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Introduction

In the last two decades much progress has been achieved in non-perturbative two-dimensional
Quantum Field Theory (QFT), which is currently one of the most advanced sectors in the
theoretical frontiers of elementary particle physics. Exactly solvable two-dimensional models
have indeed attracted much attention and research work for several reasons: first of all these
models represent interesting laboratories for the investigation of general properties of QFT since
the solution of non-trivial interacting theories can be obtained exactly in 2D; secondly, they can
describe physical systems which are effectively two—dimensional and surface lattice statistical
models in the continuum limit; finally, two—dimensional QFT represents the basic ingredient for
the advanced and rapidly developing research sector of string theory.

The exact solution of a large number of interacting models in relativistic quantum field
theory has been made possible in two dimensions by the existence of theories possessing an
infinite number of integrals of motions which are for this reason called integrable models. For
massive integrable models which are best approached in relativistic scattering theory, namely
in the Lehmann-Symanzik-Zimmermann (LSZ) formalism, the presence of these symmetries
drastically simplifies the structure of the scattering which is then described by what is called
a factorized S-matriz. This feature was first observed long ago in non-relativistic scattering
of spin—waves [15] and of particles interacting through a §—function pair potential [12, 62] and
is typically obtained by the inverse scattering method in the soliton solutions of integrable
non-linear classical field equations [43, 91, 82, 1, 63]. The presence of an infinite number of
commuting integrals of motion also assures the elasticity of the scattering and the absence
of particle production [56, 6]. The severe constraints of factorizability and elasticity of the
S-matrix can be used to exactly solve massive integrable models in the framework of the so-
called bootstrap approach. The spectacular results obtained in [90] for the S—matrices of the

sine-Gordon, Gross-Neveu and O(NN)-sigma models, were followed by a proliferation of exact



results for a large number of factorized scattering theories [69, 38, 19, 40, 80, 23, 16]. The old
S-matrix bootstrap approach [39, 21, 34], which failed in the 50’s in the attempt to explain
the phenomenology of hadrons by pure assumptions of consistency between the mass spectrum
of particles and the analytic structure of the S—matrix, has found therefore an unexpectedly
suitable and rich playground in two—dimensional integrable models. Here, the above assumptions
show up as cubic Yang—Baxter relations and bootstrap consistency equations which impose very
restrictive conditions on the scattering amplitudes and often permit their solution. Notice that
the exact solution of an integrable massive model is said to be obtained once the S—matrix is
known. The attention is therefore focused on the scattering on—shell data rather than on the
correlation functions and the development of the theory of form factors [50, 13, 78] was indeed
strongly motivated by the task of recovering correlation functions out of exact S—matrices.

A fundamental breakthrough in the understanding of two—dimensional physics was achieved
with the solution of scaling invariant Conformal Field Theories (CFT) [11, 49] which describe
the fixed points of the renormalization group flow in the space of two-dimensional QFT’s. The
possibility of solving CFT’s strongly relies on the fact that the integrability of these models
entails a very rigid algebraic structure which permits the full characterization of the Hilbert
space of the theories and of their operatorial space. This in turn leads to a systematic way
of exactly calculating the correlation functions of the theory as solutions of linear differential
equations [33]. Therefore, contrary to the case of massive integrable models, in CFT one has
direct access to the off-shell data. In applications to statistical field theory this allows to exactly
compute the correlation functions of scaling fields at criticality.

The solution of CFT’s, however, has not only allowed the full characterization of fixed
points in the renormalization group but it has also permitted the description of the flows away
from criticality by means of relevant deformations of conformal minimal models [84]. A very
important class of integrable models was then found by Zamolodchikov in the beautiful paper
[86], where it was proved that some particular deformations of conformal minimal models, which
spoil the scale invariance of the theory, still preserve an infinite number of integrals of motion.
These integrable deformed CFT’s, are of utmost interest in statistical field theory since they
describe the scaling regions around the fixed points of important statistical mechanical models.
The relevant field which deforms the conformal action of the model triggers a RG flow which
drives the system either in a massive regime or to another fixed point. In the former case

the correlation length of the model becomes finite, whereas in the latter it remains infinite



also off-criticality due to the presence of massless excitations (see for instance (89]). A large
number of statistical models described by deformed CFT’s were exactly solved by means of
bootstrap techniques, among which the magnetic deformation of the Ising model at the critical
temperature [38]. The complete classification of the S—matrices in integrable deformations of
conformal minimal models was finally given in a series of papers [76, 71, 14, 77, 35, 81], where
these theories were shown to be described by quantum group reductions of the sine-Gordon (sG)
and of the Zhiber-Mihailov-Shabat (ZMS) models at specific values of their coupling constant.

The solution of a massive integrable model given by the exact computation of the S—matrix
amplitudes is however often unsatisfactory especially for the deformed CFT’s which have their
richest applications in the context of statistical field theory. For these models one is in fact mostly
interested in the computation of the off-shell data, i.e. the correlators of local fields, as well as
in the full description of the operatorial space of the model itself. All this information is indeed
supposed to be encoded, in principle, in the S—-matrix of a scattering theory and the method
which has proved to be most effective for recovering off-shell data in the framework of the S—
matrix bootstrap approach is the theory of form factors. The latter are matrix elements of local
fields between asymptotic states of the scattering theory and therefore their knowledge enables
to compute correlators as spectral sums over a basis of the Fock space. This strategy, originally
proposed in [50, 13], was successively developed in a series of papers [74, 75, 51, 78, 83] where it
was shown that, in the case of factorized scattering, the requirements of unitarity, analiticity and
locality permit to exactly compute form factors as solutions of a system of functional equations.
The validity of the form factors approach has found remarkable confirmations in the solution of
the off-shell dynamics of many important integrable systems (see e.g. [88, 83, 20, 26, 27, 47,
3, 29, 4, 10]). The bootstrap form factor approach is also a suitable tool for investigating the
operatorial spectrum of the integrable model, since the space of form factor solutions is supposed
to give a representation of the space of local operators of a theory [19, 78, 55, 53]. A non-trivial
problem is however represented by the classification of the form factors solutions of a specific
model and by their correct identification with the local operators they define. Said in another
way, it is not in general difficult, at least in the framework of diagonal scattering theories, to
find the general solution of the form factor equations in a given model once the S—matrix is
known, but it is a challenging question how to pick, out of these solutions, the one relative to
some given operator.

This thesis is mainly devoted to the computation of form factors in deformations of CFT’s



and to the study of the off-shell behaviour of statistical models in the scaling limit of their critical
points. In particular, this work can be read as a quest for more and more powerful techniques
aiming to identify the whole spectrum of scaling fields among the form factor solutions of a
massive integrable deformation.

The work is organized as follows.

In Chapter 1 we review the basic ideas which permit to compute an exact factorizable S—
matrix of an integrable model by exploiting the presence of an infinite number of conserved
charges. We also illustrate some aspects of Affine Toda Field Theories which turn out to be
strictly related to deformations of CFT’s.

In Chapter 2 we discuss the basic equations which have to be satisfied by the form factors of
a factorizable scattering theory once its S—matrix is known. Then we show how it is possible to
find a suitable parameterization of form factors which enables us to convert the above system
of functional equations into an algebraic system in a finite number of parameters in the case
of diagonal scattering theories. This result is obtained after a careful analysis of the nature of
poles in the S—matrix and of the corresponding singularities induced on the matrix elements of
local operators [50, 26, 3, 4]. -

Chapter 3 is devoted to specific applications of the form factor bootstrap. approach to the case
of two interesting statistical models, namely the thermal deformations of the Tricritical points of
the Ising model (TIM) and of the three-state Potts model (TPM). In these applications, due to
the identification between the trace of the stress—energy tensor and the energy density operator
¢(z) responsible of the deformation, one can easily identify the form factors of this operator in
virtue of the conservation of the stress—energy tensor itself. Then, the correlators (e(z)e(y)) are
obtained through the spectral representation in both models [3].

A thorough analysis of the form factors of all the scaling primary fields in different deforma-
tions of CFT’s is instead obtained for some non-unitary minimal models in Chapter 4. In this
case, the selection of these solutions in the space of form factors of the models is achieved by
means of particular cluster equations as put forward in [30]. This result, obtained in [4], permits
to compute the correlators among all the scaling primary fields in any possible relevant RG flow
around the critical points of the theories analyzed.

The central result of the thesis is illustrated in Chapter 5, where we obtain the form factors of
exponential operators in the complex coupling constant version of the ZMS model which is also

called the Bullough-Dodd model (BD) [2]. This work, which parallels the results of [55] obtained



for the sinh~Gordon model, enables us to systematically identify, after analytical continuation
of the coupling constant, the form factors of relevant scaling primaries in a large and very rich
class of theories obtained as reductions of the ZMS model. The cluster property of the solutions
is also in this case the characterizing feature which is strongly used for selecting the scaling fields
of the integrable model. Finally, some important nonperturbative results of the Lagrangian BD
model are obtained, among which the exact computation of its wave-function renormalization

constant.
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Chapter 1

Two Dimensional Massive Integrable

Models

In this Chapter we survey the main results of the theory of S—matrix in two dimensional inte-
grable models and discuss the restrictions imposed on the scattering theory by the presence of
an integrable structure. The main consequences of integrability are represented by the factor-
ization and elasticity of the S—matrix; due to this major simplification of the scattering, the old
idea of bootstrap (namely the requirement of self-consistency between the singularities of the
scattering amplitudes and the observed mass spectrum) provides the further dynamical input

which is often sufficient to determine the exact S—matrix of an integrable model.

1.1 Factorized S—Matrices

Let us discuss the scattering theory of a two—dimensional relativistic QFT with a spectrum
of asymptotic states containing a finite number of different particles of mass m,. We denote
with |Ag(p,)) the asymptotic on-shell state of a particle of species a and momentum p,, where

p* p, = mZ. The Fock space of the theory is spanned by the complete basis of in— (out-) states

‘Aal (pé.‘) Aa2 (pg) Aan(pﬁ»zn (out) (111)

and the two in— and out— spaces are related by a unitary transformation realized by the S-

matrix. We introduce the convenient on-shell parameterization of momenta given in terms of
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the rapidity variable

p° = mcoshd,

(1.1.2)

p! = msinh§.

An integrable model is a theory which has infinitely many integrals of motion P, labelled by

their spin s
Ps = /(Ts+1dz + 0,-1d2), (1.1.3)

where (z, Z) are standard complex coordinates on the plane. In the above expression the charges
Ps are assumed to be integrals of some local densities Ts+1 and ©,_; satisfying the conservation

equation
5Ts+1 - 695_1 . (114)

The asymptotic states |A4,(0)) are eigenvectors with respect to the action of the conserved

charges
PulAa(6)) = w3(6) | 4a(60)), (1.1.5)
and Lorentz invariance imposes the eigenvalues to be of the form
w?(h) = x% e, (1.1.6)

where x§ are constants. For the lowest value of the spin s = 1 these constants are nothing
but the masses m, of the particles since P; is the right moving component of the conserved
momentum.

If we apply the conserved charges on a multiparticle asymptotic state, the action must be

additive because of the locality of the densities T.; and ©,_;:
71
Po|Aa (61) Aay (8) - - Ay (6n)) = > wl(6:)] Auy (61) Aay (62) - . . A (62)) - (1.1.7)
i=1

Requiring the conservation of the charges P, in a process connecting the states

|40, (01) Aay (02) - - Ay (6n))in — [Ab, (01) Aby (62) - - - A (7)) out » (1.1.8)

one obtains an infinite number of equations
n m
PR AEDINEICAR (1.1.9)
i=1 =1

12



on the finite number of unknown momenta. These equations will be only satisfied in general if
n = m and the set of initial momenta {py, p2,..., P} is equal to the set of outgoing momenta
{p},Ph, ..., Pl }, so, in particular, a necessary condition is that m = n. This major simplifi-
cation in the scattering theory of integrable models implies therefore the absence of particles
production and in particular the conservation in a process of the number of particles with a given
mass. Moreover, the only possibility for two different particles to exchange their momenta in a
scattering process occurs when they carry different quantum numbers but the same eigenvalues
X% with respect to the conserved charges P,. In those models in which all different particles in
the spectrum are distinguished by their charges x%, the scattering is said to be diagonal. In this
case, every incoming A, (6) particle in the scattering process emerges in the out-state with the
same momentum p(6).

The second drastic simplification on the scattering theory entailed by the integrable structure
of a two—dimensional QFT is given by the so—called star-triangle or Yang-Barter equations
which state that the three—particle scattering amplitude must factorize into the product of two—

particles amplitudes namely, in an obvious notation

S(123) = S(12) S(13) $(23) = S(23) S(13) S(12). (1.1.10)

This can be understood in the following way: consider the action of the operators ' 2%+ on

the wave packets of incoming states in a scattering process. It is easy to realize that for s # 1
these operators will shift the particle trajectories by a momentum dependent quantity and will
in general reshuffle the order of collisions of well separated wave packets. Since the charges
P commute with the S—matrix, the amplitudes of the two processes depicted in Figure 1.1 —
which is the pictorial version of (1.1.10) — must coincide. This result can be generalized to the
generic n—particle scattering amplitude and leads to a completely factorized S-matriz implying
that the scattering amplitude of a n—particle process will be in general completely factorized
into n(n — 1)/2 two—particle amplitudes. The whole S—matrix will be therefore encoded just
in its two—particle elements [62, 6, 56, 73, 48]. Notice that even though the second equality
in eq. (1.1.10) is trivially satisfied in the case of diagonal scattering — where the two—particle
amplitudes are given by ordinary functions — the factorization of the S-matrix is however a
general result. In the case of non—diagonal scattering, the Yang-Baxter equations will give a
very restrictive set of cubic relations on the two-particle amplitudes S(ij).

In two dimensions the kinematics itself of scattering theory is very simplified and this intro-

13



Figure 1.1:

duces further simplifications in the structure of the S—matrix. In a two—particle process there is

just one independent relativistic invariant which can be taken to be the Mandelstam variable s
5= (pa+pp)? = m2 +m? + 2mymy cosh b, . (1.1.11)

The amplitude of a two-particle process is indeed an analytic function of the variable s with
two branch cuts on the real axis for s < (m, — my)? and s > (mg + mp)?. The discussion
of the analytic properties is however simplified in the rapidity notation. In order to do so, we
introduce the following convenient ordering prescription to define in— and out- asymptotic states:
the state |Aq, (01) Aq,(02) - . . Aa, (6)) is understood to be a in— (out-) stateif §; > 6y > --- > 0,
(01 < 83 < ---< 6,). The two particle scattering will be then described by

|4a(61) Ay(82)) = SEE (61 — 62) |Aa(62) Ac(61)), (1.1.12)

which defines the two-particle amplitude S°(6) as a function of the rapidity difference 61, =
01 — 05. The physical complex s plane can be mapped into the “physical strip” of rapidity
0 < Im# < . The function S°¢(6) is a meromorphic function of the rapidity difference with
poles located on the imaginary axis of the physical strip Re = 0 corresponding to the bound
state poles of the real axis is the s—plane.

In the language of rapidities, the usual requirements of unitarity and crossing invariance are

simply translated into
el (9)SeH(—0) = 826¢ (1.1.13)

14



S (0) = Sgyim — 9) (1.1.14)

where @ denotes the charge conjugated of a. These equations therefore induce further kinematical
restrictions on the possible form of the S—matrix.

Factorization and elasticity of the scattering can be elegantly rewritten in terms of an asso-
ciative algebra, the so—called Faddeev-Zamolodchikov algebra of creation and annihilation oper-
ators ZI(H) and Z, (). Creation operators acting on the vacuum of the Fock space produce the

asymptotic states
|Aa, (61) - - - Aa, (82)) = Z1 (1) ... 2} (8,)]0), (1.1.15)

which are in— or out— states according to the abovementioned ordering prescription. The algebra
of creation operators has commutation relations dictated by the S-matrix as it turns out form

eq. (1.1.12):
Z1(61) 71 (9,) = S5 (01 - 02) Z1(62) Z1(81) - (1.1.16)

In this algebraic language, the unitarity equations (1.1.13) turn out to be nothing but the
compatibility equations of the algebra itself when the commutation relations are applied twice.
The Yang-Baxter equations (1.1.10) are instead the necessary equations which come from the
associativity of the algebra. They describe the two possible ways of exchanging the elements of
the product ZI, (6) ZZ2(92) Z1,(63) in order to obtain le (63) 7%, (62) ARCAE

The final powerful idea which proves successful for the exact determination of the S—matrix
in many integrable models is a principle based on the correspondence assumed to hold between
the analytic nature of the S—matrix and the masses of the asymptotic states of the theory.
In the physical strip, the S-matrix exhibits poles on the imaginary axis Ref = 0. The so-
called bootstrap principle consists in imposing that all these poles must be explained in terms
of multiparticle exchange processes in which the intermediate bound states are identified with
asymptotic particles of the spectrum. In particular, simple poles are typically associated to the

tree diagram (see Figure 1.2) of a bound state production either in the s or in the t—channel L

If we consider an s—channel process at § = i u¢,, the S—matrix will display a simple pole

ing fl_é
—= 1.1.17
g —ius,’ ( )

S5 (6) =

1'We will see in Section 2.1.2 that in the case of S—matrices with zeros, a simple pole can be described also by

multi-loop scattering diagrams.

15
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Figure 1.2: Bound state diagrams in the s and t-channels.

at the fusion angle § = iug,. The constants [, are the on-shell three—point coupling of the
production @b — c. If we rely on the bootstrap principle, we are forced to introduce in the

spectrum of the model a particle of mass

2 _
o =

m2 = m?2 + mZ 4 2m, my, cosuS,, (1.1.18)

which plays the role of the intermediate state of the process. Moreover, the same reasoning
adopted to obtain the Yang-Baxter equations then shows that the following bootstrap consistency

equations must hold (see Figure 1.3)

Figure 1.3:
T8 S%(8) = IS S¥(0 — iwly) S0 + itly) , (1.1.19)
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which impose severe restrictions on the S-matrix also in the case of diagonal scattering when

they assume the form
Sub(8) = Sae(6 — il ) Say(0+ i0%) . (1.1.20)

Here the diagonal notation Sqp = S;‘g is understood and @ = © — u. These equations entail a
very rigid consistency structure among different elements of the S—matrix relating the locations
of their poles. Moreover, starting from the correct conjecture of a single S—matrix element
Saa(f) relative to the fundamental particle a of the model, one can in many cases reconstruct
the whole spectrum of the theory and the complete S—matrix by simply analyzing the poles of
the amplitudes obtained by repeated use of (1.1.20). When all the poles of the S—matrix are
consistent with the values of the masses of the particles already introduced in the spectrum,
the bootstrap is said to be closed. Thanks to the bootstrap approach, many important cases of
S—matrices of two—dimensional integrable models have been solved exactly and a wide literature

on the subject is available [90, 86, 67].

1.1.1 Diagonal Scattering

In this thesis we will analyze models in which all the particles of the spectrum are distinguished
by their eigenvalues x? with respect to the action of the conserved charges.; We will therefore
restrict our attention to the case of diagonal scattering. Under this assumption, major sim-
plifications occur in the general form of the S—matrix two—particle amplitudes: in particular

unitarity and crossing invariance equations (1.1.13) and (1.1.14) become

Sus(8) Sap(—0) =1, (1.1.21)

Sag(e) = Sab(g) = Sab(iﬂ' - 0) , (1.1.22)
which in turn imply that the S—matrix is a 2mé periodic function of the rapidity #. One can
show [66] under very general assumptions that the most general S—matrix in the diagonal case
must be of the form

Su(®) = ] 2=(6), (1.1.23)

a€Agp
where the building block functions s, are given by
__sinh $(0 +iar)

" sinh 1(0 —iow)

(1.1.24)

Sa
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The indices o of the set A, are real values in the interval —1 < @ < 1. The functions 54(0)
introduce poles in the physical strip of the rapidity at = iar if & > 0 and zeros at § = —ianr
if & < 0. The positive integers p, therefore record the multiplicity of each pole and zero.

In particular, in the case of nondegenerate spectrum, when all the particles have different
masses and are for this reason self-conjugated, the poles of the S—matrix are placed at crossing

symmetric positions on the imaginary axis of the physical strip since

Sab(0) = Sap(im — 6) . (1.1.25)
The most general solution can be written in this case as

Su(0)= ] f2=(0), (1.1.26)

O‘E'Aab

with the crossing invariant building blocks f, () given by

_ tanh £(6 + ian)

Jal6) = fia(f) = =3 6 —am) ~ %) 51-al0) (1.1.27)

Every function f, () introduces, in the S—matrix amplitude, a couple of poles or zeros at crossing
invariant locations 6 = ira, ir(1—a) or § = —irq, ir(1+ a) respectively, depending whether

is positive or negative.
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1.2 Affine Toda Field Theories

A rich class of two dimensional massive integrable models is represented by the so—called Affine
Toda Field Theories (ATFT). For this class of models the presence of an integrable structure
related to an infinite number of integrals of motion has been established at the classical level
in [65, 70]. These models allow a Lagrangian description of the integrable deformations of
conformal minimal models [36, 46] and have been the subject of a wide investigation in recent
years [67]. In particular, the complete classification of the exact S—-matrices of these models has
been given at least for the simply-laced ATFT’s and their relationship with the S-matrices of
deformations of CFT has been clarified [16, 22].

In this Section we briefly review some aspects of ATFT’s which are most relevant for the
connection to deformations of minimal conformal models. The “fundamental” agl) and agz) single
boson ATFT’s will be discussed in particular and the relationship of these models with integrable
deformations of CFT will be examined in the framework of Complex Liouville Theory. We will
see that these two models can be considered as the “parents” of all integrable deformations of
CFT’s: indeed, the full classification of the S—matrices of the latter has been given by reductions
of the complex coupled version of the above ATFT’s [71, 77].

The construction of an Affine Toda Field Theory is based on a simple Lie algebra G of rank
r. The Lagrangian density of the model contains r bosonic fields »® and is given by

10 M2 r
L=53 (0.9 - 7 > {exp (ﬁzaé‘ @“) - 1} : (1.2.28)
a=1 =0 a=1
where {o;} is a basis of simple roots of G for 4 = 1...r, M is a mass scale and J is a real
dimensionless coupling constant. The vector ap is an extra root chosen in such a way that the
inner products among the extended system of roots are described by one of the (twisted or
untwisted) Affine Dynkin Diagrams. The addition of this extra root gives rise to a potential
endowed with a minimum at finite value of the fields and is necessary in order to obtain a
massive model. In the case of untwisted ATFT’s, ap is the negative of the highest root of G. In

general it is given by
o = — Zqi a; , (1.2.29)
=1

where the integers ¢; are typical of the algebra G (go in eq. (1.2.28) is chosen to be one). We

will normalize the long roots in order to have square length ||a;]|* = 2. We also define the two
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following integer quantities

h=> g, (1.2.30)

=0

and
h=1 T g ||ail [, (1.2.31)
2 =0

which are equal in the case of simply-laced algebras. The index A is the Coxeter number of G
in the case of untwisted algebras.

Expanding the potential of the model

1 . 1 )
V(p)= 5> mbe™e + 5 > fo0ehet (1-2.32)
ab “abe
one obtains the bare mass matrix
r
mZy=M?) gofal, (1.2.33)
1=0
and the three point coupling
,
fe =028 " giafalal. (1.2.34)
1=0

The eigenvalues of the bare mass matrix are proportional to the components of the Perron—
Frobenius vector of the Cartan matrix of the algebra G. The renormalization procedure needed
in order to render the theory finite is extremely simple because of the peculiar multiplicative
renormalization of exponential operators in two-dimensional QFT. It amounts to replacing nor-

mal ordered exponential operators in the Lagrangian density (1.2.28)
ﬁ2 a2
a, a a, .a A L a, .a
exp (8 o) —viexp (Baf):= (5 exp (8 aly") . (1.2.35)
In the above expression A is an ultraviolet cutoff and u an arbitrary subtraction mass scale
introduced by the counterterm of the only primitively divergent one—particle irreducible diagram

of the theory, namely the one-loop tadpole diagram of Figure 1.4. The renormalization procedure

shifts the minimum of the potential V' (¢) from ¢ = 0 to the value

. B (A) : h 1
o e P 2 al1-92 , 1.2.36
LA A 2 h Ta2 (:2:56)

=1

20



Figure 1.4:

which vanishes for simply-laced ATFT’s. After shifting the field p(z) — ¢(z) + ¢, one can see
that the above renormalization procedure corresponds to a simple multiplicative redefinition of

the mass scale of the theory

-%(})

M? — M? (%) : (1.2.37)

5
>l

in the Lagrangian density (1.2.28). Therefore, the mass ratios of the spectrum of the theory is
renormalization invariant. It turns out that the spectrum is robust also to quantum corrections
in the case of simply-laced ATFT’s. From the knowledge of the mass ratios of the spectrum of
the theory, the possibility of deriving the exact S—matrix has been fully achieved in ref.’s (16, 22]
where suitable conjectures prove to give the right answer which is perfectly consistent with the
bootstrap principle. For these theories in the case of real coupling constant §, the bootstrap is
indeed closed by r scalar massive particles whose mass ratios are given by the components of
the Perron—Frobenius eigenvector of the Cartan matrix of G. This is opposite to what happens
in the complex coupling ATFT’s where the spectrum of the models has a much richer structure

consisting in general of both scalar particles and solitons.

1.2.1 Relationship between agl) and agz) ATFT’s and Integrable Deformations

of Minimal Models
(1)

We will consider in detail the real coupling a; ' and agz) ATFT’s which are also known as the
sinh-Gordon (shG) and Bullough-Dodd (BD) model, respectively. These are known to be the
only? 2D massive integrable models which involve a single bosonic field ¢. In fact, starting from
a single boson massive theory with a ¢* or ¢® interaction term and imposing at tree level the

necessary condition for integrability that the production of particles in 2 — n > 2 processes

2Together with the sine-Gordon model which is the complex coupling version of the agl) ATFT.
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be forbidden, one can show that infinitely many counterterms in the Lagrangian are required
coinciding with the interaction terms of the sinh—-Gordon or Bullough-Dodd model respectively.
The sinh-Gordon model is defined by the agl) ATFT. The extended set of roots is given by

—oap = a1 = 1 and the Cartan Matrix is given by
Cij = . (1.2.38)

The Lagrangian density of the model can therefore be written as®

Lo md 5 -
L= 5 (Oup)” — 7 cosh(gy) , (1.2.39)

where the coupling costant is now g = v/28. The model possesses a Z, parity symmetry with
respect to ¢ — —¢ and the spectrum consists, for real values of g, of a single boson 4. The

exact S—matrix of the model [7]
Ssne (0, B) = f_5(8), (1.2.40)

is in this range free of poles, denoting the absence of bound states. The function f,(6) is defined

in (1.1.27) and B is the renormalized coupling constant of the model given by

Buals) = (ol (1.2.41)

The S—matrix displays a strong-weak coupling constant duality under g — 87 /g which is equiv-
alent to switching B — 2 — B.

The Bullough-Dodd (BD) model [32] is related to the Lie Algebra a{?). The extended set of

roots is given in this case by ag = —2v/2, a; = v/2 and the Cartan matrix is given by

2 -4
Cij = . (1.2.42)
-1 2
The Lagrangian is therefore given by
1 2
L=3 (Bup) - 6%—‘; (269¢ + ¢7%0%) | (1.2.43)

where again g = /2. Contrary to the case of the sinh—~Gordon model, the BD model has a

non-vanishing three-point coupling which is responsible for the presence of bound states. The

®Here and in the following, normal ordering of exponentials is understood.
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spectrum of the model is still given by a single bosonic excitation A which appears however as
a bound state of itself in the scattering process of two particles. Indeed, the exact S—matrix of

the model given by [7]

Spp(8, B) = f2(0) fo=2(0) f_2(9), (1.2.44)

displays, in the physical strip 0 < Im§ < , only one simple pole at § = 271/3 which signals

the presence of the particle A as a bound state of itself. Also the S-matrix of the BD model

displays the weak-strong duality B —+ 2 — B where in this case the renormalized coupling B is

given by

_ g/
1+ g%/4m”

The two abovementioned shG and BD models are of utmost interest for their connection to

Bap(9) (1.2.45)

integrable deformations of minimal conformal models. Let’s recall that Zamolodchikov proved
the integrability of deformations of CFT’s obtained by the addition to the conformal action of

an interaction term
Aine = Acrr + A /d2$ o(z) , -(1.2.46)

where the field ®(z) is one of the primary fields ¢13, ¢1,2 or ¢2,1 of the conformal grid of the
minimal model. We will also discuss the possibility of certain ¢, s perturbations of non—unitary
minimal models which are also integrable (see for instance [54]). A systematic description of
the S—matrices for all the possible deformations of minimal conformal models has been given
[76, 71, 14, 77] in terms of specific reductions of the complex coupling versions of the sinh—
Gordon and Bullough-Dodd models which are also referred to as the sine-Gordon and Zhiber—
Mihailov—Shabat (ZMS) models, respectively [92, 65]. In particular, the S—matrices of the ¢13
deformations of minimal models can be obtained as specific quantum group reductions of the
operator algebra of the sine-Gordon model at discrete values of its coupling constant [71]. The
S-matrices of the ¢y 2, ¢21 and also ¢15 integrable deformations, were instead obtained as
specific reductions of the ZMS model [77, 81].

The connection between the two aforementioned ATFT’s and the deformations of conformal
minimal models can be easily understood in the framework of Complex Liouville Theory (CLT)
[33]. Let’s recall that the conformal action of a minimal model M, s (s > r) can be taken to be

Sps = L / d?z (8@5@+e—iﬁﬂq’) . (1.2.47)

4z
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The exponential operator in the Lagrangian plays the role of a screening charge and the model
describes a massless scalar field with a background charge ag placed at infinity. The central
charge of the model is given by

6 (r—s)?

rs

c=1- =1-24ad, (1.2.48)

and two possible values of the coupling # can be chosen in order to correctly set the anomalous

dimensions of the screening charge equal to one, namely

f=-apt\/al+l=ay. (1.2.49)

The primary operators of the theory ¢, , with anomalous dimensions

(nr—ms)?—(r—s)?
4rs

Apn = m=1...r-1;, n=1,...s -1, (1.2.50)

are described by the exponential operators ¢, . (z) = exp(—iv2am ,®(z)), where

P (k) a“;(l_m) o (1.2.51)

It is easy to see from the above formulae that the complex coupling versions of the sinh—Gordon
and Bullough-Dodd models do indeed represent a deformation of a Complex Liouville action
and are therefore suitable to describe perturbed CFT’s. If one of the two exponential operators
in the Lagrangians (1.2.39) and (1.2.43) is interpreted as a perturbation of a CLT (and g is
purely imaginary), then it is easy to see that in the shG case the perturbation is one of the
two operators ¢;,3 or ¢3; depending on the sign choice in (1.2.49) while in the BD case the
perturbation is one of the operators ¢ 2, ¢2,1, ¢1,5 or ¢s5,1. The four possibilities for the BD
model are introduced because different choices of the screening charge between one of the two
exponential operators in (1.2.43) give rise to inequivalent deformations. However, it is easy to
check that while the ¢; 3 and ¢ , operators are always relevant, ¢3,1 and ¢s ; are on the contrary
always irrelevant in any minimal model and therefore don’t yield renormalizable deformations.
As for the fields ¢, ; and ¢; 5, they can be shown to be relevant only in disjoint sets of models:
the field ¢ ; is relevant for the class of minimal models M, s with s < 2r which includes all the
unitary cases M, 41, while ¢; 5 is relevant for the complementary class of non-unitary models
s> 2r.

The discussion can be summarized as follows: in the notation of equations (1.2.39) and
(1.2.43), the complex coupling versions of the two models describe different deformations accord-

ing to the prescriptions given in Tables 1.1 and 1.2. The primary operators in the undeformed
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Screening operator | Deformation | B(g) R
e"9¥ e =13 r2_rs % (n—1)=(m-1)2)
1 r
2 s

e 9% e9? = ¢31 ar (m-1)=(n-1)%)

r—

1)

Table 1.1: Complez Liouville Theory assignments between erponential operators and primary

fields for different choices of the screening operator in the shG model.

Screening operator | Deformation | B(g) kmn
=iy || (-1 (m-1)
e 29¢ 9% = ¢y | 2= (m—1)-(n-1)%
e9% e =15 | 52 | L ((1—n) - (1-m)2)
e9? e =¢s1 | 535 | 3 ((1-m) = (1-n)%)

Table 1.2: Complezx Liouville Theory assignments between exponential operators and primary

fields for different choices of the screening operator in the BD model.

CLT’s are given by the exponential operators
Brmn (@) = eFrme?l®), (1.2.52)

and the coupling constant g (or alternatively B(g)) is fixed by the specific minimal model M, .
Notice that in order to decide whether any specific deformation is relevant or not it is sufficient
to require that the coupling constant g be imaginary, namely that B < 0.

In Chapter 5 we will analyze in detail the full solution of the form factors of the real coupling
version of these models for a basis of scalar operators given by the exponentials e"9%. The above
correspondence between exponential operators of the Lagrangian models and primary fields of
CFT’s will be then exploited in order to compute the form factors of the scaling primary fields

in the integrable deformations of minimal models.
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Chapter 2

Form Factors

The solution of an integrable two-dimensional QFT is obtained once the S—matrix of the model
has been determined. The scattering data are in fact supposed to encode in principle all the
information needed to describe the correlation functions of the fields and also to characterize the
operator content of the theory. The project of extracting this information out of the S—matrix
is a nontrivial task, but nevertheless it can indeed be carried out in two dimensions where the
theory of form factors, originally developed in [50, 13, 78], has opened the possibility of exactly

computing the matrix elements of local operators of a theory (the form factors)
Fg o (01,0 05) = (018(0)| Ay (81) - . Au, (6,)) (2.0.1)

on asymptotic in— or out- states. The computation of such matrix elements is a challenging and
very interesting problem itself in a QFT. We will see that these objects can indeed be obtained
exactly for many solved integrable models and for different kinds of operators. The knowledge of
form factors is however of particular interest especially for models which are relevant in statistical
field theory since they allow the resummation of the spectral sum for obtaning the correlation

functions between operators of the theory
(011 (2)82(0)[0) = > (0]®1(2)|n)(n|®(0)]0) . (2.0.2)

In the above expression the insertion of a complete set of in— or out— states is understood. We
will see that in very interesting cases the above series is very well approximated by a partial
sum where just a limited number of lowest energy states |n) are considered. Because of the fast
convergence properties of the spectral sum, the above strategy based on the exact determination

of form factors proves to be a very efficient and accurate technique for computing correlators.
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The correct normalization of the above spectral sum in the basis of the Faddeev-Zamolodchi-

kov creation operators is given by

(®y(x -3y / e b FP L (6) F% , (im—6) e"l#I Dioimucoshor

n=1 a; Y01>02.. >9n

(2.0.3)

We will see, in the Sections devoted to applications of the theory of form factors, several cases of
computations of correlation functions by means of the above spectral sum which admit several
checks based either on lattice simulations of the related statistical models or on other different

quantum field theoretic techniques.

2.1 General Properties of Form Factors

A general on—shell matrix element of a local operator ®(z) in a QFT is given by

Ful.)ll 2?(1519"'7¢Bm|01’~"70n): (214)
= (Ap, (1), - - -+ Ab (Brm) [2(0)] Aa, (61), - -, Aan(an» )

but, without loss of generality, we can focus on the functions of the type (2.0.1) since crossing

symmetry allows to rewrite

Foim(Bry ey Bralfry -, 00) = Fy 5, ayan (B 875 oy B + 07, 01,0, 00) . (2.1.5)

We now review the general properties of form factors which have been derived and put in an
axiomatic form in references [50, 13, 78] where a more detailed analysis can be found.

The general form factor (2.0.1) of an operator ®(z) is defined for arbitrary values of the
rapidities. The state |44, (61)...44,(6n)) will be considered as an in-state or an out-state
according to the ordering prescription introduced in Section 1.1, namely if 6; > 8; > ... > 0,
or #y < 0y <...< 0, respectively.

The properties of the form factors under Lorentz transformations can be easily obtained. The
form factors of an operator ®(z) of spin s, under a boost of the momenta, transform according

to

FE 0+ A,.. b+ AN =€ F2 , (01,...,0,), (2.1.6)

ai-an
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where A is an arbitrary rapidity scale. These equations show in particular that for a scalar
operator the form factors depend only on the difference of the rapidities.
The monodromy properties of the form factors can be summarized by the following funda-

mental Watson equations,

Fal'“ahai-{-r"an (91, ceay 05, 61‘_*.1, .o ,971) = (217)

bb 1
= Sa:‘aliil Fal"'b£+1,bi"'an (01, ...,6;,6;41,.. o 0n),

Falaz---an ((91 + 2?:71', 02, ey 071) = Faz“'anal (92, ey Gn, 01) . (218)

The first equation (2.1.7) can be easily derived from the commutation relations of the Faddeev—
Zamolodchikov algebra (1.1.16). In the general case of non—diagonal scattering, this system of
equations represents a challenging mathematical problem. A remarkable example is given by
the solution of the soliton sector of the sine-Gordon model given in [78]. On the contrary, as
we will show in Section 2.1.1, the general solution of the monodromy equations can be given
through a simple recipe in the case of diagonal scattering [50].

The pole sructure of the form factors deserves a more careful analysis. We will deal with
this subject in more detail in Section 2.1.2. In general, the presence of poles in the S-matrix —
which are the two-dimensional analogous of anomalous thresholds — reflects also in the presence
of poles in the form factors. In particular, the easiest example is represented by simple poles of
the S-matrix eq. (1.1.17) due to bound state processes (Figure 1.2) occurring in the s—channel
at relative rapidity 6,5 = iu,. For these processes, the form factors will also display a simple

pole at 8,5 = iu¢, and the following dynamical residue equations will hold
reS9ab=iu°b Fa,b,al,...,an (ga’ 967 911 ceey 0n) = irgb Fc,al,...,an(oc, 911 ey 071) ) (2-1-9)

with! 6, = (6,8, + Oyt,)/ uj.. Notice that while bound state processes induce simple poles in
the S—matrix both in the s— and in the t—channel, they can only be observed on the form factors
as simple poles in the s—channel. Higher order poles are present both in the S—matrix and in
the form factors yielding more complicated residue equations (see Section 2.1.2).

Besides the dynamical ones, form factors also display annihilation poles which occur in

multiparticle form factors (n > 3) when a particle-antiparticle pair scatters at relative rapidity

'We adopt the notation @ = 7 — u.
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0., = ir. The corresponding kinematical residue equations given by

I'eSeaa=i7r Fﬁ,a,al ----- an (05’ 0!17 017 ey 97&) =

= i oo - st (01, 6a18)] Py B, 00) (2.1.10)

ajn

induce a recursive structure between n + 2 and n—particle form factors. The above kinematical

equations assume a neater form in the case of diagonal scattering:

res F&,a,al,...,an (067 Ba, 611 SRR gn) =

B3a =i

= 1

1~ [ Saa:(a - 9%.)} Fapoan(B1,..,00) (2.1.11)
1

The equations collected in this Section (2.1.6), (2.1.7), (2.1.8), (2.1.9) and (2.1.10) — together
with possible higher order dynamical residue equations (see Section 2.1.1) — impose severe
restrictions on the analytic structure of the form factors. The computation of the latter, therefore
amounts to solving a coupled system of infinitely many functional equations which entail a
recursive structure among the form factors with different number of particles.

Notice that apart from eq. (2.1.6), all the other form factors equations don’t know anything
about the particular operator ®(z). This means on general grounds that a space of solutions
is expected to be found within a suitably chosen functional space of the form factors. The
solutions will be then expected to represent the operatorial space of the theory and the problerh
arises how to establish the correct mapping between solutions and operators. This identification
problem is indeed a subject of present investigation which has been solved for a limited number

of possible local operators of a theory.

2.1.1 Parameterization of Form Factors for Diagonal Scattering

The system of equations which determine the form factors of a given theory, gets substantially
simplified in the case of theories with diagonal scattering. In particular, the solution of the
Watson equations (2.1.7) and (2.1.8) can be obtained by a general procedure originally discussed
in [50]. After solving the monodromy equations we will see that a suitable parameterization of
the analytical structure of the form factors allows to reduce the nontrivial problem of solving
a coupled set of functional equations to an algebraic system of equations on a finite number of

parameters. The results of this Section were obtained in the seminal work [26] and extended in
(3, 4].
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In this Section we will always assume ®(x) to be a local scalar operator of the integrable
model. This assumption doesn’t restrict the generality of the considerations made on the pole
structure of form factors which is supposed to be operator-independent. Let us first consider
the case of two—particle form factors, for which the monodromy equations (2.1.7) and (2.1.8)

specialize in the following way

Fop(0) = Sab(()) Fab(—ﬂ) , (2.1.12)

Fo(im —0) = Fop(im +0), (2.1.13)

where Fop(01 — 02) = Fup(61,02). If Sas(0) is given by egs. (1.1.23) or (1.1.26) in the case of
degenerate or non—degenerate mass spectra respectively, then the solution of the above system
which also satisfies the requirement of analyticity in the physical strip Im 6 € (0, ) is uniquely
defined by the so—called minimal form factors Emin(8); in the case of degenerate spectra they
are given by

50) = (ho(6) T T hal6)? (2.1.14)

a€Agp

while in the non-degenerate case by

B0) = (00(6) T2 ] galo)e . (2.1.15)
a€Agp
The definition of the functions &, (8) and g, (8) are collected in Appendix A, together with some
useful functional relations they satisfy.
We will make use also of the generalization of eq. (2.1.15) to the case when the S—matrix
contains also zeros in the physical strip, namely when some of the indices a in eq. (1.1.26)

assume negative values. In this case we can write
Sas (8) = [T £2=(0) T] £%(0) (2.1.16)
T€P;, YEZap
where the positive indices z and y label the poles and the zeros displayed by the amplitude in
the physical strip Im 6 € [0, 7]. The minimal form factor can be then uniquely written as

I =0

1—5’2”2(0) zEP,,

I g0

yeZa.b

%" () = (90(9)) (2.1.17)
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The most general solution of the monodromy equations (2.1.7) and (2.1.8) for the case of diagonal
scattering can be then simply obtained in a factorized way:
g presan (01,02 80) = RE 0y (01,02,00000) [T FEG0) - (2118)
1<i<j<n
In this expression, R is an arbitrary 2x¢ periodic function in the 6;’s which is symmetric with
respect to the exchange of variables relative to identical particles. Moreover it carries the pole
structure of the form factor and contains all the information on the operator ®(z).
The poles of form factors due to the occurrence of dynamical and kinematical poles and ruled
by the recursive equations (2.1.9) and (2.1.11), are assumed to be independent on the particular
operator ®(z). Moreover, due to the scattering factorization, the poles in a multiparticle form

factor get factorized into the poles of the two-particle ones. We can therefore write

1 1
R‘?a a (9a02’~--79n :Qg)a a (0179%-'-,971) .
1ag;-an UL ) 1182,-00n yj Daya, (6:5) Kaia, (6:)

(2.1.19)

Here, Dgp(fqp) introduces the dynamical poles related to the subchannel ab. The precise ex-
pression for these factors is carefully discussed in Section 2.1.2 [26, 3, 4]. The order of the poles
carried by these factors can be extracted by analysing the multiparticle processes responsible
for the singularities of S,;().

The factors K4p(6,p) are nonvanishing only if b = @ and occur in multiparticle form factors
with n > 3. They just introduce a simple annihilation pole at 8,; = i related to any subchannel

of a conjugated pair of particles. Imposing the requirement of 277 periodicity we can for instance

choose
Koz (6az) = ! (2.1.20)
‘aalVea) = Coh 0, + cosh 85, T
where ¢ is some other particle or equivalently
1
Koz(0aa) = P (2.1.21)

where the variables z; = e% have been introduced. The parameterization of the form factor
(2.1.18) and its dependence on the specific operator ®(z) is therefore completely encoded in the
function Qfl,az,_"'an(ﬂl, 82, ...,0,) which is an analytical 2ni periodic function in the rapidities

symmetric with respect to the exchange of identical particles. In the case of scalar operators it

is a function of the rapidity differences 6;; only.
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Let’s consider for instance the case of a two-particle form factor. Following the above

discussion, we obtain the simple parameterization

Fmin (0)
F¢ 9 — ® 9 ab , 2122
ab( ) Qa,b( ) Dab (9) ( )
where be (6) is a polynomial in cosh 8
koba
QY = Z a((lll”;?@ cosh*(8) . (2.1.23)
k=0

The form factor is therefore completely determined by the set of coefficients aéﬁ?q,. The residue
equations imposed on the form factor turn out to be simply a system of linear equations in these
parameters which can always be solved in principle wihout any computational difficulty. Here
we can appreciate the importance of a suitable parameterization which solves the monodromy
equations and takes care of the analytical structure. In Chapter 3 we will provide concrete
detailed explanations of computation of form factors by means of the above parameterization
making use of residue equations. These examples are supposed to better clarify the above
procedure.

Putting a bound on the asymptotic behaviour of the form factors for large values of the
rapidities amounts to selecting an operatorial space of the theory. For any fixed value of ks
in (2.1.23), a space of solutions will be obtained. A very important observation on the charac-
terization of these solutions consists in noticing that for an operator ®(z) of scaling dimensions
2A¢g the form factors diverge for large values of the rapidities at most like [26]

lim F2

Ig‘l—)OO @1,A2,4...,a

(61,05, ..,0,) ~ etelél (2.1.24)

This entails for instance an upper bound on the degree of the polynomial (2.1.23), and more
3

@1,a2,..-,an

generally allows to write Q in eq. (2.1.19) with a finite number of unknown coefficients.

Using the above parameterization and making use of (2.1.24) it has been possible for example
to determine the form factors of the Trace of the Stress-Energy Tensor in the integrable defor-
mations of minimal conformal models which describe the scaling limits of the Ising model in a

magnetic field and of the Tricritical Ising and Tricritical Three-state Potts models in thermal

field [26, 3.
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2.1.2 Dynamical Poles of Form Factors

The bootstrap structure of an integrable model is encoded in the poles of the S—matrix which
have a consistent interpretation in terms of multi-scattering processes. These poles are the two-
dimensional analogous of the singularities related to anomalous thresholds and their location is
in general determined by the so—called Landau rules [34, 17] which in two dimensions assume
quite a simple pictorial interpretation. Considering a two—particle scattering process ab — ab, a
singularity will occur in S,3(f) whenever it is possible to draw a scattering diagram with all the
internal and external particles on mass-shell and imposing conservation of energy—momentum

at each three—point vertex (see Figure 2.1). In two dimensions the simplified kinematics allows

c
b a
u
uac be
c
u, b
a
Figure 2.1:

such diagrams to occur only for exceptional discrete values of the momenta therefore producing
pole singularities instead of branch cuts. It is possible to show that in the case of S—matrices
with no zeros in the physical strip, the order of the pole associated to such a Landau diagram
is given by p = I — 2 L where I is the number of internal propagators and L is the number of
loops [17]. We now consider the corresponding poles induced in the form factors by the presence
of these singularities. We first analyze the case of S—matrices which don’t have zeros in the
physical strip. This is the case for instance of all the known deformations of unitary minimal
models M, ,+1, and of all the ¢; 3 deformations in general. For these models the following simple
prescription was given in ref. [26] (and generalized in [3] for degenerate mass-spectra) which

gives the correct expression for the dynamical pole factors Dy (6) defined in eq. (2.1.19). For
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non-degenerate theories, if Sg;(6) is given by (1.1.26), the pole factor is given by

iﬂ ja
Dab(g) = H (Pa(g)) (7)1-—01(9)) ) (2.1.25)
QE-Aab
to=n+1, jo=n, if Do =2n+1 ; (2.1.26)
la=n, Ja=mn, if Pa=12n ,
where Ayp and p, are defined in eq. (1.1.26). The functions
Pa(9) = SBT0 ol (2.1.27)

2 cos? TX
give a suitable parametrization of the pole at § = ima. In the generalization to degenerate
mass-spectra, it is necessary to distinguish between s-channel and t—channel processes for the
poles of odd order in the amplitude (1.1.23) because crossed diagrams pertain in this case to
different scattering amplitudes. The above prescription admits then the following generalization

Do) = ] (Pa(e))i° , (2.1.28)

a€Ag

io=n+1, if Poa =2n+1 s—channel pole;

e =1n , if Do =2n+1 t—channel pole; (2.1.29)

o ="n , if Do = 21 .
Let’s consider some examples in which we assume for simplicity all the particles to be self
conjugated. Recalling that the order of poles is given by p = I — 2L, it is easy to see that a
simple pole in the S—matrix will be always associated to a tree diagram of bound state production
(see Figure 1.2 with e = b and d = a for the case of diagonal scattering). The s— and ¢t—channel
angles of the process are given by u¢, and 4¢, = 7 — uS, respectively (see eq. (1.1.18)). The
S—matrix will be endowed with a couple of simple poles at 8,5 = iuS, and ,p = i ul, and the

three—point coupling I'¢, is defined by the residue at § = ¢ us,

1 (Tgy)’
wp(f) ~ —2 2.1.30
Sa(0) = oo (2.1.30)
The prescription (2.1.25) for the poles of the form factors implies that only a single pole in the
s—channel at 6 = 74, will be present, ruled by the residue equation (2.1.9). In the case of

two—particle form factors these equations read

res,_. . Fpp(8) =i, F.. (2.1.31)

9=1uab
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Figure 2.2: Diagrammatical interpretation of a residue equation of the form factor assoctated to

a simple pole of the S—-matriz.

A pictorial interpretation of the above equation is given in Figure 2.2.
When a double pole is present in the S—matrix, the associated diagrams are topologically

identical to one of the diagrams of Figure 2.3. In this case the form factor is expected to have

Figure 2.3: Double pole diagrams.

a simple pole in both the crossed channels with residue in the s—channel given by

res

Fop(8ap) = i T8 TG Fee (37) (2.1.32)

Bap=1i¢

where vy = 7 —ul; — ug-é (see Figure 2.4). Different kind of diagrams can be associated to a third
order pole in the S—-matrix, among which the one shown in Figure 2.5. The residue equations
relative to the corresponding double order poles induced in the form factor are given by (see

Figure 2.6 where ¢ = uib)

lim  (Bap — duly)? Fap(8as) = 05,5 lim , (Bee = iul) Fro(8ce) = TS, T T Fr . (2.1.33)

Qab-—-)-'iuab Oce—riuce

In the case of S—matrices with no zeros, the topology of a diagram uniquely determines the order
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Figure 2.4: Diagrammatical interpretation of a residue equation of the form factor associated to

a double pole of the S-matriz.

Figure 2.5: Triple pole diagram.

of the corresponding pole which is given by p = I—2 L. Therefore, in particular, every simple pole
in the S-matrix must be related to the production of a single particle intermediate state. Indeed,
more generally for these models every odd pole in the amplitude S,;(6) corresponds to some
diagram with a single intermediate particle exchanged whose mass is fixed by eq. (1.1.18) (see
for instance Figure 2.5). On the contrary, even order poles never correspond to the production
of a single particle state. We stress here that a necessary condition for the prescription (2.1.25)
to hold is that in writing the amplitude (1.1.26), the labels a relative to odd poles must be
chosen in such a way that § = ira is the fusing angle of the single particle bound state in the
s—channel and not in the crossed one.

We now analyze the case of S—matrices which also carry zeros in the physical strip of rapidi-

ties. Making use of the Cutkosky rule [34] for determining the order of the poles of a Landau
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Figure 2.6: Diagrammatical interpretation of a residue equation of the form factor associated to

a triple pole of the S—matriz.

1
Sud) = (3
Si2(0) = (38) ()s

5u®) = () 3 (o

Mo = 2 COS {% my = 1.9696...m;

Table 2.1: S-Matriz and mass ratios of the [M(2/7)](,2) model

diagram, one must in particular replace scattering amplitudes factors in the diagram whenever
two internal lines cross each other. This can therefore alter the order of the pole whenever the
particles happen to scatter exactly at relative rapidity corresponding to a zero of the S—matrix
(see for instance [25]). The rule for determining the order of the poles must be therefore re-
placed by p = I — 2L — Z where Z counts the number of zeros carried by S-matrix factors in
the intermediate scattering processes of the diagram.

As an example of this kind of phenomenon, we take the S—-matrix of the ¢; ;-deformation
of the minimal model My 7 [54] for which we adopt the notation [M(2/7)](12)- The spectrum
of this model consists of only two particles; their mass ratio and the S—matrix is given in Table

2.1. Here the notation in term of blocks (z) = f;(6) is understood. Superscripts placed over
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these blocks are meant to identify the particle produced at the bound state pole 8 = irz.
Negative values of z denote instead the occurrence of zeros at § = —irz. Notice the presence
of simple poles which are not related to the production of any single particle state. These
poles are described by the abovementioned mechanism noticing that the amplitude Sj;(6) has
zeroes for 81; = 2iw/9, Tir /9. In fact, it is easy to see that the simple poles of the S—matrix

labelled by B are due to “butterfly”. diagrams of the kind of Figure 2.7. This diagram which is

Figure 2.7: “Butterfly” diagram.

typically responsible for a second order pole, describes the first order poles at S15(f = 1171/18)
and S3(6 = 871/9) because in both cases the internal particles are of type 1 and scatter at
0 = 27i/9 and § = Tmi/9 respectively. In the same way, it can be shown that the pole at
S22(0 = 5mi/9) and labelled by D is actually related to a “dragonfly” diagram of the kind of
Figure 2.8. In this case a simple pole is obtained because two of the three S—matrix factors of
the diagram are given by Sy;(8 = 27i/9).

As for the corresponding poles induced on the form factors for this kind of S-matrices, it
has been proposed in [4] that the prescriptions (2.1.25) and (2.1.28) still hold in presence of
zeros regardless on the nature of the corresponding diagram as long as the labels « in (1.1.26)
are chosen in such a way that § = ira is the s—channel angle of the process which in the case of

Figures 2.7 and 2.8 is defined by the vertical direction.

We stress the fact that the parameterization of form factors’ poles given in this Section has
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Figure 2.8: “Dragonfly” diagram.

been verified a posteriori in ref.’s [26, 3, 4] by finding full consistency in the computation of form
factors of different kind of local operators. Indeed, in the computation of form factors, several
consistency checks can be performed which are basically of two types: first of all there is always
a redundant number of residue equations on the unknown parameters of form factors; secondly,
a lot of physical quantities can be extracted out of the form factors and in particular by means
of specific sum rules which allow to recover and check the UV conformal data of the undeformed

model.
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Chapter 3

Form Factors of the Stress—Energy
Tensor in Integrable Deformations of

Conformal Minimal Models

In this Chapter we show how it is possible to compute the form factors of the Stress-Energy
tensor T}, (z) in a integrable model selecting them among the solutions of the form factor
equations which characterize the operators of the theory. The Stress—Energy Tensor plays a
special role because of the conservation law §“T),(z) = 0 which allows to determine all its
components in terms of the only scalar operator ©(z) defined by its trace [68]. Moreover, it is
easy to show that the form factors of ©(z) have to be proportional to the squared momentum
P?=(p 4. -+ Pr)? of the particle state with the exception of the form factors with only two
conjugated particles. For two—particles form factors, this observation can be used to characterize
the polynomial Q?b(()) defined in the parameterization (2.1.22). In fact the proportionality to
P? implies the following factorization
1-6,;
Q5,9 = (cosh9—|- %) b Pus(0) , (3.0.1)

where the polynomial
Nab
Fu(0) = Z af, cosh* 4 (3.0.2)
k=0

has free coefficients. The degree Ny in (3.0.2) may be determined by the inequality (2.1.24)

which sets an upper bound on the asymptotic behaviour for large rapidities. In this way, the
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problem of determining two—particle form factors is reduced to the knowledge of the coefficients
a®, of the polynomials P,. On one—particle form factors, conservation of the Stress-Energy

Tensor yields the following normalization condition
F8 (im) = 2nrm? . (3.0.3)

We will see that the additional requirements (3.0.1) and (3.0.3) actually identify a unique solution
in the system of residue form factors equations. Indeed, in the models which we will analyze in
detail in this Chapter, the system of equations turns out to be even overdetermined since the
number of equations exceeds the number of free parameters giving rise to nontrivial consistency
checks.

We will discuss the above procedure in the case of integrable deformations of conformal

minimal models defined by the perturbed conformal action
A= Acrr +9 /dzy; d(z) . (3.0.4)

The trace of the Stress—Energy Tensor — which is vanishing in the conformal ultraviolet limit

— is related, in the massive integrable model, to the perturbation ®(z) by the relation
O(z) = 2mg (2 — 2As) ®(z) , (3.0.5)

where Ag is the conformal dimension of the field ®(z). The integrable theories Wﬁich we
will analyze describe the thermal deformations of two important statistical models, namely
the Tricritical Ising Model (TIM) and the Tricritical Three-State Potts Model (TPM). The
universality classes of these models at criticality correspond to the conformal minimal models
My and Mgz, respectively, and in both cases the deformation related to the energy density
operator is obtained by the ¢;  perturbation of the conformal model. The two models have
an underlying structure related to the exceptional Lie algebras E7 and Eg which is reminiscent
of the coset construction (E,); @ (En);/ (En), of the respective conformal minimal models
[86, 46, 36]. The S—matrices (originally obtained in [38, 22, 80]) are reported in Appendix B and
coincide with the S—matrices of the ATFT’s related to the two above exceptional Lie algebras.
The labels « € A, which define the location of poles in the S—matrices are integer multiples of
1/h where h is the Coxeter number of the associated Lie algebra.

In the following Sections we will compute the form factors of the energy density operator

€(z) ~ O(z) in the thermal deformations of both the TIM and TPM and we will obtain an
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estimate of the correlator G(z) = (©(z)©(0)) by resumming the first dominating terms of
the spectral series (2.0.3). The accuracy of the result and the effectiveness of the method will
be tested by means of two different sum rules which are related to the second and the zeroth
moments of the two—point function of ©(z). The first sum rule [84, 18] gives the central charge

c of the original conformal minimal model

e= 3 / a|z]? (©(2)0(0)), (3.0.6)

while the second one is relative to the bulk free energy f ~ —Um?, where the amplitude U is

computed by

I —l—/d%m(x)e(on, (3.0.7)

16Ag 72m?2
m being the lightest mass of the theory. In both cases, the approximated value obtained by the
truncated spectral series can be tested on the theoretical value of the sum which is known a

priori. The amplitude U in particular is obtained by means of Thermodynamical Bethe Ansatz
(TBA) [87, 37, 52].

3.1 Thermal Perturbation of the Tricritical Ising Model

The Tricritical Ising model is the second model in the minimal unitary conformal series with
central charge ¢ = 7/10 and four relevant fields [11]. The microscopic formulation of the model,
its conformal properties and its scaling region nearby the critical point have been discussed in
several papers (see, for instance [38, 22, 59]). In the following we give a short review of the
features of the TIM which are most relevant to the form factor approach to integrable massive

models.

3.1.1 Generalities of the TIM

The Tricritial Ising model may be regarded as the universality class of the Landau-Ginzburg

®S—theory
L = (V)% + g6B° + g40* + g30° + g28% + ¢, (3.1.8)

at its critical point g1 = g2 = g3 = g4 = 0 [85]. This Lagrangian describes the continuum

limit of microscopic models with a tricritical point, among them the Ising model with annealed
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vacancies, with an Hamiltonian given by [59]

H=-3 Z o;05tt; — yzt,’ . (3.1.9)
<ig> 1

8 is the inverse temperature, p the chemical potential, o; = =1 the Ising spins and ¢; = 0,1
is the vacancy variable. The model has a tricritical point (o, o) related to the spontaneous
symmetry breaking of the Z; symmetry. At the critical point (8o, o), the TIM can be described
by the following scaling fields: the energy density €(z,Z) with anomalous dimensions (AA) =
(i, 75), the vacancy operator or subleading energy operator t(z,%) with (A,A) = (£,2), the
irrelevant field € with (A, A) = (%, %), the magnetization field (or order-parameter) o(z,%) with
(A, A) = (£, 5), and the so—called subleading magnetization operator a(z,Z) with anomalous
dimensions (T%’ -1—7(—5) With rescpect to the Zs symmetry of the spin model, the spin operators
are odd while the energy operator, the vacancy operator and the irrelevant field €” are even.

The off-critical perturbation considered for the TPM is the one given by the leading energy

1 1

5 ﬁ). Note that this operator is associated to the

operator €(z,%) of conformal weights (
adjoint of E;. According to the analysis of [36], this leads to a structure of the off—critical
system deeply related to the root system of E7. The off—critical massive model shares the same
grading of conserved currents as the Affine Toda Field Theory constructed on the root system of
E, i.e. the spins of the higher conserved currents are equal to the exponents of the E7 algebra

modulo its Coxeter number A = 18, i.e.
s§=1,5,7,9,11,13,17 (mod 18) . (3.1.10)

The presence of these higher conserved currents implies the elasticity of the scattering processes
of the massive excitations. To compute the mass spectrum and the scattering amplitudes, it
is important to observe that, according to the sign of the coupling constant g in (3.0.4), this
perturbation drives the system either in its high—temperature phase or in its low-temperature
phase. While in the latter phase we have a spontaneously symmetry breaking of the Z; symmetry
of the underlying microscopic spin system, in the former phase the Z; symmetry is a good
quantum number and therefore can be used to label the states. In the low-temperature phase,
the massive excitations are given by kink states and bound state thereof, in the high-temperature
phase we have instead ordinary particle excitations. The two phases are related by a duality

transformation and therefore we can restrict our attention to only one of them, which we choose
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4

to be the high-temperature phase. In this phase, the massive excitations are given by seven
self-conjugated particles A1, ..., A7 with mass
my = M(g),
o
my = Zmlcosﬁ = (1.28557..) m,

ms = lecosé— (1.87938..) mq,

my = 2m1cosi%:(l.96961..)m1,
ms = Zmocosig (2.53208..) my, (3.1.11)

mg = 2m3cosg9—:(287938 Jmy,

m7 = 4mgzcos Tg = (3.70166..) m; .

The dependence of the mass scale M on the coupling constant g has been computed in [37]
M(g) = Cg8, (3.1.12)

where

5 2T TR
FGITE ()

and y(z) = F{I( )x) The mass ratios are proportional to the components of the Perron—-Frobenius

C=[4rvE)v) (5] = 3.745372836.. . ., (3.1.13)

eigenvector of the Cartan matrix of the exceptional algebra E; [16]. The exact S—matrix of the
model is given by the minimal S-matrix of the Afine Toda Field Theory based on the root

system of E7. It has been calculated in [38, 22] and is listed for convenience in Table B.2.

3.1.2 Form Factors of the TIM

After the discussion on the general features of the model, let us consider now the problem of
computing the form factors of the operator e(z) or, equivalently, of the trace ©(z) of the stress—
energy tensor. To this aim, the Z; parity of the model is extremely helpful. In fact, because of
the even parity of the energy operator, we can immediately conclude that its form factors with
a Zz-odd (multi-particle) state must vanish. In particular, the one-particle form factors of ©
for the odd particles are all zero.

To start with the bootstrap procedure, let us consider the two—particle form factor relative

to the fundamental excitation A;. According to the general parameterization (2.1.22) and to
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the pole structure prescription (2.1.25) we can write

=0 g%, (3.1.14)
where
Frin(9) = —isinh(6/2) gs/9(6) 91/0(9) (3.1.15)
and
D11(6) = Psso(6) Prys(6) - (3.1.16)

By using the bound (2.1.24), we see that the polynomial Q% (6) reduces just to a constant, which
can be easily determined by means of the normalization condition (3.0.3),i.e. a3, = 27m}. Thus
Fy1(8) is now completely determined and its expression can be used to derive the one-particle
form factors Fy and Fy. Indeed, the particles A; and A4 appear as bound state of the particle 4;
with itself, the coupling I'?; and T'}, being easily determined by the residue equation (2.1.30).
By using then the equation for the bound state poles of the Form Factors (2.1.31), one gets the
desired result (see Table B.4).

To proceed further, it is convenient to list the Z; even states (the only ones giving non-
vanishing form factors of the stress—energy tensor) in order of increasing energy, as in Table
B.3. After computing Fig , FY and Fleg, which are obtained by means of the same technique,
(i.e. fixing the unknown coefficients of form factors by using the simple pole residue equations),
a more interesting computation is represented by the two-particle form factor Fy4(f). The

corresponding S-matrix element displays a double pole and therefore, according to eq. (2.1.25),

we have
ES,(6) = %3:((9? Q%,(6) , (3.1.17)
where
F32™(8) = g7/0(0) 9a70(6) 91/5(6) , (3.1.18)
and
Das(6) = P1s(6) Piso(8) Prya(6) Paja(6) - (3.1.19)
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Taking into account the asymptotic behaviour of the form factors and egs. (3.0.1) and (3.0.2),
we conclude that in this case the polynomial Py has degree Noy = 1 and therefore (024(0) reads

2 2
my + my
2m2m4

Q94(8) = (coshb + ay, + al, coshd) . 3.1.20)
4 4

To determine the constants a3, and al,, we need at least two linearly independent equations,
24 24

which are provided by eq. (2.1.31) on the fusions
(AQ , A4) — Ay and (Ag ) A4) — As. (3121)

Both F, and F5 are known, of course, from previous computations. In this case, the double pole
in the S-matrix provides a non-trivial check for the computation. In fact, we have the process

drawn in Figure 2.4, with the identification

a=2, b =4, d=e=1,
and respectively

c=1,  p=2m/3, y=n/3,
or

c=3,  p=n/3 y=n/9 .

These processes give rise to the corresponding residue equations

—i lm (0 —i27/3)F5(0) = T, TL, FO (in/3) ,
0—i27/3
(3.1.22)

—i lim (0 - in/3)F5(6) = I'3,T'}, FS (ir/9) .

—in/3
which are indeed fulfilled. This example clearly shows the over—determined nature of the boot-
strap equations and their internal consistency.

The next form factor in order of increasing value of the energy of the asymptotic state is given
by the lightest Z, even three—particle state | AiA1Ay). The form factor may be parameterized

in the following way

Fmin (gab) min (0“) min(ebc) Q@
C) _ 12 12 112 ’ 3.1.93
Fiip (e, B, 6c) D11(0as) D12(0ac) D12(0se)  cosh b, + cosh By ( )
where F{7™ and D7%" are given by equations (3.1.15) and (3.1.16), while
T (0) = g13/18(9) g7/18(0) (3.1.24)
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and

D12(0) = Pr3/18(0) Pry1s(f) - (3.1.25)

We have introduced into (3.1.23) the term

1
cosh @y, + cosh 8. ’

to take into account the kinematical pole of this form factor at 8, = 8 4+ ¢w. The polynomial

Q112 in the numerator can be further decomposed as
QF12(6a,65,0) = P* P, , (3.1.26)

where P? is the kinematical polynomial expressed by
P? = 2m? + m2 + 2m? cosh 0,5 + 2m1my(cosh 8, + cosh byc) . (3.1.27)

The degree of P2, can be computed by means of the asymptotic behaviour in the three variables

04.,5,c separately. This gives the following results for Q ~ exp [z:6;]:
T,=zp=1and z,=2. (3.1.28)
Hence, a useful parameterization of the polynomial P;;, is given by
P8, (84, 05,0.) = bo + by cosh B,y + ba(cosh B, + cosh By.) + bz cosh B, cosh 8, ,  (3.1.29)

where four unknown constants have to be determined through the poles of F9,. By using the
kinematical pole at 8, = 77 and the bound state poles at 6, = i%’i, ig and 0, = i-l—l‘%”, i%’, one
obtains a redundant but nevertheless consistent system of five equations in the four unknown b;
whose solution is given by

bs

b= —b; = 5 = —39.74991118... , b = —198.2424080... (3.1.30)

The other form factors which we have computed correspond to the states listed in Table B.3. The
values of the one—particle form factors are collected in Table B.4, while the results concerning the

two—particle computations are encoded in Table B.5 via the coefficients a{:b of the polynomials

Py (0).
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3.1.3 Recursive Equations of Form Factors in the TIM

For sake of completeness, we now illustrate an efficient technique to compute multiparticle form
factors. This is based on recursive identities which relate form factors of the type Fy . 1 with
different (even) numbers of fundamental particles. Once these form factors are known, those
relative to Z, even multi—particle state involving heavier particles may be obtained through
bootstrap procedure. In general this way of proceeding is the simplest one as far as form factors
with three or more particles are concerned. In order to write down these recursive equations,

we can adopt the following parameterization for the 2n-particles form factors Flyly_,_,lz

HonQan( 371, .y Ton) min ( 1
Fin1(01,. .., 000) = Fon(y, ... 0,) = 220 3.1.31
1t (01 2n) 2n (01 ) = g H D11 zk) :m-i—xk( )

71
Here and in the following o (zy, .. -y Tan) Tepresents the symmetrical polynomials of degree % in
the variables z; = e’ defined through their generating function

H(x+;rk Z oz, ..., Tm) - (3.1.32)

=0

Fi; and Dy are defined by (3.1.15) and (3.1.16) while H,, is an overall multiplicative constant
and @, is a symmetrical polynomial in its variables. The factors (z; + zx) ™! give a suitable
parameterization of the kinematical poles, while the dynamical poles are taken into account by

the functions Dy;’s.

The polynomial Q2, in the numerator can be factorized as

QZn(xla . '7‘7:271) = UIUZn—lPZn($17 .. 'ax2n) ’ (3133)

since the form factor will be proportional to the kinematical term P? relative to the total

momentum which can be conveniently written as

p? =2 L%t (3.1.34)
Oon

The Lorentz invariance of the form factor requires Py, to be an homogeneous polynomial with

respect to all the z;’s of total degree
deg Py, = 4n® — 57, (3.1.35)

while the condition (2.1.24), knowing that A, = 1/10, imposes an upper bound to the degree in

a single z;, given by

deg,, Pon < 4n —22/5 . (3.1.36)
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Writing down the most general expression of Py, as a symmetrical polynomial in the basis of the
o)’s and taking into account the above conditions, one can determine the relative coeflicients by
means of the recursive equations. A first set of recursive relations is obtained by plugging the
parameterization of Fy, into the equation of kinematical poles (2.1.11); the polynomials (), are

then solutions of the recursive equation
Qanya(=2,2,21,...,T2n) = =1 Qan(T1, .. ., Z2n) Uan(z|z:), (3.1.37)

where the polynomial Us, is given by

Uzn(z|;) H H (z + e ;) (z — €™ x;) — (3.1.38)

The overall constants H,, have been fixed to be
—n{n—1)
Ta/2
Hyn=27m} [16 J] ga M , (3.1.39)
sin(ra)
a€A;

with Hy = 27m?. Given Qan, eq.(3.1.37) restricts the form of the polynomial Q2n42, although
these equations cannot determine uniquely all its coefficients. In fact, polynomials containing
the kernel factor H??_ﬁ%(mz + z;) can be added to a given solution Q2,42 with an arbitrary
multiplicative factor, without affecting the validity of eq.(3.1.37). In order to have a more
restrictive set of equations for the coeflicients of the polynomials @)2,, we employ the recursive

equations (2.1.9). To relate Fo,42 and Fa,, we consider two successive fusions A3 A; — A, and

A Ay — Ay, obtaining the following equations

Qonta(—9z, T, 02,29, ..., T2n) = dn M ([%1)? 2° Qan(z, 22, ..., T2n) Pon(zlz;)  (3.1.40)

where
M = 4 cos(57/18) cos(87/18),
b = (~1)"* exp(—im(10n + 1)/18),
¢ = exp(—idr/9),

and

2n )

Po(z|z;) = H(IE — %) (z — 5™%;) (z + e Br)(z + zi) . (3.1.41)
1=2
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As an application of the above equations, let us consider the determination of the form fac-
tor 4. Taking into account egs. (3.1.35) and (3.1.36), we can write the following general

parameterization for Py as
Py(z1,...,24) = c; 0304 + ¢3 0904 + ¢3 010203 + c4 02 +cs a5 . (3.1.42)
From (3.1.37), knowing Q4 = oy, one gets a first set of equations on the ¢;’s

e = 4 (2 sin(r/9) + sin(r/3) + 2 sin(47r/9)),
cs = —4 (sin(ﬂ/Q) b sin(47r/9)>,
Cq4 = Cy, (3143)

C3 = C5 — Cq.

The residual freedom in the parameters reflects the presence of kernels of eq. (3.1.37). Given

any solution @}, the space of solutions is spanned by
4
Qf =Qi+aoios [] (ai+sy), a€C (3.1.44)
7,7=1
Eq. (3.1.40) solves this ambiguity giving the last needed equation

—9 4 cos(m/18) — 11 cos(w/6) + 12 cos(57/18) — 8 cos(7m/18)
B 3 + 5 cos(57/9) + cos(m/3) — 3 cos(w/9)

c1 (3.1.45)

Finally one directly computes Hy from (3.1.39).

The knowledge of F4 = Fj;;; allows us to compute through successive applications of (2.1.9)
almost all the form factors we needed in order to reach the required precision of the form factor
expansion of the correlation function. We have used the obtained form factors to compute the
two—point correlation function of © by means of the truncated spectral representation (2.0.3).
A plot of (©(z) ©(0)) as a function of |z| is drawn in Figure 3.1. To control the accuracy of
this result we have tested the fast convergence of the spectral series on the checks relative to the
first two moments of the correlation function egs. (3.0.6) and (3.0.7); the single contributions of
each multiparticle state in the two series are listed in Table B.3 and the partial sum is compared
to the exact known values of the central charge ¢ and of the free energy amplitude U. A fast
convergence behaviour of the spectral sum is indeed observed and therefore the leading dominant

role of the first multiparticle states in eq. (2.0.3) is established.
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Figure 3.1: Correlation function of the TIM.

The correlation function of the thermal deformation of the TIM has been recently obtained
also in reference [45] where the same problem has been approached by a different technique,
namely through perturbative CFT. In Figure 3.2 a plot is drawn comparing the two results
which are in perfect agreement within the expected accuracy. The continuous line represents
the correlation function obtained by perturbed CFT while the dots correspond to the values
obtained with the form factor approach. The dashed line gives instead the partial result obtained

by using just the first form factor contribution F5 in the spectral sum.

Figure 3.2: Comparison between the correlation functions of the TIM obtained in the form factor

approach and in perturbed CFT.

51



3.2 Thermal Deformation of the Tricritical Potts Model

In this Section we will consider the form factor computation for the Quantum Field Theory
defined by the leading thermal deformation of the Tricritical 3-state Potts Model (TPM). Our
strategy will resemble the one already applied to the TIM, with suitable generalizations in order

to deal with this theory of degenerate mass spectrum.

3.2.1 Generalities of the TPM

The 3-state Potts Model at its tricritical point may be identified with the universality class of a
subalgebra of the minimal conformal model Mg 7 [11]. Its central charge is ¢ = 6/7. The model
Is invariant under the permutation group S3. The group S is the semi-direct product of the
two abelian groups Z; and Zs, where the Z, group may be regarded as a charge conjugation
symmetry implemented by the generator C. For the generator Q of the Z3 symmetry, we have
2 =1and QC= —-CQ. The irreducible representations of S3 could be either singlets, invariant
with respect to Q (C even or C odd) or Z3 charged doublets.

The off-critical model we are interested in, is obtained by perturbing the fixed point action
by means of the leading thermal operator €(z) with conformal dimension A = 1/7. This is a
singlet field under both symmetries, C and Q. Hence, the discrete S symmetry of the fixed
point is still preserved away from criticality and correspondingly the particle states organize
into singlets or doublets. The scattering amplitudes of the massive excitations produced by
the thermal deformation of the Tricritical Potts Model are nothing but the minimal S—matrix
elements of the Affine Toda Field Theory based on the root system of Eg (they have been
determined and discussed in references [38, 80] and can be found in Table B.7). Poles occur
at values tam with o a multiple of 1/12, 12 being the Coxeter number of the algebra Eg. The
reason of the Eg structure in the massive model is due both to the equivalent realization of the
critical model in terms of the coset (Eg); ® (Es)1/(Es)2 and to the fact that the leading energy
operator ¢(z) is associated to the adjoint representation in the decompostion of the fields [44].
Then, once again, one may apply the argument of references [36] to conclude that the massive
theory inherits the Fg symmetry of the fixed point.

The exact mass spectrum consists in two doublets (A;, A7) and (A, A7), together with two

singlet particle states Ay, and Ag [38, 80]. Their mass ratios are given by
m; = mp=M(g),
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mp = 2my cosZ— = (1.41421..) my, (3.2.46)
mp = mp=2my cos% = (1.93185..) my,

mg = 2mpcos 17_;_ = (2.73205..) my,
where the mass scale depends on g as [37]
M(g) = Cg1z, (3.2.47)

and

C=[rtyHv(ZvE)v(H)]* = 3.746559718..... (3.2.48)
The above values of the masses are proportional to the components of the Perron-Frobenius

eigenvector of the Cartan matrix of the exceptional algebra Fg.

3.2.2 Form Factors of the TPM

After a brief description of the model, let us turn our attention to the determination of the matrix
elements of the leading energy operator ¢(z). Our strategy will be similar to that employed in
the case of the TIM. For the TPM, however, we have a more stringent selection rule coming
from the Z3 symmetry. Given the even parity of the operator ¢(z) and its neutrality under
the Z3 symmetry, the only matrix elements which are different from zero are those of singlet
(multiparticle) states and they are the only contributions which enter the spectral representation
series (2.0.3). For convenience, the first such states ordered according to the increasing value of
the s—variable are listed in Table B.8. Because of the selection rules, one very soon encounters
three— and four—particle states among the first contributions, and therefore, the computation of
form factors becomes in general quite involved.

Let us briefly illustrate the most interesting form factor computations of this model. As far as
one—- and two—particles form factors are concerned, we just quote the result of the computations
since they are quite straightforward and can be obtained by following the same strategy already
adopted for the TIM; the one—particle form factors are given in Table B.9, while the coeflicients
af, of the polynomials P,;(8) of eq. (3.0.2) are listed in Table B.10. The need to compute several
three—particle form factors suggests however to adopt a more systematic technique based on the

recursive structure of the form factors. The lowest neutral mass state is given in this model
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by a doublet of conjugated particles ! and I. Hence, in order to build useful “fundamental”
singlet multiparticle form factors we have to consider recursive equations relating form factors
of the kind fn(ﬁ) = Fj7;7.,7 with an arbitrary number of particle-antiparticle pairs. From
the knowledge of Fj7,7 obtained as solutions of the recursive equations, we can next derive
(by bootstrap fusion) all the three-particle form factors we need in our determination of the

correlation function. To write these recursive equations, let us parameterize the form factors as

— — H,Qn(z1,T1,...,2p, Ty,
Fuay(Br.Brr- . BBy = 22QelonT ). (3.2.49)

(O-n‘o-—n)n—l
I FP™ (i) B (Bix) . Frn (B, - B,) _
1<i<k<n Du(Bix) DTT(Eik) rs=1 (zr + %) Dy(Br ~ B,)

b

where
-F;jnin (ﬁr - Bs) if r S S,
Fan (B, = B,) = (3.2.50)
Fﬁ”“ (B, — B,) otherwise .
In these expressions z; = ¢’ and o, is the symmetrical polynomial of degree m in the z;’s (the

quantities Z; and T, are analogously defined in terms of the §;’s). The two—particle minimal

form factors are given by (see eqs. (2.1.14) and (2.1.28))

Epin(g)  FF™(B)  —isinh(8/2) hyse(B) hays(B) hyya(B)

Dy(B) ~ DplB) P1/6(B) Pa/a(9) ! (3.2.51)
FF™(8) _ Ep™(8) _ hsje(B) hays(B) haya(B)
Dy(B) ~ DylB) P1/2(9) ' (3.2.52)

In (3.2.49), H, is just a multiplicative overall factor and ()n is a polynomial in its arguments.
The latter is the only unknown quantity and it can be computed through the recursive equations.
The function @, must be a symmetrical polynomial both in the z;’s and in the 7;’s separately.
Furthermore, it must be symmetrical under charge conjugation, i.e. under the simultaneous
exchange z; ¢+ Z; (Vi = 1...n). Hence, it can be parameterized in terms of products of ¢’s and
¢’s with suitable coefficients in order to guarantee the self-conjugacy. The factor P2 for this set

of particles takes the form

pr = T 4 O @)1 471 s (3.2.53)
Onln
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and, correspondingly @), will be factorized as
Qn(:ltl,'f[_fl, ey Ty, '(_E‘n) = (En_lan + O'n—l_a—n) (0'1 + ﬁl)Pn(fEl,—f], ceey aiﬂ,—fn) . (3254)

The Lorentz invariance of the form factor requires P, to be an homogeneous polynomial with

respect to all the z’s and Z’s of total degree
deg P, = 3n% — 4n , (3.2.55)

while the condition (2.1.24), knowing that A, = 1/7, imposes the following upper bound for

the degree in a single z; (Z;)
deg, P, < 3n—1T4/21 . (3.2.56)

These conditions drastically restrict the possible form of the polynomials @,.
Let us write down the form assumed by the kinematical recursive equations by using the

parameterization (3.2.49)
Qni1(—2,2,21,T1, ..o, Ty Tn) = 1 ¢ Up(e|ziy) Qn(21,T1, ..oy Tny Tn) (3.2.57)

where (here A;; = {1/6,2/3,1/2})

3

Up(z|zi,Z) = H H (z— e (z — ei"(l_o‘)a:,-) - (3.2.58)

=1 €A

H T —e iwa (SL‘ _ e-—i'rr(l-oz)mi) .

=1 €A

o EINK

The overall constant is explicitly given by:

n{n-—1)

H,=2nm} | 2tan’(x/6) tan®(57/12) H 9o (0) sin(ra) . (3.2.59)
a€An

However, the equations (3.2.57) are not in general sufficient to fix all the coeflicients of Q41.
A more stringent constraint is obtained by using twice eq. (2.1.9) in relation with the processes

1l = 1 and 17T — . The final equations take a very simple form:

Qn+1 (77?, nY,NY, MY, T2, T2, .. -73311.,571.) = (3260)

= __(1‘\51)2 y—gpvn(y’—y_v ‘7:215“—2’ .. '1:1771,577.) Qn(:%ya ‘7721.3_3_21 ce '7:2:77.1_1771) 3
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where 7 = €'"/3 and

Wn(z1, %1, ..o 20, Tp) = (3.2.61)

=i

2 1) -

Tmi ~7x

= (171 +Tl)(fl - e"s_:rl)(fl — e 6 11)1)(-11,—‘1 b 6%1121)(51 — e

n

J@ +2) 1+ 7) @ - 7 (71 — e

=2

—3mi 5mi =5t

¢ Ty)(z1—e6 xz)(z—e 6 xy).

Let us now illustrate how this procedure works in the case of .7-"2(”). Let us start from F);; using
eq. (3.0.3) we easily obtain Q; = 1 and H; = 27 m. From eqgs. (3.2.55) and (3.2.56), the general

parameterization for P, is given by

Pg(ml,—(ll-l, 562,52) = (1 (O‘;‘) -+ Eg) + ¢9 (010’251 +_0'—1520'1) + (3262)

+c3 (0702 + T109) + €4 02F2 + 5055
Equation (3.2.57) gives four equations for the five parameters

cs = —(3+V3),
ca—c3 = —-3(2+V73),
c1—cy = 3+2V3, (3.2.63)
2¢y+c5s = —18 — 10v/3,

while eq. (3.2.60) solve the residual freedom yielding

9+5v/3
€1 = T

3(5+ 3/3)
@y
3(1+v3)

2 bl
Cy = C3 = —(3+\/§) .

c3 = (3.2.64)

Once we have determined H; and P,, we can obtain Foq1y from egs. (3.2.49) and (3.2.54). From

this four-particles form factor it is also easy to obtain the three-particles form factors Fyyy, F; Iz

Fl11, applying the residue equation (2.1.9) at the fusion angles u!- u{’i

I and uih7 respectively. Let
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us quote the results obtained for these three—particle form factors. The two-particle minimal

form factors F/'™ appearing in the expressions which follow are defined by eq. (2.1.14) while

the Dy, factors parameterizing the dynamical poles are defined by eq. (2.1.28). The form factor
l

Fg, is obtained from Fl?” through the residue equation at u;; = 2i7 /3

F,C})l(gl"g% 83) = (H %) (3 m? + 2m} Zcosh(&g)) ad); . (3.2.65)
i<y i<j

In this expression one immediately recognizes the “minimal” part, the dynamical poles and the

P? polynomial, while the only remaining polynomial in the cosh(6;;)’s allowed by eq. (2.1.24) is

simply a constant given by

af;; = —102.3375342.... ..
The form factor FI?L’ is obtained from Fl@ﬂ7 by using eq.(2.1.9), with uiLl = ix/2. Its final
expression is given by
FTm(819) FTE™ (613) Fip™ (023) .

FO (0,,0, 05) = I
15 (01, 02,03) Dy3(612) Di1.(613) Dy (623)

2m}?+ m? + 2m? cosh(b12) + 2mymy, (cosh(@lg) + cosh(@zg))
. cosh(f13) + cosh(f23) .

(3.2.66)

.(a?iL <1 — cosh(612) + 2 cosh(6;3) cosh(923)) -+ allfL <COSh((913) + cosh(923)>> .

This expression also exhibits a kinematical pole due to the presence of a particle-antiparticle

pair /. Moreover there is a nontrivial polynomial in the cosh(f;;)’s with coefficients given by

a);, = —70.50661963 ... ,

a,17 ;= —235.9197474 ... .

Finally, applying eq.(2.1.9) to Fl@“7 at u%
F7™ (612) FIp™(613) FJ3™ (823)
Dy1(612) Din(813) Din(623)

= 17 /6 one obtains

F34(01,02,05) = (3.2.67)
: <2 m} + mi + 2mf cosh(812) + 2my my, (cosh({)lg) + cosh(023))> :

'(a?lh + a}lh (cosh(913) + cosh(023)) + alzlh cosh(6y2) + a?lh cosh(613) cosh(023)>
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where the coefficients af,, are given by
ay;, = 78134.00044 ...,

aj;p = 72661.45729. ..
af;, = 31793.68905. ..
aj;, = 43430.98692. .. .

The form factors calculated for the TPM can be used to estimate the two—point function of
the stress—energy tensor whose plot is shown in Figure 3.3. The convergence of the series may
be checked through the sum-rule tests: the contributions of each multiparticle state are listed
in Table B.8 where the exact and computed values of ¢ and U are compared. A very fast
convergence behaviour is indeed observed which supports the validity of the spectral approach

to correlations functions in integrable massive models.

Figure 3.3: Correlation function of the TPM.
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Chapter 4

The Cluster Property of Relevant
Scaling Primary Fields

The description of an Integrable QFT given by the computation of its form factors solutions,
besides being a suitable and efficient method for the computation of correlation functions of
specific operators, is also a precious tool for looking into the operatorial space of a massive
model. Indeed, the space of form factor solutions is in general expected to represent the operator
content of the theory and the analysis of this space, though in general non-trivial, is a possible
way for counting the operators of the model [20, 55, 53]. In particular, the operator space
of a massive model described by some integrable deformation of a CFT is expected to have a
structure dictated by the original Verma modules pattern of the undeformed minimal model [86].
The first natural objects to look for in the massive models are therefore the scaling operators
which reduce to the primary fields in the UV limit. These fields (which for brevity we will call
“primaries” also off—criticality) represent in the RG picture the scaling off-critical variables in
the flow induced by some relevant operators out of a fixed point.

When computing the form factors solutions of some integrable deformation of a minimal
model, the question arises how to select among them the specific families of form factors related
to the primaries of the massive model. An important partial answer to this question has been
recently given in reference [30] where it has been shown that a particular asymptotic factorization
property already known as cluster property is actually the distinguishing feature of the form
factors of relevant scaling fields in integrable models. We say that the form factors of some

operator ®(z) satisfy the cluster property when, boosting the multiparticle state of a form
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factor into two clusters, makes it factorize into

Ah—}moo FC?; ’a21"-1akyak+1,...,an(017 827 =t gk) A + 6k+1’ ey A + 971) = (4.0.1)
1
= Z—q—)—)—FL:I;,aQ,...,ak (01, 02; ceay Hk) Ff:c+1,-~-yan (9k+1, ceey Qn) ,

A being an arbitrary shift of the rapidities and &k € 1,...,n — 1. This property of form factors
had already been noticed to hold in several cases of solutions found in literature for relevant
primary operators [76, 88, 55, 68]. In the paper [30] it has been shown that the above equations
are expected to hold in the case of relevant scaling operators of an integrable model when all the
form factors of the operator are allowed to be non-vanishing, so, in particular, when the model
has no internal symmetries. Briefly stated, the above factorization property selects the scaling
fields of the theory because it probes the high-energy ultraviolet regime of the theory where at
the conformal point, a chiral splitting of the theory is known to hold. The cluster factorization is
in this perspective nothing but the splitting of the form factor of a scaling field at the conformal
point into its chiral components.

Notice that the cluster equations (4.0.1) are a coupled set of non—linear equations in the
form factors, which are to be imposed in addition to the usual monodromy and residue linear
equations. As a consequence, the set of solutions of the whole non-linear system of equations is
expected to be in general a discrete set of solutions rather than a space of solutions. This feature,
which will be better illustrated in the following Section through a specific example, enables to
select, within the space of solutions which are compatible with eq. (2.1.24) in each specific model
a finite number of candidate solutions for the form factors of the relevant primaries. A final
precious tool for correctly establishing a one-to-one correspondence between possible cluster
solutions of a model and its relevant primaries has also been given in reference [30] where it has

been shown that the following sum rule holds

o __1 22 (O(z 0.
&= - [ (eE)s0)). (402

which gives the anomalous dimensions A® of an operator #(z). The correlator (©(z)$(0)).,

where O(z) is the trace of the Stress—Energy-Tensor, is computed in the bootstrap approach

through the spectral sum

(O(z)#(0))e = Zz/9 S0,..50

n=1 a;

d"e
F@
(27!')"’ Q14..yn

(9) Faﬁ,...,an (’Lﬂ‘ _ 0) e—}z| Y k=1 mk cosh 9k(403)
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In this way one has the possibility of labelling each specific form factor solution by the anomalous
dimension of the corresponding operator solving the problem of its identification. The above
procedure for computing all the relevant primaries form factors of a model, has been successfully
employed in reference [29] where the form factors of both the magnetization o(z) and the energy
density ¢(z) in the magnetic deformation of the Ising model have been computed. In the following
Section we illustrate the power of the method in different integrable deformations of the non-

unitary minimal model Mjg which has been analyzed in ref. [4].

4.1 Integrable Deformations of My g

We study in this Section the existence of cluster solutions in different integrable deformations
of the minimal model Mjg. The statistical model described by this CFT belongs to the class
of universality of solvable RSOS lattice models ¢ la Andrews-Baxter—Forrester although with
negative Boltzmann weights [5, 72]. In view of the discussion given in the introduction of Chapter
4, this minimal model appears to be an ideal playground for testing the efficiency of the cluster
equations for selecting primary solutions for several reasons. First of all, the Kac table of the
model contains, besides the identity, three primary operators ¢1q, ¢1,3 and ¢1,4 which are all
relevant with conformal dimensions —1/3, —5/9 and —2/3 respectively. The exceptionality of
this model lies in the fact that all these fields, taken separately, give rise to different integrable
deformations! of the conformal model, each of them characterized by a different mass spectrum
and S—matrix (see tables C.1, C.2 and C.3 in Appendix C). In particular the ¢; 4 deformation is
in this model integrable because of the identification ¢1,4 = ¢15 (see [54]). We can therefore try
to identify the whole spectrum of operators of the conformal model in each of the three different
deformations which span the scaling region in the RG space (see Figure 4.1). The second good
reason for choosing this model is that it is not endowed with any symmetry, making the equation
(4.0.1) hold in its full validity as the distinguishing property of primary fields. The non-unitarity
of the model introduces on the other hand peculiar difficulties associated in particular to the
existence of zeros in the S—matrices of the integrable deformations. As explained in detail in
Section 2.1.2, if this is the case, the interpretation of the poles of the S-matrix becomes in
general nontrivial and the parameterization of the corresponding poles of the form factors needs

a careful analysis based on the diagrammatic interpretation of each pole. In particular, in the S—

'We will denote the ¢1,x deformation by the shortand notation [A(2/9)]1,x)
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Figure 4.1:

matrices of the deformations of this model we have employed the following notation for labelling
atypical poles: B and D subscripts are placed respectively for simple poles which are described
by “butterfly” and “dragonfly” diagrams respectively (see Figures 2.7 and 2.8). Higher order
atypical poles are labelled instead by an asterisk * and correspond to different more complicated

kind of diagrams.

Let us discuss the strategy adopted for the computation of the form factors of the primary
fields of the model. We focus in particular on one- and two—particle form factors whose pa-
rameterization is in general given by eq. (2.1.22) where F7}**(8) is given by eq. (2.1.17) and
for the pole factor Dy(8) the specific prescription for S—matrices with zeros has been used as
explained in Section 2.1.2. The polynomials Q%,(9) have free parameters agﬁ?é as in (2.1.23).
The maximum degree of these polynomials are restricted by the asymptotic bound eq. (2.1.24).

Since we are looking for cluster solutions, this bound turns out to be a constant limit value for

large rapidities since egs. (4.0.1) reduce to
lim F%(8) = F2 F2 | (4.1.4)
f—00

in the case of two—particle form factors. Hereafter we deal with dimensionless cluster operators
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which are normalized in such a way as to have a vacuum expectation value equal to one
(0|®(0)|0)=F2 =1 (4.1.5)

If we consider any set of one and two—particle form factors in an integrable deformation of Mg
and write the residue dynamical equations which relate them, we are in general left with a
undetermined linear system of equations in the free parameters a{(ﬁ)?@ and F2. Indeed the space
of solutions obtained in this way is supposed to contain all the form factors of scalar operators
with anomalous dimension Ag < 1, namely all the relevant fields of the model because of the
above chosen asymptotic bound for large rapidities. Actual computations do indeed show that
the linear system is undetermined in any deformation. The dynamical residue equations which
we consider here are given by simple pole residue equations (2.1.31) on bound state poles and
by the residue equations (2.1.32) which can be written on when a double pole or a B simple pole
in the S—matrix are present at 6 = tp.

If we now add cluster equations of the type (4.1.4) to the system of linear residue equations,
we observe in any deformation that the non-linear system obtained in this way is determined
on a suitably chosen minimal finite set of one and two—particle form factors. Being in presence
of a non-linear system of algebraic equations in the free parameters, we expect to find in any
deformation a finite set of solutions. The remarkable feature of these systems is that they all
have exactly three non—trivial solutions? in any deformation which are expected to be candidafe
solutions to be put in correspondence with the three scaling primaries of the models. If the
system is enlarged to other form factors, it turns out to be in general overdetermined, a fact
that gives non-trivial checks of consistency which are all exactly verified. The results of the
form factor cluster solutions in the three different integrable models are listed in Tables C.4-C.9
where the one—particle form factors F, and the two—particle coeflicients afll;?é are given for any
cluster solution.

Among these solutions it is first of all quite easy to recognize in each deformation

[M(2/9)](1,k), the form factors of the trace of the stress energy tensor ©(z) which is essentially

the deforming operator of the model because of the proportionality
O(z) =47 Evac P1,k » (4.1.6)

Eyac being the vacuum energy density which can be easily computed by TBA computations

2The trivial vanishing solution is always admitted, corresponding to the identity primary field.
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87, 37, 52]
e m{

free T g Yozep, sin(rz)

Here the set Py is defined in eq. (2.1.16) and m; is the lightest particle mass. The form factors

(4.1.7)

of © ~ ¢ are selected among the three cluster solutions by checking the peculiar equations
which come form the conservation of the Stress-Energy-Tensor (3.0.1) and (3.0.3). These equa-
tions are indeed satisfied in any deformation by one of the cluster solutions up to an overall
normalization. They also allow the exact normalization of the form factors of O(z) which is
essential for computing the sum rule (4.0.2). After knowing the form factors of ©, one is in
fact enabled to make use of this sum rule for computing the anomalous dimensions of all cluster
solutions and verify the hypothesis made that they correspond to the primary scaling operators
of the models. The computation of the sum rule for any of the cluster solutions undoubtedly
shows that they can be assigned to the primaries of each deformation, since the expected values
of the anomalous dimensions —1/3, —5/9 and —2/3 are obtained with high accuracy already
inserting in the spectral sum (4.0.3) a very limited number of states. The result of the compu-
tation is shown in Tables C.10-C.12, where the contributions of each sum are listed in order of
increasing s-variable of the multiparticle state. In these sums some three—particle states have
been inserted as well. We don’t give here the exact expression of these form factors. The fast
convergence behaviour of the above sum rules proves once again the efficiency of the spectral

representation method.

4.1.1 Non-Integrable Deformations of Moo

We make use of the form factors of relevant primaries of separate deformations of M g for testing
some recent theoretical developments obtained in reference [28] in the context of N on—-Integrable
deformations of a CFT. These models are approached in the above paper in the framework of the
bootstrap approach by means of further deformations of an integrable model (which is typically

a deformation itself of a CFT). The action of these models can be therefore written as
A= A+ ,\,-/dz:z: Vi(a) (4.1.8)

where A;;; is the action of the original model. The operators ¥;(z) deform the above action

leading the model in the regime of non—integrability. As far as small deformations are concerned,
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the effects of the breaking of integrability may be studied by means of Born series based on the
form factors of the fields ¥;(z) at integrability. Some predictions can be made for instance on
specific universal ratios when the non—integrable deformation is due to a single operator ¥(z).
We make use of the knowledge of each operator in the separate deformations in order to obtain
six different non—integrable deormations. In each case we can compute the first order variations

of the mass spectra and of the vacuum energy density £,4. which are given by [28]

Y B2 (in)
m(® Fjj (ir) |

17

om; mg
5mj (

(4.1.9)
66e (0] W]0)

mgo)éml B qui(mr) ’

where mz(-o) refers to the (unperturbed) mass spectrum of the original integrable theory. The
above theoretical predictions can be then compared with the numerical estimates which can
be obtained by the so—called Truncated Conformal Space (TCS) method [83, 57, 58]. We have
computed the above theoretical predictions in each possible double non-integrable deformation

of the model
[M(2/9)]1,5) + € b1k - (4.1.10)

The outcome of our results are listed in Table C.13, together with the corresponding TCS
estimates. Since the accuracy of the latter are of a few percent, the agreement is indeed quite
satisfactory.

This result is not only a remarkable confirmation of the predictions made in [28], but it also
gives further support to the validity of the cluster hypothesis as a precise way of selecting the

form factors of scaling relevant primaries.
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Chapter 5

(1) (2)

Form Factors in a,’ and a;" Real

Coupling ATFT’s

The problem of classifying the S-matrices in the integrable deformations of conformal minimal
models has been solved in a series of papers [76, 71, 14, 77, 81] where a systematic way for
obtaining the exact S—matrix amplitude of the fundamental particle of the bootstrap has been
given. The description of these integrable massive models can be approached in a concise way
by considering specific quantum group restrictions of the operator algebras of the sine-Gordon
(sG) and Zhiber-Mihailov—Shabat (ZMS) models, namely the imaginary coupling constant agl)
and agQ) ATFT’s respectively. The restrictions of the sG model in particular describe the class
of ¢1,3 deformations while the ones of the ZMS model are related to all the others ¢1,2, $2,1 and
$1,5 integrable deformations, as it has been explained heuristically in the context of Complex
Liouville Theory in Section 1.2.1. These imaginary coupling constant models have a rich pattern
of spectra containing in general not only scalar particles, but also topologically charged solitons
and kinks. The fundamental particle in the bootstrap of the sG model is a two—component soliton
-which may produce as a bound state a number of scalar breathers which depends in general on
the value of the coupling constant. In the reductions of sG describing ¢ 3 deformations of
minimal models M, ;, it can be shown that the model is free of breathers unless s > 2r, which
excludes all unitary cases. The ZMS model is not even a well-defined QFT since for imaginary
coupling constant g the agm ATFT Lagrangian density (1.2.43) is not Hermitian. However,
starting from the observation that the ZMS has a non—unitary S-matrix related to the Izergin—

Korepin R-matrix, Smirnov exploited the quantum group SL(2), invariance of the S—matrix
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in order to recover unitarity in specific reductions of the model. The S-matrices of the above-
mentioned deformed minimal models were in this way obtained from RSOS restrictions of the
Izergin—Korepin R-matrix at specific values of the coupling constant at which ¢ is a root of
unity [77]. A similar project for the ¢; 5 deformations was recently carried out in [81]. In the
case of the ZMS model, the fundamental particle is a three—component kink, which produces
as bound states, a certain number of breathers as well as higher order kinks depending on the
value of the coupling. The very closure of the bootstrap in the reductions of the ZMS model is
however a problem which has not been completely solved yet, apart from some limited classes of
minimal models [77, 54]. What is of interest to us is however the presence or not of the lightest
breather. This can be shown to belong to the spectrum of the model in all ¢; 5 deformations,
while it is always absent in ¢ ; deformations [77]. As for ¢; 5 deformations, the spectrum can
be shown to contain breathers in the minimal models M, s if 3s > 107 [81].

The computation of form factors in the above imaginary coupling constant ATFT is a highly
nontrivial task which has been deeply analyzed only in the case of the sG model in a series of
technical papers [78, 79, 8]. Here, we address the problem of computing form factors in the two
corresponding real coupling constant ATFT’s, namely the shG and BD models. As explained
in Section 1.2.1, these models have single—particle spectra and therefore the corresponding form
factor equations will be confined in the realm of diagonal scattering theories. This observation
enables us to attack the problem of computing form factors making use of the efficient parame-
terization discussed in Section 2.1.1. The computation of form factors in these two Lagrangian
models — which is an interesting problem itself — can then be used, after analytic continuation
of the coupling constant, to obtain form factors in the reductions of the sG and ZMS models.
The original boson of the Lagrangian shG and BD models after continuation to imaginary cou-
pling, is always identified with the lightest breather of the reduced models. Therefore, we can
apply the above method only to deformations of M, ; obtained by ¢12, ¢1,3 (if s > 2r) or ¢15
(if 3s > 10r) fields. After knowing the form factors of the lightest breather in the reductions,
one can in principle compute all the breather sector by use of bound state residue equations and
also make use of these form factors as initial conditions for the computation of form factors of
soliton—like particles.

The most interesting aspect of computing form factors in the deformations of CFT’s from
the ones of their “parents” ATFT’s lies however in the fact that the identification of primary

operators off—criticality can be performed in the latter case in the framework of Complex Li-
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ouville Theory by means of the simple recipes discussed in Section 1.2.1 (see eq. (1.2.52) and
Tables 1.1 and 1.2). The attention is therefore focused on the ezponential operators €9% of the
Lagrangian models, a basis of operators which must include the primaries of the reduced models
for discrete values of k and g. The solution of the form factors of exponential operators in the
shG model was found in ref. [55] and the connection with ¢1,3 deformations of the series of
non-unitary minimal models M3 2,41 was studied in ref. [53]. In the solutions obtained in [55]
the cluster property (4.0.1) was observed to hold. In the light of the results of ref. [30] where
this property is shown to be the peculiar feature of relevant scaling operators, it seems natural
that also in the case of the BD model, the exponential operators should be selected among the
space of form factor equations, by the cluster property. This is indeed the strategy adopted in
ref. [2] for solving the problem in the BD model.

The knowledge of the exact form factors of the exponential operators in the shG and BD
models is therefore a systematic way of identifying the form factors of relevant primary operators
in integrable deformations of minimal models with breathers. Moreover, these solutions also
encode precious non—perturbative information of the Lagrangian models. We will see for example
how to extract in a simple way the exact wave function renormalization constant Z (B) both in
the shG model (where it was already known [50]) and in the BD model.

In Section 5.1 we will review the essential results of paper [55] and give an alternative
derivation of the wave function renormalization constant of the model and of the properly
normalized form factors of the fields ¢(z) and : ¢?(z):. We do this for establishing a parallel
with the analogous computation carried out for the BD model (2] which will be exposed in

Section 5.2.

5.1 Form Factors in the Sinh—Gordon Model

In this section we give a brief review of the solution of form factor equations for the class
of scalar nonderivative operators in the sinh-Gordon model which was given in reference [55].
For this model, the classification of the operator content of the theory has been efficiently
given through the exact solutions relative to the basis of exponential operators e*9¢(%) of the
model. The distinguishing property of these solutions is their asymptotic cluster property for
large values of the rapidities eq. (4.0.1). The peculiarity of the solutions of the sinh—-Gordon

model lies in the fact that very neat determinant-like expressions for the form factors can be
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given making it possible to write analytical expressions relative to multiparticle states with an
arbitrary number of particles. We will make use of these solutions to give a simple derivation of
the exact wave function renormalization constant of the model Z(B) which agrees with the one
originally derived in [50]. This computation gives a strong support to the hypothesis that the
assignment of the form factors solutions found in [55] for the exponential operators holds in a
fully non—perturbative regime for arbitrary values of the coupling constant.

Let us now summarize the main result obtained in reference [55], namely the identification
of a particular class of solutions of the form factor equations which is relative to the basis of
exponential operators of the model. The basic definitions relative to the sinh-Gordon model
are given in Section 1.2.1. The S-matrix of the model doesn’t exhibit any bound state pole
and therefore the recursive equations which can be imposed for the determination of form factor
solutions are only the kinematical ones on annihilation poles (2.1.11). The parameterization of
form factors for scalar non—derivative operators in this model which correctly takes into account
the kinematical poles can be chosen to be

szn 9 — 8. 3
Fo(01,...,0,) = HyQu(z1,.--,Tn) H ) , (5.1.1)

T;+T;
1< t J

where z; = €. Let us analyze the above expression: the “minimal” solution F™™(6) to the

monodromy equations (2.1.7) and (2.1.8) is conveniently written as (see eq. (2.1.17))

. 9)
Fmin(g) = n(B) -2 5.1.2
O=NE) 2 (512)
where the g, (#) function is defined in Appendix A and the constant
. o h( . _B\/4
N(B) = exp [_4 / iitzsmh(t/2) sinh ( B/;ll)2 7imh(t(? )/4) ’ (5.1.3)
sin

is chosen to obtain the asymptotic behavior F™™"(co) = 1. The constants H, are conveniently

chosen to be

Hypy1 = Hy p**(B) : Hy, = Hy p*"*(B), (5.1.4)
with
d;sin(ﬂ'B/Q))l/2
B)= (22 5.1.5
uB) = (S5 (515
and Hy and H, independent overall normalization constants. Finally, Qn(z1,...,2,) in eq.

(5.1.1) are homogeneous symmetrical polynomials in the variables z;. If we require the solutions
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to belong to spinless operators, then eq. (2.1.6) imposes the total degree of these polynomials to
be equal to n(n —1)/2. After choosing the above parameterization, the problem of determining
the form factors in this class of operators is reduced to the solution of the kinematical recursive

equations (2.1.11), which entail the following recursive equations on the polynomials @Qn:

Qni2(—z,2,21,...,2,) = (=)"z Dyp(z, 21, ...,2,) Qnlz1,...,2,), (5.1.6)
where
n k
Dn(z|zy1,...,2,) = [m] z2(n—k)+m al(cn)al(i)m(—)k"'l . (5.1.7)
k=1 m=1,0dd

In the above expression we make use of the symbolic notation

sin(nBw/2)

= 5.1.8

" sin(Br/2) ’ ( )

and of the usual basis O‘,(Cn) of symmetrical polynomials of degree & in n variables defined by the

generating function

n

Z z"k U;(cn) = ﬁ (z+ ;). (5.1.9)
=1

k=0
The Z; parity of the models is reflected in the fact that the form factor equations decouple
the odd multiparticle form factors Q2n+1 from the even ones Qs,. In order to compute the
most general solutions to the system of recursive equations (5.1.6) it is sufficient to expand the
unknown polynomial @, as the most general symmetrical polynomial of degree n(n — 1)/2 in
the basis of the a,(cn) with arbitrary coefficients. The equations (5.1.6) then yield a recursive
system of linear equations in these coefficients. The general solutions to these equations give
a faithful representation of the infinite dimensional operatorial space of scalar non—derivative
operators of the theory. The structure of this space of operators was analyzed in detail in ref.
[55] and can be described in a compact way in terms of the exact solutions of the form factors
of the basis of exponential operators e¥9%(%). These form factors were identified among the most
general solutions as the particular one-parameter family of solutions of eq. (5.1.6) given by the

following compact determinant expression
Qn(k) = det |My; (k)] , (5.1.10)
where k is arbitrary and the (n — 1) x (n — 1) matrix M;;(k) is given by
M (k) = o0i—5[i — 7+ k]. (5.1.11)
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Choosing the constants H; and H; to be
Hf=p®B)K ,  Hy=p*(B)K, (5.1.12)

and plugging H, = H* and Q, = Q. (k) in eq. (5.1.1), these solutions give form factors Joald
for arbitrary k, which were correctly identified by Koubek and Mussardo with the form factors
of €9¢(2), The identification was obtained by computing at first order in g the value of the
anomalous dimensions Ag(g) of the operator ®;(z) defined by the form factors. This can be

done analyzing the short distance behavior of correlator
del {k} 2 —ml|z| 3., coshé; =
(0|®1(z) ®1(0)]0) = Z ~ . E¥N0y,...,8,)| e icoshfi (51.13)

The anomalous dimensions computed in this way in the limit ¢ — 0 turn out to be Ax(g) =
—k? g2 /8m which is the correct value for the operator €k9¢(%) in the bosonic free field theory.
A very remarkable feature of these solutions is their cluster property (4.0.1) which can be

easily proved to follow from the identity

: Qn( ) — 5
A11+00 o (Azy,.. ., AT, Tmg1y.-rTn) = (5.1.14)
Qm( ) Qn-m(k) ¢ .
- [ ] ({ }2— 1, ,m) )C(” m) ({wz}zzm—i-l,...,n) )
where K(") is the kernel of equation (5.1.6)
M (fz}) = -
KM (ei)) = ] (e +2j) = det [02,_J et i (51.15)

1<i<j<n

In view of the results of [30], the clusterization of these solutions is consistent with the fact that
in the ¢; 3—deformed conformal minimal models, described by restrictions of the sG model, the
class of exponential operators includes the solutions relative to the scaling primary fields. To
obtain these form factors one has therefore to continue the cluster solutions of the shG model,
to imaginary values of the coupling constant g, namely to negative values of B. The value of the
coupling fixes the deformed conformal model M, ;, while the specific scaling operator ¢m ()
is selected by choosing k = ky,, , in the form factors Fék} according to the relations of Table 1.1.
The boson of the shG model corresponds, in the reduced models, to the lightest breather of the
spectrum which is however known to be present in ¢; 3 deformations only in the restricted class

of non—unitary minimal models with s > 2r.
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In the paper [53] the operatorial space of the massive minimal models (M(2,2n+ D)1, was
analyzed in detail by means of the above procedure. The spectrum of these models contains
no kinks as asymptotic states and therefore the bootstrap can be closed starting from the
lightest breather [54]. Knowing the form factors of the shG one can therefore recover all the
multiparticle form factors of these reduced models through bootstrap bound state equations
(2.1.9). A decisive proof that these form factors after analytical continuation of the coupling do
indeed yield the form factors of scaling primary fields was finally given in reference [4]. In this
paper the form factors of all primaries in ¢1,3 deformations of My 7 and My g were obtained
as the finite number of cluster solutions on the whole spectrum of the theory and correctly
identified by the anomalous dimensions sum rule (4.0.2). These form factors were then shown

to coincide with the ones obtained for these models from the cluster solutions of shG.

5.1.1 Computation of the Wave Function Renormalization Constant and
Form Factors of the Fields ¢(z) and :¢?(z):

The overall normalization of the solutions Fi*? is fixed by F{k} (®x) = 1 which is a conve-
nient choice for studying the cluster behavior (4.0.1) of these functions. In the framework of the
bootstrap approach however, there is no way of correctly normalizing the exponential operators
and the solutions have to be understood up to normalization (®) ~ €*9%). The correct normal-
ization requires the exact computation of the vacuum expectation values of the operators!. We

can however write the following equation

(0[e*# O A(81) - - - A(6n))

{k} —
FX(01,...,0,) = (0]eFs=0]0y (5.1.16)
Let us expand the n—particle form factor in series of &
(0lek# 9] A(0,) Z 2 (0119 (0): [A(B) -~ A(6,) (5.1.17)
and the vacuum expectation value
kgw(0) — kI gj 3 2
(0le*# (o) = >~ T<O| 11(0):]0) = 1+ o(k?). (5.1.18)
j=0

'A recent paper of Lukyanov and Zamolodchikov [61] has solved this problem in the sine~-Gordon model and

might be used to get the correctly normalized form factors of the exponential operators.
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The term of order k is absent in the last expression since {p(0)) = 0 due to the Z, symmetry of
the model.

If we now expand F,{{k} in series of k we can identify the form factors of the fields ¢(z) and
:0*(z): as the coefficients of order k and k? respectively.

(0]ere= @A (61) - - A(6r))

k
F*0y,...,00) CEZECI0

(5.1.19)

2,2

= kg Olp(e) A(B) - A(B)) + L (0]:0%(0): [A(0) - A(B0)) + o)

This procedure gives the form factors of ¢(z) and :¢?(z): with the correct overall normalization
of the fields. The observation in particular allows the exact determination of the wave function
renormalization constant Z(B) of the sinh—-Gordon model. In fact, considering the first order

expansion in k of Fl{k}

FY = w(B) [ = u(B) e + o) (5.1.20)
= kg (0lp(0)]A) + o()
kgz'/?

= \/—2— + O(k2) y

one easily obtains the following expression for Z(B)

7 B(2- B)

~ Lsin(Br/2) N (B) (5.1.21)

Z(B)

where NV (B) is defined in eq. (5.1.3). Notice that the expression is manifestly dual with respect
to the strong-weak coupling duality B — 2 — B. This expression exactly coincides?, after
analytical continuation of the coupling, with the one originally derived for the sine-Gordon
theory by Karowsky and Weisz in reference [50]. A plot of the function Z(B) is given in Figure
5.1. From equation (5.1.19) it is possible to derive the exactly normalized form factors of the
fields o(z) and : @?(z) : as the terms of order k and k® respectively in the expansion. The
form factors of these operators were also independently obtained in reference [50] for the first
multiparticle states and the expressions obtained in the two ways can be shown to be in perfect
agreement.

This computation shows in particular that the validity of the correspondence between cluster

solutions and exponential operators of the theory holds in the non—perturbative regime for any

2 - . . . .
For an easier comparison see the expression given in [31].
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Figure 5.1: Plot of the wave function renormalization constant Z(B) of the sinh—-Gordon model.

value of the coupling constant. We will show in Section 5.2 that similar results can be obtained
also for the Bullough-Dodd model. In this case the cluster property of the form factors will not
be just noticed to hold for the exponential operators, but on the contrary will be strongly used

as their fingerprint for selecting them in the operatorial space.
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5.2 Form Factors in the Bullough-Dodd Model

In this Section we address the problem of studying the form factors of scalar operators in
the Bullough-Dodd model, aiming in particular to the identification of the basis of exponential
operators. This project is inspired to the results obtained in the shG model in ref. [55]. However,
the presence of additional bound state equations gives rise in the BD model to a system of
equations which is in general more complicated. Several attempts have been made in the past
in order to find out determinant-like solutions to this system of equations in analogy with the
results obtained by Koubek and Mussardo for the shG model [55], but so far the quest has been
vain. The computation of the form factors has necessarily to be carried out recursively on the
tower of multiparticle form factors; some partial results concerning the elementary field ¢(z)
and the trace of the stress—energy tensor ©(z) have been obtained in [41, 68].

The importance of the solution of this model is largely due to the fact that, contrary to
the shG case, where only a restricted class of nonunitary ¢; 3 deformations can be studied
by analytical continuation of the coupling, the BD allows to study the whole rich class of ¢1 2
deformations which describe important statistical models (e.g. the Yang-Lee model, Ising model
in magnetic field, TIM and TPM in thermal field) as well as a limited class of non—unitary ¢ s
deformations.

The BD model is the two—dimensional ag2) Affine Toda Field Theory, defined by the La-
grangian density (1.2.43). This model is the only 2D integrable QFT involving a single bosonic
field which exhibits the > property (i.e. the elementary particle appears as a bound state of
itself). The spectrum of the theory consists of a single bosonic massive particle A of mass m and
the exact S—matrix of the model [7] is given by (1.2.44). Other information about this model
is collected in Section 1.2.1. In particular here we stress the weak—coupling constant duality of
the model under the replacement B — 2 — B, where the renormalized coupling constant B is
given by

2
B(g) = %, (5.2.22)
and ranges from 0 to 2 for real values of the coupling g. For later use we also define the following

duality—invariant function of the coupling constant

¢ = cos ~(—B——;—22—7—r (5.2.23)
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In the computation of form factors, all the coupling constant dependence will be conveniently
rewritten in terms of ¢ in order to obtain manifestly dual-invariant expressions. For instance,
the on-shell three-point coupling constant relative to the process in which the boson appears

as a bound state of itself is given by

2 oL 271 (c+1)(1+ 2c¢)
I =— 9—}1222/3(9 — —?) S( ) 2\/—‘("C~LT)(1—_—2—5 (5224)

and vanishes both at the free field limiting values B = 0,2 and at the self-dual point B = 1.

We now turn to the problem of determining the form factors of a local operator ®(z) in
the BD model. Here, contrary to the case of the shG model, the form factor equations include
not only monodromy equations (2.1.7) and (2.1.8) together with kinematical residue equations
(2.1.11), but also the dynamical residue equations on bound state poles (dynamical residue
equations)

hrgl (a- %@) Frpa(0+ /2,0 — 0/2,01,...,6,) =iTFy1(6,6y,...,6,).  (5.2.25)

o=y 3=

The system of equations therefore couples all the form factors with an even and odd number of
particles together.

We want to solve the form factor equations in the space of scalar operators which are local
nonderivative functions of the elementary field ¢(z). This infinite dimensional operatorial space
can be spanned for instance by the basis of polynomials in ¢(z) or by the basis of exponentials

«¢(z), A suitable parameterization of the form factors for this class of operators is the following
Fmin (g, — 0,)
zi + 2j) (2 + ziw; +22)

F(61,...,0,) = H2Q%(zy, ..., zn) 11 (5.2.26)

i<j (
where z; = e%. The pole structure expected to reflect the correct analyticity properties is explic-
itly shown in the denominator of (5.2.26), where annihilation and bound state simple poles are
present at relative rapidities 6;; = i7 and 0i; = 2mi/3, respectively. QS is a homogeneous sym-
metrical polynomial in the variables z; whose total degree is determined by Lorentz invariance
to be d, = 3—“%1"—1) The “minimal” two-particle form factor F™"(8) is given by the following
function (see eq. (2.1.17))

—~

0
F™"(9) = /(B )——_—;—()—5’1——)— (5.2.27)

6)°

@y |wm
w|t:|
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where g, (6) is the usual function defined by (A.0.3). In eq. (5.2.27), the normalization constant

_ dt sinh(t/2) cosh(t/6)
N(B) = exp [—4 / - =17,

(cosh(t/3) — cosh((B —1)t/3))| , (5.2.28)

is chosen such that F™"(co) = 1. For real values of the coupling constant, namely for B € (0, 2),
F™"(6) has neither poles nor zeros in the physical strip Im@ € (0, 7), since the same property
is shared by g,(f) when a € (0,1). The analytical continuation of F™in(6) for imaginary values
of the coupling constant g (B < 0) developes poles in 6 which can be explicitly exhibited by

using the following functional relations

gl+a(6) =f-a (0) )
9a(8) g-a(8) = Pall) =

cos T — cosh 8

2 cos? IX ’

satisfied by the functions g, (). These poles represent the dynamical bound state singularities
which are expected to appear in the reduced ZMS models where the spectra present in general
higher mass breathers.

Notice that we have not mentioned yet the dependence of the form factors F,? on the operator
®(z). Indeed, in the system of equations (2.1.7), (2.1.8), (2.1.11) and (5.2.25) this dependence is
not explicit and further physical requirements are necessary to identify in the space of solutions
the form factors of a specific operator. Our strategy will be the following: we will first study the
space of general solutions to the above linear system and then we will impose additional cluster
equations (4.0.1) for selecting a particular class of solutions which are supposed to describe

exponential operators ekaw(z),

5.2.1 General Solution for Scalar Non—Derivative Operators

We now turn to the general solution of the system of form factor equations in the space described
by the parameterization (5.2.26). Since the monodromy equations are automatically solved by
the above expression, we study the recursive residue equations on the polynomials Q2. In order
to get a simplified version of these equations, the constants H2 in eq. (5.2.26) are conveniently

chosen to be

H® =tu™(B), | (5.2.29)



where ¢ is a free parameter which will have an important role in the discussion of cluster solutions

whereas
V3 T(B)
me(QT)
With the above choice of H®, the dynamical recursive equations (5.2.25) read
Qn(wz,w 2, zy,. o Tne2) = —2°Dy_o(z]z1, . v Tn-2) Qno1(z, 21, ..., 20-2), (5.2.31)

where w = €/3 and the polynomial D, is given by
Du(zles,.an) = 3 ®rhhemhe o) 60 60 cos (ky — ko) (B +2)7/3) . (5.2.32)
ky ks, k3=0

The last expression is written in the usual basis of symmetrical polynomials cr,(gn) which are

defined by the generating function (5.1.9). We can get rid of the trigonometrical dependence on

the coupling constant B by exploiting the following recursive relation
cos((n +1)@) = 2 cos(na) cosa — cos((n — 1)) , (5.2.33)

which allows us to express cosines of multiple angles as polynomials of cosa

cosa = ¢,
cos2a = 2c2-1 ,
cos3a = 4c® -3¢, (5.2.34)

cosda = 8c4—802+1

In this way we can cast the dependence of eq. (5.2.31) on the coupling constant into a rational
dependence on the variable ¢ defined in eq. (5.2.23).
The kinematical residue equations on annihilation poles (2.1.11) produce the following re-

cursive relations on the polynomials Q,,
Qn(—z,2,21,...,2,9) = (="K 23 Un—2(z|z1,..., Tn-2) Qn-a(zy,.. G Tn2), (5.2.35)
with

n
Un(a’lwh e xn) = 92 Z (_)k2+k3+k5 28n—(k1++ke) U/(;;) .. 0.;(:';") . (5236)
k1 yeeeskg=0

sm((2 (/C2+k4—k1 ——k3)+B(k‘3+k6-—k4—k5))ﬂ'/3) s
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and
. (2¢-1)
C4VB(1+c)(2e41)

Before solving the system of recursive equations, let us derive some important properties on the

(5.2.37)

space of solutions from a direct analysis of the equations (5.2.31) and (5.2.35).

A — It is easy to prove that in the space of symmetrical polynomials of degree d, = gll—(g—_—ll,
the only polynomials which have zeros both at z;/z; = e?™/3 and at z;/z; = —1 are given
by

KWz}) = [ (ei+2)(ef +aiz;+3))
1<i<j<n
= det!a(n) l det o -
2i=t1<ij<n—1 3U/2—i+1+(=V " 1< j<on—2

up to a multiplicative constant. This is therefore the only possible kernel for the whole
system of recursive equations. Hence, after fixing all the polynomials @; fori=1,...n-1,
the most general solution @, of the system of equations (5.2.31) and (5.2.35) will be given
by

Qn = Q5+ M KM ({z}), (5.2.38)

where Q) is a specific solution and ), is a free parameter. The space of solutions will
be organized correspondingly, namely every operator will be identified by a succession of
parameters A;, ¢ = 1,...00 and the general solution for a n—particle form factor will be

described by an n—dimensional vector space of solutions ), spanned by the parameters

Alyeeey An.

B — The partial degree of the general polynomial (), with respect to any of the variables z; is
exactly d,(f) = 3(n — 1). This can be easily shown by induction observing that ¢); must
be a constant for Lorentz invariance and making use of equations (5.2.31), (5.2.35) and
(5.2.38). This implies in particular that the form factors of this class of scalar operators

of the theory have bounded asymptotic behavior for large values of the rapidities,
Jim F20,4+ A, 0+ A, brpr, ..., 0,) < o0 VE=1,...,n—1. (5.2.39)

This observation enables us to look for cluster solutions of form factors equations within

this general class of solutions (see eq. (4.0.1)).
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We now turn to the actual computation of the first multiparticle general solutions to the system
of recursive equations (5.2.31) and (5.2.35). The most direct way of computing these solutions
consists in parameterizing any polynomial @, as the most general polynomial of degree d, =
gﬂ;—*——l—l in the basis of symmetrical polynomials cr,(gn) and to impose on the coefficients of the
expansion the costraints coming from the recursive equations. The number of free parameters of
the polynomials @, increases very rapidly as the number of partitions of 3—"—(-2"—"12 Solving the
recursive equations it turns out that the number of linear equations on these parameters always
exceeds their number, giving rise to a huge overdetermined system.

We report here the result of the first general multiparticle form factors in the space of scalar

non—derivative operators. Lorentz invariance requires Q; to be a constant
@1 = A1, (5.2.40)

hence in order not to have two different overall normalization constants we can set for the time

being ¢ = 1in eq. (5.2.29). The next most general solutions are given by

Qa(z1,22) = =Ayo1® = M K@), (5.2.41)

(4‘32 ) 2 _2 3 3 3 _ 2
2 (1t )01 09" 03 — m(Uz o3+ o1 03)
(

+ A9 (01024-{—0140203-—- 2(1-¢ (01 02203 — 01 05 03 ) — 02303——013032)

Q3(z1, T2, 23) = A\ (01 ot +otoy o3+

+ +As KO,

where the residual kernel freedom (5.2.38) of each solution has been explicited. We do not report
here the general solution of Q4 which already contains an extremely large number of terms and
is not particularly useful for our purposes. Notice that in the above solutions the trigonometrical
dependence on the coupling constant has been hidden in a simple rational dependence on the
self-dual variable c defined in eq. (5.2.23). This major simplification has been made possible by
noticing that the systematic solution of the dynamical recursive equations alone (5.2.31) yields
polynomials @, which already have the correct single-parameter kernel ambiguity (5.2.38) ex-
pected for the whole system. It therefore means that actually the dynamical recursive equations
(5.2.31) are equivalent to the system of the two coupled equations (5.2.31) and (5.2.35).

The general solutions that we have found must include in particular the form factors of the

elementary field ¢(z) which were first studied in [41]. One can prove that they can in fact
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be selected by imposing either the asymptotic vanishing of the form factors for large values of
the rapidities (i.e. imposing the cancellation of the highest partial degree terms in Q) or the

proportionality @, ~ o, [42]. The A; are then determined to be in this case

,\;: "Xf’

AW=0  Vi>2. (5.2.42)

Finally the overall normalization is fixed by

ZI/Z

(ol(0)]A) = Vol (5.2.43)

which sets AY = u~1Z%2/4/2. In the above expression Z is the wave function renormalization
constant of the theory which will be exactly computed in Section 5.2.5.

By using the above general solutions we can also identify the 1-parameter family of the trace
O(z) of the Stress—Energy tensor for different values of the background charge. This family of
operators was studied in ref. [68] where the authors showed that different choices of ©(z) select
different possible ultraviolet limits of the theory. In order to identify these form factors it is
sufficient to impose the proportionality @, ~ ¢; 0,1 for n > 3, as it can be shown from the
conservation of the Stress—Energy—Tensor. In fact, as discussed in the introduction of Chaptér 3,

the form factors of the trace must be proportional to the squared momentum of the multiparticle

2010n—1

state, which for identical particles is given by P? = m -

In this way one determines all the free kernel parameters A; but the first two. The parameter

2§ is found to be for example

o_ o, 37 -
A3 = Ay + TR (5.2.44)
Finally, imposing the overall normalization (3.0.3)
FP (ir) = 2mm?, (5.2.45)
one determines
e 7Tm2 .

30ur convention on the normalization of states is {A(61)|A(82)) = 27 6(8; — 62) = 2xE1 §(p1 — p2) -
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and obtains a one-parameter family of independent operators for arbitrary A9 which coincides
with the one analyzed in ref. [68]. '

In order to identify different operators in this general space of solutions one must resort
to more powerful techniques. We will see in the following section how the imposition of the
cluster equations (4.0.1) enables us to extract the form factors of a whole basis in the space of

non—derivative scalar operators.

5.2.2 Form Factors of Exponential Operators

In this Section we study the existence of solutions of the form factor equations which also
satisfy the further requirement given by the so—called cluster equations (4.0.1) imposed on a
multiparticle form factor F,. This restrictive set of non-linear equations is believed to select
out the exponential operators in a Lagrangian theory [78, 55]. More recently it has been shown
in ref. [30] that these equations are the distinguishing property of scaling operators in the
conformal limit of a two—dimensional field theory. Cluster solutions become therefore objects of
utmost interest in the BD model because the two ways of looking at them either as exponential
operators or as scaling fields, converge in this theory where specific exponentials are identified
with primary operators in the reduced models describing deformations of conformal field theories.

In order to impose the cluster equations (4.0.1) we fix the overall normalization of the form

factors by adopting the convenient choice Fy = 1 and choose
Q:=1. (5.2.47)

Equations (4.0.1) then amount to requiring the following property on the polynomial @,

Al;rr;o W(A Tl ooy ATy, Tomdly ey l’n) =1 W({ﬁ,}g:l,_,_,m) K (n=m) ({zz}ﬂ.:m-{-l,...,n) )
_ (5.2.48)

where ¢ — the variable introduced in eq. (5.2.29) - is now switched on and treated as a free
parameter. These further restrictions imposed on the general solutions of residue equations
determine level by level all the A, parameters as functions of . At any given level n, the number
of equations which determine the only free parameter left A,, grows rapidly with n, therefore
the very existence of a cluster solution is not at all obvious. For the first computed solutions

however, all the equations on a given A, turn out to be identical and we believe that this should
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be the case at any level. In this way we obtain a one-parameter family of solutions for ¢ arbitrary,
of which we report the first multiparticle representatives in Appendix D. Notice that ¢ is not an
overall normalization factor since the normalization of the form factors has been fixed by Fy =1
and indeed, due to the nonlinearity of (5.2.48), the solutions ¢, (¢) turn out to be polynomials
in ¢ of degree n — 1. This means that ¢ defines through the polynomials of Appendix D and egs.
(5.2.26) and (5.2.29) a one-parameter family of solutions Fét} corresponding to independent
operators. If we make then the hypothesis that these solutions actually correspond to the form

factors of the exponential operators gkaw(z)

_ (0] A(0)) - A(B,))

t
E{ (01, 6n) (0]eks#(0)]0) ’

(5.2.49)

we are forced to consider t as a well-defined function ¢(k, B) of k and B rather than a free
parameter. In particular, in order to establish the one-to—one correspondence between cluster
solutions and exponential operators it is of particular interest to compute the normalization—

invariant quantity

<0[€kg<p(0)|A> B

Ff = = u(B)t(k, B) . (5.2.50)

L7 {0]eksv(0)]0)

In the following we consider in detail some conditions that we can impose on the function ¢(k, B)
in order to find its exact form. Comparing the above equation with (5.1.20) or equations (5.1.14)
and (5.2.48) we see that in the case of the shG model it is the symbol [k] introduced in (5.1.8)
which plays the role of the function t(k, B).

We observe that contrary to the case of the shG model, the cluster solutions of the BD listed
in Appendix D do not display any evident determinant-like structure and so it seems quite
difficult to conjecture a general formula for arbitrary multiparticle states. Notice however that
from a computational point of view there is no difficulty in obtaining the next multiparticle
solutions since the dynamical recursive equations (5.2.31) are linear equations in the unknown
coefficients of independent monomials in the ¢’s and the dependence on the coupling constant

is simply a rational dependence on c.

5.2.3 The Function t(k, B)

The first information on ¢(k, B) can be obtained from the computation of the conformal di-

mensions A = —g2k?/8 7 of the operators e"9%(%) in the free-boson ultraviolet limit at lowest
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order in g?. These can be easily obtained from the analysis of the short distance behavior of
the correlator (0]e®9¢(=)ek9%(9)]0) by means of the spectral sum (5.1.13) and the cluster solutions
F{ . We obtain

2 2 2 2
A = —g? lim p(B)" Lk, B)” _ _g°t(k,0) , (5.2.51)
g—0 47 g? 8w
from which one obtains the important semiclassical relation
i k =k. 5.2.52
lim ¢(k, B) (5.2.52)

Furthermore, from the expressions (D.0.3) and (D.0.4), by imposing the proportionality @, ~
01 0n—1, one can easily verify that the only cluster solutions which also belong to the class of

possible traces of the stress—energy tensor are defined by the solutions of
—14+2c+2t+2ct+2t2+2¢t*=0, (5.2.53)

namely

sin((B + 1)7/6)
cos((B + 2)7/6)
tt = : (5.2.54)
sin((B — 3)7/6)
cos((B+2)7/6)

These two solutions correspond to the ones found in ref. [68] and identified with the form

factors of the fundamental vertex operators 9% and e~29¢ which appear in the Lagrangian
density. This can also be obtained immediately by taking the limit B — 0 in eq. (5.2.54) which
gives respectively k& = 1,—2 in virtue of (5.2.52). Therefore we also have the two following
important requirements on t(k, B):

sin((B + 1)7/6)
cos((B+2)r/6)’

t(1,B) = (5.2.55)

_sin((B - 3)7/6)
{=28) = (BT 2)n/0)

As a limiting case of the cluster solutions we can also recover the form factors of the fundamental

(5.2.56)

field ¢(z) which is naturally obtained from the vertex operators in the limit k& — 0. These form
factors of course satisfy a trivial cluster property because they vanish for large rapidities and

therefore satisfy eq. (5.2.48) with ¢ = 0. Hence we get one more piece of information

lim t(k,B) = 0. (5.2.57)
k—0
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Indeed one can easily check that the form factors we had obtained in Section 5.2.1 for the field

() from the most general solutions of residue equations satisfy,

F{t}
[ [ART n
Br=Ar lm=—

(5.2.58)

A remarkable check on the correct identification of these operators is obtained studying the
quantum equations of motion of the model

2
Do + ?g‘l (72 — e729%) = 0. (5.2.59)

If our identification is correct we should find*

(7) 4 (n)
2 01 (‘:7)1—1 Fe4r (F;?*} _ Fér}) ~0, (5.2.60)

On
with some constant 7, or equivalently

#™ 5
A? mz-—l-—)’ﬂQn(o) 7 (T Qa(tT) 7 Qu(t7)) =0. (5.2.61)

ol
Indeed this last equation can be verified to hold on the solutions given in Appendix D with
©, 2

Alm :
T= - 7 tan((B + 2)7/6). (5262)

The non—perturbative nature of this last check shows that the identification of cluster solutions

as vertex operators is far beyond a semiclassical one for small coupling constant.

The constraints obtained for the function ¢(k, B), egs. (5.2.52), (5.2.55), (5.2.56) and (5.2.57)
are not sufficient to determine its form and, in particular, little information is given on the
dependence on k. We will see however in the next section that some additional requirements

coming from the reductions of the ZMS model impose a periodicity condition in k for the function

t(k, B)
t(k,B) =t(k+6/B,B), (5.2.63)

which suggests the following conjecture:

(k, B) = sin(k B /6) sin((k B+ B + 2)x/6)
"7 2sin(Bx/6) sin((2~ B)r/6) cos((B+2)mw/6) "

(5.2.64)

*In general F5% = ——mQ%"—‘-Ff for any field ®(z).

85



This function satisfies all the aforementioned requirements. A decisive check of the validity
of this expression will be obtained in the following Section by the comparison with explicit
computations of form factors of primary operators in specific reductions of the ZMS model.
This formula may be regarded as the key result of this Section, since it allows us to explicitly
assign to every vertex operator €*9% in the BD model its form factors Fék} which are obtained
from the cluster solutions @, (t) of Appendix D through the parameterization (5.2.26) and eq.
(5.2.29) by replacing t = t(k, B).

5.2.4 Form Factors in the Reductions of the ZMS model

We now turn our attention to the analytical continuation of the model to imaginary values of
the coupling constant g, namely to possible reductions of the ZMS model. In these models
the spectrum is no more a single-particle one as in the real coupling BD model, but it has a
richer structure that depends on the model analyzed. We consider here only those restrictions
whose spectrum still contains the elementary boson excitation of the BD model, namely ¢;
and some cases (35 > 10r) of ¢; 5 deformations. If we assume that the identification obtained
between cluster solutions and vertex operators of the model is exact, we are then led to establish
a correspondence between the form factors of exponential operators e%9¢(®) in the BD model and
the lightest breather form factors of scaling primary operators in the deformations according to
the correspondence given by eq. (1.2.52) and Table 1.2. An immediate consistency requirement

for this procedure is obtained by imposing that the form factors respect the symmetry

¢m,n(z) = ¢r—-m,s—n (3;) y (5.2.65)

of the Kac table of minimal models. For example, the quantity Fl{t} of eq. (5.2.50) should have
the same value if evaluated at k = kmn and k = k._p, s—pn. Imposing this condition both in the
¢1,2 deformations and in the ¢1,5 relevant ones we obtain respectively that the following two
symmetries of the function ¢(k, B) must hold
t(k,B) = t(-k-1-2/B,B), (5.2.66)
t(k,B) = t(-k-1+4/B,B),
which in particular imply the above mentioned periodicity in k, equation (5.2.63). Both these
symmetries are indeed separately satisfied by the function (5.2.64).
A precise check on the validity of equation (5.2.64) is provided by comparing its predictions

with the form factors of scaling primary operators in $1,2 and ¢; 5 deformations which can be
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Model | Deformation | Primaries analyzed F/Fy Reference
Mas b1,2 b1, 0.83721821 [88]
Maz b1,2 ?1,2 0.8129447 ¢ [4]
¢1,3 1.245504 % [4]
Mz ¢1,2 $1,2 0.7548302 i [4]
b1,3 1.288576 1 4]
¢1,4 1.564863 1 [4]
M3z 4 $1,2 $1,2 —0.6409021 | [26, 29]
P2, —3.706584 [29]
My b1,2 $1,2 —0.8113145 (3]
Me,7 ¢1,2 $1,2 —0.9499626 [3]
Mag | dr1a =15 $1,2 —0.5483649 [4]
P1,3 —1.476188 4]
P14 —2.169493 [4]

Table 5.1: Primary operators in ZMS reduced models for which the form factors have been

computed in literature.

found in literature. We have indeed computed the normalization invariant ratio Fj/Fy using
eq. (5.2.50) and the assignments of Table 1.2, for all the known cases of primary form factors
which have been analyzed in literature [88, 26, 29, 3, 4] (see Table 5.1) and a perfect agreement
has been found with all the values reported in the references. We stress here the fact that in
the references considered, the form factors of primary operators have been identified by different
techniques: in ref.’s [88, 26, 3] the identification has been obtained by using the correspondence
between the deforming field and the trace of the stress—energy tensor, whereas in ref.’s [29, 4]
the form factors of the primary fields have been identified with the finite number of solutions of
a non-linear system of cluster equations involving the form factors relative to the whole particle

spectrum of the reduced models.
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5.2.5 The Wave Function Renormalization Constant of the BD Model and
the Form Factors of ¢(z) and :¢?(z):

The form factors Fék} (61,...,0,) that we have computed have been so far conveniently normal-
ized putting Fo = 1. From equation (5.2.49) one immediately observes that these form factors
are invariant under an additive redefinition of the field ¢(z) — ¢(z) + const. We remove this
ambiguity on the definition of the field ¢(z) by imposing that its vacuum expectation value
(0l()|0) be zero, namely subtracting from the original Lagrangian field the value of the one
point tadpole function. Consider now the following expansion of the form factors of exponential

operators:
(0]*¢©| A(0y) - -~ A(6,,)) = }_j %f—]—wl 10 (0): |A(B1) - - A(Bn)) (5.2.67)

and of the vacuum expectation value
kgep(0) o~ K g’ 7 2
B ESY) —]:—<0| 107 (0):10) = 1+ o(k?). (5.2.68)
=0 I
If we now expand the form factors Fék} that we have obtained® in series of k£ we can identify
the form factors of the fields ¢(z) and :*(z): as the coefficients of order k and k2 respectively.
(0]ers©@]A(61) - -- A(65))
(0]eka#(0)]0)

kg (Ol () A(61) - - A(8r)) +

0, ....0,) =

k2g

2

2

(01 :%() : [A(81) - - A(6n)) + o(k°) .

This procedure gives the form factors of ¢(z) and :p?(z): with the correct overall normalization
of the fields. This observation in particular allows the exact determination of the wave function
renormalization constant Z(B) of the BD model. In fact, considering the first order expansion
in k of Fl{k}
k B wtan((B + 2)x/6)
— t =
#(B) bk, B) = u(B) 13 sin(Br/6) sin((2 — B)/6)

= kg (0le(0)[A)+ o(k?)

kg Z'/?
= = ok,

®Here and in the following we will adopt the notation F{¥} instead of F,{*} to stress the dependence on k. The

+ o(k?)

i

relation between the two expressions is obviously given by ¢t = t(k, B) eq. (5.2.64).
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one easily obtains the following expression for Z(B)

Z(B) = u(B)B(2-B)— (Sin ( tan((B + 2)m/6) W/6)> (5.2.69)

288 Br/6) sin((2 — B)
2w B(2- B) (c—-1)
3v3 N(B) (1+2¢)(1-2¢)’

where A/(B) is defined in eq. (5.2.28). The function Z(B) is manifestly dual with respect to the

weak-strong coupling transformation B ¢— 2— B and can be easily shown to coincide at lowest

order in g% with the correct perturbative result coming from the one-loop self energy diagram

2

A plot of the function Z(B) is given in Figure 5.2. Notice the tiny deviation of the constant

T

1F

0.998

0.996

Z(B)

0.994

0.992

Figure 5.2: Plot of the wave function renormalization constant Z(B) of the Bullough-Dodd

model.

from the free field value Z = 1 on the entire range of the coupling constant B € [0, 2].
The correctly normalized form factors of the field ¢(z) are given by
d
o - g1 ik}
E, 9 3fw
Zl/2 Fét}

w2 ot

(5.2.71)
k=0

)
t=0
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while the exact form factors of the field :¢%(z) : are simply obtained by

e — 2 fﬁp{k} 5.2.72
n =g dk2 n 1 (' sl )
k=0
For example we can compute

R = (0]:0%(0):]A)

o, d?
= wB)g™* 5tk B) o (5.2.73)

; - 1
= u(B)B(2-B)

144 sin(Bw/6) sin((2 — B)n/6) '
which exactly matches at lowest order in g with the one loop calculation of the graph in Figure
5.3

g 3 ~
0] :¢%(0): |4) = —== + o(¢?). 5.2.74
(01:67(0):14) = =22+ of) (5.274)
In a similar way we get for instance
2

Figure 5.3:

B (01— 02) = (0]:0%(0):|A(61) A(62))

- 1
= W(B)B(2-B) 5z (sin(Br/6) sin((2 — B)/6))?

-(af tan?((B + 2)7/6) — 0102(2 sin(Br/6) sin((2 — B)7/6)+

Fmi'n [} _92
+tan® (B +2)7/6))) +x2>(x(%iwz +23)

Notice that in order to obtain the form factors of arbitrary operators :¢™(z) : one should exactly

compute the vacuum expectation value (0|e*9%(%)|0) of the exponential operators and make use of
expansion (5.2.69) (for the sine-Gordon model the vacuum expectation value of the exponential

operators has been recently obtained in ref. [61]).
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Appendix A

Mathematical Tools for Minimal

Form Factors

In this appendix we collect some different explicit representations of the functions g,(8) and
ha(0) together with some useful functional relations.
Let us start by considering field theories with a non—degenerate mass spectrum. In this case,

the basic functions g, needed to build the minimal form factors are obtained as solution of the

equations
ga(g) = —fa(o) ga(_e) y
(A.0.1)
go(im + 0) = go(im — 8)
where
1 .
fo(8) = fanh 5 (64 iro) (A.0.2)

~ tanh 1O —ira)
They are called minimal solutions because they do not present neither poles nor zeros in the
strip Im@ € (0,27). They admit several equivalent representations. The first is the integral
representation given by

_ *dtcosh[(a—1/2)t] . 5,4 .
Jo = €Xp {2/0 T “coshi/Zemht sin®(0t/2m)| , (A.0.3)

where 6 = im — 0. The analytic continuation of the above expression is provided by the infinite
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product representation

: (i k+1
o [1 62 [ )

k=0 [1 + (‘7%/1“%> 2} [1 - (kj/%zf%)QJ |

which explicitly shows the position of the infinite number of poles outside the strip Imf ¢

(A.0.4)

(0,27). Another useful representation particularly suitable for deriving functional equations is
the following:

2

F<1+k+%+i%)r(§+k—%+i§€;> (A0

F(l+k-%+i5€r—)r(§+k+%+i%)

IR

ST (A4 k+ )2 (14 k- 2)
aa — 2 2
9a (%) Hr2(§+k—%)r2(1+k+%)

where we have used the notation
. 2 . -
]r(a n z’9/27r)] = T'(a+ if/2r) T(a — if/2) .
A representation that is particularly suitable for numerical evaluations is the mixed one
R . k+1
§/2r \? 8/2m 2
oo o+ ()] [+ k)

9a(6) = []

eo | [ () 1 ()]

2

(A.0.6)

% dt cosh [£(1 - 20)]
o ¢t cosh %sinh t

X exp [2 o

(N +1— Ne #)e=2Ntgjp? -@—]

In this formula N is an arbitrary integer number which may be adopted to obtain a fast con-
vergence of the integral.
Using the integral representation (A.0.3), it is easy to establish the asymptotic behaviour of

Ga
9 (8) ~ ell/2 for f — 0. (A.0.7)
The function g, is normalized according to
ga(im) =1, (A.0.8)
and satisfies
9a(8) = g1-4(9) , (A.0.9)
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with
.
go(8) = g1(0) = —isinh 3 - (A.0.10)

The above functions satisfy the following set of functional equations

9o (0 +17)ga(8) = —ziz(:l (sinh @ + isinma) (A.0.11)
. oy _ ((galiT))ga(=in7)’ ,
a0 +1im7)ga(0 — iny) = ( o (09 (0) ) Gat~(0)ga—~(0) , (A.0.12)

9a(6) 9-a(6) = Pal(b) - (A.0.13)

Let us turn our attention to the field theories with a degenerate mass spectrum. In complete

analogy with the previous case, we start our analysis from the minimal solutions of the equations

ha(60) = —50(0) ha(—06)
(A.0.14)

ho(im 4+ 6) = ho(im — 6),
where

(6) = sinh £ (6 + ira)
= Snh 1(0-ira)

(A.0.15)

The function h,(6) is explicitly given in terms of the following equivalent representations

ha(0) = exp [-2 / dt sinh [(1 ~ 2] sin2(ét/27r)] , (A.0.16)
o ¢ sinh®t
5 2\ k+1
= | (Tr;—) ]
hoz(g) = H B 2 3 (-’—\..0.1{)
k=0 1+ ( 2r )
nt3-g
X M2+l OT(k+1-2—-)P(k42-2+48
holt) = [ et s PG Fom 4250 a) - aoay
i D2k+3-90k+5-3)T(k+1+4 5+ 57)

93



The mixed representation is in this case

3

+ [

L]l T

T

iR

\_—/
%)
o
+
b

N+1 l-l—(

ha(8) = [
(

k=0
o0 inh [(1 — )t -

X exp [2 / U (N 41— 2ty g MITEU. sin2(0t/27r)}
o t sinh“¢

X (A.0.19)

—
+

3
+ &
N:mq Im
wR
N’
[

and the asymptotic behaviour depends on the value of

ha(8) ~ " for 6= o0 (A.0.20)
The function h, is normalized according to
ho(izm) =1 (A.0.21)

and satisfies the following functional equations:

ha(27i = 6) = ha(6),

ho(8) = —isinh(6/2),
(A.0.22)
hi(8) = 1,

hira(6) = h72,(0),

The basic “composition rules” for products of h,’s are:

ha(0) h-a(8) = Pa(0),

ha(0 + im7) ha(8 — iry) = h;::zrg)h,fj:g) aty(0) ha—vy(6) (A.0.23)

. hi-a(0) — it
ho(0 + i) hi_o(6) = cosh( ize) cosh 5

where the polynomial P is defined in (2.1.27).

Finally, since f4(8) = 54(6)s1-4(8), the function g, can be obtained from the hg’s simply
through:

ga(g) = ha(g) hl—a(o)- (A024)
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Appendix B

Tables and S—Matrices of Thermal
Deformations of TIM and TPM

particle | mass/my | Z3 charge
Ay 1.00000 -1
A, | 1.28558 1
As 1.87939 -1
Ay 1.96962 1
As 2.53209 1
Ag 2.87939 -1
Az 3.70167 1

Table B.1: Particle spectrum, mass ratios and Zy—charges in the TIM.
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2 4
11 ~ (10) (2)
1 2 (13) (7
2 4 5
1 3| = (14) (10) (6)
1 3 6

2 2 (122) (g) (;)

2 3| (156 ©)

2 4| (9@ (6
2 4 7

2 5] (171 (13)(3) (M*(9)

2 6| (15) (12(5)2(9)

2 7 (156)(16)3 (4)2 (6)2

2 7
33| - (1)@ 92 12°

Table B.2: Two-particle S—matriz elements of the TIM; the notation (z) = fo/n(8) has been
Jollowed, where h = 18 is the Cozeter number of E7 and the function f. is defined in eq. (A.0.2).
p = z7/h.

Superscripts label the particles occurring as bound states at the fusion angles u
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b Sab

R ORGHGHE)

5| (16)(10)° (4)2(6)

2 5 7
6| —(16)(12)°(8)° (4)°

| @ ase 62 @ )

i @arm @

2 4 7
5 (15) (13)*(7)° (9)

6| (1) (11 (3)2(5)? (9)?

7| (16 (197 (6)* (9)"

50 (12° (27 @2 ()

6| (16) (147 (6)* (8)"

7| (1) (15 (11)° (5)* (9)°

6 | - (14)° (10)° (12)* (16)?

1 3 6
7| (17) (15)° (13)° (5)°(9)°

7|62 a1 12)7 (8)°

Table B.2: continuation
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state s/m? c—series | U-series
A 1.28558 | 0.6450605 | 0.0706975
Ay 1.96962 | 0.0256997 | 0.0066115
A1 Ay | > 2.00000 | 0.0182735 | 0.0071135
As 2.53209 | 0.0032417 | 0.0013783
Az Az > 2.57115 | 0.0032549 | 0.0025194
A1 Az | > 2.87939 | 0.0012782 | 0.0020630
Az Ay | > 3.25519 | 0.0003010 | 0.0007277
Ay Ar Az | > 3.28558 | 0.0007139 | 0.001184
Az 3.70167 | 0.0000316 | 0.0000287
Az As > 3.75877 | 0.0000700 | 0.0001173
Az As | > 3.81766 | 0.0000860 | 0.0001581
partial sum 0.6980109 | 0.0914150
ezact value 0.7000000 | 0.0942097

Table B.3: The first Zo—even multiparticle states of the TIM ordered according to the increasing

value of the center-of-mass energy and their relative contributions to the spectral sum rules of

the central charge ¢ and the free-energy amplitude U.

Fp

0.9604936853

FP

—0.4500141924

Fy

0.2641467199

F®

—0.0556906385

Table B.4: One-particle FFs of the Zo-neutral particles of the TIM.
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a?; | 6.283185307
a%; | 30.70767637
a3, | 15.09207695
ab, | 4.707833688
a3, | 79.32168252
ad, | 16.15028004
a3y | 295.3281130
a35 | 396.9648559
a3, | 123.8295119
ads | 3534.798444
ads | 4062.255130
a2s | 556.5589101

Table B.5: Coefficients which enter eq. (8.0.2) for the lightest two-particle FFs of the TIM.

particle | mass/my | Z3 charge

A 1.00000 | /3
A; 1.00000 | e~2/3
AL 1.41421 1

Ap 1.93185 | 2mi/3
Ar 1.93185 | e~2mi/3
Ag | 2.73205 1

Table B.6: Particle spectrum, mass ratios and Zs-charges in the TPM.
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Table B.7: Two-particle S-matriz elements of the TPM. In this case [z] = sz/n(0), where s4 is
defined in eq. (A.0.15) and h = 12 is the Cozeter number of Eg.
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Table B.7: continuation
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state s/m? c-series u—series
Ar 1.41421 | 0.7596531 | 0.0705265
A 4y > 2.00000 | 0.0844238 | 0.0229507
Ay 2.73205 | 0.0029236 | 0.001013
Ar Af > 2.82843 | 0.0024419 | 0.0019380
A Ay > 2.93185 | 0.0023884 | 0.0016745
A Ap > 2.93185 | 0.0023884 | 0.0016745
A A A | > 3.00000 | 0.0004215 | 0.0004925
A7 A7 A; | > 3.00000 | 0.0004215 | 0.0004925
Ap A7 Ap | > 3.41421 | 0.00159 0.000251
Ap Ax > 3.86370 | 0.0000504 | 0.0001476
A A Ay > 3.93185 | 0.000089 | 0.0002015
Ar A7 A5 | > 3.93185 | 0.000089 | 0.0002015
Ap Ay A A7 | > 4.00000 | 0.0000959 | 0.000381
partial sum 0.8569765 | 0.1019449
ezact value 0.8571429 | 0.1056624

Table B.8: The first Zz—neutral multiparticle states of the TPM ordered according to the increas-
ing value of the center-of-mass energy and their relative contributions to the spectral sum rules

of the central charge c and the free-energy amplitude U.

1.261353947
0.292037405

Table B.9: One-particle FFs of the Zs—neutral particles of the TPM.
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a2 | 6.283185307
al ;| 21.76559237
al ;| 9.199221756
a?- | 25.22648264
o) | 414.1182423
a) - | 565.6960386
a2 | 175.0269632

Table B.10: Coefficients which enter eq. (3.0.2) for the lightest two—particle FF's of the TPM.
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Appendix C

Tables and S—Matrices of Integrable
Deformations of Mo g

su®) = (3) (&) (-1)

s2® = ()0 @ (-5

S) = () (8),

52(0) = (2) (B) (H)p (-1

S(6) = (2) (D (0s (),

S5(0) = () (Wa Da (B)p G)o
m, = S:éml e=1,2,3

Table C.1: S-Matiriz and mass ratios of the [M(2/9)](1,2) model.
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2
Su@ = (3)
S12(8) = (%) (3)
2 3
S13(0) = (3)(3)
3
Sp(8) = (3)
1 2
Sas(8) = (%) (3)
Su0) = (8) (1) ()
My = sin%‘,ﬁml a=1,2,3

i I
Si &

Table C.2: S-Matriz and mass ratios of the [M(2/9)](1,3) model.
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Su®) = ())& (-4) (-3

Su(6) = (3) (B)

salt) = (B D @ 2) 1

Su0) = (8) (B)s (3

su20) = () (8)s

$5(6) = () o (F)s ()

Su0) = (%) (B)s (s (8)s ()

ss) = (3 () () (-4) (-]

Sul6) = () ()a (F)p ()7 ()

Su®) = (37 (5 By (e ()
mg = 2cos;—g my = 1.48629...m,
my = 2coslﬂ—5 my = 1.95630...m4
ms = 2cos 17—0 ma = 2.82709... my

Table C.3: S-Matriz and mass ratios of the [M(2/9)](1,4) model.
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) $1,2 $1,3 $1,4

Flo 0.7548301717¢ 1.288575652 1 "1.564862744 1
FQO —0.1056909725 | —0.4593398099 | —0.7331609072
Fg) —0.01375684037% | —0.1175389994 ¢ | —0.28548178171

Table C.4: One-particle form factors of cluster solutions in [M(2/9)](1,2)-

0

?1,2

13

P14

(0)
4110
(1)
17,0

—0.3810248990
1.289925788

0.1280888115
3.759118917

0.6449629545
5.543942595

0
ag2),o
1
agz),o
(2)

190

14.10905183 4
—12.743237794
—19.36998044 1

75.186320192
—79.90895489 ¢
143.70968721

110.3472056 ¢
—180.9845092 ¢
—278.55925221

0
ags),o
(1)

13,0

—1.826322080
—1.116015559

—18.97540047
—16.27774386

—51.56786333
—48.01279071

0
agz),o
1
agz),o
(2)

Q39,0

—1.466545085
7.821352950
2.717967823

—3.003367424
60.49540624
51.33773403

14.9160654
160.4007705
130.7877664

(0)
Go3.0
(1)
93,0
(2)
(93,0

153.8279467 %
175.5584268 1
30.431247861

1842.946063 ¢
2962.508857 ¢
1130.002086 2

5426.66381¢
9796.436391 1
4380.673323 14

0
“gs),o
1
az(ss),o
(2)

Q33 0

©—32.42110324
—20.23293766
—2.174915595

—450.0936155
—589.1376530
—158.7701993

—1394.808207
—2309.626757
—936.6165096

Table C.5: Two-particle form factors coefficients of cluster solutions in [M(2/9)](1,2)-
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0 b1,2 #1,3 b1,4

Flo 0.8020765716 ¢ 1.445292066 1 1.8022496721
FQO —0.3139111339 —-1.019263084 | —1.584911324
F:? —0.13736924531 | —0.5561967434 7 | —1.002231818+

Table C.6: One-particle form factors of cluster solutions in [M (2/9))1,3)-

0 ¢>1,2 ¢1,3 ¢1,4

alVy, | —0.9631492344 | ~3.127326026 | —4.862860736
a0 | 10646966131 | 40.730514647 | 72.355681814
0\l | 5.9086204247 | 34.570483567 | 67.032108614
0{yo | —2.592348236 | ~11.32977918 | —21.24912075
a5 | —1.153703500 | —8.417302355 | —18.91350458
a$)o | —5.978990567 | —26.44069921 | —49.87674876
0o | —1.544771430 | —16.28633559 | —39.37864116

Table C.7: Two-particle form factors coefficients of cluster solutions in [M(2/9)]

0 P1,2 $1,3 P1,4

FP | —0.90435448984 | —1.727853394 | —2.211259663 4
FP | —0.5483648961 | —1.476188315 | —2.169493373
F9 0.26733165087 | 0.87093195281 1.45902371 ¢
Ff —0.08488118964 | —0.3489749771 | —0.6451795597

Table C.8: One-particle form factors of cluster solutions in (M(2/9)](1,4)-
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) b1,2 $1,3 b1,

{9y | 1.623982681 |  4.256426530 |  6.219867507
alV, | —0.9778411563 | ~1.325966569 | —1.477684504
al?y | —2.020027259 | —7.406691607 | —12.13081476
0l | —9.935037127 | ~30.48935000i | —50.02403946
a{o | —4.7901052541 | —24.636860524 | —46.33773309
o\ | —45.21074197 | —145.9600730 | —220.9609710
o | —441.3756086 | —1583.189947 | —2731.357697
a2, | —533.3237140 | —2301.408527 | —4364.089257
ald, | —139.4173540 | —867.7984505 | —1860.500753
o\ | 44340320617 | 189.60773484 | 357.8357762i
a{fo | 54791940087 | 275.9507675: | 562.9638801 i
a?, | 11.433958824 | 89.81474554i | 212.5038539i
o | —9.100266093 | —30.91094092 | —52.20534546
o), | —2.709639668 | —19.63612453 | —42.41201502
ag?jo —81.758024201 | —304.22448384 | —530.88724091
alno | —92.611281431 | —446.86011691 | —884.9723034
0, | ~16.66533065 | ~146.15717201 | —359.8444599 i

Table C.9: Two-particle form factors coefficients of cluster solutions in [M(2/9)] 4.
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states S Ajg-terms | Ajz-terms | Ajs—terms
Ay 1.000 my | —0.3409847 | —0.5820972 | —0.7069063
Ay 1.982m, 0.0017003 | 0.0073894 | 0.0117945
Al Ay > 2.000 m, 0.0061957 | 0.0207909 | 0.0316698
As 2.931m; | —0.0000132 | —0.0001126 | —0.0002734
Ay Ay > 2.982m; | —0.0000951 | —0.0007084 | —0.0014392
Ar Ar Ay | > 3.000m; | —0.0001421 | —0.0009038 | —0.0017386
Ay As > 3.931m, 0.0000009 | 0.0000117 | 0.0000339
Ay Ay > 3.965 m; 0.0000004 | 0.0000061 | 0.0000157
Ay Az > 4.914m, | —0.0000000 | —0.0000002 | —0.0000008
sum —0.3333379 | —0.5556241 | —0.6668445

value ezpected —0.3333333 | —0.5555556 | —0.6666667

Table C.10: Sum rules of the conformal dimensions

of primary operators in [M (2/9)]1,2)-

states s Ajg-terms | Ayjg-terms | Ajg—terms
Ay 1.000 m; | —0.370679 | —0.667941 | —0.832909
A; 1.802 my 0.031509 0.102310 0.159088
A A > 2.000 m, 0.013898 0.045127 0.070170
Az 2.247m; | —0.004839 | —0.019592 | —0.035304
Ay A, > 2.802m; | —0.003604 | —0.018722 | —0.035573
A1 Ay Ay | >3.000m; | —0.000628 | —0.003514 | —0.006763
Ay As > 3.247m, 0.000663 0.004114 0.008844
Ay Ag > 3.604 my 0.000211 0.001684 0.003864
sum —0.333469 | —0.556534 | —0.668583

value expected ~0.333333 | —0.555556 | —0.666667
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states s Aqy-terms | Aqjz-terms | Aqq—terms
Aq 1.000 my | —0.451081 | —0.861833 | —1.102950
Ay 1.486 my 0.121478 | 0.327017 | 0.480603
As 1.956 m; | —0.022989 | —0.074895 | —0.125468
A Ay | > 2.000m, 0.035896 | 0.121577 | 0.197637
A Ay | > 2.486m, | —0.023279 | —0.101138 | —0.183618
Ay 2.827 my 0.001546 | 0.006354 0.011748
Ay Az | > 2.956 m, 0.004304 | 0.022374 | 0.045474
Ay Ay | > 2.973m; | —0.001535 | —0.009929 | —0.022429
Ag As | > 3.443m; | —0.000330 | —0.002101 | —0.004686
Ay Ay | > 3.82Tmy 0.003595 | 0.020054 | 0.040870
sum —0.332396 | —0.552519 | —0.662819

value ezpected —0.333333 | —0.555556 | —0.666667

Table C.12: Sum rules of the conformal dimensions of primary operators in [M(2/9)](1,4)-
sma 5Euac
dmy (0)5m1
deformation numerical (£3%) | theoretical | numerical (£3%) | theoretical
[M(2,9)](12)+ 618 0.590 | 0.592049 —0.275 | —0.275404
[M(2,9))1.2) + €b1a 0.661 | 0.660963 —0.204 | —0.204124
[M(2,9)](1,3) + 1,2 0.390 | 0.391396 —~1.04 | —1.03826
[M(2,9)](13) + €14 0.811 |  0.83681 ~0.205 | —0.205640
[M(2,9)](1,4) + €612 —0.133 | —0.131367 1.73 1.74582
[M(2,9)] 10 + €12 0.238 | 0.240486 ~0.550 | —0.548156

Table C.13: Comparison between numerical and theoretical estimates of data obtained in different

non—-integrable deformations of M, g).

111



Appendix D

Cluster Solutions of the BD Model

In this Appendix we list the first solutions of the one-parameter family of @, polynomials of
cluster solutions in the BD model. In the following expressions, the variable ¢ is the dual-
invariant function of the coupling constant defined in eq. (5.2.23) and ¢ is a free parameter. The
solutions are identified with those of the basis of operators e¥9¥ by means of eq. (5.2.64) which
determines t as a function of k and g.

Qi(t) =1, (D.0.1)
@Q2(t) = to} (D.0.2)
- (1 -+ t) o102,
Qa(t) 2(14+¢) = 2(1+c)t?a’ 0 (D.0.3)

=2 (1+c)t(1+¢t) o102°

~2(14c)t (1+¢t) o1t oz03

+(B+4t—4lt—28 ~2¢t?) 01202 03

+(~1+2c+2t+2ct+2842¢t?) 02°as
3

+(=1+2c+2t+2ct+28 +2¢t?) 0,° a3°
+4 (=1+¢) (L+¢) (1+1t) 0102057,

Qa(t) 2(1+¢) = (D.0.4)
= 2(1+4¢) 01’0 0s°
=2 (1+4c) & (141¢) o102 03®
=2 (1+c)® (14t) o1t o205"
+t B+4t—4lt—28 —2¢t) 0% 0% 0

+t (~1+2c+2t+2ct+28 4+ 2¢t?) 02° 03?
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4t (~1+2c+2t+2ct+28 +2¢t?) o’ 3’

+4 (=14¢) (14¢c) t (1 +1t) 010205°

~2 (14c¢) £ (1+1) o1 o2t 7304

+2 (14¢) t(1+ )1 o 02° o3 04

+t B+4t—4att—28 —2ct?) 01" 03 03" o4

$2(1+1t) (~24c—2t+2ct+4PL+38 +3ct7) 01’ 02 03”04

+(1+8) (1-2c—2t—2ct—28 —2¢t’) 02" 53”04

dt (—142c+2t+2ct+28 +2ct?) 01° 03° o4
F(1-2c—dt+4cPt—268 +14ct2 4872 =8 + 665 +6ct’) 0’ 0205° 0
4 (T—8c+9t—ldct—127t+8c ¢ — 287 —6ct’ —4c” ¢ — 26" —2¢t°) o o2’ 03’ 04
4+t (3—14c+8c° —6t—lict+8c°t— 6" —6ct’) 01”03’ o4

412 (=14¢) (1-2c=2t—2ct—2t" —2¢ct’) 0203" 04

dt (—142c+2t+2ct+28 +2¢t’) o' 02’ 04’

+(1+7%) (1—20—2t—20t—2t2 —2ct2) 0'120240'42

+4 (=14¢) (1+c) t (1+1t) 01° 0203 04°

2 3 3 3 2 2
— 2t —QCt)O'l 02" 03 04

+(7—8c+9t—ldct—12c7t+8c°t— 25 —6ct’ —4c’t
4 (—5+14c—8c2 —6t—2ct+4c7t— 6 —1dct’ +8c° £ — 4t —4ct’) o102° 03 04°
+t (3—14c+8c° —6t—14ct+8c°t— 68 —6ct’) 01" 0 04’
42 (~5+14c—8c* —2t+8ct -6 t~8c t+8c ¢ +7 —1lct” — 4"t

+8c° 2 =3t —3ct®) 01 0205 04®
+(1+4c—4ac +2t) (142c+2t+2ct+28 +2¢ct’) 02" 0 04
+(—4c+12c2——8c3—3t+22ct——16c3t+6t2+22ct2—16c3t2+6t3+6ct3) 0103° 04’
+2 (=1+4¢) (1——2c——2t—20t—2t2—2ct2) o1t o2 04°
+(1+dc—4+2¢t) (~1+2c+2t+2ct+28 +2c8°) i’ o2’ 04°
4 (—dc+126 —8c° —3t+22ct— 1667t 4617 +22¢t° —16¢° ¢° +61° +6¢t?) o1’ o3 04°
+(9-30c+20c> +16¢° — 16¢* +8t—16ct+8ct+16c" ¢ —16c"t

+28% +10ct? =8 2 +28° +2¢t®) g1 0203 04°
+(dc—4c® +1t) (1-2c—2t—2ct -2t —2ct”) 03’ 0°

+(dc—adf+t) (1-2c—2t—2ct—2¢ —2ct’) o1’ 0s’.

113



Conclusions

This thesis collects the research work carried out by the candidate in collaboration with Prof.
G. Mussardo and A. Valleriani and published in papers [3, 4, 2]. The main objects of the whole
research project have been the application of the form factor approach to the off-critical physics
of statistical mechanical models and the development of new theoretical results in the field of
form factors itself. Among the latter, particular emphasis has been given to the analysis of the
pole pattern of form factors and to the computation of form factors of scaling primary operators
in integrable deformations of conformal minimal models. We stress the fact that, so far, the
computation of scaling operators in the RG flow of some off—critical model had been carried out
almost exclusively for the trace of the stress energy tensor which coincides with the operator
responsible of the deformation. Only in ref. [53] the analysis of other primaries had been
performed for a restricted class of ¢1,3 deformations of non—unitary models, based on the results
obtained for the sinh-Gordon model in [55]. The turning point in the search for scaling primaries
has been the discovery of their distinguishing property in the space of form factors solutions,
namely the clusterization of the matrix elements for large values of the rapidities [30]. This
important result opened the possibility to reconstruct the whole spectrum of scaling primaries
for any integrable deformation of a given model as successfully shown in refs. (29, 4]. The main
achievement of the thesis is then represented by the full solution of the exponential operators in
the Bullough-Dodd model which allows to compute the form factofs of scaling primaries in the
large and interesting class of ¢1,2 deformations of (unitary and non-unitary) conformal minimal
models, as well as in a restricted class of ¢1,5 non-unitary deformations. The full solution of
the Bullough-Dodd model was a longstanding open problem to which some partial answers had

been given in [41, 68].

The main original achievements of the work are listed below:
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The computation of the form factors and correlation functions of the energy—density operator

in the thermal deformation of the tricritical Ising model and of the tricritical three-state

Potts model [3].

|

The clarification of the nature of form factors’ poles extending the analysis of ref. [26] to the

case of degenerate spectra [3] and to the case of S—matrices with zeros [4].

|

The test of the cluster hypothesis of ref. [30] and of the validity of the analysis of non—
integrable models in the spirit of ref. [28] in all the integrable deformations of the minimal

model! Mg [4].

The computation of the form factors of exponential operators in the Bullough-Dodd model
which permits to obtain the primary solutions of the breather sector in ¢12 and 015

(35> 107) deformations of M, [2].

— The derivation of the exact wave—function renormalization constant of the BD model and of

the exactly normalized form factors of the fields o(z) and :¢*(z): [2].

All the models analyzed in this thesis have the common feature of being described by diagonal
scattering theories. In this case, the general solutions of form factors equations can be easily
obtained since the monodromy minimal solutions of multiparticle states are factorized in terms
of two—particle ones. This important simplification has allowed us to focus on the important
issues of form factors pole structure and of operator classification. The solution of form factor
equations in the general non—diagonal case is a nontrivial problem which has been solved for
several models with sophisticated algebraic techniques (see for instance [78, 60, 47, 8, 64, 10, 9]).
A possible interesting development of the present work would be to apply these techniques to
the soliton sector of the ZMS model. If the general solution of form factor equations of this
model were known, the identification of the scaling primary solutions could be easily obtained
by matching the soliton sector with the breather one which is obtained through analytical

continuation of the BD results.

'In the paper [4], the deformations of Ma7 are analyzed as well.
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