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Abstract. We study the global analytic properties of the solutions of a particular family
of Painlevé VI equations with the parameters § =~ =10, = % and 2a = (2u—1)?%, with p
arbitrary. We introduce a class of solutions having critical behaviour of algebraic type, and
completely compute the structure of the analytic continuation of these solutions in terms
of an auxiliary reflection group in the three dimensional space. The analytic continuation
is given in terms of an action of the braid group on the triples of generators of the reflection
group. The finite orbits of this action correspond to the algebraic solutions of our Painlevé
VI equation. For 2u ¢ Z, the auxiliary reflection group is always irreducible. For pu
integer, the auxiliary reflection group is either irreducible or trivial (i.e. it contains only
the identity) and for p half-integer it always reduces to an irreducible reflection group in
the two dimensional space. We classify all the finite orbits of the action of the braid group
on the irreducible reflection groups in the three-dimensional and in the two-dimensional
space. It turns out that for all these orbits p is not integer. This result is used to
classify all the algebraic solutions to our Painlevé VI equation with p ¢ Z. For 2u ¢ Z,
they are in one-to-one correspondence with the regular polyhedra or star-polyhedra in the
three dimensional space, for half-integer p they are in one-to-one correspondence with the
regular polygons or star-polygons in the plane. For integer p, the only algebraic solutions
all belong to a one-parameter family of rational solutions and correspond to the trivial
auxiliary reflection group. Moreover, we show that the case of half-integer u is integrable,
and that its solutions are of two types: the so-called Picard solutions and the so-called
Chazy solutions. We give explicit formulae for them, completely describe the asymptotic

behaviour around the critical points 0,1, co and the non linear monodromy.
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1. INTRODUCTION.

1.1. Our Painlevé VI equation.

This thesis is based on two papers (see [DM] and [Ma]). It deals with the structure
of the analytic continuation of the solutions of the following differential equation

1/1 1 1 9 1 1 1
Yoz =5 | =+ + Yz — | =+ + Yz
2\y y—-1 y-—=< z z-—1 y—=z

lyly - (y — =) 2, 2z —1)
P -t )

in the complex plane, where p is an arbitrary complex parameter. This is a particular case
of the general Painlevé VI equation (see for example [Ince]) PVI(a, 3,7, d)
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that depends on four complex parameters «,3,7,8. PVIu is specified by the following
choice of the parameters:
(2p — 1)2 1
= —— = = 0 5 = .
The general solution y(:i; c1,¢q) of PVI(a, B,7, ¢) satisfies the following two important
properties (see [Pain]):

1) The solution y(z;c;,cz) can be analytically continued to a meromorphic function on
the universal covering of €\{0,1,00}.

2) For generic values of the integration constants ci,cs and of the parameters a, 5,7,9,
the solution y(z; c;, c2) can not be expressed via elementary or classical transcendental
functions.

The former claim is the so-called Painlevé property of the equation PVI(e, 8,7,6), i.e.
its solutions y(z; ¢y, c2) may have complicated singularities (i.e. branch points or essential
singularities) only at the critical points of the equation 0, 1, co, the position of which does
not depend on the choice of the particular solution (the so-called fized singularities). All
the other singularities, the position of which depend on the integration constants (the
so-called movable singularities), are poles.

All the second order ordinary differential equations of the type:

Yz = R(x)y7y$)7

where R is rational in y,, meromorphic in z and y, and satisfles the Painlevé property
of absence of movable critical singularities, were classified by Painlevé and Gambier (see




[Pain], and [Gamb]). Only six of these equations, which are given in the Painlevé-Gambier
list, satisfy the property 2), i.e. they can not be reduced to known differential equations for
elementary and classical special functions. The solutions of these equations define some new
functions, the so-called Painlevé transcendents. PVI(a, 5,7, ) is the most general equation
of Painlevé-Gambier list. Indeed all the others can be obtained from PVI(a,3,v,0) by a
confluence procedure (see [Ince] §14.4).

The name of transcendents could be misleading; indeed, for some particular values of
(c1,c2,a,8,7,6), the solution y(z;c1,c2) can be expressed via classical functions. For ex-
ample Picard (see [Pic] and [Ok]) showed that the general solution of PVI(0,0,0, 3) can be
expressed via elliptic functions, and, more recently, Hitchin [Hit] obtained the general so-
lution of PVI(%,1,1,2) in terms of the Jacobi theta-functions (see also [Man]). Particular
examples of classical solutions, that can be expressed via hypergeometric functions, of PVI
were first constructed by Lukashevich [Luka]. A general approach to study the classical
solutions of PVI was proposed by Okamoto (see [Okl1] and [Ok2]). One of the main tools
of this approach is the symmetry group of PVI: the particular solutions are those being
invariant with respect to some symmetry of PVI. The symmetries act in a non trivial way
on the space of the parameters (o, 8,7,6). Okamoto described the fundamental region of
the action of this symmetry group and showed that all the classical solutions known at
that moment, fit into the boundary of this fundamental region.

The theory of the classical solutions of the Painlevé equations was developed by
Umemura and Watanabe ([Um], [Uml], [Um2}, [Um3], [Wat]); in particular, all the one-
parameter families of classical solutions of PVI were classified in [Wat]. Watanabe also
proved that, loosely speaking, all the other classical solutions of PVI (i.e. not belonging
to the one-parameter families) can only be given by algebraic functions.

Examples of algebraic solutions were found in [Hit1], for PVI(§, — 3, 532, 1 — 557), for
an arbitrary integer k. Other examples for PVIy were constructed in [Dub]. They turn out
to be related to the group of symmetries of the regular polyhedra in the three dimensional

space. Other algebraic solutions of PVI can be extracted from the recent paper [Seg].

Painlevé equations are also important from a physical point of view. There are many
physical applications of particular solutions of the Painlevé equations which we do not
discuss here. We mention only the paper [Tod] where our PVIu appears in the problem of
the construction of self-dual Bianchi-type IX Einstein metrics, and the paper [Dub] where
the same equation was used to classify the solutions of WDVV equation in 2D-topological
field theories.

1.2. Aims.

The main aim of this work is to elaborate a tool to classify all the algebraic solutions
of the Painlevé VI equation (for the other five Painlevé equations, algebraic solutions have
been classified, see [Kit], [Wat1], [Mur] and [Murl]). Our idea is very close to the main idea
of the classical paper of Schwartz (see [Schw]) devoted to the classification of the algebraic
solutions of the Gauss hypergeometric equation. Let y(z;c1,cz) be a branch of a solution

of PVI; its analytic continuation along any closed path « avoiding the singularities is a
new branch y(z; ¢}, cj) with new integration constants cj,c;. Since all the singularities of

the solution on €\{0, 1,00} are poles, the result of the analytic continuation depends only
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on the homotopy class of the loop v on the Riemann sphere with three punctures. As a
consequence, the structure of the analytic continuation is described by an action of the
fundamental group:

v € C\{0,1,00}, v:(e1,e2) — (c],c]). (1.1)

To classify all the algebraic solutions of Painlevé V1, all the finite orbits of this action must
be classified.

Our problem differs from Schwartz’s linear analogue, because (1.1) is not a linear
representation but a non-linear action of the fundamental group. It is also more involved
than the problem of the classification of the algebraic solutions of the other five Painlevé
equations, because PVI is the only equation on the Painlevé-Gambier list having a non-
abelian fundamental group of the complement of the critical locus.

Although the main idea seems to work for the general PVI(«, 3,7, §), we managed
to completely describe the action (1.1), and to solve the problem of the classification of
the algebraic solutions, only for the particular one-parameter family PVIu. One of the
motivations for the present publication is a nice geometrical interpretation of the structure
of the analytic continuation (1.1), that seems to disappear in the general PVI equation.

1.3. Results.

We now outline the main results. Let us introduce a class of solutions of PVIu a-priori
containing all the algebraic solutions. We say that a branch of a solution y(z;c1,cz) has
critical behaviour of algebraic type, if there exist three real numbers lg,[1,ls and three
non-zero complex numbers ag, a1, dso, such that

apz’® (1 4+ O(z°)), as 70,
yz)={ 1—a(1—2)" (1+0((1 -2)%), as z—1, (1.2)
Gooz' 7 (1+O0(z7%)),  as z — oo,

where € > 0 is small enough. We show that there exists a three-parameter family of
solutions to PVIu with critical behaviour of algebraic type, where u itself is a function of
lo,11,ls0. Of course, for an algebraic solution, the indices [y, 1, /s must be rational.

It turns out that the three-parameter family of solutions (1.2) is closed under the
analytic continuation (1.1), if and only if p is real. One of our main results is the pa-
rameterization of the solutions (1.2) by ordered triples of planes in the three dimensional
Euclidean space. The indices lg, 1, are related to the angles nrg, 7r1, 7ro between the

planes:

. 1
‘ 2r; if O0<r <=
I = -2

;. — 1 7::0717007
2—2r; if §S’l‘,’<l

and the parameter p is determined within the ambiguity p — +u +n, n € Z, by the
equation:

sin? T = cos? wrg + cos? mry + cos? Tree + 2 COS TG COS AT COS T
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This ambiguity on the parameter 4 and the one due to the reordering of the planes can be
absorbed by the symmetries of PVIy described in Section 3.

We compute the analytic continuation (1.1) in terms of some elementary operations
on the planes. This computation leads to prove that, for an algebraic solution to PVIy,
for 2u € Z, the reflections with respect to the planes must generate the symmetry group
of a regular polyhedron in R®. For integer p, such reflections must be trivial, i.e. coincide
with the identity operator. For half-integer p, any triple of rational angles leads to an
algebraic solution and, correspondingly, the reflections with respect to the planes generate
the symmetry group of a regular polygon in the plane.

As an application, we obtain the classification of all algebraic solutions of PVIu. For
21 ¢ Z, they are in one-to-one correspondence, modulo the symmetries of the equations
described in Section 3, with the reciprocal pairs of the three-dimensional regular polyhedra
and star-polyhedra (the description of the star-polyhedra can be found in [Cox]). The
solutions corresponding to the regular tetrahedron, cube and icosahedron are the ones
obtained in [Dub] using the theory of polynomial Frobenius manifolds. The solutions
corresponding to the regular great icosahedron, and regular great dodecahedron are new.
For integer p, all the algebraic solutions belong to a one-parameter family of rational
solutions. For half-integer u, the algebraic solutions form a countable set and are in one to
one correspondence with regular polygons or star-polygons in the plane (the description
of the star-polygons can be found in [Cox]).

Our method not only allows to classify the solutions, but also to obtain the e~<p11c1t
formulae, as done in Section 6 for 2u ¢ Z, and in Sectlon 4.2 for p € Z. For p = 2,
the algebraic solutions were classified by Plcard (see [Pic]). Picard proved that the PVIu
equation with p = l is integrable and admits an infinite set of algebraic solutions. The
Picard solutions, to PVI/,L with p = $ have the form

z+1
y(z;v1,v2) = p(riws + raws;wi,we) + 5
where w; »(z) are two linearly independent solutions of the Hypergeometric equation

2(1 — 2)w () + (1 - 22)'(2) — i-w(x) ~0,

and vy, v, are complex numbers such that 0 < Rev; < 2.

All the other PVIy equations with half-integer p # 3 L have “more” solutions. Let me
briefly explaln what I mean. Let the solutions of chard type be the solutions of PVIu
with p + 1 € Z\{1} which are images via birational canonical transformations of Picard
solutions. I show that, while the Picard solutions exhaust all the possible solutions to
PVIy with p = % the solutlons of Picard type do not cover all the possible solutions of
PVIp with u+ 1 € Z\{1}. Indeed, there exists a one-parameter family of transcendental
solutions of PVI,u with p + 2 € Z\{1}, the so-called Chazy solutions, which are not of
Picard type. The Chazy solutlons to PVIp with p = —1 are a one parameter family y(z; v)
of the form

2
: {[sz + w4 2z(vw) + w))]* — dz(vw) +‘w1)2}
vwy + wy)(vwh +w!))[2(z — 1)(vwh + wi) + vwa + wi][pws + w1 4 2z(vwy + wi)]
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where wy2(z) are chosen as above and v is a complex parameter. The set of Chazy
and Picard type solutions covers all the possible solutions of PVIy with any half-integer
p # % We compute explicitly the asymptotic behaviour of Picard and Chazy solutions
for any choice of the parameters (v, v2) and v respectively. We show that structure of the
nonlinear monodromy is given by the action of I'(2) on (v1,v2) and v, L.e. given a branch
y(z;v1,v2) (resp. y(z;v)) of a Picard (resp. Chazy) solution, all the other branches of the
same solutions are of the form y(z; 71, 79) (resp. y(z; 7)) with

i) _[a b v ﬁ_au{—b
p) \e d)\r)’ T ev+d

Concerning the algebraic solutions, they are necessarily of Picard type with rational
(v1,v2). Thus, the non linear monodromy of the algebraic elliptic curves of Weierstrass is
described by the regular polygons or star-polygons in the plane.

1.4. Structﬁre of the thesis.

This thesis is divided in three chapters. The first one, deals with the structure of
analytic continuation and the classification of all the algebraic solutions.

The main tool used in the first chapter is the isomonodromy deformation method (see
[Fuchs], [Sch] and [JMU], [ItN], [FIN]). The Painlevé VI is represented as the equation of

isomonodromy deformation of the auxiliary Fuchsian system

dY A A Az ‘

dz z z—1 z-

where Ag, A1, Az are 2 x 2 matrices. For PVIy, p # 0 the matrices Ag, A1, A, are nilpotent

and
Ag+ AL + Ay = (‘“ 0>.
0 u

The entries of the matrices A; are complicated expressions of z,y,y, and of some quadra-
ture [ R(z,y)dz. The monodromy of (1.3) remains constant if and only if y = y(z)
satisfies PVI. Thus, the solutions of PVIy are parametemzed by the monodromy data of
the Fuchsian system (1.3) (see Section 2).

Section 3 deals with the symmetries of the Painlevé VI equation and in particular, the
symmetry transformations between solutions of Painlevé equations with different values of
the parameters (see [Ok]). We prove also that all the solutions to PVIu equations with any
half-integer p, p # —%, are transformed via birational canonical transformations to solutions

of the case po= —5 and that the birational canonical transformations mapping the case
Y= —- to the case p = 35 does d1verge only when applied on a one-parameter family of
solutlons to PVIu with u = —1 which we call Chazy solutions. We give explicit formulae

for the Chazy solutions.

In Section 4, we compute the structure of the analytic continuation in terms of a
certain action of the braid group Bs on the monodromy data.

On this basis, in Section 5, we classify all the monodromy data of the algebraic
solutions to PVIu. To this end, for non half-integer 1, we classify all the rational solutions
of certain trigonometric equations using the method of a paper by Gordan (see [Gor]).

v




In sub-section 5.3, we parameterize the monodromy data of PVIu by ordered triples of
planes in the three-dimensional space, considered modulo rotations. The structure of the
analytic continuation of the solutions of PVIu is reformulated in terms of a certain action
of the braid group Bj on the triples of planes. The group G generated by the reflections
with respect to the planes remains unchanged. For the algebraic solutions to PVIp with
2u € Z, the group G turns out to coincide with the symmetry group of one of the regular
polyhedra in the three-dimensional Euclidean space. We also give another proof, suggested
by E. Vinberg, of this result. For integer p, G must be trivial, i.e. it contains only the
identity operator. We show that the correspondent solutions to PVIy, for p = 1, belong
to a one-parameter family of rational solutions and give the explicit expressions for them.
We establish that the class of solutions of PVIu parameterized by triples of planes in the
three dimensional Euclidean space is invariant with respect to the analytic continuation.

In the second chapter of this thesis, this class of solutions to PVIy, for 2u & Z, is
identified with the class of solutions having critical behaviour of algebraic type (1.2). In
Section 6, we prove that the solution y(z) of the form (1.2), for a fixed value of , is
uniquely determined by its asymptotic behaviour near one of the critical points, i.e. by
any of the pairs (ao,lo), (a1,01), (o, loo)-

To derive the connection formulae establishing the relations between these pairs, we
use (see Section 6.2) the properly adapted method of Jimbo (see [Jim]). This method
allows to express the monodromy data of the auxiliary Fuchsian system (1.3) in terms of
the parameters (ag,lo), (a1,l1) or (Geo,loo). For convenience of the reader, and because of
some differences between the assumptions of Jimbo’s work and ours, we give a complete
derivation of the connection formulae in Section 6.2.3. Using the results of the Sections &
and 6.2, we complete the computation of the critical behaviour (1.2) for all the branches of
the analytic continuation of the solution. The result of this computation is used in Section
7 to obtain the explicit formulae for the algebraic solutions of PVIu, 2u & Z.

The resulting classification of the algebraic solutions of PVIu, for 2u € Z, is in strik-
ing similarity to the Schwartz’s classification (see [Schw]) of the algebraic solutions of the
hypergeometric equation. According to Schwartz, the algebraic solutions of the hyperge-
ometric equation, considered modulo contiguity transformations, are of fifteen types (the
first type consists of an infinite sequence of solutions). The rows (2 — 15) of Schwartz’s
list (see, for example, the table in Section 2.7.2 of [Bat]) correspond to the triples of gen-
erating reflections of the symmetry groups of regular polyhedra in the three-dimensional
Euclidean space (we are grateful to E. Vinberg for bringing this point to our attention).
The parameter A, u, v of the hypergeometric equation shown in the table are just the angles
between the mirrors of the reflections, divided by .

According to our classification, the algebraic solutions of PVIy, for 2u € Z, consid-
ered modulo symmetries, are in one-to-one correspondence to the classes of equivalence
of the triples of generating reflections in the symmetry groups of regular polyhedra. The
equivalence is defined by an action of the braid group Bs on the triples and by orthogonal
transformations. We find that in the groups G = W(A43) and G = W(Bs), the symmetry
groups of respectively the regular tetrahedron and of the cube or regular octahedron, there
is only one equivalence class of triples of generating reflections; these are given respectively
by the rows (2,3) and by (4,5) of Schwartz’s table. In the group W(Hs) of symmetries of

vi



regular icosahedron or regular dodecahedron, there are three equivalence classes of triples
of reflections which are given respectively by the rows (6,8, 13), (11,14,15) and (7,9, 10,12)
of the Schwartz’s table and correspond to icosahedron, great icosahedron and great do-
decahedron (or to their reciprocal pairs, see [Cox]). To establish the correspondence, we
associate a standard system of generating reflections to a regular polyhedron in the fol-
lowing way: let H be the center of the polyhedron, O the center of a face, P a vertex
of this face and @ the center of an edge of the same face through the vertex P. Then
the reflections with respect to the planes HOP, HOQ and HP(Q) are the standard system
of generators. Qur five algebraic solutions correspond to the classes of equivalence of the
standard systems of generators obtained by this construction applied to tetrahedron, cube,
icosahedron, great icosahedron, great dodecahedron.

Summarizing, we see that the list of all the algebraic solutions of PVIu, for 2u ¢
Z, is obtained by folding of the list of Schwartz modulo the action of the braid group.
This relation between the algebraic solutions of PVIy and the algebraic hypergeometric
functions seems to be surprising also from the point of view of the results of Watanabe
(see [Wat]) who classified all the one-parameter families of classical solutions of PVIu
(essentially, all of them are given by hypergeometric functions). Using these results, one
can easily check that our algebraic solutions do not belong to any of the one-parameter
families of classical solutions of PVIu.

The third chapter of this thesis is devoted to the resonant case of half-integer . In
section 8, the new Chazy solutions are derived from certain solution of WDVV equation (see
(C.2) of [Dub]), and their asymptotic behaviour and nonlinear monodromy are completely
described. In section 9, we study the Picard solutions and their non-linear monodromy. In
section 10, the algebraic solutions to PVIu for half-integer p are classified. We show that
the reflection group G reduces to the symmetry group of a regular polygon in the plane and
that the algebraic solutions to PVIu for half-integer p are in one-to-one correspondence
with the regular polygons or star-polygons in the plane.
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CHAPTER 1.
STRUCTURE OF ANALYTIC CONTINUATION AND
ALGEBRAIC SOLUTIONS TO PVI EQUATION

Here, a method to classify all the algebraic solutions of the Painlevé VI equation is
elaborated. The main tool is the isomonodromy deformation method (see [Fuchs], [Sch]
and [JMU], [ItN], [FIN]). The Painlevé VI is represented as the equation of isomonodromy
deformation of the auxiliary Fuchsian system

dY A A Az
= (—3+ Ly )Y, (1.4)

E;_ z z—1 Z—x

where Ag 1,5 are 2 X 2 matrices. The entries of the matrices A; are complicated expressions
of ,y,y, and of some quadrature [ R(z,y)dz. The monodromy of (1.4) remains constant
if and only if y = y(z) satisfies PVI. Thus, the solutions of PVI are parameterized by the
monodromy data of the Fuchsian system (1.4). The structure of analytic continuation is
described as an action of the braid group B3 on the space of the monodromy data.

For the particular case of PVIy, the monodromy data are parameterized by ordered
triples of planes in the three-dimensional space, considered modulo rotations. The struc-
ture of the analytic continuation of the solutions of PVIy is reformulated in terms of a
certain action of the braid group Bs on the triples of planes. The group G generated by
the reflections with respect to the planes remains unchanged. For the algebraic solutions,
the group G turns out to coincide, for non resonant p, with the symmetry group of one
of the regular polyhedra in the three-dimensional Euclidean space; for integer u, with the
trivial reflection group, i.e. G contains only the identity operator. The case of half-integer
 is postponed to the third chapter, where we show that the group G correspondent to
the algebraic solutions must coincide with the symmetry group of a regular polygon in the
plane. :

2. PAINLEVE’ VI EQUATION AS ISOMONODROMY DEFORMATION
EQUATION.

In this section, I show how the PVI equation can be interpreted as the isomonodromy
deformation equation of an auxiliary Fuchsian system (see [Sch], [JMU]); moreover, I
describe the parameterization, essentially due to Schlesinger (see. [Sch]), of the solutions
of the PVI equation by the monodromy data of such Fuchsian system. The case of PVIu is
treated first because some standard statements are more delicate then in the general case.



2.1. An auxiliary Fuchsian system and its monodromy data.

In this section, I introduce an auxiliary Fuchsian system, define its monodromy and
connection matrices, and establish the correspondence between monodromy data and co-
efficients of the Fuchsian system for a given set of poles.

Consider the following Fuchsian system with four regular singularities at uy, ug, u3, o0

%Y A(2)Y, z € C\{uy, ug,uz, 00} ‘ (2.1)

where A(z) is a matrix-valued function

Ay Ao N As

’
Z— U3 zZ — Uy zZ — Us

Alz) =

A; being 2 x 2 matrices independent on z, and u1,usz,u3 being pairwise distinct complex
numbers. Assume that the matrices A; satisfy the following conditions:

A? =0 and - Al - Az - A3 = .Aoo, (22)

where

(¢t 0
for p#0, .Aoo.——<0 “M)l

for p=0, Ao 1= (8 é)

Indeed, as shown in the following (see Section 2.3) this choice corresponds to the particular
case PVIu of the Painlevé VI equation.

The solution Y (2) of the system (2.1) is a multi-valued analytic function in the punc-
tured Riemann sphere €\{u1,u2,u3}, and its multivaluedness is described by the so-called
monodromy matrices. Let us briefly recall the definition of the monodromy matrices of
the Fuchsian system (2.1). First, fix a basis v1,%2,7s of loops in the fundamental group,
with base point at co, of the punctured Riemann sphere m; (E\{ul,ug,ug, oo}, oo), and a
fundamental matrix for the system (2.1). To fix the basis of the loops, one has to perform .
some cuts between the singularities, i.e. three parallel segments 7; between the point at
infinity and each wu;; the segments m; are ordered according to the order of the points
Uy, Uy, us, as in the figure 1. Take «; to be a simple closed curve starting and finishing
at infinity, going around u; in positive direction (v; is oriented counter-clockwise, u; lies
inside, while the other singular points lie outside) and not crossing the cuts 7;. Near oo,
every loop 7; is close to the cut 7; as in the figure 1.

In order to fix the fundamental matrix Yoo (2) of the system (2.1), one has to distinguish
between the non-resonant case, i.e. 2u & Z, and the resonant case, i.e. 2u € Z.

In the former case, fundamental matrix Yoo(z) can be chosen such that:

Yio(z) = (1 . O(%)) (z;” z%), as 25 oo, (2.3)

2




- ; ; :
Fig.1. The cuts m; between the singularities u; and the oriented loops ;.

where z* := e#1°87 with the choice of the principal branch of the logarithm with the
branch-cut along the common direction of the cuts 71,73, 73. Such a fundamental matrix
Yoo(2) exists and, due to the non-resonance condition, it is uniquely determined.

In the latter case, the fundamental matrix of the system is chosen such that:

Yoo = (1 + O(%)> 27 A= 2R as 2z = o0, (2.4)

where the matrix R is defined as follows for 2p =n € Z,

3
for n> 0, Rlz = Z (Ak)12 'LLZ, Rn = R21 = Rzz = 0,
k=1
3 (2.5)
for n <0, Ro1=) (Ak)yuf, PRu1=Ri=Rs=0,
k=1
for n=0, Ry1 = Rip =R =Ry =0,

and z* is defined as above. Such a fundamental matrix Y exists and, for p # 01t is
uniquely determined by R while for g = 0 it is uniquely determined by Ax.

In both the above cases, Yo, can be analytically continued to an analytic function on
the universal covering of C\{u1,uz,us,00}. For any element v € 71 ((f\{ul, Ug, Ug, 00}, oo)
denote the result of the analytic continuation of Yoo (2) along the loop v by ¥[Yeo(2)]. Since
Y[Yeo(2)] and Yeo(z) are two fundamental matrices in the neighborhood of infinity, they
must be related by the following relation:

YYoo(2)] = Yoo (2) M,

for some constant invertible 2 x 2 matrix M., depending only on the homotopy class of
~. Particularly, the matrix Mo := M, Yoo being a simple loop around infinity in the
clock-wise direction, is given by:

M = exp[27i( A + R)], (2.6)
where, for  non-resonant, R is zero by definition, and, for 44 resonant is defined as in (2.5).
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The resulting monodromy representation is an anti-homomorphism:

m (C\{u1,u2,us,00},00) — SLy(C) (2.7)
v = M, .
Moy = M5 M,. ' (2.8)

The images M; := M., of the generators v;, 1 = 1,2, 3 of the fundamental group, are called
the monodromy matrices of the Fuchsian system (2.1). They generate the monodromy
group of the system, i.e. the image of the representation (2.7). Moreover, due to the fact
that, in this particular case, the A; are nilpotent, they satisfy the following relations:

det(M;) =1, Tr(M;) =2, for i=1,2,3, (2.9)

with M; = 1 if and only if A; = 0. Moreover, since the loop (vy172y3) ™! is homotopic to
Yo, the following relation holds: .

Moo M3 My M, = 1. (2.10)

Recall the definition of the connection matrices. Assume that M; # 1, or equivalently
A; # 0, for every 1 = 1,2,3. Near the poles u;, the fundamental matrices Y;(z) of the
system (2.1), are chosen in such a way that:

Vi=G(1+0(z—uw))(z—u)?, as z—uy, (2.11)

0 1
0 0
is defined by A; = GiJGi"l, and the choice of the branch of log(z — u;) needed in the

definition of Log( )
T 1 OglZ — Uj
(z—u)” = (0 1 )

1s similar to the one above. The fundamental matrix Y;(z) is uniquely determined up to
the ambiguity: ’

where J is the Jordan normal form of A;, namely J = ( ), the invertible matrix G;

Yi(z) = Yi(2) R,

where R; is any matrix commuting with J.

Continuing, along, say, the right-hand-side of the cut m;, the solution Y to a neigh-
borhood of u;, one obtains another fundamental matrix around wu;, that must be related
to Y;(2) by:

Yoo(2) = Yi(2)C;, (2.12)

for some invertible matrix C;. The matrices C1, Cq, Cs are called connection matrices, and
are related to the monodromy matrices as follows:

M; = C texp(2miJ)Cy, i=1,2,3. (2.13)

Lemma 2.1. Given three matrices My, My, M3, M; # 1 for e?eryi = 1,2,3, satisfying
the relation (2.9) and (2.10), then



i) there exist three matrices Cy,Cq, Cs satisfying the (2.13). Moreover they are uniquely
determined by the matrices My, My, Ms, up to the ambiguity C; — E; L¢s, where
R,J=JR;, for1=1,2,3.

i) If the matrices My, My, M3 are the monodromy matrices of a Fuchsian system of the
form (2.1), then any triple Cy, Ca, Cs satisfying (2.13) can be realized as the connection
matrices of the Fuchsian system itself.

Proof. i) By the (2.9), the monodromy matrices have all the eigenvalues equal to one;
moreover they can be reduced to the Jordan normal form because M; # 1. Namely there
exists a matrix C; such that:

Taking

one obtains the needed matrix. Two such matrices C; and C/ give the same matrix M; if

and only if C;” 1C! commutes with J, namely if and only if they are related by C; = R, o

ii) Now assume that C!,C},C4 are the connection matrices of a Fuchsian system of the

form (2.1), with monodromy matrices My, My, Ms; id est Yoo(2) = Y/(2)C}, ¢ = 1,2,3,
for some choice of the solutions Y7, ¥y and Yy of the form (2.11). One has
M; = (C)) ™ exp(2miJ)Cf = C L exp(2miJ)Cy, i =1,2,3.

12 T

So the matrices R; = C’{C’i—1 must commute with J and C;, C,, C3 are the connection
matrices with respect to the new solutions Y;(z) = Y} (2)R;. QED

T

Now, I state the result about the correspondence between monodromy data and coef-
ficients of the Fuchsian system, for a given set of poles:

Lemma 2.2. For y non resonant and for y = 0, two Fuchsian systems (2.1) with the same
poles u1, ug and us, and the same value of p, coincide if and only if they have the same
monodromy matrices My, My, Mz, with respect to the same basis of the loops 71, 72 and
~s. For resonant p # 0, under the assumption that R # 0, two Fuchsian systems of the
form (2.1) with the same poles u1, uy and us, and the same resonant value of p, coincide
if and only if they have the same monodromy matrices My, My, Mz, with respect to the
same basis of the loops 71, 2 and «s and the same value of R.

Proof. Let u be non-resonant. Let vi )(z) and Y& (2) be the fundamental matrices of the
form (2.3) of the two Fuchsian systems. Consider the following matrix:

Y(z) = Y (2)Y (=)

Y(z) is an analytic function around infinity:
1
Y(z):l—}-@(;), asz — oo.
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In fact for the same M;, M,, Ms, the monodromy at infinity is the same as well. Since
the monodromy matrices coincide, Y (z) is a single valued function on C\{u1,us,us}. I
prove that Y'(z) is analytic also at the points u;. Due to Lemma 2.1, one can choose the

fundamental matrices Yi(l)(z) and Yi(z)(z) in such a way that
Y@ = v B0 i=1,2,3.

with the same connection matrices C;. Then near the point u;,
-1

Y(2) = G (1+0(z — ) |G (14 O(z - wy))

This proves that Y/(2) is an analytic function on all € and then, by the Liouville theorem
Y(z) =1,

and the two Fuchsian systems must coincide.

Consider the case of resonant p # 0. Fix for example p > 0, i.e. My upper-triangular.
Suppose that there are two Fuchsian systems of the form (2.1) with the same poles u1, uz
and u3, the same value of u, the same monodromy matrices My, My, Ms and the same
value of R. The fundamental matrices at co of the form (2.4) exist. All the fundamental

matrices of the form )
v Lol 4 LR 1 a
bl (1 O(z)) z (0 1)

with any a € (, give the same monodromy matrix at infinity. So, for a given M, the
fundamental matrices at co of the two Fuchsian system can be fixed as

. 1 (4
Yo(g):: <1+O(;)> Z_A°°ZR (é al ), 'L::]_,Q

for some a® and a(®. For any choice of a') and a(®, the following matrix:
Y(2) = YO (YD) .

Y(2) is an analytic function around infinity:
1
Y()=14+0 (—), asz — 00.
z

We can repeat the same argument above to show that ¥'(z) is an analytic function on all C
and then, by the Liouville theorem Y'(2) = 1 and the two Fuchsian systems must coincide.
The proof in the case of p = 0 is analogous. QED

Remark 2.1. The above argument fails for R = 0 and resonant p # 0. Indeed, the
fundamental matrices at co of the form (2.4), with R = 0, exist, but all the fundamental
matrices of the form

Yoo = (1 + (9(%)) : 4=B

6



with any constant non-singular matrix B, give the same monodromy matrix at infinity.
Thus, chosen the fundamental matrices at co of the two Fuchsian systems as

Yo(cf) = (1 + O(*)) Z_AwB(Z), 7 = 1,2,
z

for some constant matrices B(Y) and B®, the above defined matrix ¥ (z) is no more an
analytic function near infinity and thus the uniqueness is not assured.

Corollary 2.1. Two Fuchsian systems (2.1) with the same poles ui, uz and us, and the
same value of u, are conjugated

AV = praPD,  i=1,23,

with a diagonal matrix D, if and only if their monodromy matrices Mi(l) and Mi(Z), with
respect to the same basis of the loops v1, v2 and 73, are conjugated:

MY =pMPD,  i=1,2,3.

2.2. Isomonodromic deformation equations.

The theory of the deformations the poles of the Fuchsian system keeping the mon-
odromy fixed is described by the following two results:

Theorem 2.1. Let My, My, M3 be the monodromy matrices of the Fuchsian system:

0 0 0
—d-—YO: A + o + A Y?°, 2.14
0

dz 0 0

z—uj z—uy z—uj
of the above form (2.2), with the additional hypothesis that R # 0 in the case of resonant
u # 0, with pairwise distinct poles u?, and with respect to some basis v1,72,7s of the
loops in 3 (@f\{u?, u9,ul, o}, oo) Then there exists a neighborhood U C €* of the point
u® = (u9,ud, ul) such that, for any u = (u1,us,us) € U, there exists a unique triple A;(u),
Az (u), As(u) of analytic matrix valued functions such that:

Ai(w®) = A}, i=1,2,3,

and the monodromy matrices of the Fuchsian system

dy_ Alzu)Y = (Al () | Aolw) | Aslw) ) Y, (2.15)

dz z—U; zZ—1U3 Z—uU3

with respect to the same basis' ~v1,72,73 of the loops, coincide with the given My, M>,
Mj;. The matrices A;(u) are the solutions of the Cauchy problem with the initial data A?
for the following Schlesinger equations:
1) Aj; 0 1y /g
DN R ) -

;=
Ou;j U — Uj Ou; Ui — U

J#i

! Observe that the basis v1,72,7s of 1 (C\{u1,u2,us3, 00}, 00) varies continuously with
small variations of uy,us,us. This new basis is homotopic to the initial one, so one can
identify them.

~



The solution Y2 (z) of (2.14) of the form (2.3) in the non-resonant case and (2.4) in the
resonant one, can be uniquely continued, for z # u; i = 1,2, 3, to an analytic function

Y’OO(Zau)‘a u € U)

such that
Yoo(z,u%) = Y2 (2).

This continuation is the local solution of the Cauchy problem with the initial data Y2 for
the following system that is compatible to the system (2.15):

0, __Aw

Ou; . z—u

Y.

Moreover the functions A;(u) and Yoo(2z,u) can be continued analytically to global mero-
morphic functions on the universal coverings of

C*\{diags} := {(ul,u2,u?,) eC? | us # ujfori # ]},

and

{(Z,UI,UQ,U,:}) € C*|u; # ujfori # jandz # u;, 1 = 1,2,3},
réspectively.
The proof of this theorem can be found, for example, in [Mal], [Miwal, [Sib].

Theorem 2.2. Given three arbitrary non commuting matrices My, My, M3, satisfying
(2.9) and (2.10), with M, of the form (2.6), with the additional hypothesis that R # 0
in the case of resonant u # 0, and given a point u° = (uf,u9,u) € C3\{diags}, for any
neighborhood U of u®, there exist (u1,us,us3) € U and a Fuchsian system of the form (2.1),
with the given monodromy matrices, with the given R in the case of resonant p # 0, with
poles in uy,uq,ug and with a fixed value p such that TrMy, = 2 cosmp.

Proof. First, observe that if the matrices Mi, My, Ms, satisfying (2.9) and (2.10), with
M, of the form (2.6) with R # 0 in the case of resonant 4 # 0, are commuting then
they are all lower triangular or all upper triangular. Since their eigenvalues are all equal
to one, My has eigenvalues equal to one, and thus ¢ € Z. Then the case of commuting
monodromy matrices can be realized only for integer values of p.

Now, consider three arbitrary matrices My, My, M3, satisfying (2.9) and (2.10), with
Mo of the form (2.6), with R # 0 in the case of resonant y # 0. In [Dek] it is proved that
for any given point u® = (uf,u9,u3) € C3\{diags}, and for any neighborhood U of u°,
there exist (u1,uz2,u3) € U and a Fuchsian system

d A A N o ~ |
__Y:< A A )Y, z € C\{u1,us,u3,00},

dz Zz—u; Z—Uy Z—U3

with the given monodromy matrices, and with p such that TrMo, = 2cos mu, fixed up to
b= pu+n,nec. ‘




We want to build two gauge transformations which map the obtained Fuchsian system
of the form (2.1), with some given non-commuting monodromy matrices and some value
of u, to another Fuchsian system of the same form with the same monodromy matrices
and with the value —p and p + 1 respectively.

For u # 0 the constant gauge transformation

o- (1 1)

is such that the new Fuchsian system with 4; = G7!A;G, has the same monodromy

matrices My, M, M3 and
- [=u 0
e (70

So, the above gauge transformation maps the obtained Fuchsian system correspondent to
the given monodromy matrices and some value of 4 # 0 to another Fuchsian system of the
same form with the same monodromy matrices and with the value —u. Now, we want to
build the analogous gauge transformation mapping y to u + 1.

First, observe that the matrices A; can be parameterized as follows

2 12
A; = (aa? b ) (2.17)

—a;b;

for some a;,b; € €, 1 =1,2,3, with

w
w
=R

3
for p#0, Zaibiz-,u, Za?z b; =0
=1 =1

=1
3 3

3
for p=0, Zaibizo, Za;?‘::(), Zb?:l.
=1

i=1 i=1
If a; = 0 (or b; = 0) for every 1 = 1,2, 3, then all the matrices A; are upper (resp. lower)
triangular, then the matrices M;, Ms, M3 are upper (resp. lower) triangular, and thus
commuting. So, for a non-commuting triple of monodromy matrices at least one of the a;
and one of the b; must be different from zero.
Moreover, for every p with the additional assumption R # 0 in the case of resonant

p # 0 one has 3 a?u; # 0. In fact, if p = =3, Y alu; = Ry # 0. For p # —2, if

S a?u; = 0 then, being a? = —a3 — a2, one obtains ¢} = —a223=% and thus
7 2 1 2 3 2 3ug—u;
J , ug—uy 0 o 5 Uz — Uy
0y = —————— a3 — Q3.
0’&1 Uy — U 3u1 ('U,Q — ul)

By the Schlesinger equations

2 g U3 — Uz
20,161(1% — 2&252&% = 2(131)301 - 2a1b1(1’§ — a3 m—,
P



and imposing Y a? = 0, 3 a;b; = 0, one obtains

Uz — Uz

2aip+ a3 2—u1:O
that for 4 = 0 leads to a2 = 0 and thus az = 0 and a; = 0, for u # 0 leads to a? =

ﬁ-%z—”—:jl Imposing ZZ , a7 = 0, one obtains for 4 # 0

2 (14 2p)(us — ua)

a =0,
P 2p(ug — i)
that for  # —3 implies a3 = 0 and thus a; = 0 and a; = 0. Analogously, one can show
that for p # 0 and R 75 0 in the case of resonant p, 3 biu; # 0.
For p # — 5 the gauge transform ¥ = G(z )Y with
10 $ b
= (o o)+ (4 o)
for b = —Z—gf—’;l?z and a = ——5(1%-‘3 (% Z?:l a;biu; + Z?::l afu%) is well defined because

as observed above Z‘:’zl a?u; # 0 and it is such that the new Fuchsian system

PR T

dz Z—uy z—ux Z—Us

with A; = G(u;) 1 A;G(u;), has the same monodromy matrices My, My, M3 and

~ p+1 0
A= (P30,
So, the above gauge transformation maps the obtained Fuchsian system correspondent
to the given monodromy matrices and some value of p # 0,—1, —% to another Fuchsian
system of the same form with the same monodromy matrices and with the value p + 1.
In this way, all the non-resonant values, all the half-integer values and all the non-zero
integer values of the index p are related via some gauge transformation to ¢ 4 1 or —p.

To conclude the proof, one has to consider the case of 4 = 0. For a non-commuting triple
of monodromy matrices with 4 = 0, the gauge transformation ¥ = G(z)Y with

_ 10 gi1 g1z
o= o)+ (3 )

with go1 = — 3 d?ui, g11 = % (gm 222 o @ibiu; + = o Zf 0 atu? ), is well defined and
it maps the Fuchsian system corresponding to the given triple of monodromy matrices to

10




a new Fuchsian system with A = G(u;) "t A;G(ui), with the same monodromy matrices

Ml,MQ,Mg and
~ 1 O
A= (2 0).

In the same way, the gauge transformation Y = G(2)Y with

; _ (0 0 0 g2
G(z)-(o .1>z—|—<921 922>

g12 = =Y. b2y, go = Z?:o aibju; — g—i; 13-:0 biu?, and any gog # 0, is well defined and
it maps any Fuchsian system with

. 1 0
Aw:(o ~1)’

correspondent to the given triple of non-commuting monodromy matrices to a new Fuchsian
system with A; = G(u;) "t A;G(u;), with the same monodromy matrices M, My, M3 and

~ 0 1
=1 2)

This concludes the proof of the theorem. QED

Remark 2.2. Fuchsian systems of the form (2.1), with coefficients A4; satisfying (2.2),
depend on four parameters, one of them being 4 (in the resonant case one of the remaining
parameters is R). The triples of the monodromy matrices satisfying (2.9) and (2.10), with
M given by (2.6) depend on four parameters too. Loosely speaking, Theorems 2.1 and
2.2 claim that, not only the monodromy matrices are first integrals for the equations of
isomonodromy deformation (2.16), but they provide a full system of first integrals for such
equations. I denote A(u1,us,us; My, My, Ms) the solution of the Schlesinger equations
locally uniquely determined by the triple of monodromy matrices (My, Ma, Ms). As I will
show in Section 2.4, all the above arguments remain valid for a general 2 x 2 Fuchsian
system, provided the non-resonance of the eigenvalues.

Remark 2.3. Observe that the isomonodromy deformations equations preserve the con-
nection matrices C; too. This follows from Lemma 2.1.

Remark 2.4. Existence statements of Theorems 2.1 and 2.2 can be proved also for triples
of monodromy matrices such that R = 0, but as stressed in Remark 2.1, uniqueness is lost.

2.3. Reduction to the PVIu equation.

Let me now explain, following [JMU], how to rewrite the Schlesinger equations (2.16)
in terms of the PVIu equation. Observe that, for u # 0, the Schlesinger equations (2.16)
with fixed A, are invariant with respect to the gauge transformations of the form:

Ai— DY A;D, 1=1,2,3, for any D diagonal matrix.

11



In the resonant case, such a diagonal conjugation changes the value of K.
So, we mtroduce two coordinates (p,q) on the quotient of the space of the matrices
satisfying (2.16) with respect to the equivalence relation

A;~D Y A;D, i=1,2,3, for any D diagonal matrix

and a coordinate k that, in the non-resonant case contains the above gauge freedom and in
the resonant case takes account of the changes of R due to the above diagonal conjugations.
The coordinate g is the root of the following linear equation:

[A(g; u1,u2,us)l12 =0,

and p and k are given by:

P(z)
plg—2)’
where A(z;u1,uz,us) is given in (2.15) and P(z) = (z — u1)(z — u2)(z — u3). The matrices

A; are uniquely determined by the coordinates (p,q), and k and expressed rationally in
terms of them:

p= [A(q;ul,uz,u;;)]ll, k= [A(q;ul,w,us)]12

(Az’)u:“‘(Az’)zzz“Z"g—ﬁ,‘(%g P(qg)p +2uq()p+,u q+2u; — Zu] ,

) _ q—ui
(Ai) 1z uk ar)” | (2.18)

-1 q — Uy 2 P(Q) 2
(Ai)yy =k 5P () P(q)p +2uq_UiP+M(q+2Hi“Zuj) ,

for i = 1,2,3, where P/(z )—EB
The Schlesmger equations (2.16) in this variables are

Og _ P(Q) [2 N j ]

Ou;  P'(u)
op '(q)p + (2q+ wi— Y5 ui)p + p(l — ) (2.19)
Ou; P'(w;) ,
and o (k>
o8 — q— U
ou; (2n=1) P'lui) (2.20)

for 1 = 1,2,3. The system of the reduced Schlesinger equations (2.19) is invariant under
the transformatlons of the form

u; — au; + b, g aqg+b, P =, Va,b e T, a#0.

Q"3
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Introducing the following new invariant variables:

Uz — Uj qg— U
T = , Y= — (2.21)
Uz — U1 Uz — Uy

the system (2.19), expressed in the these new variables, gives the PVIu equation for y(z).

Remark 2.5. The system (2.19) admits the following singular solutions (see [Okl] and
[Wat]):

g = u; for some i,or g = oo,

and p, in the variable z, can be expressed via Gauss hypergeometric functions (see [Ok1]).
Moreover the monodromy group of the system (2.1) reduces to the monodromy group of
the Gauss hypergeometric equation, namely the following lemma holds true:

Lemma 2.3. The solutions of the full Schlesinger equations, corresponding to the solution
q = u;, for some 1, have the form:

Ai(w) =0, andforj#i Aj(u)=D(u) ' A}D(u),

where D(u) Is a diagonal matrix depending on u, and A? is a constant matrix. The
monodromy matrix M; of the corresponding Fuchsian system turns out to be the identity.

Conversely, if one of the monodromy matrices My, My, M3 Is the identity, then the solution
of (2.19) is singular.

Proof. The matrix A;, for ¢ = u;, is identically 0, thanks to (2.18). Having 4; =0, M; is 1.
Conversely, if M; = 1, for some 7 = 1,2,3 then 4; = 0. Solving the Schlesinger equations
(2.15), one obtains ¢ = u;, and the equation for p is reduced to a Gauss hypergeometric
equation. QED

The singular solutions of the reduced Schlesinger equations (2.19) do not give any
solution of the PVIu equation. All the other solutions do, via (2.21).

For u = 0, the Schlesinger equations (2.16) are invariant with respect to the gauge
transformations of the form:

A= G TAG 1=1,2,3, for any Gz(i (1)),

where a is an arbitrary number. So, we introduce two coordinates (p,q) on the quotient
of the space of the matrices satisfying (2.16) with respect to the equivalence relation

-1
A; ~ ((1) Cf) A; <(1) c11> , 1=1,2,3, for any complex number a.

The coordinate g is the root of the following linear equation:
[A(Q) Uy, U2, u3)]21 = 0,
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and p is given by:
p = [Algu1,uz, us)11,

where A(z;u1,uz,u3) is given in (2.15). The matrices A; can be parameterized as in (2.17)
for some a;,b; € €. In the above coordinates (p, ¢) one has

2
P
a% _ b A(Q) (u;; _ UZ)(Q — Ul); b% =0, ab; = 0,

(g — u2)(g — us)

2
, PP, .. p_gUavazur L
a; = A (u1 ug)(q uz)7 2 q— U1 Uz — u3’ 4202 =P Uz — U3 ’
o
2 p°Plg) 2 §—Uauz—1U (g —u2)(g —us)
a3 < (ug —u1)(g —us), b3 g— Ui us —us’ 4303 p Uy — U3 ’

where A = (ug — us)(uz — u1)(us — u1). Introducing the variables (y,z) as above, it is
straightforward to verify that the Schlesinger equations give rise to the PVI,—q for y(z).

Observe that the Schlesinger equations for the matrices (2.17) admit the trivial so-
lutions a; = 0, Vi = 1,2,3 and b; = 0, Vi = 1,2,3 correspondent respectively to the
commuting triple of monodromy matrices

1 —2mib? 1 0 -
- i L 9
M; (0 1 ) , or M; <27m’a;‘-’ : ) . (_4.22)

All the commuting triples of monodromy matrices can be realized by a trivial solution
to the Schlesinger equations for ¢t = 0. For such trivial solutions the coordinate ¢ is not
defined. By the way, one cannot say that the commuting triples of monodromy matrices do
not correspond to any solution of PVI,—. Indeed this equation coincides with PVI,~; and
it is not excluded that particular commuting triples of monodromy matrices are realized by
non-trivial Fuchsian system with x4 = 1 (in Section 4.2, I show that there exists a unique
triple of this kind and determine it).
Starting from any solution y(z) to PVIy, one arrives at the solution:

Uo — U
q=(uz —u1)y (u2 1> +ug

3 — U
- P’(’U/_},) ,<'LL2 —-ul) 1 1
p—QP(q)y ug — Uy 2q—usg

of the reduced Schlesinger equations (2.19). To obtain a solution of the full Schlesinger
equations for p # 0, the function k must be given by a quadrature: »

Ologk
ou;

Remark 2.6. Observe that permutations of the poles u; induce transformations of (y, z)
of thetypez - 1—z,y > 1—yand z — % and y — £ and their compositions. In Section
3.1, it will be shown that these transformations preserve the PVIu equation.
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Since in the resonant case, for R = 0 the uniqueness of the correspondence between
triples of monodromy matrices and Fuchsian systems is not assured, I treat the case of
R = 0 separately (see Section 3.1). Observe that the equation R = 0 is an algebraic
differential equation of the first order.

Definition. I call generic solutions all the solutions to PVIy with non-resonant p, and
all the solutions to PVIy with resonant 4 which do not satisfy the algebraic differential
equation R = 0.

We resume the results of the section in the following:

Theorem 2.3. Given any triple of non-commuting monodromy matrices My, Msy, M;
satisfying (2.9) and (2.10) with M given by (2.6), with the additional assumption that
R # 0, in the case of resonant u # 0, none of them being equal to 1, considered modulo
diagonal conjugations, there exists unique branch of a generic solution to the PVIu equation
near a given point zo € C\{0, 1,00} which defines a Fuchsian system of the form (2.1)
with the prescribed monodromy matrices My, My, Ms. Vice versa, given any branch
of a generic solution to the PVIu equation near a given point zo € C\{0,1,c0}, the
correspondent triple of monodromy matrices My, Ma, Ms satisfying (2.9) and (2.10) with
M given by (2.6), with R # 0 in the case of resonant . # 0, none of them being equal to
1, is unique modulo diagonal conjugations.

Remark 2.7. Observe that M. defines p up to the transformations p — p + 1 or
equivalently p — —pu. I will describe these transformations in Section 3.1.

2.4. The general Painlevé VI equation as isomonodromy deformation equation.

In the general case of PVI equation, one considers a Fuchsian system analogous to the
(2.1):
d

a——;Y = A(2)Y, z € C\{u1,uz,us, 0} (2.23)

where:

-Al n .Az .A3

Z - Ul Z — U2 Z—u;g’

Alz) =

A; being 2 x 2 matrices independent from z which are diagonizable and traceless:

eigenv(A4;) = :i:%i, Ao i =—A1 — Ay — A3 = (’8 _0”> _ (2.24)

Here, I deal with the non resonant case: ¥,2u ¢ Z. As shown at the end of this section,
the eigenvalues 1; are linked to the parameters «, 3,7, of PVI equation.

The solution Y (z) of the system (2.3) is again a multi-valued analytic function in
C\{u1,uz,us}, and its multivaluedness is described by the monodromy matrices, which
are defined as above. They satisfy the relations:

eigenv(M;) = exp(Lind;), MOOM3M2M1 =1, (2.25)
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where

e <exp(§mu) exp(—oziw))‘ (2.26)

The fundamental matrices Yj(z) of the system (2.3) in a neighborhood of u;, are:

(9 o)
YizGi(1+(9(Z—ui))(2—uz‘)2(O ) s row, (2.27)

where the invertible matrix G; is the diagonalizing matrix of A;. The fundamental matrix
Yi(z) is uniquely determined, up to the ambiguity ¥; — Y;D; for some constant diagonal
matrix D;.

The connection matrices are defined again as the matrices relating the analytic con-
tinuation of the solution Y., to a neighborhood of u;, and Y;(2):

Yoo(z) = Yi(2)Ch,
and are related to the monodromy matrices as follows:

exp(mid;) 0

-l
M;=C; ( 0 exp(—m1d;

)>@, i=1,2,3. (2.28)

The following lemma can be proved as lemma 2.1:

Lemma 2.4. Given three matrices My, My, Mz, M; #+ 1 for every 1 = 1,2, 3, satisfying
the relation (2.25) then
i) there exist three matrices Cy,C2, Cs satisfying the (2.28). Moreover they are uniquely
determined by the matrices My, My, M3 up to the ambiguity Y; — Y;D; for some
constant diagonal matrix.
i) If the matrices My, My, Ms, are the monodromy matrices of a Fuchsian system of
the form (2.23), then any triple Cy,C4,Cs satisfying (2.28) can be realized as the
connection matrices of the Fuchsian system itself.

Lemma 2.2 and Corollary 2.1, which establish the correspondence between monodromy
data and coeflicients of the Fuchsian system, hold true also in the general case, under the
non-resonance hypothesis. In the resonant cases the uniqueness of the Fuchsian system
associated to a set of monodromy data may be lost. The results of Section 2.2 on the
isomonodromic deformations of the Fuchsian system (2.1) hold true also for the system
(2.23). The reduction of the Schlesinger equations to Painlevé VI equation in the generic
case of non resonant eigenvalues is a classical result (see [JMU]). I briefly outline the
procedure. First, one can fix two of singular points u;, one at 0 and the other at 1; the
third z is free to vary. For the sake of definiteness, I choose: u; = 0, uy = z and ug = 1.
A permutation of the u; simply induces a transformation of (y,z) of the type z — 1 — z,
y —+1—yorz— 1andy— L or their compositions. Such transformations are described
in Section 3.3.
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With the above choice of the u; the Fuchsian system (2.23) reads:

E—Y:A(z,m)yz(—é—l-{- As + A )Ya

dz z—zx z-1

and putting: :
Al = Ao, .Az = Az, ¢4.3 = Al, Aoo:AOO7

_(_i_y-_—(‘éﬂ+ A + Ao )y_
z

dz z—1 z-—z

I call now the eigenvalues 99,9.,9:. They play the role of the preceding ¥y, %3, 5 respec-
tively. The Schlesinger equations read:

one obtains:

EdiAl(“) == [1‘31:1:4;]’ (2.29)
L oy = Bl ]
Using A;(z) = —Ag — A1 — Ao, one can rewrite the above equations as follows
3 po(ay = -0t A=
3 i) =t il

Using (2.24), the matrices Ag, A1 can be parameterized as follows:
1 Z; v (; — 2 .
Ai:‘i(ﬁilfzi (_Zzz 1)>7 1=0,1,
where zo, z1, vo and vy are functions of z that do not identically vanish. Now, replace vg
and v, with k,y given by:

—-d
k‘:CCUO(ZD_ﬂO)_(]-—x)Ul(Zl—'191)7 y:w%__o_)_
Then the component 12 of A(z,z) can be written in the form

k(z —y)
z(z—1)(z —z)

A(Z, CE)12 =

With straightforward computations, one can verify that the matrices Ag 1 . satisfy (2.29)
if and only of y solves the PVI equation with parameters

2u — 1) Ve 03 1-— 92

(2p —1) 0 S S z (2.30)

o=y PET 7T 5

This procedure of reduction is well defined in the generic case of non-resonant eigenvalues.
Indeed, in this case there are no singular solutions (see [Ok]). Resuming, one can show the
following:
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Theorem 2.4. The branches of solutions of the PVI equation near a given point o €
C\{0,1, 00}, are in one-to-one correspondence with the triples of the monodromy matrices
M, M2, Ms sa.tlsfymg (2.25), with My, given by (2.26), considered modu]o diagonal
conjugations.

Remark 2.8. I considered two cases of PVI: the former with all the eigenvalues ¥; equal
to zero, I would say strongly resonant, and the latter with generic eigenvalues, i.e. non-
resonant. All the other cases will be intermediate, i.e. they will have one or more resonant
eigenvalues, but not all of them equal to zero. One would expect to be able to prove
a theorem analogous to theorems 2.3 and 2.4 also in these intermediate cases, playing
attention the singular solutions (for the generic non-resonant case, I will define them in
Section 3.3) and to the fact that the uniqueness of the branches correspondent to triples
of monodromy matrices may be lost (cfr. Remark 2.1).

Remark 2.9. A triple of 2 x 2 matrices'Ml,Mz,Mg, € SL(2;T), considered modulo
conjugations, is a point p of the space of representations :

p: F3s — SL(2; Q)
of the free group Fg with three generators 1,72, 73, specified by

M; = p(v), 1=1,2,3.

In the general case, i.e. with the matrices..4; and Ae not necessarily of the form (2.2),
the corresponding solution (p, ¢) of the reduced Schlesinger equations will be denoted

p=pui,uz,us;p),  q=qur,uz, us;p).

It is locally uniquely specified by the representation p, prov1ded the non-resonance condi-
tion of the eigenvalues of A4; and Ac

3. SYMMETRIES OF THE PAINLEVE’ VI EQUATION.

The Painlevé VI equation possesses a rich family of symmetries, i.e. transformations of
the dependent and independent variables (y,z), and also of the parameters, that preserve
the shape of the equation. The theory of these symmetries, and its applications to the
construction of particular solutions, was developed in [Ok]. In Section 3.1, we deal with the
symmetries of PVIu. In pa,rticular we prove that all the solutions to PVIu equations with
any half-integer p, p # % are transformed via birational canonical transformations to the
solutions of the case p=—3 and that the birational canonical transformations mapping
the case y = ——5 to the case p = 1 does diverge only when applied on a one-parameter
family of solutions to PVIy with /J, = —1, which we call Chazy solutions. In Section 3.2,
we show that Chazy solutions exhaust a,ll the non-generic solutions to PVIy, i.e. they
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coincide with the solutions to the differential equaﬁion R = 0. In Section 3.3, we give a
brief resume of the results of Okamoto on the symmetries of the general PVI equation.

3.1. Symmetries of the PV‘I,u'equation

Here, we list the symmetries which preserve PVIy and compute their action on the
monodromy data. .

First of all, observe that the trivial symmetry u +— 1 — p preserves the Painlevé
equation, i.e. PVIy = PVI(1—pu), so it maps the solutions y(z) to themselves and preserves

the monodromy matrices. :

Then consider the permutations of the poles u1,us,us which generate the action of
the symmetric group S3 on the solutions y(z). In particular the involution

i1 1 Ug > ug,

produces the transformation

1
T —, Y= y—v (31)
z z
and
ig DUy ¢ Us,
produces the transformation
z—1-—z, y—1—y. - (3.2)

Both these transformations clearly preserve the equation PVIu.

I compute the action of these symmetries on the monodromy data. The only thing
that changes is the basis in the fundamental group 71 (C\{u1, us,us, c0}). In fact, the cuts
71,72, s along which the basis 1, 72,vs 1s taken, are ordered according to the drde_r of

the poles. The new basis ~{,~4,~vs obtained applying the transformation ¢;, is shown in
. figure 2.

Fig.2. The new basis 1 Yes Vs obtained by the action of 1.
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Fig.3. The new basis v}, 75,74 obtained by the action of 5.
It has the following form

/ o -1 !
Y1 =1 Y2 =278 0 V3 = T2

As a consequence the new monodromy matrices are:
M{:Ml, lef—'M;lMgMg, M:,;:.Z\/IQ

For the second transformation i,, the basis of the new loops is shown in figure 3.

It has the following form:

' r -1 r_ -1 -1
Y1 =3 Y2 = U3 7273, U3 = T3 T2 Y1278
The new monodromy matrices are

M! = Ms, Mj=MsM;*Ms, M;= MMM M; 'M;".

The last symmetry is more complicated because it changes the value of the pa-
rameter u, i.e. p +— —p, or equivalently u — 1+ p, as it follows form the fact that
PVI(—p) = PVI(1 + p). This symmetry comes from the gauge transformation between
Fuchsian systems with the same monodromy matrices and the same poles, introduced in
the proof of Theorem 2.2. Using the parameterization (2.18) of the matrices A1, Az, A3 by

the coordinates (p, q), proves the following:

Lemma 3.1. The formula

(po(y')? +p1y’+pz)2 ,
o) +a )+ @) +ay +a’

y=y
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where

po =z*(z —1)°,

p1=2z(z — 1)(y — 1)[2u(y — ) — 9]

pz=y(y — Dly(y — 1) —4uly — 1)(y —2) + 4’ (y —z)(y — = — 1)]

g = z*(z — 1)*

@ = —42*(z — 1)°y(y — 1) ,
¢ = 2% (2 — 1)%y(y — DBy(y — 1) + 4p*(y — 2)(1 + © — 3y)]

g3 = 4z(z — Dy’ (y — 1) [—y(y — 1) = 16u°(y — 2)> + 4p*(y — 2)(3y — = — 1)]

g =y (y - D*{y’(y — 1)* + 641 °y(y — D(y — 2)* - 8u’y(y — 1)(y — )3y —z — 1)+

+16p*(y — 2)*[(z — 1)* + y(2 + 2z — 3y)]}
(3.4)
transforms solutions of PVIy to solutions of PVI(—u), or equivalently to solutions of

PVI(1 + p).

Proof. The gauge
: A; — EAiE,

>=(1 o)

maps the 12 element of A(z, z) to the element 21. So the new PVI_, solution § is obtained
solving the linear equation Aj;(f,z) = 0. The formulae (3.3) and (3.4) can be obtained
by straightforward computations. QED

with

It is not difficult to show that the denominator of the formula (3.3) does not vanish
identically for any solution of PVIy, with 4 # —£,0. Indeed, eliminating y,, and y; from

the system
1/1 1 1 9 1 1 1
Yzz =z | — + + Yz — | —+ + Yz
2\y y—-1 y—=z r z—1 y—=z

Lty D) i, p 2],

LT

Q(ym Y, T, :U') :07
d
EQ(ny‘a Y, z, [,L) _0)
where @ is the denominator of (3.3), the resultant equation
974
@2p+1)* " [2(z = 1*] [y — Dy - 2)]*

never vanishes for p # —%, 0. As a consequence, all the cases of PVIu, for non-resonant
values of y, with values of u linked by transformations of the form yu — p+ 1 or p — —p,
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are equivalent via birational canonical transformations. Concerning the resonant cases,
observe that the case u = 0 can be treated as the case y = 1 because it gives the same
value of the parameter o in the PVI equation. As a consequence all the cases with integer
p can be reduced via birational canonical transformations to the case pr = 1. The case of
half-integer p is more complicated. Indeed, one can show the following:

Theorem 3.1. All the solutions y(z) of PVIu equations with p+ 3 € Z, p # 3, are
mapped via birational canonical transformations to solutions of PVI,—_ 5.

Proof. Consider a solution y(z) of PVIy for any half-integer 1 and apply the transforma-
tion (3.3) to y(z). Consider the case PVI,—_;/5. This is the same as PVI,—3/; (in fact
w1 and 1 — p give the same value of the parameter o in PVIy ). For p = 3/2 the denomi-
nator Q(yz,Yy,, 1) never vanishes and one can apply the transformation (3.3). Moreover
Q(Yz,vy, T, ) never vanishes for any y = 3/2+n, n > 0, so one can apply (3.3) iteratively.
In this way, all the PVI,_4(3/24n) for any n > 0 are achieved. The above transforma-
tions are all invertible. In fact, starting from any PVI,—4(3/24n), for n > 0, one arrives
at PVI,—_, s, via birational transformations of the form (3.3), the determinant of which
never vanishes. QED

The idea of what happens it is shown in figure 4. Notice that the case of p = % does not
appear in figure 4. Indeed p = % can be reached only applying the transformations of the
form (3.3) to the solutions of PVI, with p = ——%. For the case p = --;—, the denominator
Q(yz,y, ¢, 1) of (3.3) can vanish on solutions of PVI_ 1, as shown in the following lemma.

n n-1 3

—_— e s e e e —_

2 2 2

n n-1 3 1
D — = T e — - T 2

2 2 2 2

Fig.4. The birational canonical transformations relating
solutions of PVIu equations with half-integer values of p # 1.

1

Lemma 3.2. There exists a one-parameter family of solutions to PVI, with p1 = —3, on

which Q(yz,y,z) = 0. They are given by

2
: {[uwg 4wy + 2z(vwl +w!)]? — da (vl + w{)z}
vwy + w1 )(vw) + w))[2(z — 1)(vwh +wi) + vws + wi][vws + w1 + 2z(vw) + W]
‘ (3.5)
where wy o(z) are two linearly independent solutions of the following Hypergeometric e-
quation: ‘

y(z) = (

2(1 = o)’ () + (1 — 20)w'(z) - zll-w(ﬂs) 0, (3.6)

and v € € is the parameter.




Proof. Let us substitute (3.5) in PVI,__1 and in the algebraic differential equation
Q(yz,y,z) = 0. By straightforward computations, it is easy to verify that if wy s are
solutions of (3.6), then (3.5) is a solution of PVI,—_; and of Q(yz,¥, z) = 0for any v € C.

QED

We call Chazy solutions the solutions (3.5) and all the ones obtained from them via
the symmetries (3.1), (3.2) and (3.3). The reason of this name, the asymptotic behaviour
and the structure of the nonlinear monodromy of the Chazy solutions will be explained in
Section 8.

Lemma 3.3. The one-parameter family of Chazy solutions exhaust all the possible solu-
tions of the differential equation Q(y.,y,z) = 0.

Proof. Let us consider the algebraic differential equation Q(yz,y,z) = 0. It has the
following roots

y(y —1) = /y(y — Dy — ) + Vyly — 1)y - w)\/;y —1+2yyly - 1)

Yz = :

z(z — 1)
, _y(y—l)—\/y(y—1)(y—w)—\/y(y—1)(y-fc)\/2y—1+2\/y(y~1)
e z(z — 1) ’
R CELE Y- Dy —2) + Vil - Dy —2)y/2y— 125y - 1
e z(z —1) ’
- y(y—1)+\/’y(y~1)(y—fc)—\/@(y—l)(y—w)\ﬁy—l-—wy(y-1)
c z(z — 1) .

All the above differential equations are equivalent: the first is mapped in the third by the

transformation ¢ — 1 —z, y — 1 — vy, to the forth by z — %, y — £ and to the second

by z — 1—};, y — %—:—i All these transformations preserve the class of Chazy solutions
of PVIu. Thus it is enough to prove that the one-parameter family of Chazy solutions
exhaust all the possible solutions of the first differential equation. Indeed it easy to verify
that y(z,v) of the form (3.5) solves it for any value of the parameter v. To conclude, we

have to show that V(zo,10) € € x C, there exists a value of the parameter v such that
y(zo0,v) = yo. (3.7)

If yo = oo, we can take v = Vo, such that wi(zo) + veow)(zo) = 0. Let us suppose that
Yo # oo. Then w)(zo) + vwh(zo) # 0 for every v # voo and y(z) can be written in the
form: ‘ ,

[(W(z,v) + 22)* — 4z]
8W (z,v)(W(z,v) + 2z)[W(z,v) + 2(z — 1)]
where W(z,v) = %}—%%—i—;—g—?—% If we show that given any (xo, Wp), there exists vg such
1 2

that W (zo,v0) = Wo, we are done. Indeed, for

y(z) =

_ wi(wo) — Wowi(zo)
wa(zo) — Wowy(zo)

Vo =
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W(l‘o, I/o) = Wo. QED

One can show that the above symmetries, and their superpositions, exhaust all the
birational transformations preserving the one-parameter family of PVIy equations (see
Section 3.3). It is important that these symmetries preserve the class of algebraic solutions
of PVIu. T will classify all the algebraic solutions, modulo the above symmetries.

3.2. Non-generic solutions and Chazy solutions the PVIy equation.

Now, consider the case R = 0. We show that the class of the non-generic solutions to
PVIu coincides with the class of Chazy solutions.

Lemma 3.4. For half integer values of ui, the equation R = 0 Is satisfied if and only if the
reduced Schlesinger equations give rise to Chazy solutions for any p # 1 or to the singular

solution ¢ = oo for p = 1.

Proof. Consider the case u = —1 (all the other cases with half integer . # % are equivalent

to it). The equation R = 0 is satisfied iff
(A1u1 + Agusg + A3U3)21 = 0.

Writing the above equation in terms of y, y' and z, one realizes that it coincides with the
equation Q(y,y’,z) = 0 which is satisfied only by the Chazy solutions. In the case ;,L = 2,
the equation R = 0 is satisfied iff

(Arus + Agus + Azuz)y, =0,
that leads to the singular solution ¢ = co. In fact, in the equation for ¢

(A1 (uz +us) + Az (ur +us) + As(ur + u2)) 15 ¢ = (Arugus + Aguius + Asuiuz),,,

the coefficient of ¢ is zero and the right-hand side is non-zero because (4;)12 # 0, Vi =
1,2,3. In fact if one of the (A4;)12 is zero then, being ) (A;)12 = 0, for R = 0 all of them
are 0. Requiring that the determinant of the matrices A; is zero, one obtains that also the
elements (A;)1; are zero, that is 4 = 0 that leads a contradiction. QED

Lemma 3.5. The equation R = 0 is not satisfied on any solution of the reduced Schlesinger
equations for integer p.

Proof. Consider the cases of integer p. As observed above, they can all be treated as the
case 4 = 1. For y = 1 the equation R = 0 corresponds to
(A;ﬂt% + Azu% + Agug)u = 0.

Using the formulae (2.18), one obtains that the above equation is satisfied only for ¢ =
uy + us + uz or for (A;)12 =0, Vi = 1,2,3. The former case does not correspond to any
solution of the reduced Schlesinger equations, the latter is excluded by the same argument
of the proof of lemma 3.4. QED

24




3.3. Symmetries of the general PVI equation.

Here, I resume the results of [Ok] on the symmetries of the general PVIequation. First,

let me recall that the PVI equation admit a Hamiltonian formulation. In the canonical

. variables (p, q), where g is a solution of the PVI equation and p is the conjugate momentum,
the Hamiltonian function H reads:

:EE%T){Q(Q —1)(g — 2)p* + bsba(q — z)-

—[(b1 +b2)(g — 1)(g — z) + (b1 — b2)a(q — =) + (bs + ba)a(q — 1)l p}

where the parameters by, by, by, by are related to the parameters of the general PVI
equation through the quantities ¥;:

Yo + U4 Jo — Uy Uy + 0 Uy — 0
5 by = 5 by = _:E_EZ_JZZ —1, by = _iE—EZ'iii’
where ¥ = 2u. The symmetry transformations, changing the parameters (b1, bz, b3, b)),
are given in terms of transformations of a certain auxiliary Hamiltonian function

b1by + bibs + byby + babs + baby + b3bs
5 .

&

(3.8)

by = (3.9)

]’L(.’l?) = .’E(;U - I)H(iﬂ) + (blbg + 6164 + b3b4)$ -

The auxiliary Hamiltonian function h(z) satisfies the nonlinear ordinary differential equa-
tion ‘

dh d2p1? dh dh LI | A

A singular solution h to (3.10) is a solution linear in z:
h(z) = az + b,

for some constants ¢ and b. For the case ¥ 53 = 0, these singular solutions coincide with
g = u; and ¢ = co. Okamoto (see [Ok]) proves the following:

Lemma 3.6. There is a one-to-one correspondence between non singular solutions h to
(3.10) and solutions (p, q) to the Hamiltonian system with Hamiltonian function H given
by (3.8), or equivalently solutions q of the Painlevé VI equation with parameters a, 8,7, 9
given by (2.30) and (3.9).

Such a correspondence is realized by the formulae at pag.354 of [Ok]. The symmetries
of the general PVI are all listed by Okamoto and consist of three families (and their
compositions):

i) The symmetries w;, which leave the equation (3.10) invariant:
wi(by, b2, by, be) = (b2, b, ba, ba),
wa(b1,ba,b3,bs) = (b1,b3,b2,b4),
7.U3(b bz,bg,b4) (b b4,bg),
( )=

Wy 61762763764 b17b27 a—b4)-
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ii) The symmetries [;, which change the auxiliary Hamiltonian h. They act on the pa-
rameters as follows:

li(b;) =b; for j#1, Li(bi)=0b;+1
and on the auxiliary Hamiltonian h as:
l;(h(b1,b2,b3,b4)) = h(l;(b1,bs,b3,bs)).
iii) The symmetries z;, which change also z and ¢:
z1(q,z,b1,b2,b3,b4) =(1 —¢,1 — z,b1,—ba,b3,bs),

22(a,, by, ba, b, by) = (5, L, 212 T he = bs BambuF 05 = by

q x 2 ’ 2 ’
bl+62+63+b4“bl“62+63+b4)
2 2 ’
—x 1 by —by+by+by+1 by —by+byg+by+1
by +by +bg —bs—1 b1+bz*—53+54+1)
2 ’ 2 '

Okamoto proves that all these symmetries are realized as birational canonical transfor-
mations of (p, q), provided that the correspondent auxiliary Hamiltonian in non singular.

Remark 3.1. In these notations, PVIu equation corresponds to the set of parameters
(b1,bg,b3,b4) = (0,0, — 1, —1). Using the above list, one can show that the symmetries of
Section 3.1, and their superpositions, exhaust all the birational transformations preserving
the one-parameter family of PVIy equations. In particular, the symmetry (3.3) is given
by the transformation [ applied on the canonical coordinates (p,q) of PVI,_ L. The

condition Q(y;,y,z) = 0 coincides with the condition that the intermediate coordinates
Is(p,q) are such that the correspondent auxiliary Hamiltonian A is singular.

4. THE STRUCTURE OF ANALYTIC CONTINUATION.

We parameterized branches of the generic solutions of PVI by triples of monodromy ma-
trices. Now we show how do these parameters change with a change of the branch in
the process of analytic continuation of the solutions to PVI equation along a path in
C\{0,1,c0}. Recall that, as it follows from Theorem 2.1 and its analogous one in the
general case of PVI, the solutions of PVI, defined in a neighborhood of a given point
zo € €\{0,1, 0}, can be analytically continued to a meromorphic function on the univer-
sal covering of €\{0,1,00} (the above mentioned Painlevé Property). The fundamental
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group 7 (@\{0, 1, oo}) is non-abelian. As a consequence, the global structure of the ana-
lytic continuation of the solutions of PVI is more involved than that of the other Painlevé
equations. In fact the solutions of PI,..., PV have at most two critical singularities and the
corresponding fundamental group is abelian. :

From now on, we assume without loss of generality that p # 0 (indeed, as shown in
Section 3.1, this case can be treated as the case y = 1).

4.1. Analytic continuation and braid group.

According to Theorem 2.1 any solution of the Schlesinger equations can be continued

analytically from a point (u?,u9,u3) to another point (u},u},u3) along a path

(ur(t),ua(t),us(t)) € € \{diags}, 0<t <1,

with
ui(0) =u?, and wui(l) = uj,

provided that the end-points are not the poles of the solution. The result of the analytic
continuation depends only on the homotopy class of the path in C*\{diags}. Particularly,
to find all the branches of a solution near a given point u® = (u},u3,u}) one has to
compute the results of the analytic continuation along any homotopy class of closed loops

in C*\{diags}, with the beginning and the end at the point u® = (uf,u$,uJ). Let
g g 1, U2, U3

g em (@3\{diags}; u?)

be an arbitrary loop. Any solution of the Schlesinger equations near the point u® =
(u9,u9,43), is uniquely determined by the monodromy matrices M, M; and M3, computed
in the basis 41, 72, 73 and R in the resonant case. Continuing analytically this solution
along the loop 3, one obtains another branch of the same solution, near u®. This new
branch is specified, according to Theorem 2.3, by some new monodromy matrices ]\/If , Mzﬁ
and Mf, computed in the same basis 71, 72, v3. Our nearest goal is to compute these new
matrices for any loop 8 € my ((I:s\{diags}; uo).

The fundamental group m; (¢3\{diags}; uo) is isomorphic to the pure (or unpermut-
ed) braid group, P with three strings (see [Bir]); this is a subgroup of the full braid group
Bs. The full braid group is isomorphic to the fundamental group of the same space where

the permutations are allowed:
Bs ~m (¢3\{diags}/53; uo) ,

Ss being the symmetric group acting by permutations of the coordinates (u1, uz,us). Any
loop in B3 has the form

(uq(t), us(t), us(t)) € C*\{diags}, 0<t<1,

with



where p is a permutation of {1,2,3}. The elements of the subgroup P3 of pure braids are
specified by the condition p = id.

To simplify the computations, we extend the procedure of the analytic continuation
to the full braid group

My, My, M3 — Mlﬁ, Mzﬁ, M3’3, B € By =m (¢3\{diags}/53; u?).

For a generic braid § € Bj, the new monodromy matrices describe the superposition of
the analytic continuation and of the permutation

Ui = Upes), A = Apay. (4.1)

The braid group B; admits a presentation with generators ; and f2 and the defining
relation

B1B281 = B251 8.

The generators ; and (2 are shown in figure 5.
B~ 5 _
1 W 2

u
ug u, U, Uy L) 3

Fig.5. The generators of the braid group Bj.

Lemma 4.1. For the generators (31, 2 shown in figure 5, the matrices .Mf have the
following form:

MP = M,, MP* = MyM MY, MP = M, (4.2)
MP =My, MP =M, MP? = MMM (4.3)

Proof. Changing the positions of the points u; and uy by the braid (1, the basis of the
loops will be deformed into the new basis v1, 4,74 shown in the figure 6.

Fig.6. The new loops v, obtained under the action of the braid G
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Thanks to the fact that we deal with isomonodromy deformations, the monodromy
matrices M! of the system (2.1) with respect to the new basis v1,73,73 are the same M;,
up to the reordering:

M{ e Mg, J\/Ié — Ml, Mé = M3. (44)

We want to compute the monodromy matrices with respect to the old basis v1,72,vs. To
this aim, notice the following obvious relation in the fundamental group:

-1 i

y1=7, v2=01)T e 1 = s

Using these relations and (4.4), one immediately obtains the (4.2). Similarly the deforma-
tion of the basis of the fundamental group corresponding to the braid 3 is shown in the
figure 7.

Fig.7. The new loops v/ obtained under the action of the braid f;.

Here one obtains the permutation
M{ =M M;=M;, M;=DM,,

and the relations in the fundamental group:

—~1 1 _ 1

M= 2= =) M
From this one obtains the (4.3) and the lemma is proved. QED

The action (4.2), (4.3) of the braid group on the triples of monodromy matrices
commutes with the diagonal conjugation of them. As a consequence this action not only
describes the structure of the analytic continuation of the solutions of the Schlesinger
equations (2.16), but also of the reduced ones (2.19). Moreover the class of the singular
solutions and the one of the generic solutions are closed under the analytic continuation.
In fact if some of the matrices M; is equal to 1, then for any § there is a j such that
M f = 1. Moreover, R = 0 is preserved by the action of the braid group. As a consequence
the following lemma holds true:
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Lemma 4.2. The structure of the analytic continuation of the generic solutions of the
PVIu equation is determined by the action (4.2), (4.3) of the braid group on the triples of
monodromy matrices.

Remark 4.1. It is easy to see that the braid (3102)® acts trivially on the monodromy
data. This braid is the generator of the center of B; (see [Bir]). The quotient

Bs/center ~ PSL(2;Z)

coincides with the mapping class group of the complex plane with three punctures [Bir].
Also in the general case, the structure of analytic continuation of solutions of PVI equation
is described by the following natural action p — p® of the mapping class group on the
representation space (see Remark 2.8)

PP (y) = p(B7 (7)) (4.5)

where B
v € Fy~m (([\{ul,uQ,u?,,oo},oo) ,
B C\{u1,uz,us, 00} = C\{u, us, us, 00}, B(o0) = oo
is a homeomorphism, and
p:Fs — SL(2; Q).

The action (4.2), (4.3) is obtained restricting (4.5) onto the subspace of representations of
the form (2.9). The problem of selection of algebraic solutions of Painlevé VI (see below)
with generic values of the parameters a, 3,~,d can be reduced to the classification of finite
orbits of the action (4.5).

4.2. Parameterization of the monodromy matrices for PVIyu.

Here, a parameterization of the non-commuting triples of monodromy matrices is
introduced and the action of the braid group is written in terms of the parameters in the
space of the monodromy data. Concerning the commuting triples, we show that only a
particular choice of them leads to solutions to PVIu equation (see Lemma 4.6 below).

Lemma 4.3. Let My and Mz be two linear operators M; : C? — C? satisfying (2.9),
such that :
Tr(MlMQ) ;é 2,

then there exists a basis in €% such that, in this basis, the matrices of My, My have the

form:
_ 1 —T . 1 0
e () ), = (L9), oo

where T, = \/2 — Tr(M1My); when My, My are such that Tr(M;Mz) = 2, they have
a common eigenvector, and then there exists a basis in €* such that, in this basis, the
matrices My, My are both upper-triangular.

Proof. Due to the (2.9), M; and M have all the eigenvalues equal to 1, thus there exist
two vectors e; and e; such that

Mlel = €1, M262 = €3.
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We prove that these two vectors are linearly dependent if and only if Tr(Mi M) = 2.
In fact if the two vectors are linearly dependent, then one can find a linear independent
vector e such that, in the basis (e1,€}) the matrices of M;, M, have the form: '

1 A 1 A
Ml:(o 11>’ Mz:(o 12>'

So, Tr(M; M,) = 2. Conversely, in the basis (e1,€h) the matrix M; has the form M; =

((1) )\11 ) and, requiring that

Tr(MiMs) =2, eigenv(Mz) =1,

A2
1
and e, are linearly dependent. As a consequence, if Tr(MiMs) # 2, the two vectors e;
and e, are linearly independent, and in the basis (e, ey) the matrices of My, Mz have the

form: \
(1 1 (1 0
we(3). we(3 )

with Tr(M;M;) = 2 + A Az. Rescaling the basic vectors (e1,ez), one obtains (4.6). QED

also the matrix Mo must have the above form M; = (1) . Then, the two vectors e;

Lemma 4.4. Let M, My and M3 be three linear non commuting operators M,;:C? =
C? satisfying (2.9) and (2.10), with Mc given by (2.6) with the additional assumption
that R # 0 in the resonant case. If two of the following numbers

Tr(Mle), TI‘(MlMg), Tr(MgMz) (4.7)

are equal to 2, then one of the matrices of M; is equal to one.

Proof. Assume that
TI‘(Mle) — 2, TI‘(M]M;J,) = 2;

let e; and e3 be the common eigenvectors of My, My and My, M3 respectively, according
to Lemma 4.3. If M; # 1, then the eigenvectors e; and ez coincide. Then one can find a
linear independent vector e such that, in the basis (e1,€h) the matrices of My, Mz, M;

all have the form:
1 N .
.7\/[1'—(0 1), 1=1,2,3,

and thus they commute. This contradicts the assumption that the operators M, My and
M3 are non commuting. QED

Lemma 4.5. Let My, My, M3 as in lemma 4.4.
i) If Tr(MyMy) # 2, then there exists a basis in C? such that, in this basis, the matrices
M, M, and M3 have the form

’ 2
(1 -z (1 0 _f1yzmE 2
]V-[l——<0 1 )7 M2_<£I}'1 1)7 MB"( ig_l 1_;& ) (48)

Ty T
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where
Te(MyM,) =2 — 22, Te(MsMy) =2— 23, Tr(MiMs)=2— z3,

and
22 + 22 + 22 — 2073 = 4sin® Ty (4.9)

i) If two triples of matrices My, Mz, Mz and Mj, My, Mj, satisfying (2.10), with none

of them equal to 1, have the form (4.8) with parameters (z1,z2,23) and (z},5,23)
respectively, then these triples are conjugated

M; =T 'M!T

with some invertible matrix T, if and only if the triple (2}, z}, z%) is equal to the triple
(z1,T2,23), up to the change of the sign of two of the coordinates.

Proof.

i)

i)

Let us choose the basis such that, according to Lemma 4.3, the matrices My, M have
the form (4.6). Solving the equations

TI‘(MgMz) —_-2‘—.’13%, TI‘(MlMg) :2—.’)3§,

we arrive at the formula (4.8). The (4.9) is obtained by straightforward computations
from

Tr(Ms My M) = 2 cos 2.
The two triples of matrices My, My, Ms and My, M;, Mj are conjugated

M; =T~ M!T

with some invertible matrix 7" if and only if they are the matrices of the same operators
M1, My, Mj, written in different bases. Since the traces do not depend on the choice
of the basis, then

2 __ 12 .
T, =T; , 7,———1,2,3.

According to the proof of Lemma 4.3, the basis (e;,e;) is uniquely determined up
to changes of sign. A change of sign e; + —e; corresponds to the change of sign
z1 — —z1; then the form of the matrix M3 is preserved if and only if we change one
of the signs of z or zs. QED

Remark 4.2. The matrices (4.8) have a simple geometrical meaning. Let me consider
the three-dimensional linear space with a basis (e1,es,e3) and with a skew-symmetric
bilinear form {-, -} such that

{61,62}2331, {61,63}=$3, {62,63}2232.

Let me consider the reflections Ry, Ry, R3 in this space, with respect to the hyperplanes
skew-orthogonal to the basic vectors:

Ri(z) =z — {e;, z}es, i=1,2,3. |
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The reflections have a one-dimensional invariant subspace, namely the kernel of the bilinear
form. The matrices of the reflections acting on the quotient are the (4.8).

Let me stress that, as observed in the proof of Theorem 2.2, the monodromy matrices
can commute only for 1 € Z. In this case, they are of the form (2.22). The action (4.2),
(4.3) of the braid group does not mix triples of the form (2.22) with the ones admitting
the parameterization (4.8).

Lemma 4.6. The only triple of commuting monodromy matrices that gives rise to solu-
tions to PVIu equation for some integer u is (up to diagonal conjugations)

]V[l-——((l) ”1“), Mzz((l) Wlf‘”), M3:<é Z{) (4.10)

The correspondent solutions to PVI,—; consist of a one parameter family of rational solu-

tions of the form:
az

Proof. Consider a triple of commuting monodromy matrices. As shown above, they are
necessarily of the form (2.22), i.e. either all upper triangular or all lower triangular. Then
the corresponding Fuchsian system admits a single-valued solution Y'(z). For p =1 (as
shown in Section 3.1, all the other cases with integer i are equivalent to the case =1 via |
birational canonical transformations) such solution has only a pole of order one at infinity,

ie.
az +b
Y(z) = (cz+d>'

for some a,b,c,d € €. Substituting ¥ in the Fuchsian system, one obtains a = 0, b = ¢k,
d=£(¢g—uy —uz —us) and ¢ # 0 iff p = 0. By direct substitution in the reduced
Schlesinger equations, one can compute ¢ and determine the explicit form of Fuchsian
system. Thus it is straightforward to compute the monodromy matrices. This is done
using the same procedure of [Jim] extended to the case of PVIu as in Section 6.2 below.
From the formulae (6.44), (6.45), (6.46) below in the limit of Yo — 2, one shows that
the monodromy matrices have the form (4.10). Their orbit under the action of the braid
group (4.2), (4.3) consists of one point, up to permutations. Thanks to Theorem 2.4, the

correspondent solution to PVIu, pu € Z consists only of one branch, i.e. it is rational and
it is easy to see that, being p = 0 it has the form (4.11). QED

The above one-parameter family of rational solutions (4.10) corresponds to the triple
((I?l, Z9, 333) = (O, O, 0)
4.3. Action of the braid group on the coordinates in the space of the mon-

odromy data.

We have shown that the structure of analytic continuation of solutions of PVIu equa-
tion is determined by the action (4.2), (4.3) on the monodromy matrices. In the preceding
section, we parameterized the triples of non-commuting monodromy matrices. For the
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commuting ones, we already found the correspondent solutions to PVIu (see Lemma 4.6).
So, from now on, we consider only the case of the non-commuting triples and here we
rewrite the action of B3 on the monodromy matrices as an action on the parameters.

Definition. A triple (z1, 22, z3) is called admissible if it has at most one coordinate equal
to zero. Two such triples are called equivalent if they are equal up to the change of two
signs of the coordinates.

Lemma 4.7. In the coordinates (z1,z2,3) on the space of the monodromy matrices, the
action of the symmetries i1, 12 is given by the formulae

i1 (z1,22,23) = (23 — 2122, —Z2,21), iy : (z1,22,23) = (—z2,—T1,2122 — T3).

The proof is straightforward.

Lemma 4.8. The class of equivalence of the monodromy data (z1,z2,z3) does not change
under the symmetry (3.3).

Observe that for an admissible triple (z1,z3,23) none of the matrices (4.8) is equal
to the identity, and they are non-commuting. So the admissible triples correspond to the
non-singular solutions of the reduced Schlesinger equations (2.19) and none of them gives
rise to the above one-parameter family of rational solutions (4.11). Moreover, thanks to
the lemmas 4.7, 4.8, two equivalent triples generate the same solution. I summarize the
above results in the following:

Theorem 4.1. In the case of 4 € Z there exists a one parameter family of rational
solutions of the form (4.11). All the other generic solutions of PVIu, have branches which,
near a given point zg € €\{0,1, co0}, are in one-to-one correspondence with the equivalence
classes of the admissible triples satisfying (4.9) and not belonging to the equivalence class
of (2,2,2). The one-parameter family of Chazy solutions corresponds to equivalence class
of the triple (2,2,2).

Proof. The first claim is proved in Lemma 4.6. Before proving the second claim, we
prove the third. This follows from the fact that as proved in Lemma 3.4, Chazy solutions
correspond to the case R = 0, i.e. to My = —1. Since M is invariant with respect to
conjugations, it must be equal to —1 also in the canonical form (4.8). Solving the equations
in (z1,2,23), one obtains that z; = 2 for every ¢ = 1,2, 3. Correspondingly, the triple of
monodromy matrices is given by

1 -2 1 0 3 -2
(3 2) (3 0), ()

Now we prove the second claim of the theorem. Consider a generic solution of PVIy, for
any w, not of the form (4.11). The correspondent monodromy matrices are non-commuting
and satisfy (2.9), none of them being equal to the identity. The canonical form (4.8) of
M, My, M3 is determined uniquely up to a choice of the admissible triple (21, 22, z3) within
the equivalence class non containing the triple (2,2,2). Conversely, given an admissible
triple (z;, 72, z3) not belonging to the equivalence class of (2,2,2) and satisfying (4.9), one
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obtains the matrices My, My, M3 of the form (4.8). Being the triple admissible, they do
not commute. In the non-resonant case, the matrix MzM;M; is diagonalizable with the
eigenvalues exp(+27iu). Reducing this matrix to the diagonal form

MMy My = 71  SPETIH) 0 7
0 exp(—2mip)

one obtains the monodromy matrices TM;T ™! satisfying (2.9) and thus specifying a branch
of the solution to PVIu. Analogously, in the resonant case, thanks to the fact that
(z1,z2,23) does not belong to the equivalence class of (2, 2,2), the matrix Mz My M; admits
a Jordan canonical form:

MMy My = T~ ((1) 271”> T.

The monodromy matrices TM;T ! satisfy (2.9) and thus specify a branch of the solution
of PVIyu, not belonging to the above one parameter family of rational solutions, nor to the

Chazy solutions (indeed R # 0). This concludes the proof of the Theorem. QED

The next step is to rewrite the action (4.2), (4.3) of the braid group in the coordinates
(z1,z2,73) in the space of the monodromy data. This is given by the following

Lemma 4.9. In the coordinates (z,2,z3), the action (4.2), (4.3) of the braid group is
given by the formulae:

B1:(z1,72,23) = (—z1,23 — T122,22),

B : (z1,2q,23) = (T3, —T2,T1 — T2T3).

(4.13)

Proof. The above formulae are obtained by straightforward computations from (4.2), (4.3)
by means of the parameterization of the monodromy matrices (4.8).

The above action preserves the triple (0,0,0) correspondent to the rational solutions
(4.11). I summarize the results of this section in the following:

Theorem 4.2. The structure of the analytic continuation of the generic solutions of
the PVIu equation is determined by the action (4.13) of the braid group on the triples
(:El y L2, 5173).

4.4. Parameterization of the monodromy matrices for the general PVI equation
and action of the braid group.

In the general case of PVI(a, 3,7,6), the traces of the monodromy matrices and the
traces of the products of couples of them are still coordinates in the space of the monodromy
data. Denote

pij = TeM; Mj, p; = TeM;, for 1,7=1,2,3 0c0.
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In [Jim] it is proved that loosely speaking, if the choice of the parameters ¢, 5, v and § is
such that the correspondent ¥4 5 3 oo satisfy

912300 €Z,
and if the traces p;; = 2 cosmo;; are such that

9; +19j iO‘z‘j

OSRGO‘,‘]’<1 9

gz) VZ#]a 5,7 =1,2,3,

then the numbers p1, ps, p3, P12, P13 and pys are coordinates in the space of the monodromy
data. This result is stated and proved more rigorously in Section 6.2 in the case of PVIu.
For the rigorous statement in the general PVI case, see [Jim].

Lemma 4.10. In the coordinates p;, p;j, the action (4.2), (4.3) of the braid group is given
by the formulae:

B (P1,P2,P3,P12>P13,P23) =(P2,P1aP3>P12,P23,PzPoo + p1ps — P13 — P12p23)

(4.14)
B2(p1,p2,p3, P12, P13, P23) =(P1, D3, P2, P13, P3Poo + P1P2 — P12 — P13P23, P23)

Proof. The proof is a straightforward computation starting from (4.2), (4.3) by means of
the formula
Tr(AB) = Tr(A)Tr(B) — Tr(A™' B).

QED

5. MONODROMY DATA AND ALGEBRAIC SOLUTIONS OF THE PVIy
EQUATION.

Definition. A solution y(z) is called algebraic, if there exists a polynomial in two variables
such that
F(z,y(z)) = 0.

5.1. A preliminary discussion on the algebraic solutions to the PVIu equation
and their monodromy data.

Here we state some necessary condition for the triples (z1,z2,z3) to generate the
algebraic solutions.

Observe that if y(z) is an algebraic solution then the correspondent solution p(u), g(u),
u = (u1,uz,us) of the reduced Schlesinger equations (2.19) is also algebraic. According to
Theorem 2.1, the solutions of the reduced Schlesinger equations (2.19) can ramify only on
the diagonals u; = usg, u; = us, uz = uz. Analogously the ramification points of y(z) are
allowed to lie only at 0, 1, co.
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Lemma 5.1. A necessary and sufficient condition for a generic solution of PVIu to be
algebraic is that the correspondent monodromy matrices, defined modulo diagonal conju-
gations, have a finite orbit under the action of the braid group (4.2), (4.3).

Proof. By definition, any algebraic function has a finite number of branches. Allowing also
the permutations (4.1), one still obtains a finite number of values for MY, M} and M?
B € B3 up to diagonal conjugations. QED

Corollary 5.1. An admissible triple (z1,z2,z3), not belonging to the equivalence class of
(2,2,2) specifies an algebraic solution of PVIu if and only if it satisfies (4.9) and its orbit,
under the action (4.13) of the braid group, is finite.

Remark 5.1. Recall that non-generic solutions and Chazy solutions coincide. In Section
8.2 below, we prove that Chazy solutions are transcendental, i.e. they have an infinite
number of branches. On the other hand, the orbit of the correspondent triple (2,2, 2)
consists only of one point. This is not surprising because this triple gives the monodromy
matrices (4.12), i.e. R = 0. As stressed in Remark 2.1, the uniqueness of the Fuchsian
system, and thus of the branch of the solution to PVIu, associated to the monodromy
matrices (4.12) is not assured.

Remark 5.2. A result analogous to Corollary 5.1 can be proved also for the general
Painlevé VI equation, i.e. a six-tuple (p1,p2,p3, P12, P13, P23) specifies an algebraic solution
of PVI if and only if its orbit, under the action (4.14), is finite. The numbers p1 23,00 In
(4.14) are fixed by the parameters o, 3, v and § appearing in the general PVI equation.
One would like to classify all their values such that there exist finite orbits under the action
(4.14). In attaching this problem, one has to play attention to the fact that the existence
of algebraic solutions may occur for values of the parameters for which there exist singular
solutions too (see [Ok]) or for resonant values of the parameters.

Remark 5.3. We stress that the action (4.13) preserves the relation (4.9).

Thanks to Corollary 5.1, the problem of the classification of all the algebraic solutions
of the PVIu reduces to the problem of the classification of all the finite orbits of the action
(4.13) under the braid group in the three dimensional space (see [Dub], appendix F). Here,
we give a simple necessary condition for a triple (z1,z2,z3) to belong to a finite orbit.

Lemma 5.2. Let (z1,z2,z3) be a triple belonging to a finite orbit. Then:
z; = —2coswr;, 1 €Q, 0<r; <1, :=1,2,3. (5.1)

Here Q is the set of rational numbers.

Proof. Let me prove the statement for, say, the coordinate z;. Consider the transformation
B (z1,22,23) > (21,22 + 2173 — zizy, 13 — T1T2),
as a linear map on the plane (z2,z3). This linear map preserves the quadratic form
x%—{—x% — T1%223. |
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If 21 = 2, I put r; = 1; otherwise I reduce the quadratic form to the principal axes,
introducing the new coordinates

. V2 -+ V24

Tg = — (z2 — z3), I3 = 5 (z2 + 23). .
In these new coordinates the preserved quadratic form becomes a sum of squares and the
transformation 7 is a rotation by the angle 7 + 2o, where « is such that z; = —2cosa.

To have a finite orbit of (#3,%2) under the iterations of /%, the angle o must be a rational
multiple of 7. In this way the statement for z; is proved. To prove it for 2, and z3 one
has to consider the iterations of 57 and 5 ! B3, respectively. QED

Remark 5.4. Thanks to the above lemma, for the finite orbits of the braid group,
it is equivalent to deal with the triples (z1,z2,z3), or with the triangles with angles
(mry, wre, wry), with z; = —2cosnr; and 0 < r; <1 (I may assume, changing if necessary
two of the signs, that at most one of the z; is positive). Observe that the quantity

2 2 2
z] + 5+ 25 —z17223 — 4

is greater than 0 if and only if the triangle (r1,rq,r3) is hyperbolic, namely > r; < 1; it
is equal to 0, if and only if the triangle (r1,72,rs) is flat, namely Y r; = 1, and it is less
than 0 if and only if the triangle (r1,r2,73) is spherical, namely > r; > 1.

5.2. Classification of the triples (z;,z2,z3) corresponding to the algebraic solu-
tions.

I deal with the classification of all the finite orbits of the triples (z1, 22, z3) of the form
(5.1), with at most® one r; being equal to % According to Lemma 5.2, any point of these
Bs-orbits must have the same form (5.1). This condition is crucial in the classification.

Definition. I say that an admissible triple (21,22, 23) is good if for any braid § € B3 one

has

B(z1,z2,23) = (—2cos er, —2cos7rr2ﬂ, —2cosmr?),

with some rational numbers 0 < r? < 1.

Observe that flat triangles correspond to half-integer values of u. For them, we prove
the following

Theorem 5.1. Any admissible triple (z1,z2,z3) such that the z; = —2cosnr;, with
r; € Q and

x? + :cg -+ 3:§ — 12923 = 4,
is a good triple. Moreover its orbit under the action of the braid group (4.13) is finite.

Proof. The above triples correspond to flat triangles. The action of the braid group on
flat triangles can be written in the form
Br i (ri,ra,rs) = (I1 =7y |ry — raf,72),

.2
By (r1,72,73) o (73, [1 — ol Irs — 7a]). (5.2)

 This corresponds to the fact that we deal only with admissible triples.
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As a consequence, it maps triangles with rational angles in triangles of the same type.
Moreover all the orbits are finite. In fact, let r; = %, for p;,q; € Z, pi < ¢i, 1 =1,2,3 and

n be the smallest common factor of g1, ¢z, 3. The action of the braid group (5.2) does not

n’'n’n J?

number of possible triples of this kind is trivially finite. QED

increase n, and. all the images of (r1,74,73) have the form (ﬁ B2 iﬁ) with p; < n. The

Remark 5.5. In Section 10.2, we show that these orbits form a numerable set and are
in one to one correspondence with the regular polygons or star polygons in the plane.

Theorem 5.2. Any good triple (z1,z2,23) such that
2%+ 23 + 2k — 212023 # 4,

belongs to the orbit of one of the following five

(—2 cos %’ —2cos 3 2 cos g) , (5.3)
(—2 cos —g, —2cos g—, ,—2 cos g;) , (5.4)
(—2 cos g—, —2cos g—, —2cos g) , (5.5)
2cos =, —2 2 cos 2 (5.6)
cos 5, —2¢0s 5, ~2c08 — |,
5 T 9ees ™ o 27 (5.7)
- —,—2cos —, —2cos — | . .
cos o, 5 5%

All these orbits are finite and pairwise distinct. They contain all the permutations of the
triples (5.3), (5.4), (5.5), (5.6) and (5.7), and also the triples

(2008%,2COS %,2003 %) , (5.3")
2008 27, ~2 cos &, ~2 cos © (5.4)
cos =, 7 2cos g ) )
2 4 4 4
<-—2 cos —371, —2cos %, —2cos %) (—2 cos ~571, —2cos —E)z, —2cos —5) , (5.5")
2 2 2 2 2
(——QCOS —372,-—2cos ?77,—2 cos ——57}-) , <—-2cos %,—2 cos g511-—,—2cos —57Z> ,  (5.6")

2
—2cos§7—r—,—2cos —71;,—2cosZ , —2cos-zr—,—2cos z,——QcosZ ,
5 3 5 5 3 3 ,
(5.77)

27 T ™ -
—2cos —, —2cos —,—2cos —~)
( 3’ 3’7 5/°
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respectively, together with all their permutations.

Corollary 5.1. There are five finite orbits of the action (4.13) of the braid group on the
space of the admissible triples (z1,z2,23) satisfying

2 2 2
x] + x5 + 23 — T1T223 # 4.

The lengths of the orbits (5.3), (5.4), (5.5), (5.6) and (5.7), are equal to 4, 9, 10, 10 and
18 respectively.

Remark 5.6. The action of the pure braid group Ps on the above five orbits gives the
same orbits for any of them but (5.4). The orbit (5.4), under the action of the pure braid
group P, splits into three different orbits of three points. So the Ps-orbit (5.3) has four
points, the three Ps-orbits (5.4) have three points each, (5.5) and (5.6) have ten points
each and (5.7) has eighteen points. These orbits give rise to all the algebraic solutions of
the PVIu equation, for 4 is given by (4.9). The number of the points of each orbit with
respect to the action of P; coincides with the number of the branches of the correspondent
algebraic solution.

Remark 5.7. Observe that there are not admissible triples giving rise to an integer value
of p. This means that the only regular solutions in the case of y € Z are given by the -
one-parameter family described by Lemma 4.6.

Proof of Theorem 5.2. Since we assume
2 2 2
Ty + 25 + x5 — 15273 F 4,

I exclude all the flat triangles which where already studied in Theorem 5.1. The braid
group acting on the classes of triples (z1,2,23), is generated by the braid $; and by the
cyclic permutation:

(z1,22,73) — (23,21, 2).

As a consequence it suffices to study the operator:
(zi, 25, 2k) = (=i, 35, Tk — TiTj),

up to cyclic permutations. This transformation works on the triangles with angles nr;,
7rj, mry as follows:
(riyrjyre) = (1= 71i,75,7m%), (5.8)

where r} is such that:
COS T}, = COSTT + 2 COS TT; COS 7Tj. (5.9)

The first step is to classify all the rational triples (r;,7;,7%) such that ), defined by (5.9)
is a rational number, 1 > r} > 0, for every choice of ¢ # j # k # 4, 1,5,k = 1,2,3.
Equivalently I want to classify all the rational solutions of the following equation:

COSTTTE + cosm’(m -+ rj) -+ cos 7‘"(7“1' - T'j) + cos Tf(l = T;:) =0,

40



or all the rational quadruples (1, @2, @3, p4) such that:
cos 2Tp1 + cos 2y + cos 2mps + cos 2wy = 0, (5.10)
where the ¢; are related with the r; by the following relations:

r; 47 lri — 7 1 -7
golzrk/za Y2 = 29 ]7 803:—1—5—']—‘, :l____?__lg_‘

(5.11)

Such a classification is given by the following:

Lemma 5.3. The only rational solutions (p1,92,93,94), 0 < ¢; < 1, considered up to
permutations and up to transformations p; — 1 — ;, of the equation (5.10) consist of the

following non—trivial solutions:
1 11 21 (a)
30°30° 5’6 ’

7 1711
(%’%’5’6) (®)

1231
(37%3) ()
and of the following “trivial” ones, of three types:
(d): cos2mp, = 0. The solutions obtained in [Cro] have the form

11 3 1 1 2 1 1 1.1
(dl) . (gvma'ﬂ‘]'az)) (d‘?) . (99799’1"5799'{—572)7 (dS) . <Z7907I90_§'31)a

where ¢ is any rational number 0 < ¢ < 1.
(e): cos2mpy = 1. The solutions obtained in [Gor] have the form

111 . 1 1 112
I 2yl = - = Bz, o, T
(6'1) * (3’473’())7 (e ) (2’@7'%0 2'70>7 (e 3) (37 5757())’

where @ is any rational number 0 < ¢ < 1.
(f): cos2mpy + cos2mpy =0, cos2mps + cos2mps = 0. The solutions are obvious

w2 =]1/2 — 1], 04 =11/2 — 3],

where 1, 3 are two arbitrary rational numbers 0 < ¢; < 1.

Proof. I follow the idea of Gordan [Gor] (see also [Cro]). In this proof I use the same
notations as in [Cro], except for the ¢; which there are called r;. Let me recall the notations.
Let ¢ = Z—: where di, ny are either positive coprime integers, dr > ng, or ny = 0. Let
p be the largest prime which is a divisor of dy, da, ds, or ds and let &k, lg, ck,vr be the
integers such that .
dy = 5kplk and nr = cpdr + Vkplk,
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where dy is prime to p, 0 < ¢ < p'*, cx = 0 if Iz = 0, but otherwise ¢ is prime to p. So

Assume that {; > Iy > I3 >[4 and define the function:
ou(z) = : [egﬂif"mckpll_lk + 72Tk :ci”ll‘ckpll-lk} if cx#0
- cos 2y if ¢x=0

and, in this case:

As in [Cro], g& <exp (—i—l"})) = cos 2wy and U (exp (%’{-})) = 0. Let me introduce the

polynomial
P(z) =1+ P g2t T T

This is the minimal polynomial of exp (%%’—) with coefficients in Q, that is such that i)
P (exp (%)) = 0 and ii) P(z) is irreducible in the ring of polynomials with rational
coefficients. A stronger result was proved by Kronecker (see [Kr]): the polynomial P(z)
remains irreducible over any extension of the form Q((y,- -, (,), where (; is a root of the
unity of the order coprime with p. As a consequence, the following lemma holds true (see

[Gor])
Lemma 5.4. If one expresses the polynomial U(z) as a sum of polynomials U(z),

1—1_

Ui)= Y

where Uy(z) contains those terms of U(z) of the form bz® with ¢ = tmod (p'*~1), then
every Us(z) is divisible by P(z).

Ut(x)7

Apply this lemma. The indices of the powers of z are:

I I I

! I —1 1 —1 I —1 I —1 I—1 11
c1, pt—c1, cap TR pt—capt T2, capt T, pt —e3p TR, capt T, Pt —aap T

If all the following conditions are satisfied:
l1,I2,03 > 1, 11> 1o, 03,0, I >1,ls, l3>1s, 1a>0,

then there are no indices equal to each other mod (p"~!) and there is no solution of (5.10).
So I have to study the cases in which one of them is violated.
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1): l1 =1>1y > 13 > l4. In this case, since the degree of U(z) is less than p, and the
degree of P(z) is p— 1, being U(z) divisible by P(z), it must be U(z) = mP(z), for some
constant m. There are four possibilities:

1.1) : 3 =l = I3 = Iy = 1 then U(0) = 0 and P(0)=1. Then m = 0 and U(z) = 0;
moreover if the sum of two (three) terms representing two (three) of the functions g
vanishes, then the sum of the two (three) functions vanishes. As a consequence there
are only the following possibilities:

1.1.1) : gi = —g; and gr = —g; for some distinct ¢,7,k,] = 1,---4. This gives rise to the
trivial case (f).

1.1.2) : g; = 0 for some [ = 1,---4; this is the trivial case (d).

1.1.3) : U(z) contains only two powers of x. If by, --,bs are the coefficients if one of the
powers z€, then:

1 1 1 1
by = -— — e P
by + by +b3+bs =0, and b + by + by + b 0,

namely b1, -, by are the solutions of the following biquadratic equation:
z* 4 (byby + bybs + biby + babs + babs + baby)z® + bybabsby = 0.

As a consequence b; +b; = 0, by + by = 0, Flf + glj— = 0 and 7517 + El; = 0, for some
distinct ¢, 5,k,1 = 1,---,4. Then this case reduces to the trivial case (f).
1.2) [y =1y =13 =1, Iy = 0; then U(0) = cos 2wy, and then U(z) = cos 2mp4 P(z), where

P(z) is a polynomial with p powers of z. Since in U there are at most 7 powers and
p must be prime, then p can only be equal to 2,3,5,7.

1.2.1) Case p = 2. Since p is the largest prime in dy,---,ds, di = dy = d3 = dg = 2 and
8x = 1. Then vx = 0, ¢x = 1 and this provides no solution.

1.2.2) Case p = 3. In this case there are the two following possibilities:

le2n'if1 4 _1_627Tif2 4 ée%rifg = cos 271_(‘04 — %6_2Wif1 + le-—Zm'fg + _];e—Zﬂ-ifa

2 2 2 2

or
1 : 1 45 1 5. 1 5. 1 ~ 1 :
_2_6--27rzf1 + 5’627nf2 + 562mf3 = cos 271'994 — 5627\1]‘1 + _2_6—27r1f2 4+ 56—27”f3‘

In both the case one can show that there are no solutions. In fact, for example, in the
first case one has to solve the following equations:

2 cos 2mpy = cos 2w fi + cos 27 fy + cos 27 f3, sin27 f; + sin2x fo + sin 27 f3 = 0.

Using the classification of all the possible rational solution (d.1), (d.2), (d.3) of the
case (d), one can show that there are no solutions.
1.2.3) Case p = 5. In this case one has:

Voorire 1 —omipe 1 omips | 1 somiy,
— — _ - t —e “niJg
2° 2 ¢ T3

= Cc0s 2Ty,
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for some distinct ¢, 7,k = 1,2,3. Then fi is 0 or % and w4 = % or (g = % respectively.
Following the same computations of [Cro] one obtains the two solutions (a) and (b).

1.2.4) Case p = 7. In this case, one has

_];eZﬂ"!:fl f— _];e—Qﬂ'ifl — _];ezﬂifg — }'6—27”:f2 — ;1‘_6271'1‘]03 — }_e—2ﬂ'if3

3 2 3 = c0s 2Ty,

which has the following solutions:

1 1 1
fi=fo=f3=0 and pa=g or f1=f2=f3=—2' and Pa=73

This gives the solution (c).

1.3) Iy =l =1land l3 = ly = 0. Then U(z) = (cos2mps + cos2mps)P(z); again in U

there are at most 5 powers and then p = 2,3,5. The case p = 2 is treated as in [Crol;

1.3.1) : In the case p = 3 either

1 . 1 . 1 , 1 .
Zelmify g Zemife = Zm2mift L 2o m2mife = (g 2mpg + cos 2wy,
2 2 2 2
or:
%ez”ifl + %e"zmﬁ = %e"Q’”ﬁ + %e2ﬂf2 = cos 2wz + cos 2Ty,

In the former case, for f1 = fa, with cos2nf; = cos2mp3 + cos 2w, and this gives
again the solution (b). The latter case is equivalent.

1.3.2) : In the case p = 5 one has:
1 5. 1 : 1, 1 :
562’”’[1 = —eTImh = Z2mife 56—2””2 = cos 23 + cos 2Ty,
which gives fi = fo = 0 or fi = fo = . I treat the former case (the latter is
equivalent); then cos2mps + cos 2mp, = % and one can show that this case reduces to
the trivial solutions (d) and (e). ‘
14) I; =1 and lp =3 = Iy = 0. In this case, as in [Cro|, there is no solution, but the
trivial one (d).
2) Iy > 2,11 > la,l3,l4. This case can be treated as the analogous one in [Cro]. This
concludes the proof of Lemma 5.3. QED
I use the above lemma to classify all the triangles which correspond to good triples.

Every quadruple generates twelve triangles. In fact, given a solution (p1, -, ¢4) there are
six ways to choose the pair (¢, ;) such that ~

cos 2mp; + cos 2w = 2cos (@i + @;) cos (i — ;).

Chosen the pair (¢;, ¢;), there are two ways for choosing ¢, in order to have the triangle

(2¢k, i + @5, i — ;). (5.12)
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The remaining ¢, is, by definition, such that the above triangle is mapped, by the braid
(5.8), to:

(lpi =@l 11— wi = @3], 11 = 260]).
Let me analyze all the triangles generated by the solutions of the equation (5.10), and keep
the good ones, namely the ones for which the new r}, given by (5.9), is rational for every
1,7, k, cyclic permutation of 1,2, 3.

In order to do this, observe that if there exists a permutation p such that the triple
(7p(1)> Tp(2)2 Tp(3)) gives via (5.11) values of 1, @2, 3 such that there is not any rational ¢4
such that 1,09, ¢3, ¢4 satisfy (5.10), then (r1,r2,73) is not a good triple. In fact, every
permutation p is generated by cyclic permutations and the permutation pas : (r1,72,73) —
(r1,73,72). Cyclic permutations are elements of the braid group, so the statement is
obvious for them. For p,3, the statement is a trivial consequence of the fact that the
triples (ry,72,73) and (r1,rs,r2) give via (5.11) the same values of ¢1, @2, 3.

So, all the triangles (ry,r2,73) for which there exists at least a permutation that gives

rise to values of (¢1,2,¢3) for which rational solutions ¢4 of (5.10) do not exist will be
excluded. :

Solution (a). Using (5.12), one obtains the triangles
113y (118 (1T (411
15730730/ 15’5715/ 15730730/ 15730730/
1) (u2 1) 421y (117
15730730/’ 15715’ 5) " 5°15°5)" 55715/
1 11 13 2 1 7 113 112
3730730/ 3730730/ 3’5’5/ 3'3’5)°

The last two points
113 112
el s 1
33 (333 (613

belong to the orbit (5.7). The above values suitably permuted, except the (5.13), give
rise via (5.11), to the following values of (@1,¢2,¢3) (written in the same order as the
correspondent generating triangles)

1 57 1 3 7 7 191 771 11 7 3
60712720/ 10710730/ 607604/’ 60° 20712/ 60’1220/’

1 13 3 1 1 3 011 11123 1 9 13
1030710/ 15’2710/ 5730/ 20760760/’ 607 20° 60/

there isn't any rational number ¢4 such that any of the quadruples build with these triples
and (4 is in the class described by Lemma 5.3.

Solution (b). Using (5.12), the triangles are

7128y (7T 21Y (7 11y (2119
15730730/’ 15’5715 )" 1530730/ 15730730/

45



(2,1a7Ty (2 13\ (212) (2112

15730°30/) \15'15’5/)  \5’15'5)° \5'15°5)’

1 1 13 1 11 23 21 4 114

330730/’ 3’30730/ 5’35/ 3’3’5/

The last two points are equivalent to:

113 211 ;
— =, = - =, = 14
Ges) Gas) 19

of the orbit (5.7). As before one can show that if (r1,r3,73) is one of the above values,
except the (5.14), then there exists a permutation such that the r} defined by (5.9) is no-
more rational. In fact one obtains for example the following values of (@1, 2, ¢s3), which
don’t fall in the values obtained in Lemma 5.3: 4

11 37 3 13 2 1 5 1 /1 3 23 1 47 7
60’ 60" 20/’ 5'5715)° 60’ 12720/’ 60°4°60 /" 60°60°20 /"’
1LY (12N /2N (1281 (11D
3030’30 )" 30’57 )7 305 )" 60°60°20/"° 60’20’60/ °
Solution (c).
2%? 2 5 19 2 11 25 4 11 25 4 2 4 4 1 13
77T N\T42742 ) \T742°42 )7 \7742°42)° \7T'7'7)7 \742°42 )"
1 1 29 1 5 23 114 1 _1~§ 1 2 4 1105
7742742 ) \7742°42 )\ 77 )\ T 1) \3 7 7)\3 7T
As before one can show that if (r1,72,r3) is one of the above values then there exists a

permutation such that the r} defined by (5.9) is no more rational. In fact one obtains for

example the following values of (1, ¢z, ¢3), which are not included in the values described
by Lemma 5.3:

113N (5 By My 1

14’2714 ) 84’8412 )" 84784784 )’ 84’12’84 )’

140 1 37 11 i_5“23» 5 29 17

77 ’ 84784784 )’ 8412’84 )" 84784784 )’

1 2 0 1 8 1 l_lg 3 1 11 4

77 ’ 14’2121 )° 7742742 )° 1421721 )
Solution (d.1).

23 3 11 9 11 1 (i 1 19
3720720/ 3720720/ 572020/ 5730730/

46




117y (21 5) (383 7) (3713
5712’12/ \5°12°12/7 \5720°20/° \5’30°30)/’
17 13 11 11 212 112
2730730/ \2’30°30/° 3’5’5/ 2559 "

The last two points are equivalent to:

113 121 i}
(:o;’s’g) (?575) (5.15)

of the orbit (5.7), which is now complete. I can again exclude all the other values of
(r1,7r2,73), with the same trick as above.

Solution (d.2). In this case, any of the triangles generated is equivalent to one of the
following:

gy Lo tel 114 1 [1-dg| [3-4¢] 1 J1—dp| 1+4p
9 4 b 4 ? ,27 4 bl 4 ) 27 4 ] 4: 7

o, L 4ol [B—dpl) (11 [1-4dp|
(‘P’ 4 7 4 b 2727 2 7

where ¢ is an arbitrary rational number. The last triangle is forbidden because it has two
right angles, and the first four ones are all equivalent to a flat triangle, so they are again
forbidden because they give rise to a an half-integer value of p.

Solution (d.3). The generated triangles are the following:

1 1 1 9 1 2 2 2 2 2
y 2 -2 2 2 2 2
2 11— dp| 1440 2 11— 4p| 1+4p 11
z Z_9 -z
(3 +2<707 4 Y 4 ’ i3 (PL 4 ) 4 b 9 3 1_*—2{10
1 2 1 7 1 7
- Z_ — — 2 il —

2 - +2 + — 5 + = = 2 -I- > + H
This case must be studied carefully because one has to classify the allowed values of the
rational variable ¢ in order that, applying the transformation (5.8), one obtains always

rational values.
Analyze the first triangle. It is mapped by (5.8) to a triangle equivalent to the second:

1 1 1 1 2 1 2 1
—+2p0,-,2 =)~ — 2 2 1
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Applying the braid (5.8), with r; = 2F

S, T =Tk =20 + %, one has to solve:

2 1
cos ——31 + 2cos® m(2¢ + g) = COS 7Ty,
or, equivalently, for ¢ and for the new py:

2w
cos = + cos2m(2¢p + =) + 1 + cos 2w = 0.

3)

I classify the values of the allowed ¢ using the Lemma 5.3 in the case (e). There are six
possibilities for ©: '

i) if ¢ = %, then ¢ = 2%. In this case, from (5.16), all the points of the orbit (5.4) are
obtained.

i) if ¢ = %, then ¢ = 0. In this case, from (5.16), all the points of the orbit (5.3) are
obtained.

iii) if pp = %, then ¢ = i. In this case, from (5.16), the following points are obtained:

115 121
2’36/ 6’376/

They must be excluded because there exists a permutation such that the r) defined
by (5.9) is no-more rational.
iv) if @y, is free to vary, then 2¢ + £ = 3. In this case, from (5.16), the forbidden point:

111
2’3'2)"
is obtained
v) if g = -5-, then ¢ = 30, and one obtains, from (5.16), the following two points of the

bt (56 112 2 2 2
<§’ 3’ 5> ’ <5’ 3’ 5) '
2

vi) if g = £, then ¢ = 35, and one obtains the following two points of the orbit (5.5):

30
111 121
273’5/ 5’3’5/
In the same way one can study all the other triangles and show that there are not

other value but the ones described in Theorem 5.2.

Solution (e.l). The generated triangles are the following:

002 0, 7 01_2_ 21 7y (211 E.l_l 2 11y,
) I§12 '9'3/)° 1371212/ \ 3’3’3 2°3'3)'\ 37474/
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the first four are forbidden because there exists a permutation such that the r}, defined by
(5.9) is no-more rational. So, they must be excluded. The fifth and the sixth are points of
the orbit (5.3) and the last of (5.4).

Solution (e.2). The generated triangles are the following:

11 11 11 |1+ 4y
(29‘9)'575)7 (ll—Q@‘a§72)7 (2727 ) ) (L@a@):

|1 —2¢] |1—2¢] 1 ]1-4gp| [1—2¢] 1+2¢
1 : - 1-2
(7 9 ) 2 ) 0727 2 ’ (l Solagov(p)a 0, 9 ) 2 3

1-2 1—2p 1—2¢| 1+2
1=2] [1=20]) (| g, =2l L2
2 2 2 2

‘(079071'—90)7 (2907 )7 (29979971—99)7

They are all forbidden, the first three because they have two right angles, the next three
ones, because one can prove that necessarily ¢ = %—, then the first has two right angles,
the second gives |cos 7} | = 3 and the last gives | cos 77| = 2; all the others because they
are equivalent to a flat triangle.

Solution (e.3). The generated triangles are the following:

02 BY) (oL 1) (p18) (218) (21 1) (428
"15715 ) "15715 ) 55/ \3'55) \5°15°15/)" \5"15° 15/’
411\ (211} (222) (222) (211} (121
555/ \355)"\3855/°\555)"\533/"\533)

The first six can be excluded because we can show that there exists a permutation such
that the v} defined by (5.9) is no-more rational. The seventh and the eighth give two
points of the orbit (5.6), the ninth and tenth two points of the orbit (5.9) and the last two,
two points of (5.9). ;

Solution (f) All the points of all the orbits of Theorem 5.2 are obtained. To show that
there are no other points one has to examine the case (f). In this case all the obtained
triangles are equivalent to the following:

p1 2—pites| 2-p1—ws]) (o1 11—
27 4 b) 4 9 2’27 . 2 bl
(gl_ 4 — 1 — @3 lsol—sogl)

(5.17)

2’ 4 ’ 4

Applying the transformation (5.8) to the above triangles, one finds that it is necessary to
solve for o1, @3 and for the new ¢ obtained from the (5.9), the following three equations
respectively: ‘

2 — 3]

cosT——— + cosmpy +cos2mp+1 =0,
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1 — 1— 1 —
COSWL——F—W—;—E + cos7r}~———t'9%—~—(p—31 + cos2mp = 0,
3o —
2COSTF£L;££§+COS7T|—E}~ZI——@+COSQ7T¢:O.

One can use Lemma 5.3 to prove that there is not any new point. I show this for the first
triangle

e1 12— 1+ es| 2 @1 — o3 .
Ly , . 1
( 2 4 4 (5-18)
One has to solve the equation
2 — ¢s] _“ _
cosw-——{)————l—cosmpl + cos2mp + 1 =0. (5.19)
Using Lemma 5.3, the possible values for (B—%‘es—',gpl,np) are the (e.l), (e,2) and (e.3).

Consider the case (e.1), then the possible solutions for the pair (¢1,¢3), are

) , 1 2 2 2 2
(‘3017993) - (57 §)7 (gv 1)7 (§7 §)

Substitute these solutions in (5.18); the following triangles are obtained

113 5 1
(Zia 517 ﬁ)a (§7
which are all flat, and thus forbidden. Consider the case (e.2). In this case, there are
two possibilities: either w3 = 0 and ¢; is a free parameter, or ¢; = 1 and ¢y is a free
parameter. In both the cases the triangle (5.18) is flat, and thus forbidden. Consider the

last case (e.3). The possible solutions for the pair (¢1,93), are

2 2 26 2 2 4 6 4 2 2 2
(991v‘r'93) - (gv §)9 (57 '5)7 (57 g)? (57 5)’ (59 §)7 (§> 5)

Substituting these values in (5.18), the resulting angles are all flat. The same proof can
be repeated for the other two triangles in (5.17). In this way, the proof of the theorem is

concluded. QED
5.3. Monodromy data and reflection groups.

We reformulate here the above parameterization of the monodromy data by classes of
equivalence of triples (z1,22,23) in a geometric way, in the case of 1 not half-integer. The
case of half-integer u is postponed to Section 10.2. Let us consider a three-dimensional
space V with a basis (e1,e2,€e3) and with a symmetric bilinear form (-,-) given, in this
basis, by the matrix

2 T T3
g = T 2 Lo (520)
X3 £ 2




namely
(ei,e¢i) =2, for ¢=1,2,3, and (e1,e3) =1, (e2,e3) =12, (e1,63)=x3.
Observe that for p not half integer the bilinear form (5.20) does not degenerate. Indeed,
det g =8 — 2(2] + 23 + 23 — x12923) = Scos® T # 0.

So, for p not half integer, and for any admissible triple (a1, x2,x3), the three planes
P1, P2, p3 orthogonal to the basic vectors (ey, ez, e3) possess the following properties:

1) The normal vectors to these planes are non-isotropic (i.e. (e;,e;) # 0).

2) Nomne of the planes is orthogonal to the other two.

Conversely, a three-dimensional space V with a non-degenerate symmetric bilinear
form (-,-) and with an ordered triple of planes satisfying the above conditions, uniquely
determines the matrix ¢ of the form (5.20), and then the monodromy data of a solution of
PVIp for i not half integer.

We define three reflections Ry, Ry, R3 with respect to the three planes (py, p2, p3):

V-V

7 .

i=1,2,3.
z—x— (e, x)e

These reflection have the following matrix representation in the basis (ey, e, €3):

-1 —T1 —I3 1 0 0 1 0 0
Rl = 0 1 0 5 R2 - —T —1 —&I2 , R3 - 0 1 0
0 0 1 0 0 1 —T3 —I7 —1

(5.21)

Let us consider the group G C O(V,(+,)) of the linear transformations of V', generated
by the three reflections Ry, Rz, R3. The matrix g will be called the Gram matriz of the
reflection group G. For non half-integer p, it determines the subgroup G C O(V, (-, "))
uniquely. We observe that, for an admissible triple with non half-integer 1, the group G is
irreducible, namely there are no non-trivial subspaces of V which are invariant with respect
to all the transformations of G. For the triple (0,0,0) correspondent to the one parameter
family of rational solutions (4.11) to PVI, =1, the group G is trivial, i.e. it contains only
the i1dentity operator.

We conclude that the branches of the solutions to PVIu with non half-integer 1, not
belonging to the one parameter family of rational solutions (4.11), can be parameterized by
groups G C O(3) with a marked ordered system of generating reflections R, Ry, R3. Let
us describe what happens with the triples of generators under the analytic continuation of
the solution.

We define an action of the braid group Bz on the systems of generators Ry, Ry, R3 of
the reflection group G:

B1: (Ry, Ra, R3) = (Ry, R, R3)"* :=(Ry, RyR1 Ry, Rs),
B2 : (Ri, Ry, R3) = (Ry, Ry, R3)?? :=(Ry, Rs, RsRyRs),

where /31 5 are the standard generators of the braid group. Observe that the groups generat-
ed by the reflections (Ry, Ry, R3) and (R, Ra, R3)? coincide for any § € Bs. In particular
the following lemma holds true:

(5.22)



Lemma 5.5. For any braid 8 € Bs, the transformations B(Ri,Ra,R3) are reflections
with respect to some planes orthogonal to some new basic vectors (ef, eg, eg). The Gram
matrix with respect to the basis (ef, eg, egﬂ) has the form:

(eg eﬁ)=2, i=1,2,3, (ef,eg)sz, (eg,efj):mg, (ef,e@)zwf,

where (:Ef,:vg,:vg) = B(z1,z2,23).

Proof. It is sufficient to check the statement for the generators 1 2. For 8 = f:

B _ B1 __ B _
61 = €9, 62 = €1 — T1€3, 63‘ = €3,
for 0 = fa:
efQ = eq, 652:63, 652 = g9 — To€3.
Computing the Gram matrix one proves the lemma. QED

In the following sections 5.3.1 and 5.3.2 the non-resonant case is treated. As already
stressed, in the resonant case of . € Z the only regular solutions are the ones given by
Lemma 4.6, for which G is trivial. The resonant case p + % € Z will be studied in the
third chapter, Section 10.2.

5.3.1. Reflection groups and algebraic solutions in the non-resonant case. Let
me figure out what are the reflection groups corresponding to the finite orbits classified in

Theorem 5.2.

Theorem 5.3. The orbit (5.3) corresponds to the group W(As) of symmetries of regular
tetrahedron, the orbit (5.4) corresponds to the group W(Bj3) of symmetries of the regular
octahedron, the orbits (5.5), (5.6), (5.7) correspond to different choices of a system of
generating reflections in the group W(H3) of symmetries of icosahedron.

Proof. It is sufficient to find one point in each of the orbits (5.3), (5.4), (5.5), (5.6), (5.7)
that corresponds to a triple of symmetry planes of a regular polyhedron. To this end, one
associates to a regular polyhedron a standard triple of symmetry planes using the following
construction. Let 0 be the center of the polyhedron. Take a face of the polyhedron and
denote H the center of this face, P a vertex and @ the center of an edge of the face passing
through the vertex P. The standard triple consists of the symmetry planes trough the
points OPQ, OQH, OHP respectively. Compute the angles between the planes of each
regular polyhedron. It is convenient to use the Schlafli symbol {p, g} for regular polyhedra
(see [Cox]). In these notations, the face of the regular polyhedron {p, ¢} is a regular p-gon,
the vertex figure is a regular g-gon. It evident that the angles between the planes of the
standard triple are

between OPQ@ and OQH

-

between OQH and OHP

.

SERTERSIE

between OHP and OPQ
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~ So, for the tetrahedron {3,3} one obtains the angles (I, T, Z), for the octahedron {3,4}

the angles (Z,Z,%), for the icosahedron {3,5} the angles (Z£,2,Z). In this way, one
obtains the triples (5.3), (5.4), (5.5). The reciprocal polyhedra (i.e. cube {4,3} and
dodecahedron {5,3}) give the same angles up to permutations. As we already know, the
permuted triples of (5.4) or (5.5) belong to the same orbit. So, the standard triples of cube
and dodecahedron are Bjz-equivalent to those of octahedron and icosahedron respectively.

To obtain the last two orbits (5.6) and (5.7), I apply the above construction of the
standard triple to great icosahedron and dodecahedron respectively. These non convex
regular polyhedra both have icosahedral symmetry (see [Cox]). Their Schlafli symbols are
{3, % and {5, g—} respectively. This means that the faces of these polyhedra are regular
triangles or pentagons, but the vertex figures are pentagrams. The above computation
gives the triples (5.6) and (5.7). Again I need not consider the reciprocal starred polyhedra.
Theorem 5.3 is proved. QED

5.3.2. Classification of the monodromy data, second proof. Ipresent here another
proof of Theorem 5.2, based on the idea suggested by E. B. Vinberg. I start with the
following:

Algebraic Lemma. Let (z,y,z) be an admissible triple of real numbers, satisfying the
inequalities:
2?2 +y? + 22— zyz > 4, (5.23)

and
2], lyl, [=] < 2. (5.24)

Then there exists a braid 3 € B3 such that the absolute value of some of the coordinates
of B(z,y,2) is strictly greater than 2. '

Before proving the lemma, observe that one can assume, without loss of generality,
that all the coordinates of (z,y, z) are non-zero; in fact, for any admissible triple, there
exists a braid § € Bs such that all the coordinates of 8(z,y,2) are non-zero. Denote b,
b, and b, the following braids:

bJJ = ﬂ27 bx(x7y72) = (Zz —I,T — yZ),
by = /8;1611827 by($ay,z) - (_y + :CZ,-—-.Z‘,——Z),
b, := B, b:(z,y,2) = (—z,2z — zy,y).

Lemma 5.6. Let (z,y,z) be a triple of non-zero real numbers, satisfying
0 <zl ], ly] <2 (5.25)

and
et 4yt 2t —zyz =44 >0 (5.26)
Denote (¢',y',2") := B(z,y, z), where
by if [z] <yl |2,
B=4 by if |yl <z, |2],
b i |z| <z, [yl
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Then:
min{|z'|, ], [2'|} = min{|z], |y], |2} (5.27)

and

lz'] + [y'| + 2] > |z]| + ly| + |#] + min{z%,2c}. (5.28)

Proof. Let me prove the lemma in the case where |z] < |z|, |y| and § = b,. The other
cases can be proved in the same way. If the signs of z and of zy are opposite then

'] = Izl + eyl 2 [+ 2%, 'l =1z, '] = 2|

and (5.27), (5.28) are proved. Suppose that the signs of z and of zy are the same. Changing
the triple (z,y, 2) to an equivalent one, one can assume that all the coordinates are positive.
If I prove now that

2z + 2¢ < zy, (5.29)

where c is given in (5.26), it turns out that |y'| = |zy — 2| > z + 2c and the lemma is
proved. To prove (5.29), observe that the constrained minimum of the function zy on the
domain D defined by the conditions (5.25) and (5.26). The Lagrange function

F(z,y,z) :=zy — A (:cz +y? 422 — myz) ,

has the local maximum at
44 c? — 22

2—z
and no minimum in the interior of D. It remains to study the values of the function zy on
the boundary of D. If, say, 2 = y then the positive root z of the equation

=y =

:c2+222—a:z2 =4+

is greater than 2. So the boundaries z = y and z = z are not reached for (z,y,2) € D,
and then |z] < |z|, ly|. It remains the last boundary to be studied. If, say, y = 2, then
T = z+c. Since z > z, then z = z + ¢ and zy = 2(z + ¢); this is the minimum of the
function zy. QED

Proof of Algebraic Lemma. As observed above one can always reduce to the case where
all the coordinates (z,y, z) are non-zero. Put:

Alz,y,z) := min{xz, y?, 2%, 20/2? +y? + 22 — zyz — 4} .
Using Lemma 5.6, one can build a braid b; such that the coordinates:
(z1,y1,21) :=b1(z,y,2)
satisfy the inequalities
min{e1, yl, |l} > min{lz], lyl, 21} lel+ysl+lz] > [zl+lyl+z+ A, b, 2). (5.30)
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Since the quantity z? + y? + 2% — zyz — 4 is preserved by the action of the braid group,
one obtains:

Az1,y1,21) = Az,y,2).

If the absolute value of some of the coordinates (z1,y1, 21) is greater than 2, the lemma in
proved. Otherwise I apply again the construction of Lemma 5.6 to the triple (z1,¥1,21). In
this way one obtains a sequence of braids b1, bg, b3 - - - such that the corresponding triples

(Th+1, Yrt1, 2h+1) = brgr(Tk, Yk, 2)
satisfy
A(Zkt1, Yrt15 2k41) = A(Th, Yk, 28)-
Iterating the inequality (5.27), one obtains that
26| + lys] + 2kl 2 2] + ly] + [z + kA(z, 5, 2).

Hence, in a finite number of steps one builds a triple such that the absolute value of at least
one of the coordinates in greater than 2. This concludes the proof of Algebraic Lemma.

QED

Corollary 5.2. For an algebraic solution to PVIu with p not half-integer, specified by an
admissible triple z; = —2 cos 2rr;, the value of u must be real, the strict inequalities

lzi| <2, 1=1,2,3, (5.31)
hold true and the matrix g defined in (5.20) is positive definite.

Proof. I prove that, for an algebraic solution to PVIy with p not half-integer, the triple
(z1,22,z3) must satisfy the inequality:

22 422 + 22 — 12073 < 4. (5.32)

Indeed, if 22 + 22 + 22 — 212225 > 4, then, according to the Algebraic Lemma the triple
is not a good one. This contradicts the assumption that the solution is algebraic. If
2 + 22 4+ 22 — 212923 = 4, then p = %— + k with £ € Z. This contradicts the basic
assumption 7 + p € Z. Then (5.32) is satisfied and u is a real number. Now, I prove
(5.31). If one of the coordinates, say z1, is such that z; = £2, then

2 2 2 2
]+ 25 + 23 — 212223 =4+ (22 Fz3)7,

and, being =, z3 real numbers, (5.32) is violated. Seo, z; # £2 for every ¢. Finally, applying
the Sylvester criterion to the matrix g, I prove that g is positive definite. In fact

det G =8 — 2(z? + 23 + 22 — zy7923) > 0,

and for any principal minor

2 ;
det< $>:4—$?>0.
z; 2

QED
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Lemma 5.7. For an algebraic solution of PVIy with p not half-integer the reflection group
G acts in the Euclidean space. '

The proof immediately follows from the fact that the correspondent Gram matrix is positive
definite.

Corollary 5.3. For a good triple (z1,z2,23) and for any braid § € B3, there exists three
integer positive numbers an, nf3 and n§3 such that:

nf.
(RfRf) Y21, for i#j, i,j=1,23 (5.33)

Proof. If (e1,e2) = 21 = —2coswr with r = 2, m,n € Z, then R, R, is a rotation by the
angle 2 7. Hence:

(RiRo)" =1.

This holds true for any pair R; and R;j. Moreover, for any braid § € Bj, the triple
B(z1,z2,23) is again good, then (5.33) is proved. QED

Corollary 5.4. The set of the solutions of the PVIy equation with a real non resonant
value of pu and real parameters (z1, 2, z3) satisfying

z;] <2, i=1,2,3,

is invariant with respect to the analytic continuation.

Proof. Applying the Sylvester criterion to the matrix g defined in (5.20), it turns out
that ¢ is positive definite. So the reflections Ry, Ry, R3 can be realized in the Euclidean
space. After a transformation (z1, 22, 23) — (wf, mg, xg) = B(z1,z2,23), the new numbers
(331'6, zof, CL‘3’B) are the entries of the Gram matrix:

2 x’f sz
gﬁ = :cf 2 :vg )
:cg :Itg 2
of the basis (ef , eg , eg ), in the same Euclidean space. Then this matrix must be positive
definite, namely z? < 4 as I wanted to prove. QED

In the second chapter of this thesis, the set described in Corollary 5.4 will be identified
with the class of solutions of PVIu having asymptotic behaviour of algebraic type. This
identification will be crucial in the computation of the five algebraic solutions of PVIu I
have classified.

As it was just shown, a good triple

m1 mo . ms3
(z1,z3,23) = | —2cosm—, —2cosm—,—2cosT— |,
ny T2 n3
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corresponds to a representation of the Coxeter group generated by three reflections R,
Ry, Rj satisfying

RE=R:=R:=1, (RiR:)™ =(RyR3)™ = (RyRs)™ =1, (5.34)

in the three-dimensional Euclidean space. I denoted by G the image of this representation.
Moreover, for any braid § € Bs, the matrices

(R?,RY,RY) := B(Ry, Ry, Ry),
n- ;
satisfy the same identities (5.34), with some new integers nf ,ng ,ng . The reflections
Rf , Ré’ , R§ generate the same group G.

Theorem 5.4. It follows from the above property that G is an irreducible finite Coxeter
group.

Let n be the least common multiple of ny, ny and n3. Put:
¢ = 2cos T
n
Lemma 5.8. The numbers

my .
z; = —2cosm—, ¢ =1,2,3,
L)

belong to the ring Ko of integers of the field K := Q[(].

Recall (see [Wey]) that K is the normal extension of Q generated by ( and Kg is the
ring of all the algebraic integer numbers of K, namely it consists of all the elements z € K
satisfying an algebraic equation of the form

2F +azF 1+ 4 ap =0, with aiEZ.

Proof of Lemma 5.8. Let n = n;m}, then

; 1
cos Wi = Tmim! (COS E) = Tmim! (~C> '

g n 2
where
k-1
Ti(z) = cos(k arccosz) = 2F712F + Z 2° lagsz®, (5.35)
5=0
are the Tchebyscheff polynomials of the first kind (see [Bat]). Recall that all the coefficients
ars are integers, so z; = —2cos ﬂ% is a polynomial of ¢ with integer coefficients. Moreover

¢ is a root of the monic algebraic equation with integer coefficients

n—1
2Tn (g) +2:Cn+zans§8+2zo-

8=0
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Hence ( € Ko and z; = ~2T (%) € Ko, as I wanted to prove. QED

Proof of Theorem 5.4. From the formulae (5.21) it follows that the matrices Ry, Ry and
Rs are all defined over the same ring Ko of integers of K: '

R; € Mat(Ko, 3).
Moreover, these matrices are orthogonal with respect to g:
RlgR; =g, (5.36)

where g is defined in (5.20). Let
I''= Gal(K,Q)

the Galois group of K over Q, namely the group of all automorphisms
o: K=K,

identical on Q.
For any ¢ € T', denote ¢(R;) and ¢(g) the matrices obtained from R; and ¢ by the

action

(z1, 2, 23) = (d(z1), d(z2), d(23)). (5.37)

Lemma 5.9. For any ¢ € T the following statements hold true:
i) det ¢(g) # 0,
ii) The matrices ¢(R;) are orthogonal with respect to ¢(g).
iii) For any (3 € B; the matrices ¢(R;)P satisfy the Coxeter relation (5.33).

The proof is obvious, due to the fact that any automorphism preserves all the algebraic
relations.

From the above lemma, and from Algebraic Lemma, it follows that for any ¢ € I, the
real symmetric matrix ¢(g) must be positive definite. I show that this implies that the
group G is finite. Let N be the order of the Galois group I'. Construct the block-diagonal
matrices

Ri € Mat(Ko,3N), i=1,23,

as the matrices formed by 3 x 3 blocks on the diagonal, such that the j-th block is ¢;(R;),
for ¢; €T, 7 =1,2,---,N. The matrices R; are orthogonal with respect to G, that is the
block-diagonal matrix having ¢;(G), for ¢; € I', j = 1,2,---, N, on the diagonal blocks.
One can apply Lemma 5.9 to the matrices R; to show that they satisfy the Coxeter relation
(5.33). As a consequence, one obtains a representation of the reflection group G into the
orthogonal group

G — O (K%, 0)

(5.38)

By construction the matrices R; preserve the sublattice
K3 c k3
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of the vectors the components of which are algebraic integers of the field K. Recall (see
[Wey]) that the ring Ko of the algebraic integers of the field £, is a finite-dimensional
lattice. As a consequence, the image of the representation (5.38) is a discrete subgroup of
the orthogonal group. Since G is positive definite, the orthogonal group is compact and,
hence, G must be finite. The theorem is proved. QED

To complete the classification of the monodromy data related to the algebraic solutions
to PVIu with p not half-integer it remains to classify the objects

(G77RlaR2aR3)7

where G is one of the Coxeter groups A;, By and Hs and (Ry, Ry, R3) is a triple of
generating reflections considered modulo the action (5.22) of the braid group. This can
be done by a straightforward computation of all the orbits of the triples of generating
reflections. All of them were described and classified by Schwartz (see the introduction).
One arrives again at the list of Theorem 5.2, where, as we already know, the triples (5.3)
generate the group W(43) of the symmetries of the tetrahedron, (5.4) generate the group
W (Bs) of the symmetries of the cube, while (5.5), (5.6) and (5.7) correspond to three
inequivalent triples of the generating reflections of the group W(Hs).
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CHAPTER 2.
GLOBAL STRUCTURE OF THE SOLUTIONS OF PVIu HAVING
CRITICAL BEHAVIOUR OF ALGEBRAIC TYPE.

In this second chapter, we deal with the particular case PVIu. We stress that Theorem
6.4 was originally proved for the general PVI equation (see [Jim]) and we had to modify it
in order to apply it to the strongly resonant case of PVIu. Theorem 6.1 is proved here only
for the particular case PVIy, but I think that it could be easily extended to the general
PVI equation, without modifying the strategy of the proves.

The resonant case y + %— € Z will be studied in the third chapter. In the case of
integer u, the only algebraic solutions are the ones belonging to the one-parameter family
of rational solutions (4.11) of Lemma 4.6. So, in this Chapter we deal with non resonant
values of pu. '

6. SOLUTIONS TO PVIy HAVING ASYMPTOTIC BEHAVIOUR OF AL-
GEBRAIC TYPE IN THE NON RESONANT CASE.

In the first chapter, we found a class of solutions to PVIy invariant with respect to the
analytic continuation. For them, the reflection group G acts in the three-dimensional Eu-
clidean space. Recall that the parameter y must be real, the coordinates of the admissible
triples (z1,z2,23) must be real and satisfy the inequality

2<z; <2, i=1,23.

In this second chapter, we prove that this class of solutions coincides with the class of the
solutions of PVIy having critical behaviour of the algebraic type

az” (1+0(z%)), as z—0,
y(z) = 1—a (1 —2)" (1+0((1 —2)%)), as = — 1, (6.1)

Goox! Tl (1+0(z79)), as T — 00,
where ¢ > 0 is small enough, the indices lg, l1, [ are real and the coefficients ag, a1, deo
are some complex numbers. We compute the behaviour of any branch of these solutions
near the critical points. These results will be used to compute explicitly all the algebraic

solutions classified in the first part.
First of all, we fix the notations. Let us choose:

u1=0, Uy = 2, ”U,3-':1.
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Then the Fuchsian system (2.1) reads

; )
Ay As n As >Y,
dz

—Y = A(z,2)Y = (7 +

z—x z-—1

and, putting
Al = Ao, ./42 = AQ;, ./43 = Al, AOOZAOO,

A . |
iyz(%&r 1, A )Y. (6.2)

dz z—1 z-—=z

we obtain

The branch cuts in € are the same as in Section 2.1. We call now the basic loops Yo, ¥z, ¥1-
They are fixed as before, namely 7o,vz,71 play the role of the preceding 71,%2,7vs (see
figure 1). The Schlesinger equations read: '

d Ao, Al

E:;Ao(x) T

d [A17A.‘c]

el _ 6.3
d Ag, Ag Ay, Ay

*—-—-Az(iﬂ) — [ 0, ] + [ 1 ]

dz T z—1

The correspondent monodromy matrices are -
Mo, Mg, M,
which play the role of the preceding Mi, M, My respectively. We recall that they satisfy
MOOM;MxMO =1, det(M;) =1, Tr(M;)=2, for :=0,1,z, (6.4)
with

[ exp(2imp) 0
MOO*( 0 exp(—2imp) )

With the above choice of Ay, A1, Ay and Ag, satisfying
det A; =0, Tr(Air) =0, 1=0,1,00, (6.5)

the non-singular solution A(z,z) of the Schlesinger equations turns out to be related to
the solution of PVIyu in the following way (see [JMU]):

[A(y,2z)]12 =0, iff y(z) solves PVIy, (6.6)

where y is not identically equal to 0,1, z.
We now state the first main theorem of this second part:
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Theorem 6.1. For any admissible triple (z0,21,%), z; € R, |z:] < 2 for i = 0,1, o0,
there exists a unique branch y(z;zo, 21, %) of a solution of PVIu, with the parameter u
satisfying the equation:

4sin’mp =28 + 22 + 22 — 2001200, - (6.7)
with the asymptotic behaviour (6.1) near the critical points 0,1, c0. The indices are given
by

2r; if O0<r; < -i—
l; = —arccos(cos 27r;) = « 1 “ 1=0,1,00, (6.8)
T 2-2r; if Z<ri<l
with
T; = —2Cos T3, 1=0,1, 00,

and the leading coefficients ag, a1, 0, are single-valued functions of the equivalence class
of zg,21,%e and of u. Namely, the coeflicient ag, for zo # 0 , is given by:

cxp(irg) T2(1~ LI()(54 4 (24 —

PTG - P PRI + I (R - ) (9-9)
where
expling) = 2222 — 222 — 22071700 + 232, + 12718090 (20) /4 — 23(2200 — T0T1) (6.10)
2(z? — 2021%To0 + T2)
and for g = 0 ;
ap = ——————-x%iwmgo. (6.11)

The coefficient ay is given by the same formula with the substitution zq ¢ z1,lo + [1; ao IS
given by the same formula too, after the substitution (g, %1, %) — (Too, —%1, %0 — T1Too)
and lg — loo. Conversely any solution of the PVIu equation, with a real value of i, having
critical behaviour of algebraic type, can be obtained by the above construction.

Remark 6.1. The relation (6.7) determines y up to the transformations
pur—tpu+n, nel.

According to the results of Section 3.1, such an ambiguity can be absorbed by the action
of a symmetry on PVIu. Recall that these symmetries preserve the class of the algebraic
solutions.

Theorem 6.1 will be proved in Section 6.3.

6.1. Local theory of the solutions to PVIy having critical behaviour of algebraic
type.

6.1.1. Local asymptotic behaviour around 0. In this section we characterize the
local asymptotic behaviour of the solutions of PVIu near the singular point ¢ = 0. First of

all let us characterize the type of asymptotic behaviour that can be related to the algebraic
solutions.
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Lemma 6.1. Let y(z) be an algebraic solution of PVIy. Then the first term of its Puiseux
series is
y(z) ~ agz'™7° as = — 0. (6.12)

for some constant ag # 0 and the rational number oo must satisfy 0 < oo < 1, with ag # 1
if gg = 0.
Proof. If y(z) is an algebraic function, then it admits an expansion in Puiseux series

around 0
[oe]

y(a) = > wz®, ko €Z,  ay, #0,
k=ko

where n is some natural number. As a consequence, for ko # 0, we have the following
relation between the orders of the first and second derivative of y:

ko

O(=*") = O(ay') = O(y) = O (). (6.13)

We now reduce to the common denominator the PVIy equation and collect together all
the terms of the same order in the numerator A, using the rule (6.13). The numerator is
N-__9124 123 125 12 2. o 1.3 o 123 ", 3 14 o 12 4
=2y z* —y" 2 — ¢y e® + 2y 2ty — 2y'2%y — 2y Ty + 2y ey + 2y Ty — 2y 2y

_ 4y"$4y+ 2y’2w5y + 2y":csy + myZ _ 2y':0y2 _ 2:1:23/2 + 4#$2y2 _ 4M2$292+

+ 6y':1:2y2 _ 3y'2$2y2 _ 2y"z2y2 _ 2y/$3y2 + 6y’2:c3y2 + 2y":c3y2 _ 2y'$4y2—

_ 3y'2z4y2 + 2y”x4y2 _ 2y":v5y2 _ 8pzcy3 + 8u2:cy3 + 2y’$y3 + 4$2y3—

_ 8u:c2y3 + 8u2$2y3 _ 6y'562y3 + 2y":c2y3 + 4y’x3y3 _ 4y//$3y3 + 2y”:£4y3~

— oyt duy?t — 4Pyt — 3zy? + 16pzy® — 16pzyt — 202" + dpziyt—

— 42yt 4 2% — 8uy® + 8p2y® + 221 — Bpay® + 8wy’ — o +4uy® — 4y’
The first term of the Puiseux series must be chosen in order to kill the lowest term in the
numerator of the PVIu equation. If kg < 0, the lowest term is

__y6 + 4/J’y6 _ 4#23/6

which, for 2 ¢ Z cannot be zero for any choice of ag # 0. Then ko cannot be negative. If

n > ko > 0, the lowest order term is
2w2y/2y _ 2$y1y2 _ 22:,2y”y27
k
which is zero for any y = akocc_v?'. For kg > n, the lowest order term is

—:c?’y'2+2:c3y”y+xy2,

which cannot be zero. Furthermore, for kg = 0, the lowest order term in the numerator N
is

—ag(ao —1)*(2u — 1)°
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and, due to the assumptions 2u € Z and ap # 0, the only possible value of ag is 1.
k
Substituting y = 14 ayz ™, we obtain that the lowest order term in the numerator A is

x%a%(kl/n +1—=2p)(ki/n— 14 2u)

that is zero, for generic values of y, only if a3 is 0. If p = F & 5’%, we can again repeat the
procedure. The numerator will be

N = —4p25% — 16025 — 24p20* — 1642 — 47%° + 9%z + 8020%z + 20%z + 2402 0% =+
+ gtz +24/22 . +8ﬂ2§15x T+ oy L4y 4 203y e — §2a? — 4;123?2562 — 24322
—8/&2 32 _ 4”2 4.2 6yy:c —12y2 1.2 6y3 ' 2——y'2:1:2—43}y'2332-

_3y y a:2+2yy":c2+4y2 "372 +2y3 "2 +63}y'$3+log2y'$3 +4Q3y’:i3+

+ 3y + 109y"* 2% + 692y % 2% — 69y" 2> — 109%y"z - 24y z* —

_ 2§2y/$4 _ 3y'2x4 _ 3§2y/2$ + 6yy":1:4 + 8y2 "yt 4 2y3y11$ + y/~$5+

/l3 43//3
Yy

+ 2@yl2$5 _ ng/ . 2y2 " 5

where [ = :i:% and § = y — 1. Substituting g = alw%‘, the lowest order term in the

numerator A is automatically zero. Now, we want to eliminate the next lowest order
term. Observe that, now

O(z%y") = Ofay’) = 0(g) = 0 (= 7).

For the sake of definitess, suppose % <p <1 e g= é% < % (the case g = —-%“—17; is
analogous). The next lowest order terms in the numerator A/ are
—16029% + 4292y’ — 4220y’% + 42292y + 292 + 824292 — 6224y’ + 3z3y"* — 623Gy

ko
n

To eliminate them, we substitute y = 1+ ala: -+ a1y = , for some ko > ki. The above

terms give

—4a1<—>2 4o

that is zero if and only of a; = 0. So we obtain the forbidden solution y(z) = 1. So, ko
can not be zero, and y(z) satisfies (6.12) with 0 < [ = Eng_ <1, namely 0 < oo <1l. QED

In the above lemma we have seen the expected asymptotic behaviour of the algebraic
solutions. We now state the main result of this section, which is more general, namely it
holds also for non algebraic solutions.

Theorem 6.2. For any pair of values (ag,00), 0 < 0¢ < 1, there exists a unique branch
of the solution of PVIu, for a fixed p, with the asymptotic behaviour

y(z) = apz’ "°(l + 2°f(z)) as z — 0,. (6.14)
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for some € > 0 and f(z) smooth function such that lim;_.o f(z) = const.

In order that z!799 is well defined, we have to make some cut in the complex plane.
From now on, we cut along the line argz = ¢ for some ¢.

Remark 6.2. Theorem 6.2 can be proved also for complex values of the index g, pro-
vided that 0 < Recop < 1. For algebraic solutions the index o¢ must be a rational number.
Because of this, we consider only real indices.

6.1.2. Proof of the existence. First of all we state the existence of solutions of the
Schlesinger equations with a particular asymptotic behaviour. The following result will
play an important role also in Section 6.2.

Lemma 6.2 (Sato-Miwa-Jimbo). Given three constant matrices A}, ¢ = 0,1,z with
zero eigenvalues such that A = A8+A2 has eigenvalues :{:%, 0<o<1,and Acl) =-A-A,,
in any sector of € containing none of the branch cuts, and sufficiently close to 0, there
exists a solution of the Schlesinger equations that satisfy

Ay (z) — A% < Ko™ |2 2 (Ai(z) — ADa?| < Ka|' ™7 (6.15)

|m”AAo(:z:)$A — Aj| < K|33|1"‘7/ ]:E_AAm(m):cA — A} < Kl|z|'~7, (6.16)
where K is some positive constant and 1 > o' > o.

We want to show that it is possible to choose Ag 1 ; and A such that the corresponding
solution y(z) of the Painlevé VI equation obtained via (6.6) has the asymptotic behaviour
(6.14). Let us consider an arbitrary constant matrix A with eigenvalues +5; let T be the
diagonalizing matrix of A, namely

z 0
A_T(O z)T .

2

Now, we choose A = —A — A and Af , such that AS + A% = A, namely

1 o 1
A8=-2—A+F,‘ A°=§A—F

T

for some constant matrix F. Then:

—1 40 0 —1 40 £ 0
T AT =1 & s | +E, TTAT=| ¢ s | —E,
g0 b
where we can choose E = ( — 6 ), for some non-zero constant b. With this choice of
b

E, Ag and A; have zero eigenvalues. Using Lemma 6.2, we obtain that, as z — O:

25 0 2 0 0 2N /2F 0\
meer (W) [(F %)= (L (T L)
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and

Substituting such asymptotic behaviors in the relation (6.6), taking T12, T11 # 0 we obtain:

Tpxl“”
~ 6.17
o)~ — T (6.17)
we are now free to choose the arbitrary constants b, Ty, T2, o in such a way that — 4;{,}?1 =

ag, 0 = 0g, for any fixed ag and op.

Remark 6.3. Other existence results for o € C\{] — 00,0] U [1, +00o[} can be found in
[IKSY] and [S1], [S2], [S3]. For indices with Reo ¢ [0, 1], the asymptotics obtained in

these papers are valid in more complicated domains near 0.

6.1.3. Proof of the uniqueness. Now we prove that the solution y(z), z € B(0,r), of
Painlevé VI equation such that it satisfies (6.14) for some given constants ag and g € [0, 1),
is uniquely determined by ag and cg. Here B(0,r) = {xtl:c[ <r, argz # ¢, z # 0}.

The proof is based on the fact that Painlevé VI is equivalent to the following reduced
Schlesinger equations (2.19):

(¢~ 1)g+2p(qg—1)q(q ~ z)
(z—1)z ’

—p*(z — 29 — 2zq + 3¢%) — p(2q — 1) — (1 — p)
(z — 1z ’

p=

where: ( i ( 0
I\ — L)y —Y\y —
a=Y, pP= ) 6.18
20y~ o)y — ) (6:19)
and the dot means the derivative 3‘15 We shall prove the local uniqueness of the solutions
of the Hamiltonian system with the following asymptotic behaviour

=11  2%g(z)
2a z! z!

q(z) ~ az' + &' f(z) p(z) ~ (6.19)
where [ =1 — g9, a = ag, € > 0 and f(z) and g(z) are some smooth functions in B(0,7)
which tend to zero as z — 0.

This is equivalent to show the theorem. In fact, from the uniqueness of ¢ it follows
trivially the uniqueness of y. The following lemma holds true:

Lemma 6.3. The estimates (6.19) on the asymptotic behaviour of (¢(z),p(z)) are a con-
sequence of (6.14).

Proof. Since g = y, the assertion on y is obvious due to the hypothesis (6.14). Concerning
p, we use its definition ,
z(z -1y —yly—1)

2(y —z)yly — 1)
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and by a straightforward computation we show (6.19) for p. QED

We now distinguish two cases: 0 <[ < 1, and [ = 1. Let us consider the former case;
it is convenient to introduce the new variables (¢, p)

i=_; P=2'p
z!
which have a similar asymptotic behaviour
. R . [—1 .
d(z) = a +z°f(z) pz) = N + z%¢(z), (6.20)

and the equations of the motion become

q ”7 7:C z
: fq(zi ! ) (6.21)
p= fo(B,qz,2°),
with
_—q(l—=1-2p3) §g(1+2pg7) | §(1+4pg) — 2¢7'p4 — = (1 + 2pq)
fo= T o gl i 11—z ’
and

2 ~f) A
ﬁ(l~1—2ﬁ§)+u " +2pq+3~2”"+ — B(1 + 4p4) + «'(p — p® + 2p§ + 3p° )

x zl=l 1—2z

fp:

We want to prove the uniqueness of the solution (g,p) of (6.21), satisfying (6.20) for
z € B(0,r), in the ball ||p— 22|, ||g—al| < C, for a constant C'; vanishing when the radius
r — 0. Here ||f|| = supgo ) |f(z)]. Let us suppose that there are two solutions (G1,P1)

and (o, 2) of the system (6.21), satisfying (6.20). Then, if we define X = (p Zz ) we
1—D2 /)"
obtain, as a consequence of (6.20), that the following limits exist

X ()

lim
|z]—0, arg(z)=17 ‘:L‘Ie

=0, i=1,2, (6.22)

for some 0 < &, X(¥ being the i-th component of X. Moreover, X satisfies the following

< — [1- l+°P1(lI1+f12)](41 G2)+233(p1—F2) + §1Q% +AQ-> L AQ;
[I—1— 2QQ(P1+P2)](P1—P2) 253 (41— d2) + AP, + APg + AP,

T ri—t

where

AQ'L = Qi(qlvﬁlaw) - Qi(q27f527$)7 and API = Pi(dhﬁl)m) - Pi(éz,ﬁz,f),
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i pq Da q 57)—22 1= 55—zl 52 . - N
Q1 = 3(14+25G), Q2 = —2pg, Qs = G(1+453)—2z 1_pxq Ry (1+2pq)’ P pm 4 254 S,
P, = %, Py = P2 mpU D)o (w4250 38°0).

We want to prove that, under the hypothesm (6.22),X=0 (thls is equivalent to prove
our theorem). Performing the constant linear transformation X = T Z, where

1 0
TZ(l—l __1__>>
2a2 2a2

we obtain
, [1— l+"P1(<11+¢12)](¢11—Q2)+242(P1—Pz) + illQ% + AQE + AQs
- 2 ~ ~ 2 2
20°G(f1 Faunads) | 20°APat(- “Haa 4 207APpH (=180, | 2a2AP3 + (1 -1)AQs
(6.23)
where
G(P1, P2, 1, d2) =[l — 1 = 2G2(p1 + p2)](B1 — P2) — 265 (&1 — Go) 1+
+ (1= 1{[1 =1+ 25:1(G1 + @))(Gr — G2) + 285 (P1 — D),
“and, from (6.22):
7.()
(@) _o i=12 (6.24)

1m
lz| =0, arg(z)=19 Lﬂle

In order to prove that Z = 0, we fix any direction in the complex plaﬁe arg(z) = ¥ for
some fixed 9, and we consider the real variable ¢t = |z|. Then we define:

V(@) := 2O ().

We want to prove that the assumption V() (to) # 0 for some ¢ > 0 leads to a contradiction.
To this aim we prove a differential inequality for the right derivative D, V(® of V{)(¢).
Since DLV < |Z'|) to obtain such a differential inequality it is enough to estimate
from above the modulus of the components of the right-hand-side of (6.23). To this aim
we notice that all the polynomials @);, P; have the form:

3
~n ~k . ~k
Qi = E at . B"d", E by nB"d
k,n=0 k,n=0

with ag,n(z), bg,n(z) regular functions z € B(0,7). As a consequence, we obtain, in the
ball || — 2|, |§ — a|| < C-, the estimates:

|AQil,  |APi| < 4120 + ¢5|Z20))| (6.25)
for some positive constants ci,cb. In fact

AQil = | Y arnldf (57~ 55) +55(@ —aDl < D €O (llakall + 207 laxa )

k,n k=0,1,2

-Iﬁl—ﬁz|+{ ) cﬁ”"(llal,nn+2c£1>na2,n||+3c£1>.2ua3,nm}-lqaﬂqzl,

n=0,1,2,3
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where O\ = C, + 2|a| and c?® =c, + l . We obtain (6.25) observing that |§1 — G2/,

|p1 — Pa| are related to |Z(Y)], |Z(2)| by the constant linear transformation T'.
For the terms of order O(1) in (6.23) we have:
1 =1+ 2p1(G + @G — @) +2@(Fr —Fa)l | = (1 =D(@ — @) + 20* (1 — P2)|

S -+
|z| |z
g — &l | CPlpy - Bl
!xl——e‘ |x1-sl ’
(6.26)
and
1. P e e Nrx e o~ Y e
=26 {[1 = 1 = 26 (B1 + F2)l(B1 — o) — 251 (@ — @)} + (1 = D{[L = 1 4+ 2511 + @)}
T
(5) (6)
.. e s Cr Cr .
(ql - QZ) +2qg(p1 ~p2)}1 S le__€|‘ QZ‘ + l 1— EII P21,
(6.27)
for some positive constants 0(3) " ) Let us prove (6.26):
L= 1261 + ) — ) 2805 — )l _ | = (1= (@ = @) + 20y = o)l
|z - |z
2ag1(z) + Z2(f1(2) + f2(2)) + 2501 () (fa(2) + folz))] .
+ 2| g1 — Ga|+
212 €44 —(1=0(g1 — ¢ 2a%(p1 — P
+ ’ f2 (3}').’1) 1:*:—6 af?(w)ll'p'l —ﬁ2| S I ( )(Q1 QQ)+ a (pl pz)l‘i_
|z~ |z
Lo @

| 1 €||q1 q2!+\ 1— El[pl p2|7

for some positive constants ¢® and €. The proof of (6.27) is analogous. From the
estimates (6.25), (6.26), (6.27), we obtain:

[Z(l)/l 1 /70 1 Ay AQ Aj Iz(l)‘
(!Z@)’l) < (m (0 0) + |z1= l] |z ll + o Zi=e] +A4> (]Z(2)|> (6.28)

for some constant matrices A1, Az, As and A4 (Here we mean < component by component).
Finally, choosing [ = max{1l —¢,1 —[,[}, we obtain from (6.28):

D,V 0 1 A v
' <\ - 2
<D+,tv<2> : t(o 0>+t BACCEA (6:29)

where A = A; + A, + Ag and Dy ; is the right derivative w.r.t. t.

We perform the following change of variable #1=1 = 2. The differential inequality for
V in the new variable z is

1/0 1) 1 . A A L
D,..,V< ———-—:—i—Az)V, with A(2) = — + = zi-t
i < (0 0>1—z (=) =TT
where D . is the right derivative w.r.t. z. To show that Z = 0 we use the following:
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Comparison Theorem. Let us consider the following systems of n first order ODEs in
the real variable z € (0, a], for some a > 0:

DVO <FO V), VO(z)=vP i=1.,n (6.30)
dau® _ () O
o= F'(z,U0), UW(zo)=1Uy’, 1=1,.,n (6.31)

where F()(z,U) are continuous functions in z € (0,a], ||U — Uo|| < b, non-decreasing in
U, IfV(()Z) > U(()z), for i =1,..n, then V() > Ul (2), for every 0 < 2 < 20,1 = 1, ..

For the proof see [Lak].

We now apply Comparison Theorem to show that the assumption Z(ty) # 0 for some
to > 0 leads to a contradiction. Observe that by definition [ > 1, then V satisfies (6 30)

with V( D> 0 and F linear in V given by:

F@,V):(-zl-(g é) Ly ‘&~+ Aﬂz)v. (6.32)

1-7 1-1 1-1

By Comparison Theorem, for any solution of (6.31) with U¥(z) = Véz), and F(z,U) of
the form (6.32), we have V() (z) > U (2), for every 0 < z < 2o, 1 = 1,2. Moreover by
standard arguments it is possible to take U in such a way that U(¥)(z) > 0 and to continue
the functions U, V to z = 0 preserving the relation:

0<UD(2) < VO(2),

Thus, by (6.24) we obtain that U must satisfy

()
lim S ()

z—0 = (=0

=0, i=1,2 (6.33)

Now, we use the following lemma:

Lemma 6.4. The only solution U of (6.31) with F(z,U) given by (6.32) satisfying (6.33)
isU=0,

Proof.  Any non-zero solution of (6.31) with F(z,U) of the form (6.32) is given by

U(z) = T(z)z(g | %7> (6.34)

where T'(z) is a holomorphic matrix function, T'(z) = <(1] ?) + O(z). Now it is obvious
that (6.34) does not satisfy (6.33). Thus U = 0, as we wanted to prove. QED
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Using the above lemma, we obtain U(()i) = Véz) = 0, that contradicts the assumption
Véz) ==£ 0. This concludes the proof of the uniqueness in the case 0 <1 < 1.

Let us briefly explain how to prove the uniqueness in the case { = 1. Since the
procedure is essentially the same as before, we shall skip the details. First of all we
introduce the new variables (¢, p):

i) = T watafz)  ple) = pla) — (1 - ) ~ 2o(a)

which satisfy the equations of the motion:

Q1(4,p) +

g -Q2(d,)

., D " 1 Y
p=-L4+Pa,p)+ Py(4,D)
T z—1

where Q1(d,5) = 20 — pu? + B)(d — 1@, Qa(d,) = 4(d ~ DIL + (2u(1 - w) +29)(d - 1)
Py(§,p) = ( —1* +5)%(2 = 39)q — p(1 — ), and Py(q,5) = 5+ (p — p* + §)* (4 — 38" —
1) —2(p— p)G. Then, if we define X as before we obtain

X( - AQl -+ AQ2
- _PlzPZ +AP _}__i\f%
that gives rise to the differential inequality:

i< (5 9) pre s o)

for some constant matrices A; and A,. Obviously X satisfies (6.22) with any 0 < e < 1.
x|
e
complex plane. We take z such that arg(z) = ¢ for some fixed ¢ and define t = |z]. V

satisfies (6.30) with:
1/70 0 As
F(t’v):<_ (0 1) t—l)v

If V(z) > 0 then, thanks to Comparison Theorem, it is possible to take a solutlon U of
(6.31), with U = V{?, i = 1,2, such that |

0< U0 < VOQ),
thus U satisfies (6.33). The general solution of (6.31) is

U = Us ((é 0) +O(t2)>

that satisfies (6.33) iff Up = 0, namely U = 0 that is absurd. This concludes the proof of
the uniqueness. QED

Again we apply Comparison Theorem to V := ( ) along any fixed direction on the

6.1.4. Asymptotic behaviour to the solutions to the Schlesinger equations. An
important corollary to Theorem 6.2 is the following:
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Theorem 6.3. The solutions of the Schlesinger equations Ag 1,z(z) corresponding to the

solution of Painlevé VI equation with asymptotic behaviour (6. 14) must satisfy the relations
(6.15) and (6.16).

Proof. Let us consider the solution y(z) of Painlevé VI equation with asymptotic behaviour .
(6.14) and let us suppose that the corresponding solution of the Schlesinger equations
Aop,1.z(z) does not satisfy the relations (6.15) and (6.16). As shown in the lemma 6.2, for
any constant matrices A9, ., A such that A = Ag + A9 has eigenvalues £%, o € [0, 1],

and AY = —A — A, there exists a solution Aojlyx(:c) of the Schlesinger equations that
satisfy the relations (6.15) and (6.16). Now, as shown in Section 6.1.2, we can choose
AJ ; , in order that the corresponding solution §(z) of Painlevé VI equation has exactly
the asymptotic behaviour (6.14). Due to the uniqueness proved in Theorem 6.2, we have
that y(z) = g(z), namely Ag 1. = A:Ql,x up to conjugation by a constant diagonal matrix.
This contradiction proves the theorem. QED

6.1.5. Asymptotic behaviour of the PVIyu solution near 1 and co. We now state
the analogues of Theorem 6.2 for the local asymptotic behaviour of the solutions of (PVI)
near the singular points z = 1, co:

Theorem 6.2°. For any pair of values (a1,01), o1 € [0, 1], there exists a unique branch
of the solution of (PVI) with the asymptotic behaviour

Yz~ 1—a(l—2) " (L4 O((L—)) as o — 1, (6.35)

for some € > 0.

The proof of this theorem is analogous to the proof of theorem 1, namely one can state
the analogous of the lemma 6.2 replacing z — 1 — z, and then choose suitably A, A, ,.
The uniqueness is proved in the same way as the case z — 0.

Theorem 6.2”. For any pair of values (deo, 0co), Too € [0, 1[, there exists a unique branch
of the solution of (PVI) with the asymptotic behaviour
Y(z) ~ a0z (1+ 0 ((z7°)) as z — oo, (6.36)

for some ¢ > Q.

The proof of uniqueness is analogous to the one of Theorem 6.2. The proof of existence
follows the same strategy as the one of Theorem 6.2, but with a different formulation of
the lemma 6.2:

Lemma 6.2°. Given some constant matrices AY, 1 = 0,1,z with zero eigenvalues such
that A = A} + A} has eigenvalues £%, 0 < o < 1, in any sector of € containing none
of the branch cuts, and sufficiently close to oo, there exists a solution of the Schlesinger
equations satisfying:

|zAe Ay (2)z ™A~ — A9 < K]:v[“l"1 IxA (zf Ag(z)z™4> — A7) )z < Klz o' -1
(6.37)
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etz Ag 1 (z)a ™A=zt — AD| < Klz|” 7, (6.38)
where K is some positive constant and 1 > o' > 0.

Proof Let us consider the Schlesmger equations (6.3) and perform the change of variable
z = 3. Moreover we put:

Ai(z) = x4 A;(z)zh=;
Then we can apply Lemma 6.2 to the system:

d . [Ao, A4]
@) =
d oo [Ag Al
4@ -1
d . . [Ag, A Ay A
a‘:‘Al($>"‘[ 0 1] [A 1]’
T z z—1
and obtain the estimates (6.37) and (6.38). , QED

6.2. The local asymptotic behaviour and the monodromy data.

In this section we relate the local asymptotic behaviour of the solution y(z) of PVIu
to the monodromy data of the associated Fuchsian system (6.2). We essentially follow the
same strategy of [Jim], even if we have to introduce some more tricks due to the fact that
our matrices AJ; , have eigenvalues all equal to zero. The main result of this section is
the following:

Theorem 6.4. For the solution y(z) of PVIu, such that y(z) ~ apz'~?°(1 + O(z*)),
0 < 0o < 1, the monodromy matrices of the Fuchsian system (6.2) have the form

-1

M, =
! Sin T o
( cosmog — e e —2¢~ e gin n(ﬁ"";ao) sin = °° UO) )
2e*™Ve sin ﬂw"";’go) sin Tr(ﬁ""z_‘m) — cos ag + el
(6.39)
. imog 1 92 iwoo 2 mog
C]\/[z0~1 = 7 ! ( 2 .e_,',-m- 12 mog se S_IZI;.U. 2 ) (6 40)
' sinwag \ —3€ °©sin” = 1—e o
—1 e’ —1 —2s st 2o
MoC™' = 2 6.41
C OC SiIl?TU'() (281112 wgo 1—e —imog ) ( )
where 9o = 2y and:

s 1 2u+0o (14001 - R)T(A+p—-R)TA—p—F) (6.42)
r dag 2u — oo T2(1 —0o)T2(1+ )01 +p+ )T —p+ %) o

with an arbitrary complex number r # 0 and the matrix C is:

. (P —00) . m(Foo+00)
C= (flr.l 7\-(792 +00) T?mﬂ(g 2, ) > (6.43)

Lsin S5 sin S5
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In the case where og = 0 the monodromy matrices of the Fuchsian system (6.2) have the
form

My = — inE ~ime— (6.44)

1T cos TP %sin2 71192396“’”1’;‘3'9~ o—im i ’ ‘ )
e e N

Lssin® Toe exp(—im =) sec T 1 —istan &5
_ ‘rr19c,o '___ _ Voo Theo
M, — ( 1—{:z7r(1?1 s) tan P o (1 — s)mexp(in L= T)r;ec =
(1 — s)sin exp(—im 5> ) sec T 1—1(1— s) tan

(6.46)

where s = ag.

The main idea to prove this theorem is that, due to Theorem 6.3, the solutions of the
Schlesinger equations corresponding to the PVIu solution with the asymptotic behaviour
(6.14) must satisfy the relations (6.15) and (6.16). Using these relations, we obtain the
monodromy matrices of the Fuchsian system (6.2) via the ones of two simpler systems,
given in the following two lemmas (see [SMJ] and [Jim]):

Lemma 6.5. Under the hypotheses (6.15), (6.16), the limit of the fundamental solution of
the system (6.2), normalized at infinity, lim, o Yeo(z,2) = Y (2), exists, for z € C\{Bo U
B; U By U Be}, Bo, Bz, By and By, being balls around 0, z, 1 and oo respectively. This
limit Y satisfies the differential equation:

d -~ A9 AN -
a—z-y-<z—l+—2—>Y) ()

and it has the following behaviour near the singularities of ()

M>

V() = (1 + @(-i-)) Ao e

=(1 +(9(z))zAé'o z—0
=G1(1+0=z-1)(-1)"C  z-1

(6.47)

where Jy is the Jordan normal forms of AY, e Jié’;l =AY, As = </5 PH) Here Co,

C are the connection matrices of the system (53)

Remark 6.4. Observe that the matrix Cp is uniquely determined by the conditions
(6.47).

Lemma 6.6. Under the hypotheses (6.15), (6.16), the limit of the fundamental solution
of the system (6.2), normalized around oo, limy_.q z72Y (z2,2) = Y (2)Cy exists for z €
C\{Bo U B; U B1 U B }. It satisfies the system

d - A0 AY . .
V= (2_1+——>Y, )
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and it has the following behaviour near the singularities of (3)

Y’(z) = (1 + O(i—)) P Z — 00
= Go (14 0(2)) 27 C, z—0
=G (1+0E-1))(z-1)"C z—1

where Jo 1 are the Jordan normal forms of A8,$, Go,1 are such that Go1Jo,1 Go_i = AS,Z.

We denote C~'0,1 the connection matrices of the system (i)

As we have seen above, the matrices of the two systems have the following form:

A8:%A+F, Agz-;-A_F, A0 = — A, — A,

for some constant matrix F', and for A and T such that

A=T (g _O_q> T (6.48)
Using the relations (6.5), we have that
g b
F=T < o & ) T, (6.49)
T 0

for some parameter b. As a consequence the systems (i)) and (¥) are determined, up to
diagonal conjugation, by the four entries of the matrix T" and by b.
Now, we explain how to compute the monodromy matrices of the original system (6.2)

knowing the ones of the systems (2) and (). Later we will show how to compute the
matrices AJ ,; and the monodromy matrices of (2) and (X).

Lemma 6.7. Let My, My, Moo = Moo be the monodromy matrices of the system (%) with
respect to the fundamental matrix ¥ and the basis 49 = Y07z, 71 in m1 (C\{0, 1, oo}). Let

My, My, My = exp(—2miA) be the monodromy matrices of the system (22) with respect
to the fundamental matrix Y and the basis 49,71 = ;. Then the monodromy matrices of
the original system (6.2) are given by the formulae:

~

Mo = C Mo Co, My = Ci M Co, My = My, (6.50)

where Cy is defined by (6.47).

Proof. By the definition of ¥, the system (%) is obtained by merging of the singularities
0 and z of the system (6.2). We can choose the loop 4o to be homotopic to yovz, With Yo
not crossing a ball the By (see figure 8).
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Fig.8. The paths v, and o merge together as z — 0. The
homotopy class of vpv, remains unchanged.

As a consequence we obtain a relation between the monodromy matrices of the system
(6.2) and the ones of the system (X))

Moo = Moo,
Ml :Mly
Mo = My Mo.

Similarly, by the definition of ¥ the system (X) is obtained by the merging (see figure 9)
of the singularities z’ = 1 and 2’ = oo of the system for Y’(2'):

iy/:(ij_g_*_ Ay n A )Y’.

dz!

class of & = 71700 coincides with the one of (yo7,)™?
So, in the basis ¥, the monodromy matrices of (£) have the following form:

Moo =C5 Moo M Co
My =C5 M, Co,
Mo = C’JIMQCAY().
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The lemma is proved. | QED

Now we want to compute the monodromy matrices M, and M; and the connection
matrix Cy. To this aim we have to solve the systems (X) and (X)), namely we have to de-
termine T and b. For oo # 0, this can be done introducing a suitable gauge transformation

of ¥ and ¥ such that the systems () and () are equivalent to a Gauss equation. The
case o9 = 0 will be treated later.

6.2.1. Reduction to the Gauss equation. First of all let us notice that both the
systems (X) and (X) have similar form. We want to reduce them, via a suitable gauge
transformation and a appropriate choice of the parameters «, 3,7, to systems of the form:

d ([ Bo By
a’;Y(Z,CY,ﬁ,’)/)—— ( 2 +

z —

) ¥Geia8,0 (6.51)

where By, B; are some constant matrices with eigenvalues 1 —+,0and vy —a -8 -1,0

respectively and By + B; = — (cg g)

Lemma 6.8. For o # B, the system (6.51) is uniquely determined, up to a diagonal
conjugation

By — T—IBQT, By — T“IBlT, with T = <(1) S) , T 7—4 0. (652)’

The entries b?j and bzlj of the matrices By and By respectively, are given by the formulae

bglzeﬁ;l_:@ 532:"5(7“‘1—0) b%lz—a(v—l—a)

o i a , i a , (6.53)
b%z = IB—“———(V'G__}; '8)7 bg2bg1 = 6%26%1 = —efty —(15__'80253 —l- a). (6.54)

The system (6.51) can be solved using the Gauss hypergeometric function. So, we can
compute its connection matrices via the Kummer relations (see [Luke]) of the hypergeo-
metric functions.

Lemma 6.9. The solutions of (6.51) have the formY = (yl
Y2

) , with y; being an arbitrary

solution of the following Gauss equation:
2(1—2)y) +c—(a+b+1)z]y; —abys =0 (6.55)

where a = o, b=+ 1, ¢ = v and y, given by:
a(y=B-1)

1 P-a ) {z(z - 1)%3/1(2) + {ozz + W] yl(Z)} (6.56)

W= B =E-1
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. (ﬁ"a’)b?z
B(v—B~1)"

Proof. After the gauge transformation:

where r =

Y(z,0,8,7) = 2 ( — 2)U(z, 0, 8,7),

one obtains from (6.51) the following Riemann equation for u;

14069, — 59 1+0bl, —b 59,635
" 11 22 11 22 I 11722 —
ul_i_[ z i z—1 L2z —1)2 ] 0
Now u; is related with the solution yg of the Gauss equation (6.55), with a = —b3; — b1,,

b=1-03, —bly,, c =109 -8, via the relation u; = z‘bgl(l — z)"bily@. As a
consequence, thanks to (6.53), (6.54), we obtain that y;1 = yganda=a+1,b= 3, c = ~.

Yo 1t 1s given by:
By | bip p (B8, bi
C;+p4>w—%‘(7+z_ﬁw
that gives the equation (6.56). QED

To reduce the systems (32) and (£) to the system (6.51) we need to diagonalize the
matrices A+ A = — A, and A respectively and to perform a suitable gauge transform. We
need to introduce some notations. Denote C'Sf ’IB '7 the connection matrices of the system

(6.51). The matrices Jy; are the Jordan normal forms of By, and the matrices Gg”lﬁ‘"’

-1
are such that Gg’”lﬁﬂJo,l (Gg,’lﬁ”’) = By1. Then for the asymptotic behaviour of an

appropriate fundamental matrix Y (2, , 8, ) of the system (6.51) we have

[« 0)
Y(z,a,ﬁ,'y):(l-l-(')(%))z <O p Z = 00
= GXPT (1 + O(z)) 2P P z— 0
=GP (14 0(z = 1)) (z = 1) OB z— 1.

Some further remarks on the notations: from now on all the quantities with the hat are
referred to the system (3) and all the quantities with the tilde to the system (). When
we don’t put any hat or tilde, the formulae are true for both the systems. In other
words, they hold true for the generic system (6.51); substituting all the quantities with
the correspondent hat or tilde ones, the formulae hold true for the systems (2) or (%)
respectively. k

We now choose the values of @, 3,7 in relation with the eigenvalues of the matrices of

~ ~

the systems (¥) and (2). Namely, for () we take

7-900"‘ A 1900 A P ~
&:—2—39, ﬁ:—#ﬂ, 4 =1- o, (6.57)
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and for () we take:
(6.58)

O
Il
l

N
I

—

With this choice of the values of «, 3,7, one has:

2 11— 0 = 0 1 5 = 0 1
‘]0:( 07 O)y ']0:(0 O)) le'Jl:(O 0)

Now we can reduce the systems (3) and (X) to the system (6.51) via the following gauge
transformations:

V=2 %v(805), ¥=G62Y(za/8%), (6.59)

where G5 A is such that

_07+5 _apa (e O & B4 ~1
A- 2201 = 6 (0 _ﬂ>(GO )L

As a consequence the connection matrices of (6.51) are related to the ones of (2) and ()
by the following formulae:

Gy = GEPY Gy =CfPY Gy = GEPACaB (6.60)
Gon = GS’B"ng;f’"", Cor = C&ﬂﬁ(GS,B,R/)-y (6.61)

6.2.2. Local behaviour of the solutions to the reduced system. The solutions of
(6.55) around the singular points 0,1, c0 are known and one can compute y; by (6.56). In
this way one obtains the local behaviour of the fundamental solution Y’ for z — 0,1, 00,
and one can compute the connection matrices by the Kummer relations (which are the
connection formulae for the hypergeometric equation). The difference w.r.t. the situation
of [Jim] is that in our case the Gauss equation is degenerate, namely:

¢—a-b=0 é—a—-b=0 =1

So, we have to consider the logarithmic solutions of the Gauss equation around z = 1
for both the systems (£) and (2), and around z = 0 for (%); moreover, we shall use the
extension of the Kummer relations to this logarithmic case (see [Nor]).

In what follows we denote F(a, b, c, z) the hypergeometric function and with g(a,b,z)
its logarithmic counterpart for ¢ = 1, namely:

— (a)x(b)s o+
abcz Z AT

k=0
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Im(2)

b, Re(z)

o>

Flnz+y(a+k)+9(b+k)— 20k + 1)),

abz =

with the branch cut [a (2)| < 7 (see figure 10). Here 9 is the logarithmic derivative of
the gamma function, a,nd the expressions of the parameters a,b, ¢ via «, 3,7 are given in
the lemma 6.9. '

Fundamental solution near co. Since a — b # 0, the solutions of (6.55) around oo are not
logarithmic. We obtain

o B o 1 —afz7 Py B B 1
B e B I/ ) S A L
[e%¢) _aﬁz-—a—-l B B }- z_ﬁ . *a‘];
e G—as et b= fa-p+22) F(8,0,8 - a,2)

a 0
Yoorv(l-l—(’?(i‘))z <0 ’8>, z = 00.
exp(2mia) 0

0 exp(2miQ)

Fundamental solution near 1. Since ¢ — a — b = 0, the solutions are logarithmic:

v — Flo,p+1,1,1-2) rg(e,f+1,1,1—2)
PTALF(e+1,8,1,1-2)  gla+1,8,1,1-2)

(5 o)
Vi~ Gf (1-2)\0 0

GYP = (

The monodromy around 1 is (1 2vrr )

The monodromy around oo is

Forz — 1

with
rlyp(e) + (1 + 8) — 2¢(1)] )
Y(1+a)+9(B) —2(1) )

3 =

0 1

Fundamental solution near 0. 'We have to distinguish the case (33), where the solutions
of (6.55) around 0 are not logarithmic, and the case (X), where ¢ = 1 and the solutions
are logarithmic.
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For ('ﬁ) one has

N — e PR f 1 - 4,16 - f,2) fﬁ%F@ﬁ+i@+ﬁ+1@)
0= ; s . R X ) . )
_7:(_6{532~a—ﬁp(1_/3,—&,1—d—,3,z) E—f—dF(&—l—l,ﬁ,&+ﬁ+l,2)

For z — 0 it behaves like

where

The monodromy around 0 is (exp(—2zg(a +0) (1)>

For (%) one has

V. F(a,1-a,1,z) rgla,l—a&,1,z2)
07\ -iF(a+1,-&1,2) —g@+1,-6,1,2))’
for z — 0 it behaves like

with

The monodromy around 0 is (1 vt )

0 1
6.2.3. Connection formulae. In order to compute the connection matrices we write
Y+ in the form:
. —af exp(—1 1
exp(—ira)U(e, B + 1, 2) B exp(=im(f + L)r
Yo =

B—a)B—a+1) UB+1,a,z)
—af eXp(~z'ﬂ-(a + 1))

T(ﬁ"a)(,@—a*l) U(O&—l—l,ﬁ,z) exp(——iwﬁ)U(ﬂ"a_*_l,Z)

where Ula, b, z) 1=

(271ei™) " F(a,1-b,14+a—b,1). For z such that |arg(z)| < 2, there
are the following connection formulae:
—exp(ira)(1+a—0) .
Ula, b,z)lz_)1 = RO {lim + (1 —b) —@é(b)]F(a,b,l,l —z)+
g(a7 b7 17 1- Z)}a
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Ua,1 —a,2)|,_, = :FI:(%Z—) {[~ir +¢(a) —¥(1 = a)]F(a,1 - a,1,2) + g(a,1 —a,1,2)},

'l+a-0T(1~-a-0)_ 'l4+a—-0bT(a+b-1)
=0T T(1—b)2 F(a,b,a+b,2) + '

['(a)?
21TV~ b1 —a,2 —a — b, 2).

U(a,b,2)]

Using these relations we obtain the analytic continuation of Y around 0 and 1, and by
the definition of the connection matrices

Yw!z—m,l = }’67103’36’7,
we obtain, by straightforward computations
) exp(inB)T(a+A)I'(6—B+1) _pexp(=imd)T(a+ AT (1-6+5)
o&h _ Mara+y T(AT(1+5)
6 - 1 exp(—ima)T(—&—B)'(&—B+1) _ exp(—inB)(—a—B T (1—a+8) ’
7 r(1-AT(-H) T(=&)T(1-a)

_F(_Q:_@_[m + 7 cot(md)] —-%ﬁg(ﬁ—ﬁ))[m +7 cot(mé)]

af _ | T(@&I(-H ‘
G = _1_T(a=p) _I(=a+p) ’ (6.62)
* T(&)T(—B) INEYINEE)
. gg%g; exp(—ind)[ir + m cot(rd)] F?g(__zgg exp(ina)[m cot(né&) — i)
C§ = 1 T(2&) .. I'(—-24a) c o~ ? (663)
-G exp(—ira) gy exp(ind)

1T (2& _ T(=2&)
FT2(a (&)

I2(a)
_ (—?éfgg [im — 7 cot(mwd)] —?Tl:—(g(:_%%[w cot(mwéd) + Zﬂ'])

Now we have to compute the monodromy matrices in the basis Y. Using the formulae
(6.50), (6.60) and (6.61) we have

& By — 1 2mif &8 &8y — & \— 1 2mr & 6,0
My = (01 ’ﬂ) ' (0 1 )01 ,ﬂ) ‘ Mo = (Co ﬂ) 1(00,1) ' (0 1 )CO,ICO ﬂ'

Now we put

and

)
In this way we immediately obtain the formula (6.39) for M; and it turns out that
c&f = p¥F.C
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where C' is given in the formula (6.43) and

) exp(in@)T' (f+&) T (1—p+&) 0
Dé‘aﬂ e ( al'(&)? sin wéa ) .

0 —exp(—infB)[(—B—a)I(1+5—&)
I'(1—&)'(—a&)sin &

As a consequence, one has

— & B\ — & \— 1 2mif & & B
CMo,C~" = (D*P)7(CE,) 1(0 | ) uD%"

By straightforward computations one can easily check that, for

. _exp(2i7r5)F(l:3 + &)1 =B+ a1 - &r(-4a) .
T(—f — &)1 + 8 — &)al'(&)?

ie. for
T(1 — 00)?T(%)? T(1+ Zefoo)P(1 4 =Pegton)

T(1+ 00)?T(— )% T(1 + T=z20)1(1 — L=fooy 7’
the formulae (6.40), (6.41) hold true.

To conclude the proof we have to prove the relation (6.42), namely we want to prove

that £ = —ﬁ—%ﬂﬂ. To this aim we compute the matrices AJ; , and A and then the
0 2p—00 a8

=3 | 3

asymptotic behaviour of y in terms of g and 7. To compute the matrices Af . and A we
observe that, thanks to the gauges (6.59),

&+

A=B,, A=DBo+ 5

1, Ag,x = GO&’ﬁf)’o,l(GS"ﬁ)_l,
First of all one has to compute the By 1:
BO frend G(c)(iﬂy'YJD (G811317)_17 B]_ — G?vﬂfyjl (G:Cli,ﬁ,’)/)-—l

then

and ~
~ a -1 7 ~ & 1 T
s=3(5 D) B-5(4 L)

It is then obvious that, referring to (6.48) and (6.49), b =7, T = Gg"/}. Using the formula
(6.17),

= 72(0-0 + 2”) xl—-o’o
4r(2p — o9) '

y(z) ~
This proves the formula (6.42) and concludes the proof of the theorem, in the case oo # 0.
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For completeness we write here the result for the matrices A3 ; , and A:

T \ TRl 9 P po2 )] YT 4, \-: 1)
ﬁ2~a§(§+i)_§2_gg
A0 — L -2 rooT
N N A Gt (194‘00)27:_'_192 2
7 oF o7 %
(9 — 00)?F (9 + 00)*F 9 9
( 2 27 too -7
?.92-O'g T 7 9 5
o Ty G R AT A
%0 Ve LTy g 2o
A= 1 (ot (9t o)
870 1 Voo — 00 )°T + og)°T 9
7 ( T 70
A (Poo —00)* 7 (Yoo + 00)%F 2 2
r( o7 bT: 00 = Voo
Voo’ — 0f 7

N

6.2.4. Case 0y = 0. In this case the solution of the system (%) has logarithmic behaviour
around 0. Moreover, as seen before, it has a logarithmic behaviour around 1. For this
system we can use all the formulae derived for (), substituting & by &. The treatment of
the (X), is even easier. Indeed in this case A has zero eigenvalues and it is straightforward
to solve the system (6.51) exactly. In fact in this case we have

1§0+1§1=(8 (1)) det B = TeB; =0, =01

Then the matrices By and By are uniquely determined up to an arbitrary parameter s:

. 0 - 0 1-
BO:(O 8)7 Bl=<0 05>7

and we can solve the differential equation (6.51) explicitly:

> (1 slogz+(1—3)log(z—l)>
Y = 0 1 .

The solution ¥ has the following asymptotic behaviour near the singular points:

' ?z(l—l—@(l))z‘], as z = 00,
z

= 0(1—{—0(2))2“’6’0, as z—0,
=G (1+0(z-1)(z-1)7C, as z =1,
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01
0 0

5 (10 s (1 0 . (10 - (1 0
C°—'(o ) C’l‘(o 1_3)7 G°“(o Q C’l*(o >

As a consequence the monodromy matrices of the system (6.51) are

Mo=<(l) 2?3) Ml_;(é 2771'(11-—5))‘ (6.64)

The correspondent monodromy matrices of the full system (6.2) are given by:

where J = < > It’s easy to verify that

1 2inr

MI = (Clé)—l (0 1 ) C?a and ]VIO,I = (C(?)—lmi),lcga

where

w[(2&) ~ 7wl (—2&)
Cd o T2(&)sin n& TF2(-&) sin w&
0 — 1 T(28) exp(—ind) T(—28&)expl(ind) |°
-F T2(a) I2(—a)
and

T'2(&)sin wé T2(—a)sinm&
_1T(2&) _T(-2¢8)
7 T2(a) T2(—&)

) wl(28&) exp(—imd) A 7wl (—2&) exp(iné)

We observe that B )
C’{il = C%1pe,

' (2&) exp(—imwd) 0
D& — ( T'(&)2sin & )

where

—I'(=28)
0 r(—a)g

and

P -7 7mexp(iné)
c° = (exp(mq) sin & ) cl = ( 1 (in) sin & )
—sin & _ A ’ —sin m& exp(emd :
—=ire exp(imé) ] 1

We can factor out the diagonal matrix D% in (6.64), and take # = —1. In this way,
we obtain the formulae (6.44), (6.45), (6.46). The asymptotic behaviour of y(z) can be
computed as before. For o = 0 we obtain:

Y ~ QT for ag = s.

This concludes the proof of the theorem.

6.2.5. The asymptotic behaviour near 1,00 and the monodromy data. We can
prove the analogue of Theorem 6.2 near 1 and co. Namely, for any pair of values (a1, 01)
there exists a unique branch of the solution of PVIx with the asymptotic behaviour

1—0oy

y(z)~ 1—az cas oz — L (6.65)



It is possible to parameterize the monodromy matrices as in Theorem 6.2 substituting og
with o1 and My with M; and vice-versa. Analogously, for any pair of values (Geo,0c0)
there exists a unique branch of the solution of (PVI) with the asymptotic behaviour

y(z) ~ aeoz’ as z — oo, (6.66)
and it is possible to parameterize the monodromy matrices as before, substituting op with
0so and applying the braid (5 to the monodromy matrices.

6.3. From the local asymptotic behaviour to the global one.

In this section we prove Theorem 6.1 which gives the asymptotic behaviour of the
branches of the solutions in terms of the triplets (zg, z1, oo )-

Lemma 6.10. For the solution y(9 (z) of PVIu behaving as
yO () = apz? ™ (1 + O(z%)) as z — 0,

with 0 < 0o < 1 and ag # 0, ag # 1 for o9 = 0, the canonical form (4.8) of the monodromy

matrices Méo), MO, Ml(o) given by (6.41), (6.40), (6.39), or (6.45), (6.46), (6.44) for oo = 0,
1s the following:

| 20a (a{)?
M 1 _q;(()o) M 1 0 M a:((jo - zgo)
0 — 0 1 9 T CC(()O) 1 9 1 — (l_‘()g))g 1 B xgo)x(og) I

where the triple (m(()o), wgo), :cgg)) is defined, up to equivalence, by the following formulae,

for og # 0:

fl}éO) = —2sin zg“(‘)‘,
© sin %’3 ‘
2y’ = —/2(cos mog — cos 2mp) S (6.67)
m(oo+4)
©__ /3 — cos —=%
T V' (cos o — cos 2mpu) s moa

2

with ¢ given by

gims _ L o0+2u L(1+00)°T(1— SPT1+p— )1 —p—F)
dag oo = 2u T'(1 — 00 )T (1 + )T (L +p+ )1 —p+ F)’

(6.68)

and for oo = 0:
QZ(()O) =0,

wgo) = —|sin7ulv1 —ag (6.69)
29 = —|sinwul\/ag.
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The proof of this lemma can be obtained by straightforward computations, using the
algorithm of Lemma 4.6.

Similar formulae for the parameters (xgl),wgl),mg) and (mg°°>,g;§°°),x(o‘;°)) can be
obtained respectively starting from a solution y((z) of PVIy behaving as

yV(z)=1-a(1-2)"* (1+0(1~-2)°) as z—1,
or from another solution y(°(z) of PVIu behaving as

1
y(®)(2) = aoz”> (1 + O(;c;)> as T — oo.

So, given an admissible triple (zg,z1, %), With z; € R, |z;] < 2for 1 =0, 1,00, we choose
the parameters p, (ag,00), (a1,01) and (aeo,0co) in such a way that (6.7) is satisfled and

:cgo) = azgl) = :vgoo) =gz;, for 1=0,1,00.

Using the explicit formulae (6.67), (6.68) for zo # 0, we derive the expressions (6.9),
(6.10). Similarly, using (6.69) for zo = 0 we derive the expression (6.11). In the same way,
we derive the analogous expressions for (a1,01) and (Geo,0co). The three correspondent
branches y(© (z),y™ (z),y(> (z) of solutions of PVIy, with p given by (6.7) must coincide.
In fact, the associated auxiliary Fuchsian systems have the same, modulo diagonal con-
jugation, monodromy matrices. This proves the existence of a solution of PVIy with the
asymptotic behaviour (6.1), with the indices given by (6.8) and the coeflicients specified
as above, for any admissible triple (zo, 21, Zoo), With z; € R, |z;| < 2 for i = 0,1,00. The
uniqueness of such a branch follows from theorem 4.1.

Conversely, for any such a solution we obtain an admissible triple (z0,21,%c0) =
(méo),xgo),mg)) = (x(()l),mgl),m&)) = (:cf;"’),azﬁ""),mé?)), using the formulae (6.67), (6.68)
or (6.69) and their analogies. Let us prove that the numbers (zo,1,7o0) are real and
satisfy |z;] < 2 for i = 0,1, 00. Indeed, from the definition of the parameters, it follows:

(ng))z = 4sin’ 7oy, (3351))2 = 4sin? 7oy, (2(2)? = 4sin? 704.

This proves that our construction covers, for real u, all the solutions of PVIu with critical
behaviour of algebraic type.

Finally, using corollary 5.4, we infer that the class of solutions of PVIy, with real
t, having critical behaviour of algebraic type is invariant with respect to the analytic

continuation. The law of transformation of the critical indices lg, l1, [~ of the expansions
(6.1), is described by theorem 4.2.

7. THE COMPLETE LIST OF ALGEBRAIC SOLUTIONS FOR THE NON
RESONANT CASE

We summarize the results of this second chapter in the following
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Classification Theorem. Any algebraic solution of the equation PVIu with 2u ¢ Z is
equivalent, in the sense of symmetries (3.1), (3.2), (3.3) to one of the five solutions (43),
(Bs), (Hs), (Hs)', (Hs)" below.

We already know that the classes of equivalent algebraic solutions are labeled by the
five regular polyhedra and star-polyhedra in the three-dimensional space. We will construct
representatives in these classes for the following values of the parameter u

| 11 2 11
PETe Ty Ty Ty T
The correspondent algebraic solutions will have 4, 3, 10, 10, 18 branches respectively.
Recall that these are the lengths of the orbits (5.3), (5.4), (5.5), (5.6), (5.7) respectively

with respect to the action of the pure braid group (see remark 5.6 above). We give now
the explicit formulae for the solutions with brief explanations of the derivations of them.

Tetrahedron. ~ We have (20,21, %00) = (~1,0,—1), then y = —1 and
_ (s —1)*(1 + 35)(9s? — 5)?
Y= (14 5)(25 — 20752 + 1539s% 24350
(s —1)3(1+3s)
(s +1)3(1-3s)

(As)

(We present the solution in the parametric form). The monodromy matrices, in the
canonical form (4.8), are:

11 10 10
= (o 1) we-(45) m=(30)

This solution was found in [Dub] in the implicit form (E.29). This was also obtained,
independently, by N. Hitchin (see [Hit2]). To reduce (E.29) to the above form, we
have to solve the cubic equation (E.29 b) with the substitution:

_32(1 - 1852 +81s*)
©27(1 + 952 + 27s% 4 2755)

Then the three roots of (E.29 b) are:
13 — 665 — 27s*

YT T3t
—5 + 4252 & 14453 4 275
w =
23 3(1 + 352)2

Cube. We have (20, %1,%Z00) = (—=1,0,—/2) and u = —3. The solution

(2-sP(1+s)
(24 8)(5s* — 10s% +9)’
(2—s)°(1+s)
(2+5)2(1—s)’

T =
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was obtained in [Dub]. The canonical form for the monodromy matrices is:

11 10
=5 1) we=(47) m=(51)

Coxeter group W(Hg), of symmetries of icosahedron. We have three possible
choices of the point (2,71, Z00) Which lead to three different solutions.

Icosahedron. The orbit (5.5) corresponds to the standard triple of reflections for

the icosahedron. (zg,%1,%e) = (0,1, “1+2ﬁ)> then p = —% and

(5= 1)?(1+3s)%(=1 445 +*)(7— 10852 + 314s* — 5885 + 119s%)?
V= (1+5)3(~1 + 35)P(s)
(=145 (1438)° (=1 +4s+s%)
(1+5)°(=1435)° (-1 —4s+52)

(Hs)

r =

with

P(s) =49 — 21335 + 34308s* — 2590445° 4 16422878s" — 761664650 + 1375870852
+ 596372451 — 7192716 + 4248358,

The canonical form for the monodromy matrices is:

11 1 0 1 0
e 1) om0 8) mem(aa )

The above solution was already obtained in [Dub] in the implicit form (E.33). The
above explicit formula can be obtained solving (E.33 b) in the form:

(1 —4s—s%)(—1—4s+s%)(—1 4 55%)

b= (113520
25— 58552 + 3530 s* — 6690 ° — 3955 5° + 507 s'°
e (1+352)°
oy T 915 5% — 1910 s* — 4096 5% + 5150 s° + 20480 57 + 6125 s® — 357 5'°
’ (1+3s2)°
742155 — 1910 s* + 4096 s + 5150 s° — 20480 57 + 6125 s° — 357 57
“ = (1+3s2)°

The last two solutions for the orbits (5.6) and (5.7), with the icosahedral symmetry
are new. They correspond to great icosahedron and great dodecahedron respectively. To
compute them we use the following algorithm. The leading terms of the Puiseux expansions
near the ramification points 0, 1,00 of each branch can be computed by the formulae (6.8),
(6.9), (6.10) and (6.11). From this the genus of the algebraic curve F(y,z) = 0 is easily
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computed. Namely, the genus of (5.6) is 0 and the genus of (5.7) is 1. Since the symmetries
of PVIu preserve the indices g, l1,ls (up to permutations), they preserve the genus too.

We observe that the appearance of genus 1 in the last solution related to the great
dodecahedron could seem less surprising if we recall that the topology of this immersed
two-dimensional surface is different from the topology of all the other polyhedra and star-
polyhedra. In fact, this is a surface of genus 4, while all the others have genus 0 (see
[Cox]).

Let us now list the last two solutions.

Great Icosahedron. (zg,z1,200) = (—1,0, l:ﬁﬂ), then y = —1 and

_ (—l+3)4(1+33)2 (—l+45+82) (3“3032—1-1184)2
- (I4+s) (=1+3s) (1+3s%) P(s) )

H !

_(—1—{—3)5(1—{—33)3 (—1+4s+s?) (Hs)
C(1+8)°(~14+35)° (-1 —4s+s2)

with

P(s) = (9—342s% + 4855 s* — 28852s° + 63015s° — 1942 5% 4+ 121 5'%).
The canonical form for the monodromy matrices is
1 1 , 1 0 1 0

(3 1) em(5 %) (e )

Great Dodecahedron. (z9,21,2,) = (—1,-1, 1_2‘/‘;’), p = —3%. The canonical

form for the monodromy matrices is

11 1 0 35
Mo = (0 1) Ms = (—1 1) My = (-p;\/s‘ 15 |-
This is the most complicated solution and we will briefly explain how did we obtain
it. As we already said, it is an algebraic function with 18 branches. It has two branch

points of order 5, two of order 3 and two regular branches, over every ramification
point 0,1, co. The branches y;(z),---,y13(z) near z = 0 have the form:

. 2 — 4
yk(m)ze% ({g) 6'529:3—}-(9(:1:), k=1,---,5

yk+5($)=62'15i£ 00 :cg-i—C’)(x%), k=1,---,5

192
eie 25 14 0/1
yopr(e) = B LENVI 2 Loy, k=13
18 4
cix 28 1 —4+4/15
yla+k($)=623k—l-i————; :E'%—I-O(:z:), k:l,...73
3++5
yi7,18(z) = z + O(z?)



The Puiseux expansions near ¢ = 1 and £ = co can be obtained from these formulae
applying the symmetries (3.1) and (3.2) respectively. Using these formulae, one can
compute any term of the Puiseux expansions of all the branches. Due to computer
difficulties, at the moment, we do not manage to produce the explicit elliptic param-
eterization of the algebraic curve. We give this in the form of an algebraic curve of
degree 36.

e F(z,y,t) =0 (Hs)"

where )
t=x+ —
z

and

F(z,y,t) = (11423613917539180989 — 57169813730203944 ¢t — 13869163074392577 ¢

+1307302091918736 2 — 31962210377 £ — 556854952 ¢° + 282475249 1°)” 2%+
19 (—42194267411458338799378785573556538817
—58759262104428568315420822622247510492 ¢+
+10095266581644469686796601774497789110 ¢
—969805106597038829472153249647160780 ¢
+13082239583395373581545441399627177 t*
—77058446549850745165440956773416 t°
—2150599531632473735225276196788 t°
+5521397776112060589691860200 ¢
134431689430132242698256649 ¢° — 4868379539328005204126748 ¢°
1543208990997997546590 t10 — 5420393254540081020 £
—79792266297612001£'%) z® (1 +z) y
+3 (1958540422461728364360419152068949457061
—2209393132972329408615760780334959957197 ¢
+3730909713982979160856372675878664915614 t*
—998456940153012666787445238400320871842 ¢°
+127635631698846877473536225998246411623 t*
14899544979972466578803325878 75322027 ¢°
+8847488219466307166390055942913100 ¢°
+115442527212405524632938663371228 "
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—1429542565820801871766655325509 t°
+7631245862019705473945545029 ¢°
+215859931310548879418863190 £°

—61369918621176379581242 ¢1*
+443864075501101414537 ¢12
+239376798892836003'%) z° y?
+8 (—14176454404869485146893293606614356611775
+28055900200716580071561317517835005937542 ¢
—22805214425386778204880821526748969126548 t2
+7203824414325261553629527716660045847442 ¢°
—941980967212371956151450075677431178469 t*
+8038149376577574092957422850094452382 ¢
—22951481031624768208910085230213950 £°
—1567265072303229457696028497735362¢7
+17710721122570843039502588273105 £

—100631536944878626686735036764 ¢°
—513222963217440801801106854 ¢1°

+346131811374226777113368 ¢1

—1385596068253512936373¢'%) «7 (1 + z) *
+6 (372245126038285018174621123839906354129684
—538123164074188598920246979212739683700019 ¢
+148097514409311992531878851512796911164392 >
+131183971273631981690818920653550831952470 ¢
—81255871706326021946002239342890704787124 t*
+13496764871847929345618085983834973142347 ¢°

—77522788387610267024773351181536807752 t°
—15773276759106249673670395386220524 "
+43306225979803766149728090033557588
—308429371182004923439978792917533 °
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+1762391142835398582269106251136 ¢*°
+2388970787440139757429804470 ¢
—3439831965306734927530580 ¢'2
+6227088023782555081845 %) 27 y*
+6 (—1723593607166532080927038166074395946035900
+2040599178888751273951239802196511605636025 ¢
1233403452055579960658996997839662220718652
—1266443503829326206558682114543567079698662 ¢
1601472177228487289796456276889218593842200 t*
—90437995682218432847116536290883275511849¢°
1312726208388429638276816726813440288752 1°
12550025722128829156352333577788952604 ¢
—575104019542617989271403929336386084 ¢°
1+4033434111720024901257683928676919 ¢°
~12117519775974826925705049828908 t'°
—6556200250126220600244219830 ¢
+14241314959493049268655304 ¢
—9850799841945252913527 %) 28 (1 +z) y°
+2 (21644465131825357400382632120971734649857264
11609281090760898028021044308156991213714259 ¢
—38810578264561008264384235926474662382590097 t2
+19461702669444598007359556763777303231431634 t°
+6809228919729818789589103927528063675916654 ¢*
—6502005871163632747227392004794985000703103 ¢°
1+1176880351448958476049654953342289787508545 1°
—2305666451065939258487468463173953769764 ¢
—66480299243646643579685794767909280748 ¢°
+15241200180683229312383060139285323669 t”
—78386104021612006912908252437015263 '
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+148880803913659745854808576095474 ¢
+57461755817453559455002717038 12
—103978838096755580164874073 ¢13
+22079893897296692642367 t'4) 2 ¢/°
+12 (—3846090734682844350682028823106084687428444
—6334186503545807261781842904989156398103475 ¢
+13149149531444644750567430723972640952739601 £
—833478059474840476986699901359926517619482 ¢
—6957568559854570720866520753764257206265698 ¢4
+3704223179468379920674190362976379513996499 £°
—576109607175627912516018268715191958362489 ¢°
+449528751470785721434087640482632944192 t7
+97703132604175842587572789513022822852 °
—16011119124352462144696375400709770865 °
+57470033726311385832789992330535883 ¢1°
—64186326557416461737056084783958 ¢!
—26094692352698228396829172726 12
+25456979816863844482106097 13
—1051423518918890125827 ') z° (1 +z) y*
+3 (10610560214390717981593236262575236159801442
+111851425974428655491946571184648885748780846 ¢
—46715489836280837819492546495478177251546881 2
—139030514021835704781706562226557058780091068 ¢°
1-91919803393449431080407081029445741045516160 ¢*
+17286168898942635534811373112001322602942242 °
—24220067368877156108293128216367359106738667 ¢°
+4637848726272650440828320863095758089676600 ¢
—768878602349792937649689712426759282462
—1741702208080601219941076960674171058190 £°
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+291817792658031512381548036217335383393 ¢1°
—703979549232767832584811827025318204 '
-15431869052449224832223544125220252tl2
+211026301709949401515207349982 ¢1°
—88672767468343194407328645 ) 2° ¢
+(29516093700614758561713684532397059536112914
—250427363718702318175164789552712875171021018¢
—9276026230387316277405019906885146213095909789 ¢
-+798207668051094993868151955635553085940964248t3
—344467523172443772269951999752021 715572380244 ¢*
—120301086904813944940738235485125501727252554 ¢°
1109511261517293051818507102282993534830623481 t°
—19194080365623650515069714757340701033233072 ¢
—51032394918091643798626435084286655402518 t°
1-93520399409116636731567242035209841281394¢°
—92981630391452674856104059990243312091171 ¢1°
14599349671236813290177817558881705144 ¢!
—1416023622121443571963532624008680 2
—884464824710945312016748613390 ¢°
+126470477973158698785100695 ') z* (1 + z) y°
+3 (—10911639347758887707980330460476045164474906
—58505420545899882777261835025201788418411880 ¢
1+510148671470006459933001332369933260295921507 >
—4921411310692898883818707378130970229534690273 ¢
—167152535194408490298020642999503515413037404 t*
1259430867087315198025819011038004422708530022 t°
—46562493376530130089912033636689480134093531 t°
_921317412351831533402564088853511437604716591 ¢7
+5998321070650622801147765820299240777440702t8
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+42318724644239526363080933921378429784628 ¢°
~20025402467700581457477461594500061379211 ¢1°
+2543243908066676381203685445622311376505 ¢
—2382710944926354080442398446589552744 t1*
+326767340108407733203130499898126 13
+276491632581630260746191363123 t'*
—8431365198210579919006713 %) z* 41°
+12 (—8733106988589310312964985955814462819079774
4+64016502559572741731505856556403573520814046 ¢ -
—144735875200699985710584864792377620711111027
+66707682241185015299381142924382044312819100 £
+73079504596828994404460155513764487920535332 4
—75764221368814908722894464652763782420369670 ¢
+18144429124108777614777763808360976174204563 t°
+1935278311931502378271609920389021155764328 "
—842229927380965714885405569219684268010166 ¢°
—43576284807293907660657241391770657495742 t°
+12197493655076249609592887507484958732619 £1°
—1236906021392508491488029828633988502116 ¢
+656542960338462752927669545849000176 ¢2
—33306604264547610372382676649434 1%
—41617303783672454910317327355 ') 2° (1 + z) y**
+2 (187554318014748213259275472412247634165779260
—762602529289184570716467664651505597594612711 ¢
1-781137281074558579579982041608982979326338521 ¢
+609916709974782293997005108542677011211842354 ¢°
—1300509731487820027375772452301766352965003310 t*
+495021556835245340779707559257082787835603199 5
+11521434002601718518717453253557047266 7840767 ¢°
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—93151202230256791640185309844658008150754584 17
+7202343146876999296118334182261935450026080 ¢°
+1570014403002611359784317587694467895480399 t°
1+371422610102654444897802704145750294582991 ¢°
—107776513895628817503345944747365689465454 ¢
110941070332070115448154615812894796283346 '
—3005301616251624310474021462023025751 ¢
+41932897601387821985740913526761 ¢
+87168052345572726428101766292¢"°) z° y'?
+6 (—49769698820686378083743112964571467299790844
1144208424244836145109900273916270122534480379 ¢
—31061701177281181816778329394184658654578125 ¢
—316115877280896274823885457480018099381675270 ¢
+413355401574586200245516861333774692564805758 t*
—189323246544195194714568800051070616915145871 t°
+16358105769812410561563772201680559507177601 ¢°
+10699064629034472787428641330738981639504716 "
—2410111354335748769859016926649172233001216 ¢°
1411171528032730820725099829153187243925077 t°
—926789949801107593485509158636442297272707 ¢'°
1-47843156588060602804351104035547186862994 ¢
—4050842729096500910242692387785686802242 ¢
1+503056665812777017090193080924335791 ¢
—1358120473689033753999092690625 ¢'*
—4470156530542191098877013656 t*°) z? (1 + z) y*°
+6 (40840375974497844675523416705994772589613816
—31065278771086485580585566101107070670979537 ¢
—256058709793754221748465779158452450846012816
1+559068508134217391316137877579221486889948317 t°
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—405356674135473476033247305191846353227354396 t*
1-56661024338479719866449660305901 198060970619 ¢°
+64125926679095609696574105582575413252584004 ¢°
—28890521413485617192612359619257982301215223 ¢
42839341861289460260556040613235064311172368 ¢°
+465313317652398071330581978147640308517821 ¢°
—351597845897601623389761113030041346811064 ¢1°
+179321665024113431049966683538039741491991 £1*
—39080763389941286051140782872898013637420 t2
+3320327789375495478533443619894892092425 13
—149553232132910627041355116122361020 ¢4
+205192601853360299747062918515¢'°) 22 y'*
+4 (—5628131126860710389875035169789649454420876
—78804574894375995596657603789677394324984101 ¢
+352860279249727357643015437757245513637138672 ¢
—564941261129218367227412931528430799748606546 >
+430939089346630550106464017811753376858010640 ¢*
—148284188482685309994113608598302973692022739 °
+4873973943047627527185771161170310871611116 ¢
+10181461701693419091610691800269773692583228 ¢
—1226684412907984419281022032089194096771900
—1114701349894370233505605371103641055314707 ¢°
1 706698148832508485833137372095728746006888 +1°
—230885597278675059768074093486733449982986 1
+40110760213781966306595755424591426952408 12
—2044406938738808019234484282441173992613 13
+29909989810256194655311832623132956 ¢'*) z (1 + z) y*°
+3 (—19345311524103689299806429866595584344434933
+165330840018062517804524148661179410853072546 ¢

98



—433975351186661527899190510419861031681577223 ¢
+515516306674309051714096086492072331808918060 ¢
—283562876761607595979024343783955270990852289 t*
+35089717870652037166528865782071242284918734 £°
+33297928990127187049831304457387943687578909 t°
—12917764244851664872827620472556082803226856 "
—9266713623245328356955979252488258143292463
+555900198844440351814987030522263162652334 ¢°
+344809125199575823496923125385565831315595 ¢°
—325689072459807008457121908075371991483716 1+
+117388439783020206894897144460070846332949 '
—21123688072686368568170196496753937437182 ¢
+1569161588742434760282235480090100082255 £'*) z y'°
+3 (9783299760488948030219433006083570296689357
—59321119347918543659930676521984384042169430 ¢
1 141416477837529651726686264572772822193430055 ¢
—177096809878289456793903796377476455257673500 ¢
1127907586479651422318564410835908192786763365 t*
_54372658309130640733439296021048049726746608 ¢°
113488394375983259178386269031077826541323679 °
—2113244794203694376441274534558687456380488 ¢
1141785257824097311610019381070069013792095 ¢°
1316821091130460893567937727374441119017078 ¢
—305480360931755555721215775431316200256739 ¢°
1142141070595224470100170760768533902542116 ¢
- 38457837145846954116338584809621985652097 ¢
1-5806436836462494743682658146120894324810¢*°
—380650359326333515862984779019865187923;14)(1-+ag y'’
+ (—10524240525647109159259219575804205851284241
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+54473554541130948618895564303322618142908415 ¢
—116506041709060140591221 129400148633447467665 12
+134582692171688928175407226575844795641654895 ¢°
—91188532083602481766920967127844408926436405 t*
+36353592052137018784330858422674753425698363 t°
—7639385747972665348009342010125607135270845 ¢5
1+93749989416978017153766638267237965058515¢"
4613514003480165484061014972915970847589645 ¢°
—277973572971202497026511206431230055671555 ¢°
+4186799108745525715968930085758736947197 ¢1°
+68475809505229552273919737578535787115805 11
—41025357958210023316522198089867194215575 ¢
+12129433061687109251202289166065827342585 ¢
—1903251796631667579314923895099325939615 ¢14
+126883453108777838620994926339955062641 #1°) y'®.
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CHAPTER 3
THE INTEGRABLE CASE OF HALF INTEGER VALUES OF .

In this third chapter, we show that for any half-integer p, PVIy is integrable and
compute the solutions in terms of known special functions. In particular, we show that for
any half-integer 1, PVIy admits a numerable set of algebraic solutions which are in one to
one correspondence with regular polygons or star-polygons in the plane.

The fact that the PVIu equation with y = 7 is integrable and admits an infinite set of
algebraic solutions, Was already known by Picard, see [Pic]. All the other PVIu equations
with half-integer & # 3, have “more” solutions. Let me briefly explain what I mean. Let
the Picard solutions, be the solutlons of PVIy with p = 1, and solutions of Picard type
be the solutions of PVIu with p 4+ 3 € Z\{1}, which are images via birational canonical
transformations, of Picard solutions. We show that, while the Picard solutions exhaust all
the possible solutions to PVIy with p = %—, the Picard-type ones do not exhaust all the
possible solutions to PVIu with half-integer p # % Indeed the Chazy solutions introduced
in Lemma 3.2 are not of Picard-type. The set of Chazy and Picard type solutions covers
all the possible solutions to PVIu with any half-integer p # %

8. CHAZY SOLUTIONS.

In this section, we analyze the asymptotic behaviour and the nonlinear monodromy of the
one-parameter family of Chazy solutions (3.5) to PVI,, with half-integer p # 3, introduced
in Lemma 3.2.

The reason of the name Chazy solutions is that they correspond to the following
solution of WDVV equations in the variables (#!,¢2,1®) (see [Dub]):

b (t1)22t3 . tl(;Z)- ~ (t126)47(t )

(8.1)
where the function ~(#%) is a solution of the equation of Chazy (see [Chal):
" Gyl — 97/2.

8.1. Derivation of the Chazy solutions.

I briefly outline how to derive (3.5) from (8.1). Using the procedure explained in
appendix E of [Dub], it is possible to show that:

y(T):(wz(T)U’S( 7) — wi(7)ws(r) — wi(r)ws (7))’
dw: (T)wa(T)ws(r) (wi(r) —ws(r)) (8.2)
2(r) = wa (1) — wi(7) .y

— wa(r) —wi(r)’

101



where 7 = ¢ and (w1, wa,ws) are solutions of the Halphen system (see [Hal]):

d

Ewl = — wi(wy + ws) + wows,

d

E;’wz = — wz(wl + ws) + wiws, (83)
[

L s = (w1 +wa) +

dTw3 = —wglwy w2) wiwa,

that is related to the Chazy equation. Indeed (wj,ws;,ws) are the roots of the following

cubic equation

3

3 1
w® + '2‘7(7)202 + 357 (Mw + ZV"(T) = 0.

I want to derive (3.5) from (8.2). The following lemma will be useful:

Lemma 8.1. The transformation property

- 1 at +b c
i) = crtd (m’—{—d) + et +d’

and the formulae

wy = 1d1 A—/ w—-—l—io—————/\l
L=75 7 %8 T o g e T

where A(7) is a solution of the Schwartzian ODE:

(2

w3y =

b

d) € PSL(2,0),

X3 AN 1T
Y Ta\W) TTaleTtaoy

prbvide the general solution of (8.3).
The proof of this result can be found in [Tak].

3

1d A
1 /2
Ik (8.5)

The Schwartzian differential equation (8.5) can be reduced to the hypergeometric
equation (3.6) via a standard procedure (see [Ince]). In fact, let us recall the definition of

the Schwartzian derivative S-(\):

Using this definition, (8.5) reads

1 1

)]

1

M2

1
S-(\) = 3 [:\-5+ TSN
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Let 7(\) = Z;Eig Then wy 2 are two linearly independent solutions of the ODE:
o+ (! + gV = 0, | (8.6
were p(\) and g()\) are two rational functions of A such that:

2000 - 3P0~ POV = 5 |55 o N

By straightforward computations, we obtain

(1—2)\) 1

P()‘)=m, q( )z“m-

Using the formula (8.2) for z(7), and the formulae for the Halphen functions (8.4), we see
that z(r) = A(7). As a consequence, (8.5) is reduced to (8.6) that coincides with (3.6).

Putting 7(z) = ::E;g’ we can compute all the derivatives z'(r) and z"(7) in terms of
z, and by (8.4), wi(z). In this way we obtain (3.5) by substitution in (8.2).

8.2. Asymptotic behaviour and monodromy of the Chazy solutions.

Lemma 8.2. The solutions (3.5), for any v € €, and with branch cuts 7y, m; on the real
axis, m = |—00,0] ma = [1,—oc], have the following asymptotic behaviour around the
singular points 0,1, co:

—log(z) "2 + b log(z) ™ + O (log(z)™*) as z—0,
1+1log(l—2z)7? + by log(l — z)7% +

O
1\ 2 1\ 2 1\ 4
— zlog <——) + beo log (—-) +0 (log (——) ) , as T — o0
T T T

bozl—l—gg—‘ﬁllog27 by = 2lim(v —1) — 1 +4log2], beo =2[(v —1)(1 —4log2) +1n].

y(z)

where

Proof. First of all, let me fix a particular Chazy solution (3.5), i.e. a value v, and take
a branch of it, i.e. a branch of wy s for some suitable branch cuts. For example, in a
neighborhood of 0, one can take:

T 11 —1 11
w:(lo)(x) p—t —Q—F <"2-7 -2'71,.'.U> , W§0)<$) = ?g (57 5, 1,3’)) 5 (88)

where




Fig.11. The paths 41 and ~, along which the basis daf% is analytically continued.

o) = 3 O ki o)+ o+ 8) - 20k + 1),
k=0 ’

with the branch cuts 71, m;. Now, I fix some paths v, and ~2 along which the above basis

is analytically continued, to 1 and to oo as in figure 11.
Along the paths v; and 7, the basis wﬁ)Q) has the following analytic continuation:

' 1 /11
wgl):———g - =1L1-z), as z—1,
) 27\ 22
wy " —
(c0) 1 /11 1 11 1
- -, =,1,- Fl=-,=1~-
“1 2\/5:‘[Zg(2’2’ z) T b)) s T 59)
. 11 .
wél)zﬁF - =,11—-z), as Tz —1,
0) 2 272
Wy © —>
W™ = — ! ll1l as T — 00
2 T e e\ '

The correspondent branch y(z) has the asymptotic behaviour around the singular points
0,1,00 (8.7). QED

Notice that the leading term of the asymptotic behaviour does not depend on the
chosen particular solution, i.e. it does not depend on v. The dependence on v appears in
the second term. To derive the asymptotic behaviour of any other branch of y(z), one can
use the following:

Theorem 8.1. The monodromy of the Chazy solutions (3.5) is described by the by the
action of the group I'(2) on the parameter v, for a fixed basis wy g, i.e. given a branch
y(z;v), all the other branches of the same solutions are of the form y(z; 7)) with

av -+ b
cv+d

U=

Proof.  Let us fix a particular Chazy solution (3.5), i.e. a particular value of v. A branch
is given by the choice of a branch of the basis w2 of solutions of the hypergeometric
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equation (3.6). As a consequence, the monodromy of the Chazy solutions is described by
the monodromy of the hypergeometric equation (3.6). This is given by the action of the
group I'(2) on wy . In fact, let us fix a basis 70,71 of loops in m (T\{0, 1,00}) like in
figure 12.

TCl 752

@ O,

1 _
Fig.12. The basis v and 71 of the loops in my (T\{0,1, co}).

Let us consider w; 5 chosen as in (8.8), (8.9). The result of the analytic continuation

of w§?§ along v is given by:

wi” _,( W )_(1 0) wi”
W 20" + i 2 1)\ O

and the result of the analytic continuation of w§12) along =, is given by:

wi R <w§1)—2w§”> B (1 —2> wi)
Wi wiM 0 1)\

The matrices My = (; ?) and M; = ((1) —12> generate the group I'(2). I stress that,

as expected, My My = MZ!, where My gives the result of the analytic continuation of

oo 7
“ a matrix in I'(2). The

(o0 b
“‘)1,2 d
new branch is given by &1 = awi + bwa, &2 = cwy + dwq, and for any v € € there exists v
such that @1 4+ v = k(w; + Pws), where the constant k can be factored out in y(z). In

) along o - 71, which is homotopic to vol. Let A =

fact v = _’fc";_‘_b ,i.e. U is obtained from v by the transformation induced by AT Ve I'(2).
This concludes the proof of theorem. QED

8.3. Chazy solutions and symmetries of PVIy equation

The PVI, for 4 = } equation is integrable (see [Pic]). Its solutions, the so-called
Picard solutions, will be examined in section 8. I call solutions of Picard type the solutions
of PVIx with any half-integer u, which are images via birational canonical transformations,
of Picard solutions. In this section, I will prove the main theorem of this third chapter. It
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claims, roughly speaking, that while the Picard solutions exhaust all the possible solutions
to PVI, for u = %, the Picard type ones do not exhaust all the possible solutions to PVIy
with half-integer u, p # % Indeed, Picard type solutions and Chazy solutions are distinct
and provide a complete set of solutions to PVIy with half-integer p, p # -;—

Theorem 8.2. i) Chazy solutions of PVIu are not Picard type and vice-versa. ii) Chazy
solutions and Picard type solutions exhaust all the possible solutions of PVIu with p+ % €

Z,p+# 5
Proof. It follows from Lemma 3.3 and the following

Lemma 8.3. The denominator Q(yz,y,z) never vanishes on Picard type solutions.

Proof. Consider any Picard solution y(z), i.e. any solution to PVIy with p = %, and
its correspondent Picard type solution ¢, obtained by the transformation (3.3). I want to
show that §(z) is such that Q(¢z,7,z) # 0. By straightforward computations, one obtains:

~ ~ 4 4
QWz,7,z) = (z —1)%2% (y —y® —ay2 +2%y2)" (v* —y — 2zya(y — 1) — zy2 + 2%y2)" -

4
(v -y —2yye (e — 1) — zyl + 2%y2) {yQ(y =1 =4y (y — 1)’y +

-1
+2(y — Dyyz(dey — 2 — 2 — 2y) —4(z — Dz(y — Dyy; + (¢ — 1)2$2yi} :
The above quantity can not vanish on any Picard solution y. In fact none of the polynomials
Q1 (ys,y,2) =y —y* —2y; + 2y,
Q2(yz,y,2) =y* —y — 22y (y — 1) — 2y} + 2%y,
Qa(ye,y,2) =y —y — 2yya (2 — 1) — 2yl + 2%y,

can vanish on any Picard solution. Indeed, eliminating y,, and y;, form the system

(1,1 N (1,1 LN -y
Yoz =3 y y—1 y-—z Ve r z—-1 y-—=z Ye 2z(z — 1)(y — z)’
Qi(yl‘ayrr: /-") = 07

d
EQz‘(yz,y,w,u) =0,

for each 1 = 1,2, 3, we obtain the following resultants:
(¢ - Da(z -9y - D%, (e-1%(e -9y -D%, (z-1)°(z-y)*y-1%"
which never vanish. This concludes the proof of the lemma. QED

Claim i) follows from the fact that, thanks to lemma 8.3, ¢) does not vanish on Picard
type solutions, while, thanks to lemma 3.3, it vanishes on Chazy solutions. Claim ii) is
due to the fact that, as shown in Lemma 2.3, Chazy solutions exhaust all the solutions to
PVI,__ L which satisfy the equation Q(ys,y,z, ) = 0 and from the fact that any solution
to PVI‘L:_% such that Q(yz,y,z,u) # 0 is necessarily of Picard type. In fact, being
Q(yz,y, z, 1) # 0, the birational canonical transformation (3.3) can be applied to y and it
gives rise to a solution to PVIy with p = %, i.e. to a Picard solution. This concludes the

proof of the theorem. QED
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9. PICARD SOLUTIONS.

In this section, I describe the two parameter family of solutions of PVI, _1 introduced by

Picard (sée [Pic]), their asymptotic behaviour and their monodromy. As an application I
classify all the algebraic solutions of PVIu for any half-integer p.

For the case p = 1/2, Picard (see [Pic]) produces the following family of elliptic
solutions:

z+1
y(z) = p(rriws + 1awaswi,wa) + 3 (9.1)

where wy »(z) are two linearly independent solutions of the Hypergeometric equation (3.6)
and vy o are two complex numbers such that 0 < Rewvip < 2. I chose wy 2(z) as in (8.8),
(8.9), with the branch cuts |arg(z)| < 7, |arg(l — 2)| < .

Remark 9.1. Picard and Chazy solutions obviously satisfy the Painlevé property. In-
deed, they are regular functions of wy (), which are analytic on the universal covering of

T\{0,1,00}.
Lemma 9.1. All the solutions to PVI,—, are of the form (9.1).
The proof is due to R. Fuchs (see [Fuchs] and [Man]).

Remark 9.2. The general solution obtained by Hitchin (see [Hit]) in terms of Jacobi
theta-functions in the case of PVI1 _1 1 s can be obtained from (9.1) via the birational

canonical transformation w = wywyw; described in [Okl1]. This transformation, differently
form ls, preserves the singular coordinates and is invertible on all the solutions of PVIy.

9.1 Asymptotic behaviour and monodromy of the Picard solutions. Here, I
describe the monodromy of the Picard solutions and show that, for any v1 2 € €*\{(0,0},
all the solutions (9.1) have asymptotic behaviour of algebraic type.

Theorem 9.1. The monodromy of the Picard solutions (9.1) is described by the action
of the group I'(2) on the parameters (v1,v2), i.e. given a branch y(z;v1,v2), all the other
branches of the same solutions are of the form y(z; D1, 0p) with

vi\ _[(a b vy
vh) T \e d)\wv )’
The proof is analogous to the one of Theorem 8.1.

Lemma 9.2. The solutions (9.1), for 112 € C\{(0,0)}, 0 < Revy3 < 2, have the
following asymptotic behaviour:

agz® (14 0(z%)), as z—0,
y(z) ~ { 1—ai(l—2)" (1+0((1 —2)%)), as T — 1, (9.2)
oozl (1+O0(z77)), as T — 00,
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where lo,l1,lo are given by

I vy, 1f Revy <1—Rews o vy, If Revi <1—Rewrs 93)

°- 2—vy, if Revy>1-—Reuw P 2—wvy, If Revi>1—Rewy ‘
and

_Jrva—, i Re(va —vi) < 1—Re(vy — 1) (9.4)

< 2-—(1/2—-1/1), if RG(V2~V1)>1-R6(I/2—V1) .

ao, a1, Geo are three non-zero complex numbers depending on vy 5 and € > 0 is small enough.

- Remark 9.3. The solutions (9.1), for 11 5 € ([2\{(0, 0)}, with Revy 9 > 2 or Revy o <0,
can be reduced to the previous case thanks to the periodicity of the Weierstrass p function.
In this way, I show that the solutions (9.1) have asymptotic behaviour of algebraic type
for any v1,2 € €*\{(0,0)}, and that the exponents I; have always real part in the interval

[0,1].

Proof of Lemma 9.2. First, let me analyze the asymptotic behaviour of y(z) as z — 0.
Observe that, as ¢ — 0 along any direction in the complex plane, the function 7(z), defined
by 7 = £2, has imaginary part that tends to infinity, while the real part remains limited.
In fact, for wy 5(z) defined in (8.8):

- 9(3,5,1,3)

’R‘F(%,%,l,

%) ~ —imlog|z| + arg(e ),
m

where, as z — 0, log|z| — —oo, while arg(z) remains bounded for any fixed branch.
This fact permits to use the formula of the Fourier expansion of the Welerstrass function

o(u,wr,wsy) (see [SG]):

2 2 O L2k 2 ‘
p(u,wr,wy) = — T s+ 271 Z g oy (1 — cos @> + 1——2—0302 (i) , (9.5)

1207 wi ot l1—g¢ w1 4wy 2wy

ZTK'LU’) )

where ¢ = exp(*=22) and u is such that

-—2Re( 2y < Re( ) < QRe(—) (9.6)

w1 zwl Wi
For u = viwy + vowa, (9.6) reads:
Imvy + RevyIm 7+ Imwvy + Re7| < 2Im 7,

that is always verified for ¢ — 0 along any direction in the complex plane, and |[Revz| < 2,
because, Im 7 — oo while Re 7 remains limited.
First, suppose that Revs # 0. In this case,

17wy mwsy g (l :
=ex with =222
4 p( Wi ) Wi F(% %




Then:

1TU

exp (—w~1—> = exp(invy) exp (vylog(z) + va(1 + O(z))) ~ explirvy + v2)z"(1 + O(z)),

and, for Revy > 0,

csc? (ﬂ> =— . 4 - ~ —4exp(invy)z"? + O(z*"?),
2wy exp (%}) + exp (—’—Z—l’i) -2
n? 1
~=-4+0
1202 3 + (m),

and

kq** kru 2k 2kl exp(—imkvi) ;.
B9 (1 —cos =) ~ (kz? s ANV e 1],
T (1 cos o ) (kz?* + O(z?*1)) 5 T + O(1)

As a consequence,
y(z) ~ —4exp(imvy)z”? —4dexp(—imvy)z> 2+ O (2372)+ 0 (a*722)+ 0 (27)+ O (z*2) .
This gives the required asymptotic behaviour around 0. For Rev; = 0, with Im v £ 0,

T 4z?(af(z) — 1) — o?
Y@~ T @) ale) — 1)

+0(a%),
where a(z) = exp(imv; + v2)z”? remains limited for z — 0 along any direction in the
complex plane and

4z?(a(z) — 1)* — o? exp(imvy + vg)z”?
a(z)(e(z) — 1) exp(imyy + vo)z¥2 — 1’

that gives the required asymptotic behaviour around 0 for lo = va. If v, = 0, then
TY

=7, and

y(z) ~ csc? (%) + O(=),
which is again the required asymptotic behaviour around 0 for lo = 0.
The asymptotic behaviour of y(z) as ¢ — 1 can be obtained observing that, as z — 1,

the chosen branch of the basis wy o is analytically continued to w&z) given by (8.9). As a

consequence
z+1

y(z) ~ tp (Vlwgl) n Uzwél))wgl)’wél))

and, with the change of variable £ = 1 — z, one obtains, for z — 0,

2—=z
o(e) =25 (el el ol ) =

2 — 2 :
22 (el + el o, ).
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Using the previously obtained asymptotic behaviour of y(z) around zero, one immediately
obtains the required asymptotic behaviour around 1 with /; given by (9.3). Analogous-
ly, one can obtain the required asymptotic behaviour around co and prove (9.4). This
concludes the proof of the lemma. QED

9.2. Chazy solutions as limit of Picard type solutions. For v; = vy = 0 the
Weierstrass p-function has a pole and the correspondent function y(z) does not exist.

Lemma 9.3. Chazy solutions of PVI,__1 can be obtained as the limit for vy 5 — 0, with

£2 = v, of the Picard type solution obtained via the symmetry (3.3) applied to (9.1), with
u prsand

[

The above result is not surprising, in fact, as observed above, Chazy solutions are
transformed, via the symmetry (3.3), to solutions of PVI,_1 which are identically equal
to oo.

Proof. Consider a solution y(z) of PVI,_1, y(z) given by the formula (9.1). Fix the ratio
% = v and let v; » — co. Since the Weierstrass function has a pole of order two in 0, one

has

1
. 9 _
V];_IEO vy(e) = (w1 + vws)?’
and
lim v?y'(z) = __
v >0 (w] + vwh)?’

and, applying the transformation (3.3) for u = % to y(z) given by (9.1), and taking the
limit as v12 — 0 with fixed ratio gff = v, one obtains exactly the formula (3.5). This
concludes the proof of the lemma. QED

10. GLOBAL STRUCTURE OF ALGEBRAIC SOLUTIONS FOR HALF IN-
TEGER VALUES OF .

Here, I classify all the algebraic solutions of PVIy, for any u + 3 € Z. The fact that
there is an infinite number of them was already known by [Pic]. I show that the algebraic
solutions of PVIu, for any p + % € Z a countable set and are all of Picard type. They
are in one-to-one correspondence with the presentations of the finite irreducible reflection
groups in the plane.
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Lemma 10.1. For any v1,v, € Q, the (9.1) solution of PVI,_. is algebraic. Algebraic
solutions form a countable set. They are parameterized by pairs of positive coprime integers

(M, N) defined as follows: if v; = ?;f# for some pairs of coprime integers (pi, ¢i), * = 1,2,

N is the smallest common multiple of q1, g2 and M is the largest common divisor of P;TN

and 22N
q2

Proof. For any vi,vs € Q, by the use of the addition and bisection formulae for the
Weierstrass function, it is easy to see that p(v1w1 + vows,ws,wy) is an algebraic expression
of the invariants ey, €2, €3, which are given by

z+1 z+1 z+1
3 ) €y = T — €3 = — .

61:1———

This shows that for any v1, v € Q, y(z) is an algebraic function of z. It remains to show
that two branches y(z,v1,v2) and y(z, 71, 72) are branches of the same solution (up to the
transformations z =+ 1 —z,y -+ 1—yand z — 315—, y — 2) if and only if the correspondent
integers (M, N) and (M, N), defined as in the statement of the theorem, coincide. Indeed,
I show that the ratio % is preserved under the analytic continuation. Due to Theorem 4,
the analytic continuation of a solution y(z) is described by the action of I'(2) on vy, vs,
that preserves the ratio %— Indeed, we can write v; = ml—% and vy = mg %, where
myz € Z and (m1,mq) = 1, i.e. my and mqy are coprime integers. Consider a matrix

(CCL b> € I'(2). Then the new values of the parameters are given by

d
171 . a b 141 _ ‘_[1_[[_ ami + me . % ’ﬁ’Ll
o] \Ne d)\vy) N \emi+dmy) N\ )’
where (f1,,) = 1 because ab — cd = 1, and then (a,¢) = (a,d) = (b,c) = (b,d) = 1. |
Now, consider any two numbers v; = 777,1-1}\4;~ and vg = Mg %, for some given (M, V)

and (my,mq) = 1. There are three possibilities. 1) m1 and m; are odd integers. Then there

existsa(ccl Z)El"gsuchthata+b:m1,c+d=m2. In fact, for any ?: Z eIy,

the numbers a + b and ¢ + d are odd and coprime. As a consequence, the branch specified
by r1 = ml% and vy = mg%, belongs to the same solution as the branch specified by

v = % = vy. ii) my is even and my is odd. Then there exists a (Ccl Z) € I'; such that
b = m; and d = m4. As a consequence, the branch specified by v = m, —% and v = mz%,
belongs to the same solution as the branch specified by v1 = 0 and 12 = % ii) my is odd

and ms is even. Then there exists a (i Z) € I'; such that ¢ = m; and ¢ = mg. As

a consequence, the branch specified by v, = ml% and v, = ma %, belongs to the same
solution as the branch speciﬁéd by v1 = —%{— and v, = 0. It easy to see that the above three
cases are related one to the other by the transformationsz — 1—z,y - 1—y and z — %,
y — £. This concludes the proof of the lemma. QED
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Theorem 10.1. For any half-integer p, PVI, admits a numerable family of algebraic
solutions. All the algebraic solutions are of Picard type for some v1,v2 € Q, 0 < vy < 2.

Proof. The algebraic solutions are preserved under the transformations (3.3). So we
obtain an infinite family of algebraic solutions PVI, for any half-integer u. Moreover
Chazy solutions are transcendental, so the algebraic solutions can only be of Picard type.

QED

For example, we can recover the solutions found in [Dub], (E.34a), (E.36) and (E.37). '
In fact they are mapped by the symmetry (3.3), respectively to

(s —1)° (s—1°(B+s)
= = 10.1
L P SR A P | PRI ER (10-)
that is a Picard solution with N =3 and M =2, to
2+ _ (s +2)?
y=-—F—  T= (10.2)
that is a Picard solution with N = 2, i.e. y(z) =z + /(z — 1)z, and to
3(3—1t)(1+1) (3—1)3(1+1)
Gror ° TT -G ie (10-3)

that is a Picard solution with N = 3, M = 1. In section 10.2, I will show how these
solutions correspond to the affine Weyl groups Az, B2 and Gj respectively and show that
all the other algebraic solutions correspond to different presentations of the dihedral group.

10.1. Algebraic solutions and monodromy data

Lemma 10.2. For y(z) of the form (9.1), the correspondent monodromy matrices are

given by (4.8), were (z1,z2,23) are given by z; = —2 cos nr;, with
v vy — v
T'1=‘V§‘, 7«2—_—1-31’ ry = 122, for vy > v,
(10.4)
V2 vy -~ a— .
7«1:1_5_, 7"2:5—’ 7’3: 2 5 fOI‘ 1/1 <’/2-
Viceversa, any algebraic solution with correspondent monodromy matrices given by (4.8),
with some (21,2, 23) of the form z; = —2cosnr;, is of Picard type with constants (v, v2)
given by:
vV = 27‘2, Vg = 27"1. (105)

The action of the braid group Bj (pure braid group Ps) on (21,232, 23) corresponds to the
action of I' (I'(2)) on (v1,v2).

Proof. The relation between the parameters vy 3 and the exponents (lo,l1,le0) of the
asymptotic behaviour was derived in lemma 9.2. The relation (6.8) between the numbers
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(lo, 11,100 and the angles (r1,7q,73) was proved in Theorem 6.1, for the case 2i ¢ Z. This
relation is
2r; for 0< l
L A (10.6)
2 —2r; for 2 < 1.
This result can be extended to the case of u = % Indeed, the proof follows the same
strategy as Section 6. Lemmas 6.5 and 6.6 are still valid for half-integer ¢ and the procedure
of reduction to the Gauss hypergeometric equation is the same. The only diflerence appears
in the computation of the connection matrices of the system 5. In fact, for p = 2, the
fundamental matrix at infinity is a Jordan block and has logarithmic type behaviour. The
computations of the analytic continuation can be performed following the formulae of [Nor]
and the connection matrices are computed as above. Then, using (10.6), (9.3) and (9.4),
one can show (10.4), for v; # 0.

Let us suppose v; = 0 for some 1, for example v; = 0, i.e. lo = 0. Then v; # 0, and
I1 =le,log=0. ITcan take ro =1 —r3 = 71 Since rq + 79 + r3 ='1, r1 must be 0, and the
lemma. is proved also for vy = 0.

The fact that the action of the braid group Bs (pure brald group P;) on (z1,%2,%3)
corresponds to the action of I' (I'(2)) on (v1,13) is easily derived by the formulae (10.4),
(10.5) relating (v1,v2) and the angles, and by the formula (5.2). QED

10.2. Algebraic solutions and finite reflection groups.

In Section 5.3, the above parameterization of the monodromy data was reformulated in
terms of triples of generating reflections Ry, Rz, Rs of some reflection group G with Gram
matrix given by (5.20). Observe that, for half-integer values of y1, g is always degenerate:

detg =8 — 2(1:% + :z:% + m§ — T1T9T3) = 8cos? mu = 0,

then the normal vectors (e, ez, e3) are linearly dependent and the group G is reducible.
Lemma 5.5 is still valid, i.e. the groups generated by the reflections (Ri, Rz, R3) and
(Ri1, Ry, R3)? coincide for any 8 € Bs.

Consider any algebraic solution. According to lemma 10.1, it is specified by a couple of
coprime integers 0 < M < N, and, thanks to the lemma 10.2, the correspondent triangles
belong to the orbit of (0, QA]/[V, 1— ) The correspondent vectors (ey, ez, e3) are pairwise
linearly independent and the reﬂectlon group G reduces to the product of three reflection
groups acting on the plane, with Gram matrices:

(2 =2 . 2 —2cos 4r o . 2 2 cos Z,\,/IZ\}T
g1 = (-—2 2 >’ 92 '_< 2 cos 4T SN 2 )’ 9= (ZCOSZQV"]\}r 2 ’

respectively. Let

M
5 if M is even,

if M isodd.

M =

. {N if M iseven, -
2N if M isodd, M
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The matrix g; corresponds to the group Zy and matrices g; and gz are Gram matrices
of presentations of the dihedral group D(N ) specified by the numbers M and N — M
respectively. These presentations g and g3 correspond to realizations of the dihedral
group as symmetry group of a regular star-polygon with N edges and density M and
hatN — M respectively. Observe that these two regular star-polygons coincide. Resuming,
I proved the following

Theorem 10.2. The algebraic solutions of PVIy with any half-integer u, are in one to
one correspondence with regular polygons or star-polygons in the plane.

Remark 10.1. The algebraic solutions (10.1), (10.2) and (10.3) correspondent to the
values N = 3 and M =2, N =4 and M =1, N = 3 and M = 1 respectively, have
reflection groups G which coincide with the affine extensions of Ay, By and G5 respectively
(I thank D. Guzzetti for drawing this point to my attention).
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