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Preface

This thesis deals with some of the most recent developments on the cosmological
constant problem in particle physics and cosmology.

The fact that a relevant cosmological term appears to be incredibly small com-
pared to any ‘natural’ particle physics scale has puzzled both cosmologists and
particle theorists for decades. Today, that there seems to be a mounting evidence
for a non—vanishing cosmological constant, the puzzle is even more severe. Two
coincidences await explanation: the smallness of A — why it is so small, some 120
orders of magnitude less than the Planck scale, but still not zero — and the time
coincidence — why the vacuum contribution to the cosmological energy density is
of the same order of the matter one today.

A conclusive proposal for setting the cosmological constant (almost) to zero
has not yet come out. In the last couple of years, then, the attitude has become
more phenomenological. Following the belief that the cosmological constant will
ultimately be set to zero by some yet unknown high energy mechanism, most
of the recent efforts have focussed on studying the cosmology of rolling scalar
fields (also referred to as ‘Quintessence’). These fields could easily provide the
tiny vacuum energy density in excess from zero required by cosmology, if they
happen to be displaced from the minimum of the potential or in the case that
the minimum is not zero. Moreover, for some classes of potentials, an attraction
mechanism has been shown to work, thus providing a natural framework in which
to weaken the fine-tuning in the initial conditions. Whether particle physics can
provide any realistic model of Quintessence is still an open question.

In this thesis we will focus on some basic issues connected with the attempt
to build a particle physics phenomenology of scalar fields with inverse power po-
tentials, following the results discussed in refs. [112, 122, 134, 135]. In Chapter 3
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a multi-field model for Quintessence is discussed in the framework of Supersym-
metric QCD. This model turns out to be a natural particle physics candidate for
‘Quintessence’ and the multi-scalar dynamics is shown to enrich the phenomenol-
ogy with respect to the one—field case. In Chapter 4 the problems implied by the
interaction of the quintessence scalar with the fields of the Standard Model of
particle physics are discussed and a possible way out is proposed. In Chapter 5,
then, the paradigm of ‘Quintessential Inflation’ is introduced, in which the scalar
field driving inflation, the inflaton, and the quintessence scalar are identified. It
is shown that in this framework the exit from inflation can uniquely set the initial
conditions for the subsequent quintessential rolling.

The first two chapters are introductory and aim at giving a quick overview
of some work of the past and of the motivations for considering the cosmolog-
ical constant problem. These chapters are meant to be illustrative rather then
comprehensive. A more in depth historical introduction and a complete list of
references can be found in earlier reviews [33, 29, 116, 137, 163] on the subject. In
Chapter 1 we recall some basic ideas about the role of the cosmological constant
in particle physics and cosmology. The aim is to convince the reader that after
more than 70 years we still have some good reason to bother about the cosmo-
logical constant. In Chapter 2, then, the idea of Quintessence is introduced and
recent results about cosmological rolling scalar fields are discussed. Here we set
the framework for the results that will be presented in the following chapters.

Finally, in Chapter 6, we present our conclusions.

We will use natural units in which ¢ = % = 1 and G2 = Mp ~ 10*° GeV.
The metric tensor has signature (+ — ——).
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I would like to thank Massimo Pietroni, Marco Peloso and my supervisor
Antonio Masiero with whom I obtained the results reported in this thesis. I am
also grateful to Antonio Riotto for a number of helpful discussions.



Chapter 1
Introduction

The cosmological constant problem is one of the deepest and longest-standing
unresolved issues at the interface between cosmology and particle physics. If
on one hand particle physics is expected to ‘compute’ its value or eventually
find some symmetry that could make it vanish, on the other cosmology is the
best experimental ground on which to test the theory. Unfortunately, since the
cosmological constant was first introduced by Einstein in 1917, no compelling
explanation from fundamental physics has been proposed so far. The smallness
of A, as implied by the cosmological constraints, still remains a mistery!.

The question whether the cosmological constant is identically zero or plays a
relevant role in cosmology has not yet been definitively settled, but there seems to
be mounting evidence of a non-negligible vacuum energy presently contributing
to the total energy density of our universe. Surprisingly, as it was noticed long
ago by Zeldovich [167, 168], what is a ‘large’ cosmological constant from the
cosmologist’s point of view (say a vacuum energy density contributing as much
as the matter one) appears instead unimmaginably small in the particle physicist
perspective (some 120 orders of magnitude smaller than the ‘natural’ scale). The
attemp to reconcile this paradox is what goes under the name of ‘the cosmological

constant problem’.

But what is the cosmological constant? When we speak about the ‘vacuum
energy density’ py to be added to the matter and radiation densities, py; and pg,
to make up the whole of the energy content of the universe, we mean the sum of

'For recent reviews on the cosmological constant problem see refs. [33, 29, 116, 137, 163].
For a non-technical introduction see also [1]).



two contributions of very different nature.
On one hand there is the constant A term originally added by Einstein to his
equations of the general theory of relativity

1
R, — é—g,wR = 87GT, + Agu . (1.1)

If A > 0 these equations admit a static universe as a solution, which was Einstein’s
original motivation for introducing this term?. A positive A in eq. (1.1) acts like
a ‘repulsive’ force that counterbalances the attraction of gravity.

In addition to this, however, another contribution should be considered. From
the particle physics point of view, the vacuum is not just empty space and so the
contribution of the so-called ‘zero-point energy’ should be taken into account. In
other words, this means that the energy—-momentum tensor in general does not

vanish in the quantum state of zero particle excitations:

(OT,10) = € g # 0 - (1.2)

The fact that (0|7,,|0) is proportional to the metric tensor g,, comes from the
constraint that the vacuum state is Lorentz invariant. The value of the ground
state energy demsity ¢, = (0|p|0) has no physical effect in quantum field the-
ory and can be arbitrarily renormalized to zero. The problem arises when we
face gravity. The zero-point of the energy does matter! In fact, the energy of
the vacuum gravitates as well and we are not free anymore to add or subtract
constants.

When speaking of the cosmological constant, then, we will be concerned with
the sum of these two effects: '

Aeff = A+87TG60 . (13)

If we define p as the total energy density of the universe, it will be composed
of three contributions

p = pu t PR Tt pPv (1.4)
where py is given by
= Dy A (1.5)
PV =%a = G O '

2We should remember that when in 1917 Einstein first introduced the cosmological constant
he wasn’t aware of the expansion of the universe which Hubble was going to discover only
much later, in 1929. Despite that, Friedmann’s solutions of the Einstein equations predicted a
non-static universe already in the early 20’s.



Now, how can we explain the fact that, as we will see in what follows, py is
vanishingly small compared to any particle physics scale? In other words, why the
two terms in eq. (1.5) almost exactly cancel? This is the cosmological constant

problem.

1.1 The zero—point energy in quantum physics

In order to understand the problems connected with the energy of the vacuum
in quantum physics, let us start with a simple example: the computation of the
one—dimensional harmonic oscillator energy spectrum in quantum mechanics.
Consider a particle of mass m with position coordinate ¢ and momentum p.
And suppose that it is subject to a restoring force F' = —mw?q proportional to
the distance from the origin. The corresponding one-dimensional Hamiltonian is

H = .2.177_1 (0® + m22g?) (1.6)

and the position and momentum variables are connected by the commutation

relations
lg, p] = i (1.7)

where we have set A = 1.
One can then introduce the creation and annihilation operators a' and a

al = —\—15 (¢ —ip) , a = 715 (¢ + ip) (1.8)

which are Hermitean conjugates of each other and satisfy
[0, al] = 1. (1.9)
The Hamiltonian can then be rewritten as

H=uw (N+ %) (1.10)

where we have defined the ‘number’ operator N = a'a. This operator can be
easily shown to have a spectrum of eigenvalues given by the non-negative integers
n > 0, from which we can compute the zero point energy of the theory. The
spectrum of the Hamiltonian is then

. ,
H, = w(n+§> with n>0 . (1.11)
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Since the vacuum is defined as the state of minimum energy of the system, we
find that it gives a non—vanishing contribution

(O|H|0) = Hy = —;-w £0. (1.12)

The situation does not change if we go to quantum field theory. In the simple
case of the canonical quantization of a real scalar field ¢(x,¢) of mass m obeying
the field equation v

(@+m*¢ = 0 (1.13)

we obtain a similar result. The scalar field ¢(x,t) and its conjugate momentum
m(x,t) = 6L/) q'ﬁ, being L the lagrangian of the system, are operators which satisfy
the commutation relations

[(x,1), ¢(y,8)] = i S *(x~y) (1.14)
and the solution of eq. (1.13) can be expressed as an integral over the modes k
dk X ‘
— i(k-x—wit) —i(kx—wyt)
8001) = [ o (@™ Fafe ] (L)

where we have defined wy = v/m? + k? as the energy of the mode k.
The coefficients of the expansion ai and aL are the operators which destroy
or create a particle excitation of momentum k, respectively, and obey the com-

mutation relations
[ak, aH = &k —k) (1.16)

which can be derived from eq. (1.14). The Hamiltonian of the theory is then
1 1
H = 5 [ dico [ola+ mal] = [ dic [Nk + -2-} (1.17)

with the operator Ny = alay counting the number of excitations of momentum
k in a given state. |

If we compute the expectation value of the Hamiltonian in the vacuum we
find an infinite answer since we are now summing over all the possible energy
levels of the system

(0|H|0) = %/dk Wi - (1.18)

This problem is usually overcome by introducing an ad hoc renormalization pro-
cedure named ‘normal ordering’ (indicated by the symbol ::), which estabilishes
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that the creation and annihilation operators should be ordered in such a way that
the creation one is always to the left. The normal-ordered vev of the Hamiltonian
gives

(0| :H:10) =0 . (1.19)

By means of the normal ordering procedure, the zero—point energy of quantum
field theory can then be safely renormalized to zero.

However we should be warned that while in quantum field theory the choice of
the absolute normalization of the energy has no physical meaning, in cosmology
instead it is crucial. Since all the energy contributions have a gravitational effect,
we are not allowed anymore to throw away the energy of the vacuum but we
should more carefully take it into account. Of course, in the integral (1.18) it
does not have physical meaning to integrate all the modes up to infinity, but we
should rather introduce an ultraviolet cutoff kpyq, in momentum space following
the belief that the theory will not hold anymore beyond a certain wavelength.

W. Pauli was probably the first to wonder about the cosmological conse-
quences of the zero point energy of quantized fields, as reported in [149]. But
we will start with the first published attempt which was due to Zeldovich [167]
in 1967. He tried to estimate the vacuum energy integrating out the shortest

WéVelengths
1 kma.:z:
(0|H|0) = 5/0 dk wy . (1.20)
Defining £ = |k| and approximating wy =~ k, we find for the vacuum energy
density
~ 1 /kmawk 4 k2 dk = kfnaz : 1.91
© = (2m)® Jo " ~ 8r? (1.21)

When Zeldovich gave his estimate, he used the mass of the proton as the cutoff
energy and obtained an energy density ¢y ~ (1 GeV)*. If we believe that general
relativity is a good approximation up to the Planck scale we should instead take
that as a cutoff and so obtain ¢y ~ (10'° GeV)* or, being more conservative and
using the electroweak scale as the limiting one, € ~ (100 GeV)*. As we will see
below, these energy scales — which seem so far apart from each other — are indeed
all much larger than any cosmologically allowed py .

It is worth noticing that, even if he chose a much lower cutoff than the Planck
scale, Zeldovich already realized that the energy scale for ¢y compatible with cos-
mology had to be 12 orders of magnitude smaller than what he got on dimensional
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grounds. That’s why he attempted a first ‘theory’ of the cosmological constant,
making the hypothesis that the two terms in Agsf, as defined in (1.3), exactly
cancel and that the residual cosmological constant was due to higher order ef-
fects like the gravitational interaction between the particles [167, 168]. Also in
this case, however, he was still 8 orders of magnitude above the cosmologically

allowed energy, which is ~ 0.003 eV.

Another interesting exercise is the attempt to fit to cosmology the parameters
of the Higgs mechanism for symmetry breaking of the electroweak theory [163].
If this is the vacuum in which we live, it should be straightforward to compute
the vacuum energy density from the parameters of the standard model.

The potential for the Higgs field is

V() = Vo — pPd'¢ + A(6¢) (1.22)

with V; an arbitrary constant of mass dimension 4.
The minimum of the potential (1.22) is in ¢? = v* = p?/2) and has a value

4

Vininn = V(¢* =% = V — Z—/\ = ¢ . (1.23)

We can set Vy = 0 in order to have the unstable maximum of the potential at

¢ = 0 normalized to zero. As a consequence, we would find that ¢y is negative
definite

€ = —Avt ~ —)\ (300 GeV)* (1.24)

which is by far too large even if we fine tune A to be very small. Another possibility
is that the two terms in eq. (1.23) almost exactly cancel. We can then simply
require that Vg =~ p*/4X, but also in this case we do not improve the fine-tuning
issue. Instead of requiring the coupling constant A to be as small as ~ 107°¢, we
should explain a cancellation to the 56th digit.

Before switching to cosmology, a final remark is to be done. When computing
the vacuum energy in quantum field theory, all the particle species are to be taken
into account. In particular we have to sum over both bosons and fermions. A
result analogous of that of eq. (1.18) for bosons can be obtained for fermions and
the same expression is found but with a minus sign, due to the fact that fermions
obey anticommutation and not commutation rules.

Since in supersymmetric theories fermion and boson partners are characterised
by having equal masses [170], in this context we would easily find the total energy
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density of the vacuum to be identically zero. This is a consequence of the algebra
obeyed by the supersymmetry generators

{Qa» @b} = (4)as P* (1.25)

where o and [ are two—component spinor indices, o; are the Pauli matrices,
oo = 1 and P* is the 4-momentum operator. The condition for supersymmetry
to be unbroken is that the vacuum state |0) satisfies

Qa.10) = QLj0) = 0 . (1.26)

From the last two equations it is easily shown that the vacuum has zero energy—

momentum
(0|P*0) = O . (1.27)

Quantum effects do not change this conclusion, since supersymmetry also ensures
the cancellation of boson and fermion loops.

This result seems very encouraging: we could set the cosmological constant
equal to zero invoking supersymmetry. Unfortunately in the real world in which
we live, supersymmetry is broken and so the minimum of the energy is not zero

anymore.

1.2 Consequences of the cosmological constant

Consider now a homogeneous and isotropic universe, with line element given by
the Robertson—Walker metric

dr?
1—kr?

ds* = dt* — R(t)? { + r?d¥? + r? sin® ﬁdgo} (1.28)
where (r,9, ) are comoving spatial coordinates, ¢ is the proper time and R(¢)
is the scale factor of the universe which measures its size. The constant k can
take values 0 or &1 and is related to the spatial curvature of the universe. For a
spatially flat universe k£ = 0.

The Einstein equations then read

R e
- T3 Z(m + 3p;) (1.29)
R? e k

11



where the contribution of the different forms of energy in the universe, with
equation of state p = w;p, has been taken into account. We can also define the
Hubble ‘constant’ H, which measures the expansion rate, and the decelleration
parameter ¢, which says if the universe is accelerating or decellerating
R
o 1.31
3 (131)

H

Il

With the subscript 0 we will indicate the present value of these quantities.
Equation (1.29) can be used to express go as a function of the present fraction
densities in radiation, matter and vacuum energy,

Or="2,  Qu="% ad Q=2 (1.33)
Pe Pe Pe

with respect to the critical energy density

3HS | g12 % 1047 GoV?

= 6 S5hS0. .
pe = o2 .0 8, (1.34)

and get
1
o =3 D0 (1 +w) . (1.35)

We have introduced the adimensional constant h which accounts for the uncer-
tainty in the measure of the Hubble constant

Hy = 100k km sec™! Mpc™* . (1.36)

Since we know that today the universe is very nearly critical, that means that pg
is within an order of magnitude of p., any cosmologically relevant vacuum energy
contribution should be of the same order. From this we see that the scale py =~
1047 GeV is the one which would have an effect on present day cosmology. And
this is clearly by far too smaller than the particle physics predictions discussed
in the previous Section.

From eq. (1.35) we note that in order to have an accelerated expansion,
qo < 0, the dominating energy component should have a negative equation of state
w < —1/3. This cannot happen if radiation (wg = 1/3) or matter (wy = 0)
are dominating, but it is possible in the case of vacuum energy (wy = —1).
In particular, during the present epoch in which the radiation contribution is
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completely negligible, it is sufficient to have Qy > Qy, /2 in order for the universe
to accelerate, since in this case

Gy — —;—QV . (137)

The net effect of a non-vanishing vacuum energy is then to make the universe
expand faster and faster until it approaches an exponential regime in which the

scale factor grows like R(t) ~ exp1/Acpr/3 t.

The Friedmann equation (1.30) can be rewritten as

k

1->0; =1-Q = R

(1.38)

and casts the evolution of {2 for all times . The product H2R? is always decreasing
with time: it goes like x R/Ry = (1 + 2z)~! during matter domination and like
x (Rrg/Ro)(R/Rgrg)? ~ 10%*(1 + 2)~? during radiation dominaton, where we
have defined the redshift z

p= 20 (1.39)

and Rpq is the scale factor of the universe at matter-radiation equivalence.

We see that €2 tends to run away from the critical value 2 = 1. Since we
know that today {2 is certainly within an order of magnitude of one, the universe
should have been very nearly critical in the past. For example, at nucleosynthesis
(t ~ 1sec) it should have been | — 1] < O(107%), and at the Planck time
(t ~ 10~%sec) it should have been |[Q — 1| < O(10~%). This fine-tuning can
be avoided only if the universe is exactly critical. Only in this case, indeed, Q
would remain fixed to one. This problem, the so called ‘flatness problem’ of
standard cosmology, is one of the main motivations for introducing the paradigm
of inflation in the early universe. The exponential expansion driven by the energy
density of the inflaton is a very natural scheme in which to obtain a critical energy
density. It is because of this fine-tuning problem, and not as a consequence of
inflation, that we will then set 0 = 1 in the following. From eq. (1.38) we also
see that a critical universe is spatially flat, since 2 = 1 implies k& = 0.

We can now study the evolution of the universe with Q@ = Qy; + Qy = 1. Eq.
(1.30) can be rewritten in a more convenient form as a function of £, and Qy:

1 dR\? RA\"! R\?2
H§R3 (E) = S (z_z;) + v <§5> ‘ (1.40)
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We then see that if a positive cosmological term is present, no matter how small,
it will always grow with respect to the matter density and thus eventually always

dominate.

The first consequence of this fact is that, with Qy # 0, ‘geometry is not des-
tiny’ anymore, in the words of L.M. Krauss and M.S. Turner [94]. If Oy =0, it
is straightforward to see from egs. (1.29)-(1.30) that a positive curvature geom-
etry (k = 1) corresponds to a recollapsing universe (the Hubble parameter can
change sign), while a negative curvature (k = —1) or flat (k = 0) geometry cor-
respond to an ever expanding universe (the Hubble parameter is always positive
and tends to zero only in the flat case). If a cosmological constant is present,
instead, this one—to—one correspondence is lost. Since the ratio of the matter to
vacuum energy density scales like oc B3, the cosmological constant could even-
tually dominate even if we start with a very low 2. Imagine that we had at
present {2, as large as 1.1 (corresponding to a closed geometry), with a vacuum
component of just Qy = 1072, This last contribution, absolutely undetectable
at the present time, would be enough to speed up the universe in such a way to
prevent it from recollapsing [94]. In the case of a critical universe, as we have seen
from eqns. (1.37) and (1.40), if a non-vanishing cosmological constant is present,
it would constantly grow with respect to the matter component and eventually
dominate, whatever its initial value, speeding up the expansion in contrast to
the ‘traditional’ slowing down of critical models. An inflationary phase would
start as soon as Qy > /2. On the same footing, it can be checked that if the
cosmological constant is negative, i.e. {0y < 0, then the universe will certainly
recollapse, even if it is open, 7.e. {2 < 1.

We thus conclude that the fate of the universe is determined by the ultimate
equation of state rather than geometry. In this perspective, we will be able to
make definite predictions about the future destiny of the universe only when we
will be able to compute, from high energy principles, the exact matter/energy
content of the universe in all its components. More speculative discussions about
the future of civilization in an ever—expanding universe can be found in refs.
[63, 95, 145].

Another effect of the cosmological constant is on the expansion age of the
universe. When Q,; + Qy = 1 the age of the universe ¢y, as a function of the
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vacuum fraction density Qy is given by the following expression [88]

2 i 140/
- 2 0 v .

If Qy = 0 this gives the well known result ty = 2/3H,. But, if a vacuum energy
component is present, this has the effect of lengthening the expansion age of the
universe. As an example Qy = 2Q, = 2/3 would give a universe older by a -
factor ~ 1.4, with respect to the Qy = 0 case. Taking Hy = 70 km sec™ Mpc™!,
we find that tg = 9 Gyr for Q = Qu = 1 but to >~ 13.5 Gyr for Qs = 0.3 and
Qy =0.7.

At present, the best way to infer the presence of a non—vanishing cosmological
constant is by measuring deviations from linearity of the Hubble’s law. If a distant
object has an absolute luminosity £, we can define its ‘luminosity distance’ d;, in
terms of the measured flux F [88]

d: = zl—ff = R*(tp)r?(1+2)* . | (1.42)
where r; is the comoving coordinate at which the source emits light (that will be
detected at time ¢, at the comoving coordinate r = 0).

The Hubble’s law gives a relation between the luminosity distance and redshift

of observed objects [88]
1
d; = Hyz + §Ho(1—q0)z2 + . (1.43)

This relation is linear for small redshifts, but might deviate from linearity at
high redshifts if the decelleration parameter gy # 1 . Observations of the most
distance objects are thus of crucial importance for determining the sign of ¢, and
as a consequence the energy balance between matter and vacuum in recent times.
By plotting in the Hubble diagram the luminosity distance vs redshift of distant
objects it is then possible to discriminate among different cosmological models.
This is what is beeing done studying SuperNovae explosions of type Ia, which are
supposed to be ‘standard candles’.

1.3 Anthropic considerations

Several authors have also used anthropic considerations in the attempt to explain
the smallness of the cosmological constant. The idea is that, even if we cannot

15



account for the value of Ay from particle physics arguments, we could perhaps
say something requiring that it is not in contrast with the possibility of intelligent
life to develop in the universe.

There exist several formulations of the anthropic principle (see for example
[13, 27, 72]), but the basic idea underlying this principle is that we should take the
fact that intelligent life has emerged in the universe as an additional constraint
to cosmological model building.

For example, with respect to the problem at hand, applying the antropic prin-
ciple means trying to evaluate the range of values for the cosmological constant
which are compatible with life to emerge.

The first to use this approach with respect to the cosmological constant prob-
lem was S. Weinberg in 1987 [162] (see also refs. [163, 164]). He has found that the
most stringent constraint coming from the anthropic principle is the requirement
that sufficiently large gravitationally bound systems can form in the universe. In
order for this to happen we need the vacuum energy to have been subdominant
until redshift z 2 4, the time at which gravitational condensation started in the
universe. Otherwise, the accelerated expansions would have prevented bound
systems to form. This translates to an upper bound

pv S 100py . (1.44)

The anthropic principle, then, does not forbid a cosmological term. The question
now becomes: if py could be as large as 1O.OpM from anthropic consideration,
why is it not so?

The last limit applies to a positive cosmological term. If instead a negative
term A; < 0 is present in the Einstein equations, the universe would recollapse

in a time 7' [13]
T = m/8rG|pv| - (1.45)

We should then require that the universe lives long enough for the appearence of
life, say T 2 0.5H; . So we get the stringent bound

lovl = pe (1.46)

for the case py < 0.

Recent refinements of these kinds of computations can be found in refs. [49,
110]. A similar point of view is that of Vilenkin and al. [159, 64, 65] who studied
the cosmological constant problem in the context of quantum cosmology. In
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this approach the probability for the universe to have the observed values of the
physical constants is evaluated in the space of all possible universes.

In conclusion, we have seen that the cosmological constant problem is still an
open issue both in particle physics and cosmology. As we will see in the next
chapter it has become even more important in recent times when the data seem
to point in the direction of a cosmological constant dominated universe.

In this thesis we will mainly focus on the proposal that the candidate for the
vacuum energy of the universe is a scalar field rolling down an inverse power
potential. However, other possibilities have also been discussed recently. See for
example refs. [109, 118, 136, 138, 148]. For earlier literature on the subject, see
the references in the existing reviews [33, 29, 116, 137, 163].

An alternative interesting approach to the cosmological constant problem was
discussed by R. Brandenberger. In ref. [21] he proposes a relaxation mechanism
for the cosmological constant arising from the back-reaction effect in the evolution
of the cosmological perturbations.
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Chapter 2

Quintessence: a dynamical A

According to the editors of Science magazine [140], the breakthrough of the year
1998 was the discovery of the acceleration of the Universe. This discovery is a
consequence of the study of a bunch of high-redshift Supernovae of type Ia (SNe
Ia) by two independent teams, the High-z Supernova Search Team [71] and the
Supernova Cosmology Project [141]. The observation of the distant supernovae
allowed to measure deviations from linearity of the magnitude-redshift relation
of the Hubble diagram. As we have already discussed in Chapter 1, the study of
the most distant objects gives direct measurment of the decelleration parameter
go and so gives a crucial information about the relative content in matter and
cosmological constant of the present Universe. |

Nevertheless, we should be warned that the SNe Ia data are still under scrutiny
and, although they are the only direct evidence for the present acceleration of the
universe, they probably are not the most compelling. Indirect evidence coming
from the clustered matter distribution and the Cosmic Microwave Background
(CMB) data seems to point in the very same direction. It is thus not premature
to seriously confront ourselves with the possibility of a cosmological constant—
dominated universe.

2.1 Recent data

Supernovae Ia. The idea underlying the recent claim of an accelerating universe
is the belief that Supernovae of type Ia (see for example [107]) are ‘standard
candles’. That means that their intrinsic luminosity does not depend on their
redshift (i.e. on their age) and so they can be used as a reliable cosmological
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distance ladder. The apparent luminosity of SN Ia should then just depend on
their redshift and on the expansion velocity of the universe while their light is
travelling towards our telescopes. If they appear dimmer than expected, this
could be explained with an increasing expansion velocity of the universe, which

in mathematical terms translates to having ¢y < 0.

This is the essence of the results presented last year by the two independent
teams studying high-z Supernovae. The Supernova Cosmology Project [123,
124, 125] examined a sample of 42 Sn Ia at redshifts between 0.18 and 0.83 and
gave a joint probability distribution for the cosmological parameters which can be
approximated by the relation 0.8, —0.6Q2y ~ —0.2+0.1. The High—z Supernova
Search Team [131, 56, 57, 62, 99] studied different samples which add to a total of
95 Sn Ta at redshifts between 0.16 and 0.97 and, plotting Q,; vs. Qy, concluded
Qu = 0.24 4+ 0.10 with the assumption g = 1. The results of the two teams are
in good accordance and both point in the direction of a cosmological constant
dominated universe. We should remember that both rely on the assumption
of a flat universe ({39 = 1), but this seems widely justified for two different
reasons. On one hand we have to face the fine-tuning problem connected with
the cosmological evolution of (t), as already mentioned in Chapter 1, and so
setting {2 = 1 seems the best option from the theoretical point of view. On the
other we have mounting evidence from the existing CMB anisotropy data (see
below) for a critical universe. And clustered matter constraints limit the density
of matter to relatively low values. All this data, put together, give independent
constraints on £, and Qv and are consistent with the SN Ia results.

It should be remembered that the assumption of the SN Ia being standard
candels is presently under investigation and evolutionary effects may well be
sources of systematic errors in the determinations of the cosmological parameters
[132, 133, 47, 48]. There also have been claims that the progressive dimming of the
Supernovae explosions could be due to absorption of their light by the interstellar
dust on the way to us [5, 142, 151]. The hypotheisis that the observed effects
are due to the fact that we live in a non-homogeneous universe has also been put
forward [31]. For what concerns the direct measurment of the acceleration of the
universe by SN Ia, we should then await confirmation from the forthcoming data

and a better understanding of the Supernovae evolution.

The age problem. The problem of observing objects which appear to be older

than the whole universe has puzzled the astronomers for some time (see for ex-
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ample [91]). If the universe is decellerating, its age should be less than the
Hubble time Hy!. In particular, in a flat matter dominated cosmology we have
to = 2/3Ho = 9.7 Gyr (65/h). This fact is in contrast with the measured age
of the oldest objects observed. The globular cluster are in fact estimated to be
old as much as t45. = 11.5 = 1.3 Gyr. The contradiction got even worse in recent
times when the measure of the Hubble constant started to converge to relatively
high values [59] giving 57 < Hy < 85 km/sec/Mpc at 95% confidence level. A low
density universe would somehow ease the situation, giving ty < 12.5 Gyr (65/h)
for 0.2 < Oy < 1. , _

The most elegant way out of the puzzle seems [91] the introduction of a
cosmological constant whoose net effect is to change the relation ¢,—Hy and so
to allow for an older universe with the same value of Hy. For example a flat
accelerating universe with Qy < 0.8 should have an age ¢, < 16.6 Gyr (65/h).
This could easily reconcile the measured globular clusters age [91].

The baryon problem. Another striking evidence of a low mass universe comes
from the counting of baryons in clusters of galaxies (see [11, 92] and references
therein). Since clusters are the largest bound systems observed in the universe,
they are supposed to be ‘fair samples’ of the average distribution of the differ-
ent matter components. We can then reasonably suppose that the ratio of the
baryonic to total matter in a cluster is the same as in the whole universe. Ob-
servation of X-ray emissions, together with theoretical models of clusters, gives
a lower bound €,/ = R 2 0.05h7%/2 to the ratio of baryonic to total matter
densities. If 2y = Q0 =1, then R = ). The problem arises since nucleosynthe-
sis gives instead an upper bound on the total density of baryons in the universe:
Qh* < 0.02. The two bounds are clearly inconsistent and could only be recon-
ciled if Q3 < 1. This can happen either in a open universe, Q) = Q < 1, or in
a flat accelerating universe, Q.+ Qp = Q = 1.

Cluster dynamics. The study of rich clusters of galaxies (see refs. [11, 26,
30]) via their dispersion velocitly, temperature of the hot intercluster gas and
gravitational lensing distorsions, is a very powerful tool for estimating the energy
density of matter in the universe. If we suppose that the universe is not biased
in such a way that most of the dark matter is distributed on the largest scales,
well beyond the clusters, then the measured mass density of the clusters can be
taken as a reliable indication of the average mass density of the whole universe.
All the methods mentioned above point in the direction of a low mass universe,
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with Qps ~ 0.2 + 0.3. Again this result is consistent both with a low-mass open
universe and with a cosmological constant dominated flat universe. This is due
to the fact that the vacuum energy does not cluster and so it does not come into
play in the dynamical evolution of galaxies and clusters of galaxies.

CMB anisotropy. The study of Cosmic Microwave Background anisotropies
will have a tremendous impulse in the next millennium with the launch of two
new satellites, the American Microwave Anisotropy Probe (MAP) [113] and the
European Planck surveyor [129]. Neverthless, still with the presently avaliable
data, it is possible do draw some conclusions about the geometry of the universe
(see for example [17, 46, 50, 105, 106, 166]). The number of multiple [ correspond-
ing to the first doppler peak in the CMB anisotropy spectrum is in fact inversely
proportional to the total energy density of the universe, I o~ 200/ V. From the
identification of the position of the first peak is then possible to discriminate be-
tween open or flat universes. The present data, coming from balloons or ground
based experiments, are still very preliminary but they seem to coverge towards
Q) ~ 1. A flat universe seems then to be favored with respect to a open, low-mass

one.

All the above constraints, taken together, are consistent with a flat cosmo-
logical model with a vacuum energy contributing as much as twice the matter
energy density [12, 98, 92, 154, 155]. It should be stressed that even without the
SN Ia data, which awaits confirmation, the case for a A-dominated universe is
strong (see for example refs. [93, 117]). As we have seen in this Section, a non—
vanishing cosmological constant would solve many problems at the same time.
Only one issue, in the dark matter context, would still remain open. Even with
a large cosmological constant, we would still need a large fraction of the matter
density to be non—baryonic. The hunt for WIMPs (Weakly Interacting Massive
Particles) as the favorite candidtes for the cold dark matter in the universe re-
mains a challange for particle physics and cosmology also in the presence of a

cosmological constant.

2.2 The idea of Q

The approach that has recently received the largest attention differs somehow
from the past. The basic assumption is that the cosmological constant A.fy
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as defined in eq. (1.3) exactly vanishes. The cosmological constant problem,
then, is not solved but it is assumed that, with a better understanding of the
physics beyond the Standard model, a mechanism which could set Ay = 0
will eventually be found. Some other kind of energy is then needed in order
to provide the observed acceleration of the universe. We need something which
could contribute nearly as much as the critical energy density and which has a
negative equation of state.

In the following we will name ‘Quintessence’ any dynamical and slowly evolv-
ing form of energy with negative pressure which results to be smoothly distributed
in the universe [24, 61, 153]. Its equation of state is defined as the ratio of the
pressure to the energy density, wg = pg /pa -

By definition, quintessence cosmology can be distinguished from the cosmo-
logical constant case. Not only because of the equation of state that now can
be # —1 but also because of its past history. In fact, while the energy den-
sity corresponding to the cosmological constant does not evolve in time, in the
Quintessence case we might have a much richer dynamics.

The easiest way to model Quintessence is with a scalar field ¢ rolling down
a potential V(¢). In this case the scalar contribution to the cosmological energy

density will be
éz

ps = 5 TV(9) (2.1)
and the corresponding equation of state is
_ $#/2-V(9)

YT Baave) @2

It can be easily verified that the scalar field, depending on its dynamics, can have
an equation of state ranging from 1 to —1 and so, from this point of view, it is
a suitable candidate for Quintessence. A very appealing feature of scalar field
cosmology is that, for some classes of potentials it admits attractor solutions in
phase space. That means that for a very wide range of initial conditions, the
scalar energy density will converge to a well defined attractor behaviour. This
property allows to study scalar field cosmology with a high degree of generality
and opens the hope to weaken some of the many fine-tuning issues connected
with the cosmological constant problem.

A cosmological scalar field is not the only candidate for Quintessence. There
are other components which could give a negative but # —1 equation of state.
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For example a network of frustrated topological defects (such as strings or domain
walls) would exibit a negative equation of state as well [16, 44, 79, 143, 158]. In
particular they are carachterized by w = —n/3, with n beeing the dimension of
the defect. We thus obtain w = —1/3 for strings and w = —2/3 for domain walls.

‘Scalar fields minimally coupled to gravity have also been considered as can-
didates for quintessence [7, 9, 15, 38, 45, 73, 127, 156]. We will briefly comment
on some consequences of this possibility in Chapter 4.

More ‘exotic’ possibilities have also been proposed for explaining the Sn Ia
results. For example, it has been shown that time variability of the fine structure
constant « [14, 96] or of the gravitational constant G [8] could account for the
Sn Ia data. R.R. Caldwell, instead, has discussed [25] the possibility that the SN
Ta data could be accounted for by a ‘phantom’ component with equation of state
w < —1.

Quintessence and dynamical A cosmological models have recently also been
confronted with the issue of structure formation in the universe. Calculation
of the evolution of perturbations in such models and constraints coming from
the observed large scale structure of the universe seem to be in good agreement
with the hypothesis that most of the dark energy has negative equation of state
[10, 32, 37, 121, 126, 157].

At the same time, a great effort is beeing spent in the attempt to constrain
the equation of state of the unknown dark component with present and future
data [51, 74, 115, 160]. This could potentially resolve the degeneracy with the
pure cosmological constant case [75] and also give some information about the
scalar potential of Quintessence [76, 146]. Much other work on the observational
side is on the way [171].

2.3 Scalar fields and attractors

In this section we will summarize some important results about rolling scalar fields
in cosmology (see [119, 130, 165] and more recently [36, 54, 55, 100, 147, 169]).

In particular we will focus on two types of potentials': the exponentials, V ~

e~ ? and the inverse powers, V ~ ¢ , p > 0. These potentials show an

?

1The cosmology of a scalar field with potential V (¢) = Vp(cosh A¢ — 1)? is discussed by the
authors of ref. [139]. In ref. [6] a potential which goes like V(¢) = V;(¢) exp(—A¢), where V,
is a polinomial in ¢, was proposed as a model for quintessence.
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attractor behaviour in the evolution of the scalar field, with solutions which have
respectively been denominated ‘scaling’ and ‘tracking’ attractors in literature.
If we consider the cosmological evolution of a scalar field ¢ with potential
V(¢) in the approximation that its energy density is subdominant with respect
to the background, i.e. py < pp, (where the subscript B stands for radiation or

matter), we have to solve the equations:

§ + 3H :‘—% , (2.3)
12
o= B v

together with the assumption that the scalar field has a perfect fluid equation of
state wy = py/ Py -

Scaling solutions. In the case of an exponential potential,

V() = Vi exp(=A@) , (2.4)

the solution ¢ ~ Int is, under very general conditions [36, 54, 55, 100, 165], a
‘scaling’ attractor in phase space characterized by

Po . m

Py VR (2.5)
where m = 3,4 in the case of MD or RD respectively. Note that the ratio of
the scalar to background energy density is independent on the scale V; in the
potential. If A > m this is the unique late-time attractor in phase space. This
could potentially solve the so called ‘cosmic coincidence’ problem, providing a
dynamical explanation for the order of magnitude equality between matter and
scalar field energy today. Unfortunately, the equation of state for this attractor
turns out to be

'LU¢ = wp , (26)

which cannot explain the acceleration of the universe neither during RD (wgp =
1/3) nor during MD (wys = 0). Moreover, Big Bang nucleosynthesis constrains
the field energy density [36, 54, 55, 100] to values much smaller than the required
Qy ~2/3.

Traking solutions. If instead an inverse power-law potential is considered,

V(g) = M*P ¢ | with p>0 (2.7)
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the attractor solution is [100, 147, 169]

¢ ~ ZSl—n/m , with n = 3(w¢,—|— 1) , m= 3(’1113 +1) ; (28)

and the equation of state turns out to be

’pr—Z

) 2.9
p+2 ( )

Wy =
which is always negative during MD (wp = wy = 0). This solutions maintains
the condition 9 1

(/A 2 p 2
and this implies that the scalar ¢ must be of order Mp today if py is beginning
to dominate, since V" =~ ps/¢? and H? ~ p,/M2 . Then we obtain that the
ratio of the energies is not constant but scales as

pg/pp ~ R™" (2.11)

thus growing during the cosmological evolution, since n < m. We see that p,
could have been safely small during nucleosynthesis and have grown lately up to
the phenomenologically interesting values. These solutions are then good can-
didates for Quintessence and have been denominated ‘trackers’ in the literature
[100, 147, 169].

It should be noted that the inverse power-law potential does not improve
the cosmic coincidence problem with respect to the cosmological constant case.
Indeed, the scale M has to be fixed from the requirement that the scalar energy
density today is exactly what is needed. This corresponds to choosing the desired
tracker path. An important difference exists in this case though. The initial
conditions for the physical variable py can vary between the present critical energy
density p? and the background energy density pp at the time of beginning [147]
(this range can span many tens of orders of magnitude, depending on the initial
time), and will anyway end on the tracker path before the present epoch, due to
the presence of an attractor in phase space [147, 169]. On the contrary, in the
cosmological constant case, the physical variable p, is fixed once for all at the
beginning. This allows us to say that in the quintessence case the fine-tuning
issue, even if still far from solved, is at least weakened.
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Chapter 3

A particle physics model of

Quintessence

As we have seen in the previous Chapters, a great effort has been recently devoted
to study the cosmology of Quintessence models and to find ways to constrain
them with present and future data. On the other hand, the investigation of
quintessence models from the particle physics point of view is just in a preliminary
stage and a realistic model is still missing'. There are two classes of problems:
the construction of a field theory model with the required scalar potential and
the interaction of the quintessence field with the standard model (SM) fields.
As first pointed out by Binétruy [20], scalar inverse power potentials appear in
supersymmetrcic QCD (SQCD) theories [3, 4, 150] with NV, colors and Ny < N,
flavors (for a pedagogical introduction see [128]). The second problem, instead,
seems the thoughest [28] (see also [19]). Indeed the quintessence scalar today
has typically a mass of order Hy ~ 1073V, then in general it would mediate
long range interactions of gravitational strength, which are phenomenologically
unacceptable.

In this and the next chapter we will consider in more detail these problems in
the framework of SQCD (SQCD), following the treatment of ref. [112, 134]. In
particular we note that these models have Ny independent scalar directions in the
vacuum manifold. In ref. [20] all of them were given the same initial conditions,
so that the dynamics reduced effectively to that of a single scalar field with an
inverse power law potential. On the other hand, in a cosmological setting there
is no a priori justification for this assumption, and the fields will in general start

1Some different proposals can be found in refs. [18, 20, 22, 39, 60, 80, 81].
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from different initial conditions. The dynamics is then truly N s-dimensional and
it is relevant to know what is the late time behavior of the system, whether
there are other attractors besides the single-scalar one discussed in ref. [20], and
under what conditions is the latter reached by the system. Indeed, we will see
that starting with the same initial total energy but different initial conditions for
the Ny fields may prevent them to reach the attractor, so that SQCD cannot be
considered as a simple one-scalar model for quintessence in these regions of initial
conditions phase space [112, 134].

3.1 SUSY QCD

As already noted by Binetruy [20], supersymmetric QCD theories with IV, colors
and Ny < N, flavors [3, 4, 150] may give an explicit realization of a model for
quintessence with an inverse power law scalar potential. The remarkable feature
of these theories is that the superpotential is exactly known non-perturbatively.
Moreover, in the range of field values that will be relevant for our purposes
(see below) quantum corrections to-the Kéhler potential are under control. As a
consequence, we can study the scalar potential and the field equations of motion of
the full quantum theory, without limiting ourselves to the classical approximation.

The matter content of the theory is given by the chiral superfields @); and
Q, (i = 1...Ny) transforming according to the N, and N, representations of
SU(N.), respectively. In the following, the same symbols will be used for the
superfields @;, @;, and their scalar components.

Supersymmetry and anomaly-free global symmetries constrain the superpo-
tential to the unique ezact form

: 1
ABNc—Nf)\ Ne-Ty
) (3.1)

W= 0= (S
where the gauge-invariant matrix superfield T;; = Q; -@j appears. A is the only
mass scale of the theory. It is the supersymmetric analogue of Agcp, the renor-
malization group invariant scale at which the gauge coupling of SU(/V,) becomes
non-perturbative. As long as scalar field values Q;, @; > A are considered, the
theory is in the weak coupling regime and the canonical form for the Kahler po-
tential may be assumed. The scalar and fermion matter fields have then canonical
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kinetic terms, and the scalar potential is given by

Ny

— 1
V(@i Q) =3 (IFo.l* + |Fg ") + 5 D°D° (32)

i=1

where F, = 0W/0Q;, F = 0W/0Q);, and

D* = Qlt*Q; - Q:+°Q! . (3.3)

The relevant dynamics of the field expectation values takes place along directions
in field space in which the above D-term vanish, i.e. the perturbatively flat
directions (Qiq) = (@Za), where o = 1--- N, is the gauge index. At the non-
perturbative level these directions get a non vanishing potential from the F-terms
n (3.2), which are zero at any order in perturbation theory. Gauge and flavor
rotations can be used to diagonalize the (Q;,) and put them in the form

- Vi N
(Qu) = (@) = W T5= Ny

. 4
0 Ny<a<N, (3.4)

Along these directions, the scalar potential is given by

il

v(g:) (V(Qi,Q,)) = Az“ (Z |q]|2> ;

|q1|4d
3N, —
o = ___E__,._]Y_f“j d = ____}_._

N, — Ny N, — Ny
In the following, we will be interested in the cosmological evolution of the Ny
expectation values g;, given by
ov
aQ}
In ref. [20] the same initial conditions for all the Ny VEV’s and their time
derivatives were chosen. With this very peculiar choice the evolution of the

(Q; +3HQ; + —)=0 ,i=1,.., Ny . (3.5)

system may be described by a smgle VEV ¢ (which we take real) with equation
of motion

A% N, + N
j+3Hqg — =0 ==
q+ q g ? g NC"‘Nf,

q29+1
thus reproducing exactly the case of a single scalar field ® in the potential
V = A*T299=29/2 considered in refs. [100, 119, 130, 147]. We instead will con-
sider the more general case in which different initial conditions are assigned to

(3.6)
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different VEV’s [112, 134], and the system is described by N coupled differential
equations. Taking for illustration the case Ny = 2, we will have to solve the

equations
2a q2
Gi+3H¢ —d- q #(QMQ)MNC [2 + Ncé‘] =0, (3.7)
A2a. q2
d2+3Hdz—d'Q2W [2+Nc&ﬂ=0, (3.8)

with H? = 87/3M32 (pm + pr + pg), where Mp is the Planck mass, pm() is the
matter (radiation) energy density, and pg = 2(¢} +43) +v(q, ¢2) is the total field
energy.

3.2 The tracker solution

In analogy with the one-scalar case, we look for power-law solutions of the form
Qirg = Cy - tP i=1,---, Ny. (3.9)

It is straightforward to verify that — when pg < pp — the only solution of this

type is given by

1 -
pi=p= 27" . Ci=C=[x1T A

1/4 .
] ., i=1,---, Ny, (3.10)

with

4m (1+7)
1-r)2[12-ml+r)]’
where we have defined r = N;/N, (= 1/N,...,1 — 1/N,). This solution is
characterized by an equation of state

X =

(3.11)

_1+T 1-r7r

Wg — 9 wp — 9 (3.12)

Eq. (3.12) can be derived as usual from energy conservation, d(R%pq) = —3 R?pq.

Following the same methods employed in ref. [100] one can show [112] that
the above solution is the unique stable attractor in the space of solutions of eds.
(3.8). Then, even if the ¢;’s start with different initial conditions, there is a
region in field configuration space such that the system evolves towards the equal
fields solutions (3.9), and the late-time behavior is indistinguishable from the case
considered in ref. [20].
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The field energy density grows with respect to the matter energy density as
e p¥H (3.13)
Pm
where a is the scale factor of the universe. The scalar field energy will then
eventually dominate and the approximations leading to the scaling solution (3.9)
will drop, so that a numerical treatment of the field equations is mandatory in
order to describe the phenomenologically relevant late-time behavior.
The scale A can be fixed requiring that the scalar fields are starting to domi-
nate the energy density of the universe today and that both have already reached
the tracking behavior. The two conditions are realized if

v(g0) = p v"(q) = Hy (3.14)

where p? = 3M2HZ/87 and gy are the present critical density and scalar fields
VEV respectively. Egs. (3.14) imply

A 13 (0+nB+r) 1 G [ 1 P s 15

Mp — |4 (1-71)2 rN, 9r N, M5 , 15)
3 3 (1 3 1

T L 3 (A+r)@B+r) | 516

M3 4t (1—=7r)2 N,

Depending on the values for Ny and NV, A and go/A assume widely different
values. A takes its lowest possible values in the N, — oo (N; fixed) limit, where
it equals 4 - 1072(h?/N7)® GeV (we have used p2/Mp = (2.5 - 10731h1/2)4). For
fixed NV, instead, A increases as Ny goes from 1 to its maximum allowed value,
Ny =1- N, For N; 2 20 and Ny close to N,, the scale A exceeds Mp.

The accuracy of the determination of A given in (3.15) depends on the present
error on the measurements of Hy, i.e., typically,

6N 1—7 8H,
T3 m S0 (3.17)

In deriving the scalar potential (3.2) and the field equations (3.8) we have
assumed that the system is in the weakly coupled regime, so that the canonical
form for the Kahler potential may be considered as a good approximation. This
condition is satisfied as long as the fields’ VEVs are much larger than the non-
perturbative scale A. From egs. (3.15) and (3.16), one can compute the ratio
between the VEVs today and A, and see that it is greater than unity for any Ny
as long as N, < 20.
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On the other hand, if we want to follow the cosmological evolution of the
fields starting from an earlier cosmological epoch, we must impose the stronger
condition that the ¢; have been much larger than A throughout the time interval
of interest. Taking the tracker solution (3.9) as a reference, at the initial redshift

Zin we have,

in in 2 zg")/ 4 it zip > 2z
iy _ Qtr,O Qir . qir,0 :
N A g A : (3.18)
tT,O 223757‘—1)/4 if Zm‘ S Zeq

where 2., is the redshift at matter-radiation equivalence. For a given r, the
condition ¢i” > A gives an upper bound on z;. Taking for instance N, — 0o
(N; fixed) we get z;;, < 10%'(Nyh)~/%. In the numerical computations, we will
consider initial conditions such that the weak coupling regime is always realized.

3.3 The two-fields dynamics

In this section we illustrate the general results of the previous sections for the
particular case Ny = 2, N, = 6.

In Fig.3.1 the energy densities vs. redshift are given. We have chosen the
same initial conditions for the two VEVs, in order to effectively reproduce the
one-scalar case of eq. (3.6), already studied in refs. [100, 119, 130, 147]. No
interaction with other fields of the type discussed in the previous section has
been considered.

We see that, depending on the initial energy density of the scalar fields, the
tracker solution may (long dashed line) or may not be reached before the present
epoch. The latter case happens either when initial scalar field energy is larger
than pp (dash-dotted line) or when it is smaller then the critical energy density
today. Thus, all together, there are around 35 orders of magnitude in pg“ at
redshift z4+1 = 10'° for which the tracker solution is reached before today. Cleary,
the more we go backwards in time, the larger is the allowed initial conditions
range. Correspondingly, the initial fields’ values may range between the lower
bound ¢2, /M2 = [(1 + zeq)/(1 + 2in)*]*/9, where g is defined in eq. (3.6), and the
upper bound given by the right hand side of eq. (3.18). In Fig.3.2 we plot the
scalar field equation of state, wg, for the corresponding solutions of Fig.3.1.

Next, we explore to which extent the two-field system that we are considering

behaves as a one scalar model with inverse power-law potential. In fig. 3.3 we
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plot solutions with the same initial energy density but different ratios between
the initial values of the two scalar fields. Given an initial energy density such that
— for ¢i"/gi® = 1 - the tracker is joined before today, there is always a limiting
value for the fields’ difference above which the attractor is not reached.

In conclusion, we have taken in full consideration the multi-scalar nature of
the model, allowing for different initial conditions for the N; independent scalar
VEVs and studying the coupled system of Ny equations of motion. We have
found that, starting with the same initial scalar energy density, but different
fields’ values, the tracking behavior becomes more difficult to reach the larger
the difference among the initial conditions for the fields. Thus, an approximate
flavor symmetry of the initial conditions is needed in order that SQCD may act

as an effective quintessence model.
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Figure 3.1: The evolution of the energy densities p of different cosmological com-
ponents is given as a funcion of red-shift. All the energy densities are normalized to
the present critical energy density pl.. Radiation and matter energy densities are
represented by the short-dashed lines, whereas the solid line is the energy density
of the tracker solution discussed in Section 3. The long-dashed line is the evolution
of the scalar field energy density for a solution that reaches the tracker before the
present epoch; while the dash-dotted line represents the evolution for a solution
that overshoots the tracker to such an extent that it has not yet had enough time
to re-join the attractor.
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Figure 3.2: The cosmological evolution of the equation of state wg = pg/pg for
the scalar field Q) is plotted as a function of red-shift. The two cases correspond
to the energy densities of the two examples in Fig.1. Note that, in the long-dashed
curve case, the attractor value of —1/3 for the equation of state (corresponding to
"N, = 6) is joined well before the present epoch and only very recently abandoned,
when the scalar field starts to become the dominating component of our universe

and as a consequence its equation of state is rapidly driven towards —1.
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Figure 3.3: The effect of taking different initial conditions for the fields, at the same
initial total field energy. Starting with ¢i™ /¢ = 10'® the tracker behavior is not

reached today. For comparison we plot the solution for ¢i* /¢§* =
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Chapter 4

Interaction with the visible sector

The second aspect that we will consider [112], in the attempt to build a particle
physics motivated model for Quintessence, is the interaction of the scalars of
the Supersymmetric SU(IV,) model discusssed in the previous chapter with the
Standard model (SM) fields. The quintessence fields are usually assumed to be
singlets under the SM gauge group and to interact with the rest of the world
only gravitationally, i.e. via non renormalizable operators suppressed by inverse
powers of the Planck mass. This is however not enough. In order to prevent
long-range interactions of gravitational strength it is necessary to assume that
the — a priori unknown — couplings between the quintessence fields and the SM
sector are strongly suppressed today. We do not solve this problem, but point out,
that if a least coupling principle of the type proposed by Damour and Polyakov
[40] for the superstring dilaton were operative, quintessence models could be
reconciled with the experimental constraints on the weak equivalence principle
and on time variation of the SM coupling constants [112]. At the same time,
during RD it would be quite likely to have SUSY breaking and mass generation
for the quintessence fields, with masses proportional to H, by the same mechanism
discussed by Dine, Randall, and Thomas in [43]. If present, these time-dependent
SUSY breaking masses would prevent the fields from taking large values, thus
driving the system towards the tracker solution [112].

4.1 The problem

In the treatment of the previous Chapter, the superfields @; and @, have been
taken as singlets under the SM gauge group. Therefore, they may interact with
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the visible sector only gravitationally, i.e. via non-renormalizable operators sup-
pressed by inverse powers of the Planck mass, of the form

Q)" _.(aa)"
(M%n) L7 ( M}%n) |

[ o K8l 0,) |63 (41)

where ¢; represents a generic standard model superfield. From (3.15) we know
that today the VEV’s ¢; are typically O(Mp), so there is no reason to limit
ourselves to the contributions of lowest order in |Q|?/M2. Rather, we have to
consider the full (unknown) functions |

L [Ql; o (QIQ:)"

and the analogous §’s for the @,’s. Moreover, the requirement that the scalar
fields are on the tracking solution today, eqs. (3.14) implies that their mass is of
order ~ HZ ~ 10733 eV.

 The exchange of very light fields gives rise to long-range forces which are
constrained by tests on the equivalence principle, whereas the time dependence
of the VEV’s induces a time variation of the SM coupling constants [40, 28].
These kind of considerations sets stringent bounds on the first derivatives of the
B7%s and 7"s today,

_ dlog 7 [2?] o dlog B [#3]
= . s ot = io . (4.3)

O(ji

0
Ti=T;

where z; = ¢;/Mp. To give an example, the best bound on the time variation of
the fine structure constant comes from the Oklo natural reactor. It implies that
|&/a| < 10715 yr~! [41], leading to the following constraint on the coupling with
the kinetic terms of the electromagnetic vector superfield V/,

Hy
(¢i)

where (g;) is the average rate of change of ¢; in the past 2 x 10%yr.

Vi, @t < 107% = Mp, (4.4)

Similar —although generally less stringent— bounds can be analogously ob-
tained for the coupling with the other standard model superfields [40]. Therefore,
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in order to be phenomenologically viable, any quintessence model should postu-
Jate that all the unknown couplings 7%’s and &*’s have a common minimum close
to the actual value of the g;’s’.

4.2 A possible way out

The simplest way to realize this condition would be via the least coupling prin-
ciple introduced by Damour and Polyakov for the massless superstring dilaton
in ref. [42], where a universal coupling between the dilaton and the SM fields
was postulated. In the present context, we will invoke a similar principle, by
postulating that $7* = # and —Eji = (3 for any SM field ¢; and any flavor i. For
simplicity, we will further assume 8 = 3 .

The decoupling from the visible sector implied by bounds like (4.4) does not
necessarily mean that the interactions between the quintessence sector and the
visible one have always been phenomenologically irrelevant. Indeed, during ra-
diation domination the VEVs ¢; were typically < Mp and then very far from
the postulated minimum of the #’s. For such values of the ¢;’s the $’s can be
approximated as
Q'Q
M3

T | (4.5)

QfQ
v [ 72

] = o+ b
where the constants 3y and f; are not directly constrained by (4.4). The coupling
between the (4.5) and the SM kinetic terms, as in (4.1), induces a SUSY breaking
mass term for the scalars of the form [43]

AL~ H?B S (1Qi)° + |@;

i

by (4.6)

where we have used the fact that ( 3°; [ d*0K j(cp;{, ¢;) ) ~ pr during radiation
domination.

If present, this term would have a very interesting impact on the cosmological
evolution of the fields. First of all one should notice that, unlike the usual mass
terms with time-independent masses considered in [90], a mass m? ~ H? does not
modify the time-dependence of the tracking solution, which is still the power-law
given in eq. (3.9). Thus, the fine-tuning problems induced by the requirement

1An alternative way to suppress long-range interactions, based on an approximate global

symmetry, was proposed in ref. [28].
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that a soft-supersymmetry breaking mass does not spoil the tracking solutions
[90] are not present here.

Secondly, since the @ and @ fields do not form an isolated system any more,
the equation of state of the quintessence fields is not linked to the power-law
dependence of the tracking solution. Taking into account the interaction with the
SM fields, represented by H?, we find the new equation of state during radiation
domination (wg = 1/3)

1+
1—-7‘)"(—6/81

where wg was given in eq. (3.12) and r = Ny/N. .

wy = wg — 46 5( (4.7)

From a phenomenological point of view, the most relevant effect of the pres-
ence of mass terms like (4.6) during radiation domination resides in the fact that
they rise the scalar potential at large fields values, inducing a (time-dependent)
minimum. In absence of such terms, if the fields are initially very far from the
origin, they are not able to catch up with the tracking behavior before the present
epoch, and pg always remains much smaller than pp. These are the well-known
‘undershoot’ solutions considered in ref. [147]. Instead, when large enough masses
(4.6) are present, the fields are quickly driven towards the time-dependent mini-
mum and the would-be undershoot solutions reach the tracking behavior in time.

The same happens for the would-be ‘overshoot’ solutions, [147], in which the
fields are initially very close to the origin, with an energy density much larger
than the tracker one, and are subsequently pushed to very large values, from
where they will not be able to reach the tracking solution before the present
epoch. Introducing mass terms like (4.6) prevents the fields to go to very large
values, and keeps them closer to the traking solution.

In other words, the already large region in initial condition phase space leading
to late-time tracking behavior, will be enlarged to the full phase space.

The effect of the interaction with other fields is shown in Fig. 4.1. Here, we
have included the mass term (4.6) during radiation domination with 8; = 0.3
and we have followed the same procedure as for Fig. 3.1, looking for solutions
which do not reach the tracker before today. As we see, the acceptable range of
initial energy densities —and fields’ values— for the solutions reaching the tracker
is now enormously enhanced since, as we discussed previously, the fields are
now prevented from taking too large values. The same conclusion holds even if
different initial conditions for the two fields are allowed, for the same reason.
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Figure 4.1: The effect of the interaction with other fields, to be compared with Fig.
3.1. Adding a term like eq. (4.6) with 81 = 0.3 the would-be overshooting solution
(dash-dotted line) reaches the tracker in time.

In conclusion, we have sketched a possible way out [112] to the common prob-
lem of all quintessence models considered so far, that is the presence of long-range
interactions of gravitational strength mediated by the ultra-light scalar fields [28].
Our solution is inspired by the Damour-Polyakov relaxation mechanism for the
superstring dilaton [42]. Basically, we postulate that all the couplings of the
SQCD quark superfields with the SM ones are given by a unique function, which
has a minimum close to today’s values of the scalar fields’ VEVs. Since all the
deviations from Einstein gravity are parametrized by the slope of these couplings
today, this could make the model phenomenologically safe with respect to limits
on the weak equivalence principle and on the time dependence of the SM coupling
constants. At the same time, during radiation domination the coupling with SM
fields may have induced a SUSY-breaking -time dependent- mass to the scalar
fields, with the effect of enhancing the initial configuration space leading to a late
time tracking behavior.

An alternative solution to the problem of long range interactions of the
quintessence scalar was proposed in ref. [15] in the context of scalar—tensor
theories of gravity. Such theories represent a natural framework in which
massless scalars may appear in the gravitational sector of the theory and so
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they have been considered as candidates for quintessence by several authors
[7,9, 38, 45, 73, 127, 156].

In particular, in ref. [15] a model in which a scalar field with potential
V ~ ¢~% is minimally coupled to gravity via a ¢—dependent coupling w(¢) was
proposed. The authors of ref. [15] find that in this case two attraction mecha-
nisms are operative at the same time: one towards the tracker solution and the
other towards general relativity. This last fact makes the scalar field phenomeno-
logically safe today: while it can account for the accelerated expansion of the
universe, at the same time it does not lead to violations of general relativity.
Since in scalar-tensor theories of gravity the coupling of matter with gravity is
purely metric, the equivalence principle and the constancy of all non—gravitational

couplings are automatically preserved.
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Chapter 5

Initial conditions for

Quintessence

In Chapters 1 and 2 we have reviewd the motivations for the growing interest
in cosmological models with Q2 ~ 1/3 and Qy ~ 2/3. The phenomenological
implications of ‘tracking ’ scalar fields has then been extensively discussed in
Chapters 3 and 4.

As we have already explained, a good feature of these ‘quintessence’ models
is that for a very wide range of the initial conditions the scalar field will reach
the tracking attractor before the present epoch. This fact, together with the
negative equation of state, makes the trackers feasible candidates for explaining
the cosmological observation of a presently accelerating universe. Nevertheless,
it should be stressed that in principle we do not have any mechanism to prevent
pfi," from beeing outside the desired interval. In this respect, an early universe
mechanism which could uniquely fix it at the end of inflation is needed [122, 135].
In other words, if we find a way to naturally set pf; in the range of values which
allows for late time-tracking, we will be assured that the ‘quintessence’ field is
a good candidate for the unknown component which presently accelerates the

universe.

5.1 Quintessential Inflation

A promising way to address the problem of initial conditions for quintessence is
the paradigm of ‘quintessential inflation’ [120, 122], also refereed to as the ‘non
oscillatory’ [53] scheme. The basic idea is to study an inflaton potential V()
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which, as it is typical in quintessence, goes to zero at infinity [120, 122, 53, 58,
144, 77]. In this way it is possible to obtain a late time quintessential behaviour
from the same scalar that in the early universe drives inflation. The hope is that
the end of inflation could uniquely fix the initial conditions for the subsequent
evolution of the scalar componet of the universe.

In ref. [120], a model with a potential which goes like ~ ¢* for ¢ < 0 and like
~ ¢~* for ¢ > 0 is studied in detail, and the authors use gravitational particle
production for providing the entropy in the cosmological matter fields after the
end of inflation. Although the shape of the potential for ¢ > 0 is the same
studied by Zatlev et al. in [169], they fail to show the ‘tracking’ behaviour of
the scalar field at late times because the initial conditions for the scalar energy
density after inflation lay out of the phase space region that leads to joining the
attractor before the present epoch. Anyway they succeed in matching the present
cosmological data because the cosmological constant-like behaviour (wy = —1)
that they find for the scalar field is also also a viable option. The reason why the
scalar does not reach the tracker is the fact that its energy density at the end
of inflation is so low that it did not jet have enough time to move towards the
attractor.

The model in [120] suffers from some problems with respect to the reheating
mechanism that are extensively discussed in ref. [53]. In particular the authors
of [53] propose to use the ‘instant preheating’ [52] mechanism instead of gravi-
tational particle production for the post-inflationary reheating phase. The main
foucus of that work, though, is not on the initial conditions for quintessence.

We will instead address the issue of the initial conditions for quintessence in
the context of the ‘quintessential inflation’ paradigm [122]. The aim is two—fold.
On one hand we will discuss under which conditions an inflaton potential can
leave a residual vacuum energy on its tail, as already discussed in [120, 53]. On
the other we will show that in some specific models it is possible to have a late
time tracking (i.e. a well defined constrained behaviour of the scalar and negative
but # —1 equation of state) of the residual inflaton energy density.

After briefly recalling the constraints which inflation and quintessence tracking
models should separately meet, in the next Section we will discuss to what extent
they are compatible. We will then go on giving two specific examples, one in the
context of first order inflation an the other in the hybrid case. In the first case we
show that the ‘escape point’ from the tunneling naturally lies within the range

which will produce a late time tracking. In the second, we re—examine the model
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proposed in [82, 83] where a particle physics motivated potential was studied in
order to produce inflation. We find that in that model, a late time quintessential
behaviour is already built in and discuss under which conditions it meets the

observational constraints.

Before starting the construction of any unified model of inflation and
quintessence, it is necessary to establish the constraints to which it should be
subject. This is not a trivial task, since both inflation and quintessence model
building require very precise characteristics in order to be successful and we must

check if these separate needs are compatible with each other.

Regarding inflation, there are four main points to be taken into account (see
for example [87, 101, 108]):
1. If we want the universe to be accelerating, the equation of state of the inflaton

field ¢ _
_9?/2-V(9)
Yo = = o V()
¢*/2+V(4)
must satisfy the inequality w, < —1/3. This can be achieved if P < V().
2. If inflation is to solve the flatness and horizon problems, a sufficient number of

(5.1)

e-foldings should take place. This means that the ratio of the final to the initial
value of the scale factor a must satisfy Ry/R; = exp N with N % 50.
3. The fact that the amplitude of scalar perturbations in the cosmic microwave
background, as measured by COBE in 1992, is of order ~ 107 constrains the
normalization of the inflaton potential.
4. We must ensure that at the end of inflation sufficient reheating takes place.
This is needed in order to produce the observed particle species in the universe.
At the same time, one has also to check that gravitinos are not overproduced.
This puts on the reheating temperature an upper limit which depends on the
mass of the gravitinos and which is typically around 10° <+ 10'? GeV 1.

For what concerns quintessence, the following requirements should be fulfilled
(see the discussion of Chapter 2):
1. In order for the scalar field modeling of the cosmological constant to be
sufficiently general, we require that the post-inflationary shape of the potential

1This bound refers to thermal production. However, recently attention has been paid to
gravitinos production during preheating, suggesting that this mechanism could overcome the
thermal one [66, 78]. Since this depends on the precise form of the superpotential of the whole
supergravity theory, we will not deal with it in the present work.
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has the form?

V(o) ~ o

In this way we are guaranteed that for a very wide range of initial conditions

g>0. (5.2)

(indeed between the present critical energy density and the background energy
density at the beginning, pJ < pi* < pf*) the scalar field will be rapidly driven
to a well-known “tracking” attractor behavior pig:

Prr o Rﬁ(zi;‘—l), (5.3)
Ps

where wg = 0,1/3 during MD and RD respectively. The attractor is char-
acterized by an equation of state that during MD is always negative: wqz =
(qws — 2)/(g + 2). There are two main qualitative ways through which this can
be achieved (for more details see [100, 147, 169]). If the initial conditions for
¢ are such that p) < o' < pi (undershoot case), then it will remain “frozen”
until pg ~ prx and then start to scale following eq. (5.3). If, instead, initially
pin. < pin < pit (overshoot case) then ¢ will pass through a phase of kinetic
energy domination before remaining frozen at pgy < prz and eventually join the
attractor.

2. Secondly, we want the field ¢ to be already on track today and its present
energy density to correspond to what observations report, i.e. Q4 =~ 2/3. These
two conditions translate to

V"(¢) ~ H* and  V(¢) ~p?, (5.4)

which together imply for the quintessence field ¢ ~ Mp today. Moreover, eq.
(5.4) provides a normalization for the mass scale A in the potential (5.2), giving

-1 23
A () MET ~ 1074 Mp. (5.5)

This corresponds to choosing the desired tracker path to which the scalar will be
attracted to.

While it is straightforward to find potentials with the required early and late-
time behavior, the subtle issue resides in successfully matching the exit conditions
for the scalar field after inflation with the range of initial conditions allowed for
the trackers. For example, the naive guess of using the potential V = A%T4¢~¢

2This is the only class of potentials that admits an analytic “tracking” attractor solution.
However, more general cases have been studied in ref. [147].
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for quintessential inflation is easily shown not to work. This is due to the fact
that, with this potential, the slow-roll conditions imply ¢ & Mp during inflation,
while the request that the quintessence field is presently dominating the universe
translates to ¢ >~ Mp today.

The first scenario that we will discuss [122] is first order inflation. In this
context, if the potential V(¢) does not have an absolute minimum but goes to
zero as ¢ runs to infinity, the exit conditions of the inflaton from the tunneling
would set the starting point for the subsequent quintessential evolution of the
same field ¢. If instead hybrid inflation is considered [122], it is again possible
to construct models in which the same field plays the role of the inflaton and of
the late time dynamical cosmological constant. In this case, the critical value ¢,
that makes inflation stop will determine the initial condition for the subsequent

quintessential rolling.

5.2 Constructing workable models

First-order quintessential inflation

In the original proposal of inflation [68], the scalar inflaton field ¢ which leads
the expansion “sits” on a metastable minimum of its potential V(¢) during the
whole process. Inflation eventually ends when bubbles of true vacuum nucleate
through the barrier and subsequently expand and collide reheating the universe.
A measure of the efficiency of the nucleation is given by the ratio '

r

©=

(5.6)

between the tunneling rate I' and the Hubble constant H .

As it was soon noticed [69, 70], models where € is constant in time cannot
work, because one needs both (i) e < 1 during inflation in order for the expansion
to last enough to solve the flatness and the horizon problems and (ii) ¢ & 1 to
have an efficient nucleation. This puzzle is known as the “graceful exit problem?”.
Many proposals have been suggested to solve this problem (see [86] for a review),
based on the possibility of changing either H [97] or T [2, 102] with time. This
is commonly achieved by the use of an “auxiliary” scalar field 1, which is also
employed to fit the amplitude of scalar perturbations in the cosmic microwave
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background measured by COBE?. Without entering the details of this procedure,
we will fix € = 1 in the toy model below, assuming that also in our case some
auxiliary field (or some other mechanism) can be invoked in this regard?.
In the model that we propose, the scalar field ¢ has a potential (see Fig. 5.1
below)
Ac+6

¢° [(6 —v)" + 5]

where A, § and v are constants of mass dimension one. Eq. (5.7) has a barrier

Vi(g) =

, with §<< 1, (5.7)

at ¢ ~ v, after a metastable minimum in ¢ ~ va/(a +2) = ¢, while it behaves
like ~ A®T8/¢2+2 for ¢ > v.
 The parameter A is constrained by quintessence (see eq. (5.4)-(5.5)):

A

12

10733 Mp o~ 107ats GeV . (5.8)

In this way we ensure that the residual vacuum energy after inflation does not
overclose the universe and that at the same time it is not presently negligibly
small.

Inflation, instead, requires that most of the energy density V(¢é,,) which dom-
inates the accelerated expansion is transferred, after the end of inflation, into a
thermal bath of temperature T, = 1097 GeV and this fixes the scale v in the

potential®

10-83-47\ a+3 1019a—45—47\ =53
v~ (CE+2) (W) MP ~ (Ol—|—2) <W> GeV . (59)

The ratio (/v is fixed below by the condition € = 1 , so that the only
free parameters of the model are the exponent « and the reheating temperature
parametrized by .

Although the potential (5.7) does not have two minima (being the lower one
at infinity), the problem can be analytically approached in the so called “thin wall
limit” [34] as in the case in which the two minima are present. This limit applies

3If this second field 1 is slowly rolling down its own potential V' (¢), the amplitude of the
density fluctuations is given by [114] 107° ~ §p/p ~ a—‘%&@ ~ 3(87/3M2)3/? % .

4Gince a late time quintessential behaviour obvoiusly cannot affect the exit from inflation,
the solutions proposed so far (see for example [97, 2, 102]) may be assumed to work also in the
present case.

5For the degrees of freedom of the Standard Model V (¢m) = prea = 35 T4,
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when the barrier is much higher than the difference between the two minima.

KY(E;,Z) =0 (%)2 >1. (5.10)

In order to get the decay rate I' (see [34] for details) one has to integrate the

This is our case, since

equation of motion associated to the potential (5.7) and select the solution ¢(z)
which minimizes the Euclidean action Sg of the system. This solution is O(4)
symmetric (in the whole Euclidean space) and approaches ¢ = ¢, at z = |x| =
0o. The value ¢ (z = 0) = ¢ is called the “escape point” and corresponds to
the point at which the field ¢ tunnels out and starts rolling under its classical
equation of motion.

If the thin-wall limit holds, the solution is ¢ ~ ¢ for an interval 0 < z < R,
and then ¢ =~ ¢, for z > R. We physically interpret it as a bubble with radius
R of (nearly) true vacuum within separated by a thin wall from the false vacuum
without. Continued to Minkowski space, the bubble appears to expand with a
speed which asintotically approaches the speed of light. The universe can then
be reheated by the particle production that occurs during the subsequent phase
of collision of the bubbles recovering from the tunneling. The dynamics of this
process in the present model is exactly analogous to the one which occurs in the
usual case (when the minimum of V(¢) is at a finite value of @) and is extensively
discussed in ref. [89, 111, 152, 161].

Following [34], the Euclidean action and the initial radius of the bubbles are

given by
27 72 S
T Uiy
R =~ 35/V(ém) , (5.11)
where -
S = /¢ dg[2(V(9) =V (ga)]"? . (5.12)

In our case S; can be calculated analytically for any value of « in the poten-
tial (5.7) without any approximation, but a more readable and accurate enough
estimate is given by

v Aa+6 1 (a+6)/2
51:2/¢ dqu\/i[ 2v24 ln{4 U}.

1/2
ve (¢—v)z+ﬁ2] e a+2 8
(5.13)
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Figure 5.1: The bump in the potential of eq. 5.7, shown here with parameters o = 6
and /v = 0.005, allows for an early stage of inflation while the inflaton field ¢ sits
in the relative minimum at ¢,,. After ¢ has tunneled out at ¢, the quintessential

phase starts with the scalar rolling down the slope ~ $~2~2 until today.

The tunneling rate of ¢ is
' = Ae™ % (5.14)

where A is a parameter with mass dimension 4 of order V(¢y,) .

From this equation, the condition

T 3\ Mp s

is obtained for Sg ~ 84 — 9, that is if the ratio §/v satisfies

I 4 vl _ (84 -9 140%>1/4 <a + >a/2 (10a(’7—10)+63+67)1/(a+2)
a+2 0 3 '

5.0 - 105 Qratz
(5.16)
Moreover, with this condition we also have
R = 036 (84 —99)/*107°77 GeV™! (5.17)

as the analytical estimate for the initial radius of the bubbles®.

6In all this analysis we have not considered the gravitational corrections on the decay of
the metastable vacuum. However, since they are of order (RH )? [35] , their contribution is
completely negligible in all the cases of our interest.
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Going on with the analysis, we specify to some particular values of the pa-
rameters. As anticipated in Section 1.1, we impose to the reheating temperature
the upper bound 7, < 102 GeV , that is v < 3. We see from eq. (5.16) that,
for any fixed value of v, it is always possible to obtain € = 1 with arbitrarily low
B/v, just allowing o to be large enough. However, for phenomenological reasons
(see below) we restrict ourselves to & < 10 and list” in Table 1 the cases for which
B/v < 1.

7| o B/v Ran [GeV™Y | Rpum [GeV ] | des/v
1|8 |775-107%| 1.06-10710 0.98-10710 1.30
2
3

10| 9.72-10"3 | 1.03-10"1 0.94-1071 1.23
8 | 4.74-10"*| 9.88-.10713 9.07-10713 1.25

Table 5.1: Comparison between the analytical and numerical results for the radius
of the tunneling bubble, for some values of the parameters of the model. In the last
column, the escape point is given in units of v.

We studied the tunneling also numerically and the solutions that we found are
in good accordance with the previous semi-quantitative analysis. In particular,
their shape is that of an instanton which interpolates between the initial value
¢.s and the final one ¢,,. The jump between the two values occurs at z = R,
very close to the analytical estimate R, given by eq. (5.17), as can be checked
in Table 1.

At this stage, it is easily understood that the initial conditions for quintessence
are entirely determined by the tunneling and not given arbitrarily. In particular,
if the present model is considered, when ¢ tunnels out at the escape point ¢,
and starts rolling down the V' ~ ¢~%2 potential, it has an energy density given
by

4a” (V/es)®
(o +2)0+2 (es/v — 1)2
) 4 ¢ (U/¢es)a+2
" at2)77 (1= 0/0e)?

~

Vi(ges) = V(dm)

(5.18)

“In order to avoid excessive fine tuning, we have not listed the cases for which 8/v < 1075,
However this is a somewhat arbitrary limit and nothing prevents from considering smaller
values.
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which is typically about 1% of the thermal one and which can be computed
as a function of o and of the reheating temperature substituting the values of
Table 1 in the last expression. Note also that the field ¢ at the beginning of the
“quintessential” regime is of the order of v and, from eq. (5.9), can be easily
estimated to be < Mp (actually it tends to Mp when a — co). '

These initial conditions naturally lay within the allowed range for quintessence
and correspond to the overshoot case mentioned in Section 1.1. The field ¢ will
then rapidly run to large values and its energy density will consequently drop
down well below the tracker, as discussed in ref. [100, 147, 169]. Then, after a
“freezing” phase of almost zero kinetic energy, it will eventually join the tracker
path at more recent times. As a function of the exponent « in the potential (5.7),
the equation of state of the scalar ¢ on the tracker is

_ 2
a+4

Wy = (519)

However it should be remembered that the present value of the equation of state
is lower than the attractor value. When the scalar energy density ceases to be
subdominant with respect to the matter one, the approximation in which the
attractor was derived does not hold anymore [100, 147, 169]. The scalar then
leaves the tracking path as soon as its energy density is comparable to that of
matter and rapidly tends towards a cosmological constant-like behaviour with
wy = —1. For a present ratio Qy/Qy ~ 2 we should restrict to @ < 10 to be
compatible with the present data [160].

Hybrid quintessential inflation

The model that we will consider next was proposed in [82, 83] and involves a
scalar potential arising from dynamical supersymmetry breaking, of the form
V = Vgusy 4 VSw/sy, with

2 Ad+p 1 5 5
+ pralil Vsysy = 5PM7X" . (5.20)

2 42
X°¢

As extensively discussed in [82, 83], this potential can easily accomodate an early
inflationary stage of the hybrid [103, 104] type®. We find that, quite surprisingly,

8The presence of a SUSY-breaking mass term for the scalar ¢ is cosmologically excluded
if we require a late time quintessential behaviour, since it would induce a minimum in the
¢—direction of the potential.
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this model has already incorporated a late-time quintessential phase and this
leads to important consequences in addition to those discussed in [82, 83]. The
interesting point is that this class of potentials is the first example which allows for
discussing quintessential inflation in a particle physics context. While this issue
is discussed both in the purely inflationary (see [108] and references therein) or
purely quintessential cases (see Chapter 3), it is still missing in the ‘quintessential
inflation’ scheme. In the following we will then address this problem with the
potential (5.20).

For ¢ < ¢, = +/BM?/2)\ the minimum of the potential is at x = 0 and
inflation can occur if the term M* in (5.20) dominates. When ¢ rolls down to
¢ > ¢, inflation is ended by instability in the x direction, as typically occurs in
hybrid models. In this case, however, the VEV of the scalar potential V' does not
almost instantaneously settle to zero but vanishes only after ¢ has run to infinity.
This feature is very welcome if we want a quintessential component to be present
in the subsequent evolution of the universe. In what follows we study for which
range of the parameters this model can fulfill the double aim of accounting for
both the inflationary and quintessential stages of our universe.

For x =0 and ¢ < ¢, the potential can be rewritten as

e —
with
AP+4

We will see below that stringent upper limits apply to « for the model to fit
observations. For the moment we only ask « to be small enough so that the
constant term dominates eq. (5.21), leading to a first inflationary stage. This
is naturally achieved if we require that the term A**?/@P in eq. (5.20) leads to
a present energy density that does not exceed the critical one (see Section 1.1),
that is if A < A, with

AP = 107128 ppott (5.23)

To estimate the starting point of inflation we consider the slow roll parameters

= ) ) - () e
Aﬁ(%%)g___ %_%%ﬂ = (525)
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where a prime denotes differentiation w.r.t. ¢ and

P 1/(p+1)
¢ = (m Oé> Mp . (5.26)

Since slow roll requires €, < 1, the accelerated expansion occurs for ¢y < ¢ <
b
When inflation ends at ¢ = ¢, , the second scalar x leaves zero (that becomes

an unstable maximum of V) and oscillates about one of the two new ¢—dependent

minima that form at

Xurv = g 1—'4—5’2‘

If we suppose that the scalar x is coupled to the matter fields via terms like
hx??, its coherent oscillations would result in sufficient reheating of the universe
by its decay products. The scalar x eventually settles to xary and the reheating
temperature is typically of order ~ M. After the reheating phase is completed
the potential is given by

(8, A

Vixun,¢) = M ¢—§ + pr
It should be noted that, taking into account the bound (5.33) on A given below,
it turns out that at late times (¢ > ¢.) the term that will dominate in the
above formula is the first one. That means that the tracking behavoiur will not

(5.28)

be induced, as might be expected, by the explicit inverse power term present
in the potential, but will instead come from the effective contribution ~ ¢2/¢?
originated by the minimum of the second scalar .

The first term in eq. (5.28) constrains the ratio of ¢, to M, since we need
that today V (xumin,® =~ Mp) =~ p° . This translates to

3
%— = fA ~ (M) 10710 . (5.29)

- M
The smallness of ¢, constrains the other parameters of the model, once the two
main requirements of inflation, namely that it lasts for enough e—folds and that
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it gives the spectrum of fluctuations observed by COBE, are taken into account.
The number of e—folds of inflation, when 7 >> ¢ is given by [82, 83]

27 (% _d¢ & (¢c)”“
Mp o \[e(¢) — plo+2)a \Mp

Since at least 50 or 60 e—folds are needed to solve the horizon and flatness prob-

Niot = (5.30)

lems, we impose Nygt > 50 . For what concerns the fluctuations, instead, we
require that the curvature power spectrum? [82, 83]

pL? — 1 H(¢50 ~ p+2 /27r ( ) Nigs (1 B 50 >(p+1)/(p+2)
R —
\'/- MP V ¢50 3 M ¢c NtOt

(5.31)
matches the COBE normalization [23] Py/*> = 5-10~° , with spectral index [82, 83]
d log(Pg) | p+1 2
1= —=2F = gt ~ . (5.
n-l d logk 2 = \052) Nl =50/ - 0%

The spectrum turns out to be blue (n > 1), but for Niy > 50 it quickly ap-
proaches scale invariance, n =~ 1. The present limit [n — 1| < 0.2 [108] translates
to Nigt = 60.

Substituting egs. (5.22) and (5.29) into eq. (5.30), we obtain the following
upper bound on the mass scale!® A:

(i\_)p“ N 10~27p (100@53\/)21" 50 (5.33
A, ~ p(p+2)20+t M Niot ) 33)

Finally, from eq. (5.31) we get the rough estimate —4— Mo Ntot ~ 1075, which

translates into

50 1/4
M ~ 100 GeV < ) . (5.34)
Ntot

We thus understand that a sufficient amount of e—folds can be achieved only for
a quite low reheating temperature (remember T,, ~ M). Anyhow, a low T, is
also preferred since it weakens the upper bounds on ¢, and on A given by egs.
(5.29) and (5.33).

As an example of the orders of magnitude involved, for M ~ 50 GeV we get
Niot, = 800, ¢~ 22eV, and A in the range 0.016 eV(p = 2) + 5eV(p = 50).

950 is the value of the inflaton field 50 e~folds before the end of inflation.
%Inserting this value for A in eq. (5.26) we can check that, consistently, ¢o < @ .
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The last mass scale is not very natural in a supersymmetric context, where one
customarily expects values 2 GeV. However, the amount of fine tuning involved
in A from eq. (5.33) is milder than in the case of the cosmological constant, where
the mass scale is more than 30 orders of magnitude smaller than the “natural”
value. ‘

The last important point in our discussion is the “quintessential” evolution
of ¢ after the reheating phase. As already noticed, the bound on A given by eq.
('5.33) forces the second term in eq. (5.28) to be completely negligible during
this last phase. Despite its shape is exactly the one required for the trackers, the
only role it plays in this model is to drive ¢ towards ¢. during inflation. The
term which dominates the potential (5.28) at late times comes instead from the
dynamics of the field x and the tracking behavior is guaranteed from the fact
that it involves a negative power of the inflaton ¢ as well.

The initial conditions of this “quintessential” phase are fixed by the value ¢*
of the field ¢ after reheating, when x = xurnv and eq. (5.28) starts holding.
The precise value of ¢* depends on the details of the physics which governs the
reheating, but it is reasonable to assume that it will not be much larger than ¢, .
If this is the case, the initial energy of the quintessential field ¢ will be somewhat
smaller (but not too smaller) than the one stored in the thermal background and,
as in the previous model, we are again in the “overshoot” case.

The attractor equation of state for a potential V ~ ¢~ is simply wy = —1/2,
well within the observational bound [160].

In this Section we have discussed two possible schemes in which inflation and
quintessence are unified [122]. In both cases it is the same field which at the same
time plays the role of the inflaton and of the quintessence scalar. In this way we
succeded to uniquely fix the initial conditions for quintessence from the end of
inflation and have found that they are compatible with a late-time tracking [122].

In one example we studied first-order inflation with a potential going to zero
at infinity like #~%. A bump in the potential at ¢ < Mp allows for an early stage
of inflation while the scalar field gets “hung up” in the metastable vacuum of the
theory. Nucleation of bubbles of true vacuum through the potential barrier sets
the end of the accelerated expansion and starts the reheating phase. As it is well
known, this scenario suffers from the so-called “graceful exit problem”, but we
briefly commented on possible ways out where (thanks to some auxiliary scalar
field) the ratio of the tunneling rate to the Hubble volume, I'/H 4 varies with
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time. After the reheating process is completed, the quintessential rolling of the
scalar ¢ starts and its initial conditions (uniquely fixed by the end of inflation)
are naturally within the range which leads to a tracking behavior in recent times.

As an alternative, we considered the model of hybrid inflation which, moti-
vated by dynamical supersymmetry breaking, was proposed by the authors of
[82, 83]. We showed that it naturally includes a late-time quintessential behav-
ior. This result is very interesting since it is the first time that the quintessential
inflation scheme is discussed in a particle physics motivated context. As typical
of hybrid schemes, the potential is dominated at early times (that is until the
inflaton field is smaller than a critical value ¢.) by a constant term and inflation
takes place. Eventually the inflaton rolls above ¢, , rendering unstable the second
scalar of the model, x. This field starts oscillating about its minimum (whose po-
sition is determined by ¢) and in this stage the universe is reheated. After x has
settled to the minimum, the inflaton continues its slow roll down the “residual”
potential which goes to zero at infinity like ¢—2, thus allowing for a quintessential
tracking solution. Also in this case the initial conditions for the quintessential
part of the model do not have to be set by hand, but depend uniquely on the
value of the inflaton field at the end of reheating.

5.3 Initial conditions from the interaction with

the inflaton?

If we suppose that the inflaton ¢ and the quintessence scalar x are two distinct
fields, an interesting issue is whether their interaction can have any effect on the
initial conditions for quintessence. In other words, we want to see if introducing
an interaction potential V' (@, x) may help in setting uniquely the initial conditions
for quintessence.

In this section we will discuss some speculations about the possibility that
the inflaton ¢ sets the initial conditions for the quintessence scalar x via an
interaction potential. We will focus in particular on a toy model in which the
minimum in the y direction results to be ¢-dependent. If this is the case, it may
happen that — following the evolution of ¢ — at the beginning x is trapped at a
temporary finite minimum of V' and then eventually escapes to infinity. In this
scenario, the late—time rolling of x would be determined by the conditions at the
end of inflation.
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Consider a potential of the form:

A4+a 2
+ il (g%x* +m?) (5.35)

Vg, x) = - 5

where A and m are some mass scales, g is a dimensionless coupling and o > 0.
The coupled equations of motion for the two-field system are:

¢ + 3H¢ + ¢ (g2 +m?) =0, (5.36)
A4+a

X + 3HX + ¢*¢*x — « o = 0 (5.37)

We want the first term in the potential (5.35) to become relevant only after
inflation (when ¢ settles to zero) and the second one, instead, to dominate the
dynamics of inflation. This is naturally achieved if, as it is usually done in
quintessence models, we fix the scale A requiring that at present the scalar x has
already joined the tracker path and V is of order of the critical density. In this

way we obtain, depending on the value of o :

_1
A = [ MR~ Mp 1074 (5.38)
It can be easily checked that, if chaotic initial conditions are considered (see be-
low), the contribution of this first term in eq. (5.35) is negligible during inflation.
Let us now focus on the two-field dynamics with potential:
— ¢2

V = o} (¢*x* +m?) . (5.39)

We choose the initial conditions (see also the discussion in [53]) in such a way
that the Planck boundary V < M3 is satisfied and the effective masses of the
two fields do not exceed Mp:

Xl ~ Mp, |g|~g" Mp . (5.40)

We also choose the coupling g to be large enough that at the very early stages of
inflation the contribution of the term m23¢2 can be neglected but also small enough
to have |x| < |¢| at the beginning. Then a very short stage of x-dominated
inflation takes place, before x itself settles down to its minimum X :

44 2—41?5
5 = (O‘A ) : (5.41)

92 ¢?
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In this way we are also able to supress (by the same mechanism discussed in [53])
the long wavelenght fluctuations of x that could spoil the model in absence of an
interaction between the two fields.

While x =~ x the potential is given by

— 2g%\ &2 24ta) | 24 2
V(6,%) ~ (%) (1+5§)A e+ D (a2)

If m ~ 107% Mp as required by the COBE normalization, then the scalar energy
density V in the last expression is dominated by m—2—2¢2. As a consequence ¢
evolves independently of x and the usual chaotic inflation occurs.

During inflation, while ¢ rolls down, the minimum (5.41) of the potential will
be slightly displaced from its original position. As far as ¥ increases slowly, the
condition x =~ X will still hold. This is no longer true after inflation is ended and
¢ starts a regime of damped oscillations according to

é(t) = ®(t) - cosmt . (5.43)

The amplitude of the oscillations, ®(t), decreases exponentially (on a time scale
longer than the period of oscillation ~ m™!), due to both the expansion of the
universe and the decay of the inflaton during the reheating process. The model
with potential (5.35) cannot produce sufficient reheating by itself, because the
decay rate I'(¢¢ — xX) never catches up with the expansion of the universe
and reheating never completes '[67, 84, 85]. Howewer it is easy to increase the
efficiency of the mechanism by extending the particle content of the model.

If we suppose that the field x is also coupled with fermions with an interaction
term like hxit the mechanism of “instant preheating” discussed in [52] could
be invoked while ¢ passes through zero. As an alternative, one can couple some
bosonic or fermionic field directly to the inflaton and then the usual perturbative
reheating process [67, 84, 85] would work. This adds a decay rate T to the
equation of motion (5.36) for ¢.

During the oscillatory phase of the inflaton, ¥ quickly evolves down to infinity
(when ¢ crosses zero) and backwards, but ¥ cannot catch up and makes small
oscillation about the average position!!

a Adre\ T+
XO/U - (W) . (544)

'In practice, one can accurately enough sobstitue ¢ with ® in the equation of motion (5.37)
for the field x .
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While ® is getting damped, the term g?>®*x in eq. (5.37) will correspondingly
shortly become negligible and x will effectively start to feel just the ~ ¢~ part of
the potential. The moment when this happens can be considered as the starting
point for quintessence. Note that this initial condition is, with good approxima-
tion, fixed by the position of the minimum (5.41) at the end of inflation, since
feheating takes place almost instantaneously compared to the time it takes for x
to move. Substituting ¢ ~ Mp/3 and A~ Mp - 107#5 in eq. (5.41) we find

123

e
X o~ (_) -107 %= - Mp (5.45)

as the initial value for the field x in the post-inflationay phase. Again, these
initial conditions for the late time evolution of x are within the allowed range for
quintessence.

In conclusion, in this Section we have considered the possibility that the
inflaton and quintessence scalar are not the same field. If this is the case, we
have shown that the issue of fixing the initial conditions for quintessence is well
posed also in this case and that the interaction with the inflaton is a promising
mechanism for that.

38



Chapter 6
Conclusions

The observational evidence of a non-vanishing vacuum energy, presently domi-
nating the cosmological expansion, is far from beeing conclusive. The Sn Ia data,
which provide the only direct measurment of the acceleration of the universe,
still await confirmation. Nevertheless, indirect evidence coming from a number
of other cosmological constraints is mounting. Therefore the possibility of a non—
vanishing cosmological constant should be taken seriously both from the particle
physics and cosmology points of view.

In this thesis we have examined some issues related to the cosmological con-
stant problem in particle physics and cosmology. In particular we have focussed
on the so—called ‘Quintessence models’ which assume A.;; = 0 and study the
cosmological evolution of a rolling scalar field. Shuch a field could indeed provide
the required ‘missing’ energy density of the universe, p, = ¢2/2 + V(¢), and
at the same time exibit a negative equation of state. It could then accelerate
the universe as required by the SN Ia data. A particularly promising class of
potential is given by inverse powers, V(¢) ~ ¢~, which admit a characteristic
attractor solution, denominated ‘tracker’ in the literature. For a very wide range
of the initial conditions the scalar field will end up on the tracker path before the

present epoch.

We have then analyzed the role of Supersymmetric QCD as a possible model
for quintessence [112, 134]. Our analysis completes the previous one by Binétruy
[20] in two respects.

First, we have taken in full consideration the multi-scalar nature of the model,
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allowing for different initial conditions for the Ny independent scalar VEVs and
studying the coupled system of N; equations of motion. Starting with the same
initial scalar energy density, but different fields’ values we have shown that the
tracking behavior becomes more difficult to reach the larger the difference among
the initial conditions for the fields. Thus, an approximate flavor symmetry of
the initial conditions is needed in order that SQCD may act as an effective
quintessence model.

Secondly, we have sketched a possible way out to the common problem of
all quintessence models considered so far, that is the presence of long-range in-
teractions of gravitational strength mediated by the ultra-light scalar fields [28].
Our solution is inspired by the Damour-Polyakov relaxation mechanism for the
superstring dilaton [42]. Basically, we postulate that all the couplings of the
SQCD quark superfields with the SM ones are given by a unique function, which
has a minimum close to today’s values of the scalar fields’ VEVs. Since all the
deviations from Einstein gravity are parametrized by the slope of these couplings
today, this could make the model phenomenologically safe with respect to limits
on the weak equivalence principle and on the time dependence of the SM coupling
constants. At the same time, during radiation domination the coupling with SM
fields may have induced a SUSY-breaking -time dependent- mass to the scalar
fields, with the effect of enhancing the initial configuration space leading to a late
time tracking behavior.

We have also discussed two possible schemes in which inflation and
quintessence are unified [122, 135]. In both cases it is the same field which at
the same time plays the role of the inflaton and of the quintessence scalar. In
this way we succeded to uniquely fix the initial conditions for quintessence from
the end of inflation and have found that they are compatible with a late-time
tracking.

In one example we studied first-order inflation with a potential going to zero
at infinity like ¢~®. A bump in the potential at ¢ < M, allows for an early stage
of inflation while the scalar field gets “hung up” in the metastable vacuum of the
theory. Nucleation of bubbles of true vacuum through the potential barrier sets
the end of the accelerated expansion and starts the reheating phase. As it is well
known, this scenario suffers from the so-called “graceful exit problem”, but we
briefly commented on possible ways out where (thanks to some auxiliary scalar
field) the ratio of the tunneling rate to the Hubble volume, I'/H 4 varies with
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time. After the reheating process is completed, the quintessential rolling of the
scalar ¢ starts and its initial conditions (uniquely fixed by the end of inflation)
are naturally within the range which leads to a tracking behavior in recent times.

As an alternative, we considered the model of hybrid inflation which, mo-
tivated by dynamical supersymmetry breaking, was proposed by the authors of
[82, 83]. We showed that it naturally includes a late-time quintessential behavior.
As typical of hybrid schemes, the potential is dominated at early times (that is
until the inflaton field is smaller than a critical value ¢.) by a constant term and
inflation takes place. Eventually the inflaton rolls above ¢., rendering unstable
the second scalar of the model, x. This field starts oscillating about its minimum
(whose position is determined by ¢) and in this stage the universe is reheated.
After x has settled to the minimum, the inflaton continues its slow roll down
the “residual” potential which goes to zero at infinity like ¢~2, thus allowing
for a quintessential tracking solution. Also in this case the initial conditions for
the quintessential part of the model do not have to be set by hand, but depend
uniquely on the value of the inflaton field at the end of reheating.

In conclusion, the cosmological constant issue still leaves many open questions
both in cosmology and particle physics.

On one hand we have to wait for a better understanding of the systematic
errors possibly affecting the SN Ia data. Also the high precision CMB anisotropy
information that will come with the MAP and PLANCK satellites will give a
tremendous breakthrough in the measurment of the cosmological parameters.
These last data should leave no more ambiguity in the determination of the total
energy content of the universe, parametrized by €. Both these facts, together
with the other cosmological measurments, should be able in a few years to settle
once for all the issue of the vacuum energy contribution to the cosmological energy
budget.

On the other hand, from the particle theory point of view much work is still
to be done. At present we don’t have any conclusive proposal which could set
Aers = A+ 87Gep equal (or nearly equal) to zero. This problem will probably
require a better understading of the unification of gravity with quantum field
theory in order to be solved. As we have seen, the cosmological constant problem
arises in particle physics when we face the quantum theory of fields with the
cosmological setting. As a consequence, any resolution of the puzzle can only
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come from a better understanding of their deep relationship.

Nevertheless, as we have extensively discussed, if A¢sy = 0 cosmological scalar
fields (‘Quintessence’) might play a crucial role in accounting for the acceleration
of the universe. In this respect, Supersymmetric QCD theories have proven to be
workable particle physics candidates for Quintessence. A deeper investigation of
this scenario would require the implementation of SQCD in a wider context, such
as superstring theories or theories with large compact extra-dimensions, what
clearly lies beyond the scope of the present work.
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