €n(us) > €(u). It is not restrictive to suppose that (un) con-
verges to u a.e. in [0,!] and that the sequence (&, (u,)) has a finite limit, so that,
in particular, u, € A%(0,1) for n large enough. Let us prove that

! 1-6
sup/ (i) " dz < 400, sup/ (in)tdz < +oo, (2.74)
0 g

n n

for every 0 < 6§ < /2. The former inequality in (2.74) follows from (2.69) and
(2.70). To prove the latter inequality, we fix two points ¢ and b, with 0 < a < ¢
and | — 6 < b < [, such that (un(a)) and (un (b)) converge to a finite limit. Then
we have

1-6 b b
/ (tn)*dz < / (iin) T dz = un(b) — un(a) +/ (i)~ dz . (2.75)
é a a
Since the right hand side is bounded, the proof of (2.74) is complete. From (2.74)
it follows that u € BViec(0,1).

For every n let J, C {1,...,n} be the set of indices such that ul, < T, and
let I, = {1,...,n}\ Ja, i.e., the set of indices such that ut, > T,. We define a
new function v, on (0,[], which is still affine on each open interval (zi-1 zl),
but may be discontinuous at some of the points z¥. On the intervals (z;7*, ]
with ¢ € J,, we set vn = un. On the intervals (2! 2%] with ¢ € I, the affine
function v, is defined by the conditions v, = T}, and v, (z},) = ul,. Since u, and

v,, are affine on the intervals (zi71, z%], by an elementary computation we obtain

ol A, o
/. lvn~—un|dw§—2—/' (i) dz,
T Tl

i
n

for 0 < i < j < n. As (un) converges to u in L'(0,1), by (2.74) the previous
inequalities imply that (v,) converges to u in i, (0,1). Passing to a subsequence,
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we may assume that (v,) converges to u a.e. on (0,1), and the same argument
used for (u,) shows that (v,) is bounded in BVjoc(0,1).
For every n we have

= > MaFn(is) + Al Fa(Tn)

i€Jn
I .
+ 3 Gl — i = AT = / Falim) dz+ 3 Gal[va))
i€, 0 Sun

(2.76)
For each £ > 0 let
(fn(z) N E) -l-% forz>0
fale) =9 |
(=k)V fa(z) for z < 0,
let F'* be its primitive vanishing at 0, and let
w
Gn(w)+ - forw>0,
GE(w) = { k
—kw - for w < 0.

Then by (2.76) for every 0 < <[/2 and for every k > 0
1-§

En(un) + 7 [’l((”“ 6) F}(0n) do + Z GE ([vn]) -
§ S..0(6,1—6)

Note that sup,, |[v/,|(8,] — 8) = ¢(6) < +oo. By Theorem 1.59, for k > C we have

’liminfé'n(un)+c(5) > /5 M Frayde+ > G*([u])

oo k Sun(s,1-3)
+C(ue) (6,1 = ) + & (u)™ (6,1 = 9),

where F¥ and G* are the primitives vanishing at 0 of the functions

e = RV (R AC)+ ),
) ::{<g( W)+ PAC forw20,
—k for w <0,

respectlvely Taking the limit as k¥ — +o0 and then as 6 — 0 we obtain that
uy, > 01in (0,1) and
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!
limjut () 2 [ T do+ 600 + Ou0.0).

Let £ be the I-limsup in L'(0,!) of the sequence (€,). To conclude the proof
of the I'-convergence it remains to show that for every function u € BV (0,1) with
u! > 0 we have £”(u) < E(u); i.e., there exists a sequence (u,) of functions in
A2 (0,1) which converges to u in L*(0,1) such that limsup, &, (un) < E(u).

As fu(Th) = gn(0) < M*, by monotonicity and pointwise convergence we
easily get C' = g(O+) < M*, f(0) =0 and M* > f(z) > g(0+) for z > T*. Let
us define

F() = | " i(s)ds, 6w = | " () ds, (277)

for z € R and w > 0 and m = inf{z € R : f(z) > —co}. We have that
F,, — F uniformly on compact subsets of the interval (m, +-c0) and that G, — G
uniformly on compact subsets of [0, +00). ,

Let us consider first a function u € SBV(0,1) such that #S5, < +oo, [u] 2 0
in Sy, and ¢; < @ < ¢g ae. in (0,0), with m < ¢; < ¢z < +oo. S, =0, we

choose u, to be the affine interpolation of u on {z2,...,z"} and we get
) 5 ki u(mi ) _ u(mi-&) l .
~ < 1 M (252 ) <
l;rﬁil;op En(up) < lim ; )\n < /0 F(4)dz,

where the last inequality follows from Jensen’s inequality and from the uniform
convergence of (F,) in the interval [c1,¢2] . Since u € W1°°(0,1) in this case, it
is easy to see that (u,) converges to u in Wh(0,1).

If Sy # @, by the local character of our arguments it is not restrictive to
assume that S, contains exactly one point zg € (O', [). Hence, we can write
u = v+ w, where v is a Lipschitz function in [0,1] and w = [u](z0)X(z0,1)- Let ¥n
and w,, be the affine interpolations of the values of v and w on the points {z}.
It is easy to see that (v,) converges to v in W'(0,1) and (wn) converges to w in
L1(0,1). Note that we have ¢y < ¥ < ¢z a.e. in (0,1). We define un = vn + Wn,
which turns out to be the affine interpolation of the values of u on the points
{25 o

Let i, be the integer such that zo € [zir=1 2in) and let J, and I, be defined
as in the first part of the proof. Then i, € I, for n large enough and, being
U, < F,, from Jensen’s inequality we obtain

i) — (i1
gn(’un) = anq’n(v( n) )\n( -
itin
G (o(air) — (@) + [ul(z0) — ATh)

! .
< [ i) e do Pl + Gullel) = ol ™) + i)

)) + An Fn(Tn)

From the uniform convergence of F, and G, we obtain that
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i
Jim sup £n (1) < / P(a) do + G([u](w0))

n—+-co

Since this argument can be adapted to every functionu € 5B V(0,1) such that
#S, < +00,[u] > 0in Sy,andc; LU <L cpae. in (0,1), with m < ¢1 < ¢2 < +0,
for these functions we obtain :

l
£"w) < /0 F () dz+ Y G([u]). (2.78)

Sy

Let us consider now the general case of a function u € SBV (0,1) with positive
jumps. It is not restrictive to suppose that & > m a.e. in (0,1), otherwise the
right hand side of (2.78) is +oo. Let Sy = {1, es,...} and let my — m such
that F(mg) < +oo. Let ug be the unique function in SBV (0,1) which satisfies

uk (0+) = u(0+) and

) k
ufy = ((4Vmg) A k) de + > [ul(z;)ds; -

i=1

Since uy satisfies the conditions required in the previous step, by the lower semi-
continuity of the T-limsup we have :

!
£/(w) < iminte"(w) < [ Pli) iz + 3 6(0)-

If C > 0, we can apply Proposition 2.32 to obtain that € is the lower semi-
continuous envelope in L*(0,1) of the functional on the right hand side. By the
lower semicontinuity of £ this implies again that £” < £, as required.

If C = 0, we can argue by comparison. Let £5, k > 0, be the functionals with
integrand the primitive vanishing at zero of ¥n + %X(g’_i,oc). If u € BV(0,1), then
by the previous step we have .

_ !
£"(u) = T-limsup &y (u) < T-lim supEF (u) < / F(uAQ)dz + %(u/)+(0’ 0,
. 0

n-—+-+co n—++0o0

and by the arbitrariness of k we get £”(u) < &(u). Ifu € BVioc(0,1) and E(u) <
+00, then w A0 € L*(0,1) by (2.70) and (2.73); consequently the functions

u; = (—j) V (u A j) belong to BV (0,1) and &(uj) — &(u); hence by the lower
semicontinuity of £ we get

£"(u) < liminf£”(w;) < lim E(uj) = E(u),
i

. j-r+oo —+-j—oo

as required. o
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Proof of Theorem 2.29 Since the functions f,, are non-decreasing and the
functions g, are non-increasing, by Helly’s theorem there exist two subsequences,
still denoted by (f.) and (gn), such that (fn) converges pointwise to a non-
decreasing function f: R — [—co,+00] and (g,) converges pomtw1se to a non-
increasing function g: [0, +co) — [0, +00).

Then it suffices to apply Theorem 2.28 to get the I'- convergence 1esu1t taking
into account that the functions @ and G which appear in (2.72) are the functions
F and G defined Prposition 2.32 and by (2.77) respectively.

Remark 2.33 Suppose that (¥n), (fr), and (gn) satisfy all properties consu:l—
~ ered in this section, except the almost everywhere convergence. Using the com-

pactness properties of monotone functions and the previous theorem it is easy
to prove that the sequence (&,) T-converges if and only if (gn(w)) converges to
g(w) for a.e. w > 0, C = g(0+), and (fn(2) A C) converges to f(z) AC for a.e.
z € R. '

2.4.3 Dirichlet boundary conditions

In order to study the convergence of the solutions of minimum problems for the
discrete energies &, with prescribed displacements at the boundary points ¢ = 0
and ¢ = [, we have to investigate the behaviour of some functionals which take
these bounda,ry conditions into account .

Let d € R; we consider the functionals é'd Ll(O 5 — [0, +oco] defined by
E3(up) = En(un), if u € A7 (0,1), un(0) = 0, un(l) = d, and by £%(u) = +oo for
every other function of Ll(O 1). We assume that ¥y, fn, and g, satisfy all the
hypotheses of the previous section and that (f,) converges to f pointwise on R
and {gn} converges to g pointwise on [0, +occ). For every u € BV/(0,1) and for
every z € [0,1] we set [u](z) = u(z+) — u(z— ), where we put u(0—) = 0 and

u(l+) = d. Then we define S§ = {z € [0,]] : [u](¢) # 0} and we extend the
measures u’ and u, to [0,[] by setting

o =ude+ Y [u](e) 6ot uc, W=y [ul(z) b+l (2.79)

zeSd z€Sd

Note that, if v € BVIOC(R) is the extension of u defined by v(z) = 0 for z < 0 and

v(z)=d for z > [, then v’ and ), are the restrictions to [0, ] of the distributional

derivative o' and of its smgular part v/. Note also that for every u € BV(0,[)

we have .

u'([0,1]) = / uwdz + Z[u] +ul(0,) =4d (2.80)
0

s

and that u is uniquely determined by the measure v’ on [0,1].
Let £4: L1(0,1) — [0, -+c0] be the functional defined by

= /l F(u)dz + ZG u) + G(u(0+)) + G(d—u(l=)), (2.81)
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if u e SBV(0,1) and [u] > 0in [0,]] (in particular, u(0+) > 0 and u(l—) < d),
while £4(u) = +oo for all other functions of L!(0,1). Moreover we consider the
functional £: L1(0,1) — [0, +oc] defined by

Ed(u) = Al F(u) dz+ Cug(0,1) +2G([u]) = Z(u) + G(u(0+) + G(d—u(-)),
5d

 (2.82)
if w e BV(0,]) and uj > 0 in [0,1] (in particular, u(0+) > 0 and u(l—) < d),
while ?d(u) = oo for all other fun_c_:tions of L1 (0,1). In this section we show that
~ the sequence {£2} T-converges to E4in LY(0,1).

Remark 2.34 Note that also in the case C' = 0 the functionals £4 and &9 are
infinite on BViec(0,1) \ BV(0,1), in contrast with £ and £. This is explained by
the fact that BV functions satisfying &(u) < 400, and the boundary conditions
u(0+) > 0 and u(l—) < d are indeed in BV (0,1). '

Theorem 2.35 Let T™" := inf{z : F(z) # —oco}. If d > [T™in  then the
. sequence £F T-converges to g% in L1(0,1). :

Proof Let us preliminarily note that the result stated in Theorem 2.28 holds
on every interval I C R. Namely, let

/qrn(u) de - ifue AC(D),
I

B

Enlu,I) =
+0o0 , if u e LY(I) \;‘A;(I)’

where AS (I) is the space of all continuous functions u: I — R. which are affine on
the intervals [z571, 2L ] NI, with 2}, = And, 1 € Z. Then repeating the arguments
of Theorem 2.28 we have that

E(u, I) =T- lim &, (u,I) in L*(I), (2.83)

n—+00

where

Bl 1) = [ F)de+ Cul(1) + 32 614D,

Su

if u € BVipe(I) and u, > 0in I, while &(u, I) = +co for all other functions of
LMI). ,

In order to prove the lower semicontinuity inequality for (D), let un €
A (0,1) with u,(0) = 0, un(d) = d, and up = u in L1(0,). Define the aux-
iliary functions :

0 for z <0, 0 for z <0,
vp(2) = {un(m) for0 <z <, 'u(m):{u(x) for 0 <z <,
d forl <z, d forl < z.
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Let us fix two constants @ and 8 with < 0 < I < 8. If we apply (2.83) with
I = (o, B), we get in particular '

ﬁ — = —_—
i 808 (un) = imint [ (i) do 2 o, ) = 2400,
as required. _ _

In order to prove the limsup inequality, we choose u such that £%(u) < +o0,
u(04+) > 0, and u(l—) < d. As above let us extend u to the function v defined in
(o, B). Then by (2.83) there exists a sequence (un), with u, € A% (a,F), which
~ converges to v in L'(e, f), such that .

. | ﬁ | . -~ :
ngr—ll—’loo ) U, (4,) dz = E(v, (o, B)) . (2.84)

Let us fix two points @ and b such that 0 < a < b < I, a ¢ Su, b € Su,
un(a) = u(a) = u(a—) = v(a+) >0, and un(b) = u(d) = u(b—) = u(b+) < d.
Using the lower semicontinuity inequality given by (2.83) for the intervals [ =
(a,a) and I = (b, B), from (2.84) we obtain by difference

b b :
lim sup / U, (i) d < / Fyde+ S G())+Cul(a,b). (2.85)

ntoo 5.0(a,b)
Define v, € A% (0,1) by

0 if i < jn —1,
un(a) if = jn - 1,

vn(ah) = { un(zh) i —1<i<hn—1,
u“(b) if i = kn;

d if 1> ky,

where j, and k, are the indices such that a € [#4*~*, 2*) and b € [z577, zhn)
We have v,(0) = 0 and v, (I) = d for n large enough. Moreover (vn) converges
t0 Uap 1= UX(ab) T AX(b,1)- Note that ¥p(9,(z)) < ¥, (Un(z)) for almost every
z € (afr ™", o).
For § > 0 and for n large enough we obtain

! . zkn
. un(a) / " . - rd—un(b)
U, (vn)de < Ap¥n + [ U (tn)de+ AUy ——
/(; ( ) " ( An ) pin—?t ( An )

< e ¥ (Un) dz + 22 Fn(Tn) + G (un(a)) + Ga(d — ua(0)),
§ .

a—

and taking the limit as n — +oo, by (2.85) and the arbitrariness of § > 0,

l
lim sup /O (i) di < E(u, (a,5)) + Glu(a) + G(d = u(b)) = E(ua).

n—++400
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We have then I-limsup, £3(uap) < E%(uap); letting a — 0 and b — [, by the
lower semicontinuity of the T-limsup we eventually deduce I'-limsup, Ed(u) <
).

If £%(u) < +o0 and u(0+) = 0 or u(l-) = d, the inequality d > IT™in jmplies
that there exists a sequence (u;) converging to u uniformly in [0,1] such that
fé F(u;)dz — fé F(u) de, Juj —'|(0,1) = 0, u;(0+) > 0, and ui(l-) < d. By
the previous step we have I-limsup, £3(u;) < E%(u;) for every j. Passing to
the limit as j — 00, by the lower semicontinuity of the I'-limsup we eventually
obtain I-lim sup,, £4(u) < £%(u), as required. ]






3
SCALAR DISCRETE SYSTEMS IN RY

In this chapter we study the limiting behaviour of discrete energies defined on
open subsets of RY. ’

3.1 Multiple-neighbourhood interaction: the N-dimensional case

In this section we extend the results obtained in Theorem 2.15 to the general
N-dimensional case. We will describe the continuum limit of energies

Ha(u) = Y Tn(u(e) —u(y),z - v). (3.1)

TEY

where Z, is the portion of a lattice of step size A, contained in a fixed open set
Q (see the Introduction). A key point will be the reduction to the 1-dimensional
case by considering 1-dimensional fibers, where we can apply the previous results.
In order to simplify the description of the limit we will suppose that 2 is convex,
so that these fibers are always intervals. In the general case it is necessary to
neglect the interactions between points z, y such that the interval with endpoints
¢ and y does not lie inside £2. We will give a description of the limit in terms
which are equivalent to, but differ a little from, those in the Introduction, by
gruping the interactions first by their direction (indexed by a ‘rational direction’
v) and then by relative length (indexed by a positive integer k).

Let Q be a bounded, convex, smooth open set of RV with 8Q of class C*
and let eq,..., ey denote afixed orthonormal basis of RY. In order to rewrite
functional 7, as defined on a subset of L* () we identify the functions defined
in Z, = \ZY NQ as the set Ap(Q) of functions which are constant on each
cube a + (0, \,)Y with o € AnZY . For such o the value u(a) is defined as the
constant value taken by u on o -+ (O,An)N ae. Let D C S¥-! be the set of
‘rational directions’ in RY, defined as

D={¢/ig] £V \{0}}.
If v € D we denote ' ' '
£(v) = min{l€] : v = E/[¢], £ € ZV\{0}}.

We will also write Djys to denote the set of directions v € D such that E(v) < M.
For any v € D, n € N and k = 1,...,Na(v), let PEv R — [0,+00) be
continuous functions. We define H, : L}(Q) — [0, +o0] as
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No(v)

‘ Ny u(a + kA (v)v) — u(a)
Y2 T e (M=)

veD k=1 geRrkw¥

Tn(u) = ifu e 4,(Q)

400 , otherwise in L' ()
where N, (v) := sup, diam (Q¥¥)(Ané(v))~! and
REV = {a € AZN 1o, 0+ EXE(v)y € Q).

In this way we have rewritten the functional #,, considered in (3.1) if we take

k() = -’;-A-;Nl—&mmn(mng(v)z, EAE()0)

The following theorem gives a convergence result for the functionals #,, as n —
~+co.

Theorem 3.1 Assume that real numbers T::,’; and p > 1 exist such that the
following conditions are satisfied: )

(1) (conditions on the lattice parameters) for all v € D, k € N

EmATE% =0, HmTFY = +oo; (3.2)

(2) (structure conditions on !

¢::V 15 COTVET On [T:,’Z’T:.’i]

WYEY is concave on (——oo,Tff”f] (3.3)
Y5V s concave on [T,’:”:_,-i—oo);
(3) (growth conditions on nearest-neighbour interactions) if v € {e1,...,en}
then

YL¥(e) > |oP if e € [T2Y,Th%]
. | (3.4)
Al (z) > e>0ifz < T,i”f'_ orz > Tiji_;

(4) (existence of single-interaction limit energy densities) for allv € D, k € N
there ezist F&¥, GFY : R — [0, +00) such that G*¥ is superlinear in 0 and

F&¥(z) = limgh¥(z), G(z) = lim kA (v) kv (3.5)

¥ (e

foralzeR,;
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(5) (existence of limit energy densities) #f 7,6 : R —[0,+00) are defined |

by
FY = Zka,V and GY = Zka,u
k=1 k=1
then
N, (v) v
F(z) = lim »  kph(e),
" k=1
Nn(v) ) z
v =k : k’ﬁ)\ kv : )
¢*(s) =lim 3 0V (oey) (3.6)
) Na(v)
S E@)F () = lim Y E(V) > kb (s), (3.7)
veD “veD k=1 '
54 3 8 (i)
E()G¥ (e) =1im » &(v) K An(v)? yh” (3.8)
> P IRPD PE0)
forallz € R;
(6) (growth condition on the limit bulk energy density) we have
z E(w) F¥(x) < c(1+ |2[P) (3.9)
veEQ
forallz € R.
Then Hr(u) T-converges to the functional # : L*(Q) — [0, +o0] defined as
f F(Vu@) do+ [ Gt —u,m)dHY "t ifue GSBV(Q)
%(U) = ¢ Q . Sy )
+00 otherwise in L ()

with respect both to the L'(§2)-convergence and to the convergence in Measure,
where F : R — [0,400), G : R % SN=1 [0, 40c0) are defined as

Flz) =Y E@)F ((z,v)

veD

G(Z; 77) = Z é(y)gl/(zsgn (77; V))[(ﬂ: V)‘

veD

Before proving this result it is worth commenting hypotheses (1)-(6).

Remark 3.2 The first hypothesis in (1) ensures that the concave parts of kv
are meaningful in the description of the limit surface energy density. Indeed,
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if lim sup, AnT:,’i > 0 then the corresponding G** may not give a contribu-
tion to the energy density G, which should then be modified accordingly. If
lim inf, Tff”i < 400, on the other hand, then the description of F must be
modified by taking a suitable convex modification of Pk into account (in the
case of 1-dimensional nearest-neighbour interaction a precise description of this
procedure can be found in Section 2.4, see also [27). :

Condition (2) may be weakened in view of the results in [30], but in general
the I-limits with respect to the L*(2) convergence and to the convergence in
measure may be different. _ : '

Condition (3) ensures that the limit domain is contained in GSBV (Q). Both
conditions may be slightly modified by taking the coerciveness conditions for
functionals defined on GSBV () into account (see [10]).

The superlinearity condition on G*" in (4) may be dropped if we assume some
monotonicity conditions on the points T*Y; e.g., that T:,’Z < T,.f)’f’_ <7 i< T it
(see Step 1 in the proof of Proposition 2.12). Moreover, .if only a finite number
of interactions are considered then this condition may be dropped on those not
taken into account (see the theorem below).

The existence of the functions F*¥ and G*¥¥ in (4) is not restrictive, upon
extracting a subsequence, by the convexity and concavity conditions on phv,
Note that F*¥ is convex and G* is concave on {—oo, 0] and on [0, c0).

Conditions (5) ensure that there is no contribution to F and G which cannot
be captured by considering F* and G¥ only; i.e., there is no big contribution
by F5¥ and G** if k€(v) is large. It can easily be seen that if this condition is
not satisfied then the I-limit may not be local (for the 1-dimensional case see
example 2.17 and Section 2.3). )

Condition (6) is technical, and is related to the general difficulty of repre-
senting bulk functionals which satisfy different growth estimate from above and
below.

We can simplify Theorem 3.1 in the case of a finite set of interactions. The
proof is the same, up to ignoring the contribution which are not present.

Theorem 3.3 Let D be a finite set in D containing ey, ..., en, and for allv € D
let I(v) C N be a finite set. We suppose that 1 € I{e;) forallj=1,...,N, and
we denote

A={(v,k): v€D, kel(v)}
Assume that real numbers (T:’;) and p > 1 ezist such that the conditions (1)—(4)
of Theorem 3.1 are satisfied for (v, k) € A. Let H, : L) — [0, +00] be defined

by
Z Z EAN ¢ (v)pkv (u(a+kAn§(y)y)_u(a))

(v,k)EA e RS kAng(v)

Ho(u) =

—+co otherwise,
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let

Fz):=lim Y E@)kYr¥((z,v))

(v,k)ED
Glan) = lim S E@IEAME() g (ZZERIR LYY )
= (;%:EA ( kA (V) ) 7

and suppose that F(z) < c¢(1+ |z|?) for z € R. Then H,(u) T'-converges to the
functional H : LYQ) — [0, +c0] defined as in Theorem 3.1.

In order to simplify the proof of Theorem 3.1 we introduce some notation and -
state some preliminary remarks. We define FX¥, G5V : R — [0, +00) as follows

(9ho(a) HIH < Jol < T
Fk,z/(m) = { ) v+

+00 otherwise

. k,v z kv ;.
G?wy={M&M%‘Q%aw+%%wﬂ o7

0 ifz=0.
Note that F¥¥ is convex and G* is concave on (—-oé, 0] and on [0, +c0), and
that we still have F¥ = lim, F5* and G* = lim, G&".

We recall that if € € SV~! we denote by II¢ the linear hyperplane orthogonal
to & (which will be identified with R~ when needed) and

Qf = {y e TI : Q6Y £ ).

Remark 3.4 If yi,y2 € 8, let (a1,b1) = Q&Y and (ag,bs) = Q8¥2. Then,
for any fixed n > 0, there exist two constants ¢, M > 0, depending only on 7
and &, such that |a; — as] + [b1 — b2| < M|y1 — y2| whenever lyn — 2| < o for
all y1,y2 € Qf = {y € Qf : dist(y, 8Q¢) > n}. Indeed, for any 0 < 7' < 7,
by the smoothness of 0Q, we easily get that for all y € Qf there exists an
open neighbourhood U(y) of y in TI¢ such that for every = € (P*)~'(y) N 0Q
there exists a pair (V(z),g=) with V(z) open neighbourhood of z in RY and
gz : U(y) = V() of class C*, so that V(z) N 8 is the graph of g,. Hence, we
can cover the closure of {2 with a finite number of such neighbourhoods that is,

there exists a finite subset S of QS, such that Qf C Upes U (y). Let us denote -

|

M= 213166‘5}(376(_1:51;18{@)“8“ ”vyga:“Lw(U(y))x 0= § I;"élgldlamU(y)
If yo,y2 € Qs are such that |y — y2| < o then there exists y € S such that
Y1, Y2 € U(y). Moreover, there exists ¢ € (P8)~Y(y)NOQ such that y1 +a1€,y2+
a2€ € V(z) N 6. Hence,
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1
d
a1 —al < 1/ Zelty = 1+ (1= t)ya) dt|
0
. M
< || Vgdzllze @l — ve] < —2—ly1 — yal.

The same reasoning holds also for by, bs.

Remark 3.5 If S = S;U...U Sy is a finite union of (N — 1)-simplexes and we
denote ’ :

n(y) == #{t € Q6Y . y+t& e S}t

for y € O, then there exists a closed set B C TI¢ with #N~*(B) = 0 such that
n(y) : Q¢ \ B — N is locally constant. Indeed, let £;,.:.,6p € SV~1 be such
that §; = {z : (& -2) = i} for i = 1,..., M and ¢; € R. Let gN-15; and
int(S;) be the boundary and the interior part of S; with respect to the induced
RN -1_topology, respectively. We can suppose, up to refining the family (S;), that
int(S;) Nint(S;) = 0 if i # j. Then, it suffices to take B := PE(UM, aV-18;).

Remark 3.6 By applying the result above we get that Q¢ \ B is a finite union
of open disjoint sets U such that n(y) is constant on U. Moreover, ify,zeU
and for any 7 = 1,..., M we denote 1,1, the points in Q&Y Q62 respectively,
such that y +t;§, z+tL€ € 5;, then [t — 15| < |z —y| with e = c(é1,. .- 6m)-

Proof of Theorem 3.1 In order to simplify the notation, we suppose that Vi
is even for all k, v and n, the proof in the general case following easily. We begin
by rewriting the functional #, as a sum of ‘nearest-neighbour type’ functionals
based on sub-lattices of A\, Z". First of all, note that

Halu) = Y Hi(u),

veD

where

V Na(v)
Ho(w) = Y 3, BEWR (“(““né(v)v)—u(a)).

k=1 4eREv kAn&(V)

We will proceed by analizing the limiting behaviour of #% first. To this end, with
fixed & = E(v)v, let &2,.. ., ¢N € ZN NTI” be such that (¢;,&;) = 0 for ¢ # j.
Denote M(v) := |det(és,. .., én)| and L(v) := M(v)/|&]. Note that M(v) € Z.
Let z; be the points in II” such that

{zi : i:l,..‘.,M(V)}::{zEZN:0§<z,6j)<]€j{, j=1,...,N}

and let R := {mi€1 + ...+ mnln 1 mi € Z}. Then, we can split 7N into an
union of disjoint copies of K’ as
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M)
zV = | (= +RY).

i=1

Fic. 3.1. the lattices z; + R¥

ForneN,i=1,...,M(v) we write
Rk,l{ — Rk‘,u Y -1 . v
7,1 " {ae n N O{E(Zl-{—R )}a

so that, #% (u) = 2, H4% (u), with

Nn(v) _
A= o Y, RAER (u(a+ FAnf(v)v) - u(a)> :

ExI0)

We now prove the I-liminf and T-limsup inequality separately.

Proof of the T-liminf inequality We will use the 1-dimensional results of the
Section 2.2 to provide an estimate of the functionals 7% in order to recover
the desired inequality by a slicing technique. Consider un,u € L(Q) such that
2, — u in measure and sup, Hn(un) < +oo and fix a direction v € ¢ and z; as

above; if o € RZ”: we will denote
::,n = {.’BERNIOS(IB—O:,fj><}\nl§j| j:l)...,N},

and, for B = P¥(a), we also denote Qp,n = P*( Y »). Then, with fixed 7 > 0,
for any function u that is constant on each Q7 ,, for n sufficiently large

Hettw) z D M TENH W, Q) (3.10)
BeIn 1,
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holds, where Z27 = {f € P*(R;, 1) 1 Qpn Ny # 0} and E7%(- P is the
localized version of the functional deﬁned in (2. 24) obtained by replacing A, %%,
TF 4, (a,b) and {z}} by Ané(v), PEv, T Q8 and {i € \,E(V)Z : B+iv € O},
respectlvely
Let A, (9, z; + R”) denote the restrictions to Q of functions constant on each
¥ » We want to define a sequence v in An(Q, z; + R¥) which coincides with u,
on the edges of ‘almost’ each poly-rectangle Q% .. With fixed 8 € 2,7, denote

= §(f) := min {z EMEW)Z : QY CQ where = + z'u}

1=1(0) = ma.x{i € ME(V)Z: Qq , C Q2 where o= B8+ iy};

if @ = B+ iv, we define v (z) on QY , as

val@) =S un(f+av) ifi<i (3.11)
un(B+1v) ifi>7
We claim that

hn;mfg;vzi(vymv) Foydt+ Yy gY([wY),  (3.12)

nu 2y Suplynn’r‘”’y
where, for the sake of simplicity, we have set 2, := {z € Q : dist (PY(z), 000 ) >

We first prove (3.12) in the case v € {e1,...,en}; subsequently, we will infer
the same inequality for every v € @ . Then, 1et v = ¢; and v, be as above; in
this case we have to consider a smgle lattice, determined by z; = 0. Note that
v, — u in measure in L!(£,); indeed,

{2 €Qy :va(z) # uan(z)} =
N ‘
U {Ha,,a,-{—)\) 0‘-—,3+263,z>zorz<z}
pezai” =1

By Remark 3.4, we get that, for n sufficiently large as to have N, < p, for any
Bel . |

: An#{i € An Z:i>tori<i}<AM (3.13)
with M = M (%) and p = p(%) in Remark 3.4. Since RT3 < QAL we

obtain
lim|{z € Qy : va(2) # un(z)}] < limeks = 0.
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. €4 .
Hence, v, — u in measure on Q;7"Y and, by construction, we have

S OANle 0P Q) 2 | EO (0, 05 dHN " (y) = eF? (0)An-
ﬁel‘ij'n ﬂn-’ .

(3.14)
Since £57°°(-,Q5"Y) satisfies the hypotheses of Proposition 2.12, by taking the
equiboundedness of #% (un) and the convergence in measure of ve? ¥ to u®HY into

account, we get that u®¥ € SBV (Q;7"¥) and

lir%binfggi'o(vzi’y,ﬂzi'y) > /ﬂej'y Feiasvyd+ Y GO ([uY]).
? 5,ejun0 Y
Again by the uniform bound on #, (ua) with respect to v and 7, we deduce that
u € GSBV (Q) by the slicing result Theorem 1.42(b).

We now turn our attention to v € D\ {ey,...,en}; it is easy to check that
(3.13) still holds and, taking into account that HN-Y(Qp,n) = L))V 71, we
can rewrite (3.14) as :

HE () 2 / L) e (Y, QU UL () — cFL (0. (315)
a7

Note that, since $1* does not satisfy in general hypothesis (3.4), we cannot use
Proposition 2.12 directly. However, we can repeat the proof of Proposition 2.12,
by defining the sets [57(v,z) and the piecewise affine functions uki (v, z) ()
in the same way as the sets I5* and the functions uk? are defined there, and

noticing that, if vi,..., v are the functions defined in (3.11) with respect to
ei1,...,en, respectively, then we can estimate Un(2) — vn (), 25 (v, z;) in terms

of up(z) — vi (z), ). Thus we get that vy still converges to © in measure and

(3.12) holds. »
We can now take the liminf as n goes to +oo using (3.12) and Fatou’s Lemma

to get
lim inf H2% (un) > (3.16)
n
v L(v

/ﬂ ([ mamas Y gD T ).

all
L(v) MJayv
Letting 7 tend to 0+ and summing over i we obtain

v, ynQy?
lim inf ¥ (n) > ( / £(v)F* ((Vu,v)) do
7 O

b [ €00 (@ ) s () H V).
Su

With fixed a positive number M we then obtain
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lirr}%inf?-[n(un) > Z (/ﬂf(y)}”"((Vu(m),y)) dz

vED

G =) v ) o, ).

Eventually, we obtain the desired inequality by letting M — +oo.

Proof of the T'-limsup inequality To prove the I'-limsup inequality with respect
to the Ll-strong convergence we first deal with functions in W(RY). As in the 1-
dimensional case, a recovery sequence will be given by the interpolates of u on the
lattice A\, Z". The technical difficulty derives in the fact that the 1-dimensional
sections of these interpolations are not themselves interpolations.

Let u € W(RY) be such that #(u) < +co. Up to considering in the sequel the
lattice A, ZN +¢&,, for suitable £, — 0, we can assume that SuNAZYN =0 for all
n. Then, we define u, € An(£2) by setting un(z) := u(e) on Hfi\f:l[ai, a;+An). We

have that u, — u in L}(Q). Indeed, with fixed o € A, ZN and z € H;V:I[ai, oy -
An), we have :

|un(2) — u(z)] = [u(e) — u(z)]
< l./o %u(ta + (1 —1t)z) clt‘ + Z lut —u™|(2)

2€[a,z]NSy
< ||Vullze VN + 2l|ufl e M x4, (2),
where M’ is the number of (N — 1)-simplexes contained in S, and A, is the

set of those cubes whose intersection with S, is non-empty. Since A, C {z :
dist (2, 5y) < VNAn}, it is easy to compute that |An| < eAn. Hence, we get

hgn“un — u”Ll(h) S lirll’nC(”VuHLwIQ] -+ leu”Lw%N-l(Su)) )\n =0

by integrating on Hj.vzl[ai_, a; + An) and summing over a.
We will proceed as follows: first we will prove that for every direction v € D

Hmnsup HY (un)
< fn £ 7 (Vule), v))do

+ [ ew) (o = v sgn s )l ) 1Y (37

subsequently, we prove that for every € > 0 there exists M > 0 such that

lim sup Z H(un) <e. (3.18)
" yeD\Du '
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With fixed v € D, we prove (3.17). For the rest of the proof it is useful
to estimate the value of the functionals H% with respect to sets of the form
P*=1(C) N Q with C C Q. For € € RY let B = B* be the sef of Remark 3.5
and, for € > 0, denote

B = {y eI : dist (y, B%) < 5},
Q%." = {e € RV 0< (o —a,&r) <kAalé],
0<(z—0a,&) <Anlésli=2,..., N},
Aﬁ:’: ={a€ R,’i: : Qz,nk NSy # 0}.

Then, for o € Rﬁ’f _according to the different cases we have the following esti-
mates: ' :

EAYEW)FL (| Vullze)

- —u if A}:z'li/
ot (=) e
" AN=EGEY (2M ! ||ul|ze + | Vullz=)
otherwise,
(3.19)

with M’ the number of simplexes of S, and ¢ := diam 2. Hence, we get

Na@) ulo+ k — ula
53 e (Mt o)) <o),

accty k=1 kAng(v)

where C'f’i =l € Rﬁ: : PE(QZ,nk) N B¢ 5’5@} and

Nin(v)
en(e) = L) (3 S (V) + G520 ull = + €] Vullz=)
k=1
X (HN=H(BS.) + 1P (Bg))- (3.20)

Thanks to this bound, in the following we will confine our analysis to estimate the
value of the functionals on poly-tectangles whose projection does not intersect
the set BY. For such poly-rectangles, the function n(y) defined in Remark 3.5 is
" constant along the set. Let y € Q¥ then, for any n € N, there exists a unique
B € \ZN NTI¥ such that y € Q%; we will denote this point (depending also on

n) by B(y). Note that #5,70 = #?uy’ﬁ(y) for y € Q¥ \ BY. We have that
%Z(un)S/ L)™' Y &7 (upf®), ) drN =
QU\B: Z3

+Z sup I\ I)eAN + M(v)ea(v,e), (3.21)
5 yiP=Ay)
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where IY := {i € Anﬁ(ﬁ)z cy+iv,y+ (14 An)v € Q). We claim that, for every
y € Q% ‘ :

lmsupgls (uP® @) < [ A @i+ S @) (3.22)

7 95k d
. 7 SyviynQy?

ie., u’f;ﬁ ) is a recovery sequence for u”P®) although it does not coincide in
general with its piecewise-constant interpolation on An&(r)Z N QY. By reasoning
as in the proof of Proposition 2.12, it is not difficult to see that it suffices to prove
~ that v5f®) is a recovery sequence for the functionals EX* defined in (2.43). For
the sake of simplicity we will prove this result for k¥ = 1 and v = ¢;, s the
treatment of the general case amounts only to a more complex notation.
Starting from the value of u at points of the lattice A,Z", for any n € N,
we provide a function vn which is piecewise affine along the direction e;. More
precisely, fixed y € Q¢ \ B¢’ and i € I§ we define vh¥ for't € [i,i+ Ap) as

ﬁej,ﬁ(y)(i + ) — ufiPY) (3)
vf;y(t) = An
w8 (4) 1 €.5p(y)

~ (3.23)
where Sp(y) = {i: (1,4 +An) N (Su)%PW) £ @}, If y € Q% \ B&? we have that

(t —1) + PO () i€ ¥\ Sp)

WY (8) = 4V (f) ae. in QY (3.24)

and, since #3,% Y= #?uej’ﬁ(y), by taking Remark 3.6 into account, for all s €
5,°Y =: 5; , there exists unique in(8) such that i, (s) =X, € Sp(y), limy in(s) =

s and
[03:¥](3n (s)) — [u*¥](s) uniformly with respect to y. (3.25)

Indeed, if t € Q&3Y, for n large we have

' i+An -
e (t) — usY(t)| = ]{ (Vu(B(y) + se;), e;) ds — (Vu(y + tej), e5)

i+An
< ]f 1 ()= (18(3) — ¥l + |5 — £]) ds < cAn.

To prove (3.25), with fixed s € S, Y and in(s) € Sp(y), We may assume that
§ > in(s). Hence, by Remark (3.6),

[vh¥ (i, (5)) — ¥ (s+)| < |u(B(y) + in(s)e;) — u(B(y) + 5¢5)]
+|u(B(y) + se;) — u(y + sej+)|
< IVl (18(y) — yl + lin(s) — s)
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< clB(s) — 9] < cAn.

An analogous computation shows that |ud¥ (i (8) — Ap) —u®P¥ (s—)| < cAn. Since
¢ is independent of y and n we have that the convergence is uniform.
Now, we get

Eg;(uij,ﬁ(y))gej,y) S/ y'pgj(gg;y)dt_*_ Z G2 (V1Y (in (5)))
Qs
SE€Sj,y
= (D)o + (ID)n. ' (3.26)

Hence, lim sup,, Bn’ (uff’ﬁ(y), Qei¥) < limsup, (I)n-+Hlim sup, (11)n. We now com-
pute each of these quantities. Since F7 — Fei uniformly on compact sets, by
property (1.17) of Theorem 1.41 and by (3.24), we get

limsup (I)n £ / Fei(u®¥) dt
n ey
by using the Dominated Convergence Theorem. It remains to estimate the last
term. Consider for k € N, the set Sf’y = {z € Sye;v : [u®¥] > £}. Then

(D) < (SN SE) + 3 G (039 (in(5)):

k
365Ly

Since, by (3.25), v3¥ (in(s)) — [u*¥](s) uniformly as n — 400, by taking (3.5)
into account, we have

lim sup(IT)a < e (Su" \ SE)+ > G ([u](s))

k
SESLy

< (SN S + D G ([uY](s))-

3ES55,y

Since limy #(S.°7Y \ SF,) = 0, we get

1imnsup(ff)n < Z G® ([u®¥](s))-

3€55,y

We now prove that

limsupy , sup #(I5 \ I§)er) = 0. (3.27)
o g yP=pW) '

* With fixed n > 0, by Remark 3.4, we have

T ap U\ <
B {y:8=06(y)}
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M(-g-)k HV=1(QY) + HYTHQA\ Q) sup HE(QHY).
year

Hence,
' hmsup Z sup Iﬂ \]y)c}\N < cHN- 1(Qy \ Qu)
{y:6=F y)}

Since HN=1(Q¥ \ Q) — 0 as n — 0+, we get (3.27).

By (3.20) and (3 8), it can be easily seen that limsup, M(v)e(v,e) < ce.
Then, it suffices to pass to the limsup as n — +oco in (3.21), use (3.22) and let
€ tend to 0. ‘ ' _

Tt remains to prove (3.18). Let M be a fixed positive real number. Then
taking (3.19) into account, it can be easily seen that

S Hi(ua) e Y. EFEIVullLe) Q]+ E@)GR (T ) HTHRY)),

veD\Ds uED\DM

where we denote T'(u) = 2M’l|ﬂHoo + diam||Vu||pe. Passing to the limsup as
n — +oo and using (3.7), (3.8), we get

limsup Y. Hilun)Sc Y, (v )f”(IIVUHLw)Jr&() Y (T'(w))-

" LeD\Dum veD\Das

Since by the ﬁnitenéss of F and G

Ml_ifﬂooygf ) (2 (I7ullz=) + 6 (T(w) ) = 0

we get the thesis.

Finally, let u € L®(Q) be such that H(u) < +oo Then, by Theorem 1. 41
we can find u, € W(RY) such that u, — u strongly in Ll(Q) and lim, #(un) =
H(u). The inequality follows by the lower semicontinuity of the T-limsup. The
hypothesis that u € L% ({2) can be easily removed by a truncation argument, by
taking hypothesis (3.9) into account. ' 0

3.2 Examples and applications

A convergence theorem for discrete functionals with non-cubic underlying lattices
can be obtained from Theorem 3.1 by a superposition argument.

Example 3.7 (General lattices) Let P := {p1,...,pn} be linearly independent
vectors in RY and let R := {mupi + ...+ mypy im; € Zfori=1,...,N} be
the integer lattice associated to P. Set

l_él. 5572\0} E(vp) ::min{r>0:rypER}ipr€DP.
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With fixed ), > 0 we define A7 () as the set of restrictions to {2 of functions
u constant on {z € RV : 0 < (2 — A7, 0i) < Anlpi| for i = 1,..., N} for each
~ € R, which correspond to the set of functions defined on A, R N {2

Given functions gbﬁi’{}’ . R —+ [0, +00) for al k,n € N and vp € D7, we define

HP - LY(Q) — [0, +o0] as

Na(vp)

HE (u) = Z Z Z kAﬁfg(y,P)wz:;)’P <u(o¢ + k)\gii?(;gj;) - u(a)) ‘

vpeD? k=l acRLP

ifue AP(Q), and H} = oo otherwise in L'(Q), where
RZ”I;) = {CY EMR o, a+ k/\ng(l/'p)u'p e Q} '

and N, (vp) := sup, diam (27 WY (Ané(vp)) 7t :

If (1#2”'7/,”) satisfies hypotheses (3.2)-(3.9) (where we replace e; by pi), then
#HP T-converges with respect to the convergence in L*(Q2) and the convergence
in measure. Moreover, if

z

FE* (2) = gl (2), GBY () = limkdn (77 ) 5 (W) ’

and A : RN — RN is the linear operator such that A(e;) = p;, then the limit
functional #7 is given by

Foo |
HP (u) = / S E(vp) Y RFE” (Vule),vp)) [det 4] da (3.28)
@y peD? k=i
+oo
+ > g(yp)ZkG’;V”((uﬂ“—u—)sgn@u,w))1<yu,yp>1|dem|‘1cmN'l
¥ ypeDP k=i .

if u € GSBV(Q), and #P (u) = +oo otherwise in L'(2). This result can be
easily obtained by applying Theorem 3.1 with ¢ (a) := | vyl (B ) and
vp = ﬁ—’;l and noticing that #% (u) = Hn(u o A) for every u € AP (9). .

As a particular case of the previous example, we can also treat nearest-
neighbour interactions on hexagonal lattices by considering them as second-
neighbour interactions on a slanted lattice.

Example 3.8 (Hezagonal lattice) Let N = 2 and py = ey, p2 = —5e1 + 542562.
Fix )\, := n~2 and assume that w’;;’;;’ # 0if and only if k = 1 and vp €
{p1,p2,p1+p2}, ie., every point in the lattice R is supposed to have interaction
only with the vertices of a regular hexagon of center the point itself.
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- . . . . L] . - e ]

FlG. 3.2. first-order interaction in the hexagonal lattice and the corresponding
second-order anisotropic interaction in the standard lattice

Consider for example
: 1,pi — G5 2 2
() = 1 () Ach),

with a;, ¢; € RT and‘pg := p1 + pa, then, by using formula (3.28), we get

3

3 5 2
HP (u) = /n;aiwu’pm At /5 i=1 V3

2 -
aicflu - pi|—= dpN-t.
In particular, if we choose a3 = az = ag = V3/2and ¢; = ¢y =3 = 1/4/2, we
have that

.'P = u2$ v, "i
a (u)-/ﬂ[Vld +f5u|<1>(u)|d%N ,

where ®(z) = %Z?:l Kl:_l’ p;)|z is the deformation of R? into itself that applies
the unitary ball into the hexagon of vertices =pi,+ps,£ps and is positively
homogeneous of degree 1. :

Example 3.9 (Energy with a fized range of interactions) According to the
‘Qocal-type’ interactions of many mechanical models, we confine our attention to
the case in which the potentials ¥5 are null if k£(v) > R, for R > 0 fixed. In
this case we deal with n(R) non-negligible interactions. If N = 2 and R > 1,
it is easy to see that n(R) is a multiple of 8. Indeed, the set of directions D is
invariant under the action of the linear trasformations below:

068G S0
(0 é);(‘i (8T
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If we assume that the interaction relative to the direction (11, v9) is equal to the
one relative to (—1/1,1/2), then it can be shown that, for potential of the form
YEV(2) = cpo min{z?, dx »}, the limit energy is isotropic in the volume part. The
surface part will retain some of the symmetries of the polygon identified by the
directions in Dg. It is easy to find suitable ¢y, di, in a way that the surface
part can be written as the euclidean norm of the deformation of RY positively
homogeneous of degree 1 that maps the unitary ball in the polygon. '
For example, let R = V2, Ap =n~? and let

1 . :
1/’3#" (z) = (\/5' 1)53\’— ((Anz2) A 1) ifve {:}:ﬁl,iez}
' 1 1> .
wilu(z) = (\/i_ 1)m ((/\nZQ) A 75) ifve {61 =+ es, —€1 + 62}.
Then, the limit energy is

Hu) = /ﬂ Vul? do + /S ()| AV,

where ® is the deformation of RN relative to the regular octagon with center 0
and one vertex in e;.

Example 3.10 (Potentials with a separate dependence on the reference posi-
tion) Consider the case in which the potential ¥,,, in the notation of the Intro-
duction, are of the form

Wa(z,w) = p(57) ¥n(2),

p and 1, assigned. In particular, we can deal with

p(w) = gl and p(w) = [w|™%,

with 6,8 > 0, and a > 4, respectively. If w € ZV\ {0}, v = @y and k =
1wl then we can consider Y5 (z) = Wn(An]wlz, Ayw). Under the hypotheses

£(v)’ : ) o
of Theorem 3.1, the sequence of the relative energies T-converges and the limit

energy can be expressed In terms of p and of the limits
F(z) = limn (Anz), G(z) = imAnn (z).

In particular, if ¥n(z) = Artp(z?An) with ¥(z) =z A 1, then the limit energy
can be written as

) = clp) [ IVaPds+ [ 5 K whllulptw) a7

v weZN\{0}
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with ¢c(p) = 1—%/.- Y wezZN\{0} |w]?p(w). For a deeper analysis of this case we refer
to [35].

3.3 Boundary value problems for the discrete energies
3.3.1 Boundary values as interactions through the boundary

We give a notion of boundary value problem for a discrete system on Q by
defininig the boundary datum ¢ on a neighbourhood of 992, and considering all
functions as equal to ¢ outside 2. We then separate ‘interior interactions’ from
those ‘crossing the boundary’; the latter give rise to a boundary term. For the
sake of simplicity we consider the case of a finite number of interactions only.

In order to consider a suitable notion of boundary value, let v € SBV (RY)
be fixed and such that HY (S, N Q)= @ and let A be defined as in Theorem
3.3. For u € A, (Q), let B (u) := Hn(u) + HE (u) where

HE(u) = Z Z kAn & (v)E” (‘P(a + kXAé(v)v) — u(a) ))

(v,k)EA aeRE” (802) An

with REV(8Q) = {a € MZN o€ Qa+ kN E(v)v ¢ Q}, ie., we consider
separately the interactions crossing the boundary of Q.

Theorem 3.11 Under the hypotheses of Theorem 3.3 we have that Bn(u) T-
converges with respect to the L(Q)-strong topology to the functional B defined
in LY(Q) as

H(u) + / G(v(u) — @, ven)dHN ' ifue GSBV(Q)
B(u) = 80
+o0 otherwise,

where y(u) is the inner trace of u with respect to 0Q (i.e.,

S(w)(z) = lim ]é RIS

p—0+

the value of ¢ on 0K is in the sense of traces of functions in SBV and vaq is
the inner normal to 9.

Proof In the sequel it will be useful to extend functions in L'(Q?) and in An(£2)
to functions belonging to L (RN) and A, (R™) that take into account the value
of ¢ outside Q. Thus, Tjp : LH(Q) = Ligo(RY), Ty + An(Q) — An(RY) will be
defined as follows:

v in o ula) ifael
TS"(U):{@ in RV\Q T‘P(U):{go((a)) ifagﬂ,

where we set the value
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. 1
ola) =limap e [ ewas
If up € An(Q) and up — uin L(Q), then it can be easily seen that Tg (un) =
Tp(u) in Li (RY). In the sequel it will be useful to define, in the notation of -
the introduction, Hn(u, B) := 2 g yep ¥Yn(u(z) — u(y), z — y) for a general set
B.Let n >0 and set O, ={z € RY : dist (z,Q) < n}. Then, for n large enough
Ba(u) > Ha (T3 (w), Q9) = Ha(e, Q,\ Q). It can be seen that Hn (e, 2, \Q) < w(n)
with lim,_ow(n) = 0. Then, if un — u in L'(Q), using the I'-convergence of
(-, Q) to H(-,Qy) and the estimate above, we get :

limm inf Ba () 2 H(Typ (u), Uy) — w(n)

| ;Ln F(V(Tp(w)) cl:c+/

G([Tp (W), vr, () AUV 1 — w(n).
STqa(u)ﬂﬂn .

‘The D-liminf inequality follows by letting 7 tend to 0. :

Conversely, let u be such that B(u) < +oco and define un, € A (§2) to be the
piecewise-constant interpolation of u on the points of the lattice A ZY . Then
T3 (un) is the piecewise constant interpolation of T, (u), and, by the proof of
Theorem 3.1, it is also a recovering sequence for H (T, (u), Q) for any n. Hence

lim sup Ba (1) < lim sup o (T3 (un), Q) < H(Tp (1), Q)

and the thesis follows by letting 7 —+ 0. O

Thanks to Theorem 3.11 we can state a convergence result for boundary value
problems as follows.

Theorem 3.12 Assume that the hypotheses of Theorem 3.11 be satisfied with
€ L®(RY). Then the minimum values ’

min{Ba(u) : u € A(@)} | (3.29)
con&erge to the minimum value
min{’)—[(u) + f Gy(u) — ¢, ven) dHN 1 ue€ SBV(Q)}. (3.30)
a0

Moreover, if (un) is a sequence of minimizers for (3.29) which is bounded in

L (Q) then it admits a subsequence converging to a minimizer of (3.30).

Proof By atruncation argument, we can find a sequence (u,) of minimizers for
(3.29) with [|unlleo < llpllec. We then obtain that the sequence (v,) constructed
in the proof of Theorem 3.1 is precompact in L}(£2), so that also (un) is pre-
compact in L1(Q). By the uniform bound the limit is in SBV (). We can then
apply Theorem 1.43. : O
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Remark 3.13 In the same way we can deal with the convergence of minimum
problems with Neumann boundary values of the form '

min{Bn(u) - /ﬂhu de: u € As(Q), un € K}, (3.31)

where K is a compact set of R and h € L(), or with mixed boundary condi-
tions.

3.3.2 Boundary layers in the I-dimensional case

 Let I =[0,4 and A\, = £n~'. We can identify the discrete system {iA\n}i=0,..n
with the reference configuration of n + 1 particles disposed on a bar of lenght
¢ and interacting pairwise with interaction-energy given by potentials Yk In
order to study the convergence of minimum points for the discrete energies with
prescribed displacements in 0 and £, we study the I'-convergence of functionals
that take into account the boundary conditions.

With fixed a positive real number d, let AZ(I) = {u € An(I) : u(0) =
0,u(f) = d} and let £F be defined as .

( S5 [;;?:L] b (LU £ DEe) = u(ik30))

5d(u)__. k=1i=0 j=0 kAn

if ue A2()

+00 ‘ otherwise.

We have the following resuls.

Theorem 3.14 Under the hypotheses of Proposition 2.15, &2 T'-converges with
respect to the strong topology in L*(I) to the functional &4 defined as

+oo _
£(u)+ 3 (G*(u(at)) + GH(d—u(b-))) ue GSBV(I),

£4(u) = k=1

00 otherwise
in L}(I)

Proof With fixed un € AZ%(I) converging to u, we deal with the I-liminf in-
equality first. It suffices to study the limit behaviour of SK s BR(un) where

Ez,i(u) — Z kAt <M)

kA
z,y€[0,8],|z—yl=kAn ™

For k fixed let i(k) := n—[%]k. Note that i(k) is the unique value in {0, .. ., k—1}
such that ¢ = n modulo k. Let « < 0 < £ < B;forie {0,...,k— 1} define
v}, € An((e, f)) as .
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K un((i+jk)>‘n) lfj:za;]maz
vl (i + 5E)An) = § Ua(idn) on (a,iAn)
“ﬂ((i +jma:ck)/\ﬂ) on ((3 + jmdwk)kn;ﬁ);

if i £ 0,i(k), with jmaee = max{j € N:i+jk < 2},

_ un(z) on (0,4)
vh(z) =<0 on (&, 0)
d on (¢, ),

©if i = 0,i(k). In particular, Eki(uy) > EEAHL) = (o] + (68 — £))¢%(0), and v}
converges in L' (e, f) to v, defined as :

. u(z)  on (0,4
v (z) = < u(0+) on («,0)
u(f=) on (£ 0)

if 5 £ 0,i(k),

if i = 0,i(k). Hence, we have
. p . :
1irr}LinfEﬁ" (un) > / Frohydt+ Y GH([v']) — (Ja|+ 16 - £))F*(0).
[+ Sui

Letting oo — 0, 8 — £ we get the inequality for k fixed. It remains to sum over k
and proceed with standard arguments.

Now let 2 be such that £4(u) < +oo. Assume that S, N (AnZ) = § and
define u,, € A2 (I) to be the piecewise-constant interpolation of u on the points
L ..., 8— £} Then, if &n(+,(0,2)) is the functional relative to the partition

o
. £— £}, we have

£3(un) < En(ttn, (0,)) +§ (¢t (u(ke)) +GE(d-u(e- g))) (3.32)

nte
n
k=1

Since u, restricted to (0, £) is the piecewise-constant interpolation of u in (0,9),
we have that lim sup&n (tn, (0,€) < £(u). By the boundedness of u, reasoning
as in Step 1 of the proof of Theorem 3.3, we can neglect SO (GE(u(E) +

k:m

GE (d—u(¢—£))), for m large. Thus, it remains to show that lim sup,, (GE (u(%))+

n
GE(d—u(t—£)) = G*(u(a+)) + G*(d — u(b—)). This can be easily seen in the
case u(a+) # 0, u(b—) # d, by using the uniform convergence of G to G* on
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compact sets of R\ {0}. In the other case it suffices to notice that the inequality
(3.32) can be refined, for example for u(a+) =0, as

n+1
£

£3(un) < Enlun 0,0) + > G (d - u(e- ),
. k=1

where &,(-,[0,£)) is the functional relative to the partition {0,...,£— £} and
for which the interpolation of u on the lattice {0,...,£— —3} is still a recovery
sequence for &(u). ' O



4
DISCRETE SYSTEMS FOR VECTOR-VALUED FUNCTIONS

In this chapter we present some results regarding the asymptotic behaviour of
discrete energies for vector-valued functions. In particular we give an approxima-
tion result of the linearized-elasticity energies for brittle material in dirmension 2
and 3. '

4.1 Preliminary Lemmas

In this section we state and prove some preliminary results, that will be used in

the sequel.
Let B := {&1,...,En} an orthogonal basis of R™. Then for any measurable

function v : R¥ — R” and y € R \ {0} define

T;,Buk(o:) =u (sy +e E}B) (4.1)

where [z] 5 := % [E’E—Q] 5,

=1
. n
Notice that T;»Bu is constant on each cell @ + eQp, o € € P &Z, where

1=1

Qs = {z € RY : 0 < {(z,&) < |&[*}. The following result generalizes Lemma
3.36 in [23].

Lemma 4.1 Let u; — u in L}, (R¥;RY), then T: By, — u in Lloc(RN;RN)
forae. yeQp .

Proof For the sake of simplicity we assume B = {ei,...,en}. It suffices to
prove that for any compact set K of RY

(ev+¢[%],) —-'u(a:)[ dz dy = 0. (4.2)

e—0 0 1)11.

Then fix K and call I, the double integral in (4.2). By Fubini theorem and the
change of variable ey +¢€ [3;-]3 — y we get

= f Ll

< /K - / PENCCETCIET

sy+e[ ]B) —u(x)i dydz
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1 ;
< — U (Y) — U (Z)| + |ue(z) — ulz)|) dy dz.
< [ () =0 eele) o))
The further change of variable y — z 4 ey and Fubini Theorem yield

155/ _/]ua(x-{-ay)—-us(m)ldxdy—}—,‘ZN lue (2) — u(z)| dz,
(11N JK K

thus the conclusion follows by the uniform continuity of the translation operator
for strongly converging sequences in L}, (R™; RV). : O

In the sequel for n = 2, £ € R?\ {0} and B = {¢,£1}, we will denote the
operators Ty B and [-]5 by T;’E and [-]¢, respectively.

Lemma 4.2 Let J be a #HY 1 countably rectifiable set and define

JE:={z e RV : s =y+ 1t witht € (—¢,¢) and y € J} (4.3)
foré € RY and ,
Jorke = | s | (4.4)
) i=1

for €1,...,& € RN, r being a positive integer. Then, if HN=1(J) < +co

L:N fo,u,fr
limsup————g—z’——2 < Q/SUP (v, &')!dﬂN_l, (4.5)
J i

e—0

where v(z) is the unitary normal vector to J at z.

Proof First note that by Fubini Theorem and the Generalized Coarea Formula
(see [10])

£\¢ N-1 — v N;-l .
N (J8) §25/n€#(JE)y dH (y)_QE/JI( L E) dHN T, (4.6)

hence
ﬁN (Jfl’“’ff) < 25/ Z [(I/, f,)[ d%N—l < 2rssup lfi!'HN—l(J). (4.7)
Ji=1 4

By the very definition of rectifiability there exist countably many compact sub-
sets K; of C! graphs such that

H (J \UJ A) =0,

i>1

and HV-1(K; N K;) = 0 for i # j. Thus, by (4.7) for any M € N we have
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) o £ "")+2rsup1&le(J\ U f)

3 €
1<i<M 1<i<M

hence, first letting € — 0 and then M — +oco it follows

1orfr N §1,6r
limsup[’ JE “) < thsup (( &% >

e—0 i>1 e—0 )

Thus, it suffices to prove (4.5) for J compact subset of a C* graph. Up to an
outer approximation with open sets we may assume J open. Furtherly, splitting
J into its connected components, we can reduce ourselves to prove the inequality
for J connected. For such a J (4.5) follows by an easy computation. O

4.2 The main result: discrete limits in R?

In this section all the results are set in R?. A generalization to higher dlmensmn
will be given in Section 4.3.

Let us introduce first a discretization of the divergence. Fix &, € R?\ {0};
for € > 0 and for any u : R? — R? define
Dfu(z) = (u(z + €§) — u(z),§),
divéCu(z) := Dfu(z) + Diu(z),
|D? eu(z)|? = IDE (@)” + D7t u(z)?, (4.8)
IDiv? cu(a)]? = div € u(e)? + [div ¢ u(a)?
4 |dive et u(e) |2 + divy e u(e))?.

Starting from this definition we will provide discrete and continuous approxima-
tion results for functionals of type

T z+e ivu(z)?de v N~ .
/ﬂwwu())wfnld ()1d+] V) dH Tt (49)

u

defined for © € SBD(Q). We underline that this is only one possible defini-
tion of discretized divergence that seems to agree with mechanical models of

neighbouring atomic interactions.
Actually, we can give also the following alternative definition:

Du(z) = (u(z + &€) — u(z — €€),€),
D2 culs)? = 31Dfu(a) (410
IDiv2 gu(a)|? := | Déu(z) + D u(z)[®.
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This second definition can be motivated by the fact that from a numerical point
of view it gives better approximations of the divergence as € — 0.

In the definition of the family of functionals in the next sections we will
implicitly mean that one among definitions (4.8) and (4.10) is used. We remark
that the choice of one or the other definition does not affect the convergence
results.

4.2.1 Statement of the results
Let Q be a bounded open set of R? and, for € > 0, define

A(Q) :=={u: Q= R®: u=const on (a+ [0,6)>) NQ for any o € €Z?}.

Let f : [0,+00) — [0,+00) be an non-decreasing function, such that a,b > 0
exist with

0 p = tim F() (4.11)

t—0+ ¢ t—t+ 400

and f(t) < (at) A b for any ¢t > 0. For u € A;(Q) and £ € Z?, set

FLE(u) = Z ef (é (]Df,gu(a)lg+6|Divf,§u(a)|2)) , . (4.12)

«€eRt
where 6 is a strictly positive parameter and
CRé={cceZ?: [a—ef,a+ef]lUla—eft a+eft] C Q)

Then consider the functional F4 : L1(Q; R?) — [0, +-c0] defined as

Fi( )_{ S p(6)FEE(u) fue A (Q)

€

g€z (4.13)
+o0 otherwise.

where p : Z2 — [0,+c0) is such that 3 [¢]*p(€) < +oo and p(£) > 0 for
§ez?

{=e1,e1+ea
The following result holds.

Theorem 4.3 Let § be a starshaped bounded open set of R2. Then FZ T-
converges on L™ (€; R?) to the functional F¢ : L®(Q;R?) — [0,400] given
by ‘

{ S pl6)FE(w) ifue SBD(Q) |
Fiu) = | €€ (4.14)

+00 otherwise

with respect to both the L*(Q; R?)-convergence and the convergence in measure,
where '
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Fé(u) = 2a /ﬂ [(Eu(z)é, €)]* do + 4ablé]* /ﬂ |div u(z)|? dz
1% 1 v,
+2b(/ﬁ\ﬁl [(vu, &) dH +/;5,*\Js (v, €Y dH?

u

[ IV I, ] ).

u u

The proof of the theorem above will be given in the next section as a consequence
of some propositions, which deal with lower and upper I'-limits separately.

Remark 4.4 We point out that the assumption Q starshaped will be used only
in the proof of the I'-lim sup inequality. '

Remark 4.5 Notice that the domain of Fiis L®(Q; RN SBD?(Q). Indeed,
taking into account the assumption on p, an easy computation shows that

Pz Y s ze( [ el i),

£=e;,e1+e2

Remark 4.6 The restriction to L% (€2; R?) in Theorems 4.3 is technical in or-
der to characterize the I-limit. For a function u in L*(Q; R?)\ L= (Q;R?), by
following the procedure of the proof of Proposition 4.10 below, one can deduce
from the finiteness of the I-limits that the one dimensional sections of u belong
to SBV (). Anyway, since condition (i) of Theorem 1.67 is not in general sat-
isfied, one cannot conclude that u € SBD((). On the other hand this condition
is satisfied if u € BD(Q), so that Theorems 4.3 and 4.8 still hold if we replace
L= (9;R?) by BD(Q). '

Remark 4.7 Note that, by a suitable choice of the discrete function p, the limit
functional is isotropic in the volume term, i.e.,

F(u) = fﬂ Eu(e) dz + A1 /ﬂ Idiv u(e)]? do + / O(ve) dH!.  (4.15)

u

Choose, for example, p(e1) = plez) = 2p(e2 L e1) # 0 and p(€) = 0 elsewhere.
Moreover, for suitable choices of f and 8, it is possible to approximate functionals

of type (4.15) for any p1, A strictly positive.

By dropping the divergence term in (4.12) (i.e. 6 = 0), one can consider the
functional G¢ : L1(Q; R?) — [0, +oc] defined as

T ) T ef (HD? (@) ifue A(Q)
Gi(u) = { €€2°  aeh: (4.16)

+oo otherwise,

where Rf := {« € €Z? : [ — €€, + €] C 2} and p is as above and satisfies also
the condition p(ez) # 0.
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Theorem 4.8 Let Q be a starshaped bounded open set of R?. Then G¢ T-
converges on L@ (Q;R?) to the functional G4 1 L®(;R?) — [0, +0] given
by '

£€Z? ‘ (4.17)
+co otherwise

¥ p(6)G4(u) ifue SBD(Q)
G4 (u) =

with respect to both the L (Q; R?)-convergence and the convergence in measure,
where

Gw) = 20 [ Keu(@e OF de+2b [ el

The proof of this theorem can be recovered from the proof of Theorem 4.3, up
to slight modifications. We only remark that the further hypothesis p(ez) #01is
needed in order to have good coercivity properties of the family G¢.

Remark 4.9 Notice that, although the definition of G¢ corresponds in some
sense to taking 6 = 0 in (4.13), its I-limit G¢ differs from F* for § = 0 in the
surface term.

4.2.2  Proof of the results

In this section we will prove Theorem 4.3. In the sequel we need to “localize”
- the functionals F#¢ as '

Fob(u,A):= Y, &f (é (ID2 cu(a) ] + e|DiY§,£u(a)|2)> ,
«€eRE(4)
for any A € A(R2) and u € A (€2), where
RE(A) = {aeceZ?: [a—eb a+tef]U[a—eft,a+eét] C AL

For the sake of notation it will be useful to introduce also the following
functionals

Fob(u) = l/ﬂs f (% (lszu(x)lz + 9|Divf’6u(x)|2)> dz (4.18)

€
defined for u € L}, (Q; R?), with

Qf = {zeR*: [ —ef,z+e€]Ufz—eft,z+e€t] C Q)
Proposition 4.10 For any u € L®(Q;R?),

T'(meas)- Iigr_ljglfFf(u) > Fi(u).
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Proof Step 1 Let us first prove the inequality in the case f(t) = (at) Ab.
Let € — 0, uj € A; and u € L™ (€;R?) be such that u; — u in measure.
We can suppose that lim inijedj (uj) = 1iij€‘i (uj) < +oo. In particular, for
any & € 72 such that p(€) # 0, lim infjfgjzf(u_i) < +4co. Using this estimate
for € € {e1, ey + €2}, we will deduce that u € SBD(R2) and we will obtain the
required inequality by proving that, for any § € Z? such that p(£) # 0,

liminf; 728 (u) > F44(u) (4.19)

~To this aim, as in Theorem 3.1 of Chapter 3, we will proceed by splitting the
lattice Z2 into similar sub-lattices and reducing ourselves to study the limit of
functionals defined on one of these sub-lattices. Indeed, fixed ¢ € Z? such that
p(€) # 0, we split Z* into an union of disjoint copies of I€1Z2 as

[e®
7% = | J(zi + Z€ @ Z¢H),
i=1
where

(zi:i=1,.. |6} ={a€Z®: 0<(a,8) < [€],0< (o, 67) < €]}

Then, for any A € A(Q), we write

e
FhE(uz, A) = Y Fo (uy, A)
=1
where
4 (. A) = (L (1D (o) + BIDivE )
fsj (uJaA) T z EJf £ l ej,fuj(aﬂ +9|D1V€j,€uj(a)] :

51‘.
RE(4)

with REF(A) == RE (A)Nej(zi+Z€D 7£L). We split as well the lattice Z€ @ ZE+
into an union of disjoint sub-lattices as

ZE@® e = 28U (ZE+ ) U(ZE+EN U (2 + (E+€h)
where Z¢ := 27¢ @ 2Z¢+. We confine now our attention to the sequence
1 .
W= % et (& (PP + oD, cu(a)) )
«€Z;(4)

where Z;(A) := R;,(4) NejZ¢. Set

. b
1= {ee B, 1L (@ 4D, s (I > e
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and let (v;) be the sequence in SBV(Q;R?), whose components are piecewise
affine, uniquely determined by

((uj(a —56),€) z€(a+eQ)NQ
o E EjZE N Ij

(i (@), €) + shpDEu (@) (e — €)= € (a+6iQ+)NQ
{vj(z),€) = o€ EjZE \ I

(uj(e), &) + ; sz fuj(@)(z —o,€) z € (a+eiQe-)NA
aEEjZ’f\Ij

<uj(a—59"£l)5'£l>
: z€ (a+eQe)N
a € 25N
(Uj(o‘):gl) |§12D uy(a)(x—a &h)
Ly . 2 € (a+eQey)NQ
<UJ()5> 4 aEEjZf\JIjE +
(ui(a), €5) + g D wi(e)(z — o, 64) |
T E (a-}-EngdL,_)ﬂQ
CYEEJ'ZE\IJ',

where

Q¢ :={z €R? : [(2,O)| <[’ [z, €1)] < €1}

Qe+ = {z € Q¢ : £(2,£) 2 0}.
Tn order to clarify this construction, we note that, in the case £ = ey, v; = (vj, v3)
is the sequence whose component vJ' is piecewise affine along the direction e; and
piecewise constant along the orthogonal direction, for ¢ =1, 2.
It is easy to check that v; still converges to u in measure. Let us fix n > 0 and
consider 4, := {z € A : dist (=, R?\ A) > n}. Note that, by construction, for j
large we have

>, o« (lij,fuJ'(a)lz +9{Divfj,£uj(a)lz>

a€Z;(AN\;

> 5 /A |(gvj(m)g,g>|2dx+aelg|2/ div oy (o) do

n

and
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bej #{2;(4) NI}
. b )
2 agpmee] [ (00500, [

vy n

(v (), €)1 dﬁl(y)}
Then, for j large and for any fixed 5 €0,1],

FA) xS a(1Deu (@ +6Div: cui(a)?)

aeZ;(AN\I;
+be;#{Z;(A) N I;} |
= 2|Z|2/A [(Ev;(z)€, &) dm+a9i£|2fA \divv; (2)[? dz
b ) )
*‘21&12%;% (s (0, )
b . X
sz (-9 [ NN, (4.20)

In particular by applying a slicing argument and taking into account the notation
used in Theorem 1.67, by Fatou Lemma, we get )

400 > lim infj}'j (A)

1 .
NI im inf; C 2 1

2 21¢]2 /m lim int; (av/(A,,)i:u [(95)31° dt + bt (J(v,-)g)) H )
| (4.21)

Note that, even if p(é*+) = 0, taking into account also the divergence term and
the second surface term in (4.20), we can obtain an analog of the inequality
(4.21) for £+, By the closure and lower semicontinuity Theorem 1.37 and since

u € L®(Q; R?), we deduce that ug € SBV((An)C’y) and
c 2 LE ‘Dugl((-Aﬂ)C’y> drHl(y) (4:22)

for ¢ = &,€L. Recall that by assumption pler), pler + e2) # 0, thus (4.22)
holds in particular for ¢ = ey,e9,€1 + 3. Then by Theorem 1.67, we get that
u € SBD(4,) for any n > 0. Moreover, since the estimate in (4.22) is uniform
with respect to 77, we conclude that u € SBD(A).

Going back to (4.20), by applying Theorem 1.69 and then letting 7 — 0, we

get

lim inf; F; (4) > Ll(gu(?)g,m? dz + aagg;Z/A |div u(z)|? dz

2
21612
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_b_ y 1 _ el 1)
RPTHE (§/J5MI< w &) A + (1 5)/J5J_Ml< w ENdHT ),

for any 6 € [0,1].

Note that, using the inequality above with A = Q, € = ey, e; + ey, it can be
easily checked that £u € L?(Q; R?*?) and H'(J,) < 400. Then, by Lemma 1.12
applied with k

A(A) = liminf; F;(A),

a b
= oo L Q+ s L,
H e RE !

( ((Eu(@)6, )1 + 0l divu(z)?) on Q\ J,
n l(vu, €)1 on J§\ JE©

| (1 =) (v, &%) on J§\ J§

O |(vu, E) 4 (1= 6n) (v, €1)] on JENJE,

with 6, € Q N [0, 1], we get

lim in; 75 (Q) > :’B“I%F /ﬂ (Eu(2)é, ) do + ablé]? /ﬂ div u(z)|? d

_b_ . Lo
“1‘215]2 (/JS\JﬁL !(Vu,@[d’ﬂ +/ISL\J5 1<Vu,£ )Id/H

4 OV I e ).

Finally, since the argument above is not affected by the choice of the sub-lattices
in which Z? has been split with respect to £, we obtain (4.19). The thesis follows
by summing over £ € Z2.

Step 2 If f is any non-decreasing positive function satisfying (4.11), we
can find two sequences of positive numbers (a;) and (b;) such that sup; a; =
a, sup; b; = b and f(t) > (ait) Ab; for any ¢ > 0. By Step 1 we have that
I'(meas)- ligzl}ioansd(u) is finite only if F¢(u) is finite and

. . d
I'(meas)- 11£r_1+15;1fF€ (u)

> 3 00) (2@ [ esgerae

£ez?

+4a,»9|§l4/nIdivu(m)lzdm+26i(/$ {vu, &) dH!

bV
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+/JS'L\J5 l(Vu;f-LHd’Hl(y) + /anjﬁ"‘ I(Vu,fﬂ Y, I(Vu,f'!')fd'}il>> .

u

Then the thesis follows as above from Lemma 1.12. 0
Proposition 4.11 Let u € SBD*(Q) N L™ (Q; R?), then

lim sup F28 (u) < F&(w).

e—0

Proof. Using the notation of Lemma 4.2, set

¥

&

. 1\ ¢ 3
= (Jg\Jg ) U (Jﬁ*\Jﬁ) U (Jﬁnjff)
Since f(t) < b, by.Lemma 4.2 there follows

. c 5 - c ;ﬂt E £ . ;C2 (Jé)
lim sup 75 (u) < limsup F,” (u, Q5 \ Ju) + blimsup ——=~
€

e—0 e—0 e—0

< limsup FOF (u, Q6 \ J5)
e—0

JE\JIS JET\JE

+2b (/ . |(vu, )] dHN +/ N v, €5) A1
s MBIV e ).
JEnJgs
Let us prove that for a.e. z € Q& \ J: and for ¢ € {+£, €4}
Déua) = (ule +20) ~u(a), ) = [ (Eule +50¢,0)d. (4.23)

Let, for instance, ¢ = €, then.using the notation of Theorem 1.67 if z € Q¢ \ J§
and z = y + 1€, with y € II¢, we get ‘

(u(e +£€) — u(®), €) = uf(t +¢) —uj(t).

Since u € SBD (Q), for #!-ae. y € II¢ we have that ug € SBV((QE)E’y),
(U)S(f) = (Eu(y + t€)E,€) for Llae t€E (95)5”’ and ']uf,.: (JE)E’y. Thus

t4e
uE(t 4 €) — b (t) = / Euly+s06 8 ds+ S ()T ()~ (1) (5))
<) (4.24)

and, since (Jg)g’y N[t t+el =0, (4.23) follows.
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Moreover, Jensen’s inequality, Fubini Theorem and (4.23) yield

2

1 2 | fF '
= ¢ _ 1
&% Jas\J: lDeu(x)‘ dz /nE\Jz e? /0 (Eu(z +sC)c, C)ds| da
< / (Eu(z)¢, Q)P da, (4.25)
n .
for ( = £¢£.
Let us also prove that
limsup — divEE ul? dz < [¢]2 / divu(e)2de.  (4.26)
=0 &7 Jad\Jug o
Setting
g(z) = |¢]3div u(z)
and .
. n
ge(z) = Edwf'f u(x)XQE\Jz(x),
(4.26) follows if we prove prove that
lg — gellz2() = 0. (4.27)
Note that
g(z) = (Eu(@)€, &) + (Eulz)é*, €1), (4.28)
and that by (4.23) on Q¢ \ J; we have
diviE  u(z) = / (Eulz + SE)E,€) + (Eule + se1)et, €4y ds.  (4.29)
0 4

Thus, by absolute continuity and Jensen’s inequality we get
1 £
llg — gsﬂjzpz(n) <ofl) + 2|5|4/ “/ |Eu(z + s¢) — Eu(z)|* ds dz
’ Jaé € Jo
1 €
+2l514/ = / |Eu(z + s€*) — Eu(z)|? ds dz.
s € Jo

Applying Fubini Theorem and then extending £u to 0 outside 2 yield
. 1 £ ‘ ’
llg — gsH%z(n) <o(l)+ 2’5|4'€‘/0 /ﬂ |Eu(z + s€) — Eu(z)|* dz ds
1 €
s2lel'; [ [ leutet se) - gule)ft e s,
0 Ja

and so (4.27) follows by the continuity of the translation operator in L?({; R?*?).
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Of course, using the same argument, we can claim that the analogous inequal-
ities of (4.26), obtained by replacing (¢,€1) by one among the pairs (¢, —€4),

(—f,fl), (-—5, *E‘L), hold true.
Eventually, since f(t) < at, by (4.25) and (4.26) we get

lim sup .7-"5’5 (u, QE \ th)’_<_ Qa/ |(8u(m)£,£)|2 dz + 4a9|5[4/ |div u(:r:)l2 dz
Q Q

e—+0

and the conclusion follows. O

Remark 4.12 Arguing as in the proof of Proposition 4.11 we infer that the
functionals defined by : '

1 1
i =1 [ o (D2 d,

€

where g(t) := (at) A b, satisfy the estimate

G5() < 20 [ [Eu(@t, P da+2 [ Yo, €)1 ars,

for any u € SBD(Q). ,
Moreover, by the subadditivity of g and since f(t) < g(t) by hypothesis, there
holds : .
Fehu) < ¢ (GEwW) + 68 (w)) < eFE(u).

Now we are going to prove the I'-limsup inequality that concludes the proof
of Theorem 4.3. We will obtain the recovery sequence for u € L®(Q;R?) as
suitable interpolations of the function u itself.

Proposition 4.13 For any u € L (Q; Rz),'
I'(LY)-limsup FA(u) < F4(u).
e—0
Proof. It suffices to prove the inequality above for u € SBD?*(Q). Up to a
translation argument we may assume that Q is starshaped with respect to 0. Let

X € (0,1) and define uy(z) := u(Az) for £ € Q) := A71Q. Notice that Oy D {2
and uy € SBD?(Q,). It is easy to check that uy — uin LY(Q;R?) as A — 1 and

: d — pd
AhﬂF (U}\,Q)\)—-F (’U,)

Then, by the lower semicontinuity of I'-limsup, F4, it suffices to prove that

T(LY)-limsup FZ(ux) < F4ua, Qn),
-0 !

for any A € (0,1).
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We generalize now an argument used in the proof of Theorem 1 of [35]. Let
2 — 0 and consider uy extended to 0 outside ). By Lemma 4.1 Ty Uy = Uy
~in L}(Q; R2) for a.e. y € (0,1)?, where Ty is given by (4.1) for B = {e1, ea}.

Notice that for o € €Z2 an_d € € Z2 we have e [%]51 — o and [atsg] —

€1

"o+ €€, thus we get

-/(o 1)2 FE (Tyiua) dy =

/;w=§: &if ( ( | D2, gua(esy + o)’

E€732
OIDIVZ, un(ey + a)P)) dy.

Then, using the change of variable €y + o — y, we obtain
/ Fed‘ (T;iu,\) dy
(12

= > pl€) Zj ( (IDEJ cua(y )|2+9|Div?j)§u>\(y)|2)> dy

Eezz ERE +(0 £3
<D pEO)FSE (ua, ) -
fez?

In particular, by Proposition 4.11 and Remark 4.12, there holds

lim sup; ‘/(o 1§d (T ux) dy | (4.30)

< Z p(€)lim sup; F; ’5 (ux, Qn) < F4uy, Q) < +o0.
gez?

Fix 6 > 0 and set
cl = {z € (0,1): FE (T5iun) < /(O . F (Tgiua) dy +5} :

We have

f(o y2 £ FE (Ty'w) dy <e<l.
c
f(01 Fé (Ty uy) dy+4 ~
By Egoroff’s Theorem, there exists a measurable set B in (0,1)? with |B| <
such that T57uy — uy in L*(Q; R?) uniformly with respect to z € (0, 1)
Thus for any j € N we can choose z; € C} \ B such that 77} uy — uy in L (€2; )
and

10,1\ G3l <

Fé (Teuy) < /( A (Ti) dy+ (4.31)
0,1
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Hence, by (4.30) and (4.31), there holds
Jirn sup; Fy. (Tj;'m> < Fé(up, Q) +6

and letting § — 0 we get the conclusion. . » 0

4.3 Generalizations: an extension in R3

By following the approach of Section 4.2, different generalizations to higher di-
mension can be proposed. We present here one possible extension of the discrete
model in R3 which provides as well an approximation of energies of type (4.9).

For any orthogonal pair (£,¢) € R3\ {0} and for any u : R® — R? define

Déu(z) = (u(z + €€) — u(z), &),

|D? u(e)? = | Diu(a)® + | D7 fu()
D¢ cu(w) i= D} gule) + D culs),
|DivZ , cu(z)f® =

(—1~D“15u(m)+—1~—D”2§utx)+ 1 D"ag"cu(:c)>2
y ] = € xcP ’

45

(o1,02,03)E{1,—-1

where £ x ¢ denotes the external product of £ and (.
Lét ©Q be a bounded open set of R? and let

A3Q) :={u:Q—=R®: u=const on (a+ [0,6)%) NQ for any & € £Z°}.
Then set
S = {(e1, e2), (1, €a), (€2, €3), (e1+e2, e1—€2), (e1-+es, e1—e3), (e2+es, ea—es)}

and consider the sequence of functionals F33 . LYQ;R3) — [0, +oc] defined by

S erf (;l‘ (I1De g cule)® + 9|Di"§,§,cu(0)lz))
(E.0)ES weRYS _ .
Fo3y .= if u e A2()
+co otherwise,
with
REC = {a € eZ® : [a—eb, atef]lUla—el,ate(lUla—ebx (a+es x (] C 2}

and f,6 as in Section 3.
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Theorem 4.14 Let Q be starshaped. Then F43 T-converges on L% (Q; R?) to
the functional F43 : L= (;R3) — [0, +oc0] given by

8a [, |Eu(z)|? dz +4(1 + 20)a Jo ldivu(z)|? dz

Filu) = 42 (g . f5. 8¢ (ut —um, 1) dH? if u € SBD(Q)
,$)E

+0co otherwise

with respect to both the L*(£; 33)~convergence and the convergence in measure,
where ®:¢ : R3 — [0, +o0) is defined by ‘

&8¢ (z,v) = 98 (2,v) V¥ (2, v) V¥ %E (2, v),
with

v,m| if (z,m) # 0
P (z,v) =

0 otherwise,

forn=2¢&¢ExC

Proof It suffices to proceed as in the proof of Theorem 4.3, by extending all
the arguments to dimension 3 and taking into account Lemmas 4.1 and 4.2, that
are stated in any dimension. O



REFERENCES

[1] R. Alicandro, A. Braides and M.S. Gelli, Free-discontinuity problems gen-
erated by singular perturbation, Proc. Roy. Soc. Edinburgh, to appear.

[2] R. Alicandro, M. Focardi and M.S. Gelli, Finite difference approximation of
‘energies in fracture mechanics, Preprint SISSA, Trieste, 1999.

[3] R. Alicandro and M.S. Gelli, Free discontinuity problems generated by sin-
gular perturbation: the n-dimensional case. Proc. Roy. Soc. Edinburgh, to
appear.

[4] M. Amar, A. Braides, I'-convergence of non-convex functionals defined on
measures. Nonlinear Anal. 34 (1998), 953-978.

[5] L. Ambrosio, A compactness theorem for a new class of functions of bounded
variation, Boll. Un. Mat. Ital. 3-B (1989), 857-881.

[6] L. Ambrosio, Existence theory for a new class of variational problems, Arch.
Rational Mech. Anal. 111 (1990), 291-322. ‘

[7] L. Ambrosio, A new proof of the SBV compactness theorem, Calc. Var., 3
(1995), 127-137. ‘

[8] L. Ambrosio, A. Braides. Energies in SBV and variational models in fracture
mechanics. In Homogenization and Applications to Material Sciences, (D.
Cioranescu, A. Damlamian, P. Donato eds.), GAKUTO, Gakkaotosho, Tokio,
Japan, 1997, p. 1-22.

[9] L. Ambrosio, A. Coscia and G. Dal Maso, Fine properties of functions with
bounded deformation. Arch. Rational Mech. & Anal., 139 (1997), 201-238.

[10] L. Ambrosio, N. Fusco and D. Pallara, Special Functions of Bounded Varia-
tion and Free Discontinuity Problems, Oxford University Press, Oxford, to
appear. . ' )

[11] G. Anzellotti, A class of convex non-coercive functionals and masonry-like
materials. Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), 261-307.

[12] G. Anzellotti, Elasticity with unilateral constraints on the stress. Proceed-
ings of the International Workshop on Integral Functionals in Calculus of
Variations (Trieste, 1985). Suppl. Rend. Circ. Mat. Palermo 15 (1987),
135-141.

[13] G.I. Barenblatt, The mathematical theory of equilibrium cracks in brittle
fracture, Adv. Appl. Mech. 7 (1962), 55-129.

[14] A.C. Barroso, G. Bouchitté, G. Buttazzo, I. Fonseca, Relaxation of bulk
and interfacial energies, Arch. Rat. Mech. Anal. 135 (1996), 107-173.

[15] Z.P. Bazant, Instability, ductility and size effect in strain-softening concrete.
Journal of the Engineering Mechanics Division, ASCE 102 (1976), 331-344.

[16] G. Bellettini, A. Coscia and G. Dal Maso, Compactness and lower semicon-
tinuity in SBD(Q). Math Z., 228 (1998), 337-351.



118 References

[17] M. Born, K. Huang, Dynamical Theory of Crystal Lattices. Oxford Univer-
sity Press, Oxford, 1954.

[18] G. Bouchitté, A. Braides, G. Buttazzo, Relaxation results for some free
discontinuity problems. J. Reine Angew. Math. 458 (1985), 1-18.

[19] G. Bouchitté, G. Buttazzo, New lower semicontinuity results for nonconvex
functionals defined on measures. Nonlinear Analysis, Theory, Methods &
Applications 15 N. 7 (1990) 679-692.

[20] G. Bouchitté, G. Buttazzo, Integral representation of noncconvex function-
als defined on measures. Ann. Inst. H. Poincaré Anal. Non Linéaire 9
(1992), 101-117.

[21] G. Bouchitté, G. Buttazzo, Relaxation for a class of nonconvex functionals

- defined on measures. Ann. Inst. H. Poincaré Anal. Non Linéaire 10 (1993),
345-361.

[22] G. Bouchitté, I. Fonseca, L. Mascarenhas, A global method for relaxation,
Arch. Rat. Mech. Anal. 145 (1998), 51-98.

[23] A. Braides, Approzimation of Free-Discontinuity Problems, Lecture Notes
in Mathematics. Springer Verlag, Berlin, 1998.

[24] A. Braides, Non-local variational limits of discrete systems. Preprint SISSA,
Trieste, 1999. .

[25] A. Braides and V. Chiado Piat, Integral representation results for function-
als defined on SBV (Q; R™). J. Math. Pures Appl. 75 (1996), 595-626.

[26] A. Braides and G. Dal Maso, Nonlocal approximation of the Mumford-Shah
functional. Calc. Var. 5 (1997), 293-322.

[27] A. Braides, G. Dal Maso and A. Garroni, Variational formulation of soft-
ening phenomena in fracture mechanics: the one-dimensional case. Arch
Rational Mech. Anal. 146 (1999), 23-58.

[28] A. Braides and A. Defranceschi, Homogenization of Multiple Integrals. Ox-
ford University Press, Oxford, 1998.

[29] A. Braides and A. Garroni, On the nonlocal approximation of free-discon-
tinuity problems. Commun. Partial Differ. Equations 23 (1998), 817-829.

[30] A. Braides and M.S. Gelli, Limits of discrete systems with long-range inter-
actions. Preprint SISSA, 1999.

[31] A. Braides and M.S. Gelli, Limits of discrete systems without convexity
hypotheses. Preprint SISSA, Trieste, 1999.

[32] M. Buliga, Energy minimizing brittle crack propagation, J. Elasticity, 52
(1999), 201-238.

[33] A. Carpinteri, Mechanical Damage and Crack Growth in Concrete: Plastic
Collapse to Brittle Fracture. Martinus Nijhoff Publishers, Dordrecht, 1986.

[34] A. Chambolle, Image segmentation by variational methods: Mumford and
Shah functional and the discrete approximation, SIAM J. Appl. Math. 55
(1995), 827-863. ’

[35] A. Chambolle, Finite differences discretizations of the Mumford-Shah func-
tional. RAIRO-Model. Math. Anal. Numer., to appear.

[36] A. Chambolle Un theoreme de I-convergence pour la segmentation des sig-
naux. C.R. Acad. Sci., Paris, Ser. I 314 (1992), 191-196.



References ‘ 119

[37] A. Chambolle, G. Dal Maso, Discrete approximation of the Mumford-Shah
functional in dimension two, RAIRO-Model. Math. Anal. Numer., to appear.

[38] G. Cortesani and R. Toader, A density result in SBV with respect to non-
isotropic energies. Nonlinear Anal., to appear.

[39] G. Dal Maso, An Introduction to I'-convergence. Birkhiuser, Boston, 1993.

[40] E. De Giorgi and L. Ambrosio, Un nuovo funzionale del calcolo delle vari-
azioni. Atti Accad. Naz. Lincei Rend. Cl Sci. Fis. Mat. Natur. 82 (1988),
199-210. ,

[41] E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale. At
Accad. Naz. Lincei Rend. CL Sci. Fis. Mat. Natur. 58 (1975), 842-850.

[42] G. Del Piero, L. Truskinovsky, A one-dimensional model for localized and
distributed failure. Manuscript, 1997. ,

[43] L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Func-
tions, CRC Press, Boca Raton 1992.

[44] H. Federer, Geometric Measure Theory. Springer Verlag, New York, 1969.

[45] G.A. Francfort and J.J. Marigo, Revisiting brittle fracture as an energy
minimization problem, J. Mech. Phys. Solids, 46 No. 8 (1998), 1319-1342.

[46] M. Fukushima, Dirichlet Forms and Markov Processes. North-Holland, New
York, 1980. S

[47] M. Giaquinta, E. Giusti, Researches on the statics of masonry structures.
Arch. Rational Mech. Anal. 88 (1985), 359-392

[48] E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhau-
ser, Basel, 1983.

[49] M. Gobbino, Finite difference approximation of the Mumford-Shah func-
tional. Comm. Pure Appl. Math. 51 (1998), 197-228.

[50] M. Gobbino and M.G. Mora, Finite difference approximation of free discon-
tinuity problems. Preprint SISSA, Trieste, 1999.

[61) A.A. Griffith, The phenomenon of rupture and flow in solids, Phil Trans.
Royal Soc. London A 221 (1920), 163-198.

[52] H.G. Heilmann, H.H. Hilsdorf, K. Finsterwalder, Festigkeit und Verformung
von Beton unter Zugspannungen. Deutscher Ausschuss fiir Stahlbeton 203,
W. Ernst & Sohn, Berlin, 1969.

[53] A. Hillerborg, Numerical methods to simulate softening and fracture of con-
crete. Fracture Mechanics of Concrete: Structural Application and Numer-
ical Calculation (C.G. Sih and A. DiTommaso eds.), 141-170, Martinus
Nijhoff Publishers, Dordrecht, 1985.

[54] A. Hillerborg, M. Modeer, and P.E. Petersson, Analysis of crack formation
and crack growth in concrete by means of Fracture Mechanics and Finite
Elements. Cement and Concrete Research 6 (1976), T73-782.

[55] K. Huang, On the atomic theory of elasticity. Proc. Royal Soc. London A

[66] H. Liebowitz, Fracture: an Advanced Treatise, Academic Press, 1969.

[57] U. Mosco, Composite media and asymptotic Dirichlet forms. J. Funct. Anal.
123 (1994), 368-421. _

[58] D. Mumford and J. Shah, Optimal approximation by piecewise smooth func-
tions and associated variational problems, Comm. Pure Appl. Math. 17



120 References

(1989), 577-685.

[59] G. Romano, M. Romano, Elastostatics of structures with unilateral condi-
tlons on stress and displacement fields. Second Meeting on Unilateral Prob-
lems in Structural Analysis, Ravello, 1983, ,

[60] S.A. Silling, Reformulation of elasticity theory for discontinuities and long-
range forces. Sandia Report 2176 (1998) ‘

[61] R. Temam, Mathematical Problems in Plasticity. Bordas, Paris, 1985.

[62] L. Truskinovsky, Fracture as a phase transition. Contemporary research in
the mechanics and mathematics of materials (R.C. Batra and M.F. Beatty
eds.) CIMNE, Barcelona, 1996, 322-332.

(63] W. Ziemer, Weakly Differentiable Functions, Springer, Berlin, 1989.









